forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
python_print.cpp
1587 lines (1464 loc) · 53.2 KB
/
python_print.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/serialization/python_print.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/versioned_symbols.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/calculate_necessary_args.h>
#include <algorithm>
using c10::QualifiedName;
namespace torch {
namespace jit {
static bool isValidIdentifierChar(char c, size_t pos) {
return islower(c) || isupper(c) || c == '_' || (pos > 0 && isdigit(c));
}
static bool isValidIdentifier(const std::string& name) {
if (name.size() == 0)
return false;
for (size_t i = 0; i < name.size(); ++i) {
if (!isValidIdentifierChar(name[i], i))
return false;
}
return true;
}
// some names are valid identifiers but off limits because
// they are keywords or namespaces used in the output
const static std::unordered_set<std::string> reserved_names = {
// identifiers in the environment while parsing
"_", // avoid the confusing unnamed _
"as",
"aten",
"attribute",
"CONSTANTS",
"fork",
"getattr",
"inf",
"nan",
"infj",
"nanj",
"ops",
"__torch__",
// the python keywords
"and",
"as",
"assert",
"async",
"await",
"break",
"class",
"continue",
"def",
"del",
"elif",
"else",
"except",
"False",
"finally",
"for",
"from",
"global",
"if",
"import",
"in",
"is",
"lambda",
"None",
"nonlocal",
"not",
"or",
"pass",
"raise",
"return",
"True",
"try",
"with",
"while",
"with",
"yield",
"uninitialized",
"unchecked_cast",
};
// Helper to avoid duplicating class types
void PrintDepsTable::add(const c10::NamedTypePtr& type) {
// Despite doing the linear search below, we don't want to do
// wasteful work and only try to insert each instance once.
if (!non_unique_.insert(type).second) {
return;
}
// Need to do actual equality comparison, not a pointer equality. This is
// because for some types (e.g. FunctionType), we may have multiple
// TypePtr's that represent the same underlying thing.
// TODO: this should be really swapped for something more efficient
auto it = std::find_if(
table_.cbegin(), table_.cend(), [&](const c10::NamedTypePtr& dep) {
return *dep == *type;
});
if (it == table_.cend()) {
table_.push_back(type);
}
}
struct PythonPrintImpl {
using SourceRangeStack = std::vector<SourceRange>;
SourceRangeStack source_range_stack_ = {SourceRange()};
struct WithSourceRange {
explicit WithSourceRange(SourceRangeStack* stack, Node* n) : stack(stack) {
TORCH_INTERNAL_ASSERT(stack);
if (auto gen_source = n->sourceRange().findSourceRangeThatGenerated()) {
stack->push_back(std::move(gen_source.value()));
} else {
stack->push_back(n->sourceRange());
}
}
~WithSourceRange() {
stack->pop_back();
}
SourceRangeStack* stack;
};
class TaggedStringStream {
public:
TaggedStringStream(const SourceRangeStack* srs) : srs_(srs) {}
TaggedStringStream& operator<<(const std::string& s) {
// This prevents having redundant entries at the same offset,
// which can happen for example in printValueList when begin
// and end are the empty string.
if (s.size() == 0) {
return *this;
}
if (!ranges_.size() || ranges_.back().range != srs_->back()) {
ranges_.emplace_back((size_t)oss_.tellp(), srs_->back());
}
oss_ << s;
return *this;
}
TaggedStringStream& operator<<(const TaggedStringStream& rhs) {
for (const auto& range : rhs.ranges_) {
if (!ranges_.size() || ranges_.back().range != range.range) {
ranges_.emplace_back((size_t)oss_.tellp() + range.bytes, range.range);
}
}
oss_ << rhs.oss_.str();
return *this;
}
// This overload is here to prevent people from shooting themselves in the
// foot. I would be highly surprised if someone actually wanted to write out
// the address of a TaggedStringStream in the pretty print.
