-
Notifications
You must be signed in to change notification settings - Fork 0
/
gestures.py
74 lines (61 loc) · 2.21 KB
/
gestures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
import mediapipe as mp
from openpyxl import Workbook
# Excel
wb = Workbook()
ws = wb.active
row = 0
def get_letter(x):
return chr(ord('A') + x)
def get_cell(p):
return f'{p.x},{p.y},{p.z}'
# Training
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
IMAGE_FILES = [] #used to be "hand.png"
with mp_hands.Hands(
static_image_mode=True,
max_num_hands=2,
min_detection_confidence=0.5) as hands:
for index, file in enumerate(IMAGE_FILES):
image = cv2.flip(cv2.imread(file), 1)
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
print('Handedness:', results.multi_handedness)
if not results.multi_hand_landmarks:
continue
image_height, image_width, _ = image.shape
annotated_image = image.copy()
row = row + 1
for hand_landmarks in results.multi_hand_landmarks:
for i in range(0, len(hand_landmarks.landmark)):
ws[get_letter(i) + str(row)] = get_cell(hand_landmarks.landmark[i])
wb.save("data.xlsx")
# Real-time Classification
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
max_num_hands=1,
min_detection_confidence=0.25,
min_tracking_confidence=0.25) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
cv2.imwrite("DetectionResults.jpg", image)
cv2.imshow('MediaPipe Hands', image)
results = hands.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
points = results.multi_hand_landmarks
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow('MediaPipe Hands', image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()