-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
583 lines (527 loc) · 25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import argparse
from copy import deepcopy
import os
import numpy as np
import sys
import torch
import streamlit as st
import streamlit.components.v1 as components
from transformers import (
AutoTokenizer, AutoModelForSequenceClassification
)
from spacy.lang.en import English
from miscellaneous import htmls #pre-defined visual components for showing the top step-by-step progress bar
from refchecker import LLMExtractor, LLMChecker
from refchecker.retriever import GoogleRetriever
parser = argparse.ArgumentParser()
parser.add_argument(
'--extractor', type=str, default="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
help="Model used for extracting triplets. Default: bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
parser.add_argument(
'--extractor_max_new_tokens', type=int, default=1000,
help="Max generated tokens of the extractor, set a larger value for longer documents. Default: 500"
)
parser.add_argument(
'--claim_format', type=str, default='triplet',
choices=['triplet', 'subsentence'],
help='The format of the extracted claims. Default: subsentence'
)
parser.add_argument(
"--checker", type=str, default="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
help="Model used for checking whether the triplets are factual. "
"Default: Claude 3 Sonnet"
)
parser.add_argument(
"--extractor_api_base", type=str,
help="API base URL if using vllm for deploying the extractor"
)
parser.add_argument(
"--checker_api_base", type=str,
help="API base URL if using vllm for deploying the checker"
)
parser.add_argument(
'--enable_search',
action='store_true'
)
args = parser.parse_args()
if args.enable_search:
assert os.environ.get('SERPER_API_KEY')
# True for allowing search from google. If False, user needs to provide the reference in the text area
st.set_page_config(layout="wide")
st.markdown("""
<style>
.block-container {
padding-top: 1rem;
padding-bottom: 0rem;
padding-left: 5rem;
padding-right: 5rem;
}
</style>
""", unsafe_allow_html=True)
inference_device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
st.write("### RefChecker Demo")
LABELS = ["Entailment", "Neutral", "Contradiction"]
def header(url, color='#000000', background_color='#ffffff'):
return f'<span style="background-color:{background_color};color:{color};border-radius:2%;">{url}</span>'
class Localizer(object):
"""aligning the text and triplets"""
def __init__(self):
path_or_name = "princeton-nlp/sup-simcse-roberta-large" #'xlm-roberta-base'
self.model = AutoModelForSequenceClassification.from_pretrained(
path_or_name
).to(inference_device)
self.tokenizer = AutoTokenizer.from_pretrained(path_or_name)
self.device = inference_device
def loc(self, seq, tri, threshold=[0.65, 0.6, 0.65]):
tokens = []
words = seq.split()
hids1 = [] # features for text, in (seq_len, hidden size)
hids2 = [] # features for triplet in (elements in a triplet, hidden size)
text_sp = 250 # truncate long text into segments for encoding
while len(words)>0:
inputs = self.tokenizer(
' '.join(words[:text_sp]), max_length=512, truncation=True, return_tensors="pt",
padding=True, return_token_type_ids=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
_tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
tokens.extend(_tokens[1:-1])
_output1 = self.model(**inputs, output_hidden_states=True)
_hid = _output1.hidden_states[0][0][1:-1]
hids1.append(_hid)
if len(words)<text_sp+1:
break
words = words[text_sp:]
hids1 = torch.cat(hids1, 0)
mask = np.zeros(len(tokens))
lens = []
for i in range(len(tri)):
if len(tri[i])>0:
inputs = self.tokenizer(
tri[i], max_length=512, truncation=True, return_tensors="pt",
padding=True, return_token_type_ids=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
_tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
_output1 = self.model(**inputs, output_hidden_states=True)
_hid = _output1.hidden_states[0][0][1:-1]
lens.append(_hid.shape[0])
hids2.append(_hid.mean(0))
for k in range(len(hids2)):
if len(tri[k])>0:
bounds = []
