forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
observer.h
106 lines (91 loc) · 3.46 KB
/
observer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#pragma once
#include <c10/util/ThreadLocalDebugInfo.h>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
class MobileDebugInfo : public c10::DebugInfoBase {
public:
const std::string& getModelName() {
return model_name_;
}
void setModelName(const std::string& model_name) {
model_name_ = model_name;
}
const std::string& getMethodName() {
return method_name_;
}
void setMethodName(const std::string& method_name) {
method_name_ = method_name;
}
size_t getOpIdx() {
return op_idx_;
}
void setOpIdx(size_t op_idx) {
op_idx_ = op_idx;
}
private:
std::string model_name_;
std::string method_name_;
// TODO: Kimish
// If we launch a thread such as for at::launch, interepter continuation
// and if the caching allocator is enabled in the base thread
// then, in order to propagate this information, that is caching allocator
// is enabled, across thread boundaries we can use the mechanism provided
// by ThreadLocalDebugInfo
// Once the thread local MobileDebugInfo is accessible in the launched
// thread, it can be accessed in that thread and that thread can set
// its own thread local CachingAllocatorInfo.
// However, we cannot expect every launched thread to extract and set
// its own thread local copy of CachingAllocatorInfo.
// But this can be done in lite interpreter, where in the run method
// it can do info =
// c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::MOBILE_RUNTIME_INFO))
// .get_caching_allocator_info();
// GetThreadLocalCachingAllocatorInfo() = info;
// Other option is to have MobileDebugInfo itself be the place where thread
// local copy of CachingAllocatorInfo is stored. Then
// DefaultMobileCPUAllocator inspects this to decide if to use
// CachingAllocator. However, current lite interpreter does not support FORK,
// thus from the run method of lite interpreter we are not really gonna launch
// another instance of lite interpreter in a different thread. So for now not
// getting bothered about passing CachingAllocatorInfo across thread
// boundaries. c10::CachingAllocatorInfo caching_allocator_info;
size_t op_idx_ = 0;
};
class MobileModuleObserver {
public:
virtual ~MobileModuleObserver() = default;
virtual void onEnterRunMethod(
const std::unordered_map<std::string, std::string>&,
const int32_t,
const std::string&) {}
virtual void onExitRunMethod(const int32_t) {}
virtual void onFailRunMethod(const int32_t, const char*) {}
virtual void onEnterLoadModel(const int32_t) {}
virtual void onExitLoadModel(
const int32_t,
const std::unordered_map<std::string, std::string>&) {
} // key: filename, value: file content
virtual void onFailLoadModel(const int32_t, const char*) {}
virtual void onFailLoadModel(
const int32_t,
const char*,
const std::unordered_map<std::string, std::string>&) {}
virtual std::vector<std::string> getDefaultExtraFiles() = 0;
virtual std::unordered_map<std::string, std::string> processMetadataFromExtra(
const std::unordered_map<std::string, std::string>&) = 0;
};
class MobileObserverConfig {
public:
void setModuleObserver(std::unique_ptr<MobileModuleObserver> reporter) {
module_observer_ = std::move(reporter);
}
MobileModuleObserver* getModuleObserver() {
return module_observer_.get();
}
private:
std::unique_ptr<MobileModuleObserver> module_observer_;
};
MobileObserverConfig& observerConfig();
} // namespace torch