-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathufunction.h
462 lines (405 loc) · 17.8 KB
/
ufunction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// This file is part of the uSTL library, an STL implementation.
//
// Copyright (c) 2005 by Mike Sharov <[email protected]>
// This file is free software, distributed under the MIT License.
#pragma once
namespace ustl {
//----------------------------------------------------------------------
// Standard functors
//----------------------------------------------------------------------
/// \brief void-returning function abstract interface.
/// \ingroup FunctorObjects
template <typename Result>
struct void_function {
typedef Result result_type;
};
/// \brief \p Result f (\p Arg) function abstract interface.
/// \ingroup FunctorObjects
template <typename Arg, typename Result>
struct unary_function {
typedef Arg argument_type;
typedef Result result_type;
};
/// \brief \p Result f (\p Arg1, \p Arg2) function abstract interface.
/// \ingroup FunctorObjects
template <typename Arg1, typename Arg2, typename Result>
struct binary_function {
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define STD_BINARY_FUNCTOR(name, rv, func) \
template <class T> struct name : public binary_function<T,T,rv> \
{ inline rv operator()(const T& a, const T& b) const { return func; } };
#define STD_UNARY_FUNCTOR(name, rv, func) \
template <class T> struct name : public unary_function<T,rv> \
{ inline rv operator()(const T& a) const { return func; } };
#define STD_CONVERSION_FUNCTOR(name, func) \
template <class S, class D> struct name : public unary_function<S,D> \
{ inline D operator()(const S& a) const { return func; } };
STD_BINARY_FUNCTOR (plus, T, (a + b))
STD_BINARY_FUNCTOR (minus, T, (a - b))
STD_BINARY_FUNCTOR (divides, T, (a / b))
STD_BINARY_FUNCTOR (modulus, T, (a % b))
STD_BINARY_FUNCTOR (multiplies, T, (a * b))
STD_BINARY_FUNCTOR (logical_and, T, (a && b))
STD_BINARY_FUNCTOR (logical_or, T, (a || b))
STD_UNARY_FUNCTOR (logical_not, T, (!a))
STD_BINARY_FUNCTOR (bitwise_or, T, (a | b))
STD_BINARY_FUNCTOR (bitwise_and, T, (a & b))
STD_BINARY_FUNCTOR (bitwise_xor, T, (a ^ b))
STD_UNARY_FUNCTOR (bitwise_not, T, (~a))
STD_UNARY_FUNCTOR (negate, T, (-a))
STD_BINARY_FUNCTOR (equal_to, bool, (a == b))
STD_BINARY_FUNCTOR (not_equal_to, bool, (!(a == b)))
STD_BINARY_FUNCTOR (greater, bool, (b < a))
STD_BINARY_FUNCTOR (less, bool, (a < b))
STD_BINARY_FUNCTOR (greater_equal, bool, (!(a < b)))
STD_BINARY_FUNCTOR (less_equal, bool, (!(b < a)))
STD_BINARY_FUNCTOR (compare, int, (a < b ? -1 : (b < a)))
STD_UNARY_FUNCTOR (identity, T, (a))
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// \brief Selects and returns the first argument.
/// \ingroup FunctorObjects
template <class T1, class T2> struct project1st : public binary_function<T1,T2,T1> { inline const T1& operator()(const T1& a, const T2&) const { return (a); } };
/// \brief Selects and returns the second argument.
/// \ingroup FunctorObjects
template <class T1, class T2> struct project2nd : public binary_function<T1,T2,T2> { inline const T2& operator()(const T1&, const T2& a) const { return (a); } };
//----------------------------------------------------------------------
// Generic function to functor converters.
//----------------------------------------------------------------------
/// \brief Wrapper object for unary function pointers.
/// Use the ptr_fun accessor to create this object.
