QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array, and the array elements are taken from Standard Normal Distribution.
The array elements are taken from a Standard Normal Distribution, having mean = 0 and standard deviation = 1.
>>> import numpy as np
>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> p = 100 # 100 elements are to be sorted
>>> mu, sigma = 0, 1 # mean and standard deviation
>>> X = np.random.normal(mu, sigma, p)
>>> np.save(outfile, X)
>>> print('The array is')
>>> print(X)
>>> mu, sigma = 0, 1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, p)
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins , 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
>>> plt.show()
We can plot the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort:
>>> import matplotlib.pyplot as plt
# Normal Distribution QuickSort is red
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,6,15,43,136,340,800,2156,6821,16325],linewidth=2, color='r')
# Ordinary QuickSort is green
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,4,16,67,122,362,949,2131,5086,12866],linewidth=2, color='g')
>>> plt.show()