forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNormalization.cpp
153 lines (134 loc) · 7.48 KB
/
Normalization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/NativeFunctions.h>
#include <tuple>
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm(
const Tensor& self, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool train,
double momentum,
double eps) {
TORCH_CHECK(false, "mkldnn_batch_norm: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm_backward(
const Tensor& grad_output,
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, const c10::optional<Tensor>& save_mean_opt, const c10::optional<Tensor>& save_invstd_opt,
bool train,
double eps,
std::array<bool,3> grad_input_mask) {
TORCH_CHECK(false, "mkldnn_batch_norm_backward: ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_EBABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
namespace at {
namespace native {
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool train,
double momentum,
double eps) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
if (input.scalar_type() == ScalarType::BFloat16) {
TORCH_CHECK(mkldnn_bf16_device_check(),
"mkldnn_batch_norm: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq");
}
TORCH_CHECK(weight.defined() && bias.defined(),
"mkldnn_batch_norm: currently mkldnn only support affine model");
ideep::tensor& x = itensor_from_mkldnn(input);
ideep::tensor w = itensor_from_tensor(weight);
ideep::tensor b = itensor_from_tensor(bias);
bool use_running_stat = (running_mean.defined() && running_var.defined());
ideep::tensor y;
if (train) {
// TODO: enable 3d batchnorm.
TORCH_CHECK(input.dim() == 4,
"mkldnn_batch_norm: currently mkldnn training only support 2d batchnorm");
ideep::tensor saved_mean;
ideep::tensor saved_var;
ideep::batch_normalization_forward_training::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, w, b, y, saved_mean, saved_var, momentum, eps);
if (use_running_stat) {
auto len = x.get_nelems() / w.get_nelems(); // n*h*w
ideep::tensor m = itensor_from_tensor(running_mean);
ideep::tensor v = itensor_from_tensor(running_var);
const std::vector<float> scales_mean{static_cast<float>(1 - momentum),
static_cast<float>(momentum)};
const std::vector<float> scales_var{static_cast<float>(1 - momentum),
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
static_cast<float>(momentum * len / (len - 1))};
ideep::sum::compute(scales_mean, {m, saved_mean}, m);
ideep::sum::compute(scales_var, {v, saved_var}, v);
}
return std::make_tuple(
new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
new_with_itensor_mkldnn(std::move(saved_mean), optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()),
new_with_itensor_mkldnn(std::move(saved_var), optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()));
} else {
TORCH_CHECK(input.dim() == 4 || input.dim() == 5,
"mkldnn_batch_norm: currently mkldnn inference only support 2d and 3d batchnorm");
if (use_running_stat) {
ideep::tensor m = itensor_from_tensor(running_mean);
ideep::tensor v = itensor_from_tensor(running_var);
ideep::batch_normalization_forward_inference::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, m, v, w, b, y, eps);
} else {
// TODO: keep running estimates.
TORCH_CHECK(false, "mkldnn_batch_norm: mkldnn inference is not keep running estimates.");
}
return std::make_tuple(
new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
new_with_itensor_mkldnn(ideep::tensor{}, optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()),
new_with_itensor_mkldnn(ideep::tensor{}, optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()));
}
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_batch_norm_backward(const Tensor& grad_output,
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, const c10::optional<Tensor>& save_mean_opt, const c10::optional<Tensor>& save_invstd_opt,
bool train,
double eps,
std::array<bool,3> grad_input_mask) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& save_mean = c10::value_or_else(save_mean_opt, [] {return Tensor();});
const Tensor& save_invstd = c10::value_or_else(save_invstd_opt, [] {return Tensor();});
TORCH_CHECK(train, "mkldnn_batch_norm_backward: currently mkldnn only support train model");
ideep::tensor& grady = itensor_from_mkldnn(grad_output);
ideep::tensor& x = itensor_from_mkldnn(input);
ideep::tensor w = itensor_from_tensor(weight);
ideep::tensor& m = itensor_from_mkldnn(save_mean);
ideep::tensor& v = itensor_from_mkldnn(save_invstd);
ideep::tensor gradx, gradw, gradb;
ideep::batch_normalization_backward::compute(
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x, m, v, grady, w, gradx, gradw, gradb, eps);
return std::make_tuple(
new_with_itensor_mkldnn(std::move(gradx), optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().device_opt()),
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradw),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt())),
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradb),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt())));
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_EBABLED