-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProcessTree.py
930 lines (776 loc) · 41.8 KB
/
ProcessTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#!/usr/bin/env python
__author__ = "Alex Hoffman"
__copyright__ = "Copyright 2019, Alex Hoffman"
__license__ = "GPL"
__version__ = "1.0"
__maintainer__ = "Alex Hoffman"
__email__ = "[email protected]"
__status__ = "Beta"
import csv
import time
import os
import networkx as nx
from Dependencies import DependencyType
from HardwareBranches import *
from Optimizations import OptimizationInfoType
from ProcessBranch import ProcessBranch
from SystemEvents import *
from SystemMetrics import *
class ProcessTree:
""" A tree of PID branches that represents all of the PIDs that are relevant to the target application
"""
def __init__(self, pidtracer, metrics):
self.metrics = metrics
self.graph = nx.DiGraph()
self.pidtracer = pidtracer
self.process_branches = dict()
self.binder_branches = dict()
self.pending_binder_calls = []
self.completed_binder_calls = []
self.cpus = []
self._create_cpu_branches()
self.gpu = GPUBranch(self.metrics.current_gpu_freq,
self.metrics.current_gpu_util, self.graph)
self._create_pid_branches()
self.idle_time = 0
self.temp_time = 0
self.binder_time = 0
self.mali_time = 0
self.sched_switch_time = 0
self.freq_time = 0
def _create_cpu_branches(self):
""" Creates a CPU branch for each CPU found in a system
"""
for x in range(0, self.metrics.core_count):
self.cpus.append(
CPUBranch(
x,
self.metrics.current_core_freqs[x],
self.metrics.current_core_utils[x],
self.graph,
))
def _create_pid_branches(self):
""" Each PID in the tree creates a branch on which jobs and tasks of that PID are created in a
chronological order such that the branch is a directed (in time) execution history of the
branch's PID.
"""
for i, pid in self.pidtracer.app_pids.iteritems():
self.process_branches[i] = ProcessBranch(
pid.pid,
pid.pname,
pid.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
for i, pid in self.pidtracer.system_pids.iteritems():
self.process_branches[i] = ProcessBranch(
pid.pid,
pid.pname,
pid.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
for i, pid in self.pidtracer.binder_pids.iteritems():
self.binder_branches[i] = ProcessBranch(
pid.pid,
pid.pname,
pid.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
def finish_tree(self, filename, governor, subdir):
""" After all events have been added to a tree the tree compiles its energy results and
writes them to a CSV file. Summaries of each PID's energy consumption as well as total
tree energy metrics are provided.
:param filename: Filename prefix which is used to differentiate the current trace
:param subdir: Sub directory to store results in (usefull if running multiple tests)
"""
file_folder = "results/"
if subdir:
file_folder += subdir
if not os.path.exists(file_folder):
os.makedirs(file_folder)
file_prefix = file_folder + filename
with open(file_prefix + "_results.csv", "w+") as f:
results_writer = csv.writer(f, delimiter=",")
# Start and end time
start_time = 0
finish_time = 0
for x, branch in self.process_branches.iteritems():
if branch.tasks:
if branch.tasks[
0].start_time < start_time or start_time == 0:
start_time = branch.tasks[0].start_time
if (branch.tasks[-1].start_time + branch.tasks[-1].duration
) > finish_time or finish_time == 0:
finish_time = (branch.tasks[-1].start_time +
branch.tasks[-1].duration)
results_writer.writerow(["Application", filename])
results_writer.writerow(["Governor", governor])
results_writer.writerow(["Start", start_time / 1000000.0])
results_writer.writerow(["Finish", finish_time / 1000000.0])
duration = (finish_time - start_time) * 0.000001
results_writer.writerow(["Duration", duration])
