-
Notifications
You must be signed in to change notification settings - Fork 1
/
Ising_nopenalty.py
442 lines (348 loc) · 16.2 KB
/
Ising_nopenalty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Point 1 of constraint studies for paper, Ising model with no penalties, constriants enforced by post selection of contrain satisfying states.
# so after the results, manually removing the menaingless solutions that don;t represent physical solutions, that don't respect the constraints (eg. no rotamer chosen on 1 residue, or 2 rotamers chosen)
# Script to optimise the Hamiltonian, starting directly from the Ising Hamiltonian
# %%
import numpy as np
import pandas as pd
import time
from copy import deepcopy
num_rot = 2
file_path = "RESULTS/nopenalty-QAOA/7res-2rot.csv"
########################### Configure the hamiltonian from the values calculated classically with pyrosetta ############################
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N = int(num/num_rot)
num_qubits = num
print('Qii values: \n', q)
df = pd.read_csv("energy_files/two_body_terms.csv")
value = df['E_ij'].values
Q = np.zeros((num,num))
n = 0
for i in range(0, num-2):
if i%2 == 0:
Q[i][i+2] = deepcopy(value[n])
Q[i+2][i] = deepcopy(value[n])
Q[i][i+3] = deepcopy(value[n+1])
Q[i+3][i] = deepcopy(value[n+1])
n += 2
elif i%2 != 0:
Q[i][i+1] = deepcopy(value[n])
Q[i+1][i] = deepcopy(value[n])
Q[i][i+2] = deepcopy(value[n+1])
Q[i+2][i] = deepcopy(value[n+1])
n += 2
print('\nQij values: \n', Q)
H = np.zeros((num,num))
for i in range(num):
for j in range(num):
if i != j:
H[i][j] = np.multiply(0.25, Q[i][j])
for i in range(num):
H[i][i] = -(0.5 * q[i] + sum(0.25 * Q[i][j] for j in range(num) if j != i))
print('\nH: \n', H)
# %% Brute force
import itertools
from qiskit.quantum_info import Statevector, Operator
from qiskit import QuantumCircuit
def check_hamming(bitstring, substring_size):
substrings = [bitstring[i:i+substring_size] for i in range(0, len(bitstring), substring_size)]
return all(sub.count('1') == 1 for sub in substrings)
def create_circuit(bitstring):
"""Create a quantum circuit that prepares the quantum state for a given bitstring."""
qc = QuantumCircuit(len(bitstring))
for i, bit in enumerate(bitstring):
if bit == '1':
qc.x(i)
return qc
def evaluate_energy(bitstring, operator):
"""Evaluate the energy of a bitstring using the specified operator."""
circuit = create_circuit(bitstring)
state = Statevector.from_instruction(circuit)
if not isinstance(operator, Operator):
operator = Operator(operator)
expectation_value = state.expectation_value(operator).real
return expectation_value
substring_size = num_rot
possible_bitstrings = [''.join(x) for x in itertools.product('01', repeat=num_qubits)]
print("Total samples:", len(possible_bitstrings))
valid_samples = []
for bitstring in possible_bitstrings:
print("Checking formatted bitstring:", bitstring)
if check_hamming(bitstring, substring_size):
valid_samples.append((bitstring))
print("Valid samples found:", len(valid_samples))
k = 0
for i in range(num_qubits):
k += 0.5 * q[i]
for i in range(num_qubits):
for j in range(num_qubits):
if i != j:
k += 0.5 * 0.25 * Q[i][j]
lowest_energy = float('inf')
bitstring_with_lowest_energy = None
for bitstring in valid_samples:
spins = [1 if bit == '0' else -1 for bit in bitstring]
energy = 0
for i in range(num_qubits):
for j in range(num_qubits):
if i != j:
energy += 0.5 * H[i][j] * spins[i] * spins[j]
for i in range(num_qubits):
energy += H[i][i] * spins[i]
print(f"Bitstring: {bitstring}, Value: {energy + k}")
if energy < lowest_energy:
lowest_energy = energy
bitstring_with_lowest_energy = bitstring
print("Bitstring with lowest energy:", bitstring_with_lowest_energy)
print("Ground state energy", lowest_energy + k)
data = {
"Experiment": ["Aer Simulation XY QAOA"],
"Ground State Energy": [lowest_energy + k],
"Best Measurement": [bitstring_with_lowest_energy],
