-
Notifications
You must be signed in to change notification settings - Fork 1
/
hardware.py
299 lines (239 loc) · 11.6 KB
/
hardware.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Point 5 of constraint studies, creation and annihilation operators for multiple rotamers per residue, no constraints required
# %%
import numpy as np
import pandas as pd
import itertools
import functools
import operator
import time
from itertools import combinations
from qiskit.visualization import plot_histogram
file_path = "RESULTS/creation-annihilation-QAOA/2res-4rot"
qubit_per_res = 1
num_rot = 2**qubit_per_res
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N_res = int(num/num_rot)
df = pd.read_csv("energy_files/two_body_terms.csv")
v = df['E_ij'].values
numm = len(v)
print("q: \n", q)
num_qubits = N_res * qubit_per_res
# %% Quantum optimisation
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info.operators import Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
## Mapping to qubits
H_self = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
H_int = SparsePauliOp(Pauli('I'* num_qubits), coeffs=[0])
def N_0(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
def N_1(i, n):
pauli_str = ['I'] * n
pauli_str[i] = 'Z'
z_op = SparsePauliOp(Pauli(''.join(pauli_str)), coeffs=[-0.5])
i_op = SparsePauliOp(Pauli('I'*n), coeffs=[0.5])
return z_op + i_op
def create_pauli_operators(num_qubits, qubits_per_res):
operators = []
for i in range(0, num_qubits, qubits_per_res):
# Generate all combinations of N_0 and N_1 for the residue
for comb in itertools.product([N_0, N_1], repeat=qubits_per_res):
ops = [func(j, num_qubits) for j, func in enumerate(comb, start=i)]
# Now you have a list of operators for each qubit in the residue
full_op = functools.reduce(operator.matmul, ops)
operators.append(full_op)
return operators
for i, op in enumerate(create_pauli_operators(num_qubits, qubit_per_res)):
H_self += q[i] * op
if i >= len(q) - 1:
break
def create_interaction_operators(num_qubits, qubits_per_res, v):
H_int = SparsePauliOp(Pauli('I' * num_qubits), coeffs=[0])
v_index = 0
# Iterate over all unique pairs of residues
for res1, res2 in combinations(range(0, num_qubits, qubits_per_res), 2):
# Generate all combinations of N_0 and N_1 for each qubit in the residue
for comb1 in itertools.product([N_0, N_1], repeat=qubits_per_res):
for comb2 in itertools.product([N_0, N_1], repeat=qubits_per_res):
op_list1 = [func(i + res1, num_qubits) for i, func in enumerate(comb1)]
op_list2 = [func(j + res2, num_qubits) for j, func in enumerate(comb2)]
# Now you have two lists of operators, one for each residue in the pair
full_op1 = functools.reduce(operator.matmul, op_list1)
full_op2 = functools.reduce(operator.matmul, op_list2)
H_int += v[v_index] * full_op1 @ full_op2
v_index += 1
if v_index >= len(v) - 1:
break
if v_index >= len(v) - 1:
break
if v_index >= len(v) - 1:
break
return H_int
H_int = create_interaction_operators(num_qubits, qubit_per_res, v)
H_gen = H_int + H_self
def X_op(i, num):
op_list = ['I'] * num
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
p = 1
initial_point = np.ones(2*p)
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result_gen = qaoa.compute_minimum_eigenvalue(H_gen)
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result_gen.best_measurement)
print('The ground state energy with QAOA is: ', np.real(result_gen.best_measurement['value']))
with open(file_path, "w") as file:
file.write("\n\nLocal Quantum optimisation results.\n")
file.write(f"'best measurement' {result_gen.best_measurement}\n")
file.write(f"The ground state energy with QAOA is: ' {np.real(result_gen.best_measurement['value'])}\n")
# %% ############################################ Simulators ##########################################################################
from qiskit_aer import Aer
from qiskit_ibm_provider import IBMProvider
from qiskit_aer.noise import NoiseModel
from qiskit_aer.primitives import Sampler
from qiskit.primitives import Sampler, BackendSampler
from qiskit.transpiler import PassManager
simulator = Aer.get_backend('qasm_simulator')
provider = IBMProvider()
available_backends = provider.backends()
print("Available Backends:", available_backends)
device_backend = provider.get_backend('ibm_torino')
noise_model = NoiseModel.from_backend(device_backend)
options= {
"noise_model": noise_model,
"basis_gates": simulator.configuration().basis_gates,
"coupling_map": simulator.configuration().coupling_map,
"seed_simulator": 42,
"shots": 1000,
"optimization_level": 3,
"resilience_level": 0
}
noisy_sampler = BackendSampler(backend=simulator, options=options, bound_pass_manager=PassManager())
start_time1 = time.time()
qaoa1 = QAOA(sampler=noisy_sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
result1 = qaoa1.compute_minimum_eigenvalue(H_int)
end_time1 = time.time()
print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
print('best measurement', result1.best_measurement)
print('Optimal parameters: ', result1.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value']))
elapsed_time1 = end_time1 - start_time1
print(f"Aer Simulator run time: {elapsed_time1} seconds")
print('\n\n')
with open(file_path, "a") as file:
file.write("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