# varing window size between 0.8 and 1.2 times of the number of the triplet element's tokens
for w in range(max(1, int(0.8*lens[k])), min(len(hids1)-1, int(1.2*lens[k]))):
for i in range(len(hids1)-w):
tt1 = hids1[i:i+w].mean(0)
tt2 = hids2[k]
sim = ((tt1*tt2).sum()/(torch.norm(tt1, 2)*torch.norm(tt2, 2))).item()
_phrase = ''.join(tokens[i:i+w]).lower().replace("Ġ", " ").replace("▁", " ")
if (_phrase == tri[k].strip().lower()):
sim = threshold[k]+0.01
if (len(_phrase) - len(tri[k].strip().lower()) < 5) and (_phrase.startswith(tri[k].strip().lower())) or (tri[k].strip().lower().startswith(_phrase)):
sim = threshold[k]+0.01
if sim>threshold[k]:
bounds.append([i, i+w, sim])
for i in range(len(bounds)-1, -1, -1):
if bounds[i][2]<threshold[k]*1.2 and any([((x[0]>=bounds[i][0] and x[0]<bounds[i][1]) or (x[1]>bounds[i][0] and x[1]<=bounds[i][1])) and x[2]>bounds[i][2]*1.05 for x in bounds[:i]]):
del bounds[i]
for b in bounds:
mask[b[0]:b[1]] = k+1
vs = [int(x) for x in mask]
str1 = ''
cmap = ['black', 'red', 'blue', 'green']
for i in range(len(tokens)):
str1 += header(tokens[i], cmap[vs[i]], '#F1CEF3')
return str1.replace("Ġ", " ").replace("▁", " ")
@st.cache_data
def extract_triplet(text):
r"""
Parameters
----------
text : str
The text being checked
Returns
-------
list
a list of list, such as [['head', 'relation', 'tail']]
"""
ret = st.session_state['extractor'].extract(
batch_responses=[text],
max_new_tokens=args.extractor_max_new_tokens
)[0]
claims = [c.content for c in ret.claims]
if claims is None:
return [["API", "didn't", "work"]]
return claims
@st.cache_data(show_spinner=False)
def check_it(text_list, triplet_list):
r"""
Parameters
----------
text_list : List[str]
List of the reference text.
triplet_list: List[List[str]]
List consists of the triplets for each input example.
Returns
-------
List[List[str]]
List of labels for each input example, one from pre-defined labels, ['Entailment', 'Neutral', 'Contradiction']
"""
outs = st.session_state['checker'].check(
batch_claims=triplet_list,
batch_references=text_list,
max_reference_segment_length=0,
is_joint=False
)
return outs
@st.cache_data(show_spinner=False)
def loc_it(text, triplet):
r"""
Parameters
----------
text : str
The text being checked or the reference text.
triplet: list of str
Elements within a triplet.
Returns
-------
str
The html str with highlights
"""
outs = st.session_state['localizer'].loc(text, triplet)
return outs
@st.cache_data(show_spinner=False)
def search_it(text):
r"""
Parameters
----------
text : str
The text being checked.
Returns
-------
str
The reference text searched from internet
"""
searched_references = st.session_state['retriever'].retrieve(
text,
top_k=3,
max_words_per_paragraph=400)
return '\n'.join(searched_references)
#using cache to avoid reloading models
@st.cache_resource
def get_models():
nlp = English()
nlp.add_pipe("sentencizer")
extractor = LLMExtractor(
claim_format=args.claim_format,
model=args.extractor,
api_base=args.extractor_api_base
)
checker = None
if args.checker == "nli":
from refchecker.checker.nli_checker import NLIChecker
checker = NLIChecker(batch_size=1, device=inference_device)
elif args.checker == "alignscore":
from refchecker.checker.alignscore.alignscore_checker import AlignScoreChecker
checker = AlignScoreChecker(batch_size=1, device=inference_device)
else:
checker = LLMChecker(
model=args.checker,
api_base=args.checker_api_base
)
assert extractor
assert checker
models = {
'extractor': extractor,
'checker': checker,
'retriever': GoogleRetriever() if args.enable_search else None,
'localizer': Localizer(),
'nlp': nlp
}
return models
if 'checker' not in st.session_state:
models = get_models()
st.session_state['extractor'] = models['extractor']
st.session_state['checker'] = models['checker']
st.session_state['localizer'] = models['localizer']
st.session_state['retriever'] = models['retriever']
st.session_state['nlp'] = models['nlp']
# the page number of tripelts. If the number of triplets is more than five, we will display them in multiple pages
if 'opt_page' not in st.session_state:
st.session_state['opt_page'] = 0
if 'fact_score' not in st.session_state:
