forked from blastrock/pkgj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pkgi_sha256.c
307 lines (266 loc) · 8.53 KB
/
pkgi_sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "pkgi_sha256.h"
#include "pkgi.h" // just for memcpy
#if __ARM_NEON__
#include <arm_neon.h>
// Optimized SHA-256 Neon implementation is based on following whitepaper from Intel:
// "Fast SHA-256 Implementations on Intel(R) Architecture Processors"
// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
// It is ~2x faster on PlayStation Vita - ~23 MB/s
#endif
static const uint32_t sha256_K[64] GCC_ALIGN(16) =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
static inline uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
return z ^ (x & (y ^ z));
}
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return ((x | y) & z) | (x & y);
}
static inline uint32_t Sigma0(uint32_t x)
{
return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22);
}
static inline uint32_t Sigma1(uint32_t x)
{
return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25);
}
static inline uint32_t Gamma0(uint32_t x)
{
return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3);
}
static inline uint32_t Gamma1(uint32_t x)
{
return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10);
}
#define ROUND(tmp, a, b, c, d, e, f, g, h) do { \
uint32_t t = tmp; \
t += h + Sigma1(e) + Ch(e, f, g); \
d += t; \
t += Sigma0(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d; \
d = c; \
c = b; \
b = a; \
a = t; \
} while (0)
#if __ARM_NEON__
#define ROUNDx4(x, n, a, b, c, d, e, f, g, h) do { \
uint32x4_t tmp; \
uint32_t arr[4]; \
tmp = vld1q_u32(sha256_K + n); \
tmp = vaddq_u32(tmp, x); \
vst1q_u32(arr, tmp); \
ROUND(arr[0], a, b, c, d, e, f, g, h); \
ROUND(arr[1], a, b, c, d, e, f, g, h); \
ROUND(arr[2], a, b, c, d, e, f, g, h); \
ROUND(arr[3], a, b, c, d, e, f, g, h); \
} while (0)
#define PREPARE_NEXT() do { \
uint32x4_t q0, q1, q2, q3, q4, q5; \
uint32x2_t d0, d1, d2, d3, d4, d5, d6; \
\
q0 = vextq_u32(x2, x3, 1); \
q0 = vaddq_u32(q0, x0); \
\
q1 = vextq_u32(x0, x1, 1); \
q2 = vshrq_n_u32(q1, 7); \
q3 = vshlq_n_u32(q1, 32-7); \
q4 = vshrq_n_u32(q1, 18); \
q5 = vshlq_n_u32(q1, 32-18); \
q1 = vshrq_n_u32(q1, 3); \
q1 = veorq_u32(q1, q2); \
q2 = veorq_u32(q3, q4); \
q1 = veorq_u32(q1, q2); \
q1 = veorq_u32(q1, q5); \
\
d0 = vget_high_u32(x3); \
d1 = vshr_n_u32(d0, 17); \
d2 = vshl_n_u32(d0, 32-17); \
d3 = vshr_n_u32(d0, 19); \
d4 = vshl_n_u32(d0, 32-19); \
d5 = vshr_n_u32(d0, 10); \
d0 = veor_u32(d1, d2); \
d1 = veor_u32(d3, d4); \
d0 = veor_u32(d0, d1); \
d6 = veor_u32(d0, d5); \
\
d0 = vget_low_u32(q0); \
d1 = vget_low_u32(q1); \
d0 = vadd_u32(d0, d6); \
d0 = vadd_u32(d0, d1); \
\
d1 = vshr_n_u32(d0, 17); \
d2 = vshl_n_u32(d0, 32-17); \
d3 = vshr_n_u32(d0, 19); \
d4 = vshl_n_u32(d0, 32-19); \
d5 = vshr_n_u32(d0, 10); \
d0 = veor_u32(d1, d2); \
d1 = veor_u32(d3, d4); \
d0 = veor_u32(d0, d1); \
d0 = veor_u32(d0, d5); \
\
