-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIsing_mixerXY.py
554 lines (450 loc) · 21 KB
/
Ising_mixerXY.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Point 4 of constraint studies for paper, Ising model with XY mixer to implement Hamming's condition, 2 rotamers per residue
# Script to optimise the Hamiltonian, starting directly from the Ising Hamiltonian
# Change file paths, run cells for simulations/hardware
# %%
import numpy as np
import pandas as pd
import time
import os
from copy import deepcopy
num_rot = 2
file_path = "RESULTS/XY-QAOA/5res-2rot.csv"
file_path_depth = "RESULTS/Depths/XY-QAOA/4res-2rot.csv"
########################### Configure the hamiltonian from the values calculated classically with pyrosetta ############################
df1 = pd.read_csv("energy_files/one_body_terms.csv")
q = df1['E_ii'].values
num = len(q)
N = int(num/num_rot)
num_qubits = num
print('Qii values: \n', q)
df2 = pd.read_csv("energy_files/two_body_terms.csv")
value = df2['E_ij'].values
Q = np.zeros((num,num))
n = 0
for i in range(0, num-2):
if i%2 == 0:
Q[i][i+2] = deepcopy(value[n])
Q[i+2][i] = deepcopy(value[n])
Q[i][i+3] = deepcopy(value[n+1])
Q[i+3][i] = deepcopy(value[n+1])
n += 2
elif i%2 != 0:
Q[i][i+1] = deepcopy(value[n])
Q[i+1][i] = deepcopy(value[n])
Q[i][i+2] = deepcopy(value[n+1])
Q[i+2][i] = deepcopy(value[n+1])
n += 2
print('\nQij values: \n', Q)
H = np.zeros((num,num))
for i in range(num):
for j in range(num):
if i != j:
H[i][j] = np.multiply(0.25, Q[i][j])
for i in range(num):
H[i][i] = -(0.5 * q[i] + sum(0.25 * Q[i][j] for j in range(num) if j != i))
print('\nH: \n', H)
k = 0
for i in range(num_qubits):
k += 0.5 * q[i]
for i in range(num_qubits):
for j in range(num_qubits):
if i != j:
k += 0.5 * 0.25 * Q[i][j]
# %% ################################################ Classical optimisation ###########################################################
from scipy.sparse.linalg import eigsh
Z_matrix = np.array([[1, 0], [0, -1]])
identity = np.eye(2)
def construct_operator(qubit_indices, num_qubits):
operator = np.eye(1)
for qubit in range(num_qubits):
if qubit in qubit_indices:
operator = np.kron(operator, Z_matrix)
else:
operator = np.kron(operator, identity)
return operator
C = np.zeros((2**num_qubits, 2**num_qubits))
for i in range(num_qubits):
operator = construct_operator([i], num_qubits)
C += H[i][i] * operator
for i in range(num_qubits):
for j in range(i+1, num_qubits):
operator = construct_operator([i, j], num_qubits)
C += H[i][j] * operator
print('C :\n', C)
# Extract the ground state energy and wavefunction
# using sparse representation so as to be able to generalise to larger systems
eigenvalues, eigenvectors = eigsh(C, k=num, which='SA')
print("\n\nClassical optimisation results. \n")
print("Ground energy eigsh: ", eigenvalues[0])
print("ground state wavefuncion eigsh: ", eigenvectors[:,0])
print('\n\n')
# %% ############################################ Quantum optimisation ########################################################################
from qiskit_algorithms.minimum_eigensolvers import QAOA
from qiskit.quantum_info.operators import Pauli, SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA, SPSA
from qiskit.primitives import Sampler
from qiskit import QuantumCircuit
def X_op(i, num_qubits):
"""Return an X Pauli operator on the specified qubit in a num-qubit system."""
