From 24a45357360860fc4c4e4281a29645fb499b1150 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Fri, 8 Sep 2023 15:06:32 -0600 Subject: [PATCH 01/11] Added predict_ensemble to all model classes --- applications/train_classifier_ptype.py | 124 +++++++-------- applications/train_evidential_SL.py | 78 ++++++---- applications/train_gaussian_SL.py | 70 +++++++-- applications/train_mlp_SL.py | 11 +- config/model_evidential_SL.yml | 8 +- config/model_gaussian_SL.yml | 8 +- config/model_mlp_SL.yml | 7 +- config/surface_layer/evidential.yml | 4 +- config/surface_layer/gaussian.yml | 4 +- config/surface_layer/mlp.yml | 2 +- evml/keras/models.py | 128 ++++++++++++++- notebooks/regression_example.ipynb | 205 +++++++------------------ 12 files changed, 372 insertions(+), 277 deletions(-) diff --git a/applications/train_classifier_ptype.py b/applications/train_classifier_ptype.py index 2d5f637..105cd4f 100644 --- a/applications/train_classifier_ptype.py +++ b/applications/train_classifier_ptype.py @@ -16,7 +16,7 @@ from argparse import ArgumentParser from ptype.callbacks import MetricsCallback -from ptype.data import load_ptype_data_day, preprocess_data +from ptype.data import load_ptype_uq, preprocess_data from sklearn.model_selection import GroupShuffleSplit from evml.keras.callbacks import get_callbacks, ReportEpoch @@ -31,67 +31,67 @@ logger = logging.getLogger(__name__) -def load_ptype_uq(conf, data_split=0, verbose=0, drop_mixed=False): - - # Load - df = pd.read_parquet(conf["data_path"]) - - # Drop mixed cases - if drop_mixed: - logger.info("Dropping data points with mixed observations") - c1 = df["ra_percent"] == 1.0 - c2 = df["sn_percent"] == 1.0 - c3 = df["pl_percent"] == 1.0 - c4 = df["fzra_percent"] == 1.0 - condition = c1 | c2 | c3 | c4 - df = df[condition].copy() - - # QC-Filter - qc_value = str(conf["qc"]) - cond1 = df[f"wetbulb{qc_value}_filter"] == 0.0 - cond2 = df["usa"] == 1.0 - dg = df[cond1 & cond2].copy() - - dg["day"] = dg["datetime"].apply(lambda x: str(x).split(" ")[0]) - dg["id"] = range(dg.shape[0]) - - # Select test cases - test_days_c1 = dg["day"].isin( - [day for case in conf["case_studies"].values() for day in case] - ) - test_days_c2 = dg["day"] >= conf["test_cutoff"] - test_condition = test_days_c1 | test_days_c2 - - # Partition the data into trainable-only and test-only splits - train_data = dg[~test_condition].copy() - test_data = dg[test_condition].copy() - - # Make N train-valid splits using day as grouping variable, return "data_split" split - gsp = GroupShuffleSplit( - n_splits=conf["ensemble"]["n_splits"], - random_state=conf["seed"], - train_size=conf["train_size1"], - ) - splits = list(gsp.split(train_data, groups=train_data["day"])) - - train_index, valid_index = splits[data_split] - train_data, valid_data = ( - train_data.iloc[train_index].copy(), - train_data.iloc[valid_index].copy(), - ) - - size = df.shape[0] - logger.info("Train, validation, and test fractions:") - logger.info( - f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" - ) - print( - f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" - ) - - data = {"train": train_data, "val": valid_data, "test": test_data} - - return data +# def load_ptype_uq(conf, data_split=0, verbose=0, drop_mixed=False): + +# # Load +# df = pd.read_parquet(conf["data_path"]) + +# # Drop mixed cases +# if drop_mixed: +# logger.info("Dropping data points with mixed observations") +# c1 = df["ra_percent"] == 1.0 +# c2 = df["sn_percent"] == 1.0 +# c3 = df["pl_percent"] == 1.0 +# c4 = df["fzra_percent"] == 1.0 +# condition = c1 | c2 | c3 | c4 +# df = df[condition].copy() + +# # QC-Filter +# qc_value = str(conf["qc"]) +# cond1 = df[f"wetbulb{qc_value}_filter"] == 0.0 +# cond2 = df["usa"] == 1.0 +# dg = df[cond1 & cond2].copy() + +# dg["day"] = dg["datetime"].apply(lambda x: str(x).split(" ")[0]) +# dg["id"] = range(dg.shape[0]) + +# # Select test cases +# test_days_c1 = dg["day"].isin( +# [day for case in conf["case_studies"].values() for day in case] +# ) +# test_days_c2 = dg["day"] >= conf["test_cutoff"] +# test_condition = test_days_c1 | test_days_c2 + +# # Partition the data into trainable-only and test-only splits +# train_data = dg[~test_condition].copy() +# test_data = dg[test_condition].copy() + +# # Make N train-valid splits using day as grouping variable, return "data_split" split +# gsp = GroupShuffleSplit( +# n_splits=conf["ensemble"]["n_splits"], +# random_state=conf["seed"], +# train_size=conf["train_size1"], +# ) +# splits = list(gsp.split(train_data, groups=train_data["day"])) + +# train_index, valid_index = splits[data_split] +# train_data, valid_data = ( +# train_data.iloc[train_index].copy(), +# train_data.iloc[valid_index].copy(), +# ) + +# size = df.shape[0] +# logger.info("Train, validation, and test fractions:") +# logger.info( +# f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" +# ) +# print( +# f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" +# ) + +# data = {"train": train_data, "val": valid_data, "test": test_data} + +# return data class Objective(BaseObjective): diff --git a/applications/train_evidential_SL.py b/applications/train_evidential_SL.py index 09669e7..5b29ade 100644 --- a/applications/train_evidential_SL.py +++ b/applications/train_evidential_SL.py @@ -72,6 +72,19 @@ def trainer(conf, trial=False): model_params = conf["model"] model_params["save_path"] = save_loc + + if trial is False: # Dont create directories if ECHO is running + os.makedirs(os.path.join(save_loc, f"models"), exist_ok=True) + os.makedirs(os.path.join(save_loc, f"scalers"), exist_ok=True) + os.makedirs(os.path.join(save_loc, "evaluate"), exist_ok=True) + os.makedirs(os.path.join(save_loc, "metrics"), exist_ok=True) + conf["model"]["save_path"] = os.path.join(save_loc, f"models") + + if not os.path.isfile(os.path.join(save_loc, f"models", "model.yml")): + with open( + os.path.join(save_loc, f"models", "model.yml"), "w" + ) as fid: + yaml.dump(conf, fid) # Load data, splitter, and scalers data = pd.read_csv(conf["data"]["save_loc"]) @@ -147,7 +160,7 @@ def trainer(conf, trial=False): x_train, y_train, validation_data=(x_valid, y_valid), - callbacks=get_callbacks(conf, path_extend=""), + callbacks=get_callbacks(conf, path_extend=f"models"), ) history = model.model.history @@ -163,20 +176,6 @@ def trainer(conf, trial=False): pred_type="gaussian", ) ) - # _pitd.append( - # pit_deviation_skill_score( - # y_valid[:, i], - # np.stack([mu[:, i], np.sqrt(ale[:, i])], -1), - # pred_type="gaussian", - # ) - # ) - # _pitd.append( - # pit_deviation_skill_score( - # y_valid[:, i], - # np.stack([mu[:, i], np.sqrt(epi[:, i])], -1), - # pred_type="gaussian", - # ) - # ) optimization_metric = np.mean(_pitd) elif "R2" in training_metric: mu, ale, epi = model.predict(x_valid) @@ -200,6 +199,36 @@ def trainer(conf, trial=False): f"Finished split {data_seed} with metric {training_metric} = {optimization_metric}" ) + ########## + # + # SAVE MODEL + # + ########## + + # Save model weights + model.model_name = f"model_split{data_seed}.h5" + model.save_model() + + if conf["ensemble"]["n_splits"] > 1 or conf["ensemble"]["n_models"] > 1: + pd_history = pd.DataFrame.from_dict(history.history) + pd_history["data_split"] = data_seed + pd_history.to_csv( + os.path.join(conf["save_loc"], f"training_log_split{data_seed}.csv") + ) + + # Save scalers + for scaler_name, scaler in zip( + ["input", "output"], [x_scaler, y_scaler] + ): + fn = os.path.join( + save_loc, "scalers", f"{scaler_name}_split{data_seed}.json" + ) + try: + save_scaler(scaler, fn) + except TypeError: + with open(fn, "wb") as fid: + pickle.dump(scaler, fid) + # Save if its the best model c1 = (direction == "min") and (optimization_metric < best_model_score) c2 = (direction == "max") and (optimization_metric > best_model_score) @@ -209,13 +238,11 @@ def trainer(conf, trial=False): best_split = data_seed model.model_name = "best.h5" model.save_model() - - # Save scalers for scaler_name, scaler in zip( ["input", "output"], [x_scaler, y_scaler] ): fn = os.path.join( - conf["model"]["save_path"], f"{scaler_name}.json" + save_loc, "scalers", f"best_{scaler_name}.json" ) try: save_scaler(scaler, fn) @@ -224,8 +251,8 @@ def trainer(conf, trial=False): pickle.dump(scaler, fid) # evaluate on the test holdout split - result = model.predict(x_test, scaler=y_scaler) - mu, aleatoric, epistemic = result + mu, aleatoric, epistemic = model.predict(x_test, scaler=y_scaler) + ensemble_mu[data_seed] = mu ensemble_ale[data_seed] = aleatoric ensemble_epi[data_seed] = epistemic @@ -256,7 +283,6 @@ def trainer(conf, trial=False): _test_data[[f"{x}_ale" for x in output_cols]] = aleatoric _test_data[[f"{x}_epi" for x in output_cols]] = epistemic - os.makedirs(os.path.join(save_loc, "evaluate"), exist_ok=True) _test_data.to_csv(os.path.join(save_loc, "evaluate/test.csv")) np.save(os.path.join(save_loc, "evaluate/test_mu.npy"), ensemble_mu) np.save(os.path.join(save_loc, "evaluate/test_aleatoric.npy"), ensemble_ale) @@ -266,7 +292,6 @@ def trainer(conf, trial=False): pd.DataFrame.from_dict(pitd_dict).to_csv(os.path.join(save_loc, "evaluate/pitd.csv")) # make some figures - os.makedirs(os.path.join(save_loc, "metrics"), exist_ok=True) compute_results( _test_data, output_cols, @@ -318,15 +343,6 @@ def trainer(conf, trial=False): save_loc = conf["save_loc"] os.makedirs(save_loc, exist_ok=True) - conf["model"]["save_path"] = save_loc - conf["model"]["model_name"] = "best.h5" - - if not os.path.isfile(os.path.join(save_loc, "model.yml")): - shutil.copyfile(config, os.path.join(save_loc, "model.yml")) - else: - with open(os.path.join(save_loc, "model.yml"), "w") as fid: - yaml.dump(conf, fid) - if launch: from pathlib import Path script_path = Path(__file__).absolute() diff --git a/applications/train_gaussian_SL.py b/applications/train_gaussian_SL.py index 0ff10d6..09a435d 100644 --- a/applications/train_gaussian_SL.py +++ b/applications/train_gaussian_SL.py @@ -187,7 +187,7 @@ def trainer(conf, trial=False, mode="single"): y_test = y_scaler.transform(test_data[output_cols]) else: y_train = train_data[output_cols].values - y_valid = valid_data[output_cols].values + y_valid = valid_data[output_cols].values y_test = test_data[output_cols].values # Copy / initialize model @@ -209,8 +209,8 @@ def trainer(conf, trial=False, mode="single"): # Get the value of the metric if "pit" in training_metric: pitd = [] - y_pred = model.predict(x_valid) - mu, var = model.calc_uncertainties(y_pred, y_scaler) + mu, var = model.predict(x_valid, y_scaler) + #mu, var = model.calc_uncertainties(y_pred, y_scaler) for i, col in enumerate(output_cols): pitd.append( pit_deviation( @@ -236,8 +236,39 @@ def trainer(conf, trial=False, mode="single"): logger.info( f"Finished model/data split {model_seed}/{data_seed} with metric {training_metric} = {optimization_metric}" ) + + ########## + # + # SAVE MODEL + # + ########## + + # Save model weights + model.model_name = f"model_seed{model_seed}_split{data_seed}.h5" + model.save_model() + + if conf["ensemble"]["n_splits"] > 1 or conf["ensemble"]["n_models"] > 1: + pd_history = pd.DataFrame.from_dict(history.history) + pd_history["data_split"] = data_seed + pd_history["model_split"] = model_seed + pd_history.to_csv( + os.path.join(conf["save_loc"], mode, "models", f"training_log_seed{model_seed}_split{data_seed}.csv") + ) + + # Save scalers + for scaler_name, scaler in zip( + ["input", "output"], [x_scaler, y_scaler] + ): + fn = os.path.join( + save_loc, f"{mode}/scalers", f"{scaler_name}.json" + ) + try: + save_scaler(scaler, fn) + except TypeError: + with open(fn, "wb") as fid: + pickle.dump(scaler, fid) - # Save if its the best model + # Symlink if its the best model c1 = (direction == "min") and (optimization_metric < best_model_score) c2 = (direction == "max") and (optimization_metric > best_model_score) if c1 | c2: @@ -246,19 +277,36 @@ def trainer(conf, trial=False, mode="single"): best_data_split = data_seed model.model_name = "best.h5" model.save_model() - + # ensemble_name = f"model_seed{model_seed}_split{data_seed}" + # os.symlink( + # os.path.join(save_loc, mode, "models", f"{ensemble_name}.h5"), + # os.path.join(save_loc, mode, "models", "best.h5"), + # ) + # os.symlink( + # os.path.join(save_loc, mode, "models", f"{ensemble_name}_training_var.txt"), + # os.path.join(save_loc, mode, "models", "best_training_var.txt"), + # ) # Save scalers + # for scaler_name in ["input", "output"]: + # fn1 = os.path.join( + # save_loc, f"{mode}/scalers", f"{scaler_name}.json" + # ) + # fn2 = os.path.join( + # save_loc, f"{mode}/scalers", f"best_{scaler_name}.json" + # ) + # os.symlink(fn1, fn2) for scaler_name, scaler in zip( ["input", "output"], [x_scaler, y_scaler] ): fn = os.path.join( - save_loc, f"{mode}/scalers", f"{scaler_name}.json" + save_loc, f"{mode}/scalers", f"best_{scaler_name}.json" ) try: save_scaler(scaler, fn) except TypeError: with open(fn, "wb") as fid: pickle.dump(scaler, fid) + if trial is not False: continue @@ -268,19 +316,19 @@ def trainer(conf, trial=False, mode="single"): ["test"], [x_test], [test_data] ): - y_pred = model.predict(x_split) - mu, aleatoric = model.calc_uncertainties(y_pred, y_scaler) + mu, var = model.predict(x_split, y_scaler) + #mu, aleatoric = model.calc_uncertainties(y_pred, y_scaler) if mode == "seed": ensemble_mu[model_seed] = mu - ensemble_var[model_seed] = aleatoric + ensemble_var[model_seed] = var else: ensemble_mu[data_seed] = mu - ensemble_var[data_seed] = aleatoric + ensemble_var[data_seed] = var # Save the ensemble member df df[[f"{x}_pred" for x in output_cols]] = mu - df[[f"{x}_ale" for x in output_cols]] = aleatoric + df[[f"{x}_ale" for x in output_cols]] = var df.to_csv( os.path.join( save_loc, f"{mode}/evaluate", f"{split}_{data_seed}.csv" diff --git a/applications/train_mlp_SL.py b/applications/train_mlp_SL.py index 22bf5e5..b6f7690 100644 --- a/applications/train_mlp_SL.py +++ b/applications/train_mlp_SL.py @@ -196,11 +196,20 @@ def trainer(conf, trial=False, mode="single"): if x not in trial.params } + # Save model weights + model.model_name = f"model_seed{model_seed}_split{data_seed}.h5" + model.save_model() + # Save if its the best model if min(history.history[training_metric]) < best_model_score: best_model = model best_data_split = data_seed - model.save_model() + os.symlink( + os.path.join(save_loc, "models", f"model_seed{model_seed}_split{data_seed}.h5"), + os.path.join(save_loc, "models", "best.h5"), + ) + #model.model_name = "best.h5" + #model.save_model() # evaluate on the test holdout split _ensemble_pred[data_seed] = y_scaler.inverse_transform( diff --git a/config/model_evidential_SL.yml b/config/model_evidential_SL.yml index d222ab4..6974a81 100644 --- a/config/model_evidential_SL.yml +++ b/config/model_evidential_SL.yml @@ -50,7 +50,6 @@ model: lr: 3.5779279071474884e-05 metrics: mae optimizer: adam - uncertainties: true use_dropout: true use_noise: false verbose: 2 @@ -74,10 +73,11 @@ callbacks: separator: "," append: False ModelCheckpoint: - filepath: "model.h5" + filepath: "tmp.h5" monitor: "val_loss" - save_weights: True - save_best_only: True + save_weights: False + save_best_only: False + restore_best_weights: True mode: "min" verbose: 0 diff --git a/config/model_gaussian_SL.yml b/config/model_gaussian_SL.yml index a12d8a6..71bed20 100644 --- a/config/model_gaussian_SL.yml +++ b/config/model_gaussian_SL.yml @@ -50,7 +50,6 @@ model: lr: 0.0002440268028890707 metrics: mae optimizer: adam - uncertainties: false use_dropout: true use_noise: false verbose: 2 @@ -74,10 +73,11 @@ callbacks: separator: "," append: False ModelCheckpoint: - filepath: "model.h5" + filepath: "tmp.h5" monitor: "val_mae" - save_weights: True - save_best_only: True + save_weights: False + save_best_only: False + restore_best_weights: True mode: "min" verbose: 0 diff --git a/config/model_mlp_SL.yml b/config/model_mlp_SL.yml index 0b358ae..a1ad78f 100644 --- a/config/model_mlp_SL.yml +++ b/config/model_mlp_SL.yml @@ -73,10 +73,11 @@ callbacks: separator: "," append: False ModelCheckpoint: - filepath: "model.h5" + filepath: "tmp.h5" monitor: "val_mae" - save_weights: True - save_best_only: True + save_weights: False + save_best_only: False + restore_best_weights: True mode: "min" verbose: 0 diff --git a/config/surface_layer/evidential.yml b/config/surface_layer/evidential.yml index dee4ca2..7b8608c 100644 --- a/config/surface_layer/evidential.yml +++ b/config/surface_layer/evidential.yml @@ -66,7 +66,7 @@ model: metrics: mae model_name: best.h5 optimizer: adam - save_path: /glade/scratch/schreck/repos/evidential/results/surface_layer/production/data/friction_velocity/evidential + save_path: ./ uncertainties: true use_dropout: true use_noise: false @@ -85,6 +85,6 @@ pbs: queue: casper select: 1 walltime: 43200 -save_loc: /glade/scratch/schreck/repos/evidential/results/surface_layer/production/data/friction_velocity/evidential +save_loc: ./ seed: 1000 training_metric: val_pitd diff --git a/config/surface_layer/gaussian.yml b/config/surface_layer/gaussian.yml index 3016cb1..8a24f28 100644 --- a/config/surface_layer/gaussian.yml +++ b/config/surface_layer/gaussian.yml @@ -66,7 +66,7 @@ model: metrics: mae model_name: best.h5 optimizer: adam - save_path: /glade/scratch/schreck/repos/evidential/results/surface_layer/production/data/friction_velocity/ensemble + save_path: ./ uncertainties: false use_dropout: true use_noise: false @@ -85,6 +85,6 @@ pbs: queue: casper select: 1 walltime: 86400 -save_loc: /glade/scratch/schreck/repos/evidential/results/surface_layer/production/data/friction_velocity/ensemble +save_loc: ./ seed: 1000 training_metric: val_pitd diff --git a/config/surface_layer/mlp.yml b/config/surface_layer/mlp.yml index 0b358ae..4181591 100644 --- a/config/surface_layer/mlp.yml +++ b/config/surface_layer/mlp.yml @@ -1,5 +1,5 @@ seed: 1000 -save_loc: "/glade/work/schreck/repos/evidential/main/results/test" +save_loc: "./" training_metric: "val_mae" direction: "min" diff --git a/evml/keras/models.py b/evml/keras/models.py index 6b09492..c4e7a92 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -19,7 +19,6 @@ logger = logging.getLogger(__name__) -#eps = np.finfo(np.float32).eps class RegressorDNN(object): @@ -205,9 +204,13 @@ def load_model(cls, conf): model_class.model.load_weights(weights) return model_class - def predict(self, x, scaler=None, batch_size=None): + def predict(self, x, scaler=None, batch_size=None, y_scaler=None): _batch_size = self.batch_size if batch_size is None else batch_size y_out = self.model.predict(x, batch_size=_batch_size) + if y_scaler: + if y_out.shape[-1] == 1: + y_out = np.expand_dims(y_out, 1) + y_out = y_scaler.inverse_transform(y_out) return y_out def predict_monte_carlo( @@ -224,13 +227,38 @@ def predict_monte_carlo( for i in range(0, x_test.shape[0], _batch_size) ] output = np.concatenate(output, axis=0) - # output = self.model(x_test, training=True) if y_scaler: if output.shape[-1] == 1: output = np.expand_dims(output, 1) output = y_scaler.inverse_transform(output) dropout_mu[i] = output return dropout_mu + + def predict_ensemble(self, x, weight_locations, y_scaler=None, batch_size=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + first_prediction = self.predict(x, batch_size=batch_size, y_scaler = y_scaler) + output_shape = first_prediction.shape[1:] + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + predictions[0] = first_prediction + else: + output_shape = () # Default shape if no models + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + y_prob = self.predict(x, batch_size=batch_size, y_scaler=y_scaler) + predictions[i + 1] = y_prob + + return predictions + + class EvidentialRegressorDNN(object): """ @@ -432,7 +460,7 @@ def save_model(self): ) # Save the training variances np.savetxt( - os.path.join(self.save_path, "training_var.txt"), + os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), np.array(self.training_var), ) return @@ -457,7 +485,7 @@ def load_model(cls, conf): # Load the variances model_class.training_var = np.loadtxt( - os.path.join(os.path.join(conf["model"]["save_path"], "training_var.txt")) + os.path.join(os.path.join(conf["model"]["save_path"], "best_training_var.txt")) ) if not model_class.training_var.shape: @@ -523,6 +551,38 @@ def predict_dist_params(self, x, y_scaler=None, batch_size=None): mu = y_scaler.inverse_transform(mu) return mu, v, alpha, beta + + def predict_ensemble(self, x, weight_locations, scaler=None, batch_size=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + ensemble_ale[0] = ale + ensemble_epi[0] = epi + else: + output_shape = () # Default shape if no models + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) + ensemble_mu[i + 1] = mu + ensemble_ale[i + 1] = ale + ensemble_epi[i + 1] = epi + + return ensemble_mu, ensemble_ale, ensemble_epi class GaussianRegressorDNN(EvidentialRegressorDNN): @@ -647,6 +707,12 @@ def load_model(cls, conf): model_class.training_var = [model_class.training_var] return model_class + + def predict(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties(y_out, scaler) + return y_out def predict_monte_carlo( self, x_test, y_test, forward_passes, y_scaler=None, batch_size=None @@ -697,6 +763,34 @@ def predict_dist_params(self, x, y_scaler=None, batch_size=None): mu = y_scaler.inverse_transform(mu) return mu, var + + def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + mu, var = self.predict(x, batch_size=batch_size, scaler=scaler) + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + ensemble_var[0] = var + else: + output_shape = () # Default shape if no models + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + mu, var = self.predict(x, scaler=scaler, batch_size=batch_size) + ensemble_mu[i + 1] = mu + ensemble_var[i + 1] = var + + return ensemble_mu, ensemble_var class CategoricalDNN(object): @@ -986,6 +1080,30 @@ def predict_monte_carlo(self, x, mc_forward_passes=10, batch_size=None): np.sum(-y_prob * np.log(y_prob + epsilon), axis=-1), axis=0 ) # shape (n_samples,) return pred_probs, aleatoric, epistemic, entropy, mutual_info + + def predict_ensemble(self, x, weight_locations, batch_size=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + first_prediction = self.predict(x, batch_size=batch_size) + output_shape = first_prediction.shape[1:] + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + predictions[0] = first_prediction + else: + output_shape = () # Default shape if no models + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + y_prob = model_instance.predict(x, batch_size=batch_size) + predictions[i + 1] = y_prob + + return predictions def compute_uncertainties(self, y_pred, num_classes=4): return calc_prob_uncertainty(y_pred, num_classes=num_classes) diff --git a/notebooks/regression_example.ipynb b/notebooks/regression_example.ipynb index fa7d54f..03db344 100644 --- a/notebooks/regression_example.ipynb +++ b/notebooks/regression_example.ipynb @@ -9,11 +9,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-07 09:40:54.763554: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "2023-09-08 14:17:44.915332: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-09-07 09:40:57.118252: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-07 09:40:57.118403: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-07 09:40:57.118415: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" + "2023-09-08 14:17:47.363453: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-08 14:17:47.363644: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-08 14:17:47.363659: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], @@ -287,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -364,7 +364,7 @@ } ], "source": [ - "y_pred = gauss_model.predict(x_test)" + "mu, var = gauss_model.predict(x_test, y_scaler)" ] }, { @@ -374,7 +374,7 @@ "outputs": [], "source": [ "# compute variance and std from learned parameters\n", - "mu, var = gauss_model.calc_uncertainties(y_pred, y_scaler)" + "#mu, var = gauss_model.calc_uncertainties(y_pred, y_scaler)" ] }, { @@ -451,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -673,7 +673,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -687,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -699,145 +699,23 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/10 [00:00.predict_function at 0x2b1ae31c7280> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 20%|██ | 2/10 [00:03<00:14, 1.85s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18/18 [==============================] - 1s 24ms/step - loss: 22376.9766 - mae: 0.1807 - val_loss: 0.1753 - val_mae: 0.1415 - lr: 0.0024\n", - "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2b1ae31c78b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 30%|███ | 3/10 [00:05<00:12, 1.83s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "17/18 [===========================>..] - ETA: 0s - loss: 18.6182 - mae: 0.2091WARNING:tensorflow:5 out of the last 20 calls to .test_function at 0x2b1ae2f6fd30> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "18/18 [==============================] - 1s 24ms/step - loss: 18.2930 - mae: 0.2079 - val_loss: 0.4428 - val_mae: 0.1387 - lr: 0.0024\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 40%|████ | 4/10 [00:07<00:10, 1.83s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "17/18 [===========================>..] - ETA: 0s - loss: 3742.6980 - mae: 0.1662WARNING:tensorflow:5 out of the last 13 calls to .test_function at 0x2b1ae326b280> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "18/18 [==============================] - 1s 24ms/step - loss: 3666.6624 - mae: 0.1656 - val_loss: 0.2537 - val_mae: 0.1327 - lr: 0.0024\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 50%|█████ | 5/10 [00:09<00:09, 1.83s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18/18 [==============================] - 1s 24ms/step - loss: 16.4507 - mae: 0.1610 - val_loss: 0.3031 - val_mae: 0.1328 - lr: 0.0024\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 60%|██████ | 6/10 [00:10<00:07, 1.82s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18/18 [==============================] - 1s 24ms/step - loss: 1011.1868 - mae: 0.1759 - val_loss: 0.3659 - val_mae: 0.1322 - lr: 0.0024\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 70%|███████ | 7/10 [00:12<00:05, 1.82s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18/18 [==============================] - 1s 25ms/step - loss: 11.0168 - mae: 0.1700 - val_loss: 0.2215 - val_mae: 0.1338 - lr: 0.0024\n", - "3/3 [==============================] - 0s 3ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 80%|████████ | 8/10 [00:14<00:03, 1.83s/it]" + " 0%| | 0/2 [00:00 Date: Mon, 11 Sep 2023 16:44:10 -0600 Subject: [PATCH 02/11] Refactored the regression model classes; testing so have not renamed refactor script yet --- applications/train_evidential_SL.py | 10 +- applications/train_gaussian_SL.py | 7 +- applications/train_mlp_SL.py | 2 +- config/surface_layer/evidential.yml | 1 - config/surface_layer/gaussian.yml | 1 - config/surface_layer/mlp.yml | 4 +- evml/keras/layers.py | 4 +- evml/keras/model_refactor.py | 1174 +++++++++++++++++++++++++++ notebooks/regression_example.ipynb | 393 ++++++--- 9 files changed, 1477 insertions(+), 119 deletions(-) create mode 100644 evml/keras/model_refactor.py diff --git a/applications/train_evidential_SL.py b/applications/train_evidential_SL.py index 5b29ade..3b6a62d 100644 --- a/applications/train_evidential_SL.py +++ b/applications/train_evidential_SL.py @@ -19,7 +19,7 @@ from tensorflow.keras import backend as K from evml.pit import pit_deviation_skill_score, pit_deviation -from evml.keras.models import EvidentialRegressorDNN +from evml.keras.model_refactor import EvidentialRegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results @@ -167,7 +167,7 @@ def trainer(conf, trial=False): # Get the value of the metric if "pit" in training_metric: _pitd = [] - mu, ale, epi = model.predict(x_valid) + mu, ale, epi = model.predict_uncertainty(x_valid) for i, col in enumerate(output_cols): _pitd.append( pit_deviation_skill_score( @@ -178,7 +178,7 @@ def trainer(conf, trial=False): ) optimization_metric = np.mean(_pitd) elif "R2" in training_metric: - mu, ale, epi = model.predict(x_valid) + mu, ale, epi = model.predict_uncertainty(x_valid) rmse = (y_valid - mu) ** 2 spread = ale + epi optimization_metric = r2_score(rmse, spread) @@ -213,7 +213,7 @@ def trainer(conf, trial=False): pd_history = pd.DataFrame.from_dict(history.history) pd_history["data_split"] = data_seed pd_history.to_csv( - os.path.join(conf["save_loc"], f"training_log_split{data_seed}.csv") + os.path.join(conf["save_loc"], "models", f"training_log_split{data_seed}.csv") ) # Save scalers @@ -251,7 +251,7 @@ def trainer(conf, trial=False): pickle.dump(scaler, fid) # evaluate on the test holdout split - mu, aleatoric, epistemic = model.predict(x_test, scaler=y_scaler) + mu, aleatoric, epistemic = model.predict_uncertainty(x_test, scaler=y_scaler) ensemble_mu[data_seed] = mu ensemble_ale[data_seed] = aleatoric diff --git a/applications/train_gaussian_SL.py b/applications/train_gaussian_SL.py index 09a435d..4a26930 100644 --- a/applications/train_gaussian_SL.py +++ b/applications/train_gaussian_SL.py @@ -19,7 +19,7 @@ from keras import backend as K from evml.pit import pit_deviation_skill_score, pit_deviation -from evml.keras.models import GaussianRegressorDNN +from evml.keras.model_refactor import GaussianRegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results @@ -209,7 +209,7 @@ def trainer(conf, trial=False, mode="single"): # Get the value of the metric if "pit" in training_metric: pitd = [] - mu, var = model.predict(x_valid, y_scaler) + mu, var = model.predict_uncertainty(x_valid, y_scaler) #mu, var = model.calc_uncertainties(y_pred, y_scaler) for i, col in enumerate(output_cols): pitd.append( @@ -316,8 +316,7 @@ def trainer(conf, trial=False, mode="single"): ["test"], [x_test], [test_data] ): - mu, var = model.predict(x_split, y_scaler) - #mu, aleatoric = model.calc_uncertainties(y_pred, y_scaler) + mu, var = model.predict_uncertainty(x_split, y_scaler) if mode == "seed": ensemble_mu[model_seed] = mu diff --git a/applications/train_mlp_SL.py b/applications/train_mlp_SL.py index b6f7690..d88a9cc 100644 --- a/applications/train_mlp_SL.py +++ b/applications/train_mlp_SL.py @@ -13,7 +13,7 @@ from argparse import ArgumentParser from keras import backend as K -from evml.keras.models import RegressorDNN +from evml.keras.model_refactor import BaseRegressor as RegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results diff --git a/config/surface_layer/evidential.yml b/config/surface_layer/evidential.yml index 7b8608c..a8251c5 100644 --- a/config/surface_layer/evidential.yml +++ b/config/surface_layer/evidential.yml @@ -67,7 +67,6 @@ model: model_name: best.h5 optimizer: adam save_path: ./ - uncertainties: true use_dropout: true use_noise: false verbose: 2 diff --git a/config/surface_layer/gaussian.yml b/config/surface_layer/gaussian.yml index 8a24f28..0a74bcf 100644 --- a/config/surface_layer/gaussian.yml +++ b/config/surface_layer/gaussian.yml @@ -67,7 +67,6 @@ model: model_name: best.h5 optimizer: adam save_path: ./ - uncertainties: false use_dropout: true use_noise: false verbose: 2 diff --git a/config/surface_layer/mlp.yml b/config/surface_layer/mlp.yml index 4181591..e26b34e 100644 --- a/config/surface_layer/mlp.yml +++ b/config/surface_layer/mlp.yml @@ -38,8 +38,8 @@ data: train_size: 0.9 model: - hidden_layers: 2 - hidden_neurons: 4368 + hidden_layers: 1 + hidden_neurons: 500 activation: "relu" optimizer: "adam" metrics: "mae" diff --git a/evml/keras/layers.py b/evml/keras/layers.py index 5498238..6092ed2 100644 --- a/evml/keras/layers.py +++ b/evml/keras/layers.py @@ -42,8 +42,8 @@ def get_config(self): class DenseNormal(tf.keras.layers.Layer): - def __init__(self, units, eps=1e-12): - super(DenseNormal, self).__init__() + def __init__(self, units, name, eps=1e-12): + super(DenseNormal, self).__init__(name=name) self.units = int(units) self.dense = tfa.layers.SpectralNormalization(tf.keras.layers.Dense(2 * self.units, activation = "sigmoid")) #self.dense = tf.keras.layers.Dense(2 * self.units, activation=None) diff --git a/evml/keras/model_refactor.py b/evml/keras/model_refactor.py new file mode 100644 index 0000000..1983e2b --- /dev/null +++ b/evml/keras/model_refactor.py @@ -0,0 +1,1174 @@ +import os +import numpy as np +import tensorflow as tf +from tensorflow.keras import Input, Model +from tensorflow.keras.regularizers import L1, L2, L1L2 +from tensorflow.keras.layers import Dense, LeakyReLU, GaussianNoise, Dropout +from tensorflow.keras.optimizers import Adam, SGD +from evml.keras.layers import DenseNormalGamma, DenseNormal +from evml.keras.losses import EvidentialRegressionLoss, EvidentialRegressionCoupledLoss, GaussianNLL +from evml.keras.losses import DirichletEvidentialLoss +import logging + + +class BaseRegressor(object): + """ + A base class for regression models. + Attributes: + hidden_layers: Number of hidden layers + hidden_neurons: Number of neurons in each hidden layer + activation: Type of activation function + optimizer: Name of optimizer or optimizer object. + loss: Name of loss function or loss object + use_noise: Whether additive Gaussian noise layers are included in the network + noise_sd: The standard deviation of the Gaussian noise layers + use_dropout: Whether Dropout layers are added to the network + dropout_alpha: proportion of neurons randomly set to 0. + batch_size: Number of examples per batch + epochs: Number of epochs to train + verbose: Level of detail to provide during training + model: Keras Model object + """ + + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + optimizer="adam", + loss="mse", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + eps = 1e-7 + ): + self.hidden_layers = hidden_layers + self.hidden_neurons = hidden_neurons + self.activation = activation + self.optimizer = optimizer + self.optimizer_obj = None + self.sgd_momentum = sgd_momentum + self.adam_beta_1 = adam_beta_1 + self.adam_beta_2 = adam_beta_2 + self.loss = loss + self.loss_weights = loss_weights + self.lr = lr + self.kernel_reg = kernel_reg + self.l1_weight = l1_weight + self.l2_weight = l2_weight + self.batch_size = batch_size + self.use_noise = use_noise + self.noise_sd = noise_sd + self.use_dropout = use_dropout + self.dropout_alpha = dropout_alpha + self.epochs = epochs + self.verbose = verbose + self.save_path = save_path + self.model_name = model_name + self.model = None + self.optimizer_obj = None + self.training_std = None + self.training_var = None + self.metrics = metrics + self.eps = eps + + def build_neural_network(self, inputs, outputs, last_layer = "Dense"): + """ + Create Keras neural network model and compile it. + + Args: + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. + """ + nn_input = Input(shape=(inputs,), name="input") + nn_model = nn_input + + if self.activation == "leaky": + self.activation = LeakyReLU() + + if self.kernel_reg == "l1": + self.kernel_reg = L1(self.l1_weight) + elif self.kernel_reg == "l2": + self.kernel_reg = L2(self.l2_weight) + elif self.kernel_reg == "l1_l2": + self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) + else: + self.kernel_reg = None + + for h in range(self.hidden_layers): + nn_model = Dense( + self.hidden_neurons, + activation=self.activation, + kernel_regularizer=L2(self.l2_weight), + name=f"dense_{h:02d}", + )(nn_model) + if self.use_dropout: + nn_model = Dropout(self.dropout_alpha, name=f"dropout_h_{h:02d}")( + nn_model + ) + if self.use_noise: + nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( + nn_model + ) + + if last_layer == "Dense": + nn_model = Dense(outputs, name="dense_last")(nn_model) + elif last_layer == "DenseNormal": + nn_model = DenseNormal(outputs, name="DenseNormal", eps=self.eps)(nn_model) + elif last_layer == "DenseNormalGamma": + nn_model = DenseNormalGamma(outputs, name="DenseNormalGamma", eps=self.eps)( + nn_model + ) + else: + raise ValueError("Invalid last_layer type. Use 'Dense', 'DenseNormal', or 'DenseNormalGamma'.") + + self.model = Model(nn_input, nn_model) + + if self.optimizer == "adam": + self.optimizer_obj = Adam(learning_rate=self.lr) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + + self.model.compile( + optimizer=self.optimizer_obj, + loss=self.loss, + loss_weights=self.loss_weights, + metrics=self.metrics, + run_eagerly=False, + ) + + + def build_from_sequential(self, model, optimizer="adam", loss="mse", metrics=None): + """ + Build the neural network model using a Keras Sequential model. + + Args: + model (tf.keras.Sequential): Keras Sequential model to use. + optimizer (str or tf.keras.optimizers.Optimizer): Optimizer for the model. + loss (str or tf.keras.losses.Loss): Loss function for the model. + metrics (list of str or tf.keras.metrics.Metric): Metrics for the model. + """ + self.model = model + + if self.optimizer == "adam": + self.optimizer_obj = Adam(learning_rate=self.lr) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + + self.model.compile( + optimizer=self.optimizer_obj, + loss=self.loss, + loss_weights=self.loss_weights, + metrics=self.metrics, + run_eagerly=False, + ) + + + def fit( + self, + x, + y, + validation_data=None, + callbacks=None, + initial_epoch=0, + steps_per_epoch=None, + workers=0, + use_multiprocessing=False, + shuffle=True, + **kwargs, + ): + """ + Fit the regression model. + Args: + x: Input data + y: Target data + validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch + callbacks: List of callbacks to apply during training + initial_epoch: Epoch at which to start training (useful for resuming a previous training run) + steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. + workers: Number of workers to use for data loading + use_multiprocessing: If True, use ProcessPoolExecutor to load data, which is faster but can cause issues with certain GPU setups. If False, use a ThreadPoolExecutor. + **kwargs: Additional arguments to be passed to the `fit` method + """ + + if self.model is None: + raise ValueError("Model has not been built. Call build_neural_network first.") + if self.verbose: + self.model.summary() + self.training_var = [np.var(y[:, i]) for i in range(y.shape[-1])] + self.history = self.model.fit( + x, + y, + batch_size=self.batch_size, + epochs=self.epochs, + verbose=self.verbose, + callbacks=callbacks, + validation_data=validation_data, + initial_epoch=initial_epoch, + steps_per_epoch=steps_per_epoch, + workers=workers, + use_multiprocessing=use_multiprocessing, + shuffle=shuffle, + **kwargs, + ) + + def save_model(self): + """ + Save the trained model to a file. + """ + if not os.path.exists(self.save_path): + os.makedirs(self.save_path) + model_path = os.path.join(self.save_path, self.model_name) + tf.keras.models.save_model( + self.model, model_path, save_format="h5" + ) + logging.info(f"Saved model to {model_path}") + + # Save the training variances + np.savetxt( + os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), + np.array(self.training_var), + ) + + @classmethod + def load_model(cls, conf): + # Check if weights file exists + weights = os.path.join(conf["model"]["save_path"], "best.h5") + if not os.path.isfile(weights): + raise ValueError( + f"No saved model exists at {weights}. You must train a model first. Exiting." + ) + + logging.info( + f"Loading a DNN with pre-trained weights from path {weights}" + ) + model_class = cls(**conf["model"]) + model_class.build_neural_network( + len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) + ) + model_class.model.load_weights(weights) + return model_class + + def mae(self, y_true, y_pred): + num_splits = y_pred.shape[-1] + + if num_splits == 4: + mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) + elif num_splits == 2: + mu, _ = tf.split(y_pred, num_splits, axis=-1) + else: + mu = y_pred # Assuming num_splits is 1 + + return tf.keras.metrics.mean_absolute_error(y_true, mu) + + def mse(self, y_true, y_pred): + num_splits = y_pred.shape[-1] + + if num_splits == 4: + mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) + elif num_splits == 2: + mu, _ = tf.split(y_pred, num_splits, axis=-1) + else: + mu = y_pred # Assuming num_splits is 1 + + return tf.keras.metrics.mean_squared_error(y_true, mu) + + def predict(self, x, scaler=None, batch_size=None): + """ + Predict target values for input data. + + Args: + x (numpy.ndarray): Input data. + scaler (optional): Scaler object for preprocessing input data (default: None). + batch_size (optional): Batch size for prediction (default: None). + y_scaler (optional): Scaler object for post-processing predicted target values (default: None). + + Returns: + numpy.ndarray: Predicted target values. + """ + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + if scaler: + if len(y_out.shape) == 1: + y_out = np.expand_dims(y_out, 1) + y_out = scaler.inverse_transform(y_out) + return y_out + + def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, num_outputs = 1): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + if num_outputs == 1: + mu = self.predict(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 2: + mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 3: + mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + if num_outputs >= 2: + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale[0] = ale + if num_outputs == 3: + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi[0] = epi + else: + output_shape = () # Default shape if no models + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + if num_outputs >= 2: + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + if num_outputs == 3: + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + + if num_outputs == 1: + mu = self.predict(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 2: + mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 3: + mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + + ensemble_mu[i + 1] = mu + if num_outputs >= 2: + ensemble_ale[i + 1] = ale + if num_outputs == 3: + ensemble_epi[i + 1] = epi + + if num_outputs == 1: + return ensemble_mu + elif num_outputs == 2: + return ensemble_mu, ensemble_ale + + return ensemble_mu, ensemble_ale, epistemic_epi + + def predict_monte_carlo(self, x_test, y_test, forward_passes, scaler=None, batch_size=None, num_outputs=1): + """ + Perform Monte Carlo dropout predictions for the model. + + Args: + x_test (numpy.ndarray): Input data for prediction. + y_test (numpy.ndarray): True target values corresponding to the input data. + forward_passes (int): Number of Monte Carlo forward passes to perform. + y_scaler (optional): Scaler object for post-processing predicted target values (default: None). + batch_size (optional): Batch size for prediction (default: None). + num_outputs (int): Number of output arrays to return (1, 2, or 3). + + Returns: + tuple: Tuple of arrays containing predicted target values and specified uncertainties. + """ + + n_samples = x_test.shape[0] + pred_size = y_test.shape[1] + _batch_size = self.batch_size if batch_size is None else batch_size + + output_arrs = [np.zeros((forward_passes, n_samples, pred_size)) for _ in range(num_outputs)] + + for i in range(forward_passes): + output = [self.model(x_test[i:i+_batch_size], training=True) + for i in range(0, x_test.shape[0], _batch_size)] + output = np.concatenate(output, axis=0) + + if scaler: + output = scaler.inverse_transform(output) + + if num_outputs == 1: + output_arrs[0][i] = output + else: + output = self.calc_uncertainties(output, scaler) + for j in range(num_outputs): + output_arrs[j][i] = output[j] + + return tuple(output_arrs) + + def calc_uncertainties(self, output, scaler): + raise NotImplementedError + + +class RegressorDNN(BaseRegressor): + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + optimizer="adam", + loss="mse", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + ): + super().__init__( + hidden_layers=hidden_layers, + hidden_neurons=hidden_neurons, + activation=activation, + optimizer=optimizer, + loss=loss, + loss_weights=loss_weights, + use_noise=use_noise, + noise_sd=noise_sd, + lr=lr, + use_dropout=use_dropout, + dropout_alpha=dropout_alpha, + batch_size=batch_size, + epochs=epochs, + kernel_reg=kernel_reg, + l1_weight=l1_weight, + l2_weight=l2_weight, + sgd_momentum=sgd_momentum, + adam_beta_1=adam_beta_1, + adam_beta_2=adam_beta_2, + verbose=verbose, + save_path=save_path, + model_name=model_name, + metrics=metrics, + ) + + +class GaussianRegressorDNN(BaseRegressor): + """ + A Dense Neural Network Model that can support arbitrary numbers of hidden layers + and provides evidential uncertainty estimation. + Inherits from BaseRegressor. + + Attributes: + hidden_layers: Number of hidden layers. + hidden_neurons: Number of neurons in each hidden layer. + activation: Type of activation function. + optimizer: Name of optimizer or optimizer object. + loss: Name of loss function or loss object. + use_noise: Whether additive Gaussian noise layers are included in the network. + noise_sd: The standard deviation of the Gaussian noise layers. + use_dropout: Whether Dropout layers are added to the network. + dropout_alpha: Proportion of neurons randomly set to 0. + batch_size: Number of examples per batch. + epochs: Number of epochs to train. + verbose: Level of detail to provide during training. + model: Keras Model object. + evidential_coef: Evidential regularization coefficient. + metrics: Optional list of metrics to monitor during training. + """ + + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + loss="", + optimizer="adam", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + eps=1e-7 + ): + """ + Initialize the EvidentialRegressorDNN. + + Args: + coupling_coef: Coupling coeffient for loss fix + evidential_coef: Evidential regularization coefficient. + """ + super().__init__( # Call the constructor of the base class + hidden_layers, + hidden_neurons, + activation, + optimizer, + loss, + loss_weights, + use_noise, + noise_sd, + lr, + use_dropout, + dropout_alpha, + batch_size, + epochs, + kernel_reg, + l1_weight, + l2_weight, + sgd_momentum, + adam_beta_1, + adam_beta_2, + verbose, + save_path, + model_name, + metrics, + ) + self.eps = eps + self.loss = GaussianNLL + + def build_neural_network(self, inputs, outputs): + """ + Create Keras neural network model and compile it. + + Args: + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. + """ + super().build_neural_network(inputs, outputs, last_layer = "DenseNormal") + + @classmethod + def load_model(cls, conf): + n_models = conf["ensemble"]["n_models"] + n_splits = conf["ensemble"]["n_splits"] + if n_splits > 1 and n_models == 1: + mode = "data" + elif n_splits == 1 and n_models > 1: + mode = "seed" + elif n_splits == 1 and n_models == 1: + mode = "single" + else: + raise ValueError( + "For the Gaussian model, only one of n_models or n_splits can be > 1 while the other must be 1" + ) + save_loc = conf["save_loc"] + # Check if weights file exists + weights = os.path.join(save_loc, f"{mode}/models", "best.h5") + if not os.path.isfile(weights): + raise ValueError( + f"No saved model exists at {weights}. You must train a model first. Exiting." + ) + if conf["model"]["verbose"]: + logging.info( + f"Loading a Gaussian DNN with pre-trained weights from path {weights}" + ) + model_class = cls(**conf["model"]) + model_class.build_neural_network( + len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) + ) + model_class.model.load_weights(weights) + + # Load the variances + model_class.training_var = np.loadtxt( + os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) + ) + if not isinstance(model_class.training_var, list): + model_class.training_var = [model_class.training_var] + + return model_class + + def calc_uncertainties(self, preds, y_scaler=False): + mu, aleatoric = np.split(preds, 2, axis=-1) + if len(mu.shape) == 1: + mu = np.expand_dims(mu) + aleatoric = np.expand_dims(aleatoric) + if y_scaler: + mu = y_scaler.inverse_transform(mu) + for i in range(aleatoric.shape[-1]): + aleatoric[:, i] *= self.training_var[i] + return mu, aleatoric + + def predict_uncertainty(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties(y_out, scaler) + return y_out + + def predict_dist_params(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + preds = self.model.predict(x, batch_size=_batch_size) + mu, var = np.split(preds, 2, axis=-1) + if mu.shape[-1] == 1: + mu = np.expand_dims(mu, 1) + if scaler is not None: + mu = scaler.inverse_transform(mu) + + return mu, var + + def predict_ensemble( + self, x_test, y_test, scaler=None, batch_size=None + ): + return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=2) + + def predict_monte_carlo( + self, x_test, y_test, forward_passes, scaler=None, batch_size=None + ): + return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=2) + + +class EvidentialRegressorDNN(BaseRegressor): + """ + A Dense Neural Network Model that can support arbitrary numbers of hidden layers + and provides evidential uncertainty estimation. + Inherits from BaseRegressor. + + Attributes: + hidden_layers: Number of hidden layers. + hidden_neurons: Number of neurons in each hidden layer. + activation: Type of activation function. + optimizer: Name of optimizer or optimizer object. + loss: Name of loss function or loss object. + use_noise: Whether additive Gaussian noise layers are included in the network. + noise_sd: The standard deviation of the Gaussian noise layers. + use_dropout: Whether Dropout layers are added to the network. + dropout_alpha: Proportion of neurons randomly set to 0. + batch_size: Number of examples per batch. + epochs: Number of epochs to train. + verbose: Level of detail to provide during training. + model: Keras Model object. + evidential_coef: Evidential regularization coefficient. + metrics: Optional list of metrics to monitor during training. + """ + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + loss="evidentialReg", + coupling_coef=1.0, # right now we have alpha = ... v.. so alpha will be coupled in new loss + evidential_coef=0.05, + optimizer="adam", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + eps=1e-7 + ): + """ + Initialize the EvidentialRegressorDNN. + + Args: + coupling_coef: Coupling coeffient for loss fix + evidential_coef: Evidential regularization coefficient. + """ + super().__init__( # Call the constructor of the base class + hidden_layers, + hidden_neurons, + activation, + optimizer, + loss, + loss_weights, + use_noise, + noise_sd, + lr, + use_dropout, + dropout_alpha, + batch_size, + epochs, + kernel_reg, + l1_weight, + l2_weight, + sgd_momentum, + adam_beta_1, + adam_beta_2, + verbose, + save_path, + model_name, + metrics, + ) + self.coupling_coef = coupling_coef + self.evidential_coef = evidential_coef + self.eps = eps + + if ( + loss == "evidentialReg" + ): # retains backwards compatibility since default without loss arg is original loss + self.loss = EvidentialRegressionLoss(coeff=self.evidential_coef) + elif ( + loss == "evidentialFix" + ): # by default we do not regularize this loss as per meinert and lavin + self.loss = EvidentialRegressionCoupledLoss( + coeff=self.evidential_coef, r=self.coupling_coef + ) + else: + raise ValueError("loss needs to be one of evidentialReg or evidentialFix") + + def build_neural_network(self, inputs, outputs): + """ + Create Keras neural network model and compile it. + + Args: + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. + """ + super().build_neural_network(inputs, outputs, last_layer = "DenseNormalGamma") + + @classmethod + def load_model(cls, conf): + # Check if weights file exists + weights = os.path.join(conf["model"]["save_path"], "best.h5") + if not os.path.isfile(weights): + raise ValueError( + f"No saved model exists at {weights}. You must train a model first. Exiting." + ) + + logging.info( + f"Loading an evidential DNN with pre-trained weights from path {weights}" + ) + model_class = cls(**conf["model"]) + model_class.build_neural_network( + len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) + ) + model_class.model.load_weights(weights) + + # Load the variances + model_class.training_var = np.loadtxt( + os.path.join(os.path.join(conf["model"]["save_path"], "best_training_var.txt")) + ) + + if not model_class.training_var.shape: + model_class.training_var = np.array([model_class.training_var]) + + return model_class + + def calc_uncertainties(self, preds, y_scaler): + mu, v, alpha, beta = np.split(preds, 4, axis=-1) + + if isinstance(self.loss, EvidentialRegressionCoupledLoss): + v = ( + 2 * (alpha - 1) / self.coupling_coef + ) # need to couple this way otherwise alpha could be negative + aleatoric = beta / (alpha - 1) + epistemic = beta / (v * (alpha - 1)) + + if len(mu.shape) == 1: + mu = np.expand_dims(mu, 1) + aleatoric = np.expand_dims(aleatoric, 1) + epistemic = np.expand_dims(epistemic, 1) + + if y_scaler: + mu = y_scaler.inverse_transform(mu) + + for i in range(mu.shape[-1]): + aleatoric[:, i] *= self.training_var[i] + epistemic[:, i] *= self.training_var[i] + + return mu, aleatoric, epistemic + + def predict_uncertainty(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties( + y_out, scaler + ) # todo calc uncertainty for coupled params + return y_out + + def predict_dist_params(self, x, y_scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + preds = self.model.predict(x, batch_size=_batch_size) + mu, v, alpha, beta = np.split(preds, 4, axis=-1) + if isinstance(self.loss, EvidentialRegressionCoupledLoss): + v = ( + 2 * (alpha - 1) / self.coupling_coef + ) # need to couple this way otherwise alpha could be negative + + if mu.shape[-1] == 1: + mu = np.expand_dims(mu, 1) + if y_scaler is not None: + mu = y_scaler.inverse_transform(mu) + + return mu, v, alpha, beta + + def predict_ensemble( + self, x_test, y_test, scaler=None, batch_size=None + ): + return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=3) + + def predict_monte_carlo( + self, x_test, y_test, forward_passes, scaler=None, batch_size=None + ): + return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=3) + + +class CategoricalDNN(object): + """ + A Dense Neural Network Model that can support arbitrary numbers of hidden layers. + Attributes: + hidden_layers: Number of hidden layers + hidden_neurons: Number of neurons in each hidden layer + activation: Type of activation function + output_activation: Activation function applied to the output layer + optimizer: Name of optimizer or optimizer object. + loss: Name of loss functions or loss objects (can match up to number of output layers) + loss_weights: Weights to be assigned to respective loss/output layer + use_noise: Whether or not additive Gaussian noise layers are included in the network + noise_sd: The standard deviation of the Gaussian noise layers + lr: Learning rate for optimizer + use_dropout: Whether or not Dropout layers are added to the network + dropout_alpha: proportion of neurons randomly set to 0. + batch_size: Number of examples per batch + epochs: Number of epochs to train + l2_weight: L2 weight parameter + sgd_momentum: SGD optimizer momentum parameter + adam_beta_1: Adam optimizer beta_1 parameter + adam_beta_2: Adam optimizer beta_2 parameter + decay: Level of decay to apply to learning rate + verbose: Level of detail to provide during training (0 = None, 1 = Minimal, 2 = All) + classifier: (boolean) If training on classes + """ + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + output_activation="softmax", + optimizer="adam", + loss="categorical_crossentropy", + loss_weights=None, + annealing_coeff=None, + use_noise=False, + noise_sd=0.0, + lr=0.001, + use_dropout=False, + dropout_alpha=0.2, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.0, + l2_weight=0.0, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + epsilon=1e-7, + decay=0, + verbose=0, + classifier=False, + random_state=1000, + callbacks=[], + balanced_classes=0, + steps_per_epoch=0, + ): + + self.hidden_layers = hidden_layers + self.hidden_neurons = hidden_neurons + self.activation = activation + self.output_activation = output_activation + self.optimizer = optimizer + self.optimizer_obj = None + self.sgd_momentum = sgd_momentum + self.adam_beta_1 = adam_beta_1 + self.adam_beta_2 = adam_beta_2 + self.epsilon = epsilon + self.loss = loss + self.loss_weights = loss_weights + self.annealing_coeff = annealing_coeff + self.lr = lr + self.kernel_reg = kernel_reg + self.l1_weight = l1_weight + self.l2_weight = l2_weight + self.batch_size = batch_size + self.use_noise = use_noise + self.noise_sd = noise_sd + self.use_dropout = use_dropout + self.dropout_alpha = dropout_alpha + self.epochs = epochs + self.callbacks = callbacks + self.decay = decay + self.verbose = verbose + self.classifier = classifier + self.y_labels = None + self.model = None + self.random_state = random_state + self.balanced_classes = balanced_classes + self.steps_per_epoch = steps_per_epoch + + def build_neural_network(self, inputs, outputs): + """ + Create Keras neural network model and compile it. + Args: + inputs (int): Number of input predictor variables + outputs (int): Number of output predictor variables + """ + if self.activation == "leaky": + self.activation = LeakyReLU() + + if self.kernel_reg == "l1": + self.kernel_reg = L1(self.l1_weight) + elif self.kernel_reg == "l2": + self.kernel_reg = L2(self.l2_weight) + elif self.kernel_reg == "l1_l2": + self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) + else: + self.kernel_reg = None + + self.model = tf.keras.models.Sequential() + self.model.add( + Dense( + inputs, + activation=self.activation, + kernel_regularizer=self.kernel_reg, + name="dense_input", + ) + ) + + for h in range(self.hidden_layers): + self.model.add( + Dense( + self.hidden_neurons, + activation=self.activation, + kernel_regularizer=self.kernel_reg, + name=f"dense_{h:02d}", + ) + ) + if self.use_dropout: + self.model.add(Dropout(self.dropout_alpha, name=f"dropout_{h:02d}")) + if self.use_noise: + self.model.add(GaussianNoise(self.noise_sd, name=f"noise_{h:02d}")) + + self.model.add( + Dense(outputs, activation=self.output_activation, name="dense_output") + ) + + if self.optimizer == "adam": + self.optimizer_obj = Adam( + learning_rate=self.lr, + beta_1=self.adam_beta_1, + beta_2=self.adam_beta_2, + epsilon=self.epsilon, + ) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + + self.model.build((self.batch_size, inputs)) + self.model.compile(optimizer=self.optimizer_obj, loss=self.loss) + + def fit(self, x_train, y_train, validation_data=None): + + inputs = x_train.shape[-1] + outputs = y_train.shape[-1] + + if self.loss == "dirichlet": + for callback in self.callbacks: + if isinstance(callback, ReportEpoch): + # Don't use weights within Dirichelt, it is done below using sample weight + self.loss = DirichletEvidentialLoss( + callback=callback, name=self.loss + ) + break + else: + raise OSError( + "The ReportEpoch callback needs to be used in order to run the evidential model." + ) + self.build_neural_network(inputs, outputs) + if self.balanced_classes: + train_idx = np.argmax(y_train, 1) + training_generator, steps_per_epoch = balanced_batch_generator( + x_train, + y_train, + sample_weight=np.array([self.loss_weights[_] for _ in train_idx]), + sampler=RandomUnderSampler(), + batch_size=self.batch_size, + random_state=self.random_state, + ) + history = self.model.fit( + training_generator, + validation_data=validation_data, + steps_per_epoch=steps_per_epoch, + batch_size=self.batch_size, + epochs=self.epochs, + verbose=self.verbose, + callbacks=self.callbacks, + shuffle=True, + ) + elif self.loss_weights is not None: + sample_weight = np.array([self.loss_weights[np.argmax(_)] for _ in y_train]) + if not self.steps_per_epoch: + self.steps_per_epoch = sample_weight.shape[0] // self.batch_size + history = self.model.fit( + x=x_train, + y=y_train, + validation_data=validation_data, + batch_size=self.batch_size, + epochs=self.epochs, + verbose=self.verbose, + callbacks=self.callbacks, + sample_weight=sample_weight, + steps_per_epoch=self.steps_per_epoch, + # class_weight={k: v for k, v in enumerate(self.loss_weights)}, + shuffle=True, + ) + else: + # if not self.steps_per_epoch: + # self.steps_per_epoch = sample_weight.shape[0] // self.batch_size + history = self.model.fit( + x=x_train, + y=y_train, + validation_data=validation_data, + batch_size=self.batch_size, + epochs=self.epochs, + verbose=self.verbose, + callbacks=self.callbacks, + # steps_per_epoch=self.steps_per_epoch, + shuffle=True, + ) + return history + + @classmethod + def load_model(cls, conf): + weights = os.path.join(conf["save_loc"], "models", "best.h5") + if not os.path.isfile(weights): + raise ValueError( + "No saved model exists. You must train a model first. Exiting." + ) + + logger.info( + f"Loading a CategoricalDNN with pre-trained weights from path {weights}" + ) + + input_features = ( + conf["TEMP_C"] + conf["T_DEWPOINT_C"] + conf["UGRD_m/s"] + conf["VGRD_m/s"] + ) + output_features = conf["ptypes"] + model_class = cls(**conf["model"]) + model_class.build_neural_network(len(input_features), len(output_features)) + model_class.model.load_weights(weights) + return model_class + + def save_model(self, model_path): + tf.keras.models.save_model(self.model, model_path, save_format="h5") + return + + def predict(self, x, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_prob = self.model.predict(x, batch_size=_batch_size, verbose=self.verbose) + return y_prob + + def predict_proba(self, x, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_prob = self.model.predict(x, batch_size=_batch_size, verbose=self.verbose) + return y_prob + + def predict_monte_carlo(self, x, mc_forward_passes=10, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_prob = np.stack( + [ + np.vstack( + [ + self.model(tf.expand_dims(lx, axis=-1), training=True) + for lx in np.array_split(x, x.shape[0] // _batch_size) + ] + ) + for _ in range(mc_forward_passes) + ] + ) + pred_probs = y_prob.mean(axis=0) + epistemic = y_prob.var(axis=0) + aleatoric = np.mean(y_prob * (1.0 - y_prob), axis=0) + + # Calculating entropy across multiple MCD forward passes + epsilon = sys.float_info.min + entropy = -np.sum( + pred_probs * np.log(pred_probs + epsilon), axis=-1 + ) # shape (n_samples,) + # Calculating mutual information across multiple MCD forward passes + mutual_info = entropy - np.mean( + np.sum(-y_prob * np.log(y_prob + epsilon), axis=-1), axis=0 + ) # shape (n_samples,) + return pred_probs, aleatoric, epistemic, entropy, mutual_info + + def predict_ensemble(self, x, weight_locations, batch_size=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + first_prediction = self.predict(x, batch_size=batch_size) + output_shape = first_prediction.shape[1:] + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + predictions[0] = first_prediction + else: + output_shape = () # Default shape if no models + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + y_prob = model_instance.predict(x, batch_size=batch_size) + predictions[i + 1] = y_prob + + return predictions + + def compute_uncertainties(self, y_pred, num_classes=4): + return calc_prob_uncertainty(y_pred, num_classes=num_classes) + + +def calc_prob_uncertainty(y_pred, num_classes=4): + evidence = tf.nn.relu(y_pred) + alpha = evidence + 1 + S = tf.keras.backend.sum(alpha, axis=1, keepdims=True) + u = num_classes / S + prob = alpha / S + epistemic = prob * (1 - prob) / (S + 1) + aleatoric = prob - prob**2 - epistemic + return prob, u, aleatoric, epistemic + + +def locate_best_model(filepath, metric="val_ave_acc", direction="max"): + filepath = glob.glob(os.path.join(filepath, "models", "training_log_*.csv")) + func = min if direction == "min" else max + scores = defaultdict(list) + for filename in filepath: + f = pd.read_csv(filename) + best_ensemble = int(filename.split("_log_")[1].strip(".csv")) + scores["best_ensemble"].append(best_ensemble) + scores["metric"].append(func(f[metric])) + + best_c = scores["metric"].index(func(scores["metric"])) + return scores["best_ensemble"][best_c] \ No newline at end of file diff --git a/notebooks/regression_example.ipynb b/notebooks/regression_example.ipynb index 03db344..9957712 100644 --- a/notebooks/regression_example.ipynb +++ b/notebooks/regression_example.ipynb @@ -9,11 +9,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-08 14:17:44.915332: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "2023-09-11 15:04:06.560229: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-09-08 14:17:47.363453: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-08 14:17:47.363644: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-08 14:17:47.363659: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" + "2023-09-11 15:04:06.720458: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2023-09-11 15:04:07.382138: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-11 15:04:07.391187: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-11 15:04:07.391205: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], @@ -169,7 +170,8 @@ } ], "source": [ - "from evml.keras.models import RegressorDNN\n", + "from evml.keras.model_refactor import BaseRegressor as RegressorDNN\n", + "#from evml.keras.models import RegressorDNN\n", "from evml.keras.callbacks import get_callbacks" ] }, @@ -192,9 +194,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-07 09:41:03.628191: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-07 09:41:03.628242: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", - "Skipping registering GPU devices...\n" + "2023-09-11 15:04:16.321043: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\n" ] } ], @@ -212,7 +212,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "20/20 [==============================] - 11s 504ms/step - loss: 1.0176 - mae: 0.4158 - val_loss: 0.0615 - val_mae: 0.1592 - lr: 4.7274e-04\n" + "Model: \"model\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 500) 2500 \n", + " \n", + " dropout_h_00 (Dropout) (None, 500) 0 \n", + " \n", + " dense_last (Dense) (None, 1) 501 \n", + " \n", + "=================================================================\n", + "Total params: 3,001\n", + "Trainable params: 3,001\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "20/20 [==============================] - 1s 35ms/step - loss: 0.0526 - mae: 0.1395 - val_loss: 0.0050 - val_mae: 0.0523 - lr: 4.7274e-04\n" ] } ], @@ -241,12 +258,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "3/3 [==============================] - 0s 92ms/step\n" + "3/3 [==============================] - 0s 3ms/step\n" ] } ], "source": [ - "y_pred = y_scaler.inverse_transform(model.predict(x_test))" + "y_pred = model.predict(x_test, y_scaler)" ] }, { @@ -266,7 +283,7 @@ { "data": { "text/plain": [ - "0.2221939981274647" + "0.07577107317658871" ] }, "execution_count": 15, @@ -278,6 +295,71 @@ "mae" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Create a Monte Carlo ensemble" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "monte_carlo_steps = 10" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "mu_ensemble, var_ensemble = model.predict_monte_carlo(x_test, y_test, monte_carlo_steps, y_scaler)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 7188, 1)" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mu_ensemble.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 7188, 1)" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var_ensemble.shape" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -287,16 +369,17 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "from evml.keras.models import GaussianRegressorDNN" + "from evml.keras.model_refactor import GaussianRegressorDNN\n", + "#from evml.keras.models import GaussianRegressorDNN" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -310,7 +393,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -320,25 +403,36 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "18/18 [==============================] - 1s 24ms/step - loss: 1963.0551 - mae: 0.1657 - val_loss: 0.1397 - val_mae: 0.1094 - lr: 0.0024\n" + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 342) 1710 \n", + " \n", + " dropout_h_00 (Dropout) (None, 342) 0 \n", + " \n", + " dense_01 (Dense) (None, 342) 117306 \n", + " \n", + " dropout_h_01 (Dropout) (None, 342) 0 \n", + " \n", + " DenseNormal (DenseNormal) (None, 2) 688 \n", + " \n", + "=================================================================\n", + "Total params: 119,704\n", + "Trainable params: 119,702\n", + "Non-trainable params: 2\n", + "_________________________________________________________________\n", + "18/18 [==============================] - 2s 60ms/step - loss: 10.6310 - mae: 0.2808 - val_loss: 0.3034 - val_mae: 0.2415 - lr: 0.0024\n" ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -352,24 +446,24 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3/3 [==============================] - 0s 3ms/step\n" + "3/3 [==============================] - 0s 8ms/step\n" ] } ], "source": [ - "mu, var = gauss_model.predict(x_test, y_scaler)" + "mu, var = gauss_model.predict_uncertainty(x_test, y_scaler)" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -379,14 +473,14 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.16284746359490182 0.07228469274888148\n" + "0.17224470462003919 0.07892323927171248\n" ] } ], @@ -397,12 +491,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJNCAYAAAB5m6IGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACg/UlEQVR4nO29fZgcVZn3/z1V1T0zSZhhYUiIkIQgKCOoQLJR8JdlVQxX9PFtX2SXFcUFFwTXjfFlyQIiqBerq2x0HwNERZYH5cmD4j7sLitmX8QAri8xPIKEFyUQjIM4RDJ5ne6uOr8/Tp3q6u56Oaene6pn5vu5rmRmau46dVd1p88396n63kJKKUEIIYQQQqYUp+gECCGEEEJmIxRhhBBCCCEFQBFGCCGEEFIAFGGEEEIIIQVAEUYIIYQQUgAUYYQQQgghBUARRgghhBBSABRhhBBCCCEFQBFGCCGEEFIAFGGEEEIIIQVAEUYIIYQQUgAUYYQQQgghBeAVncBM5+1/8k6M/mZ34u8WHnUEvvW/b5vijAghhBDSC1CEdZnR3+zGcedelfi7pzZ9YoqzIYQQQkivwOVIQgghhJACoAgjhBBCCCkAijBCCCGEkAKgCCOEEEIIKQDemE/agk99EkIIIZODIoxkkia2fv7kDpy97ubEffjUJyGEEJIPRRjJJM1iY/u17yogG0IIIWTmQBFGOs7PH38cr379GxN/x6VKQgghREERRjLv7/r5kztwnOV4VSloUEsIIYTkQBFGMl39uexICCGEdAdaVBBCCCGEFAArYWRK4f1ihBBCiIIibJbQ6fu+2oX3ixFCCCEKirBZwnS47yutSsYKGSGEkJkIRRjpGdKqZKyQEUIImYlQhBUI748ihBBCZi8UYQXC+6MIIYSQ2QstKgghhBBCCoCVsBlErzwBSQghhJB8KMJ6lHbuF5sOT0ASQgghREER1qNk3S/27584P1GgsdpFCCGETB8owqYhaQKN1S5CCCFk+sAb8wkhhBBCCoAijBBCCCGkALgcSXoemtoSQgiZiVCEkZ6HpraEEEJmIhRhZFqTVSV75ukdWLRkaeLvWEEjhBBSNBRhZFqTVSXbfu27WEEjhBDSs/DGfEIIIYSQAqAII4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkALg05FkVkIDWEIIIUVDEUZmJTSAJYQQUjRcjiSEEEIIKQCKMEIIIYSQAqAII4QQQggpAIowQgghhJAC4I35hDSR9uQkn5okhBDSSSjCCGki7cnJf//E+bS1IIQQ0jEowggxhLYWhBBCOgnvCSOEEEIIKQBWwgjpAHTgJ4QQYgtFGCEdgEuVhBBCbOFyJCGEEEJIAVCEEUIIIYQUAEUYIYQQQkgBUIQRQgghhBQARRghhBBCSAFQhBFCCCGEFAAtKgjpMvQQI4QQkgRFGCFdhh5ihBBCkuByJCGEEEJIAbAS1iHe/ifvxOhvdrds//mTO3Dc1KdDpglpS5VZy5Rp77W8/QghhPQWFGEdYvQ3uxOXnLZf+64CsiHThbSlyqxlyrT3Wt5+hBBCegsuRxJCCCGEFAArYYT0IFlPVHKJmxBCZgYUYYT0IFlPVGYtcdMOgxBCpg8UYYTMIGiHQQgh0weKMEJmCe08iUkIIaR7UIQRMkto50lMQggh3YNPRxJCCCGEFAArYYTMcngzPyGEFANFGCGznKyb+f/9E+dToBFCSJegCCOEpNJpgZbVcumZp3dg0ZKlVuMRQsh0hiKMENIW7Qi0nz+5A2evuzlxn+3Xvov2GoSQWQVFGCGk46QJtHZ7qWbdt5ZWQWMTdEJIrzPrRJiUEnv37u34uLVaFdWD+1uPFwSJ27vxOx5r5uTBYzVS8SWOecvaxN898umLE3/3X5/5Cyw/6w2J+zz51NN47doNib/L2m/XM0/jmEVLjLcDwNHDR+DrX/1S4u8ImUoOO+wwCCGKToPEEFJKWXQSU8n4+DiGhoaKToMQQgiZUvbs2YPBwcGi0yAxZp0I63QlbHx8HIsWLcIzzzwza9/cvAa8BgCvAcBrAPAaAL17DVgJ6z1m3XKkEKIr/ygGBwd76h9bEfAa8BoAvAYArwHAawDwGpB86JhPCCGEEFIAFGGEEEIIIQVAETZJ+vr6cPXVV6Ovr6/oVAqD14DXAOA1AHgNAF4DgNeAmDPrbswnhBBCCOkFWAkjhBBCCCkAijBCCCGEkAKgCCOEEEIIKQCKMEIIIYSQAqAII4QQQggpAIowQgghhJACoAgjhBBCCCmAWSfCpJQYHx8H7dEIIYSQfDhvdo9ZJ8L27t2LoaEh7N27t+hUCCGEkJ6H82b3mHUijBBCCCGkF6AII4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkAKgCCOEEEIIKQCKMEIIIYSQAqAII4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkALwik6AzGzi/V6FMImv7yBMdiCEEEKmKRRhpCtICciWjelCTErZso8DSSFGCCFkxkIRRjqKLmS1CLBwm5SAQF2MSSmj7c0EEhBSQghWxQghhMw8KMJIx0isfiXFhX9pAZYXq4SbDMUbxRghhJCZAW/MJx3BVIBpAgMB1ngACjBCCCEzC4owMj0QjTftE0IIIdMdijBCCCGEkALgPWGEEEIIyeXBBx/EvHnzGrYNDw9j8eLFBWU0/aEII4QQQkguZ511Vsu2gYE5ePTR7RRibUIRRgghhJBclr3zchyx5KXRz+OjT+EHN1+DsbExirA2oQgjhBBCSC6DRy/GEYtfmh9IjKEIIy1IKRGEDyIKgVx/rkBKVHzleO85Ak6OuaqUEtVAWVp4otG8NTOv8K+82Hj+ebkQQgghRUERRiKS3Ou1/1dSCyEpJWoBUA3qO1QDZapacgEnId6XgB8bvxY66HvIFlcyFF9Jrvvx8YMmF4sg3IFijBBCSK9BEUYAJAuYOHExAyghVfWTDVclgIov4QiJUrhDIJXgSjw2gKoEHAm4olVcJYmnuBgD0lsfxfOn6z4hhJBegiJslpMnvprxg/pSYh6BBCZ88ybcAZSQKoVVKynz9w0sDFyzqnqEEELIVEOzVmJFYNmeCLBzundi2qgbQsmh9iKEENIjFC7CNmzYgKVLl6K/vx/Lli3Dli1bMuMnJiZwxRVXYMmSJejr68OLX/xi3HzzzVOULZkJsApGCCGkFyh0OXLTpk1Ys2YNNmzYgNe85jW46aabsHr1ajzyyCOpniPveMc78Otf/xpf+cpXcMIJJ+C5555DrVab4swJIYQQQiZHoSLs+uuvx4UXXoiLLroIALB+/Xrcc889uOGGG3Dddde1xH/729/GvffeiyeffBJHHHEEAOC4446bypQJIYQQQjpCYcuRlUoFW7duxapVqxq2r1q1Cg888EDiPnfddReWL1+Oz3zmMzjmmGPwkpe8BB/+8Idx8ODB1ONMTExgfHy84Q8hhBBCkuG8OXUUJsLGxsbg+z4WLFjQsH3BggV49tlnE/d58skncd999+Hhhx/Gt771Laxfvx7f+MY3cNlll6Ue57rrrsPQ0FD0Z9GiRR09D0IIIWQmwXlz6ij8xvwkA9C0G6eDIIAQAl/72tewYsUKvPGNb8T111+PW265JbUatm7dOuzZsyf688wzz3T8HMjMxeLBTkIImRFw3pw6CrsnbHh4GK7rtlS9nnvuuZbqmGbhwoU45phjMDQ0FG0bGRmBlBK//OUvceKJJ7bs09fXh76+vs4m38PERYNRKyALkWErSOKC2sTzS0oJaRmfdKz0eGWvIYR5fPx7PlRJCJkNzLZ5s0gKq4SVy2UsW7YMmzdvbti+efNmnHnmmYn7vOY1r8GvfvUr7Nu3L9r2+OOPw3EcHHvssV3Nt9eRsi4aZMK21HhDZRGNI4SR15YWSFVfolKrG8KmeYbplkkHKj7GJ3zUAoN4CRysBThQDTLHj2/yJVAL+yapMbLjJRAbO/lcCSGEkHYodDly7dq1+PKXv4ybb74Z27dvxwc/+EHs3LkTl1xyCQBVEn3Xu94VxZ933nk48sgj8Z73vAePPPIIvve97+EjH/kI/vzP/xwDAwNFnUahNAsGmfB9PK45HlBLwmlVIS3WJAAfupIk4DrJYkwLG18CFb9u7qrEWBC2F5It8dVA4mA1iHpL7q342FfxU+MnfIn91QB+oI5xsCZxKFRujfHqa9xkVgKoBUgUbknx8euZJWwJIYQQGwq1qDj33HPx/PPP49prr8Xo6ChOOeUU3H333ViyZAkAYHR0FDt37ozi582bh82bN+Mv//IvsXz5chx55JF4xzvegU9+8pNFnUJhxJfHstoONfZYzI7XrYL0fnofP2VsIQScsG9jEB5DSiVwkg4RSKBSk3AdwHPU/n4gUUnpQVnxJSq+jwHPQb+n4muBxEQtOb4WALVAouwKlJxIYqY6/AdS/XGFPuPseB2lrwuXKAkhhEyGwntHXnrppbj00ksTf3fLLbe0bDvppJNaljBnKzY9H/MaXGvi93ClNdxujhcIe0qmiKlm/ACo+gEgzHI6WAtQ9VXLIYl81VPxlVRKagaemI9UJWFTJ30Z/kUBRgghZDIU/nQkmTnY95S0G9tGdBJCCCG9TuGVMEIIIYT0PmNPP45qbIlk33PqdqHt27fn7js8PJzajnA2I2Ta42czlPHxcQwNDWHPnj0YHBwsOp220TfLd4sgvLnelKqvliNtxrfJ3xXqXizTJcOyq5cjzeIdi1hA52IcTggh0xY9byYjYDIbDQzMwaOPbqcQa4KVMEIIIYTkMrL6AgwuXNKwrTTnMAwMHZm53/joU/jBzddgbGyMIqwJijBCCCGE5HL0ySsw/8RTi05jRkERNo2JrBIsYk3ipeVSpB8oQ9a4fUPWUl01kJHBar8nUHKylwL9QOKQr/Lu95Abr4vjNQm44fOUJkuNemU+KzZu4QFpv4xJCCGEaCjCpil63tceYGmaKS4PhMiOl1I52weGOQRSia9abAfZ9E1cnwRSia9qLP5QTaIilLjymtxfAylR9RufisyKBwDXAZzQ70wIEYlJD8ltivS9XXHPrzQxlnT7ZBB6f1CMEUIIsYUibJoTF1ZAo7hKqkrpeEfUb+7XLYNMq18yFEeVjB0axZjEIV/iUIrxWCCBA1UJT0j0l5TvmDJeTR47inck+j0BJ2yl5DScZ6MgqklASBndrB8XX0By5c7mmRVlVmtedSOEEEIowmYA8aqYE6vqpDm6N4gySFQtlh4DKXGwYv5kYy1Q7YVM4msS2F+RiRWu5LFVZWywT8XnNuSGEkueqC+cdlIvyZjypBAjhBCSB81aZxB63m/+mhVvuvSo8VNaEqVRDeysKJR4NN+j3zMTYBrX0b0yLZKyQHBZkhBCiCEUYaTnoIYhhBAyG6AII4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkAKgCCM9Ry+1lO+hVAghhMwwKMJmEFq8SGkmZKSUVm8AGZqd6u9N4rXnl2l8/RzM5E/Ft8vHD2R4HJN4ANL8egIUbYQQQsyhCJshaJEQaBd8ZIsHLUL8mNt+9vgydKoPUA0kAiBVzOjtvgT2VwJUfbVvuvCp57J3wsdvD/mYCN34s8SSgDKP3Vept05KywdQ1+ZQDdhfrffGTI6vZ+WHf5p/l5UTIYQQYgId86c5cVHQrA/iDbXrLvp1QaJ7MgrU+0nWTd/VDjr+YE1iItZ2SPeYdIU+hjqaboF0oBo0tCnSx3MdCUeIlvhDobjT7KsEOFQLMK/swgvzjpugug6iFkEyzK/ih22MUO/9qMevhUJQn1q87RHCseMdBpo7LPkAhFT/a0nqRMDekYQQQmyhCJumNDSczorTsVr0QLneJxEXY0H4fcWXOFhNd733papGOUKNfqimmnSnxgdAIPSyphJOaT0lawHwwiEffa7AvLIq2uoekUmCx5eqylV2gT5XhMuP6T0xawGwr6Lj9RgiNXddGXPQ2JeT/SIJIYS0A0XYNCbIUl8JsYHhDgJA1c8WU3F05WuiZtaiSErgQC0wboE04Uv0B0C/BzgGfSUrflwYmsULAbiGPSsDAC7YoogQQsjk4D1hJBXbm8y7Hd9LeocCjBBCyGRhJYwQQgghuYw9/TiqKbePZLHvuZ0AgO3bt1vvOzw8jMWLF1vvN10Q0tQLYIYwPj6OoaEh7NmzB4ODg0Wn0zZS2lWS9NONphyqBdhfNd9hohak3tuVRMUPoicaTRjqczFQEsbVJ8+B8XIkAPR5wng5EgDKDithhJDZgZ43J4e+49iOgYE5ePTR7TNWiLESRgghhJBcRlZfgMGFS9ratzTnMAwMHWm1z/joU/jBzddgbGyMIozMLmzro+3EJ1k9pMerSp5rUX2yGd82Xp2vZDWMEDJrOPrkFZh/4qlFpzGj4I350xhHwNgc1BFAyRVwDV7xWqDMTPtcAS/nAFJK1ELzVr0EmBdf8SUmfGUd4Qf5As4VQCUAxickDlaDXLd7Bwir3sLI7V5fEwlp7I5flSon7cBPCCGE2MJK2DQlXoCJDFmT4qBNWkX0s+c0mrVqAqkMWeO+Wo4AyiIUTAnxlZgJqhDKKNURyeP7gcTBWuO9aRJqXO291XxeJVeE5q6KQ6Fp7JySQMltvEdMAFFbJb29bj6bbLBaCncwiU+iJpWJqxeZ0BJCCCFmUIRNcyLDVtl626NIiNNiQ4slP/QPq/gS1YQb5XW8C2WwWgsAX0pUA5l4Y33L+GH8RC15fI0WZtp/q+ToG+UT2gpBmbK6NYk5ZQeeI+AKNDjxJ+2jr5EjAM9V4zc78SfF52krCaAaqHP2eMM+IYQQQyjCZgiq2qUEhpT1benxImrgvS/DEb8hPhRW+wyemqxXllRvRxv63Ab5mBrnS6BSk+jvM4sH1NJjKTZ+nmBKlnTJBGFOeUu4hBBCCEARNqOoV7tM4wWqgZnLPaDsHmqBha8E0NAP0gRtE2FaTerz7OJdx9zmArBvyO1SgBFCCDGEN+YTQgghhBQARRghhBBCSAFQhBFCCCGEFABFGCGEEEJIAVCEEUIIIYQUAEUYmVUo/y+r1ufdSoUQQsgshyKsh9Faoflr58aXRq2GmuNNXRiklChbxAOqZZKpUJJS4kA1sIqv+nbxqo2RWWsi3cLJNJ4QQsjshj5hPYqew4OYABP66yS9qLRLvIRywO/zBPwAqDT3JWqKDwBUA4Gyq0xJazkeYIEEaoFAv6eOY+IZFkjgQFWi7AqUHBWf5usVSOWcf6Baw1Cfg3llJzFeC6ID1QB7JwI4AjhijofD+rLjawFQ9SUEgLInUHKR6LCv4/0AqEjAERJ9bno8IYQQAlCE9RxR1Svpd03f2MztkfAKD1ANGns+eq5yk6/6je2IdHzFr/eUFEI19nZF4zg6XgKo+mgYvxQbP0XrNVDxJaq+EoieaBQzgVQ56mEkgBcmAuyrBvidfhf9Xv08hRCo+BLjE350Xr4EfrO/hvFDAsNzPfSXGuOD0Ik/Pv5ETaLqS/R5qkVSc3z8mgUSOFhTrZ36XdVKSV97CjJCCCEairAeIb56ladR4q10bCpjUsrERtwaIQTKnoAnJQ5V1ZJarUlgtMS7ImrkLUNxlBbvCBFW3SQmDJSYhGrY7QolfhDmk1ZQqwXAbw74GPACHN7vQgAYP1TDoVryDhO+xK7xKuaVHRw1zwMkMFELUscPJHCwKuE5Kh8JoFpL7zhQC4B9gUTZBfrc3NMlhBAyy6AI6yFsbxc3aS6tCZAujppxhIDjSOyvmMdDShyqmcW7jhJ6pvn4UlWiHMOb1w7WJCb21YzvddtXCdB30EfZM7tFshYAqJlXtSq+EmGsghFCCInDG/MJIYQQQgqAlTBCCCGE5DL29OOoptze0Q32PbcTALB9+/bMuOHhYSxevHgqUuo4Qs6yZ+nHx8cxNDSEPXv2YHBwsOh0IqS0d6QyXW4DAN9i+Q8ADtUC7K+YZ3SoGuCgxT/Oih9Y5eMKGC9HAqrEa3N9jhxwjZcjASirDovlxcPKgsuRhJBpiZ43i0E93JTFwMAcPPro9mkpxFgJI4QQQkguI6svwODCJVN6zNKcwzAwdGTq78dHn8IPbr4GY2NjFGFkatE1TJMCizIdtYmXDTYMeQRSwg8kHGEWb1t/dUJLDBN7CyB8aAHm1UVt4GparQqkhAPzapgfxjushhFCpilHn7wC8088teg0ZhQUYT2EI+yWJeO+YWlzu7alqMaX/nLiJ2qyYSkyS5xIKbG/EmDPRBCdQ9lNFxs6Hwmz8xUADguNWIUQOFgNsL+abiMBAP2eQClcWdSGq1njzyk7gBCoBIArJNwMISmlRAAtBlUHgax4fQz15KiyqyhZLmUSQgiZmVCE9QjxObkdMaYd9ePjKP+u1nHS4qu+xL4JP7HalFQVO1QL8MLBxvhAKm8vz5EoOfX7oKRUpq7NrvkiVq5qPuxASWCoz22orvV7Av2ei/3VAAeqjXuUHPX7eJ6eI+E5osWEVo81UGq8D0z7qHmisaqnTWibc6wFErXw2M1VwCSZVTehBTybm9YIIYTMOCjCeoy4KIoMWQ331eJKm5rmLd2FxRz4gerBmNa2qGGfsD/i+ESQaoIKIDRtVZUfgUaH+2ZCm7Fo+bDkCBze76DsOS1VOP393JKDAQ/YWwngBxL9noCbIGp0fMlVN9NXfAlXCMwpO5lLpzUJCAm4jlpGzHuGoBqo9kalsAqoR00avtmElkuUhBAyO6EI61H0vGzQbrEBKSUqFk8d1gKJPYd84/iKLzF2wC7epOCjz3fAEzi8341tT95ZCAEHEvPKTtQ0O3t8JfHmlh2U3FZxl4REeP1NOxKEX00LXH7o/i/AdkaEEDIboVlrj2M7NdvaXPiWKi/r/qpOUHYblxOzUH0bzR8eEKJedTIVPbbX33aFMe9+MkIIITMXijBCCCGEkAIoXIRt2LABS5cuRX9/P5YtW4YtW7akxn73u9+FEKLlz6OPPjqFGRNCCCGETJ5CRdimTZuwZs0aXHHFFdi2bRtWrlyJ1atXY+fOnZn7PfbYYxgdHY3+nHjiiVOUMSGEEEJIZyhUhF1//fW48MILcdFFF2FkZATr16/HokWLcMMNN2TuN3/+fBx99NHRH9d1M+MJIYQQQnqNwkRYpVLB1q1bsWrVqobtq1atwgMPPJC572mnnYaFCxfi9a9/Pf7rv/4rM3ZiYgLj4+MNfwghhBCSDOfNqaMwETY2Ngbf97FgwYKG7QsWLMCzzz6buM/ChQuxceNGfPOb38Sdd96Jl770pXj961+P733ve6nHue666zA0NBT9WbRoUUfPg3SWqegmb9uz3rbFku34hBDSS3DenDoK9wlrfjw/y7/ppS99KV760pdGP59xxhl45pln8NnPfha/93u/l7jPunXrsHbt2ujn8fHxGfuGkjY2+2G855j3WJRSot8D9leUmakpNj0cD1YCDHgOXMP+lo4A/NAXzcTpQRnICuM+kX4g4TqhmaxBfM2XKFmMX/GVoS2QPb4eLy7waG1BCOkGs2neLJrCRNjw8DBc122pej333HMt1bEsXv3qV+O2225L/X1fXx/6+vrazrNohAhFTIa+iiZomIkjHV/xVd9HbRWW5vKu46sBcLAKlFwBRyrPsKzDlV1goORAQDnKH6pmxw+EbYQCCchARkIsSagDYQsgLcBQL+umaRNHqJhA6nNN9hjT4+tr7vuA6wBuSrzGE+oYge7NmeNhVnYa4wVa/xMSF11xTzftR2bTdJwQQkyY7vPmdKKw5chyuYxly5Zh8+bNDds3b96MM88803icbdu2YeHChZ1Or+fQk3RselZ/h5N0NRQkWUJN//ElsOegj70TjY2wdW9EKevxgHJ23zuhejVKKFHhOSJslN0qAFyhmm7PLbuqhY8QKLsODutz0JdQ4io5wO/0u1E8whxqgRIo8dwBtf1AVTY0JZdhnlHrpvi1gxJIroj1skQ4dv0CAfo4zb+DqrZV/eQOBq5Qgspt6JXZHFv/wXOAfrc1Pi6y4ufbOpb6Wcc3Xx9CCCHTg0KXI9euXYvzzz8fy5cvxxlnnIGNGzdi586duOSSSwCokuiuXbtw6623AgDWr1+P4447DieffDIqlQpuu+02fPOb38Q3v/nNIk9jyogKHlKLCNUU28TEXk/iB6vZPR/D4SMhM1ELUEnpUiSEQMlVVaKaLxFAVbNKrkiszggh0F8SKLsSh2pKAM4tOyi76f8XCEIBorVepRZknq8+z7CPN1yBzN6MUgK+rLdWymogIKEEoC/VkqaAEpBZlaggvJieo+LLbn68kFL100T+/Wi6quewGTghhEw7ChVh5557Lp5//nlce+21GB0dxSmnnIK7774bS5YsAQCMjo42eIZVKhV8+MMfxq5duzAwMICTTz4Z//qv/4o3vvGNRZ1CIeiG11WLHpF+2HTblGqAXLGmcYTAQEnAzREkUbwjMK/PhQPz+5omfGnVR9MBEht6p2EztpRKfNk03u7LEV8N48PuYQDWvwghZHoi5CxbwxgfH8fQ0BD27NmDwcHBotNpm0BKTJj30UalFliJsIovjUUYoCpOpiIMqN+fZRpfDexEmF4e7BbzysJKhM0tJVcHO0U3z5UQMrvR8+ZrP7wB8088teh0Gti98zFs/tR7sHXrVpx++ulFp2NN4U9HEkIIIaT3GXv6cVRtHo3vMp7n4eDuXxWdxqSgCCOEEEJILg/dsb7oFBIZGJiD4eHhotNoC4owQgghhOQysvoCDC5cUnQaAID9Y6N4+K6NuO2227By5UosXry46JTagiJsGqM9pkwpu8obzBTPUU8DmiClhB/Y3Rdmg4D9+Zp6aMXvijRNXXmImXt0qacYpdV9ZKZICQSBeqKSnmGEkG5x9MkreuaesN07H8PDd23EyMjItBVgAEXYtCMuGEqOclCvJfhI1ePVLzxH4LA+gUBK7K/IVDGmDUpdAXieox4AqMlUWwjlTwXoZwSEL1H2sm8U16amygE+/+k+Ze2gxvOlRNXP3kfbU2h7CCdDnDQfX4aWD2laRoSeYAHqdhJuxvgCoYVHaMLmCAmvQ2JJvxe0R5oeP+t8CSGE9A4UYdOIRsFQn2RLjhJXtZhZa/NDr3pOFlBGqtXQLV+Lq/iEruJFFD9QclALlBiLj59kpSABTNQkHCFR9hqfIHQFWlzw8zoCNAsiB8ruwU+w6HBFsvtw3Hsrbo6aamwbuxDxY5dcJWbj11ZCCSwHsuVpTze0sYjHBxKoSMCbpFhKy1/7qrmODK8dxRghhPQqFGHTgCzBEBdLZVfADySqGWt2Ot5zgKF+BxO+xP6J9HZCOt4VwJySal00UQtylwUDCRyqSniORJ8nIrPS1IqRQGRCq88n2p6UDyRcVwkxKePiLjkfLRhFyxHS4/U3nqMEWHMOcQKpqmMulDFrvBCYFF+TgJCA59gtUZq2B/UDXYVjWyNCCOlVKMJ6HNNJty7GzG6aqosr5XRvPn6+AGveL8sRvzEWgDS7LysSk0JCWmgM00bcmrJrd5+bFmBG96JFOZnfu2bzcLjt+IQQQqaWwnpHku4gcyo8zQQ2CgZ2N8YDqkJl4wfca1rBdsnQ9ub4bi8ZCtFdk1hCCCHtQxFGCCGEEFIAFGGEEEIIIQVAEUYIIYQQUgAUYYQQQgghBUARRgghhBBSABRhMw67xxdtnlwE8ty1Esa3jJ8azLNS/mLdvaa28bZ0e3xCCCHtQRHW42hHeROkDF3SLeJLLlAyfBdIKeE5dWNUE6p+uhFsGjZCz3PUn26MDQCHajKy5TARM7qrQF6slOpPJTATeu3qKD9MnjqMEEJ6D5q1TgOa3eSb0RO4L80abuv4ig9M+IDjCJSERC2lJ2Pz+J4r4Mj0eM2ckoOBkgh7RMpcj7GSI+CFxqh+oPpbpjr5Axgo1Y1gK2EbpqxjuI4WYcrSNq/fph9e82pFouxKDHgi1fg0bqR6oCpRcpTRK9DkAyYRKUHd77EWKCFccmRLvIyZ19rqqKg/J+qtodT4lgMRQgjpChRh04SkHotaEEjkV5y0sBBCwJeNFR5A9TgsuWqbFnJ6fLWtcfykeE3ZFZhbdhqaeAsh4CC536Qr1D6NfRcF+oUau7kNU58nMOA1xvd5AmVX4GBV4kBTU0lHtJqu6ophEF1PGeWlWxDFqfjqGvd7AmW3sfVR0nWvBuqalV2Bkquvv4oPgtZ9VLwSbp5oirdUX0kGs83NmuLijhBCSDFQhE0zdFUsCCtLfmDWRkiLjUotSK2WCSFUE2yhqlB548fjddPrOWUXpZT1SiFU/8hIzkm0NPlujldNs5WgAVQz8bi4a46fUxbo8wTGD/lhI+vsfpXK0T/sQYlswSMBHKxJTPjAvLI+l+z4CV/18uz38gWVileis9+1r3xpoZ7lkK9FcMolJIQQMoVQhE1DtBDLatTdTCCVgDAbX0CI7EbgzfFlV6DPNWuRo8Wba9jiRwiBgZJ5T0bXESh7wmhpVo0fr4jlE0j1x1TIKDFrXnnS49tUqtKEKSGEkN6FN+YTQgghhBQAK2GEEEIIyWXs6cdRNVxR6Sae5+Hg7l8VnUZHoAgjhBBCSC4P3bG+6BQaGBiYg+Hh4aLTmBQUYYQQQgjJZWT1BRhcuKTQHPaPjeLhuzbitttuw8qVK7F48eJC85ksFGE9Qty2weSGbFvzzcByB1tbBDe0gbDZTT1Rmey7lR6ff31MPMmaUTYS6inJbhBI5U6W9iRoM82WEvnjy9wnI6OxpYQvk60sCCEkjaNPXoH5J55aaA67dz6Gh+/aiJGRkWkvwACKsMKRCU/lSamtBpLiJWoBYLosL6XEhK/2iTyiMuIDKXGoJo2fLHSEso0ouyLyIst70lBN/qFdAgCRISAEACeymZC5QqwWSBysmtl26FxcByhDPdmp9lciJQnPAfo9YSyO4n5kkEAAmWmb4Qh1jMgLLjZGFtH7SMpUcSWlbHi/qSc80+MJIYR0F4qwgtCFqVQX/NgvhahXL+KVGj1xJrW8kVKiGign+Xp8fPDGY0spQwf9eHz6+IASI9r/Kh6vvbeahYyT0oJJizGnqSrmimaxVTdHbRaqgVTiy9iWAkp8uY5oMC51BXBYn4OJmhKj+hQcoc7Xc9Jd85txkGyaWgtaxY8IxZeObnDNb7kC2eiqmxa2Uiab5OrYQAKukMpnjGKMEEKmDIqwAkiqfiXGhV+DQEZmoknoKhEgwkqZjHoYJseHX8NcKn6j4EgeX+cuUXIF5pRE5vKXEMr5PZCN5qBZc3ygDgBP1H2v8oxHg0Ci6ssG8ZiH29T/UjR8r34ou8rF/1BNCa54f808oSKAcNkxPSctfjwhUfJEKAbTxV3zSKaVMSHNenfqFkquY75kSgghZHJQhE0xpgKsHi9RMaru6JY4SlCZ4ktpbOIKKHEyt+wYV4P0cqIpbijA1ND540/4SoSZ4jlm90Lp3/d5usWPmTBpPNX8fcolkVj96hTWrvuA8WtLCCFkclCE9Ti2k6jMqcA0Y3sDu17eMp2kbefy+riGN7Db5g9bsSMmcQ6dz6fb0ojiixBCpg465hNCCCGEFABFGCGEEEJIAVCEEUIIIYQUAEUYIYQQQkgBUIQRQgghhBQARVivY/14pPUO1sP30hN0tpko01Lba2SL+fg2+dRNVw3jo/2M04mOYxbX3viEEEIUFGFTjEhxjU9CWUEArkW84wh4BgeQMoxH3UjVhFoAVGpB2AKn87NvLZChwavZ+H2eQNn0AkG7yZufsIvu2kJMVOt9LrPOV//OD+pCLDseQKxrgelL5Qfa9Dc7Tv8+oBAjhJC2oU9YAcStvJLmLj25Ru15BOBK5SifFV8LJPxAVao8qMk9yedVxx+sqVZFpnhhk25fCvg11fTaE50z99RtfqJWOrqNT7yvUAzXARzhoOw5qPkS+6s+/BRjWwGg5IrIDT7PR14gbJsUKlRfZvfTjOJFXcDk6RL9NpioSbiOjPpvNncoUF/rgko330669vFj63T98FhOrA1WUi66bZHuVykT4pPOLSueEEJIOhRhBRHv41hfNqpPqM0mqroiJqWaVOPxgUSLa7wQAq5Q/Rh92bjsVfGR2aaoGVfUBUacqq8qJyV3ctUiof80je8H9YbXiF0bR7S63nuuwKDjouJLHKgEDedWckRLvIBIFWKuaM3HFQKOo65ls0G/K9DQ6ierR2d0vk0XzA+Ag4FqCeWFakkLoiRhGUigIkNhjMb4ROEN9b5x0PpaJXUQ0DlHpxLTwYn/EUiIR8J5EkIIqUMRVjB6eTII7/cJcizshVAvWi0IBYEfZC4FCSHgQrU+qvqqT6RJlx8tFJoFRjOBBCZqQMmViUItj6Qm13Ek1BJoyRVR0+30fpUiXJ4U2DcRIJASniPS46OG4DI636x8hFBLva6uiuXG109CV4satidQ9SVqPlD2wsbbOa9VTQJCAp6jxHjeSxtACSRP1CtfWUTVWJh1V9DxNkvchBAyW6EI6xHiyzmm8TXDnom6wbdNj0ghVAXJFBlXGSbjQwtQw/ZHyBZgDbFCCTFfmo4tQgFpFK6ErcXdlDb3AQJh1SowX+JNq35l4ViqJN7yRQghnYc35hNCCCGEFAArYYQQQgjJZezpx1G1WFHpBvue2wkA2L59O4aHh7F48eJC85ksQnbfNKmnGB8fx9DQEPbs2YPBwcGi04mQOU/fNeMHdsuLE77E+IT5ARzL5UjPUX9Ml9BslyPLrjBejgSAiWpgdO+bxmY5EjC7P2oy2FxLAHAtXisBdT27Ce8JI2TmoOfN3kHdYjMwMAePPrp9WgsxVsIIIYQQksvI6gswuHBJ0WmgNOcwVA/sxQ9uvgZjY2MUYaQzuAJGT7gBKsZzlH1BXryU6um/OSWBiZrZ05GAqrYl2RekEUj9tKDZ+KZIqfzMRCDR5zmZT2vqeEBVY7pRsZKybrCaZK3RkWNEf5ldz3hBO/eJRylR9SUcIawqaISQ2c3RJ6/A/BNPLToNAMDunY8VnUJHoAjrEfQTjMpqQKaajsqY75cjANcT8IP0pUwpJQJoY1OgzxWY8IGD1XSfMD0tBwiFlUwXY/GnFiWUh5aQ2nsqeXwn2jdfLOgxEXmcBegPbShavK1CcaSeLAQg84WtgPnSmb6WcWEnoa5Pp4RY9CSlBKKHO5O9alV8Sp5J+cSFmvI7k/ADCS9mYjtZ9DIzfcIIISQfirAeQk+cAqrKpZ3jgbrACBLiHQGUXVUV82PxEo3iQ8f3uRJ9rsCBqsREzDE/zcdKCw838tNSAa4IrQ6abivUwkkbg+rx6p5a+X4WcbHZzKGaRMWXGPAceOG9TYGU8H3ZdL6I8ow7zmts7gMLZHoFMVAJ53qeZRG/TknGqdqrK/6rLN8xLbiUg396OTCA8o5zRbanmkn+DT9TfBFCSC4UYT1IJK6gKlDVQCLrHvxIFDkSLtSkmnULvm6tM6ekBNn+al3sZU2eWoSUhWxcxkrZSY9Z0tWdKCz9IEliM23s/dUAng+UHWG0hKuFLaCEq8kjKVlisCUnAEJK6yXKepUxW5zqJUonEmv5Y5s+d6OMfyXKjr2HmIkJLSGEkFboE9bDqJZE5k9N6ngjR/xw4tf9KIVhVcgVgOc6EMKsahJvAWTyJKSJAIsjoKpUuXFauMBONJgKsHg+Ns6sjXonf0cbAWaLgBJgNg9MdzMfQgiZ6VCE9Tj2y0PdjVf3+0xfVxNTsalp50xNbTeieIuEbPNvB9v3HAUYIYS0B0UYIYQQQkgBUIQRQgghhBQARRghhBBCSAEULsI2bNiApUuXor+/H8uWLcOWLVuM9rv//vvheR5OPfXU7iZICCGEENIFChVhmzZtwpo1a3DFFVdg27ZtWLlyJVavXo2dO3dm7rdnzx68613vwutf//opypQQQgghpLMUKsKuv/56XHjhhbjoooswMjKC9evXY9GiRbjhhhsy97v44otx3nnn4Ywzzsg9xsTEBMbHxxv+FIl+sND4AUPrJxHt4m0fbJMy7mlllo3V03aWCXX7Oc12HvyzfXrUJl5K87eE7XtNhrnY59+dfAghxdBr8+ZMpjARVqlUsHXrVqxataph+6pVq/DAAw+k7vfVr34Vv/jFL3D11VcbHee6667D0NBQ9GfRokWTyrtd4pNnQ9ublAkp7njuWZhyCiGsXlTXEej3zE0VfAlUakF4PvmzaSCBWiCNJ3cH5m2EgHqXANPx4z5hJniOXT7dlczm8fpSNLS/MtjZj705TV9ffbz093JyPCGkN+mVeXM2UJgIGxsbg+/7WLBgQcP2BQsW4Nlnn03c54knnsDll1+Or33ta/A8M7P/devWYc+ePdGfZ555ZtK52xJVAFCfByXSJyQ9+dXCnpBaiLkpYkDHV32Jql8XYmnaQU+YfqBy8ByBOSXVjzEL3WcxADDhy1zxo+MlgFpowponloQQcMPzzdM+rlB9K/X40bVNGF+3gvJcof44+eM7AnAdB2XXUb0qM2IFtIA0M7HV18Y03glf/6yenED9tQ1k3WjWl/VG72mX3hVQ11wIZZgbvjlNhFjD+7rlvay+xvt36nibqh4hZOrohXlztlB426KkJsxJk5Lv+zjvvPNwzTXX4CUveYnx+H19fejr65t0nra0TEZpcVATcnyyi/eM1CjHeUCg3tZH76Mn2aR43XQ6nlNSQ2shBMquEioTtUbX/TSH+Vog4UOJOKXf1Nmk9qAM83YNBJYWnlK2tmxyRHJ1ypfKPb9ZS6rm5Y0bhRDwXCQ2S09qVu6E1yeQqo1Uw+/QbpuifLRYyxNe0fdofe/o7b5ueSQb+3km5aNFklp51lVWnVFKHtDv5cZtefHxc6DxKyHFU9S8ORspTIQNDw/Ddd2Wqtdzzz3XUh0DgL179+LHP/4xtm3bhve///0AgCAIIKWE53n4zne+g9e97nVTkrspxktHSF6qTEJVigAZVsnyWhQJIeAC8MOejHk5OUJgoCRQ8QNUfT1Gdu5KlKh+kiInHtAVGrOG10IIeKgLybzxdVWsJOpiLesYjhAQTl10ZvV91NfeEao/p4htz0Pn3UnxFcfktdVxAkDJMROPMhzXNVyTbWd5VUq7JV9CCJkpWC9HHn/88Xj++edbtr/wwgs4/vjjjccpl8tYtmwZNm/e3LB98+bNOPPMM1viBwcH8dBDD+HBBx+M/lxyySV46UtfigcffBCvetWrbE+l58gTYHEE8gVYMzbhapnMXAToqkZXehoKERNUpvuYV5zU+MJ8KTEWayyqLAQYYHeugL34cS1yJ4QQ0h2sK2FPPfUUfN9v2T4xMYFdu3ZZjbV27Vqcf/75WL58Oc444wxs3LgRO3fuxCWXXAJArUvv2rULt956KxzHwSmnnNKw//z589Hf39+ynRBCCCGdZezpx1Ftvj9kCvE8D6W+MgBgfPSpwvLoJMYi7K677oq+v+eeezA0NBT97Ps+/uM//gPHHXec1cHPPfdcPP/887j22msxOjqKU045BXfffTeWLFkCABgdHc31DCOEEEJI93nojvVFp9DAwMAcDA8PF53GpBDS0BTIcdTKpRCi5YmpUqmE4447Dp/73OfwP/7H/+h8lh1kfHwcQ0ND2LNnDwYHB7t2HGl4j049XlotR/qBxEGL/5H4Ut1DZkotkKhYrHd6DlByzJe4HGF3Q7u0XHAru+r+LdPxba49oJ5EtcHmZnwgfHjBdClY2i1NCwD9Jr4n8Xy6fNMW7wkjpHfR8+bI6gswuHBJITnsHxvFw3dtxG233YaRkREA6t7yxYsXF5JPpzCuhAWBmsGXLl2KH/3oR9NefRJCCCHEnKNPXoH5J55ayLF373wMD9+1ESMjIzj99NMLyaEbWN8TtmPHjuj7Q4cOob+/v6MJzSRCNwBjHGFWQZNSomZRurGtsikvL1WNMX3qruQIeI4wjgeUXYWTYknSjBvG+IaGrLaVFZ2CSV1YP82X5bvVnI8bPgJj+jr4EpHXW97lsfXaElCVTkdkPw3akE8g1cMFOfGJHm0G4+unNvmsACFkNmH9dGQQBPjEJz6BY445BvPmzcOTTz4JALjqqqvwla98peMJTlf0ZCJg5tCuJyrHEZkCQi9DVg2XFgOpYk0mfyXW6suWQsQ9wJIpOQKHlR21FIn8eKDRSyqAElZpq+KOqLvWO0Idz82YqT0HUQcAm+U//TppYZKENkGVhvE6n7LOB2YeaRptuBqkmJpKCdQCwGKVWVlsOHXfsFrorWZCdP4p8bbbW+KQfq6EEDITsRZhn/zkJ3HLLbfgM5/5DMrlcrT95S9/Ob785S93NLnpTtziIW+yVvH1CNcRDVWBQEocqgY4WDOrakmp7umqBmaVKRmalsaNS7XtqoByU4+LQ0cAc0sO5pScSPDo/KP45vND3Xqhxcg1PMeo/RLq4kvbO+g/WozF83GFEl/6vjQrARYbW4TWHPGxtbO7bNypHpsgnF0BlN36ODpWCFUVyxOqDddG6tZM9Xx8A4+4ONpxPwlf1ltLGecTizdpGWXTk5JijBAyW7AWYbfeeis2btyIP/uzP4PrutH2V7ziFXj00Uc7mtxMIa4HbKpiWrRUfYkD1Vbn+CT0UmXFSnyp6ldafCR+oMTVgCcwr+