-
Notifications
You must be signed in to change notification settings - Fork 1
/
multiple_qubits.py
214 lines (169 loc) · 7.58 KB
/
multiple_qubits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import pandas as pd
import itertools
import functools
import operator
from itertools import combinations
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
qubit_per_res = 2
num_rot = 2**qubit_per_res
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N_res = int(num/num_rot)
df = pd.read_csv("energy_files/two_body_terms.csv")
v = df['E_ij'].values
numm = len(v)
print("q: \n", q)
num_qubits = N_res * qubit_per_res
## Quantum optimisation
from qiskit_aer import Aer
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info import Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
## Mapping to qubits
H_self = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
H_int = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
def N_0(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
def N_1(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[-0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
def create_pauli_operators(num_qubits, qubits_per_res):
operators = []
for i in range(0, num_qubits, qubits_per_res):
# Generate all combinations of N_0 and N_1 for the residue
for comb in itertools.product([N_0, N_1], repeat=qubits_per_res):
ops = [func(j, num_qubits) for j, func in enumerate(comb, start=i)]
# Now you have a list of operators for each qubit in the residue
full_op = functools.reduce(operator.matmul, ops)
operators.append(full_op)
return operators
for i, op in enumerate(create_pauli_operators(num_qubits, qubit_per_res)):
H_self += q[i] * op
if i >= len(q) - 1:
break
def create_interaction_operators(num_qubits, qubits_per_res, v):
H_int = SparsePauliOp(Pauli('I' * num_qubits), coeffs=[0])
v_index = 0
# Iterate over all unique pairs of residues
for res1, res2 in combinations(range(0, num_qubits, qubits_per_res), 2):
# Generate all combinations of N_0 and N_1 for each qubit in the residue
for comb1 in itertools.product([N_0, N_1], repeat=qubits_per_res):
for comb2 in itertools.product([N_0, N_1], repeat=qubits_per_res):
op_list1 = [func(i + res1, num_qubits) for i, func in enumerate(comb1)]
op_list2 = [func(j + res2, num_qubits) for j, func in enumerate(comb2)]
# Now you have two lists of operators, one for each residue in the pair
full_op1 = functools.reduce(operator.matmul, op_list1)
full_op2 = functools.reduce(operator.matmul, op_list2)
H_int += v[v_index] * full_op1 @ full_op2
v_index += 1
if v_index >= len(v) - 1:
break
if v_index >= len(v) - 1:
break
if v_index >= len(v) - 1:
break
return H_int
H_int = create_interaction_operators(num_qubits, qubit_per_res, v)
H_gen = H_self + H_int
# # Convert H_gen to a list of tuples (coefficient, Pauli string)
# pauli_terms = []
# for pauli, coeff in zip(H_gen.paulis, H_gen.coeffs):
# pauli_str = pauli.to_label()
# pauli_terms.append((coeff, pauli_str))
# # Print out the formatted Hamiltonian
# for coeff, pauli_str in pauli_terms:
# print(f"{coeff} * {pauli_str}")
def X_op(i, num):
op_list = ['I'] * num
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
p = 1
initial_point = np.ones(2*p)
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result_gen = qaoa.compute_minimum_eigenvalue(H_gen)
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result_gen.best_measurement)
print('The ground state energy with QAOA is: ', np.real(result_gen.best_measurement['value']))
from qiskit_aer.noise import NoiseModel
from qiskit_ibm_provider import IBMProvider
from qiskit_aer import AerSimulator
from qiskit.circuit.library import QAOAAnsatz
from qiskit_ibm_runtime import QiskitRuntimeService, Options, Session, Sampler
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.primitives import StatevectorEstimator
from qiskit_ibm_runtime import EstimatorV2 as Estimator
from qiskit_ibm_runtime import SamplerV2 as Sampler
from scipy.optimize import minimize
IBMProvider.save_account('25a4f69c2395dfbc9990a6261b523fe99e820aa498647f92552992afb1bd6b0bbfcada97ec31a81a221c16be85104beb653845e23eeac2fe4c0cb435ec7fc6b4', overwrite=True)
provider = IBMProvider()
available_backends = provider.backends()
print([backend.name for backend in available_backends])
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend("ibmq_qasm_simulator")
noise_model = NoiseModel.from_backend(backend)
simulator = AerSimulator(noise_model = noise_model)
print('Noise model', noise_model)
ansatz = QAOAAnsatz(H_gen, reps=2)
ansatz.decompose(reps=3).draw(output='mpl', style='iqp')
target = backend.target
pm = generate_preset_pass_manager(target=target, optimization_level=3)
ansatz_isa =pm.run(ansatz)
ansatz_isa.draw(output="mpl", idle_wires=False, style="iqp")
hamiltonian_isa = H_gen.apply_layout(ansatz_isa.layout)
def cost_func(params, ansatz, hamiltonian, estimator):
pub = (ansatz, [hamiltonian], [params])
result = estimator.run(pubs=[pub]).result()
cost = result[0].data.evs[0]
return cost
# # To run on cloud simulator
session = Session(backend=backend)
estimator = Estimator(session=session)
estimator.options.default_shots = 10_000
estimator.options.dynamical_decoupling.enable = True
sampler = Sampler(session=session)
sampler.options.default_shots = 10_000
sampler.options.dynamical_decoupling.enable = True
num_parameters = ansatz_isa.num_parameters
print(f"Number of parameters in the modified ansatz: {num_parameters}")
initial_point_isa = np.ones(2)
x0 = 2 * np.pi * np.random.rand(ansatz_isa.num_parameters)
qaoa1 = QAOA(sampler=sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=x0)
result1 = qaoa1.compute_minimum_eigenvalue(hamiltonian_isa)
print('Running noisy simulation..')
# # To run on local simulator
# estimator = StatevectorEstimator()
# x0 = 2 * np.pi * np.random.rand(ansatz_isa.num_parameters)
# res = minimize(cost_func, x0, args=(ansatz_isa, hamiltonian_isa, estimator), method="COBYLA")
# print('res: ', res)
## as before
# options = Options()
# options.simulator = {
# "noise_model": noise_model,
# "basis_gates": backend.configuration().basis_gates,
# "seed_simulator": 42
# }
# options.execution.shots = 1000
# options.optimization_level = 0
# options.resilience_level = 0
# with Session(service=service, backend=backend) as session:
# # sampler = Sampler(options=options)
# sampler = Sampler(session=session)
# qaoa1 = QAOA(sampler=sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point_isa)
# result1 = qaoa1.compute_minimum_eigenvalue(hamiltonian_isa)
# print('Running noisy simulation..')
print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
print('best measurement', result1.best_measurement)
print('Optimal parameters: ', result1.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value']))