-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtst_r.py
executable file
·278 lines (232 loc) · 7.56 KB
/
tst_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# This program uses computer simulation to evaluate the statistical
# properties of the statistical method described in:
#
# Rogers, Alan R. and Huff, Chad. 2008. Linkage Disequilibrium in
# Loci with Unknown Phase.
#
# I hereby place this computer program into the public domain. Alan
# R. Rogers
from random import random, uniform
from datetime import datetime
from estimate_ld import *
#nreps = 10000 # number of repetitions
nreps = 10 # number of repetitions
ngtypes = 45 # diploid sample size
print "Time: %s" % datetime.now()
def D_to_Dprime(D, pA, pB):
"""
Find Dprime from D, pA, and pB. As usually defined,
Dprime ranges btw 0 and 1. It is modified here to range
between -1 and 1, retaining the sign of D.
"""
qA = 1.0 - pA
qB = 1.0 - pB
if D < 0:
#a = max(-pA*pB, -qA*qB) # usual definition
a = -max(-pA*pB, -qA*qB) # retain sign of D
else:
a = min(pA*qB, qA*pB)
return D/a
def Dprime_to_D(Dp, pA, pB):
"""
Find D from Dprime, pA, and pB.
Modified to allow the sign of Dprime to equal that of D.
"""
qA = 1.0 - pA
qB = 1.0 - pB
if Dp < 0:
# a = max(-pA*pB, -qA*qB) # for usual definition of Dp
a = -max(-pA*pB, -qA*qB) # allow for negative Dp
else:
a = min(pA*qB, qA*pB)
return Dp*a
def bernoulli(p):
"""
Return 1 with probability p, 0 with probability 1-p.
"""
if random() < p:
return 1
return 0
def generate_gamete(pa, pb, D):
"""
Generate pairs from following distribution:
y z Prob
-------------------------
1 1 pa * pb + D
1 0 pa * (1-pb) - D
0 1 (1-pa) * pb - D
0 0 (1-pa) * (1-pb) + D
Algorithm:
1. Generate y = Bernoulli(pa) and z = Bernoulli(pb)
2. Change y and z as follows:
If D > 0:
(1,0) --> (1,1) with prob D/(pa*(1-pb))
(0,1) --> (0,0) with prob D/((1-pa)*pb)
If D < 0:
(1,1) --> (1,0) with prob -D/(pa*pb)
(0,0) --> (0,1) with prob -D/((1-pa)*(1-pb))
3. Function returns (y, z)
"""
y = bernoulli(pa)
z = bernoulli(pb)
if D > 0.0:
if y==1 and z==0:
if random() < D/(pa*(1.0-pb)):
z = 1
elif y==0 and z==1:
if random() < D/((1.0-pa)*pb):
z = 0
elif D < 0.0:
if y==1 and z==1:
if random() < -D/(pa*pb):
z = 0
elif y==0 and z==0:
if random() < -D/((1.0-pa)*(1.0-pb)):
z = 1
return (y, z)
def header(leading_lbl, estimators):
print
out = "%7s" % ""
if leading_lbl != None:
out += " %7s" % ""
for e in estimators:
out += "|%21s" % e.lbl
print out
out = "%7s" % "N"
if leading_lbl != None:
out += " %7s" % leading_lbl
for e in estimators:
out += "|%7s %7s %5s" % ("bias", "stderr", "nconv")
print out
# One simulated data set
def sim_step(ngtypes, epa, epb, eD, ef, estimators):
assert ef >= 0
v = 0.0
while v == 0.0:
# The i'th gamete has value (y[i], z[i])
y = []
z = []
# Loop continues until we get a data set with variance
# at both loci.
for i in range(ngtypes):
# Generate 1st gamete in genotype
yval, zval = generate_gamete(epa, epb, eD)
y.append(yval)
z.append(zval)
# Generate 2nd gamete in genotype
if random() < ef:
# 2nd gamete is identical by descent
y.append(yval)
z.append(zval)
else:
# 2nd gamete is independent
yval, zval = generate_gamete(epa, epb, eD)
y.append(yval)
z.append(zval)
assert len(y) == 2*ngtypes
assert len(z) == 2*ngtypes
pA, vA, pB, vB, cov = bivmom(y,z)
