forked from NWU-IPMI/DDIE-KGE-MFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
421 lines (386 loc) · 21.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# -*- coding: utf-8 -*-
import argparse
import logging
import os
import torch
import numpy as np
import copy
import util
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import BertConfig, BertTokenizer
from processor_ddie import DDIEProcessor
from modeling_ddie import BertForSequenceClassification
from load_and_cache_examples_ddie import load_and_cache_examples
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm, trange
from metrics_ddie import ddie_compute_metrics
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
from transformers import logging as log
log.set_verbosity_error()
def main():
parser = argparse.ArgumentParser()
# parameters
parser.add_argument("--data_dir", default="", type=str, required=True,
help="The input data dir. Should contain the .tsv files for the task.")
parser.add_argument("--model_name_or_path", default="", type=str, required=True, help="Path to pre-trained model.")
parser.add_argument("--output_dir", default="", type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--embedding_path", default="", type=str, required=True,
help="The path of knowledge graph embeddings.")
parser.add_argument("--entity_path", default="", type=str, required=True,
help="The path of knowledge graph embeddings.")
parser.add_argument("--stanza_path", default="./stanza_resources/", type=str, required=False,
help="The path of stanza.")
parser.add_argument("--task_name", default="ddie", type=str,
help="The default task name should be ddie.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--num_train_epochs", default=5.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If>0: set total number of training steps to perform. Override num_train_epochs")
parser.add_argument("--max_seq_length", default=390, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", default=False, action='store_true', help="Whether to run eval on the test set.")
parser.add_argument("--evaluate_during_training", default=False, action='store_true',
help="Whether to run evaluation during training at each loggin step.")
parser.add_argument("--do_lower_case", default=True, action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=16, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=32, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", default=500, type=int, help="Log every X updates steps.")
parser.add_argument("--save_steps", default=-1, type=int, help="Save checkpoint every X updates steps.")
parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available.")
parser.add_argument("--overwrite_output_dir", action='store_true',
help="Overwrite the content of the output directory.")
parser.add_argument("--overwrite_cache", action='store_true',
help="Overwrite the cached training and evaluation sets.")
parser.add_argument("--seed", default=1, type=int, help="Random seed for initialization.")
parser.add_argument("--local_rank", default=-1, type=int, help="For distributed training: local_rank")
parser.add_argument("--parameter_averaging", action='store_true', help="Whether to use parameter averaging.")
parser.add_argument("--dropout_prob", default=0.1, type=float, help="Dropout probability.")
# del
parser.add_argument("--middle_layer_size", default=0, type=int, help="Dimention of middle layer.")
# For CNN
parser.add_argument("--use_cnn", default=True, action='store_true', help="Whether to use CNN.")
parser.add_argument("--conv_window_size", default=[3], type=int, nargs='+', help="List of convolution window size.")
parser.add_argument("--pos_emb_dim", default=20, type=int, help="Dimention of position embeddings.")
parser.add_argument("--activation", default='relu', type=str, help="Activation function.")
# For Test
parser.add_argument("--pretrained_dir", default="", type=str, help="The path to pre-trained model dir.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(
args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir))
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
ch = logging.StreamHandler()
if not os.environ.get("NO_COLOR"):
ch = util.ColorHandler()
ch.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s'))
logger.addHandler(ch)
logger.info("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), False)
# Set seed
util.set_seed(args)
# Prepare task
processor = DDIEProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
config = BertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case)
ADDITIONAL_SPECIAL_TOKENS = ["<e1>", "</e1>", "<e2>", "</e2>"]
tokenizer.add_special_tokens({"additional_special_tokens": ADDITIONAL_SPECIAL_TOKENS})
model = BertForSequenceClassification(args, config, tokenizer)
if not args.do_train:
global_step = 0
if os.path.exists(args.pretrained_dir):
model.load_state_dict(torch.load(os.path.join(args.pretrained_dir, 'pytorch_model.bin')))
else:
raise ValueError("The pre-trained directory is not exist.")
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Start to train/evaluation ...")