/// \ingroup FunctorObjects
template <typename Arg, typename Result>
class pointer_to_unary_function : public unary_function<Arg,Result> {
public:
typedef Arg argument_type;
typedef Result result_type;
typedef Result (*pfunc_t)(Arg);
public:
explicit inline pointer_to_unary_function (pfunc_t pfn) : m_pfn (pfn) {}
inline result_type operator() (argument_type v) const { return (m_pfn(v)); }
private:
pfunc_t m_pfn; ///< Pointer to the wrapped function.
};
/// \brief Wrapper object for binary function pointers.
/// Use the ptr_fun accessor to create this object.
/// \ingroup FunctorObjects
template <typename Arg1, typename Arg2, typename Result>
class pointer_to_binary_function : public binary_function<Arg1,Arg2,Result> {
public:
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
typedef Result (*pfunc_t)(Arg1, Arg2);
public:
explicit inline pointer_to_binary_function (pfunc_t pfn) : m_pfn (pfn) {}
inline result_type operator() (first_argument_type v1, second_argument_type v2) const { return (m_pfn(v1, v2)); }
private:
pfunc_t m_pfn; ///< Pointer to the wrapped function.
};
/// ptr_fun(pfn) wraps function pointer pfn into a functor class that calls it.
/// \ingroup FunctorAccessors
template <typename Arg, typename Result>
inline pointer_to_unary_function<Arg,Result> ptr_fun (Result (*pfn)(Arg))
{
return (pointer_to_unary_function<Arg,Result> (pfn));
}
/// ptr_fun(pfn) wraps function pointer pfn into a functor class that calls it.
/// \ingroup FunctorAccessors
template <typename Arg1, typename Arg2, typename Result>
inline pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun (Result (*pfn)(Arg1,Arg2))
{
return (pointer_to_binary_function<Arg1,Arg2,Result> (pfn));
}
//----------------------------------------------------------------------
// Negators.
//----------------------------------------------------------------------
/// \brief Wraps a unary function to return its logical negative.
/// Use the unary_negator accessor to create this object.
/// \ingroup FunctorObjects
template <class UnaryFunction>
class unary_negate : public unary_function<typename UnaryFunction::argument_type,
typename UnaryFunction::result_type> {
public:
typedef typename UnaryFunction::argument_type argument_type;
typedef typename UnaryFunction::result_type result_type;
public:
explicit inline unary_negate (UnaryFunction pfn) : m_pfn (pfn) {}
inline result_type operator() (argument_type v) const { return (!m_pfn(v)); }
private:
UnaryFunction m_pfn;
};
/// Returns the functor that negates the result of *pfn().
/// \ingroup FunctorAccessors
template <class UnaryFunction>
inline unary_negate<UnaryFunction> unary_negator (UnaryFunction pfn)
{
return (unary_negate<UnaryFunction>(pfn));
}
//----------------------------------------------------------------------
// Argument binders
//----------------------------------------------------------------------
/// \brief Converts a binary function to a unary function
/// by binding a constant value to the first argument.
/// Use the bind1st accessor to create this object.
/// \ingroup FunctorObjects
template <class BinaryFunction>
class binder1st : public unary_function<typename BinaryFunction::second_argument_type,
typename BinaryFunction::result_type> {
public:
typedef typename BinaryFunction::first_argument_type arg1_t;
typedef typename BinaryFunction::second_argument_type arg2_t;
typedef typename BinaryFunction::result_type result_t;
public:
inline binder1st (const BinaryFunction& pfn, const arg1_t& v) : m_pfn (pfn), m_Value(v) {}
inline result_t operator()(arg2_t v2) const { return (m_pfn (m_Value, v2)); }
protected:
BinaryFunction m_pfn;
arg1_t m_Value;
};
/// \brief Converts a binary function to a unary function
/// by binding a constant value to the second argument.
/// Use the bind2nd accessor to create this object.