results_writer.writerow([])
total_energy = 0.0
# b2l_realloc, dvfs, same cluster realloc, dvfs after realloc
optimizations_found = [0, 0, 0, 0]
timeline_interval = 0.05
timeline_intervals = int(round(duration / timeline_interval)) + 1
optimization_timeline_total = np.full(timeline_intervals * 2,
[0]).reshape(
timeline_intervals, 2)
with open(file_prefix + "_optimizations.csv", "w+") as f_op:
op_writer = csv.writer(f_op, delimiter=",")
op_writer.writerow([
"Op ID",
"Task ID",
"Task PID",
"Task Name",
"TS",
"Duration",
"Core",
"Freq",
"New Core",
"New Core's Old Freq",
"New Freq",
"Original Core's Prev Util",
"New Core's Prev Util",
"New Core's New Util",
"Optimization Type",
])
op_writer.writerow([])
error_branch = 0
try:
for x in list(self.process_branches.keys()):
error_branch = x
branch = self.process_branches[x]
if len(branch.tasks) == 0:
del self.process_branches[x]
continue
branch_stats = branch.get_task_energy(
start_time, finish_time)
branch.energy = branch_stats.energy
for i in range(len(branch.energy)):
total_energy += branch.energy[i]
branch.duration = branch_stats.duration
if branch.energy == 0.0:
continue
results_writer.writerow([
branch.pid,
branch.pname,
branch.tname,
str(len(branch.tasks)),
branch.energy,
branch.duration,
])
mf = self.metrics.energy_profile.migration_factor
### OPTIMAL EVALUATION
error_task = 0
try:
for task in branch.tasks:
error_task = task.id
if (
task.cpu_cycles == 0
): # Tasks that started at the end of the trace time
continue
cores = self.metrics.sys_util_history
core_utils = [0.0] * 8
core_utils[0] = cores.cpu[0].get_util(
task.finish_time)
core_utils[1] = cores.cpu[1].get_util(
task.finish_time)
core_utils[2] = cores.cpu[2].get_util(
task.finish_time)
core_utils[3] = cores.cpu[3].get_util(
task.finish_time)
core_utils[4] = cores.cpu[4].get_util(
task.finish_time)
core_utils[5] = cores.cpu[5].get_util(
task.finish_time)
core_utils[6] = cores.cpu[6].get_util(
task.finish_time)
core_utils[7] = cores.cpu[7].get_util(
task.finish_time)
lf = self.metrics.energy_profile.little_freqs
bf = self.metrics.energy_profile.big_freqs
task_cycles = task.cpu_cycles
# Reallocate to small core
if (
task.events[0].cpu > 3
): # big TODO fix the use of the first event's CPU
little_core_index = np.argmin(
core_utils[:4]
) # Core with most capacity
little_cores = core_utils[:4]
cur_core_util = core_utils[
task.events[0].cpu]
# target_core_util = core_utils[little_core_index]
cur_little_cpu_freq = float(
task.events[0].cpu_freq[0])
cycles_on_little = round(task_cycles * mf)
for little_freq in lf:
# Scaled little utils
if cur_little_cpu_freq != little_freq:
scaling_factor = (
cur_little_cpu_freq /
little_freq)
core_utils_new_freq = [
core * scaling_factor
for core in little_cores
]
else:
core_utils_new_freq = little_cores
# Check existing workload can be fit onto CPU at new frequency
if all(core_util <= 100.0 for core_util
in core_utils_new_freq):
# Realloc to little
available_cycles_on_little_at_new_freq = round(
(1.0 - (core_utils_new_freq[
little_core_index] / 100))
* little_freq)
required_duration = (
cycles_on_little /
available_cycles_on_little_at_new_freq
* 1000000)
finish_time_on_little = int(
round(task.start_time +
required_duration))
new_util_on_target_core = core_utils_new_freq[
little_core_index] + (
cycles_on_little /
little_freq * 100)
try:
depender_start_time = (
task.dependency.next_task.
start_time)
except Exception as e:
continue
if (finish_time_on_little <
depender_start_time):
task.optimization_info.add_optim_type(
OptimizationInfoType.
B2L_REALLOC)
optimizations_found[0] += 1
if (little_freq != task.
events[0].cpu_freq[0]):
task.optimization_info.add_optim_type(
OptimizationInfoType.
