-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.qmd
398 lines (346 loc) · 8.46 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
---
# title: "`R` in Action"
# subtitle: "Efficient data science with `R`"
format:
revealjs:
width: 900
height: 1600
pagetitle: "Research fair 2024"
menu: false
#hash: false
fragment-in-url: false
history: false
transition: slide
background-transition: slide
controls: true
controls-layout: bottom-right
navigation-mode: linear
# theme: serif
center: true
fig-align: center
auto-slide: 5000
auto-slide-stoppable: true
loop: true
embed-resources: true
# standalone: true
# self-contained: true
# self-contained-math: true
execute:
cache: true
editor_options:
chunk_output_type: console
---
## `R` in Action {.center}
::: {.r-fit-text}
Efficient data science with `R`
:::
A demonstration by <span style="color:blue;">Md. Aminul Islam Shazid</span>.
## {.center data-autoslide="5000"}
::: {.r-fit-text}
Grammar of graphics with `ggplot2`
:::
## Plots using grammar of graphics with `ggplot2` {data-autoslide="15000"}
- `ggplot2` is an `R` package that implements the grammar of graphics.
- Can provide beautiful graphics with some simple building blocks.
- Variables/features/columns are mapped to various elements of the plot called "aesthetics", e.g., axis, colours, point size, line type etc.
- Then a geometry transforms that "aesthetic" mapping into a plot.
## A simple example
```{r}
library(ggplot2)
library(palmerpenguins)
data(package = 'palmerpenguins')
# attributes(penguins$bill_length_mm)$label <- "Bill length (mm)"
```
```{r}
#| echo: true
#| warning: false
ggplot(data = penguins,
mapping = aes(x = bill_length_mm,
y = flipper_length_mm)) +
geom_point()
```
## Adding a grouping variable
```{r}
#| echo: true
#| warning: false
ggplot(penguins,
mapping = aes(x = bill_length_mm,
y = flipper_length_mm,
color = species)) +
geom_point()
```
## Let's add another dimension to the plot!
```{r}
#| echo: true
#| warning: false
ggplot(penguins,
mapping = aes(x = bill_length_mm,
y = flipper_length_mm,
color = species,
size = body_mass_g)) +
geom_point(alpha = 0.5)
```
## Adding yet another dimension!
```{r}
#| echo: true
#| warning: false
ggplot(penguins,
mapping = aes(x = bill_length_mm,
y = flipper_length_mm,
color = species,
size = body_mass_g)) +
geom_point(alpha = 0.5) +
facet_wrap(~island)
```
## Comparing a variable across groups with boxplot
```{r}
#| echo: true
#| warning: false
ggplot(penguins,
mapping = aes(y = body_mass_g,
x = species,
fill = species)) +
geom_boxplot(width = 0.2, show.legend = FALSE)
```
```{r}
# geom_boxplot(position = position_dodge2(preserve = "single"))
```
## Violon plots as alternative to boxplot
More informative: gives a sense of the density too!
```{r}
#| echo: true
#| warning: false
ggplot(penguins,
mapping = aes(y = body_mass_g,
x = species,
fill = species)) +
geom_violin(width = 0.5, show.legend = FALSE) +
geom_boxplot(fill = "white", width = 0.1, show.legend = FALSE)
```
## Bar diagrams
```{r}
library(dplyr)
# nba = read.csv("http://datasets.flowingdata.com/ppg2008.csv")
```
```{r}
#| echo: true
penguins |>
count(island, species) |>
ggplot() +
aes(x = island, y = n, fill = species) +
geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"))
```
## Line chart
To show trend or evolution.
```{r}
#| echo: true
#| warning: false
ggplot() +
aes(x = time(AirPassengers), y = AirPassengers) +
geom_line()
```
## Line chart with a trend line!
`LOESS` smoother added as a trend line.