op_list = ['I'] * num_qubits
op_list[i] = 'X'
return SparsePauliOp(Pauli(''.join(op_list)))
def generate_pauli_zij(n, i, j):
if i<0 or i >= n or j<0 or j>=n:
raise ValueError(f"Indices out of bounds for n={n} qubits. ")
pauli_str = ['I']*n
if i == j:
pauli_str[i] = 'Z'
else:
pauli_str[i] = 'Z'
pauli_str[j] = 'Z'
return Pauli(''.join(pauli_str))
q_hamiltonian = SparsePauliOp(Pauli('I'*num_qubits), coeffs=[0])
for i in range(num_qubits):
for j in range(i+1, num_qubits):
if H[i][j] != 0:
pauli = generate_pauli_zij(num_qubits, i, j)
op = SparsePauliOp(pauli, coeffs=[H[i][j]])
q_hamiltonian += op
for i in range(num_qubits):
pauli = generate_pauli_zij(num_qubits, i, i)
Z_i = SparsePauliOp(pauli, coeffs=[H[i][i]])
q_hamiltonian += Z_i
def format_sparsepauliop(op):
terms = []
labels = [pauli.to_label() for pauli in op.paulis]
coeffs = op.coeffs
for label, coeff in zip(labels, coeffs):
terms.append(f"{coeff:.10f} * {label}")
return '\n'.join(terms)
print(f"\nThe hamiltonian constructed using Pauli operators is: \n", format_sparsepauliop(q_hamiltonian))
# XY mixer to implement Hamming condition
def create_xy_hamiltonian(num_qubits):
hamiltonian = SparsePauliOp(Pauli('I'*num_qubits), coeffs=[0])
for i in range(0, num_qubits, 2):
if i + 1 < num_qubits:
xx_term = ['I'] * num_qubits
yy_term = ['I'] * num_qubits
xx_term[i] = 'X'
xx_term[i+1] = 'X'
yy_term[i] = 'Y'
yy_term[i+1] = 'Y'
xx_op = SparsePauliOp(Pauli(''.join(xx_term)), coeffs=[1/2])
yy_op = SparsePauliOp(Pauli(''.join(yy_term)), coeffs=[1/2])
hamiltonian += xx_op + yy_op
return -hamiltonian
XY_mixer = create_xy_hamiltonian(num_qubits)
def format_sparsepauliop(op):
terms = []
labels = [pauli.to_label() for pauli in op.paulis]
coeffs = op.coeffs
for label, coeff in zip(labels, coeffs):
terms.append(f"{coeff:.10f} * {label}")
return '\n'.join(terms)
print('XY mixer: ', XY_mixer)
start_time = time.time()
p = 1
initial_point = np.ones(2 * p)
def generate_initial_bitstring(num_qubits):
bitstring = [(i%2) for i in range(num_qubits)]
return ''.join(map(str, bitstring))
initial_bitstring = generate_initial_bitstring(num_qubits)
state_vector = np.zeros(2**num_qubits)
indexx = int(initial_bitstring, 2)
state_vector[indexx] = 1
qc = QuantumCircuit(num_qubits)
qc.initialize(state_vector, range(num_qubits))
# %%
qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(), reps=p, initial_state=qc, mixer=XY_mixer, initial_point=initial_point)
result = qaoa.compute_minimum_eigenvalue(q_hamiltonian)
end_time = time.time()
print("\n\nThe result of the quantum optimisation using QAOA is: \n")
print('best measurement', result.best_measurement)
elapsed_time = end_time - start_time
print(f"Local Simulation run time: {elapsed_time} seconds")
print('\n\n')
# %% ############################################ Simulators ##########################################################################
from qiskit_aer import Aer
from qiskit_ibm_provider import IBMProvider
from qiskit_aer.noise import NoiseModel
from qiskit.primitives import BackendSampler
from qiskit.transpiler import PassManager
simulator = Aer.get_backend('qasm_simulator')
provider = IBMProvider()
available_backends = provider.backends()
print("Available Backends:", available_backends)
device_backend = provider.get_backend('ibm_torino')
noise_model = NoiseModel.from_backend(device_backend)
options= {
"noise_model": noise_model,
"basis_gates": simulator.configuration().basis_gates,
"coupling_map": simulator.configuration().coupling_map,
"seed_simulator": 42,
"shots": 5000,
"optimization_level": 3,
"resilience_level": 3
}
def callback(quasi_dists, parameters, energy):
intermediate_data.append({
'quasi_distributions': quasi_dists,
'parameters': parameters,
'energy': energy
})
p = 1
intermediate_data = []
initial_point = np.ones(2 * p)
noisy_sampler = BackendSampler(backend=simulator, options=options, bound_pass_manager=PassManager())
start_time1 = time.time()
qaoa1 = QAOA(sampler=noisy_sampler, optimizer=COBYLA(), reps=p, initial_state=qc, mixer=XY_mixer, initial_point=initial_point,callback=callback)
result1 = qaoa1.compute_minimum_eigenvalue(q_hamiltonian)
end_time1 = time.time()
elapsed_time1 = end_time1 - start_time1
# %%
from qiskit_aer.primitives import Estimator
from qiskit import QuantumCircuit, transpile
def int_to_bitstring(state, total_bits):
"""Converts an integer state to a binary bitstring with padding of leading zeros."""
return format(state, '0{}b'.format(total_bits))
def check_hamming(bitstring, substring_size):
"""Check if each substring contains exactly one '1'."""
substrings = [bitstring[i:i+substring_size] for i in range(0, len(bitstring), substring_size)]
return all(sub.count('1') == 1 for sub in substrings)
def calculate_bitstring_energy(bitstring, hamiltonian, backend=None):
"""
Calculate the energy of a given bitstring for a specified Hamiltonian.