REk3qz4ImLJV35MfG9kqg76nvh4GrspPEBz3HgOQJ9rkCf51hVv+qiqDVeb9PmsxJZ17L+WrmhGCu5SmjliUGbqhigxVK9HZEJ8epblu+bNrkNLMRSYFFFi45j06wcFGKEkJmN9T1hu3btwgknnNCyPQgCVKvVjiQ1UxHCblIRQsAPJCYsSh56mckm3vQ+Je0YX3bNtLt+ktbmPh8vVgHMFlTqd15MWNibj6bH67GMr2UY7zlmudjcgzYZXCfWfsiA5vZOeVhfcd70RQghEdaVsJNPPhlbtmxp2X7HHXfgtNNO60hSpHdRQrKHyhMJlbL8XbopBHrPib7H0iGEEBJiXQm7+uqrcf7552PXrl0IggB33nknHnvsMdx66634l3/5l27kSAghhBAy47CuhL35zW/Gpk2bcPfdd0MIgY997GPYvn07/vmf/xlveMMbupEjIYQQQsiMw7oSBgDnnHMOzjnnnE7nQgghhBAya7CuhBFCCCGEkMljXQn7nd/5ndTH+vv7+3HCCSfgggsuwHve856OJEgImc1oa1xCCJl5WIuwj33sY/jUpz6F1atXY8WKFZBS4kc/+hG+/e1v47LLLsOOHTvwvve9D7VaDe9973u7kfMsw/JJRNsHFy3jA9ndpwullBCOeYFWSuUA3y20T5gpMvyrV55ItLGnUPFmbaTi4wM2zcZDM16DHaSUcBxhnRMhhEwXrEXYfffdh09+8pO45JJLGrbfdNNN+M53voNvfvObeMUrXoEvfOELFGEJiHBWN+kPqQxPBeaUgImazPGsCisGAnBh4m+l+kNCAMLC/LPkCLgOEBiawZYcdcKmzv2uI+BAIjCsfmjvtW4JjZKjhKeJUa7OxzQVAaDfVa+VaRsqG7RBqykO2hPYtrvkHUMLtQCA70t4jm51RTFGCJlZWNcQ7rnnHpx99tkt21//+tfjnnvuAQC88Y1vjHpKklZ0W5yk6STe3sUPVIsiRwgMlJyoJ2ISUoY9GMPx3abWO0nxujVM1Jg5I2fPAQb7HMwpK5f6kls3Jk08R6i2PZ4r4LlO1FIodXwBzCkJlF0BJ+w/mZW/doI3ceJv2M+wpZEDJWZdR6DkCvS72a2G6j0uzcb3hBJ4rqPOecDLP1/decCkBZbrmLn267FLjkDZc+A6InL+z9un09c+aoME7d6vvq8GQDWQDTGEEDITsBZhRxxxBP75n/+5Zfs///M/44gjjgAA7N+/H4cddtjks5vhNIqf+uSiBVIzniMioVKPVU23mwspWujVxUx9EguC1v6TuqVN8xTpAJhbdjCvrCboerwIBUSjOFETeti0WjTGl1yBAa+xwbcjVBuk/pLT4NYez785J1dogdF6jdIwFV8CSnw1Cwwh1HXvcxvzEVDiy3VazzfpeK4AygnxjlDXpnl8fYzmlkNpwjlNDKaduxeKQLdJdem2U8276WN2svoVF1a1ILniG0igols2UYgRQmYI1suRV111Fd73vvfhv/7rv7BixQoIIfDDH/4Qd999N2688UYAwObNm3HWWWd1PNmZSLx9TRDI3CU7JQYAAYmDNZN4NWkGxuMjasBdcpVwyppAhRDwXMCRanlTTdzZ8X2eCHsUKsGQHa+Ei26gbSsATJevHMOxHSHQ50pUpY7PqTKFrZt0e6W8tkCeI+AKiYM1vX/W2OE3si4a8669ipfwHGH0Wqn3joxty0w//ZgZSIQNwQ3G0wLNBZcmCSHTH2sR9t73vhcve9nL8D//5//EnXfeCSklTjrpJNx7770488wzAQAf+tCHOp7oTEfA7gZwIQTMpq32xy9nrTc24djcDAXADeNN51HL4aN9jGMt4nUzc/M8kqtKWfFCWLy2AnDy1g+bxm+ufOWNb4utQGJtixAyG7ESYdVqFX/xF3+Bq666Crfffnu3ciKEEEJIjzH29OOomj6l1Cae56HUV27ZPj76VFePWxRCWt5gcfjhh+MnP/kJjj/++G7l1FXGx8cxNDSEPXv2YHBwsOh0IqSUqFk8IVcLJPZbPFLnB3bjlxyBOeXueT/oOkk3V5TU2GYHcC1zsf0cKlnexH7Q8gBWlS2g4b7CPNq5B8umEhbIvCd/G3H1vYJcjiRkStDzZtEMDMzBo49ux+LFi4tOpWNYL0e+/e1vxz/90z9h7dq13ciHEEIIIT3IyOoLMLhwSdfG3z82iofv2ojbbrsNIyMjLb8fHh6eUQIMaEOEnXDCCfjEJz6BBx54AMuWLcPcuXMbfv+BD3ygY8kRQgghpDc4+uQVmH/iqV0bf/fOx/DwXRsxMjKC008/vWvH6SWsRdiXv/xlHH744di6dSu2bt3a8DshBEVYG8jwScHYw2658TVfwglj8+OTLS+y8CWwdyJAnydQynmCETDPPcop9o3JqpJePdPeUXno1TmTWCklamGwZ7jM5YZjm6zwxq9N3sh65a/kqO9NViXbWZTzAxmzvjCzjzBBSnVNpJTK0wz549eCxmtj8n4IpHpCOO8JVRl7v7RjrUEIId3EWoTt2LGjG3nMWpTPl/o+cn9HsnjQE1bF16asageBZDGgxZffNL5pXhACh2oSFQH0e8o+IQkR+6qPYSPG9DknTZB6Itd4jsi8h6jxKUr1VGJaPkkCoyaV3UaefYMaPVuMCdR92uIiO40kwVAW6vVLO9/oJTFoGyDQeC3r175VzLQjvpqvQxAKMheyxZpDhq9h/LzyhHmUf6jY9DGdBLuKpNc8771GCCFTjbUII50hLr7iaBHTLB78QGLCTzJZVZLNhfKj0pNgIAG/oVWQiMbXs1jaRNs8oQUSOFCV8ByJfk9EE2pW5aKdylh8gtQCJikfAVWx0pO83iZS4vXvdS55AiOAGtuBTK3kNGySSowFsWO4TeIxa9JPEgz6mFLKSMjVYq+nFommrXwcxMRgU3izmGlHgPkZv/eluvle30wfxKpfieOh9b2gr2XSqQbhDk7sQYysM6AYI4T0Cm2JsF/+8pe46667sHPnTlQqlYbfXX/99R1JbCaTZ5raOMEr8ZX9IKSIvohAtXnJXiarC7J6A2YtU9JnpVoA7K9IzCtnP40XN6BtByU60gWG3uaEFZx49ShpVo2bmtoIDL30mWcMKoSOQ0MVx2SCz6saxg1Wy65ALVy6bvl9CtqENp5rGoEEhJTGwiRaejSJBcL+oebXX1/TNPHYjGoub7LoWx+/l5qtE0JmH9Yi7D/+4z/wlre8BUuXLsVjjz2GU045BU899RSklLPmRrrJIKX5NCTCao+pE4WAQCBaWxhl7iEaf86j5Gb3OGwYLVRINlos3hfR1I0+TXwl5WN7b5zxucaOYZgOAPNro85VHclGNFg4V4THMY+V6K7JalxA2ghDY1PcdpIihJAOYm0EtW7dOnzoQx/Cww8/jP7+fnzzm9/EM888g7POOgt//Md/3I0ciQ3dnBV7EXVnefeGh70fFSsrhBBCTLAWYdu3b8e73/1uAMrZ9uDBg5g3bx6uvfZafPrTn+54goQQQgghMxFrETZ37lxMTEwAAF70ohfhF7/4RfS7sbGxzmVGCCGEEDKDMRZh1157Lfbv349Xv/rVuP/++wEAb3rTm/ChD30In/rUp/Dnf/7nePWrX921RAkhhBBCZhLGIuyaa67B/v37cf311+NVr3oVAODjH/843vCGN2DTpk1YsmQJvvKVr3QtUUIIIYSQmYTx05H60f544+45c+Zgw4YNnc+KEEIIIWSGY3VPmO1TYmTyaDdz8/iQdk26cvADPXx3xpdNXzNjZf3amOQTjzfF3O5D249Ii3zCr6bjW+QSP4ZxlwTL+G5/GnT7Qd/Z9iAxIaT3sPIJe/3rXw/Py97lJz/5yaQSmukIIeBA5pp06kk8gIDrKKf8LI8rHe/HDUkj48306dJzlCFmNWf86DhQhq39JQFPINex3QkbXJr2fBRQwkf/7yDNejM639D4NrN9T8ybzWbiVa79qvVR3rUXQkBCGdo6QmZeG51ic5sffcy0eFtMPbbip+Yj1hooZ18hANfCsDXeBcI0vpvwv5SEkKKxEmHnnHMO5s2b161cZg1CiNCtvrUNkZ64tUmrDONdoXoa+k3tXnS8L4Gq32oEmzaBOwIoxxpz9wHwpUTVT54gBXSrHPXzoZqEKyT6vLrtflxwRC1nwr4zIhRCfkppyRFo6NeoJ+pmH/9InMrWPoWR23tM/Oh4m36WAFByREM+Tljjaq4S6fFrsS4IgQQqUjn/u2i8Nnp/vymf+Lki4bxNGnnHcWEmvmLNBCL0ddVmqVkiUIiwf6bMbl0kUH9PICfeAcIWR9n5t+ZivgNbFhFCegErEfaRj3wE8+fP71Yusw4truJiTEI16E7uK6mqYnExIwFM1IL8So0aAALK9d5NmIFcIeC4qrFy3KU/bUL0peopWXKAslsPSGp+LcJji6aqngDgOukTaCROYtWmtGbWWiRpIRbfZoorVJPwtPwlYq9V+LqlLVn64Xm6Tl2oZFWN4gJMb/Az4pPQwimzV2XsGFnLrQFUzib3LOiqWHN1T4svk3hVeWzH5Z/iixAyPTEWYbwfrHuIsInjRC2/5ZAWAz4kDuWIr8YdgbKL1IbU8fE9oe5F02In76WvBiqmz41VvzLG11U9/XMeEuFypqGasq16AUApFIJOTj46/0M1s7vF9BJlIMwabet90oRmGm6Un1m86b1uEkoImnxQ6Gbb8VZVWenoeCFj33dRgHV7eZMQQmyxfjqSdAch7G4Ct+2DqO9vshnfds7KE2CNsb01I5oIsF6ml1Jv533TjkAyfq/ZD00IIVOCsQjbsWMHjjrqqG7mQgghhJAeZezpx1G1vUHVEM/zcHD3r7oydi9jLMKWLFnSzTwIIYQQ0sM8dMf6rh9jYGAOhoeHu36cXsHqxnxCCCGEzE5GVl+AwYWdL8jsHxvFw3dtxG233YaVK1di8eLFHT9Gr0IRRgghhJBcjj55BeafeGrHx9298zE8fNdGjIyMzCoBBlCE9QQy9P8qO+pm+7wl90BK1HwJzwn9lnLiBZTtQtwWIuue5iB8UlOboCZZTjSPLwBUfMB1ZGhpkR4ft+SoPxWXFZ+eaxr6Rm+Thxe0o4UvZe656gdUyk79yce8Q2jbi+gpz7zcw330U5Imp6/fM3n+YFLKhjHzzlfnY4PjhKa70uz6u07dF60bz//Ipm966SEGQsjsxkiE/fSnPzUe8BWveEXbycw2Ip+paHJQbvploSbfZnElpUQtAKpB3N5BubOnTXieoywVGsaJ/mqckKSUqAbqGBo9ritk4tOPzeP7QWhp4LQKmmRzWpWKg1YLhwariehpTZH5pK4+po5xHZF43HDIUGSKBpNcpIixhuMKASElyq6AH8hE4exozzHUbUji4ioxn/rwgIR6bVPik/ChLB8ctL62AVrfI4FE1BqrxRsNdgIs/kStfi87QndxaI3XAl/H6w4PJhYj7TxdGxdjFGKEkF7ASISdeuqp0cSW9+Hn+1m+2UQThNWvZvT1daEm7FoQTsKBRCXBET/u6O4IRI76jlCu7/GYOI3VAVUdqWTM9L5UsZ4jI68sL2P8WhBW4FxpVOWIix8lC5oRjd+JRjHWbKnRnJMjGnNwc+IbHPgT0DnosePCWVcetQDUY0fHkDHhrPPTOcYEgv7qSERixsTGRHt7OVJXmGSmiIsLYXU+olEM5hCvrDZ0TQhfI1WFlQiiDhCIhHtSvJMlnDugnvT7oB1fMkII6SRGImzHjh3R99u2bcOHP/xhfOQjH8EZZ5wBAPj+97+Pz33uc/jMZz7TnSxnEHrp0eR/+moCA/ZVgtwlyqgq5oqwwqOlT/YsE8hkcZeGHwBzSiKsiiFzfAmg6teXm0wIJCBETt4JAkttTt4nLn6EiFebsrPSk3Weh1WzcG4WFknxMhScDhrFaVJKujrkOfVWVib4lmt7QXgMt0kMZhGvPKadK6AFeT0uL159r77q0+i0t5yuCFOIEUKKwkiExe0p/viP/xhf+MIX8MY3vjHa9opXvAKLFi3CVVddhbe97W0dT3KmYTo1CiFQS1nqStkDAGKmo/mzi2ljbY1q6WNplJmvBRswFQC6ewASljJT4w2quQ37GEfGBIdhLoBux2QydnudAGwQqBv6ml4i03NujjOKl6qK1y1jX2ovQkjR2N5zi4ceeghLly5t2b506VI88sgjHUmKzG5sJ0dhswfLHtMMvl6EkJmLtQgbGRnBJz/5SRw6dCjaNjExgU9+8pMYGRnpaHKEEEIIITMVa4uKG2+8EW9+85uxaNEivPKVrwQA/L//9/8ghMC//Mu/dDxBQgghhJCZiLUIW7FiBXbs2IHbbrsNjz76KKSUOPfcc3Heeedh7ty53ciREEIIIWTG0ZZZ65w5c/AXf/EXnc6FEEIIIWTWYH1PGAD8r//1v/D//X//H170ohfh6aefBgD8/d//Pf7v//2/1mNt2LABS5cuRX9/P5YtW4YtW7akxt533314zWtegyOPPBIDAwM46aST8Pd///ftnALpYWyfAOzmE4OExOmGoz8hZPZiLcJuuOEGrF27FqtXr8Zvf/vbyJz1d37nd7B+/XqrsTZt2oQ1a9bgiiuuwLZt27By5UqsXr0aO3fuTIyfO3cu3v/+9+N73/setm/fjiuvvBJXXnklNm7caHsahWHzIS6ljExY7Y5hehD7sbX3lOkxdJTNedukZOl+gdBz1iw25vRuO/mavwZ2dPNZQQnlGyelND5fGcbnx9W/9oqQsXlvTua9QAghaViLsH/4h3/Al770JVxxxRXwvPpq5vLly/HQQw9ZjXX99dfjwgsvxEUXXYSRkRGsX78eixYtwg033JAYf9ppp+FP//RPcfLJJ+O4447DO9/5TpxzzjmZ1bNeIT5ZCeRPpjq2Frau8Qxn37IrUHYF3JxXViI0aBVA2UVLa6M0HAFU/ED5ixlMwNoyFjCbgE16GcbJ65WYlE/+tQ+/Aqih0SDVbMKuC9Xc62PjWRa+D0xfK1cIuDCPB9S5+lJ7mOXno77mmN6G48Q96UzeC81dELpBPIWkfOLbmgU8xRghZLJYi7AdO3bgtNNOa9ne19eH/fv3G49TqVSwdetWrFq1qmH7qlWr8MADDxiNsW3bNjzwwAM466yzUmMmJiYwPj7e8GcqiSZk1Cch7TafNMHoiduXwMGa6uMohGqBU3bSXzDPAQY8Ac8RcBz1tewmub1H8itCCAHPVfFpk57rhGLNERBCwA/7TNYn1aYx9R/teo7sCpQQdQEWfZ8R76AuwET4c1a8SUxcGMRbBEkoMax7arZfFUve0VaIuQIoifT3goC6No4AHEfAEQJeRnw8DyEEAgDV8PyTxJLQY4fxzSRVvRrES/PPGdfT5L0wWfS/zeZ8ksRjczyFGJmJFD1vziasRdjSpUvx4IMPtmz/t3/7N7zsZS8zHmdsbAy+72PBggUN2xcsWIBnn302c99jjz0WfX19WL58OS677DJcdNFFqbHXXXcdhoaGoj+LFi0yznEyxEWJHyQv7zROMCogkMCELxP7OAohUHIFSrE2QI4A+j2Bsuu0NmDW8W4sr4ychRAoe63jl13tlN86FdYCiWpTE0wtvpK0RfOElzWha4EV3xoXGM3jCyTH21S/Aqi+i0nXqUWc5IzZOH5+Rcy6KuYoMRbfS1e+Wq5NKOSTKqppx/alEp/xzLWwM801S3yniZ8kkt4LnSZJXGW9avrcemmJlZBOUNS8ORuxfjryIx/5CC677DIcOnQIUkr88Ic/xO23347rrrsOX/7yl60TaP4wN2kSvmXLFuzbtw///d//jcsvvxwnnHAC/vRP/zQxdt26dVi7dm308/j4+JS9ofykDsQJ6JY0B6uB0cTuCIGSoxodK8GTfb0cIeAKiZrhTOE4AiURLp0aTLb6XiJXxFsm5SPCY2XG6CWvMPXcPo45P6dh03bel+1WZ/L3iLczMhpRqH/E+q2Wd/mFEHCljM7XpH+m7ilpEq8xfOtHx4hXTdNo7iXZLdoZno0YyEyiyHlztmEtwt7znvegVqvhox/9KA4cOIDzzjsPxxxzDD7/+c/jT/7kT4zHGR4ehuu6LVWv5557rqU61oxum/Tyl78cv/71r/Hxj388VYT19fWhr6/POK8isfnwF0LYCZ74zVmG49tiu4fVvVyWg8+2OdHuWlo1eor26RUs38qEEEum07w53WnLJ+y9730v3vve92JsbAxBEGD+/PnWY5TLZSxbtgybN2/G29/+9mj75s2b8da3vtV4HCklJiYmrI9PCCGEEHPGnn4c1Vpn/wvkeR4O7v5VR8ecTliLsNe97nW48847cfjhh2N4eDjaPj4+jre97W34z//8T+Ox1q5di/PPPx/Lly/HGWecgY0bN2Lnzp245JJLAKiS6K5du3DrrbcCAL74xS9i8eLFOOmkkwAo37DPfvaz+Mu//Evb0yCEEEKIBQ/dsb5rYw8MzGnQFLMFaxH23e9+F5VKpWX7oUOHrK0izj33XDz//PO49tprMTo6ilNOOQV33303lixZAgAYHR1t8AwLggDr1q3Djh074HkeXvziF+Nv//ZvcfHFF9ueBiGEEEIsGFl9AQYXLunYePvHRvHwXRtx2223YeXKlVi8eHHHxp4uCGl4B/BPf/pTAMCpp56K//zP/8QRRxwR/c73fXz729/GTTfdhKeeeqoriXaK8fFxDA0NYc+ePRgcHOzacaSUVjcnB1LiYLXZPCIb18Jpteab35jfDq5Q+Zjep+bELClMEE1f89BnahpvW2EvpTz9mZqP1E+MGj5VaPFa2T+pafcgggP1hCxg+KCGZT6A2Y35Gpt/V+0Q+flZPmTSQ7fNEdJR9Lz52g9vwPwTT+3YuLt3PobNn3oPtm7ditNPP71j404njCthp556avQo++te97qW3w8MDOAf/uEfOprcdMd1hLEYEwDmlh34gcSEn7+PjdN9EPqOCYgWj7C0XNxQMOh98+KV+BIIZP6E5IhG89lOzqlpjlxp6TSLNZNctPmpfqovM58mg1IHZhO8EMJKiDnCXPx4DlB2Qq83P38fgbpHmufkP71smw9Qt3rIeu90/anIpgPYiDEZ/UUxRggxx1iE7dixA1JKHH/88fjhD3+Io446KvpduVzG/Pnz4bpuxgizi/gHt+uIsB1MfrwjlOlqLQAqfqtksnERl1KZvTb7cmXNZdpmIu7u7wk1RpAQ74XVr/gEljYhCSgBoOOFEJGQScvJxhsqyZMq/rNI2B6JsDAJkSEeHNQFWN5Em+YzpV8LB2ZixkSMxYfJEj+6+hj9DKDPVZYb1YQXN8ncthYAjpDGVUwbcRvFJbx32qmu2ZB1jU3FmIx9QyFGCDHBWITp+7SCIGkqJmnoD279P/y8yUTHe46E5whUfIlq0FghyG8To6pXfuJLJULR05iFIxqde6O8tTiEhAM1YUuoljjxCb3F7y32jW63kxQfX2aMiyiBbHHWfKy8OB2TKQpSxIyuDOptJgIsL59AAkLKzCVKW1uIZsEbF5huwntHf+9CwnV1yyJE3QWax4znHkjAFcn519+n6quucFkJsdg3RYmvpFjTqlheVY8QQoA2HPOvu+463HzzzS3bb775Znz605/uSFIzEXtHdBVbClsQaQd6EwFW8dMEWGz8UIwJ1FvaZOWo2wl5jkDJEbEWQ/nnVHZgHN9cfcld7oPl/VAG8fEUXaChg0De6Ta3uJlsLuqY9m76umLqOeo10+OkjQ/Ue5Q6ACDyz1UvU5tW6mz1iO1ra0s7TdatRBvopE8IycZahN10002RRUSck08+GTfeeGNHkprJ2JpqQoTVGGG2MGf3oV933Deb5FurKHkkVWDyRrddguwWIla961ZFo5uFkrhoN7kHLV7BMn03mL53ZmNFiJUwQkge1iLs2WefxcKFC1u2H3XUURgdHe1IUoQQQgghMx1rEbZo0SLcf//9Ldvvv/9+vOhFL+pIUoQQQgghMx1rs9aLLroIa9asQbVajawq/uM//gMf/ehH8aEPfajjCRJCCCGEzESsRdhHP/pR7N69G5deemnknN/f34+//uu/xrp16zqeICGEEELITMRahAkh8OlPfxpXXXUVtm/fjoGBAZx44onsuE4IIYQQYoG1CNPMmzcPv/u7v9vJXAgBYO7HFNuBj6HNUKzfC4QQMo0wEmF/8Ad/gFtuuQWDg4P4gz/4g8zYO++8syOJzURsPYOklHampaH5Z2wL8swGImNJG+sM81D40lzpN7juG0y+Ol65rHdnsg4AOBbXx8qUNPIUy3dkjzoMWL6JAinDDgXZ59COn5W0Gj/eG0Hkvr7N7wXA3rw2i3Y8wqyPEf3F/yMQQpIxmh+HhoaiD8ChoaGuJjRTqbexEaFzfvYkIKXytK/4dVPMNMPQuBiphH0n615b+eLEl4CQZp5YXujkqSbgzGHhACi5ZgazuoWRPldHAE7K5JsUr9oOZU/WcSf4AGY9Ex1YCtRQZ2SNrV/6APVr74WGsEniJHp92zIXVceJXZ6E90/4FQKOUD+Y9DtV75d6v9AkIRY/nyDKX7b8Lim+9Vyy38vx36SlP9nKmu2+DV0aWLAlhDRhJMK++tWvJn5P8onPm/GJIa2qobdVg9Z+fs3tXOJirhrIqMmyDokmgLCHisioYWlB48RKOQ3O8U2O/VrkpTnEx13yE4/XdO61oLGRku5V6Yq6OFE5heKrKV5XlbSQbJ5s3ebzCffxE7NrjbdBiLooac5RhOa78ZdWQr3WjpDwRPtVr9Y86icQtTCK55HQFijepirN8V2fX/P4daHXmH8QpLeNb3hdDcRmUlUs8T8nDde+sW9rO9d1MsItqjZHx9djtj0kIWSG0PY9YSSbNPEVR3+w66oXwp6PFT+nkqL/lgjjMyat8I+TvzIJoF4B0U73uulz0iSkexJKWRdjnqNa35hOWmmNwTW+VBUUnU+zWEvMP4qXcKKuAK2xQgCubBRFDhp7XE4GXRWL8gJQy0g+kEBFqmvqTqIXQOYyHxqrYlnvTZW+bKiKZQprvS/q72lTvWMjjKIKL3Q3gISYFCHcDp1aBm0WY4QQYiTCTjvtNOMPop/85CeTSmgmYfrhr6sAB2rmYwc54qslHqq6Y0PJNXvNhQBKGWItMZ8c8RVHIlu8pOVkspSoJ2tr12KLPID6sqkJvmxnGdQ82OZSCiFg+DaIMFnKnCxpwrolTgDS9I3Wsm/35BKrYIQQwFCEve1tb4u+P3ToEDZs2ICXvexlOOOMMwAA//3f/42f/exnuPTSS7uSJCGEEELITMNIhF199dXR9xdddBE+8IEP4BOf+ERLzDPPPNPZ7AghhBDSE4w9/TiqtssSCXieh1JfGeOjT00+qWmOkJZ3qQ4NDeHHP/4xTjzxxIbtTzzxBJYvX449e/Z0NMFOMz4+jqGhIezZsweDg4NdO47tvSiBlDhQtVhelNJqORIAXIs1EFcAZc88Xt9LZbqE4wfSeDmyHTxHL+n1xrpPxfJkS6J7y5Hdptv2D3op0njpO+c+wtTjdOmami6lEtIr6HmzGwwMzMGjj27H4sWLuzJ+r2N9Y/7AwADuu+++FhF23333ob+/v2OJEUIIIaR3GFl9AQYXLpnUGPvHRvHwXRtx2223YWRkBMPDw7NWgAFtiLA1a9bgfe97H7Zu3YpXv/rVANQ9YTfffDM+9rGPdTzB2YIMb8a2KZg4wu4maBvTSykl/MC8uiWlhA/As/gvfuzhwa5g+ECoiu2ybUC3z3W2YfPadptumMk2jo9w/K4MT4gxR5+8AvNPPHVSY+ze+RgevmsjRkZGcPrpp3cmsWmMtQi7/PLLcfzxx+Pzn/88vv71rwMARkZGcMstt+Ad73hHxxOczjjCbFlSf4j3eQKBlKgG+eLKFYDnOdGypIkYi2wYsgwxw2x9AL4v4QAoe4CT4fflS8APdF4B+jyRGq/xHDVp+bLR3yyJuC9VIGWu7UHkdRaK1KzlH21mGtkrtPFkogllV9SvVUb+AkDJAVxHxZu8fxxR94yTBtJEX49O2DfEmcwypL0vmsh9betjq/evyXsn/l7Luz7N+ZqIsfi1z8u75fgUY4TMONryCXvHO95BwZVD/IMyTYxJ2SqeBIA+V8APlBhr3qc+6Yjo537PQS2QqPpm974E6uAt90wl7R0AOFSTcIVE2RUN8UFoEBvfy5fAgapEyWmNr2cdNwVVxq5J4iQ+wTaYxKZcT4G6v1mLUWnTBKb3b9Z/EkqAOoYTvC1uaOXRfN2AUHw1Hc8JxViSyNbioi4GRKbwj1+7aPwOibF2BVg7prTxKljceyvttTJ97zS/1/T2pH+3mfmliLH4T1nvqzQPN9n0DcUYIdOftuyRXnjhBXz5y1/G3/zN32D37t0AlD/Yrl27OprcTCD+QSlQN7IMgrSJNRQnAuhz1cQc3zct3hVAvydQsnAaDYCwOiATBVgcXwIHa0roBYFEpZYsEjXVANhfDYWhVPWZpLZIQojIi6rs1N+QjlACJH6O8XghYuNBGcR6CfEaifqEHUgltLIKcAFUzGTvMdf5NuQOVRnzwpN1BdDv6q4EjfEa1xF1kYCw+hU7hvoaOy5iv0eyAEiLt0GG7x9bml9T/TW15VROjH5ts1JJeu8AWe+1WGVMH8fiXCMxpv+IfPGlBWJmBQ718yWETG+sK2E//elPcfbZZ2NoaAhPPfUULrroIhxxxBH41re+haeffhq33nprN/Kc9ugP3zTx1RofijEpo2pF1gd4XYwFqFrkFV+GM5mFq4GEL5DZAilOLVAVsXqeyXG6IuI6AkLWJWHWpKzjHZjfl5PWpiiNdu490rnlCQoHSnyZxqdVa1rjw9xlXKhl5au+2pqsdrKtUvP2pLFze5DC7LWKv3fix0nPRwseu/PVYs+0ZyQ1FSGzD+tK2Nq1a3HBBRfgiSeeaHgacvXq1fje977X0eRmItZLCAlViyxM7glqOYRFGUSogxjj6kqewfi6LyQyKiLN8Xq5qJt2Am3tZ5i/bXxWtag1Pr/60hBvFjYpTPOPV6268draX3tYqyQTAUwImd1Yi7Af/ehHuPjii1u2H3PMMXj22Wc7khQhswfO0Nl09/r0kr8aIWT2YS3C+vv7MT4+3rL9sccew1FHHdWRpAghhBBCZjrWIuytb30rrr32WlSr6s4jIQR27tyJyy+/HH/4h3/Y8QQJIYQQQmYi1iLss5/9LH7zm99g/vz5OHjwIM466yyccMIJOOyww/CpT32qGzkSQgghhMw4rJ+OHBwcxH333Yf//M//xE9+8hMEQYDTTz8dZ599djfyI4QQQgiZkViJsFqthv7+fjz44IN43eteh9e97nXdyosQc7rcw8bUYqAen243kRAN3pw/c7F7L7QzPp++JGQ6Y7Uc6XkelixZAt+3dVsiQP0D2Xh6Dl0ZzeMlBCQs/FqtURYS5vFVv26KamIrZfOG1MarpmMD9nIngKHHk2z+auaqrgw68w1P4+PnmZK2E99t6nno855+rli2Ysf0vdnupZh+V5AQ0oz1PWFXXnkl1q1bFznlk3ziE44fyMiFOzU+9n0gBBxH5AgrGftOueaXnHzB4QpgTklgTslBn5svDrUzvWNo1eoIoOwJ+FJE/SFNeve5yH5jxkWFbjMUIF9siHDcvPHj+Te3EUrLBwhbLwGoSZ1PsrjS2/xA9ZKsBdniTW8KEtzUm8PjP5vEx9HmoqZawxFCmeXmuMBH34c5+UFdiHVSjMXNbLuBECLq02mK9u1Le2/GX1urXND98yWEdB/re8K+8IUv4Oc//zle9KIXYcmSJZg7d27D73/yk590LLnpTnyCCYLGxkBx88ekSdJv2i6EgBM2F2qY2MIfgqZPeEcIlBzlzl9r+oAXUM3Cvdjs6ToC/UIJgmrCjKB6HjZ94ifkr8cvNTXxVi2SwnFk7BokELWKkY3NteNLL83H1GLMCY/fvEzTPGEljR//nW4h1HCM2DWOG6hLtLZACsKxXaHzie0rW4/pSyDwJRynOV4kVjz0+0Cfa/Ox8+K1C3zSa5D23ox+H49D8nuzWQw2E2++rdtatasoplKM1A2CsztftPQuRbz1UWOsrQyl+CJk5mAtwt761rfS4NCAaNkF6dWH6DLKelzShF6Pb5wAVCUh/UNc92R0pKq4BBIouWGVLOE1FEKg5AKeA0zUZIOISI6v56/xXF0tSH6P6GpRyaCdi66KSVlv7p1XMYiLPSB7wtLja8GUJr7q8bqqIaPXLKv/JBCKKynhiuz3AhAKyQAIhIzyz5ugWyZ4i3iTVkaQrcdIFm6t4sQkFynDPo5tfKYU6Uiv/201N1fP+myMC2H9s9UxQfFFyEzDWoR9/OMf70IaMxPTJQZdeagZjqsmPAk/TwHE4ktCCSTT+LJbFz758eHSnWPeUieA+Vq4vj42k5bNco0jwgqacTsggZpNI2eoa2lzL2BgkY8+RjfIWzpvjVfvTZvltXZuLu8VQWJzj6eG4osQojG+J+zAgQO47LLLcMwxx2D+/Pk477zzMDY21s3cCCGEEEJmLMaVsKuvvhq33HIL/uzP/gz9/f24/fbb8b73vQ933HFHN/MjhBBCSA8w9vTjqDbfZGyB53k4uPtXHcxo+mMswu6880585StfwZ/8yZ8AAN75znfiNa95DXzfh+u6XUuQEEIIIcXz0B3rOzLOwMAcDA8Pd2Ss6Y6xCHvmmWewcuXK6OcVK1bA8zz86le/wqJFi7qSHCGEEEJ6g5HVF2Bw4ZK29t0/NoqH79qI2267DStXrsTixYs7nN30xFiE+b6PcrncuLPnoVYzvZ189hF70j8XaRsvJfxAZj6J2EzcFiB//PqTfN1zi7fD5vq0k4FN7ja5tIMMPTB64Ulk2fD0n9k+2gJjOtLO+RIyGzj65BWYf+Kpbe27e+djePiujRgZGaEAi2EswqSUuOCCC9DX1xdtO3ToEC655JIGr7A777yzsxlOYxxH5NpIxD/wXVF/Mi49XqIaSEzodXkJeCJfjEnUn9bUXlpJ4UrcNT0ZmSPGnPDpyPgYWbm40dOIqSGxsdTh9fjaTiINAaDkqCc1dS52T+qp4Dzx4+nXFvlPkbpoFCUm6UR2BjI0983Ip+63ZTZ23K8q6zQT8zUQ5gL16+PLbDGm3zvaL0zmyOdu2lIkXj+DJzf1e9Pk+sf/3dnEsz0RITMTYxH27ne/u2XbO9/5zo4mM5PQk6YI/RUEWi0rEj+ERd3MtFmM1QKJQ7WgZVKrSWU86jmy1VC1KR/E8tDiQOUSGrsmKBwZ+6bB8FTE/LhSjE3j2x3E4xPTjO3fdGx9zDDvJI8uz1GO/s04Bh5drcfPF2MinB09kSwOHX3smHCJDFNN84DeR7b4tcUnaD1+nslqS3zacVMEQtp7oeE4sV94jkAgW+1Ukt87Irpeafnn5d0OWeI47u1lctw0D7C0XdPeCzavFSFk+mIswr761a92M48ZjRCqKuDq6kCQYbAa/iWlmqSU473EoWqQWXGRAKoB4EDCC81YRTQrJ3+C+6F4A7Jzih9DylBMuaGDfs5/0bUbuucIo0k0r1oUNxF1EfqNCVX9Ur8XTfH1soMQ9u1h8sSYfm2115h+jZyGmMbvtUGpaeUqTF9VBNEqtPPG74T4aolDvjiJ/iMCJZADGRrpOuq901wxbTiP2HG6VQ2yrUzmVQHjFa64uEp73zebHTfHZx2LEDIzsDZrJe1Rd1s3XDKKVaj2VwxdWRFOWg2f3Nmf4oHlcp0QynVfGv4XXQkkYTWBml4fCeW8r8VtXtWqW02j4076roFYmMzEqpa+8s419r3FcW1EYfN+2eerfqkEZOv21vj6uM2VxE5je75G1bCYEAbM3g/xc6XwImT2QBE2xcSXjExoZ5Lo5s3cAvn3fE0m3uZ8heX4evnQFhsnfRlW3Mzi7dOxeW2nYjK3OYbt+7Lb90J1Q3Bq4rnbxhNCZg/GjvmEEDLVTGdRYpv7dD5XQkh7UIQRQgghhBQARRghhBBCSAFQhBFCCCGEFABFGCGEEEJIAVCE9Ti29+pORauYXmilM5V0y9qiHVQHBrt8eih9Ms3opfc+ITORwkXYhg0bsHTpUvT392PZsmXYsmVLauydd96JN7zhDTjqqKMwODiIM844A/fcc88UZjs54h9oEgbmqKEJaJ9rLnoklLO+zWRtI6mU4aZs6C2ZhS/rBqkm8bbyzo95W2Wdb+Q1ZTiujq/nbi9+TOiWyNavj7S49t3MpxexPteuZNF76Pd6EL64FGKEdI9CRdimTZuwZs0aXHHFFdi2bRtWrlyJ1atXY+fOnYnx3/ve9/CGN7wBd999N7Zu3YrXvva1ePOb34xt27ZNceZ26A+xAEAlaGxHlCTGonip4l1HoN8TMNVitUCi4ssGAZGGIwQ8VyiX/ZxxHaGcz1UTHXN8CFSDuFhKjxUi7CVoM34A1Pz0CaNBUBlU8XS8L9VrVZMwupaAXZXQEYiuvZOzm3addxyReYx4ehKN76884aw9rUzPIMstfzpg817TnnTT+XzziL+3g/C9EkjdHaE7/wkhZLYjZIH/sl71qlfh9NNPxw033BBtGxkZwdve9jZcd911RmOcfPLJOPfcc/Gxj33MKH58fBxDQ0PYs2cPBgcH28rbFH1pVXUqu1VR3HQ0kDI13g8FlumLpoSTiE0g9VYyzRNK1JC6uc8fVKuZVIdz/bWlLUtrfLx/JHImQJu2MtH4olnQiNQxmiuTOiirgbpuTwQ0Xs8k0v5paaGT1G8zqX2U6yTHN+4b+z41yq4FUFYPx5kmRrLeazPxfOM0i680HNHYeWK23ZYwm9Hz5ms/vAHzTzy1rTF273wMmz/1HmzduhWnn356ZxOcxhTmmF+pVLB161ZcfvnlDdtXrVqFBx54wGiMIAiwd+9eHHHEEakxExMTmJiYiH4eHx9vL2FLtKAJJDJ7PgL1/2kCqoqV9UHoOgL9Aqj6EjUDdRJIoOLLsLm1k9m/UYhQrDky+p+wE/b5y8u/sT1OenwQ5uQJqL6VJu19LNrpxPsT5hFvNyRjAix3fOhG4dnXJT6+js7qaCCEgOeGraSCWKUm7/pbiFWJxpY62fnXB42/VDNx7k16r8108QXE/qNo8G8sCN88rsmbh0xripo3ZyOFLUeOjY3B930sWLCgYfuCBQvw7LPPGo3xuc99Dvv378c73vGO1JjrrrsOQ0ND0Z9FixZNKm8bqkG+ANPIMN6kj6MQwvqDMJB6Qs+fWPT4nityBVjSvibYVLfamQhN71lT4wslDu0PYzy+I0TuUqJGLxG7hvFA9+5X0u8X0/fOdEefqzMLzlUTWPwnh8wOipw3ZxuF35iftCRjMvHcfvvt+PjHP45NmzZh/vz5qXHr1q3Dnj17oj/PPPPMpHMmhBBCZiqcN6eOwpYjh4eH4bpuS9Xrueeea6mONbNp0yZceOGFuOOOO3D22Wdnxvb19aGvr2/S+RJCCCGzgbR5c+zpx1E1uQ8mgYPP75psWjOSwkRYuVzGsmXLsHnzZrz97W+Ptm/evBlvfetbU/e7/fbb8ed//ue4/fbb8aY3vWkqUiWEEEJmPQ/dsX5S+/f3D2B4eLgzycwQChNhALB27Vqcf/75WL58Oc444wxs3LgRO3fuxCWXXAJAlUR37dqFW2+9FYASYO9617vw+c9/Hq9+9aujKtrAwACGhoYKOw9CCCFkpjOy+gIMLlxivd/+sVE8fNdGfOMbd2Dx4sVdyGz6UqgIO/fcc/H888/j2muvxejoKE455RTcfffdWLJEvcijo6MNnmE33XQTarUaLrvsMlx22WXR9ne/+9245ZZbpjr9XFxhftOrfvrM/ClA+5JwLZBwDZ62Axpvare5Qdn0nj6be561X5Her9M3TEspo3y6dYOytsDolZu9I/PaHsmnV2j+ZzUbro/N5w6Z3Rx98oq2LCp273wMD9+1EQsXLux8UtOcQkUYAFx66aW49NJLE3/XLKy++93vdj+hDuKKuhBLW0aPPxqu/aO0jUByvEQ1UD5ipgioQf0A8AG4TroYS3xUPWfCbhZGWT5CkelozG8oC23xEY90ciwWTGwdmnN1UPfP8jPiBWBsmttyLIT+XOj85B4fzlT0o4v5TEfS3vsz/dqoJ0JF1AkjNQ763wh9wgjpFIWLsJlK/APKgURZKDGhLStavZ1EzKtIRoKgPllK+KHnl3EOiHs71fPRYsxzZMyAsTmfOjL2TfxzN+8juLkqpkVptH8oxESCIJOhcE3KR3uNuWjKR5iLu+aY+Dgu1HGbda4bG38yE1CnxVijALavbMSNamfjvJrlkdVN4dwLxN/HcSPf5uuh/9ND4UVIZ6EImwK0yHBD/6Gqn+NqHn4SCkftV/XtXPKBuKt7+odmLQgrU26Oa2pIZPSJ+oSU77quztsLP8Wb82m1KFHix0Rr+lCGr/q6po3ZnE8WcdNOFyoXIRq9XDo1EXVD/ERu+PFjmOYSfjNb5tl2TG5nqhgD4u9rtTxf9xac/H88CCHJUIRNEZF7eiDNTEHD+EBKTFhUvwDAjazOTT80zeMFlIu+eS5AyXVyP8T17/yw4mdK3VizsxOEFjO6cjedJiCdqonxbxImLY1mClamwV3LoreI/tPosEURId2mcLPW2Yb9Z1m7H362+5nH2z4T0M3/RXdzahBTJMC6NXw7w84GV3wNb0ZPR7/nKb4I6S4UYYQQQgghBUARRgghhBBSABRhhBBCCCEFQBFGCCGEEFIAFGGEFApvDyeEkNkKRdgUI+OGTGZ7tHskqzgTg1NNNx+YaqMbU9exuTb2mJnLtkPb75wefA0IIWQmQhE2hcjQCd+Bag+SN/lKKeEIYdwmR42pekSajh9IoOoH0c+5xwAQBPVj5eFLRLlkja9/5wq7N2XcU8xkfFP0+cV7f3ZSLOnr4QeyS+O3Z1ExmzzCbE8z/upQqBJCOgHNWqcAPbnWAqDa5KCZZIbYEO8rE1UHarJObCsUbowLBj80GnWRPn40ngR8X8JzRGK8RsS+MbF2dUVjL0ztat/sGxblE4pUTyT3jGzGE41jxseLzHGbvs8jLkKiHpJSmea6ItvzLN72JdwtYfywTRPqcX4ABCJ/fBPip2irE2ayG3wSUa/WnPdZnLhzPoBZJVoJIZ2HIqxLxMVVIGHUdkhPwIEEKrXGeCFEOGHUHff1BCCR7I7uh5Ucz0G0L4BUMVcLJHwAJVeEk0xdaiVN0GmtXBwku9gH4Q6OyBdETkzANTc/19WypMkvLuiat2URD0kSfzoPB6qSiej4ouX8462P4lWuqCtAwoule2U6Ij6+2eyuc9fhFF92RA0m0J4Ya77+hBBiCkVYF/El4PuBWR/EIICUArUgyGw3I4SAC9XeR0JVUbKQAKqBmthdJ3+SkVCC0XMkPMcxmqC1VBMIq185OwQJwi0JXakoQfVw1G2EujHZSaSL0zi6eXjJ0fIrPZ94pSWAalmVO35MONti26ZotouvOEnC2QSTijAhhKRBEdZFKpY9H23idYNdU0wERkO8bGyKbZKPiQBrPoZJuBCqmXY3Zzujfp4xbASMEIC0PYAlttUvm9d2NhFfTrbdjxBCbOGN+YQQQgghBcBKGCGEEEJyGXv6cVSbb9I1YN9zO7uQzcyAIowQQgghuTx0x/r2dxYCExMTHctlpkARRgghhJBcRlZfgMGFS6z32z82iofv2oi+vr4uZDW9oQjrEhKA5wgEoSGqCZ5TNzc1ihf5Xloa1wFKjlBGribxMYsIUwIAThd8k6KnC7v0dGQ7N2KrJzxleIN+dkLRAwiWT96ZImWrnQmZHLbvffqFkdnA0SevwPwTT7Xeb/fOx/DwXRs7n9AMgCKsw8SNH10BeI4DP5Cp4qceL+AICdcRYXz2cRwhIBGLT5kxHAH0uQIlV7XH8RyRaBrbHO86Kj7uGJaeC4AwHx+AkOk+XupMw6951hey1ScskOpJyazxTdHj2zy4KMJjSyASVQ6SDVbjpq0CgAivaZYod4T5k4vKdT/B08zQUJaiIRkR+5onxHgJCSGTgSKsQ7S6pItoknMEUHYFfKkMUZPj6xUMFR/6jGUohIb4sCoWd7nocwXKbmu88gATqDaJvT5XNPhT1Z3mkyckIUIxGJWS6oLNR1gVQ32ytxEA2rw0aRL0pRrfQ/tWC1LGHPEN0OIr/rMmbkIrhMh8bQHADSuk8QqcEIjaU+VX1mSD435aTPNY8VEpwNKJTG9Dm5YkoUsxSwjpBBRhHSCv7YmeCF1IuK5AxZeZ1ZfGeKDqW4wfTghlT6QulYlQOJUcJbqC8HukxodfkewOniYa9Dl6MBcAMhSSJtWpmlRVN89iiTJa2jQLB1DvAJA34QYSEFFPm5RKVDhAfBJ3nLqYNRFgVv5woTiM/6eAmNHQBSLFP4zXlBAyGSjCJolN3zkhBILAzEG/Hm92D5eOByT6PCd3Qhex/+6X3fz4aD+oZTVTHMDK2NRUgEXjW06C7Qgw0+VTwNxBPV7FjBakOyzA6uNTLEyG5mvHa0kI6RQ0a51qbD/BbcN1pcXwOLbxEGa9GHsV28xtBGTjXqZMrmF3biZC8Eb9DsHLSAjpNBRhhBQKZ/bpBIUYIaSTUIQRQgghhBQARRghhBBCSAFQhBFCCCGEFABFGCGEEEJIAVCETTW2TxZq40/T/aQ2g+3eE4zaCsM8vmupdB2JdloN2e1h+dJaji2N3wtS1v8QQgjpPhRhk0QI8+fbtBdXn5u/j544JWDY71FFBAAqfhA6qudPwI5Ag0u+CVG7HIPZOs/ZvT5m3ZnfRrMF0kw8xH9vJTYsXl+ge4JTGcXaD658xeqdD9LGjr5P2U4IIaTz0Ky1A8QLQ8n9IRu3OkKgz5XwJVBNcCbV8QerQfR7XwKOkPASWtvUJVooxCRQ8WXYuzLZiV0AKLkibIgt4ArZ0FbJlKT2OBrPoA9i3IXeDxPT/qV5mbiItZhBXSzFx9TfS6Clv2aUWoLDqgCia6PGyc5G+4nFWz2Z9B00ad+kUwTq3Q5MEUJEQlh3PIgfUw8Vf9mz4gkhhHQOirAOEU1U0aQpM6sXQgh4AnCF6t9Yi1WWqgFwKKEjdyCBilTiwNUHypggfQn4vuoT6cZMQXW7ooa+glE+qrm3rTO7PmtACTuTBttaAPhJvflEXQQ0/y7NhT8uHvT4qpKYIo5j8fGhXKGEcmM+6eLHEa2vc5YwNxVfcYHZnIuKSX+REhuKo7H1VHx7Yg4J8RRkhBDSOSjCOky8AqO+5lRQhEDJBeBL7KspQZYngHypYkpudpymFkgIR6DfFXCdVoHRnE/ZFaj65u2VAEBAxqpH+fF+ikBpzacxyEjcod743KQFkkS9P6QSSNl9H6WUjY3JU+NjB2jeZpBTXsErSYzltj4yO3xLfLuN0gkhhKRDEdYl7G5dV5Nzxe9WNoqSaz6TOkLAt1n2grkA05iOHr/vzvj+O4vxASUyssRpYz7CqJpVj7dIpA3YlogQQqYnFGGEEEIIyWXs6cdRTbhVJo+Dz+/qQjYzA4owQgghhOTy0B3r2963v38Aw8PDnUtmhkARRgghhJBcRlZfgMGFS6z22T82iofv2ohvfOMOLF68uEuZTV8owgghhBCSy9Enr8D8E0+12mf3zsfw8F0bsXDhwu4kNc2hWWsXcYTZjeRSStQCiZJj/hSaQKNRaf4xgH0TPqp+voGr/r3nmN8Ib/v0nIDdm8/WxNUN7TZssHKXR/365xFIiZov4Qfm43f7Vvtuja/fj6bXhhBCZjOshHUJ7Suln+xLs53wA4kDVRmasaon9AIpU72tgManEKOYDFNNB0oISAgcqAZwBTBQcuAmKCctEhyhJlHXVU9J1lK8HhyByEDWZmrXkW54DmlWEmliLWt+jz9J6YjQ0iMlVnuaxQ1bswxoE/PQlm3NvmVSwo+9jlqcuEI2GLvmnUcntYx+qlPK+mucdy11vIm3WXysBh82PsBJCCEtUIR1kbiPkxs612sxFkiJQzXZZEshor/LroAfyAaXdyXSko+VNOEpEaLNMuo7+hLYVwlQdgX6PZFqRKrzdwCUndD8NeYR64WeY0mO/Hk0hEslxgLEnOHRKL6aXd6TLEBEQiygxnYRGuKG2xzUK2VpqZueV7MQ1q9zqvAO/TM8J338uN+ciVjKo/ko8cMmjR8XX83xzeTlRjFGCCHJUIRNAfGJ1hHKDf9ANd/t3BFAWcDKNFUCELJZrCXPfBVfoupLzCkLuDkGroBy6XeFEhfx8SfrU6UnezcmBrQwSBq6uZIT35YVX3Lqwihr/Di2VbHAottALQAcSDhO+vjxzbbec/H9msfKGl+k/L4ZW2Goq4YUYoQQoqAIm0JEuNSYJcCa4/WSpvExgMRlxjRcB5kCLCkfm/FNaRYDzduy4rO2Nf/OVGC0i227J8fwxrh4VcpqfEOxmXR9ugEFGCGE1KEIm2qm+c3K3XZntx2+2/Fqn26fc29dU0IIIVMDn44khBBCCCkAijBCCCGEkAKgCCOEEEIIKQCKMEIIIYSQAqAII4QQQnoMdpyYHVCETTmyqzYAyhjTvD2Oai9j0a5HNn7Nj5cNXztJvGVTNz+wupH7VI1v2tZqqui1fAjpNeL/Rtj+a+ZDETZFyJir6JyygGvsDyWsX6RGc9fsf8GuCA06c3wMop6AAKpNrXiS45Wwq0lgwpeROOwUkfhC3ZvLdPh2RLCpUDXtFxqNC3OLCmE5dny/btBr+RAy3Yl/rkWfseB/XmYy9AmbAvTkXfUlAqhJd6Ck2hJN1PId1oUQqseilKk9EIHGtjCBOnAo4Frb4zgCGPBErvGqNvqUQEMLpZoEnJjLfb3NjgxNaRvF2oSvekx6jrkDfVo+0fdo/F7Eft88vL428VZStsaq9Ryy2g2JhtZFaegWVO20e9LnmZW+ieFtJ4i6YiE/H4ovQpJJ+1xr2WbQRoxMLwqvhG3YsAFLly5Ff38/li1bhi1btqTGjo6O4rzzzsNLX/pSOI6DNWvWTF2ilsSX4XwJVILWJtKuo8RYn2f2L0pXxVr6ACJ9ktP9GGX4r1cA6PcE5payBVj8Q6EaNAqw+NjVsDoWnS9U5auS0IC8JoFDvl0bpsTckP5BlbTdEYDjiAbBI4Q6f1vzf9NqXtr4jlA9N92mfGzRYizrvTBVH9T6WHn5EELSSfv8ao4hM4tCRdimTZuwZs0aXHHFFdi2bRtWrlyJ1atXY+fOnYnxExMTOOqoo3DFFVfgla985RRna081UGIkS3QIIVByBQZKZmMKIeAIUZ/ckD/hSqgXut8TmFcWKLv5AiCA6m1YNegPqEVmxZeY8PNb91QDdW1slid1Q2yTPXSMQH61SV1P4zTqx7AQY7rq1Qnx1Th2o/iZavHV6/kQ0uvYfK5pKMRmFoWKsOuvvx4XXnghLrroIoyMjGD9+vVYtGgRbrjhhsT44447Dp///Ofxrne9C0NDQ0bHmJiYwPj4eMOfqcJmuautZSmLCU4IGImvOFlLn81ITL7C1Unq1yf/fKeiLZEjOie+WsfvLbHTa/kQQuwoct6cbRR2T1ilUsHWrVtx+eWXN2xftWoVHnjggY4d57rrrsM111zTsfEIIYSQmUzavDn29OOoJt2bkoDneSj1lTE++lSHs5tZFCbCxsbG4Ps+FixY0LB9wYIFePbZZzt2nHXr1mHt2rXRz+Pj41i0aFHHxieEEEJmEmnz5kN3rG9rvIGBORgeHu5QdjOLwp+ObF6iyXryrB36+vrQ19fXsfEIIYSQmUzavDmy+gIMLlySu//+sVE8fNdG3HbbbRgZGcHw8DAWL17cjVSnPYWJsOHhYbiu21L1eu6551qqY4QQQggplqNPXoH5J56aG7d752N4+K6NGBkZwemnn979xKYxhd2YXy6XsWzZMmzevLlh++bNm3HmmWcWlFVnUMaegAuzCyylhB+op+dMn9QT4dimNUNHCEz4Er7hU4mOAEq2+VjEepZPCSbZH+ShTQ5z49p1QbTYT5vK0nBxckgZe6KM15NMc9r5XCMzi0KXI9euXYvzzz8fy5cvxxlnnIGNGzdi586duOSSSwCodeldu3bh1ltvjfZ58MEHAQD79u3Db37zGzz44IMol8t42cteVsQptNBg0ikAEYox7dfVjB9I1MLHEJUPmIQj1JOGaRNM3YhTOaUKpD/J6IZPRWpqUuXkORJOlnVD+LXkCARS5Wgy37mOyDQqLTkCXkyZCiGsRJAjso1K42am2mRWymSvqnYNW6Oc27G2iP7i04M2xJ3Eo22xb3gtyXQm73MtDt/qM4tCRdi5556L559/Htdeey1GR0dxyimn4O6778aSJWrNeXR0tMUz7LTTTou+37p1K77+9a9jyZIleOqpp6Yy9RaSJnQR/iVjzvJ++LtAStT81n90Wlh5ofjxg8bx6pONqMdDwoVocNRXlSwRiaJ41UlCeXUJSJScZIuGBmNTKCHnBzLRtLU5Xh8/XolyBVByQ3+zNmbMJAd82fSzjkkaPy5+tHXtZKook7lvke7X5iSJr5YYpAttQnqZvM+15t8l7UOmN4XfmH/ppZfi0ksvTfzdLbfc0rKt282U2yEIlx/TiP+j8QQwUUsXM/EdBOq9HWXm//ZF9MWRgOcKeE69wpQmGCSUyWrZVcuVaQ9F6G2OAEpQBq5ZRGNICZEhBpvjzQ1QYyeAxuuSJY6kxTGSj9vZTz9WcrIxrQxE8eFfvJZkOtL8uZb2n0wysyhchE13ZI4Ai6N7ChrarERVrmwBFouH6lvoOfEqWTbKzd0sXvWENJ8WVc9LGd0rZjK+jUgyFV+doGtGq+CHKyGkTrgYwsrXLIEibIrpeh2v1/7BzoBPkG4LPEIIicOPnNlD4Q28CSGEEEJmIxRhhBBCCCEFQBFGCCGEEFIAFGGEEEIIIQVAEUYIIYb0oEMOIWQaQxE21Ujt6G72aR6ZVVrEK9uMzse347Flk7/t+DLyCTOztuhFjzmA7XemA/X3Gl8rQkjnoAibJEIIOCL/kWItAKqBRMUPwt536eJH/64mJQ5UA9U2yEAsCSBsMSSMJncJYMKvu/1n5aPHd7OHbCCAcufXo+aNb4oO9yVQC5NPuz42onSqkYhfmyIz6T10Cyrj+C7loV8X3bNSb+PrRQiZLPQJ6wBCiLDdRGvrIu0S70vgQMWHH4kHCV+GjaxjcfH4iVoQjVcNe0yWXRG2QGp1n1diUG3T+0VtIyUSZykdX5OA70t4Dlry0bvHqwFeeIy0npUN1wBKiDlQ48dzb1d8NffirEn1PwpHTG78ZqbKI0y/PPFrTBp7gWY2mUDnr1layyT9c7xHKSGEtANFWAcRoi6QgtgH+IFKgEpKp+haICEg4WoxBuBQ1Y+aesfRVSs3kFEfRqBRfDXjS9Ww22mqKqT1V6wGgCMkvNiv05pcO0KNLWEmxgKoNkmuAFwktzBKI96QO+1YQZirIwBnmoivOPHJHeAEH0fEmup1u51L/Lrn9aykcCaETAaKsC6gm3DvnfCNWhRJAFU/gB8gqpRl4UtA+hJzSmbthiSUONFVsbz4QKr+kK7IT8a0UhFHn6MT9pY0IYD58o8Wje1M0L3gjs8eiMk099Zr2NZB4lVfk1i2niKEtAtFWJcQAsY9IjUmAqzxGHaf/N0UGLFCxbSlFwQYyYcvEyFkpkARRgghhJBcxp5+HFWD6sK+53YCALZv354ZNzw8jMWLF3ckt+mKkL362FiXGB8fx9DQEPbs2YPBwcGuHSeQErsP+sbxUkpUzMPhCGBu2fw5RQHAc81LCAKxm/oNML1JX+MKdSO9aVXDt1juBMKxLcYHeqsSxiWu4ki7BzINvlZkpqPnTTvy10cGBubg0Ue3z2ohxkoYIYQQQnIZWX0BBhcuMYotzTkMA0NHpv5+fPQp/ODmazA2NkYRRgghhBCSxdEnr8D8E08tOo0ZBUVYF5BSeXrNKTnwJVCpBZlF2UBKHKgEmPDVMl2fJ+AYPMG4d8KH5wB9npMb71jY8gqg7hcGA8PX0POsYYycfHwJ+FDGr3nLkoGsP7Sgw0yWf2T0l+FykYEnRNLqfbeWMaejRUXzU7LTcaku4SHMXKbja0UIKR6KsA6ixUg1vDlKCAEXEgMlB9VAotqkVKSUmKhJHKjK6APfl8CBqkTZBUpO/gRfC4BaJUCfJ1ByRKKBq2MxObiiycoitJFIsqDQ55s0WSWZySahxZiH1jylVE+YxseXsW+Shheoi0dhEA/E2h4Zdj1I294JMRYXmdPpbs00ixJrIdxDOCnve40WmNPpdSKE9BYUYR0iCG+sb/481hNzyVHu+BVfwg8F2f5KkGpLUfElqj7Q5ylRlDfBT9QkKkKi33MiF37XacwhC0cgMmiNx2uB4jgiMqGVUkbGqFnYiJNaaCqrc/BzbvTXFTo9ETYfofnn5vhmsnI078PZvhiLT+gieh2sh5ly0lzlG2Ji30yHc2rOsbky1vJemwbnRAjpTdg7sgNUfImJBAEWR7c26nMFDlQCjE+kCzCNBHCo1toKKTVeAgerAQRk9CSkiSAoOUDJSY9vEGWQqEm7J8iMRQyUSWzV8klL7Smrq2B5x4j2E62Vw5b4tpqW2+0Tz2A6Tei6SmR6tjYmqL2CEDFRjMZK5XR6rQghvQlF2CRJuh8qDd0T8qCFi6sjANdiPdFzBLywBGZUAQOi+8ny4oUQCLrWJrk9RNPXPJyoytRF41qLsaNKXm9d1q4xXc8znvd0PQdCSO/B5Ugy6+glPzAyfeDbhhDSaVgJI4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkAKgCCOE9CzTzdKCEEJsoAjrADYX0YFEyWKHQAJBII29p/xAmcGaxSvTVSnN4qWUVu77U4EEzP0pEHpbWZqvtsNk9u0U6lzr3/cC8Zzy4pK+J4SQmQRF2CQRQkQthrLQQue3BwPsryjHfFPxc6AmUQnMxFLZFaj5QSTEslrtaEEy4Yfth3LiAcC3cVENsbGEcMM/JnvoHpeuhQgTBt0HJiug9P6mr2+n0UJHG6kGXRJiulOB6eU37fup8wxiLYNMxRshhEwn6BPWAYQQ8ATgCtW4u9bwv3jVQ3FfJcDY/hpqgd4OVHzVWshFersbva0WqD9lF/AS4kuOEmB6WyCBwJdwHQFX1PNIEwW1QKoejinxfryJdngME4FhKsAcNLYUcvU5pMR7YU9MPb7OOc3J38SkNX4+nRRP9T6auqNldxpbx1setfT5DI8po9ewM8eMxsnosQhkn6/OO60FUnO7IDbLJoTMFCjCOogQAiUXcGN9JCu+xG/2V3GwmjxF+YESGp7T7MqdPMtUfKAG1VNSQImLPlekuur7gUQQ1NsYZSEBVAMJX8qo/2QgG0Vl8/mmiRVT8SUQCrCEcEeolkQSdTGmG4ynCVYHsqE9TlSt6XL1K59QOIc/dVJExEVJVjupbooZfZ2bG17bis28HpQGfdYJIWTaQBHWBRwhUHIkHhubiCpfWUiEVS7DhttBGH94vzATGABqvoTnmmSvJvKKL40mz+aqmI340iIye/yYUAPg5Oyge3TKjOpiUQiIrlVwrHp5ojuVOOgx26i22eY/XZqBE0JIFhRhXcREgMWxFQxOD81Ctrnb3EukxreN751rA3RP9PQis+U8CSFkslCEEUIIISSXsacfRzXt/hRL9j23EwCwffv2jozXCwwPD2Px4sVW+wjZC8/STyHj4+MYGhrCnj17MDg42LXj+IHEz56bMI4XAPosvCtKDnDEgOH6Yji+yX1hDft0saTRfCN+fi5m93a1S7f/GcQfIug0zfdhmebTK7ST/2yqLBJSNHre7Dyx+xdmAAMDc/Doo9uthBgrYYQQQgjJZWT1BRhcuKRj45XmHIaBoSM7Nl6RjI8+hR/cfA3GxsYowqYrFV8ZuZpWTAIprapDNk/DyfDu525Xnsxz7258t5nON5N32taCEDI9OfrkFZh/4qlFpzGjoAjrAlVf4jf7a+gvOQgCiWogM40mD9UC/HK8hvGJAIeVHSw9oox55fSlSQFl03CgKuEKZVdhcpO+H7p3KouH9LhAhk+rSUBAws0RhgLKtwtQT276GecaGZnqnwOZuVQnpXrOUY/pQaZaVMTHb/7ZNL6bSEhAhj5hHRY0jjBf1rOxqIiPqe0huiHG2smfEEKmOxRhHSQIHfF3H/SjycQRQJ/nwA+US34cP5B4dl8Nv97vR9v2VQL89NlDWDDXxeLDyyg13cdVdpSnWDSGVGKs5MgGs9Y4daPQ+j5C6vuU6nFStgoobZ/hiGSxpE1T9YTuhOP6CUarSYIngBJ8LlqreoGULfnUAoka1D1xzflkCaq6YWp+rAnaIy3LK61pD9SNM9DRqlh8nCwx03y4rOOnjRH36uqKxQXShZg+Js1aCSEzBYqwDiClxL6KxG8O1FptKcLZQokxoUSEL7H7YIBfjlcTRQ8A/Hq/j98cOIglh5ewYJ6HsisyfcSqgTJa7XO18WvLlNtyHF+GfatkvcVNGro65joSjlCu+vFanT6cniQ9R8X7UompPPR10GLMz6mKVAMVV3LNKyOdFF76Z5v4eKbdEDMNZr9oNU1tjkkizbW+JS4WNNn84++d+MGbzWWb4wkhZLpDETZJpJT41d4a9qc44mvq7XUkHt1dxd5KvolYIIGnX6ji6Hke+gyfbJzwJTzXaThm3jFsCAKgz1N2n2nDR5Mq1PnaHCNrKbOZyITW6Z4JajNZraXiS59F3pPWLGZMq0e2Tylq09dOV6Z0vrqqp7cRQshMgyKsA+QJsDi1AEYCTDOnJDLvD2vGFd01cXWjalx+rBDtNfy2QVktaDnQHYy7AMQaIPbCAwGNbbC6f4xujdsDl5IQQrqC+exOCMmHiqGj8HISQmYyFGGEEEIIIQVAEUYIIYQQUgAUYYQQQgghBUARRgghhBBSABRhk2TvhJ8fRHqGbjvkT6UDPyGEkOkNRVibVHyJx8cO4f/9egIHKkqI5U3AQRCg5Ap4E3vUz36+gNtfkfjtQbPxAeWz5Rsac0UthJq+Zo4faKPR/FgpJZzwq1l84x+T8X2L3OPnaSOWzPNvd/z8841MVJu+Fk2v5EEIIdMRijBLAimxa7yKH+06ELUb2lsJsPtADbUgXRD4vo89v92Ny99/Ed515lL83fvejud2PZU5YbsCOGqui7EDNYzuraIWZIsNAWDAc+A62c/1x/s3TtQCTPgS1dDQy0Q8TPiIckmK19t8CRyoSVT8ULylxiPKx5d1t/w0caLHCCRwqAbsq0hUc/KRUpnGVgL1J5CNY5mSOT6AmlR/ZEZ8w75oNEhNPl/1NQjHjWvsToogIUIHf9N40EKCEEImA0WYBS8c8rH1Vwfx5G8rLS7w1UBi90Ef44dqDZWiWq2GWq2Gr25Yj9cvOwn/tOk2SCnxyA++iyv/6NW4/bPrMHFwP3y/1jDe4f0Ojh3yMLfsQAiB/VWJnXuq2H3QR5AgNvpcgbllB16as35TxajqB6j49V6GvlRu+75MFjN6ctaTbk0Ch/y6w31DFQjAgWqAA9W6W74vgYrfKH7iIssPGsWFbnkUFzNx8VipyahFlARwqCaxvyob8onHVwOVs6Ym0XD+7VS64uPXZGP+vkSCKE8/RlxcxatdaW2E0uInixD5Yqz5vUAIIaQ9KMIseOS5QzhUy57pDtYkxvbXMH5wArVaDQ/c+x9402tOxd9d8zfYv29vQ6xfq2Hz7Tfho//jVPzonjsBKIf8Ywc9/M6A2+J8LwH89lCAp1+o4mCYh+cAc8sOyp6T6dKuhWFcbCVRC2SDOAHqE27S8NVACaAgFG8Tvuqj2dJDMxpfCSgtX5rFVjOBbHTdr/oSVT85PpCqmfmBahD9vhqEVbKEeC3OqhkVzDxqQfq1jIszLTrzqIvC+s9ZuzXHd4q4GGvYjvT3AiGEEDsKF2EbNmzA0qVL0d/fj2XLlmHLli2Z8ffeey+WLVuG/v5+HH/88bjxxhunKFPzvoYSwG9+uxcvf9FheO+5b8FTv3giM37vC8/jX770aRx3uIcF8zyUcvpE+lJV5eaVHQyUWsVaEkEovmoG94tJqPvKBFRboNyeg1Dic29FLT2ajF8LwiXN/HAllvzGSloWtVAYTvhmfSv1Mp9Nq6HmZcfM8cOvpuNL5Iuv5vhuCSMhwvcAzN4LhBBCzClUhG3atAlr1qzBFVdcgW3btmHlypVYvXo1du7cmRi/Y8cOvPGNb8TKlSuxbds2/M3f/A0+8IEP4Jvf/OYUZ25GENg1TrTtN9jt/oSccImG7wVCCOk8hTbwvv7663HhhRfioosuAgCsX78e99xzD2644QZcd911LfE33ngjFi9ejPXr1wMARkZG8OMf/xif/exn8Yd/+IdTmTohhBAyqxh/die8voGi0+hJxkefamu/wkRYpVLB1q1bcfnllzdsX7VqFR544IHEfb7//e9j1apVDdvOOeccfOUrX0G1WkWpVGrZZ2JiAhMTE9HP4+PjHcieEEIImZmkzZtbb/vbolKaFgwMzMHw8LDVPoWJsLGxMfi+jwULFjRsX7BgAZ599tnEfZ599tnE+FqthrGxMSxcuLBln+uuuw7XXHNN5xInhBBCZjBp8+a9996LefPmFZDR9GB4eBiLFy+22qfQ5Uig9b4mKWXmvU5J8UnbNevWrcPatWujn8fHx7Fo0aJ20yWEEEJmNGnz5qmnnorBwcECM5t5FCbChoeH4bpuS9Xrueeea6l2aY4++ujEeM/zcOSRRybu09fXh76+vo7kXHYFKoaPSPb1D2De4BAOHtgPv1bLjd+/dxwThw6ir6/f6C5obZZqenO+7Y3Vto4H1vdtS0DkmMq2HMAiKdv8pQQkzK9nO9i8XvZjq6+8gZ4QMlk6OW+SbAp7OrJcLmPZsmXYvHlzw/bNmzfjzDPPTNznjDPOaIn/zne+g+XLlyfeD9ZpTj26H0fNcY1ih+b1Y8t//wj/401vAgC4bvJ+elJ+8dIlOGzfL3H4gNn4A56AIwRMdUzJERjqc5DjftEQX3bMxVXJUR5n5vECfa75+H2uOmdTPEfkWn3EEUJYCSRP2P/j6bZAogAjhJDphZAFdhzetGkTzj//fNx4440444wzsHHjRnzpS1/Cz372MyxZsgTr1q3Drl27cOuttwJQFhWnnHIKLr74Yrz3ve/F97//fVxyySW4/fbbjZ+OHB8fx9DQEPbs2dN2WXV8wsfPn69gf7XVgsIVwHG/U8bCeV40qf/7v/87LrvsMjz++OMNsY7j4IgjjsBnP/tZnH/++XAcB1JKPH9QjT+RUHUruwInHFHG8BwXQghIKSNfrKQXUgAYKAl4oVqTUuJQTWJfJUiMdwVwWJ+LsluPrwZIrQA6Qrn1u03jp5naeg4wp+Q0xE/46f5ingD6SyLyQgukxMFqkBpfcoA5ZSeKl1KZz6YVMF2hrqmIxWd5i9XNSuv5ZPmduUL9qY+fXaXTOkoLKtt4QgjpNJ2YN0kyhd4Tdu655+L555/Htddei9HRUZxyyim4++67sWTJEgDA6Ohog2fY0qVLcffdd+ODH/wgvvjFL+JFL3oRvvCFL0y5PcVgn4vTFvbj1/tq2PFCJXKHXzjPw5LDyy0VmLPPPhsPP/wwNmzYgCuvvBL79u2D53n44Ac/iCuvvLLhTS2EwPAcD0f0u3hmvIqnX6gqM04Aiw8vYdFgqaE3pBACJVeJm2Yx0+cKlN3G++WEEBgoCfR5AvsrQeS8LwDMKzvo90RLfDkcv1KTUesfASVePCdlfFc512udKqDEUSkhvt8TKDlKuGmx5Aig36uLR40jBOaWXfQFEgcqQRTvCiXumts2CaHO1W/qBOAAKHuixehWCAFXJIsxR6ClWuYIlXsANHQJEEDLuarxEamqZnGV1ArINp4QQsj0odBKWBF0WtHXAonn9tUw2O9gXjl/KfE3v/kNvv71r2P16tV4yUtekhs/UQvwm/0+hue66PfyF8ACqdr6lFwYOenrNkX9CYIkCT9Q4qRZfKVR9SUCKRuqTXn5BDJZwDSjq3SQEiWD8XXbJqCxOpUVrwUwYBYfSO0yn3+u8X95JmLKNp4QQjoBK2HdgyKMEEIIIalw3uwehfeOJIQQQgiZjVCEEUIIIYQUAEUYIYQQQkgBUIQRQgghhBQARRghhBBCSAFQhBFCCCGEFABFGCGEEEJIAVCEEUIIIYQUAEUYIYQQQkgBUIQRQgghhBRAoQ28i0B3aRofHy84E0IIIWTqOOyww4x6+JKpY9aJsL179wIAFi1aVHAmhBBCyNTB3o+9x6xr4B0EAX71q1917H8E4+PjWLRoEZ555plZ++bmNeA1AHgNAF4DgNcA6N1r0O68J6XE3r17WUnrArOuEuY4Do499tiOjzs4ONhT/9iKgNeA1wDgNQB4DQBeA2DmXAMhxIw4j16EN+YTQgghhBQARRghhBBCSAFQhE2Svr4+XH311ejr6ys6lcLgNeA1AHgNAF4DgNcA4DUg5sy6G/MJIYQQQnoBVsIIIYQQQgqAIowQQgghpAAowgghhBBCCoAijBBCCCGkACjCDNiwYQOWLl2K/v5+LFu2DFu2bMmMv/fee7Fs2TL09/fj+OOPx4033jhFmXYPm2tw55134g1veAOOOuooDA4O4owzzsA999wzhdl2B9v3geb++++H53k49dRTu5vgFGB7DSYmJnDFFVdgyZIl6Ovrw4tf/GLcfPPNU5Rtd7C9Bl/72tfwyle+EnPmzMHChQvxnve8B88///wUZdt5vve97+HNb34zXvSiF0EIgX/6p3/K3WemfSbaXoOZ+plIOoAkmfzv//2/ZalUkl/60pfkI488Iv/qr/5Kzp07Vz799NOJ8U8++aScM2eO/Ku/+iv5yCOPyC996UuyVCrJb3zjG1OceeewvQZ/9Vd/JT/96U/LH/7wh/Lxxx+X69atk6VSSf7kJz+Z4sw7h+010Lzwwgvy+OOPl6tWrZKvfOUrpybZLtHONXjLW94iX/WqV8nNmzfLHTt2yB/84Afy/vvvn8KsO4vtNdiyZYt0HEd+/vOfl08++aTcsmWLPPnkk+Xb3va2Kc68c9x9993yiiuukN/85jclAPmtb30rM34mfibaXoOZ+JlIOgNFWA4rVqyQl1xyScO2k046SV5++eWJ8R/96EflSSed1LDt4osvlq9+9au7lmO3sb0GSbzsZS+T11xzTadTmzLavQbnnnuuvPLKK+XVV1897UWY7TX4t3/7Nzk0NCSff/75qUhvSrC9Bn/3d38njz/++IZtX/jCF+Sxxx7btRynEhMBMhM/E+OYXIMkpvtnIukMXI7MoFKpYOvWrVi1alXD9lWrVuGBBx5I3Of73/9+S/w555yDH//4x6hWq13LtVu0cw2aCYIAe/fuxRFHHNGNFLtOu9fgq1/9Kn7xi1/g6quv7naKXaeda3DXXXdh+fLl+MxnPoNjjjkGL3nJS/DhD38YBw8enIqUO0471+DMM8/EL3/5S9x9992QUuLXv/41vvGNb+BNb3rTVKTcE8y0z8ROMN0/E0nnmHUNvG0YGxuD7/tYsGBBw/YFCxbg2WefTdzn2WefTYyv1WoYGxvDwoULu5ZvN2jnGjTzuc99Dvv378c73vGObqTYddq5Bk888QQuv/xybNmyBZ43/f+ZtXMNnnzySdx3333o7+/Ht771LYyNjeHSSy/F7t27p+V9Ye1cgzPPPBNf+9rXcO655+LQoUOo1Wp4y1vegn/4h3+YipR7gpn2mdgJpvtnIukcrIQZIIRo+FlK2bItLz5p+3TC9hpobr/9dnz84x/Hpk2bMH/+/G6lNyWYXgPf93HeeefhmmuuwUte8pKpSm9KsHkfBEEAIQS+9rWvYcWKFXjjG9+I66+/Hrfccsu0rYYBdtfgkUcewQc+8AF87GMfw9atW/Htb38bO3bswCWXXDIVqfYMM/EzsV1m0mcimTzT/7/oXWR4eBiu67b8L/e5555r+Z+d5uijj06M9zwPRx55ZNdy7RbtXAPNpk2bcOGFF+KOO+7A2Wef3c00u4rtNdi7dy9+/OMfY9u2bXj/+98PQAkSKSU8z8N3vvMdvO51r5uS3DtFO++DhQsX4phjjsHQ0FC0bWRkBFJK/PKXv8SJJ57Y1Zw7TTvX4LrrrsNrXvMafOQjHwEAvOIVr8DcuXOxcuVKfPKTn5wVVaCZ9pk4GWbKZyLpHKyEZVAul7Fs2TJs3ry5YfvmzZtx5plnJu5zxhlntMR/5zvfwfLly1EqlbqWa7do5xoA6n97F1xwAb7+9a9P+/tfbK/B4OAgHnroITz44IPRn0suuQQvfelL8eCDD+JVr3rVVKXeMdp5H7zmNa/Br371K+zbty/a9vjjj8NxHBx77LFdzbcbtHMNDhw4AMdp/Jh1XRdAvRo005lpn4ntMpM+E0kHKeiBgGmDfiT9K1/5inzkkUfkmjVr5Ny5c+VTTz0lpZTy8ssvl+eff34Urx/H/uAHPygfeeQR+ZWvfGXaP45tew2+/vWvS8/z5Be/+EU5Ojoa/XnhhReKOoVJY3sNmpkJT0faXoO9e/fKY489Vv7RH/2R/NnPfibvvfdeeeKJJ8qLLrqoqFOYNLbX4Ktf/ar0PE9u2LBB/uIXv5D33XefXL58uVyxYkVRpzBp9u7dK7dt2ya3bdsmAcjrr79ebtu2LbLpmA2fibbXYCZ+JpLOQBFmwBe/+EW5ZMkSWS6X5emnny7vvffe6Hfvfve75VlnndUQ/93vfleedtppslwuy+OOO07ecMMNU5xx57G5BmeddZYE0PLn3e9+99Qn3kFs3wdxZoIIk9L+Gmzfvl2effbZcmBgQB577LFy7dq18sCBA1OcdWexvQZf+MIX5Mte9jI5MDAgFy5cKP/sz/5M/vKXv5zirDvHf/3Xf2X++54Nn4m212CmfiaSySOknCU1cUIIIYSQHoL3hBFCCCGEFABFGCGEEEJIAVCEEUIIIYQUAEUYIYQQQkgBUIQRQgghhBQARRghhBBCSAFQhBFCCCGEFABFGCGEEEJIAVCEEUIIIYQUAEUYISQRIUTmnwsuuKCw3I477jisX7++sOMTQkgn8IpOgBDSm4yOjkbfb9q0CR/72Mfw2GOPRdsGBgasxqtUKiiXyx3LjxBCpjushBFCEjn66KOjP0NDQxBCRD+XSiVccsklOPbYYzFnzhy8/OUvx+23396w/+///u/j/e9/P9auXYvh4WG84Q1vAADcddddOPHEEzEwMIDXvva1+Md//EcIIfDCCy9E+z7wwAP4vd/7PQwMDGDRokX4wAc+gP3790fjPv300/jgBz8YVeUIIWQ6QhFGCLHm0KFDWLZsGf7lX/4FDz/8MP7iL/4C559/Pn7wgx80xP3jP/4jPM/D/fffj5tuuglPPfUU/uiP/ghve9vb8OCDD+Liiy/GFVdc0bDPQw89hHPOOQd/8Ad/gJ/+9KfYtGkT7rvvPrz//e8HANx555049thjce2112J0dLShYkcIIdMJIaWURSdBCOltbrnlFqxZs6ahWtXMm970JoyMjOCzn/0sAFWx2rNnD7Zt2xbFXH755fjXf/1XPPTQQ9G2K6+8Ep/61Kfw29/+Focffjje9a53YWBgADfddFMUc9999+Gss87C/v370d/fj+OOOw5r1qzBmjVrOn6uhBAyVfCeMEKINb7v42//9m+xadMm7Nq1CxMTE5iYmMDcuXMb4pYvX97w82OPPYbf/d3fbdi2YsWKhp+3bt2Kn//85/ja174WbZNSIggC7NixAyMjIx0+G0IIKQaKMEKINZ/73Ofw93//91i/fj1e/vKXY+7cuVizZg0qlUpDXLMok1K23MPVXIwPggAXX3wxPvCBD7Qcd/HixR06A0IIKR6KMEKINVu2bMFb3/pWvPOd7wSghNMTTzyRW6U66aSTcPfddzds+/GPf9zw8+mnn46f/exnOOGEE1LHKZfL8H2/zewJIaQ34I35hBBrTjjhBGzevBkPPPAAtm/fjosvvhjPPvts7n4XX3wxHn30Ufz1X/81Hn/8cfyf//N/cMsttwBAVCH767/+a3z/+9/HZZddhgcffBBPPPEE7rrrLvzlX/5lNM5xxx2H733ve9i1axfGxsa6co6EENJtKMIIIdZcddVVOP3003HOOefg93//93H00UfjbW97W+5+S5cuxTe+8Q3ceeedeMUrXoEbbrghejqyr68PAPCKV7wC9957L5544gmsXLkSp512Gq666iosXLgwGufaa6/FU089hRe/+MU46qijunKOhBDSbfh0JCGkUD71qU/hxhtvxDPPPFN0KoQQMqXwnjBCyJSyYcMG/O7v/i6OPPJI3H///fi7v/u7yAOMEEJmExRhhJAp5YknnsAnP/lJ7N69G4sXL8aHPvQhrFu3rui0CCFkyuFyJCGEEEJIAfDGfEIIIYSQAqAII4QQQggpAIowQgghhJACoAgjhBBCCCkAijBCCCGEkAKgCCOEEEIIKQCKMEIIIYSQAqAII4QQQggpgP8fi6vkAVdrc2IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJNCAYAAAB5m6IGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACezElEQVR4nO39fZxcZX0//r+uc87M7CaQtbAkBEhCENQVRCBpauRLaRXDI/rzrjfSUlEsWBCtjfGmUEQE4UO1SqP9GCBVpHxQPvmg2GJLxXzaitxYrTF8hBJulJtg3AhLNJu73Zk55/r9cZ3rzJmZc3NdszN7ZndfTx+R7Ox1rrnmzGTPa69zzvsSUkoJIiIiIppWTtEDICIiIpqLGMKIiIiICsAQRkRERFQAhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqICeEUPYLZ7+x+9E6Mv7E783uIjDsM3//dt0zwiIiIi6gcMYT02+sJuHHvOFYnfe2bzp6Z5NERERNQveDqSiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBeGE+dYR3fRIREU0NQxhlSgtbP33qaZx12c2J2/CuTyIionwMYZQprcTG9qvfVcBoiIiIZg+GMOq6nz7xBF7z+jcmfo+nKomIiBSGMMq8vuunTz2NYy37q0nBArVEREQ5GMIos6o/TzsSERH1BktUEBERERWAM2E0rXi9GBERkcIQNkd0+7qvTvF6MSIiIoUhbI6YCdd9pc2ScYaMiIhmI4Yw6htps2ScISMiotmIIaxAvD6KiIho7mIIKxCvjyIiIpq7WKKCiIiIqACcCZtF+uUOSCIiIsrHENanOrlebCbcAUlEREQKQ1ifyrpe7P9+6rzEgMbZLiIiopmDIWwGSgtonO0iIiKaOXhhPhEREVEBGMKIiIiICsDTkdT3WNSWiIhmI4Yw6nssaktERLMRQxjNaFmzZM89+zSWLFue+D3OoBERUdEYwmhGy5ol2371uziDRkREfYsX5hMREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBeHckzUksAEtEREVjCKM5iQVgiYioaDwdSURERFQAhjAiIiKiAjCEERERERWAIYyIiIioALwwn6hF2p2TvGuSiIi6iSGMqEXanZP/91PnsawFERF1DUMYkSGWtSAiom7iNWFEREREBeBMGFEXsAI/ERHZYggj6gKeqiQiIls8HUlERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBLVBD1GGuIERFREoYwoh5jDTEiIkrC05FEREREBeBMWJe8/Y/eidEXdrc9/tOnnsax0z8cmiHSTlVmnaZM+6zlbUdERP2FIaxLRl/YnXjKafvV7ypgNDRTpJ2qzDpNmfZZy9uOiIj6C09HEhERERWAM2FEfSjrjkqe4iYimh0Ywoj6UNYdlVmnuFkOg4ho5mAII5pFWA6DiGjmYAgjmiM6uROTiIh6hyGMaI7o5E5MIiLqHd4dSURERFQAzoQRzXG8mJ+IqBgMYURzXNbF/P/3U+cxoBER9QhDGBGl6nZAy1py6blnn8aSZcut+iMimskYwoioI50EtJ8+9TTOuuzmxG22X/0ultcgojmFIYyIui4toHW6lmrWdWtpM2hcBJ2I+t2cC2FSSuzdu7fr/dbrNdQO7m9/viBIfLwX3+NzzZ5x8LmaVX2Jo9+yPvF7j376osTv/cdn/gwrz3xD4jZPPfMsfnf9xsTvZW2387lncfSSZcaPA8CRw4fha1/5+8TvEU2nQw89FEKIoodBMUJKKYsexHQaHx/H0NBQ0cMgIiKaVnv27MGCBQuKHgbFzLkQ1u2ZsPHxcSxZsgTPPffcnP1wcx9wHwDcBwD3AcB9APTvPuBMWP+Zc6cjhRA9+UexYMGCvvrHVgTuA+4DgPsA4D4AuA8A7gPKx4r5RERERAVgCCMiIiIqAEPYFFUqFVx55ZWoVCpFD6Uw3AfcBwD3AcB9AHAfANwHZG7OXZhPRERE1A84E0ZERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEB5lwIk1JifHwcLI9GRESUj8fN3plzIWzv3r0YGhrC3r17ix4KERFR3+Nxs3fmXAgjIiIi6gcMYUREREQFYAgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkRERFQAhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqgFf0AKhY8fVYhehFewkJQAAQBhvEF4g1a28+FiIion7CEDZH6fAimx5MDzP27SUCCQSxDTxHpgYrKSWkbO7fQVb75rZS6qCXPB4iIqJ+wxA2B7UGmOhxtIeZxPCV2V6FKT9hg3oACEi4TmOWS8+UyYT2gQSElBAi3t5uPERERP2KIWwOSQtfbe2QHIqy2kOqQJUUvlrb1gPAERIC+eNpBCvd0uAUZfR/DGNERNS/eGH+HGEawDoVGASw5vZ241Gh0C5RMYAREVE/YwijrrANeAJ2s21A80X7Zu3t+iciIppODGFEREREBeA1YURERJTroYcewiGHHJL4veHhYSxdunSaRzTzMYQRERFRrjPPPDP1e4OD8/DYY9sZxCwxhBEREVGuFe+8FIcte3nb4+Ojz+AHN1+FsbExhjBLDGFERESUa8GRS3HY0vYQRp1jCJsDel2eQkqJmq+Krroif4kiKSXq4Zg8R90dkt0e8MO/u5BwcmpPBFKiHqi/l13kticiIioCQ9gsllVdvjv9q9pg9djaRLpWmJew5FC0lFHsMVVFXy1p1BqWZNg2Pn5fqpDlivbgJsPwFe9/0leFYcuO2VqURERE04UhbJbq5eyXDlO1IP0Z6uGSQ65ezgjJSxnp79UCwBW6vaqPHyQ3V1X3JeBICSfs309ZKglQhWEnfBX0vITwRkREVASGsFlmOk49VsNTj7ltocKSKR2kXEfCpDp+AMAPzF+vniUru+kLgxMREU0XFmslK36PQ54QHaxbacHjJ56IiPoED0k053AWjIiI+gFDGBEREVEBGMKIiIiICsAQRkRERFSAwkPYxo0bsXz5cgwMDGDFihW47777MttPTk7i8ssvx7Jly1CpVPDSl74UN9988zSNloiIiKg7Ci1RsXnzZqxbtw4bN27E6aefjptuuglr167Fo48+mrr+1Dve8Q788pe/xJe//GUcf/zxeP7551Gv16d55GRDyplbEkJKdcdmr9oTEdHcVWgIu/7663HBBRfgwgsvBABs2LAB99xzD2644QZcd911be2//e1v495778VTTz2Fww47DABw7LHHTueQ5zQpZVhG1SxYxdsYt4da98imvTTsH1CFW13j8TT/Pa972/ZERDS3FXY6slqtYuvWrVizZk3T42vWrMGDDz6YuM1dd92FlStX4jOf+QyOPvpovOxlL8NHPvIRHDx4MPV5JicnMT4+3vRnNhPCpMypPRkmjKoPTNZVxfz440ntJYDxCR+7D/io+jK3vS+BXfvq+PmeOibq+e0lgJofoFYPonphae0b2wH12FiS2jeFKSD2WtP7tGlPRNTP5tpxs0iFzYSNjY3B930sWrSo6fFFixZh165dids89dRTuP/++zEwMIBvfvObGBsbwyWXXILdu3enXhd23XXX4aqrrur6+PuZDmLdqJ7fCF8Sk/VGpfx6APhSquKnYRshRNT+QE3iQLURjvZMBCi7EodWHDhoniEDgF9PBNgz0Wi/c7yOQ8oOhue7cBPa1wMJP7auUd2XcISE64jEWS4HemHxsJJ/ADhC/WmesVPtW1dkki1/0d1ntRex7+sitJwdI6J+NxePm0Up/ML8pEWY004TBUEAIQS++tWvYtWqVXjjG9+I66+/HrfcckvqbNhll12GPXv2RH+ee+65rr+GfqXDWCfHfR12fAnsqwaYqLcvVSQlUPPRFIaqvsTuAz72xwJY/Hsv6u+F/e+vSfx8vI5fT7S331cN8OyvavjVwaBpPJP15gCmBRKo+WqWTrWXEFCnHx3RHoACqcKYlM2zYlnBNf49HXLT2md9j4ioX83l4+Z0K2wmbHh4GK7rts16Pf/8822zY9rixYtx9NFHY2hoKHpsZGQEUkr8/Oc/xwknnNC2TaVSQaVS6e7gZ5DWGRtTtUCiWg9SF8WO8yVwcDJALZCop626HXOgJjE+WQ8XAc9uKwHsPugDkJjnJSSppPEEEq4r4ADRAt9543dgXklfXYNm1DRqD86CEdEMMdePm9OpsJmwcrmMFStWYMuWLU2Pb9myBa997WsTtzn99NPxi1/8Avv27Ysee+KJJ+A4Do455piejnem6+T4bxLANH2Kz5RJAGttbzurxMxDRET9rNC7I9evX4/zzjsPK1euxOrVq7Fp0ybs2LEDF198MQA1Jbpz507ceuutAIBzzz0Xn/rUp/Ce97wHV111FcbGxvDRj34Uf/qnf4rBwcEiXwoREdGsNvbsE6jV238d3vf8DgDA9u3bp/wcw8PDqSWqZqNCQ9g555yDF198EVdffTVGR0dx0kkn4e6778ayZcsAAKOjo9ixY0fU/pBDDsGWLVvw53/+51i5ciUOP/xwvOMd78A111xT1EsgIiKaEx6+Y0PGdwXe+c53Tvk5Bgfn4bHHts+ZICZk3j39s8z4+DiGhoawZ88eLFiwoOjhTBvbOyWrfoCDNfMtJutBVFbCrH9pdTryJQMO5peE8XVbZVfAFebXeTkWbTuh78wkIppp9HFzZO35WLB4WWKb0rxDMTh0+NSeZ/QZ/ODmq7B161acdtppU+prpih0JoyIiIhmhiNPXIWFJ5xS9DBmFYawOUBK2VbHKmvWxw9UTTBTfqBmtRxhNuM2UQ/wwgEffgDMLzsY9LJnuFyhSk/s8SUGSwJlN39GrBYANQAlR2bOiOnx1sNbGD0HcDP6Tpo4Nr6rkndIEhFRDEPYLKZqXyWHIhkrsBp/bKIuo+r2eQIpUa1L6Lym+lK1uVpDH6AKrO4+6GN/7DTnvmqAgzXg0IqDstt8s64AUHYBL6wzIaHKW0zWJeaVnejxVnocgEAtAOoAyq6E01aTDvDbxgj4YRhrb59evb/xvC1jicbECvpERNSMIWwW0kv6mBz0dYCo+TKxIGvaNrUAiWFNBxFXNGbgAimxZ7K5In6cL1XF/LIb4NCyC9cRKDlAKaWAii+BvZMBSg4wr+w0haXGX2PhEsCkD7hChn0KBMgusloLVHvXavHuRhiLqvPHZr84C0ZERHEMYbNM0qnHLIGUOFAz3yaQEgdrZmFNCLWc0C/21o1qjlV9YG81wOJD3DDE5J9y3F+VOLQiwufLbu9LIPABzzE7L+hLFaJcx7zmmFqhQC9axOBFRETpGMLmOD9IPnWY1d68ucD+mlnVfe2QsjAKYFrFMwtgmqNK4xuPx7FcEF30+C5LIiKaPQpfO5KIiIhoLmIIIyIiIioAQxgRERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhM1htjWwpJTQRe1N1n2XUmJeSViVeNCLhpuuK68LxpqOJwhkuJKA6aoA4dJGhmU2dDNWxyciojwMYbOMEELVtspJPjokSAgMlAS8nE+CLgJ7sBbAD3RFfom0qmHRkkkSOGK+i0EvP4oJqKWNfrnfx8F6frhSlfAlfjXhZ4Yx/ZiEKgg7UW8Up80LYxLNSxvlhSspm+uuMYwREVEaFmudhfSyORLtlfAb4QsIYu3LnoAXrgXZHCLUF61rSuo1KRu1T1WVeN2+6quljQC1BuPQgIt5vsT4pB89HueJsDCqEAjCZYwO1AIMVVyUXDUOIURjpim2bSBVpf2JusT8sgMXjeWD9HjqvmyapZqsS7WMkafWFmotsKqXHdJ8AEKq15u2EHfTOpy6Xaw9F/AmIqI4hrBZTAjRtIYj0By+WjlCzYr5gVokGwBqgcRExjJFQZg2nDCI1QM1O5Wk5AocNuhioi4xPqnWkXSF+pNUZb7qAy8c8DGvJDBUcdTsWkaKqQUSv57wMeAJzC85sbUrk9v7EvBrarHukhtWu89YbkjPiulJw3iTtCr5egEjzogREVErhrA5QITTMHXDIOA6ah5tfMI3XqJo0lcBzGQsgyU1QzVRb5+BSnKgJuE5EoOG15dN1CUcqHBl0n89CEMYhNFMVYDGPxyT/nUQ4ywYERHF8ZqwuaKDANDLyRshRN+tsWg7nH4bPxERzSycCSMiIqJcY88+gZrpKZUO7Ht+BwBg+/btme2Gh4exdOnSno1jOglpeq/+LDE+Po6hoSHs2bMHCxYsKHo408aXZqcLtQPVAHsm/PyGoVpg1//BmrqQ3tSCiqNORxrOPs3zHOPTkQAwWBLhaVgzXsp1bGl4OpKIZip93Jwe6nKYLIOD8/DYY9tnRRDjTBgRERHlGll7PhYsXtbT5yjNOxSDQ4enfn989Bn84OarMDY2xhBGxYnPXxrNsFjOd9pOkOq6YKazQ51MwNqUeLAfT6MMhml7wKJ9+H/m41f/7VV7IiJbR564CgtPOKXoYcwqDGEzkK7R1Xgg++CrA48nVLmGvLOGVV+dKiy5AkEgkVJxIurbl6qchB6ck3GqTkqJWqBqiOkWeXGs7KoCtLUAcMOq/VnhRwCoBupP2ZUo5bR3hRpDPQAckTf+WJkPCXg57Zu2jf4v/f2yf2/t2hMRUf9gCJtB2g64+nE0CoPGD8Dx+mCaAOAiuV6YH0jsq/qoxS4FEyIW3lr6CsIyE+2PAwIyHE9jQPVAYqIWRKEuKmCK5NflOcC8ktN0rZYvAd8HPCc5/LTe7lv1JWo+UPEAr+WaL0egbaUA/TpdR8KJF1+N1VmLq0tVxNVraZ9Gxv7S/F4l95/+3tp9FoiIqP8whM0AaQfotnbh/8nwKJx0xi86MEsVxgKoMHWgFkTrNja3Vxs4UKHHD1T7eEX8tDHLcDsJYKIWJLbX4xGxbYQA5nkCZc9JPW1ZD2fSPFeFHwcZs1dQtcNcIVHxBFyhlmlyHJF6CtIPgAB6rUyRue8l1CydTW0yHZai196D9nmzbkREVCyGsD6XNuORJjBMbHoWClJi94H8oqw6WAghsb9qPqKaL6N1IPMIAZTC2a/W500iAQQB4LlmQcOX6s9A7FOf178fAI5hNb0gfA6DZTLbnqcX7XWRWCIi6k8MYXOYECok2YSAetoaQCmyridLok8Zml7w3jhVada+7NoVibWdRXL7LPVwFoyIqH+xYj4RERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVgCGM5pw5tmY9ERH1KYawWaST9R7LrjAuqyBlWIzUon9XyPDvZtvULGpaSClR84OwkKnZdhP1INrWpH9fynAdSrP+fQmr9r3WJ8MgIqIErBPW54RoriafpJPwJYSAL4GDNQnPERAyvwZYIIGqL+C56u9+Tvt6AEz6seWOctY1LLkC80oOHGFWpDaQan3IST/AgCdQcdXjaXXABFRx172Tqn0ppb3en7VALXskIDFQEii76RX2o/7DcbvR+5bdPnrOnNc61fZERNR/GMJmCBFbqyZ+ADYNYDoMSKmKsx6sBdGi20IIeEIFh3rLgt26fdVHbM1HNXumljFqXjtSzQIBE75EvWWZIr2UTmsmcQQwv+yg5MYr5SevfQmoVQHqQWM/SAAH6xKTvsQ8z0HJbQ8/rmg8r25f9SUGSg480diPOpxO1mVz/zWJat3HYMlRC3639N+6VqMv1Tib2zZq2Let7Ziz0MGU2xMRUd9hCJtB4us+SkirU00qAElM+s0Bo7l/gZIr4IZrQ0qp1odMWyNSCAHPFQikRK0uAaggVPWT2+txSKlCkYRaoqjiJVex12FPShnNutVl+0LiWiCBfbUAJR+YX3IAqHUl0wKJL4H91QAlR2CgpBrEFxhPar+vGqDsCgx4KlQJiNSwI8PxOkB0WjZtLPH3NvYfo/bx4TJ8ERHNHAxhM5CeVLE5CekHwP6EBbqTOOETHKib9e0IAR8SByzWlKx4DgZLZksIqdkpabwEUi1QgazsmAWSWiDhV9NPG7aq+hIDngj3U74A6h+a2WsN/2vUc+N0NRERzTy8MJ+IiIioAJwJIyIiolxjzz4RXnpSnH3P7wAAbN++venx4eFhLF26tIghTYmQ/XIv/TQZHx/H0NAQ9uzZgwULFhQ9nI6lXbSepuZL49ORgCrlYNP+QC3AgWrKxWMJ5pXMT0cCwGQ9/VqtJAvKDsqu2SlAQN0cYNoWABZUHLiOeXt1apQnDolo5tHHzf4Ru1MtNDg4D489tn3GBTHOhBEREVGukbXnY8HiZUUPA6V5h2Jw6PDo6/HRZ/CDm6/C2NgYQxj1Jwk122M6e9bJBKnrqBsATHQyJ9T+u082mVOXLC6QEgIwvtjeDySEsGvvOObtiYj6zZEnrsLCE04pehizCkPYDOY6Ive0pP6+BFDxwnISfnoYU2UpJKoB4DkqyGSdBtRhbcAFBj0XVV/iQDX71OH8ssAhZXUqMsgoORFXdlX7eiBR85NLbGgDnoCERE0KOH5Y5T8l/Miw5lhYRx+eI1Fysk+TCqg6Y6hLVDyBipvePpASdV+/R+quynJGeyIimjsYwmaopkKkKWGstagpoAJExdNhprl9PZA4WA+a+hECcKH6aO0/Plumx1NygKEBBxN1iYO15rBU8QQWVJym668EGjXDssKYbu8KwPUEakF7MdiSg7B+V6N9AFVV3xOy6XllWPKiNSzWA7Ufyq4u8NpckFXvE22yLlGtSwyWnKawp8KdbJsZnAiLyg56Dkqm60UREdGsxBA2w8VDgqPDTBCf3Ulur8KMCh1VX2KiHmQUZQUQFlgNwkrweeMZ8FToOlBV6y8eWnFQ8Zz2SvOxoqO6/6xZrnjY8xy9rJAKX1kXytclICTgOSoYtga4VrrfsqtCblIA0yTUjQmuCEOgEKhnTAVKqdp7PjDg2V3gT0REswdD2CwRzcAEAUxuUmwEoQB7DTaIiogaXismwkr1h1YEYqsRpa+jGCtSavIUqn81o+Q6hgtyI736f1p7fS2dCb3ckWtYfa8eFpV1MtaXJCKi2YvFWmcZaXnJu03ZB9W/nShcGYYMu/sBhHX/tmzPGNpOamVdr0ZERLMbQxgRERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVoPAQtnHjRixfvhwDAwNYsWIF7rvvvtS23/3ud1VpgpY/jz322DSOeG7ry/v4erwEve0STp0s+URERHNPoSFs8+bNWLduHS6//HJs27YNZ5xxBtauXYsdO3Zkbvf4449jdHQ0+nPCCSdM04j7m5QSIl6kIicLSClRdlThU9P+beUVX23lCrsPpZQwToZSNv8xMRkukWT62usyNi4DE3UJKWVu/zLWr834iYiofxUawq6//npccMEFuPDCCzEyMoINGzZgyZIluOGGGzK3W7hwIY488sjoj+u60zTi/qQP4L4EDtbVf7PCT2v7iudgwBPpWSbsKJCq2Kle79E0DARSwA/y25ddVdx1aEBgXiljPKGSAwx6QNnJruelnzcIlynyc8avH/cDoOoD45MSkz5yw5IAAAn4UoTBLfv1uo5afeBgXUb12lr7j/eh31PZ8n0iIpqZCgth1WoVW7duxZo1a5oeX7NmDR588MHMbU899VQsXrwYr3/96/Ef//EfmW0nJycxPj7e9Gc20AdrKdVMzcFaoGZV4m0QDxsy9qe9veeo4FNOSDMB1PqIrUv96ECQFgT06WLd1pex9rFtXAHMLwkMeE60zYCnwlglIV+7IgxfbuOUtOcIlJ3kD3T8ubMeQzi2pO9N1CX2Vhv7oGndTKjndWKvVwe+pF3jCFWkNd5eLx2l18+MB77W4KUfa7Tl7BgRdc9sPW72o8JC2NjYGHzfx6JFi5oeX7RoEXbt2pW4zeLFi7Fp0yZ84xvfwJ133omXv/zleP3rX4/vfe97qc9z3XXXYWhoKPqzZMmSrr6OoqiDsETVlzhQk5mV76MwBnWwP1BPbi+ECmHzw1moQErUfLXQd9bxPSmIpVWB1+FEhKcdBz2B+eXk9RMdob43VBHRacoBV63P6CT0L4RAyRUoOY1QopcGShOEbeIzZWntAwnsr0nsqwbQ50Bbw1fi6w2Dm4AKX66T3D6Q6vTnZJj0ksJXK91GiOR1LYmIbM3W42Y/KnztyNaDUesCz3Evf/nL8fKXvzz6evXq1Xjuuefw2c9+Fr/927+duM1ll12G9evXR1+Pj4/Pig+UlMDBuvnURyDVuoYmhBBwHYmJqv24TJfg8RyBAc+svesIzCtlh6k4J1xx3GZJJpu29UAFKtd0KSbYLU+kgyCXMyKiIszW42Y/KiyEDQ8Pw3Xdtlmv559/vm12LMtrXvMa3Hbbbanfr1QqqFQqHY+TiIhoLuFxc/oUFsLK5TJWrFiBLVu24O1vf3v0+JYtW/DWt77VuJ9t27Zh8eLFvRgiERERhcaefQI1izMw0+XgizuLHkLHCj0duX79epx33nlYuXIlVq9ejU2bNmHHjh24+OKLAagp0Z07d+LWW28FAGzYsAHHHnssTjzxRFSrVdx22234xje+gW984xtFvgwiIqJZ7+E7NhQ9hFQDA4MYHh4uehjWCg1h55xzDl588UVcffXVGB0dxUknnYS7774by5YtAwCMjo421QyrVqv4yEc+gp07d2JwcBAnnngi/uVf/gVvfOMbi3oJREREc8LI2vOxYPGyoofRZP/YKB65axO+/vU7sHTp0qKHY03IOVbee3x8HENDQ9izZw8WLFhQ9HA6VvclJgNpXJag7geoBvnttANVH/trqvCryQXiDsK6V4aVUwc9gbKr7yzMb++Hr9X0AvqJurQqFKsu5Te3oCzgOsl3aSapuLpkh1n/JUfAEWb7Xt3MAuP3iojIhj5u/u5HNmLhCacUPZwmu3c8ji3Xvgdbt27FaaedVvRwrBV+dyTZkVKFCx/qDkMp1V2AaWFMSlXbqmYYwKSU2F8NcKDWqFHlhPEk7QBfDstCCCFUWYuMshAibO8IVdQ0kCq8JVSoiLgCKHmqmoofSEz6MrV/GT6/EGo7XVg2iyMaz5/X3hGqOKwvAd+XcIREKaXkhH69UTiVgJAIw1X2cwThWBwpU8NY/PcnXd9Mr5jAMEZE1P8YwmaQIAxUrRkhCmOx7+lwVvOl0QyPlBKTdYm91aAt0OlQ4qC5fIjnAJWwuKt+XAhVYNUPVBiKd1VyEBWDjRdx1SUfVBmHRntVg6t5LI5Qs2j1QNXUio9fV8Nvba9nuVrDlf5e/DlV6Yn2FQcEgJKrZqji4UfX9vLCqv3x/eOGBVmbwhLUGB20P7cOW039h8/htoSrtAlsHcbygjMRERWPIWwG0LM7SYfdplDkCgSBRC1QRVxN62rVfIm9k35bRfxWgQSEVIGj4iUXWNWPOEKdgquHs3SVcFmktFAgoWbr3HAGK5z4amuvv/YcCc8RmKwHmPQbazYmCcuGReFKjy/6XmtbNKoYB1KNJb6+ZtJrqAcynJ0ESuFMX1Z7PQ4XgOM0L3+Z1N6P2kujE75pwZmIiPoHQ1ifk1IaXcvVmFmSmLC4hbjmS/zqoG/c3nGAeWU3d8FpPZ6SkHAdJ7MIb/N2KsTok2tZ/UspEUCgbnBhnH7qrDUmk9pXHJhfmwUVhE3bA40AZhyUJCCF8ZrlahPDfU9ERNOr0AW8KZ/tXRNS2h1sfcv7Mtww/Jge1AXs2jvQp9pMApuwqnTfCWERqADzwBb1D8v2lgEsvn4nERH1F4YwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBD2CxjVpq1wfa+OYneFgC1v9mx96tuWe1TmV5INXUTi/YyY3WEbvRPRETThyGsj0mpCnOavklSyqjYqWn7UqzqvYm6LxEYHtTVEkuNorEmYSBpRYDkvtV/K67o6Yc4kKrMhqlJP4CEefDRBXLzmuvw5UvL9uHOZxAjIuo/LNbah3RdLXUwD2tPSbWETdKhVB9g6wEwWQcAAQcSaTVedXtfAn4gMFASKLkSB2tBZt2tAU9gsOQ0CqVmrN8IhOswqgdQDyRKro4zyXXAvHANx0CK6HUD7VXtdf+TdaAuBUqueq5azhIBbqzGll4+KI1e49INlynS70VWey9ckLweqPUeXf29lJnDaFmjcHvdf1Pz2K6SaCy/5ArASWgvZeNrPeYg3JdcyoiIqL8whPWReFFTvyVQiPCgLqVavDvePpDAZL05FAkhwvaNMBaFO9k+4+Q6AvPLDuoBcLAWtK35OK/sNi1TJIQKevFwEg+PrQFHAqj6Eq5Qyw0htpyOA71upGhq70vEZgIbHdZaFiQXQqhQItQ29ZZ9pwJIc/8CarHrKCg2vV7RNB4hRLj+pIzWZozzEqrqq4XAJdxwbPE0pdaYbH+9QCwkxp4kKfz54efAE80BTj93K70wuevo9qyiT0RUNIawPhHNHgXZVyAJAbhSVbr3JVCvB5lrPgoh4ISzVjIMKGkTRkKoWSXPcVD11ezVYMlByU0+4RcPJ34YTvyc8fsS8H2JSjgr5oWzQWlaA13VTz9dKYSAF56OrYYbtS6q3dpezSipoKpnv7LaC6HeKz1T5zrZM0u+lAh8iZLrqDCYU1Ffh1q9cFOeulSzpJ4wa+8HQBAFYSIiKhJDWB8xXXBbL0g9UTPbQKjk0DR7lNd+wBNwDA/Uun/bJYRKOQEmrhbY7B8RLQBu2r6cEwaT+rdY7rFtps9kG5u2Vu15eRgRUV/ghflEREREBeBMGBEREeUae/YJ1Or9M5XueR4O7v5F0cOYEoYwIiIiyvXwHRuKHkKiwcF5GB4eLnoYHWEIIyIiolwja8/HgsXLih4GAGD/2CgeuWsTbrvtNpxxxhlYunRp0UPqCENYHzG9Iw5oXOztGxY3BdSdgqYXzwdSIgiy7y5sGk8HV3sHUtWuMulfl6DIuhO0tT1g/nq9sGyEaXt9z4Lpq/bD2mEmNzvoumQC5hfzB1K3txsPy1QQkakjT1yFhSecUvQwAAC7dzyOR+7ahJGRkRkbwACGsL4iRCOIpWUaXTVdAii5qqREPQBqKekhqhMWllNwoYJbWtiQslFuAlKiDhX20sKYlBJ1X8aqYGUHk3gR1ABh7SrIzMDhCsALi6aWHFWmIm38ArEiqFLCA1Dz0++s9BxgwBVR3a5AyswyGI4AyuHtLLp9XtFXVzTqholAwkspg9FaFFa/ByZhSWdTIXVNtMzmUd0wRzCMEREVhSGsTzQdBKUM61E1woAMi4o2DvgiOtB6jqr7VPUl/GgZHNlWukA/h+tIuFDhLb6kkA5FreqBVIVBHUQFW6WU8FtqjonYf5PKJugiqK30a/JaZsWcWIX7aPxSYsBTVelbw5IbBs1G5XnVvuIJ+IFELdbeEWrJo5IrmgqXCiDqv6kgLFRJDV1BP97eE2jbdyJ8jtayFxIqMDtCwnUaYSxrBQI1y5UdVOP9+1DV9E1mxqIirkK2FZAlIqLeYgjrQ3pZICc84NeDxuxXVvuK58APJCbqQeqSRbo9JNRyP4FUhVlzzqtJqGWB9GmsvJpdAo0w5gg1+xU9dwpVeFTNdunw0to8CpICGPRU/TBfNq+XKUR7e0cAFU8FT1cIlN32Nq39u+EsoxCt/be3d2RjvwjRmIlLE0gg8CVS6uC20YHcdOkh/f47snHqNIsfpmbXkcb10oiIaGoYwvpUY4YEuQGpuX36jErzBuo/gcwPYHFqLUjz9p4ASp6DtPUiW+lrv/JyQCNcSaProHT7iptftT7e3nPMQk88vOnwZXotXS9nnwSa15M0a88ljYiIpgNDWL+zPRbqcvq9ag/TOKX7tzuo9/rYb3vKrZMw0tNQZdm37VAYvoiIpg8r5hMREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBGML6nPVqQJYbdLLcUC/vn+tgONb927xmKWVP2+ttetG/amv/HnfymSAiInsMYX1MhgVAPcPUowu8mrTXB3MR+7vJwTeQEvXAvL1NjSpAFYStBflhQ3/HNhD6snmVgNT+w+e3bV+LLQlltj+besltb7y2aPjctUAvhWS2pR+oAiTMYUREvcc6YX1IHzD1OoKOAEoIA0RG+3qgli0SQsCDKtqa1f5gTWIytvChI5IX1NbtfdmYqfKlCoduSgoSAMqeWqZIVfTPXq8SaASSqq9WCSi7KlC21hmLj0FChJX5s1NDfAmougR8X6qxJYxFrQmpqvFHyxyFlfzRNhb1tS+ByXpjFK5QyyW1tk8ShCsFqGbp7U2KzMb3pd6fvq/eq6zCs3qJIyFEVAeusfxT5lMSEVGHGML6SDxstFa9F+GMmK6gL9ESGFoSjhBCVZ+PLcitD9BVX+JgrT22ROsIhkvXJB3Q4+JhJr7UTclVAap5eZ9wjcWoL9lYqDphSaZAAhN12RRmdGQKEtoLiOYgFmuTFM/UMkyq4n7rzOGk377qQCCByZYwo/uZqAVtAdOXwIGaCm56iaSsAKUDtwjTT9samlnbxir0SyBaPzSuLoG6r9a/bH29Sf23zjTazmgSEVE+hrA+oRfcDnLWHBICKAl1mkmFoCDz1JEQAi7U+pC1QGKyLlNnpDQ/AAKhTlXmLYGkw0zFVQt8lz2RufagXpTbDxrBI3MsYZipuAKOkOEy1slE+D0JtRi5yVoAgQSq4WwjZP4SUTrM6OWJalmLdELtm3ogMa9klmB0IHXDpZvUDJXJ8kfqVGLe660Fqt2AJ4xWD4jPxhIRUXcxhPURm+twBIB6XprSbcOliQ7UbC4At1vMSAig4gmjwKCb2Lxe/VKN1ok0OkHZrJ4TplpVDfc9YLsolGJy6jHOYjhqIXCmKiKiwvHCfCIiIqICcCaMiIiIco09+wRqeddsTJN9z+8oeghdwRBGREREuR6+Y0PRQ2gmBCYnJ4sexZQwhBEREVGukbXnY8HiZUUPAwCwf2wUj9y1CZVKpeihTAlDWB8RwvxidQnAc4W6Iy7vDkYp4QeqFINveMG9vjMv7+5IreSouyJNmuvxOsKmf1UGw+QCdH1JvsndkY3+VYkL0wv0PUdExVzzdHIJvB+oumGmF+h7TnopkSQ1P4AjBFyDC/SD8HW6Apl3vhLR7Hbkiauw8IRTih4GAGD3jsfxyF2bih7GlDGE9QkRJjAnPLinHUwbdcIEXCHheQ78QLbVCdP8QOJgWMfKEY3gk3Va3w0Dj67Yn3VwLznAIWUXJVc0KvAjPfzouy4dp1H6IKt/zwEGS04UZFyoOxmT2sfvh3TCMeQFMVeoQKWo4rI1Pz1cOYiVaxAiHE/6+1V2hSryaikIa0MEAFw3PfzoIqsA4DoCQaCCZNpr1p8BXwK+DuduclkRHTJ1X4FUxXx1AV4iIpoahrA+0lqgM15HS1ecDxLaO2F5CF0xX7WXmKjLplIKUXtIlKMDcaM/p2XmJd5eH7jjs1iHlB0MeE5TsVA92NYw1l7yQkThIeo/XqFeAIOeA0+Hu1jfnqPa1YPY/mmNHaIxA6Wrv8vmb6Okw0e8EqmUqITBtuo3ehVorA7QFECkRNlV7etBvGJ+WLKjtb0lCVWKRAgJz2kpgKv/21IUt+SG723swyKQXOsrgCq34cb6178EJE0KBgCqgVoRwLUso0FERM0YwvpQU5gRKmxkzVzp9p6jZrH2T/qJFfFb27uxcOUkBYzW/oU6NVVxBebHpndat9F1yQTUzIxv+Ho9V/VfcgTKrmj7fviFCh9SouwK1P0gt8BquFkUxjxHnYaL1lMU7c/lCGDAE+GsmwxnivTcWvvYHaFmvdSKA43Tld0KKVKqGTr9HsdDbNJ4XEi4rvrsxCbuUvmysfqByRlNHeBLjuQpSiKiDjGE9TEh1DVfpncECyFQqwfGRVmjA7bFMbTiOjikbHJ+Laxeb3NhFvTpu/yir9HyTuZdA1DhKCtwtvYPxENGfvtybEmjXswSuY7uO7udECoAOy0TfXmsCvSicdqaM2JERPZYrLXP9duxTZ29612dGNHRZewW/ff8FJrZqgEd9y7M+xei+b+9wgBGRNQZhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAENYv7O8EbHX96k1yhFYrK9k07/lBravVxVtNX+OTvZnD28ehZTS+O7UTsZh0398GyIisld4CNu4cSOWL1+OgYEBrFixAvfdd5/Rdg888AA8z8Mpp5zS2wEWpFGFXhVJzQsDur3jCMwrOcZlCRyo/k0FEqgFgQozmQffWL0s8+4RhFX59Z88niNiyw7lcx3AtSipoJZwMm7etMxPL7JJtd5YIilr/6vaYPYRUvVttp0EouWyOglvRERzXaEhbPPmzVi3bh0uv/xybNu2DWeccQbWrl2LHTt2ZG63Z88evOtd78LrX//6aRrp9NIHsyBck9AJg1haUVXdfrIeYLIu4Tqqon0lJ125jv4jUHayi7YKqArygyUHgEA9XNYm7eArw7UJIRrV6rMIqEKtZdcBYguBZx3XBcKxuwIDnsgcv+cA88sOKp6DkitQcs2ihggXufYc8zAZSBgvBG5LB59qPQiXtWreQVGADdvaBjER7vsgJwgLNPZHfC1PBjEiInOFhrDrr78eF1xwAS688EKMjIxgw4YNWLJkCW644YbM7S666CKce+65WL16de5zTE5OYnx8vOlPP9JhRkrZOAjGvi/CEFYS+k1rtK8HwMGabF4rUKhAM7/swGt5lx2hQokTK/wphJpRKjvtH4qyKzCv1D7jpBcCbwQmGa47KNsq2Qu9LmXCa9fLFLUuf6ODROtxXa+DGG/uCIGK56DiNpd7FUItAD5Ycpv6d4RA2TNfXFuFsUbFehN6/UbTWT0bgVSzYvUg9rmJ1tFsZlLgNalNUxCOdSrQHML0eHQYi3+WiWjmmSnHzdmgsBBWrVaxdetWrFmzpunxNWvW4MEHH0zd7itf+Qp+9rOf4corrzR6nuuuuw5DQ0PRnyVLlkxp3L0kZWMGIo0IA5SAmhGZqMnolFASRwgMllwMeCIKX27GskBCCJRcgbKrwtf8kgpIWQdxXwL1oLHoc9ahV8+KuWGorLgiczxo6U8guwK866hZsYorojUus05XOo56rSaEUEGxNdRmkWheJL3b/ACYrEtICLRkpTZJQSsvoDVm1MLwi+wZwSAMnjaV/Ymov8yk4+ZMZx3CjjvuOLz44ottj//617/GcccdZ9zP2NgYfN/HokWLmh5ftGgRdu3albjNk08+iUsvvRRf/epX4Xlmy15edtll2LNnT/TnueeeMx7jdLNdt68emG/jiPyw09o+L3zF5QWAODUrpmbWbA7UeQGs0b8ITzma9S+E3WJJMz1c6IBkve97NyQi6iMz6bg501kv4P3MM8/A9/22xycnJ7Fz507rAbSdAklZDNj3fZx77rm46qqr8LKXvcy4/0qlgkqlYj0uIiKiuSjtuDn27BOo1Yu5zMDzPJQq5ejr8dFnChlHtxmHsLvuuiv6+z333IOhoaHoa9/38W//9m849thjjZ94eHgYruu2zXo9//zzbbNjALB371786Ec/wrZt2/CBD3wAABAEAaSU8DwP3/nOd/C6173O+PmJiIjI3MN3bCh6CE0GB+dheHi46GFMiXEIe9vb3gZAzVy9+93vbvpeqVTCsccei8997nPGT1wul7FixQps2bIFb3/726PHt2zZgre+9a1t7RcsWICHH3646bGNGzfi3//93/H1r38dy5cvN35uIiIisjOy9nwsWLxs2p93/9goHrlrE2677TaMjIxEjw8PD2Pp0qXTPp5uMg5hQaDud1u+fDn+67/+qyvpc/369TjvvPOwcuVKrF69Gps2bcKOHTtw8cUXA1DnpXfu3Ilbb70VjuPgpJNOatp+4cKFGBgYaHuciIiIuuvIE1dh4QmnTPvz7t7xOB65axNGRkZw2mmnTfvz95L1NWFPP/109PeJiQkMDAx0/OTnnHMOXnzxRVx99dUYHR3FSSedhLvvvhvLlqmkPTo6mlszbDZQZR3UnWX6arisa6alVOUoXCf/bkrdHgjbG1zMr8dT9yVK4d2LedywBEVraY00tte26zpUruG2MvaXvPbqOkS17wODwUspo/fJ6LUCcBy9rXl7fbesiVo9gOOIsHRHxt2OCQPIu0DfCd9bafDe6hs0qr5UhW4N+icimquEtCzmEwQBrr32Wtx444345S9/iSeeeALHHXccrrjiChx77LG44IILejXWrhgfH8fQ0BD27NmDBQsWFD2cqM5Xq7Q7Af1Aouo3CqUKIRDI5hphrf0Hsb9ntdc1ylq/5wig7LXX8dLfi9eEjfpP+VQ5olGxvtODc1KdsMR2+nmir5u/r2trtRaGTQuSae2z/gHpkiDxf2ZZYcYN67fF2/sWd8Gq5xRwEoJz1j/1pPdCoFFPTn92dEBPknSHbLwPIpqZ9HHzdz+ysbCZsC3Xvgdbt26ddTNh1iUqrrnmGtxyyy34zGc+g3K5cafCq171KnzpS1/q6uBmMykl6n5yAAPQVLUcAAIpMVGXmAgDGNAcMryWivdSSvgtRVNb2zut7YP2AIZwHBO1sEq7Xk4JQMlRhVYhmutCCahgFv9wqecU8By1pNJUZkd07a20WcDW8gvxoq96uaUgDBOtBXF1UVk3VljWpH3rq3EFUHYb+7hRFgLRjFWcruHWCIyN1+C5wqpIbD2QqMXeK5PCqa1tPKHqxMXHEx9r/O2TSK8PJwHUAkRFZYmIqME6hN16663YtGkT/uRP/gSu26hyefLJJ+Oxxx7r6uBmqyCQxjW+9Kmdg/X0op/xA7wrZNPsV1Z7J2zvG45HV+Z3oAJYdIBuiSDx/j0BeEKg5DqxVt2ZFQlkY5/o159XeDQKUzkFcQFdHT+/vd7GCYNnyVXbJtfiag4zjdUL0oup6q1slk6SUMV8/bQp0hQOpFo1IRYeW8ej66oJmNeH8yVQDdT+JyIixfqasJ07d+L4449vezwIAtRqta4MajaTGafqkgRSomZ4HFXr/mUHsNb2akbJfEDlsAiqaf9NC3n34JRU81C6178eamC5BqTn6u2zx9IIV9K4vT5dbCPptGTqcwAoGU65dTIeBzwtSUQUZz0TduKJJ+K+++5re/yOO+7Aqaee2pVBUeek7P1Bzu60kl01+tnALmzO4OV9bIc9Q18mEVGvWM+EXXnllTjvvPOwc+dOBEGAO++8E48//jhuvfVW/PM//3MvxkhEREQ061jPhL35zW/G5s2bcffdd0MIgU984hPYvn07vvWtb+ENb3hDL8ZIRERENOtYz4QBwNlnn42zzz6722MhIiIimjOsZ8KIiIiIaOqsZ8J+4zd+I7mwoxAYGBjA8ccfj/PPPx/vec97ujJAmvkkeE02dUYXiSUimo2sQ9gnPvEJXHvttVi7di1WrVoFKSX+67/+C9/+9rfx/ve/H08//TTe9773oV6v473vfW8vxjy3xMuzGxyMdMkD04OXsCx6EEgJIRzT4ajn6OFBVMK87EHTXZ2m+1OYLTUUHw96FBw6KbFlE2IkGvvIaBvL8ehCuab9x6v0M4gR0WxkHcLuv/9+XHPNNdEi29pNN92E73znO/jGN76Bk08+GV/4whcYwhIIIeA5MncpmmiJIfVFbDYpeV5Jt/fDNR+dnMKe+mAYyOZaXibjr/vSaD3J1rGZ0AVM01YSSGpvMtemX68frrnjCBiFpQFPrSIw6ZuNRy2pZBZtBRp1zrJebrT/7N6qaIko04KqAs3vVdr7ph8XAnAlYLhrIKHeV9dpf67W/nX7IJBR4ViGMSKabayvCbvnnntw1llntT3++te/Hvfccw8A4I1vfCOeeuqpqY9ulhJCpC5Fo5ePkQAm6gGqvoxNhsnYbEJjxgtQ1eMPVH1M1BvrP9Z92b5kTaz9RF2iZlg51hXAvJKDAc8BwrDnB42lgLJeq8mB0wmX+dELhpddZC7Vo9u7jlrTMu0Z9OsPpKogrxdKrwd62aPk5XRcAZQdwHMcVDwHh5QFvIzxuE5jPDovZfGEWnXAddTr9VK20WOrB+nrg7YSUEV1K+G+9ByBvPq6JSdcpigWwPR/439vHZcQalH1vB8kItbGD5cxSusTaF2yS4Wx1jZERDOddQg77LDD8K1vfavt8W9961s47LDDAAD79+/HoYceOvXRzXKOEG1rPgJALVDrRKYtlAw0B5+JWoADtaCtEr+eedBhQz82WQ8wWZdGp7cEgEHPwWDJaZv90ms46nUZm7YzDF+qSrsKX/H2asZQNK2/mN0+eQ1HGYYvP2Fn6jAW/44DHb6a+3eEwLySg3ml5nUfdRhsbZ+5pqSjw1r7621d/zMao2H2KDkCA55IHL8n2j9rejwdndKNxh7OuqH9B4qI/Wnup/2zCaiZyqTPvVpyqvmUKRHRTGd9OvKKK67A+973PvzHf/wHVq1aBSEEfvjDH+Luu+/GjTfeCADYsmULzjzzzK4PdjbSp3UCX2Ki3h6k0viBRC2Q0YxCFnUgV7NnprMprlBBp/VgntZ/PHCYznzpP1nthRAouepaNClN2qtx1OqBWlTaYH/6gVpuyDUII54jML8EHKzLMHzkLTcEQIYLghu0V7N6EhO+WUjWyq4I92f2vlSBqHFK1vh6MYPBRDOAshFs83rXM5OuMFsCqTEMnpokopnPOoS9973vxStf+Ur8z//5P3HnnXdCSolXvOIVuPfee/Ha174WAPDhD3+46wOd7YRIX6A7jUkAi7NZy1mEi27bMj0wCoMAFueYnOOLSZqdy+7ffDZIiORTyent7V6rvhjdhmezRqRons3rtk665twWEc1FViGsVqvhz/7sz3DFFVfg9ttv79WYiIiIqM+MPfsEavXe/crkeR5KlXLb4+Ojz/TsOYtmFcJKpRK++c1v4oorrujVeIiIiKgPPXzHhsKee3BwHoaHhwt7/l6xPh359re/Hf/4j/+I9evX92I8RERE1IdG1p6PBYuX9aTv/WOjeOSuTbjtttswMjLS9v3h4WEsXbq0J89dJOsQdvzxx+NTn/oUHnzwQaxYsQLz589v+v4HP/jBrg2OiIiI+sORJ67CwhNO6Unfu3c8jkfu2oSRkRGcdtppPXmOfmQdwr70pS/hJS95CbZu3YqtW7c2fU8IwRDWAV0XbMAT8ANVoiKvfQBVqiEIzC7od4SA66m7KvMu0Nd1pmxqg8bvchMGF6FLCdQl4DrS6IJ43cL0DjrHEXAA+H7+XXcCquBoEEi4hhetl10RllnI799Bo8yG6f4c8AQCCVQN3lwBYNKXcIW+CzPvDkz1x/bmBVNRXVlp9/lp3F2b3k7KsLCtxWeNiKhfWYewp59+uhfjmLMC2QhFjhAQjoTnCFR92V73Kwxr+nHd3kWj5lIrgeaDmueoO/vqfnI9prKr6kxpjrA7mPphHVnPSS4hEIUpGd4RGgABpKqintE+Gg+QWgE+Pk497pLnhMEz+RXoYqkyHFBdAk6spEQSEa5lJITaX75MvlNVAPDCshdRcdOUsSdt6wpg0BNhKZLkdo3AKOFLNRZPyMS7MQUaBXDjr8Hm/bWhw5jpTbyx6hNt+16HxXhXeZ81IqJ+Zx3CqDukTF66SJcnqIThQVfMl1Ii6aYUdTDVs2KyqfhoalkEKVEO+6+H/buOKsqqD+qthUdtZzbqgapHFQ9XaTMduqis0xIeovYJ/cfDTNIBGhDR8zgCcFzRVAjUEWgqPht/vQHCWT2o0Je0C+PtXUi4rgpLun9PtBSZjXeSON7k/qWUKDmqqG/Vbx6/DlKtA6xLQIThRM8yurEwGO3f8GsnDKGWFU8Sx9y6tJCUMgq5NmFMyub3PWvTpM8aEdFM0FEI+/nPf4677roLO3bsQLVabfre9ddf35WBzWZpVcE1fSBxBFBxgQP19lmx5g30dmrmJYgeTN4o3n85rK7uOd1fKFmHq7Jr1q9eqqaUM7PRdHA2CIYiFkTchMfT6NUAPJHdXoePsusgiK3jlN4eUeHZvGAS9SElBjwnDGIy3iBxOwmgFqjPT3y5pbbZsXjYRmczYvG6Zt3s37ZtPeCsGBHNLNYh7N/+7d/wlre8BcuXL8fjjz+Ok046Cc888wyklHPqYrpO2cwICKGuC/INL9xpHLCjR3LbO2gU+sw7eOnq7zYHx7w1C1vZFBEVyF74uq19RlhI03T6LqdvPSYZm4VLb2/09E3969PRxkVfoVY9MO0fsKvS39jOdP/Y92+jlwVoiYh6wbok+mWXXYYPf/jDeOSRRzAwMIBvfOMbeO6553DmmWfiD//wD3sxRrLAyuPZTNe0bN3Grr1V8zmDn00iombWIWz79u1497vfDUBVtz148CAOOeQQXH311fj0pz/d9QESERERzUbWIWz+/PmYnJwEABx11FH42c9+Fn1vbGyseyMjIiIimsWMQ9jVV1+N/fv34zWveQ0eeOABAMCb3vQmfPjDH8a1116LP/3TP8VrXvOang2UiIiIaDYxDmFXXXUV9u/fj+uvvx6/9Vu/BQD45Cc/iTe84Q3YvHkzli1bhi9/+cs9GygRERHRbGJ8d6S+q+y4446LHps3bx42btzY/VERERERzXJW14Sx/s7U2ZcAyCs00dLervuoEKzpvWth6VjkL9aj6BISpq+7tQBrHqvX29Sp4evVhVUNBmTSZipse5dQKzKYjquT4UuL/nt9e6TNe0VE1A+s6oS9/vWvh+dlb/LjH/94SgOarfRxQdXmkrlFRvX3hBCYX3Yw6UvUDNYRdB2gBFWo02RNSVVlHMiLM/rAptfuc6JNZOa2DlRBUtMaThKq4rsukJpQEL55/EI9R9JqAvFeZWK6yy/sWZdA4Et4DlKL2U6lyG20jFNGG72HhRDwHBmt02nSd9VXy2C5SK+PFoWWTqu1xvrI7L9HdO8B1FqqnqNXeGDhViLqb1Yh7Oyzz8YhhxzSq7HMSvEQEQ9Wqmp6e+HWeKSJtx/wBEqOxGQ9SAxXap3CRg2siqNmQap1mVjQ1BFAuWWZl6RgqA+geikfLQg3cMKRth7s9CLR0fI7el9Er6l9/PHFmH2opXccJAexeD8CKngGaA+eeQHApHhrAKAaqMDXGmYa4bSzoCFib3ZWD/o9FEKo4Jmy7JXmxd5bX6o/XrhigA4n8ZAy1SWL4lr71+99tyXNa+qVAhxkB2cion5gFcI++tGPYuHChb0ay6wSDw5pBzh9QG0NY2lV4F1HYLDkwA+AiXoQHXg8R0RrBMY5QqDiqQNwNUwnqoo64CYtlh2bCQlrszctGJ4kgA5EEgIiWiQ67cAXBcumcabMoECFMSf8QjfRga117HqtR1+qRcHtD/zZs3pRmBGI3rduSVqfM+sksRACntu8ADzQWHg8aX/WA8APw4n+btrC5p1q3Sfd7h9I/kWlVWtwZhAjon5kHML4Q8yezfJEQkr4hm09FxgUAlW/cZoqs71QMwP6NGJ2+3DsgVouyeQlyLDfrACQ+FwAHIPzlAEayx/lNRdChaSqyc6MsZkxqUtABLInlfF1EDYdviMEhCOjYJL3GvRMkSd6d4pQSjSvb9kDpstV6V8gGMSIqB9Z3x1JvRGfhTJrL+zWWRSiafFqE7bvuE0A0+2t+rdsO1M/sZ18FhgviIhmHuMQ9vTTT+OII47o5ViIiIioT409+wRq2XdBdWzf8zt60m+/Mw5hy5Yt6+U4iIiIqI89fMeG3j6BENGyiHOF1YX5RERENDeNrD0fCxb3ZkJm/9goHrlrEyqVSk/671cMYURERJTryBNXYeEJp/Sk7907Hscjd23qSd/9jCGsh0wKcQKNEhWm7QMpMVFT9cJa64PltS85QNnNb29z2l+VpbC4IB/mxVsBtX+q4e1wJUffhZlSAiMs8SAtLm53hC4OK1GXInczR5jfVBBVcQ+/Tiqv0drepARDXLw707etHn52nJzxdMIJS2CYFpXVnwWbemKmb6+It40KJps9BxFRrxmFsJ/85CfGHZ588skdD2Y2iQq0ZoQrGZaAaC1YnnaAkVKi6suo5pfusxZIVcCzJZwkta8Fqn3FbS7oqdvrWlimPEdE5SNM7ox0hSpLYVISIqmYbS0A6gDKrmyrjRaEY2+qRRYWDU2iAqwq86DaCJQc1U9SCG1vj6goafL4E95zND4T8eEnhTWTMCZi/7UNb1EdtoTxdCK+xJZeGcIR4XuStD9b2kPKsIhx/vhNgqf6N9F4f2RsAwYxIuoHRiHslFNOaauwncb3LQs0zXKtYSwqxJkQMID2Mgy6Sd2XTQVaW/lhgNKFOOuBxGQ9vc7XpC9RC4CKq8JbWvBI4woVwACz8KUr6GtZ26j1CNMPrhLApA+4QqIUrp+kCrTGNY7wSaHWyxiPAFASzRX4PaFm+0wq7JuEiPjMTMtfm8ahv9f6GgTaPytZ7bPo/dZpGItv07Qfw58ZniMQSIkgiC/BlN5eh/TUIsex/+oadfHCtg6yP2tpQZiIaLoZhbCnn346+vu2bdvwkY98BB/96EexevVqAMD3v/99fO5zn8NnPvOZ3oxyFtC/4QtkLzcTtUd4wJIS+2vJSxUlqfkBar7ZATiQwMG6bJsRy1N2RewAlr+dFy4Tb/IcWQffVr4EfB9wnfgcUIKwjpYMl1nKG49+2JHtpx6TtokvYWQSwDTTdkmzXVnbmrZrFRXztdhGz76m/YKmH9OnrIOEJZOS2sdfRxbR8nebWVkdhBnEiKgoRiEsXp7iD//wD/GFL3wBb3zjG6PHTj75ZCxZsgRXXHEF3va2t3V9kLOF6amWqD1gfXrQpn/9HDYBzBV22zgWB0XAfo3BKNwadK+WiTKvnJ40W5PXf68rxYuW/2a162QkNtfqAbGQlbOPVPCybJ+3oGa8PVpObRpuQ0RUJMd2g4cffhjLly9ve3z58uV49NFHuzIoot7hoZeIiPqDdQgbGRnBNddcg4mJieixyclJXHPNNRgZGenq4IiIiIhmK+sSFTfeeCPe/OY3Y8mSJXj1q18NAPh//+//QQiBf/7nf+76AImIiIhmI+sQtmrVKjz99NO47bbb8Nhjj0FKiXPOOQfnnnsu5s+f34sxEhEREc06HRVrnTdvHv7sz/6s22MhIiIimjOsrwkDgP/1v/4X/r//7//DUUcdhWeffRYA8Ld/+7f4p3/6p64OjoiIiGi2sg5hN9xwA9avX4+1a9fiV7/6VVSc9Td+4zewYcOGbo9v1rGpYCClhIC0epNsax7J8HlM6Rpeptt0UnLCimX/QUr19tynMdjIZj9OB6vRSBnWOWv8MdvMrG0nu6bTj4Lx2KP2lk9ERNQl1iHs7/7u7/D3f//3uPzyy+F5jbOZK1euxMMPP2w9gI0bN2L58uUYGBjAihUrcN9996W2vf/++3H66afj8MMPx+DgIF7xilfgb//2b62fswhSH/yFMFp7UB9I6lLAdQRci1pVZbdRzT5PyRFwwmKmpqq+DMNM9gFYoLHMjylHiKjqvwkh7OpCuQb7vlX8NSa93rZlcXosb/jx6vEm4stnVYNGXbq8MGNaR611SSZTjhDRclwm4s2Mw2HTNlbDIyKaMutrwp5++mmceuqpbY9XKhXs37/fqq/Nmzdj3bp12LhxI04//XTcdNNNWLt2LR599FEsXbq0rf38+fPxgQ98ACeffDLmz5+P+++/HxdddBHmz5/ft9eoxQuJRusC6gruaK+wrg8cvlTrJOr2rlAV3P1AtizP00xALc7tCBU4akFyBXq97FDr2pFpfTcKYSIcn14mqVGNPt6XCl/NFdOzCsk29y/guWohcT9lQHrdQdMA1rpMUSeisJVQ9d03LfPfobYldhL2ZXzdAJPRxMNjPIDoAsGeABy0L9Okx5K1iLouohsfm6n4Z0E/hyPTV5po/Wy2jye7QG98GaP4+ImIes16Jmz58uV46KGH2h7/13/9V7zyla+06uv666/HBRdcgAsvvBAjIyPYsGEDlixZghtuuCGx/amnnoo//uM/xoknnohjjz0W73znO3H22Wdnzp4VJX4AClLChxACjiOawkEAtS5iLSF8CCHguU7iLJcI/9favuw60TJDgHrDy65AyXXaDkwq7Im2D0XjoNs+pnogUYslJUcAZVctUdPef3Nl87z+9axY0zqA0OtQtvefxBVqHcipBrBWOsAEKSG3W/TrbX2pInxNrS8rgMG6lbEPZ9bp2Xr4i0D8245QC7Abr4BgMJ64tM+CEAKuA7iOWfvo+WPB2WSsjdPtFoMmIuqQ9UzYRz/6Ubz//e/HxMQEpJT44Q9/iNtvvx3XXXcdvvSlLxn3U61WsXXrVlx66aVNj69ZswYPPvigUR/btm3Dgw8+iGuuuSa1zeTkJCYnJ6Ovx8fHjcc4VaYHZxFOG0xkLLgd54TL7+jTRnknE53wFGX0XAbjEdFC1fnjkWoQKDnqAJ3dd3yj/P71LKDemaYHfxeNANMLPZ74ApAw+5XUJlyfyLfs23TmTgLRwvDq+cx2qO3+MXut4ayrkJytIuqhIo+bc411CHvPe96Der2Oj33sYzhw4ADOPfdcHH300fj85z+PP/qjPzLuZ2xsDL7vY9GiRU2PL1q0CLt27crc9phjjsELL7yAer2OT37yk7jwwgtT21533XW46qqrjMdVFCEsZwyEgLDYwGZ9SD0eWzbb2Pbfyfhn8jHaJJRMJ9v9b99/b9oSkb2ZctycDTqqE/be974X733vezE2NoYgCLBw4cKOB9D6wz3v+g0AuO+++7Bv3z7853/+Jy699FIcf/zx+OM//uPEtpdddhnWr18ffT0+Po4lS5Z0PF4iIqLZLO24OfbsE6jVu3cawPM8lCpl9Ryjz3St35nEOoS97nWvw5133omXvOQlGB4ejh4fHx/H2972Nvz7v/+7UT/Dw8NwXbdt1uv5559vmx1rpRcQf9WrXoVf/vKX+OQnP5kawiqVCiqVitGYiIiI5rq04+bDd2zo6fMODs5ryhVzgXUI++53v4tqtdr2+MTEhNUF8uVyGStWrMCWLVvw9re/PXp8y5YteOtb32rcj5Sy6dw1ERERdd/I2vOxYPGyrvS1f2wUj9y1CbfddhtGRkYAqMmZpMoIs5lxCPvJT34S/f3RRx9tmsHyfR/f/va3cfTRR1s9+fr163Heeedh5cqVWL16NTZt2oQdO3bg4osvBqCmRHfu3Ilbb70VAPDFL34RS5cuxSte8QoAqm7YZz/7Wfz5n/+51fPORVLaXdje2XP0z/U60vDC/47bh//tk5fbczafn5l+Y6HtvxXbzw7RTHXkiauw8IRTutLX7h2P45G7NmFkZASnnXZaV/qciYxD2CmnnKIuBhcCr3vd69q+Pzg4iL/7u7+zevJzzjkHL774Iq6++mqMjo7ipJNOwt13341ly1TSHh0dxY4dO6L2QRDgsssuw9NPPw3P8/DSl74Uf/3Xf42LLrrI6nmniyOya2NpqrAkMOgJ+FKi5mdvoyrpqzvWApl/J1pT/S+pKvAb3SUJAZP7NQUAhOUMHClVsdUuHZE6LRWg7xZ0JcLXm96/BKL948jsi+KlTC4DkfVq4zcJmNw1KMISHKaV6G3vjHSFKtIbSIl6Su2taCxhez1uBzk1t6ZQGT8vxHfad7zPvH9XcUH47yyrHlpTnwxjRGRJSMM1Pp599llIKXHcccfhhz/8IY444ojoe+VyGQsXLoTruj0baLeMj49jaGgIe/bswYIFC3r+fPHClW3FNaVZsdbW77X2DzTXOIq3zyq+mnWAaZT+zI5hXlhxP69YaydMAqyp1mKtreGrlYuWg3dO+6z6ZwCairtKmVxbLKt9q7QwmMWJjVF9JsNaZ1LVBGsV32d5xVo7ea90PyYzqM39q89m3o8u/flr7MfG1u39p/eVtA/yCg8ziNFsoo+bv/uRjV2dCdty7XuwdetWzoSZ0LNTQZBVr51axX8YhyWdmpaJaW+vNnAh4boqiNUzpk/idbf0jEWg+88Yl/6+SP1tPzpcJ0YxVzQXmW3dvh4gnK2TubXD2sbWxfAVjUcCQqpgAeTPHvlQ7Z3Y11mi/Yl4gdXmcBrfR45orlSfGHYSjuR5YTCJQON1iIT3zIFEWTQq5TuisZ8SxwBdYT48bRf9zXw8TV/nzH61993Yn0nhqbU8SWP/q/7iM9Qmv4PGZwFh8Fob+4dhjIiyWVfMv+6663DzzTe3PX7zzTfj05/+dFcGNRtFVb2lNFpEWh84PCGNrjvS/TtCWs2Q6Ha56wSGYUxAhOtNIjo9ndV3PTA70EXb9CCAxcdTszh9J6Ha2pzuE0KtFtD4un3/6P2mw5pun7YvdXt96tEmgLlQ4VyPLa1/hO3KTnYAi9ProZqVGA77jJ7TdvYrpb/YZ1Av1yWQ/tls/qXI7pMWWL7WtF+0iIg06xB20003RRfGx5144om48cYbuzKo2cyuKKU6Utn8HO/kZ35emIq1TJyxyWJbsb7Xx6xeT0w0Zpzynylv1qu9vf14RE4Aiz9/6x+z/pNOxGaPpxezQ53sy04Cks02nAkjojzWIWzXrl1YvHhx2+NHHHEERkdHuzIoormi15Xo5x7uTyKaOaxD2JIlS/DAAw+0Pf7AAw/gqKOO6sqgiIiIiGY762KtF154IdatW4darRaVqvi3f/s3fOxjH8OHP/zhrg+QiIiIaDayDmEf+9jHsHv3blxyySVR5fyBgQH85V/+JS677LKuD5CIiIhoNrIOYUIIfPrTn8YVV1yB7du3Y3BwECeccALXZyQiIiKyYB3CtEMOOQS/+Zu/2c2xEM05rUVuqZWuvkZENPsYhbDf+73fwy233IIFCxbg937v9zLb3nnnnV0Z2GwUrTEHs1IMenkiB2a1oXR7+3GZB4EgKnYpw9vvs7cLpKpVZcp033Sq14f0QOqiniZ1tmTTf7OXA1LvkZA2laoa71e3NVaCaFT1N1pXMraCRHaRVtlWw66bYdWmdl3HzxH+HzM2EaUxCmFDQ0PRD8ChoaGeDmi2aiyZIuA4SF26ptG+sXyR46jg4GckMX3QqlsuaKBzVPzQLjJiioA6sMcWcEkvMgrAc+0OniJMYb04RDpoFC41KWjroBFgfMMxBQiDZ1g0NCmcxJcL0m+XSXspJVxhvl6k7rOb4tlFf35FGMhNgli8mnxSEIv30ZqT8vo3qcvV1H920+TnsPksG4yHiOY2oxD2la98JfHvlC9+IIn/0BdCwEH78kVJB2hdXV04sm3B7nhY8y0LSaq+E8YMPaMmUttHB1N9NEXzAWoqa0cK0ThIdyOMCahAEp8RcpEeZnT7ptcj1HJQpvvYl6q9mzBbJNH+XqW1T3w9Qi1MnrZ8kQ6PzWsd5g88r33a2ot5n4UkekZShtNF8dcbBOmzfUmzYlmf5aTX4pusot6C4YuIeqHja8IoW1r4itPhSkIvZSQTD9Dx9q4AHCmj5YDSFl/OYjRjgNjBLaO9DkpuWHHOddoDTKe6EcZcES5cnTCcpDCjwlry2B2hVknUs115JNR74wBR4PazAoZuH77HWfS+EbIxq5cUHhvt9exSe78m7bMWv47GH+5L09Ofui89A2i6zI+ex9IztqYftU4/R8arB0TtO3gSIpqTjELYqaeeavyD6Mc//vGUBjSbmP7AF+HBvWZ4KlGtkSdx0GZRQ9hdGyQ6aF+yPPVo3LewX2LGE2ZhU4cZFdTyxy6EgAs1a2XKNLRF7aX5bIoQalbPbpkhc3qGyvY6NNfiaTqYmLKabZqO8MXgRUSdMAphb3vb26K/T0xMYOPGjXjlK1+J1atXAwD+8z//E//93/+NSy65pCeDJCIiIpptjELYlVdeGf39wgsvxAc/+EF86lOfamvz3HPPdXd0RERE1BfGnn0CNdvrX1IcfHFnV/qZ6YS0vFd7aGgIP/rRj3DCCSc0Pf7kk09i5cqV2LNnT1cH2G3j4+MYGhrCnj17sGDBgp49j+0pkEBKVC2urPcDiYOW/xjsT0eab+A5QMkVPat5ZXvKyvR0ZJzN2GudnEOzoE4xmrfvZa2xvDt5k7gWHzbbchH6fTUuq5JxHV7m8/B0JBGAxnGz2wYGBvH4449h6dKlXe97prC+MH9wcBD3339/Wwi7//77MTAw0LWBERERUf8YWXs+FixeNuV+9o+N4pG7NuHrX79jTgcwoIMQtm7dOrzvfe/D1q1b8ZrXvAaAuibs5ptvxic+8YmuD3Cm6ug3b4vtOik2adV/7DlMZwTid1TONPFSCdTO5rMz1/SimOx09k9k6sgTV2HhCadMuZ/dOx7HI3dtwuLFi6c+qBnOOoRdeumlOO644/D5z38eX/va1wAAIyMjuOWWW/COd7yj6wOciWzzka50X3bVnWj1ILtCfj2QmLS4M9IV6lShIwQCKVHzzU7P6DE4OUUyXUeffhLGd/YJNA7seWMRaJyei9dPSx2PMA+D8dPGUjYKj+Yd8EqOiE7T5Y1H1+2S0rxIrM3xVtUE02Ueun+gdgQgwtfrB9njb37vs2N5p79ImJ6KjLoXgEB63bXE5zHqXzY+PxJwhOy4Nl5a//HTwCJ8dxnGiGaPjuqEveMd72DgSmB7HVjaQaHkqrBUbzngBVJism5eMFQHO9dpHIAEgIrnwA+k8XVNgRpsWxkHRwCe215fPyreifYwIVr+G/970mhaay/pQJYUZuIV8fMrpyc/Z2Ps+Qc8XXDXQXJFfQftESQsp5Y6fpvDqwhrmslY2tBhrxuzVvr9k7IxKi/8bCat3qADSHw8aToJYMb1x9reW/uyHNn9J9c004WUpxrG0vqP6rAZLotFRP3PyW/S7te//jW+9KUv4a/+6q+we/duAKo+2M6dc/NuByntDnzqN+jk1voHqwBQCgufSikxWQ9woGYewEqOwIAnogNX1G/4X0cAFVfY1XNCWB9LSpRcgbLnREEl6YCgDyQ6kOkPW2sASwtmie3DWR8H4exY+McT6uYA3SaLfq/yCo/qArpZ9Ov2nMa+jGbuYuNFy991Edms9qnPiTDwtIwhvl18v9pq3bYx/sZnU6+IoL8fD0h5a2DaBjBHNC70T/usNfpPf2+ztm3995Hevy6snN4mkGr5MJtacrpv0/5NPptE1P+sZ8J+8pOf4KyzzsLQ0BCeeeYZXHjhhTjssMPwzW9+E88++yxuvfXWXoyzb3Vr9qtVdFCQKnwZF34FMODlH1AaYcw82Knt1Exaaz9Z4kk/rbU+NemgeX+mtg9nfPRyRHq35g3H9i4/k+vcmsJJ2DhpXcRGe0Tt9WnWrPZxraE6q/9Oi6DG+0juX7/exlqWpqfvbJmGO9W/2b/FpiWkYmPK6z8ITz+akpYXSfbis0lE/c16Jmz9+vU4//zz8eSTTzbdDbl27Vp873vf6+rgSC3OYvOzWV8vY36qwu7HuGM4Y9DJs8RnxIzah7NBpgGmE3anB0Xs7ybtm2fJTJ/DdhkdGyYzcY3+1TvVq9NirTN9Xe07Nnto3L9lSOr12UIGMKKZzzqE/dd//RcuuuiitsePPvpo7Nq1qyuDIiKaHowyRFQc6xA2MDCA8fHxtscff/xxHHHEEV0ZFBEREdFsZx3C3vrWt+Lqq69GrVYDoKbyd+zYgUsvvRS///u/3/UBEhEREc1G1iHss5/9LF544QUsXLgQBw8exJlnnonjjz8ehx56KK699tpejJGIiIho1rG+O3LBggW4//778e///u/48Y9/jCAIcNppp+Gss87qxfiIiIiIZiWrEFav1zEwMICHHnoIr3vd6/C6172uV+OiOazfbr3X5QyIbPX6s8PPJtHMZnU60vM8LFu2DL5vsWbOLKfLJJiIahOhUcQ0r70DibLFu6QKRcpo+9zxWN53Xw/Ma5YBzXf1575eWFcBsKzRZtk5GrWbTPbldAgCs2KnnZbtiAoPG3w2Zewd68X+af7sFF+Y1HZ/BuGqAvn7Muzfcjx9sEuIaIqsrwn7+Mc/jssuuyyqlE/5QSx+APED2VZUsn15kvDABqAuVWX6wVj1+8yxIFxbsh7E1kRsfgL9dSCBWt7ChzGuAAZLTlQrzJQPRAVhkw4c8fCl/x7ALJTpKvNZbFc0aBXoKuwp1d6j96uDSvD6j3F7J79ivNZJsdbWfZ722dTfk7L1seTPWqcCqf7NmPSl/x3aVMizae8I0bRSQO5YBKK1PNOCrX4skLBKebp/zoIRzWzW14R94QtfwE9/+lMcddRRWLZsGebPn9/0/R//+MddG9xMEi8cmhR+goQZJD0jFi84qrepBc2L97qOwKBQy6FUExbgbq10LqHauULCc5org0sANT8wPkgLqCr5rmlaSCChwpijvwg7FrHvJ20jmps3jSnr+NNaQX+qkwbRun1RRfzOe4zCQuwF6OWpkt6TpPZJ49M6CV9t/SH+2WyuLu+nPEFaGO3GLJZeGD7+TibtDxH7QKU9a+Jnx7i9Wp7KkemLmbeuG9n6+W0Ltk3j16EteTR6LAxfRLODdQh761vfyh8AGUSYGnRM0gezLBKNRr5E6jJCQgiUXLVu36SvFvjOW2bGl4Dvy2htw3pgtwB4yRXwcmZfbOiJNxcAJBDkzWKF/42vs2gzlG4Ekrb+pDSevWqVtbCzXhA8/pkxWQg6/vnq9hmqqD/ZPoM73fR+MZ6JQvMvRVn/VtLapy89JeC5aFrMPO+9igdb/XX6+EVbEJvKouBE1J+sQ9gnP/nJHgxjdtFBzGZNRgnzU4NCCJQcuwWC64FE3Xw48BzRtEZkt+mXarUsEMwDWK/Dgu01V6YHUCHUYkC2Fwj18vUWHb5a2ex7m2s2O2nv6NXkLZjuy/iapMxeRLOT8Y+PAwcO4P3vfz+OPvpoLFy4EOeeey7GxsZ6OTYiIiKiWct4JuzKK6/ELbfcgj/5kz/BwMAAbr/9drzvfe/DHXfc0cvxERERUR8Ye/YJ1Or28+Ke56FUKUdfj48+08VRzWzGIezOO+/El7/8ZfzRH/0RAOCd73wnTj/9dPi+D9d1ezZAIiIiKt7Dd2zoWl+Dg/MwPDzctf5mKuMQ9txzz+GMM86Ivl61ahU8z8MvfvELLFmypCeDIyIiov4wsvZ8LFi8zGqb/WOjeOSuTbjtttswMjISPT48PIylS5d2e4gzjnEI830f5XK56THP81Cv21zuPbeokhNmbW0neDu57T9e7qHb4uPphzu4TO5Am05q95hVN4+/tSa7sl9eY1wvP2tEVIwjT1yFhSecYrXN7h2P45G7NmFkZASnnXZabwY2gxmHMCklzj//fFQqleixiYkJXHzxxU21wu68887ujnAG0/W5ApleKkHfeRYg+bb09vaqNIVNkVUHjbvzpFQlKrKepeQKlAxrMMiE0gVOTthw0Ljjq7U4aNb4TTkCEOEG8RICaeJ3n5ncCRjfl6ai8gRSZtZ5Sirkm3Z33HRWTDd9vfE6VkmfjSn3b1Azbbo5Fp8d289a9O/E8m5cIpoZjEPYu9/97rbH3vnOd3Z1MLNJdHt5WPvJEWgr7iilKmAabhG2Tz+4+oFMLNSaOgaoIqDN4wE8IVQ4aenIdQTKrjA6yKlla5LHGq+lFe9HIFbvK9a9g+QwFm9vIqm8gICqq5YUhNNeYdosTmv/tkEMiNeKkk37OeuALKP/szuAd0vTe5jxmh3R3t6J/SIylf7j4aWfAlirtBlY688amn8W9PFLJqIpMA5hX/nKV3o5jllNH1g8V4Wfut9YliehdVhnTP3qqw5gKnzZFB51RVjDqG057EbtIU806nWVXVUR32RB4LyDqhaEMz+OANzoCJo0msbf9WiTwlqarAO0/joKwrK5YGZr/6LlKKrHk9V/R+siSt136/uT0j62XVHSwlJ8ZrC1jeYINIX2vPZxaf33m3hAjocrm89avH3SNkQ0u/SuGic1iQ4e4exX7rE0tnzJRN0ugHlNQSf5p7gQqgq+C2DAcxJnMZKYBrDG86jTsvrvWTMCOnw1Zu8M+oeabVHt0zeIF750DPrX31MBoLG/0vruNBzoa8VmktZwlfR4a/v4TKxN+/hSWf0cwOLinx3rzxr0562nQySiPmFdMZ+mxv6Ha9oJi/TWNgcrYbkkkW1cUJN65jMYsUlA4ycw7V/Ezu8YBTzL01+dzoqZzIT1IxWWLNrreT/DbWbC7Fea+HVcpp81XvdFNPdwJoyI+tjMTSW2gYoBjGjuYQgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkRERFQAhrB+x4t1C9fZHY/90z9Rp/jZJOothrBppH+geYbBSkoZVnw320CGVeHrgQyXjMn/ASqlqsRv2t42E8aXSDL5cW5TwgCwWJtTl6Yw77pt+14ekGbqwW6GDpsy6M96EL65M/WzSTQTMIRNg/gPsUCqoowlkb7zZfTDD6gHqvJ9yRGZAUI/hYQKPtWgUQ0/74eoH0jUfNnoI6O9EAKuI4zWcnSEWjIIQsBkqUsh0LbUUTfa69cTBOZLPuX1lTgeINo3nZQbyAt6utCsRQm1nre3qhMmets/TU3rzyn9S51E738JIZqrCg9hGzduxPLlyzEwMIAVK1bgvvvuS21755134g1veAOOOOIILFiwAKtXr8Y999wzjaO1E//B5QfNleZFGFDi1e3jP+TqfvPajkIIlFwHXkIY00vgtP6IrAeI1po0+QFaDyRq4WrXqn12GEsLG2r2TgWSeECSaCzX1Nqzqi4er6yeUf0+oX0rve/1Gpf6YNINUoZHKDRm1+KBQe0bs6Ca8SQZ/WeHmShMTVN7W3rlhF71T3ayfk6p7zevu8pARtQ9hYawzZs3Y926dbj88suxbds2nHHGGVi7di127NiR2P573/se3vCGN+Duu+/G1q1b8bu/+7t485vfjG3btk3zyPPFZ7OylvlxhApiDlRY8AOJepAeGBwh4IWzLfHfVFPHAaAWZI+hedxAzdenIrKPgvGwoVu6DuC52VX44z07oj2sxftvfdwRapmi3Nmv8I/+jb7rhPq/rGVmbGYN42S4+KDI7b85zLSGtelub0O/ptb+Gb6ml+nPKUB93w/klJbpIqJmhS5bdP311+OCCy7AhRdeCADYsGED7rnnHtxwww247rrr2tpv2LCh6ev/8T/+B/7pn/4J3/rWt3DqqacmPsfk5CQmJyejr8fHx7v3AnKYBh8Rnpr0fdP2Ag6AusXcTiAB17i1XXDRy9dYHaDD12y63FB0oDbsv9e/qNu81vhySd3uP5q9Mu23x+1t9bp/ymezFizNDUUeN+eawmbCqtUqtm7dijVr1jQ9vmbNGjz44INGfQRBgL179+Kwww5LbXPddddhaGgo+rNkyZIpjZuIiGg243Fz+hQ2EzY2Ngbf97Fo0aKmxxctWoRdu3YZ9fG5z30O+/fvxzve8Y7UNpdddhnWr18ffT0+Ps4PFBERUYq04+bYs0+gVrebOt33vLq8aPv27RgeHsbSpUu7OtaZrtDTkUD76SgppdEpqttvvx2f/OQn8U//9E9YuHBhartKpYJKpTLlcRIREc0FacfNh+/Y0GGPAu985zsxODgPjz22nUEsprAQNjw8DNd122a9nn/++bbZsVabN2/GBRdcgDvuuANnnXVWL4dJREREAEbWno8Fi5dZb1eadyhqB/biBzdfhbGxMYawmMJCWLlcxooVK7Blyxa8/e1vjx7fsmUL3vrWt6Zud/vtt+NP//RPcfvtt+NNb3rTdAy1YwLmZRECqW4NVxdk588ENrc3ew5fSuOL4fuJLjMhoW4uyK8LNh1jAqISEn0wHhvx8fTio9Dr/qm7bH5O0dx25ImrsPCEUzradveOx7s7mFmi0NOR69evx3nnnYeVK1di9erV2LRpE3bs2IGLL74YgDovvXPnTtx6660AVAB717vehc9//vN4zWteE82iDQ4OYmhoqLDXkUbfMajqdCW3kVJi0peohndGSgBCyvAW/vYjmJQSVV+iFqt+KmT2rf16DIFUdbocZIcx11GlFUxPDduWLXDDGl9mFf0l4pcg+BLwHAk3tT6Yrrovou17If6eOkjeT/ECugjHlDeebpWASKL3Tetj3XrOpP71Awxj/UuE/x4DKTN/YdCfk2j1Cb6pRFNWaAg755xz8OKLL+Lqq6/G6OgoTjrpJNx9991YtkxNd46OjjbVDLvppptQr9fx/ve/H+9///ujx9/97nfjlltume7hZ2r6ARWGqvhBSkpVD2yi3l7FXR/gBWQ0M6bbT/rtPyV1lXwH7QfUpNIOOoy5sf6BRs2uxNeQ9Bozv9vOEc2342bWEpOyacmjuHoA+JDwHHXwUO3Tf5s3CT9TEcj24Nw6HpMDlq7+bxp+TbWGwbbvx77ZWaX/9P5l7C88Zvef+OesEbKSiym3tieiqSv8wvxLLrkEl1xySeL3WoPVd7/73d4PqAcaB1b1g67mS0zUmyviJ4kq4QeBWobIoJgioE7ZNX5oprf3w1mQkpDwXCcaqwmbul0CavbLpH8pJQLkv1ZdhNYVMnytyf1O10EjHpzDZ84cTzwU6pmIXswwZIXTpnaxv9g8vU3/3Zx1o+5rfO7UL2d6ibVe/GJARErhyxbNFbrKtJQS+2v5AUyTUmLCtyuo6DrpVdbbxwWUPDcaowldId80gOkFyI2udYPda8061ds0jmmq8m064daYfYwXou3u+EwDUtJ2veq/g7q1NM3059BmVpyIOsMQNt0sf5hZH+Q6bG/zQ9ZgRaOm/q1+i7Z8wf15aDCcTRTqar1+OsCZhvepPgf1N5M1XIlo6hjCiArFgxwR0VzFEEZERERUAIYwIiIiogIwhBEREREVgCGMiMgQ7+wkom5iCJtmvSwaOhU24+rlDVO2e6eT3dnrd8D2Pe7VR0KXAe6X8UxX/70yU8dNRP2LIWwaSSnhCIFBTxjdE6eKWwp4NsUzo/8z40ug5gfR+EwEMqwRZdA8CP9IKTP7jwqVGo2g0d6XjZprJv3H64rN5oOqlKrgpn6Rpu+ttCzWapvHbfvvB0m7bjZ/doho+hReMX8u0AfAQKo/riMwr6QqvleTliGKPSSh2jth2Mgq8uo5gBercC2Rncf0MkJSqir+riPgmC5KjcYBOO/AGi2TJJLrhun9Uw/al3Bqf+JGGz/Q+1XCDyRKrmjrX/9dhu0by0Y1Xrt6vXlPbMamrlIvqscnhc3W76WN0XY8sQLrue+bzQoL/SK+/+IFhHXl/+jvM+g1EVF/YQjrkfgBTwWA5u8LIVB2VXCaTFjCqPWgJoSaEXOlWrw7/n1HAKXYOoq6vQ4kQWtfCANRy9HDD1RbNyHMJL5GNB+Q8vhSBSZXNM/M6JCWJd4+cSFqqEDrCImS07xWZFK4kwB8qLHrMDaVg2mR4as1XJmtONCI0VMdT7RQfUoYm2lLFbX+EpTYBo3PfreDPBHNHQxhPSRl8+xLEkcIDJYEan6AibrBjEIY3gIpw1k1wM346S+EmkUDwlm1hPDVNGYAdV/CdSRcx+xstc26gBJAPZyFgjBfokhX6c87DRRItch5KVxyJTfcQYUx12wYiXqx3qYtCSAw3Jk6XHc7HIULAETjmWnhS9NjN9mbFotHEBG1YQjrIdP1IQF1ytHgZFzEEQKe4RV90Vpwlgsz91IAWF8hbzMmvweLYbcq+tRjnO375fRoLPo1zvRgYvvxn4lhk4iKxwvziYiIiArAmTAiIiLKNfbsE6jVOztNcvDFnV0ezezAEEZERES5Hr5jw5S2HxgYxPDwcHcGM0swhBEREVGukbXnY8HiZdbb7R8bxSN3bcLXv34Hli5d2oORzVwMYT3kiPTb9lsFUpWr8A2LoEqouyPVBd/5VwXrC8NNL+Du5EJjXSjWdFvTO9CAxoXkpjc76Isde3l/QV7drXi76G5B0/bhBsbvr8V7S/lsPpsA64XR3HDkiauw8IRTrLfbveNxPHLXJixevLj7g5rhGMJ6yBGAcERYTDS5jZQS9UDdLegIdZekH6jHEtvHDg1RMVYp4SD9YO2GNcRUaYLkQp6agKoT1mhvd2QxKVchWv6edbDTdbz0Rq5QJS7SqjE4ArEVBhplKtKeI+p/CtL2U2uVeh3IHaS3bwrtOe3jBAAnrI+WValCCHT83s4VIvZf0yK0RESdYAjrkfgBTkDNcgWx8CATKuDrbRwBlF31PR3e8spXBABEuFRNvJ94KYJoTDqMtczSuY5Ibt8BGf1fc9kCfWBL6rn1FTpozCbGK+CXwmBbjxWt1fu4NWBIibA4rKoHFueiMYM01TzSVJw3Z0oqCJOqI1pWN0jZrLV9q9bHnISg3RqKGcDSxf6ZpM5mx2eWuSuJqFMMYdMgCkVQB9Kqr6re57V3IeG6akkh08KREoAHtQRRvK/2/sPQED6W1b5TUUBqOVC1PoMejYNYkc+m8cb/LqJtyq6Ili5KC4/xbb1YcVh9cG1tM1U2i2UHWckrpb2AzDxFmRS0oxDMtGAlvrvin5e0NkREtlgnbBrpWY+sAJbU3rC52gaA5zrR9lktddV0s/adES1/sto1tRfZB7jW2T4hROb4W2fj4o/NJKZDjvZPD8L1XNO66/I+m0REpjgTNt3ia7v0oL31rIfor4O07Shsx90nL7NjVlX6++y9nel48wMRdRtnwoiIDDHPElE3MYQRERERFYAhjIiIiKgADGFEREREBWAIIyIiIioAQ9h0s729KmxvWn9KN7OpVxVuYdi/bmd/x2b3RhFrb7jM02yhqurbfhZ6OCAiIuoYQ9g0kmHlTM9gr+sDrYRA3bBYq2oPVP0grJief8AW0VY5SSnWT7S8jsHRXUIVGY2WWDJgEtp0+JIIlyWaI2EsviRR1uvV3zNtT0RE0491wqaBDiv1QK17CAg4In2pGt3+YC1ANVzXyPcBR8gowGXVfgqkqsrvCsBz0tcJdJ3GAtHRrEn7aBpjTBhs1iLW8aVydMyLLzPUKr4sT1rA0xXgdfjSfKjfKESsTRHyxt+N9vH1OVtfa9L7mNWeiIiKwxDWI/Fw4ku0VcnX1eolGos2622qvsRkvX32S4UrFZ5cpIcfzZeA70t4joAbWwQ6XmW+MR498MYBvLNTmiK1In1aABMCbUvxJIUT/Vc/YS0/oDEjpicaDeb3uqb1fchbQ3Kq7YHmhb5Vm5bHE9rrINboN/UpiYioxxjCeqgeAL7MPpWoltsB/EAFr1ogm04hJfEDFTjKntkRtB5ISAeohAt05y3vIwAEnVy7FoWpnKZoXZ4oazzh0k2GpzQlwlmxcOZnOlJY3jqO8XCV91pt2msZE5WpbR2GLyKiwjGE9VDdMsdM+r29aMft8ZHXJIDFG2ctRN3UNAxi/XZJk+lyQPZLKzEhERHNBQxhRERElGvs2SdQs5hd8DwPpUoZ46PP9G5QMxxDGBEREeV6+I4NHW87ODgPw8PD3RvMLMEQRkRERLlG1p6PBYuXGbXdPzaKR+7ahNtuuw0jIyMYHh7G0qVLezzCmYchjIiIiHIdeeIqLDzhFKO2u3c8jkfu2oSRkRGcdtppvR3YDMZirT0iAZQcwDUqPKrOsc8rOSiZbADAC/s2vYTbFULdYWhY1NQVQCm8m9Ksf7PXqtlceh6V+7DYpt8ubdd3g9q0JyKi2Y0zYV2ma36pelmqYKojVLmKpOyjyy8AKliVXAe+K3GwFiDpZklHABVXwA2LsHqOQCBlYttGe0fdtSglZKyYVNJNeAI6TKlvuo4DP1ClM9L6b1TKEPCEqmcWJLaO959P3xEZFRpFI5yk5UiBxm8Wvb/JML8SWVtNNGSX2dB3mOrXjJz2tpr6Z9IjIioUQ1iXNMJXQ1RqQEqUXQFfStQD/ZBs2yZeTPWQiouqH2CiJqNDfdkVKLkCrVXqBVQQCtBYpka391wnsWJ+PNzob6nA2F5hXwc/X6qaY9FzOsntBQAXYfHU2GNOSv/J+7O9Xlo8lLSGmekMX8alKaL2jcekVPsh8fPS9Bz57W0kFcglIqJiMYR1Qd4BMgpXAMqOqoifVZBVty85AqWKiJYgav1+W/9SRkHHi22QFRokVGByDPp3IeGGYdJJ+H7ja4Tj0Q80wlfueBLCVysR+68OZDqo9CpcCMPw2DS+pJlG0d4u6Xtp7TsJYlnjISKi4jCETZHNDIU+kJvWZNXtPcMLs/RSSCWTFcJDDsyLuOrxuMZFSptPqxlVf7dMGfFrrfphBsx0LPGZLtP2nSzA3etwSkREnWMIm2Y9r/reZwfbngej3navnsO64n1v2naKAYyIqD/x7kgiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIuozndwNTTMPQ9h0s/yXpZtLw+2CQBeCNWsvYdfeliqPIKz7t2nd67v/rMfeRz88TZepirft1fh73T/RbBD/NxLw38usxxA2RUKYlUnQB3JpWFSh0T4s7tryeJZqvVHwNK+9RPOSSmntbYOa/kESQI1fh7309jJapih6rSZP1EEA62Vma+zH7v/wNP2sJW2XJT5OmfL4VMT3RS/6J5ot4v9Oop8l4C8vsxnrhHWBPjimFW7V4aJaT14PMq39ZD2IwlQ9AHxIeI56orZliFqeu+ZL+IFUlfNTKr3HlyzyJRBIVZk/XhnetEp8fBxChOEuNqBaEC7yrVfWbOlfhmOI+kkYaytHNPeTRb/WePu8yvzxcdqIL9Wknqt7s3V5n7WoXax9mvguC1r2fbRep2Ex2bT+Y0uVpvbPOmY016X9ItT22BT+PVJ/KnwmbOPGjVi+fDkGBgawYsUK3HfffaltR0dHce655+LlL385HMfBunXrpm+gBvQBMjzMq/+XavHriXp2pfxo5ivWvjUkSKgw48t4+3DKOqHPQKpZsXrQPIulx9j6D1kHpwDNocZkBizepBY0BzDNl0A1aD/g14P0fZP0sCNUlf+m9SqFSA1MjgCchPauI5C2WEBWf6YkWl5rF3+Tbf6sxR5HPHCmjKs1cKU8R+v3bE5rammfTd1/vD1/06e5LOvfYrwNzS6FhrDNmzdj3bp1uPzyy7Ft2zacccYZWLt2LXbs2JHYfnJyEkcccQQuv/xyvPrVr57m0ZqJH/wm6wEm6o1Fu7Poma+DBu19qYJO1gGuqX2gZsZMDtCA6jce9EwEULN1NYMx1aUaT81X4cv0B49eIzIrHOnwJCzat66bOdXw1Sqa+enyb6/6fYzeV+S/t5rpZweI7X+L8Zv2Hz/w8Ld7mmuCjF+i0zCIzS6FhrDrr78eF1xwAS688EKMjIxgw4YNWLJkCW644YbE9sceeyw+//nP413veheGhoamebR2BGAUMOJM15TslOkBulMGWTNi8ltfXBQ4jNetFMaByqZtP2rsm6JHQkRENgq7JqxarWLr1q249NJLmx5fs2YNHnzwwa49z+TkJCYnJ6Ovx8fHu9Y3ERHRbJN23Bx79gnUkq41SbDveXVGa3R0tPsDnEUKC2FjY2PwfR+LFi1qenzRokXYtWtX157nuuuuw1VXXdW1/oiIiGaztOPmw3dssOxJ4Pd//w/wxBOPY+nSpV0Z22xT+N2R7Xf52d2Nl+eyyy7D+vXro6/Hx8exZMmSrvVPREQ0m6QdN0fWno8Fi5cZ9zO5bw8e+j8bMDY2xhCWorAQNjw8DNd122a9nn/++bbZsamoVCqoVCpd64+IiGg2SztuHnniKiw84RTjfnbveLyLo5qdCrswv1wuY8WKFdiyZUvT41u2bMFrX/vagkbVHarwKFBxgZLBHpZSlZGwYTtX6KXVYuhC/1KqmmRRwVWDuyod2H34bMdTC9SfwKi8ht3Y9XisxoT+qn5tM/6OCsT2qC3RbGL7c4Rmn0JPR65fvx7nnXceVq5cidWrV2PTpk3YsWMHLr74YgBqSnTnzp249dZbo20eeughAMC+ffvwwgsv4KGHHkK5XMYrX/nKIl5Cm3gRUAEBV0i4bqO+Vys/kFFFeRMCquipKdcByq554VUB83AkpSoxkfS60p7LQeyHjlBfZ90p6YjGePIrv7eXvKgFgBMWuU069Z2UfXUQyypwGxUx1dtkD63Rd6xxkXcz6tcgkD32+BBty2yY7JteFLQlmmkckV+AWeM/k9ml0BB2zjnn4MUXX8TVV1+N0dFRnHTSSbj77ruxbJk65zw6OtpWM+zUU0+N/r5161Z87Wtfw7Jly/DMM89M59DbJB3Q1UFFrZtYdgUCKVHzVSmHQKrwZTMB5grAEfqwmf1P0RFAyVUFSTsJX9mV1mVUFyxLPMzE+0/qu/WAHQ+beWPX40nblwFUkVhXyKhPXbvLZvxN4xXxdvlhpqnflr9Md/gQovFfKZMPAPGwGW9v0z+Q3X9Se6K5pPWzn/VzRDflv5fZpfAL8y+55BJccsklid+75ZZb2h7r1ULTUxGEpx/T6BAhAFQ8gX1VH5O+ef/x2SBEPaUruwKeKzJndJr6R+NAaTLbVAvMA4fqX8IRIrX/eADTBVYdYRYepZSJ1fmT6Fk7z/KHmAhHljaUeJixCdXxMFbUD9b48yYNYarjSuq/NdwRUezfg2z6j/oe+O9ltio8hM10MieAxQmhZsNsAhgAuBb/+hwBtV4kzAqb6tCj2uf3b1vdOX76Ma9//YOm0T5/QLYFbvXpT9M9arpvOv0B2S8/XHs9hrbf+PvgNRP1o/ilAvprmr0YwmjOsf2ZNlMr6RPRzMQfOXNH4Qt4ExEREc1FDGFEREREBWAIIyIiIioAQxgRERFRARjCiGjW6MMKNkREqRjCppuUsFlByHY5nSCAVXtdtNSkeScHONnyX5MNhBBG41d1xOzHZMPmJXcaAEz3P6WL7z/uSyKaKRjCpkgIAUeYFTkFVOV2k4KeOkgFEthfCwukZoQrfSCXAPZXJeoWYcxHLCylNI+W6RECnrAo8yBUxfqoH4NNgtgOSn+9smlcvWLyOqcyhviSTQwPndH7rbWGHfcnEfU71gnrAr2sjUT7MkS66rsvgf2TvnF1dynVskC6edVXSx5VPBWCkqrJx7uerEvUhGrvprSP08v+uLHnj6+RGO9fB7EgXKsxSVR4NXxOHTayFl1qLVzaCFqNsevHAtkc7vLoorE2S++o9nkV+xGNZyqifdMH60rOFEmfTf33aCkpVuYnoj7GENZFQjQCjz4oSwD7qgGqOaXdddCQUs1iJS4sDWCiLuEKiYonooNMWs+BBA7WJDxHtTfhAxCyeYo0rX9HCAi0r9voiPTwkrR+oEk4ivYP7Krk6zUrjcMXmsNj9pjC/5oPJ7u/2Bh0/wwQ7eL7JWvf98OyUEREWRjCekCEU0h7Jn34FussVuvSqK0vVRgbMAxW9QCQdYnBkll7CRXGHIPBCCHgQq2vGJ8py90u/K/p9XG+tFs3VKB5SSaj9obhC5j6zFcWGf4fg0M62/3PQEtE/YghrEeEUOHHxky+hKWTpX16eUzUIcy4vUUAIyIi6gaGMCIiIso19uwTqJle2Axg3/M7AADbt29v+97w8DCWLl3atbHNVELanOOZBcbHxzE0NIQ9e/ZgwYIFPXueQEqMHfCN20spUTVvDkcAA575za2uAwyW7G6GtWkdv8vPtG+bC+X9jGvfutF/1nVsSXp5OhKwG/tck3UdZJLo2kPuT6KO6ONmZ/TtWM0GB+fhsce2z/kgxpkwIiIiyjWy9nwsWLzMapvSvEMxOHR402Pjo8/gBzdfhbGxMYawogdARERE/e/IE1dh4QmnFD2MWYUhrAeklKj7EvNLqj7YZM5dj4GUOFgLUPUBVwAlV8AxqE81UQ/gCKDkiMxTaQKA54joFJrpqS59X0HeRe62pyL1NvG/ZI0nkI2yFKanlvTYHWlYAgNhGQyIzLbTefLe5I6+1lNzc+U0ZvIJjunVWqKEpz2JyBZDWBfJsHiprgmmyjdIzCsJ1AK01QpT14FJHKg1Hvcl4NclSg7gOcnXKcUfCSQw6Ut4jgpwre1LrkDrpWMy+j+zA0ZSbS/9uO2BUAe6qEp8rLPWsUgJ1FuroGe0T6LDmJvRXtdnE6K50GfSeHp94I8fyLMCX1qNsqzxzyYi9iFK2016H/QiOCd9FliXjIhsMYR1iR+oQNX6g1mHopIj4TkCVV8VY635EgdqQeoF3rVAtSu5jXCV9Zt2PZDwoYKb66iisaWwoGtSkLM9YCQNs5MAlvR33ZcOD4AKo1kVPmzDRrwIbVL7pNUH4uOZjvClA4MeStrrMgmDtkF7JonvHynVTRVJM4Kt7bvBdN/PhSBMRFPHENYF1XqQuxyRLuBacQX2Tfo4aHCbr4SaPRsIlx4yaV8LJAZKAiXXyV2qSG9j85t7J2FEtPw3SyBVYDJlM34JFez00kxGVfEtxtIpm8Bgc1emhNk+n8ni+6tXwUuznQll0V0iysMFvKdISmm8HqQQ6roskwCmOUJdz2XKc1QA089nNi7j7jtm+hSW9W2tQ4YTzaL0x5GxUak/v20np9X65GX2XHwf9uo1T2Xml4goCUMYzXi2B7t+CWDUff321vbbeIiovzCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYzXi9LCNhu769bXvK1uvdybeLiIrEENYFFhUkICDbKthnCSQQBNL44O4HEr5FeyCsf2TSXFcoN23fAdubySTs7kBTYzcbfLydyTa27adDr4Yhe/xZiPfZL/138tnsk48BEfUphrApEkKg4gqUc6qpSikRSIlf7vfx/D4f+yYDBDI/LDkCqAZqOSRp0L7iibCdWXsgtoRQxgFVF6oMpFl7LW/dyVauAErCbBsBwBON4qsm7Z2EpZ1axfdZIFWwTfpe62Oypb3p/jclhN3+7FV1BP2S9GdBh41uvdTW/vVj3eg/3ke8/9bvJRGGn8uoPViigoiysWJ+FwghVBgQjeWGNF21/tcTAX6xt4ZaWA5+0peoHpQYLAkMeI1+oj4BuLG1I32p/ngCcMJDR7x92RWoeI2Fv6OlU8IDR171fH38iZbpkc3r7rUen1rbt5Znt6mS39Q+/EtJqINkWl1bVzQvQeQhnDVM6d/VASZrH8SOwn5LafpAAkKvLxnuy/g+TWwPNLWP76ROD9DRNjnV23sRAJpmj1q/h/bPjk2/Np+1qfbfuupAfJkh3SZ9ndHGgNL2f+tnmYgoDUNYFwmhZsQ8R2KyrtaRnKhL7ByvYV+1PR5IAAdqqu38soNSOKXjOojCVKu6VGsglsI5TFcAgyUHbso5USkBX0rjU6bxA1L8MZP28eDVjRkDRwAlqGCl1z53oNfSTG4v9Ixd7DEV1sxmv7KWpokHW320DoL29UKT2gsdnMPvTfUA3QjX7Wsm9iJ86T5NPwut2xk/l0X/Vv3mBKf49/R+zQxisQ1aQyLDFxGZYgjrAUcIlFxg2y8OomawDo8vgf3VAMPzVQozWe8xAPCSipM7u6MFEkbrT8afw/r0j7S7Pg7Iby/C041O7Ou89gIqjKn+zQZktSZjzixUUnsIQEB0/QAdD2P6617oZM1Km7HY9t/r9U5NtIYxhi8issUQ1kMmASzOdjkd04AxXWxnv6z6ttygz3ZNz68P6rfXO5dw3xNRpxjCiIiIKNfYs0+glnahroV9z+8AAGzfvn3KffWT4eFhLF261GobIfvlXvppMj4+jqGhIezZswcLFizo2fPUA4kf/vygcXtXAEccYp6JPQc4bNAuQ6ddN9YNAs0Xypu0h0X7TpnOLrZeWN9tnmM/09kvbE+/AnanpTvp32Zm0fat5bVdRM30cbO7Yne5zBKDg/Pw2GPbrYIYZ8KIiIgo18ja87Fg8bKu9FWadygGhw7vSl/9YHz0Gfzg5qswNjbGENYvbHN+1ZcoWcyY6ElMm/a9nI1pqVKROxagd6+139heTE5E1G+OPHEVFp5wStHDmFUYwnqg5ks8v7+Ow+d7qPsS+6p+U+2wpPa/PFjHz35VxSFlB8t/o4z55fQ6uo4ASo7AwboqPVF2zS7SD8JbHk0KlnZEqLs2s0pUSKlKOuiSE24gw5ITaSU2ZFO9MFdkt7cVhTv9tcE28aKdJqfSGuUdJCBF02MzhSPMTxt2UqKik/5NmZZbISKabgxhXRRIiV8dDLD7oB/9sHcd4CWDHibqAQ5Ug6brUwIp8esJH+OTjYS2rxrg4V9OYOF8F0uGyii11JUouyKqEab6ULXIPEei5AjjchW68OhUw0x0bU5KIc+mA6CUbcVXG0Vo28NhIFXhW5nU3pG59b+yXlrrpZC6mGdWGIhfh6SLtTqOiIJiVns9Lxo1m0GzYvFxZoVV/XqnUi4ja/Y43n8nd8tGBVl70D8RUScYwrpASol9VYkXDtTbZrx0SKi4ApVBFwdqKoztr6mwlnbR8PP7fYwdOIglQyUsOsRTFfFd0dRnXD1QNwOUXRjNFDUKX0rjWmNNryvngaaXJcNllzL600VoPUeNpx6kV79H+H2BMIyJxn4xOeWadi9KfLPWMKYDYrz/+PM4orm2WlL7+E5qKnI7Qw740YxeQpgRCe1s+80rgtqN/pOCdjfCIxFRJ7h25BRJKfGLvXWM7msPYHFCqFmqQU9g7ICPsQPpAUwLJPDcnhocAQx4jtHMVdWX4QHe7MRLYyFm8xM18bvH8g5YQTj7ZdK7hKqtVs0JYPH2fkvHnQaw5j5if0fznX5J/ev3VreN34U6U69hy6JfkiMap55NPgud9q8f60b/re/tVMIjEdFUcSasC/bXzANMXQL7Laq4zis5OKSsl6jOP0o4wr6IaydBoehq5ZqbMCvVLfFTj2btxYy/gcBU2+xVj/rv1XM0zerN7reKiPoYZ8KIumi2h6/p1vs6cr3tn4goC0MYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqICMIRN0fikX/QQqI/YlPogIqK5jSGsQ1VfYvsLE/jx6CT2VVUQyzsAB0GAkiPgTOxRX/v5AW5/NcDug3Wj/gFVWywwrhEmw22kcf+NbQ37l+FSRQYbSNn8x6T/ehA0nstkPDAfT3y73vaf/3ob9dya/0tERDMXQ5ilQEo8t6eG7z93ALv2qRC1ZyLAC/vrqAXpYcb3fez51W5c+oELce5rluO6i96O53/+TOYB2xHAbwy62LW3juf21NQSPhlHXwFgwBNww8KhaaKwAGCyHuBgLcBk3SLM6D8p4aER7oDJukTVB/wgPZxEwQKNZYlM+vclcKCm9v+kLzP6V4/7Epj0pSoG20GR2rT2uv8Aqg5cvDhtXv96Xzb6SnpO9d8g7Dde5JdhjIho5mIIs/Crgz5++POD+Onualu1+6ov8cJ+H786WA/Dg2pQr9dRr9fxlY0b8PoVr8A/br4NUko88p/fxcd+7zX4X5+5DJMH9sP36039HVpxsOgQD4MlB0II7KsG+NnuKl444CNICBtlV2BeScBzRFRdvDmINQfEmh9E1fUBteTRgVqAepAeZlo1h4fYLBCAyVqAyXqjf18CVb85/MRDlh+gZV1NNC11FB+TDMNdzW+M42BNYu9kEK1a0NQe6v2px56gLtH0+juZ6Yr3X5fN4/cloudr9J3+HPFwFZ/tigdUk/ZERDRzMIRZePiXEzjYugJ1iwM1iV376thzYBL1eh0P3vtveNPpp+Bvrvor7N+3t6mtX6/jnq/dhHVvOgX/+e07AaiZrEWHeFhQcdsq30sALx7w8bPd1ajqvieAeSWBstu+eLcQjaVfdDDUs0Gty/1oVV/iYD3IXVIpPiY9QyOlRM2XmKil918PgGoUzmRb2GoVyHAWTY+vLjHpI3F8vlQLoO+rBo32LWGzdey1AJkzmHnqQfprjYczHTrzNEJh4+uszVrbExHRzFF4CNu4cSOWL1+OgYEBrFixAvfdd19m+3vvvRcrVqzAwMAAjjvuONx4443TNNL2dQrTSAC//NVevOqoQ/Hec96CZ372ZGb7vb96Ef9006dx1KEeDp/nwXOyy3jXA2D3AR/zSwIDJSd3mSL97cmW2aDU8cdmcUzVfTUblbV+ZtQ/9ILj5mtKVn1gom72HtR8iYO1ABOGYVKHSJtq962nHTP7D/9r2r9Efvhqbd/NtRuJiGh6FBrCNm/ejHXr1uHyyy/Htm3bcMYZZ2Dt2rXYsWNHYvunn34ab3zjG3HGGWdg27Zt+Ku/+it88IMfxDe+8Y1pHrmZIDBfIxKwX/KGS+QQERHNXIUu4H399dfjggsuwIUXXggA2LBhA+655x7ccMMNuO6669ra33jjjVi6dCk2bNgAABgZGcGPfvQjfPazn8Xv//7vT+fQiYiI5pTxXTvgVQaLHkZfGh99pqPtCgth1WoVW7duxaWXXtr0+Jo1a/Dggw8mbvP9738fa9asaXrs7LPPxpe//GXUajWUSqW2bSYnJzE5ORl9PT4+3oXRExERzU5px82tt/11UUOaEQYH52F4eNhqm8JC2NjYGHzfx6JFi5oeX7RoEXbt2pW4za5duxLb1+t1jI2NYfHixW3bXHfddbjqqqu6N3AiIqJZLO24ee+99+KQQw4pYEQzw/DwMJYuXWq1TaGnI4H265qklJnXOiW1T3pcu+yyy7B+/fro6/HxcSxZsqTT4RIREc1qacfNU045BQsWLChwZLNPYSFseHgYruu2zXo9//zzbbNd2pFHHpnY3vM8HH744YnbVCoVVCqVroy54gpMGt4iWa4M4pAFQzh4YD/8ej23/f6945icOIhKZcDoNrdakB9Y42yv4Tetut9p/5CAyLkLtKl/mN8tCIQlGyzGpIr7m+/PTti8X/Z9q//yXg0imqpuHjcpW2F3R5bLZaxYsQJbtmxpenzLli147Wtfm7jN6tWr29p/5zvfwcqVKxOvB+u2FUcNYNF816jtSw4ZwPe+/1/4/73pTQAA103eTh+UX7p8GQ7d93O8ZNCs/0FPQEIYv4GeI3Bo2YFreJD2HAGvreBrupKj6pWZtxeouOb9D3h2/XuuQMn0xUK9DzYByRP2/3h6HZAYwIiIZpZCS1SsX78eX/rSl3DzzTdj+/bt+NCHPoQdO3bg4osvBqCmRN/1rndF7S+++GI8++yzWL9+PbZv346bb74ZX/7yl/GRj3xkWsZb8Ry8cuEATls8gEPKybvOFcDLDi/jN48exKmvPAH/+I//iC1btuClL31pW1vHcXD44YfjlltuwQ9/+EOsXnkKTl40gBMXVlBJCRBlV+CVR1Tw6iPVGCqeKtSaRkDN4A14Diqeg5cMuDik7KSGGVcAQxUXCyouSq4KSl7Gp0T1r/ZNxXMwNOBgwEsfj+cACyoO5ldU+0PKAuWM3OkJ4JCywGDJxWDJwUsGHVQy2pdd4CUDDuaVHJRdB4OeyAyerlCBtuQKuI5A3uScgCqA6zpqm5KTHSRdAZQdhH3nh0gRew7HIATr9gxgREQzT6HXhJ1zzjl48cUXcfXVV2N0dBQnnXQS7r77bixbtgwAMDo62lQzbPny5bj77rvxoQ99CF/84hdx1FFH4Qtf+MK0l6cYGnCx8qgBjO6r42e7q1GB0qMO9XDcb5TbZmDOOussPPLII9i4cSM+/vGPY9++ffA8Dx/60Ifw8Y9/vOkcuxACw/M8HDbg4rnxGp79dQ36zNrSl5SwZEEJbiwpCKFmrFyhKr/Hi6WWHAHPab5eTgiBgTC4HagFmAhXABAA5pVUgGptXxKAJyRqQXOx1JKjnre1/WBJoOKqZZDCwv6q/7KjQkvCeEqOxES9UX3eEWr1gNbCtY4QOKTiYiCQ2F9tLFPkCmB+2Wnb90IIVDwBP5BNlfMdAGVPtBW6FUKFNillW6FXp+W16vGUnHDdyNi+F+H+SVrFQA+i9fRqUpiybU9ERDOHkJ2s1TKDjY+PY2hoCHv27OnKBYY1X+KX++t4ScXBIVlTNKEXXngBX/va17B27Vq87GUvy20/WQ/wwn4fw/NdDGRNSYUCKeEHaAtfaeqBWmqokhBI0voPZHv4SlPzJQIpE5dVShtPIJMDTCu1TJK6lsukf71sE2A2fr0Opm5l0j6Qermo/Nca/5dnEqZs2xMRdUO3j5vUwBBGREREqXjc7J3C144kIiIimosYwoiIiIgKwBBGREREVACGMCIiIqICMIQRERERFYAhjIiIiKgADGFEREREBWAIIyIiIioAQxgRERFRARjCiIiIiApQ6ALeRdCrNI2Pjxc8EiIioulz6KGHGq3hS9NnzoWwvXv3AgCWLFlS8EiIiIimD9d+7D9zbgHvIAjwi1/8omu/EYyPj2PJkiV47rnn5uyHm/uA+wDgPgC4DwDuA6B/90Gnxz0pJfbu3cuZtB6YczNhjuPgmGOO6Xq/CxYs6Kt/bEXgPuA+ALgPAO4DgPsAmD37QAgxK15HP+KF+UREREQFYAgjIiIiKgBD2BRVKhVceeWVqFQqRQ+lMNwH3AcA9wHAfQBwHwDcB2Ruzl2YT0RERNQPOBNGREREVACGMCIiIqICMIQRERERFYAhjIiIiKgADGEGNm7ciOXLl2NgYAArVqzAfffdl9n+3nvvxYoVKzAwMIDjjjsON9544zSNtHds9sGdd96JN7zhDTjiiCOwYMECrF69Gvfcc880jrY3bD8H2gMPPADP83DKKaf0doDTwHYfTE5O4vLLL8eyZctQqVTw0pe+FDfffPM0jbY3bPfBV7/6Vbz61a/GvHnzsHjxYrznPe/Biy++OE2j7b7vfe97ePOb34yjjjoKQgj84z/+Y+42s+1nou0+mK0/E6kLJGX63//7f8tSqST//u//Xj766KPyL/7iL+T8+fPls88+m9j+qaeekvPmzZN/8Rd/IR999FH593//97JUKsmvf/3r0zzy7rHdB3/xF38hP/3pT8sf/vCH8oknnpCXXXaZLJVK8sc//vE0j7x7bPeB9utf/1oed9xxcs2aNfLVr3719Ay2RzrZB295y1vkb/3Wb8ktW7bIp59+Wv7gBz+QDzzwwDSOurts98F9990nHceRn//85+VTTz0l77vvPnniiSfKt73tbdM88u65++675eWXXy6/8Y1vSADym9/8Zmb72fgz0XYfzMafidQdDGE5Vq1aJS+++OKmx17xilfISy+9NLH9xz72MfmKV7yi6bGLLrpIvuY1r+nZGHvNdh8keeUrXymvuuqqbg9t2nS6D8455xz58Y9/XF555ZUzPoTZ7oN//dd/lUNDQ/LFF1+cjuFNC9t98Dd/8zfyuOOOa3rsC1/4gjzmmGN6NsbpZBJAZuPPxDiTfZBkpv9MpO7g6cgM1WoVW7duxZo1a5oeX7NmDR588MHEbb7//e+3tT/77LPxox/9CLVarWdj7ZVO9kGrIAiwd+9eHHbYYb0YYs91ug++8pWv4Gc/+xmuvPLKXg+x5zrZB3fddRdWrlyJz3zmMzj66KPxspe9DB/5yEdw8ODB6Rhy13WyD1772tfi5z//Oe6++25IKfHLX/4SX//61/GmN71pOobcF2bbz8RumOk/E6l75twC3jbGxsbg+z4WLVrU9PiiRYuwa9euxG127dqV2L5er2NsbAyLFy/u2Xh7oZN90Opzn/sc9u/fj3e84x29GGLPdbIPnnzySVx66aW477774Hkz/59ZJ/vgqaeewv3334+BgQF885vfxNjYGC655BLs3r17Rl4X1sk+eO1rX4uvfvWrOOecczAxMYF6vY63vOUt+Lu/+7vpGHJfmG0/E7thpv9MpO7hTJgBIUTT11LKtsfy2ic9PpPY7gPt9ttvxyc/+Uls3rwZCxcu7NXwpoXpPvB9H+eeey6uuuoqvOxlL5uu4U0Lm89BEAQQQuCrX/0qVq1ahTe+8Y24/vrrccstt8zY2TDAbh88+uij+OAHP4hPfOIT2Lp1K7797W/j6aefxsUXXzwdQ+0bs/FnYqdm089EmrqZ/yt6Dw0PD8N13bbfcp9//vm23+y0I488MrG953k4/PDDezbWXulkH2ibN2/GBRdcgDvuuANnnXVWL4fZU7b7YO/evfjRj36Ebdu24QMf+AAAFUiklPA8D9/5znfwute9blrG3i2dfA4WL16Mo48+GkNDQ9FjIyMjkFLi5z//OU444YSejrnbOtkH1113HU4//XR89KMfBQCcfPLJmD9/Ps444wxcc801c2IWaLb9TJyK2fIzkbqHM2EZyuUyVqxYgS1btjQ9vmXLFrz2ta9N3Gb16tVt7b/zne9g5cqVKJVKPRtrr3SyDwD1297555+Pr33tazP++hfbfbBgwQI8/PDDeOihh6I/F198MV7+8pfjoYcewm/91m9N19C7ppPPwemnn45f/OIX2LdvX/TYE088AcdxcMwxx/R0vL3QyT44cOAAHKf5x6zrugAas0Gz3Wz7mdip2fQzkbqooBsCZgx9S/qXv/xl+eijj8p169bJ+fPny2eeeUZKKeWll14qzzvvvKi9vh37Qx/6kHz00Ufll7/85Rl/O7btPvja174mPc+TX/ziF+Xo6Gj059e//nVRL2HKbPdBq9lwd6TtPti7d6885phj5B/8wR/I//7v/5b33nuvPOGEE+SFF15Y1EuYMtt98JWvfEV6nic3btwof/azn8n7779frly5Uq5ataqolzBle/fuldu2bZPbtm2TAOT1118vt23bFpXpmAs/E233wWz8mUjdwRBm4Itf/KJctmyZLJfL8rTTTpP33ntv9L13v/vd8swzz2xq/93vfleeeuqpslwuy2OPPVbecMMN0zzi7rPZB2eeeaYE0Pbn3e9+9/QPvItsPwdxsyGESWm/D7Zv3y7POussOTg4KI855hi5fv16eeDAgWkedXfZ7oMvfOEL8pWvfKUcHByUixcvln/yJ38if/7zn0/zqLvnP/7jPzL/fc+Fn4m2+2C2/kykqRNSzpE5cSIiIqI+wmvCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkSJhBCZf84///zCxnbsscdiw4YNhT0/EVE3eEUPgIj60+joaPT3zZs34xOf+AQef/zx6LHBwUGr/qrVKsrlctfGR0Q003EmjIgSHXnkkdGfoaEhCCGir0ulEi6++GIcc8wxmDdvHl71qlfh9ttvb9r+d37nd/CBD3wA69evx/DwMN7whjcAAO666y6ccMIJGBwcxO/+7u/iH/7hHyCEwK9//eto2wcffBC//du/jcHBQSxZsgQf/OAHsX///qjfZ599Fh/60IeiWTkiopmIIYyIrE1MTGDFihX453/+ZzzyyCP4sz/7M5x33nn4wQ9+0NTuH/7hH+B5Hh544AHcdNNNeOaZZ/AHf/AHeNvb3oaHHnoIF110ES6//PKmbR5++GGcffbZ+L3f+z385Cc/webNm3H//ffjAx/4AADgzjvvxDHHHIOrr74ao6OjTTN2REQziZBSyqIHQUT97ZZbbsG6deuaZqtavelNb8LIyAg++9nPAlAzVnv27MG2bduiNpdeein+5V/+BQ8//HD02Mc//nFce+21+NWvfoWXvOQleNe73oXBwUHcdNNNUZv7778fZ555Jvbv34+BgQEce+yxWLduHdatW9f110pENF14TRgRWfN9H3/913+NzZs3Y+fOnZicnMTk5CTmz5/f1G7lypVNXz/++OP4zd/8zabHVq1a1fT11q1b8dOf/hRf/epXo8eklAiCAE8//TRGRka6/GqIiIrBEEZE1j73uc/hb//2b7Fhwwa86lWvwvz587Fu3TpUq9Wmdq2hTErZdg1X62R8EAS46KKL8MEPfrDteZcuXdqlV0BEVDyGMCKydt999+Gtb30r3vnOdwJQwenJJ5/MnaV6xStegbvvvrvpsR/96EdNX5922mn47//+bxx//PGp/ZTLZfi+3+HoiYj6Ay/MJyJrxx9/PLZs2YIHH3wQ27dvx0UXXYRdu3blbnfRRRfhsccew1/+5V/iiSeewP/5P/8Ht9xyCwBEM2R/+Zd/ie9///t4//vfj4ceeghPPvkk7rrrLvz5n/951M+xxx6L733ve9i5cyfGxsZ68hqJiHqNIYyIrF1xxRU47bTTcPbZZ+N3fud3cOSRR+Jtb3tb7nbLly/H17/+ddx55504+eSTccMNN0R3R1YqFQDAySefjHvvvRdPPvkkzjjjDJx66qm44oorsHjx4qifq6++Gs888wxe+tKX4ogjjujJayQi6jXeHUlEhbr22mtx44034rnnnit6KERE04rXhBHRtNq4cSN+8zd/E4cffjgeeOAB/M3f/E1UA4yIaC5hCCOiafXkk0/immuuwe7du7F06VJ8+MMfxmWXXVb0sIiIph1PRxIREREVgBfmExERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqIC/P8Bjoxmi7yJCuYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -421,12 +515,12 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJhCAYAAADxFZy8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKUklEQVR4nOz9eZxkVX0//r/O3WrrfbqnZx9mAJkBRoRBEBQ0aDBiDESi8lVJjJGIJr8ENC64ZCH64ZN8EjX4CW5gNj8qSTCJSfz4kUQlKKNGxAHZmZ2Z7pleq7v2e+85vz9O3eqqru3emerpmp7X8/GYB0PNqdOnbt2u+65zz3m/hVJKgYiIiIi6jrHcAyAiIiKixhioEREREXUpBmpEREREXYqBGhEREVGXYqBGRERE1KUYqBERERF1KQZqRERERF2KgRoRERFRl2KgRkRERNSlGKgRERERdSkGakRERERdylruAZxODh48iMnJyY72OTw8jE2bNnW0TyIiIuoODNROkoMHD2Lbtu3I53Md7TeRSOKpp55ksEZERLQCMVA7SSYnJ5HP53Dp2/8AfWvP6Eifc2P78cMv/hEmJycZqBEREa1ADNROsr61Z2Bo0znLPQwiIiI6BXAzAREREVGXYqBGRERE1KUYqBERERF1KQZqRERERF2KgRoRERFRl2KgRkRERNSlGKgRERERdSkGakRERERdioEaERERUZdioEZERETUpRioEREREXUpBmpEREREXYqBGhEREVGXYqBGRERE1KUYqBERERF1KQZqRERERF2KgRoRERFRl2KgRkRERNSlGKgRERERdSkGakRERERdioEaERERUZdioEZERETUpRioEREREXUpBmpEREREXYqBGhEREVGXYqBGRERE1KUYqBERERF1KQZqRERERF2KgRoRERFRl2KgRkRERNSlGKgRERERdSlruQdAREQr38GDBzE5OdnRPoeHh7Fp06aO9knUbRioERFRxVIEVGNjY/iVX3kDCoV8R/tNJJJ46qknGazRisZAjYjoJDgVZpQOHjyIbdu2I5/PdazPajtv/BCGNp3dkb7mxvbjh1/8I0xOTjJQoxWNgRoR0RJbqgCo0zNKk5OTyOdzuPTtf4C+tWd0pE8AGHtsF3729c8jsWo9hjad07F+iU4HDNSIiJbYUgRAwYzSgw8+iO3bt3ekzyeffBIA0Lf2jI4GVHNj+zvWF9HphoEaEdFJ0skAKJ+eAiDw1re+tSP9VXOLpY73SUTHh4EaEVGVpVhLFsxUdZKbmweg8KI3fwAjW7Z1pM/gFqXneR3pj4hOHAM1IqKypV5MvxQzVT2rN3Vslo63KIm6DwM1IqKypV5Mz5kqIoqKgRoR0SJcTH/q6PRtZSbRpW7DQI2IiE45S7WZgkl0qdswUCMiolPOUmymYBJd6kYM1IiI6JTVyc0URN2IgRoRnbI6nUpjKdJoEBGdCAZqRHRKWspUGkz4SkTdgoEaEZ0USzH71elUGkyjQUTdhoEaES25pZz9SgytY8JXIlqxGKgRUY2lKqHE2S8iougYqK0ATPhInbLUJZQ4+0VEFA0DtVMYEz5Sp7GEEhFRd2GgdgpjwkdaqvQULKFERNQdGKitAEz4eHpiegoiopWPgRqd0pZi4ftSrdFjegoiIoqKgRqdspZqRikWi+O++/4Ra9eu7VifY2Nj+JVfeQMKhXzH+gxwgT5RZy1FhQpu0qLjxUCNTppTYUZp4tnd+Onf/wV+8Rd/sSP9Lbbzxg9haNPZHemLs19EnbVUG7QAbtKi48dAjU6KUyvhaWc3aAALQVVi1XrOfhF1qaXYoAVwkxadGAZqdFIsRdqHpZxR6vQGDQZVRKcObtCibsJAjRrq9BqNpUj7wOCHiIhWOgZqVGMp12gATPtAREQUBQM1qrFUazS48J2IiCg6BmrUENdoERERLT9juQdARERERI0xUCMiIiLqUgzUiIiIiLoU16gRERGdBJ1Oe8SyVKcHBmpERERLaKnSHrEs1emBgRoREdESWoq0RyxLdfpgoEZERHQSsDQVHQ9uJiAiIiLqUpxRa0Aphfn5+Y72mclkAADTB56GV8x3pM+5sQMAgPThZ2Fbomv7XKp+T5U+l6rfU6XPper3VOlzqfo9Vfpcqn5PlT6Xqt+58YMA9LVlbm6uI30CQG9vL4To3GunEyeUUmq5B9Ft5ubm0N/fv9zDICIiOqnS6TT6+vqWexhUhYFaA52eUZubm8PGjRtx6NCh0/oXgMeBxyDA46DxOGg8Dt1zDDij1n1467MBIcSS/KL09fWdth9C1XgceAwCPA4aj4PG48BjQPW4mYCIiIioSzFQIyIiIupSDNROglgshj/4gz9ALBZb7qEsKx4HHoMAj4PG46DxOPAYUHPcTEBERETUpTijRkRERNSlGKgRERERdSkGakRERERdioEaERERUZdioEZERETUpRioEREREXUpBmpEREREXYqBGhEREVGXYqDWgFIKc3NzYC5gIiKi9njdXDoM1BqYn59Hf38/5ufnl3soREREXY/XzaXDQI2IiIioSzFQIyIiIupSDNSIiIiIuhQDNSIiIqIuxUCNiIiIqEsxUCMiIiLqUgzUiIiIiLoUAzUiIiKiLsVAjYiIiKhLMVAjIiIi6lIM1IiIiIi6FAO1k0ApBV8qFqslIiKiSKzlHsBK50uFTEnCk4ApgJ6YAcsQyz0sIiIiOgUwUFsiSinkXIWCtzCL5isgXZCIWQJJW8AQDNiIiIioOQZqHaaUQskHsiWJZjc6i55CyVNIOgIxU0AwYCMiIqIGuEatg5RSmC9KZFoEaZW2ALIlBV+ejJERERHRqYiBWgdJBbgRAi9TAJbJ2TQiIiJqjIEaERERUZdioEZERETUpRioEREREXUpBmpEREREXYqBGhEREVGXYqC2zDyWliIiIqImmPC2gwwBCKBtDrWgrW0CJV+3dkydroPJb4mIiCjAGbUOEkJgIGHAMVu0gQ7KYlZtQFbyFYq+guTsGhEREZUxUOswQwj0xkz0xQwsrr1uGUDMQuXxxbNnUgEFT6HkS94OJSIiIgZqS8U2BQbiBpK2DsZilg7UhGhf29MrVzdgsEZERHR64xq1JSSEQMIWsAwZqbSUwbVqREREBM6onRTm4nugRERERCEwUCMiIiLqUgzUiIiIiLoUAzUiIiKiLsVAjYiIiKhLMVA7CTyfaTaIiIgoOgZqS0gphcmch30zLlw/fE1PqfRzmUeNiIjo9MY8akskW5IYm3cr+dOOzHvojxnoj+vYuFWeNKscPjOXGhER0emNgVqHub7C0YyH+VJ9htt0USLrSgwmTCRtAaVUTTBmCMAxBQwGaERERAQGah0llcLemRJkizuWngQmsj4StsRQwkRQm90xBUxWJCAiIqIqXKPWQb5EyyCtWt5VmMr6iJkCCUvAMtrXACUiIqLTC2fUlpECy0sRERFRc5xRIyIiIupSDNSIiIiIuhQDNSIiIqIuxUCNiIiIqEsxUFtGjilQ9CT8sFtFiYiI6LTCQK2DLAPoddofUlMAw0kTQ0kTvgKKvkLBk5AsGUVERERVmJ6jg4QQ2NBvY77oYzzjwasvToC+chmpxUk5pAIKnoJt6ICPOdWIiIiIgdoS6I2ZSDkGJnM+pnI+ACBmCqxKmm2DMFcqeBJwTOZYIyIiOt0xUFsihhBYnbIwEDMwnvGwKmkCCD9TZhr1tUCJiIjo9MI1akvMsQys77MgRPgSUUEzBmlERESnNwZqJwEDLiIiIjoeDNSIiIiIuhQDNSIiIqIuxUCNiIiIqEsxUCMiIiLqUgzUlphSCkWPFQeIiIgoOuZRW0Kur5AtSfhKVxuwymFxu12gUgG+VDAEd4wSERGdzhioLQGpFHIliaK/8JgnAV8CtqlrfTZLZmsAcCwBgwEaERHRaW/Zb33edddd2LJlC+LxOHbu3IkHH3ywaduxsTG8+c1vxjnnnAPDMHDLLbc0bHfffffh3HPPRSwWw7nnnot/+qd/WqLR1yt4ErP52iAtoACUfKBUvhWqFhVhd0yBGIM0IiIiKlvWQO3ee+/FLbfcgg9/+MN45JFHcMUVV+A1r3kNDh482LB9sVjEyMgIPvzhD+OCCy5o2GbXrl1405vehBtvvBG7d+/GjTfeiDe+8Y344Q9/uJQvBYCeScuWFNqtSPMVUPD0fwE9w5awBCwjfPUCIiIiWvmEWjytcxJdeumluOiii/CZz3ym8tj27dtx3XXX4Y477mj53Fe84hV40YtehE996lM1j7/pTW/C3Nwc/u///b+Vx37hF34Bg4OD+MpXvhJqXHNzc+jv70c6nUZfX1/o1+NLhdmCDN3eFMBAwgzdnoiIqBsd73WT2lu2GbVSqYSHH34YV199dc3jV199NR566KHj7nfXrl11fb761a9u2WexWMTc3FzNHyIiImqM182TZ9kCtcnJSfi+j9HR0ZrHR0dHMT4+ftz9jo+PR+7zjjvuQH9/f+XPxo0bj/vnExERrXS8bp48y76ZYPGarGa7IZeyz9tuuw3pdLry59ChQyf084mIiFYyXjdPnmVLzzE8PAzTNOtmuo4dO1Y3IxbFmjVrIvcZi8UQi8WO+2cSERGdTnjdPHmWbUbNcRzs3LkT999/f83j999/Py6//PLj7veyyy6r6/Nb3/rWCfW5lJZxLwcRERF1uWVNePue97wHN954Iy6++GJcdtll+PznP4+DBw/i5ptvBqCnVg8fPoy//du/rTznpz/9KQAgk8lgYmICP/3pT+E4Ds4991wAwO/+7u/iyiuvxJ/8yZ/g2muvxb/8y7/gP/7jP/C9731vyV9P1Du2tilQkoCAgm2wCgERERHVWtZA7U1vehOmpqZw++23Y2xsDOeffz6+8Y1vYPPmzQB0gtvFOdUuvPDCyt8ffvhhfPnLX8bmzZuxf/9+AMDll1+Or371q/jIRz6Cj370ozjzzDNx77334tJLL13y12MIgR7HQLYkW+ZSswwgZi0EZQpASQKWYNkoIiIiWrCsedS61Ynmg5FKIe8qFBYVYzeEDtBMQzTd4CCgAzlWJyAiolMF86gtnWXf9bkSGUIg5Rjojxswy0fYMQUStoBRjr+azZopAK4EpGT8TEREdLpjUfYlZBkC/TEDRT9ayhEBwDA4o0ZERHS644zaEhNCwDEZdBEREVF0DNSIiIiIuhQDNSIiIqIuxUCNiIiIqEsxUCMiIiLqUgzUTgZm2iAiIqLjwEBtibm+wnTeh1IqdF1PBURqT0RERCsT86gtEakU5osSWVcHW3NFiZRjwBJoWpUgIKCDNVYnICIiOr0xUOswpXTpqHRRorq4gCeBdEEiZgmk7OYlpCwB1vskIiIiAAzUOkopfZuz6DdvU/QUSp5C0hGIVxVmN6BrfDJAIyIiogADtQ6SCi2DtIACkC0peL6PvrgJU/A2JxEREdVjoLaMfAXYrOlJRERETXDXJxEREVGXYqBGRERE1KUYqBERERF1KQZqRERERF2KgdoykkphJu/Dk6xAQERERPW467ODRDlZbbu4SymFoq8rFyj4MAWwvs/GYNxgHjUiIiKq4IxaBxlCYCRpImE1D7Y8qTBb8DFXlJVa7b4CDqZdPDddQt6VJ2ewRERE1PUYqHWYaQgMJkwMJ01YVUdXKoVMycd03kezWCzrKjw9VcLhORc+b4cSERGd9hioLRHH1LNrfTEDKJeWyrnhgq/pvA8FfYuUiIiITl8M1JaQEAI9joGBuNF23Vq1mCVgGYLr1YiIiE5zDNROAoNlooiIiOg4MFAjIiKijigWi8s9hBWHgRoRERF1xO7du5d7CCsOAzUiIiKiLsVAjYiIiKhLMVA7CeaLTGJLREQrX6lUWu4hrDgM1JaQ5ys8dDCHrzyWRrYkQ+dFK3oKJV8xjxoREdFpjrU+l8je6RK+vTeL+ZKeTfvv5/PY2G/jjEG7XBO0ccoOAWB1yoJlgHnUiIjolOI4znIPYcVhoNZhcwUf39mXxd4ZF9VhloKu53k04+HsYQcjKQtKqZpgrC9mYEOfDcdkgEZEREQM1Dqq5Cv83e40XF/fsmx047LoK/zsaBFDCQ/bRhzELAHbADb22+iLmSd3wERERNTVuEatg4qe1GvLQrSdzvt4brKEMwdtbB+JMUgjIqJTHjcTdB5n1JaRAtDLAI2IiIia4IwaERERdQQ3E3QeAzUiIiKiLsVAjYiIiDqCa9Q6j4EaERERUZdioLaMTAHsOpjDkTmXVQiIiOiUxzVqncdArYN6HAPbhvVJ2iplrWUAIykTMdvAWMbDD57P46GDOWRLrAlKRERECxiodZAQAq95QS9ef24vemOND21/zMC6XgsJqzaUO5b18a3nMnhyoghfcnaNiIiIGKgtic0DDn7twgFcvikBU+jZtbglsL7XQn/cgBCiro6nKv95cqKI+/dkMJP3l2PoREREx42bCTqPCW+XiGUIXLohiW3DMXx7bxayvAYtTKF1QwgMJsy6WqBERER0euGM2hLrj5t41ZmphrNozQRF2RmkERHRqYSbCTqPgRoRERFRl2KgRkRERB3BNWqdx0CNiIiIqEsxUCMiIqKO4Bq1zmOgRkRERNSlGKgtMaUUZiPmRGM5KSIiOhVxjVrnMVBbQtmSxLNTJaSLEqsSZujnzRQkDqVLUEoxaCMiIjqNMeHtEnB9hfF5F+niQu3OVUkTvTEDRzMe8l7z4CthCYz2WEgXJIpeCet6bSQdweS3RETU9bhGrfOWfUbtrrvuwpYtWxCPx7Fz5048+OCDLds/8MAD2LlzJ+LxOLZu3YrPfvazNf/uui5uv/12nHnmmYjH47jgggvwzW9+cylfQo3pnIdnJos1QVrAMQU29FlY22PBXBRzmQJY22NiQ59VSXhb8BT2zpTwfNqFVLwlSkREdLpZ1kDt3nvvxS233IIPf/jDeOSRR3DFFVfgNa95DQ4ePNiw/b59+3DNNdfgiiuuwCOPPIIPfehD+J3f+R3cd999lTYf+chH8LnPfQ6f/vSn8cQTT+Dmm2/GL//yL+ORRx5Z8tfjSYUj8x5ahVNCCPTGDGwZtDEYN2AIYDCu/783ZjacNZst+Hhmsoj5BsEfERERrVxCLeM0zaWXXoqLLroIn/nMZyqPbd++Hddddx3uuOOOuvYf+MAH8PWvfx1PPvlk5bGbb74Zu3fvxq5duwAA69atw4c//GH81m/9VqXNddddh56eHnzpS18KNa65uTn09/cjnU6jr68v9OtxfYWnJ4uh20eVcgxsGeS0MhERdZfguvnv//7vuOaaa5Z7OCvKss2olUolPPzww7j66qtrHr/66qvx0EMPNXzOrl276tq/+tWvxo9//GO4rgsAKBaLiMfjNW0SiQS+973vNR1LsVjE3NxczR8iIiJqjNfNk2fZArXJyUn4vo/R0dGax0dHRzE+Pt7wOePj4w3be56HyclJADpw+8QnPoFnn30WUkrcf//9+Jd/+ReMjY01Hcsdd9yB/v7+yp+NGzee4KsjIiJauZpdN7mZoPOWfTPB4jVZ7XY3Nmpf/fhf/MVf4Oyzz8a2bdvgOA5++7d/G7/+678O02yeHuO2225DOp2u/Dl06NDxvhwiIqIVj9fNk2fZ0nMMDw/DNM262bNjx47VzZoF1qxZ07C9ZVlYtWoVAGBkZAT//M//jEKhgKmpKaxbtw4f/OAHsWXLlqZjicViiMViJ/iKiIiITg/NrptMeNt5yzaj5jgOdu7cifvvv7/m8fvvvx+XX355w+dcdtllde2/9a1v4eKLL4Zt2zWPx+NxrF+/Hp7n4b777sO1117b2RfQITLiXo6o7YmIiOjUtay3Pt/znvfg7rvvxhe/+EU8+eSTuPXWW3Hw4EHcfPPNAPTU6q/+6q9W2t988804cOAA3vOe9+DJJ5/EF7/4Rdxzzz34vd/7vUqbH/7wh/ja176GvXv34sEHH8Qv/MIvQEqJ97///Uv+eqLkoy35Ck9NFvHQoTyemiyi6LVOveFLhcmsh4cO5vHMZBGuz4CNiIi6C9eodd6yViZ405vehKmpKdx+++0YGxvD+eefj2984xvYvHkzAGBsbKwmp9qWLVvwjW98A7feeiv+8i//EuvWrcOdd96J66+/vtKmUCjgIx/5CPbu3Yuenh5cc801+Lu/+zsMDAws+euxDIFN/TaOzLtoFncppXOtHSgnsQWAyZyP6byPzf021vZaMKoiPqUUir5Ofhs4lvUxlctjy6CD0Z7GudeIiIjo1LesedS61fHmUQv4UmEi62EyV1uMfa7o47mpEnJtSkidNeSgP27C9RXynqoEdI2kHIGzh2LoiS37vhAiIjpNBdfN+++/H6961auWezgrCq/uS8A0BNb02jhrlYOkret0PjtVxKNHiy2DNADIewqPHStiPOMh67YO0gAgW1J49GgBOZdVC4iIaHlxM0HnMVBbQnFLVxIYiJs4mvXbP6EsYQnErfBvTX/cQNLmW0lERLTS8Oq+xIQQ6I03z+HWkZ8BrlEjIqLlx80EncdAjYiIiKhLMVAjIiKijnj88cexa9cuFIvF5R7KisFAjYiIiDrivmdd/M5f/jN+8pOfLPdQVoxlzaNGREREK8fI2S9C+sje5R7GisIZtZNgJaSqWwmvgYiI6FTDQG2J+VLBV4AhEHpvpq+iBUalcjmpsM8J2kVpL4RgsEZERHSSMVBbIkop5F2JrKvgmAauPqsHg4lwaTocU8A2BcyQkV3Bk9g3U4IrVctgKvi3vKswmXXbBoSVgA6AlNGCOyIiOv1M7n0c6cN7lnsYKwrXqHWYUgqurK3NCQBDCQuvPqsHe2dK+MmRPDypA6BqpgDOHHKwpseqzGAVPIWc2zg4EtAlpBxToOAp7J12MZQ0MZw0IYCaGqBK6Zm9qayLfLm/bMlFf9xEf1zH64vbA3pGcOGxcuH58r+xxigREVV7/Vbgkhuuw0UXXbTcQ1kxGKh1kFI6qPKbTDoJIXDmUAwb+mz8dLyAPdMLpTbW9JjYOhiDXTWNJoRAwhaIWQrZkkSpqrhB3NL/VlPAHcBUzsdcwcdoj4XemFkJuNIFiXTBrwkOFYDZgo9sycdQ0kLCFlW3ResDyerHDbHwmhmwERERAJx33nm47LLLlnsYKwoDtQ5SQNMgrVrMMnDphiQ299t4arKI0ZSFvhbVCwwh0BvTRdqLvkLcErCM5sGRK4Hn5zz0ORK9MQNzRR9ei1KgrgSOZjwMJUz0OEbDAG0xqQChFBijERERLR2uUVtGQ0kLZ6+KtQzSqtmmQI9jtAzSqmVdiel86yCtWslXkFyDRkREx+nxxx9nstsOY6BGREREHfFXDz7LZLcdxkCNiIiIOmJgw9nLPYQVh4EaERERUZdioEZEREQdcXTfkyiVSu0bUmgM1JaRANDrGAi5NwBSKRQ9GTrpbMlXmMp5oTcIeFJhvhi+/6KnkCmFb+/60cYvld7cwCS7RESnBj8zs9xDWHGYnqODRPlPmLDCEkAyJjAQt+BLhYmcj7li4+2ZixPfCqhKottGOcykUpjM+ZjIeFAAnDkXmwccDDTZXaqUgieBfDlJ71Re52FL2o3jeF8pzOQl0uXxxkyJ0R4Tcatxe6kUMkWJQjl3iWUAfTGz6e7VYDzB0RAAbIP52oiIut26HZfDcZzlHsaKwkCtg4QQ6HF0VQK3SUoMA4BjAqaxkFzWEMCaHgsDcYmjGR/FqmRsrq+T3VbnZ1MAMiUFy1DocQyYVQFPpujj8LwHt+oJJR94dqqE/riBzf02YuWASikFqYDSorEGedh6HYGRlFUJqJRSyJQUJvM+qgoWoOgrHEx76IsZGEmalfEEAWamJGuCV08C03kfCUsg5RiVpL1B9YTFuegU9BhNoWAKVkQgIqLTBwO1DguqCThSIe+pmoDGMfRsUnXb6v/GTIFN/RZmCxITOQ/zxdpqBIt5EpgtSCQsAcsAxjNe01k5QFcneKxQxLo+C6Mpq2bWqpH5kkKm5GI4aSJpC0zmfBRajGeuKJEpSYwkTSQsgYwrW+Zwy3sKBc9Hb8yAbQhde7TFeIIgzjIUTAZrRER0GuAatSViGgIpWyBu6YAiYekgTYjGtyuBhX9L2QKz+dZBWrX5ksSzU6WWQVogKDNV9FXLIK26/UTOx/PzrYO0gFR6tmymEC7RroIO2Lw2QVrNc7hkjYioKx3d9yQee+wxJr3tIAZqS0gIvY4sVa7JGfaWXdFvXi+0EU+q0EEOAMQtI9LtQ12HPfxPMMPujiizRLT+OZlGRNSdEvE4Pvedp5n0toN46/MkMARqboESERGtRFsu/0Wkj+xd7mGsKJxRIyIiIupSDNSIiIioIw4+/t8Y3/M416l1EAM1IiIi6gg/fZTr1DqMa9SIiIioI7Zc/ouwEylM7nlsuYeyYnBGjVa8qCWolro9ERFRWAzUulDcEoiZ4XNQ2IZAhObIuRK+DF9DUyFKSgwFr7zFNXQN0AjtlVKQ5bGHbd/o78vZPmjHAI+IiNrhrc+TQAgBAzrXWatrc3DhFkJg+2oHRzM+xue9ljnShABGeyxsGbTx/JyHw3Nuy3qjhgAGEyZcqWAbelytcqoZAkjZBiwTyLvNS2MF49flrSSyJaAvZiBh61JZrX6GJ/Vz4pYB20TD9sFjeVfh8LwLA8CmARs9jtmyfdFTmCn4MITAYMKE06b/+ZLE0YwHxxRY22PBNhuXrArau1IXpzcNpZMbN3mtleAM+hwQSkGIxmMhIjpVHXz8v2E5cbgz4wB2LPdwVgQGaieJEKIcQKm6nGrBxVoqoFwXHYYQWNtrYShh4FC6cWmoHkdgVdKqJJg9Y9DB6h4Le6aKDdsPxE0MVdXi9BQgyiWZjAbBQsLS5bCCQCLlCHhSF4evfg1BEOJKVVONYKYgkXMV+uMGzDYBoVR6ps/ygYRt1AQ8QQ3Q8TkXs1XlEZ6eLGEoYWJjv13Tf1DDdCbnVQrNAwpHMx56HAP98fr+XakwPu8iWy5870mFPTMuViVMDKdMCKCu/4K7UINVB5sKMVPAMRcC7upArOaYoRywCVSidwZsRHSq89NHkZmdxK3XX4mLLrpouYezIjBQO8mE0Lcpg4s9oC/art+4ukDMMnDWKgezBR+HZl24Uhd1H05ZiFv1d66TtoHzR+OYzPnYO12EJ4GYJTDaY1WKsVdT0EXYDaFn2ABd6mpxsfeAZQj0OkDR18XnAV1/s9n4i77CsayPHkeg12lfEcGTwHxRIm4JOKZ+bDrv42jGa5g0eDrvI13wsa7PxkhSP2G+JDFXkA3HkylJ5FyJgbiJlCMglcJUzsdUzm/YfirvI130MdpjoS+mZ++Kvmpa3qvo61nHuCVQrh6mb9U2eb2qXDorONScYSOiU1mQ8HbHjh2IxWLLPZwVgYHaMhH6vhdKTQKcxQbiJhLDAtN5HcS0upgLITCSsiqF1Nu1B/RsjyH0LJ1ltO8/bgElTyHrNg6IFsuUFEyhkLTDzRwVPIWjGRcFDyi1qaflK+BQ2kXBlbDKxd1bCeqRHs148JVqW5PUk8DhOQ/oLc+StRm7nh1USFrhgy6pAFNwVo2IiGoxUFtGQoQvRA7o26EJO/z+D9OI1l4ItA3SFrePMv6oS+c92T5Iq+bKaLNRYYPkgF8OpoiIqLGDj/838tPjeKycneOiiy7izNoJ4q5PIiIi6ogg4e1Xn3bxO3/5z0x62wGcUSMiIqKOCBLeAoBh2cs8mpXhuAK1559/Hl//+tdx8OBBlEqlmn/7xCc+0ZGBEREREZ3uIgdq//mf/4lf+qVfwpYtW/D000/j/PPPx/79+6GU4lZcIiIiog6KvEbttttuw3vf+1787Gc/Qzwex3333YdDhw7h5S9/Od7whjcsxRhXJKUU/Eb5Jlq0l0qnzgj7pvU6Bjb3W0jZ4VbAWwJwfUCGyrCvNx70xYxQC+wFACfCSnyldLqQlC1CvV6lFGbzPqayXujjqnOehd2VqTCR9TCd90Idn4InsW+2VE4r0r59piSxZ7qEiawXqmJByVeYK/goeLJte6V0DrlHxvI4mmnfv1IKmZLERNZDvlWG46r2rq9Q8GSoY6/PZRW6OkZQjSJKNQ0iWh4HH/9vHHj0Bzjw6A8wvufxurtuFF3kGbUnn3wSX/nKV/STLQv5fB49PT24/fbbce211+Jd73pXxwe50shyWo6wcZpUCiWvnG8LgGmKlmklbEMHaUHatL6YiZmCj/GM1/A5lgH02AYMEeR003nVLKM+XUSQ90sqwDYBSwnEEibynkK21DhVR8LSAZ0RIv2EKr8u11ewyqWxYqZAzlOVvG2N2i+8LoWs62EwYaCnTd420wBM6ICz5Dc+nkGyXV/pXaU5T2G+KDGc1OlPFvfvS4XJ3EKC4rmih6m8j419FnpjZl3/rq8wlvGQLrefL8lyexsppz5E9aU+zkH85JYUCoZCj2PAapD3LluSeHqyiJmCfsJ0vojBuIFtwzEkG/Rf8hVm8l4lT1zB8xG3JAYTZsP+fVmbYqboK5hSwTEb7x6uzh8IlJMAK9Xw3AiCssXtg6oOTGVC1H389FHA1rs8/fmpZR7NyhA5UEulUigWiwCAdevWYc+ePTjvvPMAAJOTk50d3QoTZMBvl7ertj3gV7UPLk4GAMdAJYgA9KxVr6NTcixOnDoQM9DnODia9TCVl5U+krZAzKpvLxVQ8oOqBUGWfSzKUSYqNUATFhAzTWRKEsVyI8sA+mNGw/4bqVz0q35G8JykpQO2rCsrx8+XCq5fn/ZDAZjOS8wXJVYlzYaJfqv7FtAJaj2pUPSCUl8KEmj4XvkKOJr1kLAEhpMWbFNXIJgrSkzm6hPzlnxd5WAgphPzOuX2U3mJ8Ux9ibCCp/DsdAlDcQPr+mxYhm5f8HRViPrjBqQLOr9ewhYwhIAvFfbNujg469a1ny1I/OD5PDYP2DhjwIZp6MS/6YJEplT/gguewti8h/6Ygd6YUam4UPJVw5x1vgLynoJtoBLsLw7QFpMKEFCVChCt2gdVHQywogNRt6neTDC55zE4jrPMIzr1RQ7UXvKSl+D73/8+zj33XLz2ta/Fe9/7Xjz22GP42te+hpe85CVLMcYVYfHMQzteOQhpJrg4mdCBlGUI9Di6TFX1v1e3N6CwtsfCQEziWM6vVCJo1H5hHDqQMQ1Vvow2H48Bhf64iZIvoZQOAtv1D2Dhot8igBVCwIRCf8xE3vUxW2gcJFRzJTCe8dEX05UI2l3QTaHHXPQVcm77vG95T+HQnItex0DeXQhQm5ktSqQnihhOmsi6EsUW7y8ATBckZotFrOu1YJZLjLVS8HSgWfAk9s64TccTPLp/1sXYvIezhmz4Cm37TxclsuWqDmHO4+BLiVM/kdh4XOXZWqHC/Z4E421Xr5aI6FQWOVD7xCc+gUwmAwD4wz/8Q2QyGdx7770466yz8MlPfrLjA1wJgrJDYUnVOkirJoSAJRR6Y+1nrSr/JgQcM9ryRBnUpWwzFkDPfIW5zRlw2wRpi/vPuYtn9lprVGqrVf8FL1y1hUB1/dF2FHRZqrDHRin9pJCTsCj6Ck9Ohl8TEpQQiyLKsTme8Gmp+yeipRMUZQeA+fH9lcS3AJPfHq/IgdrWrVsrf08mk7jrrrs6OqCVKOry56jrpSu38LpkViHqOCIfn4jtowSNx9N/VFHGEnUtVpiNC9UaLDtrO55oT4jYPqruOOWJqKx6jVqQ+Pbv9zyG9OE9uPO3gMsuu2yZR3jqOaGEt5lMBlLWfh3v6+s7oQERERHRqal6jRp1RuT0HPv27cNrX/tapFIp9Pf3Y3BwEIODgxgYGMDg4OBSjJGIiIjotBR5Ru0tb3kLAOCLX/wiRkdHu+Z2GxERES2v6jVq1ebH96NUOmcZRnTqixyoPfroo3j44Ydxzjk84ERERLSgeo1azePMqXbcIgdqL37xi3Ho0CEGakRERFSj2Ro15lQ7fpEDtbvvvhs333wzDh8+jPPPPx+2bdf8+wtf+MKODW4lCMrlRLHUN5O7rQzPUm8kVAqhEu6eLFHGEnkH8HGMJ5KI49HnWrTSYUCEna7Ruo/c/6nePnhOt5z7RBRd5EBtYmICe/bswa//+q9XHgsyiQsh4Pvhc0qtdEF2dQEBU7RP0BoQQpeBCpPfSpVzruVdnZleP791ctm4JXRy1AhvlWWI0ONXSpdnCtNcKQXDQPhEYQD6YgZ85VfKHLWTLkoMm2bbxKjBORwzBfINylU1Y4j2yWKrxUwBV4Y8PgDmiz56yuWe2l1wY5aBdb0WxubrKx40UvAUciWJhB1UmWiXmBjIFP1Keat2x9NXgOtLpJz2ef6CShx5V6I/boZq7yl9vsVtEap9UPmiXfsgIMp7qly5Ai1fb9BX0dcJqO0G5dcatS94CrapkzmHaZ/3JBzTCN2+6EnYpgAYrBGdsiIHam9/+9tx4YUX4itf+Qo3EzTRqPyNZQiY5QtRqwtoULxcWLoMUM5tHOAFH8RSAZ4CSiVdh7LPMWCb9d+ia9sL9MRMxHxdfLtVkJGwBVKOAUPoepjZNu1jJioBo69QKcnUaPyALn/kKwFDBKWbWhwcALapyyT1xQ3MFiQms37T4ykAJJ2FwMs2FrLkN6orqaCDkAZVlFoKqjIEmfWbjt0QGO2xkLAN+FJhKu8hU2r+DFMAPY4B01i4oFui+QyJriABrO+zsSpp4uCsW6kh2kjSEhhOmrBNfV4YaJwnLfh5rlQouApzRcApSIykTMSs+oAn+P/5osR03odU+jxa22PBMZvX9Hx+zsP+WRe+AoYSBl4w5CBmNW8/U5CYLejkxD2OwOqU1TCACd7bYxkPUzl9vgzETazttRoG78Hv7/4ZF2MZDwCwttfCGQN2y/ZH5/XxFgCGEiaGU2alJNbi9r4CjmVcZEqq0n4o0Tj4DUrPjc+7yLo6EBxJmhhMmHXtg2PjSSBd1DVbDaFr/6ac9sEs0YniZoLOEyrifbBUKoXdu3fjrLPOWqoxLbu5uTn09/cjnU5HzgsnlWobbDQrqG4ZwcWy9oNXzzIsBDzBhcdrEvQlrNpyUgCatm9WQ9IygN6Yvogvbp/3FPKL2wt9MTaN+vYlX1VmByszr01qnjar8WgKwLHqC317UmEi42F+UcATM4FkOcCsJgDELFGpnxkoeDrQPVGNxi8ArEqaDctYFTyJiaxXM3sqUK7B2qCwuSHKgTxqzxNT1CfHVUphtiBxYLZU079ZvtA3Kvqu+y3/varmZt6TDatH9MYMrEqYNQFeyVeYzPoNq3EMJUyMlAOY4GekCz6emSohu+icMgSwsc/C5gG7pn3OlZjM+XUzzsFxHowvvK6g//F5t669KYDRHqsS8ATtj2Y87J8p1bW3DWDLoIPVPVbNuTNT0O9h/ZczYE2Phd6YWdc+CBgX9z+aspAszz4C5UoWOb9h+5gpsLbXqtT2DdrPF2XdsQz6H4ibqC7UwaCNOiW4bl74xt+F2WAzQWbiMD77oZvw8pe/fBlGd2qLnEftqquuwu7duzs2gLvuugtbtmxBPB7Hzp078eCDD7Zs/8ADD2Dnzp2Ix+PYunUrPvvZz9a1+dSnPoVzzjkHiUQCGzduxK233opCodCxMTejQgRpAGAKAcfQFwr9/yj/f/2FWQgBxxToiwlYRtXtpBYzc3lPYTK3UHuyVXshdBH3gbgBxyx/+44ZGEzUB2lB+2S5vWUsBBUppz5IC9rHLAOJ8iybgi4Z1awwvRC6H0OUgwbowCpmGw0vKpYhsLbPxoZ+C5ahZ5T6YwZ6YmZdkBb8/IKnkHf1zKAr9a3RTgRpwfiNctBkCqDHFjhjwMFgwmo4/rhlYEOfjaGEoV+rCQzEDcStxq9XKj1+rxwV6DqvgGE0PncGEyZ2jMYxmjJhCt33pn6rYZAG6OMjVfBH1w7NlBoHaYAOCg6mXcyXJHylg4rDc17TkmnTeR97pkuYKehA7qnJIh4ZLzYMLKQCDqQ9/OhwAXNFCU8C4xkPY5n6IC0Y+2TOx4G0h1y59ur+mRIOpeuDNED/XhyZ97B3uoRsSdcxfXS8gGen6oM0QJ8rz0yV8Nh4QZ9DnsL+WRdHM/VBGqC/GD0/5+FQ2kXJ119uDqRdTDYIuoL+n5/3cGTegyv1cd87XWravujrn39kXs9C5j2FY1m/4bEM+p/I+ZhrMctKdKK2XP6LOPPK6+r+rH/RldxMcJwi3/p83eteh1tvvRWPPfYYduzYUbeZ4Jd+6ZdC93XvvffilltuwV133YWXvvSl+NznPofXvOY1eOKJJ7Bp06a69vv27cM111yDm266CV/60pfw/e9/H+9+97sxMjKC66+/HgDwf/7P/8EHP/hBfPGLX8Tll1+OZ555Bm9729sAoKtqkeoaneHfACEEbBNNP4QXUwBybvjbHKYh0BczQ5csMg1Rri8aqnuYhoBAtBqmtqmD1zCLxZO2gVVJs2kAuJivdIC2FNsqhNAzXlsG7FDHUgiB/pgJEWFVvCf1bd0wTENgXZ9dWecWrn890xqGVMBk1gcQ7s31JLBvxq2bBW2m4CnsmXHRF2scvC5W8hUOzLqh1w3mPYXHjxVD1zxNFyWenSo1/CLTSKYkkXNl6N/FTEkiHaF+bLogoZQXuv+cq9Af50wa0aki8q1Pw2j+YR91M8Gll16Kiy66CJ/5zGcqj23fvh3XXXcd7rjjjrr2H/jAB/D1r38dTz75ZOWxm2++Gbt378auXbsAAL/927+NJ598Ev/5n/9ZafPe974XP/rRj9rO1gWO99Zns9t2nVL09a2ssGwDTWdOGglue4X9wA9zm7datiRDX/wBPVMUNlADgHTBDx2oAfqCvpT7X8MGaoA+d6LMdAgAfXGzbbuAJxXmIlz8owRqxyPnytCBGqA3kIQN1ADA81uvpVwsW5KRitP3xYzQgRoQvd6sH/GDJMqxEdBr7og6KbhuXnzT/2i6Ru13rj4PO3bsqHmchdrbi/zburi25/EqlUp4+OGH8cEPfrDm8auvvhoPPfRQw+fs2rULV199dc1jr371q3HPPffAdV3Yto2Xvexl+NKXvoQf/ehHuOSSS7B371584xvfwK/92q81HUuxWESxWKz8/9zc3Am8MiIiopWt2XWzWcLb6gLtARZqD2fZvlZNTk7C932Mjo7WPD46Oorx8fGGzxkfH2/Y3vM8TE5OYu3atbjhhhswMTGBl73sZXr7vufhXe96V11AWO2OO+7AH/3RH534iyIiIjoNNLtusih750UO1O68886GjwshEI/HcdZZZ+HKK6+EaYa7LdNoK3qrKfxmW/WDx7/73e/i4x//OO666y5ceumleO655/C7v/u7WLt2LT760Y827PO2227De97znsr/z83NYePGjaHGT0REdLrhdfPkiRyoffKTn8TExARyuRwGBwd1CoDZWSSTSfT09ODYsWPYunUrvvOd77R804aHh2GaZt3s2bFjx+pmzQJr1qxp2N6yLKxatQoA8NGPfhQ33ngj3vGOdwAAduzYgWw2i9/8zd/Ehz/84YZr7GKx2LLdI1eqce6qxm2jrxmK1r/+b9T2occSrXlk3bY8Wh+fKFUIomWdP54s9VEILO17tpT9Bzuwl+rYRO1fKlWXeqdd/4jQ3pcKZpsku9VcX+ld22HX/ElVTgETvv+wa/iCtb2Ndo03a6+Ahru6m7UHoh37pex/pVjO6+bpJnKg9j/+x//A5z//edx9990488wzAQDPPfcc3vnOd+I3f/M38dKXvhQ33HADbr31VvzjP/5j034cx8HOnTtx//3345d/+Zcrj99///249tprGz7nsssuw7/+67/WPPatb30LF198cWX3aS6XqwvGTNMsf7AudagQnlJVe+QUYKJ1gOSXF3dbxkL6hFYMoZPD+goQCpWUES3Ho8pjUe0/9KMeyyCdhGMGSW7bj98I8nOEELcEVg06UACOZry2C/NtA0jZBiTCLSRP2gIp24CvdEoKt8UbIBBUT4A+noZq+aEvlUI67yPn6WSmMbP9RUsBmCtKmAJI2EbL9r5UyIUt44Ag5YqBvrhA3pXIlGTLoNwIxiD0Bo12mxAMAQzFTYwkgdmixEy+9e7bmClC71hV5ZQi6YKEhH7f4g3y0VUTAHpiuv9cSTVNLRIwDZ1k2vMUHBMtAxilFCZyPsbmPVgGsGnAwUCLTSCqnGMxOB/tEOfOXEHiUFoiZgms77ORtJsfK9dX2DdTwnczHlYlTFyyIdFyPEVP4unJIsYzPoYSJraPxFpuUMqWJB4Zy2Ns3sP6PgsvWpNAskX7kq9wNOMh7yn0OgIjKQtWi3O56OkcdCVfoTdmYCButjz3XV9hrujDVwu/w63OhYInkS7oVDO9jqHzUbapXhF8FAiohgmOTzfNEt42Mj++H4+Vl6xxU0FzkXd9nnnmmbjvvvvwohe9qObxRx55BNdffz327t2Lhx56CNdffz3GxsZa9nXvvffixhtvxGc/+1lcdtll+PznP48vfOELePzxx7F582bcdtttOHz4MP72b/8WgE7Pcf755+Od73wnbrrpJuzatQs333wzvvKVr1TSc/zhH/4hPvGJT+Dzn/985dbnu971LuzcuRP33ntvqNd4Iglv2+38DLLXN4oLDNQmHA36y5dzNlX3AegPiEY/yjEFgs/q6g+NSm6ymv6b92MZ9bvVou5sDXJxVV/7Kgl7/fqfK7CQFywMywB6HZ3zrfqbbbYkMZ7xUFp00TUEyhfu2tJnJV8h69bvFHRMgV7HqByHhdI/smFVh4QlMBg3646bAOqCX6V0ouF0oXHyU6dNgFEtZgrEFiUEDpIZ5yNsZ7RNUUmIGrxeBX0BXpzkGNABslOeOaluX3BVw2A2ZorKexW095XOf7Y49YzO+2ZWEsC2OxbBztbFgZYpdFDeaIan9n1SAAS8csWOxfGaEDrf4eJzM0hCvDigypQkDqXduvH0xQxs6rcRs2oDGF+qhjuRDaBu9iv4XJgpV36oNhg3MNpr1wQ8SumAaM9MqbIzOpjRPGeVgx2j8ZrjI5XC82kXz06VKp8Pwb9uGbSxZdCpCZB8qfDMZBFPTBQrn3HBZ815q+N4wSqn5rhJpTCd9zGdrz03BYCRlIn+RbtYpdKvdX7RFzBD6CTKKae+faYoUWjw+9/jGHXJpH2pkC7W70o3BdBfzmtYrdXnYNQdvitFu4S3zfSObsL80YO487eu46aCJiLPqI2NjcHzvLrHPc+r3JZct24d5ufn2/b1pje9CVNTU7j99tsxNjaG888/H9/4xjewefPmys86ePBgpf2WLVvwjW98A7feeiv+8i//EuvWrcOdd95ZCdIA4CMf+QiEEPjIRz6Cw4cPY2RkBK973evw8Y9/POpLPS6tyglJ1bqkZfBvRnkGrFKyqe5nlNuV/z/4LLKMxlnrq38+oGfvgIXkps14shw4maryoR42rA8qKiwOlBCMTSk4Vm2FArMqCXA7Ajr1SJBIt9JvWdIW2DpoYyrvl3N8lQNYs7aMTvBf2wAGYkYlKA4+0OOW0bB9zBSIJUxkShL58kznYNysa185HtDH0xQKQui/zxS8pnnlXKkDD8esv0g3UvT1RT5RDkhcX7Yt91XNFIBt1Z87wXvVGzMRtxTmizoFim0IxO3G7YVSSDoGPLmQWNgy9DGr6bf8XxMKa3qsmooDPY6B/rhRU5GgGaV0YJVpUvvLV8BcScIpp6sxRDlQr+tX/9009MW5WK7YoaDPj2azzEESYstQsA0BTwJH5l3MNEmlM1eUePxYEWt7LYz26I/gkt/8wi8BlMrnjhmcO/nGlR8AXfkgXSxiTbnqQtaVeGayhPlFxyd49tNTJeyfdbFzXRyb+m2kCxJPTBTrjmfQfu+MiyPzHraPxDCSsnA04+HhI3lkG7RXCnjsaAH7ZkrYuS6BkZSJrKuDxoal8QAcy/pIFyRWp0zELf2la7pBQAqUc/jldAC3KmXCLpdby5Qaz9JKpY+/Xa68Ygqdm7LZDLyvgOm8RNzU9WcN0f5zUJYbnK4B2/FsJjAsu32j01jkGbXXvva1GB8fx913340LL7wQgJ5Nu+mmm7BmzRr827/9G/71X/8VH/rQh/DYY4+16a07nciMWrXgW5cqB2hhD7SeaZGRcoLZhs7ov1S1/Ewj/BowqVRNyatWFp9+YcZuG6JyEW/XPriIz+T9UP0H4wlmC8Lc/tUzLe3bBzIlv65kVyvBLFQYi2/HhOFUldRq93qV0kFF9exiu/a+an37bnH7ogw/K+H6CjP5xhf9RoKAGgh3LnjlWa4w7QF9W/xog3JSzaxKmFjdE/77cq5FQNpIydf56oIvWmHGA4RbP6g/31TLerXVBIDtq2OwzfC5HeNG6y+3i6UcI8LnbPsvq9UsoWvQRvl8PZ2CteC6+fpP3R85UJvc8xj++LodnFFrIvKM2j333IMbb7wRO3furKwL8zwPr3zlK3HPPfcAAHp6evDnf/7nnR3pKagyu4b2a7Kq+QqRgjRDhAssjpcAau99tOFGSCR7PONNNpjJadV/lKzwCyWgwvUN6NthURYqRwnSAERKrApEC9J0Capw544QArLB7GKr9goKRsgTRwgBCb2mL+zJlnfrb1G2krAaFz5vNh4/4hefZjM/zQwkwictBlA3a9WKUqqSVDjMkKpfZZj2UiF0kAbodY9RgjSBaEGaaUTbnBIlSAOAuB3t9/A0ic/qRFmjFuBatdYiB2pr1qzB/fffj6eeegrPPPMMlFLYtm0bzjnnnEqbn/u5n+voIE9lwcVqybc8nmaiXDy7aA8JhXL6XOFOn1eKk/Jil+qOAoXXLOFtK0Ey3C/81z8zAW4Dx53wdtu2bdi2bVsnx0JERESnsBNJeMu1ao2FCtTe85734I//+I+RSqVqEtw18olPfKIjAyMiIiI63YUK1B555BG4rlv5ezOcciYiIjp9Hc8atUD1WrUA16yFDNS+853vNPw7ERERUeB41qgFFhduZ9F27YSLss/NzeHb3/4216wREREdp6gbIaKWujpZWJS988LvlS574xvfiP/9v/83ACCfz+Piiy/GG9/4RuzYsQP33Xdfxwe4EkT9NYr6ppyMXY1RPgvEEm/v8lX4ElZKqZYlaToh6uGPOhyl1JK9yVIF+cuW6CSK2m3EcUQ9llHSMQDlfGIRxmRHy7ahKxFE6D/q643SXKeriDKecuqPkO1LnqzkXgvVu4rWv5QL+f2Won8/Yv/BuR/l/Y0ydiEECq7OudlN5RGp8yIHav/1X/+FK664AgDwT//0T5Wi7HfeeSc+9rGPdXyAK4EQuqRT2A9N0xDojxmwQr47QUb/sP3r3FkhG5eF+RwI4gnTQOTgKErrbElWPpxafUAF3zitCMce0Mlrwx4fAf2NNvyxF1jTYyEVMieTQDm4WKJvzVIB2dJCia9mx7P6cSlV+2MftIWustAu1gz68tTCBb3te6sUokaCYTP8LSRzDWqdhgtg1vZaWJVof/IE/e2ZLuJY1g/1eqVSiFnhgzXTEFjfZ6EnxLkW9D+R9aoqHrQ+F4o+MJXz2tZGDdpP531889n5SvLpdufaVN7Ho0cLujpEm2MDAIfSHr5/IBe6/eE5Fz87WmgbLAfvzaG0h6cmivBk64BKlo/lkxNFPDpegK/QMjgNjv1kzsdUPty5AKBSFSXvKswWZMMqMLQyRL71mU6nMTQ0BAD45je/ieuvvx7JZBKvfe1r8b73va/jA1wpDCFgG7pSQaua1ZYIslkbcMzW5VAEdDHsoMRQUDfRb5El0q6qVWiI9u11welQLxFAkNhXBzqmAFzZujaogYVNKEqptgkug/YFT2ddT9kGHKv2tkHw97ynS8NIpV9zuzqltgHEbaNyK8GXukB3s+csrscplWp5LHUJKz3+uG3okklZr2ly46Bma9hqCo3KljVur//rq4WEopmSgmMqJKz6igNBwFuqSi6rVBD81mftr7SXCzNYrtLng1H+/8X1bKUCclX9e54ux2QZtf0HY3OlrpEaNjF0UDKo3ReIoP+cqzCZW6h4UPB89MYMxBscn0Dwe7u6x0B/XNeabZTcOCi8HgQ4B9MuJnMezhhwkHJE3bkMVBe71+eQVKphrdxAwhZIlGu/Jm0D2ZKumLD4eFUCZLlw7k7lfMQtiYG4CUPUnwtSAWPzLqbLAVfG9ZGyZcMat8FrPZguVdr/8xNz2DYSw4s3JGEtKjqvlK4E8exUEVPl9seyeWzqt3HmoN2w/6yr8NOxPCZyuv2htItzV8dw/mis/L7UHsv5osRjRwuYLZf4Gs+4OGsohs0Dds2txMrniKtweN5FsfzBfTTr4awhB+t69eVz8bk5kfXx0/FCJTnxwbSLC9bEsWnAafg5lSkpTOQW3pu5osTqlIWeBueCEAJFXyFXqv3KIZV+XXa5TFqrQvVL7UQ2EyzGRLha5BJSL3jBC/Cxj30Mr33ta7FlyxZ89atfxVVXXYXdu3fjla98JSYnJ5dqrCdNp0pINVMJqKqOvCmCoKhRLcH6AsONinBX9+/J2ts8lVm3Ju3dRR/6jQq4N34twRibXzSkUnXVCkTwp8l4Fl9/jSZtAVQ+nILPJk8C6aKPUoM6mkEQUX3WGyIIeJsfy+pZA0Po49/owzC4kMlF723Mri/aHbSfLSyUuKq0txq3r34esFAtoN1vcfW/SzSvlCGgC63HLFF1EdfVJpoRQl/cqtuH+TIStM97Cs0S7gvogDUoj6YAzBV85Fv9gEXP743VF+FerHrskzmvaf8xU6AvZtQEDM0qWSilMF/UAVtw+NoF/8NJExv77crvanW91Eb9L/6i1epCrQuby0oAFIyn2XsbHLseZ6Gaw3Tew9h845JdAsBA3ECvszCjeDTr4/Cc23D8cUvgkg1JvGA4VnlvD6VdHEw3bh8zBc5Z5WC0x6r8nj01WcKzU6WGnz09joFL1sexts+uHKunJoo4MOs2fL09joHzVscwkLAq7cfnPcwWGhfk7YsZ2DbsoDdmQimFoqfw0/ECjszX18IGdLH5nesSlePpSR30NatUkrIFVqesyuy+r/TdhDBfTnpj+ov+yXS8RdnbYdH245hRu+WWW/CWt7wFPT092Lx5M17xilcA0LdEd+zY0enxrUhCCH2xKn/YGKL1glBDCPTFTcQ8PdXtNAkSqvu3TX2LSqrmxaRr2+sPJlmps9j+dQQfpu3W/RhCwDH1t3apmgdo1eMx1EJg1669K4HZgv42qaCLLLfqW0DfArMMoYuRt7iIB8fSMvSshiFEyyLpQojyzJGur2gaouXxF0JgMGEiZQsczXgwDRH6trGCfo/DtlVoHVAH7fKevnjHLAEvRDkwpfTMKYQOGtq19xQg/eD2Wev+VbmNdPWscrbJ7PJiOpDWZYvCLLaeL0m4vp6BbdV/0VeYyPkYSZqVW+qt3tu+uImUY+DJiSJcqdpeZCdzPmYKPrYNxwCl9HFtIvgcMYUuAG4bRmXGthFDCKxK6nNt74xbvkXXfCwKenZnvujDNg2ki61r1CqUC8KXfxcnc60D6oKn8F/7szgwW8S2kQTG5t2W7Yu+wqPHiuhPuxiIGdg707p9piTx7X05bBm0MJK0sH/WbXl7MFOS+OHzeWwZtNEfNzGVa10ObK4o8aPDBYwkTZgG8NxUqWU5s4msj//3XAYvXp9AwjaQLrQ+17Kuwv5ZF2t6TD2TFvLLCaC/WJ3sQC2wFJsJTvdEuJEDtXe/+9249NJLcfDgQfz8z/88DEOH+1u3buUatYiMcl3JsOyI9yENQ4RehBjUJRUR166FXZwtIr7WIKCKIhuyEHzQf7uAd3H7mBV+RKIcnIbdxWWbArGICwejrh+OWm+21Sxa3VjQ+hZ6w/4jrOwv+artWqhqtrlw6y+MvKuQdSPU0UT43XamIaAQvn6vL3UN07ABu769Gf612qaeqQvLk8BkvvEsUSNFX2E803gWqpGJrA/HKoVuP5nzcXgu/HiOzHmYzvmhj89kzkfRC78D82C6dQBYTSngaMZHfzxc//rLiYq8SYVWluNKz7Fz507s3Lmz5rHXvva1HRkQERERnZo6uUYtsDgR7um2Xu2E86gRERERASeW8LaZ6kS4p2MSXAZqRERE1BFMeNt5kfOoEREREdHJwUBtGUmlUPBkpEzdUTKHK6Xgyyjtg0z1oZpHXswetX3JV6Eztx/PsXH95qkJTpRSCnNFH8WQK8hVeZdoWMG544dcFK7TXIRP/CtVkEYi/PGJssks7+qUJOHP/WhJiwWCJLvh+s+5EkUvXIZ3pRRm8n5NSpV27aOMXymFoxkPc03SQizmSYWnJoqYyoVbYO/LaOdOyVc4POeiEPJcLvkKswU/9IaFgiexZ7oUekF+tiQxPu+GHn/OlTiW9UKfa+mCj0NpN3T7w3Mu9s6UQp87B2ZLeGayGLp9uuBjrhh+cwatPKFufT766KOhO3zhC1943IM5XQQ5d4I0ElkopOz2edGCTWkKgIBqmYfMl7W7/HRiyfDtDTTPgF4J6CK83jBpGwK+1DvwgtdrGUCqSZ4zQAcVpercVKr5aw3a+1VBmm2Kch62zmxnz7sS03mvvAvSx0DcxFDSbJp3reTrnV1GVa6wZp/hSqlFSZAVkpZAvMUOR8tYSEGiLKXzljX53F8413TvBQAJCy0T7woB2GIh6XJJNt8N7EmF59MuxjM6qBjPCGzos9Aba7ytLfhd8dVCrrZW4YKAzj/lmKJyHA0032FX8CT2z5QqyU9tA+iNN0+MW/IVJrNeOfksMJQwceaQg7jd+DtvzpU4nNZ5uxxTwJeqZY65gicxXZX8dF2vhbNWxZqmWng+7eKhQzlkSxICwAVr47h0Q7Jhe6V0apFnp4rl918nOG62O1YphX2zLn46lodbTtuzddDBpgG7aU7AsXkP+2d1HrTJnI/hpIn+mNE0P+SxrI+xeQ8KwKPjBVy4No7NA3bD9r5UeG6qhD3TOm/avlkXZw85WJU0m7Y/lvUqeeMOpT2cOeRgMNH4XHN9hQNpt5I496mpEi5aG8dwsvFlcr7o49t7s3h6Su9YHUmauPKMZNP22ZLE7vE8jmV1/2cM2HjtOX0YTjVuX/IlprJ+Zbdzf8zAxn471O7wqJVnOmkpNhNUW7yxIKxTeQNCqIS3hmFUPoTbbSn2/VM/8l/KhLeur5AtyYapEkyhk1XaVR+yvizPKjXpb3FA4rfI1SQAWGZt5m2pWqcNqM4IEmS+D7uzv1Hy13bt855qmhspbgkkqy4qqpxnqunrFbV5roIZxmbjSdpG02A5DE8qzDRJlmoKYKTHQo+zcNHypT4XFmeFCH4lF4/Tk3qWrtHrNQTQY9eeO4bQwYGuRFEO78u/wzqRqqo5D1uda6YAklZ9OpPgfxcfM18qXTqq6jVN5Xzsny01HH9fzMC6PrsSYFQSDTc5F6SqH2dwfjQajz4PFh6XSuHInIfDc27D15u0dfBe3X4m7yNdqB+8ALBpwMaG/oUAxpMK4/MupvP17RslvPalwky+cfJTywDOXhXDul6rMp5MSeKHh3I4mHYRvLvBWOKWwJVnpHD2KqfSPudKPDNZxEyD8RvQnzvVwd1M3sfDR/I1yXGrj832kXhNwDNX9PHcVKnh+GOmwGiPiXhV9DBX9HEo3bj81HDSxM71CQzEF/o/mvHws6OFSoBcbTBu4OxVMSTKwbJSCumixNi82/BzdlXCxNbBhYBHlQPGA+na9sFx3dxv4YWj8Up7Xyo8fCSP7x3M1XwBDdqfvzqGi9clKul8fKnw7FQJT08W9c8rtw9+dy7flMSVZ/RUfnelUpjN+5grNj7X1vZaGO2xGgbLja4hJ8tSJbxtpHd0U6TcanoDwqmbMDdUoHbgwIHK3x955BH83u/9Ht73vvdVXvSuXbvw53/+5/jTP/1TXHfddUs22JNlKQI1qRRyJYkwM9gxU5eA8WS43FfBr6QXctbKFPpDImz74DofIU1W23JKi5V8PYvWLqgT0BcKS6BpNvv65ygoiFC3SgwBpBwz0gddkIE+XfDbHs+EJTCSMuErESq7vg5YdEAXpr1TzkwftwyY5etis9kSACj5+iJe8lWocy1mAvFy/rlQmf6VLm2zd7qE+TZvmAAw2mthKG6g5LcL8FXli4NZnnFtVnmj5mcIfWtr/4zbNi+bIYAeR/8eTuX8tscnbgmcOeQAQmBsrnGQUBl9OdB0fYX5ksRsvv250xczcM4qBwfSHn46lm87q72+z8LLz0ghXZA4WJ7Va9XeNnSd2ycmi3h2qlQTAFYLHl/TY+KMAQdH5r3KLFG78Q/EDBzJeJUZzEaC/s8ZdrBl0MHTk0VMtOg/eMc39dtYnTIx3iLbf9BeCN2+P2Zg36zbOkk29Dm2Y3UctgF8a0+2Ug6rWfuYJXDZxgT6HAO7jxaQb9N/j2PgmnN6saHPxnS+daJdQAe/mwZs9FXNRCft1jPrSy24br7+U/d33WaCyT2P4Y+v23HKBmqhbn1u3ry58vc3vOENuPPOO3HNNddUHnvhC1+IjRs34qMf/eiKCNQ6TSmF2Xy4jOqALnYsRPiEi1JFT2YapX2E3Ji6vQx30Q8UPNnyg7Kagp5lkRECKT2DE65/PQOoZ5/COpZpX5g6kPcUZosq9K0JpVSoD+6AK3U5rFa3foGFfzOFRMELnyjYlQhVUL4yk1P0sHu8GOpoKgDpvI9Em3JP5Z8AIRYC0zCz/YAuCRQELe1IpZOxhs2DW/AU9kyXQt2aChI6T+c9ZEJ+45gvSvz7M5nQ59qROQ8/ej7f9LbsYkVf4Tv7spVZq2Y/JXj8aMbHTL4Q+nNqtuA3La/UqP9nJkt4Pu22XZIQtD8872K+1D6xbXBLfP+sq79whBiPJ4H/OpDFRNYP1b7gKfzgUB59MSNU+0xJ4unJYs2sYytFX8/Sbeq3sb7P6ujSDeo+kdNzPPbYY9iyZUvd41u2bMETTzzRkUGtNFHWcwHNawc2EzGOWnJRxxM2Y3tgqesNh80IHwi7CPr4+heRAmXTQKSCzL4Skd6vMLNW1YIAPOzPiFr2JqgBGnZMuQjVB4DoX1KinjthF+gD+hhGOdcUEDpIA/TsXqNbi61E+pyKeCyDz8GwTzMjBipB67D9l9oEsIsFhz5MewVgVSJ6tixXqqbrO5fLUq9ROx7uzDiAU7fEZeQzY/v27fjYxz6Ge+65B/G4fjOKxSI+9rGPYfv27R0fIBERUTdodjt4OQgs/ZfW47EUCW9PRGbiMG69/kpcdNFFyz2U4xY5UPvsZz+L173uddi4cSMuuOACAMDu3bshhMC//du/dXyAREREdGrotoS3k3sew44dO07ZHZ/AcQRql1xyCfbt24cvfelLeOqpp6CUwpve9Ca8+c1vRirVPW8OERER0anuuEpIJZNJ/OZv/manx0JEREREVY4rUPu7v/s7fO5zn8PevXuxa9cubN68GZ/85CexdetWXHvttZ0eIxEREZ0Cum0zQdQEud2YGDdyoPaZz3wGv//7v49bbrkFH/vYxyoJbgcHB/GpT32KgVoDUcrwENGpi7/pyytqDrEoO4aB7np/u2ks1bptM0EiHsdXn3bx93vaR2s6MS66Lt9a5EDt05/+NL7whS/guuuuw//8n/+z8vjFF1+M3/u93+vo4E51QeZ811eRdgtJpXORiRCpEHSNSFFJMBqqvQjfPirdPwAV/kPQMUXo3FBBxvpmGfEbjgcLwXKY9gVPIuWYocavlELCFsi5KnT7gisRt8Pm/lKwDYTO5eX6CkVPIma1718pBbtc/1OGHLsndVWDMGk6lFIYiJswhM7OHuZcyHu6ckSrsk8BWT4XbENAQLXNIyWVQn/MwGTOD/le6XQnYYutSKWPvWkbUECo8aRsA+mijHyuhaFrknoYTFih+rcNoM8RmCuFzTmo4EsJ0wiTAkSVE2dLKITIk6ckJAx4bgmmaUG0+xlKV8LwfB+m0bhkVW1zCQgDSvowhNG2f6UUko6B2XL91baJlaFznSVCJs83BHAwXcKGfjvUtSJI2ru6Sfmp5dRtmwlWgsjv8r59+3DhhRfWPR6LxZDNZjsyqFNdUCImyHkkhEDM0pn6W11wg+BJAch55Uzh5RQ5zbLLSwVM5TxkSxJ9cRN9MaNlewUgV9JliOKWaNl/wBDBxbzVB8hCpni3XIZIIMhV1DqBbNIWiFkm5ot+08oN1aWP0iUJQwADcRMxq3EereCxvKcTxhoABuMmHKtxABk8lnMVxjIu4paHDX02Ylbj4xO8V8eyOoGqJQT64wbMJgFG0D7nKUzkXPQ4BkZ7LFhG6/YzBYnZgoRp6GzkjcZS3b7gKTwz5WIoYWBNj9U04JFKQUrgyYkiDqZdrE5ZWNtnta0fe2CuhHTBxxkDDs4YtFu2z7oSD+zLYv+s7n9V0mw5fqmAyYKPY1l97EeatA9e61xBYtfzOWRdiSs2JXHOcAxS1QdswXubLkjsPlpEtiTRHzcQt1pfbD2pUPD0eV9dSq3R2IUQODLv4eEjeSRtA1eekcLqVOMAKXjs8JyLJ44VYQhdFsgxW7+380WJ+aKsBJCtjiUATOc8PDNZwNpeGxeuSyJuNW4vlf7dffTwPJ4+Mo+YY2OgJ6GT8rbofy5XRLZQQl/CwVBPoukXS6UUpFQYm5jCdHoe/f19GBwYaN6/lPAKWey//28w/cx/Y8vLrsMZL7tWtzfqc4YppeAWC9j/9GPIzEzirHO244ytZwJQEKI+AFNKITs3i59+59+QnjyK8y9/JbaevxNKyvqArfyZmcnl8fiz+5HJFzGyZh16+wd1JN/kpEg5AlsHHTimwFSueaWEICjbNhzDW180gN6YiWcni0g3KB9VbThlYtvwQtksWtlClZCqdu655+KOO+7Atddei97eXuzevRtbt27FnXfeib/5m7/Bww8/vFRjPWlOpIRUXYHwRZRScP3FlQF0INOofqGAnnGyzYWApPJBWZSYWZS13jKAwYSFRNWMTdC+6Ku62omG0JnsrQaJQ4MArfqzSNVUNdDjrpQLalKRIPgoWfyhHFz8qh8veBJzxdpSUgsBpqxL+JmwBPrLszY1NT0VMJ3z68ouJW2BgbhRVwPUk8BsQdbN7K1KmljbY1XGGRyjbMnH3hkX2UVZ5XscgV5nIVgOPstLvsJcUdbVEhxOmViVMKvaL/Q/kfXqAnvHFJVEmkEyUAHdf96tPX9MAazptTCUMGvOBSEEDqVdPDVRrDmetiGwvt/G4KL2gM7QP76odmLCEtg2EsOq5EJAEsxc/uRIHv99OF+TzDhmCazvtZF0jMpFLug/79bXeE3ZAmcMOkhWnctBabJHxvN4erJU83o39Fm4akuqpgi4Ks+0PH6sgIPp2qz4MVOfC4vPHVUez+JjX523KjhllVLIuQo/PpKvy7q/bTiGyzYmYJuipr6uLs5dqKujOZQwMZIy64LfoicxWVWcO2CIxsmxcyUfY/NuzXtrGsC5qxN4wXCs/NyFc+HwbB4/2DeL+apvSUII9KfiSMUd/RUrmCaHQL7oIp0rQMrq/gWGehLoTTg1760QAtOzcxibnIZfVVPONE0MrxrSmQKC9tIHhMD4j/8fDv3XP8Av5ivtk0NrsP0XfwNDW18IBLNhStfAGzvwHI7sexZSLoy/t68P519wIQYGhyr9SymhpMRT//0AnntkV037oTUbsPOq16Fv1erK61XlGcNn9z+PQ0eO1ZxriVQPRtdtgGU7NcffFLrY+kiqtlB8tiQxmfXqfv97YwbecsEALl6fqDkHj2V97Jkq1p2DcUtg+0gMI104kxZcNy++6X901Rq1KObH9+N3rj4PO3Y0T467HGvYIgdqf/VXf4WPfvSj+PM//3P8xm/8Bu6++27s2bMHd9xxB+6++27ccMMNSzXWk+Z4A7WgqHgYvtQBmyo/r92dLVPoi7RpCBQ9iYms3zJLecIWGEpYMA0Bz1fIe63raNqGQMJe+IbbegZBjzu4naULcLd+3QsXOVGpnddsFk8phUxJIuvq2YOip1pmlA8+8HrKAVK6KDFXaF6yyxC67mBQCildlMi0uN1jGcDaXh3A+FLh4KyLo9nmpXDMcv8J24BUCvOl1hnfHVNgTY8uA+NJhWNZry4AXDz+WPlc8KU+51oluE/aAut6dfA+X/Tx2NEiZlrUKuyNGdjYr4tWZ0sSh2ZLLc/rkZSJc1bFELcNPJ8u4bv7sg2LfwcG4gbW9towDYGS177G60jKxIY+G5YhsHemhIeP5JuOxxDAhWviuHRDAqbQZYKenKi/4AUEdJ3FHkefC0UfbbPz6y8wOqB7/FgRT04Um5ZMi5kCl25I4NzVcfhS4anJIvZOl5qem5ahb2f1x01IqTCV9zHfZnbFNHTg5UmFo/Mu5loUFO6NGdi5LomRHhu5kocf7JvFwZlC0/a2ZWKwJwHHtuD5ErPZPEpu8/7jtonhvgQcy0KhWMLz4xPIFYpN2ycSCQwP9sOOxZE58hz2fONu5I4daNp+9fZLsO0Xb0Is1Ye56Unsf2o3Crnmd3LWb9yEbeeeDycWw9jep7D7wW8iP59u3FgInLnjxdjx0p+HZds4cnQST+87hJLb5HddCAyuGsHw6jWAEFidMrGp325aJzgotp4uSggAV5/Vg9dt62s6K+ZJhf0zJRye8yAAbB1ycMaAHanyyMl0MouyL6VWBd+Xq7h75EANAL7whS/gYx/7GA4dOgQAWL9+Pf7wD/8Qv/Ebv9HxAS6H4w3UpIpWgsXzFQoRSsKUPIm8q0Kv53IMgVTMCF0GJ24JJCwBI+QHQclXlducYZhC6ILwIft/Pl1CptS+UHu12hm/1iwjqO0Ztm8dkIat+uOYgIxQoillC5RCHs/gtzbsay15EnmvdQBbTQCI26JlMelqmZKPgqswkQu3oKvHMdAfMyBD1lSdzfvIebLtLaHA+h4TfTETuZC/j3FLwDLCl+v6waEsJhvM2DazddDWXzpCvmEpW0Q6Nw/NFuHK5jP51ZRSiMPFXMGDF/IHxGwLrh/u2PueB3hF5FsEaNVKY8+i9NR3kR3fhzAreePrXoDBC16J3PxcqP6RT8ORecxNHQvVvGfzDvSsOwvZQilU+xefuxWb165C0g5Xyunnz0ph64CDkZ5wC9hcX8IyROg6oMulm4uyd8pyFXc/rvnTm266CTfddBMmJychpcTq1as7Pa7TwvGs4w/7QQ/oj7yotQqjjilK96LFLF0zUcYftWZo1PZhL8rV/Ud5vVHeWyB8kBZIt5jlWiy4/Rd6LBKhgzRAv69+8yU+dVypbx2HlfcUTEOG3iwTJSgC9KxblPMhU5KR6oC6frTdiFHPnelcuML0C+OJ9ssSNkgD9ML+7Pje0O19txQ+SAPguSUUZsMFaQBQKhWRzReABuvbGjGgEI9Qo7YvZmI4wq3LpM2C66e7yIHaVVddha997WsYGBjA8PBw5fG5uTlcd911+Pa3v93RARIREdGpodvyqHVS1JxsjRzPGrfIgdp3v/tdlEr1U8KFQgEPPvhg1O6IiIhohei2PGqdFCUnWyPHm6ctdKD26KOPVv7+xBNPYHx8vPL/vu/jm9/8JtavXx/phxMREdHKwTxqnRc6UHvRi15UyXtz1VVX1f17IpHApz/96Y4OjoiIiOh0FjpQ27dvH5RS2Lp1K370ox9hZGSk8m+O42D16tUwzXC7XkjvvNo3U8Jz0y42DdjY2Ge1XDwslcIzU0XsmXZxxoCNNT3t2z85UcLRnIcXjsaxoa/1DiNfKuyZdpEpSZwz7GBVsvWp4UuFYxkPeU9iKGEi1mZHkicVxuZdeBLY0Ge3TdRY8CQOpnUuqMG42XTLe7VgrXaYReEFT+LInAvbFFjba7dd6K0TqQbpVNr3H4xDqHAVJgBUKi4szl23WJAc1i9vVmiWdLa6fT5saQMs5AbLexIpWyeGbTd+xxTY1G/r5MshNiEYQqddsU20TTcgAKzrtbChz8JzM/ocbdd3yjFgmwK+DJHlXaD8GgHPD7dBZvtIDJtdhZ8dK7Td6Z2wBNb2WJAKmCn4bc9PQ0DnNUS4czlpC7x0UwpTeQ/PTBbbPqc3ZuKMwQHMZosYm823fb1r+mLYvCqF8bkCDrVI5RHYNJTExq0DeG58FvuPtV/03zu6EUNv+hAmH/5/mHsuRB5Ow0Jx7FlYA6MwE2125QsD8XUvgHHGC5Hb+wi8udabChwnhpddejGGRtbix88cxNRcrmX7waSDt1+6DuuHUvjPvdm63HiL9cYMbOyzYRsCYfeiCEQvdUUry3Gl51jpTiSPWslvnPS12mzBx4+ez9fskhuMG3jRmjj64vXB7kTWw0MHc5iu+hAYTpo4f3UcKac+4JnIenh4rFBzQTtjwMZLNiQbtp/O+3huulSTl21jn4XzVsfqAjClFNIFicPzLqo3gvXFDAwmzLqLrlIKMwWJsXmv5gKypsfCul6rrr1UCgdmXTw9WZubajBu1CQybSY4m5tVUfClwtGMV5MHzRTA+j4bQwmzrn+lFLyqHYGV6hFN+m+mUWLSVprlsQsSJi/+2c36L/kS07nWOfdq2yukC35N3rGYCfTHzZbBbHVJsrmCj6NZr+GuWsvQCZarg8sgR2Cj8SeshaS0gUNzHvZMlxpe6PpiBkaSCwmQg+THzTYtxi2BpB10rpO6erL9juAgMa5UwGNHC9jTIDeaIYCNfTY29C186ZFK/77NNwk2g4TG1cmGfdX4y4FZzu8XJDQGgLwr8chYHkcz9bm/dEJjB/3lklIAUHB97Dk6j7lC/S7QpGPi/HV9GO6JVQKFubyLn43NY65Q339f3MIF63sxlHIq7Y+lc/jRs2NI5+rXNduOg/7BIZiWjaCKwPy+3Xj+/r9CKT1R1144SdiDawHTrpwrRmoA9tAGCMupPz6pAcRWb4YwF5L2Fo48jexzP4Jy63elbjvvhfi5V/8i4okEAB24/2z/GH789CG4Xm0AJgTwphdvxgevORep2ML7+/2DOTx4IFuXt88QwEs2JPHKM3tgGQt1WvwW6YRMof8s/MzuDtRWQsLbqJLJVKSd/cebhy1yoHbHHXdgdHQUb3/722se/+IXv4iJiQl84AMfiDSAbnQilQkAHQw0yofl+gqPHS3gqUn9oVX970He7zMHbZwzHINt6sS2Pz6cxzNTpbr6b8G5cdaQgzOHHJiGQMHTGc8PlRMkLm5vCOCidQmcvzoGQ+j2e2dKmM7XXzSCpLTnjsRwxoD+YCx4EofnXGSbJIc1hM7k3+PogCrvShye85qmMbANYPOAoysFCIHpvI/HjhaazphYBjCcMEOVTVmcZ0wphXRR4vl0qWny06QtsLF/IRO+VGj5rTdoE0WUgC14z4RYKOHULt4K+pdKB1ztkqUGpFKYK8iWeceCqgthalIq6GoGwZcLIYCEZbScGbUNoS9iQv93MG40nKkNqg08PVXEeEb3HzMFRnvMhrmmFipnLATclqFzuTV6P4Lxu377Ga3qKiE/PpKvvN5VCRNnDumZk0bHq+BJTFYF0FabEmFBRYbAqoSJNb1W3fgr5azmStg9nkfe1bVuh3tsrOmtL/kVtJ+YK2D/ZAaur8uznTnSgzNHUg3bA8ChmTyeOZaFJxUsQ2DbaApbh5N14w8qVTz1/DQeOzABTyoIw0Bv3wCSPT11ZZiU1HVYj/3gX3Dsh/8K5buAYcHqH4WZbPJZLASswXUw+1br5TmWg9jqzbBSg1hcvk4pCfgess/9CIXDTwEAhoZH8KprrsXGzVvqZq6kUiiWPOx6Yh+eOzwJADh/fT8+/voLsGPDQMP2maLEvz8zj6en9Of85gEbv3ROX121guB4KuhzMzjVBFAJ5ro9OKu2UhLehpWZOIxbr7+yZRWDRo5n12fkQO2MM87Al7/8ZVx++eU1j//whz/EDTfcgH379kUaQDc60UANWChLFGTsP5h28d+H86ES4jqmwKqEgWenSqESysZMYFXSwv5Zt009Tq0vZuC81THM5MMlP+2PGThjwA6dx8oxAQWB2ZB5u1K2DgLHMn6ogsQ9jsCqhBk6t1DelTgw6zadxVhsTcrEUCpcMsrjCdaEKJfVCv0hrJrOCDWS9yRm8+1vsQVyrkQ6ZCJcUwBDCQO2GSZY1kXKj2X9ysxpuwuPCV1Wq1XN2qBvIQSmcx7Gsh5Sduv2ledJBdsKnzzU9cMlOA7Gs3+mhLwnMRA36y7ii9sDena94KlQ2eaVUnBMgfUhlg4E9TufntT5wJrNWFb3LZXCTKaI9f1xxO3WAbn+fFMYnyti42AMjtm+fcH18cO903Ct5nVEF9pLlNKTOPDNu+F7nm7b5r0VTgKpbVcgNnqGrn/StL0O3lR2CucNSOzceTEAwGhSmL1yrqXncNFqC2988UYopZoWow/qzQYloM4bjTesQbu4f18qQOjE4Kfirc7TIeFttZOZ/DZyeo7x8XGsXbu27vGRkRGMjY11ZFArgRACtqm/Gc0WfDx4oPVah2o5V2J8PnxCypyrMDsTvr1SaDiL1oxUQLrgh/7gyJTal5SqNp5ZmHUL86yEZYTMZ69FCdIAIOG0vshWE3q6K8JoUFU7sb2ogaAvFaYjJJ51fRU6oAb0erIwQRoQzOwBVsj2ANATM9AX4hZ35daXIdDjhF8bG7MNRKljHfbYB+PpjQk4ZvugMfg3qdqv0at+zuYBB2FiTEPoIldx2yoXu2p/PE0BnNlgVqxZe9sAzhpJhvpdEULAlQK+k4IRajwGvPw8ZKNC6U3YQ+sQX7M1REv9s7dv3YyLtw6HPtdet2MUL92U1AFXi+cEAdmZq2KVW/atvlRWzuVT6DYnnVyRA7WNGzfi+9//PrZs2VLz+Pe//32sW7euYwNbKdp9c2xkqVcNRv0MWOrSclFfbtjF+QEZ8YC2qkPaCUvZd9TZveO5dRuFCjVHegL9R53NxNIef30nL3z/Uc99M+K5X145GKqtQLTPqqBt2Ocs3LYP11560aonCNOJNBNlW+biO68txUxDn28h2x/PabYSArSVnPAWWFiXlj68B0C0257HK3Kg9o53vAO33HILXNetpOn4z//8T7z//e/He9/73o4PkIiIaEl0UVy0EoI0YGUnvM1MHMavV9al7cBFF110Un5u5EDt/e9/P6anp/Hud7+7UqEgHo/jAx/4AG677baOD5CIiIhODSs54e3knsewY8cpUJRdCIE/+ZM/wUc/+lE8+eSTSCQSOPvssyPvYiAiIiKi1iIHaoGenh68+MUv7uRYiIiIiKhKqEDt9a9/Pf76r/8afX19eP3rX9+y7de+9rWODIyIiIhOLafiZoKwiWtP5gaCaqECtf7+/spCx/7+/iUd0EpT8CT+z08m4ES4NbzUa0qj7jRb8l2oEdsrFa2kim4X/kVE7T+qpew7ardR20feZRl5l2hEp/j666jDlyjn4FsiUc7NqO9V1B29YdNyVKjwKYQAvRs8ypD8cjk4au1U20xQu0GgnZO3gaBaqEDtr/7qrxr+nVr77p45fPzbh3Es4+KC9T24bMsADNE6p45SCgK6skGQ76ltklChk8aGqbEoABRdCctoXyYnkHEl4pZAygmXiFGXwAFKIdN59TgGFGSoZMAAkC35SNpW6A/ZzQM29s6UkA9xfABgvuRjJGmHvhCZon3FgGq+Uggyf4XJ4WSJcElXAV0jsi9mhE9ObABre8xKhv92L8P1VaSUBilbwDZNTGTDJTMueDqpa5jSpEop9NgCBReIkCYPtoFQ/QN6/CUfKIZ8g/vjFmbyXujzYShhYnZRya5GgmPn+QpxM1ydSCEENvSaGMv4ocajAOQ9hYS18PymbcsRe6YoK2XpWtYelhJJU8LKHIWbHIHOR9s8EFNKITG6BclN5yN38GdBeY6m7YUQMOfGsCHu4fmCrtjQKvWMEMB0toCRpIHJfLgkMs9OFXHh2jjiVtgciEv/pbsbnWqbCZZrg0AUx71GjZp7Pl3CHd85jAf3zVcKef/0cAbPTeZx5ZkDOHO4Pklk8P+zhYVi5Laha3ou1CKsl7QFBhN2pYTU0YzXMOAJPog2D9g4d3UcjqlLPI3Ney0vQgKAKNcnzJYkBhMmLKN5sBazBGLlLOUFT2K2IFt+YCZtnSV+VdLEXFGPv9lwBPSFrdcJn+/JNgUGLRMXJRIYm/Owf7bUdDyOKXDWKl2QXimFvKfaBne2ARjCKJc1ah1QBXUnFQAPuvSOieBbev3rMQDELN2/VAoFL1zA1hvTZbbS5az3zfTFDKzrs/XrLkk8cazYsqh0X8zAaI8Fy9BZ1POubBkArEqaWNOj67nO5n387FixYXmw4JWfOeTgnGEHliGQLUmMzbtNA5ig8oenBPrjJkq+wnyp+bkmoOvLDid1iJwpSUy1qN5gCGA4aVUqJEzn/bp6tY3YpsBIykLWlS3LdxlC10+NWwbW9Cocy3o4lvGaBgs9joFLNiQw2mPDlwrjGQ/HsvX1NgOW0OeBbVpY06twMO3iWIhguSQBt6SQsARa5REu+gqzeR0AWnkfq5IWUk79OazKCWsPHNiPXbt+gGw2CzvZi+FzXozE0Jr6aKb8//lsBvOz07A3XYCeoY3IP/cj+Jmpuv4NQ//uXX755XjNa16DRCKB52fy+L9PHMNkpr6+aFDB7Ddeshbvvnwdko6JfTMlfOOZ+YaJnwX0e/WyzUm8ZGOy8vx254EQp14JKOpeoUpIXXjhhaFPuJ/85CcnPKjldiIlpP76xxP49PfHdW2+Jkd202AcP3f2IHpjuvZbUMz9wKyLdIMP95QtMJw0a5JdWgYwlLTqSuEopTBXlDiWrb2o9McNXLgmgYGEWdd+piAbXiRMNP5G2OsY6I/Xfou2DF0xwGhQZD1Tksgsqg/qmEDSNuqysvtSYTLn1xSgB4AeW2CoQdH3ZkxDzy4tPm+LnsTe6RImy9n7g3/d0G9jY7/dcDzZkqwLGIKCyYv7l+X3slLEHToyk0rftlpMQF/cF8+yOqa+2C7u35M6YAubqLZQLidVfS7apsCGPgu9sfpz4WjGxxMTxZoi7o4psLbHQtKpP9dcX4+nejgJS2B9v42kXd/+YNrFM5OlmlJnqxImLlgTazieqbyPyaxf078vda3PxYdAKYWsK5FbFFz3xwys67Xr6oxKpTCd9+tmH/tiBoaTVt254EmFsTkXMyErOfhSYa5YHyz3OEalHm61YrmWblBFQ1/ogReOxnHOcKxuPHlX4lC6VDOTLgCkHAMJq/7cz5R0bd8wM++APr+TlqgpcC/VQtmrxRK2wEjSqiSMVkphfn4e3/ve93D48OG69qnVmzB8zsUw7FglgPQ9F7PTk3CLtUXTlVJwj+1FYd9PoDwXwbu/ccMG/Mob3oANGzbUtJdS4eFDaTzw7CR8qWeBFYBLNvXij37hDJy5KlHT3pMKPzyUw4MHclW/u7qW8qvP7sFAvP7cVKpx0Bulnu9KcioWZU8mU5g7cnyF0k+mUIHaH/3RH1X+XigUcNddd+Hcc8+tvLAf/OAHePzxx/Hud78bd9xxR6QB3HXXXfhf/+t/YWxsDOeddx4+9alP4Yorrmja/oEHHsB73vMePP7441i3bh3e//734+abb678+yte8Qo88MADdc+75ppr8O///u+hxnS8gdpU1sXPff7JUG1NAVyyuR871vVgMqe/rbd6IwT0Laoex0BvzERvmzI7vtRFuTOuxDmrYthcLqzejCcVnk+7yHsKBhYuEq3GP9pjwTb1jFirYttB/0HAkHLaty94sjyDobAq0bjYdiNCNA58FpvJ+9g3XYJt6lIvi4OKxUqeqswG2W0qFwQzZ0VP188Mc9vJFIBjGjANfTuyXf9FX4W+tayUDjZzrsRQ0sJIqnWdVE8qPD1RxFjGw1DCxFCivpj04v51TUyF1T1W2/ZFT+LpyRLSBR/bRmJY32u1bO/6CvtnSyj5OkBrF6R65dk+BWBdr9W2xFTR07NrSgGrUxbibc6FbEli30zzmdlG/c8VfZhCoC9uwmrxZSP4ojWV8zCQMHHR2kTl1mKz9jMFH8+nXViGQG/MaLu0YjzjYX+6+WzcYo6Bygz8fLF1TVgBICFK6LGBp556Crt374aUzQNbYVoYOnsnekY3IzOfRm5+ruVYpFtEYvJJeDNjeOUrX4lLLrmkaY1OAMgUPfx4/zSOpAv43Ss34LXbh1qea+mCj289l8FU3scrt6Zw9qrWa62qS7ydrgFa4FQryl5dVP14CqWfTJGLsr/jHe/A2rVr8cd//Mc1j//BH/wBDh06hC9+8Yuh+7r33ntx44034q677sJLX/pSfO5zn8Pdd9+NJ554Aps2baprv2/fPpx//vm46aab8M53vhPf//738e53vxtf+cpXcP311wMApqenK4l4AWBqagoXXHAB7r77brztbW8LNa7jDdTG50u4+u6nQrdPOiZeuHEwdPvBuIEXrU20b1jWFzOwvi9ccXEAmM37mGhxO2WxkZSJ1anWF9lqroxWt7Lktb5tuphtitAzbscj2+YitVi6GL7mJqBnlsLSM5XhR2MK1M2mtpJ3dTH1sJK2vuUXZTxRyiEdmXdxNOOHPv59scazSs2INmtHF9szVQw9M3U8glvAYR2eC19uyZcKPzpSCN1eKoV8hEWAczOT+O9vh/tSDABGcgCx9dtDt9+xcQi/fPEZodufOxLDizckIr2/FN2pVpT9ZBZVP1GRNxD9wz/8A371V3+17vG3vvWtuO+++yL19YlPfAK/8Ru/gXe84x3Yvn07PvWpT2Hjxo34zGc+07D9Zz/7WWzatAmf+tSnsH37drzjHe/A29/+dvzZn/1Zpc3Q0BDWrFlT+XP//fcjmUziDW94Q7QXSkRERLTMIgdqiUQC3/ve9+oe/973vod4PPx96VKphIcffhhXX311zeNXX301HnrooYbP2bVrV137V7/61fjxj38M1238jfKee+7BDTfcgFSqeYRfLBYxNzdX84eIiIga43Xz5Im86/OWW27Bu971Ljz88MN4yUteAkCvUfviF7+I3//93w/dz+TkJHzfx+joaM3jo6OjGB8fb/ic8fHxhu09z8Pk5CTWrl1b828/+tGP8LOf/Qz33HNPy7HccccdNevwiIiIqLlm181uTnhbndh2uZLXHo/IgdoHP/hBbN26FX/xF3+BL3/5ywCA7du346//+q/xxje+MfIAFq8haZenq1H7Ro8Dejbt/PPPxyWXXNJyDLfddhve8573VP5/bm4OGzdubDt2IiKi01Gz62a3JrytT2y7PMlrj8dx5VF74xvfeFxBWbXh4WGYplk3e3bs2LG6WbPAmjVrGra3LAurVq2qeTyXy+GrX/0qbr/99rZjicViy7LjQymFYsmFY4dfkB+VVCrSItp2iSIX66akjgIIlbgy0CrIb9h/65ybdaImwo0q6vijinouLLUo7+3x9B2l/6jtjfK5E+Xc1L9b4d7bqO9V1PauLxumu2lEATDtGHy32LZtoD9hI50PtyHCEEDMFKGTEHfJx9OK0+y62a0Jb0+FxLbNHFc1ktnZWdx999340Ic+hOnpaQA6f1qjXDnNOI6DnTt34v777695/P7778fll1/e8DmXXXZZXftvfetbuPjii2Hbtbsb//7v/x7FYhFvfetbQ4/pRCVtA6YIVypFei6mxw/hu7t+jIcfexLZfL5l+5Qt8IJVDiwR7k0LdtVNZn3MFXzIEBHGYNzAC1Y5GE2ZbV9DyjEwGDehoHMWtds8LKA/XBOWQMhMG7BNgZglYIZor5O3WhjtMZFokzlcKQXPVyh6+o8fYvwJS+ceW99rtc1MbghgNGXi4nUJXDAaR2+L9ApB+4G4ibhtwDFF28DXL+em8xTgKbQduyHQMsXDYkopmEIniB2MG23PBccUdXmmWhGItuOz6CmYQmBNr05A2+5ZKdvAUNxE0jZCnWspW2Btrz53Ui2SS1c7Y8jB9tUxDLbZSavT6li4cG0cL1wTx2C89YAEdJ61uZLCbEHW5LNr+hwBrO+zsbbXQqxN2htfKqSLPjb22ViTMtHutCi4Pp58fhqPHpjAM2MzyJda7wr3pIJr92L7K9+AzTt/Dnaip2X7reuG8b9/65fw9+98CT70mm1YlXJatr9gfR/+/LoX4M0XDOClm5JtX++aHgvnr4lzxyed0iKn53j00Ufxqle9Cv39/di/fz+efvppbN26FR/96Edx4MAB/O3f/m3ovoL0HJ/97Gdx2WWX4fOf/zy+8IUv4PHHH8fmzZtx22234fDhw5U+g/Qc73znO3HTTTdh165duPnmm2vScwSuuOIKrF+/Hl/96lejvDwAJ5bw9gcH53H7fxzG4XSp4bdnpSSK8zMozk1XHgsy02/dtB5bNq6DaS58+JsC2DpoY3O/XW4ryv3oBKqLf4aATpUQfIAF7QWAnpiBeIOUBQZqg8sgD9jRjFeXDNQy9Idfb8ysu00d9FHXf+WirADoRJgKqEkM20rQPihfVC1m6WTATtUHthACJV9htuDXZfL3pQ7S6o5bk/xrtqGDHAMLSTyFEMiVJKbz9aV5guz9QSAStJ/IejiYLtUlzk3aOnmwCI5b+bX6Ul/0Fh+HgqeQa5BsNHgPFx/7hC0qgWu7wCjICVX9Y4NjP1+UdekodICpk7eG6R/QSXzDplDxpcJcSdbki2uVdFVX8rCQsI3KcW91rtkGMJgwEbOMmmDXkwhV1qn6XHh+zq0bT1/MwOYBGzFT1JwLcwUf+9Muiovaxyxd/mvx+2gbOvhcfNyqcx1W958t+ZhZVHVBKYWcq3O0qarHAJ0Id7YgaxIyS6VweDqDAxPzlZnA4Dd4tD+JtYMpmFX5y3SyYVVzjigpoaAwsednmNz3OFRVPrVk3MGvX/NSvOHndkIpwDQNncjYl/ibhw7gX3YfgV/1AgYSFt7382fhhovXQSqdzFqWv3D99+E8npmqrUKQsAQu2ZDE1iEn8l0FOj7dlvB2caH19OHuT2zbTORA7VWvehUuuugi/Omf/il6e3uxe/dubN26FQ899BDe/OY3Y//+/ZEGcNddd+FP//RPMTY2hvPPPx+f/OQnceWVVwIA3va2t2H//v347ne/W2n/wAMP4NZbb60kvP3ABz5Qk/AWAJ555hmcc845+Na3voWf//mfjzQe4MQCNUDn//qbn0zisz84CikXKhS4+SwKs8cg/ebfSuMxB+eevRUjqwaxOmVi2yqnPMtS/0ETvHPBdSxmCiRt0bJ0iWUEpWV0OwPQdffq+l64CI1lPJR8nXh2OGW2LY0SXGgWyqiUf0jtTwAg9DfwBoFTvYX2nq9gCGAoaaKvQcAYjB8Asq7CfFFClpOytgsMg4oGpiGQKs9wtep/tiAxV5Q12fubtZcKOJh2cTTrwTYEBhIGHNPAwmWwvn/P1+eP6ytk3PZ55czyMXdMoQPMEDNXwW22VpM3Sin4Epgt+ij5QMoRGIyboZN8BjO8QLjx5FyFTJM8ZcHxLbgSswUdkAzETQzEWweMwbkG6EodzQLMhYBHtixLVd0eACZzPo5mPJgC2NRvY6hciqxR/wrA+LyHsYwHAaAvbiDWZvovaYnKF61Wxz3ofzbvI1PSs3LpFoFncG7OFHxkXYXZbBHPjs8i3yKjsm0a2LiqFwOpGEo+MNfiOCml4OazOPLED5GZHMNVO7fhd9/wSvSlEjXBXtAWAA7N5PEX//EsHh+bwxsvWocPvfosJGNWXW654PhOZj08dDCH6byP7SMxXLQuAdOIlhuPTkw3JbytTmZbrdsT2zYTOVDr7+/HT37yE5x55pk1gdqBAwdwzjnnoFAIn0ixW51ooBY4nC7hT757GN/ZM4f89DjcfKbtcwQAwxC4+TUvxpbVfaGKoAP6G7fV5jZAQNcxNGGK9rfZgtPDV+FvVwmgMpYwF2VfRcuyHzMFhpLtA8ag/XxRVkpGhZG0F27lhenfEKJyOzRMIevJnIe8F259mVIKM3m/0j6MgZiBuN04YGzUv9+gHFOztkKIyvsb9ty0jfB1Dz2pb/mFKiKudDFty2gduFS3D76ohG1f8FToklHB++uYrb8sVbdPF3XVAoRoD+jbtEm7dVWSanuni6ETFyul8P09U9g3mQ29/m50qL9u2UmTzmGZAu98URLnrR9oO8vlSwXbFOixFNb0xdq2l+VzoeCpUL+L1HndlPD2VEpmG0bkNWrxeLxhvpSnn34aIyMjHRnUSrG+38Gd127BR16xOlSQBugPxw3DfdiyWgeIoW4nGQgdpAF65k0vDG7fVs+MiUhrioJ6n6GCOiHgh096DiH0TFHYC78QonIhDCuowRq2/2CWo1374N8LPkL3LxUiBWmmQKUEUtiF36EX0FcFaWH7N4Se1YiyHi3sBgwh9Mxn2Fk9IQTidrhZxqB9rt39z0XtnfLt8yj9hz0XACARIUhTSkWqLlFwJfZNZvVzQ7S3TDNckAYAQuCMAQfnrR8A0H6myzT03YE1fbFQ7YNjHhwfBmm0kkTe9Xnttdfi9ttvx9///d8D0B82Bw8exAc/+MG6dWKkvXhj6wW1p4Ju++CLMh6xpPsFabl127lJdDpbzjxqwbq0UylHWhiRA7U/+7M/wzXXXIPVq1cjn8/j5S9/OcbHx3HZZZfh4x//+FKMkYiIiE4By5VHrTZP2qmTIy2MyIFaX18fvve97+Hb3/42fvKTn0BKiYsuugivetWrlmJ8REREdIpYrjxqp3KetHYiBWqe5yEej+OnP/0prrrqKlx11VVLNS4iIiKi016kzQSWZWHz5s3w/WiLs4mIiIgousi3Pj/ykY/gtttuw5e+9CUMDQ0txZhWHM9tnc2biIhoJVjqzQSLE9kGVtoGgmqRA7U777wTzz33HNatW4fNmzcjlaq9F/2Tn/ykY4NbCR544AHc9Fu/C3nV+yFMC8JoX2pnPleClApGkI22jaj1GJey/iRQzm9lhJ+sNYSAHyGdn68QOocXAFgmECVDhydVpHQkUgEGwo0nKM8U9j0wRLSakjLisYm6XzLqqRMtSyNClQur6T9ac0gJiDYlwGrHE+HNQvn1huxeQcEyBPwI/UsFiJDnmlQKtgmUvJD57kwB2xQNK3c0IpTU57MhQn0GpYt+pCoBbvl3Nsr5TMtvKTcT1BdWr7ayNhBUO670HPylaW98fBzvfe978eUvfxmmaUIcfi+GXvmbiG9+IaAkIOqvSMEFeXV/AiW3hFQ8Fuoa0RczMJoyMV3wQyWOjZk6CakXMtFpyjEQNwVmC/UlkxqxTQEnQnDU6whIJZCuKm/TTFBNwRCibdsgSFiVsGAZEulC+wEZ5Qz6YS8+AFD0FWxDwDJaJ7FVSkFCl/cqeAphMnRZhsDZq2I4mnGRLrZ/RsoxMJSwkPdkXUmjRoISVhPZ+pJMjfTHDaxKmDiW8+tKIDXS4xjojRlINyjn1bD/mIG+uMDYvBeq/WDcQNI2MJnzQ71fjiXgGEApRHkoAJXan7kmVRKqiXL/hlgIMlr1HwT4YQTjOZpx0Rcz25btUkonDn7yWBFJ28C6PrttwKMg8NKzV+Pxw2lMzBeafkEIHj9vTRLvetkqfP3pLHaPF9u239RvI2kLKBWuoLpt6MocUXJE0vJbys0EK3nDQCuRKxOcDk6kMoHnebjrrrvwoQ99CIVCoW49X+Lsl2DoqnfASPTVzDoJAfTEHbz5iu3YuXW0UrvP9XV29EZvkmMCmwecShb94MN5Muc3bG8bwGiPhWQ5IapSCq5E08LPtqErAASlbaRSmCv4dfU/A5YBJB2zUuZFKYWSr5qWrllcw9CXCrNFv+lFMWHpigHV/be63i6uW+n5CtN5r2lA0hczMJQwKwl7dS3B8LM2htDHTL+ehamVhXJWsua1SaWaBssCOuhKVNVmTRd8HGpQLxTQweXmAQcjSbNy7uRcham81zCAMQUwkrLQ4xiV9umCj/FM4/aOCWzsd9BXda5N532Mz3tNzjWB0R5ddzNoP1dsHixXlzYLjs2xrI+JJglbk7bA+j4L8fK56UuFqZyP2SZVBOKWwFBioX+lFIqeQrNY05e1/+ZLhZwrm34RiplA0jEqs0VSKRTd+uS91fU1w3wxAcrlvRbVfnVM/XqcRWWngpJ1392fxQ8O5So/fyhh4ryRmC4xVxWsBeWmMqXac3NivoCnjsyisCjiNIR+n2575UZce96qyrnz3f05/OUPp5Au1L4mAV1P9f/3kiG8bFOy0n6uKDHRJLi2DGA0ZSHVrmI8dZWTUZlgpVUcCCt0oJbL5fC+970P//zP/wzXdfGqV70Kd955J4aHh5d6jCfd8QZqruvi8ssvx49//OOW7YQdR/9LfgW9O18HYZgQAvj5F56B1118JuJO/SSnUgp5V1Yu0ALA2l4La3uthrcRPKkwkfUwX1KV9quSJgbjjbOay/JFK/hQFwAGEmblIl73OssBTzCjIqAvUs1qkvpSoVhVZ1NAz7TYRuMZgaInMV01A2MKfaGJN6mFWAnY1ELQ0+wLu1IKeU9hJudV2sRMgeGU2bDWYjDzEWZ2J2AZOlAB9OsreBKZJrUQdQmt2vHGTIHemNHwvZVK4WjGw9HMQoC0OmViU79TVwcxaD+7KLgeiJtYlTQb9u9LhaMZtxLwCACjvRZGexqfa66vMD6/MNsXnGsDcbPhe+v5CjP5qhJaAHpiRqW6w2IFT+LInFcp9m0KYF2vpQvZN2l/dN6vzNiYQteEDb6cNHq9xfLsZhC0tJppLvkK2ar30hQ6oLYbzPoE5bmKntIljoRA0ZOYiVDw3S/Xtm02nh7HwEBioZzakxMFfPPZTMPZVwFg84CNs4ecSnWGvNu8nqkvFfZPzGPfxHzlsRsuHMEtV65Hf7z+cyrnSvztT2dx3+O6co0QwBvO68NbLxioBOyL+5/I1Z6bqxImBhONz33qbktZlL06ke2pWlj9RIQO1N73vvfhrrvuwlve8hbE43F85StfwSte8Qr8wz/8w1KP8aQ73kDt+eefx8aNG0O33/Liq3D17/wvXHr2Wqxf1du2vWUAjqGDimZBS7WcK5FzJfqrZipaEeX1UL0xszLL1UxQQ7PoK8Qs0faDNSj8rYCaWaJW7bOuglKqacC4uH1wgQ1zQkulkCtJmAZC9x+2Hmn1z/BazFgu7t8yBRxTB7ztFD1dkHwoYaLHab/useRL5D2FXqd98W9ABzzZksSqZOMAdrG5gi4A3h8zQ92qyhR1MJWww507c+VzbVUi3Lk5k5fwpUJPk4B3cfuMq+BJFer2aVADVAgdVIc5d8bnPZSkCnULFQBcX0KpcOtPDQE8N13C83MenpsutW2fsAR2rkug6Mm2ASMAOEJifUrh6nMGcf6a9jMle2dK+M7eLF51ZgqbB5y27fOuRNaV6IuZoc596k5LVZR9cYH1U7Ww+okIvUbta1/7Gu655x7ccMMNAIC3vvWteOlLXwrf92Ga7S8UVE9kJvD6l7wgdHvHFNjQF7K2HvT6o2YzCc36D1vwuVI30Qh34RFCwDYQqc5ijxOhTJQQUAi3CBrQa9z642aoeqdB/1GXroe9KAf9hwm4AjHLwKb+8O0d00AqwvFM2Ab64+H7T4UMAANx24Blhj93ooxFCD0jGXaNYfDeRmmfsKOdmzlPhQrYA1Hq30oFPLA/F/rsLPoKmXaL9Kr0xm285+WrQ7ffOuhg6872AVogYRsNZ9zo1NTpNWqn67q0aqF/Ow4dOoQrrrii8v+XXHIJLMvCkSNHlmRgRERERKe70IGa7/twnNpvSZZlwfOYI4yIiIhoKYS+9amUwtve9raae8OFQgE333xzTS61r33ta50dIREREZ0SOp3wdn58Px577PRcmxYIHaj92q/9Wt1jb33rWzs6GCIiIjp1dTrhbSIex+e+8zR27PjJabtOLXSg9ld/9VdLOY7Tkor14D8fO4CLtoxisKf9NxDLiJalPvJ4ALhSNU2bsZgojylK6oqlJMp/wg5HZ3nXGxzaCXLaGeVkuGH0OAIlP9xuUQGdq8yT4Xb6Cegs/jJk0uKodO4uFXrzhyynogjbXqlo57LrK/hKhdplGYwneH/D7MoE9DqQMOeOTpejd302SyuyeCxTOb1EpDfWflOELxWenSqiL2ZitCfcR/R5IzEczXqYyLU/2VK2wMs2JfHsdAlHM+2XriQjbJwgWoqEt5N7Hutof6eayJUJqLnh4WFs2bIFBw4cgJQtPvKFgd4Lr4H30v8PX/3eU7hv1zO47pKzcdWOTbAa1NAJclMNVyUzDVJddIppCCgFlHx9UYxZaJiXq5ptCtgQdXnYGrEMwFzi3EjVyVLDVF1QQCUFgi4Z1bidW94lFwRQllDlDPSNn2CbC4l8ldLPnS00zlUF6AvnYDnthFIKRR8tqwQ45kKKE2Xo19oqWDZEuGB0saBPy2gesFWSGpfjA30sdRDTrH2wo9Eon8utkxbrvGVBsJsXOl1Ls3QzUimUvIUdnAqty3vJINUG9PnT7twpeRLTeb+ygzNmCQwlrKbjmcx6+PHhfCWvWV/Mx7o+u2kaikNpFw/sz1Zyi501aOPF6xNNd0WaQo/hqq0pKKXw6NEidj2fb7rD9OozU/idl6xCf9yELxW+vTeLbz6XadheALh8UxLXbdOpg1jKiWh5sDJBAydSmSCbzeJjH/sY/uzP/gwA6jZbxNZtw9DP3wxraL3OW1/1wbdmIIUbX34eXrBusPJYyhZY02vBNuq/uQfJWE9E9QzR4v6Di0CYPFRCCLi+vmhXD8kU+k+j/pdKcEovTiTbTlBXMximlArZFtnoHVPUzD4a5eSnjilqLmrB+zST9yuJWwFdmWEoYSJuG3XtFYC8W1vVwRRAwhawjPr+FXTZourzIZh1A0782AvomqlG1c8Mkrk2q6xgVh2b4MtF/fuhKzgsDtiCXGXNUpw4pj7W1ePxpA6qm6kONptVzVD6H+vOHakUZvN+07QWfTEDffGFJMJFT2L3eAH7Zty6mUMBXSFkOLXQPlOS+P7BLPZM17YPZq0vXpfAOcNOpb2A/t1c/GUqCFT/62AOT00u5FQ7Y8DG+146jBeuidfU25TlfIj/8Pgcdo8XKu039tv4/3b0Y2N/+9JTREDnEt42Krp+uia6DTBQa+BEArXAU089hZtvvhkPPPAAhBAQ8V4MXPmr6DnvFfp+VYOi5YbQF9qXvGAt3vKybThzJIm+mNnig3JhZi3quygAmGYQhC2UO2pkcUDSTHAqlXx90Qxu1S7Xh3wwHjfi7UEBfREPkwfNgL5g9jhGJbdWs5mkoErBTM5H0jHQF2ter7E6+M17+pZfkGatVXtf6tktQwDGooCuE/TsnELJCxcEB8Fvu7aqXFZCYSH7f5j+k7Y+N92Qpb6E0LcWS23aL5w7ekZ0Jt++lqgpdLmksYyP3WP5trO6jimwrtfE3hkXPzqch9+m/VDCwMs2JrG216rMyLU6F8bmXXz/UB7XbuvFm87v12NsUr3CEAJPHivg60/P4/JNSbxsU1LPjh7PVCydljqR8HZxcttqp/NmAgZqDXQiUAP0B+a9996L33nv++FcezuMWBLCaL9GZaQ3ji//1lWI243L8CwmZfhEr0AwO9L8g34xM+RaHGBh9kiqbrlVogOXKMvosqVwBcQDoz1m6LVT1b9uS9FeyqAc0tIEyMHM1VIpeLJpLdlGTIFI2ew92bz2bCOTOQ8z+fAlKfZMl3CsSX3SRp6YKGA6H25AAsD15/ZibY8Vep3ea87uDVWdAVhYk6iAUO2JqnWi1ufpWsuzHaaDXkJCCNxwww34j+/9EGaiN1SQBgCj/QkknHAfxvrnRB2XHlvY/qN8qa7uc/mDNEDPj0UTJSs8gKY1ThuOpnzcl7I9EL59VEv9rS7qsReiNphtJ+pSgWLEqDQbIeO/bh9+QArAcDL854IhRM3t2HbM8vIKBmlE3YWB2knQ09Oz3EMgIiKiUxB3fRIREVFHnEjC2yC5LXB6r0lbjIEaERERdcSJJLxNxOP46tMuvvBf/4w7fwtcq1bGQI2IiIg6ohMJbw3L7tBoVgauUSMiIiLqUpxROwkef+Kp5R4CERHRkjvRouzJZApzR/YAqM+ldrpioLaEZmZn8dGP/ym+8DdfwdCr3w1n9dYgwVXL5+05OoeDUxlsHNLTx51OtRA1x1mQeDTscyo5dENYnFphKdJKmAJoUZGpjmMKFCOUNMiUJPpC1HBcakH2f63zyW51r0tHKYWYJZBzw6cBkRJAhENvivDVKpTS5aqyJR9oUYaquv1w0kQ23b5+JqCP5bpeE/tmvUqy61YMATw3VcS5q8NfBJ9Pl7Ch3wndnuhEncgatczEYfz69Vdixy9fh4suuqjDIzt1MVBbAlJK/N1X/xHv++gfY35+HkpKTP3f/43EWS9G38XXQthxiCaVCeK2hbdcsQ2+4WAmLzGQMIA2F9yYZcCATuTZrMZfNatBOapWBICir2AZAmb5Etrs+QaC5Lj1JZAaUUAlg7tVLjfVKsAwhK6lCdSXTGrENnR5H6mAuaJsOx5L6LqqrtQlg9q174sZ6I+ZECEutMCiElUdTEpWnUnflbre5uJSU50ghIBlLCQ17pSgDJZUQG/MQMFTbc9lAX0uhM4xByBmG4gByLuyaeLe4JjNFCT2TLvwpEKvYyDW5NMyaD+d93Es67UNBoPvMWcO2XjD+X0Ym/fwd7tn8fxc4wDPEPr73fXn9uHtFw0iV5J4+Ei+aTmr4GhsG4lhTS/X+tDJdSJr1Cb3PIYdO5jwdjEGah22+2dP4Ld/7zb88MePVAqoawr5536EwsGfofeia5B8weU6FavQWcOlUnjFeRvxxstegN6E/gY8X5LIuhKDCRM9Tv1F1zJQVQNUIGYAtqlQcBuX3wnqekZJdFsdWHhSwYcuXi1QH1A5RrlsVPmxlCPgSV2KqfqiHhwTb9HF3lOA7ytYBhoGp45ZW6/RMXW/jWpxGkIXLg+KZRsCGIwbKPgK88X6Sg5BKaigZI5jCoykBHKuRLog69rHTIHhlImYZVT1oVqW81pc2NyoKgF2vIL3wCsH6UFffuVYtg+uoxJCwBSAUa73eXzjX6jxWRmvWug/YQs4pkK+yblsGzqoD/uaTEPUHP+UY5bLc8ma9yuoAbpnpoTpqooEs0WJmAf0OkZdzdCir3BgtlSpqCCEnuQLAs/F+uMGLtuYxEhKf/xuGXTwkZeP4L/25/C1J+dQ8vV5HQR024ZjeN9LV+GsVXqWoscx8OqzevDsVAk/O1aoO4dGUiYuWpdAbxfM8hLRiWOg1kFz8/O44tXXVgqxN8qYrko5zP3gH5F/9odYdeVbIPpGsWFVD95x1fk4c81AXXupgKmcj0xRYjhp6sLYAJwmxdINIZB0THi+QsGTlSqeVpTs+QiCivp/C2oxBjM2QLl4e5OZDcsQ6HV0MJX3lC7m3aJYugLKM0J6dkv3URsAVsZZDhjiQpc1CmZI4pZoOB4hBBKWQMxUyJR0DU2geS1TIQRSjom4ZSBd8JH3dImdoaSJXsdo2F5fXGsDU1EJeBu0Fwtlt6IIAjSlgLwnmz5/cXDdSUIIWKYuVRS1okCwAkCq5relTUMg5RiVeqeAPi/C1J0NtPpyYpsClmGg6OsvNwDw/JyHQ3Nuw+NZ9IFiXqLHFkja+lw9MudhPOPVBauV9xzlpQbQ5/CFa2uLqy+MU+AVW1K4aF0c9z0xh12H8kg5Bn770iG85uye+vaGwDkjMWzst/HT8TwOz3mIWQIXrk1gQ1/46gVEnXY8a9SCQuzpw1yb1ghrfTZwvLU+nz8yhq0vvDR0+60v2I7f//TfYMNQL4wQdZqStsDGfjt0oXPPl3BVtMLoBhrWi28obgnETRG6cHO6IFGIsPYrYekAKsyxAfTtPiNCCZzg1lH4AFbBNMK/3uBXaynqtUqlUPDCB3gCqJn96zTfV5HqqXpSVQKYMFzPh6/C16DUxeMBI+TJvHssj2M5P9TSAQCYzroo+OHrnv7cGSkMJnXQH0bSFhhKmKFnxeaLPhKWUanhS3SyHW9R9sWF2Jnoth5n1JaRgMKm4WhF36PU4RNCRMq/Un2bM2z7aHVAIwwGQU3S8O2jBGlB+yjBkR1hVhKIdqtRiOa3TJvp5BqxExVlA0kgSvPI53J5tjIsX4Vb3xlwq2Zww0g6RuggDQDW99mVGesweJuTukXUNWpcl9Ye86gRERERdSkGakRERERdirc+iYiIqCOibCZgcttwGKgRERFRR4RNeMvktuExUOugKAvZIQScsy7Hp384hRevT+CS9Ym2z09YAgVXwjJF2xxSwY5DUyDU7joBnSPKMYGsq+CGWKluGgI+ALN9sQUAQdoMgUxJhqoU4EtAScC2VKhjK6F3Q5pov5BcKZ0uIUi4G4brA4ZQMEOkhwhSMwTjaqfkK+RdBdtsnFqkrn+BSuqKcEmOw58LlRQqUqdgWZz/rRGdBkMfyzCbHGxDwBaA66u2lQKCczlM9n5A97l/pgRXKpwxGEPKab3Co1TO3TecNDFb8NueD72OgUu39aLgKXx3XxbzTRLPBkZ7LJwzHAOgMJH1277euCUibdIh6iZhNxNwE0F4DNQ6aO2aUdz67t/Epz7zBRiGAd9vkIkVQGLtWTjj9b+H1IZtOJQu4VDaxQ8P5XD9ef3Y0FefSTxmCgwlTdiGvuiXfJ3PSyeA/f+3d+/hVVT33sC/a2b2LQkJ9xAIRvACsXAQQpVIK60XbNW3et72qT2o6FOw5dRzRKxvkYMKtkc5+FhvPYBoRVtbrT21ntqWVjlWKArUgsGjQAtyUdQEBMydZO89s94/Zs9k7+zbTDJ7Zyd8P88TMZO1Z69Ze8j6sWbm90v+jS5lLFWCAIQ0J9BMmeSDmkBZQLEnhyGago6ogdZw6vxcPkUg6OvKy6XDfB8FmQM2X2y+HBpS0B6VaAunTkmhiq4KBYYQ6IwCmiJT5lIDunJWmbm5zOBRkamfYpXSHEOJWMZ3mOPoJMCQsBLJmv1JF8Ao1r5j+1PR9Z7d6YZEW7irYoIelQjrQEiDnaw3af8CEEKBlBKqJuBXRdrEsIowzx81VqXA/DN9HjtDSkTiEudGDGlXAEh1rtlP/sZ+FNAEdEMioqc+XgHzfLRovq5gs3t7q1qB9bkCEgqQNqmwlBJH23R8GJcHbWf9SYwepGHsYH/SU5SGlDjeruNoa9TMP6gBRSUamjoNNHcmJzlWBTBpZADnjOxaLZgwPIDN77fhrx+dTDp/AqrAReOLMWNskX3spQEVR9uiaOxIDu5UAYwo1jAkpMbKgXlfAoyI+h/mUUuhp3nULHVvv4PvfHcJduz834TtarAEoy/9JkbOuBqAhFC6Hqm3VgtqK0O47KxBKPIpsWz6KkoCStpf2vHVCewALQXrU45fUVGFmSU9qCXv3zotWsOGnWxUEUDIp2QsTaTAWZoPK8lra1jaudVE7Hgy5X3zq0jIY2b9b6aSVlbQJJF6dcs6FkNKRNMEGKkIwExAHHtvga6nc+K7E5/c1bC3mUlcT0bSv5ummPm07P2LrlW67p+VEAJh3UBHpCvgsRL5JreP/Ymu4FRKcxU1U7CqisTyY1ausu7la+3KE91SWKhKbKy6vcBqH9a7So5lSgJstY/PyN8aNnDo07B9rnbnU4BxQwMYXqRCCIHWsI6Pm6MpVyOtFcUTJ3V7f2NKNXx2dAhFvuQULVJKnDip44/7WvFBUwQAMLk8iMvPLon9PU7+rE5GDDS0RtER2//goIKRxZqj1UuiQmTNm9Nvui/rPWrWvWmP3nw1V9QcYKCWQm8DNcCs9/nUz36BxcvuRVt7O8omzcJp/2ch1FBJQoDWnYC5wrVwxjBMqQg6TlbrV53ljbI+7SKfghK/FQCkfmH8hNupG/aKhJP+qHAWrAkh0BE10B4xL286WUVQBRCIBTBerjrY5YwM54W7AbOCgl8FrDAqXXesse/UJVrSrFamUuwTCGjZxz4+4LEW4zK3h93eyaVuS3yS40xDbwVbukwdYKbqu26YAazT7kR0A+83RnCsPfXqdXdlAQXFfgVtGQJkqz9CCOhS4qyhfowu9WU81wxpnr/7jndiSFDFaYP9Gdtbx9vSacCnCoR86f8xRtQfOE14G5/glsltneGlzxxRFAXz5s7BVVd8CYtX/Ah7JlyfvPSQgoR5+WPq6JDjX9xuEsOK2KWwQYHsmVms9xZCwqc6z+TidKqx9m/EZZx3crxaXDkkrwuOA4Du8t8uVpH4bF2xykU1dbqrt+QkSLN+bhjOi7ELYQZGboI0VcBx9nsRWz1zcn9h/Ni7SeTb0Bp1HKQBZpBsLttlH0sAqB4ewIhiNWFbKtYxfmZk0FGQbP0s/u8hgzQaCLLdo8Z709xjHrUcGz5sKJbducT8xuEv4qDDidni9td7rueDXE83TlcZ8yWX/bH27fhccBAk5JPbfrhd3jeku/NNxP3XifhLvU737/aYC+WzIqLCxECNiKiPMEgjomx46ZOIiIg8kS3hbUvDIYTDE/LYo/6PgRoRERF5IlvCW73leB57MzAwUCMiIiJPOHmYwO/357FH/R/vUSMiIiIqUFxRy7G2jjDWvvwWgJEwn2nLfvOwk5JA8dw+KVdwmfNc9sfMTJ+7nFMC7rokASCH/bFybuVi/6lrQ3j6Bjlt36PPygWjBxUCmA+NTmWZ7lFjEfaeYaCWI1JK/H7Hftz58z/jWPNJFI8ciyFVEyEUBUKkX8hUBFDfEsXfj3XG6gM6eTNzadRpdq5OXaI9YiDkMImqtW+nk5wBMwlsNlZauYAmoEey13y0929ICBd53QB3E7qmwlWFgqjRVR4rEzPeEij1K2gJJ5coSvkamLUr/U4GFOZnqcLZWFqfrdMamoCZvNZwmBvN7T8IzBJXgBGRUBzkgpNSYmhIxSdtUbuiQTZ+VWCQX6Al7KxzJ07qGF7k/Ndk1JDwO8wzRzQQpbtHjUXYe46BWg4cONKIJc9sxObdH9qTYMuRD9B+ogFDqqpRMmJMUvJbKxiqrQzh+nOHYEgoffWCeAEVKPKbZWoMKdHhMKt7a9hARxQY5FfhU5NXAewyPbEvNVb5J1tqUatOp13SKm0ZIPNPXQJSCAR9ZkWAzmj6NR4BoNgv7InQkMha3F1Tuq7vO2kPmMlLfapVmDx9OwFz/FUl88Qc/1HrAHyawBBVQXtE2iWEUvEpQGnAKtmVPVgWsddYdUDDaQqeW5911ADCLgJSnwIEYyWRnHy26Up2peoPALSEDbTEkgErQiKomuF1qpJNEuY/aI62RaEoAj5IRI3M9UXPGRlE1WCzlu6xdh3vHQ+nXb32KcCEEQFUlJi/InWZfaXbrwr73Cc6VaW7R42JbnuOgZrHHvntdvzwN2/al5TiJzM9Esax995G69HDGDZ+ErRgsf1LfWSJhptqhmBSeeYaaRZVAMV+JaFwtyIEQhpiE3D2i1pRA/i0Q0dQEyjxK/YMG18xIJ4QgJqmZmZXkCDi2gso6CqsDXQFLd33IYSAppoTalg3i3rHC2gioe6lNQaKlIjK5L7GB4xJ7Y3sAYQQApoAVJG6wLhfQdoi8Zb4FSVdJu5DCIFiv0BAM4uyx9fEFABKAwIBtSvZqhBmWa50wbKmAGq3sbcKpFvnQnzw3ZGmiHsq8TVe4/ef7rO1jjeT+Mu5nVGJxg494TWGBNqjEj7FKs/V9b6NHTo+ao4krKIpioBPJAbX1ipqZZmGc0YGEdC6lj1HFGsYGlLxfmMEh5si9g0JEsBpZT6cMdSf8HdLi51PqYLf+Hq7REReY6DmoaNNbVj54ras7TqaT+Cjtzdj3NnnoPy0M3DRuGJccfagrKV5zKznQEgzJ+FUE4MQAj7VnDw6os4ugXVEJTqjOkoDCvyqObmn7YOI9UN2BTuagrSXwoQQsQmzqy+ZVrWsAMOnSHsFo9ifGCR0b+8T5uU4K9jJ1h+farZ3crlMCAG/Zl5ujRpm0OJX0++/u2yrSpoiUBpQENbNAu0B1Qzg0vc/MVhOFZDGUxWBYCzAiEjzMqqj4469l18VsTqyqc8167O1Thk9zapWd1HDvF+zuTOacVUxYphtJczLrR83h9ESTn0A8cF1UFOgCOAz5UEMS3PpUlUExg/1o7xEw4ETnTAkMHFEAKWB1KvZ1rlpyK5z06+m/6yIiLzQ5099rl69GuPGjUMwGERNTQ02b96csf2mTZtQU1ODYDCI8ePH47HHHktq09jYiJtvvhkVFRUIBoOorq7G+vXrc3UItqibhwCkhNbSgEcur8BV1aWO6idqCjAkpCLoUxzVfUwX3KTsDszLjpmCtMT9m6sMvgxBUff+SGS/dGpRFHOVz7r0l7W9EHZQ4aQ/ihCuSg8pikBIEwhqzidmHc4u/ZkBgILhRSoGBZSs+xfCDBgDqnBU4kgIs8/tEWdBGmCubA4KqAhozs41IHnVMJPOqMTRtsxBmkUCON6u4+/HOtMGad37M36oH587vThtkBav2K9gakUInx0TShukxVOEQFBTYsEggzSieB/s+ive/99tSV8N+3chHA73dff6pT5dUXv++edx6623YvXq1Zg5cybWrl2LL3/5y9i9ezdOO+20pPYHDx7E5Zdfjptuugk/+9nP8MYbb+A73/kORowYga9+9asAgHA4jEsvvRQjR47Er371K1RWVuLw4cMYNGhQvg+PiIjolJLuYQImuu25Pg3UHnzwQcybNw/z588HADz88MN4+eWXsWbNGqxYsSKp/WOPPYbTTjsNDz/8MACguroa27dvxwMPPGAHauvWrcOJEyewZcsW+HzmjcNVVVX5OSAiIqJTWKaHCZjotmf67NJnOBzGjh07MHv27ITts2fPxpYtW1K+ZuvWrUntL7vsMmzfvh2RSAQA8NJLL6G2thY333wzysvLMWnSJNx3333Q9fQX3To7O9Hc3JzwRURERKlx3syfPltRO3bsGHRdR3l5ecL28vJyNDQ0pHxNQ0NDyvbRaBTHjh1DRUUFDhw4gD/96U+49tprsX79euzbtw8333wzotEo7r777pT7XbFiBe655x5vDoyIiGiASzdvpkp4y0S3vdPnDxOkypGU6eblVO3jtxuGgZEjR+Lxxx9HTU0NvvGNb2Dp0qVYs2ZN2n0uWbIETU1N9tfhw4d7ejiudUQN+xiccHvrci5vdY5PzVAIZCyLfM72j9wer5Tu9u/meHsyLm5eI6XzB1F60h8l9gSqU7zFnyi30s2betMRRBsb7K/GfTtwzZnAozcz0W1P9dmK2vDhw6GqatLq2dGjR5NWzSyjRo1K2V7TNAwbNgwAUFFRAZ/PB1XtenqruroaDQ0NCIfDKa+RBwIBBAIOqwBkUBz0wacqMBxMWsMHD8IlF9Tg9ffbMTiooHpEEMX+9HGzTwGGhlT4NQVRQyLiIE+aXxMI+hSEdQMdkcztfYpAsd9MaeAmIJGIVQpwkOhTEwCE+XRgtgdkldiTjY76IGXCPjUhoTjoj1VNIFUetlSs5w0V2ZW+Ih0hAH9sLNMlYu3Oujivysz7tnOpxfqhKZkrBeiGRNgAgpoC3ZCxdBfpKcI8H4zYiZBtLE9GDBxpMfOaFfkEhoS0jEmAO6IGWiPOA7USv8Dpg4PwKQIHP41g7/HOjOdPZakP44b4oeTgXCMiU7p5s/s9akx023t9tqLm9/tRU1ODDRs2JGzfsGEDLrjggpSvqa2tTWr/yiuvYPr06faDAzNnzsR7770Hw+h6jH/v3r2oqKjI+Y2MZUUB/PL/XY1x5YPTtvFpKi6dMQW3zLkSo0eawWVTh4Fth9vx3vHOpABPABgcVFBeotkJOFUBBDUBLc2nJ4SZI8qae3yKwKBYjrTuFGFmvx8SUu0JWcS2O527JMxAx3CwwiOEmb3dr6Q++azEuT5F2O0zsfKhxU/GUWnm3zIc9AUw38unOD9eA2aglGr38WNnjaVfFY5Kall0xFJddNu/jAWU8XdbSsTlGuv2AiklOqIG2iJdec6slal0KU/8qpmGJP7H6T7bqCHR0BLBh01dyWfbIxIfN0fQ0qkntdcNiePtURxv1x0Fxj4FGDNIw+hBPjuh7LghPnxxXLFdMSDeoICCmacVYdrokH0ue3muERH1BSFzea0oi+effx7XX389HnvsMdTW1uLxxx/HE088gV27dqGqqgpLlizBRx99hJ/+9KcAzPQckyZNwre//W3cdNNN2Lp1KxYsWIDnnnvOfurz8OHDOOecc3DjjTfiX//1X7Fv3z5885vfxC233IKlS5c66ldzczPKysrQ1NSE0tJS18cViepY9+r/YuWLf0EkqtvBV/W4Snxl1mdRUhxKuwLiVwUmDg9gRLGKYr+CwUE17YqGVUonrJsTcfwqT7pLxIY0V0B0aSbOLYmt4qW7BJ2pVFA6TlazrP3r8Ylq41Y2nLzeSYUBBdkrCFj7A5ytwMQTsfewcptZY5Zu/N3uX0FXhn0nKdA0AQhI6FKgI0M5Lqs/EcP8fDXFzMsGZB4r6/Np6jBwrC2aZZUWGFqkwa8KtIYNNHc6S+ImYK4eDw1lPjePtUXx7tEOdOgSE4cHMH6IHxLJef16e64RUXbWvDn9pvvse9Sse9Mevflqrqj1Qp8GaoCZ8Pb+++9HfX09Jk2ahIceeggXXnghAODGG2/EoUOHsHHjRrv9pk2bsGjRIuzatQujR4/G4sWLsWDBgoR9bt26FYsWLcLOnTsxZswYzJs3D4sXL064HJpJbwM1S/2nrVj+i9fxu+37ce3lF6J6XGXWe/AAc8Xs8rMHYXix5qgwNQDYeUC71RBN1d7K4O40oJIuEplanOzb2n88J6+Jn3Cd9kVz0R+3wZRVHQBwNp4Rh5dCe0JKiajuvMamVQrKSRF0wFwVq2+JZq17GU9ThKt6opWlPkfBddeKqXAVjFsYoBF5x5o3p359IVRfAK2ffIRFX70QkydPxrRp0zy5vehU1eeBWiHyKlCzvPruh/ggnJxXJp2RxSqumOD8fXsSuPhc3JRjxII1p+wyUy4mQidBgiWiS0eBiMVp9QRLp5soDealNad9l1LCQXL9HjNkcp3UbNJdQk+lLWzgSGvUcXsBs6qDU0OCZoUGp+OZ63ONiJyx5s3/+/AG+ELFOLb/Hfzgat6b5oU+f+rzVDD9zIq+7kLB48RJ+cJzjYj6EwZqRERERAWqT0tIERER0cBhJbxtaTiEcHhCX3dnQGCgRkRERJ6wirKzCLt3GKgRERGRJ6yEtyzC7h3eo5YHhttEZERERETgilrOfdQcwRvvt7l6TVvYgG44K4MEuK9raKXacJqmwEq46vwNAJGjmjxmn911yMwD5+xYpZSuj1fG3sTZ/l3suCdc7l/GpV5x0n8X5TZ70h1EDJepM3J4rhGRe9Y9apFPG8Ai7N7gilqOtIYN/OlAK155rxXtLuoaAkBZUEVzp25PctlS3SnCXQkkAIjGcoU5KewthHBdCzEX6fmsfQqZmxO3p33WDas+avqxtH/Wg5jCqk6QiT02wlkwZVcm0CUaT+qIxJ0PmdoDQLHP+fkwJKigslRzXFDdr7r/ZJkKkqhw6E1H0LhvB7416wwWYfcIV9Q8phsSu492oq7+pF16yek0UuQTmD6mCJVlZt3SiAEoQkIT2Ve/zGDNLAcUzfCGKroKF8SXncq2fyuDfbaC7U5XAd2wy1lZ7y1iwYs0M/Cn606uy0dZAZQ5foiVL0rss1f7B2I1NzP034gVWxexSgxGmmLzVlmw9k4dkViDxg4DAU1ikF8Buq0+WtUaWjrMgE4IgZBmFptPlxw4oAmMKfWhyGcGXiV+BSdO6vikTU/5eYU0gVGDNARj2Xet8mj5PteIqHfGXXAlmj4+gMmTJ7MagUcYqHlINyR++7dmfNrhLvW8AHDOyAA+Ux5MKpZtSCAsY2WK4qa4VBOUVYRaSVEHs/ukb7EmQyvDe6aAzSoyLpFc/zNXdRPtICdFxCGEGXjKboXKBcwALVs1gvgAMOqyrFN8wBvPkICIXZ619p8teO4uvn5oPEWYwalZ97PrkmW6gMYqDm/ELv1abTqiEicjyedoZ1QiHNVR7FcQ8nVtbwsbSavCQgj4VHOcO6PSPj5FAOUlGoaGEqsLCCEwrEhDaUDFkdYoWmLlGaz2ZQElqX2+zzUiokLEQM1DHVHpKkgb5Fdw+hA/qob4UBrIXIdUl+Zk7HNwCcmaRKOGOTmnCtC6k9IsP+Rk7rMCQmvVw20JH6eshzCyxThCAGqsIwLOV1p0CUjDeTkqga79Z2IFThJdq1xOpAumE/oQO0bEgj9HYyOAiA6cjBgI68mBT/e+t4YNdEQBv2oWds/UXgiBoE/Apwj4VIGhRWrSPzbi+VSByjIf2sIGOqIGBgdVqBnaWyu5Vt9yda4RERUqBmp9SFUEJo8KOm7fk8Loubx7x1r1yCWn/RfC/aUww2Wx+VSrXJm4LBnq6j5A1w94wPyHhFNRwwz0nfKrAiNKnP86KfYrKPY7ux/N+kwZnhEVvg92/RUnTzQw2a2H+DABEREReUJvOsJktx7jihoRERF5wnqYgMluvcMVNSIiIqICxRU1IiIi8sQHu/4K2dYIJrv1DlfU+pBPAZo6dDv5rNdkLI9Wf84HmqsbyK0KBLm8Qd3tvt20t56AdNxeSjOnnMP2qmLe8O/0AYce5KklogGoaf9OJrv1GFfUPBTUBEoDCpo7Myd8EABGl/pw2mAfGjsMNHYYGBxUUNotl1Q8NS7jfLbktFaC0vj4T8mSpsN8arKwnqtTlK6EsdkeQHTzxKe1PysISZdI1pIur1k2qsP9K7EEtUKIrIle7bQfMMcne3uJiAGEDcCvKeb3uplnLxUBoCRgPpEphEBJQEFLh4H2FHnXrPZDQioGBboS1TJ9BtGpa/TkC5js1mMM1DykKgJXVZfi3SMdeLuhw55U45UFFZwxNICgJhImtMYOA61hA0NDKkK+ruUJK7s+EJemIM1EaAUgqbIwWNOsKhMDDic51gqBlWqke0Bi5xVzIF3AJ2AmsE1V5UCx3rsXq5Lp9h+fmLerBJSI1Q1F0vmTmNhXJLXvfmxRQ6IzmpjHzU5UqwLhbjnSAppAWVBNCHoFgNKggiK/gqaOrlJTgLniNjTUrX1/OJmIiPoRBmoe0xSBcytCGD/Uj22H2/FRcxSAmWfq9CF+jCjW0q46RA3gaJuOIp8ZsAU0ATU2iWebAI1YNYJs8YSOrlqZqtK1ilPIE6zdt7gAxtze7edpZFt1sl6uxH5uBbVKijY9YfVZFV3BVvwKqdkmMSu/lNJeMdONzKWyrPZqrL0VoKW7om4Fd0GfgqguYRgSg4Iqgj4l6Vyw/l9TJIYXa2gPGzgZMc/PVO2JiMhbDNRypDSg4tIzSvBBUwRvftiOz5SH7Ik528QW1qW54gZn7Y3Y5S034u8p6i8TbXwAAzi/zOY0b2v3gMrLYYnfl7/bCmnq9tYxJpbHyt5eJpV7ytReU4HSIi1pe7r2RT6BwcHs7Yno1HTk4B6Ew+f2dTcGFAZqOSSEQNVgP0YUafiwJer4dZoiXN0v5vaqnHCZwb+QpFrt8Xb/iX/mYv9u+i1cliCQLmsWqEK46o/isj0RnVr01k/7ugsDDp/VygPNQX1OIiKi/m705AuY7NZjDNSIiIiIChQDNSIiIvJEc/3Bvu7CgMNAjYiIiDxx/01XMtmtxxioERERkSfOO+88Jrv1GAO1PAinSwNPBUn2JrstERGRhxio5ZBuSBxvj+LESd3VQHdGJTpdBHcK3NV9NOt/nhrBiFXT0017689cjJGZwLbrPbK3d/HZSgmlWyLdbHQJuz9OGMjd2BBR/9fZ2dnXXRhwGKjlgJQSrZ066luiaI+YSVn9qlmEPRtFAOUlKvwuZlshBHyK8wnap/TfPGpO2QEXnGUVs4IPQ5p1MSNxVR4yBSUC5meWrXi5tX9dAp26REfUiFVLSL1vuz9u+g8zsAtqAgEHJ4MAUBpQEFQFNIengxY7dwb6+UNEPfP222/3dRcGHCa89Vg4auDEST2pUoAQ5mSoCrOKQKryPoODCoaFVKjZZv0U7P3HSkmlWo+zyhYN9EnWCn6crBRZ1Q0kkFCCS8IM1hQhoYnUVRC6F4JXkFyqynqdEdu/xZBAR1RCU7oC+PhyXulqtmbqf1dprVg9T8WscpGqakVIEyj2KwmJlRWeO0REBYeBmocMKXGkLXPBH2t1zZASEd2cFAMqUF6iIaj1foHTmqTjy0oJnGKraNL5KhQARIzUxdoBM6AKS8SCbHObVQi++3gKIWJ1ARL3F9FlyuAHMIM33ZDwxVa1ZKx9tv7HB47pAlIhBAKagGZIdOpmnzQFGORX4Uux4hZ/7lhBa3zheCIiyj8Gah5ycasPFCFQ7JMYVuzLSRClCAF/rMr4QA/QLG7GH0i8vJlNVAIqklfRUhFCQBVAu8MCrBLmyle6IurpOL23TFUEigTg1xRHq2KKEPAp0g7UTpXzh4ioEDFQ60Pm6lruJkFOsN7q7zVSNReX1K3VQSIi6lt8mICIiIg8MWXKlL7uwoDDQI2IiIg8wWS33mOgRkRERFSgGKgRERGRJ5jw1nsM1Dzk9ubroCagGxLGKZDp3crIrxvOjtVte8BZ4tl4mgLHiV6VWEoON59TQBXwOeyQgthTpQ73rQpz/04zuqj8m05EecCEt97jU58eUhWB0oCC5s7MaRl8CjA4aOayMid+M2GpguSkqv1dfMZ8ixHbkCrVRbr2QkrHT10qwlkuNTP1BOAXsVJKaV7gV80nJt0G01bgqCkibfqN+DxlZrkrARVIW5Ggq70CKSUUIezEtqmydSjC7H98kDnQzjEiooGMgZrHyoIqQj4Fn56MItwt961VsqfYr6ScNDMFMP2RVZIpHUOaIaqVqytTeyt4U5A+2EjcZu430/vHt1dhjnt8dQKzaoBI2d4Jq72UEgFNgW5IhOOS2VrZ/pPbm9sNmVglIF17SImgpiBqyIRkufEB5kA4n4iITkUM1HLArwqMLNbQHpFo7NBhSLNkT1lQsS+PZpo4rQCmv2aDzxagJbaNBUYOV6us/WZbfbQCP1URMIzsmf6FMJfh/KrZXlVF1ypXLz8H6/WKMC93Rw1rDTVdwBn7E+blUAnYlzgzBaiqAFRNQJcSquh5gElERIWDgVqOCCFQ7BcI+QSaOwwMCiiuJn2vgoS+kOu77ZwOib1C5Xi/ZntNzU2QYwWP1qXZ7BUOzD+7Sldlr4gAAFo/PneIiCgRbzHOMUWYK2lAzy+d9Ts5jtTyUdaokPYvhDh1zh0i6teY8NZ7DNSIiIjIE0x46z0GakREREQFioEaERERUYFioEZERERUoBioERERERUoBmo5JqVEJJb8a6CXibLl+IFDM/ltbsfSzf5ljkuA5Xr/RERUuBio5YiUElFD4mRUImrAdbBm9OOJOdeJIdwOjZv6n0DmagaJ/ZB2ySvr+2yEEK7703/PBCIi6i0mvM0BQ0qEozKh/I8hgbA0i4CrAhkTkvb3ElJCCPsYswU9QsBRCalU7d30R0FyDdFUnIx9/Gdn9des2Gr9X+Z92P1xUI+0v58LRETUOwzUPBbWDUQz1GSPSkDXpVkSqFuwNtAm5WwBUvfjzRTAWAXUezo+QsQKkyN1MOgkAIxfMUtVlsquRyoS26cr+yQyBLPWPgbS+UBERO4xUPOQebnTQTsAEcNcWdNEz1aJ+otUAVKmgDRVAONlAJtqtc/N/p2syhmxRk722z2Y7W1ASkREAwsDNQ+5vZfIkIDq9oalfsoKkHLVPtf9AZzfu9aTvggg9zf3ERFRv9PnDxOsXr0a48aNQzAYRE1NDTZv3pyx/aZNm1BTU4NgMIjx48fjscceS/j5008/bddGjP/q6OjI5WEQERERea5PA7Xnn38et956K5YuXYq6ujp8/vOfx5e//GV88MEHKdsfPHgQl19+OT7/+c+jrq4O//Zv/4ZbbrkFL7zwQkK70tJS1NfXJ3wFg8F8HBIRERGRZ4TswwRN559/PqZNm4Y1a9bY26qrq3H11VdjxYoVSe0XL16Ml156CXv27LG3LViwAG+//Ta2bt0KwFxRu/XWW9HY2Oi4H52dnejs7LS/b25uxtixY9HU1ITS0lLH+zGkREfU+XAKACFfny9qkkO6y2ufA+3hECIii1fzJmXXZ1FCOBzGjh07MHv27ITts2fPxpYtW1K+ZuvWrUntL7vsMmzfvh2RSMTe1traiqqqKlRWVuLKK69EXV1dxr6sWLECZWVl9tfYsWN7eFREREQDH+fN/OmzQO3YsWPQdR3l5eUJ28vLy9HQ0JDyNQ0NDSnbR6NRHDt2DAAwceJEPP3003jppZfw3HPPIRgMYubMmdi3b1/avixZsgRNTU321+HDh3t5dM6dSlnnT6VjJSIayPpy3jzV9PlTn90vDWVKBJuuffz2GTNmYMaMGfbPZ86ciWnTpuFHP/oRHn300ZT7DAQCCAQCPep/Qt9cttWUricJFWQ+7v7Myt5vxWhCyn6ZgqIrP1r2J3yt48t2PhMR9UdezZuUXZ+tqA0fPhyqqiatnh09ejRp1cwyatSolO01TcOwYcNSvkZRFHz2s5/NuKLmFSEEAqrIGrCpAvApiYGdIWNJVAfYipOVryz+sCQQ29a/jtcKuBQlfRkogdi9afnrFhERDWB9Fqj5/X7U1NRgw4YNCds3bNiACy64IOVramtrk9q/8sormD59Onw+X8rXSCmxc+dOVFRUeNPxLFRFIKgJ+FLM5IoA/IoZqFlpQxL6iljA1s8CmFSklDCMzCWhzGPtX8XqkytJIOF7Jfa5W+24mkZERL3Rp48c3nbbbfjxj3+MdevWYc+ePVi0aBE++OADLFiwAIB5DXzu3Ll2+wULFuD999/Hbbfdhj179mDdunV48skncfvtt9tt7rnnHrz88ss4cOAAdu7ciXnz5mHnzp32PvNBCAGfKhDSupKqagrs4C17Lclc9zC37FU0h+37W7AGdAXa1gpafFzO4IyIiLzSp/eoXXPNNTh+/Di+//3vo76+HpMmTcL69etRVVUFAKivr0/IqTZu3DisX78eixYtwqpVqzB69Gg8+uij+OpXv2q3aWxsxLe+9S00NDSgrKwMU6dOxZ///Gecd955eT8+IQQCmkhI6+B0Eu/Pk73bmKsfHyrvQyMiopzq0zxqhaq5uRllZWWe5YNJV3g7k/5cWipVwfJMBnKtUyKiU4HX8yZ1YbZVIiIiogLFQI2IiIioQDFQIyIiIipQDNSIiIiIChQDtTzg4xpERETUEwzUckyXEpFYZn43AVt/y9qfwO3Dm5JPfBIREaXCQC1HpJQI6xJRw/xeR1cCWKfxV38NXhSRvsRSSqL/JbwlIiLKhz4vyj7QSCmhS0BPEXcYMIM0JfZnqjhM6YfFylMRQkCBzFrAfKAcLxERUS4wUPOQlBIRI3NgImGurgkASlywNhCTvpplllIn/GWARkRElB0DNY85vYAnYa6waQMwQOvOWl0DzOMe6MdLRETkFQZqfUw5RQIWKzA7NY6WiIjIG3yYgIiIiKhAMVAjIiIiKlAM1IiIiIgKFAM1IiIiogLFQK2PGf25AgERERHlFJ/69JiAsxQditU2lhBWSGnmUjtFngIlIiKi7Lii5iEhBHwKoGaItQQAFVYusa7tEoAhWUqJiIiIujBQ85gQApoi4FeSc4Yp6Ari0i2cGRLQDV4OJSIiIgZqOSOEgF8V0GIjbK2imT9ztg8Ga0RERKc23qOWY6oQEEI6Li1l4b1qRERExBW1PGDMRURERD3BQI2IiIioQDFQIyIiIipQDNSIiIiIChQDNSIiIqICxUAtD5hlg4iIiHqC6TlySEoJo4dBmpSSKTqIiIhOcQzUckBKM29aT1fSFMZnREREBAZqnuvNKppV/5MraURERAQwUPNUb4I0hQEaERERdcNArY8pdpF2BmlERESUiIFaH2OARkREROkwPQcRERFRgWKgRkRERFSgGKgRERERFSgGakREREQFioEaERERUYFioOYhIQTcPsQppYRkMVAiIiJKgek5PKYIAQlniW+Z5JaIiIgyYaCWA0IIKEhf71MIq1wUgzQiIiJKj4FajgghIABISEgJWPEaV9GIiIjIKQZqOdaT+9aIiIiIAD5MQERERFSwGKgRERERFSgGakREREQFioEaERERUYFioEZERERUoBioERERERUoBmpEREREBYqBGhEREVGBYqBGREREVKAYqBEREREVKAZqRERERAWKtT5TkNIsod7c3NzHPSEiIsqfQYMGQbBAdUFhoJZCS0sLAGDs2LF93BMiIqL8aWpqQmlpaV93g+IIaS0fkc0wDHz88cee/cuiubkZY8eOxeHDh0/pvwAcB46BheNg4jiYOA6FMwY9nfeklGhpaeGKXA5wRS0FRVFQWVnp+X5LS0tP2V9C8TgOHAMLx8HEcTBxHPrvGAgh+mW/+wM+TEBERERUoBioERERERUoBmp5EAgEsGzZMgQCgb7uSp/iOHAMLBwHE8fBxHHgGFB6fJiAiIiIqEBxRY2IiIioQDFQIyIiIipQDNSIiIiIChQDNSIiIqICxUDNI6tXr8a4ceMQDAZRU1ODzZs3Z2y/adMm1NTUIBgMYvz48Xjsscfy1NPccTMG9fX1mDNnDiZMmABFUXDrrbfmr6M55mYcfv3rX+PSSy/FiBEjUFpaitraWrz88st57G3uuBmH119/HTNnzsSwYcMQCoUwceJEPPTQQ3nsbe64/d1geeONN6BpGs4999zcdjAP3IzBxo0bIYRI+vrb3/6Wxx7nhttzobOzE0uXLkVVVRUCgQDOOOMMrFu3Lk+9pYIhqdd+8YtfSJ/PJ5944gm5e/duuXDhQllcXCzff//9lO0PHDggi4qK5MKFC+Xu3bvlE088IX0+n/zVr36V5557x+0YHDx4UN5yyy3yJz/5iTz33HPlwoUL89vhHHE7DgsXLpQrV66Ub775pty7d69csmSJ9Pl88q233spzz73ldhzeeust+eyzz8p3331XHjx4UD7zzDOyqKhIrl27Ns8995bbcbA0NjbK8ePHy9mzZ8spU6bkp7M54nYMXnvtNQlA/v3vf5f19fX2VzQazXPPvdWTc+ErX/mKPP/88+WGDRvkwYMH5V/+8hf5xhtv5LHXVAgYqHngvPPOkwsWLEjYNnHiRHnHHXekbP+9731PTpw4MWHbt7/9bTljxoyc9THX3I5BvFmzZg2YQK0342A555xz5D333ON11/LKi3H4x3/8R3ndddd53bW86uk4XHPNNfLOO++Uy5Yt6/eBmtsxsAK1Tz/9NA+9yx+34/CHP/xBlpWVyePHj+eje1TAeOmzl8LhMHbs2IHZs2cnbJ89eza2bNmS8jVbt25Nan/ZZZdh+/btiEQiOetrrvRkDAYiL8bBMAy0tLRg6NChuehiXngxDnV1ddiyZQtmzZqViy7mRU/H4amnnsL+/fuxbNmyXHcx53pzLkydOhUVFRW4+OKL8dprr+WymznXk3F46aWXMH36dNx///0YM2YMzj77bNx+++04efJkPrpMBYRF2Xvp2LFj0HUd5eXlCdvLy8vR0NCQ8jUNDQ0p20ejURw7dgwVFRU5628u9GQMBiIvxuGHP/wh2tra8PWvfz0XXcyL3oxDZWUlPvnkE0SjUSxfvhzz58/PZVdzqifjsG/fPtxxxx3YvHkzNK3//3ruyRhUVFTg8ccfR01NDTo7O/HMM8/g4osvxsaNG3HhhRfmo9ue68k4HDhwAK+//jqCwSBefPFFHDt2DN/5zndw4sQJ3qd2iun/vwkKhBAi4XspZdK2bO1Tbe9P3I7BQNXTcXjuueewfPly/OY3v8HIkSNz1b286ck4bN68Ga2trdi2bRvuuOMOnHnmmfinf/qnXHYz55yOg67rmDNnDu655x6cffbZ+epeXrg5FyZMmIAJEybY39fW1uLw4cN44IEH+m2gZnEzDoZhQAiBn//85ygrKwMAPPjgg/ja176GVatWIRQK5by/VBgYqPXS8OHDoapq0r+Kjh49mvSvJ8uoUaNSttc0DcOGDctZX3OlJ2MwEPVmHJ5//nnMmzcP//Vf/4VLLrkkl93Mud6Mw7hx4wAAkydPxpEjR7B8+fJ+G6i5HYeWlhZs374ddXV1+Jd/+RcA5mQtpYSmaXjllVdw0UUX5aXvXvHqd8OMGTPws5/9zOvu5U1PxqGiogJjxoyxgzQAqK6uhpQSH374Ic4666yc9pkKB+9R6yW/34+amhps2LAhYfuGDRtwwQUXpHxNbW1tUvtXXnkF06dPh8/ny1lfc6UnYzAQ9XQcnnvuOdx444149tlnccUVV+S6mznn1fkgpURnZ6fX3csbt+NQWlqKd955Bzt37rS/FixYgAkTJmDnzp04//zz89V1z3h1LtTV1fW7W0Li9WQcZs6ciY8//hitra32tr1790JRFFRWVua0v1Rg+ughhgHFeuz6ySeflLt375a33nqrLC4ulocOHZJSSnnHHXfI66+/3m5vpedYtGiR3L17t3zyyScHTHoOp2MgpZR1dXWyrq5O1tTUyDlz5si6ujq5a9euvui+Z9yOw7PPPis1TZOrVq1KSEXQ2NjYV4fgCbfj8J//+Z/ypZdeknv37pV79+6V69atk6WlpXLp0qV9dQie6Mnfi3gD4alPt2Pw0EMPyRdffFHu3btXvvvuu/KOO+6QAOQLL7zQV4fgCbfj0NLSIisrK+XXvvY1uWvXLrlp0yZ51llnyfnz5/fVIVAfYaDmkVWrVsmqqirp9/vltGnT5KZNm+yf3XDDDXLWrFkJ7Tdu3CinTp0q/X6/PP300+WaNWvy3GPvuR0DAElfVVVV+e10DrgZh1mzZqUchxtuuCH/HfeYm3F49NFH5Wc+8xlZVFQkS0tL5dSpU+Xq1aulrut90HNvuf17EW8gBGpSuhuDlStXyjPOOEMGg0E5ZMgQ+bnPfU7+/ve/74Nee8/tubBnzx55ySWXyFAoJCsrK+Vtt90m29vb89xr6mtCythd7ERERERUUHiPGhEREVGBYqBGREREVKAYqBEREREVKAZqRERERAWKgRoRERFRgWKgRkRERFSgGKgRERERFSgGakREREQFioEaEXli+fLlOPfcc+3vb7zxRlx99dV578ehQ4cghMDOnTvz/t5ERF5joEY0gN14440QQkAIAZ/Ph/Hjx+P2229HW1tbzt/7kUcewdNPP+2oLYMrIqLUtL7uABHl1pe+9CU89dRTiEQi2Lx5M+bPn4+2tjasWbMmqW0kEoHP5/PkfcvKyjzZDxHRqYwrakQDXCAQwKhRozB27FjMmTMH1157Lf77v/8bQNflynXr1mH8+PEIBAKQUqKpqQnf+ta3MHLkSJSWluKiiy7C22+/nbDf//iP/0B5eTkGDRqEefPmoaOjI+Hn3S99GoaBlStX4swzz0QgEMBpp52Ge++9FwAwbtw4AMDUqVMhhMAXvvAF+3VPPfUUqqurEQwGMXHiRKxevTrhfd58801MnToVwWAQ06dPR11dXdYxOf300/Hv//7vmDt3LkpKSlBVVYXf/OY3+OSTT3DVVVehpKQEkydPxvbt2+3XdL+0CwAPP/wwTj/99KzvR0TUUwzUiE4xoVAIkUjE/v69997DL3/5S7zwwgv2pccrrrgCDQ0NWL9+PXbs2IFp06bh4osvxokTJwAAv/zlL7Fs2TLce++92L59OyoqKpICqO6WLFmClStX4q677sLu3bvx7LPPory8HIAZbAHA//zP/6C+vh6//vWvAQBPPPEEli5dinvvvRd79uzBfffdh7vuugs/+clPAABtbW248sorMWHCBOzYsQPLly/H7bff7mgcHnroIcycORN1dXW44oorcP3112Pu3Lm47rrr8NZbb+HMM8/E3LlzIaV0PrhERF6TRDRg3XDDDfKqq66yv//LX/4ihw0bJr/+9a9LKaVctmyZ9Pl88ujRo3abV199VZaWlsqOjo6EfZ1xxhly7dq1Ukopa2tr5YIFCxJ+fv7558spU6akfO/m5mYZCATkE088kbKfBw8elABkXV1dwvaxY8fKZ599NmHbD37wA1lbWyullHLt2rVy6NChsq2tzf75mjVrUu4rXlVVlbzuuuvs7+vr6yUAedddd9nbtm7dKgHI+vp6KaU5VvHHJ6WUDz30kKyqqkr7PkREvcV71IgGuN/97ncoKSlBNBpFJBLBVVddhR/96Ef2z6uqqjBixAj7+x07dqC1tRXDhg1L2M/Jkyexf/9+AMCePXuwYMGChJ/X1tbitddeS9mHPXv2oLOzExdffLHjfn/yySc4fPgw5s2bh5tuusneHo1G7fvf9uzZgylTpqCoqCihH078wz/8g/3/1sre5MmTk7YdPXoUo0aNctxvIiIvMVAjGuC++MUvYs2aNfD5fBg9enTSwwLFxcUJ3xuGgYqKCmzcuDFpX4MHD+5RH0KhkOvXGIYBwLz8ef755yf8TFVVAOjVZcn4cRBCpN1m9UNRlKT3i7+ETESUCwzUiAa44uJinHnmmY7bT5s2DQ0NDdA0Le2N8tXV1di2bRvmzp1rb9u2bVvafZ511lkIhUJ49dVXMX/+/KSf+/1+AICu6/a28vJyjBkzBgcOHMC1116bcr/nnHMOnnnmGZw8edIOBjP1ozdGjBiBhoYGSCntII7pRIgo1/gwAREluOSSS1BbW4urr74aL7/8Mg4dOoQtW7bgzjvvtJ+CXLhwIdatW4d169Zh7969WLZsGXbt2pV2n8FgEIsXL8b3vvc9/PSnP8X+/fuxbds2PPnkkwCAkSNHIhQK4Y9//COOHDmCpqYmAOaTlitWrMAjjzyCvXv34p133sFTTz2FBx98EAAwZ84cKIqCefPmYffu3Vi/fj0eeOCBnIzLF77wBXzyySe4//77sX//fqxatQp/+MMfcvJeREQWBmpElEAIgfXr1+PCCy/EN7/5TZx99tn4xje+gUOHDtn3bV1zzTW4++67sXjxYtTU1OD999/HP//zP2fc71133YXvfve7uPvuu1FdXY1rrrkGR48eBQBomoZHH30Ua9euxejRo3HVVVcBAObPn48f//jHePrppzF58mTMmjULTz/9tJ3Oo6SkBL/97W+xe/duTJ06FUuXLsXKlStzMi7V1dVYvXo1Vq1ahSlTpuDNN990/IQpEVFPCdmbmzyIiIiIKGe4okZERERUoBioERERERUoBmpEREREBYqBGhEREVGBYqBGREREVKAYqBEREREVKAZqRERERAWKgRoRERFRgWKgRkRERFSgGKgRERERFSgGakREREQF6v8Dc18TvzHnrVAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJhCAYAAADxFZy8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNqUlEQVR4nOzdeZxkVXk38N+5W229d8/0LMw+AzMw7CCCbAJilKhEVAyK0aiREH2DxA3RmLiExNcoqOAS9fU1vlGjuCUhwrigICgRGPZ9lp6le3rv6q713nvO+8etW13Vdavq1kz1dPXM7/txPjI1p06dunXr3qfOved5hFJKgYiIiIhajrbQAyAiIiKiYAzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWZSz0AI4mAwMDGB0dbWqffX19WL16dVP7JCIiotbAQO0wGRgYwObNW5DJpJvabywWx9NPP8VgjYiI6AjEQO0wGR0dRSaTxll//jF0LF/blD6Tg7vw+2/8PUZHRxmoERERHYEYqB1mHcvXomf1cQs9DCIiIloEuJiAiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxUCNiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxUCNiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialHGQg+AiIhax8DAAEZHR5veby6XQyQSaWqffX19WL16dVP7JGo1DNSIiAiAF6Rt3rwFmUy6+Z0LASjV1C5jsTiefvopBmt0RGOgRkREAIDR0VFkMmmc9ecfQ8fytU3rd/Cx+/H4T7+KU676IJas29yUPpODu/D7b/w9RkdHGajREY2BGhHRYTAflxSbfTnxqaeeAgB0LF+LntXHNa3f5OAuAEDb0tVN7ZfoaMBAjYhons3bJcV5uJwIAHYu3/Q+iejgMFAjIppn83FJcT4uJ/p9Oo7TlP4OB38WsFm4QIFaDQM1IqLDpJmXFOfjcqLf52KQmRoDIPDmN7+5qf1ygQK1GgZqREQl5uNesmbP+hBgp6cBKC5QoCMeAzUiooJ5TU8B3vs1H7hAgY50DNSIiArmOz3FYrr3i4haAwM1IqI55is9BRFRo1jrk4iIiKhFMVAjIiIialEM1IiIiIhaFO9RIyIiKjEf6VSYSJcOFgM1IjosFlOtSzo6zVcSXYCJdOngMVAjonnHWpe0GMxHEl2AiXTp0DBQI6J5x1qXtJgwiS61EgZqRHTYsNYlEVFjGKgRURnWuiQiah0M1I4AzT4JcnXS4tHsoGpwcBCve93rkc1mmtZnKd77RUTUGAZqi9h8rVDi6qTFYT4LiJ9+9YfRs3pT0/rjvV9ERAeHgdoiNh8rlLg6afGYzxv0Y70rWeuSiKgFMFA7AnCFUnPNxz1awPxdUp6PG/SJiKg1MFCjRW0x3aPFS8pERNQoBmq0aC2me7T8S8r33HMPtmzZ0pQ+uZKSiOjIx0CNAi2GWneL6R6t+SxNw5WURERHLgZqVGY+A4pIJIrbb/8Bli9f3pT+/GByMdyjNR8LP7iSkojoyMdAjcrMV627kecewfZ/vwV//Md/3LQ+fYtpRolZ9ImIqBEM1ChQs1eSekEFZ5SIiIgawUCNDivOKBEREYWnLfQAiIiIiCgYZ9SIiIgOA9ZlpoPBQI2IiGgesS4zHQoGakRERPOIdZnpUDBQIyIiOgxYl5kOBhcTEBEREbUoBmpERERELYqBGhEREVGLYqBGRERE1KK4mCCAUgrT09NN7XNmZgYAML77GTi5TFP6TA7uBgBM7XsOpiFats/56nex9Dlf/S6WPuer38XS53z1u1j6nK9+F0uf89VvcmgAgHduSSaTTekTANrb2yFE8947HTqhlFILPYhWk0wm0dnZudDDICIiOqympqbQ0dGx0MOgEgzUAjR7Ri2ZTGLVqlXYs2fPUfsF4DbgNgC4DQBuA4DbAGjdbcAZtdbDS58BhBDz8sXp6OhoqS/kQuA24DYAuA0AbgOA2wDgNqD6uJiAiIiIqEUxUCMiIiJqUQzUDoNIJIKPfexjiEQiCz2UBcNtwG0AcBsA3AYAtwHAbUDhcTEBERERUYvijBoRERFRi2KgRkRERNSiGKgRERERtSgGakREREQtioEaERERUYtioEZERETUohioEREREbUoBmpERERELYqBWgClFJLJJJgLmIiIqD6eN+cPA7UA09PT6OzsxPT09EIPhYiIqOXxvDl/GKgRERERtSgGakREREQtioEaERERUYta8EDttttuw7p16xCNRnH66afjnnvuqdp2cHAQV111FY477jhomobrrruuos0TTzyBK664AmvXroUQAjfffPP8DZ6IiIhoHi1ooPa9730P1113HW688UY8/PDDOO+88/CKV7wCAwMDge1zuRyWLFmCG2+8ESeffHJgm3Q6jfXr1+Mf//EfsWzZsvkcPhEREdG8EmoB19KeddZZOO200/ClL32p+NiWLVtw+eWX46abbqr53AsvvBCnnHJKzRmztWvX4rrrrguceaslmUyis7MTU1NT6OjoaOi5RERERxueN+ePsVAvnM/n8eCDD+JDH/pQ2eOXXnop7rvvvsM6llwuh1wuV/x7Mpk8rK9PRES0mPC8efgs2KXP0dFRuK6L/v7+ssf7+/sxNDR0WMdy0003obOzs/hn1apVh/X1iYiIFhOeNw+fBV9MIIQo+7tSquKx+XbDDTdgamqq+GfPnj2H9fWJiIgWE543D58Fu/TZ19cHXdcrZs+Gh4crZtnmWyQSQSQSOayvSUREtFjxvHn4LNiMmmVZOP3007Ft27ayx7dt24ZzzjlngUZFRERE1DoWbEYNAK6//npcffXVOOOMM3D22Wfjq1/9KgYGBnDNNdcA8KZW9+3bh29961vF52zfvh0AMDMzg5GREWzfvh2WZeH4448H4C1SePLJJ4v/vW/fPmzfvh1tbW3YuHHj4X2DBUopDExksao7Cu0wX9YlIiKixWtB03MAXsLbT3/60xgcHMTWrVvxuc99Dueffz4A4K1vfSt27dqFu+++u9g+6P61NWvWYNeuXQCAXbt2Yd26dRVtLrjggrJ+amnmMuMXRtP42ztewO92J7F1eQKfvGwjTlzedkh9EhERtRKm55g/Cx6otaJm7HDpvItb79mDf7l/HyAAVwK6AKQC3nTGMlx/4Rp0xhZ0QpOIiKgpGKjNH0YKTaaUwl3PjOPvf7YDwzN5KAWgEAq7hf//tweH8B+Pj+LGS9fhtSctOeyrXImIiGhxYKDWRFIpXPv9p7HtmXFoAqg2VykVkMw6uPE/n8fmpXGcwEuhREREFGDB86gdSQ5M57HtmXEAXjBWiwKwcQmDNCIiIqqOgRoRERFRi2KgRkRERNSiGKgRERERtSguJiAiIqKmeM2b3wnDNMseW9nXhW9+5YsLNKLFj4EaERERNUXPxe+EGUuUPbbvzlsXaDRHBl76XEBKAb/eOYNUXi70UIiIiKgFMVBros6ogc6oAT1E/lorEsGYjOODdw3h9d/djV+8MAMWiSAiIqJSDNSaKG7p+Nk1p+KVx/cBALSAgE3XdXR2daGzs6vYYCLj4safD+E9/7kfA5P5wzhiIiIiamUM1JpsabuFm197HL599QlY3R1FaawWTyTQ3dMLy7QKj3j/6s+jPTyYwZ/++wC+/MAYsjYvhxIRER3tWJQ9QLOKy+Zdif/z+/245e4BJDp7oOl6qLqenREN371yNbqi4doTEREtJP+82bvhZGi6XvZvnTEdz21/YIFGtvhx1ec8snQN7zrnGJy+qgvvvmMo9PNWd1nojvGjISKixeWC93ymYtXnGFd9HhJe+jwMlrZb9RsRERERzcFAjYiIiKhFMVAjIiIialEM1IiIiIhaFO9YJyIioqb49RfeV7bqM2IauPglZy7giBY/BmqHwb79+xd6CERERPNu7qrPsTtvZUH2Q8RLn/Mon8/jpptuwkVnnYzs8C4oGS6J7cBkHuNphyWliIiIjnIM1ObJL37xCxx//PG48cYbkZ1J4tGPX4Z9//UFSMeGcp3A5+gCMDTgdVs7Ebc0JrslIiI6yjFQa7L9+/fjyiuvxCWXXIJdu3YVZ8WUk8e+//oiHv27P8LU0/d5jZU3w+aHY6evjOE7b1iNd57Ri6jBj4aIiOhox3vUmiiVSmHr1q2Ynp4GALiuW9EmNzqAZ77wdnSffAnWv+njMDqWoCeu430vWYIL1yU4i0ZERERFDNSaaGJiAhMTE+HaPvJzOEYSN9/+S5y+IoaYyRk0IiJa3Oau+uyM6TVaUxgM1BaSk8O5axL12xERES0CQas+6dBwGoeIiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxcUECyi+7lTccv8oLlibwCnLYws9HCIiokPCVZ/Nx0CtiVasWIErrrgCt99+OzRNg6xSMirWswynvvXvcMxZr8T9e9K4b08GZ66M4a2ndqEvzo+EiIgWJ676bD5e+mwiTdPwgx/8AD/96U+xYsUKaFr55hW6geNe9S688pbfYMUZlwIAVKEuwYP7M7jujkH85OkkHJc1PomIiIiB2rx41atehWeeeQYf/vCHYRgGDMPAki1n4Y8+83Oc9KYPQ7ei0PTymTOpAFsC//boFP7mziHsmswv0OiJiIioVTBQmyfxeByf+MQn8OSTT+Klr3g1Lvjod9C2bE2oElG6ANZ2WcU6oURERHR04g1R82zTpk34P9/+Dq7/2YHQz0lYXvzMup9ERLSYlC4miJgGLn7JmQs8osWPgdphwICLiIiOBqWLCcbuvBXf/MoXF3hEix8vfRIRERG1KAZqRERERC2KgRoRERFRi2KgRkRERNSiuJhgnrmuxO13PwhgZfjnMCsHEREtQqWrPlk+qjkYqM2jPzy9G39z6w/w5O4hrD/lHKw54TRAAUKrPpGpCWDneB7PjOZwbK/FFaNERLRozF31SYeOgdo8GE+m8In/ewe+ve0B6JoXaO3Yfh8O7Hwam8+6CJ1LVwBKASVBmACgAGzssfDO07uxustamMETERFRy2Cg1mTf/cUf8OF/+QnS2RwAwJWz1zFTU+N48K4fYNm6zdh0xnkwzAiEpkETQNzU8JZTunD+mjhn0YiIiAgAA7WmGp2awf+65Xuod4vZ0M6nMbp3B055yUvRt2YzLlgbxxtP7EKbxbUdRERENIuBWhPlbadukOZz7Dyyux/Dv15/ybyOiYiIiBYvBmpERETUFFz12XwM1IiIiKgpuOqz+XhTFBEREVGLYqBGRERE1KIYqC0wpViGgIiIiIIxUGuiiGVCCIEwadBisRiOO+VF+Md7RvEfTyeRysv5HyAREREtKlxM0ES9HQn8y/vfhA9++UeYmElDysrZMiEETjzpZJx3/gUwTRMA8MRwDs+O5XHhugROXR6FxoS3RES0CP36C+9DLBrB5uM2YWVf10IP54ggFK+9VUgmk+js7MTU1BQ6Ojoaf34qg3/6t7vwL//5W2hCwJXebFl//zK87NKXY2l/P5RSgRUIliZ0vGJTO1Z0mIf8PoiIiA4H/7z52pu3Ifmbb2Lb7d9e6CEdMXjpcx50JGL41Dtfg1/efB1O2XgMAODCl16Eq958NfqWLAGAqmWiRlIuvrV9EvuS9mEbLxEREbUmXvqcR1vXrcAdn/4r/OsvH8F+ywvY6tXxVABWtBtYyRk1IiKiox5n1OaZpmn443NObOg5vEWNiIiIAAZqRERERC2Llz6JiIioKX79hfehu81a6GEcUTijRkRERE1xwXs+g7Ubjl3oYRxRGKgRERERtSgGaocDM9URERHRQWCgNs+eG83igz/bC6lU6Lqe6byEaqA9ERERHZm4mGCepPIuvvL7UXzn0XEIALsmbZx+TBu6YkbVqgQ+QxcYTbtYkuDHQ0REdDRjCakAh1JCSimFu55L4jP3HMBk1sXccp/re6M4cVkcuibKanoKAIYGXLiuDaetYL1PIiJaPPzzZu+GkxE1gEsuOBff/MoXF3pYRwRO2TSRKxWu+889uG8gBYHgW9N2jGWxbzKHE5cnsLYnWnz8+KURXLy+DQmLV6OJiGhxuuA9n4EZS2Dfnbcu9FCOGAzUmmg07eC+gRSA2usHcq7CH/bOwJESV2ztwdalEazuYt4ZIiIiKrfg0ze33XYb1q1bh2g0itNPPx333HNP1baDg4O46qqrcNxxx0HTNFx33XWB7W6//XYcf/zxiEQiOP744/GjH/1onkZ/aNJ5F688tp1BGhEREQVa0EDte9/7Hq677jrceOONePjhh3HeeefhFa94BQYGBgLb53I5LFmyBDfeeCNOPvnkwDb3338/rrzySlx99dV45JFHcPXVV+MNb3gDfv/738/nWyEiIiJqugUN1D772c/i7W9/O97xjndgy5YtuPnmm7Fq1Sp86UtfCmy/du1a3HLLLXjLW96Czs7OwDY333wzXvayl+GGG27A5s2bccMNN+Diiy/GzTffPI/vhIiIiKj5FixQy+fzePDBB3HppZeWPX7ppZfivvvuO+h+77///oo+X/7yl9fsM5fLIZlMlv0hIiKiYNXOm7/+wvvw289fh5V9XQs7wCPIggVqo6OjcF0X/f39ZY/39/djaGjooPsdGhpquM+bbroJnZ2dxT+rVq066NcnIiI60lU7b17wns9g83GbmJqjiRZ8McHcxK/1ksHOR5833HADpqamin/27NlzSK8fli6A58ZyyDnysLweERFRMyzUefNotGDpOfr6+qDresVM1/DwcMWMWCOWLVvWcJ+RSASRSOSgX9PXEdHRHdORzLpw66QRXt8TwWnHtOOu52cQNQTOXZPAsb3WIQepRERE861Z502qb8Fm1CzLwumnn45t27aVPb5t2zacc845B93v2WefXdHnXXfddUh9hhUzNXz/qvW4bLO30EEPiLm6ojpeubkLF27ohFVokHUUfv7CDH70ZBJjaWfex0lERESLw4ImvL3++utx9dVX44wzzsDZZ5+Nr371qxgYGMA111wDwJta3bdvH771rW8Vn7N9+3YAwMzMDEZGRrB9+3ZYloXjjz8eAPDXf/3XOP/88/FP//RPeM1rXoOf/OQn+PnPf4577733sLyn7piBj128Apcf34VP/WoQL4znAQCGJnDKiji2LosX286dPRuacfC9x6Zw8rIozjwmXgzkiIiI6Oi04LU+b7vtNnz605/G4OAgtm7dis997nM4//zzAQBvfetbsWvXLtx9993F9kGXBtesWYNdu3YV//6DH/wAH/nIR7Bjxw5s2LABn/rUp/Da17429JgOpdZnKUcqfP+xCXz598N45eYeJCwt1KXNmCFw1cldiOiCl0KJiKjl+efNFZtPx8vOfzEXEzTRggdqrahZgZpv53gOdzw3E7r9sjYDV5wQnCeOiIio1fjnzQtf9Qb86qffW+jhHFEWfNXn0aA7xpKqRERE1DgGakREREQtioEaERERUYtioEZERETUonjzFBERETXFM089iZdd8WYAwMq+Lq7+bAIGaofB4HR+oYdAREQ0785+9+dgxhIAgH133rrAozky8NLnPMo6ErfdfwBv/fcXMJG2ETYTynjGRSrvhm5PRERERybOqM2T3+ycxj/8aj8OTNtQAH742ChOXJ7Aace0QxOAFpDIVgDQBHDaihiiRrjkuERERHTkYqDWZPuTefzT3YP49c5paALw58SkAh7Zn8LzoxmcvbYD63piUEpBCAEBr92aLhPnrU2gI6Iv4DsgIiKiVsFArYnSeRev/3/PI2tLAF5wNlcqL/HzZydxTGcGF2zoRNzSkbA0XLAugbVd1mEeMREREbUyBmpNNJ2TSOVlqLZ7p3J4cE8S//uy1VjebsLQeJmTiIgWt19/4X2IRSPYfNwmrOzrWujhHBEYqC0gpYBVnZxFIyKiI8MF7/kMkr/5Jrbd/u2FHsoRg6s+iYiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1BZQXgr87S8O4Le7U6xCQEREi96vv/A+PPXE43jru9690EM5YnDVZxMtbTPwyuM6ccczU9BEcB41wKtK0BaLYNrVcf+eDO7bk8GZK6J4z9m9WNFuHt5BExERNckF7/kMzFiCdT6biDNqTSSEwD/80Sp86fK1WN5uIigzWixiors9Dsvwqg/4sdxDg1n8+Y/24V+3TyLvhMvFRkREREc2Bmrz4Ow1bfjR1Ztw7dlLYeoCugBMQ0d3exzxiOXV8JxTx9NVgCOBb22fxNt+tA/PjeYWaPRERETUKhiozRPL0PDOFy3Fj9+yCWetbkNHPApdE3ULrSsAUUPDpr4I71sjIiI6yjFQm2crOyx8+KUrCwFauDJRCcv7WOoFdURERHRk42ICIiIiaopff+F90HQdlnDx1ne9G9/8yhcXekiLHgM1IiIiagp/1ScArvxsEl76JCIiImpRDNSIiIiIWhQDNSIiIqIWxUBtntmuxA+2H2joOW61kgZERER0VOFignn0wO4p3PhfL2DHWAZdHe3o6mgHUDvthiaA58fzeOxAFluXRuq2JyIiahX+qs+IaeDil5y50MM5IjBQmwcjM3n8w7Zd+OnjI9AKMdZkchoz6Qz6ujsRi0bhpbadDcBE4ZETlkbwly/qxapOEzkXMHVAB6CUYsBGREQtzV/1OXbnrUzN0SQM1JrsOw8N4R/u2olcoV5n6VVMx3EwNDKGeCyKvu4uaJoGIQQ0AbRHNLzrjB6cuyZeDMgUgLwL6ELB1BisERERHW0YqDXRaCqPj/zXC3XbpTNZ7MkewNql3Ugk4njZxjb86UldiJvBtwy6CnBdwNIAnXEaERHRUYOBWhPZbvhFAEopWCqL7165OfRzHOVdBiUiIqKjA1d9EhEREbUozqgRERFRU7DWZ/MxUCMiIqKmYK3P5uOlTyIiIqIWxUBtgeVst6H2SrFqARER0dGCgVoTRQ0NmihNY1udcmw8/8yTOP7a2/Cer/w3DkzO1GwvlUImLzGekZjOuZAM2IiIiI54DNSaqDtu4tbXbUZfm1msSDCXUgrO1AFk9zyOmYkxAMCdD72Aiz78r/j6XQ/DdtyK9rarkLUV/OwfeReYzEhkHckZNiIioiOYUDzTV0gmk+js7MTU1BQ6Ojoafn4q7+KLv9mDr/1uH4QAXK9IAdzsDJyR3ZB2tupzNy7vxiff/FKceexKuFIh7yjU+oB0AbRFNBjVIkMiIqJ55p83ezecDE33Mn5awsUlF5zLlZ+HiIFagEMN1HzPjaTx0TtewAO7p2CPDsCdHq37HE0TEAD+3/tehxPWLA39Wp1RBmtERLQw/PPma2/eVlz1CQBjd96Kbbd/ewFHtvjx0uc82rQkju+8ZSs+/NIVoYI0AJBS4YTVSxsK0kwNDNKIiIiOQAzU5pkQAi/d1N3wcxp7QmPNiYiIaHFgoEZERETUohioEREREbUolpAiIiKipvBrffo6Y3qN1hQGAzUiIiJqitJan4C36pMODS99HgbMgEJEREQHg4HaPHt8KIXr/3MA3tLMcMszJ2YykFKFLhMlC80YEBIRER1ZGKjNk6msg7+/azde/3+fwgsTDhJrT4QejYd6rtIM3PHEAaTzXomoegGYUvDKSYHBGhER0ZGE96g1mVIKP358DP/4yz2YzrlQAFwF6NE2xNecBHtqGLnhXVCyvKanEAIR08CrLjgDL9q6CZoQuH9vBqs6TWzqsSCgoAXkV7N0AV0DFARyLmAIwNBUsU8iIiJavBioNZErFd72vWfxwMA0BFBRo1MIAaurH0Z7D3LDu2FPDRfbveiEDXjleaejLRYttlcABqZsDM04OK7XwvJ2s/hvhgaYuqgIxhwFuK5XrUAXszNsDNqIiGi+cdVn8zFQa6KRGRsPDEwDqAzSSmm6idjyjVi24hisslI4Y8sGrFmxpGr7vKvw2HAOM3mJLUsiMDQBrUbJKAUgLwFDKZg6AzQiIjo8uOqz+RioLaBoWweuOO/E0O1n8hKWEf62Qt6tRkREtLhxMQERERFRi2KgRkRERNSiGKgRERERtSjeo0ZERERNwVWfzcdAbQFJqbB9zxSO7W9D3Aq3M4+lHXRFdeg1Vn36lAIcqaALpucgIqL5x1WfzcdArYm6Ygb6EgbG006xrFMQv9rAUDKLH24fRNTQ8PLjl+LU1Z2BSW0BoM3SENEFdk3YMDQbqzpNdMf0mgGYBCAlYAOwNBUquCMiIqLWwXvUmihqavivd2zFlacsgYCXcHYupRSklGWlnrKOxE8eHcK/3LMbg1PZsvaWLrAsYaArohWDMkcCOydsPDuaR9aWocaWl0DOCV8/lIiIiBYeA7Um64wa+Nila/Dvb9mC45bO1vb0AzQpqwdWg8ksvvSbXfivxw8g77jojuroTxgwtOBLlzN5iSeGc9g3ZcOtNYVXIAHkXMCW9euHEhER0cJjoDZPTlyewPffsgV/9/I1iJuiYhYtiB9rPbU/ieVtJhKmF5zVu79sPONCiPAF2d1CrMhgjYiIqLXxHrV5pGsCbzxlCTYvieL1//fJ0M9b2h4JvbgAAGKmqHpvWxCNiwuIiGgelK76jJgGLn7JmQs8osWPgdph0BnlZiYioiNf6arPsTtvxTe/8sUFHtHix0ufRERERC2KgRoRERFRi1rwQO22227DunXrEI1Gcfrpp+Oee+6p2f7Xv/41Tj/9dESjUaxfvx5f/vKXy/7dtm18/OMfx4YNGxCNRnHyySfjZz/72Xy+BSIiIqJ5saCB2ve+9z1cd911uPHGG/Hwww/jvPPOwyte8QoMDAwEtt+5cyde+cpX4rzzzsPDDz+MD3/4w/hf/+t/4fbbby+2+chHPoKvfOUr+MIXvoAnn3wS11xzDf7kT/4EDz/88OF6W0RERERNIdQC5mg466yzcNppp+FLX/pS8bEtW7bg8ssvx0033VTR/oMf/CB++tOf4qmnnio+ds011+CRRx7B/fffDwBYsWIFbrzxRvzVX/1Vsc3ll1+OtrY2fPvb3w41rmQyic7OTkxNTaGjo+Ng317RI/tTeN03Hw/dfmNfHDe+fEPo9p1RDRt7I6Hb68JLpNsIpVRDK0UbbU9ERIuXf97s3XBycdWnJVxsOWErAGBlXxcXFhykBVuOmM/n8eCDD+JDH/pQ2eOXXnop7rvvvsDn3H///bj00kvLHnv5y1+Or3/967BtG6ZpIpfLIRqNlrWJxWK49957q44ll8shl8sV/55MJht9O4FsV+GRoQy2D2axtN3C8HQ+1PP2TWUxPJ1DX5tVN+2GUgqpvETOkTD1+mk6lFKQEJBKQaB+mo7SgCtM8NVoeyIiWnyqnTfn1vr07WPNz4O2YJc+R0dH4bou+vv7yx7v7+/H0NBQ4HOGhoYC2zuOg9HRUQBe4PbZz34Wzz33HKSU2LZtG37yk59gcHCw6lhuuukmdHZ2Fv+sWrXqkN6bUgq7J/P44ZNTeOxADrqm4c/PXoNLNi+BqQnUi10ytsSN//kcfvzoATiurFp1QCkFVwHPjuXwzYcn8PBgFlJVLxOllIICMJ1zMTTtIGXLYt3RWu3TtsRMXsGukyjXb59zFXLubAJfJtYlIjqyNPu8SdUt+GKCuTMu9WZhgtqXPn7LLbdg06ZN2Lx5MyzLwrvf/W687W1vg65XTyB7ww03YGpqqvhnz549B/t2kMy6uOv5GfxyRwppezZA0TSBF63txjXnr8OW/jZvzDX6caTCfzw+ghv+41k8vn8aAIoBmP+eR9Iutg9lMJxy4Ujgd3vS+O6jUxicdsra+cFYzlGYzLjIu15ANZWVGEk5sKUKbJ93gZm8giMBBSDreLN3UpUHX357R6IYoCkU6osWXovBGhHRkaOZ502qbcEuffb19UHX9YrZs+Hh4YpZM9+yZcsC2xuGgd7eXgDAkiVL8OMf/xjZbBZjY2NYsWIFPvShD2HdunVVxxKJRBCJhL/HqxrbVfjJ08liiaYg7VEDl5+yAqeMpfFfjw9hKuPU7HM0ZePmX+/GySvb8dazVqIrZiJjK+yYzGEmX/lCE1kXP34qiU29Fs5fm0DUEHAkkM67cANiJVsCIykXcVOiM6pDAHCVF5QFTeS5CkjZCpYORHQvQJbK6ycoFJPKC94MARgaL4USER0JmnXepPoWbEbNsiycfvrp2LZtW9nj27ZtwznnnBP4nLPPPrui/V133YUzzjgDpmmWPR6NRrFy5Uo4joPbb78dr3nNa5r7BgLk3dnZp3rW9sbxJycvD933I/umccvdA3hiOItHh7OBQVqp58by+NWOGSSzDqZzwUFaqbStMJZyMZNzkbaDg7RSedd7TsaWyId4z47ygjzOrBEREYW3oLWNrr/+elx99dU444wzcPbZZ+OrX/0qBgYGcM011wDwplb37duHb33rWwC8FZ5f/OIXcf311+Od73wn7r//fnz961/Hd77znWKfv//977Fv3z6ccsop2LdvH/7u7/4OUkp84AMfWJD3WIuuNTa7ZEuF6ToBWilHen/CUvCCqbCTXqrwh3NkREQElNf6LGUJF29917u58vMgLGigduWVV2JsbAwf//jHMTg4iK1bt+KOO+7AmjVrAACDg4NlOdXWrVuHO+64A+9973tx6623YsWKFfj85z+PK664otgmm83iIx/5CHbs2IG2tja88pWvxL/+67+iq6vrcL89IiKio0q1VZ8AV34erAWvFn7ttdfi2muvDfy3b37zmxWPXXDBBXjooYeq9nfBBRfgySefbNbwiIiIiBbMQQVqe/fuxU9/+lMMDAwgny/PDfbZz362KQMjIiIiOto1HKj94he/wKtf/WqsW7cOzzzzDLZu3Ypdu3ZBKYXTTjttPsZIREREdFRqeNXnDTfcgL/5m7/B448/jmg0ittvvx179uzBBRdcgNe//vXzMcYjklIKOVfgxRuWYEVXPNRzdMPEw4MZjKZrp/QothfAc2M5TOfc0OPKu9UT5s5l6QKWLkIvJnClt1o0bP9ERERHu4Zrfba3t2P79u3YsGEDuru7ce+99+KEE07AI488gte85jXYtWvXPA318DnYWp9KKfx2II3nxvIQqJ6yIudIDE47SNmqmOB3dDqDRwbGMZOrDMIs08DS7g5EI1bxsb64jmN7LcTMylg7agj0J3QviCos4eyJaTimw4IZUONTANAL3fjtNYFCFYXK9obmvUbpvziqsRWmhublVmNeNSKixS+o1mepiGng4pecyVWfB6HhS5+JRKJY32vFihV44YUXcMIJJwBAsYzT0UoIgXPXJLCxx8JvB9JI5sojF6kURlIuRtNu2XMAoLctipcevwLPH0ji2cEpuIUArrezDZ1tlTNuY2kX96czWN9tYnWXCU0IaAJYEtfRGdUrKjyMZyQms1msbDexJKEX/00XXtWEuYk2vES1CobmtRHCC8yihoCpi4r+DSgYupf4tl7ONqCQOgSApamG05QQEVFrqrbqc+zOWxmkHaSGA7UXv/jF+O1vf4vjjz8el112Gf7mb/4Gjz32GH74wx/ixS9+8XyMcdFZ1m7iT47vwBPDOTy8PwOpgGTOxf5pp+qskx8IbervwOqeBJ4YnIYZiUDTtMBZJz8WemHCxv5pB+evjWNNpwk/5gl6jlTAnqSNkbSD4/oiiBqlbYKDJUcquADaLFHWfm7/QnjBm6ULOK6CHXKeNi8BTXqVDji7RkREVK7hQO2zn/0sZmZmAAB/93d/h5mZGXzve9/Dxo0b8bnPfa7pA1ysNCFwYn8U67st/HrXDB4fzoV6nhACEBqi8TjCppPtiupY321BhUxWGzO1wEum1UQML0irF0j5/97oHWjaglecJSIiak0NB2rr168v/nc8Hsdtt93W1AEdaRKWhjNXxvHLHenQz5mddAs3wxQpzHSFnZAyGgyM5vvKJOfRiIiIgh1SwtuZmRlIWX4tr5Gb74mIiIiouoYDtZ07d+Ld73437r77bmSz2eLj/s3lrhs+FQQREREdOYJqfforPungNByovelNbwIAfOMb30B/fz9vACciIiIAwas+ueLz0DQcqD366KN48MEHcdxxx83HeIiIiIiooOH1dmeeeSb27NkzH2MhIiIiohINz6h97WtfwzXXXIN9+/Zh69atME2z7N9POumkpg3uSKCUQs5pLGFFoxeTXdlY/7LR9g3m22g0PYcKl4WkpL33CmEvuzfanoiIqFU0HKiNjIzghRdewNve9rbiY36yUy4mKJd3JZI5CcsQOH9tHPfuTkOp+oFMzBBY22Vi96QNoHZ7AWBwxsHepI2V7d7HWSsgUUphJO0CYzls6o1AKgWtTvtUXsGVQHessuJBUHtdeIlyS/eLWu1tBQgIGDpqtvcDLj9w1FA7APP7kijEgXXGQkRE1GoarvV5/PHHY8uWLfjABz4QuJhgzZo1TR3gQjjYWp8+VyrM5CVyc2opTWZd/Pz5GeyYsKvWAu2IaFjdZSJiaJjMuvjdnjSGU9WD3/6EXqgyoMHSgaUJHZGARGl+0LIvaeOF8TxsCazqNPHKY9vQG9MrPkd/txjPuBhOuZAK6Il59UWDkt/67fMuiu87qIbo3Pa2q4rVGiK6QNzyKjRUa591FOxCe7NQc7Rm/yUlrQwxm0OOARsRUfPUqvVpCRdbTtha/PvKvi4uLmhAw4FaIpHAI488go0bN87XmBbcoQRqaVtiJl+7OvlzYzlsez5V1s7UgNVdFjqj5SWjlFLYOWnjf/ZmkHdVMbiLGQLHL4mgN145KdoeEeiL6WUJcFO2xFMj+Yr6o5oAzlgZw4VrE9A1FIOktC2xf9qpuGyrCWB1p4k1XWbxaqUQAo5UyDoq8DKpJsqT5vrtbUdVBKsCQNwUxSS+fvu8611CDmofMQSsQv1Rn6tQDOjmtjc1QNcEL4kSETWJf9587c3bAmt9lhq781Zsu/3bh2lki1/Dlz4vuuiiIz5QO1hSqbpBGgBs6o1gbZeF3+xK4ZGhLPriBpa1G4HFyYUQWN9t4ZgOEw/tz2DXpI3VnSbWFgqxB5nOKaTyDjojGhKWwK5JG/uSTuAMnlTAA3szeGo4h1dvbseKDhMjKRuT2eD3IRWwa9LG0IyDrUsjiJsaco6sWsPUf45UXrAmAOQcWfW+NwUgZStkXYU2U4MQQNaWVQu9KxRm2VxVnF2zZfXLxQqF+qJKwWLpKiIianENB2qvetWr8N73vhePPfYYTjzxxIrFBK9+9aubNrjFppG5SVMXeNExsdB1nyxd4NTlUaztskK19wuwj6bD3TM4nZe4b08aJ/VHQ80wZR2FfUkHy9uN0DNSths84xbElcBMXkKIcDNergKybu377UrJwr2CYdsTEREthIYDtWuuuQYA8PGPf7zi37iYgIiIiKh5Gg7U5tb2JCIiIqL5cUhF2YmIiIh8QbU+fRHTwObjNmFlX9fhHdQi13Cg9vnPfz7wcSEEotEoNm7ciPPPPx96lQ+KiIiIjkxBtT59XO15cBoO1D73uc9hZGQE6XQa3d3dUEphcnIS8XgcbW1tGB4exvr16/GrX/0Kq1atmo8xH1Gq5VML0mAmlYbb+88JuzhAKgVHKph6+PauRODq1mpjARqrQKDmuX2j42mkPRER0VwNJyj4h3/4B5x55pl47rnnMDY2hvHxcTz77LM466yzcMstt2BgYADLli3De9/73vkYb0tr5HxsuwqTGRfHdJjojemoF+u40ssjZumo2xbwqiJM5cLfT9gR0bCi3fBSYziybpCXzLm4e1cK/3f7JB7cn4FTZznncMrBfQMZ3DuQxsCUDVmjf6UUZKFiQV56VQ5qjUcphbQtMTjtYv+0g1S+9viV8tJ5TGYVJjIS+TolvrzqDBIjaRfjGRd5t/Z2VUpBSlVMS3IwATMRERFwEAlvN2zYgNtvvx2nnHJK2eMPP/wwrrjiCuzYsQP33XcfrrjiCgwODjZzrIfNoSS8zTkS0/kaecKUFxyMpd3iTJr/EUzlvOfObZ+xJbJzggmlvJQUc19HKoXJrFuR2LYaQwM29lhY2WGWzaZ5iWQ1GFr5jFDeVdg7lcfEnDxrbZaG89bEsaqzPH1I2pZ4eiRXkSYkbgoc1xtBV6z8ErlSCkEjF/BSmsxNp2G7ClM5tyKPm6UL9MT0itk+VyrkAxLnmhqQsLSK2b5qn2dEF2ib035uiau5tJCpRoiIFpswCW956fPgNHzpc3BwEI7jVDzuOA6GhoYAACtWrMD09PShj24RihgaLF0gZUuk7fIzdjovcWDGqciY75+8OyMaEqaGiayLnKuQdyTSdnDQJwSgA4W6ml6AlrIlxjNu6FxlK9oNbOq1ijN0ZRURAGQdCV0AUcNLPDuccrF/2g7sP5WX+O/nZrC2y8Q5q+KImRp2TdrYMZ4PfO20rfDwUBb9CR0beyMwNe81ayaqdRU0oWBqAgrAdE4iU2U2LO8qDM04aLc0dEQ1CAB5R1VNnGtLYDIrETMFYoaAVMB03kW+SraZnKuQy7hoszTECol26213qQABFVgii4iIKEjDgdpLX/pSvOtd78LXvvY1nHrqqQC82bS//Mu/xEUXXQQAeOyxx7Bu3brmjnQREUKgzdIRNRSmc24xaJjO1T6TCyFgaApL4jqeH89VBHqV7b3/1zWFwaRTMetWjakBpyyPoiNSv8i6q7wapfunnYrapaX8f9k9aWNwegrHdFqoc4UQAHAg5SLrZHFifwRaiHvXpPIS4abtylmxINN5ibwr0WaFW9ySsb0ZzBpvtcxMXsKVAnEz3F0ESqFwYyILxBPRkafWqk9LuHjZFW8ue4x1P+trOFD7+te/jquvvhqnn356sSqB4zi4+OKL8fWvfx0A0NbWhn/+539u7kgXIUMT6IrqSObcukGaTwiBVN6tG6SVStsqdJAGAH1xAx0Rvfh69UwHFJivRgGImzocN3wgsrTNaOj+vpwbLkjzRXStoUUSYYM0X9RoLOBiNQQiOlLVWvUZZN+dt87jaI4MDQdqy5Ytw7Zt2/D000/j2WefhVIKmzdvxnHHHVds89KXvrSpg1zMhBCw9BYrKtliccLhGA5nr4iIaDE66IS3mzdvxubNm5s5FiIiIiIqESpQu/766/GJT3wCiUQC119/fc22n/3sZ5syMCIiIqKjXahA7eGHH4Zt28X/roaXl4iIiIiaJ1Sg9qtf/Srwv4mIiIh8tVZ9+vyanwBY9zOEQy7Knkwm8ctf/pL3rNXAzPRERHQ0CLPqk4lvG9PwcsQ3vOEN+OIXvZwnmUwGZ5xxBt7whjfgxBNPxO233970AS52tqswnZcNrWw0tNnqAOHao6H2uUIa/7ABpNHgXuLIxnKEZRscj9ZAW78cVSPtGxkL0FiZKFUYy3yNp9H+iYiotTUcqP3mN7/BeeedBwD40Y9+VCzK/vnPfx6f/OQnmz7AxUoqhWTWxUTWhRACq7uM0Pm2uqI6LlibQFc03MfTFzfwklUxtFnh2uddhcFpG27IAKMzomF1hxE6YDN0EaoeqR9QPDuax2MHcoWSWNXH4xV1V3j8QBaPHcjClSpEzVDg2bE8dhfqi9arAepKYOdEHkMzTuiAJ5mbzTNXr38FL6muX/IqTPuco4pVD6q1Ly1flSmpwMCAjYhocWv40ufU1BR6enoAAD/72c9wxRVXIB6P47LLLsP73//+pg9wsVHKSz47k5dlSVkjhoZVnQLTOYnhVHCZJ00Ay9oMdEQ0CCHQ32Zgx3ge24cycGVleSVDA47psIrtl7WbeG4sjyeGs94sz5z2pgYsTRhIWBocCQxOO+iIaOiIeBHY3Fmw2fqaGiIG0B7RcSDlVNTt9EUNgeVtBqKFLP1e8fPqCWQd6ZW9kgrYMZHHvqSNrf0RrOq0yhLUSqWgCYHdkzbu250u1kPdNZHHaStiOGZOe/+/J7MSg9M2HAmMpl0MzTg4rjeC7phe0R4AhmYcDEzli0HUSMrB+m4LbXUqOCgAKVsh57pImBr0wpaf278tUSwf5jgKeVcVyk+V9+23dyTg5zHOS0BTCpaGirH47TO2nO1fKpiaQsQQrIJARLSINVyU/dhjj8UnP/lJXHbZZVi3bh2++93v4qKLLsIjjzyCiy++GKOjo/M11sPmYIuyK6Uwka0sED6XKxXG0i4mSwqbd8d0LInrFUXBAe/S4CODGeyctIuPLU0YWJowAttnbIntQxnsTXo1WQWAnpiO7pgWmBVf14DuqI5YSRkkQ/NmxYJO8FlHYm/SLlZP0ATQnzDQGdUC20upkHcLtTwLs0RpWyJfJYLrjes4ZVm0OEM4k5e4Z1caA1N2YPvl7QbOWBkrlnHyCsfbSFWp7rAkoePYXgumJiCEwEzexQvjeczkgz+4JQkda7qsqttjrqguEDcLl6+FgFPy/oNYulfkvbT93HqwpQwN8CdnhRDIuwq5gELzvoguUFpBi0EbETWbf97s3XBy3cUElnCx5YStAFhCKoyGZ9Suu+46vOlNb0JbWxvWrFmDCy+8EIB3SfTEE09s9vgWFalQN0gDAF0TWNpmoCMqMZNT6IxoxVmoIFFDw1mrEljRkcezo3n0xHVEa1yHjJkazl6VwPNjOeyazKMrqsOscS3SLcw49cYV2i0dRiGAqTWeDd0WxrMuco5CTyw4wPRpmkBEKEznJGxZv9zVWNrFL3ek0N9mQCng8QPZmmWdBqcd3PHMNM48JgZT1zBWZcbPN5JyMZ7OYHWnCUcqHEg59dtnMjhteSzUJd2sq5BzFdoszbtcW+enUN717mWMmgJSqrrF3b2ZNm+W0ZH165LmXG8MYeuREhEdLJaQar6GA7Vrr70WZ511FgYGBvCyl70MmuYd/NevX8971BoUNTQkzPCzGz0xAys6wk+A9sZ1pOzwH7EjUTdI8wnh1TGtF1SUtpcKoWuSKgBPj+RCt3eVF7AlQhZfdxWwN2mHrjHqSsBVCnrIJRsK3sxe2NkrhXBBfmn7sPVXAYT+nIiIqLUcVHqO008/HaeffnrZY5dddllTBkREREREHl4LISIiImpRDNSIiIiIWtQhVyYgIiIiAsKVkCplCRcvu+LNZY9xJWg5BmoLSCkFRyF02gepFCK6l44hzL3hpiawot3AgRmn7spAALB0AVMTCHn/PnThLT6olmZjrrgpEDF0jGdqr8osbW/pAslcuLvsbamQcyQiITLzKqUwk1cwNJSlJanVfn/SRmfUQHes/kHIlQrPTdroSxjoCdHekQrDKQfdUR3xEImLbVdhcNqpuwK4tP3+pDceK8TS1bwrkcxKdMX0YqWMmuMvrHSNmSIwBUxFe+klL7b0cItX/LQuAuG+K6VZh5iOhOjwaXTVZxCuBC0XKlB79NFHQ3d40kknHfRgFjtNeH/qrbDzM+Z77RQceLmxqgVsSimkbYWMo9AW8VI+pPOq5qq/hKVhSUKHEAIbeyWeHslhuEoaCk0AK9pNLC20l1KVZbefSwCIGKKYh8xPXFtt1aImvGoLCdMEAMzkXeycyFfNc6YLoD2iIWp4u+dMzsWepINclQhSF977zTkKOceFpUt0RKqnDMm7ChMZB/lCvJgwJfoS1QOSvKswlXVxIOUCyGFNp4kTlkZgVQmQ9idtPLA3U3x/JyyN4LQVscAASSmF0bSL58Zy3ipRAGu7LazrtgLHr5QXoD0zmoUjAW0cWNtl4ZhOMzBAUkphJO1iX9KGVMDz43ls6LGwot0IznmnFIZnHOyfdqDgrYxd1WmiJ6ZXbT+Tk8UkxMmc91lHjeAATCqFjD2bokUTCglLqxo8+t+V4t8BaKiRfFhVpjep1Z6IqNWFSniraV4i01rZ2X2uG262pJUdbMJbwDsRpfISmSpBhSyUKQoyWwlgdhvnXYnpXHCuLNv1Xqv03yxdoD2iQRPlmfGFEBhLO3h6JFtMVAt4iW5XdZowtMog0Xa9E2rpS5saiqWw5vafdSTSdnn7NktDZ0Qrmwnxd7kDKQd7puyy8SdMUUx0O7f9cMrFgRmn7EQcN0XFeIp9WRoS5mwSXqkUprIyMLGtANATL4y10N6VXp3WuSlCBLwkwVuXRrGmyyy2T+UlHtyfwZ4pB169gdn2EUPgxaviWN892z5tSzw3msNEtvI7EzEEtiyJYkli9rfUdM7FUyNZTGUrxx8zBI7ti6A7Nts+lZfYPZkP3BfbLA3H9VnoiMzO9k3nXOyetAN/ACRMgTVdVtnsY8aWmMwGV9mI6KJsNk4prxJDKh88G2xq3uell7T3EiQHNC6Yu4/Xau/tf5xdI5ov/nnztTdvO+QZNRZtLxdqRm3nzp3F/3744Yfxvve9D+9///tx9tlnAwDuv/9+/PM//zM+/elPz88oFxFNCLRHdMRMhWTOLavpGFQGqpSfe0sTCpoAUnVmzQwN6IxqyDpeZvq2iIaIoVUE1P5/d8d0nL06gV0TeewvzJS01yiPZGhAmyWQc73alFFDBM46+c+N6AIRXSBVCNZ6onpgAOj/vT9hoC9mYNdUHsmcREdEC5xV9P++NKGjJ6Zjb9JGxpZIWFrNS2GpvETWlmizNLhKVA0qAG/bj6W9y319cQ0QXrmvoOZ+zrPtQ1nsmszjpGVRDE67eGwoO1uTc077rKNw984Unh4xcPbqGKayLgYmgystAF59z+2DGfTFdWzsjWB/0sbAlF01i1vGUXhkKIulhSoKIykXYzUuMc/kJR7cn8XyNgOrO00MzdiYCAgAfSlb4cmRXKEiho7pkvqmgeN3FQ7MOGi3NMRNb5+olSfOlsBkVnqXx3UR6tK+VICAVyutXns/iBNQoS+fEhG1glCB2po1a4r//frXvx6f//zn8cpXvrL42EknnYRVq1bhox/9KC6//PKmD3IxMjSB7qiOrKMwnatfVqqUI737p+rxTzZRw5uNmPv4XP5M3apOE11RvThTVa39bADm/Qk7ns6ICAwYg9rrmsLShAFDqz8TK4SAoXmVEJIh7psCvMS2Y2mJsJvflsB4RsIIU4IAwFRW4s7nUqETyh6YcfA/ezNeDc4QRtMuRtPp4t/rvcxwykXazoUORIZmHMzk3dDtx9KOF+yEbD+Tl8i74e5DA7wfKmZAcF9NwzXnFSBC7jtERK2g4cUEjz32GNatW1fx+Lp16/Dkk082ZVBHCiEEYqaArnlliMJqNIu8EOFPhKX9h31Oo7MPWsjL5H7fYRcjHEx7oH5wM5fWQNIahcY+LwWEDtIOhhYwI9nM9mErVxxs/yHj44MnKovaE1HzNLrqM4glXLz1Xe/mys+ChgO1LVu24JOf/CS+/vWvIxqNAgByuRw++clPYsuWLU0f4JFAhCw7REREtJg1Y9UnwJWfpRoO1L785S/jVa96FVatWoWTTz4ZAPDII49ACIH//M//bPoAiYiIiI5WDQdqL3rRi7Bz5058+9vfxtNPPw2lFK688kpcddVVSCQOPYomIiIiIs9BJbyNx+P4i7/4i2aPhYiIiIhKHFStz3/913/FueeeixUrVmD37t0AgM997nP4yU9+0tTBERERER3NGp5R+9KXvoS//du/xXXXXYdPfvKTxQS33d3duPnmm/Ga17ym6YNc/Bpdd0hEYc3nKs5G+57v9kStrhmrPgGu/CzVcKD2hS98Af/yL/+Cyy+/HP/4j/9YfPyMM87A+973vqYObrFTShWSbHrJY8PkUlNKeUlf4WXSD30QV8pLvR6CoYmyzPnN5ioFA+FSdCilEDMEZvLh+4+bGrKOG/o9aMLLpxa2veMCVshvhv95NZIxJJWXZXnv6vUPhE9x4UovD1+Y+pyAN25HqlD1ZpVSsGVj7SW8kmRhqgIopeBIAVcCmqbq1gz19y9V+O8w7f08amH2TeknaStUPQjVP8J/ZqVFYRiw0ZGiWas+Aa789DUcqO3cuROnnnpqxeORSASpVKopg1rs5pazEUKgN6Yj46iq2e5Lnzed80pQGZpXWsfvo5qoIWAIwFFewtZaBLyySwlTx3ROFWs0VqMLoCOiwdRFcVz1iMJY/ICzFrcw5oSlIWsHl8oqFTMF1nVH4UiFp0ZymKhT4L0zomFVpwlHAi+MV68v6oubAl1RHVIBadutOR4vsGgsSOuMaoiZ9U/IqlAH1pbe9jGEglX4kVq9zqU3lqmsRMQQSJjBpbX8sSt41QD2TEn0xnWv1muN9lIBE2kHe6dsLGs3sLzNqNm/K4H9KRsZR3lVKOJ6zfbTOYl7dqcwlnFx/po4Tl4WDQyQ/AAnZUs8PeKVyNrUY2FZuxEY8PiPZRyvTqqrgJXtBjqiwVU5/MfGMy4eP5CFEAJbl0bQG6/dvyO9ChRCzH4na7X3930NCqaO4gGDARsRlWo4UFu3bh22b99eVq0AAP77v/8bxx9/fNMGtlgFFYUGvIOvX5cymSuvHzlbK9MLnPznO9KrN2nq3kHfmw+aPYj7dTf9A7sFwNAUcm5wElazEPh57QW6YkDc0soKlJdqszQkzNn+O6M6Ym55aaxSflH6Yq1M5c1K+ElM59ZlTNuzJbI0IRC3dDiuQtapDGZ1AfS3mWgv1OKMADh9RQwHZhw8M5qrSIJrasDqLgtdUS84iAA4sT+C4ZRXz3JucGVoXomtaKHQug6gQ9ORcxXSAdGvKxXyVbZzkIgBLIkboZPdusrr3+/eUYDjAJbmfcZzT+ZSlc/Y5hyFvKMQt7x9rjj7VPj/tK3KSmqNpV1MZV0sazPQWRLAFIOivESy5EfG4LSD8bSLVZ1mYPvxjMR4xp1tP+NgIutiZbuJhDU7DlmYdX5wfwaPHpgtwXXXCyk8diCHl29sw9I2o6x/V3lB976kU+z/iZEc9k/b2LwkgphRvq9JBQxN25gsKZG1a9JGe8TFyg4TZsn29GuSPjGcxeCMU2it8Lu9GaxoN3D8kggsvXJfztiypFyct2+bmirb9qXt844qVsuQAHKut4+bGio+KyI6ujUcqL3//e/HX/3VXyGbzUIphQceeADf+c53cNNNN+FrX/vafIxx0agWpJXShDdjk3cVprLejI2rgKmMEzgb5tf/dKSCpYtiMBQzRLGA9dz+o7p3MvNP9JrwSkAFXbqxdIGlCQNpW2GicGKN6EB7RA+8fGbps7ODyZw3YAGvSHngTAm8IEODN3MAoBD8BBfnNnSBhKYh76pi8NUd09EXNyrerxACy9pN9CUMvDCeK9bOXN5mYFm7UfF+hRDobzPQE9MxMGVjuFAtojOqod3SKsYvhBfkWLpAOi+Rl6pwIg93GRvwtn1fXEebVTujf2ngknerz9Llpffalq6gawKqEKBVq0mayivkHBcJU4Ohe23HM05gdQdHAnuTXkC1ot2ApQvYrhfQBe2bOVfh+fE8uqIaVndaMHUgYyscSAXvy1lH4YUJr/3yNhOmDgxM2bhvII2ZgJndwRkH/3f7JE5eFsVL1yVg6sDQjIvnx/OB45/ISvxuTwarO02s7zEhCo8NzziB23M6J/HMSA5L2wwsKcwm7pyw8exYLrD9/mkHwykHm3ojWNdlAvC+Y9VqntoScPIKEUPA0mdnYKtNSrsKcF0vWJvH4hVEtMg0HKi97W1vg+M4+MAHPoB0Oo2rrroKK1euxC233II3vvGN8zHGI5KlezNsOyftUCd9qbw/7ZaoW5ZHCG8GThfer3YN9dsnLO9kYruAWaeOjz87KJUqXOqpf1aRANJ5CUfVn4USQiBiCPQlNK/Qu1H7fi5DEziuL4ruqAapAEuv3d7UBTb0WLB0G1IhMOAtpQmBtoiO/cnKmbhaVrbrMPXggDpIxlahapJKAFkXsEIUIwe8AGyiMHsWpvxWKq+wa8JGV1SHHWLKcDIrkbZz6IjoNQu1l7Z/bmwGE4VZt1oUgO1DWUxmXRzTYSDj1GwOBWD3lI2ZvIu4qdW9FUDBq7/6/FgOOVfVvbTvSOCpkRwiukBHRA9VDD7rKLgy/D2ktvS+u5xNIyIAEKr0jtYGjY6OQkqJpUuXNnNMCy6ZTKKzsxNTU1Po6OgI/bwwM2ql0rbEs2Ph76K3dIGe2KGvpqnGlY2PP8w9a76MLeueOEt1x3TEjPC1JZNZJ/RMF+AVJG+k/b6k3dD2Wd9tNFBcXCFdJwiZy2yguLgfVIdlaN6l7/DtBWJm+PaD0zZ2F2ZAw1heuCcu7PbsiGgN7TujaaehffnE/mjxsnoYRgOF5gEgqvNeNVpc/PNm74aTm7LqE/BWfm45YWvx7yv7uo7KVaANz6hddNFF+OEPf4iuri709fUVH08mk7j88svxy1/+sqkDJCIiosWhmas+5zpaV4E2nPD27rvvRj5fOQuUzWZxzz33NGVQRERERNTAjNqjjz5a/O8nn3wSQ0NDxb+7rouf/exnWLlyZXNHR0RERHQUCx2onXLKKRDCu+fjoosuqvj3WCyGL3zhC00dHBEREdHRLHSgtnPnTiilsH79ejzwwANYsmRJ8d8sy8LSpUuhN+kGwqOFIYAN3SbGMy4msvXvao/UWY05ly68FYtuiEUOftZ5qfzn1W8PoJjCIcxt2FFDIAKBTIjEtprwto9UXlqPejdW+2kkFICEqdXNIg8AXVENjgSSOVl3++gCWNtlIusoDM04ddt3RjT0txnIu8BU1q27feKmhuXtOpI5iZF0nZWQhTQPGduFpXsrY+ttH1MTiEW9pK9hFhVI5aWviBiiJPde9fGMpSWyjo3+NgPtkdrHAVcqDEzmMZxy0RnR6q7qBYC8I7F/2kZf3KjbXiqFkZQDIYD+RP32WUfihfE8bKmwvN2EVed7lncV7h9IIWZqeNHKOOJ1Fl2Mpx3cN5BGW0Tg3DVtdRddjKQc/M/eNPoSBs4+Jgarzvh3T+Zx984UVnWaOG9Nou6q7X1JG08M57Cyw8CWJZGa3xXvs3Wxf9rBkoSOZXUWdCilMJJ2MTLjYGmbl+S4Xns/Obh/zOEiCqJyh7Tq80h1uFZ9+s8RQiCVl9iTtANPooYGdEa8VA9hkmAKeCko/FZCCLhSVU214Mjy5Kp+H4aozCjgJxz1V2/6u48jUbV/AWDuuSPrKKSrBAxxU6DN0sqy5ItClYPKRK8Kkxm3LLmq30e0TgBTLPkDP8VE5XgEvGoI0ZLEVo70TnaTAcG1qQEbey2saDeL/bsKGKuyqtDQgL64F9z47XOuwp4pO7CKglSqooKDLoCEFZz3TvOz5JeUTcrXSFocxNCq5+3L2BIjqfI8a51RDSs7ggOe/UkbDw1mkCl5b341iKD+DT+pM2Y/+86ojt5YZXulVGCOvr6YjiUJvSIgkUph96SNZ0ZzkGo2nXR/m4G+Ku3H0i7G0m6xra4BL1oZx/FLKwMe21X4/d40HtyXKT5mGQIvXZfA1v5oxb6ZcyR+vzeNxw7kit/dmClw0fo2HNdrVbSfyUvc+dw0tg9li+XROqMaXn1cB47ti1Rsy1Re4oF9aeyZml1e3BHRcPaqOPrbKn+zZ2yJ58fzmCrZzxOmwMZeKzAYT+Uldk7ky3LitVsa1vVYiAcEp9WOl/XSD1Frmo9Vn3PNXQU615G6KrThQO2mm25Cf38//vzP/7zs8W984xsYGRnBBz/4wYYGcNttt+F//+//jcHBQZxwwgm4+eabcd5551Vt/+tf/xrXX389nnjiCaxYsQIf+MAHcM0115S1ufnmm/GlL30JAwMD6Ovrw+te9zrcdNNNiEajocZ0sIGa72ADNgAYSbvFGRsBoL2QZgAId/AyNVFIhFoe0M0GVKp4kq+XXBUozK7BC5SkUrBdBOb68vvPu6oiiAj6xe7/kk7lJfzjuqkBHRG9ZiqD0oN4Ki8xkrKrpvzQhTe7Vm+GwZd3FCZKkrtaupdfbm6A6G/b6ZyLvVNOMXfYynYDG3utijqYs9UAJMbSs8lXu6I6euOVZZtKSxjtn/by7PkZ82vlQfNy883OJkZ0EVh2yv+s0rbCTL56SbO5IvpsJQxHekHLTL56cL68vZBItvBD5OH9mZJs/5Xtu6IaEoXEw6UBZhBNAEsSRjFRsSO991Jt8xialwjZbz+ecfDYgVxgol3A25YrO2ZnB2fyEkPT1fe17qiO89fG0d/mBegvjOfxqx0zVRM7L2838LKN7egvVF14ZjSPewdSyDvB7Vd3mrhkfQI9cQNSKfzPvgzuen6mYjbbD9g291m47NgOdMV0uIVya48MZYsB6dz267pNnLEihpipwZUKe5M29k45VfeNZW061nZZMHRv2++dsjFU5bP13+8xHWbx2FQ/l2LwDzNqXf5587U3b5u3VZ/1jN15K7bd/u0Fee351HCgtnbtWvzbv/0bzjnnnLLHf//73+ONb3wjdu7cGbqv733ve7j66qtx22234SUveQm+8pWv4Gtf+xqefPJJrF69uqL9zp07sXXrVrzzne/Eu971Lvz2t7/Ftddei+985zu44oorAAD/7//9P7z97W/HN77xDZxzzjl49tln8da3vhVXXnklPve5z4Ua16EGakBlvc9GnudIL8+UoVcGCdXoAsWTWr1ZJKm8WYc6ZT5LnwQgfE1Lx1Vwlao7dgUFAW+GRxNAzNRCzRh6QYJTt26nL6J7AVvYItkzee+zqxfg+e2TOYklcb04K1a9FqfX3i/KboaY8ZMKeGEij+GZ6ifNUl7Ao3ulthBmXwAmMm7VbPkBTyrWEw3zFEsD8tILXFSIBL2WBqzsNEPnQIsaAp1RPXR+vogOJLMSgzNOMUippd3yfvjU29f8vtZ0GpjOSexN1k6K57c/YWkEKVthOFW/PeAFYDsnbRyoERQBhR80AM5eHUc6X7+mrz87eMLSKHKODCwpN5euAUsTurf/hNj+pgYc2xcJnF2rhrNriwcDtfnTcB61oaEhLF++vOLxJUuWYHBwsKG+PvvZz+Ltb3873vGOdwDwZsLuvPNOfOlLX8JNN91U0f7LX/4yVq9ejZtvvhkAsGXLFvzhD3/AZz7zmWKgdv/99+MlL3kJrrrqKgBeYPmnf/qneOCBBxoa26ESQhQOxo3NrnkHJQnLCBe0AN7BzNQ1zK0FWq1/x20gSIM3g9ZIwCkEoNUtxw74F2ejhmjo/pTxjBs6SAPqVyoojqfw2qY+G1SFab+m0ww1fv/fumLVi5PPbS+lDB2kAd6+0BGpH5TO9q/CB2nwLnn7pcPCGMu4NWda5ko0mKgW8GZxw7bfP+1gujD+MG87bStoIXYfv69nRvOhvu9+kxfG89BCJC722/9+b6ZmO58/hsFpJ9T9mgqAK4Fk1g29LV0JjKRCRHQFRmHGt5Eapqx5SnQQedRWrVqF3/72txWP//a3v8WKFStC95PP5/Hggw/i0ksvLXv80ksvxX333Rf4nPvvv7+i/ctf/nL84Q9/gG17Wc7PPfdcPPjgg8XAbMeOHbjjjjtw2WWXVR1LLpdDMpks+9Ms/mWcRiiEv9Q559VC9t9aGr3EIRucpqxXQit4UOHbiwZ/9furp0O2bujzanQGotF9odEZ4kZvAdAb/Jwa/VwbviN3vuODho8NjX1mYYK02bbzO3vlf7aNvgaDtNY0n+dNKtfwjNo73vEOXHfddbBtu5im4xe/+AU+8IEP4G/+5m9C9zM6OgrXddHf31/2eH9/f1mOtlJDQ0OB7R3HwejoKJYvX443vvGNGBkZwbnnnutdRnQc/OVf/iU+9KEPVR3LTTfdhL//+78PPXYiIqKjGc+bh0/DgdoHPvABjI+P49prry1WKIhGo/jgBz+IG264oeEBzP21VG+aO6h96eN33303PvWpT+G2227DWWedheeffx5//dd/jeXLl+OjH/1oYJ833HADrr/++uLfk8kkVq1a1fB7ISIiOhpUO2/++gvvm7dVn/VYwsXLrngzgCNrBWjDgZoQAv/0T/+Ej370o3jqqacQi8WwadMmRCKVy8Fr6evrg67rFbNnw8PDFbNmvmXLlgW2NwwDvb29AICPfvSjuPrqq4v3vZ144olIpVL4i7/4C9x4443QAm44iUQiDY+fiIjoaFXtvDmftT4bcSTVBW34HjVfW1sbzjzzTGzduvWgghzLsnD66adj27ZtZY9v27atYkWp7+yzz65of9ddd+GMM86AaZoAgHQ6XRGM6bq3Go8p44iIiGgxCTWj9trXvhbf/OY30dHRgde+9rU12/7whz8M/eLXX389rr76apxxxhk4++yz8dWvfhUDAwPFvGg33HAD9u3bh29961sAgGuuuQZf/OIXcf311+Od73wn7r//fnz961/Hd77znWKfr3rVq/DZz34Wp556avHS50c/+lG8+tWvZuUEIiIiWlRCBWqdnZ2zWcE7O5v24ldeeSXGxsbw8Y9/HIODg9i6dSvuuOMOrFmzBgAwODiIgYGBYvt169bhjjvuwHvf+17ceuutWLFiBT7/+c8XU3MAwEc+8hEIIfCRj3wE+/btw5IlS/CqV70Kn/rUp5o27kb4edEaWfnZYgvN5p2Xb66BJfsH0X8rUYUcc2FWlja64G3eFzXO3+JZAAexKnO+qUK+v5BvpOHxN9h/mNxv5eMpv4e3zlAaat+ohq9oqPrphub239CK5wbf63y3J6qGJaQCNCPhLeDVNPTzlWmYLaNU63vrX6KdzIVLOll6MPBrgYZJ7Jq2JbIhUyCpQqbSsNmz/IQSYcev4C3dN3T/NFR7/F7ZIid0/q+OiIa4IUInRdU1r8RV2BJLHZaApWt1T6B+gl+lVEPJjIembbwwES4/FwCsaDdC547zfkgojGfqJ7D1983pfPhtA3g1WEdSbqggw9KBdd1W1YoEc2kA2iJ6Yd+pMYrC92Qy6+LAtINoyKSrtithaKJuvU1fKi/huKpmdQ1/PH7FhvZouHqtADCdc+HIEMmkC+9XKm97mrqomarDT3kzlXGwtT8GQwsuGVbaXilgz5SNtd1eHsF6/bsSABTOOiYOAHX7d1yFAykXa7pMKNTu3/9BPJ130RMz6gZtqpD0eyrrYkWHCalUqP5dqRCtkwuudNv77/NoyAXXCglvSx1JyW8ZqAU41ECtVqklQ3iza0qVB2z+F9mrVegVCVeFg1vQB1RatzHn+MGOV4KpVk1QPwN52JqPfoApBAr1QmufbBOmhrjpnXQytsRk1g0MMPzdzpazJ31TE4iawQGM3z7jKK9sTpW6jqUMDdjQE8GSuHfJezzj1kweqwugO6YjZmqQSmEiIzGWqR5tmppXF9JP4pm2axc8l4UyUP72iBqiWA+z3kE87yrsGM/VLNjeZgmsbDcRMbRCTdDayWxjhkBXzKsRmrUldk/ZNZPZ2q4s7mtSoeq+OTseDZ1Rr6TVVNbFM6PBJZv8AG5pQkd/mwFdEyUn9upMTRQDIi/pc/C2lIUKDE8N57BjIg8FoLtQj3RuuS9g9sfDZEli5faIFljuy2/vKi+5rL/9OiIauqPB1SH8cmA7Jr16sZrwkiav7TartnekV0HCL1fmlwertt+k8hI7JvKYyStYusCpy6M4tteqCHj848T+ZB6/fH4KY2kH7RENlx/fjTOOaasIYPz2O8bz+Nnz05jISnRGNPzRpjZs7otUtPf//uxoDr/cmcJMXmJ5u4F3nNaNrf3Rqu2fGM7int1pZByFJQkdl25ow/JC/Vwxp70AsC/pYOdkHo70tv1xfRYShWB8bnsAeGQoi4cHM3CkV/rtvDUJr5pHlePOZNYt1jyNmwI9caPqvgN49Xr9H6qmBkSM8D/MFqvDUeuzEfXqgpZq9RWioQK1U089NfQO9tBDDx3yoBbaoQRqpYFHNQJewIbCJQ+/lE/KlhWzPv5Jo/Sk5bfPOiqwrFPUqCxqDiDwV74fYMyt+eiPce7HrpR38p/7Hi0NaI9UFsqWSmEmJ0tK2HgzZo5UFXUKS8dfWtBbCIG8I5ENqIMoC7ODuTnxy4p2A2u6KmdmbFfhwExlQNIR0dAe0Sp+Veddr7xPacF2AaA3rnsn4jntHam8WZU5Reur7Rd+6aywM0hTWRfPjeXKCrwbGrCy3QysSOBIhcycYLY0IC2llMJEVmJ34YTnPyaVVzB87r6mVCFgm/O4qQE9caOiKLtSCvuSNl4Yz5fVnGyzBI7pMCtmufzXnhvoa8KrxRk0A+LNBM3+XQiBPVM2nhjOVgTRmvDqf/bFy08qqcJMS9Dr9sR1dBRKhfnGMt6M4dz2ugB6YzoSllZsr+BVR9iXdCp+yEUNgeN6LfQljLL+p7IysATU3Hqo/vbaPWXjwExlQN8b03H2qhh64kbxuJJzFH6zM4mnhysrHmzojeDKk3qxNGF4VSyUt2/f+fwMnhnLV7Tf2GPhj49tK+6HSilM5SS2vTCD3ZN2RfsXHxPD207r9toXHhvPuPj5jhT2T1dWs9i6NIIL1yZglQQ9yZyLZ0bzFT8ABIAVHQY2dFtldUP3J23cM5AqKzTvb8uT+qM4fUWsrH06LzGecSq+uwJAZ1RHZ3R2ZxNCwHZV4HEKKK+967c/krTajFojWn32LVSgVprULpvN4rbbbsPxxx+Ps88+GwDwu9/9Dk888QSuvfbawNJPi83BBmpKqdCXEwFAKK/GZc5VZSfean07cnZWpt5lRe9AosHSteKMWK0Dgyu9S1S2LC/EXo0/46HgzZxE6lwasl3lXa6UCrasX1ZLE0DM0AABZO3qxbaL/UvvEp6hCWzosdBm1f5FN5N3MZi0oWkC3VG9bl3Pmbx3uTWiCyxJGDXb+zMmyZw3M1qrkLrP1EXo0kmyEPDsS9roiupYmjBqXkZSypsJtV2FhKXVLTHlSoUdE3mMZ1zkXS+grsWv4akU0BHVkTBrv4+8I/H0aA7JnDe70hUQ8M4dv/9DxdSrF2r3CXjfKQXgsQNZjNaYhQS8YMcvAzaZlXU/r4gh0BPTIQuzaLk67aOGQGdEQ85R2DVl15x1BYC+uI4tfRYc6c3k1Nt9DM37vibzErsn7Zo/FAWAjT0mjl8awa7xHO7bPV3z/WoCuHB9By5c34EnhnO4dyBV8xYCQwPOXR3HqcujeHQoi//Zl6k5/qghcNVJnTh7VRwP7c9i+1C25ixt1BC4eH0b1naZ2D1pY7BOeTJLF1jVaaAzouMP+zJ4YaIywCzVZmm4ZH0CXVEdE1kXmTql6kwN6EsY3qx0lR/OpTThzcgdibNrDNTmT8OXPt/xjndg+fLl+MQnPlH2+Mc+9jHs2bMH3/jGN5o6wIVwuAI1V3qzQWHlXVWsUxhGzPCm6MPK2rKh8Vi6N/MV9oAznLIrfsk20+ous26AViqVD74s2yx7pipnEWrpjIYfu1SN7Qua8GY8wxpLO3hkKBu6vVccvYF9zWlsX9NEY+WlnhjOYm8yfI3UNlPU/bFRKueo0PdsAsBounJWppb13WboWVYAeGI4F7qtUgqTqfCfrSYE+jpiDbT3jj1hdUY1bFkSDd2+J6ZjXbcVuv1ExqkbrJfa2GNhbZcZuvxW3NS8S5sh28cMUfcexsWIgdr8aTiP2ve//3285S1vqXj8zW9+M26//famDIqIiIiIDiJQi8ViuPfeeysev/feexGNhv9VRERERES1NVxC6rrrrsNf/uVf4sEHH8SLX/xiAN49at/4xjfwt3/7t00fIBERES0OC1nr82CV1ggFWm8VaMOB2oc+9CGsX78et9xyC/7t3/4NALBlyxZ885vfxBve8IamD5CIiIgWh1ap9XkoWq1OaMOBGgC84Q1vYFDWJGGSgB5K+0YTLTbaf6M0UZluodZYIMJne/cTsjaSOdzLZxeuvZ+zqdEs9WE3f6OZzBv5rPyVqGbIm5iV8lb/hliwetAa2RfUQWTwNzSETnLsJWwNPx7/Pv9G2jf2eTX23W1032nkvQKA49jQdSPkvuOt6g57M75SCulMBvFYuAULUkokp2fQ0d4Wqr0rFXKODL1YxHYlUjkX7SEXx+QcLx1PWyRce7uQSzEScsFF3vWOO/VWptOR66ACtcnJSfzgBz/Ajh078L73vQ89PT146KGH0N/fj5UrVzZ7jEckAT/fmYGcIzGTr5+CIqILxBIGsoX2tQ60hubl53KkVylAD3GCtgyBiKEj5yhk7NqZ6i1doCOqQxNeTrV6KRwAoC9uoC/u5UqazLg1+++KeslPBYDhlIPxGolnAW/Ju+16SUrjllZzNapSXt64ZE4VPofgHHM+P39UyvbSqXRGaqcj8ZPl+ptER/1gzdJFcVWgrtXOkg54+09HVC/kSau9L+QciX3TDmbyOXRHNWzoiVTkUCvln0iOWxLFVNbFgZnaKR8sXaA37qU48fLj1Ry61z7mpTQYz7gYSTt1gwYFwFGAVkhpU2tf1gRw4rIYThbA06M5PD+Wr7mvHdNhYHNvBEIAe5M2hlO130BPTMfShA4FYM+UUzMpMuCt8tvQbRXTeSQDcqL5BICuqAYFBUeKuvuCKxWGZma3n1YnmBUAYqZAd28COcfF6HQe+RqZhV3HRnJsCMPpacQTbVi+ag0i0eoBlZQKWUcimQMiurfSuNbq1dTUBB5/9He4Y2wEx21cjwvPOwftbdUDsH17duMbP/wu9u/fh4svOBdvufK16Ghvr9r++dEs/v3RMUxkXJywLI4zj0nUrDLx/PAM/uWeEUznHFx5Sj/+9LRlVatYKKXw6x1T+Or9g0jbEu84axn+9NQlMKtUBVFK4ZnRPP5nXwZKKZy7JoGTlkWqfr5SKTw6lMXv96ahC4Fz18RxXF/kiFstSvU1nJ7j0UcfxSWXXILOzk7s2rULzzzzDNavX4+PfvSj2L17d7GA+mJ2KAlvw2TvN4QXGAAoJoYEgLStkAqYAhCYnV3ySxABXoLc9Jw8PwJAwtKKy+NLv9T+rEH1L7qXjNZPhpnOV+aU8tM8lJZR8dvbdfMIzfZvSy+v2tzxRwyB5e1mMdu/L+cqDCbtinxzpuZVYyjdnoBXfSFhVZ4kso7EZKYyN5VeSB5amo/Mr37g50MrG6fuve7c9qm8wlimMu2HgL/tyx83NC/DfunY/fZhgmt/G+XdyqoIUnnJeksDD7+3VZ0mVnWWpyCQhQC29DPxP9vhmcpgWRNe4tw2azYD/GyCX1RUFtAE0G5piM3Zd1wFDAUkIa5FL0lKWvreTF1Am/uZ2BLbByvzqbVbGrYujaAzqhfG481kZRyFXRP5YlUCX8wUWNluFH8E+NVFZgr5y4L2zYSpVXznZvISgzNOxXcrbgr0xvSKjPdB+4JSCpNZif1JO/A7F/Q9t3SUHxcKn+101sFEurxEmVIKmakxpCdHilPD/oxg79J+LOlfUXYfkj9jG5STrc3SKnLrOXYeA08/gv0vPFXcD4QQ0HUN5774RTj1pK3QS/pPp1L41c/+Aw8/cB80TYOUEpqmIRqJ4M/e+DpccuG50LTZACmZdfHTJyewfTBdHLeAd3w5Z207NvZGy8Yzmbbxi6eHsWO0vH1vwsR7zluFc9Z1lr2ngYksbr1vPx6b0//KTgsfumgVzlhVHjyOph38dne6Yh/si+u4ZEMCy9vNssf3T9u4e0cKE3PyPfW3GbhwXQJ9DaRdOlwWc3qOuVotXUfDgdoll1yC0047DZ/+9KfR3t6ORx55BOvXr8d9992Hq666Crt27ZqnoR4+h1pCqlr2fk14B+9ql8/8SwbTJQGSf+ip1t5VXv0/W1avSDCXrtW/LOEfOG1XIZ33Apu4pZWdlIPau1IhXyUzd1D76ZyL0cKMypKEgZ6YXrP/iYyD4cIMQntEKwZ01d5vxBCFwMBLHlov2ailezOXrgKSObduYmH/JGRLYDTlVFRImMu/BKYXArRaiWoBhEpWDMwGVFnbC4KTORf7knbNS38RXWBjr4XuqI6sozBdY5bWPxEPTttI2wptlobumF4z8JeFWrdKeUFItX1ztu6lGxjAVCOAYlDjVyQQ/i+agP73Tdl4bDgLRyps6rGwutM7OVYbz0jKwd6kDaW8E2R3TA/c1/xD6HDKxf5pp/h+q826+u1H0y5G0i50DegLqBQxl/9DK+co7E3aFT9yKraP8C8BC8TN6vuaf9wZT+Uxk3OQz6SQGh2E61RPDmsYBpYdsxrtnd1wpfcDqNZovPJ23kz36L5d2PHoA7DzeVT7SdvT3YVLX3oBVi7vx/Y//A4//6+fIJ/LotrpasPaNfjLP78aa9esxn27p3HHM1NwayTWXt5u4rx1HWiPavifXZO4/4WxYmm0Un7w/qLVHXj3ecegO2biOw8P4/bHRiFQeWuAf0n5kk1d+OvzVqIjquPB/Vk8NZILvPTtP7Z1aQTnrolDAbhvIIVnRvNV2wPAScuieNHKWOgatIcDA7X503Cg1tnZiYceeggbNmwoC9R2796N4447Dtls+ESKrapZRdlLa36amnfADFMsGPAypHsHDf+3WvX2foDUSPHfsAkX/fHomqh7yclvL5VCrnbC8EPqP+copAoRVJj34BYChrAcGTwzULP/BhIdl5aSCTN+TdQuYD3Lu+fuyZFc3UvFPgFgTZdZ9XJNWe8lM7lh7z+CUkhYlbNE1frPuwo7J8MXoPdLcNX7cQL41TS8/SfseOzCvhCmf6W82dexdLh905+xdWX4+8tG007oAveAFzBGQyZjVUrhhR07MTE+FqJnT/+aTbDi4e4Vk66LA4/cjdT4gbpthRCQrgNjZhip5ETd9pqmQVhxbH71Nchq9e91EwJwXQk3l0Gm3rV6zP4gaItZSOdrB6V++5VdUbzihP5i5Y6a4wFg6t7zZMj2UUPglce2Y9mc2biF0mq1Pg9FmDqhh3NlaMPzp9FoFMlksuLxZ555BkuWLGnKoI4UmhCIGCgGUUD9g7E/izV7oqrfHkDo/r02DdywLkSIS6bl7d0GghwhROhZI7+97boN3afRQAJ8r32Dd9A3EqQB4W8i9oUL0gBAIOPI0EGaP5YwQRrgbXtH1r9/rpSph69jKoTAdIPVIkwtfDkeTQg4SjU0nrlFw+u1n8nLhr5bjS728YPAsJuo3ixdKcdxGgrSDCsaOkgDgFxyLFSQBhR+8OVSoYI0wFtg0L5yU6ggzesfsG0buRBBGuDNnGlCIBXyF5+rgPV9Cbgy3OcbNJtXr33WUXhqJNcygZrvSFj1GcbhXBna8Lzpa17zGnz84x+HbXvlcYQQGBgYwIc+9CFcccUVTR/gkSD8iZZC4c20VKKRvYF7zpGtwQtEixt35qNGw4HaZz7zGYyMjGDp0qXIZDK44IILsHHjRrS3t+NTn/rUfIyRiIiI6KjU8KXPjo4O3HvvvfjlL3+Jhx56CFJKnHbaabjkkkvmY3xERERER62GAjXHcRCNRrF9+3ZcdNFFuOiii+ZrXERERERHvYYCNcMwsGbNGrhug3dPExER0RFvMdb6PBhz64OGdTCrRRu+9PmRj3wEN9xwA7797W+jp6en0acTETVV7QQ2R5ij6F751tRCe5vyUj+1mqNl1efBOpjVog0Hap///Ofx/PPPY8WKFVizZg0SifIP5KGHHmp4EFRONHg0nl3iH+4g4q2MCp8aQCoFXaudWLbU7FjCkUrBaKD/RhfR+kkr5609Gjt/NpLywa9H6o0rRH484a0QCnsAd2Vj9VEb3faywVV4ZoMv4CoFS4RfEyUa/HAbPSWbmmgoB1+j+5qpC+QazPEXdtW5pmnQdR3SrV3ezSddB0oW0pGE2H/0SLjUGT6hW4X/CLeRnNRk4fOVQIh9YnbIYY+bEoCOYkmKOpJZu6EULH7S6tD1XeF915NZF20RraG0ObS4NByoveY1r2GtsXlSLKOiCbRbXkmpMCWZAO+EpRUeq1ciSiog70ovn1SNg4i/1D3nKKRyDtqjet1aggBgaYAhBLJ1KhTMlhtScKRExAh3UOuKaMjqXnLRMCeUmA7YKly+MwGgJ6Yh6yjM5Ov3LgB0Rr329aoeAH7JK68Ga732fuWJmUL90miI7SOEwMYeC3un62euB7wyWx1RHVlbhso3FzMEuiIaxjJuqPZSARnbRcQIl5S2N6YhblrYNZmv2b+/70znvM+pp06VBJ+XMs7LB1eL379bqDCih4tF0JfQYWYlJrPhQuWILgr7f+12/niWtRsYS7uYCZHPy9BmE0mHydFl6DpOOXErdu7ejfGJyfo/QDQdkxMTaOvogGmaqB7wFI470BBdfRJyB56HyqVrdOy9cmTpGiTWn4LpJ34NZ7p+frf0vmex766vYenZfwKjraf6vqAkFARyo3uRGT+AyPJNEIZVu70CUs/dD5maRNcpl0KYUQitSuUJ6QWwd37tH7GzE/jjaz4CKxqDpgefbv0AbWjGhaEBy9r0ut8VQwO29kexptPEdF4iZUt0RetXt6DFqeHKBEeDZlUmaIT/Mcytt5d3ERjwFNvPeVxg9lA5tzZgUHtdoJgA1G/vBwOOq5Cy3bKajQlLQ6JKGSlR6M//Aa+UQsapzNpfWk3BkbPvTcArDG/pwbNruvBKPPm/HB2pMJlxK2oslo2npAKDVAqZGsFv1BCImaLYv+0qjGecqgGepYuy4u+2qzCdcwNPugJAb1xHd0wrts87ClPZyrqjpbVfsyX/aOkCnZHK2pGztVlVcbZFKa8k1OB0cC1IUxfY1BvBkrhe/NWftr3xBG2eucXo/Sz845nqsy/evjA7zmp1Tf3+YyW1Vl2psG/axv7p4BIXtquQys8Wvhfw6o62R4L3zbmUUnMSS5fLu96+UvrPuvADvfpsV2EsXX3fnEsqr/RaUPgVVJIu53gVEKrN3nVEvHJv/naY+12by9BEWbWG8YkJPL9jF3L5gDJSQoPV0QMj2lZsb5km4vEYhBAV+6Z0XUyMDiObnik+5k6PwhnfC8jKL5dmxRBfvRVWp5dAXUmJ1M6HMf3UPVDSLZ9dUwqAgrJz3kwaAGg6uk84Dz0nXwIIAaH590t5AaM9M4GJ5x6CnZqcfT/962EtWQOBkoi8MHOWH9mN5MN3wJ0e9ZqbUXSeeBESm86CUArwA7bCTN7MU/dg6Mefhj2xHwDQ1tWHP772Y3jRZX8K6brF+7f8Y9xU1sVwyoG/q5gasKLdQFe0vGSZHziv6TJxwpJIYPmoiC7QFauscXw4HEklpObTwZSnCh2opdNpvP/978ePf/xj2LaNSy65BJ///OfR19d3UINtZYcrUCvd9ArVZ/elUsjaft1ENdu+Rt8C3kkybHu/7qR/0s/YErkqJxldAO1RvXDS9g5+euGSW9D50ZGzAVLpLFq1k6QmgKgxG5AIeEXQq13CyRay8ZcGlNXqmSqlirNZqqRtmxWcQd8PYCazsxnzdX98VdpnHYWZktm+hCWwNGHA1Kv3P52TxYNyzpFI2dVPqn59UV/O8foIau9KhdG0g7GSagWrOk2s6bIC369UXrBWOhsXVFTb50iFsbRTVsBcK+4Lle0FvCCx9LWjhvBq4Aa0z9gSOyfySOZlcd9M5auX+LJ0gd64XrXOZsX7lYWADQAKNS8zTvUZLgEv4ATqz7D5n+1YujIYr9beVSi8N+975UoFWwZ/d/1gfCI9GyxHDYHOaPCJ2u+/dDbRqz8c/Nm6rsTe/fuxZ9/+4vfWiLXDau8uCX7KxWJRRCOR4t9npiaQnBgLTESrXAf2+F7IQgAEIRBbvhHR/vWB/bvZGSQfvxuZfU9720cBys0DbnAwbyS6seSsVyOxaou377gOpnY+ivSBXYHttUgc0ZVboLf1eO3zaUxvvxPZvU8Etje7l6P7zFfD6lkJpSScqREM/egmzDx1T2D7dSedhdd/4J/Rv/Y4AN4xcHDGqTrz3W4JrOwwECn8OuiIaDhleRQ9sfoXwnpjOqKHeXaNgVo48xqovf/978dtt92GN73pTYhGo/jOd76DCy+8EN///vcParCt7HAGarUCtLkytkQmRMHzUo3cPyULRelyIV+jK6ohZmrQhQh10krmvGLzYW+x6Yh4wVO1k/jc/odnHLgqXDkqP2DTNZTNilUjlcJoyi0UAA9XV1JKhZg5OwNZi+1K7JlyQl0GA7xgMWFp3vYM0d6REllHob/NQMKqvyIr50hkbImYGa4E1ETGxVTWDV1qLG6K4oxkvXtrlFJ4fDiHkZRT93K6rz9hIFoluAzqfyYnC3U9Q3QOL1gLO2khlcKeKSd0iSD/uyIR7pKlK70fEpYuEA0RoHr7vipcFq3/JqamU3hq5x7o0QR0M1K3PZSEIRTSM9Nw7OqF3YvN7RyEnUakbxX0SLz+eB6/GzPP3FcI0OpvoLZjX4zYik1ID+6ArFFovkjogAAyL/wPVN32AmZ7L6BcTNz/Ayi7dq1rTdfxZ1/4GfrWb8Vkrv4XVwB4xaYElsQNrOkyQ992lLA0dEUP78rLI6nWZ7NETAObj9tU9ti8rvr84Q9/iK9//et44xvfCAB485vfjJe85CVwXRc6P5SD1siFZ10TaCxMa+wmd1c2VudSqvD37ohCMNdIGU0BhArS/P5NXRSvfoRpHzPD37jr1W3VQm9PTQh0x7XQ/euaCH2ZDPC2YybEPWi+qKFhRUf4W1ItXcCoMmtSrX2jpdIiIQJkwPuMLL3+PY+lbKkQDbkUQAhRmMkK2XmDtEI927CBmj+esO9V1wQ6IuE/K/+7ElY0GoXVHn6Fv+u6SE9PhG6vx9oRXboqdHuzvQdw7dDtMwd2wnGc0N/F/MguOJP7Qx6cFaaf+BWcsb2FxQa1SdfFwO6d0Fdshgix4EEBWJowsKbLCjGW1sBVn7MOZvYsSOi50T179uC8884r/v1FL3oRDMPA/v37D3kQRERERFQpdKDmui4sqzyqNwwDjhN8fwARERERHZrQ10KUUnjrW9+KSMmNotlsFtdcc01ZLrUf/vCHzR0hERER0VEqdKD2Z3/2ZxWPvfnNjZdPICIiIqJwQgdq/+f//J/5HMdRyZXe8v2oEe5GbEcq5BwFUw9OPTGXJgBdeAk1w9I1hFpF6I8nlZdIWOFumlcKoZNvAt72ybte7rQw/Vu6gKbVTyTra+TWd3+FbiMa69/LU5ZxZKib2jUBxEyBnFM9zcncsTiuKssrV0vO8ZK2dofMyZR1JGbyLuJmuAzptqswlZXoiIZrb2hAX1zHaDpc1vyEqSFuaqEWaHjVH1TDFSYasazdKKbqqEcqhZm8hKEhVJoRLyWMl8A6zGelCS9Jc600J+X9A53xKFK5PJwQBwdD19De043J5HSoW2OEpkPTNEgZ7sCjlILRtxrO+H5A1u9fuQ6c6TEvCW6VJLWlnOkxOFMj0Nt7Qt3wb/atgd6xBNmdD4VagHDc2pVY1mlhTzLEtoGXaiNiiKrpklrN0VLrs56IaeDil5zZlL6Y8DbAfKfnUMoLcEoz67dbGuJV0glIpTCZlZgoyXYeM0TNAKY0GatUXoAXJhu73952wqfRMDQv2Wi11ACykE/KTzshC8lGa3VfmgdNF9XznPlK00JkHYmpbHDiWWA2l5ffv1LBiUZ9tusl7g0bYJqatzxeF7N56ao91S8R5W9rpRQmsl4y02rPiZsaOgsBjr8v1apCYOnlKywNTVQN2KRSGJpxMDTteCVqBLCy3UBPTA/OtSUV9iZtDBYS03pBgI6YEbwv+3nm/KoDhuatamurksJEFt6fn4i/mFetSmqDiC6wocdCb9z7DZp3FSay1RPDulIhlXdL9k3vh0q1reknUQ67wDVmCCxvN4s5rQanbTw5nKv6Y2I652JP0imON24KdEX1wB9ySnkJjpM5Wdw3I7pA3KyedqMzomFZuwGjkDNxNO1iJBW8rymlYBd+HPp/H5vOYHImU3X7dCWi6O2IQxMCUkoMHhjG6Hj1FaDRRAciifZi0mXXdasGbEq6yI4PIj95wPu7nUNu7xNwJmosaBM6UFi9LHQTZu8x0OPBx3SZSyH19L3IDz7rtTejMJesgR4Lbi/MKCIrN8PoWAoAsMf3Yeq+78IeHQhsv2r9Jrzvk7fgtHMuAAAMpxz8bm+6ahWLYzoMXH1yF9Z1e/eGZ22JyYAE2UG6YzrizKO2oJq14hNgoBZoPgM1b6YiOIjQCyc5q2TpfNqWGEkHt9eEdyAvDWD8X+ECAZUGpELOkXUDjtLKAfkGUiLEDIHu2OxJxTuRVM5wlY5nbvCoidmT4NwTfVQvrxzgtamsxFAsL5SXZYlnARRnHUozfldLCuxXMghTKskfe8LUYOnh+ldKBQYFfmLS4ZRTVsbK1ICumF5RuUEVErVOF/LU+bzEvCIwt1kxWC3Zd6ayLgam8oEzejFDYFWnWTz4K6UwnnGxayK41JOlewGGnwbCO+lXn+2MmwL9JUmBlfKqMswNQP33PZpysLukzJQAsLLD9HJNoXJfSNkKU7nZpMVKKWRsGTgepQoB25x/8qtuhMnyoAtgaZuB7phR9lnJQmD+7FgeO8fzxc8+7yrsT9qBubUEvBmw0koDjvSqYOQCPisBIGGWV82I6ALL242KnH5+PsHBGQfTJa/tSm+Wbu6xQikFx5UYnkohnZtNkRG1DPR3JWDqpQG9915z+Tz27BtEOpMptjesKOIdXRBa5Q8AJSUc15393igFe2YC2dE9UGXJbQtJgadHkR14DCqXKtkIWiFAq/ywtFg7zJ5joJlW8fWyex5D+tn7vEoJxVOiN8eqt/XA7F0FYczWHjX71sLq31Be57RQmir97H2YfvA/ofJemaxINIY/e88H8afveq8X6BvejwhZmMV9ciSHRw5ki8f4mCHw6s3teOm6BJRC2fEU8I5r01V+qJQeIw43BmrlGKjNs/kI1FzpZXwPcykmagjEDIGJrCzL+F6NpQFxSyBm6hVBSCn/o867YS95eG1sN1wSVmD2pBI1BDJO7cucfv9OoUqBf2ypWcsS3kkoYswGbLVqlbrKC0BsV1WUyqo2HrdKgFlLrPCZ1Ru/Nybv/dbbNkIIpPISIykHMUtDwqxeHslvn3UkUjkJszCjWq82qCa8093epB2qPmVfXEdXVMPApF11VqtUW2GmOO+Gy6HXG9PRHhF169z6wemeKRsZR2JTTwTRKrN4fnsFYDLrYiLjIpWvXSfWPyr6Y/B/O4UJ0rqiOvrbjJrJf/2qBdsHM3h2LI/BwgxmLabmJZl2lAhX61MA7RENy9sM9MYLs0o13sBMzsW+aRvTOVnn++4FSNOZHCamM+hqi6EjHimWXAp6r0IIjE9MYnBkDJF4O8xorNhP4CsoBSkl8pkUsiMDcDLTNYajoKBgH9iB/NBzALQQH5SA0dUPpVykn7gb7kydWqJCg9mzEtbKLYgecwKEFav+2UoJZWeR/J8f44z1S/Hej38WvUv7oVXJS+jPMj+wL4Nl7QauPKEDcav6LQH+cW0y6xZnO/3jbtwMn7ux2RiolWtmoNZwUXZqnFQKB2bqH4h9aVtiLFO/XbF/AG0l2earfVH9x3UR8h6uQnstZHvAO/TO5BVcFS6RKVDIkN5A/woCuhZcD3Ru/zoUIrrAbI2G2u0BhUxeIcR5sKjD0kJVK/DfQa1La+Vj8QLAJW1mqPcKeEE7LK0YdNYbU85ReK5kZqee4ZSDvVPh94e0LQGEP3kkc653uaoOIQQ0KKzrNmGE3BcEvMuaYYIcvyujwXPesnYDPXNm0aqNJ24C+6edqvVM57IlMJ6Voe7pAwBHARt6rKqXoeeKmQIzdYM0wP8OtUUttEVLUjbVOe60t7dj2tXnzFhVeQUhoOwsZgaeRN1vixAQENDaegGxo97gCxSye55Aft8T4aJvJaEluhHfcCbqHkc0DcKK4c3vvwlveflZkNKtGqR5wxeIGsBbTunCqk4TUqman7F/XOuLG5jMuFBQ6IgEXx6nIwMDtcMgzIm5VKNznEaVWn1V+2+sezR6m7UmUPdENauxvoHSWovhgsHZE0+48TR6z27YG/T9/htZluB3G7r/QrAZOgt7jULdQRrdN73yYuH3Tb3GjPBcfrWL8PsakAk7NXyQYka4ovB+m6GZxvJQNnoqbuQ+JVeJ0Jf5gUb2eb9/5T8xXPt8Fo0cG8oufYZuL0Lv1EbnUu/SaJiKHUJgzbIeSClrBmmzzUXxsnSYQNy/p689ojFAOwowUKMjX+OxIC0iC3Wph2ghiUJpslZzNKz6DKrhOdfKvq6mvR4DNSIiImqKo6HWZzPvPwvj8C8NISIiIqJQGKgRERERtSgGakREREQtioHaYcE72ZutofR/3PxHNKaCpIPX4L7T8MKVFrzbnxYdLiaYR35STgEvWWUjGe41oGZZo1J518vwr9dIsFk6Jj8FQpg0Dkp5/doInwbBkaqsukI9jS7KzDoqVDJXwBtzxPASxwLhVghGdBEqMbHff9ZRiJvh00o08tkCXrLVsOW80GDNymihFFmY+qJAITN/A/17lSdq550qZbsKyvRSJoTZllIqaA2k9OiK6oXcU+E0mFECk1kX0RCJj72+FU5ZFsFvdmdCb9MqOWWrGk056EuEO8wbQqEjooVKZOyNJVyuPp+lewm565WyK3QOM94OoemQrlP/NZSE3tYDCAElZd32QmjQ23qgpg/AtXNQdeqM6rqO/OCz6Dz2LEh4VVtqttcEfv/kTpx34gaE3fdHUw66owuXsLZZjqRVn9VWdzZzRWcYDNTmQbG+Y/EgL9AT05FxFKZztTOiA0DU1NBmARnHS85Zq70mvDqhUioIzUsC6r9m0LgcCQzPOEjbEm2WhkSxKkpwe1cBqbyXBNPUAL1w0q12LDE0oCPqHZDzIeqFGhqQsHQIeO81FyIiyble+aI2S0PECD5J+4/N5L0SXEp55Z1MvX7AGTc1WLpXGLtednzlj9uRaI/o0KsEvwoKhf9B1wVEoXxUPUIIRHRvOwaVCyodC+AFdOFO+IWqEK7CijYDybzERKb2viYAtEV0mFGFlK3qntBNDVjWZiBuaZjOSUzn64/MVcBkRiJmeklAgeqBgJTKywPnqELA6eWoE1VOjALAkoSOrmgUuybzmMjUHr9UKObgM0LU94zoAroQmMpKJCxvXwvi7385V+GEpTH0xk38ZlcKY5na0bKlewmQZWFfqLY1/WGu7TKxvN0EANg1Agt/Px7LSOial88rXeO44+87adsr8+XXFxWofhxRCpjM5CExm/uu1nhkPoPJp3+H7IHd0Nt7oHf0eZ9rlf5lOonpP/wE+QMvwOxbDaNnlbcdquw7PUuW4o+uuA59S5biF9/+Ah747+9CExqkDP4MTt56Am675TNYs34TPvG9e/H9+56GrlUGbH7AfcbG5finq8/Dmv44XhjPY7zOvtYd1bC601z0QRpwZK36PNyrO6thCakAh1JCyp9Fq0YqL1gLmrExNCBqlP+icqXXPhsQMcRNgbaAUiN+QXP/hOB/xOMZFxNzin3rAuiIaogYWkX7tK0qyigJAKbuJTKd+3hbREPMrBx/UL1QASBhldcjBIC8K8uKTNdj6QLtllZWrsevKzmccipqRVq6QKLGSaWUX/Q6bVeOv9rnHDNEscC4X+kAEIGF3/0+wr5XpbyKCWU5WwtTLK70Ct2H6QPw+ph78nakFwAHlS2LGgLxORnunUJZtKBSW31xHb1xvWzftIsF0usOE4C3b7ZZGoyS2dliWTNZWdZMF17C2aDSTd4+W/74ZNbFzvF82Y8D/2joBCSpFihNtlz+uu0RHRGj/E4SSxdIWOX72twfPz6pFJ4ayeF3e9IVr60L77temtjU38eDZul7ohq2LImW1fX0fqQF/3CayUkMp52y8XglrmSxRFGpnOOVtiv9FwFvjJGy77MXoKVyDqaydlleWaWUV2qptGPl/X1m1+NI7theXtdTN2F2LYMWa0NxhlZKKCWRevLXSD99DyBn2wsrBmvZJujxrtnHNA26ruP8l78ap7/kQuglsz77X3gSP73177H/+SdmX1LXkUjE8Y8f/1u8/S1vhqbNbs/fP7sfH/jmL/Dc4ETxMU0IdCUi+PhVF+BPXnxs2b42kXHx/Fi+4oeopQts6DHRG1/8cyZHYgkpBmot7GADtXpBWinb9YpEO9L7pR41ameYzrveSdFV3kxFR2S24HUQgcIlVE0glXcxMuPUvPQaNUQxy3XOkUjbtd+LLlC8vOk9Vy8r8F3Kn8nzA4moUVlcfW77tK2QaiBNesL0akoqFALSGrNDAl65nKgeLmu+VN5Y8u7s7EC9Wc42S0O0EPz6F/+q8bdPWFIpZB2vT6m8AK3et9gPwl2pYMvan23GlhjNePumIYCEpRXrpAbJ2hKThX0zYQosazerXvpWSiHjqLqzd6UiukDc8vYXR9avU2vps5+trnnfl6qzckphcNrBnim7ajH2uXQxW5fWq2Va/XJVcV8rXA4N+vFTKmNL3L8njWfH8hCYvTRda/x+HVVLF9jcF0F/orLQeWl72/X2SdtVOBDwY6aUIxVSOe+zdaXCjF27xFTp/pJ3XEyk8zV/QCil4Do2hKYjNzGEiSfvg5OarNpei7ZB71wCzYwiP/gskg/+B2Rqomp7vX0J4sccD1cpbD7pNFz8qtehvbMrsK2UEg///IfY9s1/RnpmGm9781X4h7//CPp6ewPbO67EN37+CP7ph/cjZ7t4+8tOxvsuPwvtsUhw/0ph75S3rwHAMZ0Gjukwj5jKAgzU5g8DtQCHI1ADAEdKpG3ULN48t39HInRdyZm8i2RWhirADngnIEMDZMh7KjoiXoBm6uHWpOhCQQNghGw/mXEaqrmZyUs4IU60vs5I7QBkrpFU+HqtANATC3+/iawy21GN43qXHsM+RSqFXMDMZjW2612qDHPfI+DVgzW1yhnSapJZF8kQl0J9hgaY/g1yIXRENER1UfXHw1xPHMhirM7lqVK9cQ0RPXz5Hq+sWvh7+77/+CRsWbvmY6mT+qOImeH2Z8eVeH7CLgZs9eQdib1JO/T+KaWEdJ1QM7wAkBnZg/Gnfw9npnrAVTaekd3IDz0DNzkSqv2L/vgqvPjVb0PfsuWh2p/aY2N9LIdjN6wL1X4smUYm7+CYvnDnCu8Kg6qYgV3sGKjNn8U/37qI+b/4G2lf7b6XasIGaYB3EnEbuFlZCNFQoKM1WPJk9tJhOG4DQVqrafCtevf5NPgajbT3Ptvw7TUhGjrxNPrZAo0sSfBfI3zbsAFRaftGZkIa+QEHePV7G9mXEwG3QFQjhGjouCBEY2MBEDpI84UN0gAASoYO0gBA1zT0LFkaun17Ryc2HBMP3b63I3xbALAMAa4GpUYwUCMiIqKmWGyrPmvV7TzcqzurYaBGRERETbHYVn22yuXNWo6si+RERERERxAGakREREQtioHaAlGFZfK2qyClClUGx9CAaCEfVBiWJrCszUDMrP8EPxnoqk4TMSPMKj9vZV1Er5ZetJIjvQz4MsR7DZsXrHQ8fXEdS+N6qO1jakDMrJ6UdC5bKojgfJtVx5NzFPKODPXZCnjpFcKM3auGIGFLBVeF23d0zVuhGwnxAn53kZDjEQC6ohp6YuH6l0phOu8i68i6Gd79/tstDR0RDSF2TS81DQq50EJsG6kU+hI6NvRYocYf0b0E1m2WqJsE1x+PoYX/3uZdieOXRrCxxwq1oGNJwstZ12Zpob6LE1kXWVsW0rrU3j5KKbhSoSemIx7iOKKUxPjTv8ee//4qks8/CKVqr6RVUiIzPgQ91g5hWHX7t0wD1159Bb7/gx/ipRddVLd9IhHHu15/Gd58ag9WdZp120cNgXVdVqjPlehwYXqOAIeSniPMEnxHKmTsynQM1dJuaMLLSu4fs/18WLWyk/vj8dun8xLjGScwB1J7RMPyNqMkmadAMudiJOUGrvbqjGhY2maUnXhcFb5EFuCdtILyWx1MDrWYIcqCSwVgIiMxGZA5XwDojGrFpLQ+2w3OZSb9xJ/u7Pi8/6++7U0NFathLUNUTXWhAWWJhhW8fSQohvGTzM7dPLoIXrnoJSgWZWWWHFchlQ/+bFVx5awq9uAWcpcFvd+4KdCfKN93so7EdK6yqoNSCjN5heGUU/Zvfk6+oG0TNwW6IlpZgFwtCTHgBVGJQkDh96eJ4BQ4frqb0oBOARicdjA4XZmKRQDobzPQ31Ye3dfKjaYXX3s2AHarJDn2kmF7CYRV4TNwJPDceB4HZpyK9lFD4KRlUazqtIrjlwpI5oIT1WYdiV2TeUxmZ3ee4g+EgMjElQo5Z/ZzVIVqGlO5yv0PADKje7HvntuRGdtffCzSuxJLz3o1Ij2VqTFyUyOYfP5hOJnp4mPKseFmU0BAgHfOycfio29/LZb1dgIANE3Dz7fdhY/97Uexb9++ivavffUf45b//Q9Y0tcHoXmrYh8/kMUvd8wEJnU+sT+Ci9e3IWKES4hN5RZreo7FcI8aA7UAh1KZAKieT00W6kLWyswu4CXT9A8Slu7lj5pb9mg2Q3u4AMlvP5l1MVU4UFs6sLzNRFtEC+xfARhNu8UDe0QXWNZuIG4Gt/fH08jKfFObzRifd4NP8LWemzCDM9H7mdtH0rOZ82OmQHdUr2hflgzW9T67WlUJSp8n5wQcZknAMpcmvIDND6iKi/QFysoezU1OCxSS7uZl4AnGJ1Cefd/QZtO/BH1WOUchY8tiuTNZJfgMqmZgaMCSuIH2KvsO4JXW8sebd1VgpYhSpiaKP1ZMzavLGQmYQvP3zbStipnewyTm1QsB0+xnXf395l2F3ZM2pgrBfkdEwzGdZtUfF1J579cP9jUxO4MWdL6XCnALFQj8JMAzucoapP62ncq6eGY0h5Tt1XLd2Gvh+KXRQhBa+QI5RyKZlYWgUGH/tIN9SS/RatB71kUhoC/8YMi5tWe007YslsNzc2kM/c+dGH/6dxBCK5tF8//eedxZ6Dn5YuhWFG4+i6mdjyEzMlAewRZGpxSg8lnIfAYAsKy3Cx/8s1fhojO3QkpZViHAcRy4rotbbv4cvvYvX0U+n8emDevxhX/+J1x84fkV7WUhOP/1zhQe3J+BArA0oeOPNrVjZYcZumYsVfLPm70bTm7JVZ+16nZ+8ytfXIARhcdALcChBmpAZb3PvOvNooXd2FEdxZNUrQOHf5KoN7tW2t6R3gGrO1pa6ii4rT92W3onq3rt/ZNgI4lqoRRyrgxfGBzeSbleYXb/36YLgyktk1WtPQBkbFXMtF9n4MXP19QQ+le4pQOWXntblo5nOu8Fy2FzcZm6KF7Cq9e/AjCVCZ4hqTaeuCnQHdPrvl8vWFZ4YdzGSDrch6vBO3G219nXfF5grep+trODAiTq5zXz+5rMuJBQaI/oofa1rO0i59avC+o9xwuWJ7LBM91z+weAsYyLZe0m2q3ayZT99numbDwxnAtVQxfwLxnXP075+87Ox/6A3b/9Cdx8dk7ANYcQ0KwYOre8BLnkOJR0UfOIpRQAhbdccjqu+ZOXQtc1GDVO/lJK7Nu7B08/+hDe9Po/8fIAGsFJDfxtM5JyMZJysGWpV0mg0Vx6VK7VZ9QWw8xZNUzPMU+EEIUCvV6NvVozCXNpwivMHubEI4SACnFgLW0fNRSiRv1fPP5rRwwgJupnnPf/vdHknlnXm90IK26KmjNXc8cTLRSyDtt+KueEnNXzCkybQhX/O4wwQZr/71KpugWdy0fklSMLkx5WCAHHkaEvWXsF4gV64+F+LQshMJFxQgdpgFd3tj0SvqKDd8m1flDqC1u03u+rLaIV76kMs++4KlyQ5j0HoYK00v439kSKs4L12iulsH0o21At2bCHKSEEsslx7Pjld8N27t1bOTkc9gXw4uPX4a+vvDRUc03TsGndGrx468YQXXvbri+hY0mNcltErYKB2jwTwr/huIFM4CXPbegJoftv7AmNtm9Yg4GdCBE0znlGQ1nqG59jbqz/Rsbe6Fhmuw73GqrBk1Sj5zSpGt3XGnM4TrLz+RoH8/k2Mp5GfzQ1wrXzDbUXorG1a7FI/cUFpbSAW0Rqti+5L5SolXHVJxERHZU4m0aLAQM1IiIiohbFS59ERETUFAtV67NWzU6gdep2HgwGakRERNQUC1XrczGv6qyHlz6JiIiIWhQDtSNBgwuXGl3nNN/tG6VClk06WPN9f3Ej4290LA2vImysecP9N1qKp9XW4JUVaZgHB/P5NrLve93PzzdYM+qXZCrrtU45qbnydmU1hpr9g4sD6MjEQO0w0LXZsjZhuMor9xLmhK6U8jLtNzAeP1t5GN6JAWVlZOqOp6RdmJNKxBChahr6ZuzZ3F+1+vf/KWzXfl8dEa2xACNkW/8km8rLUCdcpbws9N1RPfTnWz97WjlTA3pi4ft3Gsj3oJRXf3VZW/g7LGxXIWaG3xm88lOhm8PSgUgD7ZVq7D1bIQt6+p+9IbxSTWH2BQDYl7SRC1GjUxbG3GHYcELUm/X/fWo6Bdet314AaOvqxfmXvQ6mZZVl/w+i6xpiusIlW1fCNPTAklVl7TWBJ3cPYv/wWM12pXKOgtNIWRSiRYL3qB0mUVODZXgn6TAlpFwlkHG8E4shZjOf+0rL+jRSBcDQAKtKTdFS/nFaohCkKe+EYuqz/xhYlsidLZEloKBrlWMv5deotCwNeQkviAkcj/eoWwgcxzMuoobwqiUE9O+P35bhKzYoBWRsF1IB7ZZAzkXVGo6AN1sUNwWMQv6mavVCi68Bb9soKGQcFwlLQ6zwDSwfvxduyUKQEDEEliR0TOckMjXGEzMEemIGTF0US07V2jeiuleoXdcEliZ07Jt2MB1QH9XXE9OwrN2EoXnVJ1J5N/D9+rNQEoALgbXdFpYkDOwYzwWWwPLf+ZYlEWxeEoGuCczkXeydtGtm1O+MasUM/RlbYiJTvZqEgFc4PlGo8Zq2FcbS1eqdegmkkzlZ/PwtXSBhBdeALK3g4Se8La1KEtR/3lXYNZlHsrC9E6Yo1p8N6j/reO1TtsIzY3ms67awrtusGI//Xds/lcGPt+/H0FQWmiaworcT/d3tlf0rBQiB6VQGuwdHkc3b0HUNK5f0oK+7o+K76yXx9qpHHL80ivimS3HxS16EH/3g37H9oT+U1awFAF3T4EqJ173sJfjke96Cpb1d2D08gQ9/42f4xfYXoBWSOs+2F5BS4U0XnYob3vhSdLfFYLtepZB8jX2hzfISJbO6AB2JWEIqQDNKSNViuwoz+cqSQLoWXMbEnzUoTYTrKu+kH/bHvgavwkCtA5m/Jwjh9VstJiitaemPx3a9k0nQU/yi2H5bwHsvhqi89KOUQtqZLXJdWmw66L0KeAfpeHHGslAdAfVrjpbu+nlXBZ4IvKLslQFYzBDeZzLnDUilkHdma4DWq4GqC6AjosPUy09wdpWi7HlXIZkrD5B0AfTGvRqsc9muwoxdvq95r6khEjCNmcy62Je0y6oVRA2BYzpMxOcUsvcDjvSc4Fqq4AoASimMpFzsnsyXbYv+NgOnLY+ibc5Ul1IKoykXgzN2WdATMwS6YnpFXU+lFJI5WQx+fHFToCtaOYsjlcJkRhbrefrbP21738+54xeFvubWHy2tgTp3PHP3AwVgf9LB0Exl0Xet8LlEC+WwvDEC+6YdDKcqf93FTYEtSyLojRvF4DJnS/z344N4eGCyov9YxMSa/h60xSKzP/RcF7sHRzGRTFX2H41gzfI+RCNWWZWPE5dGsTRglvTZp5/6/+3deZgU9Z0/8Pe3jr7mAgYYBhhGDsFRPHDc4MQQjAdudDckm0PXeD0BV7JmRV0fxaBBzapr1ihxw6EENHHXa9VsTCQrbB4lGjwWHPMLRyQiKOoMN3P3VfX9/VFdPd09fVTNdE/3DO/X88yj0/Pt6k9/u5j6zLeqPh889/R/4tDBA/H5mlY/Hstv+wd84cxT+ox/ZcsuLFn3W7Qe7YzHM/OEGvzbtZdg1tTxfeayJyrRFjSS9mWPCozwWX+cUHENVq/Podyzs7+YqKVR6EQNiCUkESshsROZXKtcumKtiEVMOGs7Yz9PtZOi7Nu3fwE6bbOjxeIORqWjlku6YgWlxbs1ZGaYEsdCJkwpYTh4r1qsibcQ1mqkE0YsGQpF06/iJYoY1oFCFVZz9+wJrzUfwViC5KRFk0+zVlTsVbRs7INWd8REma6gyqfmjCcYtRpt+3UFZXr2zg6mlDjQGcWxoIkxZap1ajTH9ttDBiKxPxxyvd2IIdHSEUFn2MTMGh/GV2hZtx8xJPYdCyMYNTHCp8KX49Ro1JQ42mPAlDLW2D37+LAhsa8tgogh0ZHQWD0TVVitpUTsubn2HSmtxC8YtV4n28oQYK3e+TSB7ojskzSnM7ZMRW2ZwEeHu7Fxx3705OjHNqoigNrqSrR1dOPTg0fip0kzqRszEvW1ozChQsfUUZ6spy2j0Sje/v3v8O7bf8A1X70Q3730YugZem4CQHcogkf++w289NZOXHfxbFxx/iyoWU6jmrFkPBQ1UeFR4c+xL9PgGaxen8P57s5Mip6orVy5Ev/2b/+GlpYWnHLKKVi+fDnmzJmTcfymTZtw8803Y/v27Rg/fjxuvfVWLFq0KP7zc889F5s2berzvIsvvhgvv/yyo5gGI1EDrEQh3amgfFGFlQA4jkfmXoVKGp9h1ScTTyzRdPqL9VjQyHrqMVWFV4GuOr++qStsFLTFzmEXPS6B3qb3TvncXNgHFHTVoSfSuzLlRLlHwQif856e3WF3+4Jbuw6FcbjH+eflUZHzOqtEf2zpyXraOtVnHVFX++br2/Y6vmVASgkYzi/UHxHw4J8ubHA8vjqg4isnFe73JpUmJmqFU9SbCZ599lnceOONWLp0KZqbmzFnzhx8+ctfxscff5x2/J49e3DxxRdjzpw5aG5uxve//33ccMMNeOGFF+JjXnzxRbS0tMS/tm3bBlVV8c1vfnOw3hYRERFRXhQ1UXvooYewYMECLFy4EA0NDVi+fDnq6uqwatWqtONXr16NSZMmYfny5WhoaMDChQvxne98Bw8++GB8zKhRozBu3Lj418aNGxEIBJioERER0ZBTtEQtHA5j69atmDdvXtLj8+bNw+bNm9M+58033+wz/qKLLsKWLVsQiUTSPmft2rW47LLLUFaWeSk2FAqhvb096YuIiIjS43Fz8BStPMehQ4dgGAZqamqSHq+pqUFra2va57S2tqYdH41GcejQIdTW1ib97J133sG2bduwdu3arLHcf//9uPvuu/vxLoiIiI4/mY6bA+31OZx7dvZX0euopasZlO0C40w1jNI9Z+3atZg5cyY+97nPZY3h9ttvx8033xz/vr29HXV1dTljzwe7LlGhxheSXXuskHdduXm/dhHZUrkLTBHOy6cAVqmSQt3aY39W1uvknh+73IObulRu901TSqgOt28Xfy7UZyvg7vMyTKsYseLwhoKIIWGY0vENCOFIBEKoUB3eHOPVVYSjzm+OGVvhweGuCAyHTwjo1l2oRLZMx82B9vo8Hm8WyKVoidro0aOhqmqf1bMDBw70WTWzjRs3Lu14TdNQXV2d9Hh3dzeeeeYZ3HPPPTlj8Xq98Hq9Lt/BwNgJZkC3ioeGjOwHOSV2B6emZK9ZZrPv+FQVq6CkkwRAib1OrhpkdvkJu7CtImTO8iKagKvuAwBQ5VUAL9ARNnMeJFRhlSyJxoryZru71K5vpccOmplqliXFrwjYN006HT+uXIMhgWM9RtbCraoARvpVlHtVRE2J7gyFZG0CgFdT4oVtc5UvkVLChFWMWMAq15ItATNMiWDUKi2iCqtYc7bxVsJldTgIRU10RbLvm5oCqEKiOwJoigGflvnuTyklQlGJrrCdOObe1xTR+9kaOcqd2Nsf6Vcwwq/gcLeBo8HMEyqlVcKjPWhCCKvzQlWWu1ejpsTWz3qw5dMgVAHUVekY5c88PhyN4v998Cl2ftQKj65j+pRJGD2yKuN4Aetu5680TkZnMIwtHx7EgfaejPGPKdex9MIT8Lczx+L9/Z34/ku70PxJ5lNWE0f48MO/nY6500bgQGcUm/d142iWu2OrfAqaJgYAlNYfTZR/xThuHq+Klqh5PB40NjZi48aN+NrXvhZ/fOPGjZg/f37a5zQ1NeHXv/510mMbNmzAWWedBV1P7jv33HPPIRQK4Yorrsh/8ANgr2wkHjoUAfg1q95WuppJXlUktcnRFKDcI5K6ANisg7iAJ6GAqlW9HH1eNx0hACVWXd1IUxMrtaCr9RhiB3UJkXIQFbBa9qix6v1uf3ELIVDhURDQrUrxqTWorMRDJLVAsjsEpCuhkJjY2FXUPaoCM9ZZIF0RUvugnzjeMCWiZt/xqkC8EKsQAiokRpdp6I6YfYp1AtZBdmRCCydVAJU+DaGo2aeQLGDV2EpsUyRg7Q/pCgLbq2KJD0tYtb9UIaEpyTWo7KQlsXirIa1uEfbrpo43zOQei/a47ohEMM1n5deT982oCXSGzfgfIYnbj5oSHSkV6XPta7oaq3EXq7ivQkJRBaJpkuuIYXVvMGKrwgKxxMurYH+X0aecRjBqdT+wk2gpgQNdBtqCJmrK+9Z323M0jE17u9AZjr1XCew5FsHBLoH6EXpSqywpJfa2HsGWP+9FKGyVzghHItj2/m6MGlGJ6ZMnwe9LPij6NYGKWD03ACjz6jj35AnYd7gD7+09lFRPTRXAlX9Vi3/+Uj08sb+Ypo0pwwvXnonn3m3BAxs/xNHu3ut8ParAtedMwj/NrY/XPBxdpmL+SRXYcTCE5s96kn5XaQpwxjg/TqnpjZFJGlF+FLWO2rPPPosrr7wSq1evRlNTEx577DGsWbMG27dvR319PW6//XZ8+umn+MUvfgHAKs8xc+ZMXHfddbj22mvx5ptvYtGiRXj66afx9a9/PWnbc+bMwYQJE/DMM8+4jqsQddQSK41nG2MdSK0DpK5YSZeVaPX9pRdvexQrOKsrvXXTMp0izhVD7/jeDgV2b9BcLZKA3hZYQoh43bR08bhlJ3k9ERMdsa4OuiJyJoCq0tt/0U4qMm0f6F2BsRKgzNtPN95OErKNbw+Z6Ayb8KoC1WVqUhKYOl7Cqk8WihXatVaeMu8Ldjx2AVMnVc10RUAgVqA3R50vAWt1TRWZO0WkxtIVsQrIetXM+6ZNib1HRVjJYVeO3miJ+1riimemyykMU8ZWQ61uCqEMC0P2+PaQgYNdVqJ4tKdv4paqyqtgdJmKroiJ3+/txt5jkbSng+3HaspUjK/Q0NkdxNs79mD/0Y7071NYz6qfMA6TJoyDV1NQFetmkY4pJUxTYtsnR/CX1mM4c0IF7v2baZg22p92fozYKu6/btyNZ7a24AtTRuJf/nY6JozwpV1Jtf9Ye/uTHnx4NIz6ETrOnhhg8dnjXL7qqPHUZ19FvUbt0ksvxeHDh3HPPfegpaUFM2fOxPr161FfXw8AaGlpSaqpNnnyZKxfvx433XQTVqxYgfHjx+ORRx7pk6Tt2rULb7zxBjZs2DCo7yeTxFYy2YjYSoAvlpwpOZIQ63GJMo+1IpQpSegd29vEPVc89iYEACElgjlOZ9kkrCQvoCNjgtkfiS1sFKEknQrN9hqGCQSl7NNuKNP2VUioKQfAbPNpr9gIh+MrvVYnAbtlVNbPVkoEdCW+mupkX1ABGHB+rVjYMLMmsInsxNGrZj8gJ85NpUdBVEpH+4Ipgc6wgZCLfc2U1spStu3bjysCQKxtVLbt2+MrPAqCERPbDkQcxdMWMvHnQyFsPxiKX2qQ7nn2Y/u7DLz/cStaWz7Lul1rWxJ7P2lBlV9HQ/24HKd+BRRV4PRJ1bj1S5PwpakV1jV1Gf+YESj3qrj3b2fglvOnYGRAh2HKjKe7FSHg1YC5k8swu84fb3nFJI2oMIremaAU5XtFzWmilshN1XO3nF6zZgsm9N50wqcJeNP0wcyXTgdtfhJl6qGakb2c6Hi4u4OUmw4BUuZexUxkyvQ9S7ONd9Kiy6YIwOOi+4MpnSVdtohhrdw65VWFderb4fwf7Ym6uij+vZYeHO5xPkFvfdLdp9doNh/8eUfG0kLpfONLZ0HXnN1RJwDcd2H6632J8i1fvT49wkDDKTOHde9Ot4p+1ydRyenHdXRERIQB3/Vp+/SVFXmIZngoamcCIiIiIsqMiRoRERFRiWKiRkRERFSimKgRERERlSjeTDAIeF8tEREdDwbS6zOxz+fx2NMzEyZqBRY1JXoiEv7YTDu9QzBbD9MBs2s8OaxC4XbZ1ZQSQjh/lh2Hk3hkrK1R1E1AEpAojTpP7ntuutu+63focvu9/VTdvZrTEiZuPyJT9taQcxKPGh+be7yM1bFzU54joAu0h5yNFQB0j9dxeQ5FAJ3dQYysDMDp3B/rMbK2uCLKt4Hc9clit+nx1GeB2NXPu2PFO3uivf0znZauy/cv13h3BFitquzitJnCsX+mqiLeIcEJAWfv0d6+Vd2/97Fs4wGrY4CTWmR2I++I3e4p9n2u2D2K1ZvUifj4nP+SZLzbQFfYjLdpyhRP/HGXu4AQVosmx/+wXW/f2RPtuQ4bEp0hq5OEk31CU9ztaxIShmnGE8hs8ZhSoj3U28or23hTSkRMoKUjioNdkVjtwezbN0yJkX6r92cuAkCZR8E//fVpmN94AlRFZK31JwBMGBnAN08pwzmTyqyC2DleY0yZivawwSSNaIjjilqeWQcn9GnCLQGEDGuFzaMCyLDCkKvhdH9jiseQ0Mw9Kq1f9mrKalZ8hQtWEiVhFeD16VZClakgqSasXo65ivUmbj+xjq7dBFyJrzglj483ixci3ng9HGuflfIK8b6m9o8MCRiGtNpOifQrPLpifdmP61IiZGTu4tBnvCIRivZt3dTb17I31lBUImJYDckVJK+eJo7vz2lzRQh4tN6WSaniLZ4cdiQAkNRSK5t4uyZpJaT259sRlrE2UrHtZdnHnexrigA8Wm9yY8ZitHYWwE717HiOBU3sawvH+1MGowbKYz1kE+OxO3zsOhTGW590xws9d4TCGF2modKrJu079lweDZo42B2FKYFKr4qAruBYmrZTCqw5b6rz45xJZfCoAqeOm4YvnFSLJzb9Gds/OZrUdkpVBFQhcMMF03Ht3KnwxordNo734Zc727GvLdpn+6oCXHRiBc6e6C9o4WwiGhxM1PJISomuSPYuBIa0Vtesg3zvL3yrBU7hkrSIiTQJjXWAsxOkWP4IwDpIpiYcIpYgqbEEyX6fAlaClpi0ZI4H8XjSTZPdCF4V9spcLKFLM14IAa9uJSThhARUysx9LiOmhBFrKSVip78UYfWiTF3RUISAT7WSq7CRcPAUVsP3tOM1iag9PnZANyXSJkymBLojJvTYKpI93l5lHChrlaY3QUzsN+umU4bdRzP3Z2tttDNs9vlDBbD+UAkbMtaYPXdLrHT7GmAlaOnisRNzJXZW017R+6gtjI6UbgESQEfYRE8Usb6Z1vhjQQO/39uN1s7kBMiQwP7OKNqCBmrKtfi+HoxKtHZG+zSg1xSB0WUaeiJWI3f7xxOrdHz5xHKMDiT/6q0dUYYlXzkT/7f7AH7++/fR1hMGAJw7Yyzumn8q6kYFksdX6Fj0V6PQ3BLEb97viCeUp47z4uLpFaj09r8yPBGVFiZqeSTh/AAYMWN9CvPcEzORvSLjpPuTETt4C+Ru5q0IAZ8urObfEvBqzuK3V3Bybd9eabNX1nKNt1dgeiKxU2w5xpvSShjKdQWqgqxJiBACmgBUYbVyEgJZ+4YKIaALQBMSbSEJidztwyKmRDQs4dcVSNNdy6VcrIRHQBgmQqbz/VPAXs1x9tmGo9bqWTCaPX4JoDtinYb0Ojh9bfeVtJNLzcEfAyaAw11RBCMmDnUbWeOJmsDhHgMt7RG0x3p1ZhsfjEp8dCyCco8CE8jZLsqvK/BpAlNGejA6oOGk0Z6s+9rnptXgtEnV+ODTA5heU4HzGjK3gFKEQON4PxrGePF/n/RgYpWOqaM8WeMhoqGHiVoRSbjsQdkPLlp0Jp0qdKJ3pcX59l20lXQ1Nn4qysVzVCV70pW6fd3FIoV9+s8pN0l+f1gre85fIFdCmkoCfU7zZePmvQoh4iu+TnVHTBzuNhyP/6Q9gk87nN+i0hbK3tg9kRACp9X4UOVz9g58Hg3fmTMVHoc9YQO6grmTB96yhygf3Nz1mXiXJ8A7PTNhokZERER54eauT97l6Qzv+iQiIiIqUUzUiIiIiEoUEzUiIiKiEsVErYgGo8KRw+uRAcBREc2k8S5uJACs2leFjMejCkd3EibGUyhSAnqsPEYpxGPGCrI6LbasxkqWOA1JFUC5R3H+HiQQNZzH0xEycKgr6uiGCCklDncbONpjON5+dUDFpCrd0VgBYPZEP86s9TkarwqgrkrHSL+zvVkRhd0XiGho4c0EeSRg/YJ1ckebR0U8qXDaXsctNXbnnoxVWc92F6KakETZdbyy3XWpJ9wxaVV9zx6LIhAvvmlKiYiRefsiFo99sDJlb+HdTOM9KuCPFQMNGxIdISPj+9UVoMKruorfKbuGmyEBn67E4jGT6ryl0hQBnyYghIASiyV/8UgEoxI9sUqvpgQUITMWVrYr5pfpVjw+TaInahVxzkRXBfy6CiEEqrwKjgUNdEUyvwF7P4uYVmkSj5a5RErYkPi0PYK2oBX//q4o6ip1VGa4g7IjZOD/PgmiJVYH7XC3QG2FhjJP5iRJVYAZY6yka/roKLZ82oNjwfR7Z/0IHd8+rQoTq6wyGH85HMJ//LEt/nqppld7cMXpVRhXbiWBR7oN7D4aRijDHbIj/QqmjvK4uuOWqJSku+sz9e5OG+/ydEZIp39yHkfa29tRVVWFtrY2VFZWunpups4ENlUAPk0UpANBtpischFWgpQYmd2ZAEjTCSBNDTZN9LZLSqzObhVq7Zvw2IV8042PmjJeKd6mit5VtMR4gITOBAl0JTH+5GrxPVGJrnBvGQUlturj05S01eVllmTQCbtmXeo27O2HosmdAhQB+DQFqiLSxmMVqe1/PBHDRFfYzJj0qUpyeRivKlDpVZL2zcQiud2R5C4QqoJ4CYnUzzYUtQq9Jn6+6fa1+M9SOg1IKXGwy0BLRzTtZ1LlVTChSo+/ftSU2HEghG0HQrHern3Hj6vQkhIge+Uq8d+hKSUEgN1Hwti2PxiPv0wX+EpDJb4wKWAViI5tx4hN7v9+2IXfvN8R/3df6VXwzVMqMXtiIN7twH5fEsC+tgg+aet9b15VYMooHdUBrWB/uBEVkn3c/LvlG/vc9cm7OweGK2p5JmIFOnUV6Ek4sAlYCZquikH/RWy/lgLrdJbdW9NetUpthh5PrADowkqQpLTeU7rivInf29uT6F0RyzReFYCq9hb/1TIcxO3vFWlt04jFq6ckjKnb92uAV1XRGTahCGulSKDvc3r/3zpIu13NyrUCaSexPl2BbkoEo1Y3gsR+panxyFj3BOuUpbt4TFOiK2JmbL9kM0zAhNXSrNKn9klgE+NSIFHhVRCKSoQMCV0VfRLMxPEeVaCmXENn2ER70Mx5Os+UQDAioSnW9j9pi2b8Ywew6pi1HwhhXIWGiGHi/z4NojvLKl5byERHOIyxZRpGB5R4opW679gJ1ZRRHkyq0vFeaxATKnT83SmV8VXPxLPr9nYunFqGsyf68cyf2lDlU/G1hop4UqikzI8AMKlKR025ht2HwyjzKJg0Qk+7bxIRMVErEEUIBGL9CoNRiXJP+oPyYIofdKWErvSu1mQKx35clYCq5U4wExMeRTgbL6WEJgCZJmFMF4+dMDrdvgKJKp8aXxlyEo9b6VbR0m0bsJKVQCzDdDSXLsMxY22QnFIEMKas99dAtqr5QKy3qSIS9p3s4z2qcNCwvtexoInPHBaelQB2HAjhs46oo2vprFPKEpqaOyAlVuD470+twqQRnpz7miIEKrwKrvurUY73Na8KnFLj4woaEWXFRK2A7Gr2TtreDCoBIEdSlDRcuLuOTjhIolLH2q/jJBY3Kw9uYolv02Wy5ma02/1ACHcv4DbPVBXhLiYhXO07blcDwy6bnNrXejl9ltfBHxw2IQQCntxJtc3JHw+p22eSRkS58K7PQXA8/iIupfdcSrFQ/pXSp+s+ES+l6ImoFHFFjYiIiPIi3V2fVX43nXopFRM1IiIiyot0vT4Pv7KiSNEMDzz1SURERFSimKgRERERlSgmajQkuSmjwZrOwxs/XSIazpioHWdkrPK6hPNSDoU+ELq98c1NQdrergPO+krG58dFV4BC/yNyMz2KgKu6ZRFDIhy1amjkmh97bgDnc+nVkjsc5BpfpgtX77fSp1jlbxyMFQDagqbz8hkA9ndGmegTUVHxZoLjiN2+xu4EoACw78XJduwqdLsruzCt0wTMSTzxtlboTbjsyvjpalcltm2KmL39Ru2kLWNRYFh9RiWAsJE7qdUUqwODGXud3OMFdCFhOt6+wEi/ipABdASNnOO9mkBXRCIqTfiz1Biz952wYXXbUITVrQBI/1lY/WUlDnRG0RORsd62SDvenvuwCRzuMaEqcNTv1KcJ1Fd5cPIYL7YfCGLvsWj8j5B06qp0nDelDAFdYPeRMPZ3ZS8MXB1QMXWUhyU0iFxIvOvT7vHJnp4Dw16faQyk12cpSezBCVhdEtL1gtZE5lZS6VpGFVK2BulOE8bE/pSZtgMkFxw1Yz1aU5+Sqz9lYjxSynii1+c10dtRIXF8NNbOK5WA9bkkvqaV/KTfvoDVezO1b2VXyER3mifoqoBXTS52K2AlP4lFYe25zPS6qgAUJXm8hNV8/GhPciJkbz+xjVp8fI+JjnDyC0gp086NIoAxARWVXiUp/qM9BppbgmgL9T5JAPDrAudNKcO0lKTraI+B9w+F0JPyj8KnCUyv9qA6wL9jiZxK1+uTPT7zg7+JjgO5Vm+iEhAJvTaBwq+iZWKvriWuhDlNGJ02VzfthNReyTFkn2bv8bGx8apIXn1MF48QApoAVCERNnsTRY/S2xMydbweGx8xenuF2olzuvEeFVY/zGjv+NTm6jZFCFT4VPh0Be3BKKJmciP4VBJWI/uwIRHQrZ6Whsy+kmdIwDQkhLDmqCts4mBXNG2CZW8/Ykp4VWv7nRGJIz1G2qRaCAFNkZCx1TUJq7n66ICaNv6RfhVfmhzA3mMRbD8QQtQEGsf7MLsuEG/enjr+cxP9+KQ9ij1Hw5ASOGGEjroqPe32iYiKgYnaMGZIIGpIR9eYSVgHfg3WCkkx2Y2rZZZTa+m4u3YNCLlob2TI3hWuXPHYfRzN2DVducYrQsCj9jZfz/V2FSHgVSUi8UQ2+xN0VWCET0VPRDqK35BAZ1hCV51dnygBdIQMtPUYaVfdUkVNoCNsIByVaVd4EwkhIAQwwitQ4VHgydGnUwiBySM9mDnWC7+uoNybvdCmIgQmVemoLdcggbQJHRFRMTFRG+bcntcupctxSu3aICdJTqJ0q1y5tu98rLuL7oUQUFze9eB233GSpCXKlaQlUoSA7uIPCK+moMzj/A3rTNCIqETxrk8iIiKiEsUVNSIiIsoL+65Pr67h/HP+qtjhDAtM1IiIiCgv7F6fh19ZgSce/WmxwxkWeOqTiIiIqERxRW0YU4RVZDRiOrsjcqhfT21fa+707k9NWBfMZyrNkbTt2H8zFYRNZZhWzTNFALri7CYERTjrGCFjNd+ChoSmCKsyf5btW/XI3LXcaguZ6IqYGOlTUZFSryxtPFEJjyoQNXMXLhYAaso0eDSBlo4o2nPcfqsrQF2ljnKPgqNBA6EcdyGoAvDpQ3xnJiKKYaI2jNmHKq8q4olDukOcGksmhgu7eG+u1ETEvpRYvbBM6YKuWBX/ndSGNmVyTTRDAoYB6Iq0Oh1kSHjixXdh3f2ZKdkxTInuSG/dt4ghETUAj5a+VpthWkmU0zStJ2LicE9vHbT9XVEcCwrUlGvwpvSmklIiZEi0h0yr04UCeBQFhikzloUp8ygY5VfjSfWJ1V4c7TGwry2CSJo3Pb5Cw9RRnvgfEbUVOjpDRsbaa5VeBSP8qqs7YomIShkTtWEsMSmwV9cSK+ELWEmIqmRuHTSUJMdvJT3ZVncSh6uwVs2MhAQvNYHNuWqVocsAYK1qGgB0VWYs22FvX0oZ/0zs+KWUsWK0aV4bQCgqoQoJXRNQYklfOJq5kG+qqClxpCeK7kjfJ4QMiY/bIhjhUzHKbxWbjZoS7SEjJR4rfkUAHk3AMBFfydMVoDqgwacrffa1ET4FVT4vPuuI4kBnFBJAhUfBjNEeVHjVPuPLPAoCHgVHewx0xFbjvJpAdUCFroghvx8TESVionacsA9eGiQ01UpIEk91DreDm71CpSoCppl7RUnEmkTqsT6TdrV/JwmsEVtFy/UaJoCQAehC9mn3lBq7TRFWEtYdyf0eDAkYESthc5qgSWmtiB1z0Bf0WNBAR8hAlU/NWjPNjl9VrPkv0xVUeJU+P0/8XgCYUKFhTECFKYGxZWrW8ZAS1QENFR4TURMIePomgEQ0+N5avQQnn3wS+3vmERO144ydwGjHQYuc+AqV4/HWfzWHq2i2dKtc2eQorp/02qaU6EqzypWN0yQNsNpnHQ26ewNOC9sKIeDTgEpf9u4AiePLPQI+LfeqmP1zXRXQMzR7J6LBN/3EqezvmWdM1I5DPKDlVsg5KqX5L3TnCnf9E/qx/RKaSyKiQhhGl5ATERERDS9M1IiIiIhKFBM1IiIiyov3d+7ANdd9r9hhDCtM1IiIiCgvmr73MD49dKzYYQwrTNSIiIiIShQTNaI0nHQhGMi2C7n9QnIb9tB8l0REpYOJGg17TkvG2UlI1LR7bjpLqDwqXBWhsLsX5Nq23VLKrxWmBIWUEroCBFz2D/M4K4sGwGpx5SZ6J4WDiYiOJ6yjRsOeEAIKZNaG53ZvUDtJixq9LaRyVbxXhYCiZm8hBVjJnCqsxNGUdjcEGY+xNxYZK3ZrFZcVioBfj/X1dFhsNht7+yHD6nigKgJlHgWhqJl1+6P8KsaUaVAVgYghcSxoIJilQfoov93X0+o1G8zR0sqrCivpZW00IqI4Jmp0XLDbFEnIpP6fduKWril7b0N1QBO9K2DpEgkhBHQBqCK5KbtNFdbydeJT7eTQXvFLXGELGclxCiHg0QQ002qE7voUZMITDAl0hY2kpEwRAn5dRdSUCEbMpFUtnyYwvkKHL2HlTVcFRgdU9EQljqY0SPdrVhN3T0KPMlURCOhW4pma3GkC8OkiYw9UIho6Nv37LRhZ7il2GMMKEzU6rgghoMaSLnv1LFfLpYhp9fP0ODhDqAgBrwYYprRWw2AladlyEDO21CeEFUu2VS1FEfAJIGJKRF10fjJlb/P2YJY3rMVW10xpvYdRARUjfGrG5DSgWy2fOkMmeqIS1X4F5R4l43iPaiW+9uqaVxXQVSZoRMPF3H96EO2/f6LYYQwrTNTouCSEgCFzNzq32StGTk/LqUqsy7tDUgJhFz00NQWIumjqKQG0hZy9gJ2AjS1z9utBEQIj/SpqHCZcQgj4dSZnRERO8GYCIiIiohLFRI2IiIioRDFRIyIiIipRTNSIiIgoL95avQQTRo8odhjDChO1IrILqg7VKvWlxu1cFnruzQJuX0rpevsu69q6KlRLRAQA00+ciice/WmxwxhWeNdnkVgH2t7vFWQvqkqZSZlczFbAqoafaT6ltGqRRWI3QarCKo2Rbf7tJCdX8VvAStCCUav8hwDgUSU0B+0RPIr1HqIy+/2ihinRFTbj29dVZK1Bpgqg0q+iplxDT8TE/i4D4Sx3jPo0gZoyFV5NxMuMZItHEYDmYn6IiMg5JmqDzFrF6XvgMyUgZO6EgZKlJrzWY7FCsinJr107LRhNLsthSAAS0JS+SYbdnQCwPpdsK1hSyj4FXSWAkAFETQlPloQq8WFdiRXb7fO+JHoiZp/thw0JRUjoikiKXwDwx+qc2XyaQH2VhqNBE4e7jaR5UAQwOqCiyqskPeZVkbHrgq5YtdeyFQMmIqL+Y6I2SFJXfdKOif0814oQpU/QUtmFZBVhzW1PJHsLo6gJKMIarwgBXbXaQyWuEmX6TAxToieaOSZDAj1RQFes/pqZtmM/rMBKkuyOCeGoia6ImXH/MaXVzUBTrOTSqyko84g++5H9/yN9Ciq9Cg52GegIm6j0KhgTUKGI9OM1SKiqVfzXlMkJbLZ5ISKigWGiNgicJBXJ47NXsj/euZ3PkCERdljF35TWaTxvQuPxXElIMGI6LlYbSThdmY0Q1n6gQKIjZCLksLht1JSoCqjwaUrW05BCCKiQqK3QMNa0+n3mGg8p4VWTVxWZoBERFRYTtRLFA2BmbpI0AK5aLQGARxWu5t9pkmZz2jJJCPvUqfM3rCmAL3bBWK73YP9cVbKvFqaO575JRJl8vOeDYocw7PCuTyIiIsqLSZOnFTuEYYeJGhEREVGJYqJGREREVKKKnqitXLkSkydPhs/nQ2NjI15//fWs4zdt2oTGxkb4fD5MmTIFq1ev7jPm2LFjuP7661FbWwufz4eGhgasX7++UG+BiIiIqCCKmqg9++yzuPHGG7F06VI0Nzdjzpw5+PKXv4yPP/447fg9e/bg4osvxpw5c9Dc3Izvf//7uOGGG/DCCy/Ex4TDYVx44YXYu3cvnn/+ebz//vtYs2YNJkyYMFhvi4iIiCgvinrX50MPPYQFCxZg4cKFAIDly5fjlVdewapVq3D//ff3Gb969WpMmjQJy5cvBwA0NDRgy5YtePDBB/H1r38dALBu3TocOXIEmzdvhq7rAID6+vrBeUMU57ZCPSvaExENfbXVVcUOYdgp2opaOBzG1q1bMW/evKTH582bh82bN6d9zptvvtln/EUXXYQtW7YgEokAAF566SU0NTXh+uuvR01NDWbOnIn77rsPhpG5RkMoFEJ7e3vSV7EN5R6gdtLlJH77fboZ7zadc5v/GSYcz72MFdR1w02PTgG42r5hFrbHKBERkPm4ufonDxY5suGnaInaoUOHYBgGampqkh6vqalBa2tr2ue0tramHR+NRnHo0CEAwIcffojnn38ehmFg/fr1uOOOO/DjH/8Y9957b8ZY7r//flRVVcW/6urqBvjukgkh+nEw7/3/oXLQ7W0yb1Xqtx/LNt76L2C6Ge8yLq9q9dF0wv6YnKzu2fH4VOcNzxXYBY2d1lITGBNQ4decjfeowmpHxtVJIiqgQh83qVfRbyZIPaDkOgWWbnzi46ZpYuzYsXjsscfQ2NiIyy67DEuXLsWqVasybvP2229HW1tb/Gvfvn39fTtZ41YVdwmb6TDhKbbE2MyEPqb2/6euDiYmXPExOcbbLbjcFrsFrLnXVQG/ZrU+ysSjAuUekbMgbWJCaidFntj2s32+HgXwab0FZnPHHWt4rioYFdAwOqDGm5+nUgQwyq+iOqA6agBPRDQQg3HcJEvRrlEbPXo0VFXts3p24MCBPqtmtnHjxqUdr2kaqqurAQC1tbXQdR2q2tujp6GhAa2trQiHw/B4PH226/V64fV6B/qWHBFCQEHuvp+JTLulVAm27rETKiNDBhVvkC76N97WnwQtlSIEfJr12iGjN6FUhdW8PFPD9N7Yev+ISBePIgR8qtVPNJRwpl2NNTZ3vIoG6/NOHe/VFIwtE+gKm2gPmfH4yz0KKrxKzviJiPJlMI+bx7uirah5PB40NjZi48aNSY9v3LgRn//859M+p6mpqc/4DRs24KyzzorfOHDOOefggw8+gGn29vXZtWsXamtr0yZpxWCdChWurrVKXL0plSTNTFhVyj3WSpDcjDdNaX3leTFRVazVL68K+DWBgIMkDUD8lG62eIQQ0BSBgBZbQVMBn+bsM7NX0BQl83ghBMq9KmrKNVR6FYwt01DlU5mkERENU0U99XnzzTfjZz/7GdatW4edO3fipptuwscff4xFixYBsJZWr7rqqvj4RYsW4aOPPsLNN9+MnTt3Yt26dVi7di1uueWW+Jjvfve7OHz4MBYvXoxdu3bh5Zdfxn333Yfrr79+0N9fLsPh2Oo2h3Iz3j4lWgj26UrdRV9PN7HYp1udnuYErBU5p7GoikCFV3XcN5SIiIamopbnuPTSS3H48GHcc889aGlpwcyZM7F+/fp4OY2WlpakmmqTJ0/G+vXrcdNNN2HFihUYP348HnnkkXhpDgCoq6vDhg0bcNNNN+G0007DhAkTsHjxYtx2222D/v6IiIiIBkLIUr5KvUja29tRVVWFtrY2VFZWFux1pHR/Ws/NCk2h2ac+hyolzXVg2WS6ri5fSumzJSJyY7COm8ejot/1SURERETpMVEjIiIiKlFM1IpsqJ/sct0lwOXYQo53oz9XCAz1z5aIiIqvqDcTUKxeFpCzrlp8XEqB32JShICE1dIp1+Vb9vVgdguoQowHep/jdHwu9ny7uTzNroNmvY7IeS2fPb6UPlsiIioNXFErIrsmmojVVEuXPNiPi5TxpcKOJVPXBbs2WLrx6d5Gf8bbF+EnzouV6Dkfn46d8LlJ0uw6aInbT/wMc40vpc+WiIiKjytqJcJeCVKV3hWhpFWlEj6ApyZI9upg4ipXuvG9K0n24/0bn/qc+P9L6Wh8Krs9lLu6acmJWGo8MhaLvTqYbTwREZGNiVoJSU140j1eyhITJEXJnWD2/kw6SkjtMfYKlJvxbpJdt1U4MiWkqbEASErGh8rnSkRExcNErQQN9QO421VAN+PTrpzlMZb+cvNe3YwnIqLjG69Ro4Jwm4gUMnFhUkREREMVEzUiIiKiEsVEjYiIiKhEMVEjIiIiKlFM1IiIiIhKFBM1Koj+tFwiIiKiZEzUKK+sYrEy/v9DkdubRKUcuu+ViIhKGxM1yovERMVuuySRnLgNFYpI3w4rHbtbAkuAEBFRITBRo35LXTkzzeRm6DKlT+ZQSthELFnLln/ZfTqZpBERUaGwMwENiJQy3tszE1MCIt53c+i0ThJCQACQSO796aRlFBERUT4wUaN+y5WgpY4FkhuRDxVCiHiSaX9PREQ0GJioETnEBI2IiAYbr1EjIiIiKlFM1IiIiIhKFBM1IiIiohLFRI2IiIioRDFRIyIiIipRTNSo39zeAzmE6t0SERGVBCZq1G9OqvfHxwKxsSxxQURE5BTrqNGAZKren4gJGhERUf8wUaO8SKzeb/f3FMJuWs4kjYiIqD+YqFFeCSGgMi8jIiLKC16jRkRERFSimKgRERERlSgmakREREQliokaERERUYliokZERERUopioEREREZUoJmpEREREJYqJGhEREVGJYqJGREREVKKYqBERERGVKCZqRERERCWKvT7TkNLqKt7e3l7kSIiIiAZPRUUFhGDD5lLCRC2Njo4OAEBdXV2RIyEiIho8bW1tqKysLHYYlEBIe/mI4kzTxGeffZa3vyza29tRV1eHffv2Hbf/ADgHnAOAcwBwDgDOAVC6c9Df456UEh0dHVyRKwCuqKWhKAomTpyY9+1WVlaW1D/IYuAccA4AzgHAOQA4B8DwmQMhxLB4H6WINxMQERERlSgmakREREQlionaIPB6vVi2bBm8Xm+xQykazgHnAOAcAJwDgHMAcA7IOd5MQERERFSiuKJGREREVKKYqBERERGVKCZqRERERCWKiRoRERFRiWKilicrV67E5MmT4fP50NjYiNdffz3r+E2bNqGxsRE+nw9TpkzB6tWrBynSwnEzBy0tLbj88ssxY8YMKIqCG2+8cfACLSA3c/Diiy/iwgsvxJgxY1BZWYmmpia88sorgxhtYbiZgzfeeAPnnHMOqqur4ff7cdJJJ+Hhhx8exGgLw+3vA9sf/vAHaJqGM844o7ABDgI3c/Daa69BCNHn689//vMgRpx/bveDUCiEpUuXor6+Hl6vF1OnTsW6desGKVoqWZIG7JlnnpG6rss1a9bIHTt2yMWLF8uysjL50UcfpR3/4YcfykAgIBcvXix37Ngh16xZI3Vdl88///wgR54/budgz5498oYbbpA///nP5RlnnCEXL148uAEXgNs5WLx4sXzggQfkO++8I3ft2iVvv/12qeu6fPfddwc58vxxOwfvvvuufOqpp+S2bdvknj175JNPPikDgYB89NFHBzny/HE7B7Zjx47JKVOmyHnz5snTTz99cIItELdz8Oqrr0oA8v3335ctLS3xr2g0OsiR509/9oOvfOUrcvbs2XLjxo1yz5498u2335Z/+MMfBjFqKkVM1PLgc5/7nFy0aFHSYyeddJJcsmRJ2vG33nqrPOmkk5Ieu+666+TZZ59dsBgLze0cJJo7d+6wSNQGMge2k08+Wd599935Dm3Q5GMOvva1r8krrrgi36ENmv7OwaWXXirvuOMOuWzZsiGfqLmdAztRO3r06CBENzjczsFvf/tbWVVVJQ8fPjwY4dEQwlOfAxQOh7F161bMmzcv6fF58+Zh8+bNaZ/z5ptv9hl/0UUXYcuWLYhEIgWLtVD6MwfDTT7mwDRNdHR0YNSoUYUIseDyMQfNzc3YvHkz5s6dW4gQC66/c/D4449j9+7dWLZsWaFDLLiB7AezZs1CbW0tzj//fLz66quFDLOg+jMHL730Es466yz86Ec/woQJEzB9+nTccsst6OnpGYyQqYSxKfsAHTp0CIZhoKamJunxmpoatLa2pn1Oa2tr2vHRaBSHDh1CbW1tweIthP7MwXCTjzn48Y9/jK6uLnzrW98qRIgFN5A5mDhxIg4ePIhoNIq77roLCxcuLGSoBdOfOfjLX/6CJUuW4PXXX4emDf1fyf2Zg9raWjz22GNobGxEKBTCk08+ifPPPx+vvfYavvjFLw5G2HnVnzn48MMP8cYbb8Dn8+GXv/wlDh06hH/8x3/EkSNHeJ3acW7o/1YoEUKIpO+llH0eyzU+3eNDids5GI76OwdPP/007rrrLvzqV7/C2LFjCxXeoOjPHLz++uvo7OzEW2+9hSVLlmDatGn4+7//+0KGWVBO58AwDFx++eW4++67MX369MEKb1C42Q9mzJiBGTNmxL9vamrCvn378OCDDw7JRM3mZg5M04QQAv/5n/+JqqoqAMBDDz2Eb3zjG1ixYgX8fn/B46XSxERtgEaPHg1VVfv8lXTgwIE+f03Zxo0bl3a8pmmorq4uWKyF0p85GG4GMgfPPvssFixYgP/6r//CBRdcUMgwC2ogczB58mQAwKmnnor9+/fjrrvuGpKJmts56OjowJYtW9Dc3Izvfe97AKwDtpQSmqZhw4YNOO+88wYl9nzJ1++Ds88+G//xH/+R7/AGRX/moLa2FhMmTIgnaQDQ0NAAKSU++eQTnHjiiQWNmUoXr1EbII/Hg8bGRmzcuDHp8Y0bN+Lzn/982uc0NTX1Gb9hwwacddZZ0HW9YLEWSn/mYLjp7xw8/fTTuOaaa/DUU0/hkksuKXSYBZWv/UBKiVAolO/wBoXbOaisrMSf/vQnvPfee/GvRYsWYcaMGXjvvfcwe/bswQo9b/K1HzQ3Nw+5y0Bs/ZmDc845B5999hk6Ozvjj+3atQuKomDixIkFjZdKXJFuYhhW7Nuw165dK3fs2CFvvPFGWVZWJvfu3SullHLJkiXyyiuvjI+3y3PcdNNNcseOHXLt2rXDpjyH0zmQUsrm5mbZ3NwsGxsb5eWXXy6bm5vl9u3bixF+Xridg6eeekpqmiZXrFiRVJLg2LFjxXoLA+Z2Dn7605/Kl156Se7atUvu2rVLrlu3TlZWVsqlS5cW6y0MWH/+LSQaDnd9up2Dhx9+WP7yl7+Uu3btktu2bZNLliyRAOQLL7xQrLcwYG7noKOjQ06cOFF+4xvfkNu3b5ebNm2SJ554oly4cGGx3gKVCCZqebJixQpZX18vPR6PPPPMM+WmTZviP7v66qvl3Llzk8a/9tprctasWdLj8cgTTjhBrlq1apAjzj+3cwCgz1d9ff3gBp1nbuZg7ty5aefg6quvHvzA88jNHDzyyCPylFNOkYFAQFZWVspZs2bJlStXSsMwihB5/rj9t5BoOCRqUrqbgwceeEBOnTpV+nw+OXLkSPmFL3xBvvzyy0WIOr/c7gc7d+6UF1xwgfT7/XLixIny5ptvlt3d3YMcNZUaIWXsKnYiIiIiKim8Ro2IiIioRDFRIyIiIipRTNSIiIiIShQTNSIiIqISxUSNiIiIqEQxUSMiIiIqUUzUiIiIiEoUEzUiIiKiEsVEjYjy4q677sIZZ5wR//6aa67BV7/61UGPY+/evRBC4L333hv01yYiyjcmakTD2DXXXAMhBIQQ0HUdU6ZMwS233IKurq6Cv/ZPfvITPPHEE47GMrkiIkpPK3YARFRYf/3Xf43HH38ckUgEr7/+OhYuXIiuri6sWrWqz9hIJAJd1/PyulVVVXnZDhHR8YwrakTDnNfrxbhx41BXV4fLL78c3/72t/Hf//3fAHpPV65btw5TpkyB1+uFlBJtbW34h3/4B4wdOxaVlZU477zz8Mc//jFpu//6r/+KmpoaVFRUYMGCBQgGg0k/Tz31aZomHnjgAUybNg1erxeTJk3CvffeCwCYPHkyAGDWrFkQQuDcc8+NP+/xxx9HQ0MDfD4fTjrpJKxcuTLpdd555x3MmjULPp8PZ511Fpqbm3POyQknnIB/+Zd/wVVXXYXy8nLU19fjV7/6FQ4ePIj58+ejvLwcp556KrZs2RJ/TuqpXQBYvnw5TjjhhJyvR0TUX0zUiI4zfr8fkUgk/v0HH3yA5557Di+88EL81OMll1yC1tZWrF+/Hlu3bsWZZ56J888/H0eOHAEAPPfcc1i2bBnuvfdebNmyBbW1tX0SqFS33347HnjgAdx5553YsWMHnnrqKdTU1ACwki0A+N///V+0tLTgxRdfBACsWbMGS5cuxb333oudO3fivvvuw5133omf//znAICuri78zd/8DWbMmIGtW7firrvuwi233OJoHh5++GGcc845aG5uxiWXXIIrr7wSV111Fa644gq8++67mDZtGq666ipIKZ1PLhFRvkkiGrauvvpqOX/+/Pj3b7/9tqyurpbf+ta3pJRSLlu2TOq6Lg8cOBAf87vf/U5WVlbKYDCYtK2pU6fKRx99VEopZVNTk1y0aFHSz2fPni1PP/30tK/d3t4uvV6vXLNmTdo49+zZIwHI5ubmpMfr6urkU089lfTYD3/4Q9nU1CSllPLRRx+Vo0aNkl1dXfGfr1q1Ku22EtXX18srrrgi/n1LS4sEIO+88874Y2+++aYEIFtaWqSU1lwlvj8ppXz44YdlfX19xtchIhooXqNGNMz95je/QXl5OaLRKCKRCObPn49///d/j/+8vr4eY8aMiX+/detWdHZ2orq6Omk7PT092L17NwBg586dWLRoUdLPm5qa8Oqrr6aNYefOnQiFQjj//PMdx33w4EHs27cPCxYswLXXXht/PBqNxq9/27lzJ04//XQEAoGkOJw47bTT4v9vr+ydeuqpfR47cOAAxo0b5zhuIqJ8YqJGNMx96UtfwqpVq6DrOsaPH9/nZoGysrKk703TRG1tLV577bU+2xoxYkS/YvD7/a6fY5omAOv05+zZs5N+pqoqAAzotGTiPAghMj5mx6EoSp/XSzyFTERUCEzUiIa5srIyTJs2zfH4M888E62trdA0LeOF8g0NDXjrrbdw1VVXxR976623Mm7zxBNPhN/vx+9+9zssXLiwz889Hg8AwDCM+GM1NTWYMGECPvzwQ3z7299Ou92TTz4ZTz75JHp6euLJYLY4BmLMmDFobW2FlDKexLGcCBEVGm8mIKIkF1xwAZqamvDVr34Vr7zyCvbu3YvNmzfjjjvuiN8FuXjxYqxbtw7r1q3Drl27sGzZMmzfvj3jNn0+H2677Tbceuut+MUvfoHdu3fjrbfewtq1awEAY8eOhd/vx//8z/9g//79aGtrA2DdaXn//ffjJz/5CXbt2oU//elPePzxx/HQQw8BAC6//HIoioIFCxZgx44dWL9+PR588MGCzMu5556LgwcP4kc/+hF2796NFStW4Le//W1BXouIyMZEjYiSCCGwfv16fPGLX8R3vvMdTJ8+HZdddhn27t0bv27r0ksvxQ9+8APcdtttaGxsxEcffYTvfve7Wbd755134p//+Z/xgx/8AA0NDbj00ktx4MABAICmaXjkkUfw6KOPYvz48Zg/fz4AYOHChfjZz36GJ554Aqeeeirmzp2LJ554Il7Oo7y8HL/+9a+xY8cOzJo1C0uXLsUDDzxQkHlpaGjAypUrsWLFCpx++ul45513HN9hSkTUX0IO5CIPIiIiIioYrqgRERERlSgmakREREQliokaERERUYliokZERERUopioEREREZUoJmpEREREJYqJGhEREVGJYqJGREREVKKYqBERERGVKCZqRERERCWKiRoRERFRifr/mFlPF8wE114AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -446,21 +540,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3. Compute mu, aleatoric, and epistemic quantities using the evidential framework developed by Amini et al. " + "### 3. Compute mu, aleatoric, and epistemic quantities using the evidential model" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ - "from evml.keras.models import EvidentialRegressorDNN" + "from evml.keras.model_refactor import EvidentialRegressorDNN\n", + "\n", + "#from evml.keras.models import EvidentialRegressorDNN" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -469,7 +565,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -482,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -492,34 +588,42 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "Model: \"model_2\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 295) 1475 \n", + " \n", + " dropout_h_00 (Dropout) (None, 295) 0 \n", + " \n", + " DenseNormalGamma (DenseNorm (None, 4) 1188 \n", + " alGamma) \n", + " \n", + "=================================================================\n", + "Total params: 2,663\n", + "Trainable params: 2,659\n", + "Non-trainable params: 4\n", + "_________________________________________________________________\n", "Epoch 1/5\n", - "12/12 [==============================] - 1s 24ms/step - loss: 11.9275 - mae: 0.1590 - val_loss: 7.3474 - val_mae: 0.1064 - lr: 0.0056\n", + "12/12 [==============================] - 2s 39ms/step - loss: 11.1444 - mae: 0.5552 - val_loss: 4.6190 - val_mae: 0.4523 - lr: 0.0056\n", "Epoch 2/5\n", - "12/12 [==============================] - 0s 11ms/step - loss: 4.8279 - mae: 0.0646 - val_loss: 3.2015 - val_mae: 0.0380 - lr: 0.0056\n", + "12/12 [==============================] - 0s 27ms/step - loss: 3.9801 - mae: 0.4527 - val_loss: 2.8696 - val_mae: 0.4345 - lr: 0.0056\n", "Epoch 3/5\n", - "12/12 [==============================] - 0s 11ms/step - loss: 2.6481 - mae: 0.0286 - val_loss: 2.4255 - val_mae: 0.0270 - lr: 0.0056\n", + "12/12 [==============================] - 0s 28ms/step - loss: 2.4396 - mae: 0.4464 - val_loss: 2.5025 - val_mae: 0.4439 - lr: 0.0056\n", "Epoch 4/5\n", - "12/12 [==============================] - 0s 10ms/step - loss: 2.3017 - mae: 0.0247 - val_loss: 2.6271 - val_mae: 0.0309 - lr: 0.0056\n", + "12/12 [==============================] - 0s 26ms/step - loss: 2.2616 - mae: 0.4534 - val_loss: 2.0915 - val_mae: 0.4452 - lr: 0.0056\n", "Epoch 5/5\n", - "12/12 [==============================] - 0s 11ms/step - loss: 2.3350 - mae: 0.0265 - val_loss: 1.9813 - val_mae: 0.0237 - lr: 0.0056\n" + "12/12 [==============================] - 0s 28ms/step - loss: 2.0359 - mae: 0.4519 - val_loss: 2.0502 - val_mae: 0.4507 - lr: 5.6263e-04\n" ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -533,32 +637,32 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2/2 [==============================] - 0s 2ms/step\n" + "2/2 [==============================] - 0s 4ms/step\n" ] } ], "source": [ - "result = ev_model.predict(x_test, scaler=y_scaler)\n", + "result = ev_model.predict_uncertainty(x_test, scaler=y_scaler)\n", "mu, aleatoric, epistemic = result" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.03236658878612571 0.0617233577951793 0.09025916692001004\n" + "0.03140350852552427 0.06207638845240013 0.08560160808574203\n" ] } ], @@ -569,7 +673,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +682,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -591,7 +695,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFUCAYAAADrrX8/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2/UlEQVR4nO3deVxU9f4/8NcZlgFlSVQ2F9Q0d43UEnPJcMPy5uN6tfyaglrfq7lkZC7d7jUrQx8PKy3LrqTwNde8SGmWV1PA3DIUzNxywUTCn5gLggoC798fymGGGZDlDJxxXs/HY3Tmcz7ncz6fMxxenJmzKCIiICIiIl0y1HYHiIiIqGwMaiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIdURQFX3/9da23UZPOnTsHRVGQmpqqy/aIahuDmsiGIiIioCiKxeP06dNW62dmZiIsLKxCbb/99tt49NFHq9XGg6hJkybIzMxEhw4dAACJiYlQFAXXrl2r3Y4RVZFzbXeA6EE3aNAgxMTEmJU1bNjQ7HV+fj5cXV3h7+9f7eVp0YY9c3Jycvh1QA8W7lET2ZjRaIS/v7/ZIzQ0FJMnT0ZkZCQaNGiA/v37A7D82PrChQt44YUX4OPjg7p166Jr16746aefEBsbi7lz5+Lw4cPqXnpsbKzVNo4cOYKnn34a7u7uqF+/Pv73f/8XOTk56vSIiAgMHToUCxcuREBAAOrXr49Jkybhzp079x3b7Nmz0b17d4vyTp06Yc6cOerrmJgYtG3bFm5ubmjTpg0+++yzcttNSkrC448/DqPRiICAAMyaNQsFBQXq9KKiIixYsAAtW7aE0WhE06ZNMW/ePADmH32fO3cOffv2BQDUq1cPiqIgIiICK1euRP369ZGXl2e23GHDhmHMmDH3HTdRjRIispnw8HB57rnnLMr79OkjHh4e8sYbb8iJEyfk+PHjIiICQOLj40VE5MaNG9KiRQvp1auX/Pjjj3Lq1ClZv3697N27V27evCmvv/66tG/fXjIzMyUzM1Nu3rxp0UZubq4EBgbKX//6Vzly5Ijs2LFDmjdvLuHh4WZ99PLykgkTJsjx48dl8+bNUqdOHVm2bNl9x3fkyBEBIKdPn1bLfv31VwEgJ0+eFBGRZcuWSUBAgMTFxcnZs2clLi5OfHx8JDY2VkRE0tLSBICkpKSIiMiFCxekTp068sorr8jx48clPj5eGjRoIHPmzFGXMWPGDKlXr57ExsbK6dOn5ccff5To6GiL9goKCiQuLk7tT2Zmply7dk1u3rwp3t7e8tVXX6ltZmVliaurq+zcufO+4yaqSQ4d1ElJSfLss89KQECA2S+3B2V5VPvCw8PFyclJ6tatqz7+9re/SZ8+feTRRx+1qG/6c/Hvf/9bPD095c8//7Ta9pw5c6Rz587ltrFs2TKpV6+e5OTkqNO3bNkiBoNBLl68qPYxKChICgoK1DrDhw+X559/vkJj7NSpk7zzzjvq69mzZ0u3bt3U102aNJE1a9aYzfPuu+9KSEiIiFgG9ZtvvimtW7eWoqIitf6nn34qHh4eUlhYKNnZ2WI0GtVgLq10ewkJCQJArl69alZv4sSJEhYWpr5etGiRtGjRwmy5RHrg0B995+bmonPnzliyZMkDuTzSh759+yI1NVV9fPzxxwCArl27ljtfamoqgoOD4ePjU+VlHz9+HJ07d0bdunXVsieffBJFRUU4efKkWta+fXs4OTmprwMCAnDp0qUKLWPUqFFYvXo1AEBEsHbtWowaNQoAkJWVhfT0dIwfPx4eHh7q47333sOZM2fK7HNISAgURTHrc05ODi5cuIDjx48jLy8PoaGhFV8RVrz88svYtm0bMjIyANz9eL744D8iPXHog8nCwsLKPTo2Pz8fb731FlavXo1r166hQ4cOWLBgAZ566imbLI8eTHXr1kXLli2tlpfH3d292ssWkTKDx7TcxcXFYlpRUVGFlvE///M/mDVrFg4dOoRbt24hPT0dL7zwAgCobURHR+OJJ54wm8/0D4P79VlE1H5psV4AIDg4GJ07d8bKlSsxcOBAHDlyBJs3b9akbSItOfQe9f2MHTsWe/bswbp16/DLL79g+PDhGDRoEE6dOlXbXSMH0KlTJ6SmpuLKlStWp7u6uqKwsLDcNtq1a4fU1FTk5uaqZXv27IHBYMAjjzyiST8bN26M3r17Y/Xq1Vi9ejX69esHPz8/AICfnx8aNWqEs2fPomXLlmaP5s2bl9nnvXv3quEMAHv37oWnpycaNWqEVq1awd3dHTt27KhQ/1xdXQHA6rp66aWXEBMTgxUrVqBfv35o0qRJZYdPZHMM6jKcOXMGa9euxYYNG9CrVy88/PDDmD59Onr27Glxqg2RLYwcORL+/v4YOnQo9uzZg7NnzyIuLg779u0DADRr1gxpaWlITU3F5cuXLY5gBu5+LO3m5obw8HD8+uuvSEhIwJQpUzB69Gg1TLUwatQorFu3Dhs2bMCLL75oNu3tt99GVFQUFi9ejN9++w1HjhxBTEwMPvzwQ6ttvfLKK0hPT8eUKVNw4sQJfPPNN5gzZw4iIyNhMBjg5uaGmTNnYsaMGVi5ciXOnDmD/fv3Y/ny5VbbCwoKgqIo+Pbbb5GVlWV2xPuoUaOQkZGB6OhojBs3TrP1QaQlBnUZDh06BBHBI488YvbdWlJSkvrdWvFpIOU9Jk+eXMsjIXvl6uqKbdu2wdfXF4MHD0bHjh0xf/589SPjYcOGYdCgQejbty8aNmyItWvXWrRRp04d/Pe//8WVK1fQrVs3/O1vf0NoaKjmx0kMHz4cf/75J27evImhQ4eaTXvppZfwxRdfIDY2Fh07dkSfPn0QGxtb5h51o0aN8N133+HAgQPo3LkzJkyYgPHjx+Ott95S6/zzn//E66+/jn/9619o27Ytnn/++TK/U2/UqBHmzp2LWbNmwc/Pz2yb9PLywrBhw+Dh4WHRbyK9UMT08yUHpigK4uPj1Y11/fr1GDVqFI4ePWrxXZqHhwf8/f1x586dMg+IKVavXj2rey6ll0dEtaN///5o27atepAfkd449MFk5QkODkZhYSEuXbqEXr16Wa3j4uKCNm3a1HDPiEgLV65cwbZt27Bz506eiUG65tBBnZOTY3bN5eLv+3x8fPDII49g1KhRGDNmDD744AMEBwfj8uXL2LlzJzp27IjBgwdrurymTZtqMiYiLf3444/lnqlg+n2vvXnsscdw9epVLFiwAK1bt67t7hCVyaE/+k5MTFQvL2gqPDwcsbGxuHPnDt577z2sXLkSGRkZqF+/PkJCQjB37lx07NhR8+UR6c2tW7fU84ytsXbaGRFpy6GDmoiISO941DcREZGOMaiJiIh0zOEOJisqKsIff/wBT09PXtOXiIhqhYjgxo0bCAwMhMFQ/j6zwwX1H3/8wcsEEhGRLqSnp6Nx48bl1nG4oPb09Lz3zACAe9RERA8a37rdNG/zxB/aXmI2O/sWmjV51SSTyuZwQV3ycbcCBjUR0YPHoGgfbV5edTRvE0CFvoLlwWREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjHHO6CJ0REpB9e7q01b3NtR1/N24xus0vT9m4V5le4LveoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxXJiMiogoxuvhp3uZbAX00bzPpD+33QeeeX6ZpeyJS4brcoyYiItIxBjUREZGOMaiJiIh0jEFNRESkYwxqIiIiHWNQExER6RiDmoiISMcY1ERERDrGoCYiItIxXpmMiOgBZDC4ad7mX+sO07zNE9maN4mvcrZq3qZIkdYtVrgm96iJiIh0jEFNRESkYwxqIiIiHWNQExER6VitBnVUVBS6desGT09P+Pr6YujQoTh58mS58yQmJkJRFIvHiRMnaqjXRERENadWgzopKQmTJk3C/v37sX37dhQUFGDAgAHIzc2977wnT55EZmam+mjVqlUN9JiIiKhm1erpWVu3mh9CHxMTA19fXxw8eBC9e/cud15fX1889NBDNuwdERFR7dPVd9TXr18HAPj4+Ny3bnBwMAICAhAaGoqEhIQy6+Xl5SE7O9vsQUREZC90E9QigsjISPTs2RMdOnQos15AQACWLVuGuLg4bNy4Ea1bt0ZoaCh27dpltX5UVBS8vb3VR5MmTWw1BCIiIs0pIlLxy6PY0KRJk7Blyxbs3r0bjRs3rtS8Q4YMgaIo2LRpk8W0vLw85OXlqa+zs7PvhbUTAKWavSYi0idbXJnsea9xmrfpboMvYG1xZbKc22c1blEAFOL69evw8vIqt6YuLiE6ZcoUbNq0Cbt27ap0SANA9+7dsWrVKqvTjEYjjEZjdbtIRGQzig12GkKML2je5pm8G5q3eaXgiuZtah+qtatWg1pEMGXKFMTHxyMxMRHNmzevUjspKSkICAjQuHdERES1r1aDetKkSVizZg2++eYbeHp64uLFiwAAb29vuLu7AwBmz56NjIwMrFy5EgCwaNEiNGvWDO3bt0d+fj5WrVqFuLg4xMXF1do4iIiIbKVWg3rp0qUAgKeeesqsPCYmBhEREQCAzMxMnD9/Xp2Wn5+P6dOnIyMjA+7u7mjfvj22bNmCwYMH11S3iYiIaoxuDiarKdnZ2fD29gYPJiMivbDFd9Q93MM1b/MOCjVv84qT9t9Rn87Zonmb2qv4wWS6OT2LiIiILDGoiYiIdIxBTUREpGMMaiIiIh1jUBMREemYLq5MRkRkL2xxhHZP9wjN27xsuKZ5m4Iizdu0jyO0axf3qImIiHSMQU1ERKRjDGoiIiIdY1ATERHpGIOaiIhIxxjUREREOsagJiIi0jEGNRERkY4xqImIiHSMVyYjIqqEdnX/qnmbx5GieZtGxVPzNv/I2a15m3R/3KMmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjvESokT0QGvq0VfT9rLkvKbtAUChFGje5v+7fVjzNgWieZt0f9yjJiIi0jEGNRERkY5VOqinTp2Kjz/+2KJ8yZIlmDZtmhZ9IiIionsqHdRxcXF48sknLcp79OiB//znP5p0ioiIiO6qdFD/+eef8Pb2tij38vLC5cuXNekUERER3VXpoG7ZsiW2bt1qUf7999+jRYsWmnSKiIiI7qr06VmRkZGYPHkysrKy8PTTTwMAduzYgQ8++ACLFi3Sun9EREQOrdJBPW7cOOTl5WHevHl49913AQDNmjXD0qVLMWbMGM07SERE5MgUEanyGexZWVlwd3eHh4eHln2yqezs7HvfsTsBUGq7O0RkY1pf8OS25GjaHgDckVuat3kjT/sLsxQUZmvepuMSAIW4fv06vLy8yq1ZrSuTNWzYsDqzExGZ8ffornmb2YUXNW0v984lTdsDgKKiPM3bLCzS/g8Kqh0VCurHHnsMO3bsQL169RAcHAxFKXtP9NChQ5p1joiIyNFVKKife+45GI1GAMDQoUNt2R8iIiIyUanvqAsLC7F792506tQJ9erVs2W/bIbfURPply0++r5deF3T9vjRN2mj4t9RV+o8aicnJwwcOBDXrl2rRueIiIiooip9wZOOHTvi7NmztugLERERlVLpoJ43bx6mT5+Ob7/9FpmZmcjOzjZ7EBERkXYqfR61wVCS7aZHf4sIFEVBYWGhdr2zAX5HTaRf/I5aO/yOWu9seB51QkJCVXtlISoqChs3bsSJEyfg7u6OHj16YMGCBWjdunW58yUlJSEyMhJHjx5FYGAgZsyYgQkTJmjWLyIiIr2odFD36dNHs4UnJSVh0qRJ6NatGwoKCvCPf/wDAwYMwLFjx1C3bl2r86SlpWHw4MF4+eWXsWrVKuzZswevvPIKGjZsiGHDhmnWNyIiIj2o0iVEr127huXLl+P48eNQFAXt2rXDuHHjrN7+sjKysrLg6+uLpKQk9O7d22qdmTNnYtOmTTh+/LhaNmHCBBw+fBj79u277zL40TeRNh5yb6t5m/lFuZq3eadQ2zZFtP96r6DwmuZtkt7Z6PQsAEhOTsbDDz+Mjz76CFeuXMHly5fx4Ycf4uGHH672VcmuX7/7XZKPj0+Zdfbt24cBAwaYlQ0cOBDJycm4c+dOtZZPRESkN5X+6Pu1117DX/7yF0RHR8PZ+e7sBQUFeOmllzBt2jTs2rWrSh0REURGRqJnz57o0KFDmfUuXrwIPz8/szI/Pz8UFBTg8uXLCAgIMJuWl5eHvLySAzV4ZDoREdmTKu1Rz5w5Uw1pAHB2dsaMGTOQnJxc5Y5MnjwZv/zyC9auXXvfuqWvNV786b21a5BHRUXB29tbfTRp0qTKfSQiIqpplQ5qLy8vnD9vefu09PR0eHp6VqkTU6ZMwaZNm5CQkIDGjRuXW9ff3x8XL5rfDefSpUtwdnZG/fr1LerPnj0b169fVx/p6elV6iMREVFtqPRH388//zzGjx+PhQsXokePHlAUBbt378Ybb7yBkSNHVqotEcGUKVMQHx+PxMRENG/e/L7zhISEYPPmzWZl27ZtQ9euXeHi4mJR32g0qjcUISIisjeVDuqFCxdCURSMGTMGBQUFAAAXFxdMnDgR8+fPr1RbkyZNwpo1a/DNN9/A09NT3VP29vaGu7s7gLt7xBkZGVi5ciWAu0d4L1myBJGRkXj55Zexb98+LF++vEIfmRMREdmbKp2eBQA3b97EmTNnICJo2bIl6tSpU/mFl3Ff65iYGERERAAAIiIicO7cOSQmJqrTk5KS8Nprr6kXPJk5c2aFL3jC07OItMHTs7TD07McUcVPz6p0UI8bNw6LFy+2+D46NzcXU6ZMwYoVKyrd3ZrEoCbSBoNaOwxqR2TDoHZyckJmZiZ8fX3Nyi9fvgx/f3/143C9YlATaYNBrR0GtSOywbW+s7OzISIQEdy4cQNubm7qtMLCQnz33XcW4U1ERETVU+Ggfuihh6AoChRFwSOPPGIxXVEUzJ07V9POEZE2fOp00rzNm3eyNG8zv/Cq5m0qlT9mtly8KxXVtAr/BCckJEBE8PTTTyMuLs7sMp+urq4ICgpCYGCgTTpJRETkqCoc1MV3zUpLS0OTJk3M7ktNREREtlHpz4SCgoIA3D096/z588jPzzeb3qmT9h+xEREROapKB3VWVhbGjh2L77//3ur0wkLtj4gkIiJyVJX+/HratGm4evUq9u/fD3d3d2zduhX/93//h1atWmHTpk226CMREZHDqvQe9c6dO/HNN9+gW7duMBgMCAoKQv/+/eHl5YWoqCg888wztugnERGRQ6r0HnVubq56vrSPjw+ysu6eotGxY0ccOnRI294RERE5uEoHdevWrXHy5EkAwKOPPop///vfyMjIwOeff46AgADNO0hEROTIKv3R97Rp05CZmQkAmDNnDgYOHIjVq1fD1dUVsbGxWvePiIjIoVX57lnFbt68iRMnTqBp06Zo0KCBVv2yGV7rm/SujrGp5m3a4vrUt+/8P83bVCr/Id99FUn+/SsR1biKX+u7yltFfn4+Tp48CVdXVzz22GN2EdJERET2ptJBffPmTYwfPx516tRB+/btcf78eQDA1KlTMX/+fM07SERE5MgqHdSzZ8/G4cOHkZiYaHYHrX79+mH9+vWado6IiMjRVfpgsq+//hrr169H9+7doSgl3/G2a9cOZ86c0bRzREREjq7Se9RZWVlW7zudm5trFtxERERUfZUO6m7dumHLli3q6+Jwjo6ORkhIiHY9IyIiosp/9B0VFYVBgwbh2LFjKCgowOLFi3H06FHs27cPSUlJtugjERGRw6r0HnWPHj2wZ88e3Lx5Ew8//DC2bdsGPz8/7Nu3D126dLFFH4mIiBxWtS94Ym94wRPSO17wRFu84AnpU8UveFKhj76zs7MrvOj7LZDoQeLu2kjzNu8U5mreZkHhVc3bVCr/zdl9MVSJLFVoS3vooYfue0S3iEBRFBQWav+XOxERkaOqUFAnJCRUqLGUlJRqdYaIiIjMVfs76uvXr2P16tX44osvcPjwYd3vUfM7atKSLT76Lii6rX2b/OibSGdq4KYcO3fuxIsvvoiAgAB88sknGDx4MJKTk6vaHBEREVlRqT+JL1y4gNjYWKxYsQK5ubkYMWIE7ty5g7i4OLRr185WfSQiInJYFd6jHjx4MNq1a4djx47hk08+wR9//IFPPvnEln0jIiJyeBXeo962bRumTp2KiRMnolWrVrbsExEREd1T4T3qH3/8ETdu3EDXrl3xxBNPYMmSJcjKyrJl34iIiBxehYM6JCQE0dHRyMzMxN///nesW7cOjRo1QlFREbZv344bN27Ysp9EREQOqVqnZ508eRLLly/Hl19+iWvXrqF///7YtGmTlv3THE/PIi3x9Cxt8fQschwVPz1Lk2t9FxYWYvPmzVixYgWDmjSh2OC9cXFuoHmbhUW3NG+zqEj7S4jagsChbhNApLEaDmp7wqC2Dwxq/WNQE1VHDVzwhIiIiGyPQU1ERKRjDGoiIiIdY1ATERHpGIOaiIhIxxjUREREOsagJiIi0jEGNRERkY5pfw1AIg24uvhq3uadQu2vRy82uOCJLfDiJET2q1b3qHft2oUhQ4YgMDAQiqLg66+/Lrd+YmIiFEWxeJw4caJmOkxERFTDanWPOjc3F507d8bYsWMxbNiwCs938uRJs0uuNWzY0BbdIyIiqnW1GtRhYWEICwur9Hy+vr546KGHtO8QERGRztjlwWTBwcEICAhAaGgoEhISars7RERENmNXB5MFBARg2bJl6NKlC/Ly8vDll18iNDQUiYmJ6N27t9V58vLykJeXp77Ozs6uqe4SERFVm10FdevWrdG6dWv1dUhICNLT07Fw4cIygzoqKgpz586tqS4SERFpyi4/+jbVvXt3nDp1qszps2fPxvXr19VHenp6DfaOiIioeuxqj9qalJQUBAQElDndaDTCaDTWYI+IiIi0U6tBnZOTg9OnT6uv09LSkJqaCh8fHzRt2hSzZ89GRkYGVq5cCQBYtGgRmjVrhvbt2yM/Px+rVq1CXFwc4uLiamsIRERENlWrQZ2cnIy+ffuqryMjIwEA4eHhiI2NRWZmJs6fP69Oz8/Px/Tp05GRkQF3d3e0b98eW7ZsweDBg2u871TC1Vn789htcRWxoqKbmrdJRGRriog41LUFs7Oz4e3tDcAJgFLb3Xkg2CKoC4pyNW+TQU1E+iEACnH9+nWzC3hZY/cHkxERET3IGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjH7P6mHFQ5BkMdzdu0xVXEpOiW5m0SEdkj7lETERHpGIOaiIhIxxjUREREOsagJiIi0jEGNRERkY4xqImIiHSMQU1ERKRjDGoiIiIdY1ATERHpGK9MphEFiuZtujg30LzNO4VXNW9TpEDzNomI6C7uURMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYr0ymEVcXX83bzC/4U/M2eRUxIiL7wj1qIiIiHWNQExER6RiDmoiISMcY1ERERDrGoCYiItIxBjUREZGOMaiJiIh0jEFNRESkYwxqIiIiHWNQExER6ZjDXkLU6OwPRdHu75S8Oxc1a6uYQDRvk4iI7Av3qImIiHSMQU1ERKRjDGoiIiIdY1ATERHpWK0G9a5duzBkyBAEBgZCURR8/fXX950nKSkJXbp0gZubG1q0aIHPP//c9h0lIiKqJbUa1Lm5uejcuTOWLFlSofppaWkYPHgwevXqhZSUFLz55puYOnUq4uLibNxTIiKi2lGrp2eFhYUhLCyswvU///xzNG3aFIsWLQIAtG3bFsnJyVi4cCGGDRtmo14SERHVHrv6jnrfvn0YMGCAWdnAgQORnJyMO3fuWJ0nLy8P2dnZZg8iIiJ7YVcXPLl48SL8/PzMyvz8/FBQUIDLly8jICDAYp6oqCjMnTvXolykSNO+2ebiJLzgCRHRg+nu73eR+/+et6ugBgBFUcxeFw+ydHmx2bNnIzIyUn2dkZGBdu3aIb8w03adJCIiqoAbN27A29u73Dp2FdT+/v64eNH8Up2XLl2Cs7Mz6tevb3Ueo9EIo9Govvbw8EB6ejo8PT1x48YNNGnSBOnp6fDy8rJp32tDdnY2x2fHOD779SCPDeD4tCAiuHHjBgIDA+9b166COiQkBJs3bzYr27ZtG7p27QoXF5cKtWEwGNC4cWMAJXvhXl5eD+QPWzGOz75xfPbrQR4bwPFV1/32pIvV6sFkOTk5SE1NRWpqKoC7p1+lpqbi/PnzAO5+bD1mzBi1/oQJE/D7778jMjISx48fx4oVK7B8+XJMnz69NrpPRERkc7W6R52cnIy+ffuqr4u/Sw4PD0dsbCwyMzPV0AaA5s2b47vvvsNrr72GTz/9FIGBgfj44495ahYRET2wajWon3rqqXKPeIuNjbUo69OnDw4dOqTJ8o1GI+bMmWP2HfaDhOOzbxyf/XqQxwZwfDVNkYocG05ERES1wq4ueEJERORoGNREREQ6xqAmIiLSMQY1ERGRjj0wQV3Ze1snJiZCURSLx4kTJ8zqxcXFoV27djAajWjXrh3i4+NtOIqyVXZ8ERERVsfXvn17tU5sbKzVOrdv37bxaMxFRUWhW7du8PT0hK+vL4YOHYqTJ0/ed76K3JtcD+9fVca3ceNG9O/fHw0bNoSXlxdCQkLw3//+16yOPb9/9rT9VWV89rT9LV26FJ06dVIv7hESEoLvv/++3HnsZdsDKj8+PW57D0xQV/be1sVOnjyJzMxM9dGqVSt12r59+/D8889j9OjROHz4MEaPHo0RI0bgp59+0rr791XZ8S1evNhsXOnp6fDx8cHw4cPN6nl5eZnVy8zMhJubmy2GUKakpCRMmjQJ+/fvx/bt21FQUIABAwYgNze3zHkqcm9yvbx/VRnfrl270L9/f3z33Xc4ePAg+vbtiyFDhiAlJcWsnr2+f8XsYfuryvjsaftr3Lgx5s+fj+TkZCQnJ+Ppp5/Gc889h6NHj1qtb0/bHlD58ely25MHEACJj48vt05CQoIAkKtXr5ZZZ8SIETJo0CCzsoEDB8oLL7ygQS+rriLjKy0+Pl4URZFz586pZTExMeLt7a1t5zRw6dIlASBJSUll1pkxY4a0adPGrOzvf/+7dO/eXX2t1/evIuOzpl27djJ37lz1tT2/f/a8/VXl/bOn7U9EpF69evLFF19YnWbP216x8sZnTW1vew/MHnVVBQcHIyAgAKGhoUhISDCbVtb9r/fu3VuTXdTE8uXL0a9fPwQFBZmV5+TkICgoCI0bN8azzz5r8Vdjbbh+/ToAwMfHp8w6Fbk3uV7fv4qMr7SioiLcuHHDYh57ff+K2eP2V5X3z162v8LCQqxbtw65ubkICQmxWseet72KjK80PWx7DhvUAQEBWLZsGeLi4rBx40a0bt0aoaGh2LVrl1qnrPtfl76Dl95lZmbi+++/x0svvWRW3qZNG8TGxmLTpk1Yu3Yt3Nzc8OSTT+LUqVO11NO7d5SJjIxEz5490aFDhzLr3e/e5OXVqc33r6LjK+2DDz5Abm4uRowYoZbZ8/tnr9tfVd4/e9j+jhw5Ag8PDxiNRkyYMAHx8fFo166d1br2uO1VZnyl6WLbq7F99xqEKnw0LCLy7LPPypAhQ9TXLi4usmbNGrM6q1atEqPRWN0uVktlx/f+++9L/fr1JS8vr9x6hYWF0rlzZ5kyZUo1e1h1r7zyigQFBUl6enq59Vq1aiXvv/++Wdnu3bsFgGRmZoqIPt+/io7P1Jo1a6ROnTqyffv2cuvZ0/tnjT1sf1UZnz1sf3l5eXLq1Cn5+eefZdasWdKgQQM5evSo1br2uO1VZnym9LLtOewetTXdu3c3+4uorPtfl/5LUc9EBCtWrMDo0aPh6upabl2DwYBu3brV2h7ZlClTsGnTJiQkJKi3Ii1LRe5Nrrf3rzLjK7Z+/XqMHz8eX331Ffr161duXXt6/6zR+/ZXlfHZy/bn6uqKli1bomvXroiKikLnzp2xePFiq3XtcdurzPiK6WnbY1CbSElJQUBAgPo6JCQE27dvN6uzbds29OjRo6a7VmVJSUk4ffo0xo8ff9+6IoLU1FSzdVATRASTJ0/Gxo0bsXPnTjRv3vy+85T13pjem1wv719VxgcAa9euRUREBNasWYNnnnmmQsuxl/fPGr1uf9UZnz1sf2X1JS8vz+o0e9r2ylLe+AAdbns22U+vBTdu3JCUlBRJSUkRAPLhhx9KSkqK/P777yIiMmvWLBk9erRa/6OPPpL4+Hj57bff5Ndff5VZs2YJAImLi1Pr7NmzR5ycnGT+/Ply/PhxmT9/vjg7O8v+/ft1P75iL774ojzxxBNW23z77bdl69atcubMGUlJSZGxY8eKs7Oz/PTTTzYdS2kTJ04Ub29vSUxMlMzMTPVx8+ZNtU7p8Z09e1bq1Kkjr732mhw7dkyWL18uLi4u8p///Eeto5f3ryrjW7NmjTg7O8unn35qNs+1a9fUOvb8/tnT9leV8RWzh+1v9uzZsmvXLklLS5NffvlF3nzzTTEYDLJt2zYRse9tryrj0+O298AEdfHpHqUf4eHhIiISHh4uffr0UesvWLBAHn74YXFzc5N69epJz549ZcuWLRbtbtiwQVq3bi0uLi7Spk0bs18kNamy4xMRuXbtmri7u8uyZcustjlt2jRp2rSpuLq6SsOGDWXAgAGyd+9eG4/EkrVxAZCYmBi1jrXxJSYmSnBwsLi6ukqzZs1k6dKlFm3r4f2ryvj69OlT7vstYt/vnz1tf1X9+bSX7W/cuHESFBSk9iM0NFQNMRH73vZEKj8+PW57vM0lERGRjvE7aiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTeSAzp07B0VRkJqaWttdsRAREYGhQ4fWdjfoAbRr1y4MGTIEgYGBUBQFX3/9tV0sj0FNZIciIiKgKIrFY9CgQRWav0mTJsjMzKzQrRprOtQXL16M2NjYGlkWOZbc3Fx07twZS5YssavlOWvUHyKqYYMGDUJMTIxZmdForNC8Tk5O8Pf3t0W3qs3b27u2u0APqLCwMISFhZU5PT8/H2+99RZWr16Na9euoUOHDliwYAGeeuopmyyvorhHTWSnjEYj/P39zR716tUDACiKgqVLlyIsLAzu7u5o3rw5NmzYoM5bei/56tWrGDVqFBo2bAh3d3e0atVK/SOg+G5RwcHBUBTF7JdWTEwM2rZtCzc3N7Rp0wafffaZxTK++uor9OrVC+7u7ujWrRt+++03/Pzzz+jatSs8PDwwaNAgZGVlqfOV/ui7qKgICxYsQMuWLWE0GtG0aVPMmzdP69VJhLFjx2LPnj1Yt24dfvnlFwwfPhyDBg2qtVvHFuMeNdED6p///Cfmz5+PxYsX48svv8TIkSPRoUMHtG3b1mrdY8eO4fvvv0eDBg1w+vRp3Lp1CwBw4MABPP744/jhhx/Qvn179b7K0dHRmDNnDpYsWYLg4GCkpKTg5ZdfRt26dREeHq62PWfOHCxatAhNmzbFuHHjMHLkSHh5eWHx4sWoU6cORowYgX/9619YunSp1XHMnj0b0dHR+Oijj9CzZ09kZmbixIkTNlhj5MjOnDmDtWvX4sKFCwgMDAQATJ8+HVu3bkVMTAzef//92uuczW73QUQ2Ex4eLk5OTlK3bl2zxzvvvCMid+/4NGHCBLN5nnjiCZk4caKIiKSlpQkASUlJERGRIUOGyNixY60uq3TdYk2aNJE1a9aYlb377rsSEhJiNt8XX3yhTl+7dq0AkB07dqhlUVFR0rp1a7OxPffccyIikp2dLUajUaKjoyu4ZogqBoDEx8err7/66isBYLFNOTs7y4gRI0Sk5Ge6vMekSZMqtLzK4B41kZ3q27evxV6oj4+P+jwkJMRsWkhISJkHhE2cOBHDhg3DoUOHMGDAAAwdOhQ9evQoc9lZWVlIT0/H+PHj8fLLL6vlBQUFFt8xd+rUSX3u5+cHAOjYsaNZ2aVLl6wu5/jx48jLy0NoaGiZfSHSQlFREZycnHDw4EE4OTmZTfPw8AAANGrUCMePHy+3neKvn7TEoCayU3Xr1kXLli0rNY+iKFbLw8LC8Pvvv2PLli344YcfEBoaikmTJmHhwoVW6xcVFQG4+/H3E088YTat9C85FxcXi+WXLiturzR3d/f7jIhIG8HBwSgsLMSlS5fQq1cvq3VcXFzQpk2bGu4ZDyYjemDt37/f4nV5v2QaNmyIiIgIrFq1CosWLcKyZcsAQP1OurCwUK3r5+eHRo0a4ezZs2jZsqXZo/jgMy20atUK7u7u2LFjh2ZtkuPKyclBamqq+slSWloaUlNTcf78eTzyyCMYNWoUxowZg40bNyItLQ0///wzFixYgO+++07z5VUG96iJ7FReXh4uXrxoVubs7IwGDRoAADZs2ICuXbuiZ8+eWL16NQ4cOIDly5dbbetf//oXunTpgvbt2yMvLw/ffvutetCZr68v3N3dsXXrVjRu3Bhubm7w9vbG22+/jalTp8LLywthYWHIy8tDcnIyrl69isjISE3G6ObmhpkzZ2LGjBlwdXXFk08+iaysLBw9ehTjx4/XZBnkOJKTk9G3b1/1dfHPaXh4OGJjYxETE4P33nsPr7/+OjIyMlC/fn2EhIRg8ODBNllehVXpm20iqlXh4eFWD2QpPigLgHz66afSv39/MRqNEhQUJGvXrlXnL32A2Lvvvitt27YVd3d38fHxkeeee07Onj2r1o+OjpYmTZqIwWCQPn36qOWrV6+WRx99VFxdXaVevXrSu3dv2bhxo9VliIgkJCQIALl69apaFhMTI97e3mZjKz6YTESksLBQ3nvvPQkKChIXFxdp2rSpvP/++9VfiUR2QhERqdKfCkSkW4qiID4+npfiJHoA8DtqIiIiHWNQExER6RgPJiN6APEbLaIHB/eoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjGoiYiIdIxBTUREpGMMaiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMYe8H/Xt27eRn59f290gIiIH5urqCjc3t/vWc7igvn37Ntzd3Wu7G0RE5OD8/f2RlpZ237B2uKAu2ZN2AqDce66g+FsApfjbAMVgVqYoBpO6gKI4qXWLp5nWUxQnk7J788BJnW6Aofx27pUZTNoxwPS5QW3zbnuKRZkCAwxiPi6DybwGMaBkVIaSdtR5FPV/w73nBtMypaSspJ17ZYpSsnbVeubP79YznafkHTHce3J3nuJ2ipdhMr9JucF0usn8xfOaTlfLynhekf4YIGqDBpMyxWLZYjJeseijgpIy5d50Q6m6xfOaTlfLSretSEmbimk7oo7FWlnpthVF1HpQRB1vST2T/lhZtmmZ2XTFvJ27ZVbGYNK2tXkMSpGVdu7112A6b0m94s3YbB5D8fMii3bU/w0m7Rgsl6MoRSbPodZD6T4aBDCY9qe4nfLLoM4PdZpZHwwlfbv7REr6Y1aGUmUw35ju/VAqphuo+oOqDszkB95Q8r/BZMMxLQcgBgNw73eZ+Twm00vNA4MTRH3DnErK1OU43ZvXqYznJfOKoXh+Z5N2ip/f64PibDLduWQ6TOa9V6YoJfXU5/f+VwzOJb//FWcYistNywwGZGffQrMmryI/P59BXR41ShQFMAkga2XFAaOGt1IST9aD2kqZSVCXzFsS1AbTepUO6vuVWQlqGEyC1ySoTZ4Xj78qQV3yC78qQW06T0ndu8soIzgrGdSG+wa1mNW1WJ5ZGJaUVTqoTQJSq6A2VDqoLdsuHbAWQa1UL6grU2YtOMsLaqXMoLbyR4JapqjzWg9qy+kwmdeibYNJMJZRVhLK5ZdZhK5BgdmvpNIBaxLAJaFrpawyQW0a2KXLzOpZhq71IDYNaqfyg9pgGtTmZWUHtek85QX1vfplBbVJKFsGtUsZQV1Sz3pQ3+tPBfFgMiIiIh1jUBMREekYg5qIiEjHGNREREQ6xqAmIiLSMQY1ERGRjjn06VlSfB6sqP+U+t/a86J7/xefG1EW0+li8VyslBWp59OKyQlPxWWGUs8Nat2S5RWXFd2b0wApdR713ZNs7j0Xg8ncxdMVdZ6i+52eZVJmcXoWTM6jVsvMn1srMz8JzrzM9H/TM1h4HnWptnkeNR7886hL9cHqOdNVOY+6eLplWcmGIybzmPahuKzIvE0AYr7hWLQthlJt3Zsuikk/i8vurZfiemIyfvPn9+opRRbzwFB0ty4AGArv1leK1HV+d3rx7/rCknr36ipKSVl1zqOuKIcLahGBh4cHcnJyrE+3eFIqx4mIiDTg7+8PV1fX+9ZzuKBWFAU5OTlIT0+Hl5dXbXfngZOdnY0mTZpw/doI169tcf3aFtevOV7r+z68vLz4g2JDXL+2xfVrW1y/tsX1Wzk8mIyIiEjHGNREREQ65nBBbTQaMWfOHBiNxtruygOJ69e2uH5ti+vXtrh+q0YRER7PTEREpFMOt0dNRERkTxjUREREOsagJiIi0jEGNRERkY45XFB/9tlnaN68Odzc3NClSxf8+OOPtd0l3YuKikK3bt3g6ekJX19fDB06FCdPnjSrIyJ4++23ERgYCHd3dzz11FM4evSoWZ28vDxMmTIFDRo0QN26dfGXv/wFFy5cqMmh2IWoqCgoioJp06apZVy/1ZORkYEXX3wR9evXR506dfDoo4/i4MGD6nSu36orKCjAW2+9hebNm8Pd3R0tWrTAO++8g6KiIrUO1281iQNZt26duLi4SHR0tBw7dkxeffVVqVu3rvz++++13TVdGzhwoMTExMivv/4qqamp8swzz0jTpk0lJydHrTN//nzx9PSUuLg4OXLkiDz//PMSEBAg2dnZap0JEyZIo0aNZPv27XLo0CHp27evdO7cWQoKCmpjWLp04MABadasmXTq1EleffVVtZzrt+quXLkiQUFBEhERIT/99JOkpaXJDz/8IKdPn1brcP1W3XvvvSf169eXb7/9VtLS0mTDhg3i4eEhixYtUutw/VaPQwX1448/LhMmTDAra9OmjcyaNauWemSfLl26JAAkKSlJRESKiorE399f5s+fr9a5ffu2eHt7y+effy4iIteuXRMXFxdZt26dWicjI0MMBoNs3bq1ZgegUzdu3JBWrVrJ9u3bpU+fPmpQc/1Wz8yZM6Vnz55lTuf6rZ5nnnlGxo0bZ1b217/+VV588UUR4frVgsN89J2fn4+DBw9iwIABZuUDBgzA3r17a6lX9un69esAAB8fHwBAWloaLl68aLZujUYj+vTpo67bgwcP4s6dO2Z1AgMD0aFDB67/eyZNmoRnnnkG/fr1Myvn+q2eTZs2oWvXrhg+fDh8fX0RHByM6OhodTrXb/X07NkTO3bswG+//QYAOHz4MHbv3o3BgwcD4PrVgsPclOPy5csoLCyEn5+fWbmfnx8uXrxYS72yPyKCyMhI9OzZEx06dAAAdf1ZW7e///67WsfV1RX16tWzqMP1D6xbtw6HDh3Czz//bDGN67d6zp49i6VLlyIyMhJvvvkmDhw4gKlTp8JoNGLMmDFcv9U0c+ZMXL9+HW3atIGTkxMKCwsxb948jBw5EgB/frXgMEFdTCm+efk9ImJRRmWbPHkyfvnlF+zevdtiWlXWLdc/kJ6ejldffRXbtm0r95Z3XL9VU1RUhK5du+L9998HAAQHB+Po0aNYunQpxowZo9bj+q2a9evXY9WqVVizZg3at2+P1NRUTJs2DYGBgQgPD1frcf1WncN89N2gQQM4OTlZ/HV26dIli7/0yLopU6Zg06ZNSEhIQOPGjdVyf39/ACh33fr7+yM/Px9Xr14ts46jOnjwIC5duoQuXbrA2dkZzs7OSEpKwscffwxnZ2d1/XD9Vk1AQADatWtnVta2bVucP38eAH9+q+uNN97ArFmz8MILL6Bjx44YPXo0XnvtNURFRQHg+tWCwwS1q6srunTpgu3bt5uVb9++HT169KilXtkHEcHkyZOxceNG7Ny5E82bNzeb3rx5c/j7+5ut2/z8fCQlJanrtkuXLnBxcTGrk5mZiV9//dXh139oaCiOHDmC1NRU9dG1a1eMGjUKqampaNGiBddvNTz55JMWpxP+9ttvCAoKAsCf3+q6efMmDAbzKHFyclJPz+L61UAtHcRWK4pPz1q+fLkcO3ZMpk2bJnXr1pVz587Vdtd0beLEieLt7S2JiYmSmZmpPm7evKnWmT9/vnh7e8vGjRvlyJEjMnLkSKunXzRu3Fh++OEHOXTokDz99NM8/aIMpkd9i3D9VseBAwfE2dlZ5s2bJ6dOnZLVq1dLnTp1ZNWqVWodrt+qCw8Pl0aNGqmnZ23cuFEaNGggM2bMUOtw/VaPQwW1iMinn34qQUFB4urqKo899ph6ihGVDYDVR0xMjFqnqKhI5syZI/7+/mI0GqV3795y5MgRs3Zu3bolkydPFh8fH3F3d5dnn31Wzp8/X8OjsQ+lg5rrt3o2b94sHTp0EKPRKG3atJFly5aZTef6rbrs7Gx59dVXpWnTpuLm5iYtWrSQf/zjH5KXl6fW4fqtHt7mkoiISMcc5jtqIiIie8SgJiIi0jEGNRERkY4xqImIiHSMQU1ERKRjDGoiIiIdY1ATERHpGIOaiIhIxxjUREREOsagJiIi0jEGNRERkY4xqImIiHTs/wMIC/4CFl1arAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFTCAYAAAAdn/SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5pklEQVR4nO3deVhV1f4/8Pc+DIeDAonKpIia5oQaiSnlkOGAluVzvZpeUxzqm+aQkdehutlk6PeprpZlVzP4eh3zImZpXk0RSzFTwUzRHCjR8CeWAoIxfn5/KJtz4IAMG86G8349z8lz1lp77c9eLfiwx6OIiICIiIh0x2DrAIiIiMg6JmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIhtRFAVbt261eR916ZdffoGiKEhKStJlf0R6wyRNpJGJEydCUZQyr3Pnzlltn5aWhqFDh1aq79dffx33339/jfpoiPz9/ZGWlobAwEAAwL59+6AoCm7cuGHbwIg04mjrAIgakrCwMERFRVmUNW/e3OJzXl4enJ2d4ePjU+P1adFHfebg4GD3Y0ANG/ekiTRkNBrh4+Nj8QoNDcWMGTMQERGBZs2aYdCgQQDKHqq+dOkSxowZA09PTzRq1AjBwcH4/vvvER0djTfeeAPHjx9X986jo6Ot9nHixAk8+uijMJlMaNq0Kf7nf/4HN2/eVOsnTpyIESNG4N1334Wvry+aNm2K6dOnIz8//67btmDBAvTu3btMebdu3bBw4UL1c1RUFDp16gQXFxd07NgRH3/8cYX9xsfH48EHH4TRaISvry/mz5+PgoICtb6oqAhLlixBu3btYDQa0apVKyxatAiA5eHuX375BQMGDAAANGnSBIqiYOLEiVizZg2aNm2K3Nxci/WOHDkSEyZMuOt2E9mUEJEmwsPD5cknnyxT3r9/f2ncuLH8/e9/l9OnT0tycrKIiACQ2NhYERHJysqStm3bSt++feXbb7+Vs2fPyqZNm+TgwYOSk5MjL730knTp0kXS0tIkLS1NcnJyyvSRnZ0tfn5+8pe//EVOnDghe/bskTZt2kh4eLhFjO7u7jJ16lRJTk6WL7/8UlxdXWXlypV33b4TJ04IADl37pxa9tNPPwkAOXPmjIiIrFy5Unx9fSUmJkYuXLggMTEx4unpKdHR0SIikpKSIgAkMTFRREQuXbokrq6u8vzzz0tycrLExsZKs2bNZOHCheo65s6dK02aNJHo6Gg5d+6cfPvtt7Jq1aoy/RUUFEhMTIwaT1pamty4cUNycnLEw8NDPv/8c7XP9PR0cXZ2lr179951u4lsya6TdHx8vDz++OPi6+tr8cuuoayP6lZ4eLg4ODhIo0aN1Ndf//pX6d+/v9x///1l2pvPgX/961/i5uYmv//+u9W+Fy5cKN27d6+wj5UrV0qTJk3k5s2bav327dvFYDDIlStX1BgDAgKkoKBAbTNq1Ch56qmnKrWN3bp1kzfffFP9vGDBAunZs6f62d/fX9avX2+xzFtvvSUhISEiUjZJv/zyy9KhQwcpKipS23/00UfSuHFjKSwslMzMTDEajWpSLq10f3FxcQJArl+/btFu2rRpMnToUPXz0qVLpW3bthbrJdIjuz7cnZ2dje7du2P58uUNcn1U9wYMGICkpCT19cEHHwAAgoODK1wuKSkJQUFB8PT0rPa6k5OT0b17dzRq1Egte/jhh1FUVIQzZ86oZV26dIGDg4P62dfXF1evXq3UOsaNG4d169YBAEQEGzZswLhx4wAA6enpSE1NxZQpU9C4cWP19fbbb+P8+fPlxhwSEgJFUSxivnnzJi5duoTk5GTk5uYiNDS08gNhxbPPPotdu3bh8uXLAG4fki++0I9Iz+z6wrGhQ4dWeGVsXl4eXn31Vaxbtw43btxAYGAglixZgkceeaRW1kf1X6NGjdCuXTur5RUxmUw1XreIlJt0zMudnJzK1BUVFVVqHX/7298wf/58HDt2DLdu3UJqairGjBkDAGofq1atQq9evSyWM/+j4G4xi4galxbjAgBBQUHo3r071qxZgyFDhuDEiRP48ssvNembqDbZ9Z703UyaNAkHDhzAxo0b8eOPP2LUqFEICwvD2bNnbR0aNTDdunVDUlIS/vjjD6v1zs7OKCwsrLCPzp07IykpCdnZ2WrZgQMHYDAYcN9992kSZ8uWLdGvXz+sW7cO69atw8CBA+Ht7Q0A8Pb2RosWLXDhwgW0a9fO4tWmTZtyYz548KCamAHg4MGDcHNzQ4sWLdC+fXuYTCbs2bOnUvE5OzsDgNWxeuaZZxAVFYXPPvsMAwcOhL+/f1U3n6jOMUmX4/z589iwYQM2b96Mvn374t5778WcOXPQp0+fMrfYENXU2LFj4ePjgxEjRuDAgQO4cOECYmJikJCQAABo3bo1UlJSkJSUhGvXrpW5Uhm4fSjaxcUF4eHh+OmnnxAXF4eZM2di/PjxaiLVwrhx47Bx40Zs3rwZTz/9tEXd66+/jsjISCxbtgw///wzTpw4gaioKLz//vtW+3r++eeRmpqKmTNn4vTp0/jiiy+wcOFCREREwGAwwMXFBfPmzcPcuXOxZs0anD9/HocOHcLq1aut9hcQEABFUfDVV18hPT3d4sr2cePG4fLly1i1ahUmT56s2XgQ1SYm6XIcO3YMIoL77rvP4vxafHy8en6t+PaPil4zZsyw8ZZQfeDs7Ixdu3bBy8sLw4YNQ9euXbF48WL1MPHIkSMRFhaGAQMGoHnz5tiwYUOZPlxdXfHf//4Xf/zxB3r27Im//vWvCA0N1fwaiFGjRuH3339HTk4ORowYYVH3zDPP4NNPP0V0dDS6du2K/v37Izo6utw96RYtWmDHjh04fPgwunfvjqlTp2LKlCl49dVX1Tb/+Mc/8NJLL+G1115Dp06d8NRTT5V7Dr1FixZ44403MH/+fHh7e1v8/Lm7u2PkyJFo3LhxmbiJ9EoR8+NMdkxRFMTGxqo/vJs2bcK4ceNw8uTJMufTGjduDB8fH+Tn55d7QUyxJk2aWN2LKb0+Iqp9gwYNQqdOndQL+oj0zq4vHKtIUFAQCgsLcfXqVfTt29dqGycnJ3Ts2LGOIyOiqvrjjz+wa9cu7N27l3dXUL1i10n65s2bFs9VLj7n5+npifvuuw/jxo3DhAkT8N577yEoKAjXrl3D3r170bVrVwwbNkzT9bVq1UqTbSKqrm+//bbCuw/Mz+/WNw888ACuX7+OJUuWoEOHDrYOh6jS7Ppw9759+9THCJoLDw9HdHQ08vPz8fbbb2PNmjW4fPkymjZtipCQELzxxhvo2rWr5usjsqVbt26p9xFbY+3WMiKqXXadpImIiPSMV3cTERHplN2dky4qKsJvv/0GNzc3PhKQiIg0JyLIysqCn58fDIaa7QvbXZL+7bff+KQhIiKqdampqWjZsmWN+rC7JO3m5nbnnQEA96SJiOobV+cAzfu8lD5fs74yM2+htf8LZvmm+uwuSZcc4lbAJE1EVP8oivaXU7m7u2repxanVHnhGBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREemU3T3MhIiI6pbRyVvT/vb01v47wUe4JWjWV77kadYX96SJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpPHCMiIpWjg7vmfU64Z6Sm/S0/oWl3AICvbn6sYW+iWU/ckyYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKT5xjIioHjMYXDXt7wHnJzXtDwAMirb9rf1Dy6eD6Rv3pImIiHSKSZqIiEinbJqkIyMj0bNnT7i5ucHLywsjRozAmTNnKlxm3759UBSlzOv06dN1FDUREVHdsGmSjo+Px/Tp03Ho0CHs3r0bBQUFGDx4MLKzs++67JkzZ5CWlqa+2rdvXwcRExER1R2bXji2c+dOi89RUVHw8vLC0aNH0a9fvwqX9fLywj333FOL0REREdmWrs5JZ2RkAAA8PT3v2jYoKAi+vr4IDQ1FXFxcue1yc3ORmZlp8SIiIqoPdJOkRQQRERHo06cPAgMDy23n6+uLlStXIiYmBlu2bEGHDh0QGhqK/fv3W20fGRkJDw8P9eXv719bm0BERKQpRUTE1kEAwPTp07F9+3Z89913aNmyZZWWHT58OBRFwbZt28rU5ebmIjc3V/2cmZl5J1E7AND45j0iojqm9X3SwcaRmvYHAEFubpr296+rer9PWgAUIiMjA+7u7jXqSRd70jNnzsS2bdsQFxdX5QQNAL1798bZs2et1hmNRri7u1u8iIiI6gObXjgmIpg5cyZiY2Oxb98+tGnTplr9JCYmwtfXV+PoiIiIbMumSXr69OlYv349vvjiC7i5ueHKlSsAAA8PD5hMJgDAggULcPnyZaxZswYAsHTpUrRu3RpdunRBXl4e1q5di5iYGMTExNhsO4iIKsNgcNG8T1/XHpr2d6+jtoemgfpweFq/bJqkV6xYAQB45JFHLMqjoqIwceJEAEBaWhouXryo1uXl5WHOnDm4fPkyTCYTunTpgu3bt2PYsGF1FTYREVGd0M2FY3UlMzMTHh4e4IVjRFTXamdPuqem/fVz7KppfwCw4Ya97Uk3sAvHiIiIqCwmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0imbPsyEiEjPDIqzpv25G6v36OOKdJNOmva3MWOlpv1RzXBPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEin+MQxImoQFEX7fQ6Ts5+m/QUo3TTtDwB2/7lR0/5ECjTtj2qGe9JEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFN8LCgR2YTWj/F0cfLVtD8AaObUTtP+Tt76WtP+AKCgMFPzPkk/uCdNRESkU0zSREREOsUkTUREpFNVTtKzZs3CBx98UKZ8+fLlmD17thYxEREREaqRpGNiYvDwww+XKX/ooYfwn//8R5OgiIiIqBpJ+vfff4eHh0eZcnd3d1y7dk2ToIiIiKgaSbpdu3bYuXNnmfKvv/4abdu21SQoIiIiqsZ90hEREZgxYwbS09Px6KOPAgD27NmD9957D0uXLtU6PiIiIrtV5SQ9efJk5ObmYtGiRXjrrbcAAK1bt8aKFSswYcIEzQMkIiKyV4qISHUXTk9Ph8lkQuPGjbWMqVZlZmbeOafuAECxdThE9YJSCz8rLs5+mvbn5KD976E/8//QtL+8gnRN+yO9EgCFyMjIgLu7e416qtFjQZs3b16jlRMREVH5KpWkH3jgAezZswdNmjRBUFAQFKX8v6qPHTumWXBERET2rFJJ+sknn4TRaAQAjBgxQrOVR0ZGYsuWLTh9+jRMJhMeeughLFmyBB06dKhwufj4eERERODkyZPw8/PD3LlzMXXqVM3iIiIi0oMqnZMuLCzEd999h27duqFJkyY1XnlYWBjGjBmDnj17oqCgAK+88gpOnDiBU6dOoVGjRlaXSUlJQWBgIJ599lk899xzOHDgAJ5//nls2LABI0eOvOs6eU6aqOp4TlobPCdtL7Q7J13lC8dcXFyQnJyMNm3a1GjF1qSnp8PLywvx8fHo16+f1Tbz5s3Dtm3bkJycrJZNnToVx48fR0JCQpn2ubm5yM3NVT9nZmbC398fTNJElcckrQ0maXuhXZKu8sNMunbtigsXLtRopeXJyMgAAHh6epbbJiEhAYMHD7YoGzJkCI4cOYL8/Pwy7SMjI+Hh4aG+bidoIiIi/atykl60aBHmzJmDr776CmlpacjMzLR4VZeIICIiAn369EFgYGC57a5cuQJvb2+LMm9vbxQUFFh9LOmCBQuQkZGhvlJTU6sdIxERUV2q8i1YYWFhAIAnnnjC4ipvEYGiKCgsLKxWIDNmzMCPP/6I77777q5tS19dXnzE3tpV50ajUb3ojYiIqD6pcpKOi4vTPIiZM2di27Zt2L9/P1q2bFlhWx8fH1y5csWi7OrVq3B0dETTpk01j42IiMhWqpyk+/fvr9nKRQQzZ85EbGws9u3bV6mL0UJCQvDll19alO3atQvBwcFwcnLSLDai+kzrC70cHcu/TqS6DIq2P6+38rX/Fr78gt8175OoKqr1xLEbN25g9erVSE5OhqIo6Ny5MyZPnmz1KywrMn36dKxfvx5ffPEF3Nzc1D1kDw8PmEwmALfPKV++fBlr1qwBcPtK7uXLlyMiIgLPPvssEhISsHr1amzYsKE6m0JERKRbVb4F68iRIxgyZAhMJhMefPBBiAiOHDmCW7duYdeuXXjggQcqv/JynlwWFRWFiRMnAgAmTpyIX375Bfv27VPr4+Pj8eKLL6oPM5k3b16lH2bC+6TJHtSHPWlnBzdN+8srzNK0P4B70lRdNrxPum/fvmjXrh1WrVoFR8fbO+IFBQV45plncOHCBezfv79GAdU2JmmyB0zS2mCSpuqxYZI2mUxITExEx44dLcpPnTqF4OBg5OTk1Cig2sYkTfaASVobTNJUPTZ8mIm7uzsuXrxYpjw1NRVubtr+0BEREdmzKifpp556ClOmTMGmTZuQmpqKS5cuYePGjXjmmWcwduzY2oiRiIjILlX56u53330XiqJgwoQJKCgoAAA4OTlh2rRpWLx4seYBEhER2asqn5MulpOTg/Pnz0NE0K5dO7i6umodW63gOWmyBzwnrQ2ek6bqseE56cmTJyMrKwuurq7o2rUrunXrBldXV2RnZ2Py5Mk1CoaIiIhKVHlP2sHBAWlpafDy8rIov3btGnx8fNRD4HrFPWmyB9yT1gb3pKl6tNuTrvQ56czMTIgIRARZWVlwcXFR6woLC7Fjx44yiZuI7k5RqnxA664cDNp+t7JS9YNud5VboO13NRcUVv9b+Ij0qtJJ+p577oGiKFAUBffdd1+ZekVR8MYbb2gaHBERkT2rdJKOi4uDiODRRx9FTEwMPD1LDn85OzsjICAAfn5+tRIkERGRPap0ki7+9quUlBT4+/vDYND+8BcRERGVqPJ90gEBAQBu34J18eJF5OXlWdR369ZNm8iIiIjsXJWTdHp6OiZNmoSvv/7aan1hYWGNgyIiIqJq3Cc9e/ZsXL9+HYcOHYLJZMLOnTvxf//3f2jfvj22bdtWGzESERHZpSrvSe/duxdffPEFevbsCYPBgICAAAwaNAju7u6IjIzEY489VhtxEhER2Z0q70lnZ2er90N7enoiPT0dANC1a1ccO3ZM2+iIiIjsWJWTdIcOHXDmzBkAwP33349//etfuHz5Mj755BP4+vpqHiAREZG9qvLh7tmzZyMtLQ0AsHDhQgwZMgTr1q2Ds7MzoqOjtY6PSHe0fuSmg6Fmjw20xqA4adpfQVG2pv0BQFFRjuZ9EjU01f4WrGI5OTk4ffo0WrVqhWbNmmkVV63hs7uppjRP0g4emvYHMEkT2ZYNvwWrWF5eHs6cOQNnZ2c88MAD9SJBExER1SdVTtI5OTmYMmUKXF1d0aVLF1y8eBEAMGvWLCxevFjzAImIiOxVlZP0ggULcPz4cezbt8/im7AGDhyITZs2aRocERGRPavyhWNbt27Fpk2b0Lt3byhKybm5zp074/z585oGR0REZM+qvCednp5u9Xujs7OzLZI2ERER1UyVk3TPnj2xfft29XNxYl61ahVCQkK0i4yIiMjOVflwd2RkJMLCwnDq1CkUFBRg2bJlOHnyJBISEhAfH18bMRIREdmlKu9JP/TQQzhw4ABycnJw7733YteuXfD29kZCQgJ69OhRGzESERHZpRo/zKS+4cNM7IuiVPtRAOUyKK6a9ico0rS/27Tts6joT037I2rYtHuYSaUOd2dmZla6w5oGRERERLdVKknfc889d71yW0SgKAoKCws1CYyIiMjeVSpJx8XFVaqzxMTEGgVDREREJWp8TjojIwPr1q3Dp59+iuPHj+t+T5rnpO0Lz0lr1BvPSRNVgQ6+YGPv3r14+umn4evriw8//BDDhg3DkSNHahQMERERlajSfdKXLl1CdHQ0PvvsM2RnZ2P06NHIz89HTEwMOnfuXFsxEhER2aVK70kPGzYMnTt3xqlTp/Dhhx/it99+w4cfflibsREREdm1Su9J79q1C7NmzcK0adPQvn372oyJiIiIUIU96W+//RZZWVkIDg5Gr169sHz5cqSnp9dmbERERHat0kk6JCQEq1atQlpaGp577jls3LgRLVq0QFFREXbv3o2srKzajJOIiMju1OgWrDNnzmD16tX497//jRs3bmDQoEHYtm2blvFpjrdg6Zui8f8TRXHStL/bnVb5e2nuQvtbsHjLFJEt6eAWLADo0KED/vd//xeXLl3Chg0bahQIERERWdLkSQ8ODg4YMWJElfei9+/fj+HDh8PPzw+KomDr1q0Vtt+3bx8URSnzOn36dA2iJyIi0ietj9tVSXZ2Nrp3745JkyZh5MiRlV7uzJkzFocQmjdvXhvhERER2ZRNk/TQoUMxdOjQKi/n5eWFe+65p1Jtc3NzkZubq36uyjd6ERER2ZL2DzauA0FBQfD19UVoaOhdv/wjMjISHh4e6svf37+OoiQiIqqZepWkfX19sXLlSsTExGDLli3o0KEDQkNDsX///nKXWbBgATIyMtRXampqHUZMRERUfTY93F1VHTp0QIcOHdTPISEhSE1Nxbvvvot+/fpZXcZoNMJoNNZViERERJqpV3vS1vTu3Rtnz561dRhERESaq/dJOjExEb6+vrYOg4iISHM2Pdx98+ZNnDt3Tv2ckpKCpKQkeHp6olWrVliwYAEuX76MNWvWAACWLl2K1q1bo0uXLsjLy8PatWsRExODmJgYW22CXVMU7f/GU7Sekpo/HQwQydO4vwJN+yOihsOmSfrIkSMYMGCA+jkiIgIAEB4ejujoaKSlpeHixYtqfV5eHubMmYPLly/DZDKhS5cu2L59O4YNG1bnsRMREdW2Gj27uz7is7u1wz1prfrjnjRRw6KTZ3cTERFR7WGSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIiIinapXX7BBNaNofF+45vc0A4DG915rfU/z7T55XzMR1Q3uSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTvGxoDql9SM8AUAxmLTtsBYej6n1YzxFijTtj4ioLnFPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEin+MQxjWj+hDBF+yeOAdo+fUtQG08c4xPCiIiKcU+aiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKfs+IljBiiaPtVL/3/vSFGutv1BNO2PiIgs6T+zEBER2SmbJun9+/dj+PDh8PPzg6Io2Lp1612XiY+PR48ePeDi4oK2bdvik08+qf1AiYiIbMCmSTo7Oxvdu3fH8uXLK9U+JSUFw4YNQ9++fZGYmIiXX34Zs2bNQkxMTC1HSkREVPcUEdHFiUVFURAbG4sRI0aU22bevHnYtm0bkpOT1bKpU6fi+PHjSEhIqNR6MjMz4eHhAcDJ7s5JQwq17Y7npImIrBAAhcjIyIC7u3uNeqoHmaVEQkICBg8ebFE2ZMgQHDlyBPn5+VaXyc3NRWZmpsWLiIioPqhXSfrKlSvw9va2KPP29kZBQQGuXbtmdZnIyEh4eHioL39//7oIlYiIqMbqVZIGUOYQdfHR+vIOXS9YsAAZGRnqKzU1tdZjJCIi0kK9uk/ax8cHV65csSi7evUqHB0d0bRpU6vLGI1GGI3GugiPiIhIU/VqTzokJAS7d++2KNu1axeCg4Ph5ORko6iIiIhqh02T9M2bN5GUlISkpCQAt2+xSkpKwsWLFwHcPlQ9YcIEtf3UqVPx66+/IiIiAsnJyfjss8+wevVqzJkzxxbhExER1SqbHu4+cuQIBgwYoH6OiIgAAISHhyM6OhppaWlqwgaANm3aYMeOHXjxxRfx0Ucfwc/PDx988AFGjhxZ57GXVaRtd7VwZxxvmSIiql90c590Xam9+6Q1xiRNRFRP2el90kRERPaESZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSqXj27Wwslt4VLbdyKrKHaCE7XG0xE1EDc/l2rxWNI7C5JZ2Vl3XlXYNM4iIioYcvKyrrz8Kzqs7snjhUVFeG3336Dm5ubZk8cy8zMhL+/P1JTU2v8dBlbqM/xM3bbqc/xM3bbqc/xVzZ2EUFWVhb8/PxgMNTsrLLd7UkbDAa0bNmyVvp2d3evd5POXH2On7HbTn2On7HbTn2OvzKx13QPuhgvHCMiItIpJmkiIiKdYpLWgNFoxMKFC2E0Gm0dSrXU5/gZu+3U5/gZu+3U5/htEbvdXThGRERUX3BPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikS9m/fz+GDx8OPz8/KIqCrVu3Vth+y5YtGDRoEJo3bw53d3eEhITgv//9r0Wb6OhoKIpS5vXnn3/aPP59+/ZZje306dMW7WJiYtC5c2cYjUZ07twZsbGxNo994sSJVmPv0qWL2qauxj4yMhI9e/aEm5sbvLy8MGLECJw5c+auy8XHx6NHjx5wcXFB27Zt8cknn5RpU9tjX53Y9TLvqxO7nuZ8deLXy7xfsWIFunXrpj59KyQkBF9//XWFy+hhvlcndlvOdybpUrKzs9G9e3csX768Uu3379+PQYMGYceOHTh69CgGDBiA4cOHIzEx0aKdu7s70tLSLF4uLi42j7/YmTNnLGJr3769WpeQkICnnnoK48ePx/HjxzF+/HiMHj0a33//vU1jX7ZsmUXMqamp8PT0xKhRoyza1cXYx8fHY/r06Th06BB2796NgoICDB48GNnZ2eUuk5KSgmHDhqFv375ITEzEyy+/jFmzZiEmJkZtUxdjX53Y9TLvqxN7MT3M+erEr5d537JlSyxevBhHjhzBkSNH8Oijj+LJJ5/EyZMnrbbXy3yvTuw2ne9C5QIgsbGxVV6uc+fO8sYbb6ifo6KixMPDQ7vAKqky8cfFxQkAuX79erltRo8eLWFhYRZlQ4YMkTFjxmgQpXXVGfvY2FhRFEV++eUXtcxWY3/16lUBIPHx8eW2mTt3rnTs2NGi7LnnnpPevXurn20x9pWJ3Ro9zPvKxK7XOS9SvbHX07xv0qSJfPrpp1br9Drfi1UUuzV1Nd+5J62xoqIiZGVlwdPT06L85s2bCAgIQMuWLfH444+X+QvM1oKCguDr64vQ0FDExcVZ1CUkJGDw4MEWZUOGDMHBgwfrMsS7Wr16NQYOHIiAgACLcluMfUZGBgCUmQfmyhvXI0eOID8/v8I2tTn2lYm9NL3M+6rErsc5X52x18O8LywsxMaNG5GdnY2QkBCrbfQ63ysTe2l1Od+ZpDX23nvvITs7G6NHj1bLOnbsiOjoaGzbtg0bNmyAi4sLHn74YZw9e9aGkd7m6+uLlStXIiYmBlu2bEGHDh0QGhqK/fv3q22uXLkCb29vi+W8vb1x5cqVug63XGlpafj666/xzDPPWJTbYuxFBBEREejTpw8CAwPLbVfeuBYUFODatWsVtqmtsa9s7KXpYd5XNna9zvnqjL2t5/2JEyfQuHFjGI1GTJ06FbGxsejcubPVtnqb71WJvbQ6ne+a75s3IKjiIdf169eLq6ur7N69u8J2hYWF0r17d5k5c2YNI6xYVeMv9vjjj8vw4cPVz05OTrJ+/XqLNmvXrhWj0VjTEMtV1djfeecdadq0qeTm5lbYri7G/vnnn5eAgABJTU2tsF379u3lnXfesSj77rvvBICkpaWJSN2PfWVjN6eXeV+d2IvpYc5XJ35bz/vc3Fw5e/as/PDDDzJ//nxp1qyZnDx50mpbvc33qsRurq7nO/ekNbJp0yZMmTIFn3/+OQYOHFhhW4PBgJ49e+piT9qa3r17W8Tm4+NT5i/Zq1evlvmL11ZEBJ999hnGjx8PZ2fnCtvW9tjPnDkT27ZtQ1xc3F2/t7y8cXV0dETTpk0rbFMbY1+V2IvpZd5XJ3Zztp7z1YlfD/Pe2dkZ7dq1Q3BwMCIjI9G9e3csW7bMalu9zfeqxF7MFvOdSVoDGzZswMSJE7F+/Xo89thjd20vIkhKSoKvr28dRFd1iYmJFrGFhIRg9+7dFm127dqFhx56qK5Dsyo+Ph7nzp3DlClT7tq2tsZeRDBjxgxs2bIFe/fuRZs2be66THnjGhwcDCcnpwrbaDn21Ykd0Me8r27spdlqztckfj3Me2vryc3NtVqnl/lenopiB2w432u0H94AZWVlSWJioiQmJgoAef/99yUxMVF+/fVXERGZP3++jB8/Xm2/fv16cXR0lI8++kjS0tLU140bN9Q2r7/+uuzcuVPOnz8viYmJMmnSJHF0dJTvv//e5vH/85//lNjYWPn555/lp59+kvnz5wsAiYmJUdscOHBAHBwcZPHixZKcnCyLFy8WR0dHOXTokE1jL/b0009Lr169rPZZV2M/bdo08fDwkH379lnMg5ycHLVN6fgvXLggrq6u8uKLL8qpU6dk9erV4uTkJP/5z3/UNnUx9tWJXS/zvjqx62nOVyf+Yrae9wsWLJD9+/dLSkqK/Pjjj/Lyyy+LwWCQXbt2WY1bL/O9OrHbcr4zSZdSfHtG6Vd4eLiIiISHh0v//v3V9v3796+wvYjI7NmzpVWrVuLs7CzNmzeXwYMHy8GDB3UR/5IlS+Tee+8VFxcXadKkifTp00e2b99ept/NmzdLhw4dxMnJSTp27GjxC81WsYuI3LhxQ0wmk6xcudJqn3U19tbiBiBRUVFqG2vx79u3T4KCgsTZ2Vlat24tK1asKNN3bY99dWLXy7yvTux6mvPVnTd6mPeTJ0+WgIAAdR2hoaFqkisvbj3M9+rEbsv5zu+TJiIi0imekyYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiO/DLL79AURQkJSXZOpQyJk6ciBEjRtg6DKrn9u/fj+HDh8PPzw+KomDr1q0NYn1M0kT1wMSJE6EoSplXWFhYpZb39/dHWlpapb4Csa4T+rJlyxAdHV0n66KGKzs7G927d8fy5csb1Poca7V3ItJMWFgYoqKiLMqMRmOllnVwcICPj09thFVjHh4etg6BGoChQ4di6NCh5dbn5eXh1Vdfxbp163Djxg0EBgZiyZIleOSRR2plfVrhnjRRPWE0GuHj42PxatKkCQBAURSsWLECQ4cOhclkQps2bbB582Z12dJ7x9evX8e4cePQvHlzmEwmtG/fXv0DoPibmIKCgqAoisUvsaioKHTq1AkuLi7o2LEjPv744zLr+Pzzz9G3b1+YTCb07NkTP//8M3744QcEBwejcePGCAsLQ3p6urpc6cPdRUVFWLJkCdq1awej0YhWrVph0aJFWg8n2ZlJkybhwIED2LhxI3788UeMGjUKYWFhuv3K4GLckyZqIP7xj39g8eLFWLZsGf79739j7NixCAwMRKdOnay2PXXqFL7++ms0a9YM586dw61btwAAhw8fxoMPPohvvvkGXbp0Ub+reNWqVVi4cCGWL1+OoKAgJCYm4tlnn0WjRo0QHh6u9r1w4UIsXboUrVq1wuTJkzF27Fi4u7tj2bJlcHV1xejRo/Haa69hxYoVVrdjwYIFWLVqFf75z3+iT58+SEtLw+nTp2thxMhenD9/Hhs2bMClS5fg5+cHAJgzZw527tyJqKgovPPOOzaOsAI1/ooOIqp14eHh4uDgII0aNbJ4vfnmmyJy+9uUpk6darFMr169ZNq0aSIikpKSIgAkMTFRRESGDx8ukyZNsrqu0m2L+fv7y/r16y3K3nrrLQkJCbFY7tNPP1XrN2zYIABkz549allkZKR06NDBYtuefPJJERHJzMwUo9Eoq1atquTIEJUFQGJjY9XPn3/+uQAo8/Pj6Ogoo0ePFpGS+VvRa/r06ZVan5a4J01UTwwYMKDM3qenp6f6PiQkxKIuJCSk3Iu/pk2bhpEjR+LYsWMYPHgwRowYgYceeqjcdaenpyM1NRVTpkzBs88+q5YXFBSUOafcrVs39b23tzcAoGvXrhZlV69etbqe5ORk5ObmIjQ0tNxYiKqqqKgIDg4OOHr0KBwcHCzqGjduDABo0aIFkpOTK+yn+PRSXWKSJqonGjVqhHbt2lVpGUVRrJYPHToUv/76K7Zv345vvvkGoaGhmD59Ot59912r7YuKigDcPuTdq1cvi7rSv/ScnJzKrL90WXF/pZlMprtsEVHVBQUFobCwEFevXkXfvn2ttnFyckLHjh3rOLK744VjRA3EoUOHynyu6JdO8+bNMXHiRKxduxZLly7FypUrAUA9B11YWKi29fb2RosWLXDhwgW0a9fO4lV8oZkW2rdvD5PJhD179mjWJ9mHmzdvIikpST16lJKSgqSkJFy8eBH33Xcfxo0bhwkTJmDLli1ISUnBDz/8gCVLlmDHjh2ar09L3JMmqidyc3Nx5coVizJHR0c0a9YMALB582YEBwejT58+WLduHQ4fPozVq1db7eu1115Djx490KVLF+Tm5uKrr75SLzDz8vKCyWTCzp070bJlS7i4uMDDwwOvv/46Zs2aBXd3dwwdOhS5ubk4cuQIrl+/joiICE220cXFBfPmzcPcuXPh7OyMhx9+GOnp6Th58iSmTJmiyTqoYTpy5AgGDBigfi6ek+Hh4YiOjkZUVBTefvttvPTSS7h8+TKaNm2KkJAQDBs2rFbWp5laOdNNRJoKDw+3eiFL8QVYAOSjjz6SQYMGidFolICAANmwYYO6fOmLwd566y3p1KmTmEwm8fT0lCeffFIuXLigtl+1apX4+/uLwWCQ/v37q+Xr1q2T+++/X5ydnaVJkybSr18/2bJli9V1iIjExcUJALl+/bpaFhUVJR4eHhbbVnzhmIhIYWGhvP322xIQECBOTk7SqlUreeedd2o+iET1kCIiol3KJyJbUBQFsbGxfLwmUQPDc9JEREQ6xSRNRESkU7xwjKgB4FkrooaJe9JEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU3b5VZV//vkn8vLybB0GERE1UM7OznBxcalxP3aXpP/880+YTCZbh0FERA2Yj48PUlJSapyo7S5Jl+xBOwBQ7rxXUHzkX4EBUIrPApSUKWqZAkVxKGkLQFEMlu/L1CtQ4KDWG9RyhzL9Kyjpy2BWb4D5++K2DneiVCzK1OXFUGYZAwxqeckWGWC4MxYGMUC58774X8OdqIrLDEpJeXE/altFKRlVxaze7L1BUUfyzjIl/ycMillcSsm/aj3K1t9tefN6xVp9BX2VqYeoDQxmZZZ9ifr+djux6FOB3Nn+4jiknLZS6Xq1T8Ws/E6ZoVSZOv5mcarvFQHUcvP1m703W29JnxXUK1LqvZX4zdavWFneoBRZ7ev2QubrLCqpN6DsMgaBYtZXhfUGs/UYSvoveY+SdubxGYrjsl5mvq7SZVDE7NePWZzmbQ0lbYu336KseLvVMphNRqgTt2Q9itkPpVJSoU5ww+1X6bZqmQFS/F5xsCgvU2/R1+3fX6IYbi93p0zU/u/UGxzKeV+yTjEUL+9oVu9Ysn7F0aze0bIeDmoZDI5QzNsCtz/fKVMMjiW/t++UGRTLMoPBgMzMW2jt/wLy8vKYpGtCTSeKApgnJkX99amWKWqZZUK9vXjpJG2t3sFKW7PEqy5jlmQrnaQty8wTcullDBbvFbN6xay+Zkm6JAlWJ0mbLw8r9TVL0lbrLdpaJtQy9eYJubpJulS9FknaUKUkbZnkSifpknLribc6Sbq8hGytrEySNlScpJVyk3R5SVipcn1JYlYsy4vbmf9BoCZU62Vlk7TlHxwl5XfisEiyCsz2F0qWt0jCd6rN21U2SRvMfv+Zl1m8r2wSNq93sFJvlqQN5km6VH25Sdp8mYqStEPFSVopKbNM0k63q8skabPkDWtJ+k4sGuGFY0RERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFN2fQuW3LnF5PY/gpIP5u9LlxWh5N6H8pSuF4v3YvH5dlmReu+soOQmpOIyQ6n3BrVtyfqKy4pQfMOOmN0nrZbBoJaXLG1A8Y09IgYU3e0WLLNyoNQtWDC7T9pqvdmtRxb1sFJf8q9aL2b1vE9ared90g3xPumy6y9zT7S1srveJ11cX7bs9g+b5S1kt3/ozMrubJd5n2L+Q2Xeb+n60n0BEKXkZ+p226KStgDEbBnL93faKUWWy9x5L+p6CiFKcX2RWf2dMhQChkK1raKUvL+9SdW7T1ordpekRQSNGzfGzZs3rder/6m4jIiIqDw+Pj5wdnaucT92l6QVRcHNmzeRmpoKd3d3W4djU5mZmfD39+dYgGNhjmNxG8ehBMeiRGXHgs/uriF3d3e7n2zFOBYlOBYlOBa3cRxKcCxK1NVY8MIxIiIinWKSJiIi0im7S9JGoxELFy6E0Wi0dSg2x7EowbEowbG4jeNQgmNRoq7HQhERXrdMRESkQ3a3J01ERFRfMEkTERHpFJM0ERGRTjFJExER6RSTNBERkU7ZXZL++OOP0aZNG7i4uKBHjx749ttvbR2SpiIjI9GzZ0+4ubnBy8sLI0aMwJkzZyzaiAhef/11+Pn5wWQy4ZFHHsHJkyct2uTm5mLmzJlo1qwZGjVqhCeeeAKXLl2qy03RVGRkJBRFwezZs9UyexqHy5cv4+mnn0bTpk3h6uqK+++/H0ePHlXr7WUsCgoK8Oqrr6JNmzYwmUxo27Yt3nzzTRQVFaltGupY7N+/H8OHD4efnx8URcHWrVst6rXa7uvXr2P8+PHw8PCAh4cHxo8fjxs3btTy1lVNRWORn5+PefPmoWvXrmjUqBH8/PwwYcIE/PbbbxZ91NlYiB3ZuHGjODk5yapVq+TUqVPywgsvSKNGjeTXX3+1dWiaGTJkiERFRclPP/0kSUlJ8thjj0mrVq3k5s2bapvFixeLm5ubxMTEyIkTJ+Spp54SX19fyczMVNtMnTpVWrRoIbt375Zjx47JgAEDpHv37lJQUGCLzaqRw4cPS+vWraVbt27ywgsvqOX2Mg5//PGHBAQEyMSJE+X777+XlJQU+eabb+TcuXNqG3sZi7fffluaNm0qX331laSkpMjmzZulcePGsnTpUrVNQx2LHTt2yCuvvCIxMTECQGJjYy3qtdrusLAwCQwMlIMHD8rBgwclMDBQHn/88brazEqpaCxu3LghAwcOlE2bNsnp06clISFBevXqJT169LDoo67Gwq6S9IMPPihTp061KOvYsaPMnz/fRhHVvqtXrwoAiY+PFxGRoqIi8fHxkcWLF6tt/vzzT/Hw8JBPPvlERG5PUicnJ9m4caPa5vLly2IwGGTnzp11uwE1lJWVJe3bt5fdu3dL//791SRtT+Mwb9486dOnT7n19jQWjz32mEyePNmi7C9/+Ys8/fTTImI/Y1E6MWm13adOnRIAcujQIbVNQkKCAJDTp0/X8lZVj7U/WEo7fPiwAFB36OpyLOzmcHdeXh6OHj2KwYMHW5QPHjwYBw8etFFUtS8jIwMA4OnpCQBISUnBlStXLMbBaDSif//+6jgcPXoU+fn5Fm38/PwQGBhY78Zq+vTpeOyxxzBw4ECLcnsah23btiE4OBijRo2Cl5cXgoKCsGrVKrXensaiT58+2LNnD37++WcAwPHjx/Hdd99h2LBhAOxrLMxptd0JCQnw8PBAr1691Da9e/eGh4dHvR0b4PbvUUVRcM899wCo27Gwm2/BunbtGgoLC+Ht7W1R7u3tjStXrtgoqtolIoiIiECfPn0QGBgIAOq2WhuHX3/9VW3j7OyMJk2alGlTn8Zq48aNOHbsGH744YcydfY0DhcuXMCKFSsQERGBl19+GYcPH8asWbNgNBoxYcIEuxqLefPmISMjAx07doSDgwMKCwuxaNEijB07FoB9zQtzWm33lStX4OXlVaZ/Ly+vejs2f/75J+bPn4+//e1v6rde1eVY2E2SLqYoisVnESlT1lDMmDEDP/74I7777rsyddUZh/o0VqmpqXjhhRewa9euCr/TtaGPAwAUFRUhODgY77zzDgAgKCgIJ0+exIoVKzBhwgS1nT2MxaZNm7B27VqsX78eXbp0QVJSEmbPng0/Pz+Eh4er7exhLKzRYrutta+vY5Ofn48xY8agqKgIH3/88V3b18ZY2M3h7mbNmsHBwaHMXzBXr14t89djQzBz5kxs27YNcXFxaNmypVru4+MDABWOg4+PD/Ly8nD9+vVy2+jd0aNHcfXqVfTo0QOOjo5wdHREfHw8PvjgAzg6Oqrb0dDHAQB8fX3RuXNni7JOnTrh4sWLAOxnTgDA3//+d8yfPx9jxoxB165dMX78eLz44ouIjIwEYF9jYU6r7fbx8cH/+3//r0z/6enp9W5s8vPzMXr0aKSkpGD37t0W3x1dl2NhN0na2dkZPXr0wO7duy3Kd+/ejYceeshGUWlPRDBjxgxs2bIFe/fuRZs2bSzq27RpAx8fH4txyMvLQ3x8vDoOPXr0gJOTk0WbtLQ0/PTTT/VmrEJDQ3HixAkkJSWpr+DgYIwbNw5JSUlo27atXYwDADz88MNlbsP7+eefERAQAMB+5gQA5OTkwGCw/LXn4OCg3oJlT2NhTqvtDgkJQUZGBg4fPqy2+f7775GRkVGvxqY4QZ89exbffPMNmjZtalFfp2NR6UvMGoDiW7BWr14tp06dktmzZ0ujRo3kl19+sXVompk2bZp4eHjIvn37JC0tTX3l5OSobRYvXiweHh6yZcsWOXHihIwdO9bqrRYtW7aUb775Ro4dOyaPPvqo7m8xuRvzq7tF7GccDh8+LI6OjrJo0SI5e/asrFu3TlxdXWXt2rVqG3sZi/DwcGnRooV6C9aWLVukWbNmMnfuXLVNQx2LrKwsSUxMlMTERAEg77//viQmJqpXLGu13WFhYdKtWzdJSEiQhIQE6dq1q+5uwapoLPLz8+WJJ56Qli1bSlJSksXv0dzcXLWPuhoLu0rSIiIfffSRBAQEiLOzszzwwAPqrUkNBQCrr6ioKLVNUVGRLFy4UHx8fMRoNEq/fv3kxIkTFv3cunVLZsyYIZ6enmIymeTxxx+Xixcv1vHWaKt0krancfjyyy8lMDBQjEajdOzYUVauXGlRby9jkZmZKS+88IK0atVKXFxcpG3btvLKK69Y/PJtqGMRFxdn9XdDeHi4iGi33b///ruMGzdO3NzcxM3NTcaNGyfXr1+vo62snIrGIiUlpdzfo3FxcWofdTUW/D5pIiIinbKbc9JERET1DZM0ERGRTjFJExER6RSTNBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREenU/wd6Vm7bbYzOFAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -601,7 +705,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gdZdn48e/MnN62955Nz6YnQELoHQRR5EWlSvEFIgroq6IgoiIiisgbiiAE8hMQFF4LUgKCtARIIb1tymZ7L2dPLzO/PwIblt0N2c3uni33x+tcl3tm5pn7hLNnz9zzPPetGIZhIIQQQgghhBBCCDGGqIkOQAghhBBCCCGEEGKwScJDCCGEEEIIIYQQY44kPIQQQgghhBBCCDHmSMJDCCGEEEIIIYQQY44kPIQQQgghhBBCCDHmSMJDCCGEEEIIIYQQY44kPIQQQgghhBBCCDHmSMJDCCGEEEIIIYQQY44kPIQQQgghhBBCCDHmSMJDCCGEGGaKovC3v/0t4WMMp4qKChRFYcOGDSNyPCGEEEKMPZLwEEIIIY7QFVdcgaIoPR67d+/udf+6ujrOOuuswxr7pz/9KXPmzDmiMcaigoIC6urqKCsrA+A///kPiqLQ3t6e2MCEEEIIMWKYEh2AEEIIMRaceeaZLF++vNtzGRkZ3X6ORCJYLBays7OP+HyDMcZopmnauP83EEIIIcShyQwPIYQQYhBYrVays7O7PU455RS+9a1vcfPNN5Oens5pp50G9FyOUl1dzVe/+lVSU1NxOp0sWLCADz74gCeeeII77riDjRs3ds0aeeKJJ3odY/PmzZx88snY7XbS0tL45je/ic/n69p+xRVXcP755/Ob3/yGnJwc0tLSWLp0KdFo9HNf2y233MIxxxzT4/lZs2Zx++23d/28fPlypk2bhs1mY+rUqTz44IOHHPett97iqKOOwmq1kpOTww9/+ENisVjXdl3Xufvuu5k4cSJWq5XCwkLuvPNOoPuSloqKCk466SQAUlJSUBSFK664ghUrVpCWlkY4HO523gsuuIDLLrvsc1+3EEIIIUY3meEhhBBCDKEnn3yS6667jvfeew/DMHps9/l8nHDCCeTl5fGPf/yD7Oxs1q9fj67rXHTRRWzZsoVXXnmF119/HYCkpKQeYwQCAc4880yOOeYY1qxZQ2NjI1dffTXf+ta3uhIkAG+++SY5OTm8+eab7N69m4suuog5c+ZwzTXXHPI1XHzxxfzqV79iz549lJaWArB161Y2b97MX//6VwAeffRRbr/9dpYtW8bcuXP56KOPuOaaa3A6nVx++eU9xqypqeHss8/uSkzs2LGDa665BpvNxk9/+lPgQKLl0Ucf5Xe/+x1Lliyhrq6OHTt29BiroKCA559/ngsuuICdO3fi8Xiw2+1YLBa+/e1v849//IMLL7wQgObmZl588UVeeeWVQ75mIYQQQvRfZ2cnJ598MtFolHg8zre//e3P/Z4xlCThIYQQQgyCF198EZfL1fXzJ/U1Jk6cyK9//es+j3v66adpampizZo1pKamdh3zCZfLhclkOuTyjaeeeopgMMiKFStwOp0ALFu2jHPPPZe7776brKws4MDsh2XLlqFpGlOnTuWcc87h3//+9+d+ESkrK2PWrFk8/fTT3HbbbV3nXLhwIZMnTwbg5z//Ob/97W/58pe/DEBJSQnbtm3jD3/4Q68JjwcffJCCggKWLVuGoihMnTqV2tpafvCDH/CTn/wEv9/P73//e5YtW9Z1fGlpKUuWLOkxlqZpXf92mZmZJCcnd237+te/zvLly7sSHk899RT5+fmceOKJh3zNQgghxEgRCoWIRCIDOtZisWCz2QY5or45HA7eeustHA4HgUCAsrIyvvzlL5OWljZsMXyaJDyEEEKIQXDSSSfx0EMPdf3sdDr52te+xoIFCw553IYNG5g7d27XBftAbN++ndmzZ3clOwCOPfZYdF1n586dXQmPGTNmoGla1z45OTls3rz5sM5x8cUX8/jjj3PbbbdhGAbPPPMMN954IwBNTU1UVVVx1VVXdUuexGKxXmekfBLzokWLUBSlW8w+n4/q6mrq6+sJh8Occsoph/3v0JtrrrmGhQsXUlNTQ15eHsuXL+8qMiuEEEKMdKFQiJLiLOobvAM6Pjs7m3379g1b0kPTNBwOB3Ag9ng83usM1+EiCQ8hhBBiEDidzm4zMz79/KHY7fYjPrdhGH1ewH/6ebPZ3GObruuHdY6vf/3r/PCHP2T9+vUEg0Gqqqr46le/CtA1xqOPPsrRRx/d7bhPJ1g+L+ZPvhApijIo/y4Ac+fOZfbs2axYsYIzzjiDzZs3889//nNQxhZCCCGGWiQSob7By/7td+Bx9y9p4e0MUTTtdiKRyGEnPN5++23uuece1q1bR11dHf/3f//H+eef322fBx98kHvuuYe6ujpmzJjBfffdx3HHHde1vb29nRNOOIHy8nLuuece0tPT+xX3YJKipUIIIUQCzZo1iw0bNtDa2trrdovFQjweP+QY06dPZ8OGDfj9/q7n3nvvPVRV7VpycqTy8/M5/vjjeeqpp3jqqac49dRTu2aOZGVlkZeXx969e5k4cWK3R0lJSZ8xr1q1qttdn1WrVuF2u8nLy2PSpEnY7Xb+/e9/H1Z8FosFoNd/q6uvvprly5fz+OOPc+qpp1JQUNDfly+EEEIklNttxe3p58Nt7fd5/H4/s2fPZtmyZb1uf/bZZ7nxxhv58Y9/zEcffcRxxx3HWWedRWVlZdc+ycnJbNy4kX379vH000/T0NAw4Nd9pCThIYQQQiTQ1772NbKzszn//PN577332Lt3L88//zyrV68GoLi4mH379rFhwwaam5t7dByBA8tNbDYbl19+OVu2bOHNN9/khhtu4NJLL+1KSgyGiy++mD//+c/85S9/4ZJLLum27ac//Sl33XUXv//979m1axebN29m+fLl3Hvvvb2Odf3111NVVcUNN9zAjh07+Pvf/87tt9/OzTffjKqq2Gw2fvCDH/D973+fFStWsGfPHt5//30ee+yxXscrKipCURRefPFFmpqaunWoufjii6mpqeHRRx/lyiuvHLR/DyGEEGI08Hq93R69fZf4xFlnncUvfvGLrppcn3Xvvfdy1VVXcfXVVzNt2jTuu+8+CgoKui3r/URWVhazZs3i7bffHrTX0l+S8BBCCCESyGKxsHLlSjIzMzn77LOZOXMmv/rVr7qWglxwwQWceeaZnHTSSWRkZPDMM8/0GMPhcPDqq6/S2trKwoUL+cpXvsIpp5zS592ZgbrwwgtpaWkhEAj0mN569dVX88c//pEnnniCmTNncsIJJ/DEE0/0OcMjLy+Pl156iQ8//JDZs2dz7bXXctVVV3Hrrbd27XPbbbfx3e9+l5/85CdMmzaNiy66iMbGxj7Hu+OOO/jhD39IVlYW3/rWt7q2eTweLrjgAlwuV4+4hRBCiLGuoKCApKSkrsddd901oHEikQjr1q3j9NNP7/b86aefzqpVqwBoaGjA6z1Qb8Tr9fL2228zZcqUI3sBR0AxEllBRAghhBBiGJx22mlMmzaN+++/P9GhCCGEEIfN6/WSlJRES/VdeDz9rOHhDZGWfwtVVVV4PJ6u561WK1br5y93URSlWw2P2tpa8vLyeO+991i8eHHXfr/85S958skn2blzJ+vWreOqq67CMAwMw+C6667juuuu61fcg0mKlgohhBBizGptbWXlypW88cYbgz7jRQghhBgNPB5Pt4THkeqt6Pgnz82fP58NGzYM2rmOlCQ8hBBCiHHunXfe4ayzzupz+6frYYw28+bNo62tjbvvvjuhU2qFEEKII2F8/OjvMYMpPT0dTdOor6/v9nxjY+Og1gwbTJLwEEIIIca5BQsWjKi7MYOpoqIi0SEIIYQQY4LFYmH+/Pm89tprfOlLX+p6/rXXXuOLX/xiAiPrmyQ8hBBCiHHObrczceLERIchhBBCiATz+Xzs3r276+dPOsWlpqZSWFjIzTffzKWXXsqCBQtYtGgRjzzyCJWVlVx77bUJjLpvkvAQQgghhBBCCCFGMOPj//X3mP5au3YtJ510UtfPN998MwCXX345TzzxBBdddBEtLS387Gc/o66ujrKyMl566SWKior6fa7hIF1ahBBCCCGEEEKIEeiTLi1N1b8cUJeWjPwf0dHRMahFS0cTmeHRC13Xqa2txe1296hAK4QQQgghhBBi/DAMg87OTnJzc1FVNSEx6IaB3s+5Cv3dfyyShEcvamtrKSgoSHQYQgghhBBCCCFGiKqqKvLz8xMdhugHSXj0wu12Awfe0ON16o8YmQzD4Ctf+Qqvv/46c+bM4fXXX8dsNic6LCGEEEIIIcYsr9dLQUFB13ViIhxJW9qFCxeiaRpLly5l6dKlgxzZyCYJj158sozF4/FIwkOMKH/84x95/fXXsVqtPPXUU6SlpSU6JCGEEEIIIcaF0VruYM2aNeP2ujYxC5CEEP22b98+brrpJgDuvPNOpk+fnuCIhBBCCCGEEGLkkhkeQowCuq7zjW98A5/Px3HHHceNN96Y6JCEEEIIIYQQw2S42tKONTLDQ4hRQNd1TjjhBJKSkli+fDmapiU6JCGEEEIIIYQY0SThIcQoYDKZuOOOO9i3bx+lpaWJDkcIIYQQQggxjIwBPsY7SXgIMYLFYjEikUjXzykpKQmMRgghhBBCCCFGD0l4CDGC3X333RxzzDFs2bIl0aEIIYQQQgghxKgiRUvHiZrddWxfvYuqXbWYTBqlc0qYdswkUrKSEx2a6MOGDRu44447iEajbNiwgbKyskSHJIQQQgghhEgAHQO9n4tU+rv/WCQJj3Fg/eubeOOZd/G1+3G47ehxgz0b9/PRG5v5wn+fRtH0gkSHKD4jHA5z2WWXEY1G+dKXvsTFF1+c6JCEEEIIIYQQYlSRJS1jXNXOGv799DsoKJSUFZJdnEluaRbFZYW01bfz8mNvEOgMJjpM8Rk//elP2bx5MxkZGTz88MMoipLokIQQQgghhBAJciRFSxcuXMj06dN54IEHhjvshJMZHmPc1lU7CXiDlJQVdnteVRXyJuVQuaOG8vV7mX3CjARFKD5r9erV/PrXvwbg4YcfJjMzM8ERCSGEEEIIIUarNWvW4PF4Eh1GQkjCY4yr3FaN0+PodZtm0gBo2N80nCGJQwgEAlx++eXous4ll1zCl7/85USHJIQQQgghhEiwgbSZlQoekvAY8xRVwTAO8VY3Dsz2ECNDe3s7GRkZBAIB7r///kSHI4QQQgghhBCjltTwGONK55bg7wj0mvSIRmKomkpuaXYCIhO9yc3N5e233+att94iJSUl0eEIIYQQQgghxKglCY8xrmzxFJKzkqjdXY+u613PRyMxqnfWkj85h9I5xYkLUAB0S0hpmkZpaWkCoxFCCCGEEEKMJLoxsMd4J0taxrjMwgzOvvoUXl3+JhVbqjCZNfSP3/kF0/I4579Pw2q3JjhKcc011+DxeLjzzjux2+2JDkcIIYQQQgghRj1JeIwDk+eXklWUwa61e6ivaEIzqRROzaN0bgl2py3R4Y17//znP3nsscdQFIULL7yQRYsWJTokIYQQQgghxAgiRUsHRhIe40RSuoeFZ85NdBjiM1paWrjmmmsA+O53vyvJDiGEEEIIIYQYJJLwGOXa2wPs2FnL7t2NxHWd/LwUpk/LIycnOdGhicNw/fXX09DQwPTp0/n5z3+e6HCEEEIIIYQQYsyQhMcoVlnZwj9e/IjGhg6sNjOqqrBnTyPrP9rPqafMYO6cokSHKA7h2Wef5bnnnkPTNFasWIHNJsuLhBBCCCGEEL2TJSr9JwmPUSoQCPOvlzbQ0tJJcUkGqqoAB7p9NDZ18trrW8hId5Ofn5rgSEVv6urquP766wG49dZbmT9/foIjEkIIIYQQQoixRdrSjlLl5Q3UN3SQn5/alewAUBSFrEwPfl+YLduqExihOJStW7cSi8WYN28eP/7xjxMdjhBCCCGEEGIEMwb4AFi4cCHTp0/ngQceGO6wE05meIxS9Q0dAGha7zkrh8vK/orm4QxJ9MOpp57Kli1bCIVCmM3mRIcjhBBCCCGEGKPWrFmDx+NJdBgJIQmPUUpRPmcHw0BRP28nkUgFBQWJDkEIIYQQQgghxixZ0jJK5eamoCgK0Wi8xzbDMPD7I5ROyExAZKIvuq5z8cUX8/LLLyc6FCGEEEIIIcQooqMM6DHeScJjlJpYmkV+XgrV1a3EYgeTHrpuUFvbTlKSnRkz8hMYofisZcuW8fTTT3PhhRfS3CzLjYQQQgghhBBiKMmSllHKZjPzhS/M5R///Ijq6lYUVUVRIBbVSU11cuYZs8jOSkp0mOJjO3fu5Ac/+AEA99xzD+np6QmOSAghhBBCCDFafLoIaX+OGe8k4TGKZWclcenFi9m1q579lS3E43FycpKZMjmHlBRnosMTH4vFYlx++eWEQiFOO+00rr322kSHJIQQQgghhBBjniQ8Rjm73cLs2YXMnl2Y6FBEH37961/zwQcfkJSUxOOPP47yuRVnhRBCCCGEEOIgw1AwjP5dR/R3/7FIangIMYQ2btzIT3/6UwD+93//l/x8qasihBBCCCGEEMNBEh5CDKEXXniBaDTK+eefzyWXXJLocIQQQgghhBBi3JAlLUIMoTvuuIPZs2dz7LHHylIWIYQQQgghxIDoHz/6e8x4JwkPIYbYl7/85USHIIQQQgghhBDjjixpEWKQBQIBbrjhBhoaGhIdihBCCCGEEGIMMFAG9BjvJOEhxCC75ZZbWLZsGWeccQaGId2vhRBCCCGEECIRJOEhxCB68803uf/++wG4++67pW6HEEIIIYQQIqEWLlzI9OnTeeCBBxIdyrCTGh5CDBKv18s3vvENAP77v/+bM844I8ERCSGEEEIIIcaCgSxR+WT/NWvW4PF4hiKsEU9meAgxSG666Sb2799PSUkJv/nNbxIdjhBCCCGEEEKMazLDQ4hB8OKLL/L444+jKApPPPEELpcr0SEJIYQQQgghxghpSzswMsNDiCNkGAZ33XUXcGCWx/HHH5/giIQQQgghhBBCJDzh8eCDD1JSUoLNZmP+/Pm88847h9z/rbfeYv78+dhsNiZMmMDDDz/cY5/77ruPKVOmYLfbKSgo4KabbiIUCg3VSxDjnKIovPLKK/zkJz/hF7/4RaLDEUIIIYQQQowxhqEM6DHeJTTh8eyzz3LjjTfy4x//mI8++ojjjjuOs846i8rKyl7337dvH2effTbHHXccH330ET/60Y/49re/zfPPP9+1z1NPPcUPf/hDbr/9drZv385jjz3Gs88+yy233DJcL0uMQ263mzvuuAO73Z7oUIQQQgghhBBCkOCEx7333stVV13F1VdfzbRp07jvvvsoKCjgoYce6nX/hx9+mMLCQu677z6mTZvG1VdfzZVXXtmtQOTq1as59thj+frXv05xcTGnn346X/va11i7du1wvSwxTtTV1fHwww+j67I6TgghhBBCCCFGmoQlPCKRCOvWreP000/v9vzpp5/OqlWrej1m9erVPfY/44wzWLt2LdFoFIAlS5awbt06PvzwQwD27t3LSy+9xDnnnNNnLOFwGK/X2+0xWsXjcbkAHwaGYfDNb36T6667jptvvjnR4QghhBBCCCHGsE/a0vb3Md4lrEtLc3Mz8XicrKysbs9nZWVRX1/f6zH19fW97h+LxWhubiYnJ4evfvWrNDU1sWTJEgzDIBaLcd111/HDH/6wz1juuusu7rjjjiN/UQliGAYVWyrZ8u4OKrZWgQITZhUx87jpFE7NS3R4Y9Ly5ct58cUXsVgsXH311YkORwghhBBCCCHEZyS8aKmidM86GYbR47nP2//Tz//nP//hzjvv5MEHH2T9+vW88MILvPjii/z85z/vc8xbbrmFjo6OrkdVVdVAX86wMwyDNa9s4Lnf/IOP3thMLBInFo6x9tWNPPfrv7HxP1sTHeKYs3//fm688UYAfvGLX1BWVpbYgIQQQgghhBBj2oG2tEo/HyJhMzzS09PRNK3HbI7GxsYeszg+kZ2d3ev+JpOJtLQ0AG677TYuvfTSrrvuM2fOxO/3881vfpMf//jHqGrPHI/VasVqtQ7Gyxp2dXsbePsvqzBbzOSUHPx3S8tNpWF/E/9++h3yJmWTnpeWwCjHDl3X+cY3vkFnZyeLFy+W5SxCCCGEEEIIMUIlbIaHxWJh/vz5vPbaa92ef+2111i8eHGvxyxatKjH/itXrmTBggWYzWYAAoFAj6SGpmkYhtE1G2Qs2f5BOb6OAGm5KT22ZRam09HsZeeaPQmIbGxatmwZb775Jg6HgyeffBJN0xIdkhBCCCGEEEKIXiRshgfAzTffzKWXXsqCBQtYtGgRjzzyCJWVlVx77bXAgaUmNTU1rFixAoBrr72WZcuWcfPNN3PNNdewevVqHnvsMZ555pmuMc8991zuvfde5s6dy9FHH83u3bu57bbbOO+888bkxWndngbsTluvy4AURcFqs9CwvykBkY097e3t3HrrrQDcc889TJw4McERCSGEEEIIIcaDgRQhlaKlCU54XHTRRbS0tPCzn/2Muro6ysrKeOmllygqKgIOtP2srKzs2r+kpISXXnqJm266iQceeIDc3Fzuv/9+Lrjggq59br31VhRF4dZbb6WmpoaMjAzOPfdc7rzzzmF/fcPBbDURj8X73K7HdUyWsZfoSYTk5GT+/e9/s3z5cq677rpEhyOEEEIIIYQQ4hAUYyyu8zhCXq+XpKQkOjo68Hg8iQ7nkNau3MiLf1hJ0fQCNK37Up5oJEb1rlq+/J1zmHnctARFKIQQQgghhBCjVyKvDz859/qKX+P22Pt1bKc3yLzi74+K69qhkvAuLeLITD1qInkTs6ncXk0kHO16PhyMULWjhsJpeUycV5LACEe/bdu2sWXLlkSHIYQQQgghhBD9tnDhQqZPn84DDzyQ6FCGXUKXtIgj50p2cu51Z/DSH/9NTXkd8VgcRVHQzBoTZhdx9tWnYHfaEh3mqBWJRPj617/O9u3befbZZzn//PMTHZIQQgghhBBinDE+bjXb32MA1qxZM25neEjCYwzILs7kktu+wr5N+2msbD7wXEkmJTMLMZnlP/GR+NnPfsbGjRtJS0tj0aJFiQ5HCCGEEEIIIcRhkqvhMcJiNTNl4USmLJTOIYPlgw8+4K677gLg4YcfJisrK8ERCSGEEEIIIYQ4XJLwEKIXgUCAyy67DF3X+drXvsZXvvKVRIckhBBCCCGEGKcMQ8Ew+rmkpZ/7j0VStFSIXvzoRz9i165d5OTksGzZskSHI4QQQgghhBCin2SGhxCf8eGHH/L73/8egMcee4zU1NQERySEEEIIIYQYzwyUriKk/TlmvJOEhxCfMX/+fO6++26qq6s566yzEh2OEEIIIYQQQogBkISHEJ+haRrf//73Ex2GEEIIIYQQQogjIAkPMaLouk59VRv+ziAWq5m84nRMZm1Yzr1lyxZKS0ux2+3Dcj4hhBBCCCGEOBw6Cno/l6j0d/+xSBIeYsSo3tfEOy9vonpvI+FgFJNZIzMvhUWnzmDqnEIUZeh+YVtbWzn99NNJTk7mxRdfZMKECUN2LiGEEEIIIYQQQ08SHmJEqN3fwj9WvEtbk4+M3GTsTguRcIymunb+9fRqDMNg+rziITv/0qVLqaurIykpiZycnCE7jxBCCCGEEEL0lxQtHRhpSysSzjAM1ry1nZaGTgonZeJwWVEUBavtwJIWXddZ9dpWIuHYkJz/ueee489//jOapvHkk0/KkhYhhBBCCCGEGAMk4SESrqPVz97tdaRluXtdtpKRk0xTbTvVexsH/dz19fVcf/31ANxyyy0cddRRg34OIYQQQgghhDgSBgqG0c+HzPCQJS3ioE5vkN0762hvC2AyaRQUp1FQlI6mDW1eLByMEI3E8CT3PrPCbDERj8cJBSODel7DMLjmmmtoaWlhzpw53HbbbYM6vhBCCCGEEEKIxJGEhwBg+5ZqXn95E60tPhTAwMBiMTF5Wh5nnjcXp9M6ZOd2uGxYbWaCgQhWu6XH9nAwgsmk4XTbBvW8K1as4MUXX8RisbBixQoslp7nFkIIIYQQQggxOknCQ1C1v5mX/76eSCRGUUk6qnpgRkcgEGbzhv0oqsKX/uuoIeuS4k52MGlmAWvf3oEn2YH6qRklhmHQWNdBblEa+SUZg3rek046iVNOOYXTTjuNmTNnDurYQgghhBBCCDFYpC3twEjCQ7Bx3X58nSGKJmR0S2o4HFYys5LYvaOW2uo28gpShyyGo06cSs2+JvaXN5Ca6cHhshIORWlp8OL02Flyxiw0kzao5ywsLGTlypUYhjGo4wohhBBCCCGESDwpWjrORcIx9pbX40l29DqDw+myEgxGqalqGdI40rOTOP+KJcxZPIlIOEZDTRt+b4hJZfmcf/kSSqfnDtq5ampquv6/qqpo2uAmUoQQQgghhBBiMBkDfIx3MsNjnIvrOrph9FmYVFEUFEUhHteHPJaMnGTOvWQx7S0+fN4gVpuZ9OykQV1KU15ezpw5c7j00kv5/e9/j9U6dLVJhBBCCCGEECLRFi5ciKZpLF26lKVLlyY6nGElCY9xzmYzk5GVxP69jSQlO3psj0RiqKpCWoZ72GJKTnORnOYa9HHj8TiXX345gUCA3bt3YzabB/0cQgghhBBCCDGSrFmzBo/Hk+gwEkKWtIxziqIwe24RhmHQ6Q1226brBnU1beTmp1BSmtWvcf2+EA117bS1+kdMjYx77rmH1atX4/F4ePzxx7uKswohhBBCCCHESGagDOgx3skMD8G0mfnU1rSy9v09tLX4cLpsxGJxAv4ImdlJnHHOHMzmw6tz0d7mZ82q3WzbUkUoGMVk0iguzWThookUFqcP8Svp2+bNm/nJT34CwO9//3sKCwsTFosQQgghhBBCiKEnCQ+BpqmccuYsCosz2LKxkoa6dlxuG4uOm8L0WQWkHubykvY2P//37AdU7G0kJcVFSpqLaCTG1k2VVFU0c+5XFlA6KXuIX01PkUiEyy67jGg0yrnnnsvll18+7DEIIYQQQgghxEDphoJu9LMtbT/3H4sk4SGAA0mPqTPymDojD8MwBlQodO3qPezf20RxSSaa6cByEZvNjMtto3p/C2+9tpWikgxMg9xe9vP8/Oc/Z8OGDaSmpvLII48MahFUIYQQQgghhBAjkxQxED0MJCEQ8IfZtqWKpBRHV7Lj0+Nl5iRRX9dO5b7mwQrzsM2ZM4f09HQefvhhsrOHf4aJEEIIIYQQQhwJqeExMDLDQwyKgD9MKBjttdMLgNVqJh7T8flCwxwZXHDBBZxyyikkJycP+7mFEEIIIYQQQiSGJDzEoLBYzZjNGpFIDLvDAoAej9NW1ULL/kaCviDBSJymhUXEZ+WjaUO/rCUQCOBwODAMg6SkpCE/nxBCCCGEEEKIkUOWtIhB4UmyUzo5m9ZmH4ZhEA1H2fHmFrau/Ii6HdU07mvEX9PCe8++yyuPv0E0Eh3SeN566y1KSkp4/vnnURRF6nYIIYQQQgghRi1Z0jIwkvAQg2bBMaWkpDmprGhmzwe7aCyvwZ7kwOR2YEt2Mv2oiWTkprL21Y2seWXDkMXR2dnJFVdcQWNjI6+88sqQnUcIIYQQQgghxMglS1rEoMnNT+X8C4/i1b+v491X16EbCsFwHLvTQn5hGtm5ySgoODscfPDKRkxuJygKSSlOiqfkYLWZByWO7373u1RUVFBcXMy99947KGMKIYQQQgghRKLoKOj9nLHR3/3HIkl4iEFVWJLB8UsmsWflOlLz0zFbTCQlO7pa0cbjOh3BOFXbq2kOvIvdZUdVISM3hZPOncvEGXlHdP6XX36ZRx99FIDly5fjdruP+DUJIcRI0OILsLmyjvL6FnTDYEJmKrMKc8hKciU6NCGEEEKIEUkSHmLQaSYVh9NGZlYSqtZ91VRVVRu1tR0oCuQWppGU7iYaidFQ3ca/nlnNBVedQH5JxoDO29raylVXXQXAjTfeyIknnnikL0UIIUaEXXXN/PWDzTR0dGIzm1EU2FbdwKpd+zl/wQxmF+UkOkQhhBBCiBFHaniIQZdZmI4nzUV7Y0e350OhKA31nRDX8aQ4cCYdaGFrtpjIK0nH2xZgw6ryAZ/3hhtuoK6ujilTpvDLX/7yiF6DEEKMFB2BEM9/uJlWf4CJ2ekUpidTkJbMpOx0gpEof1u7lfr2zkSHKYQQQoihZIDRzwdGooNOPEl4iEHnSXVTtmQa7U1egr5Q1/PejhABXxiMONnFmZjMB1vTKopCSrqLvdtr8XeGehv2kGKxGC6XC03TWLFiBXa7fVBeixBCJNqW6gbq2zspTEtG/VTHKUVRyE9NotUXYFNlXQIjFEIIIYQYmWRJixgSS758NJ2tPrau3oke07FYzTQ0+YhGopROzyV3YnaPY0xmjWAkRiwa7/f5TCYTf/jDH/j+979PaWnpYLwEIYQYEfY3tWHWNDS15z0KRVFwWCzsaWhJQGRCCCGEGC4DaTMrbWkl4TFqBfxhIpEYDqcVi2Xk/We0Oayce93plC2Zyq51e+hs85MbM9i1q4mCabloWs8v7n5vkKRUFw6X9bDPYxgH5mkpH9/1lGSHEGKsUZRDz0g1MLo+A4UQQgghxEEj70pZHFJdbRvrP9zL7h11xGJxHC4bs+YUMmfhBJzOw08UDAeT2cSkeROYNG8CANFIjD/d/xp1lS0UlGZ0+4IeDkUJ+CMsOXMC5n4kcFasWMGf/vQnHn/8cQoKCgb9NQghRKKVZKTy/u4q4rreY5aHYRgEIlEmZqclKDohhBBCDAeZ4TEwUsNjFKnc18Rfn1rN2tV7QAG7w4q/M8TrL2/mb89+gN/X/9oXw8lsMXHyF+eRlOqkYmc9rU1eOtsD1Fe1Uru/hWlzipi9aOJhj1dVVcW3v/1tXn/9df785z8PYeRCCJE40/MzyUvxUNHURlzXu57XdYPKlnYyPU5mF0qXFiGEEEKIz5IZHqNEPKbzxsotdLT5Kf7U7AiX20Y0EqN8Zx3rPtzL8SdPT3Ckh1Y0KYuvXH0CGz/Yw65NVYRDUVIy3JxwdCkzj5qAzW45rHF0XefKK6/E6/VyzDHHcPPNNw9x5EIIkRgeu40Lj57JXz7YxJ7GVsyqCgpEY3Eyk1x8eWEZGR5XosMUQgghhBhxJOExSlRWNFFb1UpWbnKPtdpmiwm3286WDZUcvXgSVpt5WGLytfvZuWY35ev3EglFyS7JZNrRk8ifnHvI9eRZ+amcnp/KCefMIRaNYbNb0Exan/v35qGHHuL111/Hbrfz5JNPomn9O14IIUaTksxUrj31GLZUNbCvsRXdMCjOSGFGfhapLkeiwxNCCCHEENNR0Pu5RKW/+49FkvAYJbwdQWJxHau192SG02Wl0xvE5wsNS8KjsbKJvz/4KrXl9ZitZkxmjX2bK9nwxhaWfPloFp274HOL6Flt5gHFWl5ezve//30A7r77biZPnjyg1yCEEKOJx25j8eQiFk8uSnQoQgghhBCjgiQ8RgmzRUMB4nG91w4n0Wgck0nDbB76/6SxaIyXH3uD2t31FE7L6zY7o7W+nbeeW0VGflpXsdLBFI/HueKKKwgEApx88sksXbp00M8hhBBCCCGEECOJYSgYRj+LlvZz/7FIipaOEoXFGSQlO2hr9fXYZhgGbS0+SiZm4fbYhjyWii1VVO2qJbc0u8dSlNTsZGKROJve3jYk566rq6O1tRW3283jjz+OqspbWAghhBBCCCFET3K1OEq43DbmH1OK3xemuakT/eNK/ZFIjJqqVtxJduYfPeFzl5EMhsbKZuLRONY+Cox60lxU76olEo4O+rnz8/NZv349r732GkVFMq1bCCGEEEIIIUTvZEnLKHLMkslgwNr3d1NV0QIKKIpCVnYSJ58xk4Ki9OEJRAGMvjcbxoG4hir3YrfbOfroo4dmcCGEEEIIIYQYYQwOeQnW5zEACxcuRNM0li5dOu5KAkjCYxTRNJVjT5zKzLlFVO5rIhKJ4fLYKJ6QicUyfP8pc0oyMVtNhPxhbE5rj+3eFi+zTyrDbBm84ql33nknZrOZ7373u9KRRQghhBBCCCEO05o1a/B4PIkOIyEk4TEKeZLslM0pTNj5C6fnU1xWwK61eymYkov5484xhmHQVNWCzWVj1vHTB+18a9as4fbbbycejzN79mzOOOOMQRtbCCGEEEIIIUa6AzM8+lm0dGhCGVUk4SH6TdM0zrrqFGLROBVbq8AAzaQRDUfxpLs55avHUVI2OAmZYDDIZZddRjwe56tf/aokO4QQQgghhBBCHJaEFy198MEHKSkpwWazMX/+fN55551D7v/WW28xf/58bDYbEyZM4OGHH+6xT3t7O0uXLiUnJwebzca0adN46aWXhuoljEspWclc9P0v8pWbvsC802YxfdFkTr30eC67/ULmnjxz0M5z6623smPHDrKzs1m2bNmgjSuEEEIIIYQQYmxL6AyPZ599lhtvvJEHH3yQY489lj/84Q+cddZZbNu2jcLCnjME9u3bx9lnn80111zDn/70J9577z2uv/56MjIyuOCCCwCIRCKcdtppZGZm8te//pX8/Hyqqqpwu93D/fLGPKvdyvRFU5i+aMqQjP/WW2/xu9/9DoA//vGPpKWlDcl5hBBCCDG+BWIh9viqqPDXEjNiZFnTmOwpIt2akujQhBACAN1Q0I3+LWnp7/5jkWIYRsKW9hx99NHMmzePhx56qOu5adOmcf7553PXXXf12P8HP/gB//jHP9i+fXvXc9deey0bN25k9erVADz88MPcc8897NixA7N5YEUzvV4vSUlJdHR0jNviLonW2dnJ7Nmz2bdvH1dddRV//OMfEx2SEEIIIcagpnAbL9W+Q02wEU1R0RSVsB7FY3JyQuYCZiVPTnSIQogES+T14SfnfrH8UZxuR7+O9XcG+MKka8b1dW3ClrREIhHWrVvH6aef3u35008/nVWrVvV6zOrVq3vsf8YZZ7B27Vqi0SgA//jHP1i0aBFLly4lKyuLsrIyfvnLXxKPx/uMJRwO4/V6uz1EYq1atYqamhqKioq49957Ex2OEEIIIcagqB7j1bpV1AQbyLdnUeDIJteeSbEjl7ih80bDh1QF6hMdphBCYKAM6DHeJSzh0dzcTDweJysrq9vzWVlZ1Nf3/oelvr6+1/1jsRjNzc0A7N27l7/+9a/E43Feeuklbr31Vn77299y55139hnLXXfdRVJSUtejoKDgCF+dOFKfJLKeeeaZcZuNFEIIIcTQqvDXUhNsINeeiUk92PZeURQybakE4yG2dexNYIRCCCGORMK7tChK96yTYRg9nvu8/T/9vK7rZGZm8sgjj6BpGvPnz6e2tpZ77rmHn/zkJ72Oecstt3DzzTd3/ez1eiXpMQLMnDl4xU+FEEIIIT6rMdRC3IhjUXtfBu0yOajw16AbOqqS8Fr/QohxbCAzNmSGRwJneKSnp6NpWo/ZHI2NjT1mcXwiOzu71/1NJlNXQcucnBwmT56Mph3M0k+bNo36+noikUiv41qtVjweT7eHSIzbbruNtWvXJjoMIYQQQowbh7ogUDBIWLk7IYQQRyhhCQ+LxcL8+fN57bXXuj3/2muvsXjx4l6PWbRoUY/9V65cyYIFC7oKlB577LHs3r0bXde79tm1axc5OTlYLJZBfhViML3wwgv84he/YMmSJdTV1SU6HCGEGFcMw6Cyo513Kit4e38F5S0txD/1t1SIsSjDloKqqET1aK/bfTE/xc5cmd0hhBCjVEKXtNx8881ceumlLFiwgEWLFvHII49QWVnJtddeCxxYalJTU8OKFSuAAx1Zli1bxs0338w111zD6tWreeyxx3jmmWe6xrzuuuv43//9X77zne9www03UF5ezi9/+Uu+/e1vJ+Q1isPT0NDAf//3fwPw3e9+l5ycnARHJIQQ44c3HOL57dvY0thAIBpFAcyaxqTUVL4yvYxsl7R2F2NTiTOPPHsmVYF6ChxZaMqBGcKGYdASacemWZnmKU1wlEIIAYZx4NHfY8a7hCY8LrroIlpaWvjZz35GXV0dZWVlvPTSSxQVFQFQV1dHZWVl1/4lJSW89NJL3HTTTTzwwAPk5uZy//33c8EFF3TtU1BQwMqVK7npppuYNWsWeXl5fOc73+EHP/jBsL8+cXgMw+Daa6+lubmZWbNmcfvttyc6JCGEGDei8TjPbNnER3V15Lrd5Ls9KIpCIBpha2MjgegGrl2wEI/VluhQxQgVikcIxiNYVTMOkzUhMRiGgT8ewjAMnCbbYc/IMKtmTs9exMt171IVaMCkaGiKSkiP4DY5ODFzIYWO7CGOXgghxFBRDEPyPp+VyD7L49GKFSu4/PLLMZvNrF27llmzZiU6JCGEGDe2Njbw8Lo15Lrc2M3dCzfGdJ09bS18vWw2xxUVJyZAMWK1R3ysaS1nS3sFIT2CRTExLamQhamTybAlDUsMhmGwq7Oaj9p2Ux1owsAgy5bC7ORSypJL0A4z8eGPBSnv3M8+fw1RPUaOPZ1J7iKybelD/AqEEKNBIq8PPzn3/+16HKfb0a9j/Z0BvjT5ynF9XZvwLi1ifKuqquKGG24A4I477pBkhxBCDLOdLc3Edb1HsgPApKpYNRMbGuok4SG6aQ138peqd9gfaCTZ7MRlshOKR3i3aSt7fHV8pWAJOfbUIY/jw5YdvN6wnpgRJ9nsQkFhv7+RCn8DjaE2Tsmed1izPZwmO3NSpjInZeqQxyyEEGL4SAUmkVAPP/wwXq+XY445hv/5n/9JdDhCCDHuhGMx1EO0g7doGsFo7wUdxfj1bvNW9gcaKXZkkW5NwmmykWb1MMGVTUOojTcbNzHUk4gbQ2283bQJi2qmyJFFktmJx+ygwJFBstnJBy072Oev//yBhBBCjFkyw0Mk1M9//nPy8vI49dRTMZnk7Thc2rwB2jqDmE0qOWkeTCbt8w8SQoxJ6Q4nMV3HMAyUXhIf/miE2W6pYSAOao/42eGtIs3iwaR2//uhKiqZ1mT2+eqpD7UN6SyPnd5qvNEAE5w9C517zE5aIp1sa6+g1JU7ZDEIIcRwMVAwDtlGu/djxju5whQJpaoq119//efu19buZ9uuOsr3NhKP6xTmpTJjai652clDH+QY0t4Z5M115WzbW48/FEFTVXLS3SyaWcKcyXm9XuwIIca2WVnZvLFvD/U+Hznu7t1Y2kNBTKrG3By5YBQHdcYCBGMRsu0pvW53mmw0htvxRgNDmvBojXgxK6Y+/3bZNQuN4Y4hO78QQoiRT5a0iGEXj8f59a9/jc/nO6z9KyqbWfHc+7z0+haqatqob/Tyn9W7WPHcatZvqvz8AQQAXn+IP7+2nlWbKjBpKvmZyWQkO6lr7uT5Nzbywdb9iQ5RCJEAWS4XZ0+aQlSPs7u1hdZgkPZQkL1trbQEg5xYVMLU9IxEhylGELNiwqSqRPRYr9ujRgyTomFWh/a+mlU1EzfifW6P6XFsmmVIYxBCiOHyyQyP/j7GO0l4iGF377338oMf/IAlS5ag6/oh9/UHwrz42iZa2/2UFKaTl5NMTlYSEwrTMQxY+Z+tVNe2DVPko9v6HVXsqW6mJCeFFI8Dk6Zis5opyErGYjbxn3W78fpDiQ5TCJEASwqLuHLufOZk5xDT44RjMSampnHprDmcN2XqIWt8iPEn05ZEviOd5j5mTzSHvWTaksl3DG2HkxJXDqqqEopHemyL6XEiRoypnoIhjUEIIcTIJktaxLDasmULt956KwA33HADqnronNvO3Q3UN3opyk9DVQ9+4VYUhawMD3v3N7FlRy35ub1PqxUHxOI6G3bV4HZYe63XkZniZF9tG7urmpg3Vb4cCjHeKIpCWWYWMzIy8UUiGBi4LFZJdIheqYrKMWnTqAm0UhNoJtOWglnViOlxmsMd6IbBovRpWIZ4hscEVw6T3fls7dhPtjUFp8mGoigEY2HqQi0UOrOY6ikc0hiEEGK4GMaBR3+PGe8k4SGGTTQa5bLLLiMSiXDOOedw5ZVXfu4x9Y0dKIqCpvWeGHE6rFRUNg92qGNOOBLDH4pgt/ZsOwkHaqkoCviDPe+SCSHGD0VRcFutiQ5DjAJTPPmcl380/2nYRE2w+UBHFgXSLG6WZMxgTvKEIY/BrJo4N3cRZtVEeWcNTZF2ACyqmcmeAs7KOQqnyTbkcQghhBi5JOEhhs0vfvELPvroI1JTU3n00UcPq0CmqiiHbGvXV1cB0Z3VrGG3WvAFQiS57D226x93aLDbek+ICCGEEJ9VllTMJFcee/31BGIhbJqFEmc2DtPwJc1cZjsX5B9HXaiVumALumGQaUumwJGBqsjKbSGEGO8k4SGGxdq1a7nzzjsBePDBB8nJ6dlCrjd5OckoikI0Fsf8maUYhmHgD4Q5Zv7Q30Ua7UwmjTmTcnl59XbSk3VMn5kx09zuJ9ltZ1KBFCYUQghx+KyamWkJrpOhKAq59jRy7WkJjUMIIYbWQIqQyo1hSX2LYfHd736XeDzOf/3Xf3HRRRcd9nGTSrMoyE2hqqaVWOxgJXZdN6ipaycl2cmMqdIu8XDMm1ZASW4aFbWttHcG0XWdcDRGTWMHwUiM4+aU9jr7QwghhBBCCCFGI5nhIYbFc889xy233MI999zTr+NsVjPnnTmbv7+8garaNhTlwJ2ceEwnLdXJ2afOJCvDM0RRjy3JLjsXnTaXN9buYkdFIxV1AUyaSlaqm2NmFjNfipUKIUTChOIx9nlbCcdjJFvsFLqTpWisEEKILoahYBj9+7vQ3/3HIkl4iGGRlZXF448/PqBjszOTuPS/FrFrTwP7qw6sz83JSmLqpGySPY5BjnRsS0tycuEpc2lu99HqDWI2qeRlJGExy0eBEEIkgmEYrG6o5I3q3dT5O9ENHZtmZmJSGl8omUaRW7qQCSGEEAPVr6ucDz/8kPnz56NpB2opfLZgZDgc5u9//zv/9V//NbhRilHJ5/Px5ptvcu655x7xWA67hTllBcwpk1kIgyE92UV6sivRYQghxLj3Xt1+ntuzCQ2FQlcSFs2ELxpmS2s9TSE/V08/inxXUqLDFEIIIUalftXwWLRoES0tLV0/JyUlsXfv3q6f29vb+drXvjZ40YlR7X/+538477zz+P73v5/oUIQQQogRxx+N8Hp1OWZFpdCdjEU7cB/KZbYyMSmdWn8n79ZWJDZIIYQQI4I+wMd416+Ex2fbg/bWLvRQLUTF+LFy5UoefvhhAM4888wERyOEEEKMPOUdzTQGfGQ7es64UxWFdJuDjS21dEbCCYhOCCGEGP0GvUuLIgW2xr22tjauvPJKAG644QZOPvnkBEckhBBCjDyBWBRDAZOq9brdbjIRiccJxqLDHJkQQoiRxvi4LW1/H+OdtKUVg+473/kONTU1TJo0iV/96leJDkcIIYQYkTxmKxoK4Xis1+3+aASH2YzLbBnmyIQQQoixod+tGbZt20Z9fT1wYPnKjh078Pl8ADQ3Nw9udGLU+b//+z/+3//7f6iqyooVK3A4pIuKEEKIxPFHI/giEWwmE0lWW6LD6WZScjq5Tg81fi8l7pRus2Rjuk5rOMjZRVNxSMJDCCHGPWlLOzD9Tniccsop3ep0fOELXwAOLGX5bNcWMb74fD7++7//G4Af/OAHHHPMMQmOSAghxHjVGgzwVlUF6xtqCESjmFWNGelZnFBYTKEnOdHhAWDVTJxTPI2ndn3Ebm8LWXYXVs1EZyRMU8jPxKQ0jsstSXSYop8MwyBmxNAUDVWRydRCCJFI/Up47Nu3b6jiEGOAy+XiySef5P777+f2229PdDhCCCHGqZZggMc3raO8rYVUm50Um51QLMZ7NRWUtzVz+cx5lCanJjpMAGan52BWVf5Ts5c9HS3E9CAOs5mT8ydyav5E0mwyU3K0iOkxyn172OndRVu0HZNiotRVwlT3ZFKtI+P9JoQQ402/Eh5FRUVDFYcYI8466yzOOuusRIchhBBiHHtz/17K21qYlJKGST1wh91ptpBqs7O7vZUXd+/gW/OOQVNHxt336alZTEvJpCHoIxyPkWSxkWy1Jzos0Q8xPcZ/mt5hu3cnKgpOk4OwHubD1nXs9u3l1KyTyLXnJDpMIcQoZnz86O8xAAsXLkTTNJYuXcrSpUsHObKRrV8Jj9bWVgKBAPn5+V3Pbd26ld/85jf4/X7OP/98vv71rw96kGJkq62tJR6PU1BQkOhQhBBCjHPecJj1DbWk2R1dyY5PKIpCrsvN3vZW9nW0MTElbdDP3xkN0x4OYlY1Mu0u1MNc6qsoCtkO96DHI4bHzs5ytnXsIM2ail07WCsmxZxMbaied5tW8+X88zCp/V5NLoQQR2zNmjV4PJ5Eh5EQ/frUXbp0KTk5Odx7770ANDY2ctxxx5Gbm0tpaSlXXHEF8XicSy+9dEiCFSOPYRh84xvf4IMPPuDpp5/m7LPPTnRIQogh5g2FKG9qIRyN4bZZmZyZjtUkX+LFyNARDhGIRcl0OHvd7jRbqI576QiHB/e8kSBv1uxhXVM1vmgYk6pS4knl+JxSylKzB/VcYmTRDZ3t3h2YVVO3ZAccSGRlWNNpDDdSHayh2CmzpYUQAzOQNrPSlrafCY/333+f5cuXd/28YsUKUlNT2bBhAyaTid/85jc88MADkvAYR/7whz+wcuVKbDYbpaWliQ5HCDGEdMPgrfJ9vLV7H63+APDxHfMkD+eUTaEsJyvBEQoBNpMJs6oRjsexm8w9tkfjcTRFwWrSBu2c3kiIJ3euZWtbA2lWB1l2FxE9zra2BvZ5W7lo4hwWZMgsyLEqFA/REfXiNPVeb8WimtENnY6od5gjE0II0a/Fq/X19ZSUHKwW/sYbb/ClL30J08d39s477zzKy8sHN0IxYu3Zs4fvfe97APzqV79iypQpCY5ICDGU3tm9j79v3k4kHmdCeiqTMtMpTEmmodPHM2s3Ut4orclF4qXbHUxOSaPB7+vWVe4T9QEfWU4XpUmDV0Ty/Yb9bGtroNSdRqbdhc1kxmOxMdGTTkzXeWn/dvzRyKCdbzDVBtp5tWYrK3av5rl9a9nYWkU4Hh3WGFrDPj5o3sPbDTtY31qBLxoa1vMfKU3RUFCJG3qv2w3DwADp2CKEEAnQrxkeHo+H9vb2ruKlH374IVdddVXXdkVRCA/yFFExMsXjca644gr8fj8nnngiN9xwQ6JDEsOszRugqd2PpirkZiRht/a8kyrGDl84wtu7K7CbTeR4DtYZsJg0ilOTKW9q4Z09+5mYkSbtyccZwzCIGwaaooyI//aKonBiYQl72lvZ29FGvsuD1WQipsep9/uI6TqnFJViNw/OZ1YkHufDpircZisWreeskTynh32dbexob2R+Rn4vIySGYRi817iHV2u20h4NYlVNxIw4q5r2MsWTxVdLFpBi7X1Z0GCJGzr/qd/GqqbddEQDByZeKwrpVjen5sxgXkrxiHhPfR6rZqXIWcCWjq14TO4eMftifuyajVybFC0VQgycYSgYRj+XtPRz/7GoXwmPo446ivvvv59HH32UF154gc7OTk4++eSu7bt27ZLClePE7373O959911cLhfLly9HHSGV7sXQ6/SHeGNtOVv21NEZCKOqCmkeJwtnFLB41gRMmrwXxqJ9La00+QOUpKX02KYoCpluF7ubWmgNBElzShvN8SAYjbKuoZYPa6toDQVxmi0szMlnYU4eSVbb5w8whCalpnNp2Vz+uXsH1Z0dxHX9wPvU4eTU4okszisctHOF4lF8kTBOk6XX7SZVw8CgMzqybght76jnn1WbsKgak92ZXRfp4XiMbR11PL//I66ctHhIZyW827iLV+s24zHZmeDKRFUUYnqchlAHf69ah12zMD0pb8jOP5ime6ZS4d9PQ7iRDGs6mqJhGAaBeID2aDuzkmeSaun5+TkaHZixoqMqg7csTAghhkq/Eh4///nPOfXUU/nTn/5ELBbjRz/6ESkpBz+8//znP3PCCScMepBiZNm+fTu33norcCDxUVxcnNiAxLAJhqP85d8b2F7RQHqSk+KcFOK6QUtHgJfe244vEOGsxdNGxR050T/hWBzDMHp0vfiERdPo1ENEYvFhjkwkgi8S4f9t2cDGpjqsmobTbKEp4OcvOzbzUUMtl8+c12fR0OEyIz2TSSlp7G5rwRsJY9NMTEpNw2nuPTExUFbNhFUzEY7Het3+yTIHuzZyCvsahsGa5goieowCZ/eLcKtmIt+RzC5vAxW+Fia4M4YkBn8szPtN5Tg0K+m2g7PGTKpGniOVfb4mVjftZqonZ1QsBcmxZ3NS5gm817KaumB9VytIm2qlLKmMxWlH9+tvo2EYtESa6Ix1oikaWdZsrFpiE4md0WaqA1upC+4gbsRIMmeR75hBtn2yJD+EGAZH0pZ2POvXX985c+awfft2Vq1aRXZ2NkcffXS37V/96leZPn36oAYoRp7i4mKuu+46ysvLuy1pEmPf5j117NzfSFF2ChbzgY8PVYXsNDftnUHWbKtk9uQ88jKSEhypGGwpdhsWTSMQieCw9Lxg7AyHcVosuG3WBEQnhtt/KvfyUUMtJckp2D7VoSemx9nd1sI/y7dz5az5CU9+WjSN6emZQ3oOq2ZibnoeL1fuIKOXNrRNQT8pFjuTk4cmcTAQoXiUfZ3NpFh6n43lNFmpDXRQHWgfsoTHfn8zLRE/hY7ea6mkW91U+ptpCfvIsI2OVooTXMXk2rPZ76+kM+bDpJjIteeQYU3v1+9Ca6SFNa2rqQ1WE9HDKIpKkimJ6Z5ZzEialZAEUHN4Px+1/gtfrAWr6kRVTNSFdlEfKqfEtYAZSSdL0kMIMSL1+3ZDRkYGX/ziF3vdds455xxxQGLks9vt/O53vyMejyf8y6wYXpt21WAxa13Jjk9LctlobvdRXtkkCY8xqDgtheK0FMobmynNSOt2UReNx2kNBDlr2iRc1sG9ey5GHn80wod11aTYbN2SHXDg7nyOy832liZqfZ3kuUfHheqRWpxdzNa2eso7msl1enCZLMQNnYagj1A8xheLZ5BiHTlLvQ7cJTTgc9oV9lb0dbBE9Ti6oaP1cfFuVjXihk5UH12zxmyajSmeyQM+3hvt4M2GlTRFGkm1pJGmZqCj0xFt4/2Wd4kaUealLBzEiD9fVA+zuf01AvF20i0H66q4SCUU72Sfby2pljzyHHLTU4ihJG1pB6ZfCY8VK1Yc1n6XXXbZgIIRI1ttbS1ZWVloHxdl03opzibGtg5/CJul90J/iqKgqAr+0MjsRDDSRaIxGtt9AKQnubBZRs70dwBNVflC2VT+tGYD5Y3NpDkdWE0mfOEIHaEQ07IyOH5iyecPJEa9lmCAjnCYbGfvS1Y8FisNfh9NAf+4SXhk2l1cPnkB/9y/jfKOZur8XlRVIdPm4uzCaRyfMyHRIXZj18wUOFPZ1l5Lai+FSYOxCGZVI8c+dMnrVIsTu2bGHw/jMvVcquGNBnGZbCT1MQtlrNrZuY2mSAM5tvyumRwaGqmWdNojbWzr2MQk1xTc5uH73WoK7cUbaSDZktvjRpdNcxOIt1MV2EyuXZa0CiFGnn59o77iiitwuVyYTKY+s/6KokjCYwwKhUKcdtpppKSk8PTTT1NYOHgF38TokeKxs6c60Os2wzDQdQO3Q5Y09EcsrvPB9v18uKOKZq8fgBSXnYVTC1g8vRizaeQkFkvSUrjymPms2lfJltr6A8tYrFaOn1jM4gmFeGyJXV8uhoemqGiKQkzv/XtA3Dgwc6Cvei9jVb4rmWunL6LS105rOIBZ1ZjgScXRRzHTwRTTdar97UT0GEkWO5k21yEvPBVFYWF6MTu99bSEfaRZXZ8aK05VoI1pSTmUeoZuGU6+I5UJ7ky2ttcwwWXptkwjosdojwQ4LbcMp2n8/E2J6TH2+spxaK5el614zEnUhWqoCVYx1TzjsMf1RttpDNegG3GcJg/Ztnw05fAvAfyxNgwMNKX3Gx5W1U1HpJG4EcWkyCw/IcTI0q+Ex7Rp02hoaOCSSy7hyiuvZNasWUMVlxhhbrvtNrZt20ZWVhYOx/i62yIOmj0xj137mwhHYlg/MwOhrTOI22FlcuHIWac+0um6wUsfbuedTfuwW01kJB2409rmC/LP1dtobvdz/pIytBF04ZiX7OHCuWWcPWMy4WgMp9WC1TSyZqOIoZXtdJHv9rCvox1XL/VcmgN+MhwOipKShz+4BFMUhSJ3CkXu4enGYRgGm1prebOunEpfOzE9jsNkYVpyNqfnTyHH0fcsgFkpeZyWM5036ndQ7m3ErpmJGXEiuk6pO4MvF83tc7nJYFAUhTNzZ9MWCbC7s5Ekix2raiYQC+OPh5mWlMuSjClDdv6RKGZEiepRzGrviQVVUVFQiOiHN5MypkfZ0L6Kvb7tBON+FEVBVTTSLFnMTzmeTFvuYY2jKOohCx8aRhxNNUkNDyGGmGEcePT3mPGuX3/Jtm7dyr/+9S+CwSDHH388CxYs4KGHHsLr9Q5VfGIEePfdd/ntb38LwCOPPEJ6enqCIxKJMqM0m+klWVQ2tNHc7icaixOKxKht6qDDF2LRzBKyUt2fP5AAoKK+lQ+2V5KR5CQ3LQmbxYzNYiYn1UN2ipu1u6rYXdOc6DB75bRYSP14WYsYXzRV5fiCEhSgzteJ/vG3KcMwaAkG8EbCHJtXhNsyfu7MJ8r6lmr+tHst+zpbybA5KXKlYtfMvN9UwRO7PqQx2NnnsYqicFruNK6ZfBwnZE8m35nCtKQcvjZhIVdNOpYs+9AvmcixJ3PZhCWckTsTu2YhqsdJtbr4Yv58vl6yGLd5fM0aM6sWbJqdcDzU6/a4caCeiV37/BtPhmHwUft7bOlYi6aayLIVkGUrINmcTlO4jlXNr9IeaTmsuFIt+ZgVC+F4zxmehmEQ1L1k2ydJwkMIMSL1+5vq0UcfzdFHH819993HX/7yF5YvX873vvc9zj//fB5//HGsVvmCM5b4fD6uuOIKDMPgiiuu4Lzzzkt0SCKBbBYzF5w8h/QUF5vKa6lt6kBVFdKTXRxdVsTC6YWyfrcftu1vIByJ4cno+aXeZbfS0OZjS0U9UwqGtsuEEP01PzsXXyTMq/t2s6u1GUVRMAzwWCycXjKJk4tGVs2KsSgUi/JK9Q50w2CCO63r+WSrHbfFSnlHE+/U7+WCktl9jqEoCqXuDEqHqBPL4Ui3ujkjdxYnZ08nosexqiZM6vi8cNYUjcnuqaxqfpuYHsX0mZkebZFWksxJ5Ds+f1lxR7SFvb7tuM3JuEwHk1dm1UKmNY+6UCV7fNuYn3rc546VYsklyz6Zav8mksjG8nHCRTfidETrsWtJ5DvK+vlqDyRLfLEGmsN7iOkhzKqDDNsknKaB31gLxJppDe8mqgexqE5SrZOwm4ZnxpUQQ02Klg7MgG/N2e12LrvsMoqLi7n99tv585//zLJlyyThMcZ8//vfZ8+ePRQUFHDfffclOhwxAjjtFs5ePJ3jZk+gucOPqqrkpLl77dwiDq3NF8Bi7vuLvc1iotXbe80UIRJJURROLJrAzMxstjY30hkJYzeZmJqWQY7TLYnPYVDubaI+4KXI1fNiTlNU0mxONrTUcEb+VFzmkf/dzKyaMKvyd2SSexpVwUoq/RW4zW4cmpOYEaMj2o5JMTEv5Sjsmv1zx2kIVROMB8g2p/XYpigKTpObykA5c1IWfW49D0VRmZV8GqBTHyynI9Z44HnAZUqnLPlUUiyHtzzmE7oRp9z7BtWBdUTi/o+Xzejs7fRQ7DqGEtexKP1YUqUbcfZ3vkV14AMieieKoWIoBlbVQ6HzWApcx8rnkhDj1ID+stTU1PDkk0+yfPly/H4/l1xyCQ899BApKZJBHUteffVVHnroIQCWL19OUpK0GhUHuZ023M7xNd14sLntNqKxvlsuhmMxKQIrRrQ0u4PjC4oTHca45I9FMDAw9zEbwq6Z6YiECMQioyLhIQ6wa3ZOyjiNzZYN7PGX0x5pQ1VUcu35zPDMoshxeN2wYkbsQPe0Pi7yTYqJuBEjpsfQtM+/HLBqThaknk9rpJqWcBU6Og4tiSxbKVat945Nh7Lft5p9vnexaym4rFkfzxIzCMRbKe98E4vqJN8577DHq/GvYZ/vTSyqm2TzhI/H0wnEW9jjew2z5iDHcfjjCSHGjn4lPJ577jmWL1/OW2+9xRlnnMFvf/tbzjnnHGlPOkbl5eUxZ84clixZwimnnJLocIQYc6YWZvL+jv0EQhEctu7FH0ORKBgwozg7QdEJIUYyp8mCgkJUj/ea9AjGo1g1E/Zh6BIjBpfD5OTotGOZlTwXX8yHpmgkm1N67dzS9xgHOu/EjThaL7U1gvEAqZZMzOrhvz8URSXNWkia9cg69UX1INWBj7CoTuym5E+Nr+A0pRGLhKgKrCPHMeuwusnE9BA1gQ8wKTYcpoMzWhRFxWnKwBupocb/IVn2Waj96E4jxEhjGAqG0c8lLf3cfyzq12/9V7/6VQoLC7npppvIysqioqKCBx54oMd+3/72twctQJEYhmFQVlbGBx98QDze9x1oIcTATcxLZ9aEXNbtqiLV7SDF5QAF2n1BWrx+ZpfmMiVfut4IIXqa6Mkgy+6mLuCl8DPLWnTDoDnk59S8ybhldseoZdcch1WgtDe5tmKSzWm0RhpJt2R3m+kR0cPEjCilrmn9SqIMlo5ILYFYC0mW/F63O0xp+KKN+KKNJB3GUpnO6IHx3Obe93WY0vDFGvBFG/BY8o4odiHE6NOvhEdh4YGChE8//XSf+yiKIgmPUc7v93e1nrX00nJQCDE4TJrKl5aU4XFY2bC7hn31rYCBx2Hj+JkTOHX+ZKmNIoTold1k5oz8qTy79yP2dbaQbXdj0Uz4omHqAp0UulJYkiXFY8crq2ZjbsqxvN/ybxrCVbhMSWiKiUDMR1QPU+KcSolzakJiM4hjYKD00SxS5UA9D4PDu+GmGzEMdFR6n3GuKBqGcfjjCTFSGR8/+nvMeNevb9IVFRWfu09NTc1AYxEjQGNjI3PnzuXqq6/m1ltvxWzuvRe8EGJw2C1mvnDMdJaUlVDbcqDFd06qmxT3wO7qCSHGjwXpBZhUlTdry6n2txPVdRwmM0dlFHJGwVSyHUPfWlaMXIWOidhUO+W+LdQG9xPTg3jMKZS6pjPRNaNfy1kGk8OUhkV1EtI7sWs968OFdC9WzYVDSz2s8eymVCyqk7Deia2X8cJxLxbViU1LPtLQhRCj0KDdOqyvr+eXv/wljz76KMFgcLCGFcPIMAyuu+46amtreeGFF/jRj36U6JCEGDeSXXaSXZ9feV8IMbR0w2BPRytbmxvoiIRIsdqZkZZJSVIq6gjr8qAoCnPT8pmZkku1v51wPIbHYiPbLp1yxAGZtjwybXmE4gHiRhybZj+suhhDyWlKI9M2larAGiyqA005eHMtpocJxtuZ6DoRy2EWQ3WY0km3TqE2sBaL6uxWpyNuRAnH2yl0LcGqSQJQjG7SlnZg+vWJ197eztKlS1m5ciVms5kf/vCHfOtb3+KnP/0pv/nNb5gxYwaPP/74UMUqhthTTz3FCy+8gMlkYsWKFdJieJj5/CHKyxtoafGhaSr5+SmUFGdgMklRYCGEGA6ReJzny7fwfn0loVgMs6oR0eO8UbWHY/OKOL90ep9dURLJpKoUuw/vbrgYn2wDrAUyVCZ6TiAQb6UlvAeTYsOk2ojqQXQjSrZtOsXuxf0ar9h9EsF4K22RvZgUOybFRswIEtNDpNkmU+g6boheiRBipOtXwuNHP/oRb7/9NpdffjmvvPIKN910E6+88gqhUIiXX36ZE044YajiFEOsurqab33rWwDcfvvtzJ0795D7x+NxIqEoFqsZTS7Ij1j57npefXUzTc2dABgGmEwqEyZk8oWz55CcPLK+qAyXQCRKTWsHccMg0+0k1TU+/x1Gs2A0im4YOMzmHnecDcOgvKWFDfX11Hi92EwmZmZlMSs7G88oTrgGo1HaAkFMqkq6yzniZgWIvv27cjf/qdlLjsNNkudg2+22UJA3KveQarVzSuHEBEYoxNhg05KYk3Ih9aFt1Ac2E9I7cVkKyLHPJMs+HbPav7b3dlMKM1IuojG4mfrgRqK6H6cpi2z7bLLsszCr8v1BiPGqXwmPf/3rXyxfvpxTTz2V66+/nokTJzJ58mTuu+++IQpPDAfDMLjqqqvo6Ohg4cKF/PCHP+xzX1+7n01vb2PzO9sJdgaxOW3MPG4aM4+fhifVPYxRjx31DR28+K8N+P1hCgvT0LQDRbxC4Sg7d9WjsIGvXnRM1/PjQTQe550dFby/t5KWzgC6YeC2WZlVmMPpZRPx2Pv3RUgMv12NzXxYUUV5Ywu6YZCb5OGo4nzm5OegqSq6YfBKeTmv79lDMBbDaTYR1XU2NdSzuqqKS+fMJts1uj5TApEo7+ypYM3+aryhEKqiUpSazLETipiZmyVLDEY4XyTMqrpKkiw2kqzdP2NSbHYCsSjv1e5ncW4RdpPUtxLiSFk0J4XOhRQ6F2IYxhF/Rlo1NwWuxeQ7F6ETQ8U0KJ+7cT1IKN4AgE3LQlPH1/JTI96IEdkI8QpAQzFPAvNMFDU5wZGNP4Zx4NHfY8a7fiU8amtrmT59OgATJkzAZrNx9dVXD0lgYvg88sgjrFy5EpvNxooVKzCZen9bdDR7+dv/vsy+zZU4PQ5sLiudrT5eW/EWu9bt4fwbziYls2exKHFoW7ZU09YeoKQ4vdsfZpvVTF5uMnv3NVJR0URpaVYCoxw+hmHw8sadvLl9D06rlYK0JFRFoT0Q4u0de2nx+bn02Hk4LHLBMVKt2V/NCx9tJRCJkuKwY9ZUyhubKW9sprqtg3NnTWNjfR2v7i7HY7VSmHzwcyOm6+xpbeW5LVtYetTRaOroSPSFojGeWbeR9VW1JNlspDmdxHSdXY3N7G1p5cuzZ7CopDDRYYpDqPF5aQkFKPYk97o9zeag1u+l1uelNDlteIMTYowbzISwoihoHPl3BN2I0BR4h9bQh0TirQBYtFRSbUeR4TgOVRn7nQyNyEaM4POgtwBWwMCIrgPtHXB8FcUknaDEyNevhIeu6926dmiahtN5eAWFxMhkGAaqqmK327nzzjuZOrXvFmXv/u1D9m7aT9H0fEwft8pMSodYNM7+rVW88/xqzrvuzOEKfUwwDIOdu+pxOa29/rG32czEYjrVNW3jJuFR3dbB6t2VpLmcpDgP3kVJczlw2yxsr2lkU1Udx5TKxeNI1OoP8OLmHeiGwcTMgxeFKQ477cEQb++uoDQjlQ+qq9ENgzRH92nGJlWlICmJPa2tlLe2MDU9Y0jibPb5+aimjq0NjURjcYpTU5ibl0NpeuqAvnivr6phQ3Udxakp2D7VSthjs1Lb4eWVbbuYlp1JssxOGrF0DAwDlD4KvKmKgmGAPsxxCSGGn2HEqen8G83BdzGpbmxaNgARvZVa39+JxFvId1+AoozdZd1GvBYj+FfQA6BNhk/+NhpxiO/DCDwLrhtQVFdiAx1HpGjpwPQr4WEYBldccUVXMctQKMS1117bI+nxwgsvDF6EYsgYH89xuuaaazjttNMoLOz7ArK9qYOdH+4mNSelK9nxCZNZIy03lfJ1e2mtbyM1O2VI4x5r4nEdVTvEh5EBuj5+5qPtrGvGH46Sl9KzmrrFZMJs0tiwv1YSHiPU1rpGWvwBJmWm99iWbLfR7PPzwf4qKn0dpNh7nxbsMJuJxnXqOjuHJOGxt6WVp9dtos7rxWGxoCkK+9vaWVNZzRlTJ3HypAn9SnoYhsGayhqsJlO3ZMcnstwudje3sr2+UWZ5jGA5TjfJVhutoSCZjp43c1pDAVJsdrId8uVeiLHOF91Na+hDbKYczOrB5ZV2NYeY7qI19CFJ1ll4rH3fKOxLJFaNP7yGYGQLhqFjNU/EZVuI1TRpRC19NCIbQG/tnuwAUDTQSiC+B6JbwHpMwmIU4nD0a67w5ZdfTmZmJklJSSQlJXHJJZeQm5vb9fMnj/548MEHKSkpwWazMX/+fN55551D7v/WW28xf/58bDYbEyZM4OGHH+5z3z//+c8oisL555/fr5jGC13Xuz5Yi4uLUQ8xdbyjyUvAG8Cd0vsXPXeKC783SHujd0hiHasURaEgPxWfL9zr9lgsDopCWtqhv2DHdZ3dNc28v20/H+6opL61syuhNdr4QmE0Venzj77dbKY9EBrmqMThavL5URW1z0KdLquFuo5OFIVDvkcNjD7vtB+JYDTKXzZsodHnY1JGOgXJSeQmeZickY7VZOKVHbvY2dTcrzGjuk5bIIjT2vv0Zk1VUYCO4PC+b2O6zs6mZt7aW8HbeyvY39Y+aj8XhkOy1c78rDyaQwGCsWi3bYFohLZwiKOy8nFbRm9BXSHE4ekIb0E3ot2SHZ8wqW50I4o3sqXf4wbCG2nwPkB74F/E4u3EdR+dobdp7HiIzuB/RtZndGwXKM7uyY5PKBqgYsT3D3tYQvRXv2Z4LF++fFBP/uyzz3LjjTfy4IMPcuyxx/KHP/yBs846i23btvU622Dfvn2cffbZXHPNNfzpT3/ivffe4/rrrycjI4MLLrig27779+/ne9/7HscdJ22oerNt2zYuvPBCHn74YZYsWfK5GWXNbELVNGLRGCZzz+l7sWgMzaSh9bJNHFpZWR7bttfQ1uYnJeXgXUXDMKitbScry8OkiX0vZ6lt8fLP1duoqG8lGo8D4LRZmFmSw9lHTcVhG11rTD12G3Hd6LOAWTASJT/10InVuK4TjsYwmzTMmrwnh5NF0zCMvif9R+M6GWYLuSl21tfW9VjSAuCLRLCbTBT2M4F+OLbVN1LT4aUoJblHUibD5aS8uZl1VbVMzTz8mSUmVcVmNvWZiDOMA+9nu3n46s7Uejt5ftNW9rS2EI3rGByYOTMjK5MLZk7HY5OlNb05q3gyLcEAG5pqURUFm8lEKBbDMODo7HxOLZIOLUKMB5F4G5rSd3JTU6xddT0OVyzeRqv/L+hxHzbTtE99x8khGq+nPfBPLOZCbObSI4hcjGVStHRg+pXwGGz33nsvV111VVfh0/vuu49XX32Vhx56iLvuuqvH/g8//DCFhYVdXWGmTZvG2rVr+c1vftMt4RGPx7n44ou54447eOedd2hvbx+OlzNqRKNRLrvsMrZt28bdd9/NkiVLPveY7OIMsgrTaapqIXdido/tLbVtZOSlkjNhfNSZGEwTS7NYcuxk3n1vFx0dQVwuK/G4jt8fJi3NzVlnzMJu7z1p0eYL8tx/NlDd3EFeWhJ2qxnDMPAGQqzaVkE0HueiE+agqgO/Ux4MR2ls7cQwIDPVNeQJlKk5GbhtFlr9QdI+04Y2FI0R1ePMLcrtPdZIlPV7a1i7u5r2QBCLycTs4hwWlOaTmSTT0IfDxIw03tA0ApFoj8KycV0nEIkwuyCXrGQXWxoaqevsJNvl6vriF47FqO7wMjcnh+KUwV8e19DpQzeMPhNhHquNvc2t/eoYoCoK8wty+dum7cR1vUeh1bZAELfNyuRelvkMhY5QiD+t30BFWzuFyUnYzQc+F3yRCB9UVROJx7ly4TxJBvbCabZw+fR5zG/J46PGGtrCIdJsduZm5lGWloVF/s2EGBfMqgfdiPS5XTcimNT+JeUDkY3E4g1YTVN6/H0xa9mEojsIhNeNnISHaTLEyg9cMX/276ERB3QUTZZpipEvYQmPSCTCunXrerRAPf3001m1alWvx6xevZrTTz+923NnnHEGjz32GNFotKug6s9+9jMyMjK46qqrPneJDEA4HCYcPrikwOsd28sy7rrrLtatW0dKSgqPPPLIYX2pN5lNLDhzDv965DWaqlpIy0tBVVV0Xae1rp1oNMaCM+disUrnjP5SFIXjj5tCfl4KW7ZWU13dhmZSOfqoUmbMyCcjvft0ylA4yu6KJto7g2yraqC8upnpxZloqtY1XpLTjqaqbNlXzzHT2ijJTu13XJFojFWbKli3vYq2zgAGkOK2M29KAcfOLsFqGZqPj5xkN0smF7NySzmhSJQ0txNNUWgLBGnzB5lTmMPMgp5Jt0A4yrPvbWDT/npsFhMum5VQJMrKDbvYUlnP15bMoSA9eUhiFgdNzExjek4mG6rryE3y4LJaUBSFUDRGVVs7BSlJzMnPIdlu40vTp/GvnbvY2dyCRVOJGQYqCmVZmfxXWVmfy2KOxCeFJ/uiG8aAEoTzC/PZWF3P7qaWrtetGwbN/gDeYIiTp5SS7emZdIvpOvta2whEIzgtFopTUjAdYWeaDbX17GttY1J6WlfyRVEU3FYrxSnJbGtoZFdzCzOyMo/oPGOVzWRiQVYeC7LyEh2KECJBkqxltIY+IKYHMKndb77E9ACKopJkLevXmJFYDWBCUXr/jFcVF6Ho3oGGPOgUyxyMyGqIV4FW0KNoKVoemGcmNshxp/9FS5GipYlLeDQ3NxOPx8nK6j4jICsri/r6+l6Pqa+v73X/WCxGc3MzOTk5vPfeezz22GNs2LDhsGO56667uOOOO/r9GkajdevW8fOf/xyAZcuWkZvb+53y3sw6fjohf5jV/1jD/m3VH6/BB0+am1O+fhxzTpoxVGGPeYqiUFqa9bmdWHbtbeDVt7dR33ygRsfO5hbiioFVUSktzEDTDv4Rddmt1Ld2sre2pd8Jj7iu8+K7W/lgy35cDivZaQeSLm2dQV55fzutXj/nnzgLkzb4LUMVReH0mZPw2G2s3r2fho5OdMPAY7dx+sxJnDSttNfCkO/v2s/GijoKM7p3ycjwuNjb2MK/1u3gmtOOGjVtTkcrk6ryX/NnYtI0ttU1fFyvQ0FTFSZmpPHlOTNIcRwoVnpcUTGlqWlsrq+n3ufDZjYxNT2dqekZWPtoj32kClOSMWsqoWisx/vIMAy8oRBHFeX3u3BcqsPOpUfN5R+bt1Pe1EKdtxOANKeDs2ZM5tQpE3uMuaWhgZW7yqns6CASj2PRNAqTkzlj0qQjSkZsqq3Hbjb3+l63m81EdZ1dTc2S8BBCiD64LJNIts6hNbQGi5qCRTvwPSoSbyWit5JiW4jbMrlfY6qKCeMQfZ4M4ihKQiffd6NouWD/yoG2tPFdgI0DfaoioOWhOC6SDi1iVEj4b9VnvwB+3jTi3vb/5PnOzk4uueQSHn30UdLTD3/q8C233MLNN9/c9bPX66WgoOCwjx8tQqEQl19+ObFYjK985St87Wtf69fxiqJw9NnzmHb0JPZsrCDYGcLmslE6u4ik9J4dNYaKYRjUVDSzd3stPm8Qd5Kd0ul55BSmjajq1oOtqq6N/1u5kUAwQkFOMiZNpSbkIxCKUlXXhoLCpJLuFzCKAuForN/n2lvTwvod1WSlunE5Dq5hzUp147Jb+WhXDTMn5jKlaGgumDRV5djJRSyckEdtWydxQyfD7cTTR0vPcDTG2j3VuO3WHhexqqqQm+KhorGVisY2SrPTeh1DDB6PzcblR8+lsq2DytZ24rpOlsfFxIy0Hssoct1uct09i8INlUkZaUxMT2N7QyMlqSlYPk6s6IZBVXsHKQ478/MPPxH8aVkeF1cvXkBVWwfN/gAmVaU4LbnXehnbGhv500cbCESj5Lrd2M1mgtEoFW1t/GnDBi6fN5epGQPrUBOMRTEfIhmpqSrhWP8/F4QQYrxQFTP57q9gVpNpC6/HH90HgFlLIdNxGtnO01CV/s1qtponogTfRDciqEr35cGGoaMbAeyWgc+YMAydWKyCuN6Kopgxmyaiqj07TvWHYpkNWg5GZOOBWR1oKObJYJ6JoiYf0dii/4yPH/09ZrxLWMIjPT0dTdN6zOZobGzsMYvjE9nZ2b3ubzKZSEtLY+vWrVRUVHDuued2bdf1A5lUk8nEzp07KS3tuS7OarV2tdody37yk5+wdetWMjMzefDBBwecHPCkuZl7cmKmsMWicd74x3o2rt5DKBBGM2nEY3Hef2M7846dxIlfmINmGptrrNdtrqSjM8iEgoOJHbfNSjASw2YxUd/sJS87GcfH9T70jwt/Jrt6b/15KNv3NRCN692SHZ9w2i3Ut3aydW/9kCU8PmExmSjO+Pw6Dt5gCG8gjMfRe0LEYbUQiXtp8wUHO0TRB0VRKEpNpig1OdGhdGPWNC6aO5M/r99EeXPLgSUsikJcN8h0OTh/1gwKU5J7HOePRGj2B9BUhWy3u89lJ4qiUJiaTOEhXndc13l99x780SilKSldv892s5kJKSnsaW3j9d17mJyePqBlPXkeD5XtHb1uMwyDWDxOpkvuygkhxKFoqp1c97lkOI4nGKsFwGbKwaIlD2g8u3k6VnMpoegurKYJqB8XRTWMGOF4BWYtF6d13oDGjsYq8QdeIBrdjW6EUBQVTU3HbjsZu+0kFGXg340VLRPFftqAjxci0RKW8LBYLMyfP5/XXnuNL33pS13Pv/baa3zxi1/s9ZhFixbxz3/+s9tzK1euZMGCBZjNZqZOncrmzZu7bb/11lvp7Ozk97///ZictXG4dF1n9+7dADz66KNkDPDOYaJ9+J/tfPjmdtIyPWQXHLhQMAyDzvYA7/97Gy6PnaNPnp7oMAddMBRh174GUjz2bomqnCQ3DV4/qqoSDIVp9wa6Eh71bZ2kuB1MK+p/Idn2ziCWQySOrGaN9s5A/1/IEDFrGpqqEPu4S81nxT9JfA7BEhwx+mS4nHxz8UJ2NDazp7mVmB4nx+OmLDura7nNJ/yRCP/Zu4811TV4QyFURSHX42ZJcTEL8/MGlDiu9nqpaGsj51PFWj+hKArZLhf72tqo6fBSkNz/TjVz83JYW11DezBIsr3766nr9JHqsFOWLctZhBDicJi1JMzakXcNU1U76a5LafY9RTi2G4zYxw3YFSymPFJdX8Os9f/7eSxeh9f3R+KxWjQtH5PqwjBixOMN+AJ/wTCiOB1nHXH8QoxWCV3ScvPNN3PppZeyYMECFi1axCOPPEJlZSXXXnstcGCpSU1NDStWrADg2muvZdmyZdx8881cc801rF69mscee4xnnnkGAJvNRllZ9wJCycnJAD2eH29UVeX555/n3XffHbWtekOBCBtX78HptuFOPlhASlEUPClOQoEIG1bvZs7iSVhtY6t4aiyuo+tGj0KhmW4nBakeqlo7CESj+IJh2jqDtPkC2CwmzlgwhZQBzPBIctmIxnpPHgBEovEBzRwZKkkOGxOy0ti0v44kh63HRWSrL0iyw05JZv+Lt4qxyWoyMTs3m9m5PQvgfiIUjfL0ho2sr6kj2W4ly+0irutUdXTw1IaNeMMhTp3Y/zalwWiUSDyOrY86JTaziYgvTiAa7ffYAFMzMzihtIQ3d++lNRAkxWFHNwxaA0HsJhPnTJ8uMzyEECIBzKZsspK+RSiynXBsP4ahYzHlYLfMRBvg8pNQ6F1isSrMpmldBVEVxYTJlEcsXk8w9AY269FomnwHGu0OtKXt340WaUub4ITHRRddREtLCz/72c+oq6ujrKyMl156iaKiIgDq6uqorKzs2r+kpISXXnqJm266iQceeIDc3Fzuv//+bi1pRd8URRm1yQ6AhppW2ls6ySnsvQZDcrqbxpo2mmrbyJ8wtu5e2m0WUjwOGlq8eFwHl22oqsLU7HQcZhO7appBVYjpcWZNyOGoqYVMzh/YTJ5pxVl8uHU//mAE52da4gZCEVRVYdqEvi8Uh5uiKCyaUsSehmaqWzrISfFg0lQMw6DNF6QjEOT02ZNJcva+5EWI3nxUV8fGunqKU5K71YZxWiw0+Hy8sXsvs7Kz+508cFus2Ewm/NEonl6WU/ojEexmE+4BLrVUFYVzp00hP8nDB5XV1HZ4URSF+Xm5HFNUwNSM4WmPK4QQoidVseKwzsFhnXPEY+lGiHBkPaqa1mv3F03NJBbfRTS2A01bfMTnE2I0SnjR0uuvv57rr7++121PPPFEj+dOOOEE1q9ff9jj9zbGePL666/z5JNPcv/995OS8vm1EEayAzUpQOmjZaSqHljeoutjL5Vp0lTmzMjnH69tIhiKYLcdTEKoioISMThh+gQuOncBVqsJl81yRAVcJ+SnM2dKHmu2VpHkspHiOTCjpr0zQFtniAVT85mUf+QXTcFIlO2VDWzZ34AvFCYjycXM4mwm5ab3u5vK5Nx0LjhmJi+v30lFUyvwcRchu5VTZk7klFn9vxMvxre11bWYVLXXrkCZTie7mlvY1tjY74RHrsfNpPQ0NtbV47Z0/13VDYM6n4/5ubnkuAc+C0NTVRbk5zEvLxd/JIKqKDjM5jFd2FkIIcYbwwhhGBEUpfdZt4qigqGg61LDbCyQoqUDk/CEhxg6HR0dfOMb36C6upr8/HzuuuuuRId0RNKzknB57Hhb/aRk9Ozq0NHmx53sIC1r+DrGDKc50wuorGllw/ZqLGYNt9NGNBqnvTNIeqqLs0+cQXrykVXj/oRJUzn3uDKSXHY+2llDVUMbAEkuO6ceNYkT5k7EdITFYTv8IZ57ZyM7q5vQVAWzSWNvXSvryqs4ZkoR5xw9rUdHj88zuziXidnp7KxtoiMQwmY2UZqdRmaSTN8X/WMYBi0BP06LpdftnyQOOsORfo+tKApnTJpEXaePnc3NZLtc2M1mAtEoDT4/2W4Xp0/q2cZ2IFRFGfBMESGEECObqjhRVTfxeDv00jXFMKKggKoeeQ0SIUYrSXiMYd/5zneorq5m4sSJ3HrrrYkO54i5kx1Mn1fEqte34nDbutXpCAcjdLT6WXLmLJzukVNbYjBZLSbOO202xQXpfLS1kraOICaTxnFHTWTejAKyMwb3j5nNYub0o6eyeGYJ9S1eDCA71Y17EJaFGIbBS2u3s62ygeLMFCyfuoPeGQjx7rYKMlPcLJ5W1O+xnTYL8ybkHXGMYnxTFAWP1UqN19vrdsMwMDjQWWUgilNS+Mb8eby5Zy/bm5poC4WwmUwcU1jAyRMmDKhYqRBCiPFFUcxYLUd/XJw0gvKZdrexeA2aloPFPPIK+huGTjhajj+ynmisFlV1YLfMwmGZjabKjSoxeCThMUb9/e9/58knn0RVVZ588kmczsG5859oi08vo63Fx65NVWiaisVmJhyKosd1ZswvZvGpMxId4pCyWkwsnFXE/LJCQuEoJpPaLVkwFFwOKxMdg9vVp6Hdx/bKRrKS3T3idztsdATCrNlVxcJJ+ZjHaJvh4RaJxdhR28TW2kb84QgZLiczC7IpyUiRZQ59mJ+XR3lLK9F4vMdso7ZgCLfFckT1MIqSk7l83lxaAgF8kQgui4U0h0P+ewghhDhsdtuxRKLbiUQ3o6ppqIoHiBLX61EUJ077uaiq43PHGU6GodMe+Cfe4L/RjTCa4sAwIvjDH2EzTyLdfRlmrf9dBsc6w1AGULRUvlNIwmMMampq4pvf/CYA3/ve91i8eOwUKXK4bJx36bGUb65m+4b9eNv8JKU4mTavmElleVisY6s7S19UVelqPzsa1bV68YciZKf0XJoEkOKy09zho9UXJCtZsvxHyhsM8dwHm9ha2wgGWEwam6N1rN69nyVTijlr1pR+10wZD+bl5fJRbS07m5rJdrtIstnQDYMmvx9vKMypkyaS5zmyJXSKopDudJI+RpLSQgghhpeqevC4ryIYfINw5EN0vREUExbzLOy2k7BaRl6nykBkHd7gSjQlBavpYPcYw4gRiu6i1fccmZ6lvRZiFaK/JOExxhiGwXXXXUdjYyMzZszgmm/eyMrXNlNT04bZYmLSxCymTs0lyTN6l31YbWbKFpZQtrAk0aGIAVIUBQ6RcDY+7qElOekjZxgGL27YwaaqeorSU7oV4GzzB3lz2x4y3C6OLi1IYJQjk9tq5dJ5c3lx+062NTbS6G9BQSHd6eC86RM4uXSCzMYYBuF4jI2N9aytr6ElGMBjtTI/K4+5WTk4zaM38SuEEINFU5NwOb+Ew34aut4GigVNzRyRf6MMQ6cztBoDMH2mVa6imLBohYSiuwjH9mAzT0pMkCOUFC0dGEl4jDH19fWsWrUKk8nE//zPnTz//Dr8gQgOh5l43GDXrjrWf1TBeefOIy93+Lq26LpBdWULFXsbCYeiJCU7mDglh9Q0uXs/HuWleXDbrbT7Q6S4eibfWn0B8tOTSXWPrCmYo1GD18fWmgayklw9uo2kOO10hsJ8uLeK+cV5mDS5k/JZaQ4Hl82bQ73PR5PPj6aqFCYnSSHQYRKMRnlq+0bW19eiqgpOs5mmoJ8dLU2sb6jlshlzSLaN3gS+EEIMJlV1oY7w+he64SMaq8akpPa6XVOdROIRorFaSXiIQSEJjzEmJyeHLVu28Oxz/6C2XsVsUZkw4WD9BV3Xqaxs5V8vbeSKy5ZgsQz9WyAUirLyxQ1s21xFOBRFURUMHTzJOzju5OnMP0ruko43GUkuZhXn8M7WfVjNGg7rgbu0hmHQ5gsS1w2OmlwgF+CDoKbNiz8cISepj+VDTjv17Z20+QNkeEb2l6REURSFHLebHHfv/4Zi6LxRuZc1ddUUepJxfKpAbCQeZ2tzA//cs4NLZ8xNYIRCCCH655Pv/L3PPTAMAwUDmecrBoskPMag1NRUcnNn0tBYSU5OcrdtqqqSl5dMbW07u3c3MH360Hez+M9rW/hozT4ysz04XQc6fOi6QUtTJ6+/tBG328aUYYhDjCxnzJ+CPxxhS0U9cV1HUzWi8ThOq5lTZk9k/sT8RIc4bsh0RzES+aMRPqyrJslq65bsALBoGplOF5ubGmjw+8hySrJOCCFGA1VxYTWXEIhswkTPWR664UNR7FhMstT2sw6kgvpZtFQSR5LwGCtWrFgBwKWXXophQMX+Ftzu3tuHms0m9LhOY1Mnh2pSFY/HqdhSxa61e/C2duJJdTNp/gRKygrRDrNzRktzJ9s2VZGS5uxKdsCBopsZWR6qKpr5aM0+Jk/LlVkeY0A4GmNXdRNN7X40VaEgI5mi7JReC2I6bRa+esIc9kxqYUd1I/5QhFS3gxlF2RSkJ8n7YZDkJntwWix4g2GSHD0/E9r8QfJSPKQ4ZfmQGFmaAwHaw0GynX3MTrLa2BVooSEgCQ8hhBgtFEXBZV1MMLKNaLwek5rV9Z1PN0JE4lU4rUdjMRUnNlAxZkjCYwzYt28fS5cuxefz4Xa7Of/881EUpavwY68UONT1ZCQc5dUn3mTTW9uIRWJYbBai4QjrX9/ErOOnc8Y3TsJi+/xicbXVrfh8IYpKem9rmpzqpKa6lY72AMkp0qVgNNvf0Mbf39tCdXMHum5gYGA1m5iSn8H5S2aS5Ox5sW3WNKYWZDK1IDMBEY8P2UkuZuRl8f6eSqxmU7c6Hu2BINF4nKNKZfmQGHlUVUFBIW7ovW6PGwfuW6mSHBVCiFHFbplFsuN8OoIvE4rtQMWCQQwUFYdlNqnOr8iNr14YxoFHf48Z7yThMcrpus4VV1yBz+fjuOOO47zzzkNRFCZOzOSDD/aQlubq8YERDsfQNLXHcpdP++Bf61i3chNZhek4kw7e+Q14g6x7fROedDcnXPj57W71+MfdNvr40FJVBV030HX5bRzNWrx+/vLWRhrbfeRnJGP5eAZQIBRh0946dMPgktPmY9YOb2aQGDyKovCFuVPxRyJsq2kE5cBygHA0htVs4qSppSwskeVDYuTJdrjIcbmp83f22o2lORgg3e6g0J08/MEJIYQYMEVR8NhPxm6ZSiC8kWi8HlW1YzdPw2aZhqpIYXAxeCThMcr9/ve/5+2338bpdPLEE0+gfXxBOausgK1ba6iv7yA7++DygGg0Tk1NG6UTMpnQx6yLoC/Ixje34k5xdkt2ADg8djypbja9tY0FZ8zB6Tn0NPi0DDcWq5mAP4zD2fPDy+sNkpbuxpMkVfZHs417aqlr9VKak46qHkxuOWwWCjKT2VnVxN7aFqaM85kcXe12h/muhcdu47Jj57Gjromt1Q34IxEy3E7K8rOZkJHa7b+ZECOFWdM4Lr+Yp7dtpCngJ93u6Jq92BEO0REKcd7EqXikY44QQow6iqJgMeVhMUkdv8On0P9irvIdTxIeo9j27du55ZZbAPjtb3/LhAkTurbl56dy5hkzee31rezb14zJrHbNtiguTuecs2dj6qMOR2NVCx3NXrJLsnrdnpzpoXZPPY2VzZSUFR4yxtz8VIpLMti5vZbConQ008Fp8wF/mHAoxux5xX3GIkaHrfsbcFotvV442yxmovE4uyqbcJjMGIZBeooLh/3zl0SNJL5QmH0NbURjMZKcdooze69N0puK1jbWVtewo6kZgCkZ6czPy2VCWu8t2YaC1WxidmEOswtzhu2cQhypY3ILaA+HeLNyLztbW1AV0A0Dp9nCyUUTOLV4YqJDFEIIIcQIJgmPUSoWi3H55ZcTDoc588wz+eY3v9ljn5llBeTlprBzVz319e2YzRrFxRlMLM3CZjP3MurhUg57PZiqKpx29mwC/jCVFc3Y7GbMFo1gIAIGzFtYwpwFJUcQixgJItEDy6R6o+s67c0+/v3Wdtat2YdhQHKSnTnTClg8fwLWYWiNfCTius672yp4b3sFLZ0BwMCsaRRlpnDW/KkUZ6Yc8vgPq6p5YfM2vOEQHqsNRYH/7NnHuuoazi+bzjGFUoVcjB+GYVDt87KzpZlgLIrHamVGeibp9t5rOKmKwlklk5iTmc3W5kY6wiGcZgvT0jIo8iTLGm8hhBBCHNLIvtIQfXrjjTdYs2YNycnJ/PGPf+zzS19qqotFx/TvDlhGfhpJ6W7aGzvIyE/rsb2jqYOkdDeZBT239SYtw82Flyxm+5Zqtm2uJhiIUFCUzoxZBUyelnvEszt8nSHKd9RSV9uOoijkFaQyaUoOdsfomkEwmuVnJLNuV3WP5w3DYM/uBhprvLjy0shMc6Mo0O4N8tq722ht9/HF0/qebTQSvLVlLy+v34HDYqEk68CsjmA4yu66Zv789gYuO3k+uameXo+t7/Tx963biRs6k9PTu35Ps91uajq8/GPrDgqTk8j19H68EGNJJB7nH+XbWV1XhS8SQVEOFFNLtdk4o2QyJxQU9/q3TFEUcl0ecl3yeyKEEGL8kqKlAyMJj1Hq9NNP580336S9vZ28vMFd++Zw25l5wgzefOZdnEkOHO6D9TWCvhAdzZ2ccNFinEmH31XF7bFz1OJJHLV40qDGWrG3kZf//hGNDR1dyynWrDbIyUvhC19aQE7eoe++i8ExpzSXTXtqaesMkvKp90tHe4C9+1vweGxMLs7E+nGHkMw0Ny6HlQ3ba5g+KZdpE7MTFfohdfhDvLe9AqfVSlbywbaXdquZCdlp7K5t5oNdlXzpmLJej99YW0drIMiUjPQeF3K5Hjc7m5rZUFsvCQ8xLrxesZvXK/eQ4XCS53KjKAq6YdDg9/F/5VtxW6zMz85NdJhCCCGEGEOkD+EoduKJJ3L++ecPydiLvjCfuafMpKW2lYqtVdTuaaBiaxVNNS3MPaWMxectGJLz9kdbq59//d86Wpo7KSxOp6gkg6KSDPIL06iraePFF9bi94cTHea4MCkvg+Nnl+INhthb30KL109Tu4/te+pBN5gxIadbO1QAh92CYRhsK69LUNSfb099M+3+IOm9FOdVFYVUt4Ot++sJhKO9Hl/Z3oHNZOrzrrXdbGZ/W/tghy3EiNMRDrGqtpJkq41Um73rd0JVFHJcbnTD4J3qCuJ67y1ohRBCiPHOQBnQY7hVVVVx4oknMn36dGbNmsVf/vKXYY/h02SGh+iVxWbhC988jRmLprBzzW46mr140txMWTiRkpmFmMyJf+vs2FpNU6OX4gmZ3YplmkwaBUXpVFU0U76jljnzpUbIUFNVhdPmTSYvLYn1u6upburAbFIpTE8mZHN0mx3xaTaLiTZvYJijPXyhaBxQ+ixOajFpBMJRwtEYDmvPujhmTSV+iLmEcV3HIq16xThQ0dFGSzBIaXLvs+4yHE4qve00Bf1kO93DHJ0QQgghBovJZOK+++5jzpw5NDY2Mm/ePM4++2yczsNfHTCo8STkrGJU0EwaE+eWMHHuyEwY7NvdiM1m7rUziKapqKpC5b5mSXgME1VVKCvJZkZxFrG4jqIovPbOdt5Zs7vPY8LRGEku2zBG2T8euxVFgWgsjrmXOiP+cAS3zYqzjyLAUzLSWVNVQ0zXMX0maRLXdaK6zpSM9CGJXYiRJG4YGBiofdSbMqkqumEQkxkeQgghxKiWk5NDTs6BroCZmZmkpqbS2tqasISHLGkRo5b+8UV1XxRVQdelUs9wUxQFs0nDpKlMLsnEbNLwBXouLQqFoxgGTJs0ctukTspNJyfFTW2rF+MzMzUisTjeQJh5pXlYTL3njsuysyhKSWZvSyuRWPzgsfE4e1paKUxOYlZO7+2fhRhLMhxOnGYznZHelxm2h0Ik2+yk2XouHxNCCCEEGBwsXHrYjwGc5+233+bcc88lNzcXRVH429/+1mOfBx98kJKSEmw2G/Pnz+edd97pday1a9ei6zoFBYnrSigJD9Ev0UiMaCSW6DAAyC9OJxiM9LgQBdB1g1hUJzdfipYmUnF+GnOm59PQ1Elzq494XEfXdVra/VTXtzNjUg6TSzITHWafrGYTZ82fis1iYk99C+3+IIFwhIb2TvY1tDItP5OjJhf2ebzbauXiubMpSU2hsr2dnY3N7GpqprKtneKUFC6eOxuPbeTOcBFisOS7PExLzaTW19ljFkcwFqUjHOLonHzs5iNpmS6EEEKII+X3+5k9ezbLli3rdfuzzz7LjTf+f/buO87Oss7//+s+/ZyZOdN7n/RJb4QEIj00FRGXHt2vyi4SRWS/+10QFHRlUVf5sS4BFhdllSKKDdYgiSAQSAghvZI2yUym9376/fsjZMwwM0mmninv5+NxHg/mLtf53Fy5Z879Odf1ue7ivvvuY9u2bSxfvpwrr7yS0tLSbsfV19fz+c9/nqeeemokwu6TYfb2tDjBtbS0EB8fT3NzM16tnoBpmhzZV8mu949wvKQGgLzJ6cw+p4iCqRmnHWUxnKorm3j+5+sJBsOkZ8Z3xWGaJuVlDcR53az88gUkJEZn+JSc4A+EWP/+IbbvLaOptRPTNImPdTN7ehYXLJmKxz36lw8+VFnHxv3HOFRZTygSIdblYH5hNstm5OP1nDlh4Q+F2FtdS3lzCyYm2fFeitPSehRyHQ3qGts4dryBUDhMgtdDUW4KdrvqjMjg1XS08z+7t3KosZ4YuwOXzUZbMEAwHGF+Wia3zpyLxz76fx+IiMjEE83nw5Pv/ejWP+CO7d9zTWdbO3ct+AxlZWXd4nY6nTidzjOebxgGv//977stlLFkyRIWLFjAE0880bVtxowZfOYzn+Hhhx8GwO/3c9lll3HbbbexcuXKfsU81Ebfp20ZVUzTZPOb+3nrT9sJ+EN4EzyYwK5NRziwq4yLP72ABedPjUps6ZkJXHrVHNat2cnRwzW4Y5xgmnR0BEhKiuXyT81TsmMUcDpsXHr+dM6dX0hlbTOmCekpccSfsnztaDc5M4VJGck0tncSDIWJc7t6LVLaF6fNxvzsTOZnj97pO4FgiNff/ZDte8tobfdjYGCxGmSlxXPFBcUU5qrWiAxOmieGf5i7mC1V5bxfWU57MEBRfBLnZOawID0Tl02jO0RERIbDx6eUPPDAAzz44IP9bicQCLBlyxbuueeebttXrFjBhg0bgBPPj3//93/PxRdfHPVkByjhIWdQWVrPO3/ehcNpJzMvuWt7UmoctZVNvPWnHeQUpZKWFZ2pI7Pn5ZOS5mXfruMcK6nFYhgUTk6neHYOKWkanXO2IhGT46X1HDtSSyAQJD7Bw+RpmUOaMIqNcTIlZvROXzkTwzBIih2f9QVM0+Qv7+znnQ8OkxTvoSg3GcMwCARDVNQ08bvXtnPLNYvJSI2PdqgyxsU7XVycP4mL8oqImGafKyCJiIhIdwNZZvbk8b2N8BiIuro6wuEw6enda9Clp6dTVVUFwLvvvsuLL77InDlzuup//PKXv2T27NkDes/BUsJDTmv/jjLaWzspmJbRY19KRjxHP6ziwx2lUUt4AGRmJZIZxfcf6zo7A7z2v9vZv/s4fl8IDMCEhEQPF1w2k7kLCqI2bUlGRl1DG9v3HicpwUOi929JHYfdRn5WEodL69i6u4yrLlLCQ4aGYRhY9XtFRERkRHi93iGdivPxZwPTNLu2nX/++URG0aprSnjIaVUfb8DlcfT6wGsYBg6XnZqKppEPTIaEaZq88eddbP+ghPSMeGI+WiI2EjGprW5m7Z92EBfnZtLUngmv8SgcidDW7sewGMR5nBMm0VNyvJ62Dj9Fyck99hmGQYLXzd5DlVx6/nQcUao70hEI8mF1LS0+P06bjWnpKSR6xs60KBEREZGxLiUlBavV2jWa46Sampoeoz5GCyU85LQcThvhUN8ZunAogt2hf0ZjVV1tK/t2HyclNa4r2QFgsRikZyZw7Ggd2zaXUDQlfVw//IfCEbbvP87WvWXUNrZhGJCbkcjiWflMK0gb19cOEAyGsRhGn9dpt1kJhsIEQxEcUSizsP14JWt2f0h1axumaWICCW4XyycXcMm0SZoWISIiIuPeyaVm+3vOUHI4HCxcuJB169Zx7bXXdm1ft24d11xzzdC+2RDRk6qc1qTibPZuPUYoFMZm675SQygYxjRNiqZnRSm6s+P3BamsaCQSNklMjiUx6ezrUvh8QQ4dqqa6phmLxUJmZgJFhak4xkmSp7ysno4OP6npvQ9xS0jwUHasjvY2P7Fx43P51HAkwqvr97Bx51FsVgsJcW4iEZP9JdUcLqvjyvOLWTKnINphDqt4rxsMCIbC2G09V2Rpa/eTnurFFYV/9x9W1/LrLTsJhCPkJyVgt1qJmCZ1be2s2f0hVsPCJdMndY/XH6CxsxO7xUJaXCyWcZ6wEhERERkqbW1tHDp0qOvnkpIStm/fTlJSEnl5edx9992sXLmSRYsWsXTpUp566ilKS0u5/fbboxh138bHU5sMmymzcsgpTOX44Voy85Nxuk58vevrDFB5rJ78qRlMnpkd5Sh7Fw5H2LLpMFveP0JDXSuRiElMjJNpM7NZflEx3vjTD4c/fryBP726g8rKpq5vla0WC3m5SXzy6nmkpo79oqiR8Im0b1/f7FutBgG/Oarm4Q21g8dqeX/XMVISYoiL+VtSJz7OTXV9K69vOkBRbgqpibFRjPLsRCImvlAIm8WCo5fERV+m5KeSnhxHZU0LuZkJ3f49dPqD+AMh5hXnYrWO7EgK0zRZf+go7YEgk1KSuuKyGAZpcbFEIibvHjnGksIcYp1OWn1+3jxUwpayctr8AawWg/ykBM4vKmB25vgepSQiIiLj22CKlvbHBx98wEUXXdT189133w3AF77wBZ555hluuOEG6uvr+e53v0tlZSWzZs1izZo15Ofn9/u9RoISHnJaMXEuPnnLUv786/c5fqSma3qLzW6lqDiLK69fgsvjGLb3D4cj+Dr8WK3Wfr2PaZq889d9vP3GXlwuOxmZCVhtFlqaO9m84RD1tS18+u/OIT7e0+tDUHNzB398ZRt1tS3k5CR2jW4JBEIcPVbHy69s4+abluJ2D9+1j4SklFjsdiu+zgCuXq6lpbmT9MwEYmLG5+gOgJ0HKgibZrdkx0lpSbEcLqvjw5Lq0yY8qppb2XW8iqN1jVgtFqakpzA7J4MEz8j8f/MHQ2w5Ws4HJcdpaOvAbrUyOzeDxUW5ZCbEnfF8p9PO5Z8o5vdrd3CkrJ5ErxubzUpruw+fP8TcGdnMK84ZgSvprr69gyN1DaTGxvR6n6bGxVBS10hJXSOFKUn88oPt7K6sJtHjJi0ulmAkzIGaekrqm/jcvJksyc/t5V1ERERE5KQLL7wQ8wxzYe644w7uuOOOEYpocJTwkDNKzUzgpjsu4eiBKmormwBIz04kf0o61n58i9wfwUCI3R+UsHPTERprW7BYLRROy2TuuZPIm3zmgjj1ta188N5hvPFuEpNOeVC1WuiMRHjtjb3sK6llwcIC5szKZerUjG4PVPv2V1Bd3UxBQQoWy9+2Oxw2cnKSKDvewKHD1cyeNbYfoHLzU8jNT+HIwWpyC1K6fYPf3uYjGAgzd0EBVtv4rZFQVd+Cx9V74sowDKxWCw0tHX2ev/VYOX/cupfGjk5cdjsR02R7aSXvHjzKDefMoTA1abhCB8AXDPHrTTvZeqwcp81GnMuJPxTmL3sOsft4NTctnXtWMUwtSufmaxazZVcpB0qq8fmDpCbFMX9mLvOLc3BGYTpLMBwhFIlgt/b+e8ZqsWBiEgiH2Vx6nD1V1RQlJ+KwnYjVhY04p5PjTc38ed9BZmakETvAZdhEREREZOxRwkPOis1uZfLM7BGZvhIKhln70ma2bzyE3WElLt5DKBRhx3uHOLSnnCtvWML0eXmnbePIoWraWn0UTErt2lZV28KhkhqCwciJh9i6VvbuKefAgSqWnz+N5edP7Up6HDxUjdNp65bsOMlut2IYcOxY3ZhPeFitFlZcPY8//uZ9jpXU4vE4sNttdLT7wYAFS4qYs2B0Dk8bKh6Xg/qm9j73R8IRnH2sTHK8oZk/bN1LIBRmSnpK17+fcCTC0bpGfvPBLlZdvJQY5/CNBNp8pIwtR8vJTYrHfUpF0VRvDEdqGnh52z7uuOTcPpMGp8rNTCQ3M5GOzgChcASP24FthKexnCre7SLuo6kqnl6qpbb7AzhtNrwuJ68fPEyMw9GV7DhVpjeOI3UN7KuuZXHeyI9UERERERk086NXf8+Z4JTwkFFn//ZSdrx3mNTMeDynrBySkBxDZWkDf315K7mTUomJ67sGR2dHAIy/1abo6Axw5FgdpgkJ8W46OwNYDIO8vGSamjt4d8MB8vKSKchPAU6sPmO19j3nzbAYBINh2tr97DlYwa79FbR3+klOjGHO9BxmTMrAbh+e0S9DLS0jnhs+fx57dx1n764yfJ1BcvJTmDU3l6nTs8b16A6AmZMyOHSshlA40uPhvsMXwG63Mik3pddzt5dW0NTR2S3ZASdGHuQnJ1JS18Ce8mrOKRqexFgwHOb9I8fxOOzdkh1wos5FTlI8pXVNHK5pYHpmah+t9OQZJVO1PA47C/Oz+dOuD0n0uLvVJYmYJhXNLUxPTyUjPo5Wn58YR+9xWy0WMKDV5x+p0EVERERGjcWLF2O1Wlm1ahWrVq2KdjgjSgkPGVVM02TX5iNYLEa3ZAecSF6k5yRSdqiGw3srmLNkUh+tgNvjANPENE0Mw6C+sR2fP0iC90SSJBQMExvnxrAYJCbGUFJSy9695V0Jj+zsRI6U1HSdf6pIxCQUjBDrdfP8y5spKavH7bThcFg5cKSd/YermTsjh09fOicq0wAGwhvv4dzzp3Lu+VOjHcqImzU5k237jnOsvJ7M1Hg8bgemadLa7qOmoZV503IoyE7u9dwD1fXEOJ291pc4mTwpa2getoRHuy9AU3snXnfv0zRcdhvhiElDW99Tcka75ZMKOFbfxJ7KGmKdDmKdDvyhEI0dnWTFe/nk7Om4bDacdhvtgWCvbURME9Okz5E6IiIiIqPdYAZ4bN68Ga937C+4MBDj+6tbGXPCoQj11c3E9LEEqtVqAcOguaHvKQgAk6ZmEOd101DfBkB7x4kRHYZhEA5HCIcjpGXEdx3v8Tio/Kg+CUDxjGxiY13U1bV1a9c0TaqqmklIcHO8tpmSsjoKshPJzkggNSmO/OwkMlLi2LanjPe3lwzw/4KMpLgYF59bMY/pRRk0NLdzuKyOI8fr6PAFWTwrn09fNKfPaR29zHjqxgCGc2EQm9WC1WIQCve+ik7ENDExozotZbDiXE5WLpnHZ+cVk+hx4QuGsFutXDZ9Ml9atoi8j5aqXZCTTXOnj3AvKwrVtXcQ73YxPe3sR7mIiIiIyNinr7tkVLFYDewOG+2tvl73m6aJGYlgd5x+ukhyShznLJvCW3/ZS8DfSCQSIRyJ0NkZwNcZJDkljrT0v2U5Q6EIjlNGY2RlJXDRhcW8/sYejpbUERPrxDRN2tr8eL1uFi0u4u2th0lPietaweUkt8tBjNvBtr3HOWde4ZgZ5TGRpSXF8flPnUNpVQM1DW0npoOkJ5CeHHfapUynpKdwuLax15FAJ5MQeUkJwxZ3rMvJ1MxUNh0uIzHG3SOGxvZO4t3OYS+cOtxinU4unjaJ5ZML6AwGcdpsOD9Wq2NJfg67Kqs4VNdAljeOWKeDsGlS29ZOuz/AVcXTSI7xROkKRERERAbJNE68+nvOBKcnMRlVLBYL0+fl8dafdpCSEd+jaGh7qw9XjPOsVmpZdsF0YmKdbNl0hMbmDvy+IA67ldz8ZHLzU7B9VGMjHI7g94eYOjWj61zDMFi0sIDU1Dh27z7O0WN1WCwG8+bmMWtWLvXN7XT4gmSk9j40LD7ORUNzJ43NHX0eI6OLxWJQkJVMQVbv01d6My8vi/ePlFHW0ExuUvzHipY2kJMUz4ystOEKGYBzJ+Wxv6KWY/VNZCd6sVutmKZJY4eP+rYOLimeRGpczLDGMFLsVmufxVeTYzx8fvF8/nf3fg7W1VPZ0orFMEiJ9bBi2mQ+MalgZIMVERERkahTwkNGndmLi9i39Rhlh2rIyEvC6bKfqKnQ1EFddQsLzptCZt6ZH0otFoP5i4uYOTePirIGXlmznYqqZrJyk3A4T/zTDwRClJc3kZWVwIzpWd3ONwyDgvwUCvJTutaiPvlA29jaiWGAafY+ZSEcMbFYDKxnmvMgY1p2opfPLprF77fs4WB1HQ6bDdM0CYYj5CR5+bvFc4Z1hRaAorQkrl8ym//dvp+jdU0natdgEutyctGMIq6YM3HqsmR64/jy0kWUNTXT2NGJzWKhIDmxz2KmIiIiIjK+KeEho05SmpdPrVzGX363hYpj9UQiESIRk5hYF4s+MZ2Lr5l/2mkGH+dw2CiYlMbKlefzp1e3U1JSSyAYxuBETZC8vCSuvnIuXm/fq758/P1yMhPwxrppbOkgOaHnt+cNTR3kZSWS1Ms+GV/m5maSleBlZ1klpQ1N2CwWJqUlMys7Ha+791o0Q21WTgZFacnsr6ihqcOHw2Zlcnoy6d7Yft0r44FhGOQlJpCXmBDtUERERESGjFalHRglPGRUyi5I5ZavXcbRA1U01bdhtVrIKUolJSN+wA9wCQkebrz+XEpL66mobMI0TdJSvRQWpvZ7Cdn4ODfzinN4672DOOxWYj0nVuowTZP6xnYwYPHcghNFVmXcS42L4ZLiyVGNweOws6AgO6oxiIiIiIiMJkp4yKhls1uZPHNoH+CsVguFhakUFg5+tYYLz52Kzx9kx77jVNe1YrEYRCIm3lg3l50/ndnTss7ciIiIiIiIyBmY5olXf8+Z6JTwEBkgp8PGpy6Zw4JZeRw6VovPFyQ+zsWUwnRSk2KjHZ6IiIiIiMiEpoSHyCBYLAa5mYnkZiZGOxQREREREZEeFi9ejNVqZdWqVaxatSra4YwoJTxERERERERERjXjo1d/z4HNmzfj9XqHPKKxQBUVRURERERERGTc0QgPkSgJhyM0tXQSMU0S4tz9XilGREREREQmBhUtHRglPESGmWmaVFc3c/hILZ2dATweByHD5GBpLVU1LZimSVJCDAtm5bFodh42mxIfIiIiIiIig6WEh0x4pmkSCoYxDAPbEI+yCIcjvPHXvWzdepT2Dj8ANc3tNHT4SE6OZdqkDCxWqG9s55XXd1Fd18LVF8/GZtVsMxERERERkcGI+lPV448/TmFhIS6Xi4ULF7J+/frTHv/WW2+xcOFCXC4XRUVFPPnkk932//SnP2X58uUkJiaSmJjIpZdeyvvvvz+clyBjlGmaHNx9nN//fD3/9dDLPPm9l1nzwnuUHqoesvd4b9Nh3t1wEKfbTmFhKmkZ8fiJYLdZaG/upK21kxi3k6z0eNKSY9myq5SDJUP3/iIiIiIiIhNVVBMeL774InfddRf33Xcf27ZtY/ny5Vx55ZWUlpb2enxJSQlXXXUVy5cvZ9u2bXzzm9/kzjvv5Le//W3XMW+++SY33XQTf/3rX9m4cSN5eXmsWLGC8vLykbosGQNM02TDut387mdvs397KWbEJBIOs/XdA7z032+x6/0jg36Pzs4AW7cdxeNxkBDvwTAMapva8QfDJHo9WCwWKiqbCEdOTK6L9TiJmCa7P6wY9HuLiIiIiIhMdFGd0vLII4/wpS99iS9/+csAPProo7z22ms88cQTPPzwwz2Of/LJJ8nLy+PRRx8FYMaMGXzwwQf86Ec/4rrrrgPgueee63bOT3/6U1566SVef/11Pv/5zw/vBcmYUXqohg1r9+CJdZGYEtu1PSnNS/XxBv768jayC1NJSo0b8HtUVDbR0NBGdnZi1zZfIIjFMDAMA7fbTnuHn/Z2P944FwAel53axraBX9gEEQyFOVRZR31rB1aLhYK0RDIS4zCM/i7VJSIiIiIyFhiYA1yWdiKLWsIjEAiwZcsW7rnnnm7bV6xYwYYNG3o9Z+PGjaxYsaLbtssvv5ynn36aYDCI3W7vcU5HRwfBYJCkpKShC17GvP3bj+H3BcjM6/nvIi07kZIPqzi4q4wlFxcP+D0ikQimCRbL3wZS2W1WzI/KJRsW46Nqy38rnxwIholxOwf8nhPB0ZpGXt60h7L65q7/xzEuB3MLM7l60Qzcjp6/B0REREREZOKJWsKjrq6OcDhMenp6t+3p6elUVVX1ek5VVVWvx4dCIerq6sjMzOxxzj333EN2djaXXnppn7H4/X78fn/Xzy0tLf25FBmDKkvrccf0nlgwDAO73UptVfOg3iM5KZaYGCctrZ0kxHsASPJ6OFbVSCAUJhQM4XTYcLtPPKAHQ2ECwTAzp/T8dywnVDe18eL67dS2tJOTHI/TbsM0TZo7fLy77yjhiMn1583RSA8RERERGV/Mj179PWeCi3rR0o8/mJimedqHld6O7207wA9/+ENeeOEFfve73+Fyufps8+GHHyY+Pr7rlZub259LkDHI4bQTDkX63B8OR3A4BpcPTEqKZfq0TBrq2wgGwwAkxLlJT4qjua2TljY/qalx2G1WWtt9HCtvYFJeCjOU8OjT1sPHqWxspTA9Caf9RP8YhkFCjJuMhDh2Hq3keP3gElUiIiIiIjI+RC3hkZKSgtVq7TGao6ampscojpMyMjJ6Pd5ms5GcnNxt+49+9CP+7d/+jbVr1zJnzpzTxnLvvffS3Nzc9SorKxvAFclYMmV2Dr7OAJFwz6RHwB/CYrGQP6X3f4f9ccEnpjN5cgZlZQ2UlzfS0NBGrNVGnN1BfLyHsAElx+tpbfczd0YOn71iPjFux6DfdzyKREx2Hq0i3uPC0kuCM87tpMMX5HBVfRSiExEREREZnRYvXkxxcTGrV6+OdigjLmpTWhwOBwsXLmTdunVce+21XdvXrVvHNddc0+s5S5cu5ZVXXum2be3atSxatKhb/Y5///d/53vf+x6vvfYaixYtOmMsTqcTp1N1EyaS6XPz2L7xEKWHa8nKT8bhPHEr+DoCVByrZ9LMLAqnD36khdfr5nOfXcTefRXs2n2c1lYfRYVervnUAtIz4qlraicSMUlLjiUzLV5TMU4jHIkQDIex23rP0xqGgcUCodOM3BERERERmWg2b96M1+uNdhhREdVVWu6++25WrlzJokWLWLp0KU899RSlpaXcfvvtwImRF+Xl5fziF78A4Pbbb+exxx7j7rvv5rbbbmPjxo08/fTTvPDCC11t/vCHP+Rb3/oWzz//PAUFBV0jQmJjY4mNje0ZhExIcQkePnXLMl77zfuUH60jEo5gAnaHlalzcrji+iU4nD2LX/o6AhzaU07poWrC4QgZuUlMmZVDQnLf/7Y8HieLFhayaGFhjylbWRkJw3B145PNaiEtPobDVfUkx8X02B/6qA8TY92nbScQDNHmC+CwWYlVgVgRERERkXErqgmPG264gfr6er773e9SWVnJrFmzWLNmDfn5+QBUVlZSWlradXxhYSFr1qzhG9/4BqtXryYrK4uf/OQnXUvSAjz++OMEAgE+97nPdXuvBx54gAcffHBErkvGhozcJG7+6qWUfFhJXVUzFotBRm4yuZPSsFp7jiKoqWjkT8+/R8WxOgzDwDBg24aDvP/XfVx23SKmzj5z7ReN4Bg4wzBYOCmHAxV1tPkCxLr+NvXHNE0qGppJi49lek5ar+e3+wJs2n+MLYfLaev0Y7NamJ6TxpLp+eSlJozQVYiIiIiI9N+J1R37f85EZ5im/jd8XEtLC/Hx8TQ3N0/YoT/Snd8X5IXVf6HsSC25RanY7FbgRF2Jkyu+3PiVi0nLSoxypONbMBzm9xt3s+lAGQ6bBa/HRTgSoaG1E6/HxXXLZjM7P6PHee2+AC+8tY09x6qJczuJdTsJhsLUt7aTFBfDDcvnMiU7JQpXJCIiIiKjXTSfD0++9/c3/glXbM9Rzqfja2vnnqVXT+jn2qiv0iIyFhzeW0750bpuyQ4Ai8UgKz+Z5vo29m09FsUIJwa71cq1587i+vPmkJOSQCAYxjTh3Gl5/P3FC3tNdgBs2n+MPceqyU9LJDPJS5zbSVKch8mZKbS0d7Lmg/0EQ+ERvhoRERERkbNlDPA1sUV1SovIWFFZWo8ZMbslO04yDANPnIvD+yq44JPzRj64CcZus7JkWh6LpuTQ4Q9itVjw9FJv5aRAMMSWw+XEuZ1dS9meZBgGWcnxlNc3c7iynum5vU+HGQ1M06Slw08oHCbO7cRh169vEREREZHT0SdmkbMQiZinTZAahnHiGBkxVouFuLMoOtrmC9DW6e+zQKnTbiMSMWlq7xzqEIfM4Yo6Nu0r5VBFPeFIBK/HxYIp2Zw7Ix/3aZI9IiIiIiITmRIeY1QkEqHiUBWl+8sJB8PEp3qZPL8QT9zpV6iQgUnPPlGbIxyO9FrQtL3Vx+zFRSMdlpwFh82KzWrpc8pKOBLBxMRh6zl6ZzTYXVLFb9fvpK3TT7I3BpvVTkuHj/99by+l1Y1cf9E83A4lPURERETGNfOjV3/PmeCU8BiDOts6ee2ZN9n//kF87X4sFguYkJKbxGUrL2DKAj14D7XJM7NJy0qkvKSOnKJULJYTwz1M06SuqpmYOBczFuRHOUrpTazbyfScNDbsO0ZirLvHSjkNrR0kxLiZlDn6ipZ2+oO8unk//mCIoszkrthj3U58gRC7jlYx+WA5580siG6gIiIiIiKjkIqWjjGmabL2F2+x7Y1dxCd7KZyVR8HMXHKnZ9Fc08L//tc6Kg5XRTvMcccT6+KK688hKTWOYweqqCytp+p4A0c/PPH/+uJrFpBTmBrlKKUv507PJ9kbw9HqBvzBEHBiZEdtcxstHX6WTs8nPsYV5Sh7OnC8lprGNrKSvT0SNS6HDZfDztYDxwlHIlGKUERERERGgjnA10SnER5jTFVJDfs3HSQtN5WYeE/XdqvNStbkDI7uLmXHm3vImtT7ahUycHmT07nxjkv4cEcph/dVEA5FyC5MZca8PDLzkqMdnpxGbmoCNyyfy6sf7Od4fTORiImJSUKMmysXTeOC2ZOiHWKvmtt9gInN2vt0m1iXg6b2TnyBEDEux8gGJyIiIiIyyinhMcaUfVhBZ5uPjIKeq0kYhoE3xcvBrUe45NZP4FAxwyGXkBzLkouLWXJxcbRDkX6akp1CQfpSDlfW09zhw2GzUpSRPCpHdpzktFtPZOdNs8cID4BAKIzTbsXeS10ZEREREZGJTp+Sx5hQMITFMHp9+AGw2axEwhEiYQ1xF/k4u83K9Nw0lkzLY/6k7FGd7AAoykomzu2ksbXnCjIR06SprZPZhZlaolZERERkvBvEnJbFixdTXFzM6tWrRzzsaNOn5DEmKSMBw2IQ9Aex9zKCo7WxnbwZWTjdE3d4ezgcofJYHR3tftweJ1n5yVhH6QocZxIMhikpraO5pRO73UpBbjIJp0xlkvEtNT6Wc6bn8ca2g0RMk6Q4DxaLQac/SEV9M5lJXhZOzYl2mCIiIiIyim3evBmv1xvtMKJCCY8xpmhOPhmFaVQcqSZvena3kR7tzR1EwmHmXDCzzxEg413J/kreXbuL8qN1BPwhHA4bmfnJLLtsJpNnjq0Hw5LSOta9uZfyqqYTNSdME2+cm4Vz8rhg2VRsYzSJI/1z6cIpWC0G7+8vpaSqHjCwWS0UZSZz9ZIZpCfGRTtEERERERl2xkev/p4zsSnhMcY4XA5WfOFCXnniNUp2lRKXGIvNYaWtqQMzEmHBZXOYuWxatMOMiqMHqnj5l+/S3uojLSsBp9uO3xek/Ggdrzy7kU/duozJM7OjHeZZqahq4vd/2kZzaycZafE4HTYiEZPG5g7e3HAAE7j0EzOiHaaMALvVyopF0zhneh4lVQ2EwhESY90UZCRhU+0OEREREZE+KeExBuUX53LDv1zLrvV72b/pIMFAmKK5ecxeXsyMJVPG7PSNwYhEIrz3lz20tXSSNzmta4SLy+0gpzCF40dqee/1vRROz8Q6Bh4St+4spb6xjaL81K5rsVgMkhNjMIAtO46xcE4eiQkx0Q1URkxCrJv5k8dGwk5EREREhthA1pnVurRKeIxVqTnJXHzTci684Twi4QhWm3XCTmMBqK1ooqykltTM+B7/HwzDICUjnopjdVQfbyArPyVKUZ4dnz/Ih4eqSIiP6bVPE+I9HC2ro6S0XgkPERERERGRPijhMcZZLBYsltE/YmG4+TqDBAMhHK7el+J1uu0EAyF8HYFhjyUcjnD8SC3NDW1YbVZyClOJTzr7xEQwGCYUjuDqY1lhi+XEKj3BYHioQhYRERERERl3lPAQ/J1+SveV09nmw+N1kzcjB0cfD9ujlSfWidNlx9ceIDbe3WN/Z3sAp8uOJ3Z4lyGtKmvg9T9s4XhJLcFAGDCJS/Awd8kkzrt8NnbHmW85t8tOXKyLxqYO4nqJNxgMYxgGXu/oXlJVRERERESGhma0DIwSHhOYaZrseXc/7/7hfWrK6jHDESw2C+n5qSy/7lymnzMl2iGetZSMeAqmZrBv6zFivK5uU0FM06S2spkps7JJz0kcthgaalv54y/epbaykfScRNweJ5FIhKb6dt55bRehYJhLrl14xqlHNpuV+bNy+d91u/D7gzhPST6ZpkllTROZ6V6K8lOH7VpERERERETGOiU8JrB9mw7yp5/+BTNikjUpA7vDRsAfpOZYHf/7X+uw2W1Mnl8Y7TDPimEYLL10FjXljRz9sJqUDC8ujwNfZ4C6qhYSU+M47/LZw1rnZNf7h6kub6BganrXNCOLxUJSahxWq4Wd7x9h7tLJpGYmnLGtebNzKSmrZ8+HFXhcDmJjnIRCYRqbO4j3erj0EzNwnsVoERERERERGQc0xGNAVPxhggoFQ7z3ygeEg5GuZAeAw2knZ2omvjY/7/3vB0QikShHevay8pP5zN8vZ/Y5RXR2BKgub6SzPcDMhQVc+/fnk1M4fCMiwuEI+7YdIy7e3WtNFW+ih/ZWH8cOVp9Ve26Xg2uvmsfVl84mId5Npy9AxDRZNK+AG69dzJSi9KG+BBERERERkXFFXxFPUBWHq6k6WkNqTnKv+1Nykig/WEVNaR0ZBWkjHN3AZeYlc80XzqOxro3Odh9uj5PE1LhhX8EmFAwT9IdwOHu/pQzDwDAg4A+edZtul4NliyexeF4B7Z1+HDYbHo9jqEIWEREREREZ15TwmKACvgChQAi7q/cHaIfrxKom/s7hX9VkqBmGQVJqHKTGjdh72h1WvEmxVB+vJz4ptsf+cPjESJm4eE//27ZbSbD3/zwRERERERkvjI9e/T1nYtOUlgkqLjEWV4yLjpaOXvd3tHTiinESl3j2y6lOZBaLhTnnFBHwh/D1kiSqKW8kOc1L0YysKEQnIiIiIiIy8SjhMUGl5aVQMCuXmrI6IpHu1Wwi4Qh15Q1MWVBIUsbwrWoy3hQvLKB4fgGVpQ1UlzfS0eajpbGdYwersVqtfOLqecTEjfxSsoFACJ8viGmqapGIiIiIiEwcmtIyQRmGwfLrzqXueAMlu0pJykzA5XHS2eajsbqJrMkZLLvmnGiHOaY4XXauuvlcMvOT2bX5CK2NHVisFqbPy2PBeVMpnJ45ovGUltazfUcph49UY5om6WnxzJ2Tx4wZWVitynWKiIiIiMj4poTHBJZZmM7n7v4km1/bzoEPDtNU24zT7WDppxex6PJ5pGQlRTvEMcfldrD00pksXD6NtpZObDYLcQmeYS+a+nG79xzn1T/vpK3NR/xHK8ccLqnh8JFallY1ccnFM7FYNKdPRERERETGLyU8Jri0vFSuvu0yLvi7ZXS2+fDEuYiJV92OwXI4bScKp0ZBc0snf3l9D8FQmIKClK5kS0KCh5aWTja9f5j8vBSmTs2ISnwiIiIiItJP5kev/p4DLF68GKvVyqpVq1i1atVQRzaqKeEhAMQmxBCboETHeHDgQBUNDe3dkh0neb1uGhva2b3nuBIeIiIiIiITwObNm/F6vdEOIyo0kV9knGloaMMw6HPKiifGSWVV8whHJSIiIiIiMrKU8BAZZxwO62mHu4VCYZwO68gFJCIiIiIiEgVKeIiMM3l5KdjsVjo7Az32RSImnZ0Bpk/PikJkIiIiIiIyIOYAXxOcEh4i40xBfgpTJqdTUdlEe7sf0zzxmy4QCFFaWk9GRgIzi7OjHKWIiIiIiMjwUtFSkVO01LdyYMsRqo/WYLFZyJ2WzeT5hbg8zmiHdtasVgufvHoeVpuFgwerqalp6dqem5PEFVfMITFRBWpFRERERGR8U8JD5CMHtx7hzz//K/UVDVhtVsywyeZXt5M7LYtP3r6C1JzkaId41mJjXVx37WIqKho5Xt5IJBIhJTmOwsJU7HbV7xARERERkfFPCQ8RoKasjjX//RfamzooKM7FYj0x2ysYCHFs33H+9NQ6bv7mZ3G4HFGO9OxZLAY5OUnk5CRFOxQREREREZERpxoeIsCeDR/SWNVM9pTMrmQHgN1hI3dqFmX7yzm0/Wj0AhQRERERkYnLNAb2muCU8BABDm09Qky8B8Po+UvB7rQTCZtUHK6KQmQiIiIiIiIyEEp4iABmxMSwnCYDakAkHBm5gERERERERGRQlPAQAfJmZNPe3NHrvnAoDEB6XupIhiQiIiIiIiKDoISHCFC8bDqeODe1x+u7bY9ETMoPVZGen8rkBYVRik5ERERERET6SwkPESB3WhYX3XQ+kUiEI7uOUX2slsoj1RzdXUpCmpcrvngxMV5PtMMUEREREZGJyBzga4LTsrQigGEYLLxsDhmFaezbeIDSD8ux2axMnl/IjHOnkJSRGO0QRUREREREpB+U8BD5iGEY5EzJJGdKZrRDERERERERkUHSlBYRERERERERGXeU8BARERERERGRcUcJDxEREREREZHRbBBFSxcvXkxxcTGrV68e8bCjTTU8RERERERERMapzZs34/V6ox3GGRUVFbF582aSk5O7bW9qamLBggUcOXKk321qhIeIiIiIiIiIRNXRo0cJh8M9tvv9fsrLywfUpkZ4TGDtLR0cP1BJKBAiIc1LZlE6FotyYCIiIiIiIjIyXn755a7/fu2114iPj+/6ORwO8/rrr1NQUDCgtpXwmIDCoTDv/WkLW9ftpLG6GTBxuB3kF+dw8U3LSc9PjXaIIiIiIiIiMgF85jOfAcAwDL7whS9022e32ykoKODHP/7xgNpWwmMCeuf3m3j7NxvxeD3kTsvCarPS0dLJgQ+O0FLXyt/930+TlJEY7TBFREREREQEuhUh7dc5Y0AkEgGgsLCQzZs3k5KSMmRta/7CBNNY3cSWtTuIS4ojNScZq80KgMfrJn9GDhWHq9nx1t4oRykiIiIiIiITSUlJyZAmO0AjPHplmidSYS0tLVGOZOjtem8vtdX15M3IptPf0WO/I87Glr9uZ+6lM7DZ9c9DREREREQmtpPPhSefE6PD+OjV33PGltdff53XX3+dmpqarpEfJ/3sZz/rd3t6ou1Fa2srALm5uVGOZBi9cvrd//xfXx2ZOERERERERMaA1tbWbgU1ZWh95zvf4bvf/S6LFi0iMzMTwxh8wkYJj15kZWVRVlZGXFzckPxPnghaWlrIzc2lrKxsTKzxPFGoX0Yn9cvopH4ZndQvo5P6ZXRSv4xO6pfRqT/9Ypomra2tZGVljVB0PRmA0c8BJmPtSfbJJ5/kmWeeYeXKlUPWphIevbBYLOTk5EQ7jDHJ6/XqF/kopH4ZndQvo5P6ZXRSv4xO6pfRSf0yOqlfRqez7ReN7Bh+gUCAZcuWDWmbKloqIiIiIiIiIlH15S9/meeff35I29QIDxERERERERGJKp/Px1NPPcVf/vIX5syZg91u77b/kUce6XebSnjIkHA6nTzwwAM4nc5ohyKnUL+MTuqX0Un9MjqpX0Yn9cvopH4ZndQvo5P6ZfTZuXMn8+bNA2D37t3d9g20tqZhRndtHRERERERERHpRUtLC/Hx8Tz8+lpcMTH9OtfX3s69l6ygubl5wtaPUQ0PERERERERERl3NKVFRERERERERKLqoosuOu3UlTfeeKPfbSrhISIiIiIiIjKamR+9+nvOGHKyfsdJwWCQ7du3s3v3br7whS8MqE0lPEREREREREQkqv6//+//63X7gw8+SFtb24DaVA0P6dXjjz9OYWEhLpeLhQsXsn79+tMe/9Zbb7Fw4UJcLhdFRUU8+eST3fY/88wzGIbR4+Xz+YbzMsad/vRLZWUlN998M9OmTcNisXDXXXf1etxvf/tbiouLcTqdFBcX8/vf/36Yoh+/hrpfdL8Mjf70y+9+9zsuu+wyUlNT8Xq9LF26lNdee63HcbpfBm+o+0X3y9DoT7+88847nHfeeSQnJ+N2u5k+fXqvH1J1vwzeUPeL7peh0d/PySe9++672Gy2Ht9ig+6XoTDU/aL7ZfS49dZb+dnPfjagc5XwkB5efPFF7rrrLu677z62bdvG8uXLufLKKyktLe31+JKSEq666iqWL1/Otm3b+OY3v8mdd97Jb3/7227Heb1eKisru71cLtdIXNK40N9+8fv9pKamct999zF37txej9m4cSM33HADK1euZMeOHaxcuZLrr7+eTZs2DeeljCvD0S+g+2Ww+tsvb7/9Npdddhlr1qxhy5YtXHTRRXzqU59i27ZtXcfofhm84egX0P0yWP3tl5iYGL761a/y9ttvs2/fPu6//37uv/9+nnrqqa5jdL8M3nD0C+h+Gaz+9stJzc3NfP7zn+eSSy7psU/3y+ANR7+A7pfRYuPGjQP+/65laaWHJUuWsGDBAp544omubTNmzOAzn/kMDz/8cI/j/+Vf/oWXX36Zffv2dW27/fbb2bFjBxs3bgROZEjvuusumpqahj3+8aq//XKqCy+8kHnz5vHoo492237DDTfQ0tLCq6++2rXtiiuuIDExkRdeeGFI4x+vhqNfdL8M3mD65aSZM2dyww038O1vfxvQ/TIUhqNfdL8M3lD0y2c/+1liYmL45S9/Ceh+GQrD0S+6XwZvoP1y4403MmXKFKxWK3/4wx/Yvn171z7dL4M3HP0yWu6XrmVp1w1wWdrLxs6ytJ/97Ge7/WyaJpWVlXzwwQd861vf4oEHHuh3mxrhId0EAgG2bNnCihUrum1fsWIFGzZs6PWcjRs39jj+8ssv54MPPiAYDHZta2trIz8/n5ycHD75yU/2+IZO+jaQfjkbffXdYNqcSIarX0D3y2AMRb9EIhFaW1tJSkrq2qb7ZXCGq19A98tgDEW/bNu2jQ0bNnDBBRd0bdP9MjjD1S+g+2UwBtovP//5zzl8+HCfD2u6XwZnuPoFdL+MtPj4+G6vpKQkLrzwQtasWTOgZAeoaKl8TF1dHeFwmPT09G7b09PTqaqq6vWcqqqqXo8PhULU1dWRmZnJ9OnTeeaZZ5g9ezYtLS38x3/8B+eddx47duxgypQpw3Y948VA+uVs9NV3g2lzIhmuftH9MjhD0S8//vGPaW9v5/rrr+/apvtlcIarX3S/DM5g+iUnJ4fa2lpCoRAPPvggX/7yl7v26X4ZnOHqF90vgzOQfjl48CD33HMP69evx2br/dFL98vgDFe/6H4ZeT//+c+HvE0lPKRXH1//2DTN066J3Nvxp24/99xzOffcc7v2n3feeSxYsID//M//5Cc/+clQhT3u9bdfotXmRDPU/w91vwyNgfbLCy+8wIMPPsgf//hH0tLShqRN+Zuh7hfdL0NjIP2yfv162traeO+997jnnnuYPHkyN91006DalO6Gul90vwyNs+2XcDjMzTffzHe+8x2mTp06JG1K34a6X3S/RM+WLVvYt28fhmFQXFzM/PnzB9yWEh7STUpKClartUc2tKampkfW9KSMjIxej7fZbCQnJ/d6jsViYfHixRw8eHBoAh/nBtIvZ6OvvhtMmxPJcPXLx+l+6Z/B9MuLL77Il770JX7zm99w6aWXdtun+2VwhqtfPk73S/8Mpl8KCwsBmD17NtXV1Tz44INdD9a6XwZnuPrl43S/9E9/+6W1tZUPPviAbdu28dWvfhU4MTXPNE1sNhtr167l4osv1v0ySMPVLx+n+2X41dTUcOONN/Lmm2+SkJCAaZo0Nzdz0UUX8atf/YrU1NR+t6kaHtKNw+Fg4cKFrFu3rtv2devWsWzZsl7PWbp0aY/j165dy6JFi7Db7b2eY5om27dvJzMzc2gCH+cG0i9no6++G0ybE8lw9cvH6X7pn4H2ywsvvMDf//3f8/zzz3P11Vf32K/7ZXCGq18+TvdL/wzV7zHTNPH7/V0/634ZnOHql9726345e/3tF6/Xy65du9i+fXvX6/bbb2fatGls376dJUuWALpfBmu4+uXjon2/GObAXgCLFy+muLiY1atXRyX2s/W1r32NlpYW9uzZQ0NDA42NjezevZuWlhbuvPPOgTVqinzMr371K9Nut5tPP/20uXfvXvOuu+4yY2JizKNHj5qmaZr33HOPuXLlyq7jjxw5Yno8HvMb3/iGuXfvXvPpp5827Xa7+dJLL3Ud8+CDD5p//vOfzcOHD5vbtm0z/8//+T+mzWYzN23aNOLXN1b1t19M0zS3bdtmbtu2zVy4cKF58803m9u2bTP37NnTtf/dd981rVar+f3vf9/ct2+f+f3vf9+02Wzme++9N6LXNpYNR7/ofhm8/vbL888/b9psNnP16tVmZWVl16upqanrGN0vgzcc/aL7ZfD62y+PPfaY+fLLL5sHDhwwDxw4YP7sZz8zvV6ved9993Udo/tl8IajX3S/DN5A/u6f6oEHHjDnzp3bbZvul8Ebjn4ZLfdLc3OzCZjfX7vWfPTdd/v1+v7atSZgNjc3j2jMA+X1es3333+/x/ZNmzaZ8fHxA2pTCQ/p1erVq838/HzT4XCYCxYsMN96662ufV/4whfMCy64oNvxb775pjl//nzT4XCYBQUF5hNPPNFt/1133WXm5eWZDofDTE1NNVesWGFu2LBhJC5lXOlvvwA9Xvn5+d2O+c1vfmNOmzbNtNvt5vTp083f/va3I3Al48tQ94vul6HRn3654IILeu2XL3zhC93a1P0yeEPdL7pfhkZ/+uUnP/mJOXPmTNPj8Zher9ecP3+++fjjj5vhcLhbm7pfBm+o+0X3y9Do79/9U/X2YG2aul+GwlD3y2i5XyZSwiM2Ntbctm1bj+1bt2414+LiBtSmYZofVZcUERERERERkVGjpaWF+Ph4vr92La6YmH6d62tv554VK2hubsbr9Q5ThEPnmmuuoampiRdeeIGsrCwAysvLueWWW0hMTOT3v/99v9tUDQ8RERERERERiarHHnuM1tZWCgoKmDRpEpMnT6awsJDW1lb+8z//c0BtapUWERERERERkdHs5MTO/p4zhuTm5rJ161bWrVvH/v37MU2T4uLiM67Qdjoa4SEiIiIiIiIiUfHGG29QXFxMS0sLAJdddhlf+9rXuPPOO1m8eDEzZ85k/fr1A2pbCQ8RERERERERiYpHH32U2267rdc6I/Hx8fzjP/4jjzzyyIDaVsJDRERERERERKJix44dXHHFFX3uX7FiBVu2bBlQ20p4iIiIiIiIiEhUVFdXY7fb+9xvs9mora0dUNtKeIiIiIiIiIiMZqYxsNcYkJ2dza5du/rcv3PnTjIzMwfUthIeIiIiIiIiIhIVV111Fd/+9rfx+Xw99nV2dvLAAw/wyU9+ckBta1laEREREREREYmK+++/n9/97ndMnTqVr371q0ybNg3DMNi3bx+rV68mHA5z3333DahtJTxEREREREREJCrS09PZsGEDX/nKV7j33nsxTRMAwzC4/PLLefzxx0lPTx9Q20p4iIiIiIiIiEjU5Ofns2bNGhobGzl06BCmaTJlyhQSExMH1a4SHiIiIiIiIiKjmGGeePX3nLEmMTGRxYsXD1l7KloqIiIiIiIiIuOOEh4iIiIiIiIiMu4o4SEiIiIiIiIi445qeIiIiIiIiIiMZuZHr/6eM8Ep4dGLSCRCRUUFcXFxGIYR7XBEREREREQkSkzTpLW1laysLCwWTZIYS5Tw6EVFRQW5ubnRDkNERERERERGibKyMnJycqIdhvSDEh69iIuLA078g/Z6vVGORiR6PvzwQ6677joikQjvvvvuoNfBFhEREREZa1paWsjNze16TpSxQwmPXpycxuL1epXwkAlt8eLF7Nq1i9LSUvLz86MdjoiIiIhI1KjcwdijhIeI9GCaZtcv9Pj4eGbPnh3liEREREREJjAVLR0QVVwRkW7C4TBXX301Tz75JKap35IiIiIiIjI2KeEhIt384Ac/4NVXX+Wf//mfqaioiHY4IiIiIiIiA6IpLSLS5f333+eBBx4A4LHHHiM7OzvKEYmIiIiICIAqiPSfRniICACtra3cfPPNhEIhrr/+ej7/+c9HOyQREREREZEBU8JDRAD4+te/zuHDh8nNzeXJJ59UFWoRERERERnTlPAQEX7zm9/w85//HIvFwrPPPktiYmK0QxIRERERERkU1fAQEY4dO4bFYuHee+/lE5/4RLTDEREREZFxzDRN/KHDdPi3EQhXYjHceByzcDvmYLXERDs8GUeU8BAR/u///b9ceOGFzJ07N9qhiIiIiMg4ZpoRmjvW0Nz5FyJmBxbDjWkG6fBvxmmfRkrc57FbU6Md5uhjfvTq7zkTnBIeIhOYaZpdtToWLVoU5WhEREREZLzrCGyjufNVrEY8Tlte13bTDOIL7qeh7UXSvHdgGKq+IIOnf0UiE9T777/PkiVL2LdvX7RDEREREZEJwDQjtPk2YGJis6Z022cYdhzWXHzBA/hDR6IUoYw3SniITEAnl6DdvHkzDz/8cLTDEREREZFRyDQDmMGdmL61mL51mMEPMc3QgNuLmG0EQmXYjORe91stsZimn2CofMDvIXIqTWkRmYDuvPPOriVo/+M//iPa4YiIiIjIKGOGSjE7fwPhUjBDgAHYwT4V3NdjWHtPWpxl671vNQdSqGKCGEQNj8WLF2O1Wlm1ahWrVq0a6shGNSU8RCaYX//61zzzzDNaglZEREREemVGGjE7nodwOVjzwXB8tKMTgrswCUPMbRiGs1/tWow4nLYCOoK7sZHUY3/EbMMw3DhOqe0hg7d582a8Xm+0w4gKTWkRmUBKS0v5x3/8RwAtQSsiIiIivQvugHAZWIv+luwAMNxgLYTgAQju73ezhmEQ61qKgZVguPqjER0nREw/gXAZbkcxDlv+UFyFiBIeIhNFOBxm5cqVNDU1sWTJEh544IFohyQiIiIio5AZ2A24wLD23Gk4ARMzdHBAbbsd80jwfOrEqiyhffiDJfiCBwiEjuG2zyYp5nqt0CJDRlNaRCaIpqYmQqEQsbGxPPfcc9jt9miHJCIiIiKjUgCM0z0qWoDggFo2DAOv+zJcjml0+HcSDFdiMdy4HcW4HTOxGK4BtSvSGyU8RCaI5ORk3nrrLXbt2sWkSZOiHY6IiIiIjFbWXOhraVgzAoQwLBkDbt4wDJy2fJyaunLWDPPEq7/nTHRRHyv0+OOPU1hYiMvlYuHChaxfv77PYysrK7n55puZNm0aFouFu+66q9fjfvvb31JcXIzT6aS4uJjf//73wxS9yOgXiUS6/ttmszF//vwoRiMiIiIio53hmH+iXkekrvsO04RIBViSwD47OsGJ9ENUEx4vvvgid911F/fddx/btm1j+fLlXHnllZSWlvZ6vN/vJzU1lfvuu4+5c+f2eszGjRu54YYbWLlyJTt27GDlypVcf/31bNq0aTgvRWTU+vKXv8w//dM/4ff7ox2KiIiIiAyDiNmJ37+Vjs6/0Ol7i1C4cnANWieBcwWY7RA6BOE6CNdA+CBgxXBfg2FNGZLYRYaTYZ5aGneELVmyhAULFvDEE090bZsxYwaf+cxnePjhh0977oUXXsi8efN49NFHu22/4YYbaGlp4dVXX+3adsUVV5CYmMgLL7xwVnG1tLQQHx9Pc3PzhF2+R8aHX//619xwww1YLBY2bNjAkiVLoh2SiIiIiAyhQGAPbR0vEQqXgxnBxMRi8eJynkus5zP9Xjr2JNM0IbQX0/8+hI8CBthnYDgWYdgm1vToaD4fnnzvH768DndMTL/O7Wxv5/99+rIJ/VwbtRoegUCALVu2cM8993TbvmLFCjZs2DDgdjdu3Mg3vvGNbtsuv/zyHomRU/n9/m7ffre0tAz4/UVGi9LSUv7hH/4BgG9+85tKdoiIiIiMM8FQCS3t/4MZacVmLcAwHJimSSTSQKdvLWAQF3P9gNo2DAPsMzHsMzHNIGBgnLaQqcjoE7UpLXV1dYTDYdLT07ttT09Pp6qqasDtVlVV9bvNhx9+mPj4+K5Xbm7ugN9fZDQIh8PceuutNDc3s2TJEr797W9HOyQRERERGWI+3zuEw3VYrUUYhgM4kaiwWpOxGKn4/O8RClcP+n0Mw65kR7SZA3xNcFEvWmoYRrefTdPssW2427z33ntpbm7uepWVlQ3q/UWi7fvf/z7r16/XErQiIiIi41Qk0oE/sBurJaXXZx2LJRkz0kwweCAK0YmMDlFL06WkpGC1WnuMvKipqekxQqM/MjIy+t2m0+nE6RzY3DaR0WbTpk088MADADz22GNaglZERERkHDIJAqETq6n04kQSxMA0AyMal8hoErURHg6Hg4ULF7Ju3bpu29etW8eyZcsG3O7SpUt7tLl27dpBtSkyllRVVeHxeLjhhhv4/Oc/H+1wRERERGQYWIwYLJYkzEhzr/tN0w+GBas1eYQjExk9ojoR6+6772blypUsWrSIpUuX8tRTT1FaWsrtt98OnJhqUl5ezi9+8Yuuc7Zv3w5AW1sbtbW1bN++HYfDQXFxMQBf//rX+cQnPsEPfvADrrnmGv74xz/yl7/8hXfeeWfEr08kGq655hp27NhBYmLioKeHiYiIiMjQCYUb6QjswBf8ENMM47QVEeOch92W0e+2DMOGy7WUtvbniUQ6sFg8XftM0yQULsVmzcNhnzGUlyAypkQ14XHDDTdQX1/Pd7/7XSorK5k1axZr1qwhPz8fgMrKSkpLS7udM3/+/K7/3rJlC88//zz5+fkcPXoUgGXLlvGrX/2K+++/n29961tMmjSJF198UStUyLgXiUSwWE4M2iosLIxyNCIiIiJyKn/wCHVtvyQYKsfADljoCGyj1fcmSbHXE+Nc0O82Xc5lBIOH8fs3EY64sFi8YAYJR+qxWdOIjfncgJellVFmIEVIVbQUwzRN/W/4mGiusywyEMeOHeOKK67gP/7jP1ixYkW0wxERERGRU4QjrVQ3P0ogVI7TNgnDsAInRmIEwqVYDBfp8V/DYcvpd9sR04ff/x6d/o1EwvVg2HA65uFynofdptUnh0I0nw9PvvcP/7AOd0xMv87tbG/n/33msgn9XKu1hUTGuHA4zMqVK9m/fz8PPvggl112maayiIiIiIwinYHdBEJlOG2Tu5IdcKKwqMOahy+0n3b/1gElPCyGC7frQlzO5ZhmBxh2LIZrKMOXUcD46NXfcya6qC9LKyKD8/DDD3ctQfvLX/5SyQ4RERGRUcYfKgEMDKPn982GYWA1YvEF9w/qPQzDisUSp2SHyCmU8BAZw9577z0efPBBAFavXq0laEVERERGJX0hJRINSniIjFEtLS3ccssthMNhbrzxRlauXBntkERERETGFdM0CUZaCYZbGEzpQ6etADAxzVCv7xE223DZpw88UBn/zAG+JjjV8BAZo+68806OHDlCXl4eTzzxhKayiIiIiAwR0zRp9u+kofN9OkJlgInHlkOSewnxzrn9/tzldszCYcvDHzrSa9FSmyWJGOfCYbgSkYlNCQ+RMSgUCnUtQ/vss8+SkJAQ7ZBERERExgXTNKlp/wtVHWsxzTAOaxIALYEDtAYPku6pIT2mf0XirZY4kmNvpq7tl/hCBzBwYGAhQic2SypJsX+Hw5Y9XJckMmEp4SEyBtlsNn7xi1/wz//8z8yePTva4YiIiIiMGx2hY9R0vIHNEoPTmtK13WFNwB+up6bjr8Q5pxJjL+hXu057EenxX6fTv4PO4AFMQjhtRcQ452G3pg/xVYgIKOEhMqZEIhEMw+j6RkHJDhEREZGh1ezbTchsJ9aS1WOfw5JEW/gQTb6d/U54ANgsCcS5LyDOfcEQRCoTykBqcqiGh4qWiowl//Zv/8Y111xDbW1ttEMRERERGZd84SqshqvXKSsnlpB14g9XRyEyEekvJTxExoiTS9C+8sorrF27NtrhiIiIiIwqETNEk/8otb59NAdKiZjhAbVjM9xEzOBp38dquAcapoiMIE1pERkDPr4E7c033xztkERERERGjTrffo61vU1LoIIIQayGA689h4K4C0lyTupXW3HOGTT4NhMxA1gMR7d9ETMAhPE6Zwxh9CIyXDTCQ2QM+NrXvsaRI0fIz8/XErQiIiIip6jz7Wdf0+9oCRwnxpZKoqMItzWZpsBR9ja+RKP/SL/a8zqKiXVMpT1QQijShmmamKZJKNJGe7CEWMc0vI7iYboaERlKSniIjHK/+tWv+MUvfqElaEVEREQ+JmKGONa2nmDER7wjH5vFBYDd4ibenk8g0kpp2wZM8+yrN1otLvK8N5Lgmkcg3Eh78BDtwUMEwo0kOOeR570Rq0VTWmRkGebAXhOdprSIjGLHjh3j9ttvB+C+++7j/PPPj3JEIiIiIqNHa7CC1mAFsbaey7oahoHHmkpz4CjtoRpi7We/9KvDmkRB/P+hI1RKZ6gCALctC48tD8PQd8YiY4USHiKjWGNjI8nJycyYMYNvf/vb0Q5HREREZFQJRXyEzSBWw9nrfqvFSTjcQMj09bttw7AQYy8Y0PKzIjI6KOEhMorNmzePbdu20drais2m21VERETkVHZLDDbDSdDswGHE9NgfinRitThxWHruE5HxT09QIqNQKBTqSnB4vV68Xm+UIxIREREZWr5wM/X+EoKRThyWGJKdRTitsf1qI86eSbwjj3r/Qez2gm6F3U0zQkeolnTPPNzW5KEOX0TGACU8REaZlpYWli1bxh133MFXvvIVrcgiIiIi44ppRjja9h7H2jfiCzcDJz7reGyJFMV+gmzP/LP+/GMYFgriLqQjVEtTsASPNQWbxUUw0klHqI5Yexr5sefr85SMfeZHr/6eM8Gp4o7IKPO1r32NPXv28MMf/pC2trZohyMiIiIypMrat3Cg9S9EzAiJjgKSnIUkOPIIRnzsa36Vat/efrWX4MhnZuINpLtnEzQ7aQ9WEzb9ZHkWMDPxBuLsWcN0JSIy2mmEh8gocuoStM899xxxcXHRDklERERkyIQifso6NmM17MTaU7u2WwwrcfYMmgJllLZtIs01HYthPet24x25eO030Bmu75oi47ImamSHyASnhIfIKPHxJWjPO++8KEckIiIiMrSagxW0BevwOjJ73R9jS6ElWEVbqBavPaNfbRuGgceWMhRhisg4oSktIqNAKBTi1ltvpbm5maVLl2oJWhERERmVTDNCxAwP+PyIGcQkhKWP710tho0IYSJmcMDvISJykkZ4iIwCDz/8MO+88w5xcXE899xzWoJWRERERpWWYC3H23dR6TtAOBIi3pFGjmc2me6p/Zp64rImYLd4CETacFp7Tt31h1txWDy4rPFDGb6ITFAa4SEyCthsNqxWK48//jiFhYXRDkdERESkS53vGJvqfsOHLe8QCHdiEqHad5gtDX9gT/Pr/RrxEWtLJcU5mbZQbY/zwmaIznAj6e5iXFbvUF+GiExA+hpZZBS49957ue6665g6dWq0QxERERHpEoz42dW8jo5wMynOwq4ioDEk4Qu3UdK2hURHNjmemWfVnmEYTPZeSHuonkZ/CU6rt2sZ2UCkjWRHEYWxy4bzkkTGJAMw+rnMrEr2aoSHSFQFg3+bn6pkh4iIiIw2tb4jNAeqSbBn9ljxxGWNBeB4x25M8+yfxGJsKcxPuoEp3kuwWzyEzQBOSyzTvJczN+nvNJ1FRIaMRniIRMmvfvUrHn74YZ5//nlmzjy7b0VERERERlJ7qBEwsRq9PzY4LXE0B2oIm0FshuOs23XbEpjsvYjCuPMJRwJYLc4+30NEZKA0wkMkCk4uQbtz505eeumlaIcjIiIi0ivDsGJi9jmCwzTDWAxLvwqXnspq2HFYY5TsEJFhod8sIiPs40vQ3nfffdEOSURERMap9lALNf4KwmaYWJuXNGc2FuPsv/NMcuRgN1wEIh04rTHd9pmmiS/SwqSYcwec8BARGU5KeIiMMC1BKyIiIsMtFAmxu/l9DrbtpiPcCpwYTZHqzGRh4nJSnBln1U6iI5MM9xTK2nfiJQOn1QNAxAzTHKzCbY0n1zNr2K5DRD5ifvTq7zkTnJ60REbQxo0b+c53vgOgJWhFRERk2Oxo2sjuls14rLGkOXOwGBYCER/VvjLerXuNC9M+Rbw96YztGIaF2QmXYQLVnQdoCVZ3FS+Ns6cyK/4SEhyZw3w1IiIDo4SHyAhpaWnhlltuIRwOc/PNN3PrrbdGOyQREREZh5qDDRxq202szUus7W8rnjgsLlKd2VT7yjjcto8FieedVXtOawyLkj5NQ6CChkAZETOEx5pIunsSDot7uC5DRGTQlPAQGSHt7e1kZ2cTiUR4/PHHox2OiIiIjFNVvjI6w+1k2PN67LMYFtzWWEo7DjA3YclZFws1DAvJzhySnTlDHa6IyLBRwkNkhGRmZvLmm29SVlZGfLzWlxcREZHhEYoEMQxL19STj7Nb7IQiQUKREFarHgdEZPzSbziRYRYIBHA4TqxLb7VaKSgoiG5AIiIiMmpFzAgVncc50n6Q+kAdDsNJQUwRBTGTiLHFnLkBwGONBUzCZhhrL6un+MIdJDhSsFscQxy9iAwbFS0dkLNfk0pE+i0UCnHppZdy11134fP5oh2OiIiIjGIRM8KWxk2srfoT+1r20BJspspXyfq6v/Ja1Ss0BOrOqp1Mdz7x9iQaA7WYZvcnnkDETzASZFJscb+WpxURGYv0W05kGD388MOsX7+en/3sZ1RWVkY7HBERERnFjrYfZkfTVtw2D1nuHJIcKaS50slwZVHjr+bdurcJm+EztuOyupmXcB42w0a1/zjtoVZ84U4aA7XU+6vIj5lCYcz0EbgiERkqxgBfE52mtIgMk1OXoF29erWWoBUREZE+mabJh637MDGJtcV122c1rKQ606j2VVLZeZwcT/4Z2yuImYrT4uJA6y6qfWUE8OGxxjLLu5gpcbNxWJzDdSkiIqOGEh4iw6ClpYVbb72VcDjMTTfdpCVoRURE5LT8ET/1gTpirLG97ndYnITNEI3BRnI4c8IDINOdR4Yrl45wG2EzjNvqUd0OERl21157LW+++SaXXHIJL730UlRjUcJDZBh89atf5ciRI+Tn5/PEE0/0WSVdRERExoeIGeF4ZzmHWo9Q56/HaXVQFFNIUWwhMTbPGc+3GMZph5+bpokJnP6ongzDIOZjI0ZEZAwaQ0VL77zzTr74xS/yP//zP9EJ4BSq4SEyxF544QV++ctfYrFYeO6557QErYiIyBgRiATpDPuJmJF+nRcxI2yq38z/VvyZ3c17aAo2Ud5Zwes1b/K/Fa/S4G84Yxt2w0GGK4u2UEuv+30RHw6Lg1RnWr9iExEZaRdddBFxcaMj0aqEh8gQczgcxMfHc//993PeeedFOxwRERE5g/KOGv5c+Q7/ffh3PH3kd7xY9hq7mg6eVYFQgENth9nSuJ0Yq4ccTzYpzmQyXOlkuzOp8lXzVu27Z0yiGIbBtLhiHBYnDYG6bqurBCJ+GgK15LrzSXWmD+paRURO5+233+ZTn/oUWVlZGIbBH/7whx7HPP744xQWFuJyuVi4cCHr168f+UDPkhIeIkPsuuuuY/fu3XzrW9+KdigiIiJyBgdaj/K7439ha+N+TExshpXj7VWsqVzP69Wbzpj0ME2TfS0fAhBn715/w2pYSXOmUNFZSXnnmVdry3bncm7y+VixUuEro8pXQXlnGQ2Bego8RSxL+YSWkhWRYdXe3s7cuXN57LHHet3/4osvctddd3Hfffexbds2li9fzpVXXklpaekIR3p2VMNDZIj4/X6czhMVz3NycqIcjYiIiJxJe6iTv1Zvxh8Jku/J7Kq55bXH0h7qZHvjh+R5Mpnu7XulNV/YR52/njhb78VGndYTxUYbAg3kerJPG49hGEz3ziTTnc2x9iM0BRuxGw6y3Dlku3OxWfTRXWTCGkQNj5aW7lPlnE5n13PLx1155ZVceeWVfTb5yCOP8KUvfYkvf/nLADz66KO89tprPPHEEzz88MP9DHD4KUUsMgQ2btxIUVERr776arRDERERkbN0pO04DYFm0l3JPQqMx9jcmJjsaT582jYMw8DAwOzjSWQgxUbj7QnMSVjAJ1IvYWnKcvJjCpXsEJEBy83NJT4+vus10MREIBBgy5YtrFixotv2FStWsGHDhqEIdcjpN6fIILW0tHDLLbdQUVHBc889d9qMqIiIiIweTcFWTMDaxzSRGJubGn8DYTPS5zFOi5NMdwaH2g7jtfcs0tcZ9uG0OEh3pQ5l6CIiZ62srAyv19v1c1+jO86krq6OcDhMenr3WkLp6elUVVV1/Xz55ZezdetW2tvbycnJ4fe//z2LFy8eWPCDFPURHv0tePLWW2+xcOFCXC4XRUVFPPnkkz2OefTRR5k2bRput5vc3Fy+8Y1v4PP5husSZIJbtWoVJSUlFBQUsHr16miHIyIiImfJZlg53RjxcCSM3WLFcprRGYZhUOydjt1wUO9v6FZs1B8OUBeoIz8mjzStriIiUeL1eru9BprwOOnjI+JM0+y27bXXXqO2tpaOjg6OHz8etWQHRDnh0d+CJyUlJVx11VUsX76cbdu28c1vfpM777yT3/72t13HPPfcc9xzzz088MAD7Nu3j6effpoXX3yRe++9d6QuSyaQ559/nmeffRaLxcKzzz6rJWhFRERGmGmaVHTWs6XhAB80fMix9uqzXlY2x5OO0+KgI9TZY1/ENGkLdzItrrDHh/uPy/Pkcl7quVgMC2Wd5VR0VlLWUU59oJ5JMUV8IvW8M7YhIjLapaSkYLVau43mAKipqekx6mO0iOqUlv4WPHnyySfJy8vj0UcfBWDGjBl88MEH/OhHP+K6664DTtRSOO+887j55psBKCgo4KabbuL9998fmYuSCaOkpISvfOUrAHzrW9/SErQiIiIjrC3YyZ+rNnOwtRxf2A+A3WKjICaDKzIXk+I8/RcR2e40psTlsavpEKmuRGKsbgzDIBAJUuWrJ9WZSLF30hnjMAyD2fEzyXZnUdJ2lKZgE3aLg1xPNrnuHNXfEJFBM8wTr/6eM5QcDgcLFy5k3bp1XHvttV3b161bxzXXXDO0bzZEovbb92TBk3vuuafb9tMVPNm4cWOPAimXX345Tz/9NMFgELvdzvnnn8+zzz7L+++/zznnnMORI0dYs2YNX/jCF/qMxe/34/f7u37+eBVbkY8LhULceuuttLS0sGzZMu6///5ohyQiIjKhBCMhXq7YyN7mY2Q4E8lwJmIYBp0hPwdayvCFA9yUfzExNlefbVgMC5emL8XAwqG2Uur8TRgYWAyDTFcKl6afS/IZkianSnIkkpSUOBSXJyISFW1tbRw6dKjr55KSErZv305SUhJ5eXncfffdrFy5kkWLFrF06VKeeuopSktLuf3226MYdd+ilvA424Inp6qqqur1+FAoRF1dHZmZmdx4443U1tZy/vnnY5omoVCIr3zlKz0SK6d6+OGH+c53vjP4i5IJIxAIMGXKFHbv3s2zzz6LzaZvbkREREbSkbZKDrYeJ8edgsvq6NrutjnJ86RT2lHD/pZSFiZNPW07HpuLT2Z9gmpfPeWdNYTNCEkOL/kxmdgt9uG+DBGRUeWDDz7goosu6vr57rvvBuALX/gCzzzzDDfccAP19fV897vfpbKyklmzZrFmzRry8/OjFfJpRf0p7UwFT87m+FO3v/nmmzz00EM8/vjjLFmyhEOHDvH1r3+dzMxMvvWtb/Xa5r333tvVkXBihEdubu6ArkcmBo/HwzPPPMO//uu/6t+KiIhIFJS0VRKJRLolO06yWaw4DBv7W8rOmPCAE58jM9wpZLhThiNUEZEx48ILL+xWfLk3d9xxB3fccccIRTQ4UUt4DKTgSUZGRq/H22w2kpOTgRO1FFauXNlVF2T27Nm0t7fzD//wD9x3331YLD3rtDqdzkFXqpWJwefz4XQ6uxJsSnaIiIhEhz8SxGpY+9xvs1jxhQMjGJGIiIw2UVul5dSCJ6dat24dy5Yt6/WcpUuX9jh+7dq1LFq0CLv9xJDDjo6OHkkNq9WKaZpnzFSJnMltt93G1VdfTXV1dbRDERERmdCSHF6CZqjPz3ed4QBp/ai/ISIyqpnmwF7A4sWLKS4uZvXq1VG+iJEX1SktZyp4cu+991JeXs4vfvELAG6//XYee+wx7r77bm677TY2btzI008/zQsvvNDV5qc+9SkeeeQR5s+f3zWl5Vvf+haf/vSnsVr7/hZA5ExOLkFrtVo5fPjwqF16SUREZCKY5s3hvfq91AVaSP1YYqMl2I7dsFKcUBCd4ERERpHNmzfj9XqjHUZURDXhcaaCJ5WVlZSWlnYdX1hYyJo1a/jGN77B6tWrycrK4ic/+UnXkrQA999/P4ZhcP/991NeXk5qaiqf+tSneOihh0b8+mT8+PgStH2NQhIREZH+M02TsBnBalhOW8vtVGmuRJanzub16m0c66gmwR6LgUFzsA0TWJo8g8KYjOENXERERjXD1DyPHlpaWoiPj6e5uXnCZsLkb0KhEBdeeCHvvvsuy5Yt46233tKqLCIiIkOgOdDB9sZStjccpSMcINERw/ykAuYm5uGynnmFFNM0OdB6nG2NhzjeUYuJSborkXmJk5kZX4DViNrsbREZR6L5fHjyvf+/59fi9sT069zOjna+cfOKCf1cq6c2kTN46KGHePfdd4mLi9MStCIiIkOk1tfKi0c3cqS9llirE6fVTml7PYfbatjfXMHf5Z+Dx3b6ovKGYTDNm8vUuBzawz5M0yTG5sKiRIeIiKCEh8hpbdiwge9+97sAPPHEExQWFkY5IhERkdHBNE2qfU0cbCunNdiBx+ZicmwW2e7kM05LMU2TP1fs4Gh7HUUxqdgsJ+qsJTtj8YWD7GwqJcuTwGWZs88qFsMwiLW5B31NIiKjlWGeePX3nIlOCQ+R03A4HBQWFnLuuedyyy23RDscERGRUSFsRnirZieb6j6kLdyJBQsRTN617mF+4mQuy5iP3dL3x8zKziYOtlaR7vJ2JTtOclnteG1utjUc4/zUabhtjuG+HBERGaeU8BA5jUWLFrFt2zYtaSwiInKKbY2HeKtmF167hyJXJoZhYJomraFONtbtJcbm5IK0OX2eX+dvoyMUINOV0Ov+eIebOn8bjYF2JTxERGTANMFRpBcdHR1d/x0XFzdhi/yIiIh8XDAS4oOGg9gtNhIdcV3TVwzDwGv3EGvzsLXhMO0hX59t2D5ajSVC718ohMwIFsNQ0VERERkU/RUR+ZiSkhIKCwv5yU9+opEdIiIiH1Pja6LW10ySI67X/YmOWBoDrVR2NvTZRm5MEomOGOr9bb3ur/O3ke1OIsXV+3uIiIicDSU8RE4RCoW49dZbqamp4cUXXyQcDkc7JBERkVElgkkEE0sfhUktxol6HmEz0mcbcXY3i5OLaA110hho7/qCIWJGqO5sxorBuamTNcJDROQkc4CvCU5/RURO8dBDD7Fhwwa8Xi/PPfeclqAVERH5mGRHHF6bh+ZgR6/7W4LtxNk8pDrjT9vOhekzuCBtBr5wkENt1Rxqq+ZIWy1Wi4Wrc+YzJyF3OMIXEZlwFi9eTHFxMatXr452KCNOT3MiH/n4ErQFBQXRDUhERGQU8thczE0s5PXq7cTZ3LisfysqGoiEqA+0cE7SdJKcp5+OYrdYuTp7HguTCznYUoU/EiLW5mS6N4tEZ8xwX4aIyISxefPmCVuTUAkPEaC5uZlbbrmFSCTCrbfeys033xztkERERIZdMBLmSGstDYEO7IaForhUks4i2bA0pZgaXzN7W0qxYOC2OvFFAoQiYabF5XBxet8rtJzKMAwy3QlkuhMGeSUiIiI9KeEhAqxatYqjR49SUFDAY489Fu1wREREht3RtjpeLt3JsfZ6wpEIESDB4WZJSgGXZRfjsPT9MdFtdXBtzjJmtOSyu/kojYE2MuyJzIovoDg+D7dVS8mKiEj0KeEhE55pmhQXF+NyuXjuueeIjz/9nGMREZGxrrKjmecOv39iNRRPAi6rnYhp0uBvZ23FPsKmyafz5p62DafVztzEIuYmFo1Q1CIiE5dhnnj195yJTkVLZcIzDINvfvOblJSUsGzZsmiHIyIiMuzeryuh2tdCYWwKLqsdAIthkOKKJckZw/t1R6n1tUY5ShERkcFRwkMmrFAoRGdnZ9fPGRkZUYxGRERkZATCIXY2lpPg8PS6tGySw0NLsJODLTVRiE5ERGToKOEhE9ZDDz3E4sWL2bVrV7RDERERGTHBSJhgJIzDYu11v2EYWAyDQCQ0wpGJiIgMLdXwkAnp5BK0kUiEXbt2MXv27GiHJCIi0m/BSJiDzbXsb6qhIxQgxRXDrKRMsj3xGL2M3gBw2ewkONxUd7aS4PD02qaB0es+ERGJEvOjV3/PmeCU8JAJR0vQiojIeNAW9PPikW3sbKggHIlgtVgIRML8tfIgl2ZN5dLsab0mPayGhcUpBbx0dCu+cLCrhgecKORd3tFEhtvLNG/6SF6OiIjIkFPCQyYcLUErIiKjSXswwM76SnbUVdIeDJARE8e8lCymJ6RitfQ++9g0TV4p3c0HdWXkxSTgsTm6ttf52vlT2T6SXTEsSMnt9fxFyfkcaqlhW0MZMTYnXruLYCRMfaAdr93F1Tmzcdu0tKyIiIxtSnjIhPLcc8/x3HPPYbVatQStiIhEXb2vg1/s38qHTTXYDQsOq41DzfVsqirlE1mFfKZoFrZekh7Vna3sqK8g3RXbleyAE/U3Ut2xtLU28G71UeYl5/RamNRtc3Bj4WIK41LYXHeUpkDniZEfyfksTZvEpLjUYb1uERGRkaCEh0wYJSUlfOUrXwHg29/+tpagFRGRqDJNk98d3sW+xhomeZNwWP9WRLTZ7+ON8iNkxng5L7Ogx7ll7U20Bn1kuHtPTCQ5PZS3N9Ho7yDZFdPrMW6bgwszprEsbRJtQT82w0Kc3dVn7Q8RERmbFi9ejNVqZdWqVaxatSra4YwoJTxkwrDb7cyfP59wOMw3v/nNaIcjIiITXFlbM/saa8iO8XZLdgDEO100BTrZWFXKkvS8HqM8IubpK9FZDAMT84zHATgsNpKc+kgoIjKaGeaJV3/PAdi8eTNer3fogxoD9Ndtggj4AhzecYy68gYsFoOsyRnkzcjGau19SbrxKCcnhzfeeIOmpiZsNv3TFxGR6Kpob6EzFCInpvdaGYlOD1UdrTT6O0l1dx+lkenx4rE5aAv5ibO7epzb6O8gKyaeRKdWWhERkYlLT30TwPEDFbz6szeoOlJNJGxiYuJw2Smak89VX74Ub3JctEMcVi0tLV0ZTavVSnJycpQjEhERAcMA8zRrBpqYGEBvE0xyYxKYlpDG1rrjFMbZcVhOmQ4T8BGIhDk3Lb/X+h8iIiIThRIe41xjdRMvP/4a9RWNZE3OxO440eWdbT72bzpEJGJy/f/9NDb7+Pyn0NzczLx58/jkJz/JD3/4Q9xud7RDEhGRcaol4GNPYxWN/k7sFiuTvMkUxCX1WjQUIC82gTi7k6aAj0Rnz79P9b4OpsSnkOTqOUrDMAyuzZ9DezDAgeYabBYrTouNjnAAm2HhgsxJLEktGOpLFBERGVPG51OudNmz4UNqSusomJWL5ZRvedyxLrInZ3Bk5zGO7i5j8vzCKEY5fO644w6OHj3Kn/70Jx566CElPEREZFhsqyvnDyW7qelsOzFywwS3zc785CyumzSn20oqJ2V44pibksnbFSU4rdYeS8sCLMvM7zNhkuyK4cvTlrKzsYKd9eW0hQJkuOOYl5zD9Pi0Ppe0FRERmSiU8BjnDnxwGHecu1uy4ySnx0koEKJ03/FxmfB49tlnef7557uWoJ2ohXpERGR4HWqu41eHthEIh5nsTcZqsWCaJq1BP+9WH8VqsXDT5Pk9Vj8xDINrCmfSGQqyo76ScCSCzbAQiISJc7j4ZMEMFqZmn/a9Y+wOlqYVsDStYBivUEREos786NXfcyY4JTzGuaA/iM3Wd2FSi8VCMBAawYhGRklJCXfccQdwYgnapUuXRjkiEREZrzZWHaU16GeKN6UrqWEYBl6Hi4hpsq2unAuyJpEdE9/j3DiHk7+fsYgPG2vZ11hDezBAqjuWOckZ5MTGa4lYERGRQVDCY5zLnJTO9jf2kErPQp2RcIRIJEJyVlIUIhs+oVCIW265hdbWVs477zwtQSsiIsOmPRhgf3MtyU5Pr8mJeIeLal8bJa0NvSY8AOwWK7OSM5iVnDHc4YqIyFilER4Dosmd49zMZdOxO2001bZ0226aJlUlNSRlJjJ1UVGUohse3/ve99i4cSNer5dnn31WS9CKiMiwCZsnvjywGr1/pDIMAwMIRyIjG5iIiIgo4THeFc3JZ+mnF9He3M6xfcdpqGqirryBo7tLcbjtXLbyArxJ42tZ2lmzZpGQkMCTTz5JQUFBtMMREZFxLMbmINUdS1Ogs9f9vlAQm2Eh1R07wpGJiIiIvvoe5wzD4BOfW0pmUQa71++l/FAVVruNJZ9cyOzlM8ienBntEIfc5z73OS666CKSk3tO4xERETkd0zQpb2thX8OJehqxDifFSWlkxsT1OmXFarFwbno+h1vqaQ36ibM7u/ZFTJOy9iaKvMlMiU8ZycsQEZFxxvjo1d9zJjolPCYAi8XCtEWTmLZoEqFgCMNiYLX2Xch0LDJNk+bmZhISEgCU7BAREQB8oRDtwQAum40Ye8+lYU8VikT43yP7WV9+ogipwYnpz16Hk4tyi7gif2qvS70uTsvlaGsDG6uPUtPZhtfuJBAJ0xr0kx0Tz3VFc7BbxtffXRERkbFACY9xIBgMU1vXihkxSUqKwe3u+wOdzT4+u/y5557j7rvv5uc//zlXX311tMMREZEoa/b7WH/8GB9UltMeDGC3WJiblsn5Oflkx/W+TPlbx4/w2rEDJLs8ZMeeGNFhmiZ1vg7WlHyI1+FieXZBj/PsFit/N2kuUxNS2VxTSmVHK/E2BxdlT2Zxaq6ms4iIyOCZ5olXf88BFi9ejNVqZdWqVaxatWoYghu9xufT7wQRiZhs336MD7aUUFfXSsQ08XrdzJmdx7lLJuFy2aMd4og4cuQId9xxB62trWzdulUJDxGRCa7J18nPdm1hf30dCU4XsQ4H/lCI148dZl99LX8/ez4F8YndzukMBVlffowYu4Nkt6dru2EYpLpj8IVCvH28hHMycnBae358slusLErNZVFqLuFIBIthaElZEREZFTZv3ozX23uyf7xT0dIxyjRN3l7/Ia/8aTt19W0kJceSlubF7w/xxl/38MqfthEIhKId5rALhULceuuttLa2cv7552sJWhER4Y3SI+yvr2NyYhKZsXF4HU5SPTFMS0qhur2Vlw/tJ/Kxb8nKWpup7Wwn1R3Ta5upbg9VHW2Ut7X0uv9UVotFyQ4REZFRQAmPMaq6poVN7x/G63WRlZWAy2XH4bCRmhpHVlYie/dW8OGBymiHOez+9V//lY0bNxIfH8+zzz477mqTiIhI/7QG/GytqiDZ7e5RN8NiGGTHeTnS1MDR5sZu+8JmhIgZwdpHosJqWDBNk3B/hxOLiIhI1CjhMUYdOlRNe7uPhARPj30ulx3DAnv2lEchspHz7rvv8r3vfQ+AJ598kvz8/ChHJCIi0dbk89EWDBDncPa6P8buwBcK0ejzddue5o7F63DR6O99edlGfyfxThdpfYwAERERkdFHCY8xqrW1E4u17yGzbpeDxqb2EY5q5DQ3N3PLLbcQiURYuXIlN954Y7RDEhGRUcBps2G3WAiEw73uD0bCWAwD58dGBCa7PcxLzaSmsx1/uPuUUF8oRJ2vk4Vp2cQ7XcMWu4iISJ/MAb4muH4lPDZt2sSrr77abdsvfvELCgsLSUtL4x/+4R/w+/1DGqD0zu12EAlHMPsYWuv3B4mLc49wVCPHarVyySWXUFRUxGOPPRbtcEREZJRIdXuYlJBMTUd7r38ja9rbSffEUpSQ2GPfVYXTmJ2cQUlzEyXNjVR3tFHS3MCxlibmp2ZyWf7kkbgEERERGSL9Sng8+OCD7Ny5s+vnXbt28aUvfYlLL72Ue+65h1deeYWHH354yIOUniZPSsftdtDW5uuxLxAIEQyGKZ6RFYXIRkZsbCxPP/00H3zwwYStOCwiIj0ZhsGFeYXE2h0cbWnqGukRjkSoaGvFHw5xQV4hHnvPJdzjnS6+NGsRK2fMozA+EafVxqSEZFYWz+f/zFzY5zQZERGR4WYM8DXR9WtZ2u3bt/Ov//qvXT//6le/YsmSJfz0pz8FIDc3lwceeIAHH3xwSIOUnrKzE5k3N4/3Nh3G7w+RmBiDYRi0tHZSX9/GtCkZzJg+/hIejY2NxMfHY7GcyNUlJvb8hk5ERCa26cmp3Fw8lz8d/pDSlqaPVmQxSHa7ubJoCp/ILejz3Bi7g/OzCzg/uwDTNLXaioiIyBjWr4RHY2Mj6enpXT+/9dZbXHHFFV0/L168mLKysqGLTvpkGAaXXjILt9vJ9h3HKCtrwDRNYmNdnLOoiAsvmIHb3fPbq7EsFApx9dVX4/V6eeaZZ8jIyIh2SCIiMsyC4TC762rYVlNBbUc7CU4X89IymZOagdtu7/O8eemZTE9O5UBDHc1+H26bnalJKXidZz9KQ8kOERGRsa1fCY/09HRKSkrIzc0lEAiwdetWvvOd73Ttb21txX6aDx8ytOx2KxdeMJ1FiwqoqmwmEjFJSYklKSk22qENi5NL0Hq9Xny+nlN5RERkfPGFQry4fyfvV5YDJm6bneOtLWyvqWRWSjq3zpx32iKiLpuNOWlKjouIyDgwkCKkKlrav4THFVdcwT333MMPfvAD/vCHP+DxeFi+fHnX/p07dzJp0qQhD1JOLzbGxeTJ47tq/DvvvNNtCdqCgoLoBiQiIsPurbIjbKwoIyfOS8wpNTf84RA7aqtIPPIhN8+YG8UIRUREZDTrV8Lje9/7Hp/97Ge54IILiI2N5ZlnnsHh+NsHkJ/97GesWLFiyIOUia2pqYlbb721awnam266KdohiYiMOw2dHeyoruLDuloipklRQhJzMzLJjIuLSjydwSDvVRwnzuHsluwAcFptpHli