-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
116 lines (89 loc) · 4.13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import csv
from math import ceil
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
import sklearn
from keras.models import Sequential
from keras.layers import Flatten, Dense, Lambda, BatchNormalization, Dropout, Cropping2D
from keras.layers.convolutional import Convolution2D
from keras.callbacks import EarlyStopping
batch_size = 32
lines = []
# load stored data
with open('./data/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
lines.append(line)
# helper function to read image from path
def read_image_from_disk(source_path):
file_name = source_path.split('/')[-1]
current_path = "./data/IMG/" + file_name
image = cv2.imread(current_path)
return image
# splitting data into train_samples and validation_samples
train_samples, validation_samples = train_test_split(lines, test_size=0.2)
# create a generator for memory efficiency
def generator(samples, batch_size=32):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
sklearn.utils.shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset + batch_size]
images, measurements = [], []
for sample in batch_samples:
# create adjusted steering measurements for the center and side camera images
# center image
measurement = float(sample[3])
center_image = read_image_from_disk(sample[0])
images.append(center_image)
measurements.append(measurement)
images.append(cv2.flip(center_image, 1))
measurements.append(measurement * -1.0)
# side images
left_image = read_image_from_disk(sample[1])
right_image = read_image_from_disk(sample[2])
correction = 0.2 # this is a parameter to tune
steering_left = measurement + correction
steering_right = measurement - correction
measurements.extend([steering_left, steering_right])
images.extend([left_image, right_image])
# convert images and measurements to np.array
X_train = np.array(images)
y_train = np.array(measurements)
yield sklearn.utils.shuffle(X_train, y_train)
# compile and train the model using the generator function
train_generator = generator(train_samples, batch_size=batch_size)
validation_generator = generator(validation_samples, batch_size=batch_size)
callbacks = [EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None,
restore_best_weights=True)]
# define model
model = Sequential()
# preprocess input normalize and crop
model.add(Lambda(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3)))
model.add(Cropping2D(cropping=((50, 20), (0, 0))))
# add Convolution2D layers
model.add(Convolution2D(filters=24, kernel_size=(5, 5), padding='valid', activation='relu'))
model.add(Convolution2D(filters=36, kernel_size=(5, 5), padding='valid', activation='relu'))
model.add(Convolution2D(filters=48, kernel_size=(5, 5), padding='valid', activation='relu'))
model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding='valid', activation='relu'))
model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding='valid', activation='relu'))
# add fully connected layers
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(50, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.fit_generator(train_generator,
steps_per_epoch=ceil(len(train_samples) / batch_size),
validation_data=validation_generator,
validation_steps=ceil(len(validation_samples) / batch_size),
epochs=5, verbose=1, callbacks=callbacks)
# save result
model.save('model.h5')