Args:
bitstring (str): The bitstring for which to calculate the energy.
hamiltonian (SparsePauliOp): The Hamiltonian operator of the system, defined as a SparsePauliOp.
backend (qiskit.providers.Backend): The quantum backend to execute circuits.
Returns:
float: The calculated energy of the bitstring.
"""
# Prepare the quantum circuit for the bitstring
num_qubits = len(bitstring)
qc = QuantumCircuit(num_qubits)
for i, char in enumerate(bitstring):
if char == '1':
qc.x(i) # Apply X gate if the bit in the bitstring is 1
# Use Aer's statevector simulator if no backend provided
if backend is None:
backend = Aer.get_backend('aer_simulator_statevector')
qc = transpile(qc, backend)
estimator = Estimator()
resultt = estimator.run(observables=[hamiltonian], circuits=[qc], backend=backend).result()
return resultt.values[0].real
eigenstate_distribution = result1.eigenstate
best_measurement = result1.best_measurement
final_bitstrings = {state: probability for state, probability in eigenstate_distribution.items()}
all_bitstrings = {}
max_intermediate_index = -1
for index, data in enumerate(intermediate_data):
print(f"Quasi Distribution: {data['quasi_distributions']}, Parameters: {data['parameters']}, Energy: {data['energy']}, Index: {index}")
for distribution in data['quasi_distributions']:
for int_bitstring, probability in distribution.items():
intermediate_bitstring = int_to_bitstring(int_bitstring, num_qubits)
if check_hamming(intermediate_bitstring, num_rot):
if intermediate_bitstring not in all_bitstrings:
all_bitstrings[intermediate_bitstring] = {'probability': 0, 'energy': 0, 'count': 0, 'index': index}
all_bitstrings[intermediate_bitstring]['probability'] += probability # Aggregate probabilities
energy = calculate_bitstring_energy(intermediate_bitstring, q_hamiltonian)
all_bitstrings[intermediate_bitstring]['energy'] = (all_bitstrings[intermediate_bitstring]['energy'] * all_bitstrings[intermediate_bitstring]['count'] + energy) / (all_bitstrings[intermediate_bitstring]['count'] + 1)
all_bitstrings[intermediate_bitstring]['count'] += 1
if all_bitstrings[intermediate_bitstring]['count'] == 1:
all_bitstrings[intermediate_bitstring]['index'] = index
if index > max_intermediate_index:
max_intermediate_index = index
for state, prob in final_bitstrings.items():
bitstring = int_to_bitstring(state, num_qubits)
if check_hamming(bitstring, num_rot):
if bitstring not in all_bitstrings:
all_bitstrings[bitstring] = {'probability': 0, 'energy': 0, 'count': 0, 'index': max_intermediate_index+1}
all_bitstrings[bitstring]['probability'] += prob # Aggregate probabilities
energy = calculate_bitstring_energy(bitstring, q_hamiltonian)
all_bitstrings[bitstring]['energy'] = (all_bitstrings[bitstring]['energy'] * all_bitstrings[bitstring]['count'] + energy) / (all_bitstrings[bitstring]['count'] + 1)
all_bitstrings[bitstring]['count'] += 1
total_bitstrings = sum(
probability * options['shots']
for data in intermediate_data
for distribution in data['quasi_distributions']
for int_bitstring, probability in distribution.items()
) + sum(probability * options['shots'] for state, probability in final_bitstrings.items()
)
hamming_satisfying_bitstrings = sum(bitstring_data['probability']* options['shots'] for bitstring_data in all_bitstrings.values())
fraction_satisfying_hamming = hamming_satisfying_bitstrings / total_bitstrings
print(f"Fraction of bitstrings that satisfy the Hamming constraint: {fraction_satisfying_hamming}")
sorted_bitstrings = sorted(all_bitstrings.items(), key=lambda x: x[1]['energy'])
ground_state_repetition = sorted_bitstrings[0][1]['index']
print("Best Measurement:", best_measurement)
print("Sorted Bitstrings: ")
for bitstring, data in sorted_bitstrings:
print(f"Bitstring: {bitstring}, Probability: {data['probability']}, Energy: {data['energy']}, Count: {data['count']}, Index: {data['index']}")
found = False
for bitstring, data in sorted_bitstrings:
if bitstring == best_measurement['bitstring']:
print('Best measurement bitstring respects Hammings conditions.\n')
print('Ground state energy: ', data['energy']+k)
data = {
"Experiment": ["Aer Simulation XY QAOA"],
"Ground State Energy": [np.real(result1.best_measurement['value'] + k)],
"Best Measurement": [result1.best_measurement],
"Execution Time (seconds)": [elapsed_time1],
"Number of qubits": [num_qubits],
"shots": [options['shots']],
"Fraction of bitstrings that satisfy the Hamming constraint": [fraction_satisfying_hamming],
"Iteration Ground State": [ground_state_repetition]
}
found = True
break
if not found:
print('Best measurement bitstring does not respect Hammings conditions, take the sorted bitstring corresponding to the smallest energy.\n')
post_selected_bitstring, post_selected_energy = sorted_bitstrings[0]
data = {
"Experiment": ["Aer Simulation XY QAOA, post-selected"],
"Ground State Energy": [post_selected_energy['energy'] + k],
"Best Measurement": [post_selected_bitstring],
"Execution Time (seconds)": [elapsed_time1],
"Number of qubits": [num_qubits],
"shots": [options['shots']],
"Fraction of bitstrings that satisfy the Hamming constraint": [fraction_satisfying_hamming],
"Iteration Ground State": [ground_state_repetition]
}
df = pd.DataFrame(data)
if not os.path.isfile(file_path):
# File does not exist, write with header
df.to_csv(file_path, index=False)
else:
# File exists, append without writing the header
df.to_csv(file_path, mode='a', index=False, header=False)
# %%
print("\n\nThe result of the noisy quantum optimisation using QAOA is: \n")
print('best measurement', result1.best_measurement)
print('Optimal parameters: ', result1.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result1.best_measurement['value'] + k))
elapsed_time1 = end_time1 - start_time1
print(f"Aer Simulator run time: {elapsed_time1} seconds")
print('\n\n')
data = {
"Experiment": ["Aer Simulation XY QAOA"],
"Ground State Energy": [np.real(result1.best_measurement['value'] + k)],
"Best Measurement": [result1.best_measurement],
"Execution Time (seconds)": [elapsed_time1],
"Number of qubits": [num_qubits]
}
df = pd.DataFrame(data)
df.to_csv(file_path, index=False)
# %% ############################################# Hardware with QAOAAnastz ##################################################################
from qiskit.circuit.library import QAOAAnsatz
from qiskit_algorithms import SamplingVQE
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler
from qiskit import transpile, QuantumCircuit, QuantumRegister
from qiskit.transpiler import CouplingMap, Layout
service = QiskitRuntimeService()
backend = service.backend("ibm_torino")
print('Coupling Map of hardware: ', backend.configuration().coupling_map)
ansatz = QAOAAnsatz(q_hamiltonian, mixer_operator=XY_mixer, reps=p)
print('\n\nQAOAAnsatz: ', ansatz)
target = backend.target
# %%
filtered_coupling_map = [coupling for coupling in backend.configuration().coupling_map if coupling[0] < num_qubits and coupling[1] < num_qubits]
qr = QuantumRegister(num_qubits, 'q')
circuit = QuantumCircuit(qr)
trivial_layout = Layout({qr[i]: i for i in range(num_qubits)})
ansatz_isa = transpile(ansatz, backend=backend, initial_layout=trivial_layout, coupling_map=filtered_coupling_map,
optimization_level=3, layout_method='trivial', routing_method='stochastic')
print("\n\nAnsatz layout after explicit transpilation:", ansatz_isa._layout)
hamiltonian_isa = q_hamiltonian.apply_layout(ansatz_isa.layout)
print("\n\nAnsatz layout after transpilation:", hamiltonian_isa)
# %%
ansatz_isa.decompose().draw('mpl')
op_counts = ansatz_isa.count_ops()
total_gates = sum(op_counts.values())
depth = ansatz_isa.depth()
print("Operation counts:", op_counts)
print("Total number of gates:", total_gates)
print("Depth of the circuit: ", depth)
data_depth = {
"Experiment": ["Hardware XY-QAOA"],
"Total number of gates": [total_gates],
