-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path_make.py
217 lines (192 loc) · 10.2 KB
/
_make.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import keras as ks
from kgcnn.layers.scale import get as get_scaler
from ._model import model_disjoint
from kgcnn.layers.modules import Input
from kgcnn.models.casting import (template_cast_output, template_cast_list_input,
template_cast_list_input_docs, template_cast_output_docs)
from kgcnn.models.utils import update_model_kwargs
from keras.backend import backend as backend_to_use
# To be updated if model is changed in a significant way.
__model_version__ = "2023-12-04"
# Supported backends
__kgcnn_model_backend_supported__ = ["tensorflow", "torch", "jax"]
if backend_to_use() not in __kgcnn_model_backend_supported__:
raise NotImplementedError("Backend '%s' for model 'EGNN' is not supported." % backend_to_use())
# Implementation of EGNN in `keras` from paper:
# E(n) Equivariant Graph Neural Networks
# by Victor Garcia Satorras, Emiel Hoogeboom, Max Welling (2021)
# https://arxiv.org/abs/2102.09844
model_default = {
"name": "EGNN",
"inputs": [
{"shape": (None,), "name": "node_number", "dtype": "int64"},
{"shape": (None, 3), "name": "node_coordinates", "dtype": "float32"},
{"shape": (None, 10), "name": "edge_attributes", "dtype": "float32"},
{"shape": (None, 2), "name": "edge_indices", "dtype": "int64"},
{"shape": (), "name": "total_nodes", "dtype": "int64"},
{"shape": (), "name": "total_edges", "dtype": "int64"},
],
"input_tensor_type": "padded",
"cast_disjoint_kwargs": {},
"input_embedding": None,
"input_node_embedding": {"input_dim": 95, "output_dim": 64},
"input_edge_embedding": {"input_dim": 95, "output_dim": 64},
"depth": 4,
"node_mlp_initialize": None,
"euclidean_norm_kwargs": {"keepdims": True, "axis": -1},
"use_edge_attributes": True,
"edge_mlp_kwargs": {"units": [64, 64], "activation": ["swish", "linear"]},
"edge_attention_kwargs": None, # {"units: 1", "activation": "sigmoid"}
"use_normalized_difference": False,
"expand_distance_kwargs": None,
"coord_mlp_kwargs": {"units": [64, 1], "activation": ["swish", "linear"]}, # option: "tanh" at the end.
"pooling_coord_kwargs": {"pooling_method": "mean"},
"pooling_edge_kwargs": {"pooling_method": "sum"},
"node_normalize_kwargs": None,
"use_node_attributes": False,
"node_mlp_kwargs": {"units": [64, 64], "activation": ["swish", "linear"]},
"use_skip": True,
"verbose": 10,
"node_decoder_kwargs": None,
"node_pooling_kwargs": {"pooling_method": "sum"},
"output_embedding": "graph",
"output_to_tensor": None, # deprecated
"output_tensor_type": "padded",
"output_mlp": {"use_bias": [True, True], "units": [64, 1],
"activation": ["swish", "linear"]},
"output_scaling": None,
}
@update_model_kwargs(model_default, update_recursive=0, deprecated=["input_embedding", "output_to_tensor"])
def make_model(name: str = None,
inputs: list = None,
input_tensor_type: str = None,
cast_disjoint_kwargs: dict = None,
input_embedding: dict = None,
input_node_embedding: dict = None,
input_edge_embedding: dict = None,
depth: int = None,
euclidean_norm_kwargs: dict = None,
node_mlp_initialize: dict = None,
use_edge_attributes: bool = None,
edge_mlp_kwargs: dict = None,
edge_attention_kwargs: dict = None,
use_normalized_difference: bool = None,
expand_distance_kwargs: dict = None,
coord_mlp_kwargs: dict = None,
pooling_coord_kwargs: dict = None,
pooling_edge_kwargs: dict = None,
node_normalize_kwargs: dict = None,
use_node_attributes: bool = None,
node_mlp_kwargs: dict = None,
use_skip: bool = None,
verbose: int = None,
node_decoder_kwargs: dict = None,
node_pooling_kwargs: dict = None,
output_embedding: str = None,
output_to_tensor: bool = None,
output_mlp: dict = None,
output_tensor_type: str = None,
output_scaling: dict = None
):
r"""Make `EGNN <https://arxiv.org/abs/2102.09844>`__ graph network via functional API.
Default parameters can be found in :obj:`kgcnn.literature.EGNN.model_default`.
**Model inputs**:
Model uses the list template of inputs and standard output template.
The supported inputs are :obj:`[nodes, node_coordinates, edge_attributes, edge_indices, ...]`
with '...' indicating mask or ID tensors following the template below.
