forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
constant_propagation.cpp
410 lines (375 loc) · 12.5 KB
/
constant_propagation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/node_hashing.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/utils/memory.h>
namespace torch {
namespace jit {
c10::optional<std::vector<IValue>> runNodeIfInputsAreConstant(
const Node* n,
bool ignore_custom_classes) {
Stack stack;
for (auto input : n->inputs()) {
if (auto ival = toIValue(input)) {
stack.push_back(*ival);
} else {
return c10::nullopt;
}
}
switch (n->kind()) {
case prim::ListUnpack: {
if (stack.back().toList().size() != n->outputs().size()) {
return c10::nullopt;
}
listUnpack(stack, n->outputs().size());
} break;
case prim::TupleConstruct: {
auto tt = n->output()->type()->expect<TupleType>();
if (tt->name()) {
namedTupleConstruct(stack, tt, n->inputs().size());
} else {
tupleConstruct(stack, n->inputs().size());
}
} break;
case prim::ListConstruct: {
listConstruct(
stack,
n->output()->type()->expectRef<ListType>(),
n->inputs().size());
} break;
case prim::DictConstruct: {
dictConstruct(
stack,
n->output()->type()->expectRef<DictType>(),
n->inputs().size());
} break;
case prim::CreateObject: {
createObject(stack, n->output()->type()->expect<ClassType>());
} break;
case prim::GetAttr: {
auto attr = pop(stack).toObject()->getAttr(n->s(attr::name));
push(stack, attr);
} break;
case prim::isinstance: {
isinstance(stack, n->tys(attr::types));
} break;
default: {
const auto maybe_schema = n->maybeSchema();
if (maybe_schema && maybe_schema->is_vararg()) {
// vararg schemas require the number of inputs at the top of the stack
// but this is broken in other places in constant prop, so disable it
// for now
return c10::nullopt;
}
try {
auto op = n->getOperation();
op(&stack);
} catch (...) {
return c10::nullopt;
}
} break;
}
for (const IValue& v : stack) {
if (v.isTensor()) {
const at::Tensor& t = v.toTensor();
if (t.defined() && t.requires_grad()) {
// requires grad tensors cannot be constants
return c10::nullopt;
}
}
// Weak form of const propagation
if (ignore_custom_classes) {
if (v.isCustomClass()) {
return c10::nullopt;
}
}
}
return stack;
}
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
std::unordered_set<Symbol> skip_list = {
prim::If,
prim::Loop,
prim::Closure,
prim::Constant,
prim::AutogradZero,
prim::Uninitialized,
prim::Guard,
prim::profile,
prim::profile_ivalue,
prim::unchecked_unwrap_optional, // TODO remove
// TODO (zach): we should consider skipping tensor factories in the cases
// where the constant tensor would be large but cheap to create.
};
struct ConstantPropagator {
// Runs constant propagation with an aliasing db and checks if inputs or
// outputs might be mutated in the graph
static ConstantPropagator WithAliasDb(
std::shared_ptr<Graph> graph,
bool ignore_custom_classes) {
return ConstantPropagator(std::move(graph), true, ignore_custom_classes);
}
// Runs constant propagation only on ops that clearly do not have aliased
// inputs or outputs without computing aliasing information
static ConstantPropagator NoAliasDb(std::shared_ptr<Graph> graph) {
return ConstantPropagator(std::move(graph), false, false);
}
bool run() {
ConstantPropagation(graph_->block());
return made_change_;
}
private:
ConstantPropagator(
std::shared_ptr<Graph> graph,
bool aliasing_types,
bool ignore_custom_classes)
: graph_(std::move(graph)) {
aliasing_types_ = aliasing_types;
ignore_custom_classes_ = ignore_custom_classes;
}
void propagateNode(Node* n) {
std::vector<IValue> outputs;
if (auto outputs_opt =
runNodeIfInputsAreConstant(n, ignore_custom_classes_)) {
outputs = std::move(outputs_opt.value());
} else {
// The op failed to run, so we cannot continue constant-prop for it.