st.session_state['fact_score'] = 'N/A'
# most results is stored in this variable
if 'labeled_triplets' not in st.session_state:
st.session_state['labeled_triplets'] = []
# the index of selected triplet
if 'selected' not in st.session_state:
st.session_state['selected'] = 0
if 'text_check' not in st.session_state:
st.session_state['text_check'] = ""
if 'text_ref' not in st.session_state:
st.session_state['text_ref'] = ""
# html string with highlights
if 'text_check_done' not in st.session_state:
st.session_state['text_check_done'] = ""
# html string with highlights
if 'text_ref_done' not in st.session_state:
st.session_state['text_ref_done'] = ""
# the stage of BS-checker pipeline
if 'progress' not in st.session_state:
st.session_state['progress'] = 0
def clear():
st.session_state['labeled_triplets'] = []
st.session_state['selected'] = 0
st.session_state['text_check'] = ""
st.session_state['text_ref'] = ""
st.session_state['text_check_done'] = ""
st.session_state['text_ref_done'] = ""
st.session_state['progress'] = 0
st.session_state['opt_page'] = 0
st.session_state['fact_score'] = 'N/A'
def partial_clear():
st.session_state['labeled_triplets'] = []
st.session_state['selected'] = 0
st.session_state['text_check_done'] = ""
st.session_state['text_ref_done'] = ""
st.session_state['progress'] = 0
st.session_state['opt_page'] = 0
st.session_state['fact_score'] = 'N/A'
components.html(htmls[st.session_state['progress']])
col1, col2 = st.columns([0.4, 0.6])
auto_run_flag = False # this is an internal flag, do not set it
#auto_run is a tricky option, if the user toggle the auto_run, the pipeline will automatic run the next step without clicking the button,
#For example, the user typed the text in the text_area, and we will run the triplet extraction when the text_are loses focus or type ctrl+enter.
check_button = None
example_button = None
with col1:
if st.session_state['progress']==0:
col1_1, col1_2, col1_3, col1_4 = st.columns([0.3, 0.25, 0.25, 0.2])
with col1_1:
st.write('**Text to be checked**')
with col1_2:
auto_run = st.toggle('Auto Run', value=True)
with col1_3:
example_button = st.button('Example')
with col1_4:
check_button = st.button('**Next Step**')
if example_button:
st.session_state['text_check'] = """Eleanor Arnason (born 1945) is an American science fiction and fantasy writer. She is best known for her novel A Woman of the Iron People (1991), which won the James Tiptree, Jr. Award and was a finalist for the Nebula Award for Best Novel. Her other works include Ring of Swords (1993), The Sword Smith (1998), and The Hound of Merin (2002). She has also written several short stories, including "Dapple" (1991), which won the Nebula Award for Best Novelette. """
st.session_state['text_ref'] = """Eleanor Atwood Arnason (born December 28, 1942) is an American author of science fiction novels and short stories. Arnason's earliest published story, "A Clear Day in the Motor City," appeared in New Worlds in 1973. Her work often depicts cultural change and conflict, usually from the viewpoint of characters who cannot or will not live by their own societies' rules. This anthropological focus has led many to compare her fiction to that of Ursula K. Le Guin. Arnason won the first James Tiptree, Jr. Award, the Mythopoeic Award (for "A Woman of the Iron People"), the Spectrum Award (for "Dapple"), and the Homer Award (for her novelette "Stellar Harvest"). In 2003, she was nominated for two Nebula Awards, for her novella "Potter of Bones" and her short story "Knapsack Poems." """
if 'text_check1' in st.session_state and st.session_state['text_check1'] is not None:
st.session_state['text_check1'] = st.session_state['text_check']
if 'text_ref1' in st.session_state and st.session_state['text_ref1'] is not None:
st.session_state['text_ref1'] = st.session_state['text_ref']
#st.rerun()
if st.session_state['progress']>0 and st.session_state['progress']<4:
col1_1, col1_2, col1_3 = st.columns([0.3, 0.25, 0.45])
with col1_1:
st.write('**Text to be checked**')
with col1_2:
auto_run = st.toggle('Auto Run', value=True)
with col1_3:
check_button = st.button('**Next Step**')
