Skip to content

Files

Latest commit

4842617 · Nov 10, 2023

History

History
120 lines (96 loc) · 7.63 KB

README.md

File metadata and controls

120 lines (96 loc) · 7.63 KB

Poseur: Direct Human Pose Regression with Transformers

Poseur: Direct Human Pose Regression with Transformers,
Weian Mao*, Yongtao Ge*, Chunhua Shen, Zhi Tian, Xinlong Wang, Zhibin Wang, Anton van den Hengel
In: European Conference on Computer Vision (ECCV), 2022
arXiv preprint (arXiv 2201.07412)
(* equal contribution)

News 🚩

[2023/04/17] Release a naive version of Poseur based on ViT backbone. Please see poseur_vit_base_coco_256x192.

[2023/04/17] Release a naive version of Poseur trained on COCO-Wholebody dataset. Please see poseur_coco_wholebody.

Introduction

This project is bulit upon MMPose with commit ID eeebc652842a9724259ed345c00112641d8ee06d.

Installation & Quick Start

  1. Install following packages
pip install easydict einops
  1. Follow the MMPose instruction to install the project and set up the datasets (MS-COCO).

For training on COCO, run:

./tools/dist_train.sh \
configs/poseur/coco/poseur_r50_coco_256x192.py 8 \
--work-dir work_dirs/poseur_r50_coco_256x192

For evaluating on COCO, run the following command lines:

wget https://cloudstor.aarnet.edu.au/plus/s/UXr1Dn9w6ja4fM9/download -O poseur_256x192_res50_6dec_coco.pth
./tools/dist_test.sh configs/poseur/coco/poseur_res50_coco_256x192.py \
    poseur_256x192_r50_6dec_coco.pth 4 \
    --eval mAP \
    --cfg-options model.filp_fuse_type=\'type2\'

For visualizing on COCO, run the following command lines:

python demo/top_down_img_demo.py \
    configs/poseur/coco/poseur_res50_coco_256x192.py \
    poseur_256x192_res50_6dec_coco.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results_poseur

COCO Keypoint Detection

Name AP AP.5 AP.75 download link
poseur_mobilenetv2_coco_256x192 71.9 88.9 78.6 model
poseur_mobilenetv2_coco_256x192_12dec 72.3 88.9 78.9 model
poseur_res50_coco_256x192 75.5 90.7 82.6 model
poseur_hrnet_w32_coco_256x192 76.8 91.0 83.5 model
poseur_hrnet_w48_coco_384x288 78.7 91.6 85.1 model
poseur_hrformer_tiny_coco_256x192_3dec 74.2 90.1 81.4 model
poseur_hrformer_small_coco_256x192_3dec 76.6 91.0 83.4 model
poseur_hrformer_big_coco_256x192 78.9 91.9 85.6 model
poseur_hrformer_big_coco_384x288 79.6 92.1 85.9 model
poseur_vit_base_coco_256x192 76.7 90.6 83.5 model

COCO-WholeBody Benchmark (V0.5)

Compare Whole-body pose estimation results with other methods.

Method body foot face hand whole
AP AR AP AR AP AR AP AR AP AR
OpenPose [1] 0.563 0.612 0.532 0.645 0.482 0.626 0.198 0.342 0.338 0.449
HRNet [2] 0.659 0.709 0.314 0.424 0.523 0.582 0.300 0.363 0.432 0.520
HRNet-body [2] 0.758 0.809 - - - - - - - -
ZoomNet [3] 0.743 0.802 0.798 0.869 0.623 0.701 0.401 0.498 0.541 0.658
ZoomNas [4] 0.740 - 0.617 - 0.889 - 0.625 - 0.654 -
RTMPose [5] 0.730 - 0.734 - 0.898 - 0.587 - 0.669 -
Poseur_ResNet50 0.655 0.732 0.615 0.742 0.844 0.900 0.560 0.673 0.587 0.681
Poseur_HRNet_W32 0.680 0.753 0.668 0.780 0.863 0.912 0.604 0.706 0.620 0.707
Poseur_HRNet_W48 0.692 0.766 0.689 0.799 0.861 0.911 0.621 0.721 0.633 0.721

COCO-WholeBody Pretrain Models

Name AP AP.5 AP.75 download link
poseur_res50_coco_wholebody_256x192 65.5 85.0 71.8 model
poseur_hrnet_w32_coco_wholebody_256x192 68.0 85.8 74.4 model
poseur_hrnet_w48_coco_wholebody_256x192 69.2 86.0 75.7 model

Disclaimer:

  • Due to the update of MMPose, the results are slightly different from our original paper.
  • We use the official HRFormer implement from here, the implementation in mmpose has not been verified by us.

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{mao2022poseur,
  title={Poseur: Direct human pose regression with transformers},
  author={Mao, Weian and Ge, Yongtao and Shen, Chunhua and Tian, Zhi and Wang, Xinlong and Wang, Zhibin and Hengel, Anton van den},
  journal = {Proceedings of the European Conference on Computer Vision {(ECCV)}},
  month = {October},
  year={2022}
}

Reference

[1] Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
[2] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)
[3] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo. Whole-Body Human Pose Estimation in the Wild. (ECCV) (2020)
[4] Lumin Xu, Sheng Jin, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo, Xiaogang Wang: ZoomNAS: Searching for Whole-body Human Pose Estimation in the Wild In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2022)
[5] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, Kai Chen. RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose. arXiv preprint arXiv:2303.07399 (2023)

License

For commercial use, please contact Chunhua Shen.