-
Notifications
You must be signed in to change notification settings - Fork 1
/
noisy_simulation.py
370 lines (299 loc) · 11.6 KB
/
noisy_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import numpy as np
import pandas as pd
import csv
import matplotlib.pyplot as plt
from copy import deepcopy
import cmath
num_rot = 2
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N_res = int(num/num_rot)
df = pd.read_csv("energy_files/two_body_terms.csv")
v = df['E_ij'].values
numm = len(v)
Q = np.zeros((num,num))
n = 0
for i in range(num-2):
if i%2 == 0:
Q[i][i+2] = deepcopy(v[n])
Q[i+2][i] = deepcopy(v[n])
Q[i][i+3] = deepcopy(v[n+1])
Q[i+3][i] = deepcopy(v[n+1])
n += 2
elif i%2 != 0:
Q[i][i+1] = deepcopy(v[n])
Q[i+1][i] = deepcopy(v[n])
Q[i][i+2] = deepcopy(v[n+1])
Q[i+2][i] = deepcopy(v[n+1])
n += 2
print("q: \n", q)
print("Q: \n", Q)
H = np.zeros((num,num))
for i in range(num):
for j in range(num):
if i != j:
H[i][j] = np.multiply(0.25, Q[i][j])
for i in range(num):
H[i][i] = -(0.5 * q[i] + sum(0.25 * Q[i][j] for j in range(num) if j != i))
# add penalty terms to the matrix so as to discourage the selection of two rotamers on the same residue - implementation of the Hammings constraint
def add_penalty_term(M, penalty_constant, residue_pairs):
for i, j in residue_pairs:
M[i][j] += penalty_constant
return M
def generate_pairs(N):
pairs = [(i, i+1) for i in range(0, 2*N, 2)]
return pairs
P = 6
pairs = generate_pairs(N_res)
M = deepcopy(H)
M = add_penalty_term(M, P, pairs)
## Classical optimisation:
from scipy.sparse.linalg import eigsh
from scipy.linalg import eig
Z_matrix = np.array([[1, 0], [0, -1]])
identity = np.eye(2)
def construct_operator(qubit_indices, num):
operator = np.eye(1)
for qubit in range(num):
if qubit in qubit_indices:
operator = np.kron(operator, Z_matrix)
else:
operator = np.kron(operator, identity)
return operator
C = np.zeros((2**num, 2**num))
for i in range(num):
operator = construct_operator([i], num)
C += H[i][i] * operator
for i in range(num):
for j in range(i+1, num):
operator = construct_operator([i, j], num)
C += H[i][j] * operator
def create_hamiltonian(pairs, P, num):
H_pen = np.zeros((2**num, 2**num))
def tensor_term(term_indices):
term = [Z_matrix if i in term_indices else identity for i in range(num)]
result = term[0]
for t in term[1:]:
result = np.kron(result, t)
return result
for pair in pairs:
term = tensor_term(pair)
H_pen += P * term
return H_pen
H_penalty = create_hamiltonian(pairs, P, num)
H_tot = C + H_penalty
eigenvalues, eigenvectors = eigsh(H_tot, k=num, which='SA')
## Quantum optimisation
# Find minimum value using optimisation technique of QAOA
from qiskit import Aer, QuantumCircuit, execute
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info.operators import Operator, Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
def X_op(i, num):
op_list = ['I'] * num
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
def generate_pauli_zij(n, i, j):
if i<0 or i >= n or j<0 or j>=n:
raise ValueError(f"Indices out of bounds for n={n} qubits. ")
pauli_str = ['I']*n
if i == j:
pauli_str[i] = 'Z'
else:
pauli_str[i] = 'Z'
pauli_str[j] = 'Z'
return Pauli(''.join(pauli_str))
q_hamiltonian = SparsePauliOp(Pauli('I'*num), coeffs=[0])
for i in range(num):
for j in range(i+1, num):
if M[i][j] != 0:
pauli = generate_pauli_zij(num, i, j)
op = SparsePauliOp(pauli, coeffs=[M[i][j]])
q_hamiltonian += op
for i in range(num):
pauli = generate_pauli_zij(num, i, i)
Z_i = SparsePauliOp(pauli, coeffs=[M[i][i]])
