-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchadsim2.c
434 lines (382 loc) · 12.8 KB
/
chadsim2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "estimate_ld.h"
#define NSUBJ 50
#define LINESIZE 500
#define NBINS 20
#define PTRLEN (2*NSUBJ+2)
#define WINSIZE 250
#define BADDAT (EOF-1)
#define MAXKB 70 /* max dist btw pairs of SNPs in kb */
#define PER_KB 0.001
#define SHUFFLE 1
#if 0
const long nLoci=5000; /* number of loci in dummy data */
#define FNAME "chaddat-short.txt"
#else
const long nLoci=2979350;/* number of loci in data */
#define FNAME "chaddat.txt"
#endif
const float hourspersecond = 1.0/3600;
typedef struct {
bool empty;
int sim, pos;
double p;
int gamete[2*NSUBJ];
int gtype[NSUBJ];
} Locus;
typedef struct {
unsigned long long ntot;
double minx, maxx, range;
unsigned long long count[NBINS];
double y[NBINS];
double truey[NBINS];
double mse[NBINS];
const char *xname;
const char *yname;
} ResTbl;
int Locus_init(Locus *locus, FILE *f, int *rndx);
void Locus_print(Locus *locus, FILE *f);
ResTbl *ResTbl_new(double minx, double maxx, const char *xname_str,
const char *yname_str);
void ResTbl_tabulate(ResTbl *tbl, double x, double y, double truval);
void ResTbl_print(ResTbl *tbl, FILE *f);
int skipline(FILE *f);
/* allocate and initialize a table */
ResTbl *ResTbl_new(double minx, double maxx, const char *xname_str,
const char *yname_str) {
assert(minx < maxx);
ResTbl *tbl = malloc(sizeof(ResTbl));
if(tbl==NULL)
return NULL;
tbl->ntot = 0;
tbl->minx = minx;
tbl->maxx = maxx;
tbl->range = maxx - minx;
memset(tbl->count, 0, sizeof(tbl->count));
memset(tbl->y, 0, sizeof(tbl->y));
memset(tbl->truey, 0, sizeof(tbl->truey));
memset(tbl->mse, 0, sizeof(tbl->mse));
tbl->xname = strdup(xname_str);
tbl->yname = strdup(yname_str);
return tbl;
}
/* add a value to the table */
void ResTbl_tabulate(ResTbl *tbl, double x, double y, double truval) {
double err;
int bin;
/* find the bin corresponding to x */
bin = ((int) floor(NBINS*(x-tbl->minx)/tbl->range));
if( bin >= NBINS ) {
bin = NBINS-1;
}
if( bin < 0)
bin = 0;
tbl->ntot += 1;
tbl->count[bin] += 1;
tbl->y[bin] += y;
tbl->truey[bin] += truval;
err = y - truval;
tbl->mse[bin] += err*err;
return;
}
/* Print a table of results */
void ResTbl_print(ResTbl *tbl, FILE *f) {
int j;
double y, truey, standard_error, n;
double my=0.0, mtruey=0.0, mse=0.0;
fprintf(f, "%13s %10s %10s %6s %8s\n",
tbl->xname, tbl->yname, "true", "stderr", "N");
for (j=0; j < NBINS; ++j) {
if( tbl->count[j] == 0)
continue;
n = tbl->count[j];
y = tbl->y[j] / n;
truey = tbl->truey[j]/n;
standard_error = sqrt(tbl->mse[j]/n);
fprintf(f,"%13.4f %10.7f %10.7f %6.4f %8llu\n",
tbl->minx + (j+0.5)*tbl->range/((double) NBINS),
y, truey, standard_error, tbl->count[j]);
my += tbl->y[j];
mtruey += tbl->truey[j];
mse += tbl->mse[j];
}
my /= tbl->ntot;
mtruey /= tbl->ntot;
mse /= tbl->ntot;
fprintf(f,"%13s %10.7f %10.7f %6.4f %8llu\n", "Mean",
my, mtruey, sqrt(mse), tbl->ntot);
return;
}
/*
* Read from stream until either a newline or EOF is reached.
* Return 0 in the former case and EOF in the latter.
*/
int skipline(FILE *f) {
int i;
do{
i = getc(f);
}while(i != '\n' && i != EOF);
if(i==EOF)
return EOF;
return 0;
}
/*
* Initialize an object of type Locus.
* On entry:
*
* locus points to the object to be initialized
* f points to the FILE from which the next line
* of data should be read. The locus is initialized
* based on the values in this line of data.
* rndx is an array of ints [0,1,...,2*NSUBJ]
* in random order. The genic values in the data
* are rearranged in the order specified by rndx.
* Then, adjacent genes are combined to form genotypes.