TaggedStringStream& operator<<(
const std::shared_ptr<TaggedStringStream>& rhs) {
(*this) << *rhs;
return *this;
}
template <typename T>
TaggedStringStream& operator<<(const T& t) {
if (!ranges_.size() || ranges_.back().range != srs_->back()) {
ranges_.emplace_back((size_t)oss_.tellp(), srs_->back());
}
oss_ << t;
return *this;
}
std::string str() const {
return oss_.str();
}
const std::vector<TaggedRange>& ranges() const {
return ranges_;
}
private:
std::ostringstream oss_;
std::vector<TaggedRange> ranges_;
const SourceRangeStack* srs_;
};
// scanValue, scanNode, scanBlock:
// decide if it is safe to omit the output of a temporary variable,
// and inline the expression into its use
// we only do this if
// (1) it is a constant, or
// (2) the temporary is unnamed, is single output, is used once,
// and would appear in the same order when the expression tree is
// reparsed.
// The last case can be checked
// because when we emit a expresion tree in the parser,
// we do a left-to-right postorder traversal of the expression tree (emit
// children, then emit op). The reverse of this is a right-to-left preorder
// traversal of the tree. By doing a right-to-left preorder traversal of the
// inputs of a node, while also scanning the list of emitted nodes backward,
// we can see if they line up with what would happen when parsed the node as
// an expression. While they line up we collapse them into an inline
// expression.
// The inductive step is that the right-most input should be produced by the
// node immediatly before the current node if it is in tree order.
bool canInline(Value* v) {
Node* n = v->node();
// there must be only 1 values, otherwise we need an assignment to handle
// the multiple outout values
if (n->outputs().size() != 1)
return false;
// if it is used more than once, then we need a variable
if (v->uses().size() != 1)
return false;
auto use = v->uses().at(0);
// if it has a name set, then it was written as a variable so preserve that
// unless it is being fed directly to the end of the block.
// in which case it is not as useful to give it a name just to return it
if (v->hasDebugName() && use.user->kind() != prim::Return)
return false;
// don't try to inline control blocks
if (n->blocks().size() != 0)
return false;
// if it is a loop-carried input, we need a variable
// otherwise the condition or trip count may be emitted in the wrong order
// w.r.t. to it
if (use.user->kind() == prim::Loop && use.offset >= 2)
return false;
// subgraph may use this more than once, so disable inlining
if (use.user->kind() == prim::fork || use.user->kind() == prim::rpc_async ||
use.user->kind() == prim::rpc_sync ||
use.user->kind() == prim::rpc_remote)
return false;
// isinstance appearing in an if expression
// causes type refinement to occur, but we have
// already handled the refinement and inserted cast
// expressions. By not inlining it into the if condition,
// we prevent it from happening again.
if (v->node()->kind() == prim::isinstance) {
return false;
}
return true;
}
// block_point is the current node in the reverse linear scan of the emitted
// nodes v is the current value in the tree traversal that may match with
// block_point's output.
Node* scanValue(Node* block_point, Value* v) {
Node* n = v->node();
AT_ASSERT(n->kind() == prim::Constant || output_inline_.count(n) == 0);
if (n == block_point &&
canInline(v)) { // the node must be at the expected point of the typical
// tree traversal
// recursively see if we can inline the inputs to this input
block_point = scanNode(block_point);
output_inline_.insert(n);
} else if (n->kind() == prim::Constant) {
// constant nodes can always be inlined, we will de-dup them on parsing
// and put them at the top of the function regardless
output_inline_.insert(n);
}
return block_point;
}
Node* previousNonConstant(Node* n) {
do {
n = n->prev();
} while (n->kind() == prim::Constant);
return n;
}
Node* scanNode(Node* n) {
// don't bother to scan nodes we have already determined to be inline
if (output_inline_.count(n)) {
return n;
}
for (auto b : n->blocks()) {
scanBlock(b);
}
Node* block_point = previousNonConstant(n);
for (auto it = n->inputs().rbegin(), end = n->inputs().rend(); it != end;
++it) {
block_point = scanValue(block_point, *it);
}
return block_point;
}
void scanBlock(Block* b) {
scanNode(b->return_node());
for (auto node : b->nodes().reverse()) {
scanNode(node);
}
}
size_t getOrAddConstant(at::IValue val) {
// XXX - N^2 warning. This code does the exact same thing as
// ConstantPool, which is also N^2 in the size of the constants,
// because it doesn't hash any information about the tensors.