/// \ingroup FunctorObjects
template <class BinaryFunction>
class binder2nd : public unary_function<typename BinaryFunction::first_argument_type,
typename BinaryFunction::result_type> {
public:
typedef typename BinaryFunction::first_argument_type arg1_t;
typedef typename BinaryFunction::second_argument_type arg2_t;
typedef typename BinaryFunction::result_type result_t;
public:
inline binder2nd (const BinaryFunction& pfn, const arg2_t& v) : m_pfn (pfn), m_Value(v) {}
inline result_t operator()(arg1_t v1) const { return (m_pfn (v1, m_Value)); }
protected:
BinaryFunction m_pfn;
arg2_t m_Value;
};
/// Converts \p pfn into a unary function by binding the first argument to \p v.
/// \ingroup FunctorAccessors
template <typename BinaryFunction>
inline binder1st<BinaryFunction>
bind1st (BinaryFunction pfn, typename BinaryFunction::first_argument_type v)
{
return (binder1st<BinaryFunction> (pfn, v));
}
/// Converts \p pfn into a unary function by binding the second argument to \p v.
/// \ingroup FunctorAccessors
template <typename BinaryFunction>
inline binder2nd<BinaryFunction>
bind2nd (BinaryFunction pfn, typename BinaryFunction::second_argument_type v)
{
return (binder2nd<BinaryFunction> (pfn, v));
}
//----------------------------------------------------------------------
// Composition adapters
//----------------------------------------------------------------------
/// \brief Chains two unary functions together.
///
/// When f(x) and g(x) are composed, the result is function c(x)=f(g(x)).
/// Use the \ref compose1 accessor to create this object.
/// This template is an extension, implemented by SGI STL and uSTL.
/// \ingroup FunctorObjects
///
template <typename Operation1, typename Operation2>
class unary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
public:
typedef typename Operation2::argument_type arg_t;
typedef const arg_t& rcarg_t;
typedef typename Operation1::result_type result_t;
public:
inline unary_compose (const Operation1& f, const Operation2& g) : m_f(f), m_g(g) {}
inline result_t operator() (rcarg_t x) const { return m_f(m_g(x)); }
protected:
Operation1 m_f; ///< f(x), if c(x) = f(g(x))
Operation2 m_g; ///< g(x), if c(x) = f(g(x))
};
/// Creates a \ref unary_compose object whose function c(x)=f(g(x))
/// \ingroup FunctorAccessors
template <typename Operation1, typename Operation2>
inline unary_compose<Operation1, Operation2>
compose1 (const Operation1& f, const Operation2& g)
{ return unary_compose<Operation1,Operation2>(f, g); }
/// \brief Chains two unary functions through a binary function.
///
/// When f(x,y), g(x), and h(x) are composed, the result is function
/// c(x)=f(g(x),h(x)). Use the \ref compose2 accessor to create this
/// object. This template is an extension, implemented by SGI STL and uSTL.
/// \ingroup FunctorObjects
///
template <typename Operation1, typename Operation2, typename Operation3>
class binary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
public:
typedef typename Operation2::argument_type arg_t;
typedef const arg_t& rcarg_t;
typedef typename Operation1::result_type result_t;
public:
inline binary_compose (const Operation1& f, const Operation2& g, const Operation3& h) : m_f(f), m_g(g), m_h(h) {}
inline result_t operator() (rcarg_t x) const { return m_f(m_g(x), m_h(x)); }
protected:
Operation1 m_f; ///< f(x,y), if c(x) = f(g(x),h(x))
Operation2 m_g; ///< g(x), if c(x) = f(g(x),h(x))
Operation3 m_h; ///< h(x), if c(x) = f(g(x),h(x))
};
/// Creates a \ref binary_compose object whose function c(x)=f(g(x),h(x))
/// \ingroup FunctorAccessors
template <typename Operation1, typename Operation2, typename Operation3>
inline binary_compose<Operation1, Operation2, Operation3>