"Execution Time (seconds)": ["N/A"],
"Number of qubits": [num_qubits]
}
df = pd.DataFrame(data)
df.to_csv(file_path, index=False)
# # %% ################################################ Classical optimisation ###########################################################
# from scipy.sparse.linalg import eigsh
# Z_matrix = np.array([[1, 0], [0, -1]])
# identity = np.eye(2)
# def construct_operator(qubit_indices, num_qubits):
# operator = np.eye(1)
# for qubit in range(num_qubits):
# if qubit in qubit_indices:
# operator = np.kron(operator, Z_matrix)
# else:
# operator = np.kron(operator, identity)
# return operator
# C = np.zeros((2**num_qubits, 2**num_qubits))
# for i in range(num_qubits):
# operator = construct_operator([i], num_qubits)
# C += H[i][i] * operator
# for i in range(num_qubits):
# for j in range(i+1, num_qubits):
# operator = construct_operator([i, j], num_qubits)
# C += H[i][j] * operator
# print('C :\n', C)
# # Extract the ground state energy and wavefunction
# # using sparse representation so as to be able to generalise to larger systems
# eigenvalues, eigenvectors = eigsh(C, k=num, which='SA')
# print("\n\nClassical optimisation results. \n")
# print("Ground energy eigsh: ", eigenvalues[0])
# print("ground state wavefuncion eigsh: ", eigenvectors[:,0])
# print('\n\n')
# with open(file_path, "a") as file:
# file.write("\n\nClassical optimisation results.\n")
# file.write(f"Ground energy eigsh: {eigenvalues[0]}\n")
# file.write(f"Ground state wavefunction eigsh: {eigenvectors[:,0]}\n")
# # %% ############################################ Quantum optimisation ########################################################################
# from qiskit_algorithms.minimum_eigensolvers import QAOA
# from qiskit.quantum_info.operators import Pauli, SparsePauliOp
# from qiskit_algorithms.optimizers import COBYLA
# from qiskit.primitives import Sampler
# def X_op(i, num_qubits):
# """Return an X Pauli operator on the specified qubit in a num-qubit system."""
# op_list = ['I'] * num_qubits
# op_list[i] = 'X'
# return SparsePauliOp(Pauli(''.join(op_list)))
# def generate_pauli_zij(n, i, j):
# if i<0 or i >= n or j<0 or j>=n:
# raise ValueError(f"Indices out of bounds for n={n} qubits. ")
# pauli_str = ['I']*n
# if i == j:
# pauli_str[i] = 'Z'
# else:
# pauli_str[i] = 'Z'
# pauli_str[j] = 'Z'
# return Pauli(''.join(pauli_str))
# q_hamiltonian = SparsePauliOp(Pauli('I'*num_qubits), coeffs=[0])
# for i in range(num_qubits):
# for j in range(i+1, num_qubits):
# if H[i][j] != 0:
# pauli = generate_pauli_zij(num_qubits, i, j)
# op = SparsePauliOp(pauli, coeffs=[H[i][j]])
# q_hamiltonian += op
# for i in range(num_qubits):
# pauli = generate_pauli_zij(num_qubits, i, i)
# Z_i = SparsePauliOp(pauli, coeffs=[H[i][i]])
# q_hamiltonian += Z_i
# def format_sparsepauliop(op):
# terms = []
# labels = [pauli.to_label() for pauli in op.paulis]
# coeffs = op.coeffs
# for label, coeff in zip(labels, coeffs):
# terms.append(f"{coeff:.10f} * {label}")
# return '\n'.join(terms)
# print(f"\nThe hamiltonian constructed using Pauli operators is: \n", format_sparsepauliop(q_hamiltonian))
# #the mixer in QAOA should be a quantum operator representing transitions between configurations
# mixer_op = sum(X_op(i,num_qubits) for i in range(num_qubits))
# p = 1 # Number of QAOA layers
# initial_point = np.ones(2 * p)
# # %%
# start_time = time.time()
# qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
# result = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
# end_time = time.time()
# print("\n\nThe result of the quantum optimisation using QAOA is: \n")
# print('best measurement', result.best_measurement)
# elapsed_time = end_time - start_time
# print(f"Local Simulation run time: {elapsed_time} seconds")
# print('\n\n')
# with open(file_path, "a") as file:
# file.write("\n\nThe result of the quantum