forked from Alibaba-MIIL/ML_Decoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
99 lines (82 loc) · 3.53 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import argparse
import time
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
from src_files.helper_functions.bn_fusion import fuse_bn_recursively
from src_files.models import create_model
import matplotlib
from src_files.models.tresnet.tresnet import InplacABN_to_ABN
matplotlib.use('TkAgg')
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch MS_COCO infer')
parser.add_argument('--num-classes', default=80, type=int)
parser.add_argument('--model-path', type=str, default='/home/muhammad.ali/Desktop/Research/MLDECODER/tresnet_l.pth')
parser.add_argument('--pic-path', type=str, default='/home/muhammad.ali/Desktop/Research/MLDECODER/path/img.jpg')
parser.add_argument('--model-name', type=str, default='tresnet_l')
parser.add_argument('--image-size', type=int, default=448)
parser.add_argument('--dataset-type', type=str, default='MS-COCO')
parser.add_argument('--th', type=float, default=0.75)
parser.add_argument('--top-k', type=float, default=20)
# ML-Decoder
parser.add_argument('--use-ml-decoder', default=1, type=int)
parser.add_argument('--num-of-groups', default=-1, type=int) # full-decoding
parser.add_argument('--decoder-embedding', default=768, type=int)
parser.add_argument('--zsl', default=0, type=int)
parser.add_argument('gzsl', default =0,typ =int)
def main():
print('Inference code on a single image')
# parsing args
args = parser.parse_args()
# Setup model
print('creating model {}...'.format(args.model_name))
model = create_model(args, load_head=True).cuda()
state = torch.load(args.model_path, map_location='cpu')
model.load_state_dict(state['model'], strict=True)
########### eliminate BN for faster inference ###########
model = model.cpu()
model = InplacABN_to_ABN(model)
model = fuse_bn_recursively(model) # '''This function takes a sequential block and fuses the batch normalization with convolution
# :param model: nn.Sequential. Source resnet model
# :return: nn.Sequential. Converted block
#'''
model = model.cuda().half().eval()
#######################################################
print('done')
classes_list = np.array(list(state['idx_to_class'].values()))
print('done\n')
# doing inference
print('loading image and doing inference...')
im = Image.open(args.pic_path)
im_resize = im.resize((args.image_size, args.image_size))
np_img = np.array(im_resize, dtype=np.uint8)
tensor_img = torch.from_numpy(np_img).permute(2, 0, 1).float() / 255.0 # HWC to CHW
tensor_batch = torch.unsqueeze(tensor_img, 0).cuda().half() # float16 inference
output = torch.squeeze(torch.sigmoid(model(tensor_batch)))
np_output = output.cpu().detach().numpy()
## Top-k predictions
# detected_classes = classes_list[np_output > args.th]
idx_sort = np.argsort(-np_output)
detected_classes = np.array(classes_list)[idx_sort][: args.top_k]
scores = np_output[idx_sort][: args.top_k]
print(scores)
idx_th = scores > args.th
detected_classes = detected_classes[idx_th]
print('done\n')
# displaying image
print('showing image on screen...')
fig = plt.figure()
plt.imshow(im)
plt.axis('off')
plt.axis('tight')
# plt.rcParams["axes.titlesize"] = 10
plt.title("detected classes: {}".format(detected_classes))
plt.show()
print('done\n')
if __name__ == '__main__':
main()