v = vA*vB
r = cov/sqrt(v) # estimated from gamete frequencies
# The i'th genotype has value (Y[i], Z[i]). These vectors
# will lack information about gametic phase.
Y = []
Z = []
for i in range(ngtypes):
j = 2*i
Y.append(y[j] + y[j+1])
Z.append(z[j] + z[j+1])
# Estimate r, err, and stderr from Y an Z, using all estimators
for e in estimators:
r_current = e.estimate(Y, Z, r)
if e.lbl == "Excoffier-Slatkin": #DEBUG
print "Y:", Y
print "Z:", Z
print "r:", r_current
return r
# If eps_in, epb_in, eDp_in, or ef_in are set to None, a random
# value will be chosen for each iteration.
def simulate(nreps, ngtypes, epa_in, epb_in, eDp_in, ef_in, estimators):
# Output format
fmt1 = "%5.2f"
epa = epa_in
epb = epb_in
eDp = eDp_in
ef = ef_in
mean_r = 0.0
curr_rep = 0
for e in estimators:
e.clear()
while curr_rep < nreps:
# Choose random values for unspecified parameters
if epa_in == None:
epa = uniform(0.05, 0.95)
if epb_in == None:
epb = uniform(0.05, 0.95)
if eDp_in == None:
eDp = uniform(-0.95, 0.95)
if ef_in == None:
ef = uniform(0.0, 0.9)
eD = Dprime_to_D(eDp, epa, epb)
try:
mean_r += sim_step(ngtypes, epa, epb, eD, ef, estimators)
except ZeroDivisionError:
# We get here if either locus is monorphic, or if
# there are no copies of the "11" homozygote at locus A.
# The "continue" statement says to skip such loci.
continue
curr_rep += 1
assert curr_rep == nreps
mean_r /= float(nreps)
out = "%7d" % ngtypes
for val in (epa_in, epb_in, eDp_in, ef_in):
if val != None:
out += " %7.4f" % val
for e in estimators:
out += "|%7.4f %7.4f %5d" % (e.bias(), e.stderr(), e.n)
print out
return
two_n = 2*ngtypes # haploid sample size
# Define vector of estimators
#estimators = [Estimator("Rogers-Huff", get_r), \
# Estimator("Excoffier-Slatkin", esem_r), \
# Estimator("Hill", Hill_r)]
#estimators = [Estimator("Rogers-Huff", get_r), \
# Estimator("Excoffier-Slatkin", esem_r),
# Estimator("RHES", rhesem_r)]
estimators = [Estimator("Rogers-Huff", get_r), \
Estimator("Excoffier-Slatkin", esem_r)]
#estimators = [Estimator("Rogers-Huff", get_r)]
print "tolerance in EM algorithm:", tol
print "Replicates per simulation: %d, nconv is number that converged" \
% nreps
if 0:
# Loop over epa
header("pA", estimators)
for epa in [0.1, 0.33, 0.5, 0.67, 0.9]:
simulate(nreps, ngtypes, epa, None, None, None, estimators)
# No point in varying epb, since its effect is exactly the same
# as that of epa.
if 0:
# Loop over Dp
header("Dp", estimators)
for eDp in [-0.99, -0.9, -0.7, -0.5, 0.0, 0.5, 0.7, 0.9, 0.99]:
simulate(nreps, ngtypes, None, None, eDp, None, estimators)
if 0:
# Loop over f.
header("f", estimators)
for ef in [0.0, 0.25, 0.5, 0.75, 0.99]:
simulate(nreps, ngtypes, None, None, None, ef, estimators)
# Loop over ngtypes
nvec = [25, 50, 100, 200, 400]
header(None, estimators)
for ngtypes in nvec:
simulate(nreps, ngtypes, None, None, None, None, estimators)
if 1:
# Mimic assumptions of coalescent simulations
ngtypes = 50 # diploid sample size
print "Mimic assumptions of coalescent simulations"
header("Dp", estimators)
# for eDp in [-0.99, -0.9, -0.7, -0.5, 0.0, 0.5, 0.7, 0.9, 0.99]:
for eDp in [0.5, 0.7]:
simulate(nreps, ngtypes, None, None, eDp, 0.0, estimators)