-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.py
42 lines (34 loc) · 1.46 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2018 Anton Alekseev
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import keras.backend as K
from keras.layers import Layer
class SinkhornLayer(Layer):
def __init__(self, n_iters=21, temperature=0.01, **kwargs):
self.supports_masking = False
self.n_iters = n_iters
self.temperature = K.constant(temperature)
super(SinkhornLayer, self).__init__(**kwargs)
def call(self, input_tensor, mask=None):
n = K.shape(input_tensor)[1]
log_alpha = K.reshape(input_tensor, [-1, n, n])
log_alpha /= self.temperature
for _ in range(self.n_iters):
log_alpha -= K.reshape(K.log(K.sum(K.exp(log_alpha), axis=2)), [-1, n, 1])
log_alpha -= K.reshape(K.log(K.sum(K.exp(log_alpha), axis=1)), [-1, 1, n])
return K.exp(log_alpha)
def compute_mask(self, x, mask=None):
return None
def compute_output_shape(self, input_shape):
return input_shape