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss, storage_model = train(args, train_dataset, model, tokenizer)
if global_step % 1000 == 0:
temp_result = {}
if args.do_eval:
temp_result = evaluate(args, model, tokenizer, prefix=str(global_step))
tmp_result = dict((k + '_{}'.format(global_step), v) for k, v in temp_result.items())
temp_result.update(temp_result)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
torch.save(model.state_dict(), os.path.join(args.output_dir, 'state_dict'))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.parameter_averaging:
storage_model.average_params()
result = evaluate(args, storage_model, tokenizer, prefix="")
else:
result = evaluate(args, model, tokenizer, prefix="")
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
def train(args, train_dataset, model, tokenizer):
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
raise ValueError("Please set local_rank = 1.")
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
bert_params = []
not_bert_params = []
for name, params in model.named_parameters():
if 'bert' in name:
bert_params += [name]
else:
not_bert_params += [name]
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and (n in not_bert_params)],
"weight_decay": args.weight_decay,
"lr": 5e-4,
},
{
"params": [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and (n in bert_params)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if
any(nd in n for nd in no_decay) and (n in not_bert_params)],
"weight_decay": 0.0,
"lr": 5e-4,
},
{
"params": [p for n, p in model.named_parameters() if
any(nd in n for nd in no_decay) and (n in bert_params)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=t_total)
if args.parameter_averaging:
storage_model = copy.deepcopy(model)
storage_model.zero_init_params()
else:
storage_model = None
# Start to train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
entity_embedding = np.load(args.embedding_path, allow_pickle=True)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
util.set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for epoch, _ in enumerate(train_iterator, start=1):
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
drug_a_indices = batch[10]
drug_b_indices = batch[11]
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'relative_dist1': batch[3],
'relative_dist2': batch[4],
'all_dep_mask0': batch[5],
'all_dep_mask1': batch[6],
'all_dep_mask2': batch[7],
'all_dep_mask3': batch[8],
'labels': batch[9],
'drug_a_ids': entity_embedding[drug_a_indices],
'drug_b_ids': entity_embedding[drug_b_indices]
}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if not args.parameter_averaging:
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, prefix="")
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,
'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.parameter_averaging:
storage_model.accumulate_params(model)
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.evaluate_during_training:
prefix = 'epoch' + str(epoch)
output_dir = os.path.join(args.output_dir, prefix)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.parameter_averaging:
storage_model.average_params()
result = evaluate(args, storage_model, tokenizer, prefix=prefix)
storage_model.restore_params()
else:
results = evaluate(args, model, tokenizer, prefix=prefix)
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step, storage_model
def evaluate(args, model, tokenizer, prefix=""):
"""
evaluate the model
:param args:
:param model:
:param tokenizer:
:param prefix:
:return:
"""
results = {}
for eval_task, eval_output_dir in zip((args.task_name,), (args.output_dir,)):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_dataset)
else:
raise ValueError("The parameter of local_rank should be -1")
eval_dataloader = DataLoader(eval_dataset,sampler=eval_sampler,batch_size=args.eval_batch_size)
entity_embedding = np.load(args.embedding_path,allow_pickle=True)
# Evaluation
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader,desc="Evaluating"):
model.eval()
drug_a_indices = batch[10]
drug_b_indices = batch[11]
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'relative_dist1': batch[3],
'relative_dist2': batch[4],
'all_dep_mask0': batch[5],
'all_dep_mask1': batch[6],
'all_dep_mask2': batch[7],
'all_dep_mask3': batch[8],
'labels': batch[9],
'drug_a_ids': entity_embedding[drug_a_indices],
'drug_b_ids': entity_embedding[drug_b_indices],
}
outputs = model(**inputs)
tmp_eval_loss,logits = outputs[:2]
eval_loss+=tmp_eval_loss.mean().item()
nb_eval_steps+=1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds,logits.detach().cpu().numpy(),axis=0)
out_label_ids = np.append(out_label_ids,inputs['labels'].detach().cpu().numpy(),axis=0)
np.save(os.path.join(args.output_dir,'preds'),preds)
np.save(os.path.join(args.output_dir,'labels'),out_label_ids)
eval_loss = eval_loss/nb_eval_steps
preds = np.argmax(preds,axis=1)
result = ddie_compute_metrics(eval_task,preds,out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir,prefix,"eval_results.txt")
with open(output_eval_file,"w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
if __name__ == "__main__":
main()