* This simulates random mating. ALL loci are rearranged
* in parallel in order to maintain the integrity of
* chromosomes.
*
* On return:
*
* On success, all components of Locus are set, Locus.empty=false,
* and function returns 0. There are two kinds of failure:
*
* On EOF, Locus.empty=true and function returns EOF.
* If bad data are detected, Locus.empty=true and function returns
* BADDAT. It also eats the rest of the offending line of input.
*/
int Locus_init(Locus *locus, FILE *f, int *rndx) {
int i, rval;
double p;
rval = fscanf(f, "%d%d", &(locus->sim), &(locus->pos));
if(rval!= 2) {
locus->empty = true;
if(skipline(f) == EOF)
return EOF;
return BADDAT;
}
for(i=0; i < 2*NSUBJ; ++i) {
rval = fscanf(f, "%d", locus->gamete+rndx[i]);
if(rval!= 1) {
locus->empty = true;
if(skipline(f) == EOF)
return EOF;
return BADDAT;
}
}
locus->empty = false;
p = 0.0;
for(i=0; i < NSUBJ; ++i) {
locus->gtype[i] = locus->gamete[2*i];
locus->gtype[i] += locus->gamete[2*i+1];
p += locus->gtype[i];
}
locus->p = p/(2*NSUBJ);
return 0;
}
void Locus_print(Locus *locus, FILE *f) {
int i;
fprintf(f, "Locus.empty : %s\n", (locus->empty?"true":"false"));
fprintf(f, "Locus.sim : %d\n", locus->sim);
fprintf(f, "Locus.pos : %d\n", locus->pos);
fprintf(f, "Locus.gamete:");
for(i=0; i<2*NSUBJ; ++i)
fprintf(f," %d", locus->gamete[i]);
putc('\n', f);
fprintf(f, "Locus.gtype :");
for(i=0; i<NSUBJ; ++i)
fprintf(f," %d", locus->gtype[i]);
putc('\n', f);
return;
}
int main(void) {
const bool verbose = false;
const double maxkb = MAXKB;
int i,j, esem_rval;
long count, ndx;
double dist;
FILE *f;
Locus data[WINSIZE];
time_t t0, t1;
double elapsed, perlocus;
double r, rsq_RH, rsq_ES, rsq_true, Dp_true, r_av;
int rndx[2*NSUBJ];
gsl_rng *rng = gsl_rng_alloc(gsl_rng_taus);
ResTbl *tbl_dst_rh = ResTbl_new(0.0, maxkb, "distance",
"rsq_RH");
ResTbl *tbl_dst_es = ResTbl_new(0.0, maxkb, "distance",
"rsq_ES");
ResTbl *tbl_dst_rh_nocnv = ResTbl_new(0.0, maxkb,
"distance", "rsq_RH_nocnv");
ResTbl *tbl_dst_avrsq = ResTbl_new(0.0, maxkb, "distance", "RHEMavrsq");
ResTbl *tbl_dst_avr = ResTbl_new(0.0, maxkb, "distance", "RHEMavr");
ResTbl *tbl_Dp_rh = ResTbl_new(-1.0, 1.0, "Dp", "rsq_RH");
ResTbl *tbl_Dp_es = ResTbl_new(-1.0, 1.0, "Dp", "rsq_ES");
t0 = time(NULL);
printf("Date and time: %s", ctime(&t0));
fflush(stdout);
gsl_rng_set(rng, (unsigned) t0);
/*
* rndx is a shuffled list of consecutive integers.
* It is used to randomize the order of genes w/i each locus.
*/
for(i=0; i<2*NSUBJ; ++i)
rndx[i] = i;
if(SHUFFLE) {
printf("Shuffling gametes\n");
gsl_ran_shuffle(rng, rndx, 2*NSUBJ, sizeof(rndx[0]));
}else
printf("Did NOT shuffle gametes\n");
f = fopen(FNAME, "r");
if(f==NULL) {
fprintf(stderr,"Can't open file '%s'.\n", FNAME);
exit(1);
}
printf("Reading data in file %s\n", FNAME);
/*
* Populate data array before starting main loop.
