-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathscatter.py
286 lines (233 loc) · 9.79 KB
/
scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
#-*- coding:utf-8 -*-
##
## scatter.py
##
## Created on: Jun 05, 2015
## Author: Alexey S. Ignatiev
## E-mail: [email protected]
##
#
#==============================================================================
import json
import math
import matplotlib.pyplot as plt
from matplotlib import __version__ as mpl_version
import numpy as np
from plot import Plot
import six
from six.moves import range
#
#==============================================================================
class ScatterException(Exception):
pass
#
#==============================================================================
class Scatter(Plot, object):
"""
Scatter plot class.
"""
def __init__(self, options):
"""
Scatter constructor.
"""
super(Scatter, self).__init__(options)
# setting up axes limits
if not self.x_min:
self.x_min = self.y_min # self.y_min is supposed to have a default value
else:
self.y_min = self.x_min
if not self.x_max:
self.x_max = 0
if not self.y_max:
self.y_max = 0
if self.x_max and self.y_max and self.x_max != self.y_max:
assert 0, 'right-most positions must be the same for X and Y axes'
elif self.x_max == 0 and self.y_max == 0:
self.x_max = 10
while self.x_max < self.timeout:
self.x_max *= 10
self.y_max = self.x_max
else:
self.x_max = self.y_max = max(self.x_max, self.y_max)
# setting timeout-line label
if not self.t_label:
self.t_label = '{0} sec. timeout'.format(int(self.timeout))
with open(self.def_path, 'r') as fp:
self.marker_style = json.load(fp)['scatter_style']
def create(self, data):
"""
Does the plotting.
"""
if len(data[0][1]) != len(data[1][1]):
raise ScatterException('Number of instances for each competitor must be the same')
step = math.ceil((self.x_max - self.x_min) / 10)
x = np.arange(self.x_min, self.x_max + self.x_min + step, step)
# "good" area
plt.plot(x, x, color='black', ls=':', lw=1.5, zorder=3)
plt.plot(x, 0.1 * x, 'g:', lw=1.5, zorder=3)
plt.plot(x, 10 * x, 'g:', lw=1.5, zorder=3)
plt.fill_between(x, 0.1 * x, 10 * x, facecolor='green', alpha=0.15,
zorder=3)
plt.xlim([self.x_min, self.x_max])
plt.ylim([self.y_min, self.y_max])
# timeout lines
if self.tlb_loc != 'none':
plt.axvline(self.timeout, linewidth=1, color='red', ls=':',
label=str(self.timeout), zorder=3)
plt.axhline(self.timeout, linewidth=1, color='red', ls=':',
label=str(self.timeout), zorder=3)
if self.tlb_loc == 'after':
plt.text(2 * self.x_min, self.timeout + self.x_max / 40,
self.t_label, horizontalalignment='left',
verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8)
plt.text(self.timeout + self.x_max / 40, 2 * self.x_min,
self.t_label, horizontalalignment='left',
verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8,
rotation=90)
else:
plt.text(2 * self.x_min, self.timeout - self.x_max / 3.5,
self.t_label, horizontalalignment='left',
verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8)
plt.text(self.timeout - self.x_max / 3.5, 2 * self.x_min,
self.t_label, horizontalalignment='left',
verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8,
rotation=90)
# scatter
plt.scatter(data[0][1], data[1][1], c=self.marker_style['color'],
marker=self.marker_style['marker'],
edgecolors=self.marker_style['edgecolor'],
s=self.marker_style['size'],
alpha=self.alpha, zorder=5)
# axes' labels
if self.x_label:
plt.xlabel(self.x_label)
else:
plt.xlabel(data[0][0])
if self.y_label:
plt.ylabel(self.y_label)
else:
plt.ylabel(data[1][0])
# turning the grid on
if not self.no_grid:
plt.grid(True, color='black', ls=':', lw=1, zorder=1)
# choosing logarithmic scales
ax = plt.gca()
ax.set_xscale('log')
ax.set_yscale('log')
# setting ticks font properties
# set_*ticklables() seems to be not needed in matplotlib 1.5.0
if float(mpl_version[:3]) < 1.5:
ax.set_xticklabels(ax.get_xticks(), self.f_props)
ax.set_yticklabels(ax.get_yticks(), self.f_props)
# formatter
majorFormatter = plt.LogFormatterMathtext(base=10)
ax.xaxis.set_major_formatter(majorFormatter)
ax.yaxis.set_major_formatter(majorFormatter)
# setting frame thickness
for i in six.itervalues(ax.spines):
i.set_linewidth(1)
plt.savefig(self.save_to, bbox_inches='tight', transparent=self.transparent)
