forked from JuliaPOMDP/DESPOT.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunRockSample.jl
205 lines (183 loc) · 9.35 KB
/
runRockSample.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
using POMDPs
using DESPOT
using POMDPToolbox
include("rockSample.jl")
include("rockSampleBounds.jl")
include("../../beliefUpdate/beliefUpdateParticle.jl")
function main(;
grid_size::Int64 = 4,
num_rocks::Int64 = 4,
n_reps::Int64 = 1,
n_particles::Int64 = 500, # for both solver and belief updater
main_seed::Int64 = 42,
discount::Float64 = 0.95,
search_depth::Int64 = 90,
time_per_move::Float64 = 1.0,
pruning_constant::Float64 = 0.0,
eta::Float64 = 0.95,
sim_len::Int64 = -1,
max_trials::Int64 = -1,
approximate_ubound::Bool = false,
debug::Int64 = 0
)
total_sim_steps::Int64 = 0
total_discounted_return::Float64 = 0.
total_undiscounted_return::Float64 = 0.
total_run_time::Float64 = 0.
# Optional parameters can be adjusted, as shown below.
# Performance tip: control use of computational resources either by
# limiting time_per_move, by limiting the number of trials per move, or both.
# Setting either parameter to 0 or a negative number disables that limit.
search_depth::Int64 = 90 #default: 90
time_per_move::Float64 = -1.0 # sec, default: 1, unlimited: -1
pruning_constant::Float64 = 0.0
eta::Float64 = 0.95 # default: 0.95
sim_len::Int64 = -1 # default: -1
max_trials::Int64 = 100 # default: -1
approximate_ubound::Bool = false
tiny::Float64 = 1e-6
debug::Int64 = 0
for i in 1:n_reps
@printf("\n\n\n\n================= Run %d =================\n", i)
sim_steps,
discounted_return,
undiscounted_return,
run_time = execute(
grid_size = grid_size,
num_rocks = num_rocks,
n_particles = n_particles,
main_seed = main_seed,
discount = discount,
search_depth = search_depth,
time_per_move = time_per_move,
pruning_constant = pruning_constant,
eta = eta,
sim_len = sim_len,
max_trials = max_trials,
approximate_ubound = approximate_ubound,
debug = debug
)
total_sim_steps += sim_steps
total_discounted_return += discounted_return
total_undiscounted_return += undiscounted_return
total_run_time += run_time
end
avg_sim_steps = total_sim_steps/n_reps
avg_discounted_return = total_discounted_return/n_reps
avg_undiscounted_return = total_undiscounted_return/n_reps
avg_run_time = total_run_time/n_reps
if (n_reps > 1)
@printf("\n================= Batch Averages =================\n")
@printf("Number of steps = %d\n", avg_sim_steps)
@printf("Discounted return = %.2f\n", avg_discounted_return)
@printf("Undiscounted return = %.2f\n", avg_undiscounted_return)
@printf("Runtime = %.2f sec\n", avg_run_time)
end
return avg_sim_steps, avg_discounted_return, avg_undiscounted_return, avg_run_time
end
function execute(;
grid_size::Int64 = 4,
num_rocks::Int64 = 4,
n_particles::Int64 = 500, # for both solver and belief updater
main_seed::Int64 = 42,
discount::Float64 = 0.95,
search_depth::Int64 = 90,
time_per_move::Float64 = 1.0,
pruning_constant::Float64 = 0.0,
eta::Float64 = 0.95,
sim_len::Int64 = -1,
max_trials::Int64 = -1,
approximate_ubound::Bool = false,
debug::Int64 = 0
)
rand_max::Int64 = 2^31-1 # 2147483647
# generate unique random seeds (optional, if not supplied, default values will be used)
seed ::UInt32 = convert(UInt32, main_seed) # the main random seed that's used to set the other seeds
w_seed::UInt32 = seed $ n_particles # world seed, used in the overall simulation
