-
Notifications
You must be signed in to change notification settings - Fork 881
/
retrain_yolo.py
345 lines (275 loc) · 12.2 KB
/
retrain_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
This is a script that can be used to retrain the YOLOv2 model for your own dataset.
"""
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
import PIL
import tensorflow as tf
from keras import backend as K
from keras.layers import Input, Lambda, Conv2D
from keras.models import load_model, Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from yad2k.models.keras_yolo import (preprocess_true_boxes, yolo_body,
yolo_eval, yolo_head, yolo_loss)
from yad2k.utils.draw_boxes import draw_boxes
# Args
argparser = argparse.ArgumentParser(
description="Retrain or 'fine-tune' a pretrained YOLOv2 model for your own data.")
argparser.add_argument(
'-d',
'--data_path',
help="path to numpy data file (.npz) containing np.object array 'boxes' and np.uint8 array 'images'",
default=os.path.join('..', 'DATA', 'underwater_data.npz'))
argparser.add_argument(
'-a',
'--anchors_path',
help='path to anchors file, defaults to yolo_anchors.txt',
default=os.path.join('model_data', 'yolo_anchors.txt'))
argparser.add_argument(
'-c',
'--classes_path',
help='path to classes file, defaults to pascal_classes.txt',
default=os.path.join('..', 'DATA', 'underwater_classes.txt'))
# Default anchor boxes
YOLO_ANCHORS = np.array(
((0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434),
(7.88282, 3.52778), (9.77052, 9.16828)))
def _main(args):
data_path = os.path.expanduser(args.data_path)
classes_path = os.path.expanduser(args.classes_path)
anchors_path = os.path.expanduser(args.anchors_path)
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
data = np.load(data_path) # custom data saved as a numpy file.
# has 2 arrays: an object array 'boxes' (variable length of boxes in each image)
# and an array of images 'images'
image_data, boxes = process_data(data['images'], data['boxes'])
anchors = YOLO_ANCHORS
detectors_mask, matching_true_boxes = get_detector_mask(boxes, anchors)
model_body, model = create_model(anchors, class_names)
train(
model,
class_names,
anchors,
image_data,
boxes,
detectors_mask,
matching_true_boxes
)
draw(model_body,
class_names,
anchors,
image_data,
image_set='val', # assumes training/validation split is 0.9
weights_name='trained_stage_3_best.h5',
save_all=False)
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
if os.path.isfile(anchors_path):
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
else:
Warning("Could not open anchors file, using default.")
return YOLO_ANCHORS
def process_data(images, boxes=None):
'''processes the data'''
images = [PIL.Image.fromarray(i) for i in images]
orig_size = np.array([images[0].width, images[0].height])
orig_size = np.expand_dims(orig_size, axis=0)
# Image preprocessing.
processed_images = [i.resize((416, 416), PIL.Image.BICUBIC) for i in images]
processed_images = [np.array(image, dtype=np.float) for image in processed_images]
processed_images = [image/255. for image in processed_images]
if boxes is not None:
# Box preprocessing.
# Original boxes stored as 1D list of class, x_min, y_min, x_max, y_max.
boxes = [box.reshape((-1, 5)) for box in boxes]
# Get extents as y_min, x_min, y_max, x_max, class for comparision with
# model output.
boxes_extents = [box[:, [2, 1, 4, 3, 0]] for box in boxes]
# Get box parameters as x_center, y_center, box_width, box_height, class.
boxes_xy = [0.5 * (box[:, 3:5] + box[:, 1:3]) for box in boxes]
boxes_wh = [box[:, 3:5] - box[:, 1:3] for box in boxes]
boxes_xy = [boxxy / orig_size for boxxy in boxes_xy]
boxes_wh = [boxwh / orig_size for boxwh in boxes_wh]
boxes = [np.concatenate((boxes_xy[i], boxes_wh[i], box[:, 0:1]), axis=1) for i, box in enumerate(boxes)]
# find the max number of boxes
max_boxes = 0
for boxz in boxes:
if boxz.shape[0] > max_boxes:
max_boxes = boxz.shape[0]
# add zero pad for training
for i, boxz in enumerate(boxes):
if boxz.shape[0] < max_boxes:
zero_padding = np.zeros( (max_boxes-boxz.shape[0], 5), dtype=np.float32)
boxes[i] = np.vstack((boxz, zero_padding))
return np.array(processed_images), np.array(boxes)
else:
return np.array(processed_images)
def get_detector_mask(boxes, anchors):
'''
Precompute detectors_mask and matching_true_boxes for training.
Detectors mask is 1 for each spatial position in the final conv layer and
anchor that should be active for the given boxes and 0 otherwise.
Matching true boxes gives the regression targets for the ground truth box
that caused a detector to be active or 0 otherwise.