DVFS_AFTER_REALLOC)
optimizations_found[3] += 1
task.optimization_info.set_message(
"Task can be reallocated")
op_writer.writerow([
task.optimization_info.ID,
task.id,
task.pid,
task.name,
task.start_time,
task.duration,
task.events[0].cpu,
task.events[0].cpu_freq[
0 if task.events[0].
cpu < 4 else 1],
little_core_index,
task.events[0].cpu_freq[0],
little_freq,
cur_core_util,
cur_core_util,
new_util_on_target_core,
str(task.optimization_info
),
])
break
# Current core not running at minimum DVFS
if (task.events[0].cpu <= 3
and task.events[0].cpu_freq[0] != lf[0]
) or (task.events[0].cpu >= 4 and
task.events[0].cpu_freq[1] != bf[0]):
cur_cpu_freq = float(
task.events[0].
cpu_freq[0 if task.events[0].
cpu <= 3 else 1])
if task.events[0].cpu <= 3: # LITTLE
freq_index = lf.index(cur_cpu_freq)
freqs = lf[:
freq_index] # Freqs from minimum freq until the current one
lowest_util_core_index = np.argmin(
core_utils[:4])
else: # big
freq_index = bf.index(cur_cpu_freq)
freqs = bf[:freq_index]
lowest_util_core_index = (
np.argmin(core_utils[4:]) + 4)
# Utilization of core that task is currently running on
cur_core_util = core_utils[
task.events[0].cpu]
target_core_util = core_utils[
task.events[0].cpu]
if (lowest_util_core_index !=
task.events[0].cpu
): # Might be a better core in cluster
# Utilization of core in cluster with smallest load
target_core_util = core_utils[
lowest_util_core_index]
# Load generated from the target task
task_load = (
float(task.duration) /
self.metrics.sys_util_history.
cpu[0].uw.window_duration * 100)
# Current core utilization less the task of interest's load
cur_core_util_wo_task = (
cur_core_util - task_load)
# If reallocation would result in a lower max utilization between current and target
# core
if cur_core_util_wo_task > target_core_util:
core_utils[task.events[0].
cpu] -= task_load
core_utils[
lowest_util_core_index] += task_load
task.optimization_info.add_optim_type(
OptimizationInfoType.
SAME_CLUSTER_REALLOC)
optimizations_found[2] += 1
for freq in freqs:
# Scale
scaling_factor = cur_cpu_freq / freq
if task.events[0].cpu <= 3: # LITTLE
core_utils_new_freq = [
core * scaling_factor
for core in core_utils[:4]
]
else: # big
core_utils_new_freq = [
core * scaling_factor
for core in core_utils[4:]
]
if all(core_util <= 100.0 for core_util
in core_utils_new_freq):
task.optimization_info.set_message(
"DVFS optimization possible")
task.optimization_info.add_optim_type(
OptimizationInfoType.DVFS)
optimizations_found[1] += 1
op_writer.writerow([
task.optimization_info.ID,
task.id,
task.pid,
task.name,
task.start_time,
task.duration,
task.events[0].cpu,
task.events[0].
cpu_freq[0 if task.events[0].