2FFdxaX5k0nzxEQlRhERERnd+pXwSE1NZf369TQ3NxMbG4v1Y2vY/+Y3vyE2dnxOp5DoME2TO+64g2PHjmkJWhGRYXK4oZ7ndu+koqUFl82GYRjsrK7m7dKjfHbGTBZlZfd6XjgSoaS5kdZAALfNRmHCiZVNhkJNRzsNvg4yYnr/XJHocnOwsZ6q9lYlPERERKRX/VqWFuDYsWP8+te/5qmnnmLPnj3d9iUlJXUb8XE2Hn/8cQoLC3G5XCxcuJD169ef9vi33nqLhQsX4nK5KCoq4sknn+xxTFNTE6tWrSIzMxOXy8WMGTNYs2ZNv+KS0eHZZ5/lhRdewGq18txzz2kJWhGZsGqa21i36yCr127gP1/bwJ+27ae8oXnQ7bb6/fxq9y5q2tqYmpxCQUIi+fEJTEtOwR8K89t9ezje0vN9DjTU8ZMPNvKfH2zkqW3v89iW93jk/Xf5oLIc0+x70rBpmlS3t3G0uZGGzo4+j7MYYGAQ6aMp0zQxAIsW3RMREZE+9OtrmLfffpurrrqKjo4TH1BsNhv/8z//M+ApBi+++CJ33XUXjz/+OOeddx7/9V//xZVXXsnevXvJy8vrcXxJSQlXXXUVt912G88++yzvvvsud9xxB6mpqVx33XUABAIBLrvsMtLS0njppZfIycmhrKyMuCgNyZXBmTFjBpMnT+bzn/885557brTDERGJin3lNby0aRd1re14nA4M4FBVPe8fLuOahcUsKOx9BMbZ2F1TzfHWFiYlJmE5ZVUSwzDI8Xo50FDH1soKcrzxXfsONzbwP7u20ejvJDvWi8duxx8KUdneyvN7d2AYsDCjZ0wHG+t449gRDjbWE4yEcdnszE5J59KCSWTEdP87nR4TR3pMLDUdbeTZE3q0VdfZQZLbQ+4pcYmIiIxbKlo6IP0a4fGtb32Liy66iOPHj1NfX88Xv/hF/t//+38DfvNHHnmEL33pS3z5y19mxowZPProo+Tm5vLEE0/0evyTTz5JXl4ejz76KDNmzODLX/4yX/ziF/nRj37UdczPfvYzGhoa+MMf/sB5551Hfn4+559/PnPnjv+iZqZpEvAHCfiD0Q5lyCxatIht27bxzW9+M9qhiIhERWN7J7/bvJtWn58pGSnkJMWTnRTPlIxkgqEwf9yyl8rGlgG3f6y5CYthYLP0/EhgGAYxdgcH6uu6tpmmyRvHDlPf2cHkhCQ8H63O5rTZKIhPJGxGWFtyiEA43K2tffW1/GznFrbXVBLrcJAZG4fDYuHt40d5eucWqtvbuh3vsFo5PycffzhMfWdHt1EjLQE/jT4f52TknHaVFhEREYHFixdTXFzM6tWrox3KiOvXCI9du3bx9ttvk5WVBcCPf/xjfvrTn9LY2EhiYmK/3jgQCLBlyxbuueeebttXrFjBhg0bej1n48aNPYqiXn755Tz99NMEg0Hsdjsvv/wyS5cuZdWqVfzxj38kNTWVm2++mX/5l3/pUXPkJL/fj9/v7/q5pWXgHxyjwTRNDm0rYedbezh+oBIMyC/OZc4niimcnYdhjL3hvnV1daSkpACoLoyITGh7jldT09zG5PSUbr/PDcMgK9HLwao6dpRWkZk4sCl/hmGcfgrKR8ecVNvRzoGGOtJjYnv9+5IZE8fx1haONDUwPTkVgFAkwp+OfEhLIMCUxOSu85xuG/EuFwca6nmj9DA3fWzFlWVZeTR0dvJWWQm1He3YrVaC4Qgum5XluflcXjhlQNcsIiIy1hgfvfp7DsDmzZsnbGmAfo3waGpqIi0trevnmJgYPB4PTU1N/X7juro6wuEw6enp3banp6dTVVXV6zlVVVW9Hh8KhairO/Ht05EjR3jppZcIh8OsWbOG+++/nx//+Mc89NBDfcby8MMPEx8f3/XKzc3t9/VEi2mabHzlA1565BX2bjx4YlsEdr61l5ceeYWtf9kZ5Qj775133iE/P59HH330tB/CRUQmgtK6JuxWKxZLz485hmHgcTooqakfcPsF8QnAiaTEx5mmSXsgwLSPEhcAnaEQgXAYt63370ycNhvhSITOUKhrW0lzA6XNTWTHxfVIklgNC6meGHbUVNHk6+y+z2Lh05On8/WFy/jU5Bmcm5nDlUVT+OqCc7lp+hxcfcQgIiIiAv0c4QGwd+/ebgkJ0zTZt28fra2tXdvmzJlz1u19/IOPaZqnHZHQ2/Gnbo9EIqSlpfHUU09htVpZuHAhFRUV/Pu//zvf/va3e23z3nvv5e677+76uaWlZcwkPcoPVvLO7zbhjnGRNPlvo2ySMhKoKavjzV9vIHd6Nmm5KVGM8uydXIK2o6ODbdu2jcnRKSIiQ8liGEROk/yNnOHv5pnMTEsnNz6ekqYGihKSsH40tcU0TY41N5HsdrMgM7PreK/Tidtupy0YwNlLwqEjGMRhteJ1OLu2tfgDBCNh3DZ7rzHE2O3UtLfTGgyQ4HJ322cYBvnxCeR/lJgRERGZkEzzxKu/50xw/U54XHLJJT2+df/kJz/ZNSTWMAzCH5u325uUlBSsVmuP0Rw1NTU9RnGclJGR0evxNpuN5ORkADIzM7Hb7d2mr8yYMYOqqioCgUCvq8g4nU6cTmeP7WPB/k0H6WjtJKMgrce+1JxkSnaV8uHmw2Mi4aElaEVEeipKS+K9Q6WEI5GuZMRJEdPEFwgyLTO1j7PPLNbh4KZZc3h+1w4ONTZgs1iwYOAPh0iNieFzxbPIivvbMNhEl5vZqRm8VVpCgtPVLSbTNClva2FKQnLXyBEAt92G1WLBHw71umytLxTCYbX2OWpEREREZCD69cmipKRkyN7Y4XCwcOFC1q1bx7XXXtu1fd26dVxzzTW9nrN06VJeeeWVbtvWrl3LokWLsH9UNO28887j+eefJxKJYPnoQ9iBAwfIzMzs95K5Y0FlSQ3umN4LthmGgcNlp6a0doSjGphTl6B9/vnntbKOiAhQnJNGbnI8R2sbyU9JxGY98bctHIlQWt9Eenwcs/MyBvUeBQmJfPWcc9lZXc2hhnrCpklBQgJz0jNI9cT0OP6S/CKONjdyoKGetJgYYuwOfKEg1e3tJLs9XD15WrdEyKSEJDJj46hqa+sxUsM0TWo62lmSmUOyyzOo6xARERE5Vb8SHvn5+UP65nfffTcrV65k0aJFLF26lKeeeorS0lJuv/124MRUk/Lycn7xi18AcPvtt/PYY49x9913c9ttt7Fx40aefvppXnjhha42v/KVr/Cf//mffP3rX+drX/saBw8e5N/+7d+48847hzT20cLpdhAK9j2iJhyK4HCN/kTPkSNHWLVqFQAPPvggS5YsiXJEIiKjQ6zLyd+dO4ffvLeTktqGrqVjw6ZJZkIc150zi5S4nkmJ/vI6XZyfl8/5eWf+W58RG8eX5izk9WNH2FVbRVVbKw6rjUWZ2VyUV8SkxKRuxzutNi4vmMLze3dwtLmRzJg4nDYb7cEAFW2tpLg9XJRXpGmMIiIip6MZKv02pGNHf/e73/Hggw+yc+fZFcq84YYbqK+v57vf/S6VlZXMmjWLNWvWdCVWKisrKS0t7Tq+sLCQNWvW8I1vfIPVq1eTlZXFT37yE6677rquY3Jzc1m7di3f+MY3mDNnDtnZ2Xz961/nX/7lX4byUkeNyQuK2LfpIOFQGKut+yo0QX8Q0zQpmjO0iaqhFgwGueWWW2htbWX58uXce++90Q5JRGRUyUtO4PZLzmVPeTXH6hoxI5CbEk9xdjrxnr6XZTVNs2t52N7qbQxGRmwct8ycS6NvKq0BPy6bnVS3p8+kxcL0LAxg7dFDHG9rIRSO4LLZmJ6UwlVF0yiI799qbyIiIiJnYpj9XAbjpz/9KWvXrsVut/P1r3+dJUuW8MYbb/BP//RPfPjhh6xcuZL/+q//Gq54R0RLSwvx8fE0NzeP+uV72pvb+dUP/kDZhxVkT87E6T4xmsPX7qficBVFc/O5/p+vweUZvTVKwuEwP/rRj/jxj3/MBx98QF5eXrRDEhEZ0yKmya7Kat4vO05pUxMGBtPTUjgnN4fJKclRjS0QDnO0uZHOUBCv00W+N6Fr1IqIiMhoFM3nw5PvvfqpP+N2929EZ2dnO6v+4Yox8Vw7XPqV8PjRj37EN7/5TebMmcO+ffsAuO+++3jkkUf42te+xqpVq0hJGf3FMc9kLCU8AGrK6nj16dc5/mHFiektJtidNgpm5XLlly4hMT0h2iGeldbWVtXtEBEZJNM0WbP/AOsOHiZimiS4XERMk8bOTmKdDq6bPZNzcnOiHaaIiMiYoYTH2NWv8a1PP/00Tz75JF/84hd58803ufjii3njjTc4dOgQCQkJwxSinElabgq33HcdR/eUUVNaB0BmYRp5xTndVqsZbVpaWrDZbHg8J4rUKdkhIjJ4B+rqef3QEeJdTpI8fysCmhobw/GmZl7es5+ipERSYgZf90NERERkNLOc+ZC/OXbsGJdeeikAF154IXa7nYceekjJjlHAZrcxeV4hyz69mGWfXkzh7PxRnewwTZN//Md/ZNGiRWdd80VERM5sW3kF/lC4W7LjpKx4L/UdHeyuqolCZCIiIjJg5gBfE1y/Rnj4fD5crr8VR3M4HKSmpg55UDL+/fKXv+RXv/oVVquVjo6OaIcjIjJulDY1E+u097rPYhjYLBaqWttGOCoRERGRkdfvku3//d//TWxsLAChUIhnnnmmR92O8boErAyNw4cPd1uC9txzz41yRCIi44fTZiMUjvS5P2KaOG2jdwSgiIiI9GR89OrvORNdvxIeeXl5/PSnP+36OSMjg1/+8pfdjjEMQwkP6VMwGOTWW2+lra1NS9CKiAyDOZnp7K+pIxyJYLV0n7nqC4awWixMifJKLSIiIiIjoV8Jj6NHjw5TGDJR/Ou//ivvvfce8fHxPPvss6O6zoiIyFg0LyuT946Vcbi+gfzEBJy2E3/q2wMBypqamZ2RztTUsb+imoiIyIQykJocquHRv6Klb7zxBsXFxbS0tPTY19zczMyZM1m/fv2QBSfjyzvvvMNDDz0EwJNPPkleXl6UIxIRiZ7OYJCNpaWsfu89vvfXN3n8vfd4r7QMXzA4qHYT3W5uXTCPSclJHG9u4UBtHR/W1lHX1s68rExumj8Hh5LNIiIiMgH0a4THo48+ym233dbrGr7x8fH84z/+I4888gjLly8fsgBl/CgoKODCCy8kNzeXG2+8MdrhiIhETavfz3Pbt7Ozqga7xYLHbqO2rZ09NbXsqErn5rlziXM6B9x+bkI8Xz3vXA7U1lHV2obFMMhLiKcoOQmLoRm9IiIiMjH0K+GxY8cOfvCDH/S5f8WKFfzoRz8adFAyPuXk5LBu3Tr8fn+0QxERGRaBcJhDNfXUtrdjs1goSk4iwxuL8bEkw2sHDrK9soqixMSuKScAvlCIbRWVpMXEcu3M4kHF4rBamZWRzqyM9EG1IyIiIqOB5rQMRL8SHtXV1djtvS91B2Cz2aitrR10UDK+VFZWkpmZCYDFYsHtdkc5IhGRoVdS38jvd+yhtLGZcCSCCcQ5HczLyeTTs2fg/ujvZ2NnJ1srKknxeLolOwBcNhvJHg9bKyq4eFIR8acsBS8iIiIi/dOvGh7Z2dns2rWrz/07d/7/7d13fJzVnej/zzO9F416l2Vbsix3GzfAVNNbyIYlgZvsQm5Y0gh3b5bcZJeEva8km7ubTdhAAvzYsEkIIdmQ7lBCNTYG44KL3NR7GbUZzWjq8/z+kBHIGtlWs4q/79dreL30lDPnmeMjPF+f8/0eGP5iKwQMlaAtKyvj3nvvlZUdQoh5qyM4wNO799PQ00e+x8XizHQWZ/iwmYy8UV3Pb96rQtOG/pWlc2CAYDSCd4zgr9dioS8SoWNg4Fw+ghBCCCFmM22CL2DdunVUVFTwyCOPnPNuz7RxrfC49tpr+ad/+ieuueYaLKf8q9Pg4CAPPvgg119//ZR2UMxd8XicT3ziEwSDQQ4dOoTBMK4/bkIIMWe829hCWyDI4sz04RwZiqLgsVrRobC/uY0LFxRRmOZBp+hQFAVVS73MVNU0dIqCXhnXv0kIIYQQQqS0e/fulHk4zwfj+gb6ta99jeeee47Fixfzuc99jrKyMhRF4ciRIzzyyCMkk0m++tWvTldfxRzz0EMP8fbbb0sJWiHEvKZqGvub23BbLCkTgjotZtoCA1T7uylM85DvdpFht9MVCpGX4i8fXaEwmXY7eS7nuei+EEIIIcS8Na6AR1ZWFjt37uTv/u7v+MpXvjK8PFdRFK666ioeffRRsrIkOZqA7du3881vfhOAxx57TErQCiHmJE3TqOnpYV9rG/W9vRh1OiqzsliVm4vPbgMgqarEk0mM+tQrMhRFQadAPKkCYDUa2VxUyK8PV9ETHsRrtaAoCpqm0TM4yGAiznVFi7GcJmeWEEIIIc4vijb0Gu8957tx7zEoKipi27Zt9Pb2Ul1djaZpLFq0CK/XOx39E3NQX18fd9xxB6qq8slPfpLbbrttprskhBDjpmkar9TU8vzx44RicRxmE0lV45jfz1uNTXxi1QoWpKVh0OnIdNqp7uom3WEf1U5SHQp0eG0f5Oy4uKSEQDTKjvpGOkMhdCe3uDjMJrYuWsiFxcXn6jGFEEIIIeatCSdV8Hq9rFu3bir7IuaJv/u7v6OxsZHS0lL+4z/+Y6a7I4QQo8STSU74u2no6SORTJLpdLA0OxOH2Tx8zXG/nz8fO47FYCA/wz18XNU0ant6+OWBg3xh0yZsJiPrCvM51uFnIBrDYTYNX6tpGs19ATKdDiqyM4aPG3Q6blqyhDW5eVR1dTIQjeE0m6nIzCDP5RpVxlYIIYQQQoyfZJEUU+5jH/sYr776Kj//+c9xOmUPuhBidukJD/LL/Qc42uEnnlRRFFCAbJeTW5ZXUJGVCcC7zS1EEgkKPO4R9+sUhSKPh/rePo50drImP4+V+TlU+7t5q7YJk0GP22ohoar0hMK4LGZuXLZkRDAFhra6FHjco9oXQgghhBBTQwIeYsrdcsstXH311VjHKLkohBAzJaGq/HL/AQ62dlDo9WA9mScjqao09vXx7L6DfGbjOnJcTmq6e3CdEqR4n1GvR9M02k+WjjXq9dy6spLiNC/vNDTTNRBCryhsWlDI+qICFqSnnbNnFEIIIYQQQyTgIaZEPB6np6dnOGmtBDuEELPRia5ujnX4RwQ7APQ6HcVeL8e7/Lzb1MINS8vR6XSojJ3tS4MRW09Mej0bSwq5oCifcCyOXqfDZpLEo0IIIYSYApo29BrvPee51CnlhRinhx56iMrKSrZt2zbTXRFCiDE19PQSSyZHBDvepygKLouFQ20dACzNyiQwGB2uSPZhkUQCo05HYYrtKHqdDqfFLMEOIYQQQogZJgEPMWnvl6D1+/0MnFzeLYQQs1FS006bEFSvU4irQ+s61uTl4rVZaOzrR/1Q0COWSNDQ28dCn4+y9PRz0GshhBBCCDERsqVFTMqHS9B+6lOf4mMf+9hMd0kIIcaU6bCje0RcowAAWypJREFUMJTLw6AbHfMPRKKsLchDpygUejx8bPkynjtUxQl/N3qdgqpq6HQ6yjLS+esVyzHq9ef+IYQQQgghxFmRgIeYME3TuOeee4ZL0D788MMz3SUhhDitiuxMctxOGnv7KEnzjljt0RMOY9TrWVOQO3xsRU4OBW4Phzo6aA0EMOr1lKalsSQzA7NB/hcqhBBCiHNEO/ka7z3nOfnbmpiwn/zkJzz77LPo9XopQSuEmDU0TSOhquh1OnSnbF+xm0zcurySX+w9wPEuP06zGb1ORzASxWjQc8Xi0uGytO9Ls1m5uKT4HD6BEEIIIYSYChLwEBNSW1vL5z73OQC+8Y1vcMEFF8xwj4QQc42madT39fFeexutwQGsBgMVmRksy8rGliKp6JkkVJX3WtrY3dhCeyCIQa9nRW426wrzyHZ9EJAty0znM5vWsbe5lQOt7SRUlfKsdNbk57EkK+O0OT6EEEIIIcTcIQEPMSFZWVncfvvtHDt2jAceeGCmuyOEmGM0TeMvNTW8UF1NKBbDYjSQUFV2t7Sw0JfGnStWkmG3n3V78WSS3xyoYkddAwoKLquZUCzG80eOs6+llY+vWcHCdN/w9dkuJ9dWlHFtRRnaGRKZCiGEEELMNEUbeo33nvOdBDzEKMmEik6vnPYLgN1u5/HHHycSiaCXpH1CnDc0TaOpt5/jnX4iiQQui4WK7AzSHWcfnAA40NHBn04cx240kufyDf++iSeTHPf7+dWhQ3xm3Tr0JxOLhmIxjnX4CQxGsBgNLM5MJ81uG25vX3MbO+oayXQ4cFrMw8eznA5qu3v4zXtVfHHLRkwp8m5IsEMIIYQQYn6SgIcAhoIcR6taOLS/kc6OfgwGPUsq86hcUUh6pmv4usbGRvLz89Gd/BJisVhmqstCiHMslkjwu4NH2d3QTDgWR1GGcmF5rRauLF/ERaVFI4IHSVXFHwqjaRppNutwsEHTNN5ubiKhqqNWcRj1egrdbo53+6nt7WWRz8feplb+fPg4ncEB0EDVNDw2CxeWFnN5eSk6ReHtxmZ0ijIi2AGcrLbiprGvn6OdfpbnZk/75ySEEEIIMfUka+lESMBDkEyovLjtPfa+XQOKgt1hJhaN8/pfqjh8oJkbbl1LYXE6fX19XHTRRSxevJinn36azMzMMzcuhJg3XjhazevVdWQ5HeR7XCiKgqppdAYH+N3BKpwWE6vyc9E0jX1NreysbaS5LzAU8LBbWV9cwKYFhcRVlfrePrxjBExtJhOxQIDmQD+JeJJf7TlIQlUpTvNi0OtQNY3ugTB/PnwMvU5h04IiOgNB3NbU7ZkMBjRVwz8Qms6PRwghhBBCzDK6me6AmHmHDzSy5+0avD4HBUU+0nwOMrLcFC3IoLc7yIt/3E80Gh8uQVtXV4fVap3pbgshzqHe8CDv1DeRZrPisVqGV3LoFIVslxNN1dhZ24iqabx6vJand79Hrb8Xl8WM126lNxzhuf2H+dXeQyRUlTPtItFO/mdHTQOD8TiFaR4Met3we2Y47djNJnbWNhKJx9HpdCRVNXVbmoaKNrw9RgghhBBCnB/kb3/nOU3TOLCvEZ1OweEc+a+jOp1Cdp6X9rY+/v3fHuHZZ5/FYDBMewnaRDzJQGCQWDQxbe8hhBifhp4++gYj+D6UN+PD0h12mnr7OdLWycvHarCZjJSke3FazNhNJvI8LnLdLt5taKams5sij4fewcGUbYViMcx6A3ajiVp/z5j5QTIcdvwDYVr6AizNzqQnPIimjV66GYxGsZtMLEhPm/gHIIQQQggxk7QJvs5zsqXlPBeJxPF3BnC6Uq/YMJkM+LvbeOLfvwpMbwnaUHCQA2/Xcmh3HaHgIEazgSUri1ixoRRflnta3lMIcXaS2tDqibEWZuh1Q9tbjnZ00R+OsDgrfdQ1drMJFIX9zW1sWFDAka4uOkMhMmy24RUjsWSSpv4AK7KzyHO6SKgqxjESIw+t2NCIJZOsLyrgQGs7Db195HvcGHQ6NE1jIBqjtT/IppJC8t2ulO0IIYQQQoj5SQIe5zm9XodOr5BMpF4KHk/E+e/fP0x4MMzFF1/MP/zDP0xLPwYCg/zuJ29SU9WK3WnB5jATi8R58/kDnDjUws2f3ExWvvzrrBAzJdNhx2o0EozGcJ2SGBSgbzCCx2Yhoaro9boxK5/YTEY6gwMsy8ri+sVlPF99gmP+7qGytEkVDY3yjHT+qnIZNoMRp9lMIBLBZjKOaisUjWE2GEiz2yhK8/DXq5fzu4NHqPP3DP+jhs1oYGNxAbcsr5BqLEIIIYQQ5xkJeJznTCYDC8ty2P1WNV6ffdQXgv9+7j9paavG7Xbz05/+dNpK0L7z2lFqDrdSUJqB0XTyj6UbvBlOGk908uof9vGxz1w6XB1GCHFu5XvclGWls6+pDZvJiOFDczEcixOMRrmirJRYIjlmLg2AaCJJjsuMoihctmABi3w+3mtvp20giMVgYElGJpWZmViNQwGONUV5bDt4bESVFxiq1NLaH2BJdiZFaR4AKnOyKE7zcqSjk57wIAadjtL0NIq8Hgl2CCGEEEKchyTgMQdpmkZfb5h4LIHDacFmH/2vreOxYlURx6paaG3uJTvXg/5kYsDQQITC3BXk5b7Fv333XygsLJyK7o8SHohQtbced5r9g2DHSTqdjsw8D001nbQ39ZBbNHqZvBBi+imKwg2V5QQGI1R39WA3GTEb9IRiMZKqxtrCfDYvKKa1P8Arx2oJRKKjVoLEk0mi8QQrC3KH2yz0eCj0eMZ834sXFtPY3cehtg4cZhN2k4loIklveJB8r4vrl5Wh+1Aww2E2sa4wf1o+AyGEEEKIGaNpQ6/x3nOek4DHHNNY18XuXTXU13aSiCex2kxUVBZwweaFuNypkwmeSV6hj+tuXsNf/nyApoZu0DQ0DcxWI9dcdxnf/vd78aZN3973YF+YcDBCWmbqRKhWu5nO1j76e0IS8BBiBmU6HfztxrXsb25jT1MLA9EYizLTWVuQx4q8bEwGA8U+L6sLctlR20AsYSPNbkMBgpEobYEgizPTWZmffdbv6TCbuWP9KnY3NLO7vplgJIrZoOfqikVcUFJAltMxfQ8shBBCCCHmNAl4zCE1x9v5/a93EwwMkuZz4nRaCIWivPnaEZqbuvnIX6+fcNBj8ZJc8gp91Bxro7c3RGdXGxs3rSI3Pw2dbnqXghtNBvQGHYl4ElLkTlWTKoqiYDBOz3YaIcTZc1stbFlUwpZFJWiaNmqriE5RuGXlUqwmI3saW6ju6kZhKHfHmsI8bly+BId5fKvSHGYTly5ewEULixmMxTEb9CO2twghhBBCiLGtW7cOvV7PZz/7WT772c/OdHfOKfkb4xwRjyd59aVDhEMxikoyhr9kWKwm3B4b9TWdvLurhsuuWjbh97DbzSxfXcxTTz3F//yf/5PvfOc73HfffVP0BGPzZjjJL8mgpqoVR4pqMd2dQdJOXiOEmH7vl3Y9U96Lsc5bjAZuXlExtB2ltx9VVcl0OchzuyaVS8Og0+FMkTBVCCGEEGLem0iZ2ZPX7969G5fr/KxWJwGPOaKxrouO1j6yckYn3zMY9Lg8VqoONrPx4jKsVtOE36e6uprPf/7zxONxwuHwZLtNoDtI7YEGIqEoNpeV0hVF2N32EdcoisKai8poruuirbGbjFwPBoMeVVXp7RogMhjjwquWYZ1krhIhznfBSJTqjm6iiQRuq4XSTB8mwwcrp3r6Qhw42sKh461EYwlyM90sL8+nvDRrOLfPeKTZh7a0CCGEEEIIMRMk4DFHDAQjJFUNkzn1kNlsZoKBQcKh6IQDHvF4nI9//OMMDAxMugStqqq8/ae97PrjHgLdwZNBGg1PloeLPrKelZdWjgjcLFyax9UfW8/2be/RUucHDTQ0XB4bW65bwZqLyybcFyHOd6qq8caxOrYfq6MnNBTI1Ck68tJcXLO8jCW5mTS39fLr5/fR3hXAYTNjMOioqm7jSHU7F6wo5upLlmKYQNBDCCGEEEJMnnLyNd57zncS8JgjTGYDCpBMqOgNo790xGIJDEY9ZrNxwu/x9a9/nd27d+PxePjZz342qRK0b/7uXV586lVsTiuFFXnodXqSSRV/UzfP//hVzFYTFRtHBjGWrilmQXkOdcfaGAgMYrGaKF6cjctrH+NdhBBnY/vxOn6/7wh2s5GSjDT0Oh3RRILWngC/2PUed2xcySuvHqWze4AFBenDeXvSvQ6CoQhvv1dPfo6HlRUFM/wkQgghhBBCnD0JeMwRRSUZeH0Ouv1BMrPdI85pmkZvT4g1FyzA4bRMqP033niDb33rWwA8/vjjFBRM7ItNT/cAb758mD88/CcGg4PYfU76wjHyCnx4vXayijNoOtbK7hf2U3bBwlFBFavdTMXq4gm9txBz1WAszvGmLpq7+gHI8TkpL8jEZpn49rT3DUSibD9Wj81kJNv9QSUks8FAcYaX6o5u/vhWFT3tAfKy3KOSFDvtFvoCg+w73MTy8vxpT2IshBBCCCHEVJGAxxxhs5tZv3kRL/7pPTra+vBlODEY9EQGY3S09+NLd7BmfemE2u7v7+eOO+5A0zQ+9alP8Vd/9VcTaqe3J8Rzv9jFsXdriQYH8WZ5QFHo7goS7B9k8ZJcfOlOfLle2ms7aa/vwpebhslsQKeTpfLi/NTq7+e5Nw/S0NmHpmrDaw/z0t3ceuEyCrO8k2q/tqsX/0CYBRmj21EUhXSnnRMNfuwxBbMp9f8SnHYLnd1BItE4tknkCBJCCCGEEBOkaUOv8d5znpOAxxyyZn0pigLv7KympakXTVMxGvUUlWRwyZWV5ORN7IuR0+nkC1/4Aj/+8Y95+OGHJ9y/d3dV09zQTXaOm26DDqPZgKIoGE16goFBGuq68KTZSSQ12jqC/PzRVzDbzHh8DpZdsICla4oxTWJLjhBzzcBglF+9cYCmrj6KMr0YTyYQTSRVGjt7+dUb73H3tRtw2ye2cgsglkiApqEfI6hoNuhJaipJVZeyzCxAUlXRKTr0srpDCCGEEELMIRLwmEN0OoW1GxaydEUhTQ1+4tEEDpeV/ELfhCoofNCujr//+7/ni1/8IkbjxAIO4VCUIweb8XjtmHUaRouJWDiK2W5BURTsdgsDwQitLX001nUTGUyQC+j1Cm2N3TRWd9BwvJ1rb98gQQ9x3jjS2ElTVx/FWWkjEoIa9DqKs7zUtPVwqL6dzUuLJ/webqsFg15HJB7HkmJ+ByMxfD4HRpIMhKM4TwmuaJpGf2CQtcuLJpUjSAghhBBCiHNtxvcRPProo5SUlGCxWFizZg3bt28/7fWvv/46a9aswWKxsGDBAn70ox+Nee0vfvELFEXh5ptvnuJezyyr1cTi8lyWriikqCRjwsGOlpYWQqHQ8M8TDXbAUMAjEoljtZmweR14832EewdQkyoAeoMOVVVprO8h2D9IcXk2uUXpuNMc5BWnk52fxqF363hvV82E+yDEXFPb2o1e0aWsfqLT6TAb9Jxo7jpjO6qqcaS1k2d2vcd3n9/OY6+8zY7jDQQjUUoy0ij0eWjuDaCdsqwxnkzSGx5kc2UJyxbn0uEPEhqMfqhdldaOfhx2M6srJWGpEEIIIYSYW2Z0hcezzz7Lfffdx6OPPsrmzZt57LHHuOaaa6iqqqKwsHDU9XV1dVx77bV8+tOf5mc/+xk7duzg3nvvJSMjg1tvvXXEtQ0NDfz93/89F1100bl6nDklHo9zyy23EAgE+PWvf83SpUvH3UYykaShqpmmoy0EA2H6u/rR68Fq81C8dhGRQJi+th7Mdgs6vY5Q3yDo4+QUplNYljeiLYvNhMVq4sDbNazatAiDceIVYoSYK+LJ5GmTgOp0ComTQcOxJJIqf9p/lDdP1JNIqtjNRtoTQQ63dvBuXRO3b1zJtSvKeeat/Zzo6MbnsGE26BmIxugLRyjPyeDCsmIMZTqSSZUj1e20dQaGt7b4PHauuriCojzflD67EEIIIYQYB+3ka7z3nOdmNODx3e9+l7vuuou7774bgO9973u88MIL/PCHPxyuGPJhP/rRjygsLOR73/seAEuWLOHdd9/lX//1X0cEPJLJJJ/4xCf4xje+wfbt2+nr6zsXjzOnvF+C1uv14nK5xn1/sHeAbU/8hep9dcRjCRRFoTsYp6m6nRXrF5KR76PiylV0HGuhs6aNQF8Iq9OKJzuN5RsXYbKMXk3icFsJ9IYID0SkFK04L+Snu9lX3ZIyd4amaQzG4hRmnj43z96GFl4/Vku6w47b9sF2lERSpaazm9/uOczdWy7gUxevYeeJRo60dBAYTGC3mNi8qJhNiwpxWYfu++g1q2lq66W+uZtEQsXjsrJ4QRYux8RziAghhBBCCDFTZizgEYvF2LNnDw888MCI41u3bmXnzp0p73nrrbfYunXriGNXXXUVTz75JPF4fHhLxkMPPURGRgZ33XXXGbfIAESjUaLRD5ZxBwKB8T7OnPL6669PqgStqqo8/+NXObLrBDmlWVhP7vn3DUTZc7CF/W+dYMUmhcy8NHKXF2PI9JAZS1JensOxPfUYxqgEkUwk0el16A2yukOcH5aWZLPjcD0t/n7y0t3DQQ9N02jvCeK2W6ksyR7z/qSq8k5tM3qdbkSwA4bygOSnuanu6KHe38uCzDRuW+8hGIkSjSdwWMxYjCPnol6vozjfR3G+rOYQQgghhBBz34zl8PD7/SSTSbKyskYcz8rKor29PeU97e3tKa9PJBL4/X4AduzYwZNPPskTTzxx1n351re+hdvtHn6NNwAwl/T29g6XoP3bv/1bPvrRj467jebjbVTvrSW7JHM42AHgcphZvSwPs6bReKKd+ppO2lr78GW4uOm29Vx23UocrqFVHKfSNI1ef4iSshxsDvOknlGIuSLD7eD6jRWYjQaqW7tp7wnQ3hOkprUbnU7huvVLyPWNvQIrGInR0R/Ea7emPG83m4glEnQEgsPHnBYz6U77qGCHEEIIIYSYxd4vSzve13luxv/Gm2oZd6qyiKe7/v3jwWCQO+64gyeeeIL09PSz7sNXvvIV7r///uGfA4HAvAx6aJrGZz7zGZqbm1m0aBHf//73J9ROy4k2ooMxbM7RX7LcDjMVxV4iqsZNt2/AZjeTV+jDdHJVR+W6Bbz1l8PodApOjw1FUUgmkrQ392J3WlixYeFpx1+IuUjTNJr6+2npD6BpkOd2UegZWtGxYkEu6S4779W0cry5CzRYvTiPlaV5FGZ6RrQTTyRJqCpmgwGdTkFRQEEZlYz0w++rMfr3phBCCCGEEOeDGQt4pKeno9frR63m6OzsHLWK433Z2dkprzcYDPh8Pg4fPkx9fT033HDD8HlVHUr4ZzAYOHbsGKWlpaPaNZvNmM3zf1XBT3/6U371q19hMBh4+umncTgcE2pHTaqn/QKlN+qxaxqLyrIxWUwjzl187XKSiSSH362nu7MDnaKgAelZLi69cRVFi1KPvRBzVd9ghOcOHeZIRxfheBwAq9FIeWYGH6msIM1mJS/dTV66m2vXL0nZRmt3gL3HmzlU304iqZLutrNmcT4rFuRQlO7hcEsnHtvoAGQgEsVuNlGQ5p7WZxRCCCGEEGI2mrGAh8lkYs2aNbz00kvccsstw8dfeuklbrrpppT3bNy4kT/84Q8jjr344ousXbsWo9FIeXk5Bw8eHHH+a1/7GsFgkO9///vzctXGeFxxxRVcfvnlXH755axbt27C7fhyvej0OuLROEbz6OSjwZ4BFq0pSXnOZDay9aPrWLV5EY3VncRjCZweG6VLcrHa53/QSZxfookEP9/3HgfaO8hzuchzD21PGYjF2NPcQiQe564L1mA9TUnomlY/v3ztPfyBEB67FYNeT2NnLzVt3dS2dbOmJI/j7X46+oNkuhzDwchwLE5bX5ANpQXkesafmFgIIYQQQoi5bka3tNx///3ceeedrF27lo0bN/L444/T2NjIPffcAwxtNWlpaeEnP/kJAPfccw8/+MEPuP/++/n0pz/NW2+9xZNPPskzzzwDgMViobKycsR7eDwegFHHz0e5ubm8+OKLYy5/P1sLlheRsyCLlpp2Csvz0Ok+SAUT6A6i6BSWXVQx5ioQRVHIzPWSmXv66hNCzHWHOzo50tnFgjQvZsMHv26dZjML0rwc7fJzuKOTtfl5Ke+PxhP8cdcR+kMRFuamD88pr9NKKBLj3ePNFGd5uX7lEl46dJzj7X4Mej2qqmLQ61hdlMuNq8eei0IIIYQQQsxnMxrwuO222+ju7uahhx6ira2NyspKtm3bRlFREQBtbW00NjYOX19SUsK2bdv40pe+xCOPPEJubi4PP/zwiJK0YrSjR49SXl4OMCI4MVEmi4mr/+ZSfv/DF6k71IjdZcNgNBDqD6M36tlw3RrKL1g46fcRYq6r6ugCGBHseJ/JYEAHHGrvGDPgcaLZT4u/n/wMz6ighd1iwqjXsfdEC5+5fiOLs9M51NyOfyCM1WhgUXY6C7N8GPVS9UgIIYQQYs6bSBJSSVo680lL7733Xu69996U55566qlRx7Zs2cLevXvPuv1UbZxPXn/9dS677DLuvvtuHn30UfRT9OUnf3Eutz9wM4d3HuPoO9XEIjFKlhdSubmc0pXFUxJYEWK2CIQjHGxo52BDO5FYnCyvk5XFOSzOy0Cv0xGMRKlq7aS1N4Bep6PI56E8J4NwLH7agIPRoGcwnhjzfE8wjKZpmMYo1eyyWfAHQkN9cjvIckugUQghhBBCiPfNeMBDTJ/3S9CqqkoikZiyYMf7vFkeLrxlPRfesn5K2xViNunsH+AX2/dT19GLxWjAaNDT7O9nf20rm8qLWFSQwe/2VdHWF+T9RRiKorAgw4vHbSOSiI9ZfWowHifLYR/zvQ16HaqmjXl/Iqli0OnQ6yXAKIQQQgghxKkk4DFPTVUJWiHmolAkRnAwismox2u3TjiHhapq/O7tw9R19LAgy4fhQ4GFQDjCXw5U85fjNZiMekoz09CfXNkUSySp7ughPRLBojfSHR4k3W4b0XZPOIzNaGRFbs6Y71+Sk4bDaiYQjuC2j6zComkafQNhLqxcgNkov8qFEEIIIYQ4lfwteZ566qmnpqQErZhfNE2j1R+gqrad9p4gFqOeRYWZlBdlYklRVWeu6QsN8ubRevbXtRKOxjHqdSzMSefC8mJKstLG3V59Zw+17d3k+9wjgh0wtJ2kv62D7kCEq5YvGrGNy2TQU5LupaG7l7LCTI72dBOIRPDZbKBAT3gQgK2LF7IgbezkvdleJysW5LDjcD2g4LKZURSFeCJJa3c/XqeNNWX5434uIYQQQggxx2gnX+O95zwnAY956MSJE3z+858H4KGHHppUCVoxf2iaxo736njl3RMMhKOYTXoSSY09R5tZkOfj1stW4HOPvb1ipsQSCZKqhsVoOO1Kjf5QhJ+9sZfqtm68Dis+h41oIsG+2hZqO7r5680rKcvLOOP7JVUVBQWdTqGzf4BoIonNbEp5bVRNoiZV4gkVs2lkQMRo0KMBmRY761cX8FZjI819ATSg1JfGxqICVuflnvaZFEXhmvVLAHivpo2uvuDQ9YpCjtfJdRuWUJDhOeMzCSGEEEIIcT6SgMc8o6oqn/jEJwiFQmzZsoUvf/nLM90lMUsca+jkxbePYjYaKM33DX/RjsWTVDf5+cMbh7jzunXD2zJmWm1nD7trmzjW7kfVNHK9LtaV5LO8IDtlH3ccq6e6rZuSrLThRKFWsxG3zUJ9Vy/P7zvGgqw0jCkSgGqaxvGGTvYfbaGxrQedTqGsOAvFogONMXNoqO9nvh4jZqEoChqwOj+XlXk5BCJRNDTcFgu6s9xmYzUZueXCZWyoKKaurZt4QsXrsrI4PwOrae6vyhFCCCGEEGK6SMBjntHpdPyf//N/+PKXv8xPf/rTKU9UKuYmTRtayRFPqORnjtzeZDLqyc1wUdPip6GtlwV5vhnq5Qf21rfw3LuHGYjE8Not6BWF461dHGvr4pKyBVy3shyd7oOAQTgaZ39dK267dVRVFEVRyPW6aO7pp7ajZ9QqD03TeG13Na/tPk48oeK0m9ESGm/uq0Fv1BPTJQgMRnHbLKP6qUeHyWTAnCKIklRVVFUj1+MEQKcoeKyj2zgbiqKQ63OR63NN6H4hhBBCCDG3KZqGMs4ys+O9fj6SgMc8dPPNN3PDDTdIsEMMi8YSNLb34HGk/sJts5ho8wdo8/efVcCjvTvAoZo2mjr6MOh1LCrMoKIkG5d9Yl/oP6wvNMif9h8loaoszEobXlmR5rDRFx7kjeN1lGalUZGXNXxPKBolHI3htllTtmk2GlBVlcBgZNS52uZuXn/3BDaribQPbelJ9zpo7ugjEozSrPRhzE4b3tqiaRodfQNk2G0kjdARDJHl+iCQpGkaTT39ZLsdLP1QP4UQQgghhBDnjgQ85one3l7C4TB5eXkAEuwQI5xtbPdsgsB7jjTx/FtH6B+IYDEbUFWNgzVt7DrUwEcvW0F+pmcyXeVwSyf+gTALM32jtpF4bFa6g2H2NrSOCHiYT5aLjSYS2BmdbyORVAElZTWTgydaiMYT5GWN7LeiKORlegg1xvA4HXT2DRBPquh1CvGkitdu5a83r0TVafz54HFOtPtxWMyomsZAJEqG084tq5finuCqDiGEEEIIIcTkSMBjHni/BO3LL7/M008/zdVXXz3TXRKzjMVkID/LQ1VtO16XbdT5wWgco0FPTvrpt0w0tveybWcVmqaNyAOiqir1bb385rUDfPqmjeOu+KKqGolkEqNBj38ghKIwYsvKhzksJlp6+kccc1ktlOdl8taxhpRlaLsCA/icNkqzRq9eaWrvw25NnZRUp1MwGwwsy8lkSVku1W1+IrEEPpeNioIsMt0ONE0jL83N/sZWart60Ck6tiwuYWVRDtlu57g+ByGEEEIIIcTUkYDHPPDhErQ+38znXxCzj6IorCkv4HhDF/6+ED63bTgokEgkaensp7w4k+Lc05dufe9ECwPhKKX56SOO63Q6CrM8NHb0cayxkxWL8s6qXz3BMPtqWthf00oknsDjsJDQaSdXZKQWT6opV2psKiviRJuf2o4ectNcWE1GEkmVzv4BYokEV61cjN1iIjgYpT80iMlgIMNtx2TUk0yOvbRF1VRMRgNleRkpq7woisKCjDQWZIy/7K0QQgghhBBi+kjAY477cAnaf/7nf5YStGJMS4qzuOKCxby2p5qalm4sJgOJhEpSVVmQ7+PGiyvPWKGlptmPw2ZOec5g0KNpGm1dgbMKeLT3BnnmtX00dvXhtJoxGQ00+wP4B0L0xAfJ87hwnZIoVFU1wtEYywuyR7VXkO7h9gtX8vy+YzT6+4gnkig6hQynnQuXLGZJXha/23WYA3VtDEbjGPQ6irO8OJ1Wapu7UVVt1KqSaCyBXqejZBYkchVCCCGEEOcxTTu7/een3nOek4DHHBaPx4dL0F5yySX87//9v2e6S2IWUxSFi1eVUpLr41BtGx3dQcxGA+XFmZQXZ2GzpN7WcUojZ/69eRbVVlVV40+7j9Dk76c0xzccaPE5baS7bLxZU897jW2sKs7FYRkKsEQTCZq6+8lNc7OiMDdlu6XZPj6zdQMNXb30hyOYjXpKMn3EE0l+9uoeqlu7SXPayHA7iCcSVDV1YkCHwaSnoa2H/CzPcNnaSDROc0cfZcWZlBakp3w/IYQQQgghxOwlAY857MEHH2T37t14vV5+8pOfSKJScUaKolCY7aUw2zuh+xcVZPD63mo0zTEqT8b7KypyM9xnbKfJ30dtWze5aa5Rq0psZhNlGRm0h4L4g2Fa+4IoDG2bKUr38JG1lfgco/OQvM+g11GaPXJFxguHaqlu7WZBtg+Dfuj9LCYDDquZpq4+jA4jXr2Z5vZeVE0DbWjFSnlJFjdduhxTii00QgghhBBCnFOyYGPc5G/xc9SOHTv49re/DcDjjz9OQUHBDPdInA9WLMpl37Fm2vwBctJdH+QBSao0tvdSmJ3G4sLReS40TcPfM0BrZz+aBl3hEJFYAtsYyU0zXHb0isItFywjHI+T1FQyXQ4WZaVjMugJhCNUNXXQ1R/CqNdRnJVGaY4PY4qgXySWYF9NK26bZTjY8T5FUchJc9Hk7+PGzUsxajq6egZQdAr5WR5K8nyj7hFCCCGEEELMDRLwmKNWrVrFZz7zGeLxOB/96EdnujtinmrvDnDgRCs1LX40DUrzfWysLObtww3UtPgxGYbK0iY1lYIsL7dcsgyTwUAwHEGn02EzGwkPxnhx+xGOVLcTCkfRgEEtQWs0TF6aC2uKrTSJpDqUYyPDS7rLPuLcwYZ2/vhOFV2BoWouqqZh1Ospy8vg1k3L8NitI64PR2MMxmLYLalzjxgNejQNYokkq8vzp+yzE0IIIYQQYupojH+JhywJkYDHHGWz2fjhD3+Iqo5dzWI+6e4doOpYGydqO0iqGoV5aSwtyyU/d2JbM8SZHapp4/dvHKIvOIjNOrQSo761B7fDwkUrS1E1jZbOPgwGHaX56SwsyKC6xc/vd1XR2RdEURSKMrz0dgRpb+snw+cg0+cAoDsQorq2l71Hmli/vBjDKSszugMhygoySTtl60pjVx/P7TxIJJ5gQXba8HaYwVicgw3tKIrCJy9bM2KbjMVkwKjXE40ncFpHBz2SSRXQsJjGV0pXCCGEEEIIMbtJwGOO052hqsZ8UNfo53fP76fLH8RqMaEoCg2NfvYdaOTKSypYs6Joprs47/j7QvzxzcNEYnFK833DW1c0TaPVH+DN92q5++YNXLJmIQBJVeWPu6rYeagBvU7B7bCiqhq7DtbT1tDD0tIc3M4PVl6kux2UZadzqKWDupZuFhZkoCgKSVWlo3cAk9HAhrLCUVVT9tQ00xceZFFO+ogcIlaTkYJ0N8dbuqjr6GFhzgdJRm1mE5XF2bx+sJY0pw3dKblHugIhfE47C3OkEosQQgghhJh/1q1bh16v57Of/Syf/exnZ7o755QEPMSsNhCK8scXD9DbF6akMGP4C7CmaXR1B3nxtSoyM1wUyEqPKXW4to2e/vCIYAcM5bzITXdR09zN4Zp2Mtc6ATja2MlbVQ343LYRpWT9OgOaNpSkNDvNifVDOTsWZ/noDoTo7B0Ag4JOUdAAn8PGlasXU1GYNaJPSVXlSFMnHrt1VMJUGApsxBIBmvz9IwIeABvKizje7KeuvZtsrwu7xUQ8kaSrf4BYIsmVqxbhSLH6QwghhBBCiFlhEjtadu/ejcvlmuoezQkS8BCz2vGaDjq6AhTl+0b8a7+iKGSmu6ht6OLQkRYJeEyxpo4+TEZ9ysCCoihYzAYa2nuHj71X04qmaiOCHQCJeAKbxUgkmqCrP0Rhpmf4nF6nY4HHg9NjZc2aEqKxBC6bmfKCzFHtwFCuDlXTRq3QOFUyxTavbK+T2y9ZyfN7jlHX0UNbbwCdopDpdnDh0mLWl8kqISGEEEIIIeYbCXiIWa29sx9FUdCPUSnDbjNT3+Q/x72affpDEY40dNDeG0Sv01Gc7WVxfgbmCZZT1et0aNrYIWRV1dB/KADV1hPAniL5qNVqQlU1NP1Qno1TRWIJluf4uGhpyRn7ZNDpKEz3cKChbVQiU/igLG6m25Hy/oIMD3dtvYAmfx/9oQgmo56iTC9Wyd0hhBBCCCFmO00beo33nvOcBDzErKZTlDN+8T4f8picTlVDB3946zBdfSF0OgVV09h+UKE0x8dHLl5GxhgBgNNZkOdj3/Fmkqo6IgEoDH3msUSShfkfbBuxmoz0DkRGtePzOWhp6SUUiY1qJzAQwWjQU7Eo56z6pCgKq0rzONzUQe/AIF7HBzlBVE2j0d9Hgc/N4tzRZXHfp9MpFGXKaiAhhBBCCCHOBxLwELNaXq4XRVGIx5MYjSMreWiaRngwyqKSBTPUu6mjaRo1NZ0cOtxMc0svBr1CWVkulUvzyMhwjbiusbWXquo2Ov1BoskkRzq7MJkMLMhJGw7+xOIJjrd08dz2g/zt1RdgNOjHeuuUKkqyeOuQm8a2XgqyvRhOrrBJJlUaO3rJSXexZEH28PWVJTlUt3WPCpA4nBYyslwEa7uIDcYZCEVBgb7AIPFEkk2rF1BaOHaA4lRLC7K4dFkprx+qpTsYxmk1kUiqhCIxsr0ubl6/FItJfq0JIYQQQgghJOAhZrlFCzIpyPXS2NJDYV4ahpNf3FVVo6WtlzSPnaXluTPcy8nRNI03th/jzR3HiceTOBxmkkmVV187woGDTdx4/SpKSjLQNI3X3z7B9t3VDEZiWMxGGnr6aAkOUJjuJtvrxHpyW4nJaKAw00ttWw8nWvxUFGWdsQ/dXUHq67qIxxK43Dau27iEbW8dOZmrQ0NBQdMgJ93JLZcsx/OhFRbLF+Swt7qZuvYe8nxurGYjmqYRHIyiWXRsWl+K12im0x8EIDvDxZrKQlYuLRhVieV0dDqFrSsXU5zpZV9dKy3+PowGA5cuy2JFSW7KrS5CCCGEEELMfZPIWnoek4CHmNUsZiM3XbOS3/15P02tQ0kydYpCQlVJ9zq49splZGXM7YzD1TUdvLnjOHa7GY/HNnxc0zSamnrY9vwB/vZTF1HT5OfVXcdx2EzkZrrRNI26QACPw0pv/yAn6jtZVpY3nGjUbDSQTKo0dfWdNuARiyV4/S+HObC3noFgFEUHCgrpmS4uubScpEVHc0cfKpCf6aa8OGtURROPw8ptl6zk9zsPU9/eSyKZRNPAbjGxoaKI69YvwWoy0h8cRNPA7bIOrxoZL51OoTw/k/L8zAndL4QQQgghhDg/SMBDzHpZGS7u/NgGTtR20tDUg6qq5GS5KVuYjdtlPXMDs9zBg83EE8kRwQ44WQI210Nzcw/HjrdxoKYdTdVIc3+wikHThpKH2uxmevvDBAYGcTtHtqOmqFryYdtfruKtN47hSbNTXOpCURQSiSTtrX28vO0AH/34RlZvKTjjc+Skubj72vXUtfXQ2TeAXqdQkOklJ805HIRJ88gKDCGEEEIIIcZNFnhMiAQ8xJxgtZhYXpHP8or8me7KlNI0jeaWXhwOc8rzBoMeTYW2jn5aO/rwfCjAoygKXruVpp5+HA4TwXCUgVB0OOCRSKooCmR6nWO+f2/3AO/ta8DttePxfhCMMBj05BWk0VDnZ/+7dRQWp4/ZxofpdToW5qWzMO/srhdCCCGEEEKI6XJ+l7cQYhbQ63WoydOEX5WhbTyp5LgdGPQ6QtHYiOOqptHU1UdOmoslBWNv/Whq8DMQGMR9yuoSGAqoeLw2ak60EwpFz+5hhBBCCCGEEFNP44PStGf9mulOzzwJeAgxgxRFoWxxNgOhaMryu5FIHINBR2lJBvnZXnoDgyPOp9mtLMxIIxpPEI4nGEwkafH3U9PiJ81p4+bNldhOJjJNJR5PoijKmIlDDQY9alIjEU9O7kGFEEIIIYQQ4hyTLS1CzLBly/I5eKiJ5pZecnM86E8m84xE47S09lK+OIeSkkximkZ1QyfdvSHSPDYURRnK8+F20N8Xxp5lITvDjdGgZ0lRJssX5JLuPn3ODE+aHZ1eRzQax2w2jjo/EBzE63NgH2PLjRBCCCGEEELMVhLwEGKGZWW6ueG6VTz/wgEaG7uBoRVoBoOOssU5XH/dSvR6HUsWZnP55nLeePsENY1+zCYDieRQQtLV5QXcfOUKvO7RW1NOp6gkg9x8L82N3RQUpY9Y6RGJxIkMxlmxuni4HLAQQgghhBBCzBUS8BBiFli4MIu/ybmY4yfa6e4ewGDQkZ+XRnFx+nCwQVEULlxbSklBOkeq2+jqHsBiNrCoOJPFJZkpV2icicGg54prlvP7/95NfW0nLrcNo1FPaCBCLJZk6YpCVqwunuKnFUIIIYQQQojpJwEPIWYJu93MqpVFp71GURTysz3kZ3um7H0LitL5qzs2cWBPA0erWkjEk2Rle1i+uojKFYWYLeMPpAghhBBCCCGm0PuJSMd7z3lOAh5iwjRNQxmjeoiYWzKz3Fxx7XK2XLmURDyJyWwYziUihBBCCCGEEHORBDzEuAyGIhzZdYJDbx6h3x/A5XNSubmcio2LsTqsM909cYpYLEF7Rz+qqpHuc+BwWE57vdGox2iUfB1CCCGEEEKIuU8CHuKshfpD/O7RFzixpxaT2YjFYaG1uoO6g00cefsEN332apxexznrTzQSJzoYw2w1ybaLUySTKnv31vPu3jq6uwdQVQ2nw0JlZT6bNy3CZpOqK0IIIYQQQoj5TQIe4qzt+O07HHunmoKyPEwfCjDEo3Gq99bx5nNvc81dl097P3r9QfbtrObI3npi0Thmi4klq4tYtWkRHt+5C7jMVpqm8fobR9n+5jHMZiOZmS4URSEQHOSNN4/h7w5yy01rsUiQSAghhBBCCDGPySZ9cVYCPUGq3jqON8szItgBYDQb8WZ7OPL2Cfq6+qe1H/72fp578g3efP4AiXgCq91MLBpn+7YDPPefb9DTFZzW958LOjoD7H63FpfLSna2G5PJgNGox5fmID8vjWPH2jl6rHWmuymEEEIIIYQ4W+8nLR3v6zwnAQ9xVnrb+xjoC+MaYwWFy+ck1Beip61v2vqgaRpvPn+Q1sZuihZl4cty43BZSc92U7Q4i+baLna+eHDa3n8qaZpGhz/A3kON7DnUSGNrD6o6+hdSMqlS3+hn/6EmDh9tZSAUPWPbNTUdhEJRPB7bqHPmk8lIDx1umZLnEEIIIYQQQojZSra0iLOi0+vQ6RSSCRVDip0QyUQSnV6H3jB9MbTujgC1R1tJz3KNqiCi1+vwZbk4caiFXn8Qb7pz2vpxKk3T6OkLE43FcdgtuM6QGDQ0GOPFN6qoqm4jHI6hAWaTgdLCDK65ZCk+rx2AptZe/vJaFU2tPcTjSVAUPG4bF6wqZuO6UgxjVFEZGIii6JQxK+hYrUb6+8KTemYhhBBCCCGEmO0k4CHOSlZxJr68NHra+8gpyRx1vre9j7QcL9kpzk2VYF+YwVCU9CxXyvMOl4WWhm4CveFzFvCob+7mrb211DV1E08ksZgNVCzMYdOa0uHAhaZpdHQGqKnpJBSOsPdoC519A+Rne8jyDfUzHIlRdaKVcCTGx29cRygc5bk/7sXfHSQ7y43VYiKZVOnpC/HS60dQVY0tmxan7JPdbkZLamOWDY5E4mRluqfvQxFCCCGEEEJMrYlsUZEtLRLwEGfHZDay5soV/PnJl+lp78Ob5UZRFDRNo68rwGAowsUf3YDZOn3VPwxGPQaDnng8iTnF6oZ4LInBoMdomro/1p2dAaqOtNDQ2I1ep6OkJJ0lS/JI89qpaejiv/+8j0BwkPQ0Bx6ThdBgjJ17a2lq7+W269bicVl55dUq9u6rJxSKMhCNU9fRi9NuxmE24XJYURSwW80U5adR39RNVXUb3f4gnf4AJYUZ6HRDQQu9XkeGz4miDPDO3jpWVObjcY3etlK6IBOb3Ux/YBCPe+T5WCxBIpFk6dK8KfuMhBBCCCGEEGI2koCHOGurLq8kFAiz+8/7qDvYiKJT0FQNh8fGRR9Zz9qrV07r++cU+sjI9eBv7yO3KH3UeX9HPzmFPrLyPFPyfoerWnj+hQP094exWE1omsaxE23s2VvPNVcv59XdJxgIRykp8A2vpDCbjLidVuoau9m1rxaPxcKOnSfweG1kZrqobvZjDZowGfTU13dhMurJyRnqr0Gvx2TSc+BIM/29YTwu23Cw48PSPHYamvzUNfhZtaxw1PnsbDdrVhezY+cJotEEaV47Op1CIDBIT0+I8rIclpTnTslnJIQQQgghhBCzlQQ8xFnT6/VcfOsGKjYspmZ/PeHgIFaHhdKVxWTk+8bMGfE+TdPo7wsTiyVwOq1YbaZxvb/BqOeCS5bwp2feoqOldyiXh0FPT2+IuprOoYSeDguvvVzF0mUFZOd6JvysHZ39PP/CAaKxBCUlGcPPpqoaLS29PPvcbsIkycv2jHpuvU6H12PjvSPNWOIKNptpeKVFIqmiUxSsVhOJhEprWx+ZWW70JwMbJqOegXCMRELFYk5dNlanU0BRiMWSKc8risJll1Zgt5vZu6+BtrY+NE3DYbewceNCLr6oDKt1fJ+9EEIIIYQQQsw1EvAQ46IoChn5PjLyfeO6r7Gui3d31VBX20kykcRiNbN0RQHrNizE5baedTtL1xYTjyd466XDNNf56e0fpKN7AJ1BR35xOgaTge2vHOHA3nquvmEVSyrzx/uIAFRVtdLfHx4R7IChYENenof9VS0kjAqlRRkp77dZTTQ2+tFHVEoXfJDXxGo2omlD+TWsViOhcJRQKIrLOZToNDwYp7QoA39HkP7gIM4UCVDjiSSKAk7H2NuH9HodmzYuYvWqYtra+1BVjXSfA7d79BYYIYQQQgghxCwnOTwmRAIeYtrVHG/n97/eTTAwSJrPiclpITQQZfvLVTQ3+Lnltg1nHfRQFIVVmxZRtryAPTtP8Oc/7KfYZ6dkUTYGox6ADE2jraWXl7a9R1q6kx5/kMa6LuLxJBabiZim0d7eh6pBUaGPioo88nK9I96nsdGP1WpKuWpFUzW0SJxAKEEoHMVuGxl4iIVjtNV00t8RQFF0BL0OPD4Hik4h3WOnob2XcCSOxWw4+Xtr6BdRMBRBr9exYkk+/vQgf37lMLF4ApPxg2mqaRrtnf1kpjtZUJw62PJhFouRkrO4TgghhBBCCCHmGwl4zGOaptHa2kfVkRZa2/owGvUsKs2ivDwXp/P0pVM/rN8fGN6+4skYX3WPeDzJqy8dIhyKUfSh1RIWqwm310ZddSd736nhkisrx9WuzWEhroHZZqK4NHNEYEJRFLJzvZw42sZ/PvoXEgkVNBgYjNHc0QeKQkGhD4/PTmOjn337G7jyikpWrSziQ42MCoiqqkp7bRcddX662/sJu028/eYxSooyyF+QidGop7uph4Z9TXR3BnA4rYSBfX01ZOd4WLg0D4fVTElOGtUt3fh7Q1hNBpKaSnN7L/GEyoZVJSwqzqQwJ43aRj/HqttxOqw47GYSiSQ9vSHsNjOXX7xkzC0vQgghhBBCCCFgdKmLc+zRRx+lpKQEi8XCmjVr2L59+2mvf/3111mzZg0Wi4UFCxbwox/9aMT5J554gosuugiv14vX6+WKK67gnXfemc5HmJU0TeOd3bU8/cxOtr95nNbWXmprO/nDn/bz9DM7aWvrO2MbHQ1d/P6Hz/P/feVpnvrHX/Dk//k5v3v0edrrO8+6H411XXS09pGV4x61WsJg0ONyWzn8XhORSHy8j0hLUw8WW+pVGKDR2dFPfW0XOXlesvO8DERjmK1GrGYDvf4gdouJkpIMNOClvxyipbV3+O4FJRlEIvHh1ReaptFU1Ubd/iYioShmm4mF2V5UVePosTaOvNdAX0eAE2/X0dcbwpvtZvWaEkqK08Ggo7Otj5qqVjRNoyDLQ1l+BmaDDqfbSjyukpPp5uYrV3D1lqXo9TpsNhO3Xr+aKy6uwGox0h8YJBpNsLQ8l4/dvJYli3LG/XkJIYQQQggh5qb3t8WP93W+m9EVHs8++yz33Xcfjz76KJs3b+axxx7jmmuuoaqqisLC0dUn6urquPbaa/n0pz/Nz372M3bs2MG9995LRkYGt956KwCvvfYat99+O5s2bcJisfCd73yHrVu3cvjwYfLyzp9SnPX1fl55tQqjUU9JSfpwUCCZVGls6uZP2/bzP+68ENMYJVzb6jr4zfe30dnox5fjxZXmJBKKsO8vB2k62sJHvngduaXZZ+xHMDhIUtXGfB+b3UwwMEhoIILFMr4VCwaDHjWZehL39YQJDUQoLErHZDLQ0t5HaDCGx2VFURT6ekN0tPeRjNgJNHXTXNPFI8c7uPSq5SxdW0LFkjz27K2nuaWXvFwv4f5B2ms6MVmNRBMqbo+NJUWZZA5GqOnso7m1j96mXhKBQbIKfZQWZeByWjCbDUSiCbp6Bmhu7sHutaEz6kkkVK65qILLLq3AbDHhdFgwnFJq124zc+mFZWxct4DgQASjUY/baT1jclghhBBCCCGEEDO8wuO73/0ud911F3fffTdLlizhe9/7HgUFBfzwhz9Mef2PfvQjCgsL+d73vseSJUu4++67+du//Vv+9V//dfiap59+mnvvvZeVK1dSXl7OE088gaqqvPzyy+fqsWaFg4eaiUQSpKc7R3xB1ut15Od5aWnto6Ym9UoNTdPY8Zt36GzyU1xZiDvDhdlqwp3uoriykO7WXt78zdtnFTE0m40oDAVaUonFEhiMeswT2J5RujiLaDSOqo7uR39/CFXV8GU4AQiGoiiKMvxZGI16mo+2c3RnNZ11fnQK9HYPsOuVKn752Ct0NnZz/bUr8bhs1Nf7OXG4mf6+MIOxBA67mcWLsjGbDeR6HGxcmMsipwNLOMHSinxWLS3A4xrKSWI2GagszWTpwizMeh3RwTiFhT5uunE1H7l5HdlZHrxu26hgx4dZzEYyfE48LpsEO4QQQgghhDgfaRN8nedmLOARi8XYs2cPW7duHXF869at7Ny5M+U9b7311qjrr7rqKt59913i8dRbIsLhMPF4nLS0tKnp+Bygqhp19V04XamreBiNBtSkSkdnIOV5f0sPdQcbycj3DZVA/RCdbqhKS/2hJrqa/GfsS2FJBl6fnW5/cNQ5TdPo7QmxqCwHR4qcIsH+MPt2nODl3+7htT/up/pwC4n4B6VYyyryyMrx0NTYTSLxwfF4PIm/M4jNasKXPhTwOPUPejKSYKAzgM6gx53pwmQzY3fbKF6cRTyW4C+/2UO6187/uHMz11+3kux0F16PjSXluSxfXoDL9UGSVYNOR4bbhkEFt8s66jMzGvTkZbhYkO7i2ssq+B93XMiqlUXjXtEihBBCCCGEEOLszdiWFr/fTzKZJCsra8TxrKws2tvbU97T3t6e8vpEIoHf7ycnZ3RegwceeIC8vDyuuOKKMfsSjUaJRqPDPwcCqQMBc4WiDCXuPG1ETxm6LpWBvhCRcJT0vNRBIpvTSndrDwN9YTJH7zwawW43c8GmRby07QCd7f2kpTswGPREBmN0tPfjTXOwZn3pqPuOHWji5d/sobszgKIMVVQyGHQsWJLLNbetx+W14/bYuOEja9n22720NPYMrzhRdAoFRT4C/YPDH4HbZaWlvR9V1dDpFELdAxh0OmwuC5qmkUgk8abZh8ru5nioOdTM/jePseXG1VywbgGx7hCv9IXJzh6diwQgFo2TluEi2BfG43OMOh+PJdDpdaRne07/gQkhhBBCCCGEmBIzXqXl1C+Pmqaddtl+qutTHQf4zne+wzPPPMNrr72GxTJ2VZJvfetbfOMb3xhPt2c1RVFYWJrJ2+/U4PM5Rn02sVgCvV5Hzhhfvi02M0azgehgDJtzaCWDpmmEwzFCoRixwRhJFEzWs1uhsHbDQhRF4Z2d1bQ09aBpYDTqKCzO4NIrl5KTN7IkbGtDN88/+zaRwRhFCzPRndzuERmMcey9JhSdwq13bRnanlPo4867t3DiWBud7f0oCuTkeckv9PHLn+6ktbmHgqJ00jx2nE4L/cEIJr0ONZbA4bSgqhrBYASbzYTPa6f1WDNtJ9rwt3Tzm/oW2o82seqyShYsyWHXy2aCfWFcXvvIzzMaJ5lQWX9FBYffrSPQGxpxjaqqtDZ0k1Poo6RMko0KIYQQQgghxmsie1RkT8uMBTzS09PR6/WjVnN0dnaOWsXxvuzs7JTXGwwGfD7fiOP/+q//yje/+U3+8pe/sHz58tP25Stf+Qr333//8M+BQICCgoLxPM6sU1mZz6HDzXR0BMjKcg0HPeLxJM3NvSwoyaCkJCPlvVnFGeQtzKHhcDMF5bnEY0nq67vp6Q4TTyQJBwdxpznY+3Yd3mwvdqc1ZTvv0+kU1m1cSOWKQpoa/MSiCZxuK/mFPvQpclccereWQF+Y4sVZI4I1FquJnKI06o600VzbSdGioaSpVpuJ5auKRrVzzY2r+MNz79JQ24XZYsDntBDoDRGMxjCYjcRiCfr7w9jtZkoXZNB6sI7WYy3oDXr0BgMmq4nqvXXUH2rk8jsuZuWmhex6+QjRSBxvuhNFpxDoDdHrH6BseQGX37wau8PC7teO0ucPYXOaSSaShAaiZOV52frRdZjMMx5jFEIIIYQQQojzwox9+zKZTKxZs4aXXnqJW265Zfj4Sy+9xE033ZTyno0bN/KHP/xhxLEXX3yRtWvXYjR+sNrg//2//8f//b//lxdeeIG1a9eesS9msxmzOXW+i7mqsMDHVVuX8ZeXD1NX1zWUt0MdKk1UXJTOddetxGjUp7xXp9Ox8ca1dDZ20XC0hf6IRn8ggtmkh3gcl9NM/sJs9u+sJjoY5+ZPXohxjCosH2a1mVi8JPe01ySTKtWHW3C6U1cjsdrMxGO9tNT7hwMep0rEk7TUdxEeiLL5ojICAxFqT3QQjydZvW4BVoeFY/sbqHqrhoJFWWRmOOlv66HtRCs2tx29yUCyP0x2YToZ2R66mrrZ/utdfOIfP4rNYeHArhpaG7vRVA2H28qGyyrYfFUlNruFS25YSeHCTA6/W097cw9Gk4ENVxRSsboI78l8IkIIIYQQQggxLpo29BrvPee5Gf3n5vvvv58777yTtWvXsnHjRh5//HEaGxu55557gKGVFy0tLfzkJz8B4J577uEHP/gB999/P5/+9Kd56623ePLJJ3nmmWeG2/zOd77DP/7jP/Lzn/+c4uLi4RUhDocDh2N0boX5bMXyQvJyvRw73kZ7ez9Go4GSknQWlmZhtZpOe+/ClSXc8HdX8dvHX+b43mZMRoV4Uo/T66BwSR7peWlEB2OcONhM7dE2ypZP0YoYTUNNasPbWFJeAmOWo60+3Mybzx+kvamHRCKJ3qAnK8/L5q2VlK34IOHI2tXFPBtT8bf3oVMUuura0VQNnVFPoDeEJ905HKBIz0+j7mAj9Qca2HTdGlZvXkx7cw+aqpGW6cKd9sH2FZ1Ox8Kl+Sxcmj81n4cQQgghhBBCiAmZ0YDHbbfdRnd3Nw899BBtbW1UVlaybds2ioqGtie0tbXR2Ng4fH1JSQnbtm3jS1/6Eo888gi5ubk8/PDD3HrrrcPXPProo8RiMT760Y+OeK8HH3yQr3/96+fkuWaT9HQn6RNcWbB4TSkL1zfTH4X0DCcGswG3zzkcjDBbTWiaRk1Vy5QFPPQGPblFPo7ubyQtY3S/E/EkOp2CL8s16lztkVb+8LO3iA7GyMj1YLYYiUbidLb28qdndqHoFBYvG+qnx+fg+k9s4PlfvkNLvZ/W2k4SsQRKMII33cmiynwMhqEVMIqioDfo6OsaSmZrsZkoXpx6dYkQQgghhBBCTDlJ4TEhM55Q4N577+Xee+9Nee6pp54adWzLli3s3bt3zPbq6+unqGcCIBpJ4El3klHgS3neYNQTHohM6XtWrivhxMFm+nsGcKd9sCpHVTVa6/1k56ex4JStMaqqsuvlKgZDUQpKM4a3w5gtRvJLMmiq6WTXy1WUVuQN5w3JK87gE5+/ktojrfx3dy+9Hb0UlefhTnOMyi2STKiYz7AqRgghhBBCCCHE7DH2vgEhgLQMJ5HB+JjnY5F4ypUYk7FwaR4brljKQCBCw4kO/O39dDT30HC8g7RMF1s/ug6zZWSFmK7WPlrq/aRnu1Lm/sjI8dDe1EN7U/eI4xariYrVxVx950W4PTbcXvuoYEc4MIjJaqJk2Rlq8AohhBBCCCGEmDVmfIWHmN3KVhTy3q4agn1hnB7biHP9PSEsdjOLl09tIECn03HRNcvIL8mgam89rQ3dGE16NlxewJLVxSkDLJHBOPF4ApMldalck8VAPJYgOkbwpmLjYg5ur6LxSDNZxZnYnFY0TSPQPYC/tYeVly4lv+z0CVeFEEIIIYQQYlpI0tIJkYCHOK3ChZmsuWgxu16pItg/OJygs697gGRCZdPWSvKK06f8fXU6HaUVuZRWnF2Qwe60YLGYGAxFcbpto84PhmKYrUbsTkvK+x0eOzd97hpe+q/XaKhqpqOha6hdt40LrlnJZR+/CL0+dVUbIYQQQgghhBCzjwQ8xGnpdDouuWEVviw3771Vjb+9HxTIKfSxcuNCKteVpNxCcq75slyUlOdwcHctdqcVne6DPmmaRldrH2UrC8jM847ZRnpuGrf9w820nGiju7UXRaeQtzCb9LzU+UuEEEIIIYQQ4tyQrKUTIQEPcUZ6vY6VGxeybF0J/T0hUBTcXht6w+xZ8aAoCpuuXEpHSw/1x9vxZbqw2ExEB2P4OwJkZLvZvHXZGYMzOp2OgrI8CsryzlHPhRBCCCGEEEJMBwl4iLOmN+hJyxxdDna2yMpP45a/uZjdrx2h+nALoWAEo8nAyo0LueCSJWQXpM10F4UQQgghhBBCnCMS8BDzSlael+s/sYn+nhCDoSgWmwmPz3HmG4UQQgghhBBitpIdLRMiAQ8xL7nT7MMJVoUQQgghhBBCnH8k4CGEEEIIIYQQQsxmUpZ2QnQz3QEhhBBCCCGEEEKIqSYrPIQQQgghhBBCiFlM0zS0ca7YGO/185Gs8BBCCCGEEEIIIcS8IwEPIYQQQgghhBBCzDuypUUIIYQQQgghhJjVpC7tREjA4zwXj8U5sbeOY7urCXYP4M5wUX7BQkpXFmMwyh8PIYQQQgghhBBn749//CP/63/9L1RV5R/+4R+4++67Z6wv8o12jtI0jdaadhqPtJCIJ/FmuihdWYzVYT3rNgZDEbY9/hJVu04AYLaYaKhq5uD2KpZdtIRr7rock8U0XY8ghBBCCCGEEOJszJEFHolEgvvvv59XX30Vl8vF6tWr+chHPkJaWtq57wwS8JiTBgcGefEnr3N01wkioQiKoqABmYXpXHnnFhauKjmrdnb85h0ObD9KXmk2Frt5+Hg4OMi+Vw7hyfKw5aMbp+kphBBCCCGEEELMJ++88w5Lly4lLy8PgGuvvZYXXniB22+/fUb6I0lL5xhN03jpp6+z9y8HcaY5KK4spLiykIKyPHrb+/jj4y/RVttxxnYCPUEOvXkEb4ZrRLADwOa04vQ6OPh6FeHg4HQ9ihBCCCGEEEKIWeSNN97ghhtuIDc3F0VR+O1vfzvqmkcffZSSkhIsFgtr1qxh+/btw+daW1uHgx0A+fn5tLS0nIuupyQBjzmmva6To29Xk1ngw+GxoygKAAajnrxFOfR39vPea4fO2E7jkRYaqpppOt7CvlcPcmJfLb2d/Wgn1z25M1z0+wN0t/ZM6/MIIYQQQgghhDgTDbRxviawpyUUCrFixQp+8IMfpDz/7LPPct999/HVr36Vffv2cdFFF3HNNdfQ2Ng41Ett9Hu+/511JsiWljmm6Vgr4eAgWUUZo84pioLL5+L4nlouv+NijCZjyjY6m/w8/5+v0Fbbgd1jw2A00N8VpKO+i/yyXIqW5IOmoSjKjP7hFEIIIYQQQggBg9Hxr7x//55AIDDiuNlsxmw2p7qFa665hmuuuWbMNr/73e9y1113DSci/d73vscLL7zAD3/4Q771rW+Rl5c3YkVHc3Mz69evH3ffp4oEPOaYRDyB7jSBCINRTzKZJJlQMabIN5pMJHn+P1+hvytAWrYHTRvawgIQCUVoOtqC3W1DTah4sjyk5/um83GEEEIIIYQQQozBZDKRnZ3Nl/793gnd73A4KCgoGHHswQcf5Otf//q424rFYuzZs4cHHnhgxPGtW7eyc+dOAC644AIOHTpES0sLLpeLbdu28U//9E8T6vtUkIDHHOPN8qDoFOKxBEbT6OEL9AxQuCQPszV1dZX6w000HW2hsDwPo9lI/eEmDEYDJosRi91CdDBG45EW0rLcbL7lAiy21JE/IYQQQgghhBDTy2KxUFdXRywWm9D92smV+x821uqOM/H7/SSTSbKyskYcz8rKor29HQCDwcC//du/cemll6KqKl/+8pfx+WbuH9El4DHHlK4oIrskk7aadgrK80b84Q31h1FVleVbKsZcAdLV1E0insRsM1NQlktsMEZHQxehQBi9Xkd0MEY8luDyOy7igmtWnavHEkIIIYQQQgiRgsViwWKxzHQ3hp36XfPUoMqNN97IjTfeeK67lZIEPFJ4P9HKqXudZosNH1nDn598maN7j+Pw2jEYDQz0h9FUlRWXVFBQmTNm38OREJF4hMFoGIC8pdk4s+30tvcRjcawxMy40p2sv2kl4cEwSJEWIYQQQgghxHns/e9WqRJynk/S09PR6/XDqzne19nZOWrVx2whAY8UgsEgwKi9TnPCb4AvnsV1vz/96W8+99Wp6I0QQgghhBBCzAvBYBC32z3T3ZgxJpOJNWvW8NJLL3HLLbcMH3/ppZe46aabZrBnY5OARwq5ubk0NTXhdDqlSslZCgQCFBQU0NTUhMvlmunuiJNkXGYnGZfZScZldpJxmZ1kXGYnGZfZScZldhrPuGiaRjAYJDc39xz1buYMDAxQXV09/HNdXR379+8nLS2NwsJC7r//fu68807Wrl3Lxo0befzxx2lsbOSee+6ZwV6PTQIeKeh0OvLz82e6G3OSy+WSX+SzkIzL7CTjMjvJuMxOMi6zk4zL7CTjMjvJuMxOZzsu58vKjnfffZdLL710+Of7778fgE9+8pM89dRT3HbbbXR3d/PQQw/R1tZGZWUl27Zto6ioaKa6fFoS8BBCCCGEEEIIIQSXXHLJGXOV3Hvvvdx778TK5J5rupnugBBCCCGEEEIIIcRUk4CHmBJms5kHH3xwwjWdxfSQcZmdZFxmJxmX2UnGZXaScZmdZFxmJxmX2UnG5fygaOd7bR0hhBBCCCGEEELMO7LCQwghhBBCCCGEEPOOBDyEEEIIIYQQQggx70jAQwghhBBCCCGEEPOOBDyEEEIIIYQQQggx70jAQ6T06KOPUlJSgsViYc2aNWzfvv2017/++uusWbMGi8XCggUL+NGPfjTi/FNPPYWiKKNekUhkOh9j3hnPuLS1tfHxj3+csrIydDod9913X8rrfv3rX1NRUYHZbKaiooLf/OY309T7+Wuqx0Xmy9QYz7g899xzXHnllWRkZOByudi4cSMvvPDCqOtkvkzeVI+LzJepMZ5xefPNN9m8eTM+nw+r1Up5eTn//u//Puo6mS+TN9XjIvNlaoz378nv27FjBwaDgZUrV446J/Nl8qZ6XGS+zBOaEKf4xS9+oRmNRu2JJ57QqqqqtC9+8Yua3W7XGhoaUl5fW1ur2Ww27Ytf/KJWVVWlPfHEE5rRaNT++7//e/iaH//4x5rL5dLa2tpGvMTZG++41NXVaV/4whe0//qv/9JWrlypffGLXxx1zc6dOzW9Xq9985vf1I4cOaJ985vf1AwGg7Zr165pfpr5YzrGRebL5I13XL74xS9q//Iv/6K988472vHjx7WvfOUrmtFo1Pbu3Tt8jcyXyZuOcZH5MnnjHZe9e/dqP//5z7VDhw5pdXV12k9/+lPNZrNpjz322PA1Ml8mbzrGRebL5I13XN7X19enLViwQNu6dau2YsWKEedkvkzedIyLzJf5QQIeYpQLLrhAu+eee0YcKy8v1x544IGU13/5y1/WysvLRxz7zGc+o23YsGH45x//+Mea2+2e8r6eT8Y7Lh+2ZcuWlF+sP/axj2lXX331iGNXXXWV9td//deT6uv5ZDrGRebL5E1mXN5XUVGhfeMb3xj+WebL5E3HuMh8mbypGJdbbrlFu+OOO4Z/lvkyedMxLjJfJm+i43LbbbdpX/va17QHH3xw1BdrmS+TNx3jIvNlfpAtLWKEWCzGnj172Lp164jjW7duZefOnSnveeutt0Zdf9VVV/Huu+8Sj8eHjw0MDFBUVER+fj7XX389+/btm/oHmKcmMi5nY6yxm0yb55PpGheQ+TIZUzEuqqoSDAZJS0sbPibzZXKma1xA5stkTMW47Nu3j507d7Jly5bhYzJfJme6xgVkvkzGRMflxz/+MTU1NTz44IMpz8t8mZzpGheQ+TIfSMBDjOD3+0kmk2RlZY04npWVRXt7e8p72tvbU16fSCTw+/0AlJeX89RTT/H73/+eZ555BovFwubNmzlx4sT0PMg8M5FxORtjjd1k2jyfTNe4yHyZnKkYl3/7t38jFArxsY99bPiYzJfJma5xkfkyOZMZl/z8fMxmM2vXruWzn/0sd9999/A5mS+TM13jIvNlciYyLidOnOCBBx7g6aefxmAwpLxG5svkTNe4yHyZH1KPrjjvKYoy4mdN00YdO9P1Hz6+YcMGNmzYMHx+8+bNrF69mv/4j//g4Ycfnqpuz3vjHZeZavN8M9WfocyXqTHRcXnmmWf4+te/zu9+9zsyMzOnpE3xgakeF5kvU2Mi47J9+3YGBgbYtWsXDzzwAAsXLuT222+fVJtipKkeF5kvU+NsxyWZTPLxj3+cb3zjGyxevHhK2hRjm+pxkfkyP0jAQ4yQnp6OXq8fFQ3t7OwcFTV9X3Z2dsrrDQYDPp8v5T06nY5169ZJhPQsTWRczsZYYzeZNs8n0zUup5L5Mj6TGZdnn32Wu+66i1/96ldcccUVI87JfJmc6RqXU8l8GZ/JjEtJSQkAy5Yto6Ojg69//evDX6xlvkzOdI3LqWS+jM94xyUYDPLuu++yb98+Pve5zwFDW/M0TcNgMPDiiy9y2WWXyXyZpOkal1PJfJmbZEuLGMFkMrFmzRpeeumlEcdfeuklNm3alPKejRs3jrr+xRdfZO3atRiNxpT3aJrG/v37ycnJmZqOz3MTGZezMdbYTabN88l0jcupZL6Mz0TH5ZlnnuFTn/oUP//5z7nuuutGnZf5MjnTNS6nkvkyPlP1e0zTNKLR6PDPMl8mZ7rGJdV5mS9nb7zj4nK5OHjwIPv37x9+3XPPPZSVlbF//37Wr18PyHyZrOkal1PJfJmjzmGCVDFHvF/W6cknn9Sqqqq0++67T7Pb7Vp9fb2maZr2wAMPaHfeeefw9e+Xpf3Sl76kVVVVaU8++eSosrRf//rXteeff16rqanR9u3bp/3N3/yNZjAYtLfffvucP99cNd5x0TRN27dvn7Zv3z5tzZo12sc//nFt37592uHDh4fP79ixQ9Pr9dq3v/1t7ciRI9q3v/1tKYM2TtMxLjJfJm+84/Lzn/9cMxgM2iOPPDKi9FxfX9/wNTJfJm86xkXmy+SNd1x+8IMfaL///e+148ePa8ePH9f+8z//U3O5XNpXv/rV4WtkvkzedIyLzJfJm8j/9z8sVTUQmS+TNx3jIvNlfpCAh0jpkUce0YqKijSTyaStXr1ae/3114fPffKTn9S2bNky4vrXXntNW7VqlWYymbTi4mLthz/84Yjz9913n1ZYWKiZTCYtIyND27p1q7Zz585z8SjzynjHBRj1KioqGnHNr371K62srEwzGo1aeXm59utf//ocPMn8MtXjIvNlaoxnXLZs2ZJyXD75yU+OaFPmy+RN9bjIfJka4xmXhx9+WFu6dKlms9k0l8ulrVq1Snv00Ue1ZDI5ok2ZL5M31eMi82VqjPf/+x+W6ou1psl8mQpTPS4yX+YHRdNOZpcUQgghhBBCCCGEmCckh4cQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEPPcrl27uPzyy0lPT0dRlBGvvr6+me6eEEIIIcS0kICHEEIIMY+99957XHLJJaxYsYI33niD559/nrS0NC699FKeffZZPB7PTHdRCCGEEGJaSMBDCCGEmMe+8IUvcNNNN/Hd736XiooKrrrqKm6//XaCwSA9PT2sXLmSyspKzGYzK1euZOXKlTz22GNjtldbW8sf/vCHM77vb3/7W+67774pfBIhhBBCiPExzHQHhBBCCDE9Ojo6ePPNN3nllVdGHLfb7SiKwj333MM999zD3r17+fznP8+OHTvO2Oaf//xnwuEwN9xww2mvO3DgAMuXL59U/4UQQgghJkNWeAghhBDz1J49e1BVlRUrVow6vnbt2uGfDx8+zNKlS0dcc/DgQTZu3EhlZSW33norsViM119/na997Ws88cQTrFq1isHBQX7605+yfv16li1bxo033kgsFgMk4CGEEEKImScBDyGEEGKeUlUVgMHBweFjBw8e5I033uCOO+4YPnbo0KERAY9IJMLtt9/Of/3Xf3Ho0CHS09P5xS9+wZYtW6isrOTll19m3759WK1Wrr32Wt5++20OHjxIeno627dvB1IHUYQQQgghziUJeAghhBDz1Pr167FarXz5y1/m6NGj/OlPf+Kmm27innvuYdOmTcPXHT58mMrKyuGff/vb33L11VezePFiAMrLy+nq6gKgubmZgoICADRN4/HHH2fdunWsWLGC3/zmN1gsFsLhMDqdDqvVeg6fVgghhBBiJAl4CCGEEPNURkYGv/zlL3nnnXdYvnw5X/jCF7jnnnv43ve+N+K6U1d4HDlyhCVLlgz/fPjwYSoqKmhubiYvL2/4+FNPPUV1dTVvvPEG7733Hi6Xi4qKilHtCSGEEELMBElaKoQQQsxj119/Pddff/2Y5wcGBgiFQmRnZw8fy8nJ4ejRowDs3buXd955h8cee4ydO3eSm5s7fN3hw4fZtGkTVquV73//+6iqitfrlfwdQgghhJgVZIWHEEIIcR6rqqqioqJixLE777yTqqoqli1bxn333ccvf/lL9Ho9lZWVnDhxgmXLlnH06FHuvPNO/vmf/5ktW7bQ3d3NsmXLgKE8IRLwEEIIIcRMUzRN02a6E0IIIYQQQgghhBBTSVZ4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmHQl4CCGEEEIIIYQQYt6RgIcQQgghhBBCCCHmnf8fE0o7sTBIwH8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1fX4//dsL9pd9d7lIvciFwyYjokhdAgklEBs8nMgAezkm0BogSQ4BYjDB0xJqIEQSCAJxQEbSCi2wQ0b9ypZva3KStq+O78/hAVCcpEsaVTOi2eeRDN3Zs7Iq92dM/eeq6iqqiKEEEIIIYQQQggxjOi0DkAIIYQQQgghhBCir0nCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhNCQoij861//0vwYA6mkpARFUdi8efOgPJ4QQgghhgdJeAghhBB96LrrrkNRlC7Lvn37um1fVVXF/Pnzj+nYv/jFL5g6depxHWM4ysrKoqqqiokTJwLwv//9D0VRaGpq0jYwIYQQQmjKoHUAQgghxHDzjW98g2eeeabTuqSkpE4/B4NBTCYTqampx32+vjjGUKbX60f870AIIYQQXUkPDyGEEKKPmc1mUlNTOy1nnnkmP/zhD1myZAmJiYmcffbZQNfhKOXl5Vx55ZXEx8djt9uZMWMGn376Kc8++yz33nsvW7Zs6eg18uyzz3Z7jK1bt3LGGWdgtVpJSEjg+9//Pq2trR3br7vuOi666CIeeOAB0tLSSEhI4KabbiIUCh312m6//XZOOOGELusnT57MPffc0/HzM888w7hx47BYLBQWFrJ8+fIjHveDDz5g1qxZmM1m0tLSuO222wiHwx3bo9Eov/3tbxk1ahRms5ns7Gx+/etfA52HtJSUlHD66acDEBcXh6IoXHfddTz//PMkJCQQCAQ6nffSSy/l2muvPep1CyGEEGLokR4eQgghxAB57rnn+MEPfsDq1atRVbXL9tbWVk499VQyMjJ4/fXXSU1NZdOmTUSjUa644gq2bdvG22+/zbvvvguAy+Xqcgyv18s3vvENTjjhBNavX09tbS0LFy7khz/8YUeCBOC///0vaWlp/Pe//2Xfvn1cccUVTJ06lRtuuOGI13DVVVfxm9/8hv3791NQUADA9u3b2bp1K//4xz8A+NOf/sQ999zDI488wrRp0/jss8+44YYbsNvtfPe73+1yzIqKCs4999yOxMSuXbu44YYbsFgs/OIXvwDaEy1/+tOf+MMf/sDJJ59MVVUVu3bt6nKsrKwsXn31VS699FJ2796N0+nEarViMpm4+eabef3117n88ssBqK+v58033+Ttt98+4jULIYQQYmiShIcQQgjRx958801iYmI6fj5UX2PUqFH87ne/O+x+f/3rX6mrq2P9+vXEx8d37HNITEwMBoPhiMM3XnzxRXw+H88//zx2ux2ARx55hPPPP5/f/va3pKSkAO29Hx555BH0ej2FhYWcd955vPfee0dNeEycOJHJkyfz17/+lbvuuqvjnDNnzmTMmDEA/PKXv+TBBx/kkksuASAvL48dO3bwxBNPdJvwWL58OVlZWTzyyCMoikJhYSGVlZX87Gc/4+6776atrY0//vGPPPLIIx37FxQUcPLJJ3c5ll6v7/jdJScnExsb27HtO9/5Ds8880xHwuPFF18kMzOT00477YjXLIQQQmjJ7/cTDAZ7ta/JZMJisfRxREOHJDyEEEKIPnb66afz2GOPdfxst9v59re/zYwZM4643+bNm5k2bVrHDXtv7Ny5kylTpnQkOwBOOukkotEou3fv7kh4TJgwAb1e39EmLS2NrVu3HtM5rrrqKp5++mnuuusuVFXlpZde4tZbbwWgrq6OsrIyFixY0Cl5Eg6Hu+2RcijmOXPmoChKp5hbW1spLy+nurqaQCDAmWeeecy/h+7ccMMNzJw5k4qKCjIyMnjmmWc6iswKIYQQg5Hf7ycvN4XqGk+v9k9NTaW4uHjEJj0k4SGEEEL0Mbvd3qlnxlfXH4nVaj3uc6uqetgb+K+uNxqNXbZFo9FjOsd3vvMdbrvtNjZt2oTP56OsrIwrr7wSoOMYf/rTn5g9e3an/b6aYDlazIeG/CiK0ie/F4Bp06YxZcoUnn/+ec455xy2bt3KG2+80SfHFkIIIfpDMBikusbDwZ334nT0LGnhafGTM+4egsGgJDyEEEIIoa3Jkyfz5z//mYaGhm57eZhMJiKRyBGPMX78eJ577jna2to6EiyrV69Gp9N1DDk5XpmZmZxyyikdw2fOOuusjp4jKSkpZGRkcODAAa666qpjOt748eN59dVXOyU+1qxZg8PhICMjg6SkJKxWK++99x4LFy486vFMJhNAt7+rhQsX8oc//IGKigrOOusssrKyjvWyhRBCCM04HGYcTnOP9lHpWi9spJFZWoQQQohB4tvf/japqalcdNFFrF69mgMHDvDqq6+ydu1aAHJzcykuLmbz5s3U19d3mXEE2oebWCwWvvvd77Jt2zb++9//8qMf/YhrrrmmIynRF6666ir+9re/8fe//52rr76607Zf/OIXLF26lD/+8Y/s2bOHrVu38swzz/DQQw91e6wbb7yRsrIyfvSjH7Fr1y7+/e9/c88997BkyRJ0Oh0Wi4Wf/exn/PSnP+X5559n//79fPLJJzz11FPdHi8nJwdFUXjzzTepq6vrNEPNVVddRUVFBX/605/43ve+12e/DyGEEEIMPpLwEEIIIQYJk8nEypUrSU5O5txzz2XSpEn85je/6RgKcumll/KNb3yD008/naSkJF566aUux7DZbLzzzjs0NDQwc+ZMLrvsMs4880weeeSRPo318ssvx+124/V6ueiiizptW7hwIX/+85959tlnmTRpEqeeeirPPvsseXl53R4rIyODFStWsG7dOqZMmcKiRYtYsGABd955Z0ebu+66ix//+MfcfffdjBs3jiuuuILa2trDHu/ee+/ltttuIyUlhR/+8Icd25xOJ5deeikxMTFd4hZCCCHE8KKo3c2LJ4QQQggxTJ199tmMGzeOhx9+WOtQhBBCiCPyeDy4XC7c5UtxOntYw8PjJyHzdpqbm3E6nf0U4eAmNTyEEEIIMSI0NDSwcuVK3n///T7v8SKEEEKIwUcSHkIIIYTo8NFHHzF//vzDbv9qPYyhZvr06TQ2NvLb3/6WsWPHah2OEEIIcczUL5ae7jPSScJDCCGEEB1mzJjB5s2btQ6jX5SUlGgdghBCCCEGkCQ8hBBCCNHBarUyatQorcMQQgghhDhukvAQQgghhBBCCCEGMfWL/3q6z0gn09IKIYQQQgghhBDiuLW0tDBz5kymTp3KpEmT+NOf/qRpPNLDoxvRaJTKykocDgeKomgdjhBCCCGEEEKIQUZVVVpaWkhPT0en69++BFFVJar2rMdGT9v3BZvNxgcffIDNZsPr9TJx4kQuueQSEhISBjwWkIRHtyorK8nKytI6DCGEEEIIIYQQg1xZWRmZmZlahzEo6PV6bDYbAH6/n0gkgqpB4uUQSXh0w+FwAO0vXKfTqXE0QhybYDDIE088QTQa5ZZbbtE6HCGEEEIIIYY1j8dDVlZWx/1jfxqoaWk//PBDfv/737Nx40aqqqr45z//yUUXXdSpzfLly/n9739PVVUVEyZMYNmyZcydO7dje1NTE6eeeip79+7l97//PYmJib2IpG9IwqMbh4axOJ1OSXiIIeWOO+7QOgQhhBBCCCFGlOFUBqGtrY0pU6Zw/fXXc+mll3bZ/vLLL3PrrbeyfPlyTjrpJJ544gnmz5/Pjh07yM7OBiA2NpYtW7ZQU1PDJZdcwmWXXUZKSspAXwogRUuFGPKampoIhUJahyGEEEIIIYQYhDweT6clEAgctu38+fP51a9+xSWXXNLt9oceeogFCxawcOFCxo0bx7Jly8jKyuKxxx7r0jYlJYXJkyfz4Ycf9tm19JQkPIQY4n74wx8yefJk1qxZo3UoQgghhBBCiH6g9vI/gKysLFwuV8eydOnSXsUQDAbZuHEj8+bN67R+3rx5HfciNTU1eDweoD3R8uGHHzJ27NjjuPLjI0NahBjC1qxZw4svvoiiKFgsFq3DEUIIIYQQQgwyX69NaTabe3Wc+vp6IpFIl+EpKSkpVFdXA1BeXs6CBQtQVRVVVTsezmpFEh5CDFHRaJSbb74ZgAULFjB9+nSNIxJCCCGEEEL0h+MpWtrXtSm/XrNEVdWOdUVFRWzevLnPznW8ZEiLEEPUc889x8aNG3E6nfzqV7/SOhwhhBBCCCHEMJaYmIher+/ozXFIbW2tZkVJj0YSHkIMQR6Ph9tvvx2Au+++e9C+wQghhBBCCCGGB5PJRFFREatWreq0ftWqVZx44okaRXVkMqRFiC+oqkrl/mqqi2sBSM5OJGN0Gjrd4MsL/vrXv6ampobRo0fzox/9SOtwhBBCCCGEEP0oikq0h4NaetoeoLW1lX379nX8XFxczObNm4mPjyc7O5slS5ZwzTXXMGPGDObMmcOTTz5JaWkpixYt6vG5BoIkPIQAPA0tvPPs/ziwuQR/WwAUMFmM5E7M5hvXn05cSqzWIXaIRqNs3boVgD/84Q+YTCaNIxJCCCGEEEIMBxs2bOD000/v+HnJkiUAfPe73+XZZ5/liiuuwO12c99991FVVcXEiRNZsWIFOTk5WoV8RIqqqj1P+wxzHo8Hl8tFc3NznxZ3EYNT0B/kHw+9we4NB0jNScLmtKIoCt4WH9UlteRNzOZb/+8CrDFWrUPtoKoqH3/8MXPnztU6FCGEEEIIIUakgbhvPHSOsrJf4nT2bFZGj8dPVtZdI/q+VvO++suXLycvLw+LxUJRUREfffTREdt/8MEHFBUVYbFYyM/P5/HHH+/SZtmyZYwdOxar1UpWVhaLFy/G7/f31yWIIW7/loPs31xC1pg07C5bR4Vhm8NK1tgMDu4oY8+GAxpH2ZmiKJLsEEIIIYQQQogj0DTh8fLLL3Prrbdyxx138NlnnzF37lzmz59PaWlpt+2Li4s599xzmTt3Lp999hk///nPufnmm3n11Vc72rz44ovcdttt3HPPPezcuZOnnnqKl19+uaPAoxBfd2BLCaoKJkvXoSFGkwG9Qc+ejfs1iKyzUCjEfffdR0NDg9ahCCGEEEIIIQaQ2stlpNM04fHQQw+xYMECFi5cyLhx41i2bBlZWVk89thj3bZ//PHHyc7OZtmyZYwbN46FCxfyve99jwceeKCjzdq1aznppJP4zne+Q25uLvPmzePb3/42GzZsGKjLEkOMv82PwXj4cjYGk7G9rofGHnvsMe655x5OPPFEotGo1uEIIYQQQgghhoCZM2cyfvx4Hn30Ua1DGXCaJTyCwSAbN25k3rx5ndbPmzePNWvWdLvP2rVru7Q/55xz2LBhA6FQCICTTz6ZjRs3sm7dOgAOHDjAihUrOO+88/rhKsRwkJiZQNAf5HDlbAJtfpKyEgY4qs7q6+u55557AFi8ePGgnDlGCCGEEEIIMfisX7+eHTt2cNNNN2kdyoDTbJaW+vp6IpEIKSkpndanpKRQXV3d7T7V1dXdtg+Hw9TX15OWlsaVV15JXV0dJ598MqqqEg6H+cEPfsBtt9122FgCgQCBwJdP8D0ez3FcmRhqxswoYP1/PqOhuomEtLhO25rqPJhsJsbNHq1RdO3uuusumpqamDJlCgsXLtQ0FiGEEEIIIcTAiqrtS0/3Gek0f0x8qEDkIaqqdll3tPZfXf+///2PX//61yxfvpxNmzbx2muv8eabb/LLX/7ysMdcunQpLperY8nKyurt5YghKDU3mZMuno2v1U/prgqa61vwuFso211JS2Mrs88rIntcpmbxbdmyhSeffBKAhx9+GL1er1ksQgghhBBCCDFUaNbDIzExEb1e36U3R21tbZdeHIekpqZ2295gMJCQ0D7k4K677uKaa67peAo+adIk2tra+P73v88dd9zR7VCA22+/vWN+YWjv4SFJj5FDURRO+GYRcSkutvxvOxX7qkFVyZ2YxZTTJjB+zpgjJuH6k6qq3HrrrUSjUb71rW9xyimnaBKHEEIIIYQQQju9KUIqHTw0THiYTCaKiopYtWoVF198ccf6VatWceGFF3a7z5w5c3jjjTc6rVu5ciUzZszAaDQC4PV6uyQ19Ho9qqoetkaD2WzGbDYfz+WIIU5RFApnjWbszFG0NXsBsDmtmtfKeO211/jf//6HxWLhd7/7naaxCCGEEEIIIcRQolnCA2DJkiVcc801zJgxgzlz5vDkk09SWlrKokWLgPaeFxUVFTz//PMALFq0iEceeYQlS5Zwww03sHbtWp566ileeumljmOef/75PPTQQ0ybNo3Zs2ezb98+7rrrLi644AIZCiCOSlEUYmLtWofRYe7cuXz/+98nPT2dnJwcrcMRQgghhBBCiCFD04THFVdcgdvt5r777qOqqoqJEyeyYsWKjhu7qqoqSktLO9rn5eWxYsUKFi9ezKOPPkp6ejoPP/wwl156aUebO++8E0VRuPPOO6moqCApKYnzzz+fX//61wN+fUIcr+TkZJ544onD9k4SQgghhBBCjAxyR9Bziip3Ul14PB5cLhfNzc04nU6twxEjUCAQkGFWQgghhBBCDGIDcd946BzFpb/E4bT0aN8Wj5+87LtG9H2t5rO0CCG6WrBgAeeeey779u3TOhQhhBBCCCGExtReLiOdpkNahBBdrVmzhhdffBFFUWhubtY6HCGEEEIIIcQQNnPmTPR6PTfddBM33XST1uEMKEl4CDGIRKNRbrnlFgCuv/56ioqKNI5ICCGEEEIIMZStX79+xA5pkYSHEIPI888/z4YNG3A4HFJoVwghhBBCCAFAFIUoSo/3GemkhocQg4TH4+G2224D4O677yY1NVXjiIQQQgghhBBi6JIeHkIMEvfffz81NTWMGjWKm2++WetwhBBCCCGEEINEb4qQStFS6eEhxKAQCoV44403APjDH/6AyWTSOCIhhBBCCCGEGNqkh4cQg4DRaGTTpk3885//5LzzztM6HCGEEEIIIcQgoqoKqtqzmhw9bT8cScJDiEHCbDZz5ZVXah2GEEIIIYQQQgwLkvAQQkOhUIgXXniBq6++GqPRqHU4QogRRlVVyjzNfF5XQ523DZvRyPiEJAoTkjDq9VqHJ4QQQghxXCThIYSGHnvsMW655Raee+45/vvf/6Io0u1MCDEwoqrKyuK9vFu8n5ZgAJNeTzga5aPSEiYnp/LtCZNxmMxahymEEEIIIPrF0tN9RjpJeAihkfr6eu655x4Avv3tb0uyQwgxoDZWV/DWvj04TCbGxid2vAd5QyE2VFVgNRq4esJUeW8SQgghxJAls7QIoZG7776bpqYmJk+ezMKFC7UORwgxgkSiUdaUlwIqSTZ7p6SGzWgkNSaGz2urqWpt0S5IIYQQQnRQUXq1AMycOZPx48fz6KOPanwVA096eAihgc8//5wnnngCgIcffhi9jJUXQgygRr+P8pZmEq22brfHmi3Uetsoa2km3eEc4OiEEEII0ZfWr1+P0zkyP8+lh4cQA0xVVW699Vai0SiXX345p556qtYhCSFGGBVQVYAjD1dpbyOEEEIIMTRJwkOIAfbPf/6T//73v1gsFn73u99pHY4QYgSKs1hJjYmh0e/rdntLMIDNaCTD4RjgyIQQQgjRneMZ0jKSScJDiAE2ZswYTjvtNP7f//t/5Obmah2OEGIEMuh0zMnIJhSN0uT3d9oWjESoaG1hfGIymQ6XRhEKIYQQQhw/qeEhxACbOHEi77//PpFIROtQhBAj2Oz0LKpaW/iwtIRabys2g5FAJEJEjTIhMZlLxoyXGVqEEEKIQUKmpe0dSXgIMUBUVe24eVAUBYNB/vyEENox6HRcMnYCExJT2FRTSW1bK3ajicnJqUxOTsFmNGkdohBCCCHEcZE7LiEGyIIFC3C5XNx9993ExcVpHY4QQqBTFMYlJjEuMUnrUIQQQghxBKqqoKo963nZ0/bDkSQ8hBgAa9eu5ZlnnkFRFK666ipmzJihdUhCCCGEEEIIMaxJ0VIh+lk0GuWWW24B4Prrr5dkhxBCCCGEEEIMAOnhIUQ/+8tf/sL69etxOBz8+te/1jocIYQQQgghxBDTm2lmZVpa6eEhRL9qaWnhtttuA+DOO+8kNTVV44iEEEIIIYQQYmTQPOGxfPly8vLysFgsFBUV8dFHHx2x/QcffEBRUREWi4X8/Hwef/zxTttPO+00FEXpspx33nn9eRlCdOv++++nurqaUaNGdQxrEUIIIYQQQoieaJ+WVunhIjRNeLz88svceuut3HHHHXz22WfMnTuX+fPnU1pa2m374uJizj33XObOnctnn33Gz3/+c26++WZeffXVjjavvfYaVVVVHcu2bdvQ6/VcfvnlA3VZQgDQ1tbGU089BcBDDz2E2WzWOCIhhBBCCCGEGDk0TXg89NBDLFiwgIULFzJu3DiWLVtGVlYWjz32WLftH3/8cbKzs1m2bBnjxo1j4cKFfO973+OBBx7oaBMfH09qamrHsmrVKmw2myQ8xICz2+1s3bqVhx56iG9+85tahyOEEEIIIYQYgWbOnMn48eN59NFHtQ5lwGlWtDQYDLJx48aO+gaHzJs3jzVr1nS7z9q1a5k3b16ndeeccw5PPfUUoVAIo9HYZZ+nnnqKK6+8ErvdfthYAoEAgUCg42ePx9OTSxHisFJSUli8eLHWYQghhBBCCCGGsOMpWrp+/XqcTmd/hDXoadbDo76+nkgkQkpKSqf1KSkpVFdXd7tPdXV1t+3D4TD19fVd2q9bt45t27axcOHCI8aydOlSXC5Xx5KVldXDqxHiS6FQiP/+979ahyGEEEIIIYQQI5rmRUsVpXOWSlXVLuuO1r679dDeu2PixInMmjXriDHcfvvtNDc3dyxlZWXHGr4QXTz++OOcccYZXH/99VqHIoQQQgghhBgG1F4uI51mQ1oSExPR6/VdenPU1tZ26cVxSGpqarftDQYDCQkJndZ7vV7+9re/cd999x01FrPZLAUlRZ9wu93cc889AMyePVvjaIQQQgghhBBi5NKsh4fJZKKoqIhVq1Z1Wr9q1SpOPPHEbveZM2dOl/YrV65kxowZXep3vPLKKwQCAa6++uq+DVyII7j77rtpbGxk8uTJ3HDDDVqHI4QQQgghhBgG1B5PSdvzmh/DkaZDWpYsWcKf//xnnn76aXbu3MnixYspLS1l0aJFQPtQk2uvvbaj/aJFizh48CBLlixh586dPP300zz11FP85Cc/6XLsp556iosuuqhLzw8h+svWrVt5/PHHAfjjH/+IXq/XOCIhhBBCCCGEGLk0G9ICcMUVV+B2u7nvvvuoqqpi4sSJrFixgpycHACqqqooLS3taJ+Xl8eKFStYvHgxjz76KOnp6Tz88MNceumlnY67Z88ePv74Y1auXDmg1yNGLlVVueWWW4hGo1x22WWcdtppWockhBBCCCGEECOaoh6q+ik6eDweXC4Xzc3NI3b6nq+LhCM01LYQVVViE2IwW7pOATyS/fOf/+SSSy7BYrGwc+dOcnNztQ5JCCGEEEII0Y8G4r7x0Dk2FD9AjNPao31bPT5m5P1kRN/XatrDQwx+0WiUbeuK+WzNHmorm1BVFVdcDJNPyKdo7lhMZkl8ANhsNvLy8rj66qsl2SGEEEIIIYQQg4AkPMRhqarK6ne28fHbn6PX64hLdKDoFDyNbbz72kbqqpqZf8VsjCZ5GZ1zzjns2LED6TAlhBBCCCGE6GtqL4qQStFSSXiII6itbGL9/3YS47QSl+joWG+xmvC1Bdi27gCjJ2YyblqOhlEOHhaLResQhBBCCCGEEEJ8QdNZWsTgtm9bOW0eH7EJMV22We1mUGDnZwc1iGzwuPXWW3nssccIh8NahyKEEEIIIYQQ4iukh4c4LE+jF71Bj6J03xXKajPTWNcywFENHp988gl//OMfAZgzZw5Tp07VNiAhhBBCCCHEsBRFIdrDISo9bT8cSQ8PcVi2GBPRSPSw2wP+EDHOkTmMIxqNcssttwBw/fXXS7JDCCGEEEIIIQYZSXiIw8orTMdoMdLW4uuyLRQMEw6FKZw6Mut3/OUvf2HdunXExMRw//33ax2OEEIIIYQQYhg7VLS0pwvAzJkzGT9+PI8++qjGVzHwZEiLOKzM/CQmzshj08d7cMWHiU2woygKLc1e6qubKRifwZjJWVqHOeBaWlq47bbbALjrrrtITU3VOCIhhBBCCCGE6N769etxOp1ah6EJSXiIw9LpdJx1yQysdjPb1h+gdF8tADaHmaknjua0b05tL146wtx///1UV1dTUFDQMaxFCCGEEEIIIfqLioKqyrS0PSUJD3FEZouRMy6czoxTxlJV1oAaVUlMdZGQ4jxsMdPhrKGhoaNQ6UMPPYTZPPISPkIIIYQQQggxFEjCQxwTZ5wdZ5xd6zA0Fx8fz+rVq3n55Zc5//zztQ5HCCGEEEIIIcRhSMJDiB6aNm0a06ZN0zoMIYQQQgghxAgh09L2jszSIsQxCIfD7N27V+swhBBCCCGEEEIcI0l4CHEMHn/8ccaPH8+vfvUrrUMRQgghhMaiapQqXzX7Ww9Q5i0nFA1pHZIQYphTe7mMdDKkRYijcLvd3H333YTDYRITE7UORwghhBAaqvJV86l7PVX+akLREDpFT4I5nulxUxkTM2pEFnUXQojBShIeQhzFPffcQ2NjI5MnT+aGG27QOhwhhBBCaKTGX8s71e/SEm4hwRSPRW8hFA3REGzk/ZoPUFWVQucYrcMUQgjxBRnSIsQRbNu2jccffxyAZcuWodfrNY5ICCGEEFpQVZUtTZ/THGom3ZKGRW8BwKgzkmJJRgE2NW4mKMNbhBD9QEXp1TLSScJDiMNQVZVbbrmFSCTCJZdcwumnn651SEIIIYTQSGu4lVJvObFGV7fDVuJMcbiDDVT6qjSITgghRHdkSIsQh/Hvf/+b999/H7PZzAMPPKB1OEIIIYTQUCAaJBQNYzfaut1u1BlQ1SjBaGCAIxNCjARRVSGq9nBa2h62H46kh4cQh+F2u4mJieEnP/kJeXl5WocjhBBCCA1Z9VbMOhP+wyQ0gtEgekWPVd99QkQIIcTAkx4eQhzGggULOPfcc3E4HFqHIoQQQgiN2Q028mPy2Ny0BYchBp3y5XNDVVWpDzSQbEkizZKiYZRCiOGqNzU5pIaHJDyEOKK0tDStQxBCCCHEIDE1dhJV/mrKfZXEGl0ds7Q0BpuwG2zMjp+BQSdfr4UQYrCQIS1CfM29997Le++9p3UYQgghhBhkYk2xzE89m8muiUTUCA3BBnwRHwUxeZyTehY59mytQxRCCPEVmic8li9fTl5eHhaLhaKiIj766KMjtv/ggw8oKirCYrGQn5/fMWXoVzU1NXHTTTeRlpaGxWJh3LhxrFixor8uQQwjn376Kb/4xS8466yz2LNnj9bhCCGEEENGja+Jd6s+58/73uPpfe/zQc123IEWrcPqc7GmWM5IOZVvZV3CpZkXcnnWJZybdg6ZtgytQxNCDGMyLW3vaNrn7uWXX+bWW29l+fLlnHTSSTzxxBPMnz+fHTt2kJ3dNUNeXFzMueeeyw033MALL7zA6tWrufHGG0lKSuLSSy8FIBgMcvbZZ5OcnMw//vEPMjMzKSsrkzoM4qii0Si33HILANdddx1jxozROCIhhBBiaNjadJA3KzbSFGzDqjejorK7pYL17n1cmDWL0Y7hN0TUYXTgMMr3SyGEGMwUVVVVrU4+e/Zspk+fzmOPPdaxbty4cVx00UUsXbq0S/uf/exnvP766+zcubNj3aJFi9iyZQtr164F4PHHH+f3v/89u3btwmg09iouj8eDy+WiubkZp9PZq2OIoecvf/kL1157LTExMezdu5fU1FStQxJCCCEGvRpfE0/vf59ANEy6NQ5FaX+iqKoqZd56Yk12Fhacictk1yQ+XyTA3pYyDrRVEIyESLbEMdaRQ6oloSNWIYTojYG4bzx0jvcOLCfGYe3Rvq0tPs7Mv3FE39dqNqQlGAyyceNG5s2b12n9vHnzWLNmTbf7rF27tkv7c845hw0bNhAKhQB4/fXXmTNnDjfddBMpKSlMnDiR+++/n0gk0j8XIoaFlpYWfvaznwFw1113SbJDCCGEOEZbm0ppCrV1SnYAKIpCpi2BOr+HnZ4KTWJzB5p5pexdXq/4kJ3NxZS0VfJh3WZeKn2H9Q070PC5nxBCDJiZM2cyfvx4Hn30Ua1DGXCaDWmpr68nEomQktJ56q6UlBSqq6u73ae6urrb9uFwmPr6etLS0jhw4ADvv/8+V111FStWrGDv3r3cdNNNhMNh7r777m6PGwgECAS+nFPd4/Ec59WJoWbp0qVUVVVRUFDQMaxFCCGEEEdX0laHVW/utreETtGh1+kpa6vnhMSBHSoaUSO8Xb2W0rYqsqypGHR6oL3nSUPQwwd1m0gwuyiIyRzQuIQQYqCtX79eenho5esfjqqqHrF7YXftv7o+Go2SnJzMk08+SVFREVdeeSV33HFHp2EzX7d06VJcLlfHkpWV1dvLEUNQeXk5Dz74IAAPPvggZrNZ44iEEEKIoUOHgsoRekqoKooy8F85S9uqKfNWk2ZJ6kh2QPt3xgSzi2A0zNamfQMelxBC9IoKag+XI701jxSaJTwSExPR6/VdenPU1tZ26cVxSGpqarftDQYDCQkJAKSlpTFmzBj0+i8/2MaNG0d1dTXBYLDb495+++00Nzd3LGVlZcdzaWKIycjI4MUXX+T666/nggsu0DocIUaEmuZWPjtYyeaDldR5WrUORwhxHAocKfgjwW6Hh0TUKBE1Sq49acDjqgk0ElYjWPSmbrc7DXbKvDUEo+EBjkwIIcRA0WxIi8lkoqioiFWrVnHxxRd3rF+1ahUXXnhht/vMmTOHN954o9O6lStXMmPGjI4CpSeddBJ//etfiUaj6HTt+Zw9e/aQlpaGydT9B57ZbJan+iOYoihcdtllXHbZZVqHIsSw5/H5eWvLbraXV9Pib09CO61mJmelcu6UQuzm7t+nhRCD18TYbNa791HmrSfTloDui94cETVKaVsd6bZ4Cp0yZasQQhyP3kwzK9PSajykZcmSJfz5z3/m6aefZufOnSxevJjS0lIWLVoEtPe8uPbaazvaL1q0iIMHD7JkyRJ27tzJ008/zVNPPcVPfvKTjjY/+MEPcLvd3HLLLezZs4e33nqL+++/n5tuumnAr08MbuFwmKamJq3DEGLECITCvPzp56zdexCrycjolARGpyRgMhj4aHcJr3z6OcGwFJgWw18kGmVvcx3vVezlvfK9bG+oJhQduq/9BLODCzNnEWuyU9xaS0lbXfv/ttaSao3josxZxBgtAx5XijkOg6LHH+m+h68n3EaWLQWTTrPnf0IIIfqZpu/wV1xxBW63m/vuu4+qqiomTpzIihUryMnJAaCqqorS0tKO9nl5eaxYsYLFixfz6KOPkp6ezsMPP8yll17a0SYrK4uVK1eyePFiJk+eTEZGBrfcckvHDBxCHPLkk09yzz338Ic//IGrr75a63CEGPZ2Vtayo6KWnMQ4LMYvP37i7VasRgNby2vYU13HxEyZJUkMXw1+L6/s38yupjoC0TAKoFd05DnjuaJgKhl2l9Yh9spoZxoLLWey01NBWVs9iqKQa0+m0JmhSbIDINueSpYtlQOt5d0WLTXpDEyKHaVJbEII0VPSw6N3FFXm4+piIOZTFtpqaGhg9OjRNDQ0sHz5cn7wgx9oHZIQw94Laz5jU3EFBSkJ3W7fW1PPSaNzuHzW5AGOTIiBEYiE+dOOT9jWWE2WPRa7sX0Ilz8SprSlkWxHHD+YMAeXyapxpMOHO9DMm1UfU+atQa8o6NETiIawG6ycnDiFmfHjj1gsXwghjmQg7hsPnWPV/sexO3r2+dDW4uPsgkUj+r5W+vCJEemee+6hoaGBSZMmccMNN2gdjhAjQqs/iMl4+I8dk15Pq7/7rudCDAe7mmrZ3VxHniMes/7LvwWL3kCBM4F9nnq21FdxSnq+hlEOLwlmF9/KOou9LWUcaKsgFAmRZIljrCOHVEuCJDuEEGKYk4SHGHG2bdvWMU3xsmXLMBjkz0CIgZDosLOrsu6w2wPhCAkxtgGMSIiBtaepjkg02inZcYhep8OsN/J5Q6UkPPqYVW9mcuwoJsvwFSHEEBZFIdrDISo9bT8caVq0VIiBpqoqixcvJhKJcMkll3DGGWdoHZIQI8bkrFRMBh3NPn+XbY1tPqxGg9TvEMNaMBJGrzv8Vy+jToc/IlOkCiGEEH1FEh5iRHn99dd59913MZvN/P73v9c6HCFGlFHJCZw4Ooc6TxtlDc20BYK0BYKUuptoaPNy8thc8pLitA5TiH6TYnMQikY4XPm01nCQLHvswAYlhBBiSFBVpVfLSCd9+cWIsmnTJhRF4cc//jH5+dJlWIiBpNMpfHPqOJIcMXx6oIw6TysA6bEOZhdkMzM/U8bTi2FtckI671fso9Lr6TIbi9vfhlVvZFpihkbRCSGEEMOPJDzEiHLvvfdy/vnnU1hYqHUoQoxIBr2Ok8bkMKsgE3erFwWF+BgrRr1e69AGlWa/n/0NDQQjEeKsVgri4zEcYSiEGBqSrTGcnzue1w5sZW9zPbEmCzpFoTHoQ6/o+EZWIaNdiVqHKYQQQgwbkvAQI86MGTO0DkGIEc+o15PqcmgdxqATjkZ5f/8BPiopocHnA8Cg05EbG8sF48ZRkBCvcYTieM1JySXebGNdTSm7m+tQae/5MTspm0kJadLLSQghRLfUL5ae7jPSScJDjAiPPPII3/jGNxg1Siq0CyEGr3f37efN3btwmMwUxMeh1+nwhULsb2zkL5s3s3BGEZku19EPJAa1sbHJjI1NJhAJo6oqZr1BEh1CCCFEP5D+sWLYW7duHT/60Y+YOHEilZWVWocjhBDdavD6+KikBJfZTKojpmM2D6vRyKj4OGpaW1lbWqZxlKIvmfUGLAajJDuEEEIcVXsPD6WHi5CEhxjWotEot9xyCwBXXnkl6enpGkckhBDd2+uup8nvJ9Fu77JNURQSbFY+r67GGwppEJ0QQgghxNAjCQ8xrP31r3/lk08+ISYmhqVLl2odjhBCHFYgEgFAd5in/Sa9nlA0QjAcHsiwhBBCCCGGLKnhIYat1tZWfvaznwFw5513kpaWpnFEQghxeLEWC4qiEIxEMHUza01rMEisxYLNZNIgOiGEEEJoKaoqRNWeDYHsafvhSHp4iGFr6dKlVFZWUlBQwK233qp1OEIIcURjExPJcDqoaPagqp1H3QbCYVoCQWZmZnabDBFCCCGEEF1JwkMMS8XFxTz44IMAPPjgg5jNZo0jEkKIIzMbDJxfWIjNZGSP202Dz0drMEhVSwsHGhuZmJLCnOxsrcMUQgghhAZ6XrC0fRnpZEiLGJZSU1O566672LBhAxdccIHW4QghxDGZmJLC94qK+PjgQXbX1eMNhnCazZyWl8dJOTnEyHAWIYatYDRImbectnAbRp2RDGsGTqND67CEEGJIk4SHGJasVit33HEHqqrKdH9CiCFlVEICBfHxNPv9BCMRnGYzFqNR67DEMKWqKjW+FnY11+CPhHAYLYyLTSXebNM6tBGlpO0ga92f4g64Ub/4L0Yfw0TXeIrip6NXZCibECNdb3psSA8PSXiIYSYSiaCqKgZD+0tbkh1CiKFIURRirVatwxDDXCga4T9lO1hTW0xLyI+iKKiqSrzZxjkZ4zgpJV8+RwdApa+K92v+iz8aIMWcjEFnIKpG8YRbWNewHkVRmBk/Q+swhRBiSJIaHmJYefLJJykqKuLDDz/UOhQhhBBiUPtf1V5WVe7CrDcwxpnMGGcyo53JhKNR/nnwczY3VGgd4rCnqirbmrfRFmkj1ZyCQdf+wEan6Ig1urDp7Wxv3kFbuE3jSIUQQ9nMmTMZP348jz76qNahDDjp4SGGjYaGBu68804aGhrYtm0bp5xyitYhCSGEEINSayjAmppiHEYLCWZ7x3qdopBmc1Hc4ubjmv1Mjk9Hr8jzsf7ijXgp91bgMri67U3jMjqp9FdR6atitGOUBhEKIQYLVW1feroPwPr163E6nX0f1BAgn2Bi2PjFL35BQ0MDEydO5Pvf/77W4QghhBCDVklrA/WBVpLMMd1uT7LEUNbaRK2vZYAjG1lC0TARNdLRs+PrdIoOBQir4YENTAghhgnp4SEOKxKOcrC4jqqKRlQVklOc5I1OwWgcfIWztm/fzvLlywFYtmxZRw0PIYQQQnQViUZRae/R0R29oiOqRgmr0YENbISxGWzYDDa8YS9Wfde6PcFoEJ2iJ8bQfWJKCDFyRFGI9rAIaU/bD0dyVyi61ehuZcW/NnHwQB3hcAQAnU5HRnY88y+cTmp6rLYBfoWqqixevJhIJMJFF13EmWeeqXVIQgghxKCWaLFj15toCflxmrreaDeHfDhNFuK/MtxlIKmqSm2giUqfm6gaJckcS6YtEd0wG15j0hkZ6xjD6vq1OKNOjLovZ2RSVZW6QD1p1lTSrWkaRimEEEOXJDxEFwF/iDde3UDx3hrSsuKxWNo/fIPBMGUlbt74x3quvO5kHM7BMYPA66+/zqpVqzCZTDz44INahyOEEEIMeuk2F2NjU9hYX4rNYMag+zKR4I+EaAr6+GbWBOwG04DH5g37WVm9kd2eMtoifhTaEwO59lS+kTaTBPPwGoc+wTWeKn81xW0lWHUWrHorITVMS8hDrCmOOQknyLS0QgjRS5LwEF3s31PNwQN1ZOYkYDR9+RIxmQxk5SZQWlzP7u0VzJgzOIpnvfrqqwD8+Mc/Jj8/X+NohBBCiMFPURS+mTWBxoCX/S112A1mLHoDbeEgwWiYqfEZnJo2esDjikQjvFX5KVuaDpBsjiXZHIuiKHjDfnZ7SvFFAlyZczoxhsHx0KUvWPVWzk45k52eXexq2YM33IZeMTA1dgrjXeNINCdqHaIQYhBQUVB7OESlp+2HI837BS5fvpy8vDwsFgtFRUV89NFHR2z/wQcfUFRUhMViIT8/n8cff7zT9meffRZFUbosfr+/Py9DU5FwhPK9VezfUkLNwTrUnpbv/ZqSA3UAnZIdh+j1OkxmA9u2lvH5ngrWbzvIrgM1BEPaFdN67rnneOWVV7j99ts1i0EIIQ6nNRDg84pqNpZWUOxuJHqc79FC9JVkq4MFY+dwSc4UEix2FEUhyx7LlflFXDNqlia9O0q8Nez0lJJhTcBptHXMXGIzWMi2pVDaVsvO5tIBj6u/WfQWpsVN5fLMS7gy+1t8O/tbnJI8V5IdQghxnDTt4fHyyy9z6623snz5ck466SSeeOIJ5s+fz44dO8jOzu7Svri4mHPPPZcbbriBF154gdWrV3PjjTeSlJTEpZde2tHO6XSye/fuTvtaLJZ+vx4t7N6wn0/e2EDl/mpCwTAWm5mcCZnMveQE0gtSe3XMUDCMTt99NlBVVWp9PvbtbmV3WwuK0l7bIzXRwdlzChmbl3I8l9MriqJw+eWXD/h5hRDiSMLRKB/sLWb1/oPUt7WhAhaDgYLEeM6bWEhWnEvrEIUg1mTlzIyxnJE+hpAaxajoup0edaAUt1YRViNY9eYu2ww6PSadgZ2eg8xMGKtBdP3PoDMcdsYWIcTIJj08ekfTHh4PPfQQCxYsYOHChYwbN45ly5aRlZXFY4891m37xx9/nOzsbJYtW8a4ceNYuHAh3/ve93jggQc6tVMUhdTU1E7LcLRr3V5eX/425XsqiU+LI7swA0dcDLs+3cdrf3yLquKaXh03KcVJKBTptqdIqbuZksZmzFYDuRnx5Gcmkp7kpNbdwmvvbqG43H28l3XMXn75ZZqbmwfsfGJoCoUj7C6tZcOuMrYdqKLNF9Q6JDFCvLtrP69v3UkgHCY/IZ4xSYnE22xsr6rlhXWfUdvSqnWIQnRQFAWTTq9psgPAFwmiP8LXU5POgD8i7+NCCCGOjWYJj2AwyMaNG5k3b16n9fPmzWPNmjXd7rN27dou7c855xw2bNhAKBTqWNfa2kpOTg6ZmZl885vf5LPPPuv7C9BYKBji49fWEfKHyBqbgdVuQafTYXfZyJ2QRX15A+v+07vrHjs+A1esjdrqzsmEYDjCnko3JoOBgtxk9F8UODMZDWSlxtHS5ueTz4uPe0jNsVi/fj1XXnklhYWFNDU19fv5xNC062Atj/9rDc+uWMcr72/mL29v4NHXPuaTbSVEozKsQPQfd5uXj/eX4LJYSHU6Ot4vY8wmRiUlUN7kYV1JucZRCjH4xJkchNXuH7oAeCMBEs2xAxuUEEIMAqrau2Wk0yzhUV9fTyQSISWl8xCIlJQUqquru92nurq62/bhcJj6+noACgsLefbZZ3n99dd56aWXsFgsnHTSSezdu/ewsQQCATweT6dlsCvfXUnNwVqSs7uO7VQUhYT0OPZ9VkxTXc97QCQkOTjjnEkoikLJ/lrc9S00ulvZua8KbyDI6FHJOGM7FwtTFIWEWDsHytw0tfh6fV3HQlVVbr75ZqA9QRYbG9uv5xND04FKN//472aq6j2kJzopyEggOzUObyDI66u3s37X8BsDLgaPPTX1NPn8JNhtXbbpFIVYq4VN5ZUEIxENohNi8BrrzMJptFEf7Pr9pSXkRa/omBibO/CBCSGEGJI0L1r69a6TqqoesTtld+2/uv6EE07g6quvZsqUKcydO5dXXnmFMWPG8H//93+HPebSpUtxuVwdS1ZWVm8vZ8D4Wv2EQxFMlu4LillsZoL+EL7W3hVrnVKUy7euOZHpswsw6PUoOoWcgmTSsxPIyUtC6WY8mMlgIByJ9HsB0xdffJFPPvkEu93O0qVL+/VcYmhSVZU1nxfjafOTnRqLydg+Htqg15GW4MRo0PHxlgP4A6GjHEmI3vGHw+hoT250x2wwEAxHCIa1K/gsxGCUZHZxStJkgtEwB701eEJttIS8lHvrcAc9zIgfS0FMutZhCiGEGCI0q4qUmJiIXq/v0pujtra2Sy+OQ1JTU7ttbzAYSEhI6HYfnU7HzJkzj9jD4/bbb2fJkiUdP3s8nkGf9LA6rBiMegK+IGZr16SHvy2A2WLE5uj9tG3ZeUlk5yURCUdRUSmrbuKZf32CPxDGajZ2ad/qDWC3mnHY+69AbGtrKz/72c8AuPPOO0lPly89oqsGj5f9lW6S4mK6TaAmx8ZQWttESXUDhTkDX2hXDH8OixmU9sKlBl3XZwttwSAJdhsWY9f3UiFGulkJhbhMdjY17KPCV4eKSro1galxo5gSm49e0fx5nRBCaKDnRUuRoqXaJTxMJhNFRUWsWrWKiy++uGP9qlWruPDCC7vdZ86cObzxxhud1q1cuZIZM2ZgPMyXRlVV2bx5M5MmTTpsLGazGbO5azXwwSxrbDpp+SlUHaglc0xap5u6aFTFXdVI0bwpuBKdx30uvaH9i0V2ehxZqXEUl9eTl5HQ6ZyhcISmVi9nnjAW22F6nfSF3/zmN1RWVpKfn8+tt97ab+cRQ1swFCEciWAydJ98Mxj0qKpKICTDCUT/KExJItkRQ2Wzh+y42E7bguEwbcEg3xg/pttkiBAjnaIoFDqzGevIoiXsQ1WjxBhtkugQQgjRY5p+cixZsoQ///nPPP300+zcuZPFixdTWlrKokWLgPaeF9dee21H+0WLFnHw4EGWLFnCzp07efrpp3nqqaf4yU9+0tHm3nvv5Z133uHAgQNs3ryZBQsWsHnz5o5jDhcGo4GTL5mNxW6mbFcF3hYf4VCEloZWSraVkpydyOxzp/XpOfU6HfNOLCTBZWd/WT0NzW20egPUuFs4WNnA6OxkTpicd9znafMG2Lankk3bStl/sI5wJArAgQMHOmbkeeCBB4btVMPi+DlsZmwWE63+7iv5e/1BjAY9rn7sjSRGthizifnjx6DX6dhX78bj8+MLhqj2tHDA3ciEtBRm5mRqHaYQg5qiKDiNNlymGEl2CCFGPFVVerWMdJpO9H3FFVfgdru57777qKqqYuLEiaxYsYKcnBwAqqqqKC39srBgXl4eK1asYPHixTz66KOkp6fz8MMPc+mll3a0aWpq4vvf/z7V1dW4XC6mTZvGhx9+yKxZswb8+vrbmKICLvrRfD55cyPluysJBUNYbGYmnTKOky6aRXJ2Up+fMyc9nu98cwbrtx1k5/4aWr0BbFYTJ0zJZebEHJwxvb+BjESirN10gHWbS2ho9qKqKga9jszUOM6aW4jdbueKK66gsrKSiy66qO8uSgw7MTYzkwrS+d+mvcTGWDHov/yirKoq1Q0tFGQkkpUSq12QYtgrys7AZjLy0f4SiusbiUSjxFjMnFcwllNG5RJj7r/ecEIIIYQQAhS1B3OIrlu3jqKiIvR6PdC1wGggEODf//433/rWt/o+0gHk8XhwuVw0NzfjdB7/kJD+Fo1GqTlYR8AbJCbWRkJ6/BELv/aVNl+QQDCMzWrEYjr+cegfr9/Hyg93YrUYSYizo9fr8AdCVNd6cDmtfPuCmWSkxhIMBjGZ5EZBHFlTi4+X3t3EvvJ64hxWbFYTgWAYt8dLcmwM3zpzKrmp8VqHKUYAVVWpb/MSikSItVqx9cH7pRBCCCG0NxD3jYfO8fddz2NzdJ397Ui8LV4uL7x2yNzX9oce9Q+cM2cObre742eXy8WBAwc6fm5qauLb3/5230UnjolOpyMtL4XcCVkkfq22Rn+yW03Eu2x9kuxoafPzyaZirFYjyYkO9F88kbeYjWRnxNHQ1MaGzw8CSLJDHJNYh5Vvnz2ds2eNwWjQ42n1E42qnDghh6vmFUmyQwwYRVFIirGT7nJKskMIIYQQvRLt5TLS9WhIy9c7g3TXOaQHHUaE6FBS5qbR4yUno+tN6Afv/pstmz4hEriBs04uxG4bWgVmhXZiY6x8Y/Y4Tp06ijZfALPJgMMmdTuEEEIIIYQYCfq8hsdA9S4Qg0ttrYedOyooLXOjUxTy8pMpLEwnPt5+TPsHgmEU6OjZcUhrq4d///3PtLY0kztqMsHQZdiRhIfoGavZ2O1UykIIIYQQQgwFai+mpe35NLbDj6ZFS8XwsH1bOe+88znNzT4sFhOqqrJnTzUbNxRz3jenkp+ffNRjOGMs6HQ6gsEwJtOXL8s3/vE0rS3NJKflcNq8i7FZJdkhhBBCCKE1b9hDlW8/nnA9OvQkmjNJseRh0MkDBiHE4NHjhMeOHTuorq4G2oev7Nq1i9bWVgDq6+v7Njox6NXUNPP2O58TCkbIy0vq6OETjaqUl7v5z4otXPvdk3E4rEc8Tl5WImkpLqpqm8lOj0NRFCrLi/nvyn8CcMa51zN9YjZmk+TohBBCCCG0VOHdw5am92kNNaAoOlRVZa+yniRzDkUJ5xBjiNM6RCGGnd5MMyvT0vYi4XHmmWd2qtPxzW9+E2gfyvL1WVvE8LdjRyWeZl+nZAeATqeQmRlPSUk9u3dXM2NG3hGPYzTqOevkQv759maKy9zEuWy8+MwyotEIo8fP5ux5ZzNjck5/X44QQgghhDiCxmA1mxpXEooGSDJnoyjtw5HD0SDV/gNsaljJSUmXolcG90MqVVWJqAEADDqp7yXEcNWjd6Li4uL+ikMMUaUH67FaTd0munQ6HXq9jsrKRuDICQ+A0bnJXHn+DNZtKeGNN95g9/aN6A1G7rrnPi46bzoOu3wYCTFYtfmDbC+rYXdFLYFQhPR4J5NyUslMcEkiXAghNOKLeDnYtoeStt34ol6chljy7IVk20b1euhJadsOfOGWL5IdX76/G3Qm4k1p1PoPUucvJdWa31eX0adUNUq9fwc1vs9oDVUACrHmfFKs04gzj9I6PCFEH+tRwiMnR56wi87ae/Ycvc2xys6IJys9jv/73Y8BWLJ4Mdd8a97xhCiE6Gc1Ta28/PFmSmobMeh0GPQ6tpdW88nug5w1ZTRzx+dJ0kMIIQZYS6iJj+vfoSZQhkkxY9CZqPIdpMJXQq59LHMSzsKoM/XomKqqUuXbj0Vv7/Z93agzEyVMQ7BqUCY8VFXlYOv7lLV+gEoUs96FqqrU+Dbh9u8k33kuabYZWocpRLfUL5ae7jPS9Sjh0dDQgNfrJTMzs2Pd9u3beeCBB2hra+Oiiy7iO9/5Tp8HKQavvPxE9u2v6XY4UyQSJRpVyczsOtXskSiKwtv/WcH//d//8YMf/KAvwxVC9LFQJMJrn2ylpKaRvJR4DF/MtKSqKnWeNt7+bDfJrhgKM49evFgIIUTfUFWVTY2rqfGXkWzJ+HJ4iRGCUT8HWncQZ0xiUuzMnh6ZKBEUdEdooqAO0tuspuB+yls/wqR3YtHHdqy3Ek9bqJqSllW4TLnYDInaBSmE6FNHeLfq6qabbuKhhx7q+Lm2tpa5c+eyfv16AoEA1113HX/5y1/6PEgxeI0bl0F8vJ2Kigai0S8/3CKRKGXlbtLSXIwZk9rj41qtVn7605/icDj6MlwhRB/bX+WmuKaBrMTYjmQHtCcuk10xBEMRNuyv0DBCIYQYeRpDdVT6S4g1JXappWHSWbDobRxo20EoGuzRcRVFR6I5E3+0tdvtETWMoig4DD172PV1qqriCVZQ6d1IpXcjnmBFpxqCvVXv205EDXZKdhxiM6QQiDTh9u847vMI0R8OTUvb02Wk61EPj08++YRnnnmm4+fnn3+e+Ph4Nm/ejMFg4IEHHuDRRx/lmmuu6fNAxeCUmOjgvPOm8p8VWygpqcNg0KOqKtFolNS0WM775jTs9mOfSvaDDz7g5JNPRq/X92PUQoi+UtXYQiQSxXKYGZRcNgslNQ0Ew2FMhsFdwE4IIYYLT6iJYNRPnDGp2+12g4OWUDOtYQ9xpp71Zsi2TaDcu5vWcGOn2VhUNUpDsIpYYwpp1oJex+6PNLPP8x/c/r2EVT8ABsVCgmU0o5zzsehdvT52a7gSo87W7TZFUdApBrxhmXVSiOGkR98+q6urycv7svjk+++/z8UXX4zhiy+xF1xwAUuXLu3bCMWgN3p0KsnXOdm9u4qK8kYUnUJOdgKjx6QSE3PshUbXr1/PaaedxvTp0/n444+xWo88la0QQnvHVJpDAUWeMAghxIDRKTqgfWhJd++/UTX6xQ1+jzp7A5BiyWW88yR2etZSGziIWWcjqkYIRf04jUlMiz8bo+7YH3Z9VTgaYFfTP6n37ybGkEqMLg2AULSNau8WQlE/k+K+jaGXx9crZqJq+LDbVTWKXulZXRMhxODWo4SH0+mkqampo3jpunXrWLBgQcd2RVEIBAJ9G6EYElwuG7NmFcCs3u2vqio333wzABMmTJBkhxBDRFqcE4Nehy8YwmrqWvG/yetnRkEGRoP02hJCiIGSaErFro+hNdyM0xjXZXtLuIlkcwYOQ2yPj60oCmOds4k3p1Pu3Yk7WIVBMZBmGUWmfWynXh895Q7soSGwD5cxG/1XCqqa9DG4dNk0BvbhDuwhxTqpV8dPsIyjIbCHqBpBp3T+XApHAyiKjjhz73unCNGfVFVBVXv2AKmn7YejHqV1Z82axcMPP0w0GuUf//gHLS0tnHHGGR3b9+zZQ1ZWVp8HKYa/v/71r3zyySfY7XbpJSTEEFKQmkB+agJl9U2EwpGO9aqqUtPUgsVooGhU5hGOIIQQoq/ZDDHkx0zAG27BG27tqH+hqirNoQYUFEY7Jvaqhwd8UafJks30+HM4O/U6Tk+5mkLXCceV7ABw+/cASqdkxyHtPS+UL9r0TqJlAk5jJs3BEsLRLx/ShqJttIRKiTOPJlamphViWOlRD49f/vKXnHXWWbzwwguEw2F+/vOfExf35Rvb3/72N0499dQ+D1IMb62trfz0pz8F4Oc//zkZGRkaRySEOFYGvY5LTpjIK6u3cKCmAZ2iYNDp8IfCOG0Wzi0qZHSaVLsXQoiBNtk1i2DUT3HrTppC7i+GtqjYDA6mxZ5Erm2s1iF2EVK96OjaW/AQnWIkpHp7fXyz3snY2MvY1/wGzaGDqF8Mb9ErZhItkxntOh+9cvjzC6ElmZa2d3qU8Jg6dSo7d+5kzZo1pKamMnv27E7br7zySsaPH9+nAYrh77e//S2VlZXk5uayZMkSrcMRQvRQkiuG68+cxc7yGnZX1BEKR0iNczIxO4WMhN4XlxPHTlVVihsa2VxZRUWzB6vRyPiUZCalpeAw926suxBiaDPojMyOP4NRMROo8pcSjASwGWLIsOZ2O8xlMLAbkqln52G3R1Q/dsPxTXNuN6YyKeF6moLFeEM1KIqOGGM6TmM2Si97vAghBq8el8xPSkriwgsv7Hbbeeedd9wBiZGlpKSE3//+9wA8+OCDWCzHXuRUCDF42MxGigoyKSqQ4SsDTVVVVu3dz6rd+/CGQtiMRsLRKJ9VVJGfEMdV06eS6ojROkwhhAYURSHRnEqiOVXrUI5JkmUcFW3r8YUbsX5teIwv3IhBsZFkGXfc59EpBuLNo4k3jz7uYwkxUHozzaxMS9vDhMfzzz9/TO2uvfbaXgUjRh6fz8f06dOxWq1cfPHFWocjhBBDztbqGt7etZcYk5Gs2C971ISjUfa7G/jH59tYNGcWBp08uRRCDG5OYxbZ9hMpafuAYKgFiy4WgEC0GRWVXPupOI1SL1CInpo5cyZ6vZ6bbrqJm266SetwBlSPEh7XXXcdMTExGAyGjuJHX6coiiQ8xDEbN24cq1evpqmpCeWY5rcUQowkrf4A2ypqOFDTQESNkp0Qy8TMVBJibFqHNiioqsqnpeWEo1ES7fZO2ww6HdmxLvbVu9lX76YwOUmjKIUQ4tgoikKu4zRsxkSqvJtoCVUBEGvKJc02nWTLRPm+KEQvrF+/HqfTqXUYmuhRwmPcuHHU1NRw9dVX873vfY/Jkyf3V1xiBFEUpVPxWyGEAChraOLlTz+nzN2MXqdDp8D6AxV8uKuYi2dMYGLm0Oii3Z/84TCljU3EWbsfDmg1GglHolR6WiThIYQYEhRFR4p1MsmWiQSjrQCYdDFSX0OMeKravvR0n5GuR+8c27dv56233sLn83HKKacwY8YMHnvsMTweT3/FJ4app556ittuu42WlhatQxEDKBSOsLO0hjU7Sli/u4z65jatQxKDVFsgyCufbqWiwUNBcjwFyfHkJcUzOjWBFn+AV9dvo6pJ3j+UL8bmHukLjQoyglcIMeQoig6z3olZ75RkhxCi13pctHT27NnMnj2bZcuW8fe//51nnnmGn/zkJ1x00UU8/fTTmKUavDiKxsZGfvazn+F2u8nNzWXRokVahyQGwP4qN299upPy+maiahRUcNjMzBidxdnTR2My9vjtSAxjOytrKWtoIi8xHv1Xak/oFIXshFj2VNez+WAlabGDb1rFgWQ26ClISGBjeQWJ9q7DfNqCQcwGPZmxMluOEEIIMZRJ0dLe6XW61Gq1cu2113Lvvfcya9Ys/va3v+H19n5ebDFy3HvvvbjdbsaPH8/ChQu1DkcMgEp3M698sIXy+mYyEpyMSkskPy0Bg07P+1v28c6mPVqHKAaZg/VNKIBB3/VjSlEUYswm9lTXD3xgg4yiKMzKzsBiMFDd0tKpvlYwHKa0qZkxSYnkx8uwQSGEGG4i0Wa8/g9panmSppZHafWuIByu7PPzqKqKGqlGDfwP1bcCNfAhakQ+g8XQ0KtHqhUVFTz33HM888wztLW1cfXVV/PYY49JHQZxVDt27OCRRx4B4I9//CMGgzzVHwnW7ymjrrmV0emJHcXGdIpCgtOGosDGPeXMHptNcqxMnSnatd+2H+GphKKgIgNTAcYlJ3HBhEJW7NrD7jo3ZoOecDQKwPiUZC6fPLFTLxkhhBBDXyh8EE/rc4QiB1FUIyh6/OoGfP73ibFfhtV8Qp+cR1XDqP53IPAxqB7an5dHQReLaj4DxXy6DDkSg1qPXp2vvPIK8+fPZ/To0axfv54HH3yQsrIyfve731FYWNirAJYvX05eXh4Wi4WioiI++uijI7b/4IMPKCoqwmKxkJ+fz+OPP37Ytn/7299QFIWLLrqoV7GJvqWqKosXLyYSiXDhhRdy1llnaR2SGACBUJjtJTXExdi6raweF2OlxRfgQLVbg+jEYJUZ7ySqqkS+uHH/KlVVafMHGJWSoEFkg4+iKMzNz+VHJ53ABRMKmZyeyom52Xxv1nRumD2DhG6GugghhBi6olEvnta/EAqXYtSPwWgchdGQh9EwnqgapKXtFULhkj45lxr4GPzvgGIE/RgwjAb96PYnE/43ILi+T84jjk5VlV4tI12PHq9feeWVZGdns3jxYlJSUigpKeHRRx/t0u7mm28+puO9/PLL3HrrrSxfvpyTTjqJJ554gvnz57Njxw6ys7O7tC8uLubcc8/lhhtu4IUXXmD16tXceOONJCUlcemll3Zqe/DgQX7yk58wd+7cnlyi6EdvvfUWK1euxGQy8cADD/TruaLR9hslg14n05dpLBSOEI5EMRv13W5XFAWdohAKRQY4MjGYTchIIT3OQUl9E3lJceiUQ8U5VSqbPLhsFqZmp2sc5eCS7nKS7hqZU871RCgaYXdjPdXelvaaMI5Y8p3xHa8xIYQY7IKhbYQiBzEaClCUL79fKYqCQZ9FKLILf2A9RkPucZ1HjXoh+BEoNtAlfrlB0YE+BcIHUYMfgWk6imI8rnMJ0V96lPDIzs5GURT++te/HraNoijHnPB46KGHWLBgQUcdh2XLlvHOO+/w2GOPsXTp0i7tH3/8cbKzs1m2bBnQPk3uhg0beOCBBzolPCKRCFdddRX33nsvH330EU1NTcd+kaJfqKrKXXfdBcCSJUsYNWpUv5ynvqmVTXsq+HxfJaFIhCRXDNPGZjC5IB2jofsbbtG/rGYjsTFWaptacdmtXbaHwhFQIDam6zYxcjksZi6bOYlXPt3K3mo3FqMenU6HNxAk1mblwunjyIyXQpyiZ8pbm3l57+cUexoIR6OogEVvYFx8MleMmkyc5ejvQ/5IiB2N1exuriUQCZNmczI5Pp00m7wehRCdtddVigD6Pn0AFwqXAdFukwyKoqDDSTC04/hPFCmDSD3ouz6IBkCfDJFqiFSB4TBtRJ9RoceDeWXwbw8THiUlJUdtU1FRcUzHCgaDbNy4kdtuu63T+nnz5rFmzZpu91m7di3z5s3rtO6cc87hqaeeIhQKYTS2/9Hfd999JCUlsWDBgqMOkQEIBAIEAoGOn2Wa3b6nKApvvvkm999/Pz//+c/75RylNY38/f3NVLk9OO0WjAY9B6rc7K2oY39FPRfNnSQzgfRQmy/I9v1VbNtfRas3QGJcDJNGpTEuNwXDMSaQ9DodM8Zk8urHW/EFQ1hNX344q6pKhbuZtDgHozOS+usyRhRfMMTuijpqmlpQFIXMBBej0xKHZMKvIDmB/+/0WWwtr2ZPVT1hNUpeYjyTs1NJj5WeDCOZqqo0B/1EVBWXyYLhGGqUNAV8PL9rE6UtTeQ4YrEY2t+LWkMBNtVVEIlGuWHCLEz6w/+tuP1t/HX/RvZ4akEFg07Hp3WlfFC1n/Oyx3Nicp70KhRCEFUDtAQ24fGvIxhxo9dZcZhm4LTMwKgfSjUPIxxK2HRPD2oECA9cSEL0UJ/d/VVXV3P//ffzpz/9CZ/Pd9T29fX1RCIRUlJSOq1PSUmhurr6sOforn04HKa+vp60tDRWr17NU089xebNm4859qVLl3Lvvfcec3vROxkZGd0OgeoL4XCEN1fvoLaxlYLMxI6uyfFOG15/kA27yslOieeECTn9cv7hqNHj5R/vbmZ/eT0mgx6TyUC1u4Vt+6ooKszk/FMnHnMCafqoTA5UuflsfyVWkxGnzUwoHKGh1Ues3cJ5s8ZhMUky6ngdrGvktbXbKHc3E41GURQFvU5Hfmo8l82ZRJJr6BWFjY+xcWphPqcW5msdihgEVFVlm7uG1VUHKfY0EFVVkq12TkjL5oTUbIy6wycrPqur5GBLI6NdiZ2KuMYYzeQ54tnRUMOuxlomJ6Z1u39EjfJK8WfsaKqmwJGASW/oiKna18K/D24lwWynMDal2/2FECNDJOqjpuWveAKbUBQDel0MoYiburZXaQluIs3xXcyG1OM6h9GQBehQ1VCXXh6qqhLFg9U457jOAbQPY1GcoDaD0k2iJtoEOmfn4S6i38i0tL3To6KlTU1NXHXVVSQlJZGens7DDz9MNBrl7rvvJj8/n7Vr1/L000/3KICvPwlRVfWIT0e6a39ofUtLC1dffTV/+tOfSEw89j+822+/nebm5o6lrKysB1cgjmb37t39fo4DVQ2U1TaSnuTqMg7bZjFhNurZuKuUcKRrAUTRlaqqvLN2F3tL68hOjSMrNY6UeAd56fEkx8Wwbkcp67aXHvPxLCYDl82dwsUnTSTRZccXDKECc8blcO3ZMxibldx/FzNCNLb6eOXjLVS4m8lJjGVMehKj0xLJiHeyp6KOV9Z8jj8oT2DE0PZxVQlP71jPVnc1Zr2BGKOJijYPL+3ewt/3bu2YnaY7n9dXY9Ubu52xxmIwEFFVdjcdfprFAx43e5rryImJ60h2QPv3jzSbE284xPq6Y39fFEIMT02+j/AENmA2ZGI15mHSJ33x/0fhDxVT1/avTlOI94bJOBGjPodQeD+q+mUNNFVVCUfK0SkuLOaZx3spKPpkME6AaC2ooc4b1QCoDWCchqKTXpdi8OrRI9Wf//znfPjhh3z3u9/l7bffZvHixbz99tv4/X7+85//cOqppx7zsRITE9Hr9V16c9TW1nbpxXFIampqt+0NBgMJCQls376dkpISzj///I7t0S++/BgMBnbv3k1BQUGX45rNZsxm8zHHLo7d+vXrmT17Npdddhl//etf+20aWndzG5GoetheAk67hQaPF68/iNNu6ZcYhpNqdwt7DtaSkuDoMhTCbjVhMxvZtLOMWROyj7mXh8Vk4OQJecwuzMbrD2HU67BZTP0R/oi09WAVlQ0eRqUmotN9mfQzGw3kJsdTXN3A7opapuRJoU8xNNV6W1lRvBuDTk+248snjU6ThZZggDVVBxkXn8y0pO5f44Fo+IhDX/Q6HcHI4ZOCZW1NBKNhbIbu37fizFb2euoIRMKY9dJjTYiRKBL14wl8il7nQK/rXBNIUQyYDBl4g3vwhw9iNeb2+jw6nQ1nzDV4Wp8lFNmDghHQo6pe9LoEYuyXYTTkHd/FHIrbOh81Wg/hPe3FS7GC2gb4wTgJxXJmn5zn61RVRSWIgqFTYVYheqpHn8hvvfUWzzzzDGeddRY33ngjo0aNYsyYMR1FRHvCZDJRVFTEqlWruPjiizvWr1q1igsvvLDbfebMmcMbb7zRad3KlSuZMWMGRqORwsJCtm7d2mn7nXfeSUtLC3/84x/JysrqcZyi91RV5dZbb0VVVcxmc78lOwAMel37G+NhegiFI1F0Ol23T/ZEV3WNrXj9IVITHN1uj3VYafB4afT4SDlMm8Mx6vW47PLB1dd2lNdiNRk7JTsOMRn0qKgcqG6QhMfXRKJRyj0efOEQTrOZtBiH1GAYpLY31NAQ8DI2tmu9H4fJTI2vlY215YdNeGTGuChubuh2W/tT0QiptsO/n6moKEfoGqygSHE4IUa4cLSRUKQJoz6+2+16JYYgVYQidceV8AAwGnKIdd5KILiFYGgnKiGM+jwspmkYDH33Wa/o4sH+PQhtRA1ugGgr6LNQTDPBOBVFZ++zc0F70qglsAFPYB2hSAM6xYzDPB2nZRYm/ciu96aq7UtP9xnpenQHWllZyfjx4wHIz8/HYrF0zLDSG0uWLOGaa65hxowZzJkzhyeffJLS0lIWLVoEtA81qaio4Pnnnwdg0aJFPPLIIyxZsoQbbriBtWvX8tRTT/HSSy8BYLFYmDhxYqdzxMbGAnRZL/rfSy+9xJo1a7Db7fzmN7/p13PlpMYRYzXT3Oon1tE5o66qKg0eLzPHZWG3So+CY6EogNL+Jtndvd+hxJLcFw4eoXDkiAk9vaIjFJGpf79qW20N7x7YT2lzE8FIBKvBwJiERL4xagxZLplxY7Bx+7zolMNPNR5jMFHV1nrY/acnZbCuugy330uCxdZpW2Wbh3iLjUmJhx9Xn2ZzYlB0+MIhrIauMyM0BX1MiU/HdIQ6IkKI4U1RDCiKDpXDfd5GUVQFRembh4B6nQub5RRsllP65HiHo+gcYD4NTKfSH7POHBKJ+qhueZGW4CZ0mNDrHISjLdS3vUFLYAtpzmuxGDL7/LxieOvRX1s0Gu2YCQVAr9djt/c+q3fFFVfgdru57777qKqqYuLEiaxYsYKcnPbCklVVVZSWfjkeNi8vjxUrVrB48WIeffTRjjoiX52SVgwObW1t/PSnPwXah0JlZGT06/mSYmOYOjqDjz8/gE6n4LCZURSFSCRKpduDw2ZmZqFMl3WsMpNjcdrMNLZ4SXB1/Rt3N3vJSo0jIbZvs/qi97KTYimu6f7pdVRVCUWipMXLGNtDttRU8+Lnm/GFQqTGOLAYDLSGgmyqqqSqtYUF02aQ4ZTf12BiNRqJqIev0RGIRkg+Qk/CsbGJnJU1indK99IY8BFnthJVVRoDXuwGExfkjyfZevjCvqOdSeQ7E9jdXEuBI7HT8Jg6fysGRcespBzpISTECGbUJWAx5OAN7cbQTV2LUNSNXh+LpY+Gmwy09ve3/uux3eT7mJbARsyG7E5DglQ1BV94P3Wt/yLT9YMRO8RFipb2To9esaqqct1113XUu/D7/SxatKhL0uO111475mPeeOON3Hjjjd1ue/bZZ7usO/XUU9m0adMxH7+7Y4j+99vf/paKigpyc3NZsmRJv59PURTOmT2WSCTClv2V1Da2tr8pq5AUZ+cbswvJS0/o9ziGizinjaljM/hg437MRgMxtva/eVVVcTd7UVWYOSFbhggNIlNy0tiwt5y65tZOs7Ecmvo3wWFlfJbMHgEQjER4Z99e/OEwBfFfvi+4zBYcJjN73PX8t2Q/V0+epmGU4uvGxCZi1RtoDQWIMXauuxWORvGFg0xPPnxyXVEUzs0tJCPGxac1ZZS2NKKgMCc1m9kp2YyNO3JXaaNOz+V5U3lx/0YOtNRj1Okx6PR4w0HsBhPzs8YxMa77GV6EECODouiItc7FFzpAIFyJSZ/a3uNDVQlHmwhHG0m0nYtRH6t1qINOVA3gCaxDr4vppv6JHrM+A19oH75wCTZj15qMQhxOjxIe3/3udzv9fPXVV/dpMGJ4KCkp4fe//z0ADz74IBbLwBQJtZiMXHzqZGZNyKG4soFgKEysw8rY7GRirFKUtqfOmDUGnz/Elr2VVLtb0OsUwlEVp93M2SeMZeqY/u21I3omJzmOs6eO5p3P9rCvqh6nzYKqqni8AZx2C+fPHE+Cw3b0A40ABxobKPc0k+Ho+vRNpygk2+1sr62lwecl3iq/s8Ei3xnPtKQM1lQfJNUaQ6zZiqIotIWClLU2ke+KZ3rSkd+XdIrCtKR0piam4Y+EURQFSw8KjKbZXPx/hSfyeUMl2xurCUTCZNhdTE3IJC8mXnp3CCGIMU0mOeYS3N7/4AvtBRQgil7nIM56BvG2c7QOcVAKR5oJRxsx6GK73a7X2QmEKwhF6kESHqIHepTweOaZZ/orDjGMlJeXk5iYyOjRozsVpB0IiqKQmRRLZlLsgJ53OLKYjFx8xhSmj8tiX1kdXn+IWIeVwtwUkuNj5Iv9IKMoCnPH55EW5+Sz4goOVDegKArTCzKZlp9OVmKs1iEOGt5QiHA0ivkwwx+sBiMtwSDeUIh4a7dNhAb0Oh3fGj0Jo17P5rpKapvbp5A16wxMTkjj0lETcZmPLcGuKEq3dTiOhcNo4aSUfE5Kye/V/kKI4U1RFGKtJ2M3TaAtuI1w1INOsWAzFWLWp8v3p8NQFD0KelS1+9my1C+GNCr9OKRmsJOipb0zcl8xot+cfPLJ7Nq1i8bGRnlTH2QikShlpW727quhpcWH02Fl9JhUsrISup3dQ6dTyMtIIC9DhgMNBYqiMDo9kdHpiahffMLJ32BXNqMRg06HPxzG0k3SwxcOYdHrsRl7d0Ms+o/NaOKqsVM5M7OAkpZGoqpKsjWGfFc8uhH2Wo+oUfZ76tjZXIUn6CfWbGN8bBp5MQnoFBluKITWjPo4Yq1ztQ5jyDDo4rEaC2gNbMHQzZCfULQegy4Wq1GSzaJnJOEh+oXdbj+ugrai7wWDYd55ZyufbyklFI5gNOgJhSKsW7efSVOzyRyXzJ6qetoCIZKcdiZlp5KTFDskbpibWnxUuptRVUiNd3RbaHWkGQr/blopiIsn0+mi3NNMflznqQOjqkpNWxtzs3NkOMsglmp3kGrv2ZTYw0kgEuK1g5+x0V1KMBrGpDMQjIb5uGYvs5PyOT9rMkaZLUYIMYQc6hnjDe3FHy77ojeM/ov6J42EI40k2OZj1MdpHaqGel60FClaKgkP0XdefPFFAoEA1113HTopZjnorF2zlw3rD5Cc7CQm5stu3/VNbbz40WbMuywkJDgwGfR8frCStXsOcuq4fM6eMrrb3h+DgT8Q4t0Ne9iyr5LmNh8ADpuFiXmpnD1rrNRuEd0y6vWcM2o0L36+mX0NbtJiHJgNBtpCQapbW8hwODg9V54gHU0oEmFPg5vylmYAMhxOxsYnYtTLjXZ/e69qN2vrDpBmdeEwfvl+3hz08WH1HhLMdk5NHaNhhEII0XN203hSYi6nvu0tfOH9oAKo6HUO4m1nkWD/htYhiiFIEh6iTzQ2NnLLLbfgdrsxGo1cc801WockvqKtLcCWLaU4ndZOyQ5VVSkNt+IhRHyrgdyxsRgM7dn0xjYf727dS6LLRlH+4JvzPByJ8q+PtrFxVxlxTit5aQmgQHOrj9Vbi/F4/Vx51nTMRnmbE11NSUlFP2Ua7x3Yz8HmJoKRCFajkaK0DM4pGC1T0h5FdWsLf9uxlX2NbsJRFVAx6PQUxMVz5fhJpMWM3N4X/a0l5GdDfQmxJlunZAeAy2SlLRzgk7piZiflYdHLsCwhxNDitMzCZiqkLbiDcLQZnWLGZhyDSZ824nuvql8sPd1npJM7AdEn7r33XtxuN+PHj+fKK6/UOhzxNbW1HpqavGRkdO4G6AkFqfF6ibNZCPvDtLUFcLlsKIpCfIwNjy/Aur1lTM1NH3RT0O6vqGfLvgrSk5zYLKaO9XEOG1aziR0lNew+WMvkUekaRikGs4nJKYxLTKLc48EXDuE0m0mLcYz4L1RH0xYM8pdtW9jX6CbXFYvli+Kf/nCIXe46Xti2hR9Mn0WMyXSUI4neqPA20RD0kmfvvrZSvNlOjc9Dtc9DbozUXxJCDD0GnROX5QStwxDDxOC6gxFD0s6dO3nkkUcAWLZsGUYp9DfoqKqKSte6Dp5gkGA0guUwXdDj7VYqGz00e/0DEGXP7D5YSySqdkp2HGIxGdApCtuLqzWITAwlep2OnNhYChOTSHc4JdlxDLbW1bC/sYGC2PiOZAeAxWBkVFw8+xsb+LxW/vb6S3tBYvWww7IVlC+e6MlzPSGEEEISHuK4qKrKrbfeSiQS4YILLuDss8/WOiTRjaQkB06nleZmb6f16hdfiP3+MGazEZvta8kDBejFFFgDocUXwGg4/FuY0aDH4w0MYERCjAw76+vQK0q3tToMOj0GnY6d9XUaRDYypNlcuIxWGgPebrc3BtuIM9tIssiwIiGEGE7ap6VVerhoHbX2JOEhjstbb73FypUrMZlMPPjgg1qHM+iEwxH276lm1VtbeOMfG1j9v53UVjd3TBk6UBwOK5MmZtLY5MXvD3Wsd5rM6FRoDQRJSXFi/Fq9i8ZWH6lxDmLtlq8fUnNxDivBUOSw2/3BMIkumWVDiL4WiIQx6A//9cGg0xGIhAcwopEl1mRjanwW7mAbvnCo07a2cABPyM/MhFzsBinaLIQQQkgND9FrkUiEH//4xwAsXryYUaNGaRxR7xxKPvR1V/a21gD/+dcmdu+oIBKJotfrCIcjfPLRXk48bSwnnDxmQLvPn3TyGBqb2tixoxJFAbPJgN8fwhLSoTjNJKd1LtLY2OYjHFWZNSp70NXvABifm8rabQdpbvXhirF22tbqC2DQ65iQl6ZRdEIMX5lOF5uqq1BVtct7mKqq+EIhMh1S9LU/zcsYT1PQy9bGCgDMegP+SBhFUZidlMepqaM1jlAIIURfk6KlvSMJD9Frer2e5557jl//+tfccccdWofTYzVuD1t2V7DrQA2hcITMlDimjM1gTG7ycU/Dqqoq7739Ods+LyU9Iw6L1dSxvqG+lf+t3E5snJ1xEwdu9hOr1cSFFxYxcWImO3dW4vH4cDltnJufwMaaavZUudEprRgNevyhMBajgTMnFTA9f3AW/cxOieOECTl8uHk/rb4g8U4bCu29Utp8QeZMzGVUZqLWYQox7ExJTuXDg8VUt7V2mY2lpq0Vp9nMtNTB+b4xXNgNZq7Kn83O5io+b6ygOegjzmRjSnwmY12pGHUyNbAQQggBoKgD3bd+CPB4PLhcLpqbm3HK1ITD0r7SOv757hbcTW047GZ0Oh2t3vZeAScXFXDm7LHHlfSorWnm+Sf+h9VqwuGydtleVuImf3QyV3z35ONOrvQFfzDMzooatpfV4g0GSXbGMCk7lbzk+EER3+GEI1E27Cxl3c5S6ppaAYh32phRmMUJE3IxGuRLvxD94cPSEv61Zye+cIhYsxVFgSa/D4vewAVjCjk1O08KwAohhBj2BuK+8dA5HtvyD6wOe4/29bW08YMpl43o+1rp4SF6paGhgfj4eK3D6BWvP8hbH2zD0+qjICux40t5UlwMTS0+Ptq4n6yUOArzU3p9jqryRrxtAZJSun9jiY23UVneSKvHhzNW+zoTFpOBaXkZTMvL0DqUHjHodZwwMZeiwizqmlpRVUiMtWM2ylubEP1pblYOyXY76yrL2eN2AzA7PYtZ6ZkUJiRKskMIIYToY4cKkfZ0n5FO7gpEj23cuJG5c+eyZMkSfvnLXw65L7Z7SmqpcbeQnRbXJfZYh5VGj5fNu8uPK+ERjR6541T7eVWi0sGqTxgNetITXVqHIcSIoSgKhQlJFCYkEYq0Fw/ubtYWIYQQQggtDb5KhGJQU1WVm2++GZ/PR0lJyZBLdgDUN7WhqmA4zJdzh81MeXXjUZMWR5Kc4sRsMeLzBrvd7mnykpjkxOHsOtxFCCGGEqNeL8kOIYQQop+pvVxGOunhIXrkb3/7G2vWrMFms/Hb3/5W63B6Ra9TUI/w5x+Jqpj1eo4nl5OWGU9uQTK7tpaTlZeI4Su1JFpbfITDUSYX5aI/wtSOQojBJRiJsLWmho1VFdS0tmE3GSlKS2daWhpO8+CbulkIIYQQYqSThIc4Zm1tbfz0pz8F4PbbbycjY2jVezgkKzUOo0GPzx/CajF22qaqKi1ePzMmZh9X7xWdTuHsc6fg8wY5WFyH0ajHZDLg8wbRG3TMPHEUk6flHO+lCCEGSCAc5pXtW1lX0T4NqN1kosHnZa/bzYbKCq6dMo0ke88KiQkhhBBCiP4lCQ9xzH73u99RXl5Obm4uP/7xj7UOB58viK8tiNliwB5z7E9XczMSGJOTzLZ9VWSmxGI1tyc9wpEolbVNxDttTB5z/Mmc+MQYLr/6RPbsqGDX9kp8viCJyQ7GT8okb1SK9O4QYghZXVbKmrIyMp1O7CZTx/pwNMreBjf/2rWThdOLhuQwPy3UtLbyeU015R4PJr2OMQlJTEhOxmY0Hn1nIYQQYgRSUVDpYdHSHrYfjiThIY7JwYMH+d3vfgfAgw8+iNWqXe0JT5OXDZ/uZ8fn5fi8AYxGA6MK05hxQgGp6bFH3d+g13HB6ZNQgb0HawmFIqAoKAokxzs475QJpCX1zbRN9hgz02blM21Wfp8cTwxPHr+fLeXVfF5RjTcUIt3lYFpmOmNTEtHrJDGmtUA4zCflZdhNxk7JDgCDTke6w8mu+jrKPM1ku2K1CXIIWVdRzr927aTB58WkNxCNqqwpK6MgLp7vTJ5MaoxD6xCFEEIIMUxIwkMck40bN6IoCqeddhoXX3yxZnE0N3n550ufUnKgFqfLisNpJRAIs3HtPg7ur+XCb80iMyfhqMdxOax857wZlFS4Ka1qJBqNEh9rZ2xuCnar6aj7C9FXajytvLB+M8XuRiwGAya9nrLGZjaWVjJ3VA4XTBonSQ+NNfp9NHi9xB0m0eswmahqaaG6tVUSHkdxoLGBV3dsJ6JGGfuV6WtDkQh7Gtz8betWbpw1G5MUQRVCCCE6UdX2paf7jHSS8BDH5JJLLmH37t0EAgFNu2yvW72XkgO1ZH+lEKjNbiY2zsbB4nr+t2ob375+7jENFzHodYzKTmJUdlJ/hy1EtyLRKK9t2U6xu5GCxHgMX0lsNPv8fLC3mAyXi1m5mZrGWFLfiLvNi16nIy8xjni7TbN4tKBXdCiKQuQw3xpUQPminTiy9RUVeAIBxiQkdPosMer15MbGsr+xgT3ueiYm935acCGEEEKIQyThIY5ZVlaWpudva/WzY2s5sXH2TrOeHJKY7KC0pJ7K8gaychI1iHDk8QZCtAUCmAwGXDaZpaKnit2N7KtzkxXr7JTsAHBZLTR4faw7WMaMnAx0GiQaKxqb+feWnRTXNRAMRzrimpmbyTkTR2MyjIyPkASbjWxXLHvdbpxmc5ftDT4fLouF3NjYgQ9uCImqKjvr63BZLN0mzi0GA+FolLLmZkl4CCGEEF0oXyw93Wdk0/xx1PLly8nLy8NisVBUVMRHH310xPYffPABRUVFWCwW8vPzefzxxzttf+2115gxYwaxsbHY7XamTp3KX/7yl/68hGHtX//611H/TQZKi8ePzxvEHvPlDYeqqtS5W9i+u5KtOyvYsbeat//zOWWlbg0jHf6a2/z8Z9Nulr35EcveXM0f3vyIl1dvoay+SevQhpQaTyvBcASbqfthVPE2K1XNLbT4AwMcGdS3tvHCp5vZVVVHYoyd0SmJFCQloNMprNy5jze27EIdIf0kdYrCSdnZ6BSobm3tdN2eQAC318vM9AwSbCOr50tvqOrRy6eNjFeVEEIIIQaCpgmPl19+mVtvvZU77riDzz77jLlz5zJ//nxKS0u7bV9cXMy5557L3Llz+eyzz/j5z3/OzTffzKuvvtrRJj4+njvuuIO1a9fy+eefc/3113P99dfzzjvvDNRlDRuNjY3ccMMNnHLKKaxYsULrcDCZDBgMOoLBMND+xbmk1M3O3VW43a1Eo+1fk3fvqeZvL3/C9m3lWoY7bDW3+Xnhw028vXk3gXCEWJsFg07H2j0Hee5/G9lfLcmmY6VTFFQ4bOIgqqooiqJJ744NJRWUNTRTkBSP3dyekNHpFBJj7CQ77GwoqaCyuWXA49LKtNQ0LiwchwLsrq9nj7ueXfV1NPp8nJydw7ljxmgd4qCnUxRGJyTQHOg+gReMRNArOjIcUrRUCCGEEH1D0/7IDz30EAsWLGDhwoUALFu2jHfeeYfHHnuMpUuXdmn/+OOPk52dzbJlywAYN24cGzZs4IEHHuDSSy8F4LTTTuu0zy233MJzzz3Hxx9/zDnnnNOv1zPc3HfffdTX1zNu3DjOPvtsrcMhLsFOTl4Su7ZXEOOw0NjkpayyAZPJgMVspLXFT2ysjcJxadTVtbJq1TYys+JxueSpa1/6eFcxe6rqyU+Jx/hFYUE7JuLsVg7UNrDis138YN4cDDLt7lFlxbuwm4y0+AM4rV2HBLnbvEzJTCPGPLCFdKNRlc9KK3FazN0WTI21Wqj1tLGv1k1GbN/MaDTYKYrC6Xn5TEhOZlttLU0+H1ajkbGJieTGxmmSlBqKZqZn8llVFTWtrSTb7R1DWyLRKCVNjeTHxVOYKHWVhBBCiK+ToqW9o9kdSTAYZOPGjcybN6/T+nnz5rFmzZpu91m7dm2X9ueccw4bNmwgFAp1aa+qKu+99x67d+/mlFNO6bvgR4CdO3fyyCOPAPCHP/wBo9F4XMdTVRVPk5e6Gg8+b7BXx1AUhZknjsLusFBR1kBVTTPRiIrJaKCt1U80GiUzOwGj0UBqqovGxjb27Kk+rrhFZ95AkM+KK4mzWzuSHYcoikJ6nJOy+iZK6ho0inBwUlWV+tY2yhubafL6O9ZnuJxMTE+h0tOCNxjq1L7K04LJoGd2buaAFwoORyMEwxHMh6nR0d7rBAKh8IDGNRgk22M4Iy+fS8ZPYP7oMeTHxUuyowfGJCRw/phCwtEoe9xuypqbKW5sZF9DA1nOWK6YMOmwrzshhBBCiJ7S7FtFfX09kUiElJTOhclSUlKoru7+JrW6urrb9uFwmPr6etLS0gBobm4mIyODQCCAXq9n+fLlR+yhEAgECHyli63H4+ntZQ0LqqqyePFiwuEw559//nH3jCk/6GbDJ/s5sLeacDiKxWpiwpQsZp5QgDO2Z70vcguSOf/SGXzw7nb2rN1LMBSBqIrVZiK3IJnU9Figveu9Tqejvn7kdLkfCB5fAG8wRLy9++k5rSYjoUiU5q/c1I90xfWNfLC3mD019YQiESxGA5MzUjlldB4pzhgumjyeYDjCtqoaQpEoBp2OcDRCrNXKhZPHMz41ecBjNur1xNttHGxoJCGm699oJBpFpb2AqRA9oSgKp+bmkhsXy+bqKkqbmjEZ9ExISmZySioui7ymhBBCiO6oKBy9ElbXfUY6zR+jfP3JpfrFmPWetP/6eofDwebNm2ltbeW9995jyZIl5OfndxnucsjSpUu59957e3kFw8+KFSt45513MBqNPPjgg0dtHwlHCQRCGE0GjMbOT/2L99Xw+t/X09zkJS4hBnuMAW9bgI/e20H5wXouvvIEnK7ub54PZ3RhGjn5STT7AtTUNJOc7CI2zobR2PnlHI1GMXYzm4voPbPBgFGvay+02XWyCsKRKAqKPKH9wr5aNy+s24y7zUtyjJ04m5W2YJAP9hZT7G7kujnTSXbE8N0TprOv1s2e2nr84TCJdhsT0lNIccRoEreiKMzMy2BfrRtfMITV1LmHV1VzC0kxdsalydAD0XOKopAbG0dubJzWoQghhBBimNPsriQxMRG9Xt+lN0dtbW2XXhyHpKamdtveYDCQkJDQsU6n0zFq1CgApk6dys6dO1m6dOlhEx633347S5Ys6fjZ4/FoPgWrVoLBIIsXLwZg8eLFjB49+rBtfd4gn28q4fNNB2lt8WM0GRg3KZOpM3JJSHQQDkf438rttLT4yclP6khKWW0mXHE2ivfVsuGTfZxxzqQex2kyGTjhxNGsfGcrCYkOdLrOiTC/P4TBoCdbpqftU7F2C6PTkth4oByXrevUkrWeVhKdNvJT4jWKsGf8oTA7ymv4vKyaFl+AhBgbU3LSGJuWdNw1SCLRKP/Zvocmr4/RSQkdvyuL0UCs1cK+Ojf/232Ab82YjEGnozA1icLUwZNAmJaVzu7qejYcrCDGZMRltRCORqlv9WI1Gpk/aUy3dUeEEEIIIYQYLDSr4WEymSgqKmLVqlWd1q9atYoTTzyx233mzJnTpf3KlSuZMWPGEWtMqKraacjK15nNZpxOZ6dlpDIYDNx9991Mnz6dO+6447Dt2loD/OuVdbz9+mYaG1oxmvQEAyE+em8Hf//LGqoqGiktrqeyopGUNFeXG2ODQY8z1saOLWX4fL2r6TFhQiYpKS5KS+s7Zm4B8PmCVFQ2kl+QRH7+4LmBHA4UReGkwhxibRaK6xo7ajiEI1GqGj0EQhHmjsvDNsBFNnujxRfgLx9t4i8ff8bW0mqqm1rYcKCcZz7YwGvrtxIKR4D2JM6Hu4t5e+sePtpTQl1L2zEd/6C7iYPuRtJczi6vf71OR2KMna2VNZ1qegwmZqOBK2ZO5pLpE4iz22j2B/CHwkzOTOXaE6cxIzdT6xCFEEIIIUaM9pn9erhoHfQgoGm/8yVLlnDNNdcwY8YM5syZw5NPPklpaSmLFi0C2nteVFRU8PzzzwOwaNEiHnnkEZYsWcINN9zA2rVreeqpp3jppZc6jrl06VJmzJhBQUEBwWCQFStW8Pzzz/PYY49pco1DjU6n4+qrr+aqq6464tCiDZ/sY/f2CjJzEjCZvnwZxSc6KC2u4/13tjFhchbRSBSzuftklM1uwtPkw9sawGrt+Q1ybKyNCy+azooVW6iqbCKqqqiqislkYNy4dM49dwoGGdLS5/KS47ny5Kn8Z9NuKhqaCUfbh7EkOmzMmzqGk8bmah3iMfnP5t1sLasmNzEO81eGQ7X6A6zZU0pijJ2QqvLx3mKafX4UlI66FacV5nF6YUGXnkVf5fEHCEYi2Ezdv/7tJhO1La20+P3E2gZnTwmL0cDpY/M5qSCbZl8Ag05HbDc9e4QQQgghhBiMNE14XHHFFbjdbu677z6qqqqYOHEiK1asICcnB4CqqipKS0s72ufl5bFixQoWL17Mo48+Snp6Og8//HDHlLQAbW1t3HjjjZSXl2O1WiksLOSFF17giiuuGPDrG2qCwSAmU3vi4Ug3ND5fkG2by3C4rJ2SHdBeLDQ5zUVZSR2Z2e3DGiLhKHpD185EoUAEo1GPydz7l2FGRjzf/e5cDhyopb6+FZ2ikJ4RR1ZWPHqZFrXfjE1PIj85ngM1DXh8fsxGAwUpCdgtg79nB0Cdp5Vt5dUkO2M6JTsAYixm7OYA/9q0A/QK8XYro1MSURSFqKpS39LGW5/vxmY2Macg+7DnsBoN6HU6guEwpm5qmgTCYYx6HZbjnAFpIJgMBpIcUpdFCCGEEEIMLZp/g73xxhu58cYbu9327LPPdll36qmnsmnTpsMe71e/+hW/+tWv+iq8EWPjxo1ceOGF3H///Vx77bVHbNvi8dHW4sMVZ+92u81mprbagz3GQnxCDO76FpJTXZ3aqKpKg7uVaTPzcDh7VrT060wmA4WF6cd1DNFzRoOesRlDc8hQdVMrHl+AUSndFwV1WMxsqaiiICWeRMeXr3OdopDsjCHQ0MzqvQcpysnAdJheRHmJcaQ5HVR7WsmOj+20TVVValtamZaVTmI3s6AIIYQQQgghjp88Aheoqsott9xCRUUFK1euPGp7o0GP3qAj/EWNg6+LRKIoQIzDwsyTRhEIhKmtbu5oH/CHKDvoJi7eTtEJBX15KUIcE0VpX9TDDGxs8fvxh8LE27tP6iU57NQ0t1DZdPgprE0GA2cWFqAoUNrQRDDcXu/EFwxxoL6ROJuVU8fkyfAQIYQQQghxVIempe3pMtJp3sND9E5bi4/dW8rYtW4fTTVNxCbGMG5GPuNmj8byxXyhqqpSddBNyd5qgoEwDqeVggkZxCZ0fqr98ssvs3r1amw2G7/5zW+Oeu7YeDuZOYns3VnZbe+MRncrrjgbWTkJWG3pKIrCutV7qShtQFVVDAY9mVkJnDZvAhlZQ2M2DzG8ZMS7cFktNLR5O/XgOKTR2z5Mx3mY2jJ6nUJEVQlHo0c8z/TsdFRU3t91gLLGZqKqilGvJz8xjm9MGEN+orz+hRBCCCGE6C+S8BiCSvZU88azH7L1f1tpq/cQjURBgfdesDDxxDFccvN80vJTePefG9m+oRh/WxBFp6CqKq54O3PnT2bqiaNRFAWv18v/+3//D4DbbruNzMyjz7ygKAozTiigrKSeyvIGUlJj0Rt0RKMqTQ1ttLUGOOMbk7DHtBdinDlnFBOnZFNaUkcwECbGaSU7J7Hbuh5CDIQ4u5XpeRm8t20fFqORmC9qj6iqSpPXjwJkxDlpCQSJ76b+RrPPj8NsOupwFEVRmJGTyeSMVA7UN+ILhXBazOTExx33tLdCCCGEEEIMNmVlZVxzzTXU1tZiMBi46667uPzyyzWLRxIeQ0xDnYc3X1zN9g+2EWrxkpiZgNFsJBKJ0lTfwra1e9ChkjNrLFvXlZCY5iI1M7694GJUpb66mXdf24jNYWXs5Cx+97vfUV5eTk5ODj/5yU+OOY6CManMv3AaH6zaQXmpu33KI1Ulxmll7pnjOeHkMZ3aW20mxo7P6NtfhhDH4exJo2n1B/mspIKqpihGvZ5QJIzNZGL+1LG0BYN8vPcgDosZo/7LOh3BcAR3i5fTx+UTazu2+jMmg4HC1KFZ70QIIYQQQmjv0FSzPd1noBkMBpYtW8bUqVOpra1l+vTpnHvuudgPM1S83+PR5Kyi13Z+dpCynZVEfAFcyS4MX0x5qdfriEt00NzYxv4dFVQ1hcgYlYrD9eUTaJ1OITk9lrL9NWxevQeTI8xvf/tbAB544AGs1p4VD50wJZu8USkU76uhxePHbDaQW5BMXEL3hSCFGEysJiPfOmEyRfkZ7Kqoo9UfIC7GyoSMFLITY2n2+alr9bK7qg6b2YTVaMAXCuELhhifkcyZ40dpfQlCCCGEEEIMKmlpaaSlpQGQnJxMfHw8DQ0NmiU8pE/1EHNgRyURv59wOIKqKEQiXxYO1el1KIpCIBilrqIBV3z3iYe4RCcVB+v5x9//id/v59RTT+00tW9P2OxmJkzJ5oS5Y5g2K1+SHWJIMeh1jE1L4sIZ47nq5GmcO7WQnKQ4FEUh1mblupOmc/nMSaQ6Y9ApCmkuB5fPnMy1J07HZbVoHb4QQgghhBghBqpo6Ycffsj5559Penp7LcZ//etfXdosX76cvLw8LBYLRUVFfPTRR90ea8OGDUSjUbKysnocR1+RHh5DjM8boKm+hWZ3K95ABEVRsNrNOFxWTGYjigIoCtFoFBQVunmR6/QKakTle99dwEknn4DL5RpxM0VEoyo63fFdczSqUlbRwIGSOny+IC6nldEFKSQlOkbc73O4irGYOWVsHnPH5BKORjHodPJvOwQ0en20+gNYTf8/e3ceX1dV7///tc98MpyTeU6apPNMSSstWGZaiiIiekFGFVCkiLQ/vV8LItp7lXsVsRdlkElEBlFRAa1CmYcW6EjneUiaZp6TkzPv3x+lgZC0NGmSk+H9fDz240H23mvtz4bscPbnrPVZdlLj4/TfTEREROQ4tbW1MX36dL7+9a93+6X4M888wy233MJ9993Haaedxm9/+1sWLFjA1q1bKSgo6Divrq6Oq6++mocffnggw+9CCY8hpKXJR2VZPY1Nfkzzwxd2E1oaffh9AVIyPESjJg4HODzx+NuCxCV0/Ra6pdGHNyWBxKR4Tj311BjcSWy0tvrZsqWczZvKaGsLkJQUz9SpeUyanIvTae9RX4FgmBdf2czGzQfxB0JYrQaRiMnb7+7m1FNGc9opY084oSKDh2EYnep4yOBU2dTC6zv2sqWiGn8ojMNqZVxWGmeMK6IwNTnW4YmIiIjERHNzc6efnU4nTqez23MXLFjAggULjtrX3XffzbXXXst1110HwLJly3jxxRe5//77ufPOOwEIBAJcfPHFLFmyJObvm5rSMoSseXMH7b4AKbmp2JwOwu0BrDYLrjgHoWCEmkONWA3IyPIw4eRCqg42EIl0Xjaz3Rdg0471pBW6cDhHTr6roaGNP//pfZb/cwPV1S2Ew1HKyup47vl1/P1va2lvD/aovzfe2cn76/bh8bgYXZROYUEaxYVpWK0Gr765nU1bD/bTnYhIdyqaWnhs5Vre3n0Au8VCZmICbruNNfvLeXzlOvbW1Mc6RBEREZHeM3u5Afn5+Xi93o7tSGKip4LBIGvXrmXevHmd9s+bN4+VK1ceDtM0+drXvsbZZ5/NVVdd1avr9KWR88Y7xLW3Bdi6Zh9ZuSmkpnvY5g9Qv6+CcH0LFpuVSMQkGo4Ql5fE6ZfMZvLpk/nHk6s4sKuSuPjDyQ1fq5/W9lb+/vqDPLPiHl4reo3Zs2fH+tb6nWmavPbaVvbvr6GgIBWb7aNv6gOBEFu2lpOZ5eXMMyceV39Nze1s3FxKkjeOxI+NoDEMg9SUBNrbG1izfj+TJ+Zq6VGRAfLa9j2UNzYzLiOtY3SVy27D63axu6aef2/ZyQ2nn6KRVyIiIjLilJWV4fF4On4+2uiOT1NbW0skEiEzM7PT/szMTCorKwF45513eOaZZ5g2bVpH/Y8//OEPTJ06tXfBnyAlPIaI1uZ2fG0BklITcMc5iUt0UbY9lco9FfgbW3E4bdjjXcz72lmc8R+nYrFY+Mr1Z7J13X62rNlHuy9I4fhs/vXO0zS1NDJhwgRKSkpifVsDora2hd27qkhLS+yU7ABwOu14Et1s3FjGKaeMxu12fGp/hyoaaWr2U1iQ2u3x5OQ4qqqbqW9oIyMtsU/uQUSOrq7Vx9aKajISErokNAzDIMebyP7aBkobGjW1RURERIakjw3Y6FEbAI/H0ynhcaI+WR/NNM2OfZ/97GcP15McJJTwGCLsDhs2u5VQIIw7zoknKZ7Js8cyefZYzKhJOBTmUFkdo2cUY7EcHlWQmBTHKWdP4pSzJ2GaJjt37uSq7/4eODzXym7vWd2KoaqurhWfL0hGRvcPucfjpqa2mYb6Nty5n57wiH64oPXR6iBaLAZR08SMxmDh6yEqGjXZV13PptJKalvaSHQ5mZSXyfjcNBw2/Zk6IhyJUlbXSHswRILLSV6KVyMWgJZAAH8oTEpc90trxznslDeGafUHBjgyERERkeEjLS0Nq9XaMZrjiOrq6i6jPgYLvUkMEd6UeIrGZbN5zV4SkzqvOmBYDBrqWklOSyS/OL3b9oZhsHjxYsLhMBdeeCHz588fqNBjzmq1YBiHX6qt1q4vh5FIFIvFwHqc00/SUhKIi3PQ0hrAk9i1KGxzs58kr5skb/cvX9JZOBJl+brtrNxxgEAojNNuIxiO8P7ug0zJz+Arp04jwdW7YXfDybbyal7ZtJuyukaC4QhOu43C9GTOnTqGMVlpsQ4vptx2O3ar9XCh0m4SZIFwBLvVgmuEJHlFRERkGDKNw1tP2/Qhh8NBSUkJK1as4OKLL+7Yv2LFCi666KI+vVZfUcJjiDAMg5PnjuPA7krK99WQkZuMw2knEolSX91MwB/iswumdbsqC8Dy5ctZvnw5drudX/7ylwMcfWzl5CSTnBxPfX0b6eldp5jU17eSnZNEWjfHupORnsjY0Rls+KAMt9uO/WPTZHztQdp8AT47Z2yPV34Zqd7fXcbrW/aS7onHG/fR768/GGLD/goSXE6+cuq0GEYYe9vKq3n67Q20B0NkJSXisttoD4bYWVFLdVMrV86dQXFm91OsRoKMxHhGp6ewsbySRJezyzDLyuYWcpO8jEpNik2AIiIiIkNEa2sru3fv7vh53759bNiwgZSUFAoKCli8eDFXXXUVM2fOZM6cOTz44IOUlpZyww03xDDqo1PCYwgpGJPJ5684lTf+sYHKg/VEIyaGAd7UBE6bP4WZp4/vtl0wGGTRokUAfPe732Xs2LEDGXbMxcc7mXFyIa+8sgW73YrX68YwDKJRk/r6VkwTZpYUHfcID8MwOPeMSbS0+Nm7vwaH3YbDaaO9PYhpwoxpBcw6uaif72p4CEUivL+rDKfd2inZAeBy2MnwJrCptJIzpxST7kmIUZSxFYlGeWXTbnzBEEXpyR0v83FOB6MzUthdVcfrW/dSlJHS5UV/pDAMgzPHF1Na38je2npyvB7cDjuBcJiKphbsVgtnTxytpYVFREREPsWaNWs466yzOn5evHgxANdccw2PPfYYl156KXV1dSxdupSKigqmTJnC8uXLGTVqVKxCPiYlPIaY0ZNyyR+dSenuKlqb23E6bRSMzSQ+8ejTJ6LRKJdeeimPP/44t99++wBGO3jMmTMGvz/EunX7qd/XejjhYZp4PW7OOWcSU6fl96i/JG8cl148i607KtiyrZzWtgCj8lOZMiGX8WOzsNv1YnU86lp8VDe3kpIQ1+3xpDgXu6vqKK9vHrEJj7K6JsrqGslKSuyS0DAMgyxvInuq6qlqaiUraeQWyR2TkcoVp5zEi1t2UVrfSDASwWaxkJvk4ewJo5melxXrEEVERER67USKlvbEmWeeiWkeu+WNN97IjTfe2IveB54SHkOQw2ljzOTc4z7f5XKxdOlSfvjDH+JwfHpRzuHIZrNy7rmTmTY1nz17q/H7Q8THOxk7NpOUlN69SMfFOZk5o5CZMwp73La1PUB1XQsmkJmaSIJbNSqke+3BEMFwBLe9+z/XLoeN2tY2fMHQAEc2+IzPSmd0eioH6hto8QeJc9gpTE3GYVMCUkRERGQkUsJjmPv4EkEjNdlxhGEYZGZ5yczyxiyGQDDMm+v3sGH7QRpb2gFISnRz0oQ85s4oxuUYWXU/UhPjyPAkUN3USryz6+9no89PostJbkrfLaM11MQ7HbjsNnyBEPGurv+OfIEQLruNhG7+/Y1ENquF0ekjt56JiIiIDE+meXjraRuAWbNmYbVaWbhwIQsXLuz74Aax4ytaIEPSunXrmD17NitXrox1KMLh1UheeHMzL7+7g2A4Ql6Gl7wML6FwhBXv7uD5NzYTjgyeNasHgt1q5TNj8/GHwjT5/J2O+YMhqptamVqQNWKnswDkpXgZlZ5MRWNLl+GFpmlS1dTKuOx00j3xPerXNE0O1TeztayKXRW1BELhvgxbRERERAaJ1atXs3Xr1hGX7ACN8Bi2TNPku9/9Lu+//z6/+c1vOPXUU2Md0oi392AtG3aUk53mId790bfx6ckJxLsdbNx5iGljc5hQODjXsO4vnxmTT21zGyt3HKC6qRWX3UYgHMEw4KTCbBac3H0x3sGizR9k26Fq6lp9WC0WCtOSKMpIwWrpm3yyxWJw3tSx1DS3sbuqjkxvAm67HV8wRFVTKxneBM6cXNyjgqUVDc28uH4nuytq8QVC2CwWMpISmDupiM+MzR+xxU9FREREZHhRwmOY+tOf/sTbb7+N2+3mf//3f/ukT9M0qa1tobS0jkgkSnJyPEVF6dg0P/64bN1bSSQa7ZTsOCLO5SASbWHb3qoRl/CwWS18vmQik/Iz2FxaRW1LG4kuJ5PyMhmfm4bDNnj/TG0/VMPf12yhsqmloyqUw2ZlYm4GX5o1pcvKM701OiuVK+bO4I0te9hdVU9dqw+X3UZJcS5nTi4mvwfLrdY0tfLkG+s5VN9MZlICOckeQpEoNU2t/HXVZkLhCJ+dpFWGRERERAYX48Otp21GtsH7JiG95vP5+P73vw/AkiVLyM/v2Qok3fH7Q7zy8ha2bD2Iry0AGFitFnJyk5k3bwr5+cNvznxlTTNbdh5iz/4aTKAoP5Up43PIyUzqVX/Nrf5jFk902K00tbb3LtghzmIxGJOVxpistFiHctwONTTzp3c30tLupygtBduHyxr7AkE27D+EAVw19+Q+G+lRnJFCUXoyVU2ttAdDJLgcpCXG93g0xvu7yjhY18SYrNSO2Bw2K7mpXioaWnhjy16mF+WQqEK6IiIiIjLEKeExDP385z+nrKyMgoICvve9751wf6ZpsmLFZtas3ktqagIZ6R4MwyAQCHPwYB3PPbeOyy6bTVpaz5bEbG0LsGtPFU3N7dhtFgpHpZGTlTQohtNv3VXBP17ZRGOTj7g4BwZwoLyedZvLuODsKUybcPyr5ByR5HETCEeOejwQiuBNOPrywjK4rNl7kLqWNsZmpXX6nY1zOshN8bKtvJr9NQ2Mzuy7ZKBhGCe09Kw/GOaD/RUkx7u7TcRkeOPZV13PropaTi7u+e+4iIiIiPSPEylaOpIp4THMlJaWdkxhueuuu3C7T/wFuqKikS2bD5Ke7iEx8aMh+k6njYL8NPbtr2HTxjLOOnvScfe5eVs5L7++lbr6NuBwUsXtdjB5Qg7nnzMFlyt2q5XUN7ax/LXNtPuDFI/66GXWNE0qqpv512ubyUxLJDOtZyuHTCjK4v3NpbS1B4j/xLfnbe1BbBYLk4qzjtlHNGpSWlFPRW0zANlpHgqyU7BYYp8kGkmiUZMtB6vwxLm6TdDFOx2U1zf3ecLjRAVCYQKhMHFHWQ3oSBKkPaAlbkVERERk6Iv5Ki333XcfRUVFuFwuSkpKeOutt455/htvvEFJSQkul4vi4mIeeOCBTscfeugh5s6dS3JyMsnJyZx77rm8//77/XkLg8qDDz6I3+/n9NNP58tf/nKf9HngQC3t7UESEroOcbdYDBITXGzdWk7kOFcY2V9ayz9f3EhrW4BR+SkUF6ZRXJhGYoKTNev3s+L1rV1WoxhI23ZXUt/QRu4nRpsYhkF2hoem5na27arscb/FuanMmJBHRW0L1fUthMIRQuEI1fUtVNQ2c9L4XEbnH31KR31TG0+88D6/+9u7PP/qJp5/bRO/+/u7PPmP1TQ0+3p1r9I7JiaRaBTbMaarGAZEooNr1R2300ac04Ev2H1C4/AqQQYJ3Sx/KyIiIiIy1MQ04fHMM89wyy23cNttt7F+/Xrmzp3LggULKC0t7fb8ffv2ccEFFzB37lzWr1/Prbfeys0338yzzz7bcc7rr7/OV7/6VV577TVWrVpFQUEB8+bNo7y8fKBuK6aWLl3K73//e+65554+mxoSDkUxLMZR+7PbrYTCEaLR40tSrNtwgFZfgJwsL9YP6x4YxuHESVpqAlu2lVNT19onsffGwYoGHA5bt/drGAYul50D5XU97tdmtXDh6ZOZf+pEnA475TVNlNc04XDYmTd7AheePqWjDsQntftDPPvSBrburSQ1KZ7R+WmMzksjxRPPlt0V/HXFBvzD+Fv5xrZ2Vu46wD83bGfF5l3sra4/7t+3/mC1WMhL8dLcHuj2eCgSwTAM0nq4VGx/c9hsnFSUQ1Obv9slkCsbW8jwJjA2Jz0G0YmIiIiI9K2YTmm5++67ufbaa7nuuusAWLZsGS+++CL3338/d955Z5fzH3jgAQoKCli2bBkAEydOZM2aNdx1111ccsklADz55JOd2jz00EP85S9/4ZVXXuHqq6/u3xsaBCwWS5/fp9frBhMikWhHguLjWlv9jBqVhs326fkzny/A3gO1JHvjuk0oeBJd1NW3Unawnowe1gTpKxaLhegxRphETbPXhSgddhtnzxrLKVNGUV3fgglkpiR2u3LLx23fV8Xeg3WMyk7B/rHCp/FuBwXZKew5WMeO/dVMHz/86i6s3XeQf36wg7pWHwaH//277Ham5Wdx8czJxDtjMxqhpCiPLeXVNPraSYr7aOqYaZocrG8iOymRCTkZMYntWGaPK2DXoRp2V9aRlhhPottJMByhpqkVh93KedPHEOeM3ZQyEREREZG+ErMRHsFgkLVr1zJv3rxO++fNm8fKlSu7bbNq1aou58+fP581a9YQCnX/7bbP5yMUCpGSknLUWAKBAM3NzZ22oWbNmjW0tbX1S9+jx2SSlpZAZWVjl6kmPl+AaNRk+vSC4xpREomYRKPdJ07g8AgKwzCOe3pMfyjKTyUSjnYbQzRqEgyEGV14Yt+Ax7sdFOWmUpyb+qnJDoCd+6uwWo1OyY4jHHYrBrDrQPUJxTQY7ays5a9rtuAPhhiTkcrYrDTGZ6eTkuDm/b1l/GPD9phNf5qcl8np44to8vnZU1VHTXMblY0t7KqsJSnOzRdnTj5qrYxY8sa7uPyMGZwxqZioGeVQQzONbe0UZ6Vy2dyTmKFipSIiIiKDkIHZw+3IsrSzZs1i0qRJ3HvvvbG9hRiI2QiP2tpaIpEImZmZnfZnZmZSWdl9fYTKyspuzw+Hw9TW1pKdnd2lzQ9+8ANyc3M599xzjxrLnXfeyU9+8pNe3MXg0NTUxAUXXIDD4WDFihVMnDixT/uPj3dy7rlT+Mc/17N/fw1JSfFYrRZaWvyEQmFmzChk4qTje