if st.session_state['progress']>=4:
col1_1, col1_2, col1_3 = st.columns([0.3, 0.25, 0.4])
with col1_1:
st.write('**Text to be checked**')
with col1_2:
auto_run = st.toggle('Auto Run', value=True)
with col1_3:
clear_button = st.button('**New**')
if clear_button:
clear()
st.rerun()
with col2:
st.write('**Reference**')
col1a, col2a = st.columns([0.4, 0.6])
with col1a:
if st.session_state['progress']>0:
st.markdown("""<div style="max-height: 250px; overflow:auto;">"""+st.session_state['text_check_done']+"</div>", unsafe_allow_html=True)
else:
text_check = st.text_area("text to be checked", label_visibility='collapsed', key='text_check1', height=180, value=st.session_state['text_check'])
if text_check!=st.session_state['text_check'] and auto_run and st.session_state['progress']==0:
auto_run_flag = True
st.session_state['text_check'] = text_check
with col2a:
col2a_ph = st.empty()
if st.session_state['progress']>1:
col2a_ph.markdown("""<div style="max-height: 250px; overflow:auto;">"""+st.session_state['text_ref_done']+"</div>", unsafe_allow_html=True)
else:
text_ref = col2a_ph.text_area("reference document", label_visibility='collapsed', key='text_ref1', height=180, value=st.session_state['text_ref'])
if (len(text_ref)>2 or len(st.session_state['text_ref'])>2) and auto_run and st.session_state['progress']==1:
auto_run_flag = True
st.session_state['text_ref'] = text_ref
for i in range(len(st.session_state['labeled_triplets'])):
st.session_state['labeled_triplets'][i][5] = text_ref
if st.session_state['progress']==3: # always merge checking and localizing
auto_run_flag = True
if check_button or auto_run_flag:
text_check = st.session_state['text_check']
text_ref = st.session_state['text_ref']
if len(text_check)<2:
st.error('Please provide text to be checked')
else:
if st.session_state['progress'] ==0: # need to perform triplet extraction
triplets = extract_triplet(text_check)
#labeled triplets is a list with first element the classification result
st.session_state['labeled_triplets'] = [[""]+x+[text_check, text_ref] for x in triplets]
st.session_state['progress'] += 1
st.rerun()
elif st.session_state['progress'] ==1:
if len(text_ref)<2 and args.enable_search: # need to search reference
with col2a_ph:
with st.spinner(text="Searching from Internet"):
text_ref = search_it(text_check)
st.info('Gathering reference from internet')
st.session_state['text_ref'] = text_ref
for i in range(len(st.session_state['labeled_triplets'])):
st.session_state['labeled_triplets'][i][5] = text_ref
st.session_state['progress'] += 1
st.rerun()
elif st.session_state['progress'] == 2: # need to check and predict labels
labeled_triplets = st.session_state['labeled_triplets']
with st.spinner(text='Checking'):
triplet_list = []
for i in range(len(labeled_triplets)):
triplet_list.append(" ".join(labeled_triplets[i][1:4]))
outs = check_it([text_ref], [triplet_list])
labels = outs[0]
for i in range(len(labeled_triplets)):
labeled_triplets[i][0] = labels[i][0]
st.session_state['labeled_triplets'] = labeled_triplets
bad_num = len([x for x in labeled_triplets if x[0]=='Contradiction'])
_score1 = round(100*(len([x for x in labeled_triplets if x[0]=='Entailment'])/(len(labeled_triplets))), 1)
_score2 = round(100*(len([x for x in labeled_triplets if x[0]=='Neutral'])/(len(labeled_triplets))), 1)
# _score3 = 100*(len([x for x in labeled_triplets if x[0]=='Contradiction'])/(len(labeled_triplets)))
_score3 = 100. - _score1 - _score2
st.session_state['fact_score'] = f'✅ {_score1:.1f}% ❓ {_score2:.1f}% ❌ {_score3:.1f}%'
st.session_state['progress'] += 1
st.rerun()
elif st.session_state['progress'] == 3: # localizing and highlighting
with st.spinner(text="Localizing"):
_sents_check = st.session_state['nlp'](text_check)
sents_check = [x.text_with_ws for x in _sents_check.sents]
_sents_ref = st.session_state['nlp'](text_ref)
sents_ref = [x.text_with_ws for x in _sents_ref.sents]
labeled_triplets = st.session_state['labeled_triplets']
sent_check_list = []
sent_ref_list = []
triplet_check_list = []
triplet_ref_list = []
for j in range(len(sents_check)):
triplet_check_list_tmp = []
for i in range(len(labeled_triplets)):