```{r}
#| echo: true
#| warning: false
ggplot() +
aes(x = time(AirPassengers), y = AirPassengers) +
geom_line() +
geom_smooth()
```
## {.center}
::: {.r-fit-text}
Fast data exploration with `DataExplorer`
:::
## Basic info about a dataset
```{r}
#| echo: true
library(DataExplorer)
plot_intro(penguins)
```
## Find missing values
```{r}
#| echo: true
plot_missing(penguins)
```
## Frequency distribution of all discrete variables
```{r}
#| echo: true
plot_bar(diamonds)
```
## Frequency distribution by a discrete variable
```{r}
#| echo: true
plot_bar(diamonds, by = "cut")
```
## Histogram of all continuous variables
```{r test0}
#| echo: true
plot_histogram(diamonds)
```
## Kernel density of all continuous variables
```{r test1}
#| echo: true
plot_density(diamonds)
```
## Boxplot
Boxplots of all continuous variables with groups formed with respect to a categorical variable
```{r test2}
#| echo: true
plot_boxplot(diamonds, by = "cut")
```
## Scatterplot of one variable with all other continuous variable
```{r test3}
#| echo: true
plot_scatterplot(
split_columns(diamonds)$continuous,
by = "price",
sampled_rows = 1000L
)
```
## Quantile-quantile plot of all continuous variables
```{r qqplot}
#| echo: true
plot_qq(diamonds)
```
## Correlogram
```{r}
#| echo: true
plot_correlation(split_columns(diamonds)$continuous)
```
## {.center}
::: {.r-fit-text}
Publication ready tables with `gtsummary`
:::
## Table describing the sample
This is the so-called `table-1`
```{r}
# data(mtcars)
#
# mtcars$am <- factor(mtcars$am, levels = 0:1, labels = c("Auto", "Manual"))
# mtcars$cyl <- factor(mtcars$cyl)
#
# # NOTE: categorical variables need to be converted to factors before applying variable labels
#
# attributes(mtcars$mpg)$label <- "Miles per galon"
# attributes(mtcars$hp)$label <- "Horsepower"
# attributes(mtcars$wt)$label <- "Weight"
# attributes(mtcars$qsec)$label <- "1/4 mile time"
# attributes(mtcars$am)$label <- "Transmission"
# attributes(mtcars$gear)$label <- "Gears"
#
# attr(mtcars$cyl, "label") <- "Cylinders"
# attr(mtcars$disp, "label") <- "Displacement"
#
# mtcars <- mtcars |>
# select(c("mpg", "hp", "wt", "qsec", "am", "gear", "cyl", "disp"))
library(gtsummary)
trial$death <- factor(trial$death, levels = 0:1, labels = c("No", "Yes"))
attributes(trial$response)$label <- "Patient died"
# trial$response <- factor(trial$response)
# attributes(trial$response)$label <- "Tumor Response"
```
```{r}
#| echo: true
library(gtsummary)
tbl_summary(
data = trial,
missing_text = "NA",
include = c("age", "trt", "marker", "stage", "grade", "death")
) |>
bold_labels()
```
## Cross table
```{r}
#| echo: true
tbl_summary(
data = trial,
include = c("age", "trt", "marker", "stage", "grade"),
by = "death",
percent = "row",
missing_text = "NA",
) |>
add_p() |>
bold_p() |>
bold_labels() |>
modify_spanning_header(all_stat_cols() ~ "**Death**")
```
## Regression model summary table
`gtsummary` many different kinds of statistical models. Adding support for new models is also very easy.
```{r}
#| echo: true
logit_model <- glm(death ~ age + trt + marker + stage + grade,
data = trial, family = binomial)
tbl_regression(
logit_model,
exponentiate = TRUE
) |>
bold_p() |>
bold_labels()
```
## {.center}
::: {.r-fit-text}
Decision tree classifier in `R`
:::
## Fitting a decision tree model
Classifying disease outcome using decision tree
```{r}
#| echo: true
library(tree)
tree1 <- tree(death ~ age + trt + marker + stage + grade,
data = trial)
plot(tree1)
text(tree1, pretty = 0)
```
## {.center}
::: {.r-fit-text}
Hierarchical clustering in `R`
:::
## Finding similar cars
```{r}
#| echo: true
#| fig.height: 6
library(colorhcplot)
d <- dist(mtcars)
hc1 <- hclust(d)
plot(hc1, hang = -1, cex = 0.8)
rect.hclust(hc1, k = 3)
```
## {.center}
::: {.r-fit-text}
KNN clustering in `R`
:::
## Finding clusters of flowers in the `iris` dataset
```{r}
#| echo: true
library(factoextra)
km1 <- kmeans(iris[, 1:4], centers = 4, nstart = 1000)
fviz_cluster(km1, data = iris[, 1:4], geom = "point")
```
## {.center}
::: {.r-fit-text}
Time series analysis in `R`
:::
## Plotting a time series
```{r}
#| echo: true
library(ggfortify)
autoplot(AirPassengers)
```
## Decompose a time series
Decomposing the `AirPassengers` data into trend, seasonality etc.
```{r}
#| echo: true
dAP <- decompose(AirPassengers)
autoplot(dAP)
```
## Forecasting future values
```{r}
#| echo: true
library(forecast)
AP_arima <- auto.arima(AirPassengers)
AP_f <- forecast(AP_arima, h = 30)
autoplot(AP_f)
```