compose2 (const Operation1& f, const Operation2& g, const Operation3& h)
{ return binary_compose<Operation1, Operation2, Operation3> (f, g, h); }
//----------------------------------------------------------------------
// Member function adaptors
//----------------------------------------------------------------------
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define MEM_FUN_T(WrapperName, ClassName, ArgType, FuncType, CallType) \
template <typename Ret, class T> \
class ClassName : public unary_function<ArgType,Ret> { \
public: \
typedef Ret (T::*func_t) FuncType; \
public: \
explicit inline ClassName (func_t pf) : m_pf (pf) {} \
inline Ret operator() (ArgType p) const { return ((p CallType m_pf)()); } \
private: \
func_t m_pf; \
}; \
\
template <class Ret, typename T> \
inline ClassName<Ret,T> WrapperName (Ret (T::*pf) FuncType) \
{ \
return (ClassName<Ret,T> (pf)); \
}
MEM_FUN_T(mem_fun, mem_fun_t, T*, (void), ->*)
MEM_FUN_T(mem_fun, const_mem_fun_t, const T*, (void) const, ->*)
MEM_FUN_T(mem_fun_ref, mem_fun_ref_t, T&, (void), .*)
MEM_FUN_T(mem_fun_ref, const_mem_fun_ref_t, const T&, (void) const, .*)
#define EXT_MEM_FUN_T(ClassName, HostType, FuncType) \
template <class T, typename Ret, typename V> \
class ClassName : public unary_function<V,void> { \
public: \
typedef Ret (T::*func_t)(V) FuncType; \
public: \
inline ClassName (HostType t, func_t pf) : m_t (t), m_pf (pf) {} \
inline Ret operator() (V v) const { return ((m_t->*m_pf)(v)); } \
private: \
HostType m_t; \
func_t m_pf; \
}; \
\
template <class T, typename Ret, typename V> \
inline ClassName<T,Ret,V> mem_fun (HostType p, Ret (T::*pf)(V) FuncType) \
{ \
return (ClassName<T,Ret,V> (p, pf)); \
}
EXT_MEM_FUN_T(ext_mem_fun_t, T*, )
EXT_MEM_FUN_T(const_ext_mem_fun_t, const T*, const)
#endif // DOXYGEN_SHOULD_SKIP_THIS
//----------------------------------------------------------------------
// Member variable adaptors (uSTL extension)
//----------------------------------------------------------------------
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define MEM_VAR_T(FunctorName, ArgType, VarType, BaseClass, CallImpl) \
template <typename Function, class T, typename VT> \
class FunctorName##_t : public BaseClass { \
public: \
typedef ArgType argument_type; \
typedef typename Function::result_type result_type; \
typedef VarType mem_var_ptr_t; \
public: \
inline FunctorName##_t (mem_var_ptr_t pv, Function pfn) : m_pv(pv), m_pfn(pfn) {} \
inline result_type operator() CallImpl \
private: \
mem_var_ptr_t m_pv; \
Function m_pfn; \
}; \
\
template <typename Function, class T, typename VT> \
inline FunctorName##_t<Function, T, VT> \
FunctorName (VT T::*mvp, Function pfn) \
{ \
return (FunctorName##_t<Function,T,VT> (mvp, pfn)); \
}
#define FUNCTOR_UNARY_BASE(ArgType) unary_function<ArgType, typename Function::result_type>
#define FUNCTOR_BINARY_BASE(ArgType) binary_function<ArgType, ArgType, typename Function::result_type>
#define MEM_VAR_UNARY_ARGS (argument_type p) const \
{ return (m_pfn(p.*m_pv)); }
#define MEM_VAR_BINARY_ARGS (argument_type p1, argument_type p2) const \
{ return (m_pfn(p1.*m_pv, p2.*m_pv)); }
MEM_VAR_T(mem_var1, T&, VT T::*, FUNCTOR_UNARY_BASE(T&), MEM_VAR_UNARY_ARGS)
MEM_VAR_T(const_mem_var1, const T&, const VT T::*, FUNCTOR_UNARY_BASE(T&), MEM_VAR_UNARY_ARGS)
MEM_VAR_T(mem_var2, T&, VT T::*, FUNCTOR_BINARY_BASE(T&), MEM_VAR_BINARY_ARGS)
MEM_VAR_T(const_mem_var2, const T&, const VT T::*, FUNCTOR_BINARY_BASE(T&), MEM_VAR_BINARY_ARGS)
#undef MEM_VAR_UNARY_ARGS
#undef MEM_VAR_BINARY_ARGS
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// Returned functor passes member variable \p mvp reference of given object to equal\<VT\>.