// We will probably need to optimize this at some point using hashing.
if (val.isTensor()) {
auto& t = val.toTensor();
for (size_t i = 0; i < constant_table_.size(); ++i) {
if (!constant_table_[i].isTensor()) {
continue;
}
auto& t2 = constant_table_[i].toTensor();
if (t.options().type_equal(t2.options()) && t.equal(t2)) {
return i;
}
}
}
constant_table_.emplace_back(std::move(val));
return constant_table_.size() - 1;
}
std::unordered_set<Node*> seen_constants;
void buildConstantList(Node* n, std::vector<Node*>& constants) {
for (auto input : n->inputs()) {
if (input->node()->kind() == prim::Constant &&
seen_constants.count(input->node()) == 0) {
constants.push_back(input->node());
seen_constants.insert(input->node());
}
}
for (auto b : n->blocks()) {
buildConstantList(b, constants);
}
}
void buildConstantList(Block* b, std::vector<Node*>& constants) {
for (auto n : b->nodes())
buildConstantList(n, constants);
buildConstantList(b->return_node(), constants);
}
// get a new name unique across calls to debugName() and
// anything we have used.
std::unordered_map<std::string, size_t> next_id;
std::string genNameImpl(
const std::string& candidate,
std::unordered_set<std::string>& used) {
std::string name = candidate;
while (used.count(name) || reserved_names.count(name)) {
// NOLINTNEXTLINE(performance-inefficient-string-concatenation)
name = candidate + c10::to_string(next_id[name]++);
}
used.insert(name);
return name;
}
std::string genName(const std::string& candidate) {
return genNameImpl(candidate, used_names_);
}
// unique names might not be valid identifiers,
// force them to be by rewriting them
static std::string makeValidIdentifier(const std::string& candidate) {
std::stringstream ss;
if (candidate.size() == 0 || isdigit(candidate[0]))
ss << "_";
for (char c : candidate) {
if (isupper(c) || islower(c) || isdigit(c) || c == '_')
ss << c;
else
ss << '_';
}
return ss.str();
}
// if we have to assign 'v' a name, what should it be?
// use the debugName if it was set, otherwise generate a name.
std::string genUniqueNameFor(Value* v) {
return genName(
v->hasDebugName() ? makeValidIdentifier(v->debugNameBase()) : "_");
}
// map from Value to how it should be printed at each use
std::unordered_map<Value*, std::shared_ptr<TaggedStringStream>> expr_table_;
std::unordered_map<Value*, std::string> ident_refs_;
// NB: we MUST pass around the shared pointers to these streams by value.
// There is an interaction in splitLongInlines where the string value for
// both the RHS and the LHS of an expression are live at the same time,
// however the value for the RHS is overwritten in the table.
std::shared_ptr<TaggedStringStream> useOf(Value* v) const {
// Ident refs take precedent over expression refs, since presence in
// the ident ref table indicates we have already emitted a statement
// assigning the given value.
if (ident_refs_.count(v)) {
auto rv = std::make_shared<TaggedStringStream>(&source_range_stack_);
(*rv) << ident_refs_.at(v);
return rv;
}
if (expr_table_.count(v)) {
return expr_table_.at(v);
}
TORCH_INTERNAL_ASSERT(
false,
"Value (debug name: \"",
v->debugName(),
"\") was not present in either expressions table or ident refs table");
}
void assignValue(Value* v, const std::string& s) {
ident_refs_[v] = s;
}
void assignValue(Value* v, std::shared_ptr<TaggedStringStream> s) {
expr_table_[v] = std::move(s);
}
void assignValue(Value* v, Value* w) {
assignValue(v, useOf(w));
}
void assignValuesToTheirUniqueNames(at::ArrayRef<Value*> values) {
for (auto v : values) {
assignValue(v, genUniqueNameFor(v));
}
}
size_t level = 0;
// indent to the current indent level
TaggedStringStream& indent() {
for (size_t i = 0; i < level; ++i) {
body_ << " ";
}
return body_;
}
ResourceGuard WithIndented() {
level++;
return ResourceGuard([this] { level--; });
}
template <class T0, class T1, class F>
void zipWith(at::ArrayRef<T0> list_a, at::ArrayRef<T1> list_b, F action)
const {
auto it_a = list_a.begin();
auto it_b = list_b.begin();
if (list_a.size() != list_b.size()) {
AT_ERROR("Python printer expected 2 lists of same size");
}
for (; it_a != list_a.end(); ++it_a, ++it_b) {
action(*it_a, *it_b);
}
}
void printValueList(
TaggedStringStream& stmt,
at::ArrayRef<Value*> list,
const char* begin = "",
const char* end = "") {
stmt << begin;
auto delimiter = "";
for (auto* value : list) {
stmt << delimiter;
stmt << useOf(value);
delimiter = ", ";
}
stmt << end;