q_hamiltonian += Z_i
def format_sparsepauliop(op):
terms = []
labels = [pauli.to_label() for pauli in op.paulis]
coeffs = op.coeffs
for label, coeff in zip(labels, coeffs):
terms.append(f"{coeff:.10f} * {label}")
return '\n'.join(terms)
print(f"\nThe hamiltonian constructed using Pauli operators is: \n", format_sparsepauliop(q_hamiltonian))
mixer_op = sum(X_op(i,num) for i in range(num))
p = 1 # Number of QAOA layers
initial_point = np.ones(2 * p)
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result.best_measurement)
print('Optimal parameters: ', result.optimal_parameters)
# from qiskit_optimization.applications import max_cut
# optimal_params = result.optimal_parameters
# graph = [(0, 1, 1.0), (1, 2, 1.0), (2, 3, 1.0), (3, 0, 1.0)]
# qubit_op, offset = max_cut.get_operator(graph)
# circuit = qaoa.construct_circuit(optimal_params, qubit_op).decompose()
# depth = circuit.depth()
# print("Depth of the QAOA circuit:", depth)
k = 0
for i in range(num):
k += 0.5 * q[i]
for i in range(num):
for j in range(num):
if i != j:
k += 0.5 * 0.25 * Q[i][j]
print('\nThe ground state energy classically is: ', eigenvalues[0] + N_res*P + k)
print('The ground state energy with QAOA is: ', np.real(result.best_measurement['value']) + N_res*P + k)
from qiskit_aer.noise import NoiseModel
from qiskit_ibm_provider import IBMProvider
from qiskit_aer import AerSimulator
from qiskit.providers.fake_provider import FakeKolkata, FakeVigo
from qiskit_ibm_runtime import QiskitRuntimeService, Options, Session, Sampler
IBMProvider.save_account('25a4f69c2395dfbc9990a6261b523fe99e820aa498647f92552992afb1bd6b0bbfcada97ec31a81a221c16be85104beb653845e23eeac2fe4c0cb435ec7fc6b4', overwrite=True)
provider = IBMProvider()
available_backends = provider.backends()
print([backend.name for backend in available_backends])
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend("ibmq_qasm_simulator")
noise_model = NoiseModel.from_backend(backend)
simulator = AerSimulator(noise_model = noise_model)
fake_backend = FakeKolkata()
noise_model = NoiseModel.from_backend(fake_backend)
options = Options()
options.simulator = {
"noise_model": noise_model,
"basis_gates": fake_backend.configuration().basis_gates,
"coupling_map": fake_backend.configuration().coupling_map,
"seed_simulator": 42
}
options.execution.shots = 1000
options.optimization_level = 0
options.resilience_level = 0
with Session(service=service, backend=backend):
sampler = Sampler(options=options)
qaoa = QAOA(sampler=sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result1 = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
print('best measurement', result1.best_measurement)
print('Optimal parameters: ', result1.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value']) + N_res*P + k)
## Creation and Annihilation operators Hamiltonian
num_qubits = N_res
## First Classically
H_s = np.zeros((2**num_qubits, 2**num_qubits), dtype=complex)
H_i = np.zeros((2**num_qubits, 2**num_qubits), dtype=complex)
X = np.array([[0, 1], [1, 0]])
Y = np.array([[0, -1j], [1j, 0]])
a = 0.5*(X + 1j*Y)
a_dagger = 0.5 *(X - 1j*Y)
aad = a@a_dagger
ada = a_dagger@a
def extended_operator(n, qubit, op):
ops = [identity if i != qubit else op for i in range(n)]
extended_op = ops[0]
for op in ops[1:]:
extended_op = np.kron(extended_op, op)
return extended_op
s = 0
for i in range(N_res):
aad_extended = extended_operator(num_qubits, i, aad)
ada_extended = extended_operator(num_qubits, i, ada)
H_s += q[s] * aad_extended + q[s+1] * ada_extended