'''
detectors_mask = [0 for i in range(len(boxes))]
matching_true_boxes = [0 for i in range(len(boxes))]
for i, box in enumerate(boxes):
detectors_mask[i], matching_true_boxes[i] = preprocess_true_boxes(box, anchors, [416, 416])
return np.array(detectors_mask), np.array(matching_true_boxes)
def create_model(anchors, class_names, load_pretrained=True, freeze_body=True):
'''
returns the body of the model and the model
# Params:
load_pretrained: whether or not to load the pretrained model or initialize all weights
freeze_body: whether or not to freeze all weights except for the last layer's
# Returns:
model_body: YOLOv2 with new output layer
model: YOLOv2 with custom loss Lambda layer
'''
detectors_mask_shape = (13, 13, 5, 1)
matching_boxes_shape = (13, 13, 5, 5)
# Create model input layers.
image_input = Input(shape=(416, 416, 3))
boxes_input = Input(shape=(None, 5))
detectors_mask_input = Input(shape=detectors_mask_shape)
matching_boxes_input = Input(shape=matching_boxes_shape)
# Create model body.
yolo_model = yolo_body(image_input, len(anchors), len(class_names))
topless_yolo = Model(yolo_model.input, yolo_model.layers[-2].output)
if load_pretrained:
# Save topless yolo:
topless_yolo_path = os.path.join('model_data', 'yolo_topless.h5')
if not os.path.exists(topless_yolo_path):
print("CREATING TOPLESS WEIGHTS FILE")
yolo_path = os.path.join('model_data', 'yolo.h5')
model_body = load_model(yolo_path)
model_body = Model(model_body.inputs, model_body.layers[-2].output)
model_body.save_weights(topless_yolo_path)
topless_yolo.load_weights(topless_yolo_path)
if freeze_body:
for layer in topless_yolo.layers:
layer.trainable = False
final_layer = Conv2D(len(anchors)*(5+len(class_names)), (1, 1), activation='linear')(topless_yolo.output)
model_body = Model(image_input, final_layer)
# Place model loss on CPU to reduce GPU memory usage.
with tf.device('/cpu:0'):
# TODO: Replace Lambda with custom Keras layer for loss.
model_loss = Lambda(
yolo_loss,
output_shape=(1, ),
name='yolo_loss',
arguments={'anchors': anchors,
'num_classes': len(class_names)})([
model_body.output, boxes_input,
detectors_mask_input, matching_boxes_input
])
model = Model(
[model_body.input, boxes_input, detectors_mask_input,
matching_boxes_input], model_loss)
return model_body, model
def train(model, class_names, anchors, image_data, boxes, detectors_mask, matching_true_boxes, validation_split=0.1):
'''
retrain/fine-tune the model
logs training with tensorboard
saves training weights in current directory
best weights according to val_loss is saved as trained_stage_3_best.h5
'''
model.compile(
optimizer='adam', loss={
'yolo_loss': lambda y_true, y_pred: y_pred
}) # This is a hack to use the custom loss function in the last layer.
logging = TensorBoard()
checkpoint = ModelCheckpoint("trained_stage_3_best.h5", monitor='val_loss',
save_weights_only=True, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1, mode='auto')
model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=validation_split,
batch_size=32,
epochs=5,
callbacks=[logging])
model.save_weights('trained_stage_1.h5')
model_body, model = create_model(anchors, class_names, load_pretrained=False, freeze_body=False)
model.load_weights('trained_stage_1.h5')
model.compile(
optimizer='adam', loss={
'yolo_loss': lambda y_true, y_pred: y_pred
}) # This is a hack to use the custom loss function in the last layer.
model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=0.1,
batch_size=8,
epochs=30,
callbacks=[logging])
model.save_weights('trained_stage_2.h5')
model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=0.1,
batch_size=8,
epochs=30,
callbacks=[logging, checkpoint, early_stopping])
model.save_weights('trained_stage_3.h5')
def draw(model_body, class_names, anchors, image_data, image_set='val',
weights_name='trained_stage_3_best.h5', out_path="output_images", save_all=True):
'''
Draw bounding boxes on image data
'''
if image_set == 'train':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data[:int(len(image_data)*.9)]])
elif image_set == 'val':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data[int(len(image_data)*.9):]])
elif image_set == 'all':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data])
else:
ValueError("draw argument image_set must be 'train', 'val', or 'all'")
# model.load_weights(weights_name)
print(image_data.shape)
model_body.load_weights(weights_name)
# Create output variables for prediction.
yolo_outputs = yolo_head(model_body.output, anchors, len(class_names))
input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = yolo_eval(
yolo_outputs, input_image_shape, score_threshold=0.07, iou_threshold=0)
# Run prediction on overfit image.
sess = K.get_session() # TODO: Remove dependence on Tensorflow session.
if not os.path.exists(out_path):
os.makedirs(out_path)
for i in range(len(image_data)):
out_boxes, out_scores, out_classes = sess.run(
[boxes, scores, classes],
feed_dict={
model_body.input: image_data[i],
input_image_shape: [image_data.shape[2], image_data.shape[3]],
K.learning_phase(): 0
})
print('Found {} boxes for image.'.format(len(out_boxes)))
print(out_boxes)
# Plot image with predicted boxes.
image_with_boxes = draw_boxes(image_data[i][0], out_boxes, out_classes,
class_names, out_scores)
# Save the image:
if save_all or (len(out_boxes) > 0):
image = PIL.Image.fromarray(image_with_boxes)
image.save(os.path.join(out_path,str(i)+'.png'))
# To display (pauses the program):
# plt.imshow(image_with_boxes, interpolation='nearest')
# plt.show()
if __name__ == '__main__':
args = argparser.parse_args()
_main(args)