}
void printValueIndex(TaggedStringStream& stmt, at::ArrayRef<Value*> inputs) {
const std::string val_name = useOf(inputs[0])->str();
if (isValidIdentifier(val_name)) {
stmt << val_name;
} else {
stmt << "(" << val_name << ")";
}
stmt << "[";
stmt << useOf(inputs[1]);
stmt << "]";
}
void printDict(
TaggedStringStream& stmt,
at::ArrayRef<Value*> key_value_pairs,
const char* begin = "{",
const char* end = "}") {
stmt << begin;
auto delimiter = "";
for (size_t i = 0; i < key_value_pairs.size(); i += 2) {
stmt << delimiter;
auto key = key_value_pairs[i];
auto value = key_value_pairs[i + 1];
stmt << useOf(key) << ": " << useOf(value);
delimiter = ", ";
}
stmt << end;
}
void printAssignment(at::ArrayRef<Value*> lhs, at::ArrayRef<Value*> rhs) {
if (lhs.size() == 0) {
return;
}
indent();
printValueList(body_, lhs);
body_ << " = ";
printValueList(body_, rhs);
body_ << "\n";
}
bool requiresAnnotation(Value* lhs, Value* rhs) {
return *lhs->type() != *rhs->type();
}
void printAnnotatedAssignment(
at::ArrayRef<Value*> lhs,
at::ArrayRef<Value*> rhs) {
for (size_t i = 0; i < lhs.size(); ++i) {
indent();
body_ << useOf(lhs[i]);
if (requiresAnnotation(lhs[i], rhs[i])) {
body_ << ": " << lhs[i]->type()->annotation_str(type_printer_);
}
body_ << " = " << useOf(rhs[i]) << "\n";
}
}
void printIf(IfView stmt) {
assignValuesToTheirUniqueNames(stmt.outputs());
indent() << "if " << useOf(stmt.cond()) << ":\n";
{
auto guard = WithIndented();
// Print node contents
printBlock(stmt.thenBlock(), stmt.outputs().size() > 0);
printAssignment(stmt.outputs(), stmt.thenOutputs());
}
indent() << "else:\n";
{
auto guard = WithIndented();
printBlock(stmt.elseBlock(), stmt.outputs().size() > 0);
printAssignment(stmt.outputs(), stmt.elseOutputs());
}
}
void printLoop(LoopView stmt) {
// Loop carried dependencies are handled by assigning their initial
// values to the node->outputs() before the loop,
// and assign node->outputs() to the new values at the end of each trip.
auto loop_type = stmt.loopType();
if (loop_type == LoopView::ModifiedLoop) {
throw ErrorReport(stmt.node()->sourceRange())
<< "loop cannot be printed as python "
<< "because it has gone through an optimization "
<< "that combined while and for loops. File a bug";
}
bool emit_as_for_loop = loop_type == LoopView::For;
assignValuesToTheirUniqueNames(stmt.carriedOutputs());
// Add aliases for loop-carried dependencies
zipWith(
stmt.bodyCarriedInputs(), // Start at 1 to ignore trip count
stmt.carriedOutputs(),
[&](Value* block_input, Value* node_output) {
assignValue(block_input, node_output);
});
// Print initial assignments of loop node outputs = loop node inputs
printAnnotatedAssignment(stmt.carriedOutputs(), stmt.carriedInputs());
assignValuesToTheirUniqueNames(stmt.currentTripCount());
// Loop header
if (emit_as_for_loop) {
indent();
body_ << "for " << useOf(stmt.currentTripCount()) << " in range("
<< useOf(stmt.maxTripCount()) << "):\n";
} else {
// note: trip_count_in_block is unused because this is a while loop,
// so we reuse the Value* as a stand-in for the loop condition
printAssignment(stmt.currentTripCount(), stmt.inputCond());
indent();
body_ << "while " << useOf(stmt.currentTripCount()) << ":\n";
}
// Loop body
{
ResourceGuard indent = WithIndented();
// Update block outputs to block inputs for next loop iteration
// skip the assignment to the new condition in for loops because
// the condition is always True
size_t offset = emit_as_for_loop ? 1 : 0;
auto body_block = stmt.bodyBlock();
ArrayRef<Value*> loop_carried_block_inputs =
body_block->inputs().slice(offset);
printBlock(body_block, loop_carried_block_inputs.size() > 0);
printAssignment(
loop_carried_block_inputs, body_block->outputs().slice(offset));
}
}
bool isLongLine(const std::string& str) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
return str.size() + level * 2 >= 40;
}
bool isLongInline(Node* node) {
return output_inline_.count(node) &&
isLongLine(useOf(node->output())->str());
}
bool isNonConstantInline(Value* input) {
return input->node()->kind() != prim::Constant &&
output_inline_.count(input->node());
}
// [reordering of inlines]
// We inline anything that is semantically legal to inline, but sometimes
// we find that these lines get too long. In that case we break the lines
/// and it is important that we un-inline all the inputs preceeding the long
/// input:
// r = foo(x.add_(b), some_long + expression)
// wrong!
