forked from xthan/VITON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_zalando_tps_warp.py
577 lines (475 loc) · 23.5 KB
/
model_zalando_tps_warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Copyright 2017 Xintong Han. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""" Stage2: given control point generate warpped images and use it for refinement.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import json
import math
import os
import time
from utils import *
import numpy as np
import scipy.io as sio
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tps_transformer import tps_stn
FLAGS = tf.app.flags.FLAGS
tf.flags.DEFINE_string("input_file_pattern",
"./prepare_data/tfrecord/zalando-train-?????-of-00032",
"File pattern of sharded TFRecord input files.")
tf.flags.DEFINE_string("mode", "train", "Training or testing")
tf.flags.DEFINE_string("checkpoint", "", "Checkpoint path to resume training.")
tf.flags.DEFINE_string("gen_checkpoint", "",
"Checkpoint path to the initial generative model.")
tf.flags.DEFINE_string("output_dir", "model/stage2/",
"Output directory of images.")
tf.flags.DEFINE_string("vgg_model_path", "./model/imagenet-vgg-verydeep-19.mat",
"model of the trained vgg net.")
tf.flags.DEFINE_integer("number_of_steps", 100000,
"Number of training steps.")
tf.flags.DEFINE_integer("log_every_n_steps", 10,
"Frequency at which loss and global step are logged.")
tf.flags.DEFINE_integer("batch_size", 16, "Size of mini batch.")
tf.flags.DEFINE_integer("num_preprocess_threads", 1, "")
tf.flags.DEFINE_integer("values_per_input_shard", 433, "")
tf.flags.DEFINE_integer("ngf", 64,
"number of generator filters in first conv layer")
tf.flags.DEFINE_integer("ndf", 64,
"number of discriminator filters in first conv layer")
# Summary
tf.flags.DEFINE_integer("summary_freq", 50, #100
"update summaries every summary_freq steps")
tf.flags.DEFINE_integer("progress_freq", 10, #100
"display progress every progress_freq steps")
tf.flags.DEFINE_integer("trace_freq", 0,
"trace execution every trace_freq steps")
tf.flags.DEFINE_integer("display_freq", 300, #300
"write current training images every display_freq steps")
tf.flags.DEFINE_integer("save_freq", 1000,
"save model every save_freq steps, 0 to disable")
tf.flags.DEFINE_float("number_of_samples", 14221.0, "Samples in training set.")
tf.flags.DEFINE_float("lr", 0.0002, "Initial learning rate.")
tf.flags.DEFINE_float("beta1", 0.5, "momentum term of adam")
tf.flags.DEFINE_float("content_l1_weight", 0.2, "Weight on L1 term of content.")
tf.flags.DEFINE_float("perceptual_weight", 0.8, "weight on GAN term.")
tf.flags.DEFINE_float("tv_weight", 0.000005, "weight on TV term.")
tf.flags.DEFINE_float("mask_weight", 0.1, "weight on the selection mask.")
tf.logging.set_verbosity(tf.logging.INFO)
Model = collections.namedtuple("Model",
"gen_image_outputs, stn_image_outputs,"
"image_outputs, prod_mask_outputs,"
"mask_loss, tv_loss,"
"gen_loss_GAN, select_mask,"
"gen_loss_content_L1, perceptual_loss,"
"train, global_step")
FINAL_HEIGHT = 256
FINAL_WIDTH = 192
def is_training():
return FLAGS.mode == "train"
def create_generator(product_image, body_seg, skin_seg,
pose_map, generator_outputs_channels):
""" Generator from product images, segs, poses to a segment map"""
# Build inputs
generator_inputs = tf.concat([product_image, body_seg, skin_seg, pose_map],
axis=-1)
# generator_inputs = tf.concat([body_seg, skin_seg, pose_map],
# axis=-1)
layers = []
# encoder_1: [batch, 256, 192, in_channels] => [batch, 128, 96, ngf]
with tf.variable_scope("encoder_1"):
output = conv(generator_inputs, FLAGS.ngf, stride=2)
layers.append(output)
