-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathupredalgo.h
585 lines (546 loc) · 21.4 KB
/
upredalgo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// This file is part of the uSTL library, an STL implementation.
//
// Copyright (c) 2005 by Mike Sharov <[email protected]>
// This file is free software, distributed under the MIT License.
#pragma once
#include "ualgo.h"
namespace ustl {
/// Copy_if copies elements from the range [first, last) to the range
/// [result, result + (last - first)) if pred(*i) returns true.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if (InputIterator first, InputIterator last, OutputIterator result, Predicate pred)
{
for (; first != last; ++first) {
if (pred(*first)) {
*result = *first;
++ result;
}
}
return (result);
}
/// Returns the first iterator i in the range [first, last) such that
/// pred(*i) is true. Returns last if no such iterator exists.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename Predicate>
inline InputIterator find_if (InputIterator first, InputIterator last, Predicate pred)
{
while (first != last && !pred (*first))
++ first;
return (first);
}
/// Returns the first iterator such that p(*i, *(i + 1)) == true.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename BinaryPredicate>
inline ForwardIterator adjacent_find (ForwardIterator first, ForwardIterator last, BinaryPredicate p)
{
if (first != last)
for (ForwardIterator prev = first; ++first != last; ++ prev)
if (p (*prev, *first))
return (prev);
return (last);
}
/// Returns the pointer to the first pair of unequal elements.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename BinaryPredicate>
inline pair<InputIterator,InputIterator>
mismatch (InputIterator first1, InputIterator last1, InputIterator first2, BinaryPredicate comp)
{
while (first1 != last1 && comp(*first1, *first2))
++ first1, ++ first2;
return (make_pair (first1, first2));
}
/// Returns true if two ranges are equal.
/// This is an extension, present in uSTL and SGI STL.
/// \ingroup ConditionAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename BinaryPredicate>
inline bool equal (InputIterator first1, InputIterator last1, InputIterator first2, BinaryPredicate comp)
{
return (mismatch (first1, last1, first2, comp).first == last1);
}
/// Count_if finds the number of elements in [first, last) that satisfy the
/// predicate pred. More precisely, the first version of count_if returns the
/// number of iterators i in [first, last) such that pred(*i) is true.
/// \ingroup ConditionAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename Predicate>
inline size_t count_if (InputIterator first, InputIterator last, Predicate pred)
{
size_t total = 0;
for (; first != last; ++first)
if (pred (*first))
++ total;
return (total);
}
/// Replace_if replaces every element in the range [first, last) for which
/// pred returns true with new_value. That is: for every iterator i, if
/// pred(*i) is true then it performs the assignment *i = new_value.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename Predicate, typename T>
inline void replace_if (ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value)
{
for (; first != last; ++first)
if (pred (*first))
*first = new_value;
}
/// Replace_copy_if copies elements from the range [first, last) to the range
/// [result, result + (last-first)), except that any element for which pred is
/// true is not copied; new_value is copied instead. More precisely, for every
/// integer n such that 0 <= n < last-first, replace_copy_if performs the
/// assignment *(result+n) = new_value if pred(*(first+n)),
/// and *(result+n) = *(first+n) otherwise.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename OutputIterator, typename Predicate, typename T>
inline OutputIterator replace_copy_if (InputIterator first, InputIterator last, OutputIterator result, Predicate pred, const T& new_value)
{
for (; first != last; ++result, ++first)
*result = pred(*first) ? new_value : *first;
}
/// Remove_copy_if copies elements from the range [first, last) to a range
/// beginning at result, except that elements for which pred is true are not
/// copied. The return value is the end of the resulting range. This operation
/// is stable, meaning that the relative order of the elements that are copied
/// is the same as in the range [first, last).
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator remove_copy_if (InputIterator first, InputIterator last, OutputIterator result, Predicate pred)
{
for (; first != last; ++first)
if (pred (*first))
*result++ = *first;
return (result);
}
/// Remove_if removes from the range [first, last) every element x such that
/// pred(x) is true. That is, remove_if returns an iterator new_last such that
/// the range [first, new_last) contains no elements for which pred is true.