optimisation using QAOA is: \n")
# file.write(f"'best measurement' {result.best_measurement}\n")
# file.write(f"Local Simulation run time: {elapsed_time} seconds\n")
# # %% ############################################ Simulators ##########################################################################
# from qiskit_aer import Aer
# from qiskit_ibm_provider import IBMProvider
# from qiskit_aer.noise import NoiseModel
# from qiskit_aer.primitives import Sampler
# from qiskit.primitives import Sampler, BackendSampler
# from qiskit.transpiler import PassManager
# simulator = Aer.get_backend('qasm_simulator')
# provider = IBMProvider()
# available_backends = provider.backends()
# print("Available Backends:", available_backends)
# device_backend = provider.get_backend('ibm_torino')
# noise_model = NoiseModel.from_backend(device_backend)
# options= {
# "noise_model": noise_model,
# "basis_gates": simulator.configuration().basis_gates,
# "coupling_map": simulator.configuration().coupling_map,
# "seed_simulator": 42,
# "shots": 1000,
# "optimization_level": 3,
# "resilience_level": 0
# }
# noisy_sampler = BackendSampler(backend=simulator, options=options, bound_pass_manager=PassManager())
# start_time1 = time.time()
# qaoa1 = QAOA(sampler=noisy_sampler, optimizer=COBYLA(), reps=p, mixer=mixer_op, initial_point=initial_point)
# result1 = qaoa1.compute_minimum_eigenvalue(q_hamiltonian)
# end_time1 = time.time()
# # %%
# print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
# print('best measurement', result1.best_measurement)
# print('Optimal parameters: ', result1.optimal_parameters)
# print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value']))
# elapsed_time1 = end_time1 - start_time1
# print(f"Aer Simulator run time: {elapsed_time1} seconds")
# print('\n\n')
# with open(file_path, "a") as file:
# file.write("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
# file.write(f"'best measurement' {result1.best_measurement}")
# file.write(f"Optimal parameters: {result1.optimal_parameters}")
# file.write(f"'The ground state energy with noisy QAOA is: ' {np.real(result1.best_measurement['value'])}")
# file.write(f"Aer Simulator run time: {elapsed_time1} seconds")
# # %% ############################################# Hardware with QAOAAnastz ##################################################################
# from qiskit.circuit.library import QAOAAnsatz
# from qiskit_algorithms import SamplingVQE
# from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler
# from qiskit import transpile, QuantumCircuit, QuantumRegister
# from qiskit.transpiler import CouplingMap, Layout
# service = QiskitRuntimeService()
# backend = service.backend("ibm_torino")
# print('Coupling Map of hardware: ', backend.configuration().coupling_map)
# ansatz = QAOAAnsatz(q_hamiltonian, mixer_operator=mixer_op, reps=p)
# print('\n\nQAOAAnsatz: ', ansatz)
# target = backend.target
# # %%
# # real_coupling_map = backend.configuration().coupling_map
# # coupling_map = CouplingMap(couplinglist=real_coupling_map)
# def generate_linear_coupling_map(num_qubits):
# coupling_list = [[i, i + 1] for i in range(num_qubits - 1)]
# return CouplingMap(couplinglist=coupling_list)
# linear_coupling_map = generate_linear_coupling_map(num_qubits)
# # coupling_map = CouplingMap(couplinglist=[[0, 1],[0, 15], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 13], [13, 14]])
# qr = QuantumRegister(num_qubits, 'q')
# circuit = QuantumCircuit(qr)
# trivial_layout = Layout({qr[i]: i for i in range(num_qubits)})
# ansatz_isa = transpile(ansatz, backend=backend, initial_layout=trivial_layout, coupling_map=linear_coupling_map,
# optimization_level=1, layout_method='trivial', routing_method='basic')
# print("\n\nAnsatz layout after explicit transpilation:", ansatz_isa._layout)
# hamiltonian_isa = q_hamiltonian.apply_layout(ansatz_isa.layout)
# print("\n\nAnsatz