b_seed::UInt32 = seed $ (n_particles + 1) # belief seed, used for belief particle sampling, among other things
m_seed::UInt32 = seed $ (n_particles + 2) # model seed, used to initialize the problem model
pomdp = RockSample(
grid_size,
num_rocks,
rand_max = rand_max, # optional, default: 2^31-1
belief_seed = b_seed, # optional, default: 479
model_seed = m_seed, # optional, default: 476
discount = discount) # optional, default: 0.95
# construct a belief updater and specify some of the optional keyword parameters
bu = DESPOTBeliefUpdater{RockSampleState,
RockSampleAction,
RockSampleObs}(
pomdp::POMDP,
seed = seed,
rand_max = rand_max,
n_particles = n_particles)
# create initial belief and allocate an updated belief object
initial_states = initial_state_distribution(pomdp)
current_belief = initialize_belief(bu, initial_states)
updated_belief = create_belief(bu)
custom_bounds = RockSampleBounds(pomdp)
solver::DESPOTSolver = DESPOTSolver{RockSampleState,
RockSampleAction,
RockSampleObs,
RockSampleBounds,
RandomStreams
}(
# specify the optional keyword parameters
bounds = custom_bounds,
search_depth = search_depth,
main_seed = seed, # specify the main random seed
time_per_move = time_per_move,
n_particles = n_particles,
pruning_constant = pruning_constant,
eta = eta,
sim_len = sim_len,
approximate_ubound = approximate_ubound,
max_trials = max_trials,
rand_max = rand_max,
debug = debug)
state::RockSampleState = start_state(pomdp)
next_state::RockSampleState = RockSampleState()
obs::RockSampleObs = RockSampleObs()
rewards::Array{Float64} = Array(Float64, 0)
rng::DESPOTDefaultRNG = DESPOTDefaultRNG(w_seed, rand_max) # used to advance the state of the simulation (world)
policy::DESPOTPolicy = POMDPs.solve(solver, pomdp)
sim_steps::Int64 = 0
r::Float64 = 0.0
println("\nSTARTING STATE: $state")
show_state(pomdp, state) #TODO: wrap RockSample in a module
tic() # start the clock
while !isterminal(pomdp, state) &&
(solver.config.sim_len == -1 || sim_steps < solver.config.sim_len)
println("\n*************** STEP $(sim_steps+1) ***************")
action = POMDPs.action(policy, current_belief)
transition_distribution = POMDPs.transition(pomdp, state, action)
next_state = POMDPs.rand(rng, transition_distribution, next_state) # update state to next state
observation_distribution = POMDPs.observation(pomdp, state, action, next_state)
observation_distribution.debug = 1 #TODO: remove -debug
obs = POMDPs.rand(rng, observation_distribution)
r = POMDPs.reward(pomdp, state, action)
push!(rewards, r)
state = next_state
updated_belief = POMDPs.update(bu, current_belief, action, obs)
current_belief = deepcopy(updated_belief) #TODO: perhaps this could be done better
println("Action = $action")
println("State = $next_state"); show_state(pomdp, next_state) #TODO: change once abstract types are introduced
print( "Observation = "); show_obs(pomdp, obs) #TODO: change once abstract types are introduced
println("Reward = $r")
sim_steps += 1
end
run_time::Float64 = toq() # stop the clock
# Compute discounted reward
discounted_reward::Float64 = 0.0
multiplier::Float64 = 1.0
for r in rewards
discounted_reward += multiplier * r
multiplier *= pomdp.discount
end
println("\n********** EXECUTION SUMMARY **********")
@printf("Number of steps = %d\n", sim_steps)
@printf("Undiscounted return = %.2f\n", sum(rewards))
@printf("Discounted return = %.2f\n", discounted_reward)
@printf("Runtime = %.2f sec\n", run_time)
return sim_steps, sum(rewards), discounted_reward, run_time
end