Here we present an API to DeepDOS model, which can be used to fit electronic density of state (DOS) (which is a vector).
See the PRB paper for details.
In this example, we will show you how to train a model to fit a silicon system. A complete training input script of the examples can be found in
$deepmd_source_dir/examples/dos/input.json
The training and validation data are also provided our examples. But note that the data provided along with the examples are of limited amount, and should not be used to train a production model.
Similar to the input.json
used in ener
mode, training JSON is also divided into {ref}model <model>
, {ref}learning_rate <learning_rate>
, {ref}loss <loss>
and {ref}training <training>
. Most keywords remain the same as ener
mode, and their meaning can be found here. To fit the dos
, one needs to modify {ref}model/fitting_net <model/fitting_net>
and {ref}loss <loss>
.
The {ref}fitting_net <model/fitting_net>
section tells DP which fitting net to use.
The JSON of dos
type should be provided like
"fitting_net" : {
"type": "dos",
"numb_dos": 250,
"sel_type": [0],
"neuron": [120,120,120],
"resnet_dt": true,
"fparam": 0,
"seed": 1,
},
type
specifies which type of fitting net should be used. It should bedos
.numb_dos
specifies the length of output vector (density of states), which the same as theNEDOS
set in VASP software, this argument defines the output length of the neural network. We note that the length ofdos
provided in training set should be the same.- The rest arguments have the same meaning as they do in
ener
mode.
DeepDOS supports trainings of the global system (a global dos
label is provided in a frame) or atomic system (atomic labels atom_dos
is provided for each atom in a frame). In a global system, each frame has just one dos
label. For example, when fitting dos
, each frame will just provide a 1 x numb_dos
vector which gives the total electronic density of states. By contrast, in an atomic system, each atom in has a atom_dos
label. For example, when fitting the site-projected electronic density of states, each frame will provide a natom x numb_dos
matrices,
The {ref}loss <loss>
section tells DP the weight of these two kinds of loss, i.e.
loss = pref * global_loss + pref_atomic * atomic_loss
The loss section should be provided like
"loss" : {
"type": "dos",
"start_pref_dos": 0.0,
"limit_pref_dos": 0.0,
"start_pref_cdf": 0.0,
"limit_pref_cdf": 0.0,
"start_pref_ados": 1.0,
"limit_pref_ados": 1.0,
"start_pref_acdf": 0.0,
"limit_pref_acdf": 0.0
},
- {ref}
type <loss/type>
should be written asdos
as a distinction fromener
mode. pref_dos
andpref_ados
, respectively specify the weight of global and atomic loss. If set to 0, the corresponding label will not be included in the training process.- We also provides a combination training of vector and its cumulative distribution function
cdf
, which can be defined as
The global label should be named dos.npy/raw
, while the atomic label should be named atomic_dos.npy/raw
. If wrongly named, DP will report an error.
To prepare the data, we recommend shifting the DOS data by the Fermi level.
The training command is the same as ener
mode, i.e.
dp train input.json
The detailed loss can be found in lcurve.out
:
# step rmse_trn rmse_ados_trn rmse_ados_lr
0 1.11e+00 1.11e+00 1.0e-03
100 5.00e-02 5.00e-02 1.0e-03
200 4.70e-02 4.70e-02 1.0e-03
300 6.45e-02 6.45e-02 1.0e-03
400 3.39e-02 3.39e-02 1.0e-03
500 4.60e-02 4.60e-02 1.0e-03
600 3.98e-02 3.98e-02 1.0e-03
700 9.50e-02 9.50e-02 1.0e-03
800 5.49e-02 5.49e-02 1.0e-03
900 5.57e-02 5.57e-02 1.0e-03
1000 3.73e-02 3.73e-02 1.0e-03
1100 4.33e-02 4.33e-02 1.0e-03
1200 3.27e-02 3.27e-02 1.0e-03
1300 3.68e-02 3.68e-02 1.0e-03
1400 3.09e-02 3.09e-02 1.0e-03
1500 3.42e-02 3.42e-02 1.0e-03
1600 5.62e-02 5.62e-02 1.0e-03
1700 6.12e-02 6.12e-02 1.0e-03
1800 4.10e-02 4.10e-02 1.0e-03
1900 5.30e-02 5.30e-02 1.0e-03
2000 3.85e-02 3.85e-02 1.0e-03
In this earlier version, we can use dp test
to infer the electronic density of state for given frames.
$DP freeze -o frozen_model.pb
$DP test -m frozen_model.pb -s ../data/111/$k -d ${output_prefix} -a -n 100
if dp test -d ${output_prefix} -a
is specified, the predicted DOS and atomic DOS for each frame is output in the working directory
${output_prefix}.ados.out.0 ${output_prefix}.ados.out.1 ${output_prefix}.ados.out.2 ${output_prefix}.ados.out.3
${output_prefix}.dos.out.0 ${output_prefix}.dos.out.1 ${output_prefix}.dos.out.2 ${output_prefix}.dos.out.3
for *.dos.out.*
, it contains matrix with shape of (2, numb_dos)
,
for *.ados.out.*
, it contains matrix with shape of (2, natom x numb_dos)
,
# frame - 0: data_dos pred_dos
0.000000000000000000e+00 1.963193264917645342e-03
0.000000000000000000e+00 1.178440836781313727e-03
0.000000000000000000e+00 1.441258071790407769e-04
0.000000000000000000e+00 1.787297933314058174e-03
0.000000000000000000e+00 1.901603280243024940e-03
0.000000000000000000e+00 2.279848925571981155e-03
0.000000000000000000e+00 2.149355854688561607e-03
0.000000000000000000e+00 1.829848459515726056e-03
0.000000000000000000e+00 1.905156512419792225e-03