layout after transpilation:", hamiltonian_isa)
# # %%
# ansatz_isa.decompose().draw('mpl')
# op_counts = ansatz_isa.count_ops()
# total_gates = sum(op_counts.values())
# print("Operation counts:", op_counts)
# print("Total number of gates:", total_gates)
# # %%
# session = Session(backend=backend)
# print('\nhere 1')
# sampler = Sampler(backend=backend, session=session)
# print('here 2')
# qaoa2 = SamplingVQE(sampler=sampler, ansatz=ansatz_isa, optimizer=COBYLA(), initial_point=initial_point)
# print('here 3')
# result2 = qaoa2.compute_minimum_eigenvalue(hamiltonian_isa)
# print("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
# print('best measurement', result2.best_measurement)
# print('Optimal parameters: ', result2.optimal_parameters)
# print('The ground state energy with noisy QAOA is: ', np.real(result2.best_measurement['value']))
# # %%
# jobs = service.jobs(session_id='crk4j0r9nqa00081k6y0')
# for job in jobs:
# if job.status().name == 'DONE':
# results = job.result()
# print("Job completed successfully")
# else:
# print("Job status:", job.status())
# # %%
# from qiskit.quantum_info import Statevector, Operator
# def create_circuit(bitstring):
# """Create a quantum circuit that prepares the quantum state for a given bitstring."""
# qc = QuantumCircuit(len(bitstring))
# for i, bit in enumerate(bitstring):
# if bit == '1':
# qc.x(i)
# return qc
# def evaluate_energy(bitstring, operator):
# """Evaluate the energy of a bitstring using the specified operator."""
# circuit = create_circuit(bitstring)
# state = Statevector.from_instruction(circuit)
# if not isinstance(operator, Operator):
# operator = Operator(operator)
# expectation_value = state.expectation_value(operator).real
# return expectation_value
# def get_best_measurement_from_sampler_result(sampler_result, q_hamiltonian, num_qubits):
# if not hasattr(sampler_result, 'quasi_dists') or not isinstance(sampler_result.quasi_dists, list):
# raise ValueError("SamplerResult does not contain 'quasi_dists' as a list")
# best_bitstring = None
# lowest_energy = float('inf')
# highest_probability = -1
# for quasi_distribution in sampler_result.quasi_dists:
# for int_bitstring, probability in quasi_distribution.items():
# bitstring = format(int_bitstring, '0{}b'.format(num_qubits))
# energy = evaluate_energy(bitstring, q_hamiltonian)
# if energy < lowest_energy:
# lowest_energy = energy
# best_bitstring = bitstring
# highest_probability = probability
# return best_bitstring, highest_probability, lowest_energy
# best_bitstring, probability, value = get_best_measurement_from_sampler_result(results, q_hamiltonian, num_qubits)
# print(f"Best measurement: {best_bitstring} with ground state energy {value} and probability {probability}")
# # %%
# total_usage_time = 0
# for job in jobs:
# job_result = job.usage_estimation['quantum_seconds']
# total_usage_time += job_result
# print(f"Total Usage Time Hardware: {total_usage_time} seconds")
# print('\n\n')
# with open(file_path, "a") as file:
# file.write("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
# file.write(f"'best measurement' {result2.best_measurement}")
# file.write(f"Optimal parameters: {result2.optimal_parameters}")
# file.write(f"'The ground state energy with noisy QAOA is: ' {np.real(result2.best_measurement['value'])}")
# file.write(f"Total Usage Time Hardware: {total_usage_time} seconds")
# file.write(f"Total number of gates: {total_gates}\n")
# # %%
# index = ansatz_isa.layout.final_index_layout() # Maps logical qubit index to its position in bitstring
# # measured_bitstring = result2.best_measurement['bitstring']
# measured_bitstring = best_bitstring
# original_bitstring = ['']*num_qubits
# for i, logical in enumerate(index):
# original_bitstring[i] = measured_bitstring[logical]
# original_bitstring = ''.join(original_bitstring)
# print("Original bitstring:", original_bitstring)