/// The iterators in the range [new_last, last) are all still dereferenceable,
/// but the elements that they point to are unspecified. Remove_if is stable,
/// meaning that the relative order of elements that are not removed is
/// unchanged.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename Predicate>
inline ForwardIterator remove_if (ForwardIterator first, ForwardIterator last, Predicate pred)
{
return (remove_copy_if (first, last, first, pred));
}
/// The reason there are two different versions of unique_copy is that there
/// are two different definitions of what it means for a consecutive group of
/// elements to be duplicates. In the first version, the test is simple
/// equality: the elements in a range [f, l) are duplicates if, for every
/// iterator i in the range, either i == f or else *i == *(i-1). In the second,
/// the test is an arbitrary Binary Predicate binary_pred: the elements in
/// [f, l) are duplicates if, for every iterator i in the range, either
/// i == f or else binary_pred(*i, *(i-1)) is true.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename InputIterator, typename OutputIterator, typename BinaryPredicate>
OutputIterator unique_copy (InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate binary_pred)
{
if (first != last) {
*result = *first;
while (++first != last)
if (!binary_pred (*first, *result))
*++result = *first;
++ result;
}
return (result);
}
/// Every time a consecutive group of duplicate elements appears in the range
/// [first, last), the algorithm unique removes all but the first element.
/// That is, unique returns an iterator new_last such that the range [first,
/// new_last) contains no two consecutive elements that are duplicates.
/// The iterators in the range [new_last, last) are all still dereferenceable,
/// but the elements that they point to are unspecified. Unique is stable,
/// meaning that the relative order of elements that are not removed is
/// unchanged.
/// \ingroup MutatingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename BinaryPredicate>
inline ForwardIterator unique (ForwardIterator first, ForwardIterator last, BinaryPredicate binary_pred)
{
return (unique_copy (first, last, first, binary_pred));
}
/// Returns the furthermost iterator i in [first, last) such that,
/// for every iterator j in [first, i), comp(*j, value) is true.
/// Assumes the range is sorted.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename T, typename StrictWeakOrdering>
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T& value, StrictWeakOrdering comp)
{
ForwardIterator mid;
while (first != last) {
mid = advance (first, size_t(distance (first,last)) / 2);
if (comp (*mid, value))
first = mid + 1;
else
last = mid;
}
return (first);
}
/// Performs a binary search inside the sorted range.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename T, typename StrictWeakOrdering>
inline bool binary_search (ForwardIterator first, ForwardIterator last, const T& value, StrictWeakOrdering comp)
{
ForwardIterator found = lower_bound (first, last, value, comp);
return (found != last && !comp(*found, value));
}
/// Returns the furthermost iterator i in [first,last) such that for
/// every iterator j in [first,i), comp(value,*j) is false.
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename T, typename StrictWeakOrdering>
ForwardIterator upper_bound (ForwardIterator first, ForwardIterator last, const T& value, StrictWeakOrdering comp)
{
ForwardIterator mid;
while (first != last) {
mid = advance (first, size_t(distance (first,last)) / 2);
if (comp (value, *mid))
last = mid;
else
first = mid + 1;
}
return (last);
}
/// Returns pair<lower_bound,upper_bound>
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename ForwardIterator, typename T, typename StrictWeakOrdering>
inline pair<ForwardIterator,ForwardIterator> equal_range (ForwardIterator first, ForwardIterator last, const T& value, StrictWeakOrdering comp)
{
pair<ForwardIterator,ForwardIterator> rv;
rv.second = rv.first = lower_bound (first, last, value, comp);
while (rv.second != last && !comp(value, *(rv.second)))
++ rv.second;
return (rv);
}
/// \brief Puts \p nth element into its sorted position.
/// In this implementation, the entire array is sorted. The performance difference is
/// so small and the function use is so rare, there is no need to have code for it.
