forked from NWU-IPMI/DDIE-KGE-MFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics_ddie.py
90 lines (72 loc) · 3.06 KB
/
metrics_ddie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
logger = logging.getLogger(__name__)
try:
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import accuracy_score, matthews_corrcoef, f1_score, precision_recall_fscore_support
_has_sklearn = True
except (AttributeError, ImportError) as e:
logger.warning("To use data.metrics please install scikit-learn. See https://scikit-learn.org/stable/index.html")
_has_sklearn = False
def is_sklearn_available():
return _has_sklearn
if _has_sklearn:
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def ddie_compute_metrics(task_name, preds, labels, every_type=False):
label_list = ('Mechanism', 'Effect', 'Advise', 'Int')
p, r, f, s = precision_recall_fscore_support(y_pred=preds, y_true=labels, labels=[1, 2, 3, 4], average='micro')
result = {
"Precision": p,
"Recall": r,
"microF": f
}
# if every_type:
#
# p1,r1,f1,s1 = precision_recall_fscore_support(y_pred=preds,y_true=labels,labels=[1],average='micro')
# p2,r2,f2,s2 = precision_recall_fscore_support(y_pred=preds,y_true=labels,labels=[2],average='micro')
# p3,r3,f3,s3 = precision_recall_fscore_support(y_pred=preds,y_true=labels,labels=[3],average='micro')
# p4,r4,f4,s4 = precision_recall_fscore_support(y_pred=preds,y_true=labels,labels=[4],average='micro')
#
# result['mechanism_f'] = f1
# result['effect_f'] = f2
# result['advice_f'] = f3
# result['int_f'] = f4
return result
def pretraining_compute_metrics(task_name, preds, labels, every_type=False):
acc = accuracy_score(y_pred=preds, y_true=labels)
result = {
"Accuracy": acc,
}
return result