triplet_check_list_tmp.append(" ".join(labeled_triplets[i][1:4]))
triplet_check_list.append(triplet_check_list_tmp)
sent_check_list.append(sents_check[j])
for j in range(len(sents_ref)):
triplet_ref_list_tmp = []
for i in range(len(labeled_triplets)):
triplet_ref_list_tmp.append(" ".join(labeled_triplets[i][1:4]))
triplet_ref_list.append(triplet_ref_list_tmp)
sent_ref_list.append(sents_ref[j])
labels_check = check_it(sent_check_list, triplet_check_list)
labels_ref = check_it(sent_ref_list, triplet_ref_list)
for i in range(len(labeled_triplets)):
loc_checks = []
loc_refs = []
valid_checks = []
valid_refs = []
for j in range(len(sents_check)):
_label = labels_check[j][i][0]
if _label == 'Entailment':
loc_checks.append(loc_it(sents_check[j], labeled_triplets[i][1:4]))
valid_checks.append(j)
else:
loc_checks.append(header(sents_check[j]))
for j in range(len(sents_ref)):
_label = labels_ref[j][i][0]
if _label == 'Entailment':
loc_refs.append(loc_it(sents_ref[j], labeled_triplets[i][1:4]))
valid_refs.append(j)
elif _label == 'Contradiction':
loc_refs.append(loc_it(sents_ref[j], labeled_triplets[i][1:4]))
valid_refs.append(j)
else:
loc_refs.append(header(sents_ref[j]))
_ta = ' '.join(loc_checks)
_tb = ' '.join(loc_refs)
if len(valid_checks)<1:
loc_check = _ta #header("Not found", 'red')
elif len(_ta.split())<200:
loc_check = _ta
else:
loc_check = ' '.join(loc_checks[max(0, valid_checks[0]-3):max(valid_checks[-1]+3, valid_checks[0]+5)])
if len(valid_refs)<1:
loc_ref = _tb #header ("Not found", 'red')
elif len(_tb.split())<200:
loc_ref = _tb
else:
loc_ref = ' '.join(loc_refs[max(0, valid_refs[0]-1):max(valid_refs[-1]+1, valid_refs[0]+2)])
labeled_triplets[i][4] = loc_check
labeled_triplets[i][5] = loc_ref
st.session_state['labeled_triplets'] = labeled_triplets
st.session_state['progress'] += 1
st.rerun()
# for showing bottom triplets
if st.session_state['progress']>0:
labeled_triplets = st.session_state['labeled_triplets']
options = ['⚛'.join(x) for x in labeled_triplets] # add split markers
if len(options)>5:
options = options[st.session_state['opt_page']*5:(st.session_state['opt_page']+1)*5]
col_opt1, col_opt2, col_opt3, col_opt4 = st.columns([0.3, 0.05, 0.05, 0.6])
with col_opt1:
st.write('#### Select a triplet for visualization')
with col_opt4:
st.write('#### Factuality Score (max 100%): ' + st.session_state['fact_score'])
def color_options(opt):
xs = opt.split('⚛')
if xs[0] == 'Entailment':
_xs = "✅"
elif xs[0] == 'Contradiction':
_xs = "❌"
elif xs[0] == 'Neutral':
_xs = "❓"
else:
_xs = ""
if not st.session_state['selected']:
st.session_state['selected'] = 0
if opt == options[st.session_state['selected']]:
if st.session_state['progress']>3:
return '{0:}   :red[{1:}]   :blue[{2:}]   :green[{3:}]'.format(_xs, *xs[1:4])
else:
return '{0:}   {1:}   {2:}   {3:}'.format(_xs, *xs[1:4])
else:
return '{0:}   {1:}   {2:}   {3:}'.format(_xs, *xs[1:4])
def radio_change(keyname):
if 'selected' not in st.session_state or st.session_state[keyname] not in options:
st.session_state['selected'] = 0
else:
st.session_state['selected'] = options.index(st.session_state[keyname])
with col_opt2:
st.text("")
opt_prev = st.button('<')
if opt_prev:
if st.session_state['opt_page']>0:
st.session_state['opt_page'] -= 1
st.session_state['selected'] = 0
st.rerun()
with col_opt3:
st.text("")
opt_next = st.button('\>')
if opt_next:
if st.session_state['opt_page']<(len(labeled_triplets)+4)//5-1:
st.session_state['opt_page'] += 1
st.session_state['selected'] = 0
st.rerun()
select_placeholder = st.empty()
select_placeholder.radio('Select a triplet for visualization', options, index=st.session_state['selected'], format_func=color_options, key='radio1', on_change=radio_change, args=('radio1', ), label_visibility='collapsed')
idx = st.session_state['selected'] + st.session_state['opt_page']*5
if len(labeled_triplets)>0 and ((st.session_state['text_check_done']!=labeled_triplets[idx][4]) or (st.session_state['text_ref_done']!=labeled_triplets[idx][5])):
st.session_state['text_check_done']= labeled_triplets[idx][4]
st.session_state['text_ref_done']= labeled_triplets[idx][5]
st.rerun()