%s
**Model outputs**:
The standard output template:
%s
Args:
name (str): Name of the model. Default is "EGNN".
inputs (list): List of dictionaries unpacked in :obj:`tf.keras.layers.Input`. Order must match model definition.
cast_disjoint_kwargs (dict): Dictionary of arguments for casting layers if used.
input_tensor_type (str): Input type of graph tensor. Default is "padded".
input_embedding (dict): Deprecated in favour of input_node_embedding etc.
input_node_embedding (dict): Dictionary of arguments for nodes unpacked in :obj:`Embedding` layers.
input_edge_embedding (dict): Dictionary of arguments for edge unpacked in :obj:`Embedding` layers.
depth (int): Number of graph embedding units or depth of the network.
euclidean_norm_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`EuclideanNorm`.
node_mlp_initialize (dict): Dictionary of layer arguments unpacked in :obj:`GraphMLP` layer for start embedding.
use_edge_attributes (bool): Whether to use edge attributes including for example further edge information.
edge_mlp_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphMLP` layer.
edge_attention_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphMLP` layer.
use_normalized_difference (bool): Whether to use a normalized difference vector for nodes.
expand_distance_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`PositionEncodingBasisLayer`.
coord_mlp_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphMLP` layer.
pooling_coord_kwargs (dict):
pooling_edge_kwargs (dict):
node_normalize_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`GraphLayerNormalization` layer.
use_node_attributes (bool): Whether to add node attributes before node MLP.
node_mlp_kwargs (dict):
use_skip (bool):
verbose (int): Level of verbosity.
node_decoder_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`MLP` layer after graph network.
node_pooling_kwargs (dict): Dictionary of layer arguments unpacked in :obj:`PoolingNodes` layers.
output_embedding (str): Main embedding task for graph network. Either "node", "edge" or "graph".
output_to_tensor (bool): Deprecated in favour of `output_tensor_type` .
output_tensor_type (str): Output type of graph tensors such as nodes or edges. Default is "padded".
output_mlp (dict): Dictionary of layer arguments unpacked in the final classification :obj:`MLP` layer block.
Defines number of model outputs and activation.
output_scaling (dict): Dictionary of layer arguments unpacked in scaling layers.
Returns:
:obj:`keras.models.Model`
"""
# Make input
model_inputs = [Input(**x) for x in inputs]
dj = template_cast_list_input(
model_inputs,
input_tensor_type=input_tensor_type,
cast_disjoint_kwargs=cast_disjoint_kwargs,
index_assignment=[None, None, None, 0],
mask_assignment=[0, 0, 1, 1]
)
n, x, ed, disjoint_indices, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges = dj
out = model_disjoint(
[n, x, ed, disjoint_indices, batch_id_node, batch_id_edge, count_nodes, count_edges],
use_node_embedding=("int" in inputs[0]['dtype']) if input_node_embedding is not None else False,
use_edge_embedding=("int" in inputs[2]['dtype']) if input_edge_embedding is not None else False,
input_node_embedding=input_node_embedding,
input_edge_embedding=input_edge_embedding,
depth=depth,
euclidean_norm_kwargs=euclidean_norm_kwargs,
node_mlp_initialize=node_mlp_initialize,
use_edge_attributes=use_edge_attributes,
edge_mlp_kwargs=edge_mlp_kwargs,
edge_attention_kwargs=edge_attention_kwargs,
use_normalized_difference=use_normalized_difference,
expand_distance_kwargs=expand_distance_kwargs,
coord_mlp_kwargs=coord_mlp_kwargs,
pooling_coord_kwargs=pooling_coord_kwargs,
pooling_edge_kwargs=pooling_edge_kwargs,
node_normalize_kwargs=node_normalize_kwargs,
use_node_attributes=use_node_attributes,
node_mlp_kwargs=node_mlp_kwargs,
use_skip=use_skip,
node_decoder_kwargs=node_decoder_kwargs,
node_pooling_kwargs=node_pooling_kwargs,
output_embedding=output_embedding,
output_mlp=output_mlp
)
if output_scaling is not None:
scaler = get_scaler(output_scaling["name"])(**output_scaling)
if scaler.extensive:
# Node information must be numbers, or we need an additional input.
out = scaler([out, n, batch_id_node])
else:
out = scaler(out)
# Output embedding choice
out = template_cast_output(
[out, batch_id_node, batch_id_edge, node_id, edge_id, count_nodes, count_edges],
output_embedding=output_embedding, output_tensor_type=output_tensor_type,
input_tensor_type=input_tensor_type, cast_disjoint_kwargs=cast_disjoint_kwargs,
)
model = ks.models.Model(inputs=model_inputs, outputs=out, name=name)
model.__kgcnn_model_version__ = __model_version__
if output_scaling is not None:
def set_scale(*args, **kwargs):
scaler.set_scale(*args, **kwargs)
setattr(model, "set_scale", set_scale)
return model
make_model.__doc__ = make_model.__doc__ % (template_cast_list_input_docs, template_cast_output_docs)