/// \ingroup SortingAlgorithms
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
///
template <typename RandomAccessIterator, typename Compare>
inline void nth_element (RandomAccessIterator first, RandomAccessIterator, RandomAccessIterator last, Compare comp)
{
sort (first, last, comp);
}
/// \brief Searches for the first subsequence [first2,last2) in [first1,last1)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator1, typename ForwardIterator2, typename BinaryPredicate>
ForwardIterator1 search (ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate comp)
{
const ForwardIterator1 slast = last1 - distance(first2, last2) + 1;
for (; first1 < slast; ++first1) {
ForwardIterator2 i = first2;
ForwardIterator1 j = first1;
for (; i != last2 && comp(*j, *i); ++i, ++j) ;
if (i == last2)
return (first1);
}
return (last1);
}
/// \brief Searches for the last subsequence [first2,last2) in [first1,last1)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator1, typename ForwardIterator2, typename BinaryPredicate>
ForwardIterator1 find_end (ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate comp)
{
ForwardIterator1 s = last1 - distance(first2, last2);
for (; first1 < s; --s) {
ForwardIterator2 i = first2, j = s;
for (; i != last2 && comp(*j, *i); ++i, ++j) ;
if (i == last2)
return (s);
}
return (last1);
}
/// \brief Searches for the first occurence of \p count \p values in [first, last)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename Iterator, typename T, typename BinaryPredicate>
Iterator search_n (Iterator first, Iterator last, size_t count, const T& value, BinaryPredicate comp)
{
size_t n = 0;
for (; first != last; ++first) {
if (!comp (*first, value))
n = 0;
else if (++n == count)
return (first - --n);
}
return (last);
}
/// \brief Searches [first1,last1) for the first occurrence of an element from [first2,last2)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator, typename ForwardIterator, typename BinaryPredicate>
InputIterator find_first_of (InputIterator first1, InputIterator last1, ForwardIterator first2, ForwardIterator last2, BinaryPredicate comp)
{
for (; first1 != last1; ++first1)
for (ForwardIterator i = first2; i != last2; ++i)
if (comp (*first1, *i))
return (first1);
return (first1);
}
/// \brief Returns true if [first2,last2) is a subset of [first1,last1)
/// \ingroup ConditionAlgorithms
/// \ingroup SetAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename StrictWeakOrdering>
bool includes (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, StrictWeakOrdering comp)
{
for (; (first1 != last1) & (first2 != last2); ++first1) {
if (comp (*first2, *first1))
return (false);
first2 += !comp (*first1, *first2);
}
return (first2 == last2);
}
/// \brief Merges [first1,last1) with [first2,last2)
///
/// Result will contain every element that is in either set. If duplicate
/// elements are present, max(n,m) is placed in the result.
///
/// \ingroup SetAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename OutputIterator, typename StrictWeakOrdering>
OutputIterator set_union (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp)
{
for (; (first1 != last1) & (first2 != last2); ++result) {
if (comp (*first2, *first1))
*result = *first2++;
else {
first2 += !comp (*first1, *first2);
*result = *first1++;
}
}
return (copy (first2, last2, copy (first1, last1, result)));
}
/// \brief Creates a set containing elements shared by the given ranges.
/// \ingroup SetAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename OutputIterator, typename StrictWeakOrdering>
OutputIterator set_intersection (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp)
{
while ((first1 != last1) & (first2 != last2)) {
bool b1ge2 = !comp (*first1, *first2), b2ge1 = !comp (*first2, *first1);
if (b1ge2 & b2ge1)
*result++ = *first1;
first1 += b2ge1;
first2 += b1ge2;
}
return (result);
}
/// \brief Removes from [first1,last1) elements present in [first2,last2)
/// \ingroup SetAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename OutputIterator, typename StrictWeakOrdering>
OutputIterator set_difference (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp)
{
while ((first1 != last1) & (first2 != last2)) {
bool b1ge2 = !comp (*first1, *first2), b2ge1 = !comp (*first2, *first1);
if (!b1ge2)
*result++ = *first1;
first1 += b2ge1;
first2 += b1ge2;
}
return (copy (first1, last1, result));
}
/// \brief Performs union of sets A-B and B-A.
/// \ingroup SetAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename OutputIterator, typename StrictWeakOrdering>
OutputIterator set_symmetric_difference (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp)
{
while ((first1 != last1) & (first2 != last2)) {
bool b1l2 = comp (*first1, *first2), b2l1 = comp (*first2, *first1);
if (b1l2)
*result++ = *first1;
else if (b2l1)
*result++ = *first2;
first1 += !b2l1;
first2 += !b1l2;
}
return (copy (first2, last2, copy (first1, last1, result)));
}
/// \brief Returns true if the given range is sorted.
/// \ingroup ConditionAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator, typename StrictWeakOrdering>
bool is_sorted (ForwardIterator first, ForwardIterator last, StrictWeakOrdering comp)
{
for (ForwardIterator i = first; ++i < last; ++first)
if (comp (*i, *first))
return (false);
return (true);
}
/// \brief Compares two given containers like strcmp compares strings.