"Depth of the circuit": [depth]
}
df_depth = pd.DataFrame(data_depth)
df_depth.to_csv(file_path_depth, index=False)
# %%
session = Session(backend=backend)
print('\nhere 1')
sampler = Sampler(backend=backend, session=session)
print('here 2')
qaoa2 = SamplingVQE(sampler=sampler, ansatz=ansatz_isa, optimizer=COBYLA(), initial_point=initial_point)
print('here 3')
result2 = qaoa2.compute_minimum_eigenvalue(hamiltonian_isa)
print("\n\nThe result of the noisy quantum optimisation using QAOAAnsatz is: \n")
print('best measurement', result2.best_measurement)
print('Optimal parameters: ', result2.optimal_parameters)
print('The ground state energy with noisy QAOA is: ', np.real(result2.best_measurement['value']))
# %%
jobs = service.jobs(session_id='crrdap27jqmg008z9m00')
for job in jobs:
if job.status().name == 'DONE':
results = job.result()
print("Job completed successfully")
else:
print("Job status:", job.status())
# %%
from qiskit.quantum_info import Statevector, Operator
def create_circuit(bitstring):
"""Create a quantum circuit that prepares the quantum state for a given bitstring."""
qc = QuantumCircuit(len(bitstring))
for i, bit in enumerate(bitstring):
if bit == '1':
qc.x(i)
return qc
def evaluate_energy(bitstring, operator):
"""Evaluate the energy of a bitstring using the specified operator."""
circuit = create_circuit(bitstring)
state = Statevector.from_instruction(circuit)
if not isinstance(operator, Operator):
operator = Operator(operator)
expectation_value = state.expectation_value(operator).real
return expectation_value
def get_best_measurement_from_sampler_result(sampler_result, q_hamiltonian, num_qubits):
if not hasattr(sampler_result, 'quasi_dists') or not isinstance(sampler_result.quasi_dists, list):
raise ValueError("SamplerResult does not contain 'quasi_dists' as a list")
best_bitstring = None
lowest_energy = float('inf')
highest_probability = -1
for quasi_distribution in sampler_result.quasi_dists:
for int_bitstring, probability in quasi_distribution.items():
bitstring = format(int_bitstring, '0{}b'.format(num_qubits)) # Ensure bitstring is string
energy = evaluate_energy(bitstring, q_hamiltonian)
if energy < lowest_energy:
lowest_energy = energy
best_bitstring = bitstring
highest_probability = probability
return best_bitstring, highest_probability, lowest_energy
best_bitstring, probability, value = get_best_measurement_from_sampler_result(results, q_hamiltonian, num_qubits)
print(f"Best measurement: {best_bitstring} with ground state energy {value} and probability {probability}")
# %%
total_usage_time = 0
for job in jobs:
job_result = job.usage_estimation['quantum_seconds']
total_usage_time += job_result
print(f"Total Usage Time Hardware: {total_usage_time} seconds")
print('\n\n')
# %%
index = ansatz_isa.layout.final_index_layout() # Maps logical qubit index to its position in bitstring
# measured_bitstring = result2.best_measurement['bitstring']
measured_bitstring = best_bitstring
original_bitstring = ['']*num_qubits
for i, logical in enumerate(index):
original_bitstring[i] = measured_bitstring[logical]
original_bitstring = ''.join(original_bitstring)
print("Original bitstring:", original_bitstring)
data = {
"Experiment": ["Classical Optimisation", "Quantum Optimisation (QAOA)", "Noisy Quantum Optimisation (Aer Simulator)", "Quantum Optimisation (QAOAAnsatz)"],
"Ground State Energy": [eigenvalues[0], result.optimal_value + k, np.real(result1.best_measurement['value'] + k), np.real(result2.best_measurement['value'])],
"Best Measurement": ["N/A", result.optimal_parameters, result1.best_measurement, result2.best_measurement],
"Optimal Parameters": ["N/A", "N/A", "N/A", result2.optimal_parameters],
"Execution Time (seconds)": [elapsed_time, elapsed_time, elapsed_time1, total_usage_time],
"Total Gates": ["N/A", "N/A", total_gates, total_gates],
"Circuit Depth": ["N/A", "N/A", depth, depth]
}