layer_specs = [
# encoder_2: [batch, 128, 96, ngf] => [batch, 64, 48, ngf * 2]
FLAGS.ngf * 2,
# encoder_3: [batch, 64, 48, ngf * 2] => [batch, 32, 24, ngf * 4]
FLAGS.ngf * 4,
# encoder_4: [batch, 32, 24, ngf * 4] => [batch, 16, 12, ngf * 8]
FLAGS.ngf * 8,
# encoder_5: [batch, 16, 12, ngf * 8] => [batch, 8, 6, ngf * 8]
FLAGS.ngf * 8,
# encoder_6: [batch, 8, 6, ngf * 8] => [batch, 4, 3, ngf * 8]
FLAGS.ngf * 8,
# encoder_7: [batch, 4, 3, ngf * 8] => [batch, 2, 1, ngf * 8]
# FLAGS.ngf * 8,
]
for out_channels in layer_specs:
with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
rectified = lrelu(layers[-1], 0.2)
# [batch, in_height, in_width, in_channels]
# => [batch, in_height/2, in_width/2, out_channels]
convolved = conv(rectified, out_channels, stride=2)
output = batch_norm(convolved, is_training())
layers.append(output)
layer_specs = [
# decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
# (FLAGS.ngf * 8, 0.5),
# decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
# (FLAGS.ngf * 8, 0.5),
# decoder_6: [batch, 4, 3, ngf * 8 * 2] => [batch, 8, 6, ngf * 8 * 2]
(FLAGS.ngf * 8, 0.5),
# decoder_5: [batch, 8, 12, ngf * 8 * 2] => [batch, 16, 12, ngf * 8 * 2]
(FLAGS.ngf * 8, 0.0),
# decoder_4: [batch, 16, 12, ngf * 8 * 2] => [batch, 32, 24, ngf * 4 * 2]
(FLAGS.ngf * 4, 0.0),
# decoder_3: [batch, 32, 24, ngf * 4 * 2] => [batch, 64, 48, ngf * 2 * 2]
(FLAGS.ngf * 2, 0.0),
# decoder_2: [batch, 64, 48, ngf * 2 * 2] => [batch, 128, 96, ngf * 2]
(FLAGS.ngf, 0.0),
]
num_encoder_layers = len(layers)
for decoder_layer, (out_channels, dropout) in enumerate(layer_specs):
skip_layer = num_encoder_layers - decoder_layer - 1
with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
if decoder_layer == 0:
# first decoder layer doesn't have skip connections
# since it is directly connected to the skip_layer
input = layers[-1]
else:
input = tf.concat([layers[-1], layers[skip_layer]], axis=3)
rectified = tf.nn.relu(input)
# [batch, in_height, in_width, in_channels]
# => [batch, in_height*2, in_width*2, out_channels]
output = deconv(rectified, out_channels)
output = batch_norm(output, is_training())
if dropout > 0.0 and is_training():
output = tf.nn.dropout(output, keep_prob=1 - dropout)
layers.append(output)
# decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256,
# generator_outputs_channels]
with tf.variable_scope("decoder_1"):
input = tf.concat([layers[-1], layers[0]], axis=3)
rectified = tf.nn.relu(input)
output = deconv(rectified, generator_outputs_channels)
output = tf.tanh(output)
layers.append(output)
return layers[-1]
def create_refine_generator(stn_image_outputs, gen_image_outputs):
generator_input = tf.concat([stn_image_outputs, gen_image_outputs],
axis=-1)
downsampled = tf.image.resize_area(generator_input,
(256, 192),
align_corners=False)
net = slim.conv2d(downsampled, 64, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_256_conv1')
net = slim.conv2d(net, 64, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_256_conv2')
net = slim.conv2d(net, 64, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_256_conv3')
# output a selection mask:
net = slim.conv2d(net, 1, [1, 1], rate=1,
activation_fn=None, scope='g_1024_final')
net = tf.sigmoid(net)
return net
def extract_product_fg(product_image):
image = (product_image / 2.0 + 0.5) * 255.0
prod_image_fg = tf.less(tf.reduce_mean(image, axis=-1), 253.9)
return tf.cast(tf.expand_dims(prod_image_fg, axis=-1), tf.float32)
def create_model(product_image,
body_seg, skin_seg, pose_map, prod_seg,
image, tps_points):
"""Build the model given product image, skin/body segments, pose
predict the product segmentation.