0mKi3OQkpxAZVUjno8VQD0iEAhhsVhISY7dVIAJo7PIzvRSWt5Afm5yxzSTSCRK2aEGMtM9TBxz7OKifc0fCGGzHn1JW7vVgj8QHsCI+p9pmry7u5S2YJCxmZ1rmyS6nGR6E9hYWsHp44vIPoGVS3rLYjH43IwJFGYks25fOWV1TbgcNmaPLeDkotyYxHS8UhLiuHjOFM6aNprGtsPLJWcmJfTZEroiIiIiMnisXr0aj6dnCy4MFzFfpeWTowJM0zzmSIHuzu9uPxxenvXpp5/m9ddfx+Xq+nJ9xJIlS1i8eHHHz83NzeTn5x9X/IPB0qVLqampYfz48YwZM6ZfrjFhYg5x8U7Wr9/P3j3VBIIhsrK9TJ9ewLRpBdjtR38Z/zir1cJJU/N5/mAdPl+QuLiPRjdEoyYVVU0U5KVSWBC7lS0S4p1cPP8k/v7SB5SW13/4u2ViRiErw8MXzp1GkiduQGPKTPOwbV9Vt8+HaZr4g2EyUhMGNKb+1hYIsqe6jtT47v9de90uqpvbOFDbELPkgsViMDU/i6n5WUSiUSzG0WvdDEZJ8W6S4rUUsoiIiMigZ3649bTNCBezhEdaWhpWq7XLaI7q6uouoziOyMrK6vZ8m81GamrnF+S77rqLn/3sZ7z88stMmzbtmLE4nU6czq4rkAwFO3bs4J577gEO10Cx23s/hL6tLcDOHRXs3VtNKBwlO8vLhIk5ZGZ6ASgoSKWgIJX29iCRSBS323HUqSnHMn1KPgcPNbB+YykWi0FCvJNQOEJLa4CsDA/zz5mCrZupGwMpNyuJr39lDjv3VnGwsgHThNzMJMaPziQ+buB/VyaNzuL9TQeob/KRmtR59EtdYxsJcU4mje46wmkoi5gm5jHqpRye/gThQbISikZHiIiIiIgMLjFLeDgcDkpKSlixYgUXX3xxx/4VK1Zw0UUXddtmzpw5vPDCC532vfTSS8ycObPTi/4vfvEL/vu//5sXX3yRmTNn9s8NDBKLFy8mHA7zuc99jvPPP7/X/VRVNfH8c+soL6/HarVitVrYtrWc1Wv2cs7Zk5lxcmHHue7jqDlxLHa7lc/Nm0bRqDQ2bjlITW0LCXEuTikpZtrkPFJTBsdIhTi3g5Mm53PS5NiP9snPSub0kjG8+v5OWg4FSEp0g2nS2NqO1WLh3Dnjyc3wxjrMPpXgdJDuSeBgfRPeuK4jtNqDIWwWCxmewfH7IiIiIiIig0tMp7QsXryYq666ipkzZzJnzhwefPBBSktLueGGG4DDU03Ky8t5/PHHAbjhhhv4zW9+w+LFi7n++utZtWoVjzzyCE8//XRHnz//+c+5/fbbeeqppygsLOwYEZKQkEBCwvB6MVq+fDnLly/Hbrdz991397qfYDDMP/+xgfLyegoK0jpGbZimSXV1MytWbCYlNYFRo9I+pafjZ7dbmT4ln2mT84hEolgsFiyWoTMVYKAZhsEZs8aQnpLAuq1llFc1AjChKJOTJxUwsThzSE2lOB5Wi4VZxXnsq66nxR8g0fXRyJpINMrBhibGZKRSnH70gsQiIiIiIjJyxTThcemll1JXV8fSpUupqKhgypQpLF++nFGjRgFQUVFBaWlpx/lFRUUsX76cRYsWce+995KTk8M999zTsSQtwH333UcwGOTLX/5yp2vdcccd/PjHPx6Q+xoIwWCwo+7IzTffzLhx43rd19491Rw8WE9ubkqnKSqGYZCZ6WXf/ho2bz7YpwmPj18j1tNXBoNo1KSssoG6pjashkF+djIp3s5TVwzDYPKYbCaNzsLnP7wqUZzLPuwSHR9XUphLWV0j7+4uo6a5jQSXg1AkQps/SG6Kl4tnTu4oKisiIiIiIvJxMS9aeuONN3LjjTd2e+yxxx7rsu+MM85g3bp1R+1v//79fRTZ4NbW1sZJJ51EQ0MDt99++wn1VVXVRCQSxeHo/tchMcHF3j3Vn1pQVnqnuq6Ff729lX0H6wiEwmBCYryTkybkcfbscbg+sbSpYRjHtZTtcGC3Wrm4ZApjM9NYd+AQlY0teNwuzpk0hhmjckhJGNjisSIiIiIisWCah7eethnpYp7wkN5JTk7mj3/8I7W1tXi9J167QXmM2GhqaefPL62nrLKB7DQv8W4HUdOksbmdN9fsJhAK88Wzp43oRJPNauGkUTmcNCpHSTcRERERETluGgs+xKWlnfg0k8xMLxaLhWAw3O3xllY/RcXpetHsBxt3HqK0ooGinNSOURsWwyDFG0dGaiIbd5Rz8MN6HdL98tMiIiIiIsOf0cttZFPCQygenUFeXgrl5fVEIh8t8XmkaGmc28HUqbFfqWQ42rSznHhX98v7JsY5afeH2FtWG4PIREREREREhjZNaREcDhuf+9xJPP/8OkpLazuWpfUHQng8Ls49e0qfFiytrW6mqrIJgKzsJFLTE/us76HENE18/hAOe/dFWw3DwLAYBEORAY5MRERERERk6FPCYwSJRqOHX6I/MS3A7wtQvesQnpYWGlt9BG1WknNSmHjaWCZOzCEz88RrhAC0tfp59d+b2bmtnLbWAGAQn+Bk/ORczpo3hfgE56f2MZwYhkF6SgK7D9SQltz1eDRqYpomifGugQ9OREREREQGD/PDradtgFmzZmG1Wlm4cCELFy7s68gGNSU8hjnTNNmzYT+b3t5G2Y5DWKwWxp1czNS5E8kuzqSptpkX7n+RvRtLsVgt2Ow2wu0BmivqMLMSST99fJ/EEQyE+cdf17Jt00HSMhJJy/AA0NzUzpp3d+NrDXDxV0/BfpTRDsPV9PG57Nxfja89SNwnVl6prm8hOTGO8UUZMYpORERERESGutWrV+PxeGIdRkwo4TGMmabJO39/n7f++h7hQIiE5ARC/hArn1/N5ne2c8F157Dp7e3sXr+f/PE52J0fLX/aVNPMO39/n/TcFKZ8duIJx7JnZyU7t1WQm5+C0/XRdbxJcbhcdnZuO8SenZVMmJx7zH4ikSjhUAS7w4bFMrBFeKprW9i05SA7dlUSjkQpyE1myqQ8Rhf1vqDr5DHZ7CqtYd2WUtxOB94EF5GoSX1TG3a7lfmzJ5Ls0dKrIiIiIiIj2QkM8BjRlPAYxvZvLuXtv75HXIKb5NFZHfvTclM4tLuSv/16OeFQhMxR6Z2SHQDedA/N9a1seG0zk04dj8VyYvVtd26vwMDslOw4wumyY2Kye3vFURMejQ1tbFp/gC0flBHwh0j0uJl68iimnFSA+xMjI/rDnn3VPLd8A/UNrSTEu7BYDNZtLGPztkOcfuo45p46tldJD7vNykVnTSU33cvarWU0tviwGAbjijKYNWUUE4oy++FuREREREREhj8lPIaxLSt3EPSHyPlYsgMO147ILs5kwxtbwISC8d0nGZIyPFQdqKG1oQ1P6okVFvW1BrDbu/91M02TiC/A9pXb8Zgh4r1xjD6pkKT0w7VDDuyt4YVn11Bd2YTH68bhtFFT3czyv69j945KvvDlWf1a/8PnC7B8xSZaWv0UF340miM9DRoa23hz5U5yspMYU9y7qScOu41TZxQza+oomlv9WCwGSYluDMPANE1C4QiGYWDrZiUXERERERER6Z4SHsPYvs2lRCNRGmubSUiKw2b76D+3xWrBYhj42wNH78CEvlq7OSUtgV3bD3XZH41EObBuN7vf24Un0UnbgUpM08Sb5mHC6ZMI2By8/K9NNNS1kpwSj8NhJTklgaTkeILBMDu2lLM6J4kz503pkzi7s2N3FdU1LRTkp3QZxZGcFE9jUy2bth7sdcLjCLvNSmpSPACRaJTN+ypYt+sgh+pbsBgGk0ZlUDI2j7y0pC5tTdOkrqmNYCiCJ95FQtzIKgArIiIiIjKsaU5LryjhMQy1Nft452/vseWdHbQ0tOLe5cKd4Ca7OIOc0Vkd01OcbjvRaJS2Jh8JH75of1xjTTOFU/JJSO56rKfGTcph/eq9tDS1k+h1d+wv33SAPe/vxOawM2FmMUnJCUSjUfbvruGPv3sbT04Kbb4QHq+bSCTK3t3VNDW2M2FyLg6HDY/XzeYNpZzy2XG44/pnaktdfStgHnWERUK8k7LyekzT7HUtj4+LRKP8a/V23tq8D0wTT5ybUCTCm5v2sXFvBZfMncakgo+muuwsreHdD/axv7KeSDiK2+1g6pgcPju9CG+i+xhXEhERERERGb40Rn6Y8fsCvHD/i6x8bg3edA8Op514bxxBf5A9G/azf0sZJiaB9iBx3jgmfGYM1aU1BP3Bjj5M06ShqgkMOOmsKSdcvwNgVFE6JaeMpqG+jUMH6/G1BWiub2X3ml1EMSgcn4P3w6SLiUFj1CAcNQm1tGMxDNxxDuLinXi8bupqW6g41ABAosdNa6ufpkbfCcd4NBar5ZjZ0WjUxGa19kmyA2BbaTVvb95PSkIcRVmppHriyEhKYEx2Ku2BEP94dyutH47M2byngmdeXMe2/VUkuBykJcdjRk3eWLOLZ1asp6m1vU9iEhERERGRWDJ6uY1sGuExzOx4fzc71+whb1w2kXAUX5OPtgYfiSkJBAMhKvZU4UlLpLmmhTEnF3HBdefw79+9xu71+wCw220E/EHiEt2c/uXZTJw9tk/islgMzp4/ldT0RNa/v4+62hZaKusxwhEmnVxETkFqR8KgqSVAW3uIpKQ42lr9kGDFNMEwwGq14HDYqK5oIjc/hXA4gtVqwdqP9S3ycpKx2qwEAiGcnyjuapomrW0BZp1c1GfXW7+nnIgZxRvv6rTfMAxyU73sq6pne1k1UwqzePm9HYRCYYpyPppu43LYSUpwsbu0hjVbyjjnlHF9FtvxCEUi7D5US1ldE6ZpkpmUyPjcdNyOrgVrRURERERE+osSHsPMlne2Y7XZcLgOT+8YN3M0u9fvo7m+FdM0aWtqo3TrQT6zYAYXXH8uSelevrzo8+zesJ89G/bR3hogLTeZ8bPGkDM6q89GLQBYbRZO/kwx004eRWN9G3vW7+NfNXXkfizZARAIRYiaJnabFZsBFoeV9vYg8fGH61I4HFaCwTChUIT6ujYKi9JJTT96UdXWVj+NjT6sVgsZGZ4eJ0eKR6VRXJjGzt1V5OUkdSQ9IpEo5RWNpCTHM3XSsZfTPV7RqMnBmiY8ble3x61WCyZQ1+xj78E6qutbycvwdvnvZLNZ8SS4+GBnOZ+dUYzTMTCPek1TK8+u2syeyjoi0ShwOFGTl+rl4tlTKMxIHpA4RERERESGFdXw6BUlPIaZproWXPEfFaz0pnmYfuZk6isbaW9pp+ZgPTPnTefS//wiVpsVAIfLwaTZ45g0e2BGAthsVtIyPEQn5RLviaO1oY3ElISO41bL4eFXfl8Ap9tBRn4KZQfqaTeCuNx2IhETwwJ1NS3YbBZOnl2MxdI1MdPa6ufdVbvZvPkgbW0BLBaDzCwvM2cWM3Vq3nEnc2w2K19YcBLP/2sDe/fXEglHDg83ATLSE1lw7lQy0j198u/GMMBhs+IPho4dk9VCiy+A+WFiqDtxLgdt7UF8/uCAJDwCoTB/XrmRXYdqGZWejPPDVXlC4QiltY38+Z0PuPa8z5CSENfvsYiIiIiIiCjhMcx4UxOpr2jstM9mt5GRn4ZpmoTDUQqnFHQkO2IpPS+V0TMK2fj6VuI87o6YvAlO7BZobQ4ydlo+o0ZnYlgsVJQ30NTgo60tQHJKAvEJTuaePYkJk7uOrmhvD/Lcc2vZsb2CpKR4MjI8RCJRKisaeeH5dbT7Apwye8xxx5rkjePyL5/C3gO1HCyvJxKJkpaayLgxmcT34YoohmEwpTCLF9fuIKubIqht/iAOm5XCzGRaWw/X8YhEo1i7qbMSCIax26y4nAMzlWRHeQ17q+opzEjB8bHfL7vNSlFGCrsra9l0oJIzJhcPSDwiIiIiIjKyKeExzEw+bQK7N+wn0B7E6e68aklzbQvxXjejTyqMTXCfYBgGZ116Go3VzezfWkZ8YhzOOAftLX4cwQBxyfG4kxMAk8LRGSSlxHNgbw0ZWV7OvWAanzltLIme7lch2bz5IDt3VJKfn4rjY6MbcnNTqKlp5p13djF+Qg5JScc/2sBmszJudCbjRmd++sknYMaYXNbvKWdfVQP5ad6OERxt/iDldU2cNDqXwqwUfO1BkhLd1Da0kZnaeUpP1DRpaPFx+ozRuAco4bGnqo5o1OyU7DjCYjFwO+xsK6tSwkNEREREpIc0o6V3lPAYZsZ/Zgzj3x/Ntnd3kZThxZOaSDQSpaGqkfZWP6dd/BmyCjM6zj+8IksjvhY/7gQXKVlJfVq349MkZybxlf/vQja/vZ3Nb2/D1+Insyidc66aSItpYdOGMkr31WIYBharhcnT8jnr/KkUjc44ap+mabLxg1JcLnunZMcRqamJ7D9Qy+7dVcyc2XfFRvtKRlICXzl9Os+v2kJpbSNm1MQEXHYbJ4/J5aI5k7FaLCTGu/jsScX8651tVNQ2k54Uj81mpa09SGVdM1kpHmZNHjVgcYfD3Y80OcJqsRAKRwYsHhERERERgVmzZmG1Wlm4cCELFy6MdTgDSgmPYcYV5+TzN8wjOSuJrSt3UL67AovFICU7mdO/PJuZ80/qSGhU7Kti1Qtr2PvBAYLtQRwuO0VTC5h94Uxyx2QPWMyJyQnMuXAmsz9fQjgUxma3dcQ469SxlO6vJRgI4/G6GVWcju1TpuOEw1FaWv24PzHC5QiLxcAA2toCfX0rfWZ0dirf/vyp7DhYTV2zD4vFoDAzmYL05E71SuZMK8JqsbDyg32UVTcRjZo4HVbGjcpg3uwJXUZ+9Kfs5ETCkcMFZy3dJM1aAwFK0vumuKuIiIiIyIhyAkM8Vq9ejcfTNzUHhxolPIaheE8c864+k9mfL6G+ohGL1ULmqDSc7o9qTVTsreKvy/5BTXk9aTkpJGV4CbQF2Pz2Dsr3VPGlmy8gb1zOgMZtGAb2TyxdmuhxM3lafo/6sdksuN0OGhvauj1umiamaeJyDe5lUl0OG9OLj/3fwGIxmD2tkOnjcymtaCAYDuNNcJOXkdRtIdf+NKkgkze27KW8rom81M4rx9Q0txHvdDC9cGB/p0REREREZOTq2fqcMqR4UhIpnJxPwYTcTskO0zR5++/vU1NeT+HkAjypiTicdhJTEiickk9DZSNv/fU9THNozvoyDIOpU/Np8wUJdzOForHRR0Kii9HHmBYz1LiddsYXZjB1TA4FWckDnuwASEmI48JZk3DYbeyqqKOqsYXqplZ2V9YSCIU4b/o4LUsrIiIiIiIDRiM8RqDa8nr2by4lPS+1y4uxYRhk5KdRuu0glfuryS7q3wKd/WXq1Dy2bz/E/v21pKclkpjoIhKJUlfXSnt7kNNPn0Ba2sBN9xgpphVmk5zgZt3ecrYfrMGMRvnMmAJmjM5hbHbagNaHEREREREZPowPt562GdmU8BiBfM0+Ar4Aqdkp3R53J7qoOViHr7l9gCPrO4mJbi6+eCavvbaV3burqKtrPVzLJCWBuaeP5zOfGR3rEIet/LQk8tOS+MKswyOElOQQEREREZFYiPmUlvvuu4+ioiJcLhclJSW89dZbxzz/jTfeoKSkBJfLRXFxMQ888ECn41u2bOGSSy6hsLAQwzBYtmxZP0Y/NDnjnNiddgLt3RftDPiC2F12nHHObo8PFcnJ8Vx88Uy+/vXTufyKOVxx5alce90ZzJkzFqs15r/6w55hGEp2iIiIiIhIzMT0re+ZZ57hlltu4bbbbmP9+vXMnTuXBQsWUFpa2u35+/bt44ILLmDu3LmsX7+eW2+9lZtvvplnn3224xyfz0dxcTH/8z//Q1ZW1kDdypCSUZBG/oRcasrqutTpME2TmoN15IzOIrt46Ne4MAyD9HQP48ZlM3p05lFXbhEREREREZHhJaYJj7vvvptrr72W6667jokTJ7Js2TLy8/O5//77uz3/gQceoKCggGXLljFx4kSuu+46vvGNb3DXXXd1nDNr1ix+8YtfcNlll+F0Du0RCv3FYrEw58KZJCTHU7b9EP62AKZp4vcFOLizAneCk9MuOrxWs4iIiIiIiMhQFLOERzAYZO3atcybN6/T/nnz5rFy5cpu26xatarL+fPnz2fNmjWEQqF+i3U4KppSwEULzyd/Qg61h+rZv7mM2vI6csZk8oUbz2fMjKJYhygiIiIiIiIAZi+3ES5mRUtra2uJRCJkZnZeBSQzM5PKyspu21RWVnZ7fjgcpra2luzs7F7FEggECAQ+qmfR3Nzcq36GmtHTCymcks+h3ZX4mttxJbjIG5uN1aaRHSIiIiIiIjK0xXyVlk8WNTRN85iFDrs7v7v9PXHnnXfyk5/8pNfthzKr1Ur++NxYhyH9oKHJx/Y9lVTXtWC3WSnMS2VMYToOe8wfexERERERkX4XszeftLQ0rFZrl9Ec1dXVXUZxHJGVldXt+TabjdTU1F7HsmTJEhYvXtzxc3NzM/n5+b3uTyTWNm0v58U3tlLf5MNqNYhGTVat28fogjQumjedZG9crEMUERERERHpVzGr4eFwOCgpKWHFihWd9q9YsYJTTz212zZz5szpcv5LL73EzJkzsdvtvY7F6XTi8Xg6bSJDVemhev7x6ibaA0GK8lMpzEuluCCN7AwPO/dW8cLLGwlHorEOU0REREREjpdqePRKTFdpWbx4MQ8//DCPPvoo27ZtY9GiRZSWlnLDDTcAh0deXH311R3n33DDDRw4cIDFixezbds2Hn30UR555BG+973vdZwTDAbZsGEDGzZsIBgMUl5ezoYNG9i9e/eA359ILHyw9SCtrQGyM7xYLB9N9XI6bORmJbHnQC0HDtbFMEIREREREZH+F9PJ/Jdeeil1dXUsXbqUiooKpkyZwvLlyxk1ahQAFRUVlJaWdpxfVFTE8uXLWbRoEffeey85OTncc889XHLJJR3nHDp0iBkzZnT8fNddd3HXXXdxxhln8Prrrw/YvYnEQiQSZde+ajyJrm7r2rhcdsLhCOWVjYwelR6DCEVERERERAZGzKsX3njjjdx4443dHnvssce67DvjjDNYt27dUfsrLCzsKGQqMtKYfHrhXwz0jIiIiIiIjBCzZs3CarWycOFCFi5cGOtwBlTMEx4i0ndsVgv5Ocls2n6I1OT4LsdDoQgWwyAtJTEG0YmIiIiIyEBbvXr1iK1TGdMaHiLS96ZPysdms1Lf2NZpfzRqcrCykdysJMYUajqLiIiIiMiQYRq920Y4jfAQGWbGFWVw5uyxvPnebvaW1hLvdhCORPH7Q2RlePn8OVNxOvToi4iIiIjI8Ka3HpE+FI2aVJQ30FjfisVqIX9UGgmJrgGNwTAMTj9lLPk5KWzeUU55VRMOm5UJY7KYNDabZG/cgMYjIiIiIiISC0p4iPSR6qomXv3XJg7sqyHgD4Fh4E2KY8asIk49Yzw2m3XAYjEMg+KCNIoL0gbsmiIiIiIiIoOJEh4ifaCxoY3nnnmfQ+UNZGR5iYtzEI2aNNa38fpLmwkFwpy9YOqxV08RERERERGRPqOipSJ9YPOGUsrL6ikoTCM+3olhGFitFlLTE0lKiWfD2n3U1bTEOkwRERERERmKzF5uI5wSHiInKBKJsvmDMhISXVitXR8pb1IcrS0B9u2pjkF0IiIiIiIiI5MSHiInKBKOEvCHcBxl5RPDMDAsHK7rISIiIiIiIgNCCQ+RE2R3WPF43fh8gW6PR6NRTJMBX61FRERERERkJFPCQ+QEGYbBtJNHEQyEux3FUVPVTHJKAqPHZcUgOhERERERkZFJq7SI9IHJ0wvYs6OKrZvKSPS4SPS4CYejNNS1YrdbOf2ciSR63LEOU0REREREhqLeFCFV0VKN8BDpCy6XnQu/PJNzFkzFHeekob4NX1uA4rGZfPHSU5heUhjrEEVERERERAat4uJi6urquuxvbGykuLi4V31qhIdIH3HHOZh79iRmnTqW5iYfNquVpJR4LBYj1qGJiIiIiIgMavv37ycSiXTZHwgEKC8v71WfSnhIv6moaGT79goqKhpwOGyMLs5g3Phs4uOdsQ6tX7lcdlwub6zDEBERERERGfSef/75jn9+8cUX8Xo/epeKRCK88sorFBYW9qpvJTykz5mmydo1+3jttW20tPpxOe1EIlE2bzpIXl4KX7joZDIyPLEOU0RERERERGLsi1/8InB4MYhrrrmm0zG73U5hYSG//OUve9W3Eh7S5/bvr+XlV7Zgs1ooLkrHMA5P6QiHI5SW1bH8nxu44srTsNutMY5URERERERkCBjGRUuj0SgARUVFrF69mrS0tD7rW0VLpc9t3FhKwB8iPd3TkewAsNms5OakUFZWz759NTGMUERERERERAaTffv29WmyAzTCo1umeTgV1tzcHONIhp5IJMr27Qew203a29u6PaetrYV9e8vJyoob4OhERERERET6xpH3xSPvj/3L+HDraRuYNWsWVquVhQsXsnDhwj6PrC+98sorvPLKK1RXV3eM/Dji0Ucf7XF/Snh0o6WlBYD8/PwYRzJ8/e/PYx2BiIiIiIjIiWtpaelUaHOwWb16NR7P4K+h+JOf/ISlS5cyc+ZMsrOzO80W6C0lPLqRk5NDWVkZiYmJHf+Sm5ubyc/Pp6ysbEj8sogMND0jIken50Pk6PR8iBydno/BzTRNWlpayMnJ6fdrGYDRw4EkJ54uGFgPPPAAjz32GFdddVWf9amERzcsFgt5eXndHvN4PPpjI3IMekZEjk7Ph8jR6fkQOTo9H4PXYB7ZMdQEg0FOPfXUPu1TRUtFREREREREJKauu+46nnrqqT7tUyM8RERERERERCSm/H4/Dz74IC+//DLTpk3Dbrd3On733Xf3uE8lPI6T0+nkjjvuwOl0xjoUkUFJz4jI0en5EDk6PR8iR6fnQ0aSjRs3ctJJJwGwefPmTsd6W8DUMAdmDR0RERERERER6YHm5ma8Xi93vvISrvj4HrX1t7Wx5Jx5NDU1jdgaMKrhISIiIiIiIiLDjqa0iIiIiIiIiEhMnXXWWcecuvLqq6/2uE8lPEREREREREQGM/PDradthpAj9TuOCIVCbNiwgc2bN3PNNdf0qk8lPEREREREREQkpn71q191u//HP/4xra2tvepTNTw+5r777qOoqAiXy0VJSQlvvfXWMc9/4403KCkpweVyUVxczAMPPDBAkYoMvJ48HxUVFVx++eWMHz8ei8XCLbfcMnCBisRAT56Pv/71r5x33nmkp6fj8XiYM2cOL7744gBGKzLwevKMvP3225x22mmkpqbidruZMGHCUT8EiwwHPX0HOeKdd97BZrN1+VZcZLi58sorefTRR3vVVgmPDz3zzDPccsst3Hbbbaxfv565c+eyYMECSktLuz1/3759XHDBBcydO5f169dz6623cvPNN/Pss88OcOQi/a+nz0cgECA9PZ3bbruN6dOnD3C0IgOrp8/Hm2++yXnnncfy5ctZu3YtZ511FhdeeCHr168f4MhFBkZPn5H4+Hhuuukm3nzzTbZt28YPf/hDfvjDH/Lggw8OcOQi/a+nz8cRTU1NXH311ZxzzjkDFKlI7KxatQqXy9WrtlqW9kOnnHIKJ598Mvfff3/HvokTJ/LFL36RO++8s8v5/+///T+ef/55tm3b1rHvhhtu4IMPPmDVqlUDErPIQOnp8/FxZ555JieddBLLli3r5yhFYuNEno8jJk+ezKWXXsqPfvSj/gpTJGb64hn50pe+RHx8PH/4wx/6K0yRmOjt83HZZZcxduxYrFYrf//739mwYcMARCux0LEs7YpeLkt73tBZlvZLX/pSp59N06SiooI1a9Zw++23c8cdd/S4T43wAILBIGvXrmXevHmd9s+bN4+VK1d222bVqlVdzp8/fz5r1qwhFAr1W6wiA603z4fISNEXz0c0GqWlpYWUlJT+CFEkpvriGVm/fj0rV67kjDPO6I8QRWKmt8/H7373O/bs2dOrlz+Rwczr9XbaUlJSOPPMM1m+fHmvf99VtBSora0lEomQmZnZaX9mZiaVlZXdtqmsrOz2/HA4TG1tLdnZ2f0Wr8hA6s3zITJS9MXz8ctf/pK2tjb+4z/+oz9CFImpE3lG8vLyqKmpIRwO8+Mf/5jrrruuP0MVGXC9eT527drFD37wA9566y1sNr3KyfDyu9/9rs/71FPyMZ9c89c0zWOuA9zd+d3tFxkOevp8iIwkvX0+nn76aX784x/z3HPPkZGR0V/hicRcb56Rt956i9bWVt59911+8IMfMGbMGL761a/2Z5giMXG8z0ckEuHyyy/nJz/5CePGjRuo8EQG3Nq1a9m2bRuGYTBp0iRmzJjR676U8ADS0tKwWq1dMqnV1dVdMq5HZGVldXu+zWYjNTW132IVGWi9eT5ERooTeT6eeeYZrr32Wv785z9z7rnn9meYIjFzIs9IUVERAFOnTqWqqoof//jHSnjIsNLT56OlpYU1a9awfv16brrpJuDwtEjTNLHZbLz00kucffbZAxK7SH+orq7msssu4/XXXycpKQnTNGlqauKss87ij3/8I+np6T3uUzU8AIfDQUlJCStWrOi0f8WKFZx66qndtpkzZ06X81966SVmzpyJ3W7vt1hFBlpvng+RkaK3z8fTTz/N1772NZ566ik+97nP9XeYIjHTV/8PMU2TQCDQ1+GJxFRPnw+Px8OmTZvYsGFDx3bDDTcwfvx4NmzYwCmnnDJQoUsMGGbvtqHkO9/5Ds3NzWzZsoX6+noaGhrYvHkzzc3N3Hzzzb3qUyM8PrR48WKuuuoqZs6cyZw5c3jwwQcpLS3lhhtuAGDJkiWUl5fz+OOPA4dXZPnNb37D4sWLuf7661m1ahWPPPIITz/9dCxvQ6Rf9PT5ADqqhbe2tlJTU8OGDRtwOBxMmjQpFrcg0m96+nw8/fTTXH311fzf//0fs2fP7vhmz+124/V6Y3YfIv2lp8/IvffeS0FBARMmTADg7bff5q677uI73/lOzO5BpL/05PmwWCxMmTKlU/uMjAxcLleX/SJD0b///W9efvllJk6c2LFv0qRJ3HvvvV2K+x4vJTw+dOmll1JXV8fSpUupqKhgypQpLF++nFGjRgFQUVHRaT3soqIili9fzqJFi7j33nvJycnhnnvu4ZJLLonVLYj0m54+H0CnuXZr167lqaeeYtSoUezfv38gQxfpdz19Pn77298SDodZuHAhCxcu7Nh/zTXX8Nhjjw10+CL9rqfPSDQaZcmSJezbtw+bzcbo0aP5n//5H771rW/F6hZE+k1vPmOJDFfRaLTb2RJ2u51oNNqrPg3zSKVNERERERERERk0mpub8Xq9/M9LL+GKj+9RW39bGz+YN4+mpiY8Hk8/Rdh3LrroIhobG3n66afJyckBoLy8nCuuuILk5GT+9re/9bhP1fAQERERERERkZj6zW9+Q0tLC4WFhYwePZoxY8ZQVFRES0sLv/71r3vVp6a0iIiIiIiIiAxm5odbT9sMIfn5+axbt44VK1awfft2TNNk0qRJJ7SanUZ4iIiIiIiIiAxTs2bN6ij+ORi9+uqrTJo0iebmZgDOO+88vvOd73DzzTcza9YsJk+ezFtvvdWrvjXCQ0RERERERGSYWr169aCu4bFs2TKuv/76bmP0er1861vf4u6772bu3Lk97lsjPEREREREREQkJj744APOP//8ox6fN28ea9eu7VXfSniIiIiIiIiISExUVVV1uxztETabjZqaml71rYSHiIiIiIiIyGBmGr3bhoDc3Fw2bdp01OMbN24kOzu7V30r4SEiIiIiIiIiMXHBBRfwox/9CL/f3+VYe3s7d9xxB5///Od71beKloqIiIiIiIhITPzwhz/kr3/9K+PGjeOmm25i/PjxGIbBtm3buPfee4lEItx222296lsJDxERERERERGJiczMTFauXMm3v/1tlixZgmmaABiGwfz587nvvvvIzMzsVd9KeIiIiIiIiIhIzIwaNYrly5fT0NDA7t27MU2TsWPHkpycfEL9KuEhIiIiIiIiMogZ5uGtp22GmuTkZGbNmtVn/aloqYiIiIiIiIgMO0p4iIiIiIiIiMiwo4SHiIiIiIiIiAw7quEhIiIiIiIiMpiZH249bTPCKeHRjWg0yqFDh0hMTMQwjFiHIyIiIiIiIoOMaZq0tLSQk5ODxaLJE4OREh7dOHToEPn5+bEOQ0RERERERAa5srIy8vLyYh2GdEMJj24kJiYCh39xPR5PjKMRGb4ikQgXXngh77zzDiUlJbz00kvYbPqzJCIiIiKDX3NzM/n5+R3vjzL46M2iG0emsXg8HiU8RPpROBzm7LPPZvPmzfzxj38kJSUl1iGJiIiIiPSIyiAMXppoJCIxY7PZWLp0KXv37mXMmDGxDkdEREREZHAye7mNcEp4iMiA8/v9BIPBjp81skNERERERPqaEh4iMuC+//3vM3v2bLZt2xbrUEREREREZJhSDQ8RGVD//ve/+c1vfgNAaWkpEydOjHFEIiIiIiKDnyqF9JxGeIjIgKmpqeHrX/86AN/5zneYP39+jCMSEREREZHhSgkPERkQpmly/fXXU1lZyaRJk/jf//3fWIckIiIiIiLDmBIeIjIgHn74YZ577jnsdjtPPvkkbrc71iGJiIiIyCBkmiZRM4BpRmMdigxxquEhIv1u165d3HLLLQD87Gc/46STToppPCIiIiIy+ETNAM3+NTQH3iMUqcdiuEh0luBxzcRhTY91eDIEKeEhIv3OZrMxffp0XC4XixcvjnU4IiIiIjLIRKLtVLY8SUtwPQZ2bJZEwtFmatueoyWwnmzPNbhsubEOM3bMD7eethnhlPAQkX5XVFTEm2++SXNzMxaLZtKJiIiISGeN7e/QEliL01aA1fLR1GfTzKQ9tJua1r+R570Rw9BnSTl++m0RkX7T1tbW8c82m42UlJQYRiMiIiIig1HUDNAceA+rJaFTsgPAMKw4bXm0h/bQHt4XowhlqFLCQ0T6RXNzM9OnT+d73/segUAg1uGIiIiIyCAVjjQRjjZgs3i7PW61xBM1A4QitQMcmQx1SniISL/47ne/y549e/jLX/6C3++PdTgiIiIi0kum6ccMbcYMrsYMbcU0g33av2FYMbBimuGjXP/wai3GSK7IYPZyG+FG8G+MiPSXv/zlLzz22GMYhsEf/vAHvN7us/UiIiIiMniZpgmhNZj+FRCtAjMKhgUsueCaj+GY3ifXsVlScNmLaQtswmZN6nI8FK3DZknCbS/qk+vJyKERHiLSp8rLy/nmN78JwJIlS5g7d26MIxIRERGRXgmtx/T9CaL1YCkA21iw5EOkAtP3R8zQ1j65jGEYJLvnYrG48IfLMM0IcDjhEorUE47W43XNxm5VPTjpmZgnPO677z6KiopwuVyUlJTw1ltvHfXciooKLr/8csaPH4/FYuGWW27p9rxnn32WSZMm4XQ6mTRpEn/729/6KXoR+bhoNMrXvvY1GhoaKCkp4Y477oh1SCIiIiLSC6YZxAy8CmYErAVg2A8fMBxgLQR8mIHXO6abnKh4xyQyE/4DmxFPe3g3vuAO2kM7iJrtJLvPITX+/D65jowsMU14PPPMM9xyyy3cdtttrF+/nrlz57JgwQJKS0u7PT8QCJCens5tt93G9OndD59atWoVl156KVdddRUffPABV111Ff/xH//Be++915+3IiLAPffcw8svv4zb7ebJJ5/E4XDEOiQRERER6Y1IKYTLwZrV9ZhhgJEJ4f0QreizS3pcn6Eg+XtkJ15DesJFZCZeSkHSLWTEX4LF0OdK6bmYJjzuvvturr32Wq677jomTpzIsmXLyM/P5/777+/2/MLCQv7v//6Pq6+++qg1AZYtW8Z5553HkiVLmDBhAkuWLOGcc85h2bJl/XgnIgKQkZGBx+Ph7rvvZvz48bEOR0RERER6ywwAIcDZ/XHDAWbow/P6js3iweuaTWrc+SS7z8Jpy8UwjD69xlBkmL3bAGbNmsWkSZO49957Y3sTMRCzoqXBYJC1a9fygx/8oNP+efPmsXLlyl73u2rVKhYtWtRp3/z585XwEBkAl19+OWeddRZZWd18EyAiIiIiQ4fhASMOzFYwErseN9vAcIOh4vSD3erVq/F4PLEOIyZilvCora0lEomQmZnZaX9mZiaVlZW97reysrLHfQYCAQKBjzKTzc3Nvb6+yEjk9/txuVwAZGdnxzgaERERETlh1jywjYHQRjDiD6/OcoQZgWg1OE7DsKbGLkaRTxHzoqWfHJ5kmuYJD1nqaZ933nknXq+3Y8vPzz+h64uMJC+//DJjxozhpZdeinUoIiIiItJHDMPAcJ1/uIZHZCdE6yDaBpFaiOwCawGG6+xYhylyTDFLeKSlpWG1WruMvKiuru4yQqMnsrKyetznkiVLaGpq6tjKysp6fX2RkaS+vp5rrrmG8vJyrYYkIiIiMoBMM0owtAdf+yu0tb9EIPgBphns02sYtgKM+G+A8wwgAmbD4cIQznMw4r+O0V1BU5FBJGZTWhwOByUlJaxYsYKLL764Y/+KFSu46KKLet3vnDlzWLFiRac6Hi+99BKnnnrqUds4nU6czqMU4xGRbpmmyTe/+U0OHTrE+PHj+eUvfxnrkERERERGhEi0iZa2PxIIbsI02wEDw7BgtxWTGH8Zdlthn13LsOZgxF2KGV0Apg+MBAxLQp/1L8fJ/HDraZsRLmYJD4DFixdz1VVXMXPmTObMmcODDz5IaWkpN9xwA3B45EV5eTmPP/54R5sNGzYA0NraSk1NDRs2bMDhcDBp0iQAvvvd73L66afzv//7v1x00UU899xzvPzyy7z99tsDfn8iw9njjz/Os88+i81m48knnyQuLi7WIYmIiIgMe6YZpqX1CfzBNdisBRhGAoZhEDX9BMO7aWr9HcmJ38FqTevT6xoWDzAyC1/K0BXThMell15KXV0dS5cupaKigilTprB8+XJGjRoFQEVFBaWlpZ3azJgxo+Of165dy1NPPcWoUaPYv38/AKeeeip//OMf+eEPf8jtt9/O6NGjeeaZZzjllFMG7L5Ehru9e/dy0003AbB06VJKSkpiHJGIiIjIyBAM7SQQ2oTNWoTF8tEXThbDhd06jlB4O+2B1STELYhhlCKDg2Gapga6fEJzczNer5empqYRu3yPyNGEw2HOOOMMVq5cyWc/+1lef/11rFZrrMMSERERGRFa2p6jrf05HPZJ3R4PhUux27JJ8S4Z4MhGnoF4bzxyjZ8/twJ3fHyP2ra3tfGfF503ot9rY75Ki4gMLYFAgKKiIjweD3/4wx+U7BAREREZUAGO9RpnGHaipn/gwhEZxGI6pUVEhp74+HieeOIJSktLKSgoiHU4IiIiIiOK1ZoBRDHNKIbRNfFhms3YrRMHPjDpXypa2isa4SEixyUYDPLxGXBKdoiIiIgMPKd9GjZrJuFIGZ+sThCJNgA2XM5ZsQlOZJBRwkNEjst3vvMdLrroIqqrq2MdioiIiMiIZbWmkBB3MYZhIxTeTjhSTSRSRyi8m2i0jjjXOTjsU2MdpvQxo5fbSKcpLSLyqZ5//nkefPBBDMNgy5YtZGRkxDokERERkUErGK6iNbiZcLQRi+Em3jEBl62w2ykoveFyfgaLJYn2wCqCoW1ghnHYJ+F2zsHpOLnPriMy1CnhISLHVFlZybXXXgvA4sWLOeuss2IckYiIiMjgZJomDe2vUe97iXC0EbBgEqXe9zIeVwnp8Zdgtbj65FoO+zgc9nGYZgDTjGAYbgxD3+mLfJwSHiJyVKZp8o1vfIPa2lqmT5/OT3/601iHJCIiIjJotQTWUdv2PBbDjds+viMBEY4209j+NhYjjoyEi/v0mobhRHmOEUBFS3tFY51E5Kjuu+8+/vWvf+F0OnnyySdxOp2xDklERERkUDLNCE3+tzGJ4rBldhptYbN4sFlTafavJhSpi2GUIiOLEh4i0q1t27bxve99D4Cf//znTJ48OcYRiYiIiAxeoUgd/vBB7Nb0bo/bLSmEo434wwcGODKRkUtTWkSkW21tbWRnZzNu3DhuuummWIcjIiIiMqiZRMCMYhz1O2UDDBPTjAxoXCIjmRIeItKtmTNnsmHDBvx+PxaLBoOJiIjI8GGaJmHTBxjY+qjYp92ags2aQjjagNUS3+V4xGzBasTjsGad8LVkBFINj15RwkNEOgmHw9hsh/80eDwePB5PjCMSERER6RumGaXGv4mq9nW0hioxMPA4CsmKO5lkx9gTSnxYDCde12yqW/9CJNrWKekRNUMEw4dIdM7Eacvri1sRkeOgr21FpENjYyNTpkzh/vvvxzSVEhYREZHhwzSj7G95me2Nf6YhsAeLYcPAQk37RrY2PE1l++oTvkaS+7N4XXMIRipoD+0hGK7EHzqAP7QXt2Mc6QkXaelYkQGkhIeIdFi4cCE7duzgl7/8JT6fL9bhiIiIiPSZxuAeDra9g9PqxesYhcuahMuWTJKzCAtW9re8jC9cc0LXsBhOMhMvIzvx6yQ4pmK1xOOyF5CZ+FVyPdfhOEpBUxHpH5rSIiIAPPXUUzz11FNYrVaeeOIJ4uO7zj0VERERGapq2jcTJYjLmtTlWJwtg4bgHmr92yhIOLGkhMVw4HGV4HGVnFA/InLilPAQEQ4cOMCNN94IwO23387s2bNjHJGIiIhI32oLV2I34ro9ZhgGVsNG+wmO8BDpL4Z5eOtpm5FOU1pERrhIJMI111xDU1MTs2fP5rbbbot1SCIiIiJ9zmpxETFDRz0eNSNYDecARiQi/U0JD5ER7pe//CVvvPEG8fHxPPHEEx0rtIiIiIgMJ2nOiUTMIFEz0uVYOOrHYlhJdo6JQWQi0l+U8BAZ4cLhMFarlXvuuYfRo0fHOhwRERGRfpHmmozHXkBTcD/haDsApmkSjLTSEjpIinMcSU59FhIZTvRVrsgId+utt/KlL32J8ePHxzoUEREREdpCNVT7t9AY2AdAkrOIDNdk4u0nVkzUYU1kfNKX2dP8Ak3B/UTNMCYmNouLDPdJjPZ8Dqth74tbEJFBQgkPkREqEolgtVoBmDBhQoyjEREREYEa/zZ2Nv0Df7gBm8UNQH1gF4d8qxnn/Tzprokn1H+8PYMpKdfQFNyPL1yNgYUEew6J9nwMw+iLWxDpH+aHW0/bjHCa0iIyAv3rX/9i5syZbNmyJdahiIiIiADgC9exq+mfhCI+khzFJNpzSLTnkOQoJhTxsavpn/jCdSd8HYthI9k5htz4U8mJn43HUaBkh8gwpYSHyAhTU1PD17/+dTZs2MAjjzwS63BEREREAKhp30Z7uJ5Ee26nBIRhGCTac2kP11PTvjWGEYrIUKOEh8gIYpom119/PVVVVUyePJmf/vSnsQ5JREREBICm0AGshqPb0RaGYWA1HDSFSmMQmYgMVUp4iIwgDz/8MM899xwOh4Mnn3wSt9sd65BEREREADCwHLPkgPnhOSIix0t/MURGiF27dnHLLbcA8NOf/pTp06fHNiARERGRj0l2FhE1g5hmtMsx04wSNYMkO4tiEJmIDFVapUVkBAiFQlx55ZX4fD7OOussFi9eHOuQREREZAhrD7dwqH03LeE6LFhJdeaR6SrEZun9sq5prokctL9HU6gMjz0Pi3F4NTnTjNIUKiPenknaCa7SIiIjixIeIiNAY2MjdrudpKQkfv/732OxaHCXiIiI9E65bxcfNL5Ca6j+w2koJhbDQrpzFDNTzyfeltSrfl1WLxO8F7Gj6XmaQgc6pq+YREmwZTLe+wVcVm8f3onI0GEARg+XmdXaQ0p4iIwI6enpvPHGG2zfvp38/PxYhyMiIiJDVEOwknUNLxKK+ElzFmAxDiclwtEglf69rK1/kdPSL8Fq9O41I8lZyEmpX6fWv53m0EEAPPY80lwTcFoT++w+RGRkUMJDZBiLRqMdozmsViuTJ0+OcUQiIiIylJW2bcUXbibDOarTaio2i4MURzY1/gPU+EvJchf3+hpOayK58bPIZVZfhCwiI5jGtYsMY9deey2LFi3C7/fHOhQREREZ4kzTpKJ9D25rQrdLx9otTiKEqQ9WxCA6EZGuNMJDZJj685//zGOPPYbFYuGyyy7jlFNOiXVIIiIiMqSZRIkce2lY08A85uKyIiIDRyM8RIahgwcP8q1vfQuAJUuWKNkhIiIiJ8wwLKQ58/BHW7s9HjHDGIZBoi1lgCMTGQHMXm4jnBIeIsNMNBrla1/7Gg0NDcycOZM77rgj1iGJiIhIjJimSUuoifpgDe2RthPuryBuElbDTmu48RPXidIQrCTJnkm2e/QJX0dEpC9oSovIMLNs2TJeeeUV4uLiePLJJ7Hb7bEOSURERGKgJnCIbc0bqGgvJWKGcVgcjIofy4TEGSTak3rVZ6ariEmeU9nWvIpq/wGc1niiZoSg2Y7XlsaMlPOwW5x9eyMiIr2khIfIMLJx40aWLFkCwN133824ceNiHJGIiIjEQqW/jLdr/01ruBmPLZk4SwKBSDubm9ZQ7T/E6emf61XSwzAMxntmk+LMocy3nfrgIazYyHaPIT9uAgn25L6/GRGRXlLCQ2QYKSsrw+12M3/+fL75zW/GOhwRERGJgYgZYUPDSnzhVrKc+R0rqjgsTuJtiVT6y9jesp5ZKWf1qn/DMMhwjSLDNaovwxYR6XNKeIgMI5/73OfYuHEjLper2+XiREREZPirCVRQG6wk2ZHe5fOAxbCSaEviQNtupng/g9saH6MoRaRHelOEVEVLlfAQGQ5M0+z4QFNQUBDjaERERKSngtEQ5b5yWiOt2A07ee5cEuwJverLH2n7sGZH97U0nFY3LaFG2iM+JTxEZFhTwkNkiKurq2P+/Pn893//N+eff36swxEREZEeOtB2gHfr3qc2WEvUPPw1boItgSneyZycPAOrYe1Rf3bDgYGFcDSMzdL1434oGsRq2LAbjj66AxHpb8aHW0/bjHRallZkCDNNk29961usXbuWRYsWEQ6HYx2SiIiI9EBFeyWvVL9OXbCOdEcGee5cclw5YMJ7de+zvmFDj/vMcOXitafQFKrrcsw0TZrDDWS7C0iwefrgDkREBi8lPESGsN///vc8++yz2Gw2nnjiCWw2DdoSERHpbw3BRtY3fMBbNStZXb+WivZKoma0x/2Ypsmmps20hlvJcmZh/3A0hsWwkORIIs4ax+bmrbSF23rUr93iYLJ3JiZR6gJVhKOHvxAJRgNUB8pJsHmY6DlJ9b5EZNjT25HIELV3716+853vALB06VJKSkpiHJGIiMjwZpomGxo3srZhPa3hNiwYRInitLgYnziWz6afisNiP+7+fBEfB30HSbJ5u00+eO1eDvkrONRewdjEMT2KdXT8JAC2Nq2lLliJSRSrYSPDmcP0pDmkO3N61J+IxJiKlvaKEh4iQ1A4HObKK6+ktbWVuXPn8p//+Z+xDklERGTY29W6m1V17+G0OMl352IYBqZp4ov42Ni0GafVyWlps4+7v1A0TMSM4LK6uj1uMSwYQNjs+ZRVwzAYkzCZUXFjqfaXEzKDuKzxpDuze1wTRERkqFLCQ2QIuvPOO1m1ahUej4c//OEPWK364CIiItKfomaUTU1bMU2TZEdSx37DMIi3xROKhtnRvJNp3ikkHufqKnG2ONy2OHxhH26ru8vxYDSIxbCQYOvdai1weHpLblxRr9uLiAxlquEhMsSYpsn+/fsBuO+++xg1alRsAxIRERkBmkLN1AZq8dq93R732BNpjbRSFag+7j4dFjsTEsfhi7YTioY6HTNNk5pALZnOTHLc2ScUu4jIQLr44otJTk7my1/+cqxDiX3C47777qOoqAiXy0VJSQlvvfXWMc9/4403KCkpweVyUVxczAMPPNDlnGXLljF+/Hjcbjf5+fksWrQIv9/fX7cgMqAMw+CRRx7hnXfe4fLLL491OCIiIiNC1IximiYWo/uPzwYGpkmPi5dO9k6iKH4Ulf5KagN1tIV9NIWaKGs/iMeeyJy0UzQFRUQ+quHR0y0Gbr75Zh5//PHYXPwTYprweOaZZ7jlllu47bbbWL9+PXPnzmXBggWUlpZ2e/6+ffu44IILmDt3LuvXr+fWW2/l5ptv5tlnn+0458knn+QHP/gBd9xxB9u2beORRx7hmWeeYcmSJQN1WyL9xjQ/+qt16qmnqrq6iIjIAEm0J5JoT6Q13NrtcV+kHZfV2Wm6y/FwW92cm3kOn007jQRbPIHo4S/pTkqazoLs88lxq7ioiAwtZ511FomJibEOA4hxwuPuu+/m2muv5brrrmPixIksW7aM/Px87r///m7Pf+CBBygoKGDZsmVMnDiR6667jm984xvcddddHeesWrWK0047jcsvv5zCwkLmzZvHV7/6VdasWTNQtyXSL/7+979z4YUXUlVVFetQRERERpwj00/aI+34I4FOx8LRMHXBegri8klzpPa4b7fVzckpM/hK/iVcmv8VLiv4D87ImEu6M62vwhcROS5vvvkmF154ITk5ORiGwd///vcu5/R0lkYsxSzhEQwGWbt2LfPmzeu0f968eaxcubLbNqtWrepy/vz581mzZg2h0OF5j5/97GdZu3Yt77//PnB46c7ly5fzuc99rh/uQmRgVFRUcN111/HPf/6T++67L9bhiIiIDBmHa2E0sr5hB6vrt7KrpYxgtOerngBMTZrCRM946oL1HGqvpD7YQJW/mgp/FXnuHE5NO+WERl/aLDYS7AlHXbVFRKS/tbW1MX36dH7zm990e7ynszRiLWartNTW1hKJRMjMzOy0PzMzk8rKym7bVFZWdnt+OBymtraW7OxsLrvsMmpqavjsZz+LaZqEw2G+/e1v84Mf/OCosQQCAQKBjzL1zc3NJ3BnIn3LNE2+8Y1vUFdXx/Tp07n11ltjHZKIiMiQEIgEea16LVub99IW9mNgYDEMslypnJv1GQrisnrUn8Ni5+yMMxkVP4pdLbtpCDaSbE9ibOIYxiQUE2eL66c7ERHpvU++3zqdTpxOZ7fnLliwgAULFhy1r4/P0oDD9TNffPFF7r//fu68886+C7qPxLxo6Sez4KZpHjMz3t35H9//+uuv89Of/pT77ruPdevW8de//pV//OMf/Nd//ddR+7zzzjvxer0dW35+fm9vR6TP3Xvvvfz73//G5XLx5JNPHvWPk4iIiHzENE1erV7D6votOC0OCuOyKYzPJsuVSqW/jn+Uv02Nv6HH/dosNsYnjuXzOQu4qvCrXJL/RaYlTVGyQ0T6lWH2bgPIz8/v9L7b28REb2ZpxFrMRnikpaVhtVq7jOaorq7uMorjiKysrG7Pt9lspKYeni95++23c9VVV3VknKZOnUpbWxvf/OY3ue2227BYuuZ4lixZwuLFizt+bm5uVtJDBoWtW7fy/e9/H4Cf//znTJ48OcYRiYiIDA3VgQa2Nu0j1ZGExx7fsd9hsZPvzmS/7xCbmnZztmtWDKMUEel/ZWVleDyejp97+wXq8c7SmD9/PuvWraOtrY28vDz+9re/MWtWbP7Wxizh4XA4KCkpYcWKFVx88cUd+1esWMFFF13UbZs5c+bwwgsvdNr30ksvMXPmTOx2OwA+n69LUsNqtWKaZqcVLj7uWEN6RGIlGAxyxRVX4Pf7mT9/PgsXLox1SCIiIkNGqa8SX8RPhjO5yzHDMEi0xbO95QCnp5+MzaJlX0Vk+PJ4PJ0SHifq02ZpvPjii312rRMV0yktixcv5uGHH+bRRx9l27ZtLFq0iNLSUm644Qbg8MiLq6++uuP8G264gQMHDrB48WK2bdvGo48+yiOPPML3vve9jnMuvPBC7r//fv74xz+yb98+VqxYwe23384XvvAFrFb9z0yGjrKyMpqbm0lNTeV3v/tdt6OTREREpHvhaATDMI46VdpusRGORoiYkQGOTERkaOrNLI1Yi9kID4BLL72Uuro6li5dSkVFBVOmTGH58uWMGjUKOLwyxcervRYVFbF8+XIWLVrEvffeS05ODvfccw+XXHJJxzk//OEPMQyDH/7wh5SXl5Oens6FF17IT3/60wG/P5ETMXr0aDZs2MD27dvJzs6OdTgiIiJDiscej8HhxEd3Izhaw+3kutNxWOwDH5yIyBDUm1kasWaYR5vnMYI1Nzfj9Xppamrq06E/IiIiIjIw/JEAv9//TxqDLeS40juN9GiPBKgO1PP5nLlMTxobwyhFZCgbiPfGI9f41VMv4Y6L//QGH9Pua2PR5fN6FF9rayu7d+8GYMaMGdx9992cddZZpKSkUFBQwDPPPMNVV13FAw88wJw5c3jwwQd56KGH2LJlS8fAhcEkpiM8RKSra6+9lpNOOombbrrpmCsWiYiIyNG5rE7OyZjFPyveYb+vgiR7AjbDSkvYR8gMM9U7homeoliHKSIyqKxZs4azzjqr4+cji3tcc801PPbYY586S2OwUcJDZBB56qmnePTRR7FarZx99tlalUVEREa0qBnFBKxG7+pYjUnM58u2s/mgYRd7Wg8SiIbIdKUwNWkMU7xjcFj0UVhE5OPOPPPMoy72ccSNN97IjTfeOEARnRj9lRcZJA4cONDxh+NHP/qRkh0iIjJiHfTVsLFxL7tayjExyYtLZ3pSMWMScns8+jHXnUGuOwN/JEjEjOCyOnudQBERkaFFCQ+RQSASiXD11VfT1NTE7NmzufXWW2MdkoiISExsadrP8kPv0RJqx2OPw8Bgc+M+djSXMTd9KnPTp/ZqyqfL6uiHaEVEZDBTeltkEPjFL37Bm2++SUJCAk888QQ2m3KRIiIytETMKPtaq3i3difv1e6ktK32U4dFf1JjsJWXKtcSikYois8izekl1emhMD4Lt9XJ2zWb2d9W1U93ICIyeBlm7zaAWbNmMWnSJO69997Y3kQM6K1KJMbWrVvH7bffDsA999zD6NGjYxyRiIhIz9QGmnnh4Fr2tVYRjIaBwyMqxiZm8/ncEryOuOPqZ2fLQeoDzRTFZ3UZxZHiSGRfWwVbmvZTlJDV5/cgIjJcrV69esSuPqqEh0iMrV27FtM0ueSSS/ja174W63BERER6pC0c4NnSd9nbWkWOO4U4mxPTNGmLBPigcT8hM8zlhXOPq0Botb8Rq2HBcpQaG3FWF4faa/v6FkREZJhSwkMkxq6//npOOukkiouLtQytiIgMOduaDrKvtZrC+AxsFisAhmGQYHNREJfGruYKdjVXMDkp/1P7slusHGsSTMSMYtfKKiIicpxUw0NkEJg1axapqamxDkNERKTHtjUfxG6xdiQ7Ps5ptWNisru14rj6GhWficUwCEZCXY5FzSjtkQDjPZ+eOBEREQElPERiorq6mvPOO49NmzbFOhQREZET4o+Euk12HGE1LAS6SWB0pzghh6L4LMraa/BHgh37Q9Ewpb5qslwpTPKMOuGYRUSGHLOX2winhIfIADNNk+uuu46XX36Zb3zjGz2uYC8iIjKYZLm8+MPdJzRM0yQYDZPuPL5ieQ6LjQtz5zDek09NoJG9bRXsbaugvL2WbHcqF+WdSpIjoS/DFxGRYUyTIEUG2EMPPcQLL7yAw+HgkUceUd0OEREZ0iYnFbC2fi+NwTaSHPGdjtUGWvDY3Uz0Hv80lGRHIl8tOIv9vioOtdcRNU3SnV7GJOTgsNr7OnwRERnGlPAQGUA7d+5k0aJFANx5551MmzYtxhGJiIicmKL4DE5Ln8Cb1VtpCvlIssdjYtIYbMNmsTIvazpZ7qQe9Wm1WBmdkMPohJz+CVpEREYEJTxEBkgoFOKKK67A5/NxzjnncMstt8Q6JBEREYLRCAda6vBFQnjsLgoSkrEeZVnY7hiGwTlZU8lweVlXv4+K9noMDCZ58zg5pZgJntx+jF5EROTolPAQGSBLly5lzZo1JCcn89hjj2GxqISOiIjEjmmarK87yCuHdlDuayJsRnFabBQmprIgbyJjPOnH3ZfFsDA9uZCpSQX4wkEMA+KsTk3bFBHpI4Z5eOtpGzi8IqTVamXhwoUsXLiw74MbxJTwEBkAkUiEd955B4Df/va35OXlxTgiEREZ6dbXHeSPe9cSNk1y45JwWm34wkF2NVVT62/la2NPoSixZ0umWwwLCXZXP0UsIiK9sXr1ajye4ysePdzoK2aRAWC1WlmxYgXPP/88X/nKV2IdjoiIjHDBSJhXDu0gYpoUJqTgtB7+DizO5mB0Yhp1/lZer9ytlcRERGRIU8JDZIBYrVYuvPDCWIchIiLCvtY6yn1NZLm7fuNnGAYZbg87G6uoC7TFIDoREZG+oYSHSD/605/+xM0330x7e3usQxEREenQHg4drtlh7X52s8tqIxiN4AuHBjgyERHpltnLbYRTDQ+RfnLw4EG+9a1v0djYSFFRUcdytCIiIrGWYHfisFhpDwdx2xxdjreFg7isdhLtzhhEJyIi0jc0wkOkH0SjUa655hoaGxuZNWsWN910U6xDEhER6VCYkMqohBQOtTd1qdMRMaPU+FuZmpxNsjMuRhGKiIicOCU8RPrBr371K1599VXi4uJ44oknsNvtsQ5JRESkg81i4fy8iXjsLna11NAcbCcQCVMf8LGruYaC+GTOzBkb6zBFREROiKa0iPSxDz74gFtvvRU4nPgYN25cjCMSEZHBpCUUYHN9BXub6oiYJqMSk5makk2Ka2BHU4z3ZnLN2FN4vWI3u5trqA/6cFvtzM0czVnZY7staCoiIjKUKOEh0of8fj9XXHEFwWCQL3zhC1x//fWxDklERAaRAy0NPLV7HaUtjVgNA8MwWFm1n9fidvOV4ulMTska0HjGeNIZnZhGtb8VfyREot1JijN+QGMQEZFPZ5iHt562GemU8BDpQ1u2bKG8vJzMzEwefvhhDMOIdUgiIjJItIYCPL17PQdbGxntScVmOTyzOGqaHGht4I97NnCT6zQy4xKPu89gJIw/EsJls+Ow9O5jnWEYZLqP/5oiIiJDhRIeIn2opKSEjRs3UlpaSnp6eqzDERGRQWRLfSWlrQ0UJ36U7ACwGAaFCcnsaKphfW055xdM+NS+6gKtvFezj/V1ZfijIeKsDkpSR/GZ9EKSHCo0KiIiH5k1axZWq5WFCxeycOHCWIczoJTwEOlj+fn55OfnxzoMEREZZPY212NgdEp2HGEYBvE2B9saqz814VHV3swf9rzLgbZ6kuxuXFY7raEALxzcyLamCq4aPVvTUkREpMPq1avxeEZmXSat0iJygkzT5Nvf/jb//Oc/Yx2KiIgMYiYmnzbR8ZNLxHZ3/F/lmznQVs+YxHQy3R68DjfZcV5GJ6Sxq7maVyu2913QIiIiQ5gSHiIn6LHHHuOBBx7g4osv5uDBg7EOR0REBqmCxGQipknEjHY5ZpomvnCIMd60Y/ZR2d7MzqYqslwerEbnj3E2i5V0VwKbGsppDPr6NHYREYkxs5fbCKeEh8gJ2LNnDzfffDMAS5cuJS8vL8YRiYjIYDU1JYvsOA/7WxqIfmwkh2maHGxrIsnh4uS03GP20RD00RYO4rG7uj3usbtpDQdoCCjhISIiooSHSC+Fw2GuvPJKWltbOf300/n+978f65BERGQQ8zrcXDpmOqmuOHY21XCgpYGy1kZ2NNXgsFr5UvE08hKSjtmH3WLFZrEQika6PR6KRrAZVuwWaz/cgYiIxIxGePSKipaK9NLPfvYz3n33XbxeL3/4wx+wWvXhUkREjm18UgYLJ5/GhtpDbG+qJhqNMtqbxoy0XHLjvZ/aviA+mUyXh2p/C3nxyV2OV/ubGZWQRnbcp/clIiIy3CnhIdIL7777LkuXLgXgvvvuo6CgIMYRiYjIUJHuTuC8/HGclz+ux22dVjtzs8byl/3rqGhvIsOViNWwEI5GqfI3YzWsnJ45pkt9DxERkZFICQ+RXli+fDmRSITLL7+cyy+/PNbhiIjICHJKWiGhSJjXK3eyt6X28MovBqQ5EzkvZyLTklVPSkRkuDE+3HraZqRTwkOkF5YuXUpJSQlnnHFGrEMREZEYiJhRwtEoDosVwxjYj5QWw8LpWeOYnpLPruYqfJEQCTYn4z2ZxNudAxqLiIjIYKaEh0gvXXTRRbEOQUREBtghXxPvV5eysaGccDRKVpyHWWkFzEjNw2YZ2GkkXoebmWmFA3pNERGJEdM8vPW0zQinCZ4ix6miooIrrriCysrKWIciIiIxsLOpmge3r+SlQ9vxh0Md+57YvZpn92846sopIiIiEhsa4SFyHEzT5Otf/zovvvgiNTU1vPTSS7EOSUREBpA/EuJv+zfSEPQx3pPeMY0lzRVPS8jPyqp9FCWm8pn0UTGOVERERI7QCA+R4/Cb3/yGF198EZfLxf/93//FOhwRERlg2xqrKPc1kR+f3KVmR6LdhcWw8H5NKaaGD4uIiAwaSniIfIotW7bw/e9/H4C77rqLiRMnxjgiEREZaHX+NqKmicNi7fa41+Gkqr2ZQDQ8wJGJiIgc26xZs5g0aRL33ntvrEMZcJrSInIMgUCAK664gkAgwIIFC7jxxhtjHZKIiJyASDTK7qY6KnwtGEBhYjIFiUmfutKKzWLFxMQ0zW7PDUWj2C1WLIa+SxIRkX5gfrj1tA2wevVqPB5PX0c0JPQo4fHee+9RX1/PggULOvY9/vjj3HHHHbS1tfHFL36RX//61zidWhJNhofbb7+dDz74gLS0NB599NEBX3pQRET6TkVbM3/atYk9TXUEPywwGmezMzk1ky+PnorX6Tpq26LEFOJsDppDAbyOzueZpkljsJ2zs8cedQSIiIiIDLweJTx+/OMfc+aZZ3YkPDZt2sS1117L1772NSZOnMgvfvELcnJy+PGPf9wfsYoMKJ/Px3PPPQfAww8/TFZWVowjEhHpW5FolB31tayvqqCytYVEh5OpGZlMz8gizu6IdXh9qino5/Ht69jX3EB+YhJxNjumadISCvJeZRnBSITrJs/CfpSERUF8MtNTclhZtR8DSLQ7MQyDUDTCwbYmUp3xzFLBUhER6SfGh1tP24x0PUp4bNiwgf/6r//q+PmPf/wjp5xyCg899BAA+fn53HHHHUp4yLAQFxfH2rVr+fvf/85FF10U63BERPpUOBrl7zu28mbZfkLRKHE2G4FIhPVVh5iQms5VU04ixR0X6zD7zIaaQ+xtbmCMNxWb5fC0E8Mw8Dic2D3JbKmvYkdDDVNSu09uG4bBxYXTMYGNdYeoaG/GwMAAsuI8XFw4jYKE5IG7IREREflUPUp4NDQ0kJmZ2fHzG2+8wfnnn9/x86xZsygrK+u76ERiLCEhgSuvvDLWYYiI9Ln3DpXxauleMuLiO03lCEYibK2t5q87t3LttJJhM5VvY20lLqutI9nxcW6bnUg0yvZjJDwA4m0Orhw9k9KsBvY01xE2I6Q645mYlEmcbXiNiBERERkOepTwyMzMZN++feTn5xMMBlm3bh0/+clPOo63tLRgt9v7PEiRgfT0009TVVXFzTffjKWbD8YiIkNdOBplVXkpDou1S90Kh9VKTkIiW2urKWtuosCbFJsgjyIQCbOtvpp9zQ1EolFyEjxMTsk8Zv0NgPZICPsx/qZbLBYCkU9fYcUwDEYlpDAqIaXHsYuIiPTaCRQtHcl69DZ3/vnn84Mf/IC33nqLJUuWEBcXx9y5czuOb9y4kdGjR/cogPvuu4+ioiJcLhclJSW89dZbxzz/jTfeoKSkBJfLRXFxMQ888ECXcxobG1m4cCHZ2dm4XC4mTpzI8uXLexSXjEz79+/nhhtuYNGiRTzxxBOxDkdEpF80+NupbG0l2eXu9niiw4kvFOJQa8sAR3Zs1b5W7tv4Lg9tfp9/H9jJK2W7eXzbWn614W221lcfs21uvIe2cLDbY6ZpEopGSHfH90fYIiIiEiM9Snj893//N1arlTPOOIOHHnqIBx98EIfjoyGcjz76KPPmzTvu/p555hluueUWbrvtNtavX8/cuXNZsGABpaWl3Z6/b98+LrjgAubOncv69eu59dZbufnmm3n22Wc7zgkGg5x33nns37+fv/zlL+zYsYOHHnqI3NzcntyqjECRSISrr76a5uZm5syZw+WXXx7rkERE+oUBHJ6pcoyvfswj5wwOgUiYJ3duYHtDDfmJSUxITmdccjpjvGnU+dt4ascGKtqaj9p+RnouDouVhkB7l2MVvhZSnG6mp2X35y2IiIjIAOvRlJb09HTeeustmpqaSEhIwGrtXMn8z3/+MwkJCcfd39133821117LddddB8CyZct48cUXuf/++7nzzju7nP/AAw9QUFDAsmXLAJg4cSJr1qzhrrvu4pJLLgEOJ13q6+tZuXJlx/SaUaNUNV0+3c9//nPeeustEhISeOKJJ7DZevR4iIgMGSnuOPITvexqqMPTzVSQxoCfRKeDAk/SwAd3FNsbatjdWEeRJxmn9aO/z1aLhaLEFHY01rC2upzPF3m6bT8hOZ2zckfz8sHdNPh9JLviiJom9X4fLquNL4yeTGZc4kDdjoiIiAyAHhcoOHDgAH/605948MEH2bJlS6djKSkpnUZ8HEswGGTt2rVdRoTMmzePlStXdttm1apVXc6fP38+a9asIRQKAfD8888zZ84cFi5cSGZmJlOmTOFnP/sZkUjkqLEEAgGam5s7bTKyrF27lh/96EcA/PrXv6a4uDjGEYmI9B+LYXBq3ijAoMbXhml+NNLDFwpR2dbK9IwssuKP/0uM/ra/qZ5INNIp2XGEYRgk2p1sqqs6anuLYXBh0USumVDCuOR0gpEwkWiUkoxcrp08i89mF/Zj9CIiIhILPfoK+8033+SCCy7A5/Mdbmyz8fvf/56vfvWrPb5wbW0tkUik06ovcLgwamVlZbdtKisruz0/HA5TW1tLdnY2e/fu5dVXX+WKK65g+fLl7Nq1i4ULFxIOhzteaD/pzjvv7FR8VUYWn8/HFVdcQTgc5pJLLuGaa66JdUgiIv3u5KwcatvbeHnfHnbU1+KwWglHo1gtFmZm5XLRuEmDaoWWCCaHJ+N0z2IYRMzoMfuwWizMysyjJCOXtlAQi2EQZ7MPqvsUERHploqW9kqPRnjcfvvtnHXWWRw8eJC6ujq+8Y1v8J//+Z8nFMAnP2SYpnnMDx7dnf/x/dFolIyMDB588EFKSkq47LLLuO2227j//vuP2ueSJUtoamrq2LS07sjy1ltvsWfPHnJycvjtb3+rD74iMiJYDIP5RWP57qw5XDh2IiXZuZw9qpgbZnyGr087mUSHM9YhdpL14XSTcLT7pEZLKECx5/hWTrEYBokOJ/F2h/7mi4iIDGM9GuGxadMm3nzzTXJycgD45S9/yUMPPURDQwPJyck9unBaWhpWq7XLaI7q6uouoziOyMrK6vZ8m81GamoqANnZ2djt9k71RSZOnEhlZSXBYLDbKTdOpxOnc3B9sJOBM3/+fFatWoXP5+v4PRIRGQkMwyDfk0R+DGp1NAf81Pp8WAyDnEQPjk/UBfukqalZ5MR7ONDSQLEnpVOiotrXittmZ2aGCpSLiMjwZHCscY5HbzPS9Sjh0djYSEZGRsfP8fHxxMXF0djY2OOEh8PhoKSkhBUrVnDxxRd37F+xYgUXXXRRt23mzJnDCy+80GnfSy+9xMyZMzsKlJ522mk89dRTRKNRLJbDA1h27txJdnb2cdcXkZFn5syZsQ5BRGREaA4EeGXvHtZWHKI5EMBiGGQnJHL6qFGckpeP5SgjLhIdTr4ydipP7dzAjsYaEuxOLIZBSyhAnM3O5wonMDYpbYDvRkRERAazHi9DsXXr1k6jLEzTZNu2bbS0tHTsmzZt2nH1tXjxYq666ipmzpzJnDlzePDBByktLeWGG24ADk81KS8v5/HHHwfghhtu4De/+Q2LFy/m+uuvZ9WqVTzyyCM8/fTTHX1++9vf5te//jXf/e53+c53vsOuXbv42c9+xs0339zTW5VhzDRN/r//7//jmmuuYfr06bEOR0RkRPCFQjzxwQY+qKokNS6OPI+HSDRKZWsLT23aSGswyHmjxxy1/cSUDBZOncPamnI21VV2FB0tychljDdV01NERGT4Ms3DW0/bjHA9Tnicc845naq5A3z+85/HMIyO+hvHWhHl4y699FLq6upYunQpFRUVTJkyheXLl3csI1tRUUFpaWnH+UVFRSxfvpxFixZx7733kpOTwz333NOxJC1Afn4+L730EosWLWLatGnk5uby3e9+l//3//5fT29VhrEHH3yQX/3qVzz88MOUlpaSlJQU65BERIa9tYcOsam6iuLkZJxHlv62WhmVlER1Wyuv7tvLSVnZpMfHH7WPrPhEPhc/gc8VThigqEVERIa2WbNmYbVaWbhwIQsXLox1OAPKMD+ZvTiGAwcOHNd5RxIWQ1VzczNer5empiY8Hk+sw5E+tmPHDmbMmEF7ezt33303ixYtinVIIiJDTigSYUd9LQdbmsGEPI+HcSlpR63FYZomv1q1krLmJkZ1k2Q2TZMddXV8dcpUzigs6ufoRURETtxAvDceuca9D/4bd9zRvxDoTruvjYXfPH9Ev9f2aITHUE9kiIRCIa644gra29s555xz+O53vxvrkEREhpyK1hb+uHUjexoaCEejmJjYLVaKk5K5bNJUchK7fqiKmiaNfj9xH9bc+iTDMDCA1mCwn6MXEREZojRDpcd6tCztp/nrX/963PU7RGLhxz/+MWvXriU5OZnHHnuso7CtiIgcn9ZgkCc2f8D2ulpyEz2MT01jQmo6eYkedtbV8sTmD7pNWlgMgwSng/ZwuNt+jww4dR8lISIiIiLSUz1+23vooYf4yle+wuWXX857770HwKuvvsqMGTO48sormTNnTp8HKdIX3nrrLe68807gcA2PvLy8GEckIjL0bKqpYk9DPWOSU3DZPhoo6rTZGJ2Swt7GBjZWV3ZpZxgGn8nNwxcMEeqm1lddezsep5OJaen9Gr+IiIiMHD1KeNx1110sXLiQffv28dxzz3H22Wfzs5/9jP/4j//gi1/8IqWlpfz2t7/tr1hFTsjDDz+MaZpcc801fPnLX451OCIiQ9L22hqsFgObpWutDpvFis1iYWttTbdtS7JzmJCexp6Geurb24maJsFIhPLmZhra25lbMIqshIT+vgUREREZIXpUw+ORRx7hgQce4Bvf+Aavv/46Z599Nq+++iq7d+/WKhcy6P3ud7/jlFNO4corr4x1KCIiR9UeCrGlupqt1dX4QiGyEhKYnp1NYVLSoFh2NRAJYzvGdECbxUIw0v20lUSnk2umz2D5rp1sqqpkT309FsMgIz6eBWPHccaowkFxjyIiIjI89CjhceDAAc4991wAzjzzTOx2Oz/96U+V7JAhwWKxcOONN8Y6DBGRo6r3tfPkBxvYUVuLgYHdauGDikrePnCAc0ePYd7YMVhinBDI83hZX1XRsRT9x5mmSXsoRIEn6ajtk91urpg2nZq2MdT42rAaFgq8XtXuEBERORaTnhctVZHTnk1p8fv9uFyujp8dDgfp6ZprK4NXWVkZ3/ve9/D5fLEORUTkmKKmybNbNrOluoYCr5cxqSmMSkpifFoqbpudf+3cyYaKiqO2D0UibKuq4Z39B3iv9CC1bW39EudJGdl4nS4qWlu7HKtsa8XrdDI9M+tT+0mPj2dSegbj09KU7BAREZF+0aMRHnC4DkLCh/Nrw+Ewjz32GGlpaZ3Oufnmm/smOpETEI1Gueaaa3jttdeorKzkiSeeiHVIIiJHdaCxke01teR5EnF+rBioYRikxcfR5PfzblkZJ2Vndxnlsa++gb9t2sqBhkYiZhRM8LhcnDIqj/PHj+3U34nK83j4wtgJ/G3HVnbW1ZL04RchjX4/brudL46bSL7H22fXExERETA+3HraZqTr0SeggoICHnrooY6fs7Ky+MMf/tDpHMMwlPCQQeFXv/oVr732GnFxcdxxxx2xDkdE5JgONTfTHgqR7/V0ezw1zk1ZYxOtgQCej422rGhu4Q9rN1DT2ka+14vLbiNqmtT72nlpx24i0Shfmjq5T2M9La+A9Lh43j90kJ31tQCcmpfPrJw8xqekfUprERERkYHRo4TH/v37+ykMkb71wQcfcOuttwKwbNkyxo4dG+OIRET6x3ulZVQ0tzA+Pa1j5Iflw1EhFgPeLz3IqYWjyErsu9VPDMNgfGoa41PTCEejAMcsZCoiIiInSDU8eqVHn05effVVJk2aRHNzc5djTU1NTJ48mbfeeqvPghPpjfb2dq644gqCwSBf+MIXuO6662IdkoiMUFHTZH9dA6/s2MO/t+7k/f0HaQ0Euj03x+PBbbfTGgx2e7y+3U9+kpcEp7NjXzAS4YNDlaS43d0WM012u2kJBNlVW9c3N9QNm8WiZIeIiIgMSj0a4bFs2TKuv/56PJ6uw229Xi/f+ta3uPvuu5k7d26fBSjSU0uWLGHLli1kZmby8MMPa4lDEYkJXzDE3z7YwoaDFbSHwh3zaDM9CXxh6kSm5XYu7DkqKYkJ6WmsO1RBcYoNh9UKHF75pM7XDsDs/PxOiY1QJEIoEsH+4bmfZBgGhgHBcPfLxIqIiIgMZz36SuaDDz7g/PPPP+rxefPmsXbt2hMOSqS36urqOurK/O53v9MqQiISE6Zp8tzGrazcW0qS28249FTGZaQxOi2FRl87f1q3iX11DZ3aWAyDSyZPYWJ6OgcaG9ldV8+BxkZ21NbRHg6xYNw4ZmRnd2rjtttJjnMfddRIKBLBwCDZ7e63exUREZGBYPZyG9l6NMKjqqoK+zGWjrPZbNTU1JxwUCK9lZqaysaNG3n++edZsGBBj9o217ewY/UeSrcdxIya5I/PYdysMSRnaLUBEemZ8qZmNhysINuTiMf10RQUq8VCQXISu2rqeH9/GUWpyZ3apcS5uX7WTLZUV7OluhpfMER2YgLTs7IpTE7qMmLNYhh8piCfZ9ZvpD0U6rS8q2maHGxqJisxgQkZSv6KiIjIyNOjhEdubi6bNm1izJgx3R7fuHEj2Z/49klkoOXm5vLtb3+7R20ObDvIPx9cQXVpLXaHHcOAzW9v5/1/rWfBdecw5qSifopWRIajfbUN+IIhcrtZccUwDFLi3GytrMYfCuOyd/5fsdtuZ2ZuLjNzc4/rWrPyctlVU8u6g4dw2+14XS7C0Qg1bT68LhcXTp5AnOPoX1aIiIjIEKCipb3SoyktF1xwAT/60Y/w+/1djrW3t3PHHXfw+c9/vs+CEzleTz/9NC+88EKv2rY0tPLPB1dQd6iBwkn55I/PIW9cDoVTCmipb2P5w69QX9nw6R2JiHwoEo1+WD+j+xpCVouFaNTsWOHkRLjsNi6fMZ0vT59CWnwcbcEg4WiU2aPyufaUEqZlZ316JyIiIiLDUI9GePzwhz/kr3/9K+PGjeOmm25i/PjxGIbBtm3buPfee4lEItx22239FatIt3bv3s31119PW1sb//73v5k/f36P2u9YvYea0jpGTcrDYv0oB2ixGOSOzWLfplK2vbuL0774mb4OXUSGqbSEeCyGQSAcxmnr+r/apnY/hanJfTbywmW3ceboIk4rLKAlEMRusZD4sak0IiIiIiNRjxIemZmZrFy5km9/+9ssWbIE0zw8RsYwDObPn8999933/7d33/F11efhxz/n3L2n9pZseW8bY4PZIxACAdJQZpISWhealNA0IU1+DSFtk6YZJGXzoiGTkMlIHMAhgDE23nvL2ntLd69zfn/ICIRkYwlLwvLzfr3u64XO+J7nXHRs3+d+v89DTk7OuAQqxEjS6TS33HILkUiE888/n0suuWTUYzQcasJgMgxJdrxNURSsdgu1+xok4SGEOGmV2QGKfB7qu3spD/qHdFYJxROkdY1lJYUjtpL9IEwGA367FCgVQgghphpFH3iN9hyAZcuWYTAYuOuuu7jrrrtOfXAfYqNKeACUlJSwZs0aenp6qKqqQtd1pk+fjs/ne/+ThTjF/vM//5NNmzbh8Xj46U9/iuE4rRnfzwk/c0hXWyHEKJmNRq5dMJtfbt3F4fZOPFYrJoNKfyKBruusLCtmSXH+ZIcphBBCiDPAli1bcLuH1xU7E4w64fE2n8/HsmXLTmUsQozKW2+9xTe/+U0AHnnkEYqLi8c0TuH0PHa9tg9N01DVobM8dF0nFolTMrvwA8crhDizlAf93HHOMrbVN7GjoYVUJsOM7CBLSwpZUJCLaYwJWiGEEEIIcXLGnPAQZ5berjAt9V3ouk4w10NW3vD2iBMpFApxyy23kMlkuOmmm7jxxhvHPNaMZdPY/OcdNB1uoaAyH1UduC9d12muasWf62Pm8umnKnQhxBkkx+Xkyjkz+MjsSjKahlFVJ/XPTiGEEEKIM4kkPMQJxWNJ1v95N/u21RDqjQE6NoeVitn5XHj1Yjx+x6TE9Yc//IGjR49SVFTEQw899IHGcgdcXHnHJax5fC21e+ux2MygKCSiCfx5Xi7/zEUE8/2nKHIhxJlIVRRUmdEhhBBCCDGhJOEhjiuT0Vj7u63sfPMI3qCT4mk5KAqE+2Ps3nSUcF+M6z97PjbHxHcCuO2223C5XAQCAbxe7wcer2xuMTf/v09waHMVNfsaQNMpmlnAzOXTCeRJfRohxICWUIh9He10R6PYTSZmBLOo8PtPefFRIYQQQoghdH3gNdpzznCS8BDH1Vjdwf5tNWQX+HC4rIPbXR47VpuZmsMtHNrdwMIV0yYlvmuvvfaUjufN8rD8o0tY/tElp3RcIcRQjd197Kxv5khbFwpQmZvFwpI88r2TU0yrLx4nlk7hMltwmM0jHqPrOn+tqWbt0Sp643EMqkpG1/lLTTVL8vL4xOy52EynpsWsEEIIIYQ4NSThIY6r5mAzyUR6SLLjbSazEbPJyIHttROW8NA0jfvuu4/Vq1eTny/dDYQ4HW2vbeLZbfvpi8ZwWC2ATnV7D5uP1nPd0rnML86bsFjq+3pZV1fLvo52UpkMNpOJxbn5nFdSSsBuHxp3SwvPHzqE3WRkRjA4WIcjlEjwZn0DNpOZT8yeM2GxCyGEEEKI96e+/yHiTBWLJDEYjv8rYraaiIYTExbPgw8+yDe/+U3OPvtsEomJu64Q4tRo6Q3x3Pb9pDIZpucGKfC5KfB5qMwNEEuleXb7fjpCkQmJ5Wh3F0/u2Mb6hjqMqorPaiOjabx49Aj/t2MbndHo4LEZTePNhjp0NHKcziFFR10WC1kOO9uam4acI4QQQgghJp8kPMRxuf12MmkN/Thrv2LRBIHsiZmCvnfvXr70pS8BcO+992KxTHzdECHEB7OnoZWeSIwCn3tI0kBRFIr8HjpDEfY2to57HBlN44+HD9ERiTDDHyRgs+Mwm8l2OJnuD1DV082rtdWDx3fHYjT09RG0j1yk2Wez0RePU9fbO+6xCyGEEOIMpY/xdYaThIc4rulzC3G4rfR0hofti4bjgMLMRSXjHkcikeDmm28mkUhwxRVX8I//+I/jfk0hxKlX29mDzWwasS2roihYTEbqOnvHP47eHmp6eyh0u4fFYlRVgjY7O1tb6E/EAdB0HV3Xj1uYVGHg3xOaFAYTQgghhPhQkYSHOK6sPC/LL5pNJBSjqbaDaDhOLJqgrambtuYe5i8vZ9qcgnGP42tf+xq7d+8mGAzyf//3fyN+WBJCfPgZVOW4M8ZgIGFgUMf/+e5LJEhqGeymkQuUOs1moqkU/ceWzvlsNgJ2fDPriQAAWu1JREFUOz2x2IjHh5IJHCYTuU7nuMUshBBCCCFGT4qWiuNSFIUVl87B7XOwY8MROpp60HQdX8DFqisWsHDldIwmw7jG8Ne//pXvfe97ADz55JPk5uaO6/WEEOOnMjfI7oYWNE1HfU9iI6NppDMa03OCQ7b3xeLsa2zjSGsnGV2nJOBlflEuWe6xJxcsBgMqCqlMBpNh+J9hiUwGk6piMQz8FWk2GDi7sIjf7NtLOJnE+a5OLqlMhub+MEsL8il0T06XGSGEEEJMfYo+8BrtOWc6SXiIE1JVlXlnlTN7SSk9HSF0TccTcGK2TMyvzn/+53+i6zp///d/z9VXXz0h1xRCjI95hbm8eaSO6s5uyoI+DOrAJMN0RqOms5tCv5s5hTmDx9d19vDMpt009fRjMqioisKuumbWH67l40vmsGCMHV0q/H5ynE5aI2GK3J4h+3Rdpz0SZnFePsF3dWpZWVRMU6ifTY2NtAIOk4lEJk0inaEyGOCaGbNk9pkQQgghxIeMJDzESTEYVIK5nvc/8BR7/vnn+e///m++/OUvT/i1hRCnltdh44bl8/nN5j0cbe8+VhNj4KuHQr+HT541H5d1oCBxJJHk15v30NIboiLbP5gc0XWdhu4+/rB1L1kuB/m+0c+qsBpNXFxWwTP79tDY30eu04lRNZBIp2kK9eOxWjm/pGxIAsNiNHLDnHnMycpmW0sL7eEwTrOZRXn5LMzNxSWFlIUQQggxrsZShVSmeEjCQ3yoORwO7r///skOQwhxipRl+bnz4rPZ39xOQ1cfigLFAS+z8rNxWN5ZKrK/qZ3G7j7Ks95JdsA7HV0Ot3axs75lWMIjndGo6eomHE9iM5soD/owG4f/VbeisAhN1/lrzVFqe3vRdB2jqlLo9nBV5QymBwLDzjEZDCzKy2dRXv4pfEeEEEIIIcR4kYSH+NCpra3l2Wef5fOf/zyqKnV1hThd6LpOKJYgldFw2yyYjCPX+HFaLZxVXsRZ5UXHHau+qxdFAaNh+J8BiqLgtJo40toJC2YMbj/Y2sGLew/T0N1LWtNQFYV8r5uLZ1awqDh/WCvcc4tLWJyXz5HuLuKpFG6LhQp/APMIdT2EEEIIIcTpRxIe4kMlk8lw6623sn79ehobG/nud7872SEJIU7CkZZONh2q52hrFxlNw+uwsXRaIWdNL8ZqHv1fNTqgcOKaGPq7pmkeae/kl5t2Ek4kyfe4sJpMJNNpWvrC/HrrHhRFYVHx8JkZdpOJBTlSDFkIIYQQH3KyomVM5Otz8aHyne98h/Xr1+NyubjrrrsmOxwhxEnYVdPMz1/bzo6aJkwGA06rhe5QlGc37eO3G3aTSKVHPWZxwIOm62Q0bdg+XdeJJFKDHV10Xef1QzX0xRKUBXxYTSYAzEYjJQEvaU3jrwerSaYzH+xGhRBCCCHEaUUSHuJDY9u2bfz7v/87AP/7v/9LWVnZJEckhHg/4XiCP28/RCqdoSIngM9pw2WzUBDwUBjwsKOmiZ01zaMed3Z+NoV+NzUdPUOSHrqu09jTj9duZVHJwIyNtv4wRzu6yXE5RuyUkut20dzbR31375jvUwghhBBCnH4k4SE+FCKRCDfddBPpdJpPfOIT3HbbbZMdkhDiJBxq6qCjP0y+3z0s2WAzmzAbDGw92oiuj25OpdNq4W+WzSfX4+Roeze1nT3Ud/VyuLUTq8nItUvmDBYsjafTpDIZrKaRl85YjAZSGY14KjW2mxRCCCGEEKclqeEhPhS++MUvcvjwYfLz83nsscdG/JZWCPHh0xuJo+sM6aTybk7bwPKWZDqD5TgJieMpzfLxDxedzd7GVo60dpLRdEqzvMwrzCPH4xw8zm21YDUZCSdS+EfoyBJNprCajLis1tHdnBBCCCHEh4WuD7xGe84ZThIeYtLV1NTw5JNPAvCTn/wEv98/yREJIU6WxWhAR0fX9RETlcl0BrvFdNyEyPvx2q2cW1nKuZWlxz3G77AzJz+HN6vq8NgsQ66l6zrNff3MzM2iyOcZUwxCCCGEEOL0JAkPMenKysp46623eO2117jkkksmOxwhxChU5AVwWi30ReN4HbYh+zRNpy8aZ8WMkhHby55KF82soKG7l6r2LoJOBw6LiXgqTVsoQpbLzkfmVqKqMnNMCCGEEOJMIgkP8aGwePFiFi9ePNlhCCFGKdfrYklFAev21ZDRdHxOG6qiEEumaOrup8DvZnFFwbjHkeN28qmVS3j9cDV7m9poD0UwGw2cVVrIeZVllAS84x6DEEIIIcS4kba0YyIJDzFpfv3rXzN9+nQWLVo02aEIIcZIURSuXDITg6qy7WgTR1u7UACjQaUi18/Hls0m+131NsZTjtvJJ5fO57LZcSKJBDazCZ/dJjWBhBBCCHFGW7ZsGQaDgbvuuou77rprssOZUJLwEJPi4MGDfPrTnyadTrNhwwaWLl062SEJIcbIbDTysWWzWTmzlNr2btIZDb/LTlm2f9yXsozEa7fitUuBUiGEEEJMHcqx12jPAdiyZQtut/sUR3R6kISHmHDJZJJbbrmFWCzGJZdcIktZhPgQS6bTHG7rpCMcxaSqlAV95HuHt6AFCLjsBFz2SYhSCCGEEEKI4SThISbcfffdx7Zt2/D5fDz11FOoY+zeIIQYX0fbu3h2534ae/rRNA1dB4fFxIKiPK5eOBu72TTZIQohhBBCCHFck/5J8+GHH6asrAyr1cqSJUt44403Tnj866+/zpIlS7BarZSXl/Poo48e99hf/epXKIrCxz/+8VMctRirN954g29/+9sAPP744xQUjH8xQyHOJLqu09YbYndtC7trW+gOR8c0TmtfiKc376Khu48in5vpOUGm5wx0ZFlfVcezO/ahS293IYQQQoiJoetje53hJnWGxzPPPMPdd9/Nww8/zDnnnMNjjz3GFVdcwf79+ykuLh52fE1NDVdeeSV33HEHP//5z3nzzTe58847ycrK4vrrrx9ybF1dHV/84hdZtWrVRN2OeB99fX3ceuut6LrOpz/9aT7xiU9MdkhCTCl9kThrth/kQEMb4XgSAI/dyqLyfC5dWIltFDMyttY10dYfpjInOLh8RVEUPDYrCrCroZVzp5dS7PeOw50IIYQQQgjxwU3qDI/vf//73H777Xz2s59l1qxZPPDAAxQVFfHII4+MePyjjz5KcXExDzzwALNmzeKzn/0sf/d3f8d3v/vdIcdlMhluvvlmvvGNb1BeXj4RtyJOwqOPPkpdXR1lZWX86Ec/muxwhJhSYskUz6zfxabD9djMJqblBqjIDWBQVV7dc5Rn39pLRtNOaqyMprGroWUguTFCrQ6X1UI0leJoe9epvg0hhBBCCCFOmUmb4ZFMJtm2bRv33nvvkO2XXXYZGzZsGPGcjRs3ctlllw3Zdvnll/Pkk0+SSqUwmQa+vbz//vvJysri9ttvf98lMgCJRIJEIjH4c39//2hvR5yEf/3Xf8VoNLJixQpcLtdkhyPElLKvvo1DTe2UZfswGwf+aFcYKCRqNRnZWdvC0mlFTM8Pvu9YGU0nndEwGQwj7lcUBRVIZU4ugSKEEEIIIcRkmLSER2dnJ5lMhpycnCHbc3JyaG1tHfGc1tbWEY9Pp9N0dnaSl5fHm2++yZNPPsnOnTtPOpZvfetbfOMb3xj1PXwY6LpOR2MXNXvqSUQTOL0Opi0qwx348CUUVFXlX/7lXyY7DCGmpD11LRgM6mCy490cVjPNPf0camo/qYSHyaCS7XZS1dZJwDm860r6WKLD77B98MCFEEIIIcT704+9RnvOGW7Su7S8d7q0rusjTqE+0fFvbw+FQtxyyy088cQTBIPv/4/6t33lK1/hnnvuGfy5v7+foqKikz5/sqRTaV57ZgM7/7qHSF9s4OtcXceT5WbV9Wez+JL5J3wvJ4Kmafzwhz/k7//+73E4HJMaixBTWTiWwDJCsuNtRoM6WNcjo2kcaupgZ00zLT0h7BYT84pzmV+ah9s+sIxlWWkBh1s7CccTOK2WwXF0Xaexp48cj4tZednjfl9CCCGEEEKM1aQlPILBIAaDYdhsjvb29mGzON6Wm5s74vFGo5FAIMC+ffuora3lYx/72OB+7diadaPRyKFDh6ioqBg2rsViwWKxDNv+Ybfxha1seHYL3hwPWUUDhQU1TaOzsZuXf/IaNpeN2WdXTmqM3//+9/nXf/1Xfv7zn7NlyxZpQSvEOAl6nNR19I64T9d1UukMPqeddEbjj1v3s/FgPRlNw2E109Uf4XBTB1urGrnxvIXkeF0sKMrjaEc3bx2tpzMcxWO3ks5o9ERieO1WrlkwC4fFPLE3KYQQQgghxChM2qdPs9nMkiVLWLt27ZDta9euZeXKlSOes2LFimHHv/zyyyxduhSTycTMmTPZs2cPO3fuHHxdffXVXHjhhezcufO0mLVxsiJ9EXa8sgenz4E3yz04k0NVVbKLg2gZnW0v7yKTyUxajDt37uTf/u3fAPjHf/xHSXYIMY7ml+SiqgrheGLYvp5wDKfVwpyibHZUN7H+QB1+p42K3AC5XhdFQS8VuQHqO3t5dtM+MtpA/Y7rFs/hxuULKAn4SKUzqIrCqspS/m7VUuYUjJyYFkIIIYQQ40Da0o7JpC5pueeee7j11ltZunQpK1as4PHHH6e+vp7Vq1cDA0tNmpqa+OlPfwrA6tWrefDBB7nnnnu444472LhxI08++SRPP/00AFarlblz5w65htfrBRi2/XTXeKSV3vZ+imbkj7jfn+ulpbqN7pZesgoDExwdxGIxbr75ZlKpFB//+Me5/fbbJzwGIc4kMwqyWTatkI2H6rFb4vgcNnQdukJR0prGJQumk+tz8fyWAxhVBbfdOuR8g6pS4HdT09ZNTVs30/KCmAwGziorYmlJIbFUCqOqYjFN+kpIIYQQQgghTsqk/sv1hhtuoKuri/vvv5+Wlhbmzp3LmjVrKCkpAaClpYX6+vrB48vKylizZg1f+MIXeOihh8jPz+dHP/oR119//WTdwqTJpDPomo5qGHnWhMFkQMtoZNKTM8Pj3nvvZf/+/eTm5vLEE09Mei0RIaY6o0Hl48vnkuN1saWqke5QBFAoCLg5q7KYpRWFhOMJ2ntDeI9TbNRuMZNM99PeF2Fa3jt1kFRVkeUrQgghhBDitDPpX9Xdeeed3HnnnSPue+qpp4ZtO//889m+fftJjz/SGFOBL8eDzWUl0hfF6R1eDDTUHcbpdeDJck94bC+99BI/+tGPAPjxj388qgKyQpxqsUSKqsYOQtEEFrORioIgXueHq7tIPJVmX0sbB9o6iCXT5LodzMvPpcTvHZIs7InEONLSSTSRxGG1MCM/iNv2zkwNk9HAeXPKOXtGMV2hKAoKQbcD47HEqKIox2r9jDy98e0i0AZVEpRCCCGEEOL0N+kJDzE2uaXZlM0rZt+bh7A5rRiMhsF9iViS/u4wF914DjaH9QSjnHqapvHFL34RgM997nN85CMfmdDrC/Fuu6uaWbvlEO094YGuXDp4nFbOmVfGqoXlGD4EdWW6ozGe3rqLQ22dKAqYVAO7mlpYf7SOi2dUcOnMaeg6rDtQzev7q+mNxlFQ0NEJOO1cPG8aZ08vHpIYMRuN5PmGJzudVjNlOX5217bgGyHpE4olcFjMFAW943nLQgghhBBCTAhJeJymFEXhwhvPpb8rRN3+RhxuO2abiWgoTjKeZPaKSs66YtGEx6WqKi+99BLf/OY3+e///u8Jv74Qbzvc0MEf1u0hlclQnOPFaDSgaTpdfRFe3HwQo0Hl3AXlkxqjruv8Yec+9re0Ux7wYT7WVlbXdboiUV7cf4Rsl5NYNMmfdhzEbjZTkR1AVRUymkZ7X5hnt+zDajKyqKzgfa+nKArLphdxqKmDlp4QuV7nYKIkmkjS0htieWUxeT7XuN63EEIIIYQYpbEUIZWipZLwOJ0F8/38zb9czd71B9m7/gCxSIL8ihzmrZrF7JUzsNonp9Vufn4+jzzyyKRcWwgYSBhs2FNDNJ6kvOCdor2qqpDlc5LpCrFxby2LZxRit05ebYq67l4OtnVQ6HUPJjtgIDERdDroTyR482gd0b4EJoOBHI9z8BiDqpLnc1PX0cP6g7XMK84bXLpyIjMLsvjYslm8vPMwR1o6Magqmq5jMqgsLi/gY8tmSc0dIYQQQggxJUjC4zTnDrhYec0yVly9lHQqjdFknJQPK1VVVezbt49rrrlmwq8txHt19UWoa+0mOEJ9G4Cg10F9Wy91rT3MKh3/9qo9kRiH2juJp1K4rRYqc7JwWsw09/UTT6VxmEdOuvhsNg61dKDGdUqzfCMek+V20NzTT0tvP0UB7/vGoigKZ88oYVpekP0NbXSFolhNRqblBSnL8Z9U0kQIIYQQQojTgSQ8pghFUTCZTZNy7VQqxS233MKmTZv4wQ9+wN133z0pcQjxtlRaI53RML+rts27GQ0quqaTHOcuRhlN46+Hqll3pIbeWBxVUdB1nWyXk4/MmY52bJrh8ZKUigKapqNpGkbDyPdiMhhIaxqpjDaq2IJuB+fNmdwlPUIIIYQQQown+SpPfGD/+Z//yaZNm/B4PFx33XWTHY4QuB1WHFYLoVhixP2ReBKL2TDu3VrWV9Xyp72H0HWYlhVgWlaAsqCf/niC32zfSzSZwmoyEk4kRzy/OxqjNOjFa7cd9176Y3EcFjP+47SaFUIIIYQQU4A+xtcZThIe4gPZuHEj3/zmNwF45JFHKC4unuSIhACHzcyC6fn0hmKk3jOLQ9N0WrtClOb6Kcr2jlsMkUSSN6rqsJmM5LidqMdmcRhVlSKfh2Q6Q1VbF5XZQRp7+4bNNumKDLSVvWhmBTPzs2ntC5HRhs7iSGUydIaiLCjJwysJDyGEEEIIIYaQJS1izEKhELfccguapnHzzTdz4403TnZIQgw6d34Zje29HGrowGkz47CaSaTS9IZi5AfcXH72TFR1/Ord1Hb10BmOUOI/Tu0Np4P6nl4+s2IJiXSGw+2dqMfa0sbSaexmE5fNms7ConyKvB46wxGqWrtw261YTUZiyRShWILKvCAXzqkYt/sQQgghhBDidCUJDzFm//zP/0x1dTXFxcU89NBDkx2OEEO47FZuvGQxWw82sP1wI5F4EpPRwIWLp7NsVhHZo2i92huNEUkkcVgseO3WkzonrWlkdB3DcZIqJoOBjKbjsJi5feUS9rW0s7+lnVgqRY7byfz8XMoCPhRFIcvt5FPnL2Hr0Ua21zQRS6bw2K1cNLeCpRWFuG0nF5MQQgghhDg9KbqOMso2s6M9fiqShIcYkx07dvDjH/8YRVH42c9+hsfjmeyQhBjGabdwweJpnDO/jFgihdlkwDqK4r5NPX2sO1TL/uZ2kuk0FpOR2fnZnDejjHyvG4BoMsXB5na6QlEMqkpplo/SoA+f3YbdZCKcSOKyDm8R3R+P47SY8dqs2EwmlhYXsLS44Lix+Bw2Lp0/nQvmlJNMZbCYjNJRRQghhBBCiBOQhIcYk0WLFvHcc8+xf/9+zjvvvMkOR4gTMhkNmI7TseV4Grp7+dmGHbT0hclyOfDYLUSTKd6sqqO2s4dbVy4mEk/y7NZ9tPSG0HUdHR2rycScgmw+vnQO07ID7G5sxW42YVDfSU4kMxm6IzEunzMd5wjJkBPei8GA6TgdW4QQQgghhBDvkISHGLOrr76aq6++erLDEGc4Xddp6w7R1NmHrkNuwEVB0HPcVq/vPbe+s5fDrZ1EEkk8NiuzCrLJdjt4ee8R2vrCTM8JDBYctZpMeO02jrR28vute+kNxeiLxSkJegeTEJFEkq01TWg6XDG/ku5IlKqOLjw2K1ajkUgyRTiRYHZeNhdMLxvX90YIIYQQQogzmSQ8xHFl0hq11e20NPUCOlk5bnbve4uVK8+moOD4U++FmCjhaII/bdzPgdo2ovGB1q42i4nphVlcdc4cvK7jdy5JptO8sO0AW6obiSVTqKqKpmn8dd9R5pXkcKSti1yPazDZ8TZVUcj1uNhS3YDdYGJuUe6Q5IrDYqbQ7+FAczurZpbydyuXsqm2gZ0NLSTSaXx2K5fOquCs0qIRl7oIIYQQQgghTg1JeIgRdXeG+fNz26mt7iBzrF1mR1cjj/7kXpwOB1u3baWiQjpDiNHTdZ20pmFQ1A/UJSWVzvC713axp7qVHL+T3MBAEdJwLMnOqmZiyRS3XL4Um2Xkmh2v7D3KukO15LqdFPoHZoTouk5nKMpf9h4loaXJ845c2NRuNtHZH2V6TmDEmSQOi5nmnn5qO3q4eO40rpo3k8tmTSORzmA1GWVJihBCCCGEGB1dH3iN9pwznCQ8xDCJeIo//n4rNUfayC/yY7GaSKWSPPHzr5BOpygsqCQYyJvsMMVpJpXJsLemle1VjbT1hDEZDcwry2PxtAKyvc5Rj3e4oYMDde0U5XiGFCJ12S1YzEaONHZyoLaNxTMKh53bF42zpboRn92K+11dVwY6ojjoCEVoDYWIJ9M4rOZh58dTaQDMJ0hcKIpCRtMGfzYbjZiN8keuEEIIIYQQE0VK/Ithjh5upa66g8KSABbrwAfJ3z73JI3N1bicXj5ywe0cOdA8yVGK00kqk+G5Dft4+rWdHGnqRNd1IvEkL287xFMvb6GurWfUYx6ub0fX9RG7rpiNBgyqwv7a1hHPbezuoyccxe+0j7i/KOBBRaGua3hcuq7TEQpT6HejaSNnzdMZDV3XCbhGHl8IIYQQQohR00f5EpLwEMPVHG1HB0zmgW+j9x3Yxotrfw3A7bf9K35/kCMHWyYxQnG62VnVzKaD9WR7HJTm+Am4HeT6XEzLD9LRF+H5t/aROrZ06mRFEykMJ2jLajIaiCZSI+7TNB0dhtXnGDxXVclxOzEbDdR29pBID8zoiKfS1HX1Yjeb+ejCWSiqSl80PuRcXddp7O4lz+tiVn72qO5JCCGEEEIIcerI/GoxTDqVwWAY+CAYjvTzxFPfBuCCVVexaMFKWpt7SaZG9+FUnLk0TWfrkQZMBhWnbWiRTlVRKAx6aOjoo6q5k1nFOSc9bpbXSSqdQdf1EetoxJMpsn0jL5XJcjtwWs30xeJ47cMLm/ZG45QG/Fw8r4I3DtfS1NOPpmkYVJUCn4fL5kwbSGbo8MahWrrCUdw2CxlNoy+aIOCyc83SOdgtw5fDCCGEEEIIMXpjmbYh0zwk4SGGyc71kN46MCX/hTU/p6e3k5zsQm76mzsBiMeS5OV7JzdIcdqIJVN09EWG1Mp4N4vJOFAstD86qnFnl+awYU8N3f1RAh7HkH194Rhmo5G5ZSPXmsnxOJlVkM2mqgYcZjMm4zu1OKLJFP3xBOfPKuOs8iIWFudT09lNNJHCYTFTluUbLDp61eKZlGb52FbdSFNPP2aTiWVzi1hSXkC+zz2q+xFCCCGEEEKcWpLwEMNUzs5n0/ojtLf2cd01f0c6neacFZdhsdjo7gxjs5uZNW94IUghRqKqCob3FPB8N13X0XQNozq6FXYFWR5WLajglW2HCccS+Fx2FEWhNxQlremct6Cc8vzAiOcqisKVC2fSF41zqKUTi9GA1WQkmkyhazpLygo4d2YZMFAPZEZu1ojjGFSVBSV5LCjJI5XJfODOM0IIIYQQQohTRxIeYphA0MVFH5nLy3/cRUtDP1de+hkUFOqqOzCZjZx/6WwKi0f+ICmmnq7eCFWNnSSSaVx2C9NLsoYtTTkRm9lEZWEWbx2sx38sKfFu/dEEDouFkhzfqOJSFIULF08j4LGz9UADzV196DoUZnlZOquYRZUFJ0w++Bw2PrVqCbsbWthZ20J/PE5J0MeisnzmFuaMuqOKtJoVQgghhBDj5gOsaFm2bBkGg4G77rqLu+6661RH9qEmCQ8xTCaTYde+N/jELZezb1cD1UfaQId5i0qYt6iY8uk5I9ZMEFNLOqPx6pbDbN5XT38kzsD/cYWg18HFyytZNEK71+NZNqOI/fVtNHT0UhDwYDCo6LpOOJ6krTfEilkl5Pldo45RVRUWTi9gfkU+fZEYug4epxXDSc4WcVjNrJheworpJaO+thBCCCGEEKeDLVu24HafmcutJeEhhvn2t7/N1772Na655hqeffZZMhkNdDAYpanPmWT9jmr+uuUIHqeVioIAiqKQyWi0dod4/vW92CwmZpaeXJHR0hw/1587nz9tPkBNWzegoKNjMxtZPrOYq5bPHkyivbcIqa7rVHd0s6ehlZa+EHazmdn52cwpzMF+rCWtqir4pAWsEEIIIYSYqnR94DXac85wkvAQQ2zZsoX77rsPgGuvvRbghK0/xdQUjibYtLcWp90ypCCowaBSkOWhprmbTXtqmVGSfdKzfeaW5lKa4+NgQwc94Sgmo4Hy3ABFWR5SmQxbqhrZUdNER38Ep9XMorIC5pXksuloA68dPEosmcZuNpHMZNhe28T0nAB/e/YCgi7H+19cCCGEEEIIccaRhIcYFIlEuOWWW0in0/zN3/wNt91224jH6bpOU3sfR+s7SKTSuBxWZpRm4/fIB8/TVSqT4UhLJ4eaOogmUyTCKVo6+5lRmj3i8UGPnfrWXrr7ogS8J///3WmzsLRy6FKYWDLFbzfuYUdNM0aDgsNipq03zO837eXF3QcJpVJkuxwU+b1D4j3c2smz2/fzd6uWSqFQIYQQQgghxDCS8BCDvvjFL3L48GEKCgp49NFHR/zmPpFM89Kb+9lxoJFYPIWiDMyU8rpsXHBWJcvnl3zg+h6pVIamtl6SyTRul42coEtqhoyjcDzBbzfuYW9DGxltoFtKV1eEjrY+7E4zpdl+3vvuG40GkqkY+xvbMbarWE1GKnIDuG0jt549kY2H6thW3URRwIPt2BIVgFQ6wysHqzCZjMzIDQ45x2QwUOj3cKS1k7quHsqy/GO5dSGEEEIIIU4TH6Bq6RlMEh4CgBdeeIFHH30UgJ/85Cf4/SN/gHxtyxE27qwhy+ciP8uDoihouk5nT5g16/ZiNqrMmZaH2WwcdZJC13V2H2hiw7ajtHaEyGQyWK0mppVkccGKGeRmnZmFdk6lWCzJgQPN7N3bSH9/DI/bSqs5TV2on7Ic32DCwW+10tMe5mBjOzaziVzv0IKidZ09NEXChLfsHfz/7HPaWDWrlFWzyk66aGg8mWbL0UZcVvOQZAeAxkAtj0QyTSiWwG0fmkxxWMw09/TT3BOShIcQQgghhBBiGEl4CJLJJHfeeScA99xzDxdffPGIx/WFYuw40IDXZcftfOfDpwKoKZ3Gwx08dvivzCzLobQ0i/kLiikvzzrpxMeOvQ288MoeQCcny4XJaCASS7D7YBPtXWFuumYZQb/zg97uGSscjvPss9uoOtKKyWTEajVxoKuf3ZEugn4nxtx3kgZvz6ypb+mhobOXHI+Lt/83tvaF2N/eQZbfRUmWF7PRSEbT6OiP8MdtB1EVhfNml59UTD2RKL2RGAHnyMtiTEYD8ViCaCI1LOGhHyvCJJN/hBBCCCHElCcTPMZEqlEKzGYzL7zwAjfccAP/9V//ddzjGlp76AvH8bnf6Yah6zoN1Z0c3t1IMpIkGkuSSKbZvbuB3/xmE9u3155UDLF4knWbqzAYFArzfFjMRlRVweWwUlYUpKW9j827Tm4sMbJ16w5x+FALBQV+Cgv9BIMu7AEbRquRcHeUhobuwWMVRaG8NAufy0Zzez8N7T30hmI0tvWyp7ENm93MomkFmI0DOVODqpLrdWEzmVh/oJZIPHlSMRlUFVVR0XRt2D6zwYDbaiGV0UZMaoQTSaxmIwU+z9jeECGEEEIIIcSUJgkPAcDChQv51a9+hcViOe4xmczAh9J3f/js74nSWNOJyWzE7bVjshpxe2yUlgYxqCqvvXqAjo7Q+16/ur6Lzp4wWSPM4FBVBZ/Hzr7DLURjJ/dBWgzV2xvlwP4m/H4nZvM7E7t0dFRVwWo10d7eTzKZHtzndFiorMwlL9+D1WIindFwuqz4Aw4WVhRgMQ2fIJbldtAZilLd1j1s30iCLgeFATcd/ZFh+xRFwWm2YDEZSGv64IwOgEQ6TXNPPzPzsikOSMJDCCGEEEJMcTrvtKY96ddkBz35ZEnLGezQoUOEw2GWLFlyUscHfU6sZiORWBKnfSAx0tnWTyat4XLbCEUTWMwmLMdqMWRluaiu6eDQoWaysmaccOxYPAn6QDHMkVgtRsKRBPFECrvNPIq7FABdXWHC4ThFRYEh290mMyZVRTEYSMRSRGPJIQmRWCbN/JkF3HHxWegMLEF58MWN2C0mRmI81sI4mUmPuP+9VFVhxYwSatt7aOsNkeVxoioKuq7TH0ug6HDRrAp643EOt3ZiNRlJHUu8zS7I4eOLZ0tBWyGEEEIIIcSIJOFxhkomk9x0003s3r2bX/ziF3zyk59833Pysz1UFAXZe6SF0oIARoNKpD+O0Wgglc6QSqcpLfAPfuhVFAWT0UBn5/vP8HDYzSjqQGcO0whJj1g8hcVsxGYd+YO2ODGDqqCqKpqmY3jX2+sxW8iy2mkIhzDrQ2fv9EXjpDMaZ00vwnoswaFjx2kxE44nsVuGJ55iyRQGVSGeTPPWoTo0HXK8TkqzfcctZLqgJI9QLMEre6qoau1CYaBgqcNi5vzZ5Xx0yQzaQxH2NrTR1h/GZjYxMy+LmXlZI84yEUIIIYQQQgiQhMcZ67777mP79u34/X7OPffckzpHURQ+cu5swtEktU1d2K1m4qk04WicFBq5QQ8F2UOXF2Q0bXDGx4mUFQXJ8rto7wxRkOsdOkZGo7c/xgVnV2KzyuyOscjJ9eDzO+jpiZCd/U63G0VRmOMP0N0fJWpK0xmNEU6niCZTmA0GzptdxtKKwsHj7RYTC8vyeWnnYXwO25DklK7r1HX0kEym+dPWA8SPLY8xGw1U5Aa4+qw55HiHL1lSFIVVs8qYVZjNwcYO+mNxrGYT0/MCFPoHOgEV+b0U+b3j9wYJIYQQQgghphxJeJyB1q1bx7e//W0AnnjiCfLz80/63KDPyU0fXcreI83sOtxEJCtGMpKksiyH3Cz3kG/xk8k0qqJQVpb1vuNaLSYuWFHJ82t3UdfUTZbficlkIBJN0NkdoTjfx1kLS0Z/swIAm83MksWlvPTyHnp7o3g8NpRjS0cSoSTTjE4qlxaRtCtEEylyPE7ml+QxPS+Iqg5dMnLOzFJq23s41NyBx27FYTGTTKfpCEXoDcWwmo147FYK/RYURSGaSLK/sY1YMsVnLl6GyzZynZigy8G5s0bu1iKEEEIIIYQQoyUJjzNMX18ft956K7qu85nPfIbrrrtu1GO4nVZWLipn5aJyQqEYz/zqLRoae0glMxisAwmPaDRJS0sv0ytzKa/IPqlx588swGw0sGFbNU2tPaQzGjarmWULSjlv+TR8Hvkw/EGctbyCSCTBtu21dNeEBxMeDqeFC8+fzXnnzcBgeP86xh67lVvOX8Smww1sq24iHE9gMhqozA1yKNNBWbYf27tm9dgtZsqzA9S0d7O3vpUVMyRxJYQQQgghxKi8XYh0tOec4SThcYa56667qK+vp7y8nB/+8IcfeDyXy8bV1yzhz2t20dDQRTqtATpms5FZs/O58soFQ4pgvp+Z03KZXpZNW2c/qVQGt8s6JRId6XSGdFrDfKzd7mQwGFQuvmQOc+cVcvRoO5FIAqfDSsW0bLKz3aMq/um2Wbl0wXTOm11GOJ7EajLyyu4qqlu7hyQ73mY0qJiNBvbUScJDCCGEEEIIMTEk4XEGWbt2Lb/4xS8wGAz8/Oc/x+VynZJxs7Pd3HLrOdTWdtDe3o+iKOTleSkqCozpw73BoJKf4z0lsU22ro4QO7fVcmhvE8lUGo/XzvzFJcxdUIxlEgqwKopCbq6X3PfUSRkri8k4WDg0nkpjPE5hUhio5RFPpk7JdYUQQgghhBDi/UjC4wxy8cUX84Mf/IBoNMqKFStO6dgGg0pFRQ4VFTmndNzTWVNDN8//ejNtrX24PDbMJiNtLb386fdd1B7t4KPXLcE6hbrOBF12UpkMuq6POFskkkgy15c7CZEJIYQQQgghzkSS8DiDqKrK3XffPdlhjLuMptHaFSKVzuB12vC6bBMfQ1rjL2t209kRorQie3Cmi8dnJx5PsXdXPYXFfpafWznhsY2XOcW5rNtXTXtfmBzv0NlDvZEYJoOBBaUnXyBXCCGEEEIIIT4ISXicAV566SXOOeccnM7hLUGnEl3X2VfTyvpd1TR19pHOaNitZuaU5XLBomn43fYJi6W+rpOmhi5y8r3DlvVYrSZsNjO7ttWxeHkFJpPhOKOcXnK8Ti5dWMmfth3gaGsXfqcdVVHoicTQ0TlvdjnT84KTHaYQQgghhBCnHylaOiaS8Jjidu7cycc+9jFKSkp48803yc4+uY4pp6Pthxt57o29pDMaWV4HJqOBUDTBhj01tHb1c9OlSyZstkdvV5h0SjvukhWX20p/X5RIOI7Xd/oXZX3bypkl+Jw2Nh9poK69B13XKc/1s3RaIQvL8ietYKsQQgghhBDizCMJjyksFotx8803k0qlmDt3LllZWZMd0riJxJL8ddsRAEpyfYPb/W47boeV6uZuthys59JlMyYkHqPJAOhomj7ih/x0WsNgUDEaRze7I55Icai2ndaOPlAU8rLcVJZmYx2hM8pkUBSF2UU5zCrMJhxPous6TqtFEh1CCCGEEEKICScJjynsy1/+Mvv37yc3N5fHH398VG1HTzdVTZ109kYofley421Gg4rbYWHnkSbOX1iB+VhXEV3XaWrvo6Glh3RGI+B1MK04OLj/gygsCeJy2+jrieALDF1KpOs6Pd0R5i4sxuG0nPSYjW29PPfKbpra+9B1DR0FVYHCXB/XXDgPh91CMpXG5bBis5iIJ1JU1XbQ1RvBaFApzvdTkDt8ic14UBQFl+3k700IIYQQQghxArKkZUwk4TFFvfjii/zv//4vAE899dSUnt0BEI0n0dExGkZui2qzmIglUsQSKcwmI5FYkj+9vpcD1a3EEilURUFRFAqyPXz0/LmU5Ps/UDw+v4P5i0t587UDqKqK22tDURQyaY22ll4cDguLl5WddBKqPxznD3/ZSUtHP8W5vsGZIal0hgM1beytbiHb70JRwGGzkOdz0dbWR3dvFF3X0XUdm8XEjIpcPnrRXBx2SUYIIYQQQgghpjZJeExBHR0dfOYznwHgc5/7HJdffvkkRzT+bBYToJDJDCwVea94Mo3VZMRqMaFpOi+8tocdBxrIDbjJz/KgKArJVJqm9j5+t3Ynt159Flm+D1bkddXFs9A0jd3ba6k9GkZRFRQgkOXi/Evn4M120RuK4XJYMKgjJ2redqC6leb2PkoLAkOO7QvH6QlH6emP4rCbKcz20tEVYuPmo9jNRs6aX4rdZkbXdSLRJDv2NQDwiSsXyzITIYQQQgghxJQmCY8p6Etf+hKtra3Mnj2b//7v/57scCbEtIIgfpedjt4wuQH3kH0ZTaMvHOOSZZVYTEZqm7o4UN1KfpYHx7uWXZhNRkry/VQ3dLL7UBMXn/3B6n2YzUYuuXI+C5eWUVfdTjKZwem2EjPovFXdRMvm/QDkBtwsmV3EgukF6OiDs00ANE0nkkhysKYNk9EwJNmRzmhUNXWS1nScNgvJZAa71Uw6oWFSVZKaRnt3mNICP4qi4HRYyFXcHDzaSmNrD8UfcBaLEEIIIYQQQnyYnfhr5Qnw8MMPU1ZWhtVqZcmSJbzxxhsnPP71119nyZIlWK1WysvLefTRR4fsf+KJJ1i1ahU+nw+fz8cll1zC5s2bx/MWPnS+9a1vcfXVV/OLX/wCm21iupJMNqfdwgWLKkimNRrbe0mm0mi6Tn8kTk1TN0XZPpbNLAagtrmbRCI9JNnxNlVRcNot7KtqQT+JNW+hUJxdexvYvK2G/QebicdTQ/YrikJWjpulK6ax4rxKOpIJXli/j5qmLmwWE3aLidrmLv7vD29x/6N/5vtP/ZUHfvoqf1q3lxc3H+TxNW/xg9+t49VdVdR39NIdjg6O3ROKEo4lcNnMqKqKpg0sXensCmG1GrGaTbR29ZPJaEPep3giRX1T91jfaiGEEEIIIcREe7uGx2hfZ7hJneHxzDPPcPfdd/Pwww9zzjnn8Nhjj3HFFVewf/9+iouLhx1fU1PDlVdeyR133MHPf/5z3nzzTe68806ysrK4/vrrAXjttde48cYbWblyJVarle985ztcdtll7Nu3j4KCgom+xUmRm5vLc889N9lhjKtMRqOpoZtIOI7FYqKwJMDyOSUYjQbe3F1DS1eIdEbDbjGxsLKAS5ZWEvAMtH9NZzROVDrDaDSQTKXRdY57nKbpbNxylLe2VNPXFwXlWHIj6OKiVTOZPTN/2DkNrb2s33kUl92C320HBgqYtneHaW3vo6G5mzkVeVgtJp5+ZQf9qSTFeT6Ksr047BZq67vYdbSZWcU55PpcJJJp0EFVVdIZDbfTiq7raPrALBHVaCCZypBKD13moygK6bQ2LD4hhBBCCCGEmEomNeHx/e9/n9tvv53PfvazADzwwAO89NJLPPLII3zrW98advyjjz5KcXExDzzwAACzZs1i69atfPe73x1MePziF78Ycs4TTzzBb3/7W1555RVuu+228b2hSZRKpXj11Ve57LLLJjuUcVdX3cHrf9lHU0M3qWQa1aDi8TmonJ3H9Fn5fPojy+gKR0mmMnhdNnJ8ziHFQX2ugVkvGU0bsXZGOBpnZnnuCWtcbN5ew9pX92O3mSgp9qOqKql0hrb2fp5/cScWi5GKsuwh5+yrbiGaSJGf5Rnc1tUboaG5B6fdQiyRIpXJYDWZiaNhVBRC/XFshSbKi4L098YIRxMcbuzA57RhNKjo6ITCcWwWI1nH7tPpsNDVHcGsKKiqgsHwzn2k05mB98BrH9ubL4QQQgghhBCniUlb0pJMJtm2bduwD+iXXXYZGzZsGPGcjRs3Djv+8ssvZ+vWraRSqRHPiUajpFIp/P7j1ytIJBL09/cPeZ1u/uM//oPLL7+cL3zhC5Mdyrhqqu/iuV9vpq6mA3/ASX6xn2gyxZbtNTz11Bs89L9r+dlP1tNc3cW0ggC5ftewTigzynLI8rlobu8btmwlFImjoLBwxvFnA0VjSTZtrcZqMZIVdKEeS5qYjAYK8rxEo0k2basZNnZHTxjLe1retnWG0DQNq8WEwaASjado6Q2BAn63g0gsSVdvBIfDQkVZFg6rma6eCIfrO0ilMiSTGZLpDNOKs3DYzCiKQk62G+XYvWT5nJiOdXTRdZ3m9n5ygm6mlw5NxgghhBBCCCE+vN7uvDja15lu0hIenZ2dZDIZcnJyhmzPycmhtbV1xHNaW1tHPD6dTtPZ2TniOffeey8FBQVccsklx43lW9/6Fh6PZ/BVVFQ0yruZXBs3buQ//uM/AFi+fPkkRzN+dF1n05tH6OmOUFwaxGQ2cOhIK81tfTicFhw2M4logkgkzl/+spdXXtk/4kPutFu4/NxZWMxGqhs76eyN0Nsfpb6lm86+CMvnlzCzPPe4cTQ0dtPdEyHgdwzbpygKwYCT+oYuunsiQ/bZrWZSmcyQ++kPxzEfS4Jomo7RoBCKJ7AYDKjHEjXRY3VBcnM8zJ9TiD/gwGBQCHgdrFpUTmGuF0VVBmt1OJxWTDYTBkWBjE5PX5SO7jDV9Z047RauuGAOdpt5lO++EEIIIYQQQpxeJr1Ly3u/fdd1fdi29zt+pO0A3/nOd3j66ad57bXXsFqtxx3zK1/5Cvfcc8/gz/39/adN0iMUCnHLLbegaRq33HILf/u3fzvZIY2b3p4oNVXtBLIGZm10dofp6o7gcdkwGFTMJiPh0EACwW63sGN7LfPmFpJf4BsyTiKRoijbyw0fWcyeI80crusgrWmUFQZZNKuQudPzMY7Q2vZtqXRmIDlxbObEe5mMBtIZjVQ6M2T7jJJsth1oIJFMYzEPPHqqqpBK62Q0DR2dgMdBX0+KeCZ97Cx9yNIat9tGdp6Hj541i4sWTiOjaWzYVcNbu2upbe1BAYwGleWLyyjP9dPa1kdbZwiz0cC5y6axcHYh+TneUb/3QgghhBBCiEmkH3uN9pwz3KQlPILBIAaDYdhsjvb29mGzON6Wm5s74vFGo5FAIDBk+3e/+13+67/+i7/85S/Mnz//hLFYLBYsluEdO04H//zP/0x1dTUlJSU8+OCDkx3OuErEU6RSGdyegRoc7R0hFEUZLMhpMKjouk4mncHnd9DZGeJIVetgwqOzM8SOHXXs39dEKpXGZjMzb34Rt3/8bOx2C1aLcUjiLBpLcri6jcbWHnQdCnK8zKjIweO2YTEbiUaT2O3DZ0qEIwnsNjMu59AkW2VJNpUl2RyoaSPX78RptxD0OThS10EilSLL5yLL5ySipTnc2oklZUBVVTzvGiccS2A1GSnPG1iiZVBVVi2qYNHMQmqbu0mlMnicVorz/AM1PnSdVDqDqqonTOIIIYQQQgghxFQzaQkPs9nMkiVLWLt2Lddee+3g9rVr13LNNdeMeM6KFSt44YUXhmx7+eWXWbp0KSaTaXDb//zP//Af//EfvPTSSyxdunR8buBD4He/+x0//vGPURSFn/3sZ3g8nvc/aZIk4ika6jpJJtI43TYKivxDOoecDIfTgsU6kGiwWE0kkmmMxnfGSKczqKqCyWwcTIREI0kA2lr7+P0fttDS3IvHY8dqNRONJvnLX/ZSfbSda69bis36zu9QU2svz728i6a23mNJEB1dg9xsN1ddNI/iIj9HqtspLQoMmYGRSmfo7Yty/jkzcNiHJtEsZiPXXTSfNev3c7iunbaeCIlUBoNBxWIyMr04C6PBQL7XTWNXH629IYqyfHjd9oHlL9EEbb0hllUWUZw1dNaK02ZhbkXesPdMUZTBJTNCCCGEEEIIcSaZ1E9C99xzD7feeitLly5lxYoVPP7449TX17N69WpgYKlJU1MTP/3pTwFYvXo1Dz74IPfccw933HEHGzdu5Mknn+Tpp58eHPM73/kO/+///T9++ctfUlpaOjgjxOl04nQ6J/4mx0l/fz933HEHANdceB0N6zt4reVNZi2vJKcka8Li0HWdzvYQ4VAMi9VETp53SCJD13V2bqnhrTeP0NUeQtN0TGYDhcUBLrhsDkUlwZO+lsttY+acQjatP4zbY8NmNRGNDSQ0dHQi4QRujw23ZyBBkM5oOJwWdF3nr6/up7Wlj7Ky7MEEhctlxe93cLS6nbc2VnH5RwZmAoUjCZ59aSct7X0U5/sGl66k0xmOHG3n8Z+tY+HsQowGlaM1Hfh9dsxmI9FYkv5QnLyAC7/dyqH9TRQWB3C8a4aGx2njby9fTEtnP80dfQCkUmk2766jrStEmx5C13VyHA6cNgt2l4Xqli4A7BYzZ88s4arls07YQUYIIYQQQggx1cialrGY1ITHDTfcQFdXF/fffz8tLS3MnTuXNWvWUFJSAkBLSwv19fWDx5eVlbFmzRq+8IUv8NBDD5Gfn8+PfvSjwZa0AA8//DDJZJJPfOITQ6719a9/nfvuu29C7msiRDpj3HzBp3lpw59ZFDyb+v2NHN5ylG1rd3PxTatYeOHccY+hraWX9a8epKaqjXgshdGkkl/o5+xzK6mcnQ/Aji01vPj8DoxGA/mFPowmA7Foktrqdp57JsL1N68g7z01Nk7krHOm0VjXSV11BzaziUxaIxpNkEyksVhNlJRnoaoKvb1RHHYz06fn0tLSS11tJzk5nmGJAqPRgN/nYP/+Js45txKn08rBowOFUEsK35mFkkymqapqp6srRF9/jP7eGC6nBXSIxlJkMjqqDh4M9Df1s6ZuG4qi4PHZWXxWOWevqhxMnCiKQn6WZ0h72gUzCjlS205nbwSDqlKU56Mw10Ntaw8d/RGMqkpxto+8EbrOCCGEEEIIIYQYbtLnut95553ceeedI+576qmnhm07//zz2b59+3HHq62tPUWRfTjpuk5TdTuP/OtP6Tuoc37JdXR3xckptJE/PY/+jn7+8rPXCeT7KDpBa9UPqr2tj9//ahPtLX0Es10EslwkE2kaajtpa+njquuWUDotm7feOIzJZCAnzzt4rs1uprg0SO3RDra9dZSrrj/5ZUeBoIvrbjqbt944zIE9jVjNBvpDcfx+B+XTcnA4rbS29hGPJznn3Epycz0cOtRCPJ4iN3fkJT9Op5X2jn76+2I4nVZqGrowGNXBZIem6Rw50kZ7ez8OhwWXW8dsMVJWHKSppReX08ol581iwyv7aQ2Fyc51Y3dY0DSdnq4wr760l2QyzUWXzzvufdmtZhbMLBy2fUZRNjNO+t0RQgghhBBCTEm6PvAa7TlnuElPeIiTp+s6b72yj1//6CWq3jqEYjKjhpN0tvbRUt9FdoGPGfOL6GrqYt+GQxTNKBio/dATJZlI4XBZsTuP361mNLZsqKKtuZfSineWiNjsZopKgzQ1dLP+1QNkNI2uzhAFRf5h5yuKgi/g4MjBFsKhOE7XyccVCLr46LVLWHXhLLq6wuze3UBNbQehcJxoPEkg4OSCC2aydFk5iqJgMhlQVYV0WsNkGt5ZJZXKYDSoGI/t0zRtsCUsQF9flK6uME6nFZPJQCKZRtN1zGYjJUUBauo62fDGIVqaeigpy3pXEVWFYLYbozHCjs01zF9UQjDbPar3WQghhBBCCCHE2EjC4zSyb1stL/1mC6017aiqisvvQAEyGY1kIkVnSy+qqpBX6KNmdz0N1e1sW3eI2kOtA11JHBZmLy5l6XkzcPscY44j1B/j8IFm/AHniLUksnLctDX30lDbCTrHbd9qthjpj8VIxFOjSni8ze214/baKavIJhyO09UVRlUVcnI8mM3v/GoXFPgJBF10dYXIzfUOG6erK0RZeTbBoAuAwjwfu/Y3omkDLWH7+2NkMm8nSwZqg3hcA51iVFXBZjOxa1st5cXBEQuxenx2ao92UHO0XRIeQgghhBBCiNGTEh5jIn0qTxOZjMbON4/Q3xMBwGQy8HaqwWBQMZmMaJpOf09k4NUf5w//t469W6oxW4x4A04yqQzr/7ybZ596Y3CcsYjFkiQTaaw204j7zWbjQE0LVUVVVZKJ9MjjRJNYbWbsjg/eEtjptFJSEqSoKDAk2QFgtZpYflY5qVSGjo5+MhkNGChC2tzcg9li4qyzygeTN7Om5eL3OWhu6x1oc5vRGJjwoROKJLCYjWQF3imAa1AVksk0ZsvI+UNFUVDUgU41QgghhBBCCCEmhiQ8ThN9XWHamnrIpDNY3XYUVUE79sEdwGAyoGkaqVSG7tYeImmI9McomZ6L2+fAZrcQyPFQPC2H2kOtbH3j0JhjsdnMmC1G4rGRP8Ank2kMBoXSiixy8720tfahv2f9WCat0dcTZc78Qmx285hjOVmLl5RxyaVzMRoN1Dd0UVPbQWNjN263jSuvXEBl5TstXf1eB1deOBeb1Ux1XSfReIp4PEV3z0BB0ell2Tjf1XI2Gkvh9zuIRhIjXlvTNNAZ0q1FCCGEEEIIIcT4kiUtpwlN09F1HUVRsbgdpJx24qEoVpcNRR3IW+m6TjISA7cfjEayC/zDOnoYTQY8fgcHttWy4uI52MYwu8LltlE5K58tG6pwe+3DlrV0tPWTneuhbFoOBoPKC7/dSl1NB4Gga6B9ayRBT3eEkrIslpxdMfY35SREowmqjrTR3RPBaFC59LJ5pFJpksk0DoeF8vJsbLbhCZfZ0/Pwex3sO9zM/sMthPpiWEwGKitycB9bzgLQH4pjMKisWDWD3ZtrSCRSWCxDZ750tofw+hxMm5E7rvcqhBBCCCGEmKKkaOmYSMLjNOHxO/AGnLQ1dhMJaQQq8uk82kQ8FEVRFDQNMqk0dq+D+RfMpbs3jsU68pITu9NKX0+ESCg+poQHwLKV06ivHWgPG8x2YXdYSCbSdHb0YzabOPfCWZjNRqbNyOO6G89my4Yq6mraCfXHsNnMrDhvBmedM41kRqOquh2j0UBBnnfEoqJjVVXVxksv7aajvR9Q0I8VGq2szOWKKxfgfJ8ZF7lZbnKz3Fx8zkz2HmjiTy/vprMrQiqtYVAV+kNxdB3OXlrOqrOnkYwkObi3CafbisttI5PO0N0VwWhUWXXRLFxu2wmvJ4QQQgghhBDi1JGEx2nCZDYy/+wK6g63YDQaSGZ0cmaVEOsJE+0JEQvHsef4WHrJPFZetZg//XIDmXQGwwgFQ5OJFEaT4bgJkZORnePh2huW8+ZrB6k+0kZPVwSjSaWoOMjZqyqpnJ0/eGxJeRbFZUF6uiIkk2mcLiuxRIpX3jjIkep2YrEkBoNKdpabs5eWs3Be0bCZKaPV2trLCy/sIBKOU/yuYqLRaJI9exoAuP4TZ41YdHUkc2cV4HJa2bmngaqadjIZnfLSLBbMLWLOzHwMBpWrP7GM3Hwve3fU090ZHljWUz4wi2XGu94PIYQQQgghhBgdqVo6FpLwOI0sWjmdjuZe1r+4m9aGbiKh+ECXFpsdb9DPvOXlXPuZVQRyPGx42UVXWz/ZBb4hY+i6TndniIUrpuPy2j9QPLn5Xq67cTmd7SHCoRhmi4ncfO+InUoURcEfHCj02d0T4bfPb6OpuYesoIvsoItUOkNXV5gXXtxFOp1h2eKyYWPE4ynqqzuIH+vqUlwWPG4HmN27G+jpiVBeljUkeWK3m8nL83LkSCuNjd0UFwdO+n5LigKUFAUG2tJqGlaLacjYNruZ8y+Zw1nnTKe/N4rRaMB3nE42QgghhBBCCCHGlyQ8TiMms5GPfPIsps0pYOvrhzh6oJFEPEVugZ/F581g/lkVg0mMsy6cxdrfbaWtqYdAjhuj0UA8lqS9qQdfwMmScytPSUyKopCV4yYr5+TbrW7fVUdjUzdlJe/MvLCYjeTneWlr7+eNjUeYNSMfp8NCX2+U2qPtHNzXxNHDraRSGVRFQTWo5OV7Of/SOVRUDq2NkcloHDrYgsdtG3GmiN1uobWtj4aGrlElPN5mMZ/4sbHZzCPWBRFCCCGEEEIIMXEk4XGaMRgNzFhQzIwFxSc8bvG5lSgobH7tAE01nei6jtFkoKA8iws+upD80uCYrh8Ox2lq6iGT0fD5HOTmeka1/CSRTLPvYDMet23EmSDBgJP6xm6OHG0j1BFm26ajNNR20tbSh6KAP+ikYnoudqeFlqZenv/NFq678WxKyrMGx9B1nYymjTj+2xRFGWxPK4QQQgghhBAfarKiZUwk4TFFqarKkvNmMHtJKfVH20klUjg9dorKs0as6/F+0ukMGzdWsX1bLb29UXRdw2ozU1aWxcUXzyEYdJ3UOOFwnLa2PrSURiyUwOGy4nZZ6GvopKu6jWQkTjit85dEhlg8g91pIZ3K4HRZsdnNREIJDh9oZva8IgpL/NTVdLB5wxGKy4KDiReDQSU318ORw234fI4R7wUg4HeO+n0QQgghhBBCCHF6kITHFGdzWJgxv+gDjaHrOq+9doA31x/G4bBSVORHVRUikQT79zXR3xfjkzcsx+M5cU2Q9rY+XvjdVuqrO0inM1hNRvRMhkxdG4ZofKAeh1GlvzfGtq44eaVZuGbkE4smcbisGAwqbq+N3u4ILU09VHryCQRd1FV30NMVGawRoigK8+cXU3Wkjf7+GO53dUfRdZ3mll5ycjxUTMv5QO+LEEIIIYQQQkwIaUs7Jsef8y/EMZ2dIXZsr8PjsZOV5cJgUFEUBafTSklJkIbGrsHOJ8cTCSf442+30lTXRWmBH7PVhNtrR2vppreug7iu4Mz1ojqsOPMDmO0W+pq7aK3rRNP1IctTrDYz3V1hUskMZrORdDpDIpEacr0ZM/JYfvY0+vpj1NV30tUVpr29n+qaDjxuGx/5yHysH6BLjRBCCCGEEEKIDzeZ4SGG6OuL0tjYjabp+P0O8vN9VFd3EA7HKSvLGna8waDidFjZs6eRlSsrj9uR5PCBZhrruygqCZLKZOiPJuhq7yPa0oXVbSeRztDRGcJut5Cd5aIzlMJkVOht60G12UilMphMhmPXVEgmNTKaRiySwGo143RZh8V10UWzKSr0s2dPAy0tvVisRhYvKWX+/CKysk6+yKoQQgghhBBCTCZd19FHOWNjtMdPRZLwEAAkk2neeOMQu3bW0x+KgQ4Wq5HS0izcLiuKqhy3OKnZbCQRT5FOD8y4GEn14TYMRnXwNac8l/19UWrjKfCYyaQzqCjMrMzFYDbRHe7GZDURD8ex+dxEIgk8noGuK8lkBrPFiKoq9HRHWHFeJa53LVt5m8GgMnNWPjNn5ZPJaKgnuAchhBBCCCGEEFOLJDwEuq7zl7/sY9OmKrweOyXFQRQFotEkBw80YzIZSSXTaJqGqg5fBRWNJsnL8wzOwBhJKpUesizFZjVRmu+jz23HHnARjSbJznKTHXST0XScNhN9/XEMChQU+mlo6qa3J4rFYiQWS+L12Wms66K4NMhZK6e/7z2eqGOLEEIIIYQQQoipRz4FClpaetm9qx6HzYRZVUin0iiKgsNhoaQkSCQSJ53R6OgIDTs3kUiTTKWZN7/4hLMncvK8JOLpIdOqnAE3NpcNPZlCBVyugVkaBlWhrMAD6Qwp1YDJbqakLAun00KoP47dbiY718s5F8zk2hvPxheQbitCCCGEEEKIqUwf4+vMJjM8BG+9up8ju2pR4wl0HUxmI9lFAQqm52GxWfB47CRTGdLpDPX1XQQCTgwGlVAoRn8ozqxZ+cydW3jCa8ycW8D2zdV0doTIyh6on2FxWsmelkfVW4ex+5wEs99pbaumUuTaVQqXTiOlKuiqypwFxVTMyGHGrAICWS7sDsu4vi9CCCGEEEIIIUbnj3/8I//yL/+Cpml8+ctf5rOf/eykxSIJjzNAJp2hdl8DXc09KKpCwbRc8spzUBSFg5uP8ObzWwj1xcny2jEYVJKJFHUHmujvDjNr+XTMZiNWm4lLL53H9m01NDf3oGk6TqeVi5aVs3x5xYgdT5LJNEePttHTHcVgUJi3uISdW2qoq+7A6T5WZNTrwVeajSWdor22HbPFRDKexGK3cMG1y7j45lUkkxlSyTQ2h+WEy2aEEEIIIYQQYkoay4SNSZjgkU6nueeee3j11Vdxu90sXryY6667Dr/fP/HBIAmPKa+troMX/++vNB5uJpPKoOtgdVqYvqSc8/9mJa//egNKRsPusmG2mFAUBaPJiNVuoaetj5aadgwuO6WlQebMKWDWrHy6ukJkMhoejx2bzTzidWtrO3n5pd20tPahawMVha1WE9n5HrwuK80NPQAsO2c6s/7hAvRYnKrt1YR7o3iz3ExfWkHRjHxUVcVmNGCzj3wdIYQQQgghhBAfDps3b2bOnDkUFBQAcOWVV/LSSy9x4403Tko8kvCYwpqqWvjlf/2ezqZuSucU4nA70HWdSF+UXa/uo7mqle6WXsrKsgk39RFNZnBYBn4lVFXFYjPTXNtB7swC5s0vPrZded+Wrh0d/Tz//HZ6eyMU5HsxmYwD140kqGvowr+olNVfuBxVVYYUE522sGz83gwhhBBCCCGEECe0bt06/ud//odt27bR0tLCH/7wBz7+8Y8POebhhx/mf/7nf2hpaWHOnDk88MADrFq1CoDm5ubBZAdAYWEhTU1NE3kLQ0jR0iko0h/l5Z++xoOf/z+2vbybzsYu9m88QuORZnRdx+l1kD8tl5o9dXS39tDb2Ik5FCHUG6GzL0oinSaV0UgpKqFokunl2cyalX/S19+1q56uzhDFRQFMpoEEiqIoOJ1WcnI8HDzYTFtbn3ROEUIIIYQQQoiTooM+ytcY1rREIhEWLFjAgw8+OOL+Z555hrvvvpuvfvWr7Nixg1WrVnHFFVdQX18/EKU+/Jonam4x3mSGxxQTjyb446Mvc+CtI/S29eHyO3B47MTCcY7urCUZT1E2rxiLbWDJSl9niL6OfhSDimIwEnNYSbmdOL12DLpOsdfKVR9bhNl8cr8qmqZz6GALLpd1xF9sh8NCe0c/9XVdFBZOzjouIYQQQgghhDidxBKxMZ/T398/ZLvFYsFiGbkBxBVXXMEVV1xx3DG///3vc/vttw8WIn3ggQd46aWXeOSRR/jWt75FQUHBkBkdjY2NLF++fNSxnyqS8JhiDm2u4tCWoxRW5tHd2ouu6xgMBpweB/FogpbqNrKKAoQ6w0T6o5jMRsw2M06PAx2deDRJpLmdXHchipbinEsW4g243v/Cx2iaRiqdwWgcubiooigoKKQzmVN1y0IIIYQQQggxJZnNZnJzc/nCD+4c0/lOp5OioqIh277+9a9z3333jXqsZDLJtm3buPfee4dsv+yyy9iwYQMAZ511Fnv37qWpqQm3282aNWv493//9zHFfipIwmOK2ffmQQxGA2arGafXTltddHCfxW4m2hajq6mbzsYeDAYDuWU59HeFCPdGsLts2OwWktEE9TtrWHLZfBZdPG9U1zcYVLKz3RytasPncwzbn05nQAGvd/g+IYQQQgghhBDvsFqt1NTUkEwmx3S+ruvDZt4fb3bH++ns7CSTyZCTkzNke05ODq2trQAYjUa+973vceGFF6JpGl/60pcIBAJjut6pIAmPKaavK4TVMfALnFUUpKOhi0QsicVmRkFBVRVCPRF62npx+RxULi2np7WX5qpWQj3hwQfCbDNx9lVLyC4Kjur6iqIwf34xR6vaCIfjOJ3WwX26rtPa2kt2lpvp03NOMIoQQgghhBBCCBhIelit1vc/cIK8N4Hy3qTK1VdfzdVXXz3RYY1IEh4jeLvQynvXOp0OTA4DvfV9OLNs2HxmAqVemqvaIAQWm4lwJIzWniGpJSivLEYx6fiLPLhyHIS6w2hpDaPFSG9nPxaPeUzvQUGBk1mzs9m+vRZVUXC5rGQyOv39UdxuO2evKCGVipNKxcfhHRBCCCGEEEKI8ff2Z6WRCnVORcFgEIPBMDib423t7e3DZn18WEjCYwShUAhg2FqnKafuxLu//dz/G5fLfvVr4zKsEEIIIYQQQky4UCiEx+OZ7DDGndlsZsmSJaxdu5Zrr712cPvatWu55pprJjGy45OExwjy8/NpaGjA5XINTs3p7++nqKiIhoYG3G73JEcoxIePPCNCHJ88H0IcnzwfQhyfPB8fbrquEwqFyM/Pn+xQTplwOExVVdXgzzU1NezcuRO/309xcTH33HMPt956K0uXLmXFihU8/vjj1NfXs3r16kmM+vgk4TECVVUpLCwccZ/b7ZY/bIQ4AXlGhDg+eT6EOD55PoQ4Pnk+Prym2syOrVu3cuGFFw7+fM899wDwqU99iqeeeoobbriBrq4u7r//flpaWpg7dy5r1qyhpKRkskI+IUl4CCGEEEIIIYQQggsuuOB9a5Lceeed3Hnn2NrkTjR1sgMQQgghhBBCCCGEONUk4XGSLBYLX//618fcs1iIqU6eESGOT54PIY5Png8hjk+eDyE+GEU/U3roCCGEEEIIIYQQ4owhMzyEEEIIIYQQQggx5UjCQwghhBBCCCGEEFOOJDyEEEIIIYQQQggx5UjCQwghhBBCCCGEEFOOJDze5eGHH6asrAyr1cqSJUt44403Tnj866+/zpIlS7BarZSXl/Poo49OUKRCTLzRPB8tLS3cdNNNzJgxA1VVufvuuycuUCEmwWiej9///vdceumlZGVl4Xa7WbFiBS+99NIERivExBvNM7J+/XrOOeccAoEANpuNmTNn8oMf/GACoxViYo32M8jb3nzzTYxGIwsXLhzfAIU4jUnC45hnnnmGu+++m69+9avs2LGDVatWccUVV1BfXz/i8TU1NVx55ZWsWrWKHTt28G//9m98/vOf53e/+90ERy7E+Bvt85FIJMjKyuKrX/0qCxYsmOBohZhYo30+1q1bx6WXXsqaNWvYtm0bF154IR/72MfYsWPHBEcuxMQY7TPicDj4p3/6J9atW8eBAwf42te+xte+9jUef/zxCY5ciPE32ufjbX19fdx2221cfPHFExSpEKcnaUt7zPLly1m8eDGPPPLI4LZZs2bx8Y9/nG9961vDjv/yl7/M888/z4EDBwa3rV69ml27drFx48YJiVmIiTLa5+PdLrjgAhYuXMgDDzwwzlEKMTk+yPPxtjlz5nDDDTfw7//+7+MVphCT5lQ8I9dddx0Oh4Of/exn4xWmEJNirM/H3/7t3zJ9+nQMBgPPPvssO3funIBohTj9yAwPIJlMsm3bNi677LIh2y+77DI2bNgw4jkbN24cdvzll1/O1q1bSaVS4xarEBNtLM+HEGeKU/F8aJpGKBTC7/ePR4hCTKpT8Yzs2LGDDRs2cP75549HiEJMmrE+Hz/+8Y85evQoX//618c7RCFOe8bJDuDDoLOzk0wmQ05OzpDtOTk5tLa2jnhOa2vriMen02k6OzvJy8sbt3iFmEhjeT6EOFOciufje9/7HpFIhE9+8pPjEaIQk+qDPCOFhYV0dHSQTqe57777+OxnPzueoQox4cbyfBw5coR7772XN954A6NRPsoJ8X7kKXkXRVGG/Kzr+rBt73f8SNuFmApG+3wIcSYZ6/Px9NNPc9999/Hcc8+RnZ09XuEJMenG8oy88cYbhMNh3nrrLe69916mTZvGjTfeOJ5hCjEpTvb5yGQy3HTTTXzjG9+gsrJyosIT4rQmCQ8gGAxiMBiGZVLb29uHZVzflpubO+LxRqORQCAwbrEKMdHG8nwIcab4IM/HM888w+23385vfvMbLrnkkvEMU4hJ80GekbKyMgDmzZtHW1sb9913nyQ8xJQy2ucjFAqxdetWduzYwT/90z8BA8sidV3HaDTy8ssvc9FFF01I7EKcLqSGB2A2m1myZAlr164dsn3t2rWsXLlyxHNWrFgx7PiXX36ZpUuXYjKZxi1WISbaWJ4PIc4UY30+nn76aT796U/zy1/+ko9+9KPjHaYQk+ZU/R2i6zqJROJUhyfEpBrt8+F2u9mzZw87d+4cfK1evZoZM2awc+dOli9fPlGhC3HakBkex9xzzz3ceuutLF26lBUrVvD4449TX1/P6tWrAfjKV75CU1MTP/3pT4GBjiwPPvgg99xzD3fccQcbN27kySef5Omnn57M2xBiXIz2+QAGq4WHw2E6OjrYuXMnZrOZ2bNnT8YtCDFuRvt8PP3009x222388Ic/5Oyzzx78Zs9ms+HxeCbtPoQYL6N9Rh566CGKi4uZOXMmAOvXr+e73/0un/vc5ybtHoQYL6N5PlRVZe7cuUPOz87Oxmq1DtsuhBggCY9jbrjhBrq6urj//vtpaWlh7ty5rFmzhpKSEgBaWlqG9MMuKytjzZo1fOELX+Chhx4iPz+fH/3oR1x//fWTdQtCjJvRPh8AixYtGvzvbdu28ctf/pKSkhJqa2snMnQhxt1on4/HHnuMdDrNXXfdxV133TW4/VOf+hRPPfXURIcvxLgb7TOiaRpf+cpXqKmpwWg0UlFRwbe//W3+4R/+YbJuQYhxM5Z/YwkhTp6iv11pUwghhBBCCCGEEGKKkBoeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEKcYd566y0uvvhigsEgiqIMefX29k52eEIIIYQQp4QkPIQQQogzyK5du7jgggtYsGAB69at48UXX8Tv93PhhRfyzDPP4PV6JztEIYQQQohTQhIeQgghxBnk85//PNdccw3f//73mT17Npdffjk33ngjoVCI7u5uFi5cyNy5c7FYLCxcuJCFCxfy2GOPHXe86upqXnjhhfe97rPPPsvdd999Cu9ECCGEEOLEjJMdgBBCCCEmRltbG+vXr+evf/3rkO0OhwNFUVi9ejWrV69m+/btfO5zn+PNN9983zH//Oc/E41G+djHPnbC43bv3s38+fM/UPxCCCGEEKMhMzyEEEKIM8S2bdvQNI0FCxYM27506dLBn/ft28ecOXOGHLNnzx5WrFjB3Llzuf7660kmk7z++ut87Wtf44knnmDRokXEYjF+9rOfsXz5cubNm8fVV19NMpkEJOEhhBBCiIknCQ8hhBDiDKFpGgCxWGxw2549e1i3bh233HLL4La9e/cOSXjE43FuvPFGfvKTn7B3716CwSC/+tWvOP/885k7dy6vvPIKO3bswGazceWVV7Jp0yb27NlDMBjkjTfeAEZOogghhBBCjCdJeAghhBBniOXLl2Oz2fjSl77EwYMH+dOf/sQ111zD6tWrWbly5eBx+/btY+7cuYM/P/vss3zkIx+hsrISgJkzZ9LR0QFAY2MjRUVFAOi6zuOPP86yZctYsGABf/jDH7BarUSjUVRVxWazTeDdCiGEEOJMJwkPIYQQ4gyRlZXFr3/9azZv3sz8+fP5/Oc/z+rVq3nggQeGHPfeGR4HDhxg1qxZgz/v27eP2bNn09jYSEFBweD2p556iqqqKtatW8euXbtwu93Mnj172HhCCCGEEBNBipYKIYQQZ5CrrrqKq6666rj7w+EwkUiE3NzcwW15eXkcPHgQgO3bt7N582Yee+wxNmzYQH5+/uBx+/btY+XKldhsNn74wx+iaRo+n0/qdwghhBBiUsgMDyGEEEIM2r9/P7Nnzx6y7dZbb2X//v3MmzePu+++m1//+tcYDAbmzp3LkSNHmDdvHgcPHuTWW2/lm9/8Jueffz5dXV3MmzcPGKgTIgkPIYQQQkw0Rdd1fbKDEEIIIYQQQgghhDiVZIaHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLK+f9mlR5Xy/tSiQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -611,7 +715,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDvUlEQVR4nOzdd3xUVfr48c+dkt4DhJAeQkuoAakiUqSXgBS7rKCLXbDBb3dtq4tY0VX8WrGsIog0FVGQgCAq0pQSWgpJSEJIIL1NOb8/EgZiAmYgPc/79crLzJlz733mJg5PzpxzHk0ppRBCCCGEEKIJ0TV0AEIIIYQQQthLklghhBBCCNHkSBIrhBBCCCGaHElihRBCCCFEkyNJrBBCCCGEaHIkiRVCCCGEEE2OJLFCCCGEEKLJkSRWCCGEEEI0OZLECiGEEEKIJkeSWCGEADRNY82aNQ1+jvqUlJSEpmns27evUZ5PCCEuRZJYIUSzNHPmTDRNq/J1/Pjxavunp6czZsyYGp37qaeeomfPnld0juYoKCiI9PR0unbtCsCWLVvQNI2cnJyGDUwI0SwZGjoAIYSoK6NHj2bp0qWV2lq3bl3pcVlZGQ4ODrRt2/aKr1cb52jK9Hp9i78HQoj6IyOxQohmy9HRkbZt21b6Gj58OPfddx/z5s2jVatWXHfddUDVqQCpqanccMMN+Pj44OrqSp8+ffj111/58MMPefrpp/n9999to7sffvhhtefYv38/w4YNw9nZGV9fX+666y4KCgpsz8+cOZOYmBheeukl/P398fX15d5778VkMv3la1uwYAH9+/ev0t69e3eefPJJ2+OlS5fSpUsXnJyc6Ny5M0uWLLnkebdu3Urfvn1xdHTE39+f+fPnYzabbc9brVYWLVpEREQEjo6OBAcH89xzzwGVpxMkJSUxdOhQALy9vdE0jZkzZ/Lxxx/j6+tLaWlppetef/313HbbbX/5uoUQ4hwZiRVCtDgfffQRd999Nz/99BNKqSrPFxQUMGTIEAICAli3bh1t27Zlz549WK1WZsyYwYEDB9iwYQObNm0CwNPTs8o5ioqKGD16NP379+e3334jMzOT2bNnc99999mSXoDY2Fj8/f2JjY3l+PHjzJgxg549e3LnnXde8jXcfPPNPP/888THx9O+fXsADh48yP79+1m5ciUA7777Lk8++SRvvPEGvXr1Yu/evdx55524urpy++23VznnyZMnGTt2rC3ZPHz4MHfeeSdOTk489dRTQHny/O677/Lqq69y9dVXk56ezuHDh6ucKygoiC+//JLrr7+eI0eO4OHhgbOzMw4ODjzwwAOsW7eOadOmAZCVlcXXX3/Nhg0bLvmahRCiEiWEEM3Q7bffrvR6vXJ1dbV9TZ06VQ0ZMkT17NmzSn9ArV69Wiml1Ntvv63c3d1VdnZ2ted+8sknVY8ePS55jnfeeUd5e3urgoIC2/PffPON0ul0KiMjwxZjSEiIMpvNtj7Tpk1TM2bMqNFr7N69u3rmmWdsjxcsWKCuuuoq2+OgoCD12WefVTrm3//+txowYIBSSqnExEQFqL179yqllPp//+//qU6dOimr1Wrr/+abbyo3NzdlsVhUXl6ecnR0VO+++2618fz5fLGxsQpQZ8+erdTv7rvvVmPGjLE9Xrx4sQoPD690XSGE+CsynUAI0WwNHTqUffv22b5ef/11APr06XPJ4/bt20evXr3w8fG57GvHxcXRo0cPXF1dbW2DBg3CarVy5MgRW1tUVBR6vd722N/fn8zMzBpd4+abb+bTTz8FQCnFsmXLuPnmmwE4ffo0KSkpzJo1Czc3N9vXs88+S3x8/EVjHjBgAJqmVYq5oKCA1NRU4uLiKC0tZfjw4TW/EdW48847+f777zl58iRQPuXh3EI8IYSoKZlOIIRotlxdXYmIiKi2/VKcnZ2v+NpKqYsmZRe2G43GKs9ZrdYaXeOmm25i/vz57Nmzh+LiYlJSUrjhhhsAbOd499136devX6XjLkya/ypmVTHdQtO0WrkvAL169aJHjx58/PHHjBo1iv379/PVV1/VyrmFEC2HjMQKIcSfdO/enX379nHmzJlqn3dwcMBisVzyHJGRkezbt4/CwkJb208//YROp6Njx461EmdgYCDXXHMNn376KZ9++ikjRozAz88PAD8/PwICAkhISCAiIqLSV1hY2EVj3rFjR6V5wjt27MDd3Z2AgAA6dOiAs7MzP/zwQ43ic3BwAKj2Xs2ePZulS5fywQcfMGLECIKCgux9+UKIFk6SWCGE+JMbb7yRtm3bEhMTw08//URCQgJffvklP//8MwChoaEkJiayb98+srKyqqy0h/KP+p2cnLj99ts5cOAAsbGx3H///dx66622RLM23HzzzXz++ed88cUX3HLLLZWee+qpp1i4cCGvvfYaR48eZf/+/SxdupRXXnml2nPdc889pKSkcP/993P48GHWrl3Lk08+ybx589DpdDg5OfH444/z2GOP8fHHHxMfH88vv/zC+++/X+35QkJC0DSNr7/+mtOnT1fameHmm2/m5MmTvPvuu9xxxx21dj+EEC2HJLFCCPEnDg4OfP/997Rp04axY8fSrVs3nn/+edvH8Ndffz2jR49m6NChtG7dmmXLllU5h4uLC9999x1nzpzhqquuYurUqQwfPpw33nijVmOdNm0a2dnZFBUVERMTU+m52bNn89577/Hhhx/SrVs3hgwZwocffnjRkdiAgADWr1/Pzp076dGjB3PmzGHWrFn885//tPX517/+xcMPP8wTTzxBly5dmDFjxkXn8AYEBPD0008zf/58/Pz8uO+++2zPeXh4cP311+Pm5lYlbiGEqAlNqWr2lxFCCCHq2HXXXUeXLl1sC+6EEMIeksQKIYSoV2fOnOH777/n5ptv5tChQ3Tq1KmhQxJCNEGyO4EQQjRC27ZtY8yYMRd9/sL5pU1NdHQ0Z8+eZdGiRZLACiEum4zECiFEI1RcXGzbR7U61W0dJoQQLYkksUIIIYQQosmR3QmEEEIIIUSTI0msEEIIIYRoclrcwi6r1UpaWhru7u5Sp1sIIYQQop4opcjPz6ddu3bodFc+jtrikti0tDQpbyiEEEII0UBSUlIIDAy84vO0uCTW3d0dKL+BHh4eDRyNEEIIIUTLkJeXR1BQkC0Xu1ItLok9N4XAw8NDklghhBBCiHpWW9M5ZWGXEEIIIYRociSJFUIIIYQQTY4ksUIIIYQQosmRJFYIIYQQQjQ5ksQKIYQQQogmR5JYIYQQQgjR5EgSK4QQQgghmhxJYoUQQgghRJPT4oodCCFEY1VksmC2Whs6DCFEC6Kh4eagr7UCBPVJklghhGgE8kpNbErKaugwhBAthL6oiEnREQAcPZFBx2C/Bo7IfjKdQAghGgGTVTV0CEKIFsrURD8BkiRWCCGEEEI0OZLECiGEEEKIJkeSWCGEEEII0eRIEiuEEEIIIZocSWKFEEIIIUSTI0msEEIIIYRociSJFUIIIYQQTY4ksUIIIYRo8vRFRUzp3I4pnduhLypq6HBEPZAkVgghhBBCNDmSxAohhBBCiCZHklghhBBCCNHkSBIrhBBCCCGaHMPlHlhWVkZmZiZWq7VSe3Bw8BUHJYQQQgghxKXYncQeO3aMO+64gx07dlRqV0qhaRoWi6XWghNCCCGEEKI6diexM2fOxGAw8PXXX+Pv74+maXURlxBCCCGEqCNWq5UtwMCGDuQK2J3E7tu3j927d9O5c+e6iEcIIYQQQtSRU6nJbFm9gi2rV5AJrAY6NHRQl8nuJDYyMpKsrKy6iEUIIYQQQtSBPT9uZs17Szi48/x0UA8gg6abxNq9O8GiRYt47LHH2LJlC9nZ2eTl5VX6EkIIIYQQDUsphcVstj3OTE3m4M4daJpG94GDmfvcK2QAcxouxCtm90jsiBEjABg+fHildlnYJYQQQgjRsE6npbJ17UpiV69g0qx7GDnjFgAGjZ1EQW4OQyZNpXW7QPRFRTj/Y14DR3tl7E5iY2Nj6yIOIYQQQghxGUpLitm58Vs2r17O/p+3o5QCYMe362xJrLuXN1PvfqgBo6x9diexQ4YMqYs4hBBCCCGEHZRSvPfv/8eP61ZRVJBva4/qO5BhU2bQ77qxDRhd3busYgc5OTm8//77xMXFoWkakZGR3HHHHXh6etZ2fEIIIYQQokJ+zlncvbwB0DSNzJOpFBXk07pdIEMnT+faydPxC2wZhafsTmJ37drFqFGjcHZ2pm/fviileOWVV3juuef4/vvviY6Oros4hRBCCCFapLLSEn7b/D2xq1fwx44fefP7HbRuFwjAtHvmMvFvc4jqOwCdrmbr9Q0F+XgcjrM9dkiIh1D/Oom9LtmdxM6dO5eJEyfy7rvvYjCUH242m5k9ezYPPfQQP/74Y60HKYQQQgjRkiiliD/wB7GrP2f7N2spyM2xPffHz9sYfv2NAHTsUf3gob6oCLfkRNySEnBLSsTtRAKuJxJxO5GIU3blrVKd9+6GYVfX2WupK5c1EnthAgtgMBh47LHH6NOnT60GJ4QQQgjR0iQfO8Ir8+aQcuyIrc23rT/Xxkxn6OTp+IeEAaArKcYt+QRuJxJxPZGA24nEioQ1EefMjEteo8THF6cz2QCYAoLq7sXUIbuTWA8PD5KTk6tU7EpJScHd3b3WAhNCiJbAarUSHx+PxarQlBtKSnkL0eKYysrIzkijbXAoAK3bBXL6ZAoOjk4MGj6KyQMH08vLB4+UE7gtfRu3ioTVOT0NrWInguqUenlTEBJOQWgYhSFhFISE2R4rnZ5J0REAFPUfUB8vs9bZncTOmDGDWbNm8dJLLzFw4EA0TWP79u08+uij3HjjjXURoxBCNGulpaXl31zWUlshRFOVcGg/satXsGPdl3T3acVz85/EveIj//3hHfA7k43bhq/Q1q+96DnK3D0uSFDDKAgNt31vqlgAVh19UVFdvKR6Zfdb5ksvvYSmadx2222YKypBGI1G7r77bp5//nm7A1iyZAkvvvgi6enpREVFsXjxYgYPHnzR/p9++ikvvPACx44dw9PTk9GjR/PSSy/h6+tr97WFEKKhaZpGaGgoeWVmVGbT/0dFCHERFgsu6WloB/aRuX4dpt9+psvZM0wEwgBjbg78/dZqDzW7uJwfRbUlq2EUhLanzNsHWugnOHYnsQ4ODrz22mssXLiQ+Ph4lFJERETg4uJi98WXL1/OQw89xJIlSxg0aBBvv/02Y8aM4dChQwQHV90eYvv27dx22228+uqrTJgwgZMnTzJnzhxmz57N6tWr7b6+EEI0NE3TcHNzo7S4DLTihg5HCHElrFacMzNwTUrEPSnh/DzVE4m4Jp9Abyq76KEWR0cKgiuSU9uIajiFIWGUtG7TYhPVS7nsD69cXFzo1q3bFV38lVdeYdasWcyePRuAxYsX89133/HWW2+xcOHCKv1/+eUXQkNDeeCBBwAICwvj73//Oy+88MIVxSGEEEIIUSNK4XQ6s2Klf+XFVK7JiRhKSi56qNlg4JjZTJq7B5ao7rgPGY65SxQFIWEU+/lDDbfIEuVqlMROmTKFDz/8EA8PD6ZMmXLJvqtWrarRhcvKyti9ezfz58+v1D5y5Eh27NhR7TEDBw7kH//4B+vXr2fMmDFkZmaycuVKxo0bd9HrlJaWnp9vBuTl5dUoPiGEqA9KKfLz8ykpM4NSMtoiRGOgFA5nz5RvT1UxknouYXVNSsRYVHjRQ616PZmeXsSVlfF7QT6ug4bQ5W9/pyA0nPzWfpw8kUhwx/LF8QX19XqaqRolsZ6enmgVb6weHh62769EVlYWFosFPz+/Su1+fn5kZFS/LcTAgQP59NNPmTFjBiUlJZjNZiZOnMh///vfi15n4cKFPP3001ccrxBC1AWlFMnJyQBoBh8uvs5YCFHbjLk555PUpPJ9VN0r/uuQf/FBL6XTUdQu0DY/NS8ohD8KC/hm326++uUnSiq2rjIYjYwICeXOq68FQA+2BFZcuRolsUuXLrV9/+GHH9ZqAH9OiJVSF02SDx06xAMPPMATTzzBqFGjSE9P59FHH2XOnDm8//771R6zYMEC5s2bZ3ucl5dHUFDT3A9NCNE8ubi4YLJawdzQkQjR/BgKCmwb/Z9LUM9t/u+Yc/aSxxb5t6u0mKowtHxxVWFQMFYHR6A8b5k7cVilPV3DukQxdPIMBk+YjIe3LDyvK3bPiR02bBirVq3Cy8urUnteXh4xMTFs3ry5Rudp1aoVer2+yqhrZmZmldHZcxYuXMigQYN49NFHAejevTuurq4MHjyYZ599Fn//qiXTHB0dcXR0rFFMQghR33Q6HeHh4WQXl6GSsxs6HCGaLO2CRVM9n5qP68nk8upUWacveVxxa78LEtTyFf8FIWEUBIdgdXKu0r8wL5ff1q9jyKSpaJqGpmlEXdWf3KzTDJ4whaGTpxPWpWutvz5Rld1J7JYtWygrq7q6rqSkhG3bttX4PA4ODvTu3ZuNGzcyefJkW/vGjRuZNGlStccUFRVVqhQGoNfrgfK/hIQQQgjRsuhKSwhduYxO75yfWhiybmWlPiU+vuV7qVas+LftABAchsXV9S+vYbFY2P/zNjavWs7OTRswlZXSNjiEztF9AbjhgceYOf9pjA4OtfvixCXVOIn9448/bN8fOnSo0giqxWJhw4YNBAQE2HXxefPmceutt9KnTx8GDBjAO++8Q3JyMnPmzAHKpwKcPHmSjz/+GIAJEyZw55138tZbb9mmEzz00EP07duXdu3a2XVtIYQQQjRd+uIiwpb/jw7vv4Xz6VOVnoub8yD5ER1tCavZ3eOyrpGWGE/smi/YuvYLsjPSbe3BHTpTckGxAPdLFBUQdafGSWzPnj1tw+bDhg2r8ryzs/MlF1hVZ8aMGWRnZ/PMM8+Qnp5O165dWb9+PSEhIQCkp6fbFjwAzJw5k/z8fN544w0efvhhvLy8GDZsGIsWLbLrukII0VhYrVYSExMxW61oylXKzgrxFwwFBYQv+5CIpW/jVLGAqsi/Hcduv4sezz8FwNG77sdyGfvXX+j4/t95fNoY22M3Ty+uHhfDsCk3EB7VrVYWuYsro6kafg5/4sQJlFKEh4ezc+dOWrdubXvOwcGBNm3a2D7ab8zy8vLw9PQkNzcXD4/L+8tMCCFqi9Vq5dChQwAcM/hIEivERRjzcmn/vw9o/9F7OOaWL8gqCArh6F33cWLSNHRmM5OiIwBYu+e4XUms1Wrl4M4dnD2dyTUTptja7h8zmHah4QydPJ2rho3E6NB81tjoi4ps9+tgYhpRoVXXFdW22s7BajwSe2501Gq1XvFFhRBClNM0jZCQEPJKTaisi2+SLkRL5XD2DBEfv0f7T97HWJAPQH5oOEfmPEjK+Mmoc2tlzPZv75GRcoItq1ewZc0XnE5LxcPbhwGjxmN0cECn0/Hquh9wcHSqzZcjatFlV+w6dOgQycnJVRZ5TZw48YqDEkKIlkLTNNzd3SkzlEF26V8fIEQL4ZidRcTS/yP8s49sxQVyO3TiyJwHSR09AS7z09/iwkJ+/u5rtqxewcHffra1u7h70H/kOEqKCm0LtCSBbdzsTmITEhKYPHky+/fvR9M0264A5+aGWCyW2o1QCCGEEC2G06kMOnzwFmHLP7GVcM3pEsXhOQ+Rdt2YKy7NuvKtV1nz3hKgPHfpPvAahk6eTt8Ro3GsZkst0XjZncQ++OCDhIWFsWnTJtv82OzsbB5++GFeeumluohRCCGaLaUUhYWFlJaapOysaNGc01Lp+N6bhK78HH1Z+acSZ7r15PDdD5Ex9LrL+n8j82QqW9d+Qbf+g2zbYQ2ZOJVfN25g6OTpDJl0Pa387dtZSTQediexP//8M5s3b6Z169bodDp0Oh1XX301Cxcu5IEHHmDv3r11EacQQjRLSimSkpIAKTsrWiaXlBN0eue/hKz5Ap3JBEBW9FUcvnsumVcPsTt5LQK2fLOGH75Zw/5ftgOQGn/MlsQGd+zMfzdsk90FmgG7k1iLxYKbmxtQXnUrLS2NTp06ERISwpEjR/7iaCGEEH/m5OSE2apA1s2KFsQt4Tid3v4vQV+vQlcxFTGz3yAO3/0QWf0G2pW8KqU4/PsevgaWA/n/esT2XLf+V9N3+KhK/SWBbR7sTmK7du3KH3/8QXh4OP369eOFF17AwcGBd955h/Dw8LqIUQghmi2dTkdERATZxWUckrKzooYu3B7J3u2kGpr7sSN0fmsxgRu+QqvY8ejU1dcSd89DnKkYLb0cbzyzgNSK7/0Cgrh2ygyunTSNNoFBtRC1aIzsTmL/+c9/UlhYvkrw2WefZfz48QwePBhfX1+WL19e6wEKIYQQounzjDtA57deI+D7b2xt6UOv4/DdD3G2e68an6estISdmzbw07freOjFN3B0dkHTNMZMu5myF55hJnB27Q+oik+NRfNldxI7atT5Ifnw8HAOHTrEmTNn8Pb2luF5IYQQQlTivX8fnZe8in/sRlvbyZHjOHz3g+R26VqjcyilOL5/H5tXLeen9WspzMsF4NdNG2zFCcbdcBuTXngGgLU6HbJXUvNndxL70UcfMXXqVFxdXW1tPj4+tRqUEEK0FFarlaSkJMxWhaacpWKXaDZ89uyky5LF+G3fAoDS6UgdM5HDcx4kv0OnGp0jP+csP3y5jNjVK0g9ftTW3qpdANfGTLMt1hItk91J7COPPMI999zDhAkTuOWWWxg9ejQGw2XXTBBCiBavqKio/BuD7FEpmjilaPXrDjq/tZg2v/4EgFWvJ2XC9Rz5+/0UhLW363SFebl88uKzADg4OdF/5DiGTp5O136D0F3hfrGi6bM7+0xPT2fDhg0sW7aMG264AWdnZ6ZNm8Ytt9zCwIED6yJGIYRotjRNIygoiPwyM0oqdommSinabN9K57depdWe3wCwGo2ciJnOkbvuoygo5C8OVyQe2s/mVcspLSnm3udeAaBtcChjb7mD4I5dGDhmAq7uHnX+UloKi4sLqw6noQEdLvh0vSmxO4k1GAyMHz+e8ePHU1RUxOrVq/nss88YOnQogYGBxMfH10WcQgjRLGmahqenJ+biMjhT9tcHCNGYKEXb2I10/r/X8PmjfJ94i4MjSVNv5OjseyhuF3jJw3Ozs/jxq1VsXrWc5KNxAOgNBm6Z9//w9G0FwKx/Plu3r0E0WVc0D8DFxYVRo0Zx9uxZTpw4QVxcXG3FJYQQQojGymql3cZv6fx/i/GKOwiA2cmJxBm3cuyOuynxa3vJww/u/JmvPnqHPVt/wGI2A2B0cKTviFEMnXwDbl7edf4SRNN3WUnsuRHYTz/9lE2bNhEUFMSNN97IF198UdvxCSFEs6aUoqioiLJSs5SdFY2fxULghq/o9H+v4XmsvMCR2cWF+JtmcvxvcyitGD2tjtVqtc1jPXE0jt9++A6ADt17ce3k6Vw9dhJunl51/hJE82F3EnvjjTfy1Vdf4eLiwrRp09iyZYvMhRVCiMuklCIxMRGQsrOi8dLMZoK+WkWnt1/HPSkBAJObO/G3zuL4bbMp865+l6K8s9ls/3oNm1cvZ9QNt3Pd9JsBGDx+MlnpJ7k2ZjrBNdypQIg/szuJ1TSN5cuXM2rUKNmVQAghaoGDgwMWpZAMVjQ2WlkZIWu+oNM7/8U1NRmAMk8vjt9+J/G33IHJw7PKMRazmb3bYoldvYJdsd9jNpkA+HHdl7Yk1t3Lm9se/Vf9vRDRLNmVhZpMJtLT0+nQoYMksEIIUQt0Oh0dO3Yku7iMOCk7KxoJXWkJoV9+Tsd338AlPQ2AEh9fjv/t7yTcOBNzNdWwlFL875X/sGX1CnKyTtvawyO7MXTKDAaPi6mv8EULYVcmajQaOXDggFTmEkIIIZohfXERoSs+peN7S3A+fQqAktZtODrrHhKn34LFxaVS/5KiIpwq2jRN48ThQ+RkncbDx5drJlzP0CnTCe0UWe+vQ7QMdg+n3nbbbbz//vs8//zzdRGPEEIIIeqZoaCAsM8/osPSt3HKzgKgqK0/R++8j6SpN2J1dLL1tVgs/LHjRzav+pxdsRv577fbaOUfAMD1cx5g5A23En3NcAxGY4O8FtFy2J3ElpWV8d5777Fx40b69OlTqfwswCuvvFJrwQkhRHNntVpJTk7GZFVoylHKzop6ZcjPo/3/PiDiw3dxzD0LQGFAEEfuup/kydOwOjja+p5MOE7s6hVsXbuSM5kZtvZdWzYx+sbbAejSu1/9vgDRotmdxB44cIDo6GgAjh49Wuk5mWYghBD2KygoKP/G4HjpjkLUEmPOWSI+fpf2n3yAQ34eAPkh4Rz5+/2kTJiCumAUNS0xnjcWPMSRfbttbW6e3lwzYTJDJ08nLLJbvccvBFxGEhsbG1sXcQghRIukaRoBAQEUlJlRZ00NHY5o5hyzs4j48G3CP/0QY1EhAHkRHTn89wdIHTsJ9HqsVitnT6Xj6+cPgHdrP5KOHEKn19Pr6qEMnTKDPkNHYHSQP7pEw7rsLQaOHz9OfHw811xzDc7OziilZCRWCCHspGka3t7eWIvLIEd2JxB1wynzFB3ef4uw5R9jKCkBIKdzJIfnPETayLGg05GRnETs6hVsWbMCdy9vXlq9EQBnNzceXvwO4V264t3GryFfhhCV2J3EZmdnM336dGJjY9E0jWPHjhEeHs7s2bPx8vLi5Zdfros4hRBCCGEn5/STdHz3TUJXLkNfVgrA2a49OHzPQ6QPHUlxYSE/r17B5tXLidv1q+244sJCzmaesiWtvYcMb5D4hbgUu5PYuXPnYjQaSU5OpkuXLrb2GTNmMHfuXElihRDCDkopSkpKMJWapOysqDUuqcl0eucNQlYvR1dRbCC7Vx8O3zOXU1dfC5rGt58u5X8vP0dJURFQ/qlAj0FDGDZlBlcNH4XDBTsSNAUWFxdWHU5r6DBEPbI7if3+++/57rvvCAwMrNTeoUMHTpw4UWuBCSFES6CUIj4+HpCys+LKuSYl0Pnt1wla9yU6iwWA030HcviehzgYEIzRyQnvij+UWrcLpKSoCP+QcIZNmcGQSdfj27ZdQ4YvhF3sTmILCwtx+dNmxwBZWVk4OsokbyGEsJfBYMCqJH0Vl8/9+FE6/d9rBK1fi2a1AnBq0BD+uONuvsrKJPat1zjw609M+fsD3Dx3PgC9Bg/luc/W0qlXH1nTIpoku5PYa665ho8//ph///vfQPnHD1arlRdffJGhQ4fWeoBCCNGc6XQ6OnfuTHZxGYel7Ky4DH0eu492P3yHVvGHUPq1I/hu2Ej+98dedjwwm+LCAlvfrPSTtu/1BgOdo6+q93iFqC12J7Evvvgi1157Lbt27aKsrIzHHnuMgwcPcubMGX766ae6iFEIIYQQ51ittPlpq+1hwKYNAJy8bixxcx7k7qce5/gTj9mebxMYzNDJ07k2ZjptAgKrnE6IpsruJDYyMpI//viDt956C71eT2FhIVOmTOHee+/F39+/LmIUQgghWjx9YSEha7+g/Sfv455YPo9aAX/07E3m04vI7xQJQHhkN1LjjzJg1HiGTp5Blz790Ol0DRi5aIyUguwMHYlxRnyGaNC6oSOyn6ZUy5qIlZeXh6enJ7m5uXh4eDR0OEKIFs5qtZKamkqZxcr+UgcpOyuqcD6ZSvtPPyB05TIc8nIBKHVyZntJMQ8DvwPPfbbWNjUgJ+s0js4uOP+pLLxoucwmSEs0kHjYSOIhA0mHjSTGGSnILf/j5sV3i3hkdtX1TrWttnMwu0diN2zYgJubG1dffTUAb775Ju+++y6RkZG8+eabeHt7X3FQQgjRkuTllZf9xODTsIGIxkMpfHfvJOLj92i36dvzi7W8vHlTb2Bx9mnyK7q2btuO/JwztkO9WjXBITVRa4oLNE4cNZAYZyxPVg8ZSD5mxFRW9Q9kvUER2N6Mk17fAJFeObtHYrt168aiRYsYO3Ys+/fvp0+fPjz88MNs3ryZLl26sHTp0rqKtVbISKwQojFRSnHmzBkKTRZ25Zhln9gWTldWSuD6dUR8/C5ehw7Y2k9078X9+/fxtVIowMHJieklJcwE8nYdRbm5NVTIooEoBTmndSTEGUmKKx9lTYozkpGsR6mq7yPOrlZCO5vp2NVM9+6K6F4avXvo8fM04qCvn+kmDT4Sm5iYSGRk+bybL7/8kgkTJvCf//yHPXv2MHbs2CsOSAghWhJN0/D19YXiMsiV3QlaKsfTmYR//jFhyz/BKes0ACajkdSY6cTfOouciI78MqI/Hf3aMmzKDK6+ZgQ3DekFwFqdDktDBi/qnMUC6Sf0JMWVTwMoH2U1kJtd/Qiqj5+F8C4mOne10rOnok9vHd06GvB0MqLXOdRz9HXH7iTWwcGBoorqHps2beK2224DwMfH5/xHYkIIIYT4S14H/6D9x+8TuH4telMZAOkGA6+bzXzu6saiJ/6DwWhEB7y8dhOu7uWjV/qKf4dF81NaDCeOlo+qJh4unxZw4oiRspKqo6s6naJduJn2XcxEdVf07AH9+mi0DzDiYnRs9vv/2p3EXn311cybN49Bgwaxc+dOli9fDsDRo0erVPESQghxaUopysrKMJdJ2dmWQjOb8f/hOyI+fpdWu3fa2n8GFgOrzGY0B0f6DryGwrxcPH1bAdgSWNF85J7RlU8FuGB0NS3RgNVa9X3A0dlKSMfy6QDdKqYD9Ompx9/biKPB2ADRNzy7k9g33niDe+65h5UrV/LWW28REBAAwLfffsvo0aNrPUAhhGjOlFIcO3YMkLKzzZ0xN4fQlZ/R/tOluKSVFx0wazqWKyuvAb8BHXpEc8fk6QwaMxE3T6+GDFfUIqsVTqXoK42uJsUZOZNZ/XQAT9/y6QCdulrp2RP6RGt076LHx6V5TQe4UnYnscHBwXz99ddV2l999dVaCUgIIVoanU4nyWsz5pZwjIhPPiBo9QqMJcUAlHr7kDjjVn7sO4DHH3+AaydN5eaY6QRFdGzgaMWVMpVB8tHzC62SDpePsBYXVl08pWmKtsEW2keZiOxqpWcvjb7RGh1Djbi1gOkAV8ruJBbAYrGwevVq4uLi0DSNzp07ExMTg8FwWacTQogWS6fTERkZSXZxGUek7GzzYbXit30L7T96l7YXVNf6A/i2RzSdPvoCq5MzrYB3tuxG30S3OGrp8nM0256rSRUjrCcTDFjMVZNPo4MiuKOJDpEWuvZQRPeCq3rpCGxlxMng3ADRN312Z50HDhxg4sSJnDp1ik6dOgHl82Fbt27NunXr6NatW60HKYQQQjQF56pqBb//Fj4nUwCwAuuA14CUyG5cd/2NdHA6n7RIAtv4KQWnT+pJPGw4v0PAYQNZadWnUW6eVsIjTXSKstC9h6JPtEavbgZ8XQ0YZDpArbE7iZ09ezZdu3Zl9+7dtsIGZ8+eZebMmdx11138/PPPdp1vyZIlvPjii6SnpxMVFcXixYsZPHjwRfuXlpbyzDPP8L///Y+MjAwCAwP5xz/+wR133GHvSxFCCNHI6YuKmBQdAcDaPcexuNR9VaHLUV1VrTzgfeAjTy+CYqYzYcp0QitKw4rGy2yC1AQDiYfOj64mHTZSmFf9XqptAs20jzTTpWL+ar8+Gp3CDLg7OqCT6QB1yu4k9vfff2fXrl2VKnN5e3vz3HPPcdVVV9l1ruXLl/PQQw+xZMkSBg0axNtvv82YMWM4dOgQwcHB1R4zffp0Tp06xfvvv09ERASZmZmYzWZ7X4YQQjQKVquVtLQ0Si1WNGWQsrNNiVJ4//YzbV5dROe9v3FuPLUgJIw1EZ1432Km37Sb+H/XDMdgbJmrxxu7ogKNpEqjq0ZSjhkwm6r+f2gwKoIiyhPWbt2t9OqlcVUvHcF+RpwNMn+1IdidxHbq1IlTp04RFRVVqT0zM5OIiAi7zvXKK68wa9YsZs+eDcDixYv57rvveOutt1i4cGGV/hs2bGDr1q0kJCTg41NenjE0NNTelyCEEI1KTk5O+TdSdrZJ0JWV4vLhO7T/6F3aZ2fZ2o906Ez2vAVkDBmOi07H/Q0Yo6hMKThzSne+FGvFtlanUqpPg1zcrYR1NtExykL3HtC7t0bvbnpauxsw6uUPksaiRknshUUM/vOf//DAAw/w1FNP0b9/fwB++eUXnnnmGRYtWlTjC5eVlbF7927mz59fqX3kyJHs2LGj2mPWrVtHnz59eOGFF/jkk09wdXVl4sSJ/Pvf/8bZufpJ0aWlpZSWllb7WoQQojHw8/OjyGRB5VkbOhRxCSopEcfnn6T/9i20qvgEsBj43MGB30aOo/M9DxEY3qFhgxRYzJCWZLAlqkmHy8uy5p2tfu5xK//y7ay6dLPSoydc1Uuja0cDHk4yHaCxq1ES6+XlVWmYXCnF9OnTbW1KlW8OM2HCBCyWmhW/y8rKwmKx4OfnV6ndz8+PjIyMao9JSEhg+/btODk5sXr1arKysrjnnns4c+YMH3zwQbXHLFy4kKeffrpGMQkhRH3T6XS0bt2a7OIyyJfdCRojrwN/0P6T9wj8Zg36iuQ1FVgdFkH2XffRZdwkRjg4NmyQLVRxoWbbzurcHNbko0bKSqupbqVXBIaXTwfo2l3Rsxf07aUjLMCAi0wHaJJqlMTGxsbWWQB//qVRSl30F8lqtaJpGp9++imenp5A+ZSEqVOn8uabb1Y7GrtgwQLmzZtne5yXl0dQUFAtvgIhhBDNTUbCMYoXv8Covb/R9XSmrf2gjy9bBg3Bed4CAvwDCGjAGFuas6d1tqkASRVJa/oJPUpVzRmcXKyEdjbTIaq8ulWfaI3ePfS09TLiINMBmo0aJbFDhgyp9Qu3atUKvV5fZdQ1MzOzyujsOf7+/gQEBNgSWIAuXbqglCI1NZUOHap+jOPo6Iijo/yFLIRonJRSmM1mLGYpO9vQigsK2LtmOW2XvsO0kymEVLRb9QZSx0wg/rbZnO3eC/8GjbL5s1oh44S+UinWxMNGck5XPx3Au7WFsIrpAN27w1V9NLp3NuDlJNWtmrvLqk6Qk5PD+++/byt2EBkZyR133FEpufwrDg4O9O7dm40bNzJ58mRb+8aNG5k0aVK1xwwaNIgvvviCgoIC3NzcgPI9anU6HYGBgZfzUoQQokEppThy5AggZWcbyvH9+zj41msM2rqJpy0WXCvazxqM7Bo6gqLHn8QSWP2OOeLKlJZAyrHzC62S4oycOGqgpKj66lbtwiy072ImsruVXj2hb2+NiCAjrlLdqkWyO4ndtWsXo0aNwtnZmb59+6KU4pVXXuG5557j+++/Jzo6usbnmjdvHrfeeit9+vRhwIABvPPOOyQnJzNnzhygfCrAyZMn+fjjjwG46aab+Pe//83f/vY3nn76abKysnj00Ue54447LrqwSwghhPgzpRSaUvht30KH55/isYTjtudOtGpD0h1zOHvzTKyOTg0YZfOSd1azJapJh40kxBlISzBgtVZNPh2cFCGdyqtbdetuJbqXRp9eetr5GHAyyM9ElLM7iZ07dy4TJ07k3XfftZWZNZvNzJ49m4ceeogff/yxxueaMWMG2dnZPPPMM6Snp9O1a1fWr19PSEj5hzjp6ekkJyfb+ru5ubFx40buv/9++vTpg6+vL9OnT+fZZ5+192UIIUSjoNPp6Nq1K9nFZRyVsrN1qqSoiF++/4ZfVi5jnn87xh34HffEeKC8qtbxPv1Iv/8RsvsOlGkdV0ApOJWqr1IsIDuj+ukAHt4WwiLNdO5qoUcP6BOt0TNKj7eLUapbiUvS1LmtBWrI2dmZvXv30rlz50rthw4dok+fPhQVFdVqgLUtLy8PT09PcnNz8fDwaOhwhBACgOziMrZKElvFlVbsUkoRt3snsauXk/rNWu4sKWY24FXxvMnNnaTrbyT+lr9RFBRyiTM1Lo2lkpmpDFKOVy7FeuKwkaKC6qtbtQ0xE97FTFQ3Kz17wVXRGp1CjLg76mU6QAtQ2zmY3SOxHh4eJCcnV0liU1JScHd3v+KAhBBCiCullGL1O2/ww8rP6JByggeBGLBV1coNCCJx5l0kT56BuWKNhbi0glytfM/VitHVxDgjqfEGLObqq1uFdDQREWmha3dFr17QL1pHQGsjTnqZvypqh91J7IwZM5g1axYvvfQSAwcORNM0tm/fzqOPPsqNN95YFzEKIUSzZbVaycjIoMRsQVN6KTt7Bcwmk628q95URtjXq/gm5QQXrtQ4NWAw8bffScY1w0BX/WhhS6cUZKXrbPNXEyuKBWSerD5lcPO0EtalvLpVjx6K3tEa0d0M+LoZMMp0AFGH7E5iX3rpJTRN47bbbsNcsemz0Wjk7rvv5vnnn6/1AIUQork7c+ZM+TdSdtZuSimO7ttN7OoV/Pzd17y1dDm9N20gbPknxFSUhDU7OpIyaRrHb51FfodODRxx7bC4uLDqcNoVn8dsgpMJ54oFGCpGWo0U5Faf4LcJMBNWsTtAzx7l0wEiIwy4O0p1K1H/7J4Te05RURHx8fEopYiIiMClgebj2EvmxAohGhOr1crp06cpNlvYk48sKPqTi839zD6Vzta1K4ldvYK0xHiigQeBm3R6DNbyypFFbf1JuGkmSdNupsxb/kAoKtA4ceT8QqvEQ0aSjxkwm6r+zukNiqAIMxGRZqK6W+nVU6NvtI6QtkacDTqZDiAuS4PPiT3HxcWFbt26XXEAQgjRkul0Ovz8/MrLzhbIwq6/kpFygvee+X/8/tNWNKuVGGCuTscgq7W8g9VCds/eHL/9TtJGjEEZW151JqXgbKauYqFV+VSAxMNGMk5U/0++s2vFdICuFrp1h97RGr2762jjIdWtRON22UmsEEIIUdeUUpwBzo2jenj7cHLnDuZZrcx1cKBdWRlYrVgNBlLHTCyvqtWtZwNGXL8sFkhPMlQqFpB42EDemeq3s/JtW1HdqquVnr0UV0XriOpgwMtZpgOIpkeSWCGEaEBKKaxWK1aLRcrOXuDs6Ux+XPclW1Z9ji+wB3BLOE63lZ+RohQOAGVllHr7kHjDbSTccBslfm0bNug6VlKkkXzUcH50Nc7IiaNGykqq/s7odIqA9mbadzET1U0RHQ1XResIDzDgYpDdAUTzIEmsEEI0IKUUcXFxgJSdNZWVsXvLJjav+py922KxWixoQC+gGBg+dbStb07nSOJvnU3K+JhmWVUrN1tHQsVCq3NzWNOT9NVWt3J0thLayUzHrma6dVfl1a166mnrbcRRpgOIZkySWCGEEA3uhy+X8cmLz5KfcxYAb+Bx/wDuKC6idUWb0jTSh4/i+K2zyeo7oFmMWlutkJGsty20SjxcXjjg7OnqpwN4tbYQ3tlEp65WevaE3r00ekTq8XY2opftrEQLc1lJ7NGjR9myZQuZmZlYz02mr/DEE0/USmBCCNESaJpGVFRUiys7m3smG00DD29fANy9vMnPOcu1Xj78s00bhiQlYEg/WemYTWt/IL9j5+pO1ySUlULy0cqlWJMOGygpqrqdlaYp/EMttI80E9nVQs9e0DdaR8cQI65GmQ4gBFxGEvvuu+9y991306pVK9q2bVvpfyRN0ySJFUIIO5x7D9U0rVmMLF6K2WRi77bNbF61nN1bNjH5zvu48cHH0JWVEpObyz3hEQQnHIec8n1zc7pEkTj1Jnr9+x8AFAUGN2T4dsk/q1XMXT0/upqaYMBqqfozdnBUBHc00SHKQrfuVqJ7aVwVraedjwEnQ/ObKiFEbbE7iX322Wd57rnnePzxx+siHiGEEM3MiSNxxK5ewY9ffUluRQECgLL9+4h6ZSEhKz/D6Uz5KLTVaCR11HgSbprJmV590BcX25LYxkgpyDypJynOQELF7gBJh41kpVc/HcDdy0p4pIlOURZ69ITe0dAryoCPqwGDTAcQwi52J7Fnz55l2rRpdRGLEEK0OFarlczMTIpNFlDNazRWKcXTf5vB/l+229o8fXx5oE9/bs/NIXzHj2jbtwDlhQkSb7iNpKk3UdqqdQNFfGmmMkiNv7BYgIGkI0aK8quvbtU22Ex4FzNdulnp1RP69tboFGrE3dFBpgMIUQvsTmKnTZvG999/z5w5c+oiHiGEaHGysspHJ5v67gQWs5kDO3fQfcBgNE1D0zTaBocSt/tXrhl0LQ+1bsOQ337B4/tvbMdk9r+ahJtmkj5sJMrQeNYaF+ZrFTsDGGyjqynHq69uZTAqgjqY6RBppmt3K716afTtpSPIz4iTXuavClFX7H7HiIiI4F//+he//PIL3bp1w/inaigPPPBArQUnhBAtQatWrSg2WVCFDR3J5UmNP0bs6uVsXfslZ0+fYuHnX9GxZ28A7ho9nv+WldL++28wFBUBYHJ1IzlmGgk3zSS/fYeGDB2lIDtDd350Na48cc1Mrf6fR1cPK2Gdy6tbde+h6BOt0aurgdYeBow62c5KiPpkdxL7zjvv4ObmxtatW9m6dWul5zRNkyRWCCHsoNPpaNu2bXnZ2aKmsztBYV4u29evJXb1Co79vsfW7uHtQ3ZqMgFpqbT/7ENa7frV9lxuh04k3DSTlAnXY3Zzq/eYLWY4mWCoVIo1Kc5Ifk710wFatzs/HaBHj/LpAJEdDHg4SnUrIRoDu5PYxMTEuohDCCFEE3HiSByPTxuLqawUAJ1eT+8hw5k4bCQxqSlELHoap9OZAFj1etJGjCHhppn1urdrcaHGiSMXzF+NM5B81IiprJrqVnpFYHszHaLMRHY7tzuAjjB/I85S3UqIRqvxTEASQogWSCl1/r+NtOxsWmI86clJ9B4yHIDAiI54+vri4ubB0MnTmR4UQvdv1tDuqfnozGYASlq3IXHazSTOuIUSP/86i00pyDmts42untshICNZj1JV76Wzq5XQzmY6Rlno3sNK7146onvo8PM04iDVrYRoUi4riU1NTWXdunUkJydTVlZW6blXXnmlVgITQoiWQCnFoUOHgMa1sKuoIJ8d364jdvUKDu/5DU/fVryzZTcGoxG9Xs/LH31Jt+2xhC/7GM9jh23HZfXpR/xNM0kbMQblULtbRlkskJqgr9h7tWJKQJyR3Ozqt7Py8bMQ3sVE565WevRQXNVHR7eOBjydpLqVEM2B3UnsDz/8wMSJEwkLC+PIkSN07dqVpKQklFJER0fXRYxCCCHqgdVq5eDOHWxetZxfvv+GspISoHzebvuuPcg/e4aggjzCP/uIkNUrMBYWAGB2diZlwvXE3zyTvE6RtRJLaTEkHzNyYp8HG1jCPnqyd3AYpSVV56/qdIp2YWbaR5qJ6q7o2RP6RmtEBBpxkepWQjRbmjr3WVYN9e3bl9GjR/PMM8/g7u7O77//Tps2bbj55psZPXo0d999d13FWivy8vLw9PQkNzcXDw+Phg5HCNHCKaWwWq2cKS5jW+rZBp1OsOz1F1i5ZLHtcUB4BMOmzGDImElEHdpP+GdLafPz+T1f80PDSbhpJskx0zB5eF72dXPP6GwLrRIPlZdiTUs0YLVWvReOzlZCOpbPX+3eQxHdS6NPTz3+3gYcDdWPyAohGofazsHsHomNi4tj2bJl5QcbDBQXF+Pm5sYzzzzDpEmTGn0SK4QQjYmmaej1enR6fb0msMWFhfz83dcEd+hMRLceAAwYOY71n3zA1eNiGDp5Ol0Dgghb+Rlht8Tgkp4