Skip to content

Latest commit

 

History

History
168 lines (121 loc) · 5.83 KB

README.md

File metadata and controls

168 lines (121 loc) · 5.83 KB

Telegram Statistics Collector

A set of Python scripts that collects, analyzes and visualizes statistics from Telegram group messages. The project consists of 5 scripts:

  • fetch_group.py: Fetches messages from the specified group and saves them to a sqlite database. The last processed message is checked when the script is executed, new messages can be easily added to the db by exeuting the script again.

  • collect_data.py: Analyzes the messages in the db file then saves various statistics about the messages and their senders in 2 JSON files (global_stats and user_stats) and creates an extra SQLite database for users. Statistics and keywords are configurable. Optional sentiment analysis support.

  • get_all_words.py: Fecthes messages from a specified Telegram group and stores all words found into 4 .json files. (case sensitive / insensitive; sorted alphabetically / by frequency).

  • wordcloud-extension/create_wordclouds.py: Uses the word and category data in the JSON files (obtained from collect_data.py) to generate word clouds. See wordclouds extension

  • graph-extension/create_graphs.py: Converts user / global metrics (message count, media count, ...) and other analytics into various static graphs and animations. See graphs extension

Installation

  1. Clone the repository:

    git clone https://github.com/ali-albdaer/TelegramStatisticsCollector.git
  2. Install the required Python packages:

    pip install -r requirements.txt

Configuration

  1. Create a config.py file in the res directory and provide the following data (see res/config.example.py):

    # res/config.py
    telegram_user = 'your_telegram_user'
    api_id = 'your_api_id'
    api_hash = 'your_api_hash'
    telegram_phone = 'your_telegram_phone'
    telegram_group_id = 'your_group_id'
  2. Optionally configure the rest of the parameters:

    # res/config.py
    # Flags
    CONVERT_UNICODE = True
    CASE_INSENSITIVE = True
    IGNORE_COMMON_WORDS = False
    SHOW_PROGRESS_BAR = True
    COUNT_REACTIONS = True
    LOGOUT = False
    GLOBAL_RANKING_BY_RATIO = True
    ...
    
    # Limits
    MIN_WORD_LENGTH = 1
    
    USER_WORD_LIMIT = 100
    USER_REACTION_LIMIT = 20
    USER_CATEGORY_LIMIT = 10
    USER_ACTIVE_DAYS_LIMIT = 3
    
    GLOBAL_WORD_LIMIT = 50
    GLOBAL_REACTION_LIMIT = 10 
    GLOBAL_CATEGORY_LIMIT = 1000 
    GLOBAL_RANKING_LIMIT = 50
    ...
    
    # Sentiment Analysis Configuration
    ANALYZE_SENTIMENTS = False
    SENTIMENT_PIPELINE_ARGS = ('text-classification', )
    SENTIMENT_PIPELINE_KWARGS = {
       'model': 'j-hartmann/emotion-english-distilroberta-base',
       'top_k': None,
       'truncation': True
    }
    ...
    
    # File Paths
    user_stats_json = f'{output_folder}/user_stats.json'
    user_stats_db = f'{output_folder}/users.db'
    session_file = f'{telegram_user}.session'
    log_channel_file = f'{output_folder}/channel_log.txt'
    ...
  3. Create a file called explicit.py in the res directory and flag certain words as curse words (see res/explicit.example.py):

    # res/explicit.py
    curses = {"slubberdagullion", "gobemouche", "fopdoodle", "tatterdemalion", "scallywag"}
  4. Create a file called phrases.py in the res directory and add the words/phrases you want to track (see res/phrases.example.py):

    # res/phrases.py
    from res.explicit import curses
    
    category_sets = {
       'animals': {'dog', 'cat', 'elephant', 'giraffe'},
       'colors': {'black', 'white', 'red', 'blue', 'green'},
       'countires'; {('united states', 'usa', 'america'), 'canada', 'mexico'},
       'scientists': {('albert einstein', 'einstein'), ('nicola tesla', 'tesla')},
       'cars': {'bmw', 'toyota', 'tesla'},
       'letters': {'a', 'b', 'c'},
       'numbers': set(map(str, range(1001))), 
       'curses': curses
    }
    
    ignored_words = {"the", "in", "a", "it", "is", "and", "to", "of", "i", "you"}

Usage

  1. Run the scripts you want:

    python fetch_group.py
    python collect_data.py

    OR

    python get_all_words.py

    Either set of scripts will connect to your Telegram account and start collecting messages from the specified group. If it's the first time running the script, you will need to authorize the Telegram client. Simply type the code you receive from Telegram in the terminal.

  2. View the data:

    fetch_group.py will save the messages in data/messages.db.

    collect_data.py will save the statistics in the following files:

    • data/global_stats.json,
    • data/user_stats.json,
    • and data/user_stats.db.

    get_all_words.py: the words will be saved in:

    • data/all_words_case_sensitive_freq.json,
    • data/all_words_case_sensitive_alpha.json,
    • data/all_words_case_insensitive_freq.json,
    • and data/all_words_case_insensitive_alpha.json.

Visualizing The Data

  • The data you obtained can be used to generate to nice word clouds, check wordclouds.md
  • To create activity graphs and animations using the data you obtained, check graphs.md

Disclaimer

This project was created for fun and educational purposes. Please use it responsibly and ethically. I do not support any malicious use of this script, including but not limited to:

  • Spying on individuals without their consent.
  • Collecting data for harassment or abuse.
  • Violating Telegram's terms of service or privacy policies.

By using this project, you agree to use it only for lawful and ethical purposes.

Contributing

You are more than welcome to contribute to this project! Please fork the repository and create a pull request with your changes.

License

This project is licensed under the MIT License. See the LICENSE file for more details.