forked from campagnola/neuroanalysis
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvc_spike_test.py
75 lines (59 loc) · 2.09 KB
/
vc_spike_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import scipy.ndimage as ndi
import pyqtgraph as pg
from neuroanalysis.ui.plot_grid import PlotGrid
from neuroanalysis.spike_detection import detect_vc_evoked_spike
from neuroanalysis.data import TSeries
# Load test data
data = np.load('test_data/evoked_spikes/vc_evoked_spikes.npz')['arr_0']
dt = 20e-6
# gaussian filtering constant
sigma = 20e-6 / dt
# Initialize Qt
pg.mkQApp()
pg.dbg()
# Create a window with a grid of plots (N rows, 1 column)
win = PlotGrid()
win.set_shape(data.shape[0], 1)
win.show()
# Loop over all 10 channels
for i in range(data.shape[0]):
# select the data for this channel
trace = data[i, :, 0]
stim = data[i, :, 1]
# select the plot we will use for this trace
plot = win[i, 0]
# link all x-axes together
plot.setXLink(win[0, 0])
xaxis = plot.getAxis('bottom')
if i == data.shape[0]-1:
xaxis.setLabel('Time', 's')
else:
xaxis.hide()
# use stimulus to find pulse edges
diff = np.diff(stim) # np.diff() gives first derivative
on_times = np.argwhere(diff > 0)[:,0]
off_times = np.argwhere(diff < 0)[:,0]
# decide on the region of the trace to focus on
start = on_times[1] - 1000
stop = off_times[8] + 1000
chunk = trace[start:stop]
# plot the selected chunk
t = np.arange(chunk.shape[0]) * dt
plot.plot(t[:-1], np.diff(ndi.gaussian_filter(chunk, sigma)), pen=0.5)
plot.plot(t, chunk)
# detect spike times
peak_inds = []
rise_inds = []
for j in range(8): # loop over pulses
pstart = on_times[j+1] - start
pstop = off_times[j+1] - start
spike_info = detect_vc_evoked_spike(TSeries(chunk, dt=dt), pulse_edges=(pstart, pstop))
if spike_info is not None:
peak_inds.append(spike_info['peak_index'])
rise_inds.append(spike_info['rise_index'])
# display spike rise and peak times as ticks
pticks = pg.VTickGroup(np.array(peak_inds) * dt, yrange=[0, 0.3], pen='r')
rticks = pg.VTickGroup(np.array(rise_inds) * dt, yrange=[0, 0.3], pen='y')
plot.addItem(pticks)
plot.addItem(rticks)