-
Notifications
You must be signed in to change notification settings - Fork 5
/
output.py
175 lines (125 loc) · 4.96 KB
/
output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Image Segmentation (Face Detection) using Deep Learning
# =======================================================
# Authors: Raghav Gupta, Akshay Khadse, Soumya Dutta, Ashish Sukhwani
# Date: 31/03/2017
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
import numpy as np
from PIL import Image
import random
import tensorflow as tf
from glob import glob
from time import time
from math import ceil
# Reading Data
# ------------
# Load Label Data
test_path = 'test_image/'
def read_label_dir(path):
filepaths = []
for filepath in glob(path + '*.png'):
filepaths.append(filepath)
return filepaths
# Start Building Pipeline
filepaths = read_label_dir(test_path)
print('Test Examples: %d' % len(filepaths))
# Convert string into tensors
images = ops.convert_to_tensor(filepaths, dtype=dtypes.string)
# Build the Input Queues and Define How to Load Images
NUM_CHANNELS = 1
# Create input queues
test_queue = tf.train.slice_input_producer([images],
shuffle=False)
# Process path and string tensor into an image and a label
file_content = tf.read_file(test_queue[0])
test_image = tf.image.decode_png(file_content, channels=NUM_CHANNELS)
#Added
test_image = tf.image.resize_images(test_image, [128, 128])
# Group Samples into Batches
IMAGE_HEIGHT = 128
IMAGE_WIDTH = 128
BATCH_SIZE = len(filepaths)
# Define tensor shape
test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
# Collect batches of images before processing
test_image_batch = tf.train.batch([test_image],
batch_size=BATCH_SIZE
# ,num_threads=1
)
# Neural Network Model
# --------------------
# Define Placeholders and Variables
x = tf.placeholder(tf.float32, shape=[None, 128, 128, 1])
keep_prob = tf.placeholder(tf.float32)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape=shape)
return tf.Variable(initial)
# Define Model
def conv2d(x, W, strides=[1, 1, 1, 1]):
return tf.nn.conv2d(x, W, strides, padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
# Input
x_image = tf.reshape(x, [-1, 128, 128, 1])
# Weights of CNN & Layers
W_conv1 = weight_variable([18, 18, 1, 60])
b_conv1 = bias_variable([60])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool_a = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([12, 12, 60, 30])
b_conv2 = bias_variable([30])
h_conv2 = tf.nn.relu(conv2d(h_pool_a, W_conv2) + b_conv2)
h_pool_b = max_pool_2x2(h_conv2)
W_conv3 = weight_variable([6, 6, 30, 15])
b_conv3 = bias_variable([15])
h_conv3 = tf.nn.relu(conv2d(h_pool_b, W_conv3) + b_conv3)
h_pool_c = max_pool_2x2(h_conv3)
W_fc1 = weight_variable([16 * 16 * 15, 4096])
b_fc1 = bias_variable([4096])
h_pool_c_flat = tf.reshape(h_pool_c, [-1, 16 * 16 * 15])
h_fc1 = tf.nn.relu(tf.matmul(h_pool_c_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([4096, 256])
b_fc2 = bias_variable([256])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
W_fc3 = weight_variable([256, 1])
b_fc3 = bias_variable([1])
y_conv = tf.sigmoid(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
y_out = tf.round(y_conv)
# Train and Evaluate
# ------------------
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
# Restore variables from disk.
saver.restore(sess, "./saved_model/model.ckpt")
print("Model restored.")
# Initialize the queue threads to start to shovel data
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
size_box = 32
print("Testing")
# creates sliding window and stores rectangular coordinates of faces
face_file = open('faces.txt', 'w')
for i in range(0, 128-size_box, 8):
for j in range(0, 128-size_box, 8):
s_out = ''
test_image1 = tf.image.crop_to_bounding_box(test_image, j, i, size_box, size_box)
test_image1 = tf.image.resize_images(test_image1, [128, 128])
test_image2 = tf.expand_dims(test_image1, 0)
y_res = sess.run(y_conv, feed_dict = {x: test_image2.eval(), keep_prob: 1.0})
print("#_" + str(y_res))
if ((y_res) > 0.5):
boxes = tf.constant([1, 1, float(j), float(i), float((j+31)/512), float((i+31)/512)])
s_out = str(j) + "," + str(i) + "," + str(float((j+size_box-1))) + "," + str(float((i+size_box-1))) + "," + str(y_res)
face_file.write(s_out + "\n")
print('#'+str(type(boxes)))
print("#_" + str(i) + str(j))
# Stop our queue threads and properly close the session
coord.request_stop()
coord.join(threads)
sess.close()