// _0 = some_long + expression
// r = foo(x.add_(b), _0) # wrong! _0 runs before mutating add_
// legal!
// _0 = x.add_(b)
// _1 = some_long + expression
// r = foo(_0, _1)
void splitLongInlines(Value* v) {
std::vector<Value*> to_split_reversed;
Use u = v->uses().at(0);
scanLongInlines(u.user, u.offset, to_split_reversed);
for (auto it = to_split_reversed.rbegin(), end = to_split_reversed.rend();
it != end;
++it) {
printOutputDefinition((*it)->node(), *useOf(*it));
}
}
void scanLongInlines(
Node* user,
int64_t offset,
std::vector<Value*>& to_split_reversed) {
auto it = visited_split_inline_uses_.find(user);
bool present = it != visited_split_inline_uses_.end();
for (int64_t i = offset; i >= (present ? it->second + 1 : 0); --i) {
Value* prev_arg = user->input(i);
if (isNonConstantInline(prev_arg)) {
to_split_reversed.push_back(prev_arg);
}
}
visited_split_inline_uses_[user] = offset;
if (!present && output_inline_.count(user)) {
Use u = user->output()->uses().at(0);
scanLongInlines(u.user, int64_t(u.offset) - 1, to_split_reversed);
// -1 because the actual use is still being
// emitted so it cannot be split
}
}
template <typename T>
void printOutputDefinition(Node* node, const T& expr) {
assignValuesToTheirUniqueNames(node->outputs());
indent();
// Print outputs
if (node->outputs().size() > 0) {
printValueList(body_, node->outputs());
body_ << " = ";
}
body_ << expr << "\n";
}
// Recursively check contained types for any class dependencies
void registerClassDependencies(const TypePtr& type) {
if (const auto classType = type->cast<ClassType>()) {
deps_table_.add(classType);
} else if (const auto tupleType = type->cast<TupleType>()) {
if (tupleType->name()) {
deps_table_.add(tupleType);
}
} else if (const auto interfaceType = type->cast<InterfaceType>()) {
deps_table_.add(interfaceType);
} else if (const auto enumType = type->cast<EnumType>()) {
deps_table_.add(enumType);
}
for (const auto& containedType : type->containedTypes()) {
registerClassDependencies(containedType);
}
}
void scanTypeDependencies(Node* node) {
// Check for class dependencies. If this node inputs or outputs a class
// type, we need to add it to our table of dependencies.