# def create(self, data):
# """
# Does the plotting.
# """
# if len(data[0][1]) != len(data[1][1]):
# raise ScatterException('Number of instances for each competitor must be the same')
# # trying to remove duplicated points with the same coordinates
# xs, ys = self.remove_dups(zip(data[0][1], data[1][1]))
# step = int((self.x_max - self.x_min) / 10)
# x = np.arange(self.x_min, self.x_max + self.x_min + step, step)
# # "good" area
# plt.plot(x, x, color='black', ls=':', lw=1.5, zorder=3)
# plt.plot(x, 0.1 * x, 'g:', lw=1.5, zorder=3)
# plt.plot(x, 10 * x, 'g:', lw=1.5, zorder=3)
# plt.fill_between(x, 0.1 * x, 10 * x, facecolor='green', alpha=0.15,
# zorder=3)
# plt.xlim([self.x_min, self.x_max])
# plt.ylim([self.y_min, self.y_max])
# # timeout lines
# plt.axvline(self.timeout, linewidth=1, color='red', ls=':',
# label=str(self.timeout), zorder=3)
# plt.axhline(self.timeout, linewidth=1, color='red', ls=':',
# label=str(self.timeout), zorder=3)
# if self.tlb_loc == 'after':
# plt.text(2 * self.x_min, self.timeout + self.x_max / 40,
# self.t_label, horizontalalignment='left',
# verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8)
# plt.text(self.timeout + self.x_max / 40, 2 * self.x_min,
# self.t_label, horizontalalignment='left',
# verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8,
# rotation=90)
# else:
# plt.text(2 * self.x_min, self.timeout - self.x_max / 3.5,
# self.t_label, horizontalalignment='left',
# verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8)
# plt.text(self.timeout - self.x_max / 3.5, 2 * self.x_min,
# self.t_label, horizontalalignment='left',
# verticalalignment='bottom', fontsize=self.f_props['size'] * 0.8,
# rotation=90)
# # making the scatter plot step by step for each level
# print sum([len(x) for x in xs]), len(data[0][1])
# xx = []
# yy = []
# rgba_c =[]
# rgba_e =[]
# for l in range(len(xs)):
# xx.extend(xs[l])
# yy.extend(ys[l])
# # ctuple = (1., 0., 0., 1 - (1.0 - self.alpha) ** (l + 1))
# # rgba_c.extend([ctuple for i in xs[l]])
# # etuple = (0., 0., 0., 1 - (1.0 - self.alpha) ** (l + 1))
# # rgba_e.extend([etuple for i in xs[l]])
# # plt.scatter(xx, yy, c=rgba_c, marker='o', edgecolor=rgba_e, s=25, zorder=5)
# plt.scatter(xx, yy, c='r', marker='o', alpha=self.alpha, s=25, zorder=5)
# # axes' labels
# if self.x_label:
# plt.xlabel(self.x_label)
# else:
# plt.xlabel(data[0][0])
# if self.y_label:
# plt.ylabel(self.y_label)
# else:
# plt.ylabel(data[1][0])
# # turning the grid on
# if not self.no_grid:
# plt.grid(True, color='black', ls=':', lw=1, zorder=1)
# # choosing logarithmic scales
# ax = plt.gca()
# ax.set_xscale('log')
# ax.set_yscale('log')
# # setting ticks font properties
# ax.set_xticklabels(ax.get_xticks(), self.f_props)
# ax.set_yticklabels(ax.get_yticks(), self.f_props)
# # formatter
# majorFormatter = plt.LogFormatterMathtext(base=10)
# ax.xaxis.set_major_formatter(majorFormatter)
# ax.yaxis.set_major_formatter(majorFormatter)
# # setting frame thickness
# for i in six.itervalues(ax.spines):
# i.set_linewidth(1)
# plt.savefig(self.save_to, bbox_inches='tight', transparent=self.transparent)
# def remove_dups(self, data):
# """
# Removes duplicated points.
# """
# pset = set([])
# pdup = {}
# distance = lambda p,q: ((p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2) ** 0.5
# for p in data:
# for q in pset:
# if distance(p, q) == 0:
# pdup[q] += 1
# break
# else:
# pdup[p] = 1
# pset.add(p)
# maxdups = max(six.itervalues(pdup))
# xs = [[] for i in range(maxdups)]
# ys = [[] for i in range(maxdups)]
# for p, l in six.iteritems(pdup):
# xs[l - 1].append(p[0])
# ys[l - 1].append(p[1])
# return xs, ys