file.write(f"'best measurement' {result1.best_measurement}")
file.write(f"Optimal parameters: {result1.optimal_parameters}")
file.write(f"'The ground state energy with noisy QAOA is: ' {np.real(result1.best_measurement['value'])}")
file.write(f"Aer Simulator run time: {elapsed_time1} seconds")
# %% ############################################# Hardware with QAOAAnastz ##################################################################
from qiskit_ibm_provider import IBMProvider
from qiskit.circuit.library import QAOAAnsatz
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session
from qiskit.transpiler import CouplingMap, Layout
from qiskit import QuantumCircuit, QuantumRegister, transpile
from qiskit_algorithms import SamplingVQE
service = QiskitRuntimeService()
backend = service.backend("ibm_torino")
backend.configuration().default_rep_delay == 0.00001 #to speed up execution with dynamic repetition rate
print('Coupling Map of hardware: ', backend.configuration().coupling_map)
ansatz = QAOAAnsatz(H_int, mixer_operator=mixer_op, reps=p)
print('\n\nQAOAAnsatz: ', ansatz)
target = backend.target
def generate_linear_coupling_map(num_qubits):
coupling_list = [[i, i + 1] for i in range(num_qubits - 1)]
return CouplingMap(couplinglist=coupling_list)
linear_coupling_map = generate_linear_coupling_map(num_qubits)
# coupling_map = CouplingMap(couplinglist=[[0, 1],[0, 15], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 13], [13, 14]])
qr = QuantumRegister(num_qubits, 'q')
circuit = QuantumCircuit(qr)
trivial_layout = Layout({qr[i]: i for i in range(num_qubits)})
ansatz_isa = transpile(ansatz, backend=backend, initial_layout=trivial_layout, coupling_map=linear_coupling_map,
optimization_level= 3, layout_method='dense', routing_method='stochastic')
print("\n\nAnsatz layout after explicit transpilation:", ansatz_isa._layout)
hamiltonian_isa = H_int.apply_layout(ansatz_isa.layout)
print("\n\nAnsatz layout after transpilation:", hamiltonian_isa)
# %%
ansatz_isa.decompose().draw('mpl')
op_counts = ansatz_isa.count_ops()
total_gates = sum(op_counts.values())
depth = ansatz_isa.depth()
print("Operation counts:", op_counts)
print("Total number of gates:", total_gates)
print("Depth of the circuit: ", depth)
# %%
session = Session(backend=backend)
print('\nhere 1')
sampler = Sampler(backend=backend, session=session)
print('here 2')
qaoa2 = SamplingVQE(sampler=sampler, ansatz=ansatz_isa, optimizer=COBYLA(), initial_point=initial_point)
print('here 3')
result2 = qaoa2.compute_minimum_eigenvalue(hamiltonian_isa)
print("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
print('best measurement', result2.best_measurement)
print('Optimal parameters: ', result2.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result2.best_measurement['value']))
# %%
jobs = service.jobs(session_id='crqsrk22x9jg008z2qe0')
for job in jobs:
if job.status().name == 'DONE':
results = job.result()
print("Job completed successfully")
else:
print("Job status:", job.status())
from qiskit.quantum_info import Statevector, Operator
def create_circuit(bitstring):
"""Create a quantum circuit that prepares the quantum state for a given bitstring."""
qc = QuantumCircuit(len(bitstring))
for i, bit in enumerate(bitstring):
if bit == '1':
qc.x(i)
return qc
def evaluate_energy(bitstring, operator):
"""Evaluate the energy of a bitstring using the specified operator."""
circuit = create_circuit(bitstring)
state = Statevector.from_instruction(circuit)
if not isinstance(operator, Operator):
operator = Operator(operator)
expectation_value = state.expectation_value(operator).real
return expectation_value
def get_best_measurement_from_sampler_result(sampler_result, q_hamiltonian, num_qubits):
if not hasattr(sampler_result, 'quasi_dists') or not isinstance(sampler_result.quasi_dists, list):
raise ValueError("SamplerResult does not contain 'quasi_dists' as a list")
best_bitstring = None
lowest_energy = float('inf')
highest_probability = -1
for quasi_distribution in sampler_result.quasi_dists:
for int_bitstring, probability in quasi_distribution.items():
bitstring = format(int_bitstring, '0{}b'.format(num_qubits)) # Ensure bitstring is string
energy = evaluate_energy(bitstring, q_hamiltonian)
if energy < lowest_energy:
lowest_energy = energy
best_bitstring = bitstring
highest_probability = probability
return best_bitstring, highest_probability, lowest_energy
best_bitstring, probability, value = get_best_measurement_from_sampler_result(results, H_int, num_qubits)
print(f"Best measurement: {best_bitstring} with ground state energy {value} and probability {probability}")
# %%
total_usage_time = 0
for job in jobs:
job_result = job.usage_estimation['quantum_seconds']
total_usage_time += job_result
print(f"Total Usage Time Hardware: {total_usage_time} seconds")
print('\n\n')
with open(file_path, "a") as file:
file.write("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
file.write(f"'best measurement' {result2.best_measurement}")
file.write(f"Optimal parameters: {result2.optimal_parameters}")
file.write(f"'The ground state energy with noisy QAOA is: ' {np.real(result2.best_measurement['value'])}")
file.write(f"Total Usage Time Hardware: {total_usage_time} seconds")
file.write(f"Total number of gates: {total_gates}\n")
file.write(f"Depth of circuit: {depth}\n")