From e594ef3d1f528fecee43c889e7dd8b0d7a003367 Mon Sep 17 00:00:00 2001 From: arash Date: Tue, 21 May 2024 00:58:36 +0200 Subject: [PATCH] update readme --- README.md | 57 +++++++++++++++++++++++++++++++++++++++---------------- 1 file changed, 41 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 665360c..285943d 100644 --- a/README.md +++ b/README.md @@ -58,6 +58,10 @@ ## About The Project +This is a toolkit to train a ML model for semantic segmentation of point clouds. + +In this repository it is used to make BIM models based on [IfcOpenShell](http://ifcopenshell.org/]) standard from lidar scans. + Logo @@ -82,32 +86,47 @@ -## Getting Started +## Installation -1. Create and activate a conda environment: - ```sh - conda create --name mink python=3.8 - conda activate mink +0. You can install the Minkowski Engine with `pip`, with anaconda, or on the system directly. +- [PIP](https://github.com/NVIDIA/MinkowskiEngine#pip) installation +- [Conda](https://github.com/NVIDIA/MinkowskiEngine#anaconda) installation +- [Python](https://github.com/NVIDIA/MinkowskiEngine#system-python) installation +- [Docker](https://github.com/NVIDIA/MinkowskiEngine#docker) installation -2. Install Poetry: + +1. Install Poetry: ```sh curl -sSL https://install.python-poetry.org | python3 - -3. Install project dependencies: -poetry install +2. Install project dependencies: +poetry install + +3. Set config parameters in config/config.yaml -4. Set config parameters in config/config.yaml file +4. poetry run python src/main.py -5. poetry run python src/main.py -6. python main.py +## Features +- Unlimited high-dimensional sparse tensor support +- All standard neural network layers (Convolution, Pooling, Broadcast, etc.) +- Dynamic computation graph +- Custom kernel shapes +- Multi-GPU training +- Multi-threaded kernel map +- Multi-threaded compilation +- Highly-optimized GPU kernels -### Dependencies -MinkowskiEngine: calculation of sparse tensors +## Requirements -Open3d: manipulation of points (coords), colors and normals +- Ubuntu >= 14.04 +- CUDA >= 10.1.243 and **the same CUDA version used for pytorch** (e.g. if you use conda cudatoolkit=11.1, use CUDA=11.1 for MinkowskiEngine compilation) +- pytorch >= 1.7 To specify CUDA version, please use conda for installation. You must match the CUDA version pytorch uses and CUDA version used for Minkowski Engine installation. `conda install -y -c nvidia -c pytorch pytorch=1.8.1 cudatoolkit=10.2`) +- python >= 3.6 +- ninja (for installation) +- GCC >= 7.4.0 # Program structure @@ -200,12 +219,18 @@ Don't forget to give the project a star! Thanks again! -## Useful links +## Useful links and other projects using Minkowski Engine * [Point clouds][Point-clouds] * [Open3d][open3d-url] * [Minkowski Engine][MinkowskiEngine-url] - +- Segmentation: [3D and 4D Spatio-Temporal Semantic Segmentation, CVPR'19](https://github.com/chrischoy/SpatioTemporalSegmentation) +- Representation Learning: [Fully Convolutional Geometric Features, ICCV'19](https://github.com/chrischoy/FCGF) +- 3D Registration: [Learning multiview 3D point cloud registration, CVPR'20](https://arxiv.org/abs/2001.05119) +- 3D Registration: [Deep Global Registration, CVPR'20](https://arxiv.org/abs/2004.11540) +- Pattern Recognition: [High-Dimensional Convolutional Networks for Geometric Pattern Recognition, CVPR'20](https://arxiv.org/abs/2005.08144) +- Detection: [Generative Sparse Detection Networks for 3D Single-shot Object Detection, ECCV'20](https://arxiv.org/abs/2006.12356) +- Image matching: [Sparse Neighbourhood Consensus Networks, ECCV'20](https://www.di.ens.fr/willow/research/sparse-ncnet/)