s += num_rot
if s >= num:
break
k = 0
for i in range(N_res-1):
aad_extended = extended_operator(num_qubits, i, aad)
ada_extended = extended_operator(num_qubits, i, ada)
aad_extended1 = extended_operator(num_qubits, i+1, aad)
ada_extended1 = extended_operator(num_qubits, i+1, ada)
H_i += v[k] * aad_extended @ aad_extended1 + \
v[k+1] * aad_extended @ ada_extended1 + \
v[k+2] * ada_extended @ aad_extended1 + \
v[k+3] * ada_extended @ ada_extended1
k += num_rot**2
if k >= numm:
break
H_tt = H_i + H_s
eigenvalue, eigenvector = eigsh(H_tt, k=num_qubits, which='SA')
print('\n\nThe ground state with the number operator classically is: ', eigenvalue[0])
# print('The classical eigenstate is: ', eigenvalue)
# ground_state = eig(H_tt)
# print('eig result:', ground_state)
## Mapping to qubits
H_self = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
H_int = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
def N_0(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
def N_1(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[-0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
l = 0
for i in range(N_res):
N_0i = N_0(i, num_qubits)
N_1i = N_1(i, num_qubits)
H_self += q[l] * N_0i + q[l+1] * N_1i
l += num_rot
if l >= num:
break
j = 0
for i in range(N_res-1):
N_0i = N_0(i, num_qubits)
N_1i = N_1(i, num_qubits)
N_0j = N_0(i+1, num_qubits)
N_1j = N_1(i+1, num_qubits)
H_int += v[j] * N_0i @ N_0j + v[j+1] * N_0i @ N_1j + v[j+2] * N_1i @ N_0j + v[j+3] * N_1i @ N_1j
j += num_rot**2
if j >= numm:
break
H_gen = H_int + H_self
mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
p = 1
initial_point = np.ones(2*p)
qaoa1 = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result_gen = qaoa1.compute_minimum_eigenvalue(H_gen)
print("\nThe result of the quantum optimisation using QAOA with the number operators is: \n")
print('best measurement', result_gen.best_measurement)
print("Optimal parameters: ", qaoa1.optimal_params)
print('\nThe ground state energy with QAOA is: ', np.real(result_gen.best_measurement['value']), '\n')
print(result_gen)
IBMProvider.save_account('25a4f69c2395dfbc9990a6261b523fe99e820aa498647f92552992afb1bd6b0bbfcada97ec31a81a221c16be85104beb653845e23eeac2fe4c0cb435ec7fc6b4', overwrite=True)
provider = IBMProvider()
available_backends = provider.backends()
print([backend.name for backend in available_backends])
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend("ibmq_qasm_simulator")
noise_model = NoiseModel.from_backend(backend)
simulator = AerSimulator(noise_model = noise_model)
fake_backend = FakeKolkata()
noise_model = NoiseModel.from_backend(fake_backend)
options = Options()
options.simulator = {
"noise_model": noise_model,
"basis_gates": fake_backend.configuration().basis_gates,
"coupling_map": fake_backend.configuration().coupling_map,
"seed_simulator": 42
}
options.execution.shots = 1000
options.optimization_level = 0
options.resilience_level = 0
with Session(service=service, backend=backend):
sampler = Sampler(options=options)
qaoa2 = QAOA(sampler=sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result2 = qaoa2.compute_minimum_eigenvalue(H_gen)
print("\n\nThe result of the noisy quantum optimisation using QAOA with number operators is: \n")
print('best measurement', result2.best_measurement)
print('Optimal parameters: ', result2.optimal_parameters)
print('The ground state energy with noisy QAOA number operators is: ', np.real(result2.best_measurement['value']) + N_res*P + k)