return;
}
auto graph = n->owningGraph();
WithInsertPoint guard(n);
for (size_t i = 0; i < outputs.size(); ++i) {
auto new_output = tryInsertConstant(*graph, outputs[i]);
if (new_output) {
made_change_ = true;
GRAPH_UPDATE(
"Folding %",
n->outputs()[i]->debugName(),
" with ",
getHeader((*new_output)->node()));
if (outputs[i].isNone()) {
(*new_output)->setType(n->outputs()[i]->type());
}
n->outputs()[i]->replaceAllUsesWith(*new_output);
}
// If we cannot insert the IValue as a constant, give up replacing the
// node and let DCE remove it
}
}
void removeLoopNode(Node* n) {
auto loop_input_offset = 2; // offset of loop carried deps in input list
for (size_t i = 0; i < n->outputs().size(); ++i) {
n->outputs().at(i)->replaceAllUsesWith(
n->inputs().at(i + loop_input_offset));
}
made_change_ = true;
n->destroy();
}
bool loopWillNotRun(Node* node) {
Value* trip_count = node->inputs().at(0);
int64_t iter_len = constant_as<int64_t>(trip_count).value_or(1);
Value* start_cond = node->inputs().at(1);
bool cond_val = constant_as<bool>(start_cond).value_or(true);
bool loop_might_run = cond_val && iter_len > 0;
if (!loop_might_run) {
GRAPH_UPDATE(
"Removing unexecuted loop: ",
*node,
"\ntripcount: ",
trip_count,
" and start_cond: ",
getHeader(start_cond->node()));
}
return !loop_might_run;
}
void inlineIfBody(Block* body) {
Node* n = body->owningNode();
for (auto it = body->nodes().begin(); it != body->nodes().end();) {
Node* body_node = *it;
// advance iterator because after body_node is moved its next pointer will
// be to n
it++;
body_node->moveBefore(n);
}
for (size_t i = 0; i < n->outputs().size(); ++i) {
n->outputs().at(i)->replaceAllUsesWith(body->outputs().at(i));
}
// NB: destroy the node here, because it might contain side effects, like
// print
n->destroy();
}
void inlineIf(Node* n) {
auto input_bool = constant_as<bool>(n->input());
AT_ASSERT(input_bool);
GRAPH_UPDATE(
"Folding if ",
getHeader(n->input()->node()),
" where condition = ",
*input_bool);
size_t block_index = *input_bool ? 0 : 1;
ConstantPropagation(n->blocks().at(block_index));
inlineIfBody(n->blocks().at(block_index));
made_change_ = true;
}
void replaceAndRemoveIfOutput(Node* n, size_t i, Value* replacement) {
n->outputs().at(i)->replaceAllUsesWith(replacement);
n->eraseOutput(i);
n->blocks().at(0)->eraseOutput(i);
n->blocks().at(1)->eraseOutput(i);
}
// remove extra outputs from the node
void removeExtraIfOutputs(Node* n) {
TORCH_CHECK(n->kind() == prim::If, "Only supported for If nodes");
auto true_block = n->blocks()[0];
auto false_block = n->blocks()[1];
auto graph = n->owningGraph();
auto initial_outputs = true_block->outputs().size();
WithInsertPoint guard(n);
for (size_t i = 0; i < true_block->outputs().size();) {
auto t_out = true_block->outputs().at(i);
auto f_out = false_block->outputs().at(i);
// neither block changes the output value
if (true_block->outputs()[i] == false_block->outputs()[i]) {
replaceAndRemoveIfOutput(n, i, true_block->outputs()[i]);
continue;
}
// true block output is constant and constant matches false block output
auto maybe_const = toIValue(t_out);
auto eq = EqualNode();
if (maybe_const && eq(t_out->node(), f_out->node())) {
auto new_const = graph->insertConstant(*maybe_const);
replaceAndRemoveIfOutput(n, i, new_const);
continue;
}
i++; // increment bc we didn't remove current index
}
made_change_ |= initial_outputs != true_block->outputs().size();
}
// remove extra outputs from the node
void removeExtraLoopOutputs(Node* node) {