/// \ingroup ConditionAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator1, typename InputIterator2, typename BinaryPredicate>
bool lexicographical_compare (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, BinaryPredicate comp)
{
for (; (first1 != last1) & (first2 != last2); ++first1, ++first2) {
if (comp (*first1, *first2))
return (true);
if (comp (*first2, *first1))
return (false);
}
return ((first1 == last1) & (first2 != last2));
}
/// \brief Creates the next lexicographical permutation of [first,last).
/// Returns false if no further permutations can be created.
/// \ingroup GeneratorAlgorithms
/// \ingroup PredicateAlgorithms
template <typename BidirectionalIterator, typename StrictWeakOrdering>
bool next_permutation (BidirectionalIterator first, BidirectionalIterator last, StrictWeakOrdering comp)
{
if (distance (first, last) < 2)
return (false);
BidirectionalIterator i = last;
for (--i; i != first; ) {
--i;
if (comp (i[0], i[1])) {
BidirectionalIterator j = last;
while (!comp (*i, *--j)) ;
iter_swap (i, j);
reverse (i + 1, last);
return (true);
}
}
reverse (first, last);
return (false);
}
/// \brief Creates the previous lexicographical permutation of [first,last).
/// Returns false if no further permutations can be created.
/// \ingroup GeneratorAlgorithms
/// \ingroup PredicateAlgorithms
template <typename BidirectionalIterator, typename StrictWeakOrdering>
bool prev_permutation (BidirectionalIterator first, BidirectionalIterator last, StrictWeakOrdering comp)
{
if (distance (first, last) < 2)
return (false);
BidirectionalIterator i = last;
for (--i; i != first; ) {
--i;
if (comp(i[1], i[0])) {
BidirectionalIterator j = last;
while (!comp (*--j, *i)) ;
iter_swap (i, j);
reverse (i + 1, last);
return (true);
}
}
reverse (first, last);
return (false);
}
/// \brief Returns iterator to the max element in [first,last)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator, typename BinaryPredicate>
inline ForwardIterator max_element (ForwardIterator first, ForwardIterator last, BinaryPredicate comp)
{
ForwardIterator result = first;
for (; first != last; ++first)
if (comp (*result, *first))
result = first;
return (result);
}
/// \brief Returns iterator to the min element in [first,last)
/// \ingroup SearchingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator, typename BinaryPredicate>
inline ForwardIterator min_element (ForwardIterator first, ForwardIterator last, BinaryPredicate comp)
{
ForwardIterator result = first;
for (; first != last; ++first)
if (comp (*first, *result))
result = first;
return (result);
}
/// \brief Makes [first,middle) a part of the sorted array.
/// Contents of [middle,last) is undefined. This implementation just calls stable_sort.
/// \ingroup SortingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename RandomAccessIterator, typename StrictWeakOrdering>
inline void partial_sort (RandomAccessIterator first, RandomAccessIterator, RandomAccessIterator last, StrictWeakOrdering comp)
{
stable_sort (first, last, comp);
}
/// \brief Like partial_sort, but outputs to [result_first,result_last)
/// \ingroup SortingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename InputIterator, typename RandomAccessIterator, typename StrictWeakOrdering>
RandomAccessIterator partial_sort_copy (InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, StrictWeakOrdering comp)
{
RandomAccessIterator rend = result_first;
for (; first != last; ++first) {
RandomAccessIterator i = result_first;
for (; i != rend && comp (*i, *first); ++i) ;
if (i == result_last)
continue;
rend += (rend < result_last);
copy_backward (i, rend - 1, rend);
*i = *first;
}
return (rend);
}
/// \brief Like partition, but preserves equal element order.
/// \ingroup SortingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator, typename Predicate>
ForwardIterator stable_partition (ForwardIterator first, ForwardIterator last, Predicate pred)
{
if (first == last)
return (first);
ForwardIterator l, r, m = advance (first, distance (first, last) / 2);
if (first == m)
return (pred(*first) ? last : first);
l = stable_partition (first, m, pred);
r = stable_partition (m, last, pred);
rotate (l, m, r);
return (advance (l, distance (m, r)));
}
/// \brief Splits [first,last) in two by \p pred.
///
/// Creates two ranges [first,middle) and [middle,last), where every element
/// in the former is less than every element in the latter.
/// The return value is middle.
///
/// \ingroup SortingAlgorithms
/// \ingroup PredicateAlgorithms
template <typename ForwardIterator, typename Predicate>
inline ForwardIterator partition (ForwardIterator first, ForwardIterator last, Predicate pred)
{
return (stable_partition (first, last, pred));
}
} // namespace ustl