-
Notifications
You must be signed in to change notification settings - Fork 1
/
drawcircuit_8q.py
53 lines (44 loc) · 1.46 KB
/
drawcircuit_8q.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from qiskit import QuantumCircuit
import matplotlib.pyplot as plt
# Initialize the quantum circuit for 4 qubits
qc = QuantumCircuit(8)
# Define the coefficients from the Hamiltonian
coefficients = {
(0, 1): 6.0, # ZZIIIIII
(0, 2): 0.7874419689, # ZIZIIIII
(0, 3): 0.0684041679, # ZIIZIIII
(1, 2): 0.2517849803, # IZZIIIII
(1, 3): -0.0734889582, # IZIZIIII
(2, 3): 6.0, # IIZZIIII
(2, 4): 0.1819513440, #IIZIZIII
(2, 5): 0.1084431708, #IIZIIZII
(3, 4): 0.0962224975, #IIIZZIII
(3, 5): 0.0227499232, # IIIZIZII
(4, 5): 6.0, # IIIIZZII
(4, 6): -0.2104287297, #IIIIZIZI
(4, 7): -0.2377609015,#IIIIZIIZ
(5, 6): 0.0405503064, # IIIIIZZI
(5, 7): 0.0142428726, #
(6, 7): 6.0 # IIIIIIZZ
}
for (q1, q2), coeff in coefficients.items():
qc.cx(q1, q2)
qc.rz(2 * coeff, q2) # The rotation angle might be 2 * coeff, check your Hamiltonian encoding
qc.cx(q1, q2)
single_z_coefficients = [
-1.6783797443, # ZIIIIIII
-0.8278056309, # IZIIIIII
-2.1113303006, # IIZIIIII
-0.4333506450, # IIIZIIII
-0.4527192339, # IIIIZIII
-0.5309761092, # IIIIIZII
-0.6598197818, # IIIIIIZI
-0.7743371576, # IIIIIIIZ
]
# Apply single Z rotations
for qubit, coeff in enumerate(single_z_coefficients):
qc.rz(2 * coeff, qubit) # The rotation angle might be 2 * coeff, check your Hamiltonian encoding
# Visualize the circuit
figure = qc.draw('mpl')
figure.savefig("4res_2rot.png")
plt.show()