"""
with tf.variable_scope("generator") as scope:
# downsample image and prod_image and input them into the coarse model
downsample_prod_image = tf.image.resize_images(product_image,
size=[256, 192],
method=tf.image.ResizeMethod.BILINEAR)
out_channels = int(prod_seg.get_shape()[-1] + image.get_shape()[-1])
gen_image_outputs = create_generator(downsample_prod_image, body_seg, skin_seg,
pose_map, out_channels)
gen_image_outputs = gen_image_outputs[:,:,:,prod_seg.get_shape()[-1]:]
gen_image_outputs = tf.image.resize_area(gen_image_outputs,
(FINAL_HEIGHT, FINAL_WIDTH),
align_corners=False)
with tf.variable_scope("stn_generator") as scope:
prod_image_fg = extract_product_fg(product_image)
stn_outputs = tps_stn(tf.concat([prod_image_fg, product_image], axis=-1),
10, 10,
tps_points,
product_image.get_shape()[1:3])
prod_mask_outputs = stn_outputs[:,:,:,:1]
stn_image_outputs = stn_outputs[:,:,:,1:]
with tf.variable_scope("refine_generator") as scope:
select_mask = create_refine_generator(stn_image_outputs,
gen_image_outputs)
# only look at the prod_seg region in select_mask
select_mask = prod_seg * select_mask
image_outputs = select_mask * stn_image_outputs + (1 - select_mask) * gen_image_outputs
with tf.name_scope("generator_loss"):
gen_loss_content_L1 = tf.reduce_mean(tf.abs(image - image_outputs))
with tf.variable_scope("vgg_19"):
vgg_real = build_vgg19(image, FLAGS.vgg_model_path)
vgg_fake = build_vgg19(image_outputs, FLAGS.vgg_model_path, reuse=True)
p1 = compute_error(vgg_real['conv1_2'],
vgg_fake['conv1_2']) / 5.3 * 2.5 # 128*128*64
p2 = compute_error(vgg_real['conv2_2'],
vgg_fake['conv2_2']) / 2.7 / 1.2 # 64*64*128
p3 = compute_error(vgg_real['conv3_2'],
vgg_fake['conv3_2']) / 1.35 / 2.3 # 32*32*256
p4 = compute_error(vgg_real['conv4_2'],
vgg_fake['conv4_2']) / 0.67 / 8.2 # 16*16*512
p5 = compute_error(vgg_real['conv5_2'],
vgg_fake['conv5_2']) / 0.16 # 8*8*512
perceptual_loss = (p3 + p4 + p5) / 3.0 / 128.0 # 128 for normalize to [0.1]
mask_loss = tf.reduce_mean(select_mask)
tv_loss = tf.reduce_mean(tf.image.total_variation(select_mask))
gen_loss = (FLAGS.content_l1_weight * gen_loss_content_L1 +
FLAGS.perceptual_weight * perceptual_loss -
FLAGS.mask_weight * mask_loss +
FLAGS.tv_weight * tv_loss # TV loss
)
with tf.name_scope("generator_train"):
gen_tvars = [var for var in tf.trainable_variables()
if var.name.startswith("refine_generator")]
gen_optim = tf.train.AdamOptimizer(FLAGS.lr, FLAGS.beta1)
gen_train = gen_optim.minimize(gen_loss, var_list=gen_tvars)
global_step = tf.contrib.framework.get_or_create_global_step()
incr_global_step = tf.assign(global_step, global_step+1)
return Model(
gen_loss_GAN=gen_loss,
gen_loss_content_L1=gen_loss_content_L1,
perceptual_loss=perceptual_loss,
mask_loss=mask_loss,
tv_loss=tv_loss,
gen_image_outputs=gen_image_outputs,
stn_image_outputs=stn_image_outputs,
select_mask=select_mask,
image_outputs=image_outputs,
prod_mask_outputs=prod_mask_outputs,
train=tf.group(incr_global_step, gen_train),
global_step=global_step)
def build_input():
# Load input data
input_queue = prefetch_input_data(
tf.TFRecordReader(),
FLAGS.input_file_pattern,
is_training=is_training(),
batch_size=FLAGS.batch_size,
values_per_shard=FLAGS.values_per_input_shard,
input_queue_capacity_factor=2,
num_reader_threads=FLAGS.num_preprocess_threads)