for (const auto input : node->inputs()) {
registerClassDependencies(input->type());
}
for (const auto output : node->outputs()) {
registerClassDependencies(output->type());
}
for (const auto& name : node->attributeNames()) {
switch (node->kindOf(name)) {
case AttributeKind::ty:
registerClassDependencies(node->ty(name));
break;
case AttributeKind::tys:
for (const TypePtr& t : node->tys(name)) {
registerClassDependencies(t);
}
break;
default:
// noop
break;
}
}
}
void checkVersion(const Node* const node) {
min_version_ =
std::max(min_version_, get_min_version_for_kind(node->kind()));
}
void printNode(Node* node, bool print_const) {
WithSourceRange guard(&source_range_stack_, node);
scanTypeDependencies(node);
checkVersion(node);
if (!print_const && node->kind() == prim::Constant)
return;
switch (node->kind()) {
case prim::Return:
if (enforce_importable_ && node->inputs().size() != 1) {
throw ErrorReport(node->sourceRange())
<< "Exportable methods must have a single return value. "
<< "Normal use of ScriptMethods should enforce this";
}
if (node->inputs().size() > 0) {
indent();
body_ << "return ";
printValueList(body_, node->inputs());
body_ << "\n";
}
break;
case prim::Loop:
printLoop(LoopView(node));
break;
case prim::If:
printIf(IfView(node));
break;
case prim::TupleUnpack:
case prim::ListUnpack:
assignValuesToTheirUniqueNames(node->outputs());
indent();
// TupleUnpack(unpacked) turns into an assignment op that forces
// the unpack to be inserted when parsed back in:
// a, b, = unpacked
// a, = unpacked # trailing comma forces an unpack to happen
if (node->outputs().size() > 0) {
printValueList(body_, node->outputs(), "", ", = ");
}
body_ << useOf(node->input()) << "\n";
break;
case prim::SetAttr: {
const auto obj = node->inputs().at(0);
const auto newVal = node->inputs().at(1);
const auto type = obj->type()->expect<ClassType>();
const auto& attrname = node->s(attr::name);
indent();
body_ << useOf(obj) << "." << attrname << " = " << useOf(newVal)
<< "\n";
} break;
case prim::fork: {
// the subgraph gets emitted as another function
auto name = genName("__forked_function");
std::shared_ptr<Graph> graph = node->g(attr::Subgraph);
indent();
body_ << "def " << name << "():\n";
for (size_t i = 0; i < node->inputs().size(); ++i) {
assignValue(graph->inputs().at(i), node->inputs().at(i));
}
printBody(graph->block());
std::stringstream ss;
ss << "fork(" << name << ")";
printOutputDefinition(node, ss.str());
} break;
case prim::Enter: {
const auto in = node->inputs().at(0);
const auto out = node->outputs().at(0);
indent();
body_ << "with " << useOf(in);
if (out->uses().size() > 0) {
assignValue(out, genUniqueNameFor(out));
body_ << " as " << useOf(out);
}
body_ << ":\n";
level++;
} break;
case prim::Exit: {
// If the previous node is a prim::Enter, the with block the generated
// this Enter/Exit pair must have been empty.
if (node->prev()->kind() == prim::Enter) {
indent();
body_ << "pass\n";
}
level--;
} break;
case prim::Closure: {
if (enforce_importable_) {
throw ErrorReport(node->sourceRange())
<< "closures are not exportable";
}
assignValuesToTheirUniqueNames(node->outputs());
auto name = useOf(node->output())->str();
std::shared_ptr<Graph> graph = node->g(attr::Subgraph);
indent();
body_ << "def " << name << "(";
assignValuesToTheirUniqueNames(graph->inputs());
for (size_t i = 0; i < graph->inputs().size(); ++i) {
Value* v = graph->inputs().at(i);
if (i > 0) {
body_ << ", ";
}
body_ << useOf(v) << ": " << v->type()->annotation_str(type_printer_);
}
body_ << "):\n";
printBody(graph->block());
} break;
case prim::ModuleContainerIndex: {
const auto container = node->inputs().at(0);
const auto key = node->inputs().at(1);
const auto out = node->outputs().at(0);
assignValuesToTheirUniqueNames(out);
indent();
body_ << useOf(out) << " : " << out->type()->annotation_str() << " = "
<< useOf(container) << "[" << useOf(key) << "]\n";
} break;
default:
auto ss = std::make_shared<TaggedStringStream>(&source_range_stack_);
printRHS(*ss, node);
// we prevent long constants from inlining here.
