-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathrun_inference_benchmark.py
244 lines (191 loc) · 8.58 KB
/
run_inference_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn.functional as F
from safetensors.numpy import save_file, load_file
from omegaconf import OmegaConf
from transformers import AutoConfig
import cv2
from PIL import Image
import numpy as np
import json
import os
#
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInpaintPipeline, DDIMScheduler, AutoencoderKL
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DDIMScheduler
from diffusers import DDIMScheduler, DDPMScheduler, DPMSolverMultistepScheduler
#
from models.pipeline_mimicbrush import MimicBrushPipeline
from models.ReferenceNet import ReferenceNet
from models.depth_guider import DepthGuider
from mimicbrush import MimicBrush_RefNet
from dataset.data_utils import *
val_configs = OmegaConf.load('./configs/inference.yaml')
# === import Depth Anything ===
import sys
sys.path.append("./depthanything")
from torchvision.transforms import Compose
from depthanything.fast_import import depth_anything_model
from depthanything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
depth_anything_model.load_state_dict(torch.load(val_configs.model_path.depth_model))
# === load the checkpoint ===
base_model_path = val_configs.model_path.pretrained_imitativer_path
vae_model_path = val_configs.model_path.pretrained_vae_name_or_path
image_encoder_path = val_configs.model_path.image_encoder_path
ref_model_path = val_configs.model_path.pretrained_reference_path
mimicbrush_ckpt = val_configs.model_path.mimicbrush_ckpt_path
device = "cuda"
def pad_img_to_square(original_image, is_mask=False):
width, height = original_image.size
if height == width:
return original_image
if height > width:
padding = (height - width) // 2
new_size = (height, height)
else:
padding = (width - height) // 2
new_size = (width, width)
if is_mask:
new_image = Image.new("RGB", new_size, "black")
else:
new_image = Image.new("RGB", new_size, "white")
if height > width:
new_image.paste(original_image, (padding, 0))
else:
new_image.paste(original_image, (0, padding))
return new_image
def collage_region(low, high, mask):
mask = (np.array(mask) > 128).astype(np.uint8)
low = np.array(low).astype(np.uint8)
low = (low * 0).astype(np.uint8)
high = np.array(high).astype(np.uint8)
mask_3 = mask
collage = low * mask_3 + high * (1-mask_3)
collage = Image.fromarray(collage)
return collage
def resize_image_keep_aspect_ratio(image, target_size = 512):
height, width = image.shape[:2]
if height > width:
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_width = target_size
new_height = int(height * (target_size / width))
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def crop_padding_and_resize(ori_image, square_image):
ori_height, ori_width, _ = ori_image.shape
scale = max(ori_height / square_image.shape[0], ori_width / square_image.shape[1])
resized_square_image = cv2.resize(square_image, (int(square_image.shape[1] * scale), int(square_image.shape[0] * scale)))
padding_size = max(resized_square_image.shape[0] - ori_height, resized_square_image.shape[1] - ori_width)
if ori_height < ori_width:
top = padding_size // 2
bottom = resized_square_image.shape[0] - (padding_size - top)
cropped_image = resized_square_image[top:bottom, :,:]
else:
left = padding_size // 2
right = resized_square_image.shape[1] - (padding_size - left)
cropped_image = resized_square_image[:, left:right,:]
return cropped_image
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", in_channels=13, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(dtype=torch.float16)
pipe = MimicBrushPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
unet=unet,
feature_extractor=None,
safety_checker=None,
)
depth_guider = DepthGuider()
referencenet = ReferenceNet.from_pretrained(ref_model_path, subfolder="unet").to(dtype=torch.float16)
mimicbrush_model = MimicBrush_RefNet(pipe, image_encoder_path, mimicbrush_ckpt, depth_anything_model, depth_guider, referencenet, device)
test_set_name = val_configs.data_path.test_set_name
save_root = val_configs.data_path.output_dir
if not os.path.exists(save_root):
os.mkdir(save_root)
if test_set_name == 'PartComp_Cross':
source_dir = val_configs.data_path.bench_dir_partcomp_cross
shape_control_flag = 0
elif test_set_name == 'PartComp_Within':
source_dir = val_configs.data_path.bench_dir_partcomp_within
shape_control_flag = 0
elif test_set_name == 'Texture_Cross':
source_dir = val_configs.data_path.bench_dir_texture_cross
shape_control_flag = 1
elif test_set_name == 'Texture_Within':
source_dir = val_configs.data_path.bench_dir_texture_within
shape_control_flag = 1
reference_names = [i for i in os.listdir(source_dir) if 'reference.png' in i ]
index = 0
for i, reference_name in enumerate(reference_names):
source_image_name = reference_name.replace('_reference', '_source')
source_mask_name = reference_name.replace('_reference', '_source_mask')
source_image_path = os.path.join(source_dir,source_image_name)
source_mask_path = os.path.join(source_dir,source_mask_name)
reference_image_path = os.path.join(source_dir,reference_name)
target_image = cv2.imread(source_image_path)
target_image_raw = target_image.copy()
target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
target_image = resize_image_keep_aspect_ratio(target_image)
ref_image = cv2.imread(reference_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
ref_image = resize_image_keep_aspect_ratio(ref_image)
mask = cv2.imread(source_mask_path)
source_mask_raw = mask.copy()
mask = resize_image_keep_aspect_ratio(mask)
mask = (mask> 128).astype(np.uint8)
masked_target_image = target_image * (1-mask)
ref_image = Image.fromarray(ref_image.astype(np.uint8))
ref_image = pad_img_to_square(ref_image)
target_image = Image.fromarray(target_image.astype(np.uint8))
target_image = pad_img_to_square(target_image)
target_image_low = target_image
target_mask = mask[:,:,0]
target_mask = np.stack([target_mask,target_mask,target_mask],-1).astype(np.uint8) * 255
target_mask = Image.fromarray(target_mask)
mask = pad_img_to_square(target_mask, True)
depth_image = target_image.copy()
target_image = collage_region(target_image_low, target_image, mask)
depth_image = np.array(depth_image)
depth_image = transform({'image': depth_image})['image']
depth_image = torch.from_numpy(depth_image).unsqueeze(0) / 255
if not shape_control_flag:
depth_image = depth_image * 0
pred, depth_pred = mimicbrush_model.generate(pil_image=ref_image, depth_image = depth_image, num_samples=1, num_inference_steps=50,
seed=1, image=target_image, mask_image=mask, strength=1.0, guidance_scale=5)
depth_pred = F.interpolate(depth_pred, size=(512,512), mode = 'bilinear', align_corners=True)[0][0]
depth_pred = depth_pred.detach().cpu().numpy().astype(np.uint8)
depth_pred = cv2.applyColorMap(depth_pred, cv2.COLORMAP_INFERNO)[:,:,::-1]
depth_pred = Image.fromarray(depth_pred)
pred = pred[0]
pred = np.array(pred).astype(np.uint8)
pred = crop_padding_and_resize(target_image_raw , pred)
mask_alpha = source_mask_raw
for i in range(10):
mask_alpha = cv2.GaussianBlur(mask_alpha, (3, 3), 0)
mask_alpha_norm = mask_alpha / 255
pred = pred[:,:,::-1] * mask_alpha_norm + target_image_raw * (1 - mask_alpha_norm)
save_path = os.path.join(save_root, reference_name.replace('reference', 'result'))
cv2.imwrite(save_path, pred)