# Image processing and random distortion. Split across multiple threads
# with each thread applying a slightly different distortion.
images_and_maps = []
for thread_id in range(FLAGS.num_preprocess_threads):
serialized_example = input_queue.dequeue()
(encoded_image, encoded_prod_image, body_segment, prod_segment,
skin_segment, pose_map, image_id, tps_points) = parse_tf_example(serialized_example,
"tps_points")
(image, product_image, body_segment, prod_segment,
skin_segment, pose_map) = process_image(encoded_image,
encoded_prod_image,
body_segment,
prod_segment,
skin_segment,
pose_map,
is_training(),
height=FINAL_HEIGHT,
width=FINAL_WIDTH,
different_image_size=True)
images_and_maps.append([image, product_image, body_segment,
prod_segment, skin_segment, pose_map, image_id, tps_points])
# Batch inputs.
queue_capacity = (2 * FLAGS.num_preprocess_threads *
FLAGS.batch_size)
return tf.train.batch_join(images_and_maps,
batch_size=FLAGS.batch_size,
capacity=queue_capacity,
name="batch")
def deprocess_image(image, mask01=False):
if not mask01:
image = image / 2.0 + 0.5
return tf.image.convert_image_dtype(image, dtype=tf.uint8)
def main(unused_argv):
# Fetch input
(image, product_image, body_segment, prod_segment, skin_segment,
pose_map, image_id, tps_points) = build_input()
# Build model and loss function
model = create_model(product_image,
body_segment, skin_segment,
pose_map, prod_segment,
image, tps_points)
# Summaries.
with tf.name_scope("encode_images"):
display_fetches = {
"paths": image_id,
"image": tf.map_fn(tf.image.encode_png, deprocess_image(image),
dtype=tf.string, name="image_pngs"),
"product_image": tf.map_fn(tf.image.encode_png,
deprocess_image(product_image),
dtype=tf.string, name="prod_image_pngs"),
"body_segment": tf.map_fn(tf.image.encode_png,
deprocess_image(body_segment, True),
dtype=tf.string, name="body_segment_pngs"),
"skin_segment": tf.map_fn(tf.image.encode_png,
deprocess_image(skin_segment, True),
dtype=tf.string, name="skin_segment_pngs"),
"prod_segment": tf.map_fn(tf.image.encode_png,
deprocess_image(prod_segment, True),
dtype=tf.string, name="prod_segment_pngs"),
"prod_mask_outputs": tf.map_fn(tf.image.encode_png,
deprocess_image(model.prod_mask_outputs, True),
dtype=tf.string, name="mask_output_pngs"),
"stn_image_outputs": tf.map_fn(tf.image.encode_png,
deprocess_image(model.stn_image_outputs),
dtype=tf.string, name="stn_image_output_pngs"),
"gen_image_outputs": tf.map_fn(tf.image.encode_png,
deprocess_image(model.gen_image_outputs),
dtype=tf.string, name="gen_image_output_pngs"),
"image_outputs": tf.map_fn(tf.image.encode_png,
deprocess_image(model.image_outputs),
dtype=tf.string, name="image_output_pngs"),
"select_mask": tf.map_fn(tf.image.encode_png,
deprocess_image(model.select_mask, True),
dtype=tf.string, name="image_output_pngs"),
}
test_fetches = {"image_outputs": tf.map_fn(tf.image.encode_png,
deprocess_image(model.image_outputs),
dtype=tf.string, name="image_output_pngs"),
"paths": image_id,}
tf.summary.scalar("generator_loss_GAN", model.gen_loss_GAN)
tf.summary.scalar("generator_loss_content_L1", model.gen_loss_content_L1)
tf.summary.scalar("perceptual_loss", model.perceptual_loss)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name + "/values", var)
with tf.name_scope("parameter_count"):
parameter_count = tf.reduce_sum(
[tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()])
saver = tf.train.Saver(max_to_keep=100)
if FLAGS.checkpoint != "":
restore_fn = None
else:
checkpoint_file = tf.train.latest_checkpoint(FLAGS.gen_checkpoint)
if checkpoint_file == None:
checkpoint_file = FLAGS.gen_checkpoint
saver = tf.train.Saver(var_list=[var for var in tf.trainable_variables() if var.name.startswith("generator")])
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
saver2 = tf.train.Saver(max_to_keep=100)
sv = tf.train.Supervisor(logdir=FLAGS.output_dir,
save_summaries_secs=0, saver=None,
init_fn=restore_fn)
with sv.managed_session() as sess:
tf.logging.info("parameter_count = %d" % sess.run(parameter_count))
if FLAGS.checkpoint != "":
tf.logging.info("loading model from checkpoint")
checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint)
if checkpoint == None:
checkpoint = FLAGS.checkpoint
tf.logging.info(checkpoint)
saver2.restore(sess, checkpoint)
if FLAGS.mode == "test":
# testing
# at most, process the test data once
tf.logging.info("test!")