cpu < 4 else 1],
lowest_util_core_index,
cur_cpu_freq,
freq,
cur_core_util,
target_core_util,
core_utils_new_freq[
lowest_util_core_index %
4],
str(task.optimization_info),
])
break
except Exception, e:
e = str(e) + " task {}".format(error_task)
raise Exception(e)
optimization_timeline = branch.get_optimization_timeline(
start_time, timeline_intervals,
timeline_interval * 1000000)
optimization_timeline_total = np.add(
optimization_timeline_total, optimization_timeline)
except Exception, e:
e = str(e) + " in branch {}".format(error_branch)
raise Exception(e)
results_writer.writerow([])
results_writer.writerow([
"Optimizations", "B2L Reallocations", "DVFS",
"Realloc in cluster", "DVFS after "
"realloc"
])
results_writer.writerow([
"", optimizations_found[0], optimizations_found[1],
optimizations_found[2], optimizations_found[3]
])
results_writer.writerow([])
results_writer.writerow(["Optimization Timeline"])
results_writer.writerow([
"TS (uS)", "Offset (S)", "DVFS Count", "Realloc Count",
"Total Count"
])
total_timeline_dvfs = 0
total_timeline_realloc = 0
for i in range(optimization_timeline_total.shape[0]):
total_timeline_realloc += optimization_timeline_total[i][0]
total_timeline_dvfs += optimization_timeline_total[i][1]
offset = timeline_interval * i
results_writer.writerow([
start_time + offset * 1000000,
offset,
optimization_timeline_total[i][1],
optimization_timeline_total[i][0],
optimization_timeline_total[i][0] +
optimization_timeline_total[i][1],
])
results_writer.writerow([
"",
"Totals",
total_timeline_dvfs,
total_timeline_realloc,
total_timeline_dvfs + total_timeline_realloc,
])
results_writer.writerow([])
results_writer.writerow([
"PID",
"Process Name",
"Thread Name",
"Task Count",
"Energy",
"Duration",
])
# Calculate GPU energy
gpu_energy = self.metrics.sys_util_history.gpu.get_energy(
start_time, finish_time)
results_writer.writerow(["GPU", gpu_energy])
total_energy += gpu_energy
results_writer.writerow([])
results_writer.writerow(["Total Energy", total_energy])
try:
results_writer.writerow(
["Average wattage", total_energy / duration])
except ZeroDivisionError:
print "No events were recorded!"
results_writer.writerow([])
results_writer.writerow(["Energy Timeline"])
energy_timeline = [[(0.0, 0.0), 0.0, (0.0, 0.0, 0.0), 0.0, 0]
for _ in range(timeline_intervals)]
for i, second in enumerate(energy_timeline):
for x, branch in self.process_branches.iteritems():
energy = branch.get_interval_energy(
i, timeline_interval, start_time, finish_time)
new_energy = [
second[0][0] + energy[0], second[0][1] + energy[1]
]
second[0] = new_energy
for i, second in enumerate(energy_timeline):
second[
1] += self.metrics.sys_util_history.gpu.get_interval_energy(
i, timeline_interval, start_time, finish_time)
temp_l = SystemMetrics.current_metrics.get_temp(
i * timeline_interval * 1000000, 0)
temp_b = SystemMetrics.current_metrics.get_temp(
i * timeline_interval * 1000000, 4)
temp_g = SystemMetrics.current_metrics.get_temp(
i * timeline_interval * 1000000, -1)
second[2] = (temp_b, temp_l, temp_g)
second[
3] = SystemMetrics.current_metrics.sys_util_history.gpu.get_util(
i * timeline_interval * 1000000)
second[
4] = SystemMetrics.current_metrics.sys_util_history.gpu.get_freq(
i * timeline_interval * 1000000)
results_writer.writerow([
"Absolute Time",
"Sec Offset",
"Thread Energy",
"Big Energy",
"Little Energy",
"GPU Energy",
"Total Energy",
"Temps",
"GPU Util",
"GPU Freq",
])
for x, second in enumerate(energy_timeline):
results_writer.writerow([
str(x * timeline_interval + start_time / 1000000.0),
str(x * timeline_interval),
str(second[0][0] + second[0][1]),
str(second[0][1]),
str(second[0][0]),
str(second[1]),
str(second[0][0] + second[0][1] + second[1]),
str(second[2]),
str(second[3]),
str(second[4]),
])
return optimizations_found
def handle_event(self, event, subgraph):
"""
An event is handled by and added to the current trace tree, handled depending on event type.