q0 = vaddq_u32(q0, q1); \
q1 = vcombine_u32(d6, d0); \
q0 = vaddq_u32(q0, q1); \
\
x0 = x1; \
x1 = x2; \
x2 = x3; \
x3 = q0; \
} while (0)
static void sha256_process(uint32_t* state, const uint8_t* buffer, uint32_t blocks)
{
for (uint32_t i = 0; i < blocks; i++)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
uint32x4_t x0 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(buffer + 0*16)));
uint32x4_t x1 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(buffer + 1*16)));
uint32x4_t x2 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(buffer + 2*16)));
uint32x4_t x3 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(buffer + 3*16)));
buffer += 64;
// rounds [0..47]
for (uint32_t r = 0; r < 48; r += 16)
{
ROUNDx4(x0, r + 0, a, b, c, d, e, f, g, h);
PREPARE_NEXT();
ROUNDx4(x0, r + 4, a, b, c, d, e, f, g, h);
PREPARE_NEXT();
ROUNDx4(x0, r + 8, a, b, c, d, e, f, g, h);
PREPARE_NEXT();
ROUNDx4(x0, r + 12, a, b, c, d, e, f, g, h);
PREPARE_NEXT();
}
// rounds [48..63]
ROUNDx4(x0, 48, a, b, c, d, e, f, g, h);
ROUNDx4(x1, 52, a, b, c, d, e, f, g, h);
ROUNDx4(x2, 56, a, b, c, d, e, f, g, h);
ROUNDx4(x3, 60, a, b, c, d, e, f, g, h);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
}
#else
static void sha256_process(uint32_t* state, const uint8_t* buffer, uint32_t blocks)
{
for (uint32_t i = 0; i < blocks; i++)
{
uint32_t w[64];
for (uint32_t r = 0; r < 16; r++)
{
w[r] = get32be(buffer + 4 * r);
}
for (uint32_t r = 16; r < 64; r++)
{
w[r] = Gamma1(w[r - 2]) + Gamma0(w[r - 15]) + w[r - 7] + w[r - 16];
}
buffer += SHA256_BLOCK_SIZE;
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
for (uint32_t r = 0; r < 64; r++)
{
ROUND(sha256_K[r] + w[r], a, b, c, d, e, f, g, h);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
}
#endif
void sha256_init(sha256_ctx* ctx)
{
ctx->count = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(sha256_ctx* ctx, const uint8_t* buffer, uint32_t size)
{
if (size == 0)
{
return;
}
uint32_t left = ctx->count % SHA256_BLOCK_SIZE;
uint32_t fill = SHA256_BLOCK_SIZE - left;
ctx->count += size;
if (left && size >= fill)
{
pkgi_memcpy(ctx->buffer + left, buffer, fill);
sha256_process(ctx->state, ctx->buffer, 1);
buffer += fill;
size -= fill;
left = 0;
}
uint32_t full = size / SHA256_BLOCK_SIZE;
if (full != 0)
{
sha256_process(ctx->state, buffer, full);
uint32_t used = full * SHA256_BLOCK_SIZE;
buffer += used;
size -= used;
}
pkgi_memcpy(ctx->buffer + left, buffer, size);
}
void sha256_finish(sha256_ctx* ctx, uint8_t* digest)
{
static const uint8_t padding[SHA256_BLOCK_SIZE] = { 0x80 };
uint8_t bits[8];
set64be(bits, ctx->count * 8);
uint32_t last = ctx->count % SHA256_BLOCK_SIZE;
uint32_t pad = (last < SHA256_BLOCK_SIZE - 8) ? (SHA256_BLOCK_SIZE - 8 - last) : (2 * SHA256_BLOCK_SIZE - 8 - last);
sha256_update(ctx, padding, pad);
sha256_update(ctx, bits, sizeof(bits));
for (uint32_t i = 0; i < 8; i++)
{
set32be(digest + 4 * i, ctx->state[i]);
}
}