with open(os.path.join(FLAGS.output_dir, "options.json"), "a") as f:
f.write(json.dumps(vars(FLAGS), sort_keys=True, indent=4))
start = time.time()
max_steps = FLAGS.number_of_steps
for step in range(max_steps):
def should(freq):
return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1)
results = sess.run(test_fetches)
image_dir = os.path.join(FLAGS.output_dir, "images")
if not os.path.exists(image_dir):
os.makedirs(image_dir)
for i, in_path in enumerate(results["paths"]):
name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8")))
filename = name + ".png"
out_path = os.path.join(image_dir, filename)
contents = results["image_outputs"][i]
with open(out_path, "wb") as f:
f.write(contents)
else:
# training
with open(os.path.join(FLAGS.output_dir, "options.json"), "a") as f:
f.write(json.dumps(vars(FLAGS), sort_keys=True, indent=4))
start = time.time()
max_steps = FLAGS.number_of_steps
for step in range(max_steps):
def should(freq):
return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1)
options = None
run_metadata = None
if should(FLAGS.trace_freq):
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
fetches = {
"train": model.train,
"global_step": sv.global_step,
}
if should(FLAGS.progress_freq):
fetches["gen_loss_content_L1"] = model.gen_loss_content_L1
fetches["gen_loss_GAN"] = model.gen_loss_GAN
fetches["perceptual_loss"] = model.perceptual_loss
fetches["tv_loss"] = model.tv_loss
fetches["mask_loss"] = model.mask_loss
if should(FLAGS.summary_freq):
fetches["summary"] = sv.summary_op
if should(FLAGS.display_freq):
fetches["display"] = display_fetches
results = sess.run(fetches, options=options, run_metadata=run_metadata)
if should(FLAGS.summary_freq):
tf.logging.info("recording summary")
sv.summary_writer.add_summary(
results["summary"], results["global_step"])
if should(FLAGS.display_freq):
tf.logging.info("saving display images")
filesets = save_images(results["display"],
image_dict=["body_segment", "skin_segment",
"prod_segment", "prod_mask_outputs",
"product_image", "stn_image_outputs",
"gen_image_outputs", "select_mask",
"image_outputs", "image"],
output_dir=FLAGS.output_dir,
step=results["global_step"])
append_index(filesets,
image_dict=["body_segment", "skin_segment",
"prod_segment", "prod_mask_outputs",
"product_image", "stn_image_outputs",
"gen_image_outputs", "select_mask",
"image_outputs", "image"],
output_dir=FLAGS.output_dir,
step=True)
if should(FLAGS.trace_freq):
tf.logging.info("recording trace")
sv.summary_writer.add_run_metadata(
run_metadata, "step_%d" % results["global_step"])
if should(FLAGS.progress_freq):
# global_step will have the correct step count if we resume from a
# checkpoint
train_epoch = math.ceil(
results["global_step"] / FLAGS.number_of_samples)
rate = (step + 1) * FLAGS.batch_size / (time.time() - start)
tf.logging.info("progress epoch %d step %d image/sec %0.1f" %
(train_epoch, results["global_step"], rate))
tf.logging.info("gen_loss_GAN: %f" % results["gen_loss_GAN"])
tf.logging.info("gen_loss_content_L1: %f" % results["gen_loss_content_L1"])
tf.logging.info("perceptual_loss: %f" % results["perceptual_loss"])
tf.logging.info("mask_loss: %f" % results["mask_loss"])
tf.logging.info("tv_loss: %f" % results["tv_loss"])
if should(FLAGS.save_freq):
tf.logging.info("saving model")
saver2.save(sess, os.path.join(FLAGS.output_dir, "model"),
global_step=sv.global_step)
if sv.should_stop():
break
if __name__ == "__main__":
tf.app.run()