:param event: The event to be added into the tree
:param subgraph: Boolean to enable to drawing of the task graph's node's sub-graphs
:return 0 on success
"""
proc_start_time = time.time()
# Set event freq
event.cpu_freq[0] = self.metrics.get_cpu_core_freq(0)
event.cpu_freq[1] = self.metrics.get_cpu_core_freq(4)
event.gpu_freq = self.metrics.current_gpu_freq
event.gpu_util = self.metrics.current_gpu_util
if isinstance(event, EventSchedSwitch): # PID context swap
# Task being switched out, ignoring idle task and binder threads
if event.pid != 0 and (event.next_pid in self.pidtracer.system_pids
or
event.next_pid in self.pidtracer.app_pids):
try:
process_branch = self.process_branches[event.pid]
process_branch.add_event(
event,
event_type=JobType.SCHED_SWITCH_OUT,
subgraph=subgraph)
except KeyError:
pass # PID not of interest to program
# Task being switched in, again ignoring idle task and binder threads
if event.next_pid != 0 and (
event.next_pid in self.pidtracer.system_pids
or event.next_pid in self.pidtracer.app_pids):
for x, pending_binder_node in reversed(
list(enumerate(
self.completed_binder_calls))): # Most recent
# If event to be switched in is the target of the Binder transaction
if event.next_pid == pending_binder_node.target_pid:
# If async binder call (no binder thread)
if pending_binder_node.transaction_type == BinderType.ASYNC:
# Calling PID acts as binder thread and should be added to binder threads if not already
# added
if (pending_binder_node.caller_pid not in
self.binder_branches):
pid_info = self.pidtracer.get_pid_info(
pending_binder_node.caller_pid)
if not pid_info:
del self.completed_binder_calls[x]
break
self.binder_branches[
pending_binder_node.
caller_pid] = ProcessBranch(
pid_info.pid,
pid_info.pname,
pid_info.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
self.pidtracer.binder_pids[
pending_binder_node.
binder_thread] = pid_info
else: # Sync
# Binder thread that is not yet known
if (pending_binder_node.binder_thread not in
self.binder_branches):
pid_info = self.pidtracer.find_pid_info(
pending_binder_node.binder_thread)
if not pid_info:
del self.completed_binder_calls[x]
break
self.binder_branches[
pending_binder_node.
binder_thread] = ProcessBranch(
pid_info.pid,
pid_info.pname,
pid_info.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
self.pidtracer.binder_pids[
pending_binder_node.
binder_thread] = pid_info
# If target thread is not yet known
if event.next_pid not in self.process_branches:
# Calling to a PID that was not initially found as belonging to app
pid_info = self.pidtracer.find_pid_info(
event.next_pid)
if not pid_info:
del self.completed_binder_calls[x]
break
self.process_branches[
event.next_pid] = ProcessBranch(
pid_info.pid,
pid_info.pname,
pid_info.tname,
None,
self.graph,
self.pidtracer,
self.cpus,
self.gpu,
)
self.pidtracer.app_pids[event.next_pid] = pid_info
# Add first half binder event to binder branch
if pending_binder_node.first_half:
self.binder_branches[
pending_binder_node.binder_thread].add_event(
pending_binder_node.first_half,
event_type=JobType.BINDER_SEND,
)
else: # Async binder transaction
self.binder_branches[
pending_binder_node.binder_thread].add_event(
pending_binder_node.second_half,
event_type=JobType.BINDER_SEND,
)
# Add second half binder event to binder branch
self.binder_branches[
pending_binder_node.binder_thread].add_event(
pending_binder_node.second_half,
event_type=JobType.BINDER_RECV,
)
try:
self.graph.add_edge( # Edge from calling task to binder node
self.process_branches[
pending_binder_node.caller_pid].tasks[-1],
self.binder_branches[
pending_binder_node.binder_thread].
binder_tasks[-1],
color="palevioletred3",
dir="forward",
style="bold",
)
# Switch in new pid which will find pending completed binder transaction and create a
# new task node
self.process_branches[
pending_binder_node.target_pid].add_event(
event,
event_type=JobType.SCHED_SWITCH_IN,
subgraph=subgraph)
self.graph.add_edge( # Edge from binder node to next task
self.binder_branches[
pending_binder_node.binder_thread].