auto initial_outputs = node->outputs().size();
auto loop_body = node->blocks().at(0);
auto loop_input_offset = 2; // offset of loop carried deps in input list
auto loop_body_offset =
1; // offset to the loop carried dependencies in block inputs/outputs
for (size_t i_1 = node->outputs().size(); i_1 > 0; --i_1) {
size_t i = i_1 - 1;
// if the value is no longer changed remove output
if (loop_body->inputs().at(loop_body_offset + i) ==
loop_body->outputs().at(loop_body_offset + i)) {
auto node_input = node->inputs().at(loop_input_offset + i);
node->outputs().at(i)->replaceAllUsesWith(node_input);
loop_body->inputs()
.at(loop_body_offset + i)
->replaceAllUsesWith(node_input);
node->eraseOutput(i);
node->removeInput(loop_input_offset + i);
loop_body->eraseInput(loop_body_offset + i);
loop_body->eraseOutput(loop_body_offset + i);
}
}
made_change_ |= initial_outputs != node->outputs().size();
}
bool noMutableValues(at::ArrayRef<Value*> values) {
return std::none_of(values.begin(), values.end(), [](Value* v) {
return AliasDb::isMutableType(v);
});
}
AliasDb* getOrCreateAliasDb() {
if (!aliasDb_) {
aliasDb_ = std::make_unique<AliasDb>(graph_);
}
return aliasDb_.get();
}
bool supportedNode(Node* n) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool no_mutation;
if (aliasing_types_) {
no_mutation = !getOrCreateAliasDb()->hasWriters(n);
} else {
no_mutation =
noMutableValues(n->inputs()) && noMutableValues(n->outputs());
}
return no_mutation && !n->kind().is_onnx() &&
skip_list.count(n->kind()) == 0 && !n->isNondeterministic() &&
!n->hasSideEffects() && n->blocks().size() == 0;
}
void ConstantPropagation(at::ArrayRef<Block*> blocks) {
for (Block* block : blocks) {
ConstantPropagation(block);
}
}
void ConstantPropagation(Node* n) {
bool constant_inputs =
std::all_of(n->inputs().begin(), n->inputs().end(), [&](Value* v) {
return v->node()->kind() == prim::Constant;
});
if (n->kind() == prim::If) {
// inline node if we can, otherwise check for simplified outputs
if (constant_inputs) {
inlineIf(n);
} else {
ConstantPropagation(n->blocks());
removeExtraIfOutputs(n);
}
} else if (n->kind() == prim::Loop) {
if (loopWillNotRun(n)) {
removeLoopNode(n);
} else {
ConstantPropagation(n->blocks());
removeExtraLoopOutputs(n);
}
} else if (constant_inputs && supportedNode(n)) {
propagateNode(n);
} else {
ConstantPropagation(n->blocks());
}
}
void ConstantPropagation(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++; // advance iterator bc the current node may be destroyed
ConstantPropagation(n);
}
}
std::shared_ptr<Graph> graph_;
// lazily initialized if using aliasing_types, otherwise not initialized
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
bool aliasing_types_;
bool made_change_ = false;
bool ignore_custom_classes_;
};
} // anonymous namespace
bool ConstantPropagation(
std::shared_ptr<Graph>& graph,
bool ignore_custom_classes) {
ConstantPropagator cp =
ConstantPropagator::WithAliasDb(graph, ignore_custom_classes);
bool made_change = cp.run();
if (made_change) {
EliminateDeadCode(graph);
}
GRAPH_DUMP("After ConstantPropagation: ", graph);
return made_change;
}
bool ConstantPropagationImmutableTypes(std::shared_ptr<Graph>& graph) {
ConstantPropagator cp = ConstantPropagator::NoAliasDb(graph);
bool made_change = cp.run();
if (made_change) {
EliminateDeadCode(graph);
}
GRAPH_DUMP("After ConstantPropagationImmutableTypes: ", graph);
return made_change;
}
} // namespace jit
} // namespace torch