*/
for(i=0; i < WINSIZE; ++i) {
do{
j=Locus_init(data+i, f, rndx);
}while(j == BADDAT);
if(j==EOF) {
fprintf(stderr,"Can't initialize data array");
exit(1);
}
}
fputc('\n', stderr);
count = ndx = 0;
t0 = time(NULL);
/* Loop over focal loci. */
while( true ) {
if(data[ndx].empty)
break;
/* Compare focal locus with other loci in window. */
for(j=0; j < WINSIZE; ++j) {
/*Don't compare locus with itself*/
if(j == ndx)
continue;
/* These arise when we are running out of data*/
if(data[j].empty)
continue;
/* skip pairs from different simulations */
if(data[ndx].sim != data[j].sim)
continue;
dist = fabs((double)(data[j].pos - data[ndx].pos))*PER_KB;
/* skip pairs that are too far apart */
if( dist > maxkb )
continue;
/* true values */
r = get_r_gamete(2*NSUBJ, data[ndx].gamete, data[j].gamete);
rsq_true = r*r;
Dp_true = r_to_Dprime(r, data[ndx].p, data[j].p);
assert(fabs(Dp_true) <= 1.0001);
/* RH method */
r_av = r = get_r_corr(NSUBJ, data[ndx].gtype, data[j].gtype);
/*r = get_r_corr_genotype(NSUBJ, data[ndx].gtype,
data[j].gtype);*/
rsq_RH = r*r;
ResTbl_tabulate(tbl_dst_rh, dist, rsq_RH, rsq_true);
ResTbl_tabulate(tbl_Dp_rh, Dp_true, rsq_RH, rsq_true);
/* ES method */
esem_rval = esem_r(&r, NSUBJ, data[ndx].gtype, data[j].gtype);
rsq_ES = r*r;
if( esem_rval ==0) {
/* tabulate only if EM converges */
ResTbl_tabulate(tbl_dst_es, dist, rsq_ES, rsq_true);
ResTbl_tabulate(tbl_Dp_es, Dp_true, rsq_ES, rsq_true);
/* Average of rsq and of r */
r_av = 0.5*(r + r_av);
ResTbl_tabulate(tbl_dst_avrsq, dist, 0.5*(rsq_RH+rsq_ES),
rsq_true);
ResTbl_tabulate(tbl_dst_avr, dist, r_av*r_av,
rsq_true);
}else
ResTbl_tabulate(tbl_dst_rh_nocnv, dist, rsq_RH, rsq_true);
if(verbose) {
printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
printf("dist: %f kb\n", dist);
printf("Locus %5d gametes:", data[ndx].pos);
for(i=0; i<2*NSUBJ; ++i)
printf(" %d", data[ndx].gamete[i]);
putchar('\n');
printf("Locus %5d gametes:", data[j].pos);
for(i=0; i<2*NSUBJ; ++i)
printf(" %d", data[j].gamete[i]);
putchar('\n');
printf("Locus %5d genotypes:", data[ndx].pos);
for(i=0; i<NSUBJ; ++i)
printf(" %d", data[ndx].gtype[i]);
putchar('\n');
printf("Locus %5d genotypes:", data[j].pos);
for(i=0; i<NSUBJ; ++i)
printf(" %d", data[j].gtype[i]);
putchar('\n');
printf("Gamete table:\n");
print_gamete_table(stdout, 2*NSUBJ, data[ndx].gamete,
data[j].gamete);
printf("Genotype table:\n");
print_genotype_table(stdout, NSUBJ, data[ndx].gtype,
data[j].gtype);
if(esem_rval == 0)
printf("esem_r converged\n");
else
printf("esem_r did not converge\n");
printf("rsq_true=%f rsq_RH=%f rsq_ES=%f\n",
rsq_true, rsq_RH, rsq_ES);
printf("<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
}
}
/* read another locus */
while( Locus_init(data+ndx, f, rndx) == BADDAT)
;
++count;
ndx += 1;
if (ndx == WINSIZE)
ndx = 0;
if(count%5000 == 0) {
t1 = time(NULL);
elapsed = t1 - t0;
perlocus = elapsed/count;
fprintf(stderr,
"count=%ld; s/kloc=%0.5f; sim=%d; pos=%d; eof=%d err=%d\n",
count, 1000*perlocus, data[ndx].sim, data[ndx].pos,
feof(f), ferror(f));
}
}
fputc('\n', stderr);
t1 = time(NULL);
printf("\nElapsed time: %0.4f hours\n", (t1-t0)*hourspersecond);
printf("Distance versus RH:\n");
ResTbl_print(tbl_dst_rh, stdout);
putchar('\n');
printf("Distance versus ES:\n");
ResTbl_print(tbl_dst_es, stdout);
putchar('\n');
printf("Distance versus average of rsq_RH and rsq_ES:\n");
ResTbl_print(tbl_dst_avrsq, stdout);
putchar('\n');
printf("Distance versus squared average of r_RH and r_ES:\n");
ResTbl_print(tbl_dst_avr, stdout);
putchar('\n');
printf("Distance versus RH when ES didn't converge:\n");
ResTbl_print(tbl_dst_rh_nocnv, stdout);
putchar('\n');
printf("Dp versus RH:\n");
ResTbl_print(tbl_Dp_rh, stdout);
putchar('\n');
printf("Dp versus ES:\n");
ResTbl_print(tbl_Dp_es, stdout);
putchar('\n');
return 0;
}