binder_tasks[-1],
self.process_branches[
pending_binder_node.target_pid].tasks[-1],
color="yellow3",
dir="forward",
)
# Create dependency
self.process_branches[
pending_binder_node.target_pid].tasks[
-1].dependency.type = DependencyType.BINDER
except IndexError:
pass # Calling task has no nodes yet to link, tracing started during transaction
if (pending_binder_node.target_pid ==
pending_binder_node.caller_pid
): # Task signaling itself
# Create dependency from current task to calling task
try:
self.process_branches[
pending_binder_node.target_pid].tasks[
-1].dependency.prev_task = self.process_branches[
pending_binder_node.
caller_pid].tasks[-2]
# Create dependency from calling task to current task
self.process_branches[
pending_binder_node.caller_pid].tasks[
-2].dependency.next_task = self.process_branches[
pending_binder_node.
target_pid].tasks[-1]
except IndexError: # First task for PID
pass
else:
if self.process_branches[
pending_binder_node.caller_pid].tasks[-1]:
# Create dependency from current task to calling task
self.process_branches[
pending_binder_node.target_pid].tasks[
-1].dependency.prev_task = self.process_branches[
pending_binder_node.
caller_pid].tasks[-1]
# Create dependency from calling task to current task
self.process_branches[
pending_binder_node.caller_pid].tasks[
-1].dependency.next_task = self.process_branches[
pending_binder_node.
target_pid].tasks[-1]
# remove binder task that is now complete
del self.completed_binder_calls[x]
self.sched_switch_time += time.time() - proc_start_time
return 0
# Not called from a Binder transaction (cyclic task)
try:
self.process_branches[event.next_pid].add_event(
event,
event_type=JobType.SCHED_SWITCH_IN,
subgraph=subgraph)
except KeyError:
pass # Branch (PID) is not of interest and as such can be passed
self.sched_switch_time += time.time() - proc_start_time
return 0
elif isinstance(event, EventBinderTransaction):
# Normal calls and async calls (first halves)
if event.trans_type == BinderType.CALL:
# First half of a binder transaction
if (event.pid in self.pidtracer.app_pids
or event.pid in self.pidtracer.system_pids):
self.pending_binder_calls.append(
FirstHalfBinderTransaction(event, event.target_pid,
self.pidtracer))
elif event.trans_type == BinderType.ASYNC:
if (event.pid in self.pidtracer.app_pids
or event.pid in self.pidtracer.system_pids):
self.completed_binder_calls.append(
CompletedBinderTransaction(event))
elif event.trans_type == BinderType.REPLY:
if (event.pid in self.pidtracer.system_pids
or event.pid in self.pidtracer.binder_pids):
if self.pending_binder_calls: # Pending first halves
# Find most recent first half
for x, transaction in reversed(
list(enumerate(self.pending_binder_calls))):
if (any(pid == event.pid
for pid in transaction.child_pids)
or event.pid == transaction.parent_pid
): # Find corresponding first half
self.completed_binder_calls.append(
CompletedBinderTransaction(
event, transaction.send_event))
del self.pending_binder_calls[
x] # Remove completed first half
self.binder_time += time.time() - proc_start_time
return 0
elif isinstance(event, EventFreqChange):
for i in range(event.target_cpu, event.target_cpu + 4):
self.metrics.current_core_freqs[i] = event.freq
self.metrics.current_core_utils[i] = event.util
self.cpus[i].add_event(event)
self.freq_time += time.time() - proc_start_time
return 0
elif isinstance(event, EventMaliUtil):
self.metrics.current_gpu_freq = event.freq
self.metrics.current_gpu_util = event.util
self.metrics.sys_util_history.gpu.add_event(event)
self.gpu.add_event(event)
self.mali_time += time.time() - proc_start_time
return 0
@staticmethod
def handle_temp_event(event, event_n_minus_1):
value = TempLogEntry(
event.time,
event.big0,
event.big1,
event.big2,
event.big3,
event.little,
event.gpu,
)
if not event_n_minus_1:
return np.full(1, value)
else:
duration = event.time - event_n_minus_1.time
return np.full(duration, [value])
def handle_idle_event(self, event):
self.metrics.sys_util_history.cpu[event.cpu].add_idle_event(event)