// it is not safe to do the same thing for non-constants here
// because of [reordering of inlines]
if (output_inline_.count(node) == 0 ||
(node->kind() == prim::Constant && isLongLine(ss->str()))) {
printOutputDefinition(node, *ss);
} else {
// this node is safe to inline, so assign the output value
// to that expression directly
assignValue(node->output(), ss);
if (isLongLine(ss->str())) {
splitLongInlines(node->output());
}
}
}
}
static bool containsNonASCIIString(const IValue& val) {
bool hasNonASCII = false;
auto checkSubvalue = [&hasNonASCII](const IValue& val) {
if (val.isString()) {
const auto maxASCII = 0x7fu;
for (auto& c : val.toStringRef()) {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (c > maxASCII) {
hasNonASCII = true;
return true;
}
}
}
return false;
};
val.visit(checkSubvalue);
return hasNonASCII;
}
void printConstant(TaggedStringStream& stmt, const IValue& v) {
const auto customFormatter = [&](std::ostream& ss, const IValue& v) {
if (v.isTensor() || containsNonASCIIString(v) || v.isObject()) {
TORCH_INTERNAL_ASSERT(!v.type()->is_module());
ss << "CONSTANTS.c" << getOrAddConstant(v);
return true;
}
if (v.isTuple() && v.type()->expectRef<TupleType>().schema()) {
// print the namedtuple constructor and let rest of tuple printing
// continue
ss << v.type()->expectRef<TupleType>().annotation_str(type_printer_);
}
return false;
};
std::stringstream ss;
v.repr(ss, customFormatter);
stmt << ss.str();
}
void printOpName(TaggedStringStream& stmt, Symbol kind) {
// Special overriding ops set that requires serializing differently to
// preserve the original code semantics.
// This will be more properly handled when we have namespace semantics
// for serializing the ops, and it right now hard coded these ops to
// ensure consistency and not breaking BC in the future.
const static std::unordered_map<Symbol, std::string> override_symbols = {
{aten::backward, "torch.autograd.backward"},
{aten::grad, "torch.autograd.grad"},
};
if (override_symbols.find(kind) != override_symbols.end()) {
stmt << override_symbols.at(kind);
} else if (kind.is_aten()) {
// special case aten -> torch because we want to rename
// the aten namespace, but this change will take more time
// doing it here ensures we do not have fix up archives later
stmt << "torch." << kind.toUnqualString();
} else {
stmt << "ops." << kind.ns().toUnqualString() << "."
<< kind.toUnqualString();
}
}
// Prints the RHS value of a Node, e.g. `aten.add(x, y)`
void printRHS(TaggedStringStream& stmt, Node* node) {
switch (node->kind()) {
case prim::PythonOp: {
auto value = static_cast<const PythonOp*>(node);
if (enforce_importable_) {
throw ErrorReport(node->sourceRange())
<< "Could not export Python function call '" << value->name()
<< "'. Remove calls to Python functions before export. "
<< "Did you forget to add @script or @script_method annotation? "
<< "If this is a nn.ModuleList, add it to __constants__";
}
std::stringstream scalars_stream;
stmt << "^" << value->name();
value->writeScalars(scalars_stream);
stmt << scalars_stream.str();
printValueList(stmt, node->inputs(), "(", ")");
} break;
case prim::Uninitialized: {
stmt << "uninitialized("
<< node->output()->type()->annotation_str(type_printer_) << ")";
} break;
case prim::Constant: {
if (node->outputs().size() == 1 &&
node->output()->type()->kind() == TypeKind::FunctionType) {
auto fn = node->output()->type()->expect<FunctionType>();
deps_table_.add(fn);
stmt << fn->annotation_str(type_printer_);
} else if (!node->mustBeNone()) {
IValue v = toIValue(node->output()).value();
printConstant(stmt, v);
} else {
stmt << "None";
}
} break;
case aten::ScalarImplicit:
case aten::FloatImplicit:
case aten::IntImplicit: {
stmt << "annotate("
<< node->output()->type()->annotation_str(type_printer_) << ", "
<< useOf(node->input()) << ")";
} break;
case aten::Int: {
printValueList(stmt, node->inputs(), "int(", ")");
} break;
case aten::Float: {
printValueList(stmt, node->inputs(), "float(", ")");
} break;
case aten::Bool: {
printValueList(stmt, node->inputs(), "bool(", ")");
} break;
case aten::str: {
printValueList(stmt, node->inputs(), "str(", ")");
} break;
case aten::__getitem__: {
printValueIndex(stmt, node->inputs());
} break;
case prim::Print: {
printValueList(stmt, node->inputs(), "print(", ")");
} break;
case aten::sorted: {
printValueList(stmt, node->inputs(), "sorted(", ")");
} break;
case prim::TupleConstruct: {
if (auto qualname =
node->output()->type()->expectRef<TupleType>().name()) {
stmt << node->output()->type()->annotation_str(type_printer_);
}
printValueList(
stmt, node->inputs(), "(", node->inputs().size() == 1 ? ",)" : ")");
} break;
case prim::TupleIndex: {
stmt << "(" << useOf(node->inputs().at(0)) << ")["
<< useOf(node->inputs().at(1)) << "]";