-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsaveallfeaturevector.m
66 lines (57 loc) · 2.31 KB
/
saveallfeaturevector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%save feature vector
%20160611
%Charlene Her
%% =====import=====
[num,txt,raw]=xlsread('referenceall.xlsx');
allavg=[];%save average feature vector of each sample to this matrix
for a=1:size(txt,1) %%txt contains the name of the heart sound(1) and its answer(2);
recordName=txt{a,1};
answer=num(a,1);
%% Load the trained parameter matrices for Springer's HSMM model.
% The parameters were trained using 409 heart sounds from MIT heart
% sound database, i.e., recordings a0001-a0409.
load('Springer_B_matrix.mat');
load('Springer_pi_vector.mat');
load('Springer_total_obs_distribution.mat');
%recordName='a0001';
%% Load data and resample data
springer_options = default_Springer_HSMM_options;
cd(['../training/training-',recordName(1)]);
[PCG, Fs1, nbits1] = wavread([recordName '.wav']); % load data
%% import segidx
cd('C:/Users/Administrator/Google Drive/heartSound/sample2016/segidx');
load([recordName '.mat']);
startend=segidx;
cd('C:/Users/Administrator/Google Drive/heartSound/sample2016');
%% =====derived from getfeature.m=====
%% devide into 10 parts each cycle
partitionIndex=partitionCycle(10, startend);
%% add zero and fft
[fftolp,parCyc] = alignedFFTolp( partitionIndex, PCG );
[fftnmr,parCycm]= alignedFFT(partitionIndex,PCG);
fftolp=fftolp(1:9,:);
%fft1: contain complex fft
%parCyc: partitioned cycle, zeros added to 250 points
%% fft1 become cyclewise and plot (data visualization)
fftall={transfft(fftnmr),transfft(fftolp)};
%% =====now generated the feature vector(normal2000-overlap-answer)=====(derived from visualfft2.m)
cycledata1=[];
avgdata=[];
for m=1:2
fft=fftall{1,m};
cycledata=[];
for n=1:length(fft);
roww=reshape((fft{1,n})',[1,size(fft{1,n},1)*size(fft{1,n},2)]);
cycledata=[cycledata;roww];
end
avg=sum(cycledata,1)/size(cycledata,1);
cycledata1=horzcat(cycledata1,cycledata);
avgdata=horzcat(avgdata,avg);
end
cd('C:/Users/Administrator/Google Drive/heartSound/sample2016/allcycle');
save([recordName,'.mat'], 'cycledata1');
cd('C:/Users/Administrator/Google Drive/heartSound/sample2016');
allavg=[allavg;avgdata];
%input('onecycle');
end
xlswrite('avgallfalldata.xlsx',allavg);