/// \ingroup FunctorAccessors
template <class T, typename VT>
inline const_mem_var1_t<binder2nd<equal_to<VT> >, T, VT>
mem_var_equal_to (const VT T::*mvp, const VT& v)
{
return (const_mem_var1_t<binder2nd<equal_to<VT> >,T,VT> (mvp, bind2nd(equal_to<VT>(), v)));
}
/// Returned functor passes member variable \p mvp reference of given object to less\<VT\>.
/// \ingroup FunctorAccessors
template <class T, typename VT>
inline const_mem_var1_t<binder2nd<less<VT> >, T, VT>
mem_var_less (const VT T::*mvp, const VT& v)
{
return (const_mem_var1_t<binder2nd<less<VT> >,T,VT> (mvp, bind2nd(less<VT>(), v)));
}
/// Returned functor passes member variable \p mvp reference of given object to equal\<VT\>.
/// \ingroup FunctorAccessors
template <class T, typename VT>
inline const_mem_var2_t<equal_to<VT>, T, VT>
mem_var_equal_to (const VT T::*mvp)
{
return (const_mem_var2_t<equal_to<VT>,T,VT> (mvp, equal_to<VT>()));
}
/// Returned functor passes member variable \p mvp reference of given object to less\<VT\>.
/// \ingroup FunctorAccessors
template <class T, typename VT>
inline const_mem_var2_t<less<VT>, T, VT>
mem_var_less (const VT T::*mvp)
{
return (const_mem_var2_t<less<VT>,T,VT> (mvp, less<VT>()));
}
//----------------------------------------------------------------------
// Dereference adaptors (uSTL extension)
//----------------------------------------------------------------------
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define DEREFERENCER_T(ClassName, ArgType, BaseClass, CallImpl, FunctorKey) \
template <typename T, typename Function> \
class ClassName : public BaseClass { \
public: \
typedef ArgType* argument_type; \
typedef typename Function::result_type result_type; \
public: \
inline ClassName (Function pfn) : m_pfn (pfn) {} \
inline result_type operator() CallImpl \
private: \
Function m_pfn; \
}; \
\
template <typename T, typename Function> \
inline ClassName<T,Function> _dereference (Function pfn, FunctorKey) \
{ \
return (ClassName<T,Function> (pfn)); \
}
#define DEREF_UNARY_ARGS (argument_type p) const \
{ return (m_pfn(*p)); }
#define DEREF_BINARY_ARGS (argument_type p1, argument_type p2) const \
{ return (m_pfn(*p1, *p2)); }
DEREFERENCER_T(deref1_t, T, FUNCTOR_UNARY_BASE(T*), DEREF_UNARY_ARGS, FUNCTOR_UNARY_BASE(T))
DEREFERENCER_T(const_deref1_t, const T, FUNCTOR_UNARY_BASE(const T*), DEREF_UNARY_ARGS, FUNCTOR_UNARY_BASE(const T))
DEREFERENCER_T(deref2_t, T, FUNCTOR_BINARY_BASE(T*), DEREF_BINARY_ARGS, FUNCTOR_BINARY_BASE(T))
DEREFERENCER_T(const_deref2_t, const T, FUNCTOR_BINARY_BASE(const T*), DEREF_BINARY_ARGS, FUNCTOR_BINARY_BASE(const T))
#define dereference(f) _dereference(f,f)
#undef DEREF_UNARY_ARGS
#undef DEREF_BINARY_ARGS
#endif
} // namespace ustl