GgNLpSB96HQk3zSRzwGDQVb+yvzpWK5xK0VcqxZoYZ+RMZvXJp6evhfBOpYzc8To92UfrrUvoHu2Gj4tMBxBCXEYS6+rqSmlp+YrUdu3aER8fT1RUFHB+w24hhBB2KCzE182NKcDaPcexuLjUyWWUUhza9Suxqz7n5+++pqSoiCGTpvLAotcBCO0cxfvb9tI27iDh//uAwA1foTOZACj19iFp6k0k3HAbxQGBf3ktUxmkHKtcijXpsIHiwqpJr6Yp2gZbaB9lIrKrlZ69NPpGa3QMNeJWZkVzX1Desff74CrJqxCinN1JbP/+/fnpp5+IjIxk3LhxPPzww+zfv59Vq1bRv3//uohRCCGaLavVyumzZ+Huu2n97rt1co3Mk6lsXfsFsatXcCrlhK3dPyScsC5dAdAXFxH4zRraf/YhXocO2Pqc6RFN/E0zOTl6PFZHp2rPn5+jVSSp5VtZJcYZOZlgwGKuOrJsdFAEdzTRIdJC1x6K6F5wVU8dga2NOBmcq568mgpZQggBl5HEvvLKKxQUlE/mf+qppygoKGD58uVERETw6quv1nqAQgjR3J3OyYF77qH1hx/W+rmVUvx79o2kJcYD4OzqxqCxExk6eTqdel2FW3IS4c8/Tcjq5Tjk5gBgcXQiZdwkEm76Gzldu19wLjh9Ul9pKkDiYQNZadX/U+LmaSU80kSnKAvde0DvaIjuZsDX1YBBpgMIIa6Q3UlseHi47XsXFxeWLFlSqwEJIURL4+PuDu++CxV7rF4upRRH9u5i29eruf3xJ3BwdELTNIbGTOePn7dx7eTp9L9uLE6OjrTdFkv432+l7Y+bbccXBgaTcONtnJhyA0VuPqQmGEhcXT4N4FzRgMK86ufAtgks3x2gS1crPXtCvz4ancIMuEt1KyFEHbF7dwKAnJwcVq5cSXx8PI8++ig+Pj7s2bMHPz8/AgIC6iLOWiO7EwghGp3CQqgow3o5c2KzM9LYuvZLYlcvJy0pAYC5Ly/h6nExQHlyq2kaDmfPELLqc8KXfYxrarLt+JMDh7FtwCx+cBhNwhEnEg8bSTlmwFzNR/kGoyIoojxh7dbdSq+e5dWtgv2MOBt0tb+d1QX3hoICcHWt3fMLIepNg+9O8McffzBixAg8PT1JSkrizjvvxMfHh9WrV3PixAk+/vjjKw5KCCHEpZWVlrBz0wZiV6/gjx0/YrVaAXB0dmbAqAkEhEfY+nof+IP2ny0lcP069KXle78WOnqx1u82Xi+7m193dIYdVa/h4m4lrLOJjlEWevRU9I7WEd1NT2t3A0apbiWEaGB2J7Hz5s1j5syZvPDCC7i7u9vax4wZw0033VSrwQkhhKheVtpJXn34HtvjyD79GTplBgNGjsPZzQ1VWILL26vo/OVSQpN32/rtoRdvci/LSm+kOPn8iG+rdmbCO5vp0s1Kj55wVbRGVAcDnk4NPB3A1bV8Mq4QQvyJ3Unsb7/9xttvv12lPSAggIyMjFoJSgghWgqr1cqhxETYs4fIQYOq7XM28xRbv/qS3Owsbn/sCQDahbVn0NiJ+IeGM2DUDZQWtScxzsj6J9IZ/NurXH96Ka0p3/awDCMrmM6b3MtOXT8C21sYEGUmqlsRPXtB3146wgIMuBikupUQoumwO4l1cnIiLy+vSvuRI0do3bp1rQQlhBAtjrHyx/OmslJ2bd5I7OoV7N0ei9ViwWA0MmzKg2SltyExzoBSn7NjvZFVSzSG8wP38ibj+Ro95VMLUrVAVra9kz2DbiW4fxse66XRu4eJtl5GHGQ6gBCiibM7iZ00aRLPPPMMK1asAMqrzSQnJzN//nyuv/76Wg9QCCGaM03T6BQUBB07opWUcOL4UTas/YIfv1pHYZ4v0BP4N67uQ7CqHjw0/vzCJk9yuJ13uIcldOKorf1E52vJn/V3/O+axP1uTuh1MroqhGh+7N6dIC8vj7Fjx3Lw4EHy8/Np164dGRkZDBgwgPXr1+PayFeONsTuBOcWXGiaZvuo7lwbgO6Cso3V9VVKce7HJH1rp++F7Zfb969+nvb0vdjrkN+T5v97AlCYmc+h0NHsLY7i1R6zOPy7BYOhG0ajK2YzmEzn+7q4WBjit485liWMSv8cR1NR+TXd3VG3347u3nuhc+dGdy+bWt8L2+U9QvperO+F7XX5HlGXP/sLH9e1Bt+dwMPDg+3bt7N582b27NmD1WolOjqaESNGXHEwzdWhQ4cA6Ny5MwZD+S3PysoiMzMTb2/vStuSxcXFoZSiY8eOODiUbwaenZ1NRkYGnp6eBAUF2foeOXIEi8VCREQETk7llXTOnj1LWloa7u7uhISE2PoeO3YMk8lEeHg4LhXb9+Tm5pKamoqrqythYWG2vvHx8ZSWlhIaGopbxdY2+fn5JCcn4+LiUmmv4MTERIqLiwkJCbEt9CssLCQpKQknJyciIs6vkE5KSqKoqIigoCA8PT0BKCoqIjExEQcHBzp27Gjrm5ycTEFBAQEBAXh7ewNQUlJCfHw8BoOBzhX/SAOkpqaSl5eHv78/vr6+AJSVlXHs2DF0Oh2RkZG2vmlpaeTk5ODn52eb/mI2mzly5AgAXbt2tfXNyMjgzJkztG7dGj8/P6D8f/i4uDgAW7llgMzMTLKysmjVqhVt27at8rPv0qULen15ffjTp09z+vRpfHx8aNeuXZW+nTp1wljx0XJ2djanTp3Cy8uLwMDzpT4PHz6M1WqlQ4cOODo6AnDmzBnS09Px8PAgODjY1vfo0aOYzWbat2+Ps3N5RaScnBxOnjyJm5sboaGhtr7Hjx+nrKyMsLAw2x+keXl5pKSkVPnZJyQkUFJSUun3pKCggBMnTuDs7Ez79u1tfc/97IODg21vXOd+TxwdHenQoYOt74kTJygsLCQwMBAvLy8AiouLSUhIwGg00qlTJ1vflJQU2x/TPj4+AJSWlnL8+HH0ej1dunSx9T158iS5ubm0bduWVq1aAWAymTh69CiaplX6eaanp3P27FnatGlDmzZtALBYLBw+fBio/Hty6tQpsrOzK/2eKKVsP8/IyEjbPyTnfvaFhb5s2dKG9evT2LtXsWNHHs4732b+NZ05+3v5e8Tf/pbJAw+cYGOsB5t+bk3PqBImFK6j23ev47pnj+36REVRcPvtJF9zDe7t2sl7hLxHAPIecU5TfY/w9fXF39+/ys++LvKIC+9BU2N3EnvOsGHDGDZsWG3GIoQQzc6aNbB3L+zbB927K268EVatghde0ANBGAxWoPwfqOGGWAx39KV7HyPX9jMBMKP/KeZmvQ9vvAMVi2eVXo81Jgb9/ffDNddQkp2NVRbWCiFamMsqdrBz5062bNlCZmZmpeFsKC9L25jJdALpe458VCh9a+v3pLQUDh+GvXt17NsH+/Ypjhyxkp+vUVysAeXXMxisGI1gNh/HZNqHk8sxrhrqzZLnrwGgS9++6E+fBhcXrLGxaEuWwJo1aBZL+cXatkXddRfqzjvRAgIa/P40574Xtst7hPS9WN8L22U6wV9r8OkE//nPf/jnP/9Jp06d8PPzs90goNL34rzqfkEu9ktTXfuFv4jSt3n2vVi7/J40vr5nz8Lvv1ORrJYnrocOKczmC8+jAXqMDor2USZCu5iJ2/02aYkrUcRx1bCBDJ08nV6Db8Og12PQFeH2xXI0kwneeQfefx/dwYPnTzd4MNx7L0yejObgwJ8jbkz3R/rKe4T0rd2+F2uvq599U2L3SKyfnx+LFi1i5syZdRRS3ZKys0KImlAKUlLOTwU4N8KalFT9H+tunlbCupjwbZtJ3pkfiD/4Ec+veIU2AeXzH/duiyU9KYGrx8fg4e1b6UL9kw/TbtTwyid0cYFbby1PXrt1q5sXKYQQ9ajBR2J1Oh2DLrIhtxBCNEUmU/l0gPKR1fMJ69mzVcY8AWgTYCYs0kxoZxNhXUy0Ccgmbs8qtqxezpY1e229f/luDRPvmANAr8FD6TV4qO05p8xTBH21iuC1K/E8Gnf+Eh06wH33we23Q8XiJiGEEFXZncTOnTuXN998k8WLF9dBOEIIUbfy8uCPPyonrAcOKMrKqiaseoMiKMJMWGcToZEmwjqXJ66uHuUfYJ1OS+WTl55j56YNmMpKAdAbDEQPGc7QydOJvqby6KqupJh2mzYQvHYlfj9tRauYu6YcHdFKy49n9264oKS3EEKI6tmdxD7yyCOMGzeO9u3bExkZadvm45xVq1bZdb4lS5bw4osvkp6eTlRUFIsXL2bw4MF/edxPP/3EkCFD6Nq1K/v27bPrmkKI5k8pSE+vOh3g+PHqpgNouLhZK0ZWK0ZYI00EtjdjdKjcs7S4CCjfgsrFzZ3ffvgOU1kpwR27MGzKDK6ZMAVP31aVAvHdvZOQNSsI2PA1xoJ821PZvfqQHDMNxxFXA9B5xIgmP0dNCCHqi91J7P33309sbCxDhw7F19f3ihZzLV++nIceeoglS5YwaNAg3n77bcaMGcOhQ4cq7WH3Z7m5udx2220MHz6cU6dOXfb1hRDNg8UCR49WnQ5w+nT10wF821oqj652MeEXaOFib2dFBfns+HYdm1ctx2wy8cLKbwFw9fDkzicXEtqpC2GR3Sq9H7omJxG8diXBa1fimppsay9sF0hyzFSSJ06lMDQcTSk6mM/U4t0QQoiWwe6FXe7u7nz++eeMGzfuii/er18/oqOjeeutt2xtXbp0ISYmhoULF170uBtuuIEOHTqg1+tZs2aNXSOxsrBLiKatsBD2779wdwDYv19VbGVVmU6vCAg326YBhEWaCO1swsP7r9/2rFYrB379idhVy/ll43rKSkrKz6nT8ebGX2gTEFjlGEN+HoHffkXw2i9otXunrd3k6sbJ0eNJnjSNrD794MLRVqXo5arR7ur+OKSkoOXnQyOvfCiEEJejwRd2+fj4VKqycbnKysrYvXs38+fPr9Q+cuRIduzYcdHjli5dSnx8PP/73/949tlnrzgOIUTjlZn55+kAcPSowmqtOsLq5GIlpJOZsC4m27SAoA4mHJ3sv+72b9bwycvPkZV20tYW2L4DQ6fMYMiE6/Fu43f+ymYzbXb8SPCaFbT74Xv0peXJrtLpyBwwmBMx00gfMRqLs0v1F9M0dHoDjsnJ1T8vhBCiWnYnsU899RRPPvkkS5cutZUmvBxZWVlYLBZbCbZz/Pz8yLhI5Zljx44xf/58tm3bZiu79ldKS0spPbdggvK/AoQQjYvVCvHxVacDpKdXP3/Vq3X5dICwLuVTAcI6m/ALtlBRtdNuxYWFWC1mXD3KdwMwOjiSlXYSF3cPrh4Xw7ApM4jo1rPSdAGPI4cIWf0FQV+vwinrtK09t0MnkmOmkTJ+MiV+/lWuJYQQonbYncS+/vrrxMfH4+fnR2hoaJWFXXsurOldA3+eU6uUqnaercVi4aabbuLpp5+uVD/7ryxcuJCnn37arpiEEHWnpAQOHKg8uvr774qCgqqjq5qm8A+1XDC6aiK0sxnv1taqJ7aT1WolbtevxK5ezs/ffc2EmX/nhgceBSB6yHDmvfp/XDVsJA4XDOU6Zp0m6OvVBK9ZgdfhQ7b2Um8fUsZPJjlmGjmR3bjo5NrqKEVZSRHZN9yAz8qVVQoZCCGEqJ7dSWxMTEytXLhVq1bo9foqo66ZmZlVRmcB8vPz2bVrF3v37uW+++4Dyv8RUkphMBj4/vvvGTZsWJXjFixYwLx582yP8/LyCAoKqpXXIIS4tOzs8upWF04JiItTWCxVE1YHR0Vwx4pEtUv5tlYhncw4udhdGfuSMlNT2LL2C7as+YJTKSds7Uf27bJ9b3RwYNCYiQDoSkvw3/w9wWtW4rc9Fl1FCViL0YGModeRHDOVjMHDUH/6g76mNKC0KJ/0f/wD77VrJYkVQogasjuJffLJJ2vlwg4ODvTu3ZuNGzcyefJkW/vGjRuZNGlSlf4eHh7s37+/UtuSJUvYvHkzK1euJCwsrNrrODo64ujoWCsxCyGqpxQkJVVebLVvnyIlpfrpAO5eVsIiTRVTAsqT1nahZvR2vyPZZ9F9d7Bz0wbbY2dXNwaNncjQyTPo1KtPpRfks/c3QtasJODbdTjkn5+GdKZHNCdippE6ZiImL+9aictgdMTlm6/Kt1kQQghRI3X8T8alzZs3j1tvvZU+ffowYMAA3nnnHZKTk5kzp7zCzYIFCzh58iQff/wxOp2Orl27Vjq+TZs2ODk5VWkXQtSdsjI4dKhywvr774rc3Oq3s2obbK68/2oXEz5+Vrs+cb8cSimO799XaS6re0XS2W3A1QydPIP+143B8YIFVy6pybZtsdySk2ztRf7tSJ44leRJUykIj6jdODUNZ3cvgh9+uFbPK4QQzV2DJrEzZswgOzubZ555hvT0dLp27cr69esJCQkBID09nWRZsStEg8nNrTod4OBBhclUNWE1GBXBHc7vDhBaMX/Vxa12pwP8laz0k2xd+yWxq1eQfiKB51d8Q4fuvQCYOuchpt49t9L2WIaCfAK++5rg1V/QetcvtnaziwsnR47nRMw0svoOqLwtlhBCiAZn9z6xTZ3sEytEVUpBamrV6QCJidUPl7p6WG2jqud2CAgIq1rdqr6UlhSzc9MGYlev4I8dP3Lubc3JxYU7n1jItTHTKh9gsdBmxzZC1qyg3aYN57fF0jQyB1xN8qRppF03FssV7MBij97uBkIC2pQ/KCiQfWKFEM1Sg+8TK4Ro2sxmOHy48u4A+/YpsrOrnw7Qup3ZNhUgtCJpbd3u4tWtLkVfVMSk6PKP49fuOV4rSWJq/DEW3DCBogvmrUZdNYBrJ09nwKjxOF+QEHocPUzw2i8IWrcK59Pnq/3lhUeUb4s1YQrF/gFXHJM9NKUoOHuaw5s20XH8eGS8VwghakaSWCGasYKC8ukAFyas+/crSkurJqw6vSKwvZnwioVWoZ3LpwW4ezWuD2vOZp7iZGI8XfsNBMA/NBwnF1dc3T24NmYa18ZMo21wqK2/w5nsim2xvsD70PnFoaVe3qSOiyE5Zhpnu/awb1usWqaUFbOfX4PGIIQQTU2NktgLt6j6K6+88splByOEuDxKQUbGn6cDwPHjCqWqJqzOrlZCLyjFGtbZRGCEGYdGupGHqayU3zZ/T+zqFezbFouHbyveid2F3mBAr9fz7Kerad0uEF3FvFVdWSltYzcRsmYFftti0ZnNAFiNRjKGDOdEzDQyrhmOcmig+Q8XUICLhw/+I4ehXVCYRQghxKXVKIndu3dvjU5WXZECIUTtsljg2LHKo6t79yoyM6vfzsrHr7y6VXllKzNhkSbaBFoa/TolpRQJB/ezedXnbP9mDQW5Obbn2gaFkJOViW/bdgD4BQaDUnjv203I2pUErl+LwwX9z3TrSfKkqaSOm0SZt289v5K/oGnoDQacjxxp6EiEEKJJqVESGxsbW9dxCCGqUVRUXt3qwt0B/vhDUVRUzXQAnaJdmLlSKdbQzmY8fa+8ulVD+PLt11m2eJHtsY+fP9fGTGNozDTahbW3tTufTCX4qy8JXvMF7kkJtvZiP3+SJ15P8qSp5EfUvMpfQ1CuruXD6UIIIWpM5sQK0UicPl15KsC+fXDkiMJqrZqwOjpbCelYsZ1VxWKr4A4mHJ3rP+7aYCorY8+PP+AXGExo5ygAoq8Zxsoli+k7YjTDpsyg24DB6PV6AAwFBbT7/huC166kza8/2c5jdnbm5MhxJE+ayul+g6Cif6OmFKbCfM5aS/Hy8pJPtIQQooYuK4n97bff+OKLL0hOTqasrKzSc6tWraqVwIRorqxWSEioOh0gLa366QCevpbzW1lVbGvVNsTSJPKzv5J0+CCbVy1n21eryDt7hmtjpnP/84sBCI/sxvs//Y6re8U2LBYLrXf8SMiaL2i3cT2G4mLbeTL7DSI5pnxbLLObWwO8ksunAaVnTnMS8PT0lCRWCCFqyO4k9vPPP+e2225j5MiRbNy4kZEjR3Ls2DEyMjIqlY8VQkBpKRw8WHl09fffFfn51W9n5R9iti20Cu1iJqyzCe82TXM6wMVkAZ8Bi2+cQOKROFu7V+s2+AUGVerr6u6Be/wxgtd8QdBXX+KSkW57Lj80nOSYaSRPuJ7iC4oXNEV6J2ecDc3grxIhhKhHdiex//nPf3j11Ve59957cXd357XXXiMsLIy///3v+Pv710WMQjQJZ86c387qXNIaF6cwm6smrEYHRXDH8tHVcxWuQjqaca7n6lYNYQhwCOBIHAajA1cNG8nQKTPoOWgIekP5W5LD2WwCv1lL8NqV+OzfZzu2zNOL1LGTOBEzjbPdezWLLamUpuHc2p9Qz/oprCCEEM2F3UlsfHw848aNA8DR0ZHCwkI0TWPu3LkMGzaMp59+utaDFKIxUQpOnKha3So5ufrpAG6e1sqjqxXVrfQtYEZ68rEjbPtqFdPunYuDoxMANwKrgd6PPcGgydNx9/YBQCsrw3/jtwSv/YK2W39AZzIBYDUYyLhmGMmTppExdATWxroPmBBCiHpl9z+jPj4+5OfnAxAQEMCBAwfo1q0bOTk5FBUV1XqAQjQkkwni4ipPB9i3T5GTU/10gDaB5cUCQjqbK+axmvBta20OA4Y1lp9zlp/Wr2XzquXEH/gdgLDIrgwcPQGABcA/gbU33IbF2Rnv/fsIXr2CwG/W4ph71naes5HdSI6ZRuq4GEp9WzXAKxFCCNGY2Z3EDh48mI0bN9KtWzemT5/Ogw8+yObNm9m4cSPDhw+vixiFqBd5eVWnAxw8qCgrq5qwGoyKoIjzC61Cu5gJ7WTC1aP5TweojsVi4fefthK7ejk7N32H2VS+4FNvMND72hH4+p2fanRu5meHD94icP1aPBKO254rbu1HysQpJE+aRl7HzvX5EhqMphSF6ckcPaUjIiLCVrBBCCHEpdmdxL7xxhuUlJQAsGDBAoxGI9u3b2fKlCn861//qvUAhahtSsHJk1V3B0hIqH46gIu71TYV4FzSGtjejLHhiz01GuknEnjurltsj0M6RTJsygwGT5iCp095cQFjbg6B36y19Yl842UAzE5OpI0YQ/KkaWQOHNw0tsWqZcpspuyvuwkhhLiAplTL2mE7Ly8PT09PcnNz8fDwaOhwRB0zm+Ho0arTAbKyqv98v5W/xZaonhthbRNgaVHTAf5KYX4eP61fx5lT6dzwwKO29v/MuQ2/wGCGTplBeGQ3APSFhfhv/o6g9Wvx277FNs8VIKt3X05MmcHJUeMxu7nX++toNJSih48TbV0dcXFxkS22hBDNVm3nYJeVxFqtVo4fP05mZiZWa+Xtf6655porDqouSRLbfBUUwP79lacD7N+vKCmpmhTo9IrA8HM7A5RvaxXayYS7d4v6m67GLBYLB37ZTuzqFfy68VvKSkswGB14b9te3L28K/XVlZbQdutmAtevpe2WjRgqPrkByO3QGc9jhwFYu+c4FhdZkQ8Q3dZTdicQQjR7tZ2D2T2d4JdffuGmm27ixIkT/Dn/1TQNi8VyxUEJ8VdOnfrz6CocPapQqur8VScXa3mi2rm8ulVoZzPBHU3IIve/lpFygs1ffs7WtV+QlZ5maw+M6MiwyTPQVXz0r5lMtPl5G4HfrKXdpm8xFhbY+haEhJEybhKpY2MoahfIpOiIen8dQgghmh+7k9g5c+bQp08fvvnmG/z9/eWjL1GnrFY4fvzP5VgVGRnVz1/1bn1BdauK/VfbBluQtTKXZ+emDXz5f68B4OrhyeDxMQydPIP2XXugWa20+u0Xgtavpd1331TaWaDIvx2pYyeROnYSOZHdbPu56mUHk6qUwlxUQC4mPDw85D1VCCFqyO4k9tixY6xcuZKICBlNEbWruBgOHKi8/+offygKC6uOrmqaol2Y5YLR1fLE1atV86puVV+sVisHd/7MltUr6HXNUK4eFwPAkInXs/+X7Vw7aSpXDR+Fg4Mj3r/vIWjhkwR8+xXOp0/ZzlHi24qToyeQMm4SZ3r2Qf5yqBkNKMnOJCUbIiMjJYkVQogasjuJ7devH8ePH5ckVlyRrKzKUwH27YPDhxUWS9WE1cFREdLp/EKrsM4mgjuacXKR+atX6lRqMltWr2DLmi/IPJkCwOm0VFsS6+nbin/838d4Hj5I4BsvE7h+Ha4V/aC8gtbJkWNJHTuJrKsGoAwtoIJDHdA5OuGkl6RfCCHsYfe/OPfffz8PP/wwGRkZdOvWDaPRWOn57t2711pwoulTChITq04HSE2tfjqAh7flfCnWimkB/iEto7pVfdq67kt+WLmMgzt32Npc3NwZNHYSQydPB8At4TiB69dW2cvV5OJK+vBRpI6dxKlBQ1AOstfYlVCahkubdrKwSwgh7GR3anD99dcDcMcdd9jaNE1DKSULu1q4sjI4ePDPI6yKvLzqq1u1DTGfL8Vasa2Vd5uWVd2qvpz7//Oc2FXLObhzB5qm0W3A1QybPIO+I0bjnZ1N4LdrCXxmAV5xB239LQ6OZFw7gpSxkzg1ZBgWZ0m4hBBCNCy7k9jExMS6iEM0MTk55dWtLtwh4NAhhclUfXWr4A4V21hVJKshncy4uMl0gLp2Oi2VrWtXsnXdlzzz0Uq82/gBMP72O+nabyBDJk0lyGAkYMNXBM6cge/vu23HWg0GMgcNIWVcDOnDRrbsvVyFEEI0OnYnsSEhIXURh2iklIKUlMqLrfbtUyQlVT8dwM3TWp6onhth7WIiINyMwVhNd1EnSouL2LlpA5tXL2f/z9ttW+H9+NUqJs26G4CBPXszNfMUgQvm0nrnDrSKPkrTON1vEKljJ5F23RjKvH0a7HW0FJpSFGWkcvy0jvDwcCk7K4QQNXRZMw3j4+NZvHgxcXFxaJpGly5dePDBB2nfvn1txyfqkckEhw9XTVjPnq1+OkCbAHP5/qtdzu+/2rqdVLdqKGdOZbDizVf4af1aigrybe1RfQcybMoMrh54DUFrVxL0zRra7PgRndls65PdszepYydxcvQESipGa0X9sZrKKDH9dT8hhBDn2Z3Efvfdd0ycOJGePXsyaNAglFLs2LGDqKgovvrqK6677rq6iFPUsvz88ukAF85fPXBAUVpaNWHVGxSB7c2EX5CshnY24eYp0wEamtlkwlCxuNLByYkta77AVFZKm4Agro2ZxogxE+l+/AiB36yl7ROPoS8rtR2bE9mVlLGTODl6IkWBQQ31Elo8BTi1bktbVyfZXksIIexgdxI7f/585s6dy/PPP1+l/fHHH5cktpFRCtLTq+4OcPx49dMBnF2t5bsCXDDCGhRhxigL0BuNstISftv8PbGrllOUn8d/Pv8KADdPL2YueIqgoBCGlZWVFyGYPhbDBQUG8sIjSB0XQ+qYiRSEyzZ5jYKmYXBywc1NFssJIYQ97E5i4+LiWLFiRZX2O+64g8WLF9dGTOIyWSxw9GjV6QCnT1c/HcC3raVSKdawSBNtAqS61ZXSFxXZSquu3XMci8uVJydKKeIP/E7s6uVs/2YtBbk5tudOpSbTtm07Wu3cwf87+AftXn0eh7xc2/OFAUHl1bPGTSK3UyQy30MIIURzYHcS27p1a/bt20eHDh0qte/bt482bdrUWmDi0oqK4I8/Kk8H+OMPRXFx1YRVp1MEtDcTVjEN4FzS6ukj1a2agp0/bOCzxYtIOXbE1ubb1p+hk6ZxY8fO9Pjg/wj47mucsrNszxe39iN17ERSx07ibPdejSZxtbi4sOpwWkOH0bgohbm4iHydBTc3N5lSIIQQNWR3EnvnnXdy1113kZCQwMCBA9E0je3bt7No0SIefvjhuoixxcvM/PN0ADh6VGG1Vk1YHZ2thHa6cDsrM0EdTDg61X/c4vKYysowl5Xh7OYGgNViJeXYERwcneg3YjQ3RV/F0NRkgtatxCX9fEJY6uXNyVHjy6tn9ekHen1DvQRhBw0oycrgRJaUnRVCCHvYncT+61//wt3dnZdffpkFCxYA0K5dO5566ikeeOCBWg+wJbFaIT6+6vzV9PTq5696tS6fDhDW2UxoZPm2Vn7BFsldmqiEQ/uJXb2CbV+tYuwtdzD9vvI/CntfO4Jn7nuYSUWFhP/wHW7frLEdY3JzJ23EGFLHTSKz/9Uoo+xl1hTpjI44GmQejxBC2MPuJFbTNObOncvcuXPJzy/fxsfdXTZBt1dJCRw4UHn+6h9/KAoKqo6uaprCP9RSvtCqYnQ1tLMJ79YyHaCpyz2TzbavVhG7ejlJhw/Z2n/f8SN/m3g9gevXEbh+LTOOxtmeMzs5kTH0OlLHxpBxzVCsMszepClNw6VtgJSdFUIIO11RRXpJXmsmO/vPpVghLk5hsVRNWB0cFcEdTRU7A5SXYw3uaMbZVbazam7++/iDbPtmNZaK/VoNRgfGDbqGu1q3oX/cQXxGDrT1tRqNZAweSurYSaQPHYnF1bWhwhZCCCEahRolsdHR0fzwww94e3vTq1evS87Z2rNnT60F19SdPQs9epRXvKpKw93LSljFNIBzSWu7UDP6K/rTQjRWqQnHCAiLsP3/ozPosZjNXNU5igfD2zMi7SR+WzbZ+iudjsz+V5M6Loa0EaMxeXo1UORCCCFE41OjdGnSpEk4OjravpeFBzXj5QXFxQrQaBtsrjQVICzShE8ba2NZNC7qSH5uDltWfc6W1SuIP/gHi774lohuPTDm5fL/QsL5oFcfgv7Yi+7wQdsxWX36lVfPGjWeUt9WDRi9qA+aUhSdOklCtp7Q0FApOyuEEDWkqXOF1VuIvLw8PD09yc3NxcPDo86v9+seM0etWbi6t6jb3LLl5eHctzNLgdVGI2ZTeT1RD4OBVybPYMyZLPx+jEVvKrMdcrZrD1LGxXBy9HiK/QMaKHDREDSl6GA+A5TvTiBJrBCiuartHMzuD67Dw8P57bff8PX1rdSek5NDdHQ0CQkJVxxUc9K1K5xMlAS2pUhLSuCJW6ZwtuKxo8nEHYFBzHL3pFdiPMYvPrX1ze3QmdRxk0gdM5HCkLCGCVg0OAU4+frRxtVRPuUSQgg72J3EJiUlYbFYqrSXlpaSmppaK0EJ0VQU5uVyMjGejj2iAfALCsEATAUeAXo6u+CYmgKUT4wuCA61lX3N69i5ocIWjYmmYXBxxcNDdicQQgh71DiJXbdune377777Dk9PT9tji8XCDz/8QFiYjCaJ5s9isbD/521sXrWcnZs24Obpxdubd9Lq0H6CvlpFkqkMWzpSXERRW39Sx0wkdWwMOV27N5rqWUIIIURTVuMkNiYmBijfJ/b222+v9JzRaCQ0NJSXX365VoMTojFJS0ogdvUKtq79guyMdAA6APdYzIwcfTWeJ6tuQ7Ht/c85PeBqkHmO4mKUwlxSTIHeiqurq0wpEEKIGqpxEmu1lm+sHxYWxm+//UarVrJqWrQc65a+zUeLngbAD3jU0YnZrq50PJMNZ7KBbMzOzqQNH83JkeMY8MBsAM706iMJrLgkDSg5nU7SaSk7K4QQ9rB7TmxiYmJdxCFEo2G1Wjm482e8WrUmKKIjAL2iuqNpGnd5etEvNwddaQmUlmDV68kcNISUCVNIGzYKi6sr+qKiBn4FoqnRGYwY9fLHjhBC2KNGSezrr7/OXXfdhZOTE6+//vol+z7wwAN2BbBkyRJefPFF0tPTiYqKYvHixQwePLjavqtWreKtt95i3759lJaWEhUVxVNPPcWoUaPsuqYQ1TmVmkzsquVsWfMFp9NSGRkzladGjiPoq1VM2rwRvVKQU77vQHbP3qSMn8zJMRNlL1dxRcrLzgZJ2VkhhLBTjfaJDQsLY9euXfj6+l5y8ZamaXZtsbV8+XJuvfVWlixZwqBBg3j77bd57733OHToEMHBwVX6P/TQQ7Rr146hQ4fi5eXF0qVLeemll/j111/p1atXja5Z3/vEFpaZ+S7xdJ1fR1yekqIifv7ua2JXLefgbz+jAYOA2w1Gput1eJSW2vrmhUeQMmEKKeMnUxQUctFz6ouKmBQdAcDaPcexuEhyIi4tuq2nJLFCiGavtnOwBi120K9fP6Kjo3nrrbdsbV26dCEmJoaFCxfW6BxRUVHMmDGDJ554okb9JYkVF3o4ZgRJhw8RBdwC3ObgSLuy84lrcWs/UsdOImXiFHIiu9VoZwFJYoW9JIkVQrQEDV7soLaUlZWxe/du5s+fX6l95MiR7Nixo0bnsFqt5Ofn4+Pjc9E+paWllF44mpaXd3kBiybvdFoq275ezYSZd2F0cMQ5/STP+rSip9GBqHPVs8pKMbm6kTZyLMkTpnC63yDQ6xs2cNGsaUpRnJlO4hkdISEhUrFLCCFqqEZJ7Lx582p8wldeeaVG/bKysrBYLPj5+VVq9/PzIyMjo0bnePnllyksLGT69OkX7bNw4UKefvrpGp1PND+lxUX8umkDsauXs//n7XgqxaSTqQxOOE6rXb+gVXwQYTUaybhmGCkTppB+7QisTs4NHLloSSylxRSW/nU/IYQQ59Uoid27d2+lx7t378ZisdCpUycAjh49il6vp3fv3nYH8OftZJRSNdpiZtmyZTz11FOsXbuWNm3aXLTfggULKiXheXl5BAUF2R2naDqUUhzdt5vNq5az49t1WAryGQ88BYzTNByWf2Lre/qqAaRMmMLJkWMxeXk3VMiiBVOAo09rWrtI2VkhhLBHjZLY2NhY2/evvPIK7u7ufPTRR3h7l/+jf/bsWf72t79ddFeB6rRq1Qq9Xl9l1DUzM7PK6OyfLV++nFmzZvHFF18wYsSIS/Z1dHTE0dGxxnGJpi89KYF/3jiRa4H/AlM1DY9zU7+VIqdTJCkTJpM6LoZi/4AGjFQIQNMwurrjJXNihRDCLnbPiX355Zf5/vvvbQksgLe3N88++ywjR47k4YcfrtF5HBwc6N27Nxs3bmTy5Mm29o0bNzJp0qSLHrds2TLuuOMOli1bxrhx4+wNXzQzZaUl/PbDd5xOSyVm1j14HdpPt69Wk250oM25ea5KUdQugJRxk0mZMIW8jp0bNmghhBBCXDG7k9i8vDxOnTpFVFRUpfbMzEzy8/PtOte8efO49dZb6dOnDwMGDOCdd94hOTmZOXPmAOVTAU6ePMnHH38MlCewt912G6+99hr9+/e3jeI6Ozvj6elp70sRTZRSiuP79xG7egXbv1lDm7xcbtXrGbZyGV5J57d4K/P04uSo8SRPmEJ2775SOUs0TkphKS2hqKj8vUymFAghRM3YncROnjyZv/3tb7z88sv0798fgF9++YVHH32UKVOm2HWuGTNmkJ2dzTPPPEN6ejpdu3Zl/fr1hISU78GZnp5OcnKyrf/bb7+N2Wzm3nvv5d5777W133777Xz44Yf2vhTRxJw9ncmP675k8+rllBw/ynTgCWAggMUCSQlYHJ1IH3odKRMmkzF4GMrBod7jtLi4sOpwWr1fVzRNGlCcmUZCppSdFUIIe9i9T2xRURGPPPIIH3zwASaTCQCDwcCsWbN48cUXcXV1rZNAa4vsE1s7GmIv1G/feo3C1xZxMzCK83+BKZ2OzP6DSBk/hbSRYzG7udd5LELUFk0pOqo8DDqNDh06yBZbQohmq8H3iXVxcbGVio2Pj0cpRURERKNPXkXToZQiMe4AsauW0zX6Kia6uhH01SombPoW4wX9znbtQcr4yaSOnURJm0svBhSisVKahqt/sBQ7EEIIO112sQNXV1e6d+9em7GIFi73TDbbvlrF5i8/p+3ROG4Gbv78E3zMJlufguBQUsZPJmX8ZArCIxouWCGEEEI0KLuT2MLCQp5//nl++OEHMjMzsVqtlZ5PSEi4yJFCVO+3zd+zedXn5Mdu5AaLhU2ALT01myjx8S0v/TphCme796pR6VchhBBCNG92J7GzZ89m69at3Hrrrfj7+8siBHFFnE5l4PP8U7yZnESfC9pNzs6kjxhDyoQpZA4YjDIaL3oOIZoyTSmKszI4kaMnKChI5sQKIUQN2Z3Efvvtt3zzzTcMGjSoLuIRzVj+2TNs+2YNe1av4LWJ19Npy0Za/7qDsRWj+VadjszBQ0keP5n04aPrZbGYEI2BpbgI+zYoFEIIYXcS6+3tjY+PT13EIpohi9nMvu1b2LbyM1pXTBd4A3A6+IetT3avPqRMmELq6AmU+fg2XLBCNAAFOHq3wtfZQT7ZEkIIO9idxP773//miSee4KOPPsJFRsrEReSeyWbde29S9uXnTMrN4WHgwj99ckLDORkzjZTxkykKDG6oMIVoeJqG0c0DH9mdQAgh7HJZZWfj4+Px8/MjNDQU45/mKu7Zs6fWghNNi9VqRafT4XHkEB1XLmP4J+9zYXpa4ONL2qSppEyYQm6XrrJASwghhBCXze4kNiYmpg7CEE2VBdi740f2f/kZVx87yh3OLngeO2x7vsTJmbTR4zkZM43TVw0Avb7hghWiMVIKi6mMkhIdjo6OMqVACCFqyO6KXU2dVOyqHRlxB8mafB2FwDjgmguesxgdODVkGMnjp5AxdARWR6cGilKIxk9Tig7mM0B52VnZnUAI0Vw1eMWuc3bv3k1cXByaphEZGUmvXr2uOBjR+O3bFsuxF55hzLEj3AFcmJ6mRHUjc/qtpI0ej8nTq4EiFKIJ0unQywisEELYxe4kNjMzkxtuuIEtW7bg5eWFUorc3FyGDh3K559/TuvWresiTtFArFYrprJS3MrKCFq7kgEfvIV/eprt+Rwg+d55nJx6I8X+AQ0WpxBNldI03AJCpeysEELYye7Pre6//37y8vI4ePAgZ86c4ezZsxw4cIC8vDweeOCBuohRNICM5CSWvbaI967pRbsbJzHmml70fO5f+KenUWowcHTkOAC8gMRZ90gCK4QQQoh6ZfdI7IYNG9i0aRNdunSxtUVGRvLmm28ycuTIWg1O1K/iwkJ+3vAVO1d+Ru+9u/gn0AMgq3xOb26HziTOuIWUiddjNRjp+P03DRmuEEIIIVowu5NYq9VaZVstAKPRiLWi8pJoet779z/IXfkZM0tLeR5wq2g3GYykjpnAiRtv50yvPrZtsfRFRQ0WqxDNiaYUJdmZpOTpCQgIkIVdQghRQ3YnscOGDePBBx9k2bJltGvXDoCTJ08yd+5chg8fXusBirqRnZGGj58/xsJCAr9Zw+Jv1tCxtNT2/NngUJJvuYPkiddj8vJuwEiFaP7MRQXkAgEBMi1HCCFqyu4k9o033mDSpEmEhoYSFBSEpmkkJyfTrVs3/ve//9VFjKKWlBYX8fP369myegX6X7azdORYorZvxVhUCIDZYCBt9AQSZ9xKdp9+UoxAiHqgAAcvX3ycjLJHrBBC2MHuJDYoKIg9e/awceNGDh8+jFKKyMhIRowYURfxiSuklOLI3t/YvGo5+9avY2JRIe8BfQG+Xw9Afmg4idNvIXnyNMq8fRsyXCFaHk3Dwd2TVrI7gRBC2OWy94m97rrruO6662ozFlHLMlJO8Ozsm/E9kcDfgS8Bz4rnLAYDaSPHkjj9VrL6DZRRVyGEEEI0KTVeQbB582YiIyPJy8ur8lxubi5RUVFs27atVoMT9iktKSbpyCEAdCXF9Nm5gzUnU9gP3Ed5AlsQFML+R/7Bhq17+O2V/yOr/yBJYIVoSEphNZsoKyujhRVQFEKIK1LjkdjFixdz5513VlsmzNPTk7///e+88sorDB48uFYDFJemlOLYH3uJXbWc7evX0sPBgY/GTCRk3Zc45OUCYNUbSB8+ioQbbuV0/6tBVj8L0WhoQFF6CkfTy7crlHmxQghRMzVOYn///XcWLVp00edHjhzJSy+9VCtBib92NvMUW9etJHb1Ck7HH2MqsAEYDPC/DwAoDAgiadrNJF1/A6Wt2zRgtEKIS9I0JHUVQgj71DiJPXXqVLX7w9pOZDBw+vTpWglKXNqGzz7k/Wf/SYTVykPATODcciyrXk/G0OtInHErpwYNqbNRV4uLC6sOp/11RyHEJSlNwy0wTMrOCiGEnWqcxAYEBLB//34iIiKqff6PP/7A39+/1gIT5ZRSJBzcj7OrK+3C2qMrK2V8Xi43Wq0MvaBfkX8726hriZ/8HIQQQgjRvNU4iR07dixPPPEEY8aMwcnJqdJzxcXFPPnkk4wfP77WA2ypcrJO8+NXq4hdtZzkY4e5dfR4/hkQRMiq5TiePQOA0unIGDKcxBm3kjF4KOj1DRy1EEIIIUT90FQNl8OeOnWK6Oho9Ho99913H506dULTNOLi4njzzTexWCzs2bMHPz+/uo75iuTl5eHp6Ulubm61i9RqW2GZme8SazbNwlRWxp6tPxC7ejl7ftyMzmxmEjBH0xh+wY+puE1bkqbeSNK0myj2lwo/QjRlmlJ0cTTh7mDA399fys4KIZqt2s7BajwS6+fnx44dO7j77rtZsGCBbSsYTdMYNWoUS5YsafQJbGP3r1smc+yPvYQB/wZmGwy0NptBKZSmcWrwUBJn3ELGkBEow2Vv8SuEaGTMhfmcLUSmZAkhhB3syoRCQkJYv349Z8+e5fjx4yil6NChA97e3nUVX9NWWIirmxtTgLV7jmNxOb9wI+9sNj+tX8eIaTdjdHBAM5n4e0AQPeMOMtRUVr6Br9lMSes2JF1/I0lTb6IoMKihXokQoo4owMHTGy/Hiy+cFUIIUdVlDed5e3tz1VVX1XYszZ7ZZGLvtlhiV69g95aNmE0mwg0GJmekE7JyGc6nT9n6nho0hMQZt5I+9DrUJXaFEEI0cZqGg4cXbWR3AiGEsIt8Jl0PDgJLX13I1m/XkZN1Gj0wFpjr5s6Qp+ajq5iaUeLbihNTZpA07WYKg0MbMGIhhBBCiMZNktg6dhzoCvDJ+wQAjzs7M0vT0bqoEAryAcjsfzWJM24hbfholINDA0YrhKh3SqEsFsxmM3q9Xip2CSFEDUkSW8cigIeBSb6tGHQmG11xMQCl3j6cmDydxOm3UBga3qAxCiEajgYUpp3gcJqUnRVCCHtIEluXUlIAeAkgOwuA01cNKB91HTkWq4Njw8UmhBBCCNGESRJblwLO7+F6/Oa/kXDzTArCOzRgQEKIxkZpGm5B4VJ2Vggh7CRJbF26YNPygw//o9IWW0IIIYQQ4vJJaRghhBBCCNHkSBIrhBBCCCGaHElihRBCCCFEkyNJrBBCCCGEaHJkYVddcnWlxGRmfXxmQ0cihGjEDLI3rBBC2K3Bk9glS5bw4osvkp6eTlRUFIsXL2bw4MEX7b9161bmzZvHwYMHadeuHY899hhz5sypx4jt42TQc11oa0xWa0OHIoRohDRNw8uxwd+KhRCiyWnQd87ly5fz0EMPsWTJEgYNGsTbb7/NmDFjOHToEMHBwVX6JyYmMnbsWO68807+97//8dNPP3HPPffQunVrrr/++gZ4BTXjLv9ACSGEEELUKk0ppRrq4v369SM6Opq33nrL1talSxdiYmJYuHBhlf6PP/4469atIy4uztY2Z84cfv/9d37++ecaXTMvLw9PT09yc3Px8PC48hchhBBCCCH+Um3nYA22sKusrIzdu3czcuTISu0jR45kx44d1R7z888/V+k/atQodu3ahclkqrNYhRBCCCFE49Jgn3NnZWVhsVjw8/Or1O7n50dGRka1x2RkZFTb32w2k5WVhb+/f5VjSktLKS0ttT3Oy8urheiFEEIIIURDavAttrQ/rcpVSlVp+6v+1bWfs3DhQjw9PW1fQUFBVxixEEIIIYRoaA2WxLZq1Qq9Xl9l1DUzM7PKaOs5bdu2rba/wWDA19e32mMWLFhAbm6u7SslJaV2XoAQQgghhGgwDZbEOjg40Lt3bzZu3FipfePGjQwcOLDaYwYMGFCl//fff0+fPn0wGo3VHuPo6IiHh0elLyGEEEII0bQ16HSCefPm8d577/HBBx8QFxfH3LlzSU5Otu37umDBAm677TZb/zlz5nDixAnmzZtHXFwcH3zwAe+//z6PPPJIQ70EIYQQQgjRABp0A9MZM2aQnZ3NM888Q3p6Ol27dmX9+vWEhIQAkJ6eTnJysq1/WFgY69evZ+7cubz55pu0a9eO119/vVHvESuEEEIIIWpfg+4T2xByc3Px8vIiJSVFphYIIYQQQtSTvLw8goKCyMnJwdPT84rP1+JKSeXn5wPILgVCCCGEEA0gPz+/VpLYFjcSa7VaSUtLw93d/ZJbeTUX5/7qkZHncnI/qpJ7Upncj6rknlQm96MquSeVyf2o6tw9OXToEJ06dUKnu/JlWS1uJFan0xEYGNjQYdQ72ZmhMrkfVck9qUzuR1VyTyqT+1GV3JPK5H5UFRAQUCsJLDSCYgdCCCGEEELYS5JYIYQQQgjR5EgS28w5Ojry5JNP4ujo2NChNApyP6qSe1KZ3I+q5J5UJvejKrknlcn9qKou7kmLW9glhBBCCCGaPhmJFUIIIYQQTY4ksUIIIYQQosmRJFYIIYQQQjQ5ksQ2A0uWLCEsLAwnJyd69+7Ntm3bLto3PT2dm266ybbR8EMPPVR/gdYTe+7HqlWruO6662jdujUeHh4MGDCA7777rh6jrR/23JPt27czaNAgfH19cXZ2pnPnzrz66qv1GG3ds+d+XOinn37CYDDQs2fPug2wAdhzT7Zs2YKmaVW+Dh8+XI8R1y17f0dKS0v5xz/+QUhICI6OjrRv354PPvignqKtH/bck5kzZ1b7OxIVFVWPEdcte39HPv30U3r06IGLiwv+/v787W9/Izs7u56irR/23pM333yTLl264OzsTKdOnfj444/tu6ASTdrnn3+ujEajevfdd9WhQ4fUgw8+qFxdXdWJEyeq7Z+YmKgeeOAB9dFHH6mePXuqBx98sH4DrmP23o8HH3xQLVq0SO3cuVMdPXpULViwQBmNRrVnz556jrzu2HtP9uzZoz777DN14MABlZiYqD755BPl4uKi3n777XqOvG7Yez/OycnJUeHh4WrkyJGqR48e9RNsPbH3nsTGxipAHTlyRKWnp9u+zGZzPUdeNy7nd2TixImqX79+auPGjSoxMVH9+uuv6qeffqrHqOuWvfckJyen0u9GSkqK8vHxUU8++WT9Bl5H7L0f27ZtUzqdTr322msqISFBbdu2TUVFRamYmJh6jrzu2HtPlixZotzd3dXnn3+u4uPj1bJly5Sbm5tat25dja8pSWwT17dvXzVnzpxKbZ07d1bz58//y2OHDBnS7JLYK7kf50RGRqqnn366tkNrMLVxTyZPnqxuueWW2g6tQVzu/ZgxY4b65z//qZ588slml8Tae0/OJbFnz56th+jqn73349tvv1Wenp4qOzu7PsJrEFf6PrJ69WqlaZpKSkqqi/Dqnb3348UXX1Th4eGV2l5//XUVGBhYZzHWN3vvyYABA9QjjzxSqe3BBx9UgwYNqvE1ZTpBE1ZWVsbu3bsZOXJkpfaRI0eyY8eOBoqq4dTG/bBareTn5+Pj41MXIda72rgne/fuZceOHQwZMqQuQqxXl3s/li5dSnx8PE8++WRdh1jvruR3pFevXvj7+zN8+HBiY2PrMsx6czn3Y926dfTp04cXXniBgIAAOnbsyCOPPEJxcXF9hFznauN95P3332fEiBGEhITURYj16nLux8CBA0lNTWX9+vUopTh16hQrV65k3Lhx9RFynbuce1JaWoqTk1OlNmdnZ3bu3InJZKrRdSWJbcKysrKwWCz4+flVavfz8yMjI6OBomo4tXE/Xn75ZQoLC5k+fXpdhFjvruSeBAYG4ujoSJ8+fbj33nuZPXt2XYZaLy7nfhw7doz58+fz6aefYjAY6iPMenU598Tf35933nmHL7/8klWrVtGpUyeGDx/Ojz/+WB8h16nLuR8JCQls376dAwcOsHr1ahYvXszKlSu599576yPkOnel763p6el8++23zeI9BC7vfgwcOJBPP/2UGTNm4ODgQNu2bfHy8uK///1vfYRc5y7nnowaNYr33nuP3bt3o5Ri165dfPDBB5hMJrKysmp03eb3jtwCaZpW6bFSqkpbS3K592PZsmU89dRTrF27ljZt2tRVeA3icu7Jtm3bKCgo4JdffmH+/PlERERw44031mWY9aam98NisXDTTTfx9NNP07Fjx/oKr0HY8zvSqVMnOnXqZHs8YMAAUlJSeOmll7jmmmvqNM76Ys/9sFqtaJrGp59+iqenJwCvvPIKU6dO5c0338TZ2bnO460Pl/ve+uGHH+Ll5UVMTEwdRdYw7Lkfhw4d4oEHHuCJJ55g1KhRpKen8+ijjzJnzhzef//9+gi3XthzT/71r3+RkZFB//79UUrh5+fHzJkzeeGFF9Dr9TW6nozENmGtWrVCr9dX+SsnMzOzyl9DLcGV3I/ly5cza9YsVqxYwYgRI+oyzHp1JfckLCyMbt26ceeddzJ37lyeeuqpOoy0fth7P/Lz89m1axf33XcfBoMBg8HAM888w++//47BYGDz5s31FXqdqa33kf79+3Ps2LHaDq/eXc798Pf3JyAgwJbAAnTp0gWlFKmpqXUab324kt8RpRQffPABt956Kw4ODnUZZr25nPuxcOFCBg0axKOPPkr37t0ZNWoUS5Ys4YMPPiA9Pb0+wq5Tl3NPnJ2d+eCDDygqKiIpKYnk5GRCQ0Nxd3enVatWNbquJLFNmIODA71792bjxo2V2jdu3MjAgQMbKKqGc7n3Y9myZcycOZPPPvus2cxPOqe2fkeUUpSWltZ2ePXO3vvh4eHB/v372bdvn+1rzpw5dOrUiX379tGvX7/6Cr3O1NbvyN69e/H396/t8Ord5dyPQYMGkZaWRkFBga3t6NGj6HQ6AgMD6zTe+nAlvyNbt27l+PHjzJo1qy5DrFeXcz+KiorQ6SqnXOdGG5VSdRNoPbqS3xGj0UhgYCB6vZ7PP/+c8ePHV7lXF1XjJWCiUTq3pcX777+vDh06pB566CHl6upqWwE6f/58deutt1Y6Zu/evWrv3r2qd+/e6qabblJ79+5VBw8ebIjwa5299+Ozzz5TBoNBvfnmm5W2g8nJyWmol1Dr7L0nb7zxhlq3bp06evSoOnr0qPrggw+Uh4eH+sc//tFQL6FWXc7/MxdqjrsT2HtPXn31VbV69Wp19OhRdeDAATV//nwFqC+//LKhXkKtsvd+5Ofnq8DAQDV16lR18OBBtXXrVtWhQwc1e/bshnoJte5y/7+55ZZbVL9+/eo73Dpn7/1YunSpMhgMasmSJSo+Pl5t375d9enTR/Xt27ehXkKts/eeHDlyRH3yySfq6NGj6tdff1UzZsxQPj4+KjExscbXlCS2GXjzzTdVSEiIcnBwUNHR0Wrr1q22526//XY1ZMiQSv2BKl8hISH1G3Qdsud+DBkypNr7cfvtt9d/4HXInnvy+uuvq6ioKOXi4qI8PDxUr1691JIlS5TFYmmAyOuGvf/PXKg5JrFK2XdPFi1apNq3b6+cnJyUt7e3uvrqq9U333zTAFHXHXt/R+Li4tSIESOUs7OzCgwMVPPmzVNFRUX1HHXdsvee5OTkKGdnZ/XOO+/Uc6T1w9778frrr6vIyEjl7Oys/P391c0336xSU1PrOeq6Zc89OXTokOrZs6dydnZWHh4eatKkSerw4cN2XU9TqhmMYwshhBBCiBZF5sQKIYQQQogmR5JYIYQQQgjR5EgSK4QQQgghmhxJYoUQQgghRJMjSawQQgghhGhyJIkVQgghhBBNjiSxQgghhBCiyZEkVgghhBBCNDmSxAohRCPz1FNP0bNnT9vjmTNnEhMTc0XnrI1zCCFEYyJJrBBC1NDMmTPRNA1N0zAajYSHh/PII49QWFhYp9d97bXX+PDDD2vUNykpCU3T2Ldv32WfQwghmgJDQwcghBBNyejRo1m6dCkmk4lt27Yxe/ZsCgsLeeuttyr1M5lMGI3GWrmmp6dnoziHEEI0JjISK4QQdnB0dKRt27YEBQVx0003cfPNN7NmzRrbFIAPPviA8PBwHB0dUUqRm5vLXXfdRZs2bfDw8GDYsGH8/vvvlc75/PPP4+fnh7u7O7NmzaKkpKTS83+eCmC1Wlm0aBERERE4OjoSHBzMc889B0BYWBgAvXr1QtM0rr322mrPUVpaygMPPECbNm1wcnLi6quv5rfffrM9v2XLFjRN44cffqBPnz64uLgwcOBAjhw5Uot3UwghLp8ksUIIcQWcnZ0xmUwAHD9+nBUrVvDll1/aPs4fN24cGRkZrF+/nt27dxMdHc3w4cM5c+YMACtWrODJJ5/kueeeY9euXfj7+7NkyZJLXnPBggUsWrSIf/3rXxw6dIjPPvsMPz8/AHbu3AnApk2bSE9PZ9WqVdWe47HHHuPLL7/ko48+Ys+ePURERDBq1ChbXOf84x//4OWXX2bXrl0YDAbuuOOOy75XQghRq5QQQogauf3229WkSZNsj3/99Vfl6+urpk+frp588kllNBpVZmam7fkffvhBeXh4qJKSkkrnad++vXr77beVUkoNGDBAzZkzp9Lz/fr1Uz169Kj2unl5ecrR0VG9++671caYmJioALV3796Lxl5QUKCMRqP69NNPbc+XlZWpdu3aqRdeeEEppVRsbKwC1KZNm2x9vvnmGwWo4uLii98kIYSoJzISK4QQdvj6669xc3PDycmJAQMGcM011/Df//4XgJCQEFq3bm3ru3v3bgoKCvD19cXNzc32lZiYSHx8PABxcXEMGDCg0jX+/PhCcXFxlJaWMnz48Mt+DfHx8ZhMJgYNGmRrMxqN9O3bl7i4uEp9u3fvbvve398fgMzMzMu+thBC1BZZ2CWEEHYYOnQob731FkajkXbt2lVavOXq6lqpr9Vqxd/fny1btlQ5j5eX12Vd39nZ+bKOu5BSCgBN06q0/7ntwtd37jmr1XrFMQghxJWSkVghhLCDq6srERERhISE/OXuA9HR0WRkZGAwGIiIiKj01apVKwC6dOnCL7/8Uum4Pz++UIcOHXB2duaHH36o9nkHBwcALBbLRc8RERGBg4MD27dvt7WZTCZ27dpFly5dLvmahBCisZCRWCGEqCMjRoxgwIABxMTEsGjRIjp16kRaWhrr168nJiaGPn368OCDD3L77bfTp08frr76aj799FMOHjxIeHh4ted0cnLi8ccf57HHHsPBwYFBgwZx+vRpDh48yKxZs2jTpg3/v507RFk0jMIw/AgGxaRJQVyFVTdhMFm06ALEIBpMYnQx4rcYq8UoiMmZNFNmJs38Ay9c1wJOOOkOh9NsNnO9XtPv99NoNH55r9VqtbJarbJer9PpdDIYDHI6nfJ6vbJYLP7HagD+mogF+CK1Wi2XyyXb7Tbz+TyPxyPdbjfj8fjnN4HpdJrb7ZbNZpP3+53JZJLVapWqqv44d7fbpV6vZ7/f536/p9frZblcJknq9XrO53MOh0P2+31Go9FvzxmOx2M+n09ms1mez2eGw2Gqqkq73f6SXQD8a7VvP46jAACgEG5iAQAojogFAKA4IhYAgOKIWAAAiiNiAQAojogFAKA4IhYAgOKIWAAAiiNiAQAojogFAKA4IhYAgOKIWAAAivMdftdrv3neVVMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9CklEQVR4nO3dd3hUZfbA8e+dmfRGCKT3QknoIC0U6U0JNlAQREEXdRcVy+LPXUVXFyuiu+IqIoqiohSDGHqTYqMpPZAEkpCE0NLrzNzfHxMGYgJmwiSTcj7Pk4fMvXfunLkZJifvvO85iqqqKkIIIYQQQjQyGlsHIIQQQgghRG1IIiuEEEIIIRolSWSFEEIIIUSjJImsEEIIIYRolCSRFUIIIYQQjZIkskIIIYQQolGSRFYIIYQQQjRKksgKIYQQQohGSRJZIYQQQgjRKEkiK4QQ16AoCt9++63Nz1GfTp06haIoHDhwoEGeTwghriaJrBCi2Zg6dSqKolT5OnnyZLXHZ2ZmMmrUqBqde86cOXTp0uWGztEUBQUFkZmZSYcOHQDYtm0biqKQk5Nj28CEEE2CztYBCCFEfRo5ciSLFy+utK1169aVbpeVlWFvb4+vr+8NP541ztGYabXaZn8NhBB1R0ZkhRDNioODA76+vpW+hgwZwl//+ldmzZpFq1atGDZsGFB1WkB6ejp33303LVu2xMXFhR49evDzzz/zySef8OKLL/Lbb7+ZR3k/+eSTas9x8OBBBg8ejJOTE15eXjz00EMUFBSY90+dOpVx48bx5ptv4ufnh5eXF48++ijl5eV/+tyeffZZevfuXWV7p06deOGFF8y3Fy9eTPv27XF0dKRdu3YsWLDguufdvn07PXv2xMHBAT8/P2bPno1erzfvNxqNvPbaa0RGRuLg4EBwcDCvvPIKUHlqwalTpxg0aBAAnp6eKIrC1KlTWbJkCV5eXpSWllZ63DvuuIMpU6b86fMWQjRfMiIrhBDAp59+ysMPP8yuXbtQVbXK/oKCAgYOHEhAQACrV6/G19eXffv2YTQamTBhAocOHWLdunVs2rQJAA8PjyrnKCoqYuTIkfTu3Ztff/2V7Oxspk+fzl//+ldz4guwdetW/Pz82Lp1KydPnmTChAl06dKFBx988LrPYdKkSbz66qskJSUREREBwOHDhzl48CDLly8HYOHChbzwwgv897//pWvXruzfv58HH3wQFxcX7rvvvirnPHPmDKNHjzYnnMeOHePBBx/E0dGROXPmAKYEeuHChbz99tv069ePzMxMjh07VuVcQUFBrFixgjvuuIPjx4/j7u6Ok5MT9vb2zJw5k9WrV3PXXXcBcP78edasWcO6deuu+5yFEM2cKoQQzcR9992narVa1cXFxfx15513qgMHDlS7dOlS5XhAXbVqlaqqqvrBBx+obm5u6oULF6o99wsvvKB27tz5uuf48MMPVU9PT7WgoMC8//vvv1c1Go2alZVljjEkJETV6/XmY+666y51woQJNXqOnTp1Ul966SXz7WeffVa96aabzLeDgoLUL774otJ9/vWvf6l9+vRRVVVVU1JSVEDdv3+/qqqq+n//939q27ZtVaPRaD7+vffeU11dXVWDwaDm5eWpDg4O6sKFC6uN54/n27p1qwqoly5dqnTcww8/rI4aNcp8e/78+Wp4eHilxxVCiD+SqQVCiGZl0KBBHDhwwPz17rvvAtCjR4/r3u/AgQN07dqVli1b1vqxjx49SufOnXFxcTFvi42NxWg0cvz4cfO2mJgYtFqt+bafnx/Z2dk1eoxJkyaxdOlSAFRV5csvv2TSpEkAnDt3jrS0NKZNm4arq6v56+WXXyYpKemaMffp0wdFUSrFXFBQQHp6OkePHqW0tJQhQ4bU/EJU48EHH2TDhg2cOXMGME1/uLw4TwghrkWmFgghmhUXFxciIyOr3X49Tk5ON/zYqqpeMzG7erudnV2VfUajsUaPMXHiRGbPns2+ffsoLi4mLS2Nu+++G8B8joULF9KrV69K97s6cf6zmNWKqReKoljlugB07dqVzp07s2TJEkaMGMHBgwf57rvvrHJuIUTTJSOyQghRA506deLAgQNcvHix2v329vYYDIbrniM6OpoDBw5QWFho3rZr1y40Gg1t2rSxSpyBgYEMGDCApUuXsnTpUoYOHYqPjw8APj4+BAQEkJycTGRkZKWvsLCwa8a8e/fuSvOGd+/ejZubGwEBAURFReHk5MTmzZtrFJ+9vT1Atddq+vTpLF68mI8//pihQ4cSFBRk6dMXQjQzksgKIUQN3HPPPfj6+jJu3Dh27dpFcnIyK1as4McffwQgNDSUlJQUDhw4wPnz56uswAfTx/6Ojo7cd999HDp0iK1bt/K3v/2NyZMnm5NNa5g0aRJfffUV33zzDffee2+lfXPmzGHu3Lm88847JCYmcvDgQRYvXsy8efOqPdcjjzxCWloaf/vb3zh27Bjx8fG88MILzJo1C41Gg6OjI3//+9955plnWLJkCUlJSfz0008sWrSo2vOFhISgKApr1qzh3LlzlSo2TJo0iTNnzrBw4UIeeOABq10PIUTTJYmsEELUgL29PRs2bMDb25vRo0fTsWNHXn31VfNH8nfccQcjR45k0KBBtG7dmi+//LLKOZydnVm/fj0XL17kpptu4s4772TIkCH897//tWqsd911FxcuXKCoqIhx48ZV2jd9+nQ++ugjPvnkEzp27MjAgQP55JNPrjkiGxAQQEJCAr/88gudO3dmxowZTJs2jX/84x/mY/75z3/y5JNP8vzzz9O+fXsmTJhwzTm9AQEBvPjii8yePRsfHx/++te/mve5u7tzxx134OrqWiVuIYSojqKq1dSZEUIIIWxg2LBhtG/f3rwITwghrkcSWSGEEDZ38eJFNmzYwKRJkzhy5Aht27a1dUhCiEZAqhYIIUQjsWPHDkaNGnXN/VfPN21sunXrxqVLl3jttdckiRVC1JiMyAohRCNRXFxsrrNanerKigkhRFMmiawQQgghhGiUpGqBEEIIIYRolCSRFUIIIYQQjVKzW+xlNBrJyMjAzc1NengLIYQQQjQwqqqSn5+Pv78/Gs31x1ybXSKbkZEhbQ+FEEIIIRq4tLQ0AgMDr3tMs0tk3dzcANPFcXd3t3E0QgghhBDianl5eQQFBZlztutpdons5ekE7u7uksgKIYQQQjRQNZkCKou9hBBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJIiuEEEIIIRqlZtcQQQghmiujqlJQprd1GEKIRsheq8FRp7V1GFVIIiuEEM3E4XP5nLhUaOswhBCNiLaoiLhukQDo8/LQ1aBtbH2SqQVCCNFMlBuN/HnDRyGEqJ7BaOsIqpJEVgghhBBCNEqSyAohhBBCiEZJElkhhBBCCNEoSSIrhBBCCCEaJUlkhRBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEM2CtqiI29v5c3s7f7RFRbYOR1iBJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRklX2zuWlZWRnZ2N0WistD04OPiGgxJCCCGEEOLPWJzInjhxggceeIDdu3dX2q6qKoqiYDAYrBacEEIIIYQQ12JxIjt16lR0Oh1r1qzBz88PRVHqIi4hhBBCCCGuy+JE9sCBA+zdu5d27drVRTxCCCGEEELUiMWLvaKjozl//nxdxCKEEEIIIUSNWZzIvvbaazzzzDNs27aNCxcukJeXV+lLCCGEEEKI+mDx1IKhQ4cCMGTIkErbZbGXEEIIIYSoTxYnslu3bq2LOIQQQgghhLCIxYnswIED6yIOIYQQQgghLFKrhgg5OTksWrSIo0ePoigK0dHRPPDAA3h4eFg7PiGEEEIIIapl8WKvPXv2EBERwdtvv83Fixc5f/488+bNIyIign379tVFjEIIIYQQQlRh8YjsE088wdixY1m4cCE6nenuer2e6dOn8/jjj/PDDz9YPUghhBBCCFEPVBXHc9m4nkrG9VQybicTbR3RdVmcyO7Zs6dSEgug0+l45pln6NGjh1WDE0IIcWOMRiNJSUmmG65etg1GCNFg2OVcwvV0iilZPZWMy+mKf0+lYFdUWP2dVLV+g6wBixNZd3d3UlNTq3T2SktLw83NzWqBCSGEsI7S0lLTN662jUMIUb+0RUW4pqaYR1ddT6XgeioJ11PJOORcuub9VI2GwoAgCkLDKQwMJuLLT007jMZ6irzmLE5kJ0yYwLRp03jzzTfp27cviqKwc+dOnn76ae655566iFEIIUQtKYpCaGgoAIn55bYNRghhdUpZGS7ppyuS1Mujqym4nUrG6Wzmde9b7ONHQUgYBaHh5IeGUxgaZvo3MATV3h4wJcPmRFarreunYzGLE9k333wTRVGYMmUKer0eADs7Ox5++GFeffVVqwcohBCi9hRFwdW1Yii2IMemsQghaslgwDkzA9fTyVdGVyumBbikp6JcZ6S0tIUnBSHhFISGUxBW8W9IGAXBYRhcXOrxSdQNixNZe3t73nnnHebOnUtSUhKqqhIZGYmzs3NdxCeEEEII0fSpKg7nz1UkqEmVRlddT59CW1Z6zbvqnZ2vJKihEeRXfF8YEkaZZ8t6fBL1r1Z1ZAGcnZ3p2LHjDQewYMEC3njjDTIzM4mJiWH+/Pn079//mscvXbqU119/nRMnTuDh4cHIkSN588038fKSRQxCCPFHqqqSn59/+YZtgxFCYJeXe2VENSWp0uiqXWHBNe9ntLOjIDi0UsJ6+fsSbx9QFKvHmnvxAp4OjlY/rzXVKJG9/fbb+eSTT3B3d+f222+/7rErV66s8YMvW7aMxx9/nAULFhAbG8sHH3zAqFGjOHLkCMHBwVWO37lzJ1OmTOHtt9/m1ltv5cyZM8yYMYPp06ezatWqGj+uEEI0F6qqkpqaarrh5W/bYIRoJrTFRbiknrpq3mqSaWT1VDKOFy9c836qolBUsciqIMQ0X9WUsIZR5B9YL3NUC3Jz+GljArsS4jn00y7e/Lxh51c1SmQ9PDxQKjJ9d3d38/c3at68eUybNo3p06cDMH/+fNavX8/777/P3Llzqxz/008/ERoaysyZMwEICwvjL3/5C6+//rpV4hFCiKbo8tSvMqw/YiNEc6WUl+OSnlppRNX0fTLOmRnXvW9xax9TshoaTkFoWMW/ERQGBWO0d6inZ3BVPAUF/Lp1Azu//5bfdm1HX35lYeihvb/UezyWqFEiu3jxYvP3n3zyiVUeuKysjL179zJ79uxK24cPH87u3burvU/fvn157rnnSEhIYNSoUWRnZ7N8+XLGjBlzzccpLS29UnoGyMvLs0r8QgjRGGg0GsLDwwHYl5Vj22CEaGyMRpyyMiolq5drrbqkn0ZjMFzzrmUeLa5UAzCProZTGByG3rXh1MI7dewwz064lbLSEvO24Dbt6Tc6jtjRYwlo5Q1vvWLDCK/P4jmygwcPZuXKlbRo0aLS9ry8PMaNG8eWLVtqdJ7z589jMBjw8fGptN3Hx4esrKxq79O3b1+WLl3KhAkTKCkpQa/XM3bsWP7zn/9c83Hmzp3Liy++WKOYhBBCCNHMqCoOFy+YF1hdng7geioZ19RTaK9K8P5I7+RUZb7q5ZHWhrjIqrysjN93/0BxYQH9xowDICiyLY7Oznj5+hM7Ziyxo+IIjmp75U5FRbYJtoYsTmS3bdtGWVlZle0lJSXs2LHD4gD+OE1BVdVrTl04cuQIM2fO5Pnnn2fEiBFkZmby9NNPM2PGDBYtWlTtfZ599llmzZplvp2Xl0dQUJDFcQohhBCikbtqwWO352bhmnYal9Mp2Odf+9Nao50dhYHBV42umv4tCAunxNu3ThZZWZPBYODwL7vZlRDPTxsSKMjNwcvXj76jxqLRaNDqdLz57UZaevtabepofapxIvv777+bvz9y5EilUVODwcC6desICAio8QO3atUKrVZbZfQ1Ozu7yijtZXPnziU2Npann34agE6dOuHi4kL//v15+eWX8fPzq3IfBwcHHBzqf76JEEI0BEajkZSUFNMN54Y3QiREvTAYCNjwPW0//K95U9Da1ebvVUWhyD+w0ojq5a8i/0BUXa2LPNnMyYMH2PbtN/y4fg0558+Zt7do7U2vYaMpLS7GqaKOrJdP1fypsajxT6ZLly4oioKiKAwePLjKficnp+t+xP9H9vb2dO/enY0bN3LbbbeZt2/cuJG4uLhq71NUVITuDy8mbcUKPlXKygghRLWKi4tN3zjL+6RoXjQlxYSs+pqoj/+Ha9rpSvsOz3yG/Ki2plHW4BCMDbzM1J+5nAddHlXd9u03rF1qWuPk6uFJnxFjiB0dR/RNvc25U1NQ40Q2JSUFVVUJDw/nl19+oXXr1uZ99vb2eHt7W3xhZs2axeTJk+nRowd9+vThww8/JDU1lRkzZgCmaQFnzpxhyZIlANx66608+OCDvP/+++apBY8//jg9e/bE31/KygghxB8pikJISAgAJwr0No5GiPphf+ki4V9+SvjnH5vLXZV6eJIy4V7afWgadDs59SEMTaCZU2riMXYmxLMrIZ5HXn6LmJ59ABgw9g6KCwqIHRNHpz790dnZ2TjSulHjRPbyG6HxOm3QLDVhwgQuXLjASy+9RGZmJh06dCAhIcH8WJmZmVfqHwJTp04lPz+f//73vzz55JO0aNGCwYMH89prr1ktJiGEaEoURcHNzc10ozDHprEIUdec09OI/PRDQpd/ga7ik4jCgCBO3P8XTt9+N4A5kW3MMk4ls3vtanYmxJN24rh5++5135kT2Tadu9GmczdbhVhvFLWWn8kfOXKE1NTUKgu/xo4da5XA6kpeXh4eHh7k5ubi7u5u63CEEKLe7MvK4XRuMTLBQDQ1HscOE/XRAgLXrjaXxMppH0PitEc4M/JW8xxXbVERcd0iAYjfd7LRjcjmXjjPKw/dS9LhK+uWdHb2dB0wiH6j4+h+8zDzvFdrufqalebk4eDhZtXzV8eSXM3i2cvJycncdtttHDx4EEVRqszJMFynppoQQoj6paoqhYWFl2/YNhghrElVaf3zLtp8tACfndvMm8/27c+JaY+Q3XdAg68o8GcuncsmPSmRjr37AeDe0ou8SxfRaLV06tOf2NFx9Bo6Ehd3DxtHajsWJ7KPPfYYYWFhbNq0yTxf9sKFCzz55JO8+eabdRGjEEKIWlJVlVOnTpluSIta0QQoej3+GxNo89ECPCtGJlWNhvSRt3Ji2sPkxHSycYQ3Jv/SRX7auJZdCfEc/mU3zm4efLRjP3b29iiKwqy3/4dPUAgeLb1sHWqDYHEi++OPP7JlyxZat26NRqNBo9HQr18/5s6dy8yZM9m/f39dxCmEEKKWHB1Nq7GlRa1ozDQlxYSuXEbk4g/MFQj0jo6cvv1uTtz/F4qCQmwcYe0VFeTzy+b17EqI57dd2zHoryzM9AsN49K5bLwDAgGaxbxXS1icyBoMBlwrWqu1atWKjIwM2rZtS0hICMePH/+TewshhKhPGo2GyEjT/DZpUSsao2orELTwJHnS/SRNup+yJjAyuWrhe6z84F3z7dB20cSOjqPvqLH4NuIEvT5YnMh26NCB33//nfDwcHr16sXrr7+Ovb09H374obmftxBCCCFso7EvaLrszyoQNMbnVV5WyoGd29j5fTw3jxtP1/43A9BvdBw/bfiefqPjiB0dR2BElG0DbUQsTmT/8Y9/mBcOvPzyy9xyyy30798fLy8vli1bZvUAhRBCCNF8eBw9RNSi96tWIJj+KGdG3NLoumwZ9HoO/rTT1CJ241qKKtrhajQacyIb3KYd7yb80ChbxNqaxa+GESNGmL8PDw/nyJEjXLx4EU9PT/kBCCFEA2M0Gq8s9nLytGksQlzT5QoEC9/DZ9d28+bGXIGgvKyMxXNf4Mf1a8irmBIB4Nnah9jRY+l/y5WuppI/1Z7Fieynn37KnXfeictVdcpatpT+3UII0VAVFRWZvnFqYdM4hPijplSBQFVVzqanmue02tnbc3TvL+RdvIC7Z0t6j7iFfqPjaNe9Z5NqEWtrFieyTz31FI888gi33nor9957LyNHjkTXyIb5hRCiuVAUhaCgIACSiqzXmVGIG6EtLiJk1ddVKxDccY+pAkFgsI0jrBlVVTmdeJRdCavZlRBPzvlsPt51EMeK+buTnpiNVmdHx96xTbZFrK1ZnIFmZmaybt06vvzyS+6++26cnJy46667uPfee+nbt29dxCiEEKKWFEXBw6OiWHpxjk1jEcL+0kXCv/iEiM8/xuHSRcBUgSDp3gdInjSVMs/GUYEgIyWJnQnx7EqIJz3phHm7g5MTp44dpl23mwDoMWiYrUJsNixOZHU6Hbfccgu33HILRUVFrFq1ii+++IJBgwYRGBhIUlJSXcQphBBCiEbquhUI7rgbg1PjqUCw6ZulvP/Pp8237ewd6DZwMLGj4+g+cKh5NFbUjxuaE+Ds7MyIESO4dOkSp0+f5ujRo9aKSwghhBWoqnpljqy0qBX1rNoKBNEdSJz2SKOoQHDxbBa7168hKCKKzrEDAejUZwA6Ozs69ulPv9Fx3DRkBC5u7jaOtO4YnJ1ZeSwDgDFXrY9qKGr1Cro8Ert06VI2bdpEUFAQ99xzD99884214xNCCHEDVFUlJSXFdENa1Ir6oKq0/mknbT5a8IcKBANInP4I5/r0b9AVCPIuXeCn9QnsTIjnyK8/oqoq3W8eak5kvQOD+Hj3wSadvDYmFiey99xzD9999x3Ozs7cddddbNu2TebGCiFEA2Zvbw9AmY3jEE3b9SoQJE5/hNzojjaO8NpUVWV7/HJ2fv8tv+3+AWPF6DFA26496H7z0ErHSxLbcFicyCqKwrJlyxgxYoRUKxBCiAZOo9HQpk0bQFrUirrRWCsQlJeXocE0n1VRFDZ+/TnH9v0KQHh0R2LHxNF35Fi8AwJtGab4ExZlouXl5WRmZhIVFSVJrBBCCNGMNcYKBOVlpcQDXwGrh/RiwcYfcfM01cIffe8DdOl3M7GjxuIfFmHTOEXNWZSN2tnZcejQIelAIYQQQjRT16xA8MAMTt8+ocFVINCXl3Pwp53s/D6eXzYlUHR5R0E+e3/Yws1xdwIQOzrOZjGK2rN4WHXKlCksWrSIV199tS7iEUIIYUVGo5HU1FTTDQcP2wYjGrXGWIHg8C8/8sbM6eTnXDJvCwTGA/6fryK0e0+bxSasw+JXXVlZGR999BEbN26kR48elVrVAsybN89qwQkhhLhxBQUFpm8cZIGKsFAjqkCgqionftuHwaCnffdeAARGRFGYn4eHVyv6jLiFAUNG8vdpd6MB4qM7YmggsYvasziRPXToEN26dQMgMTGx0j6ZciCEEA2LoigEBAQAkFJi42BEo9FYKhCoqkrK0UPsSohnV8JqzmWkE92jN//6fCUAHl6teHXZ94S2i0ar06EtKkJj45iFdVmcyG7durUu4hBCCFEHFEXB09MTgBSpWiD+RGOpQJCedIKd33/LroR4Mk4lm7c7OjvTOiAQg8GAVqsFIKJDJ1uFKepBrSe0nDx5kqSkJAYMGICTkxOqqsqIrBBCCNEINbYKBJ+89iL7f9gCmFrEdr95KP1Gx9Ft4GAcGthiM1G3LE5kL1y4wPjx49m6dSuKonDixAnCw8OZPn06LVq04K233qqLOIUQQtSCqqqUlJRcvmHbYESDU20FgsBgTtz/lwZRgeBCVga71n7H7rWreXL+B7T2N9V0HXjr7WgUDbFj4rhp8HCcXd1sGqewHYsT2SeeeAI7OztSU1Np3769efuECRN44oknJJEVQogGRFVVkpKSTDekRa2ocK0KBMenP0rG8DE2rUCQe+E8P65fw86EeI7u+dm8fffa74ib9jAA/W+9nf633m7xuQ3Ozqw8lmG1WIXtWfxK3bBhA+vXrycwsHKni6ioKE6fPm21wIQQQljH5QY20qK2mWvgFQiy0k7z4Qt/5+BPOzEajebt7bv3JHZ0HH1G3GKz2ETDZXEiW1hYiLNz1Y8azp8/j4ODg1WCEkIIYR0ajYZ27doB0qK2ubpmBYJRY0mc9rDNKhAUFxZyISuDwIgoADw8vTi69xeMRiMRHTrTb3QcfUfdSiu/AJvEJxoHixPZAQMGsGTJEv71r38BphWxRqORN954g0GDBlk9QCGEEELUTujXnxOxdHGlCgSn7pzIyakP2aQCQWlJMft/2MqutfHs2bqRgPBI3ly5AQAnV1dmvvYuoe1j8AsJq/fYRONkcSL7xhtvcPPNN7Nnzx7Kysp45plnOHz4MBcvXmTXrl11EaMQQgghasj+0gXz951fnQPYtgKBvryc33b/wK6EeH7ZtI7iwgLzvpLCIgrzcnFxN3Wd6zNSpg8Iy1icyEZHR/P777/z/vvvo9VqKSws5Pbbb+fRRx/Fz8+vLmIUQghRS0ajkfT0dNMNO1nZ3ZS5Hz9C5JKPCPpupXlbYUAQJx6YYdMKBP97/mm2rvrafLuVnz+xo+PoNzqOsOiOUrpT3JBaLUv09fXlxRdftHYsQggh6kBeXp7pGy9X2wYirM9gwG/7JiI+/Qjvn6t+Krp51Ub07vXTmthoNJJ4YC+7EuIZMfE+AsNNc19vGjKC/Tu20nfkrcSOjqNNl+5oNNJfS1iHxYnsunXrcHV1pV+/fgC89957LFy4kOjoaN577z1zBxkhhBC2pyiK+dOy02Uy8tVU6AryCVm5jIjPP8Y19RQARq2WjOGjSR4/mQH3jweo8zJaqqqSfPggOxO+Zfe67zifcQYAZ3d37pn5DAA9bh5Gj+3DzZ22hLAmi1/hTz/9NK+99hoABw8eZNasWTz55JNs2bKFWbNmsXjxYqsHKYQQonYURcHLyzQn8rRULWj0nNNOE/H5x4Qu/xK7irmmZR4tSBk/ieSJUyn2C0BbVFTncRQV5BO/6H12JsSTdTrFvN3JxZVeQ0fRqc8A8zatDWvSiqbP4ldXSkoK0dHRAKxYsYJbb72Vf//73+zbt4/Ro0dbPUAhhBCiWVNVWv3yI5FLFuK3ZQNKRYe2vPBIkqY8SOrYOzBUUxbT2ooK8s0dtOzs7Vm7dDGFebnYOzrSY9Aw+o0eR9cBg7B3cKzzWIS4zOJE1t7enqKKv/Y2bdrElClTAGjZsuWVeVhCCCEaBFVVKSsru3zDtsEIi2hKSwha8y0RSz6ixfEj5u1ZAwZzcvJ0smMHQB3PNT2Xkc7utd+xa+1qCvNy+e/6XSiKgp29A/c89gyuHi3oMWg4Ti4udRqHENdicSLbr18/Zs2aRWxsLL/88gvLli0DIDExsUq3LyGEELalqionTpww3ZAWtY2CY/ZZwr76lLCvPsPxoqmUlt7JidRx4zk5+QEKKhZR1ZWc8+fYve47diXEc2zfr+btGq2WjJQkAsIjARg16f46jUOImrA4kf3vf//LI488wvLly3n//fcJCDB13Fi7di0jR460eoBCCCFujKwQbxxaHPqdyCULCVy7Gk15OQBFfv4k3fsAp+6cSLlHizqPYfXiD/jsjX+ZW8QqikL77r3od8s4eg8fg0fL+q1BKxoGoxHyL2kgwtaRVGVxIhscHMyaNWuqbH/77betEpAQQgjr0Wg05nUN0qK24VH0evw2rSNyyUJaXTX6eb7bTZyc8iCZQ0fWWeWBooJ8ft2ygbD2HQiOagtAaLtojEYjUZ26Ejs6jr4jb8HLV0bymwtVhYvZGlITdaSdsCP1hI7UEzrSk3R4+RqZmGjrCKuq1f8Og8HAqlWrOHr0KIqi0K5dO8aNG4dOViYKIYQQf8ouN4fQ5V8QsXQxzhUlq4x2dqSPGsvJydPJ6di5Th63tLiIfdu3sDMhnn3bN1NWWsKYKdN54P9eAiCmZ1/e2/gjvkEhdfL4ouHIv6SQelWyejlxLcyr/hOcC1mg14NDA0v1LA7n0KFDjB07lrNnz9K2rekvuMTERFq3bs3q1avp2LGj1YMUQgghmgLX5JNEfL6IkFVfoysuBqDUsyUpd08h+e4plPj4Wv0xDQYD+3/YYmoRu3k9JUWF5n3+oeH4BAabb2u1Wklim5jiAoW0pMvJqs6cvOacq76ur0ar4hdiILSNnjbtjXToAJ07KnSJ1uHiaFfP0f85ixPZ6dOn06FDB/bu3WtufnDp0iWmTp3KQw89xI8//mj1IIUQQtSO0WgkIyPDdEMrK8ttQlXx3rWdyCUf4fvDFvPmnLbRJE2ZRtott2G0cskqFbi6/cUHL/ydi9lZALT2DyR2jKlFbGi7GGkR20SUlUJGiilhTU20Myeu2Weunep5B+gJaaMnqp2R6Bjo3Emhc4wGb3c7HHSNo4yaxYnsb7/9xp49eyp18PL09OSVV17hpptusjiABQsW8MYbb5CZmUlMTAzz58+nf//+1zy+tLSUl156ic8//5ysrCwCAwN57rnneOCBByx+bCGEaA5ycnJM33jVfa3R+qQtKiKum2kFffy+k/VSS9US2uIiguNXEPHZR7gnmSpHqIpC5qBhnJzyIOd79QUrJpFGo5Fj+35ld/xyngf2Xo5Dq2XExPvIu3iBfqPjiOrcTZLXRsygh6xULakn7CpGWE2jrJmntRgN1f9cPVsbCI7SE9HOQHQ0dO4IXTtp8ffS4ahzaNSvB4sT2bZt23L27FliYmIqbc/OziYyMtKicy1btozHH3+cBQsWEBsbywcffMCoUaM4cuQIwcHB1d5n/PjxnD17lkWLFhEZGUl2djZ6vd7SpyGEEM2Gj48PAGn6xvvLqjFxyjxD+BefEPb1UuxzcwAod3Hl9B13k3TvAxQGh1rtsVRVJenQb+z8Pp5da1dz8Wymed/2q467c8ZjVntMUT+MRjifob0yh/WkaR5repKO8mu0m3ZxNxLSppzwtgbaR0PHjtC1k4ZQPx0udvaNOmG9lholslc3Ovj3v//NzJkzmTNnDr179wbgp59+4qWXXjK3rq2pefPmMW3aNKZPnw7A/PnzWb9+Pe+//z5z586tcvy6devYvn07ycnJtGzZEoDQ0FCLHlMIIZoTjUZD69atAUiTqgV1R1VpeWAvkUsW4r8hAY3BAEBBUAhJk6dx+vYJ6Cu6YlnLvh+28NG/nuNs2mnzNmdXN3oNGsbT361kAJBg1UcUdUFVIee8psoc1rQTOkqKql945eBkJChST1hbA+2iVTp0gG6dFKJCdLg52KNpggnrtdQokW3RokWlLF5VVcaPH2/eplZ0i7n11lsxVPzn/TNlZWXs3buX2bNnV9o+fPhwdu/eXe19Vq9eTY8ePXj99df57LPPcHFxYezYsfzrX//Cycmp2vuUlpZSWlpqvi3dx4QQQliLUlZGwPo1RH62iJa/7zdvz+4VS9KUaWTePAy01S+qsVRGShKKRoNfSBgA7p4tOZt2GgcnJ3oMGk6/MXF06XczTgYjo75baZXHFNZVkKuQdrIiWU28krjm51SfsOrsVPzD9IS10dMmWqVDDHTtrBAdpcPD0Q6dxr6en0HDU6NEduvWrVZ/4PPnz2MwGMwfeV3m4+NDVlZWtfdJTk5m586dODo6smrVKs6fP88jjzzCxYsX+fjjj6u9z9y5c3nxxRetHr8QQjQGqqpemX4lLWqtxv7SBcKWLSX8i09wqlhEZbB3IO2WcSRNmU5uu5g/OUPNZJ9JZ/e61ez6Pp7kIwcZfMfdPPrKPAAiOnTmmf8sonPsQByvnh9c0UZe2E5JkUJ6pUoBpoT14tlrVArQqPgGGwipqBQQHQ1dOil0itbi5aLDTtvwqgU0FDVKZAcOHFhnAfxxvoaqqtecw2E0GlEUhaVLl+Lh4QGYpifceeedvPfee9WOyj777LPMmjXLfDsvL4+goCArPgMhhGi4VFXl+PHjphvSovaGuSceI+KzjwhevRJtaQkAJa29Sb7nPlImTKbUq9UNP8alc9n8uO47dibEc3z/HvN2jVZLWUmJ+baiKPQaNuqGH0/UXnkZZJ7SmeexXl6AdTZNi6pWn8u08tcTEnWlUkCnTgpdYjT4tNDh2EgqBTQktSprm5OTw6JFi8wNEaKjo3nggQfMyWVNtGrVCq1WW2X0NTs7u8oo7WV+fn4EBARUepz27dujqirp6elERVXtP+3g4ICDg0ON4xJCCCEqMRrx3baJyM8+wvvHnebNl2I6cfK+B0kfeSuqvfU+4p0z9S7SK6ocKIpCTM++xI6Oo/fwUbh7SotYWzAYIDtdW6lxQOoJHRkpOgzXWETp4XVVpYAYlU4dFLp21BDobYdTI68U0JBYnMju2bOHESNG4OTkRM+ePVFVlXnz5vHKK6+wYcMGunXrVqPz2Nvb0717dzZu3Mhtt91m3r5x40bi4uKqvU9sbCzffPMNBQUFuLq6AqZmDBqNhsDAQEufihBCNHkajYYOHToA0qLWUrqCAoJXLSPy849xPZ0CgKrRcGbYaE7eN52LXW+6ofJZhfl5/Lp5Pb9sXsfjb76HfUUt2b4jb+W3XdsrWsTeiqd39YM7wvpUFS5kaa4suEqsqBaQZEdZSfU/a2dXI0FR+opKAaq5UkBEYNOtFNCQKKpq2aSp/v37ExkZycKFC80tafV6PdOnTyc5OZkffvihxudatmwZkydP5n//+x99+vThww8/ZOHChRw+fJiQkBCeffZZzpw5w5IlSwAoKCigffv29O7dmxdffJHz588zffp0Bg4cyMKFC2v0mHl5eXh4eJCbm4u7u7slT10IIRq1fVk5nM4tpqnMlK2rOrLO6alEfPYxoSu+xK4gH4Aydw9O3TWRpIn3UxxQ+4GTkqIi9m7byM6EePb/sJXyMtNi5Gf+s8g8TcBoNKLRVL/4pyYaen3dhiL3ouaqBVdXpgUUFVR/7e0dVIIiywlra6Bte5WOHVW6dNTSNlyLu4OuWVUKqGuW5Gq1GpG9OokF0Ol0PPPMM/To0cOic02YMIELFy7w0ksvkZmZSYcOHUhISCAkxNQeLzMzk9TUVPPxrq6ubNy4kb/97W/06NEDLy8vxo8fz8svv2zp0xBCCCGuUFVa/foTkUsW4rdlA4rRCEB+WAQnp0wnNe6uG0oI05NO8PV789izdQOlFa1pAQIjoogdHUdY9JX27jeSxIqqigqUKslq6gkduReqX3il1ZkqBYS2MdC2vZGYGOjSWSEmSouns04qBTQwFiey7u7upKam0q5du0rb09LScHOzvEbeI488wiOPPFLtvk8++aTKtnbt2rFx40aLH0cIIZojo9F4ZS2CUn2ZwuZMU1pC4PfxRH72ES2OHjZvP9vvZk5Omc7ZfjdDLRJLfXk5hXm5eFQs/lIUhV0J8QD4BIUQO9rUIja4TTv56NlKSkvgTLLuDx2vdJzPqD7VURQVnyCDaeFVeyMxHaBzB+gco6OVmw57qRTQKFicyE6YMIFp06bx5ptv0rdvXxRFYefOnTz99NPcc889dRGjEEKIG3Dx4kXTN1K1wMzhXDbhXy0h7KslOF44D4De0ZHUceNJmjyN/Iiqi4f/jMFg4NjeX9iZEM9P69cQ07MvT73zIQAB4ZFMfvofdOjZl4gOnSV5vQH6cshKrUhUE3XmBVhZqVqMxuqva0sfAyFR5US2MxLdATrFKHTppMG/pQ4HrSy8aswsTmTffPNNFEVhypQp5tqEdnZ2PPzww7z66qtWD1AIIcSNudzZ68w1fsk3Jy0O/07EkkUEJXyLprwcgCJfP5In3U/KXZMob+Fp0flUVeXE7/vZlRDP7rXfcTH7SiWeEwf3Y9Dr0VZMxRs3rfpPH0X1jEbIPqM1ja4mVoy0ntRxJlmHvrz617JbCyPBUeVEtDPSPtpIp44KXTtpCPbV4SyVApokixd7XVZUVERSUhKqqhIZGYlzI5lMLou9hBDNVbNd7GUw4L95PZFLFtJqz8/mzRe6dOfkfQ+SMXQUql3tPkZ+9dH7+XXzevNtZzd3eg8fTeyosXTs3c+cxIprU1W4lK2pMoc17aSO0uLqp3U4OhsJjrrcotVIxw4KXTsrRAba4eqglYVXjVydLva6zNnZmY4dO/75gUIIIYQN2OXlErL8SyI+/xiXjHQAjDod6SNvJWnKdC516mrR+dKTT7Dr+3humfoQLm6mX67tu/Xk4I87uGnwCGJHx9Gl30Ds7KV2+bXkX1JIPVl5DmvaCTsKcqtPWO3sVQIj9IS20dM2WqVjB+jSSUO7cC0ejnZoZeFVsyd/KgohRBOmqirGihX4zaVFrWtKEhGfLSLk26/RVbRrLW3hScrdU0i+ZwolPn41PtfZ9FR2JcSzKyGeU8eOAKbFWjePuwuA4RMmM3LifTg4NY5PJetLceGVFq2mElemuqyXzl27RatfqIHQihatHTpA544KHdtp8XTRYaeRhVeiepLICiFEE6aqKkePHjXdaMqLvVQV713biViyCL/tm8ybc6PakTRlGqm33o7RsWZVGwpyc9j27TfsTIjnxG/7zNu1Oh1dYm/Gy/dKIuxU0ZynuSovu1wpQEdqop15SkB2+rXTC+8APSFtrrRo7dxJoXOMBm93OxykRauwkCSyQgghGr1B40fjXtHWVVUUsm4eyskp0znXu1+Num8ZDAa0WtNoYWlJMZ+8OgdVVdFoNMT06ku/0XH0GjoKN8+Wdfo8GiqDHrJStX8obWVH5mktRkP117dFa1Npq4h2BqKjVTp3VOjaSYufl05atAqrkURWCCGaMEVRiImJAWB/E2pR63YykfCln5hvuyedoNzZhdO3TyDp3gcoDA3/03MU5uXy86Z17EqIR9Fo+MeHnwPg5ePHqEn34xcaTp8Rt+DZ2ruunkaDo6pwLkNbZQ5repKO8rLqE08Xd9PCq/C2etrHQMcO0K2ThlB/adEq6l6tEtnExES2bdtGdnb2lblXFZ5//nmrBCaEEOLGVUoiGnlCoSkpJmBDAmHLPqPV3l8q7Ts46/9IuWcKerfrr3AuKSpiz9YN5hax+vIy07m1WvJzLuFWUX5r2j+adsdIVYXcC5pKyWpqomlaQHHhNVq0OppatIZfbtHaAbp2VogK1eHuYIdGkYVXov5ZnMguXLiQhx9+mFatWuHr61vpTVJRFElkhRBCWJVb0glCv/6ckG+/wT43BwCjVsvZAYPx22rq9Jh87wN/2kJ2+f/eYcX/3qGspMS8LSiqLf1Gx9F31FhzEtvUFOQqpJ38Q2mrEzryLlW/8EpnZ2rRGtZGT5tolQ7RFS1a2+jwcLSTFq2iQbE4kX355Zd55ZVX+Pvf/14X8QghhLAio9FIdna26YbaeMpCaUpLroy+XlX7tcg/gJS7JnH69gmUu3mY68j+kb68nN9/3EFEh854tPQCwKNlK8pKSvANCaPf6DhiR40luE27au/fGJUWQ9pJO3Oienke68Wz1SesiqLiG2wgpKJSQEwMdOmk0ClaS0sXadEqGgeLE9lLly5x11131UUsQggh6sD586YWrI2haoFr8gnCli0l+NtvcMi9BICq0ZA5aBgp4+/lbL+boWJRlraitNZlBoOBI7/+xK6EeH5c/z0FuZeY9ty/GD15GgB9R95CeHRHwmM6Nup5m+VlkHnqyhzWyyOtZ9O0qGr1z6uVn4HgqHKi2htNC686aegco8HXU4ejVAoQjZjFiexdd93Fhg0bmDFjRl3EI4QQwspatWoFQMY1khxb05SW4L8hgbBln9N6z0/m7UV+/py6cyKn7rznmrVfjcBPwMLXX2LX5nXknMs27/PwaoXxqtq5Lu4eRHToVFdPw+oMBshO116Zw1qRuGak6DDoq/9ZunsaCG6jJ6KtkeiYKy1ag7ztpFKAaJIsTmQjIyP55z//yU8//UTHjh2x+0Nbv5kzZ1otOCGEEDdGo9Hg6+sLQEYDq1rgmnySsK+XEvzt1zjkXDX6evNQTo2/l6z+g8yjr9eSC9wMlH+1xHROjxb0Hj6GfmPiiL6pj7mkVkOmqnDxrIbUigVXl6cGpCXZUVZSfeLp5HK5UoCBdtEqHTtCt84aIgKlUoBoXhRVtazVS1hY2LVPpigkJyffcFB1yZL+vUII0ZTsy8rhdG4xtuzvpSkrvTL6+uuP5u2XR19P33E3xb7VT4FIO5nIzoRvyTp9iifeWoC2qIi4bpFMAjLGjKPv2Dvo1Kc/dvYNdzFS7kVNRacrnXkBVuoJHUX512nRGmlaeNUuWqVDB+ha0aLVzUGHViMJq2h6LMnVLB6RTUlJqXVgQggh6lelsQobtqh1TT5J6DdLCVlVefQ1a+AQUiZMvuboa1bqKXYlrGZnQjypiUfN2yc+MRv/lqYpE0uB+H+9+adVC+pTUYFSacHV5e9zL1yjRavWVCkgtI2Btu2NxHQwLbzq0EaLp7MOnbRoFaJa0hBBCCGaMFVVOXLkiOlGPS/2Mo++fr2U1r/sNm8v8vW7MvrqF1DtfX/dsoHl78/n5MED5m06Ozu69LuZfqPj8KhIYm2ttORyi1a7Sk0Ezmdc+9erT9CVFq0xHaBLR+gUraO1u1QKEMJStUpk09PTWb16NampqZSVlVXaN2/ePKsEJoQQonFyTUm6Mvp66SJQMfo6YDApEyZztv8gVF3lXz8558+h1WrNLWDLSoo5efAAGq2Wjr370W90HD2HjsTVo8WVO/2hakFd0pdDVmpFopp4pYlAVqoWo7H6j/dbepsWXkW2NRDdATp3UOjSUYOflw5HrSy8EsIaLE5kN2/ezNixYwkLC+P48eN06NCBU6dOoaoq3bp1q4sYhRBC1JKiKLRv3x6A37Lz6uxxNGWl+G9cS+jXS/H+eZd5e7GPH6fuvIdTd95TZfQ1P+cSP29ay66EeA79tIsJM5/mzhmPAdD95mE8+MJc+gwfg4dX/Y2+Go2mFq2X57FensN6JlmHvrz6xNPVw0hwVDkR7Yy0j75SKSDEV4ezLLwSok5ZnMg+++yzPPnkk7z00ku4ubmxYsUKvL29mTRpEiNHjqyLGIUQQtSSoihXVu7XQULlciqZsK8/rzz6qihkDRjCqQmTyBowpNLoa3FBAb9sWc+uhHh+27UdfXm5ed+ZpBPm7x2dnRl5z31Wj/cyVYVL2aYWrVc3EUg7qaOkqPqFV47ORoLMlQKMdIhR6NZZITLIDlcHezSSsApR7yxOZI8ePcqXX35purNOR3FxMa6urrz00kvExcXx8MMPWz1IIYQQDYdSVob/prWEfb0U7592mrcXe/teGX31D6xyP4NezyPD+5B38YJ5W0jb6IoWsbfiGxxaJ/Hm5yhV5rCmnbCjILf6hFVnpxIYoSe0jZ620SodO0CXjgrtI00tWrXSolWIBsPiRNbFxYXS0lIA/P39SUpKIiYmBriqe4wQQogbV1gIrq6m7wsKwMXF4lMYjUbOnTtnuqHeWALmcjqFsK8/J3jV1zhWJKOqonB2wGBSJtxbafS1vKyM33Zt5/CvPzLl6X+aRoZ1Ojr3HcDJg7/Rb0wcsaPjCIpsc0MxXa24UCE96co81stNBC6du0alAI2Kb4iB0IoWrR06QOeOCp3amyoF2MnCKyEaPIsT2d69e7Nr1y6io6MZM2YMTz75JAcPHmTlypX07t27LmIUQghxA8yJbC2qFihlZfhvXkfY15/j/eMfR1/v5tQdEykOMI2+GvR6Du3+gV0J8fy8cS0FuTkA3Bx3FyFtTfN0Z7z0Bg5OTjc0b7S8DM6k6Eg/5MrPvMIhOvDLrcGcPXPtxLO1v6lSQGQ7IzEx0LmTQpcOGrzd7XCQFq1CNFoWJ7Lz5s2joKAAgDlz5lBQUMCyZcuIjIzk7bfftnqAQgghbkzLlqZKAFnUPHl0OZ1iqjywclnl0df+g0yjrwOHmkdf05NOsO6LT9i97jtyL1z5ZK5Fa2/6jrwVx6tGkh0tqPVqMMDZVK15wdXleawZp3QYDZefy/+Z/jlz+TENBEfqiWhnIDoaOnWEbp20BLTS4SgtWoVocixOZMPDw83fOzs7s2DBAqsGJIQQwno0Gg3+/qaR2Kw/aVGrlJXhv2U9oV9/js/uHebtxa19OH3nPaTcaRp9VVWV8rJS7CsS2ewzaaxduhgAtxae9BlxC7Gj42jfo1eNWsSqqqlSwJVuV6ZqAekndZSXVZ94OrsZCY0oZcCBT4jhMB7LXqRrTxdC/aVFqxDNSa3qyObk5LB8+XKSkpJ4+umnadmyJfv27cPHx4eAgOqLWwshhGiYXFJPXRl9rRhRVRWFs/1uvjL6amdHauIxds5/jV0J8fQePprJT/0DgE59+jN8wmR6Dh1Jx9790NlV/xG/qkLuBU2lBVepiabktbiw+oVX9o4qQZHlhLU10K69SseO0LWTQptQHW56Axq3R0wHjnkNXGSKgBDNjcWJ7O+//87QoUPx8PDg1KlTPPjgg7Rs2ZJVq1Zx+vRplixZUhdxCiGEsCKlrAy/LRsI+/qzSqOvJa29OXXHPZy6cyJFgUFknEpm90fvsTMhnrQTx83H7dm2yZzI6uzs+MuLr1U6f2GeYhpdTaw8LSDvUvUjtFqdSsDlFq3RRjrEQJfOCjFtTJUCdNVVCigsq7pNCNGsWJzIzpo1i6lTp/L666/j5uZm3j5q1CgmTpxo1eCEEELcGKPRWKlFrXPaaUK/XkrIqmU4njctAlMVhezYgaRMmEzmzabRV4B/TZ/IgZ3bzOfS2dnTbeBg+o2Oo/vNwwAoLaaiUsCVWqypJ+y4kFV9wqooKr7BBnOL1g4VC686tdfi5WZhi1YXF9MwrxCi2bI4kf3111/54IMPqmwPCAggKyvLKkEJIYSwovJy3Ldto8W3q+n2wzbz5pLW3py6/W5O3TWRMw6O/LplA0O1Wi5/yO8dGIxGq6Vz3wH0HnEbQRFjOJ/pSeoJHTsTTInr2VQtqlr9fNRWfgaCo8orKgWodO6koXOMBl9PHY5SKUAIYQUWJ7KOjo7k5VVtc3j8+HFat25tlaCEEEJYQXIyysKFxCxejHL2LHDV6Ov4e0ns2p0ft25i1z+e4vAvuzEajQSER9HSuy+pJ3Q4uc6lx6B3yDrtwsIXr92i1d3TQHAbPZHtDLSPVunUUaFbJw2B3jqcpFKAEKIOWZzIxsXF8dJLL/H1118DpvaHqampzJ49mzvuuMPqAQohhLBAeTl89x188AFs2HCl4JaPD1njJ/Lz0FvYfOwwO5d/yW9P/AujoR3QC5iGg1NPXprWBn1Z9b8anFyMBJtbtJoWXnXrrBARaCeVAoQQNqGoqmUTjPLy8hg9ejSHDx8mPz8ff39/srKy6NOnDwkJCbjUovNMfcrLy8PDw4Pc3Fzc3d3r7XGNRiNgSvwvv9lf3gamEjnXO1ZVVS7/qORY6xx79fbaHvtnP09Ljr3W85DXSdN/nVwrNmNBAXh7g16P5tIlc2evap9HSgosXAiLF6NcNc1LHTqUvHse4kBwHAm/6Nm6+Sz7fziDnV00BkMLysquxODoaERRQAX8wwyEtdXTLsZIxxiVzh00tIuww81Bh1ajNKifUWP+2ct7ROM/9urt9f4eUc8/+/piSa5m8Yisu7s7O3fuZMuWLezbtw+j0Ui3bt0YOnRorQNuDi4vtmjXrh26itqL58+fJzs7G09Pz0ply44ePYqqqrRp0wZ7e9NK3QsXLpCVlYWHhwdBQUHmY48fP47BYCAyMhJHR9Ocs0uXLpGRkYGbmxshISHmY0+cOEF5eTnh4eE4VxQlz83NJT09HRcXF8LCwszHJiUlUVpaSmhoKK4VLTLz8/NJTU3F2dm5Uj3hlJQUiouLCQkJMS8ALCws5NSpUzg6OhIZGWk+9tSpUxQVFREUFISHhwcARUVFpKSkYG9vT5s2V9pVpqamUlBQQEBAAJ6engCUlJSQlJSETqejXbt25mPT09PJy8vDz88PLy8vAMrKyjhx4gQajYbo6GjzsRkZGeTk5ODj42OeDqPX6zl+3LQiu0OHDuZjs7KyuHjxIq1bt8bHxwcw/ac/evQogLk9M0B2djbnz5+nVatW+Pr6VvnZt2/f3lxT89y5c5w7d46WLVuaa3xefWzbtm2xq1hwc+HCBc6ePUuLFi0IDLzSv/7YsWMYjUaioqJwcHAA4OLFi2RmZuLu7k5wcLD52MTERPR6PRERETg5OQGmMnpnzpzB1dWV0NBQ87EnT56krKyMsLAw8x+meXl5pKWlVfnZJycnU1JSUul1UlBQwOnTp3FyciIiIsJ87OWffXBwsPmN6fLrxMHBgaioKPOxp0+fprCwkMDAQFq0aAFAcXExycnJ2NnZ0bZtW/OxaWlp5j+qLxf+Ly0t5eTJk2i1Wtq3b28+9syZM+Tm5uLr60urVq0AKC8vJzExEUVRKv08MzMzuXTpEt7e3nh7ewNgMBg4duwYUPl1cvbsWS5cuFDpdaKqqvnnGR0dbf4Fcfln7+XlhZ+fX5WffaX3iNxcsn/5Bc/ly7m6sKH5PSIsDPsNG66Mvlb84il282ZH1FTmF97Js8874+mp8t0nF3jnHR/0+jDuuMODOXMy2LIlnzf+42+qFNDeyF/uScXJQU9Lv2C8PV3RaezIyckxv0e0cJL3iD/+7OU9Qt4jbPoeUc95RENUqzqyAIMHD2bw4MHWjEUIIUQN2J05Q4vlyzEsXwOXMgFQgII+fdgUPoXxSx+gfJ/pl9ds9QigMnXqBY6dbIVnYAkjh5jKVo0YbWTGo1pzpYDjxxXKy6GFkw6dDUZhhBDCUhZPLQD45Zdf2LZtG9nZ2ZWGtcHUwrYhk6kFcqx8bCjHNrTXybViK88p4KR/LEf07Tj8xMc4/rCB3gc/pF/hejSYzn0WbxZzP4u100mzD8dgyKCs7DBwCBe3NPoO9+fxmQPpGOZPQEAAGo2mUVz3hnDs1dvlPUKOvdaxV2+XqQXWYUmuZnEi++9//5t//OMftG3bFh8fH/OTBtNF2LJlS+2irie2SmSFEOJajEY4fRoOHar8deyYim9ZKtP5iGkswp9M8302awezJuQBkm4ajV97DUf3LmLHd//C3VNDn5G3mlrEdu+JRqNBo8C4Nn7XiUAIIRqOOp0j+8477/Dxxx8zderU2sYnhBDNkqpCVlbVhPXwYZXCwiuDAm7kcSfLmc9nDGS7efQ1x7Ela/y78U5eBnvOb+H//n4/UweWANC5bx9ujltAx9790OpqPWtMCCEaFYvf7TQaDbGxsXURixBCNBkXL8Lhw39MWlUuXqyuRJWCo66Mib4JTDQupf/ZNdgbSsx7k4E3Wvuw6NxZypM3AeDo7My5jHTzMb7BofgGh9btkxJCiAbG4qkFr7/+OhkZGcyfP7+OQqpbMrVACGFNhYVw5EjVhDUjo/qaqhqNim+IqeNVcGQ5fR1/ZeDJL2m381scL14wH5cXHsmR3v2Z8MViUiu22dk70G3gEPqNiaP7wCE4ODn/aXyKqhKuv4SdRqFdu3Y2me8mhBCWqNOpBU899RRjxowhIiKC6Ohoc/mPy1auXGnpKYUQosErLYXjx6tOCUhOrn6EFaC1v57gKD3BbfQERekJjionIFxPi3NpBK1ZSXD8ctxSksz3ynV2YXebdjj84xVyYjqiKSrC84vFxABtXnqDHqPH4uzqZnHsWlSMRovX9QohRINncSL7t7/9ja1btzJo0CC8vLwqLfaqjQULFvDGG2+QmZlJTEwM8+fPp3///n96v127djFw4EA6dOjAgQMHbigGIYS4zGCApKSq81gTE1UMhj++35lut2htMCWsUeUVCaueoAg9Tq5Xkke7vFwC1q0h+JXltNrzs3l7mU7HJvcWvHfxPBuKCtElHuXjiEgcKlYQ78H0Rh1/y20YnP98BPaPVOC0XQuGhra+4fdrIYRoaCxOZJcsWcKKFSsYM2bMDT/4smXLePzxx1mwYAGxsbF88MEHjBo1iiNHjlQq1PxHubm5TJkyhSFDhnC2on+4EEJYQlUhLa1qwnr0qEpJSfWjrM5uRkLa/CFhjSrH3bP60U6lrAzfHVsIWr0Sv60b0ZaVAmBUFPa4e/C/vFyW6/XkXzwPQNuuPeg3Oo6rJ3zd8LItRaFc0ZoL4gshRFNi8Xtky5YtK3XiuBHz5s1j2rRpTJ8+HYD58+ezfv163n//febOnXvN+/3lL39h4sSJaLVavv32W6vEIoRourKzqyashw6p5OdXn7DaO6oERZZXjLKaktXgNnpaeptauF6XquL52z6CVy8nMGE1DjmXzLtyo9qSNvYO/pdzifcWvQ9AREwnxo0eS9+RY/EOCLzWWYUQQlTD4kR2zpw5vPDCCyxevNjc5rQ2ysrK2Lt3L7Nnz660ffjw4ezevfua91u8eDFJSUl8/vnnvPzyy7V+fCFE05OTc6VSwJWKASrnzlWfsGp1KgFhFclqxUhrcJSe1gEGKjqF1phL6imCvltJ0OqVuJ1ONm8/7+DA5wYDxpnPEPrgo6AoxKSnco+rG31HjcU/NPw6Z7UCVcXDWMqFCxdo2bKlTC8QQjQpFiey7777LklJSfj4+BAaGlplsde+fftqdJ7z589jMBjMPYcv8/HxISsrq9r7nDhxgtmzZ7Njxw5zn+E/U1paSmlpqfl2Xl5eje4nhGi4iorg6NGqI6zp6dUnrIqi4hN8ZR6raZRVj1+IHjv72sdhl3OJwHXfERy/HK/9e8zbi7Va4hWFxXo9m0tLMQDD0lOZUZFE+gQGc+fDj9f+gS2gAK0NhWRmFuLp6SmJrBCiSbE4kR03bpxVA/jjm6qqqtW+0RoMBiZOnMiLL75ImzZtanz+uXPn8uKLL95wnEKI+ldeDomJVRPWpCRQ1eoXXnn5Giolq8FR5QRG6HFwsk5MmrJSfLdvIWj1cny3bUZbXgaAUaNhm0bDYr2eVQYDhYCXrx9jRo0ldvQ4Ijp0sk4AtVCg2OPv5mizxxdCiLpicR1ZaykrK8PZ2ZlvvvmG2267zbz9scce48CBA2zfvr3S8Tk5OXh6eqK96vM+o9GIqqpotVo2bNjA4MGDqzxOdSOyQUFBUkdWiAbEaISUlKrzWI8fVykvr34E0d3TQHCbimkBkXqC25QTFKnHxb0O3tJUlZb7fyU4fgWB677DPjfHvCunXTRpt95B2i238cTMBzmbfpq+I28ldvRY2na96YbqtmqLiojrFglA/L6TtapaAEiLWiFEo1KndWStxd7enu7du7Nx48ZKiezGjRuJi4urcry7uzsHDx6stG3BggVs2bKF5cuXExYWVu3jODg4yGpdIRoIVYUzZ/5Yi9VUj7W4uPppAU4uxiqLroKj9Hh4Ges8XpdTyQSvXkHQdytxTTtt3p6p0fCZ0ciXOh2Pf/INbi08AXjq3Q9p4dVaWsQKIUQ9sem77axZs5g8eTI9evSgT58+fPjhh6SmpjJjxgwAnn32Wc6cOcOSJUvQaDR06NCh0v29vb1xdHSssl0IYXvnz1dfKSA3t/qE1c5eJTBSX2VaQCu/GlQKsCL7SxcITFhN8OoVtPztypz/QkVhuaryGbDVaMTe2YWeQ0dSUlRoTmS9fGTUUwgh6pNNE9kJEyZw4cIFXnrpJTIzM+nQoQMJCQmEhIQAkJmZSWpq6p+cRQhhS/n5V1cIuJKwnj1bfcKq0ar4h+qvSlZNCatPkAGtjd6RNKUl+G7dRPDq5fj+sAWNXg+AqtFwKCyCuUkniFdV9A6OdL95KLNGx9Ft4GAcHK008bYOKapKaPkljh3LpU2bNtKiVgjRpNhsjqytWDLvQghxRUkJHDtWNWE9ffraw6XegXrztIDgqHKC2ugJCKtcKcBa80AtZjTitfcXglcvJ2DdGuzzr1Q0SfULIOe+B0kbM46zisKCfzxJvzHjuGnQcJxcXesnPqxzbRRVJUp/EYDo6GhJZIUQDV6jmCMrhGiY9Ho4caLqKOuJEypGY/WVAlp6G0yjq5HlFfVY9QRG6HFyaXh/J7smnzTNe129ApeMdPP2VGAp8DmgDQ1jztSHAGgB/N//ltggUutQgVSdB4NCWknpLSFEk1OjRHbWrFk1PuG8efNqHYwQov4YjXD6dNV5rMeOqZSVVT8twNXDaJrD2ubKHNagSD1uLRpewno1hwvnCfz+W4JXr8Dz0G/m7XnAcuAzYDvQrntPYkfH0WfELTaKtA4oCmWKDienhj8NQgghLFWjRHb//v01Opn8tS9Ew6OqkJVVNWE9fFilsLD6hNXR2WgqaXXVoqvgKD0tWtfvwqsboSkpxm/LBoLjV+CzcysagwEAo1bL2X6DeDsznf8kHiOwYxdiR43lf6NupZVfgI2jrszg7MzKYxm2DkMIIRqsGiWyW7dures4hBBWcPFi9QuvLl6sPmHV2akEhF81hzVKT3AbPa39DTTKqZRGI61++dE073X999gVFph3/QqU/+0pLt09hVKvVvgcPcRbLq74BofaLNx6oaq4GUu5dOkSLVq0kAEHIUSTInNkhWiECgvhyJGqCWtGxjUqBWhUfIMNlZLV4Cg9vsF6dHbV3KWRcTuZSHD8cgK/W4lL1pURzFOY5rx+DuSFhPPXPv1p59UKgLD2zaNsnwL4GAo5c6YQDw8PSWSFEE1KrRLZX3/9lW+++YbU1FTKysoq7Vu5cqVVAhNCQGkpHD9edUpAcnL1CStAa/+KEdar5rEGhOuxb2J9QRzOZRP0/bcErV6B55ErzVJygG8wzXs95udP39FxTB8dR1h0x2abxBUqdvi4NLEXgBBCUItE9quvvmLKlCkMHz6cjRs3Mnz4cE6cOEFWVlalDl1CiJozGCApqeo81sREFYOh+koBLVoZKtVhDY7SExipx9m1YS+8uhHa4iL8Nq0jOH453rt/QGM0dfcy6nRkDRjMieGjufedN+g0ZAQjR8cxs0v3Zl9uSlUUMu3c6RUqzRqEEE2PxYnsv//9b95++20effRR3NzceOeddwgLC+Mvf/kLfn7yRinE9agqpKVVTViPHlUpKal+lNXZzVh5DmvFAiyPlnXforVBMBho/fMuglavwH/dGuxLis27fgTW+wXQY+U6yjy9AJgfd1ezHXkVQojmxuJENikpiTFjxgDg4OBAYWEhiqLwxBNPMHjwYF588UWrBylEY5SdXX2L1vz86hNWe0eVoIir2rO2MSWvLX0aT6UAa3I/fpTg1csJWvMtTmczzduTMM15Xe7kTKvhY4gdE0dpi5ZcvkSSxAohRPNhcSLbsmVL8vPzAQgICODQoUN07NiRnJwcioqKrB6gEA1dTs6VSgFXKgaonDtXfcKq1akEhFWMrLbRExRpSl69Aw1otfUdfcPieO4sfpvX47/iS1olnTBvz9PZsVRfzjJ7e8oHD6ffmNt4bsAg7B0cbRht46CoKsHlOSQm5hMZGdnsp1oIIZoWixPZ/v37s3HjRjp27Mj48eN57LHH2LJlCxs3bmTIkCF1EaMQDUJRERw9WnWENT29+oRVUVR8gg1XpgVEmkZZ/UIqt2ht7nQVfxgXA8NG9kNT0TXboNORNWgYaWPvZLu7O2fPn+PBm4fh5OJiw2gbJ3uMVRbmCiFEU6CoqmrRypCLFy9SUlKCv78/RqORN998k507dxIZGck///lPPD096ypWq7Ckf69onsrLITGx6rSApCQVVa3+Y2svX4N5wdXlSgGBEXocpJlStbRFRfht3YD3t98QsPsH7CqaFQDsBL5QFNyf/zc977nPdkE2FaqKM3r6B3nh7OwsUy+EEA2eJbmaxYlsYyeJrLjMaISUlKoJ6/HjKuXl1f+yd2thJLhNecUoq57gNqaRVhf3ZvXfqFY0pSX4/rCVwIRv8d22CV3xlUVbR4BlwM8dOhFy50R6Dx+DR0svm8Xa1GgUGNdGFuMKIRoHS3K1WtWRNRqNnDx5kuzsbIzGyiunBwwYUJtTClFnVBUyMqomrEeOqBQVVT8twMnFaJ4KEBR1JXH18GqeC69qSykrw/vHHfjFL8d/8zocS0vN+/KDQnj/bCY7gkMZcjKRh4BuS1ZicHa2XcBCCCEaFYsT2Z9++omJEydy+vRp/jiYqygKhqs+IhSivp0//8dFV6Z5rDk51SesdvYqgZH6KtMCWvlJwlpbil5Pq1924/fdSvzXr8H5qkWgZ7RaCqdMJ330OHI6dMInN4fp9g7EdYsEYI+tgm7KVBUXtcw8siFTC4QQTYnFieyMGTPo0aMH33//PX5+fvKmKGwiP/+PyaopYT179hotWrUq/qH6q5JVU8LqE2RAK42ab5zRiNe+XwlM+Baf71bhmp9n3pUFfA1s9vXH6fYJ3DbjMezsTavd3Fp4mlbRiTqjAH76AtLSCoiOjpb3bCFEk2Lxr/ATJ06wfPlyIiMj6yIeISopKYFjx6omrKdPX7tFq3eg/soc1qhygtroCQiTSgFWp6p4HjxAwJpVBK5fg/PZLPOu88AKYJ1XKzTj7qLvLbcxpV2MJFE2Uqzo8HKS/wBCiKbH4kS2V69enDx5UhJZYVV6PZw8WXUe64kTKkZj9S1aPVsbKiWrwVF6AiP0OLnIwqs6o6p4HDtMwPfx+MQvx/PcWfOuclc3MoaNYldkW5ZlnqHPLbdxb+dukrzamKoonLHz4KZwWewlhGh6LE5k//a3v/Hkk0+SlZVFx44dsbOzq7S/U6dOVgtOND1GI6SmVt+itays+lFWVw9jpQVXQVF6giPLcfOUhLW+uCWdIOD7b/H59hu8MtLN2wuA1cDp4WNo/+Z/Mdo74AhI0SwhhBD1weJE9o477gDggQceMG9TFAVVVWWxlzBTVcjKqpysHj4Mhw+rFBRUn7A6OldUCrhq0VVwlJ4WrWXhlS24pJ4iMGE1gQnxeCQeNW8vAb4HVjk6cmHYaHqMvZOOvWMx/uGPWiGEEKKuWZzIpqSk1EUcohG7dKnqCOuhQyoXL1afsOrsVALCr5rDGmUqc9Xa34B0z7Qtp4x0Atd+h/e33+Bz4ph5u1FnxwZFYRkqZ24eRrdxd3JLv5ulRWwjoKgqQfpcTp4sJDw8XFrUCiGaFIsT2ZCQkLqIQzQChYVw5EjVhDUj4xqVAjQqvsGGSslqcJQe32A9Ohm8azAczmUTsO47fOKX43foN/N2A3Cub3/OjI4jY+gojp9JY1hYJI5S57XRcVANlJTIp2VCiKanVoWHkpKSmD9/PkePHkVRFNq3b89jjz1GRESEteMTNlBWBsePV01Yk5OvXSmglb++yhzWgAg9MmDXMNlfuoD/hrX4fvsNvgf2oKmoCW0EdgBfazQc69mXe99cYO6wFd6iYbefFtVTgTM6N2IDvWThnRCiybE4kV2/fj1jx46lS5cuxMbGoqoqu3fvJiYmhu+++45hw4bVRZyiDhgMkJxcdVpAYqKKXl99pQAPL8NVCatpDmtgpB4XN1l41dDZ5eXit2kdgWtX4737BzRXzWf/EVOt19+79iBq3Hh6Dx/FEE9pEdskKArFij2urq62jkQIIaxOUf/YnutPdO3alREjRvDqq69W2j579mw2bNjAvn37rBqgtVnSv7epUFVIS6u86Opyi9aSkupHaJzdjJXnsFaMtHq0NFZ7vLg2bVGRuXNV/L6T9dqCVVtYiN/WDfitXoHvru3YXZW85kR3YH+XHry8fw+ht42n78hb8fT2qbfYRP3RKDCujZTfEkI0DpbkahaPyB49epSvv/66yvYHHniA+fPnW3o6YWXZ2VVHWA8fVsnLq35agL2jSlDEVe1Z25iS15Y+UimgsdKUFOP7w1b8vluB37ZN2JeXm/cdBn6N6Yj/mwsoCDNNBXrURnGKeqKqOKvl5Ofn4+rqKtMLhBBNisWJbOvWrTlw4ABRUVGVth84cABvb2+rBSauLze3+hat585Vn7BqdSr+Yfoq0wK8Aw1otfUevrAypawMn13bCVy7Gr9N67ArKjTvOwEsA7YFBtP69gnEjo6jIDTcZrGK+qUA/vp8Tp/Olxa1Qogmx+JE9sEHH+Shhx4iOTmZvn37oigKO3fu5LXXXuPJJ5+sixibteJiOHq0asKallZ9wqooKj5BhkrJanCUHr9QadHa1Ch6Pa1/3oX/mlX4b1yLY0G+eV+6VsuXBgMbfXxxi7uLfmPG8XCbdpLENFMlihZPR3kDEEI0PRYnsv/85z9xc3Pjrbfe4tlnnwXA39+fOXPmMHPmTKsH2FyUl8OJE1WnBZw8qaKq1S+8auljMDcNuDyPNTBCj6OzLLxqsoxGWu35Gf/vv8UvIR6X/DzzruJWrTkzaizpo8ayOS8XN69W/KVDZ0lemzlVUUi3a0GPCJkjK4RoeixOZBVF4YknnuCJJ54gP980AuTm5mb1wJoqoxFSUqpOCzh2TKW8vPpRVrcWRoLblBMcqSeoYg5rUKQeVw9JWJsFVcXzt30EJsTj+91K3C5dNO86DywH1ri7M2zhFwS1jwGgq20iFUIIIepVrerIXiYJ7J/bswe2b7+SsB45olJUdO0WrcEVC66unhbg4SULr5odVcXj6CECE+IJXPsdLmfSzLtygJVAvLMzJSNvpfctt3Ffz75odTf031kIIYRodGr0m69bt25s3rwZT09Punbtet2PKht6+a36tnQpVC7moGBnrxIYUbW0VSs/adHa3LmdTCQw4Vt8v12OZ0a6ebve2ZmTN/XlHz/uIGfoSHreejsTYwdiZy/zHsX1KapKgD6P5ORiQkNDpUWtEKJJqVEiGxcXh4ODg/l7mXNXcwMGwG8nyvAOK61IWsvxDTaglcEzUcHldAqBa1fj++03eJ1KNm8vBn7y9cNp9oucHTgYg5Mzd5aWYC/t0oSFnFQ9RUV6W4chhBBWZ3FDhMbOFg0RfjpziYyCknp5LNHwVNcQwelMOoHrVhOQsJqWh383H1sGrMfUIvZ0nwHcdOfdxI4aa5vARdOgqrhRTi9/T9zc3GQgQgjR4NVpQ4Tw8HB+/fVXvLwqt6/MycmhW7duJCcnX+OeQojwLz/Fd/0aWv++37xND2wGvlEUjvboReexdzB02GjcWnjaLE7RhCgKhYp9s+lkKIRoXixOZE+dOoXhqjaXl5WWlpKenl7NPYRovuzycglcs4pyTP/ZOr7xL8BUEul8j96kj4ljpaKQWV5OnxG3MLq1NBURQgghaqrGiezq1avN369fvx4PDw/zbYPBwObNmwkLC7NudEI0QprSEny3b8H/26/x+2ELdvorcxN3Y+qy5fPKPNrdPgEwlcqSclmizqgqTqqegoICXFxcZGqBEKJJqXEiO27cOMBUR/a+++6rtM/Ozo7Q0FDeeustqwYnRKNhMND61x8JWrMK//XfY39Vo4LDwFJgL9D6kVn0ibsDvxD5o0/UDwUI0Odx6lSetKgVQjQ5NU5kjUYjAGFhYfz666+0atWqzoISolG4XOs1fjm+8cvxyLlk3lXQypsF57PZ4OdPy9HjeH7RAv4NxE9/BIOzs+1iFs1SqaLF3V5KpQghmh6L39lSUlLqIg4hGg3n9FQCVq/Ad/kXtM44Y96ep9Nx4bbxpN1yO+dv6o1jShIPh0eiKy6mw6IFNoxYNGeqopBm14JxUdKiVgjR9NQokX333Xd56KGHcHR05N13373usTNnzrQogAULFvDGG2+QmZlJTEwM8+fPp3///tUeu3LlSt5//30OHDhAaWkpMTExzJkzhxEjRlj0mEJYyv7iBQLXfUerr5YQmHjMvL0EWAN86+ZO0bjxTPq/F80f3QZGRNkmWCGEEKKZqFEi+/bbbzNp0iQcHR15++23r3mcoigWJbLLli3j8ccfZ8GCBcTGxvLBBx8watQojhw5QnBwcJXjf/jhB4YNG8a///1vWrRoweLFi7n11lv5+eef6dpVlssI69IWFeG3eR3Ba1bhvWs7mopFW0ZgC7DCyZmMEWPoNu4u4m7qg1artWm8QgghRHNj04YIvXr1olu3brz//vvmbe3bt2fcuHHMnTu3RueIiYlhwoQJPP/88zU6XhoiiOtR9Hq8d/+A1xefELpzO476cvO+S9Ed2RoazlK9nnZ33E2nPv1r1CK2uoYIQtQXRVUJMOTT2tmekJAQaVErhGjw6rQhgrWUlZWxd+9eZs+eXWn78OHD2b17d43OYTQayc/Pp2XLlnURomguVBXP3/bh9cUnhGxci0dxkXlXEnC0/yDsn51DQbhpqsAkG4UpRG05q+UUFpb/+YFCCNHI1CiRnTVrVo1POG/evBodd/78eQwGAz4+PpW2+/j4kJWVVaNzvPXWWxQWFjJ+/PhrHlNaWkppaan5dl5e3jWPFc2La/IJgr9bhe+qZbTIyjRvzwa+0WjY27UHHndPocfgETi5uNguUCFugApkaV3p4ddCSm8JIZqcGiWy+/fvr3R77969GAwG2rZtC0BiYiJarZbu3btbHMAf31hVVa3Rm+2XX37JnDlziI+Px9v72t2Q5s6dy4svvmhxXKJpcjybhdc3SwlduxqfpBPm7QVAvKKwu30M2rvvo8eIMdzi0cJmcQphNYpCgcaBFi1a2DoSIYSwuholslu3bjV/P2/ePNzc3Pj000/x9DT1gr906RL333//NasNVKdVq1Zotdoqo6/Z2dlVRmn/aNmyZUybNo1vvvmGoUOHXvfYZ599ttKIcl5eHkFBQTWOUzR+uvw8vOKX4/XFJ0Qln+TykiyjVkt2v5tJveU21ujsCOvZhyFeUh9ZCCGEaCwsniP71ltvsWHDBnMSC+Dp6cnLL7/M8OHDefLJJ2t0Hnt7e7p3787GjRu57bbbzNs3btxIXFzcNe/35Zdf8sADD/Dll18yZsyYP30cBwcHHBwcahSTaDo0ZaV4bkjA/dOFRB/6HQfVaN63C9gYEETnz1ei+gUA0MU2YQpR91QVB9VAUVERTk5OMr1ACNGkWJzI5uXlcfbsWWJiYiptz87OJj8/36JzzZo1i8mTJ9OjRw/69OnDhx9+SGpqKjNmzABMo6lnzpxhyZIlgCmJnTJlCu+88w69e/c2j+Y6OTnh4eFh6VMRTY3RSKs9PxP03UoC1q/BPi/XvOsI8H2r1mSMvZOoe6bQKSiE+irXYXB2ZuWxjHp6NCEqU4AgfS7JybnSolYI0eRYnMjedttt3H///bz11lv07t0bgJ9++omnn36a22+/3aJzTZgwgQsXLvDSSy+RmZlJhw4dSEhIICQkBIDMzExSU1PNx3/wwQfo9XoeffRRHn30UfP2++67j08++cTSpyLqSL2Wm1JVXA79htOH/6Xdjq14lxSbd+W4e/AVkDziFgKmTCciqi0RdReJEA1WORqc7aTOsRCi6bG4jmxRURFPPfUUH3/8MeXlpnIuOp2OadOm8cYbb+DSwFd3Sx3ZulcfiaxD6ikc/vcOEZvWEXbVyGuhgwPnbrmNtFtvJ6tbTzR2djICJZo9jQLj2kiLWiFE41CndWSdnZ3NbWWTkpJQVZXIyMgGn8CKxs/+0kVarvgK908/pMO5bPP2UmCDvQO/9+mHyyNPENy5GwAy/iSEEEI0bbVuiODi4kKnTp2sGYsQVWiKimjx3QrabtuEz46tldrE7tDp2Nu1B+X3P0z4wMG0lxaxQgghRLNicSJbWFjIq6++yubNm8nOzsZoNFban5ycbLXgRPOk6PWw/EtafrGY7ieO43rV7Jec6A5sDAgmZdgoQkeNJdTOzoaRCtHwKaqKrz6f06fLCAoKkha1QogmxeJEdvr06Wzfvp3Jkyfj5+cn8w+Fdagq+vVrcFv8Ad0P/Ya3wWDelaIo5Nz7AOfvnkJ+RBRaINJ2kQrR6Liq5eTnS4taIUTTY3Eiu3btWr7//ntiY2PrIh7RzLimJBG0ZhUtPluE31WLts4B2wODybxtPF5T/4KjzMEWolZUIFvrQhcfDxl4EEI0ORYnsp6enrRs2bIuYhHNRMmxI2jee4tBp1LwOXHMvL0Q2N7ah9TRY3GdMRNnTy8CbBemEE2DopCncZT3bSFEk2RxIvuvf/2L559/nk8//RTnuqwPKpqUkvRUyt6bR5vNG+iVl1O5TWzsQE6NGsvJnn1wDgjC26aRCiGEEKKxqFWL2qSkJHx8fAgNDcXuD4tt9u3bZ7XgRONWBmS/+TIhGxMYdS4bp6v27Xd2IWnYKJyeeZ5Sr1YAyJ9FQtQBVcVeNVBSUoKDg4NMLxBCNCkWJ7Ljxo2rgzBEU2E0GGh9YC8AdsCDX3xi3pdkb8+Bm3pT+pfHcOzZBw2mGrBCiLqjAMH6XE6elBa1Qoimx+JE9oUXXqiLOEQjVl5Wyqn45Xh9toghKUmEVXR8U4BLzi7satOOggdmYD9sNIqi4GjbcIVodgwo2Gul7JYQoumpdUOEvXv3cvToURRFITo6mq5du1ozLtHA6cvLOb5tMw6f/I9eB/Yy4apyWWUOjtiXmlry/rB9HwY3N+xtFagQzZyqKKTYt5QWtUKIJsniRDY7O5u7776bbdu20aJFC1RVJTc3l0GDBvHVV1/RunXruohTNBRGI1nvvkGLj99nVlkZl4tiGYGDfv6k33EPxgmTubV/F9MO6bYlhBBCiDpicSL7t7/9jby8PA4fPkz79u0BOHLkCPfddx8zZ87kyy+/tHqQwnZUVeXE7/sJzM+jx56fCV69HOeMM+b96W7unBh5C0V/eYzSwCAAtEVFtgpXCCGEEM2IxYnsunXr2LRpkzmJBYiOjua9995j+PDhVg1O2Iaqqpw6dpj9q77Bd/Vybs+5RN+r9pe5ufNb957kTX+U3O49QRaPCNFgKaqKj6GAtDQ9AQEB0qJWCNGkWJzIGo3GKiW3AOzs7DAajVYJSthGevIJfvxuFbqVX3HL2SweBfPCLIOicG7AYE6Pu4vMwcMxOsiSLSEaCzdjGbm5ZQQESIsRIUTTYnEiO3jwYB577DG+/PJL/P39AThz5gxPPPEEQ4YMsXqAon64HT+C9p445hUVcvWSkAy/AM7ePZmM2++mtLW0KhCisVGBc1pnOrZ2l9JbQogmx+JE9r///S9xcXGEhoYSFBSEoiikpqbSsWNHPv/887qIUVjZhbOZ/LhuDae2rOetm4cR9t0KWhw5xLCK/QUuLqSNvYOMuyaR276DTB0QojFTFHI1TrRq1crWkQghhNVZnMgGBQWxb98+Nm7cyLFjx1BVlejoaIYOHVoX8Qkryb14gR/Xr+HXNd8SvvdnpgCjAbufdwNgtLMj8+ZhpN52F1n9B6NWM31ECCGEEKIhqXUd2WHDhjFs2LA/P1DY1MmDv/HF23Nx+Gknk41G5gJeV+0/174DZ+68h/TRcZR5trRVmEKIuqKq6DBSVlaGnZ2dTC8QQjQpNV6+umXLFqKjo8nLy6uyLzc3l5iYGHbs2GHV4ITlSoqKuHg2CwDHs5n0jv+GL3b/wM9GI3/FlMQWerXm+PRH2LhmGztWbSB50v2SxArRRClAaHkOiYmJqKpq63CEEMKqajwiO3/+fB588EHc3d2r7PPw8OAvf/kL8+bNo3///lYNUPy5stIS9v+wlV1r4zm8ZQNPxnTmVkdHvH/cgVJRSUJvb0/G8DGkjruL7D79pVGBEM2IEdDKSKwQoglS1Br+iR4SEsK6desq1Y+92rFjxxg+fDipqalWDdDa8vLy8PDwIDc3t9qkvC78dOYSGQUlVj2nvryc33/cwa7v4/ll01q6FRZwHzAeuPpZne/ek9Rxd5E+8lb0bvXzfIUQDYtGQVrUCiEaDUtytRqPyJ49e7ba+rHmE+l0nDt3ruZRihvywn13UrLvV6YAHwERV+0rDAgiNe5OUsfdRWFwqG0CFEIIIYSoYzVOZAMCAjh48CCRkZHV7v/999/x85O/+K1NVVUSD+xl97o1THz8GVwMRgLWf8eKrEyirzqu3NmFMyNvIXXceM736AXSvUcIIYQQTVyNE9nRo0fz/PPPM2rUKBwdK3d1Ki4u5oUXXuCWW26xeoDNkaqqpBw5yK61q9mVsJoLGekMBtoe+o1Oh39DV2KapqAqCtl9+pE6bjwZQ0dhcHa2beBCiAZHUVVaGwo5c+YMfn5+0qJWCNGk1HiO7NmzZ+nWrRtarZa//vWvtG3bFkVROHr0KO+99x4Gg4F9+/bh4+NT1zHfkHqfI1tYCK6uAMTvO3ndZPNS9lnWffUpu75fTebpZNoC9wGTFYXAq35M+WERnB43nrSxt1PsJy0nhRDXpqgqUfqLAERHR0siK4Ro8OpkjqyPjw+7d+/m4Ycf5tlnnzWXcVEUhREjRrBgwYIGn8Q2ROVlpdjZOwBQUlzE5gXzuRuYqij0vJy8qiplHi1IHx3H6XF3calTV+m2JYSoERW4oHWivZebrUMRQgirs6ghQkhICAkJCVy6dImTJ0+iqipRUVF4enrWVXxN0oWsDHat/Y5dCfG09PFl9tsf4LNzGz2//YaHNBrsjEZQVYxaLWf7D+L0uPFkDR6GsSLhFUKIGlMULmmc8fb2tnUkQghhdbXq7OXp6clNN91k7ViatGwg4evP2bFpLUf3/AxAJ2DiES2jBnbD8eIF87E57aJJHTeetFtuo7RVa9sELIQQQgjRwNW6Ra2ouVnAO4Dx1Tl4A48Df3Fypl1xERgMcPECJV6tSLvldlJvu4vcdjE2jVcI0YSoKhpU9Ho9Wq1WWtQKIZoUSWTrQRhwG/CIqxsDCwvQqioUF2Gwsydz8HBSx93F2X43o16nTq8QQtSGAoSXX+LYsUtER0dLIiuEaFIkka1r8+bxKPA3gIJ8AC527sbpcXeRPmos5S1kfrEQQgghRG1IIlvXFIXLxW4S75/BqbvuoSA8yqYhCSGaD1VROGnvJS1qhRBNkhQUrGsTJ5q/Pfq3pySJFUIIIYSwEklk65rU1hVCCCGEqBOSyAohhBBCiEZJElkhhBBCCNEoSSIrhBBCCCEaJUlkhRBCCCFEoyTlt+qaiwt7Mi6Rmlds60iEEM2UVpogCCGaKElk60Fnb3fCWzjbOgwhRDPlqNPaOgQhhKgTNk9kFyxYwBtvvEFmZiYxMTHMnz+f/v37X/P47du3M2vWLA4fPoy/vz/PPPMMM2bMqMeILWen1dDSyd7WYQghhBBCNCk2nSO7bNkyHn/8cZ577jn2799P//79GTVqFKmpqdUen5KSwujRo+nfvz/79+/n//7v/5g5cyYrVqyo58iFEEIIIYStKaqqqrZ68F69etGtWzfef/9987b27dszbtw45s6dW+X4v//976xevZqjR4+at82YMYPffvuNH3/8sUaPmZeXh4eHB7m5ubi7u9/4kxBCCCGEEFZjSa5msxHZsrIy9u7dy/DhwyttHz58OLt37672Pj/++GOV40eMGMGePXsoLy+v9j6lpaXk5eVV+hJCCCGEEI2fzRLZ8+fPYzAY8PlDC1cfHx+ysrKqvU9WVla1x+v1es6fP1/tfebOnYuHh4f5KygoyDpPQAghhBBC2JTN68gqfygLo6pqlW1/dnx12y979tlnyc3NNX+lpaXdYMRCCCGEEKIhsFnVglatWqHVaquMvmZnZ1cZdb3M19e32uN1Oh1eXl7V3sfBwQEHBwfrBC2EEEIIIRoMm43I2tvb0717dzZu3Fhp+8aNG+nbt2+19+nTp0+V4zds2ECPHj2ws7Ors1iFEEIIIUTDY9OpBbNmzeKjjz7i448/5ujRozzxxBOkpqaa68I+++yzTJkyxXz8jBkzOH36NLNmzeLo0aN8/PHHLFq0iKeeespWT0EIIYQQQtiITRsiTJgwgQsXLvDSSy+RmZlJhw4dSEhIICQkBIDMzMxKNWXDwsJISEjgiSee4L333sPf3593332XO+64o8aPeXlOrVQvEEIIIYRoeC7naDWpEGvTOrK2kJ6eLpULhBBCCCEauLS0NAIDA697TLNLZI1GIxkZGbi5uV23OkJTkZeXR1BQEGlpadIA4jrkOtWcXKuak2tVM3Kdak6uVc3Jtaq5hnatVFUlPz8ff39/NJrrz4K16dQCW9BoNH+a3TdF7u7uDeLF2dDJdao5uVY1J9eqZuQ61Zxcq5qTa1VzDelaeXh41Og4m9eRFUIIIYQQojYkkRVCCCGEEI2SJLJNnIODAy+88II0hfgTcp1qTq5Vzcm1qhm5TjUn16rm5FrVXGO+Vs1usZcQQgghhGgaZERWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJItsELFiwgLCwMBwdHenevTs7duy45rGZmZlMnDiRtm3botFoePzxx+svUBuz5DqtXLmSYcOG0bp1a9zd3enTpw/r16+vx2hty5JrtXPnTmJjY/Hy8sLJyYl27drx9ttv12O0tmXJtbrarl270Ol0dOnSpW4DbCAsuU7btm1DUZQqX8eOHavHiG3H0tdUaWkpzz33HCEhITg4OBAREcHHH39cT9HaliXXaurUqdW+rmJiYuoxYtuw9DW1dOlSOnfujLOzM35+ftx///1cuHChnqK1kCoata+++kq1s7NTFy5cqB45ckR97LHHVBcXF/X06dPVHp+SkqLOnDlT/fTTT9UuXbqojz32WP0GbCOWXqfHHntMfe2119RffvlFTUxMVJ999lnVzs5O3bdvXz1HXv8svVb79u1Tv/jiC/XQoUNqSkqK+tlnn6nOzs7qBx98UM+R1z9Lr9VlOTk5anh4uDp8+HC1c+fO9ROsDVl6nbZu3aoC6vHjx9XMzEzzl16vr+fI619tXlNjx45Ve/XqpW7cuFFNSUlRf/75Z3XXrl31GLVtWHqtcnJyKr2e0tLS1JYtW6ovvPBC/QZezyy9Tjt27FA1Go36zjvvqMnJyeqOHTvUmJgYddy4cfUcec1IItvI9ezZU50xY0albe3atVNnz579p/cdOHBgs0lkb+Q6XRYdHa2++OKL1g6twbHGtbrtttvUe++919qhNTi1vVYTJkxQ//GPf6gvvPBCs0hkLb1OlxPZS5cu1UN0DYul12rt2rWqh4eHeuHChfoIr0G50feqVatWqYqiqKdOnaqL8BoMS6/TG2+8oYaHh1fa9u6776qBgYF1FuONkKkFjVhZWRl79+5l+PDhlbYPHz6c3bt32yiqhsca18loNJKfn0/Lli3rIsQGwxrXav/+/ezevZuBAwfWRYgNRm2v1eLFi0lKSuKFF16o6xAbhBt5TXXt2hU/Pz+GDBnC1q1b6zLMBqE212r16tX06NGD119/nYCAANq0acNTTz1FcXFxfYRsM9Z4r1q0aBFDhw4lJCSkLkJsEGpznfr27Ut6ejoJCQmoqsrZs2dZvnw5Y8aMqY+QLaazdQCi9s6fP4/BYMDHx6fSdh8fH7KysmwUVcNjjev01ltvUVhYyPjx4+sixAbjRq5VYGAg586dQ6/XM2fOHKZPn16Xodpcba7ViRMnmD17Njt27ECnax5vv7W5Tn5+fnz44Yd0796d0tJSPvvsM4YMGcK2bdsYMGBAfYRtE7W5VsnJyezcuRNHR0dWrVrF+fPneeSRR7h48WKTnid7o+/rmZmZrF27li+++KKuQmwQanOd+vbty9KlS5kwYQIlJSXo9XrGjh3Lf/7zn/oI2WLN4520iVMUpdJtVVWrbBO1v05ffvklc+bMIT4+Hm9v77oKr0GpzbXasWMHBQUF/PTTT8yePZvIyEjuueeeugyzQajptTIYDEycOJEXX3yRNm3a1Fd4DYYlr6m2bdvStm1b8+0+ffqQlpbGm2++2aQT2cssuVZGoxFFUVi6dCkeHh4AzJs3jzvvvJP33nsPJyenOo/Xlmr7vv7JJ5/QokULxo0bV0eRNSyWXKcjR44wc+ZMnn/+eUaMGEFmZiZPP/00M2bMYNGiRfURrkUkkW3EWrVqhVarrfJXVXZ2dpW/vpqzG7lOy5YtY9q0aXzzzTcMHTq0LsNsEG7kWoWFhQHQsWNHzp49y5w5c5p0ImvptcrPz2fPnj3s37+fv/71r4ApCVFVFZ1Ox4YNGxg8eHC9xF6frPU+1bt3bz7//HNrh9eg1OZa+fn5ERAQYE5iAdq3b4+qqqSnpxMVFVWnMdvKjbyuVFXl448/ZvLkydjb29dlmDZXm+s0d+5cYmNjefrppwHo1KkTLi4u9O/fn5dffhk/P786j9sSMke2EbO3t6d79+5s3Lix0vaNGzfSt29fG0XV8NT2On355ZdMnTqVL774osHODbI2a72mVFWltLTU2uE1KJZeK3d3dw4ePMiBAwfMXzNmzKBt27YcOHCAXr161Vfo9cpar6n9+/c3uF+g1labaxUbG0tGRgYFBQXmbYmJiWg0GgIDA+s0Xlu6kdfV9u3bOXnyJNOmTavLEBuE2lynoqIiNJrK6aFWqwVM7+0Nji1WmAnruVxWY9GiReqRI0fUxx9/XHVxcTGvwpw9e7Y6efLkSvfZv3+/un//frV79+7qxIkT1f3796uHDx+2Rfj1xtLr9MUXX6g6nU597733KpVrycnJsdVTqDeWXqv//ve/6urVq9XExEQ1MTFR/fjjj1V3d3f1ueees9VTqDe1+f93teZStcDS6/T222+rq1atUhMTE9VDhw6ps2fPVgF1xYoVtnoK9cbSa5Wfn68GBgaqd955p3r48GF1+/btalRUlDp9+nRbPYV6U9v/f/fee6/aq1ev+g7XZiy9TosXL1Z1Op26YMECNSkpSd25c6fao0cPtWfPnrZ6CtcliWwT8N5776khISGqvb292q1bN3X79u3mfffdd586cODASscDVb5CQkLqN2gbsOQ6DRw4sNrrdN9999V/4DZgybV699131ZiYGNXZ2Vl1d3dXu3btqi5YsEA1GAw2iLz+Wfr/72rNJZFVVcuu02uvvaZGRESojo6Oqqenp9qvXz/1+++/t0HUtmHpa+ro0aPq0KFDVScnJzUwMFCdNWuWWlRUVM9R24al1yonJ0d1cnJSP/zww3qO1LYsvU7vvvuuGh0drTo5Oal+fn7qpEmT1PT09HqOumYUVW2I48RCCCGEEEJcn8yRFUIIIYQQjZIkskIIIYQQolGSRFYIIYQQQjRKksgKIYQQQohGSRJZIYQQQgjRKEkiK4QQQgghGiVJZIUQQgghRKMkiawQQgghhGiUJJEVQohGYM6cOXTp0sV8e+rUqYwbN+6GzmmNcwghhC1JIiuEEDdg6tSpKIqCoijY2dkRHh7OU089RWFhYZ0+7jvvvMMnn3xSo2NPnTqFoigcOHCg1ucQQoiGSGfrAIQQorEbOXIkixcvpry8nB07djB9+nQKCwt5//33Kx1XXl6OnZ2dVR7Tw8OjQZxDCCFsSUZkhRDiBjk4OODr60tQUBATJ05k0qRJfPvtt+bpAB9//DHh4eE4ODigqiq5ubk89NBDeHt74+7uzuDBg/ntt98qnfPVV1/Fx8cHNzc3pk2bRklJSaX9f5wWYDQaee2114iMjMTBwYHg4GBeeeUVAMLCwgDo2rUriqJw8803V3uO0tJSZs6cibe3N46OjvTr149ff/3VvH/btm0oisLmzZvp0aMHzs7O9O3bl+PHj1vxagohRM1JIiuEEFbm5OREeXk5ACdPnuTrr79mxYoV5o/2x4wZQ1ZWFgkJCezdu5du3boxZMgQLl68CMDXX3/NCy+8wCuvvMKePXvw8/NjwYIF133MZ599ltdee41//vOfHDlyhC+++AIfHx8AfvnlFwA2bdpEZmYmK1eurPYczzzzDCtWrODTTz9l3759REZGMmLECHNclz333HO89dZb7NmzB51OxwMPPFDrayWEEDdEFUIIUWv33XefGhcXZ779888/q15eXur48ePVF154QbWzs1Ozs7PN+zdv3qy6u7urJSUllc4TERGhfvDBB6qqqmqfPn3UGTNmVNrfq1cvtXPnztU+bl5enurg4KAuXLiw2hhTUlJUQN2/f/81Yy8oKFDt7OzUpUuXmveXlZWp/v7+6uuvv66qqqpu3bpVBdRNmzaZj/n+++9VQC0uLr72RRJCiDoiI7JCCHGD1qxZg6urK46OjvTp04cBAwbwn//8B4CQkBBat25tPnbv3r0UFBTg5eWFq6ur+SslJYWkpCQAjh49Sp8+fSo9xh9vX+3o0aOUlpYyZMiQWj+HpKQkysvLiY2NNW+zs7OjZ8+eHD16tNKxnTp1Mn/v5+cHQHZ2dq0fWwghaksWewkhxA0aNGgQ77//PnZ2dvj7+1da0OXi4lLpWKPRiJ+fH9u2batynhYtWtTq8Z2cnGp1v6upqgqAoihVtv9x29XP7/I+o9F4wzEIIYSlZERWCCFukIuLC5GRkYSEhPxpVYJu3bqRlZWFTqcjMjKy0lerVq0AaN++PT/99FOl+/3x9tWioqJwcnJi8+bN1e63t7cHwGAwXPMckZGR2Nvbs3PnTvO28vJy9uzZQ/v27a/7nIQQwlZkRFYIIerR0KFD6dOnD+PGjeO1116jbdu2ZGRkkJCQwLhx4+jRowePPfYY9913Hz169KBfv34sXbqUw4cPEx4eXu05HR0d+fvf/84zzzyDvb09sbGxnDt3jsOHDzNt2jS8vb1xcnJi3bp1BAYG4ujoWKX0louLCw8//DBPP/00LVu2JDg4mNdff52ioiKmTZtWH5dGCCEsJomsEELUI0VRSEhI4LnnnuOBBx7g3Llz+Pr6MmDAAHOVgQkTJpCUlMTf//53SkpKuOOOO3j44YdZv379Nc/7z3/+E51Ox/PPP09GRgZ+fn7MmDEDAJ1Ox7vvvstLL73E888/T//+/aud2vDqq69iNBqZPHky+fn59OjRg/Xr1+Pp6Vkn10IIIW6Uol6eGCWEEEIIIUQjInNkhRBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJIiuEEEIIIRolSWSFEEIIIUSjJImsEEIIIYRolCSRFUIIIYQQjZIkskIIIYQQolH6f8IOvRU1lh4HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -621,7 +725,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy9klEQVR4nO3deVyU1f4H8M+wDaACCQooiLjjrpCKRtZNMW2zzKzULJciLBUqc6lMK8mumVdzuZnGtUytrG4LN+FaGi7lFSEXcElQXCAEFVQUBM7vj/ObgWGGZWBWns/79ZoX8MyZZ74PDl+f73POc45KCCFARERERERERI3iYO0AiIiIiIiIiJoCFthEREREREREJsACm4iIiIiIiMgEWGATERERERERmQALbCIiIiIiIiITYIFNREREREREZAIssImIiIiIiIhMgAU2ERERERERkQk4WTsAW1RRUYELFy6gRYsWUKlU1g6HiKxMCIGrV6+iTZs2cHBQxnVJ5kEiqop5kHmQSOnqmwdZYBtw4cIFBAYGWjsMIrIxZ8+eRUBAgLXDsAjmQSIyhHmQiJSurjzIAtuAFi1aAJC/PA8PDytHQ0TWVlRUhMDAQG1uUALmQSKqinmQeZBI6eqbB1lgG6AZBuTh4cGESkRaShoiyDxIRIYwDxKR0tWVB5VxEw0RERERERGRmbHAJiIiIiIiIjIBFthEREREREREJsB7sBuhvLwct27dsnYYpEAuLi6KWSaFbBvzIFkL8yDZCuZBsgZnZ2c4OjpaOwwygAV2AwghkJubiytXrlg7FFIoBwcHBAcHw8XFxdqhkEIxD5K1MQ+StTEPkrV5eXnBz89PUZMP2gMW2A2gSaatW7eGu7s7P9RkURUVFbhw4QJycnLQrl07fv7IKpgHyZqYB8kWMA+StQghUFxcjLy8PACAv7+/lSOiqlhgG6m8vFybTL29va0dDilUq1atcOHCBZSVlcHZ2dna4ZDCMA+SLWAeJGtiHiRrc3NzAwDk5eWhdevWHC5uQ6x+89Lq1asRHBwMV1dXhIaGIjk5udb2u3btQmhoKFxdXdGhQwesXbtW5/m77roLKpVK73HfffeZJF7NPTbu7u4m2R9RQ2iGRJaXl1s5ElIi5kGyBcyDZE3Mg2QLNJ8/zgFgW6xaYG/duhWzZs3C/PnzkZqaioiICIwcORLZ2dkG22dlZWHUqFGIiIhAamoq5s2bhxkzZmDbtm3aNl9//TVycnK0jyNHjsDR0RFjx441aewcBkTWxM9fI331FbBkCXDokLUjsWv8HJI18fPXSKtXyzyYm2vtSOwaP4dkTfz8NcKNGzIHLlkCVFSYdNdWHSK+bNkyTJkyBVOnTgUALF++HNu3b8eaNWsQFxen137t2rVo164dli9fDgAICQnBgQMHsHTpUowZMwYA0LJlS53XbNmyBe7u7iYvsInIjsXHAz/+CLRuDfTube1oiIgsLy4OOHcOGD4c8POzdjRERJZVXAzMmSO/f/llk+7aaj3YpaWlSElJQWRkpM72yMhI7N271+Br9u3bp9d+xIgROHDgQI1DI9avX4/HH38czZo1qzGWkpISFBUV6TxIXhX79ttvrb4PSzp9+jRUKhXS0tJscn9EZFnMg7a3PyKyLOZB29sf2TarFdj5+fkoLy+Hr6+vznZfX1/k1jBcKTc312D7srIy5Ofn67Xfv38/jhw5ou0hr0lcXBw8PT21j8DAQCOPxj48/fTTBu9P//PPPw22z8nJwciRI+u17zfffBN9+/Zt1D6aosDAQOTk5KBnz54AgJ07d0KlUnFJDyIrYR60POZBItvCPGh5zIPKYvVJzqrfOyCEqPV+AkPtDW0HZO91z549MWDAgFpjmDt3LgoLC7WPs2fP1jd8u3Pvvffq3KOek5OD4OBgnTalpaUAAD8/P6jV6ka9nyn2Yc8cHR3h5+cHJydO2E9kK5gHLYt5kMj2MA9aFvOgslitwPbx8YGjo6Neb3VeXp5eL7WGn5+fwfZOTk56SyQUFxdjy5YtdfZeA4BarYaHh4fOo6lSq9Xw8/PTedxzzz144YUXEBsbCx8fHwwfPhyA/nCec+fO4fHHH0fLli3RrFkzhIWF4ffff0d8fDwWLlyIP/74Q3sVND4+3uA+Dh8+jL/97W9wc3ODt7c3nn32WVy7dk37/NNPP43Ro0dj6dKl8Pf3h7e3N6ZPn16v2RHnzp2LQYMG6W3v3bs3FixYoP35k08+QUhICFxdXdGtWzesXr261v3u2rULAwYMgFqthr+/P+bMmYOysjLt8xUVFViyZAk6deoEtVqNdu3a4Z133gGgOyTo9OnTuPvuuwEAt912G1QqFZ5++mls3LgR3t7eKCkp0XnfMWPG4KmnnqrzuMn+mXo1BUDOadG1a1e4ubkhMDAQMTExuHnzprkOwa4wDzIPku1hHrQs5kHmQTIjYUUDBgwQzz//vM62kJAQMWfOHIPtZ8+eLUJCQnS2RUVFiUGDBum1/eSTT4RarRb5+flGx1VYWCgAiMLCQr3nbty4IdLT08WNGzcqN1ZUCHHtmnUeFRX1Pq5JkyaJhx56SG/70KFDRfPmzcUrr7wijh07JjIyMoQQQgAQ33zzjRBCiKtXr4oOHTqIiIgIkZycLE6ePCm2bt0q9u7dK4qLi8VLL70kevToIXJyckROTo4oLi7W28f169dFmzZtxCOPPCIOHz4sduzYIYKDg8WkSZN0YvTw8BBRUVEiIyNDfP/998Ld3V189NFHdR7f4cOHBQDx559/arcdOXJEABDHjx8XQgjx0UcfCX9/f7Ft2zaRmZkptm3bJlq2bCni4+OFEEJkZWUJACI1NVUIIcS5c+eEu7u7iI6OFhkZGeKbb74RPj4+YsGCBdr3mD17trjttttEfHy8+PPPP0VycrJYt26d3v7KysrEtm3btPHk5OSIK1euiOLiYuHp6Sm++OIL7T4vXrwoXFxcxM8//2zwWA1+Dqn+7rtPCECIDRvq1by2nNBYW7ZsEc7OzmLdunUiPT1dzJw5UzRr1kycOXPGYPvMzEzh7u4uZs6cKdLT08W6deuEs7Oz+Oqrr7RtPvvsM6FWq8WmTZtEVlaW2L59u/D39xezZs2qd1x2kweNyIFCMA8KwTxI/69tW5kHU1Lq1Zx5UJfe589OzgWFYB4UgnmQhBAXL8ocCAhRVlavl9Q3D1q1wNYk1PXr14v09HQxa9Ys0axZM3H69GkhhBBz5swREydO1LbXJNSYmBiRnp4u1q9fr5dQNe644w4xbty4BsVl9InltWuV/0CWfly7Vu/jmjRpknB0dBTNmjXTPh599FExdOhQ0bdvX732VZPhP//5T9GiRQtRUFBgcN8LFiwQffr0qXUfH330kbjtttvEtSox//jjj8LBwUHk5uZqYwwKChJlVT7oY8eOrfe/Ze/evcWiRYu0P8+dO1fcfvvt2p8DAwPF559/rvOat956S4SHhwsh9BPqvHnzRNeuXUVFlf+8Vq1aJZo3by7Ky8tFUVGRUKvV2gRaXfX9/fLLLwKAuHz5sk67559/XowcOVL78/Lly0WHDh103rcqJtRGsqECe8CAASIqKkpnW7du3Wq90NitWzedbc8995zOhcbp06eLv/3tbzptYmNjxR133FHvuOwmDxqRA4VgHhSCeZD+n6bAPniwXs2ZB3Xpff7s5FxQCOZBIZgHSegW2OXl9XpJffOgVe/BHjduHJYvX45Fixahb9+++PXXX5GQkICgoCAAckKEqmtiBwcHIyEhATt37kTfvn3x1ltvYcWKFdolujROnDiB3bt3Y8qUKRY9Hntw9913Iy0tTftYsWIFACAsLKzW16WlpaFfv356y6AZIyMjA3369NGZ0X3IkCGoqKjA8ePHtdt69OgBR0dH7c/+/v7Iy8ur13uMHz8emzZtAgAIIbB582aMHz8eAHDx4kWcPXsWU6ZMQfPmzbWPt99+G6dOnaox5vDwcJ17/IcMGYJr167h3LlzyMjIQElJCe655576/yIMmDZtGhITE3H+/HkActiSZhISarrMtZrCHXfcgZSUFOzfvx8AkJmZiYSEBNx3331mOAr7wzzIPEi2g3nQOpgHmQfJfKx+p310dDSio6MNPqe5b6OqoUOH4uDBg7Xus0uXLtrJzyzC3R2oct+IRbm7G9W8WbNm6NSpk8HttXFzczPqfQwRouYJ7Kpud3Z21nuuop4LwD/55JOYM2cODh48iBs3buDs2bN4/PHHAUC7j3Xr1mHgwIE6r6uawOuKWfPZUqlUJvm9AEC/fv3Qp08fbNy4ESNGjMDhw4fx/fffm2TfZLvMsZqCv78/Hn/8cVy8eBF33HEHhBAoKyvD888/jzma9R4NKCkp0bnvy+jlCq2VB43MgQDzIMA8SLajyeRBOzoXBJgHAeZBMh+rF9hNgkoF1JGQ7F3v3r3x8ccf49KlSwavWrq4uKC8vLzWfXTv3h3/+te/cP36dW0C37NnDxwcHNClSxeTxBkQEIA777wTmzZtwo0bNzBs2DDtf8K+vr5o27YtMjMztVcx69K9e3ds27ZNJ7Hu3bsXLVq0QNu2bdGqVSu4ublhx44d9ZpQz8XFBQAM/q6mTp2KDz74AOfPn8ewYcOa7HJxpM/Uqyns3LkT77zzDlavXo2BAwfizz//xMyZM+Hv74/XX3/d4D7j4uKwcOHCxhwE8yDzIPMgNZjd50EF5ECAeZB5kOrD6st0kX144okn4Ofnh9GjR2PPnj3IzMzEtm3bsG/fPgBA+/btkZWVhbS0NOTn5+vNgAjI4Tqurq6YNGkSjhw5gl9++QUvvvgiJk6cWOPM8Q0xfvx4bNmyBV9++SUmTJig89ybb76JuLg4/OMf/8CJEydw+PBhfPLJJ1i2bJnBfUVHR+Ps2bN48cUXcezYMfz73//GggULEBsbCwcHB7i6uuLVV1/F7NmzsXHjRpw6dQq//fYb1q9fb3B/QUFBUKlU+OGHH3Dx4kWdGTPHjx+P8+fPY926dZg8ebLJfh9ku8y1msLrr7+OiRMnYurUqejVqxcefvhhLF68GHFxcTVe/VfScoUNxTzIPEimxzxoX5gHmQepbiywqV5cXFyQmJiI1q1bY9SoUejVqxfeffdd7VCaMWPG4N5778Xdd9+NVq1aYfPmzXr7cHd3x/bt23Hp0iXcfvvtePTRR3HPPffgww8/NGmsY8eORUFBAYqLizF69Gid56ZOnYqPP/4Y8fHx6NWrF4YOHYr4+Hi9tR812rZti4SEBOzfvx99+vRBVFQUpkyZgtdee03b5vXXX8dLL72EN954AyEhIRg3blyN9wi1bdsWCxcuxJw5c+Dr64sXXnhB+5yHhwfGjBmD5s2b68VNTZOLiwtCQ0ORlJSksz0pKQmDBw82+Jrw8HC99omJiQgLC9MOpysuLoaDg256d3R0hBCixttnlLRcYUMxDzIPNimWvJWuFsyD9oV5kHmwyTBnDqz/VGvKYfTsuUQmMmzYMPHiiy/W2Y6fw0ayoVnEzbGawoIFC0SLFi3E5s2bRWZmpkhMTBQdO3YUjz32WL3jYh4ka2EetJA2bWQe/P9ZjevCPKiLnz8yJ+ZBC8jLq5xFvJ5L3dU3D/IebCIbcOnSJSQmJuLnn382+RVcsm3jxo1DQUEBFi1ahJycHPTs2bNeqynExMRg1apVaNOmjd5qCq+99hpUKhVee+01nD9/Hq1atcIDDzyAd955x+LHR1RfzIPKxTxIJDEPNg0ssMluJCcnY+TIkTU+f81as3eaQP/+/XH58mUsWbIEXbt2tXY4ZGGmXk3ByckJCxYswIIFC0wVItkI5kFqqpgHqb6YB8nWscAmuxEWFoa0tDRrh2EWp0+ftnYIRGQHmAeJSOmYB8nWscAmu+Hm5mZwzUYio9nI5D5ExmIeJCKlYx4kW8dZxBtI8ASdrIifv0bS3MtXyxqrVDd+Dsma+PlrJP7+TIKfQ7Imfv5sEwtsI1Vd/oHIWkpLSwFAuywGGenIEfn1r7+sG4edYh4kW8A8SNbEPEi2QPP503weyQhVL06YuMOFQ8SN5OjoCC8vL+26du7u7lCxF4wsqKKiAhcvXoS7uzucnPgn3CgnTlg7ArvEPEjWxjxoQvzbbRDmQbImIQSKi4uRl5cHLy8vXmi0MfxfqQH8/PwAoMbF44nMzcHBAe3ateN/5mQ1zINkbcyDZG3Mg2RtXl5e2s8h2Q4W2A2gUqng7++P1q1b49atW9YOhxTIxcUFDg68w4Osh3mQrI15kKyNeZCsydnZmT3XNooFdiM4Ojryg01EisY8SERKxzxIRFXx0i8RERGR0nD2YSIis2CBTURERERERMphxouMLLCJiIiIlIqTxBERmRQLbCJSLp5YEhEREZEJscAmIiIiIiIiMgEW2EREREREREQmwAKbiIiISGk4izgRkVmwwCYi5eI92ERERETKo7nIaIZzQRbYRERERErFC41ERCbFApuIiIiIiIjIBFhgE5FyseeGiIiIiEyIBTYRERERERGRCbDAJiIiIlIaziJORGQWLLCJiIiIiIhIOTiLOBERERGZHOeiICIyKRbYRKQsHBZJRERERGbCApuIlIs9N0RERERkQiywiYiIiIiIiEyABTYRKQuHiBMRMRcSEZkJC2wiIiIiIiJSDs4iTkRkIuy1ISKqxLkoiIhMigU2ERERERERkQmwwCYiZWEPNhERERGZCQtsIlKWbdusHQERERERNVEssIlIWZYssXYERETWx9E8RERmwQKbiJSLk/sQERERKRdnESciMiEW2ERERETKY8ZRPCywiUhZbHBY5OrVqxEcHAxXV1eEhoYiOTm51va7du1CaGgoXF1d0aFDB6xdu1bn+bvuugsqlUrvcd9995nzMIjIHtnIhUbmQSJqKlhgE5Gy2FiBvXXrVsyaNQvz589HamoqIiIiMHLkSGRnZxtsn5WVhVGjRiEiIgKpqamYN28eZsyYgW1VJm/7+uuvkZOTo30cOXIEjo6OGDt2rKUOi4io3pgHiagpYYFNRMpStcC2gZ6bZcuWYcqUKZg6dSpCQkKwfPlyBAYGYs2aNQbbr127Fu3atcPy5csREhKCqVOnYvLkyVi6dKm2TcuWLeHn56d9JCUlwd3dnSeWRGSTmAeJqClhgU1EZCWlpaVISUlBZGSkzvbIyEjs3bvX4Gv27dun137EiBE4cOAAbt26ZfA169evx+OPP45mzZrVGEtJSQmKiop0HkTUhNnIaB7mQSJqalhgE5Gy2MhJJQDk5+ejvLwcvr6+Ott9fX2Rm5tr8DW5ubkG25eVlSE/P1+v/f79+3HkyBFMnTq11lji4uLg6empfQQGBhp5NERExmMeJCKraoqziJt6UgsAuHLlCqZPnw5/f3+4uroiJCQECQkJ5joEIqJGUVVL7kIIvW11tTe0HZC9Nj179sSAAQNqjWHu3LkoLCzUPs6ePVvf8ImIGo15kIgsyowdLk5m23M9aCa1WL16NYYMGYJ//vOfGDlyJNLT09GuXTu99ppJLaZNm4bPPvsMe/bsQXR0NFq1aoUxY8YAkEONhg8fjtatW+Orr75CQEAAzp49ixYtWlj68IjIFtlQD7aPjw8cHR31emny8vL0emc0/Pz8DLZ3cnKCt7e3zvbi4mJs2bIFixYtqjMWtVoNtVpt5BEQkd2z8lwUzINE1NRYtQfbHJNabNiwAZcuXcK3336LIUOGICgoCHfccQf69OljqcMiIltmQwW2i4sLQkNDkZSUpLM9KSkJgwcPNvia8PBwvfaJiYkICwuDs7OzzvYvvvgCJSUlmDBhgmkDJyIyEeZBImpqrFZgm2tSi++++w7h4eGYPn06fH190bNnTyxevBjl5eXmORAiokaIjY3Fxx9/jA0bNiAjIwMxMTHIzs5GVFQUADlk8amnntK2j4qKwpkzZxAbG4uMjAxs2LAB69evx8svv6y37/Xr12P06NF6PTpERLaEeZCImhKrDRE3x6QW/v7+yMzMxM8//4zx48cjISEBJ0+exPTp01FWVoY33njD4H5LSkpQUlKi/ZmzRhI1YTbUgw0A48aNQ0FBARYtWoScnBz07NkTCQkJCAoKAgDk5OTorAUbHByMhIQExMTEYNWqVWjTpg1WrFihvU1G48SJE9i9ezcSExMtejxEZCdsKBcyDxJRU2LVe7AB009qUVFRgdatW+Ojjz6Co6MjQkNDceHCBfz973+vscCOi4vDwoULG3MYREQNFh0djejoaIPPxcfH620bOnQoDh48WOs+u3Tpos2PRES2jnmQiKyiKc0ibq5JLfz9/dGlSxc4Ojpq24SEhCA3NxelpaUG98tZI4kUpOrJlpUn9yEiIiIiKzDjxTerFdjmmtRiyJAh+PPPP1FRUaFtc+LECfj7+8PFxcXgftVqNTw8PHQeRNREsTeDiKgSLzQSEZmUVWcRN8ekFs8//zwKCgowc+ZMnDhxAj/++CMWL16M6dOnW/z4iIiIiIiISDmseg+2OSa1CAwMRGJiImJiYtC7d2+0bdsWM2fOxKuvvmrx4yMiIiIiIiLlsPokZ+aY1CI8PBy//fabKcIjoqaG92ATEfF2GSIiM7HqEHEiIovjSSURKZ0QwOXL1o6CiMh6NEs01zAJdmOwwCYiIiJSkn37rB0BEZF1vf++2XbNApuIlIU92ESkdAUFld/zVhkiUqI6bjluDBbYRERERErCopqIlM6MeZAFNhEpCyc5IyKlY+4jIqVjgU1ERERERERk21hgE5Gy8B5sIiIiIjITFthEpCwssIlI6ThEnIiUjkPEiYhMhPdgE5HSubpWfs88SERK5OJitl2zwCYiIiIiIiLlYA82ERERERERkQmY8ZZBFthEpCy8B5uIqBJzIhGRSbHAJiJl4ckkESkd8yARkdmwwCYiZeGJJREREZGycYg4EZGJ5OdbOwIiIiIiaqJYYBORshQXWzsCIiLr4kgeIlI69mATEZkB138lIiVigU1ESscCm4jIDFhgE5HSsdgmIjIpFthEpCweHtaOgIiIiIiaKBbYRKQs7K0hIqVjHiQipeMQcSIiE6mosHYERETWxQKbiMhsWGATkbJULbB5kklERESkPOzBJiIykfJya0dARERERNbEApuIyEQ4RJyIlK7qiSVH8hARmRQLbCJSFg4RJyIiIiIzYYFNRMrCHmwiIiIiZeMQcSIiIiIyCY7eISIyGxbYRKRcPMkkIiIiUh72YBMRERGRSfDiIhEpHQtsIqKma/Xq1QgODoarqytCQ0ORnJxca/tdu3YhNDQUrq6u6NChA9auXavX5sqVK5g+fTr8/f3h6uqKkJAQJCQkmOsQiMhe2UixzTxIRE0FC2wiUi4bOLHcunUrZs2ahfnz5yM1NRUREREYOXIksrOzDbbPysrCqFGjEBERgdTUVMybNw8zZszAtm3btG1KS0sxfPhwnD59Gl999RWOHz+OdevWoW3btpY6LCKiemMeJKKmxMnaARARKdmyZcswZcoUTJ06FQCwfPlybN++HWvWrEFcXJxe+7Vr16Jdu3ZYvnw5ACAkJAQHDhzA0qVLMWbMGADAhg0bcOnSJezduxfOzs4AgKCgIMscEBHZPhu4uFgV8yARWRyHiBMRNT2lpaVISUlBZGSkzvbIyEjs3bvX4Gv27dun137EiBE4cOAAbt26BQD47rvvEB4ejunTp8PX1xc9e/bE4sWLUV5ebp4DISL7YkMFNvMgEVmFGfMge7CJSLlUKqu+fX5+PsrLy+Hr66uz3dfXF7m5uQZfk5uba7B9WVkZ8vPz4e/vj8zMTPz8888YP348EhIScPLkSUyfPh1lZWV44403DO63pKQEJSUl2p+LiooaeXRERHVjHiSipoY92ESkXDbSi6OqVugLIfS21dW+6vaKigq0bt0aH330EUJDQ/H4449j/vz5WLNmTY37jIuLg6enp/YRGBjY0MMhIjIa8yARWRSHiBMRNT0+Pj5wdHTU66XJy8vT653R8PPzM9jeyckJ3t7eAAB/f3906dIFjo6O2jYhISHIzc1FaWmpwf3OnTsXhYWF2sfZs2cbc2hEZMuqnlha+UIj8yARNTUssImIrMTFxQWhoaFISkrS2Z6UlITBgwcbfE14eLhe+8TERISFhWkn8hkyZAj+/PNPVFRUaNucOHEC/v7+cHFxMbhftVoNDw8PnQcRNVE2MnoHYB4koqaHBTYRKZcNnGTGxsbi448/xoYNG5CRkYGYmBhkZ2cjKioKgOxReeqpp7Tto6KicObMGcTGxiIjIwMbNmzA+vXr8fLLL2vbPP/88ygoKMDMmTNx4sQJ/Pjjj1i8eDGmT59u8eMjIqoL8yARWRwnOSMiaprGjRuHgoICLFq0CDk5OejZsycSEhK0y8nk5OTorAUbHByMhIQExMTEYNWqVWjTpg1WrFihXZoGAAIDA5GYmIiYmBj07t0bbdu2xcyZM/Hqq69a/PiIyAbZwMXFqpgHicjizJgHVULYWJa1AUVFRfD09ERhYSGHBxE1NVUnxomOBlatqvMlSswJSjxmIsX49lvg4Yfl90eOAD161PkSJeYEJR4zkWL07w+kpsrv61kO1zcncIg4ESkXry8SERERKY8ZJzFkgU1ERESkJLy4SERKl59vtl2zwCYiIiJSEhtapouIqKlhgU1EysUTSyIiIiIyIRbYRERERErCi4tERGbDApuIiIhISVhgExGZDQtsIlIunmQSERERkQlZvcBevXo1goOD4erqitDQUCQnJ9fafteuXQgNDYWrqys6dOiAtWvX6jwfHx8PlUql97h586Y5D4OI7EFFhbUjICKyPl5cJCIyG6MK7P3796O8vFz7s6iWoEtKSvDFF1/Ue39bt27FrFmzMH/+fKSmpiIiIgIjR45Edna2wfZZWVkYNWoUIiIikJqainnz5mHGjBnYtm2bTjsPDw/k5OToPFxdXY04UiJqkqrkLyIixeIs4kREZmNUgR0eHo6CggLtz56ensjMzNT+fOXKFTzxxBP13t+yZcswZcoUTJ06FSEhIVi+fDkCAwOxZs0ag+3Xrl2Ldu3aYfny5QgJCcHUqVMxefJkLF26VKedSqWCn5+fzoOIiD3YRERERGRORhXY1Xusq/9c0zZDSktLkZKSgsjISJ3tkZGR2Lt3r8HX7Nu3T6/9iBEjcODAAdy6dUu77dq1awgKCkJAQADuv/9+pKam1ismImri2INNRMReayIiMzL5Pdgqlape7fLz81FeXg5fX1+d7b6+vsjNzTX4mtzcXIPty8rKkJ+fDwDo1q0b4uPj8d1332Hz5s1wdXXFkCFDcPLkyRpjKSkpQVFRkc6DiJog9mATEbHAJiIyI6tPcla9IBdC1FqkG2pfdfugQYMwYcIE9OnTBxEREfjiiy/QpUsXrFy5ssZ9xsXFwdPTU/sIDAxs6OEQkS2r3oPNk0wiUiLmPiIis3Ey9gXp6enaHmYhBI4dO4Zr164BgLYXuT58fHzg6Oio11udl5en10ut4efnZ7C9k5MTvL29Db7GwcEBt99+e6092HPnzkVsbKz256KiIhbZRE0Re7CJiIiIyIyMLrDvuecenfus77//fgCyB7mu3ueqXFxcEBoaiqSkJDz88MPa7UlJSXjooYcMviY8PBzff/+9zrbExESEhYXB2dnZ4GuEEEhLS0OvXr1qjEWtVkOtVtcrbiKyY7wHm4iIs4gTEfn7Azk5Ztm1UQV2VlaWSd88NjYWEydORFhYGMLDw/HRRx8hOzsbUVFRAGTP8vnz57Fx40YAQFRUFD788EPExsZi2rRp2LdvH9avX4/Nmzdr97lw4UIMGjQInTt3RlFREVasWIG0tDSsWrXKpLETkR1igU1ExKKaiMiMjCqwg4KC6myTlpZWr3YAMG7cOBQUFGDRokXIyclBz549kZCQoH19Tk6OzprYwcHBSEhIQExMDFatWoU2bdpgxYoVGDNmjLbNlStX8OyzzyI3Nxeenp7o168ffv31VwwYMMCYQyWipujGDd2fOWSciIiISHnMeKHR6CHihhQWFmLTpk34+OOP8ccff6DciF6i6OhoREdHG3wuPj5eb9vQoUNx8ODBGvf3wQcf4IMPPqj3+xORglTPTezRJiIlYg82ESmdGfNgo2YR//nnnzFhwgT4+/tj5cqVGDVqFA4cOGCq2IiITKt6jzV7sIlIiVhgExGZjdE92OfOnUN8fDw2bNiA69ev47HHHsOtW7ewbds2dO/e3RwxEhGZBnuwiYiIiMhWerBHjRqF7t27Iz09HStXrsSFCxdqXV+aiMimVC+o2YNNREp05kzl9+zNJiIlyssz266N6sFOTEzEjBkz8Pzzz6Nz587miomIyDyqF9TswSYiJXr9dWtHQETUZBnVg52cnIyrV68iLCwMAwcOxIcffoiLFy+aKzYiItNiDzYRERERmZFRBXZ4eDjWrVuHnJwcPPfcc9iyZQvatm2LiooKJCUl4erVq+aKk4io8XgPNhERERGZUYNmEXd3d8fkyZOxe/duHD58GC+99BLeffddtG7dGg8++KCpYyQiMg0OESciIiIiM2rUMl0A0LVrV7z33ns4d+4ctmzZApVKZYq4iIhMj0PEiYiIiMiMjJrkbPLkyXW28fb2bnAwRERmVb2gfukl68RBRGQrOIs4ESnNrVtm3b1RBXZ8fDyCgoLQr18/iBoSMnuwichmaXqwO3cG9uwBWrWybjxEREREZFn/+IdZd29UgR0VFYUtW7YgMzMTkydPxoQJE9CyZUtzxUZEZFqaAtvJicU1ERERkRK9/75Zd2/UPdirV69GTk4OXn31VXz//fcIDAzEY489hu3bt9fYo01EZDM0Q8QdGj39BBERERHZo+vXzbp7o88y1Wo1nnjiCSQlJSE9PR09evRAdHQ0goKCcO3aNXPESERkGpoebEdH68ZBRGQtZr73kIjI5pWWmnX3jerGUalUUKlUEEKggrPxEpGt0xTY7MEmIqW6ccPaERARWZeZl2k1+iyzpKQEmzdvxvDhw9G1a1ccPnwYH374IbKzs9G8eXNzxEhEZBqaC4HswSYipap+Yslb/IhIacyc94ya5Cw6OhpbtmxBu3bt8Mwzz2DLli1clouI7AeHiBOR0pm554aIyObZUoG9du1atGvXDsHBwdi1axd27dplsN3XX39tkuCIiEyKQ8SJSOlYYBOR0rm6AsXFZtu9UWeZTz31FO6++254eXnB09OzxgcRkU2y0SHiq1evRnBwMFxdXREaGork5ORa2+/atQuhoaFwdXVFhw4dsHbtWp3n4+PjtXNkVH3cvHnTnIdBRPbARgts5kEispjnnjPr7o3qwY6PjzdTGEREFmCDQ8S3bt2KWbNmYfXq1RgyZAj++c9/YuTIkUhPT0e7du302mdlZWHUqFGYNm0aPvvsM+zZswfR0dFo1aoVxowZo23n4eGB48eP67zW1dXV7MdDRDbOBgts5kEisig3N7Pu3qgCm4jIrtngEPFly5ZhypQpmDp1KgBg+fLl2L59O9asWYO4uDi99ppbdZYvXw4ACAkJwYEDB7B06VKdE0uVSgU/Pz+LHAMR2REbLLCZB4nIosw8h5jtnGUSEZmbjQ0RLy0tRUpKCiIjI3W2R0ZGYu/evQZfs2/fPr32I0aMwIEDB3Cryvq2165dQ1BQEAICAnD//fcjNTW11lhKSkpQVFSk8yCiJsjGCmzmQSKyODP3YLPAJiLlsLEe7Pz8fJSXl8PX11dnu6+vL3Jzcw2+Jjc312D7srIy5OfnAwC6deuG+Ph4fPfdd9i8eTNcXV0xZMgQnDx5ssZY4uLidObSCAwMbOTREZFNsrFlupgHicjibG0dbCIiu2VjPdgaKpVK52chhN62utpX3T5o0CBMmDABffr0QUREBL744gt06dIFK1eurHGfc+fORWFhofZx9uzZhh4OEdkyG+vB1mAeJCKLMXMe5D3YRKQcNjbJmY+PDxwdHfV6afLy8vR6ZzT8/PwMtndycoJ3DfcUOTg44Pbbb6+150atVkOtVht5BERkd8rKrB2BDuZBIrI49mATEZmIjQ0Rd3FxQWhoKJKSknS2JyUlYfDgwQZfEx4ertc+MTERYWFhcHZ2NvgaIQTS0tLg7+9vmsCJyH7ZWA828yARWZyZLzTaxlkmEZEl2OAQ8djYWHz88cfYsGEDMjIyEBMTg+zsbERFRQGQQxafeuopbfuoqCicOXMGsbGxyMjIwIYNG7B+/Xq8/PLL2jYLFy7E9u3bkZmZibS0NEyZMgVpaWnafRKRgtlYgQ0wDxKRhXGIOBGRidjYEHEAGDduHAoKCrBo0SLk5OSgZ8+eSEhIQFBQEAAgJycH2dnZ2vbBwcFISEhATEwMVq1ahTZt2mDFihU6S9NcuXIFzz77LHJzc+Hp6Yl+/frh119/xYABAyx+fERkY2ywwGYeJCKLMnMeVAlh5ekjbVBRURE8PT1RWFgIDw8Pa4dDRKayciUwYwYwdizwxRf1fpkSc4ISj5lIET7/HBg/vvLnAweA0NA6X6bEnKDEYyZShDffBBYurPy5nuVwfXMCh4gTkXLY4BBxIiKLio62dgRERNbFSc6IiEzExiY5IyKyuMJCa0dARGRdLLCJiEzEBu/BJiKyqoAAa0dARGRZLLCJiEyEQ8SJiCrt2QPUsNY0EVGTVXWZri+/NPnuWWATkXJwiDgRUaUa1pkmImrSNOeDc+cCjz5q8t3zLJOIlINDxImIiIiUTXM+6GSeFatZYBORcnCIOBEpXfv21o6AiMi6NEPEzXQ+yAKbiJSDQ8SJSOkmTpRf27SxbhxERNZi5hGNPMskIuXgEHEiUjo3N/l1xAjrxkFEZC0ssImITMTM99wQEdk8XmgkIqXTDBHnPdhERI1k5oRKRGTzeKGRiJSOPdhERCbCApuIlM7Mk/sQEdk8FthERCbCApuIlI5DxIlI6bhMFxGRibDAJiKl4xBxIlI6LtNFRGQiLLCJSOk4RJyIlI5DxImITIQFNhEpHXuwiUjpOESciMhEWGATkdLxHmwiUrobN+RX9mATETUSC2wiUjoOEScipbt5U351czPL7llgE5FysMAmIqXjEHEiUrpbt+TXplpgr169GsHBwXB1dUVoaCiSk5Nrbb9r1y6EhobC1dUVHTp0wNq1a2tsu2XLFqhUKowePdrEURORXWKBTURKxyHiRKR0paXyq7OzWXZv1QJ769atmDVrFubPn4/U1FRERERg5MiRyM7ONtg+KysLo0aNQkREBFJTUzFv3jzMmDED27Zt02t75swZvPzyy4iIiDD3YRCRvdAkVBcX68ZBRGQtvNBIREqn6cFuigX2smXLMGXKFEydOhUhISFYvnw5AgMDsWbNGoPt165di3bt2mH58uUICQnB1KlTMXnyZCxdulSnXXl5OcaPH4+FCxeiQ4cOljgUIrIHZk6oREQ2jz3YRKR0mvNBM3W4WK3ALi0tRUpKCiIjI3W2R0ZGYu/evQZfs2/fPr32I0aMwIEDB3BL84sCsGjRIrRq1QpTpkypVywlJSUoKirSeRBRE8QCm4iUjpOcEZHSNdUh4vn5+SgvL4evr6/Odl9fX+Tm5hp8TW5ursH2ZWVlyM/PBwDs2bMH69evx7p16+odS1xcHDw9PbWPwMBAI4+GiOwCC2wiUjozn1gSEdm8pjxEHABUKpXOz0IIvW11tddsv3r1KiZMmIB169bBx8en3jHMnTsXhYWF2sfZs2eNOAIishsssIlI6TTrvzZrZt04iIisxcxDxK02w4WPjw8cHR31eqvz8vL0eqk1/Pz8DLZ3cnKCt7c3jh49itOnT+OBBx7QPl9RUQEAcHJywvHjx9GxY0e9/arVaqjV6sYeEhHZOhbYRKR0nOSMiJSuqQ4Rd3FxQWhoKJKSknS2JyUlYfDgwQZfEx4ertc+MTERYWFhcHZ2Rrdu3XD48GGkpaVpHw8++CDuvvtupKWlceg3kdJxFnEiUjpeaCQipWuqPdgAEBsbi4kTJyIsLAzh4eH46KOPkJ2djaioKABy6Pb58+exceNGAEBUVBQ+/PBDxMbGYtq0adi3bx/Wr1+PzZs3AwBcXV3Rs2dPnffw8vICAL3tRKRAPLEkIqVjDzYRKZ2Ze7Ctml3HjRuHgoICLFq0CDk5OejZsycSEhIQFBQEAMjJydFZEzs4OBgJCQmIiYnBqlWr0KZNG6xYsQJjxoyx1iEQkT1hgU1ESscCm4iUTIjKPNgUC2wAiI6ORnR0tMHn4uPj9bYNHToUBw8erPf+De2DiBSKBTYRKR3zIBEpmaa4BpreOthERBbHE0siUjr2YBORkmmGhwNNb5IzIiKL4/qvRKR0LLCJSMk0nS0AC2wiokZjDzYRKZ0mD7LAJiIlYoFNRGRCLLCJSOnMPLkPEZFN04xmdHQEHMxTCrPAJiLlsNECe/Xq1QgODoarqytCQ0ORnJxca/tdu3YhNDQUrq6u6NChA9auXVtj2y1btkClUmH06NEmjpqI7BKHiBORkpl5DWyABTYRKUV5uVyaAbCpAnvr1q2YNWsW5s+fj9TUVERERGDkyJE6SxRWlZWVhVGjRiEiIgKpqamYN28eZsyYgW3btum1PXPmDF5++WVERESY+zCIyF7Y6BBxXmgkIouwQGcLC2wiUoaq99yY8aqlsZYtW4YpU6Zg6tSpCAkJwfLlyxEYGIg1a9YYbL927Vq0a9cOy5cvR0hICKZOnYrJkydj6dKlOu3Ky8sxfvx4LFy4EB06dLDEoRCRPbDBIeK80EhEFmOBCW9ZYBORMlhgUgtjlZaWIiUlBZGRkTrbIyMjsXfvXoOv2bdvn177ESNG4MCBA7hV5RgXLVqEVq1aYcqUKaYPnIjslw32YPNCIxFZDIeIExGZiA0W2Pn5+SgvL4evr6/Odl9fX+Tm5hp8TW5ursH2ZWVlyM/PBwDs2bMH69evx7p16+odS0lJCYqKinQeRNQE2dg92LZ0oZF5kEgBOESciMhEqhbYjo7Wi8MAlUql87MQQm9bXe01269evYoJEyZg3bp18PHxqXcMcXFx8PT01D4CAwONOAIishs2NtmjLV1oZB4kUgAOESciMpGqJ5W1FK+W5OPjA0dHR72TyLy8PL2TRw0/Pz+D7Z2cnODt7Y1Tp07h9OnTeOCBB+Dk5AQnJyds3LgR3333HZycnHDq1CmD+507dy4KCwu1j7Nnz5rmIInIdghReXKpVls3lmps4UIj8yCRAlhgiLhtjA8iIjI3G+u1AQAXFxeEhoYiKSkJDz/8sHZ7UlISHnroIYOvCQ8Px/fff6+zLTExEWFhYXB2dka3bt1w+PBhnedfe+01XL16Ff/4xz9q7JFRq9VQ29gJNxGZmKa4BmymwDbHhcajR49qLzRqVFRUAACcnJxw/PhxdOzYUW+/zINECmCBHmwW2ESkDDZYYANAbGwsJk6ciLCwMISHh+Ojjz5CdnY2oqKiAMgelfPnz2Pjxo0AgKioKHz44YeIjY3FtGnTsG/fPqxfvx6bN28GALi6uqJnz5467+Hl5QUAetuJSGFKSiq/t5FC0pYuNBKRArAHm4jIRGy0wB43bhwKCgqwaNEi5OTkoGfPnkhISEBQUBAAICcnR2epmuDgYCQkJCAmJgarVq1CmzZtsGLFCowZM8Zah0BE9uLmzcrvbaTABnihkYgsyALngyywiUgZbLTABoDo6GhER0cbfC4+Pl5v29ChQ3Hw4MF679/QPohIgTQ92M7OgIPtTMPDC41EZDEcIk5EZCI2XGATEVmEpsC2od5rDV5oJCKL4DrYREQmwgKbiJTOhgtsIiKL4DrYRAQAuHED+OUXoD5X6y9dAubOBfr0AVatksuylJUBV68CJ08C5eXmj9cWscAmIqXT3IPNApuIlIrrYBPZoP9f6kPr22+BhATg3Dng3/8G7rpLrrNc/dG1K7BnT/3fp6gIeOUV+Vp3d+BvfwNCQ2XhfOECsGwZ8NNPwMcf676Ptzfw7rvAoUPACy/I++ycnQEPD6BLF8DJSbY7dAgYPx64805ZfN64AZw5A2zaBFy/bsrfmG1ggU1ESqfpwXZ1tW4cRETWwlnEiWzA8ePAqFFAZiZw223A5csN28+JE8Add+hu27ABeOwx4LvvgPfeA9LSgL59Zbu1a2XPc3WHDgFt2zYshqr69Kn83lCS+esveRLm4dH497IFLLCJSOk4RJyIlI5DxInMqLQUSEkBLl4EsrOB338H/vMfWeC6u8vC8rHHgJAQWVwDxhXXzzwDdOgg91WTyZOB5s2BJ5+UxTUgv374YWVxHRAAjBwJ7N9f/6ttv/4qh4K/8UbltiFD5AWC+vL1BTw9ZW93//71f52tssCQICIim8YCm4iUTnM+yB5sIhO4eRM4fFgO5z58GNi2re7XfPml7s8rVwJ//CGHZT/6qLy/eckSWYy6uQGOjrXvb8sW4Ikn6hfv008D69bJId0aJSVAUpLsXY6MlMVvYSHQqZPhfSxcKB9VCSGHkP/2GzBtGvDww5XF/KxZwPLl+vtJTZXvBQBHjsjh7k52lj7+/W/59fffrRsHEZG1sMAmIqXjOthEjZCXJ4uqjAxg796GFVYuLsD27fK+6qrWrWtYTI8/Lh8aV68CP/8sh2u3by+3XbkC7NsHjBhheJ3S4cN1f27VyrgYVCo5CZqGJtFofPCB/H0NGWL49T17yq+LFgGvv27ce1vTJ59YOwIiIuviJGdEpHQssIlqUVYGFBfLodxXr8p7nP/7XzlT9o4dwOnTtb/+zTeBZ58Fzp8HAgPlcGi1urKn1hJatAAeekh3m5eXHBJuTYMHy55uANi9G4iI0G/zxhvy9/7ee5aNjYiIGoaTnBGR0nGIOCleSYksei9dksOXP/1UzpJdUCDvbS4urv31rq5y+HRMDDB0qLwnunoB7e9vtvCbhDvuqCy2ly6VM5tr/P3v8r70hvboExGR5XCIOBEpHSc5I8URAsjKAnr0kCcArq6VS099+qlsU1Agvxoqrn18gDlzZEH9229y6anDh+VkYh07WrZ3uil6+WW5TNmIEZXbPv7Y8GzntuaRR+TXHj2sGwcRkbWwwCYipWMPNjVpQsjid/ZsOWHWjz/W3t7LS06u1aMH8MAD8vuyMrmc1dNPy9m+mze3ROTKplLJ9bd/+EH+OwBAcLCcid2WL2BoRipoCm0iIqVhgU1ESsd7sKnJyc2V6zgfOiTXgM7IqLntN98AvXrJXuhWreRM3YasWmWeWKl2999f+f25c3JCNs1QcltkgSuWREQ2jZOcEZHSscAmk7p2Ta6N7OlpmffLzAT+9z/g6FFg504gObnmtq+9Jou03r2BKVPkxGVk++bNAxYvrvy5VSu5rrgtYoFNRErHSc6ISOkskAdZYDcVQgAXLgD79wM5OXJG7VOn5Pbjx4EzZyqv2Pj6yiHZmhm4g4NlAQzImaGzsuTEVS1byqL30iVg1Ci5xnNCglwmqkcPeS+0n58sojVF1c2bsn1Ghpyd25BmzYC+fYExY4CnnpL3V5N9eucdYOxYoF8/+XN+vvw83H67deMyhAU2ESkdh4gTkdLduCG/ssAmHYWFQGqqXC95zx7gl1+AlJT6v/6vvyq/v3xZFt8aixYZfk1aWuX3xrxXQADQurXszZ49G3j0UaBz5/q/nmxf375AUlLl+tz336/7GbMVLLCJSOlYYBPZFiFse/6apigvT35lga1ghYWyV/rXX4GDB+W9y+fOGW7r4AC0awd06wYEBcmHmxvQvTvQpYv83smpcn3omzdlL3RWFvD773ISsbIyWbR37SqHa6ekyB5vtVr2Tu7fL3ucy8tl0d27N3DnnfK1LVrIJOHkJHs0e/SQQ4ap6Rs2rHLZtLw84MABICzM2lHpYoFNREr3j39YOwKipuPiRWDrVtnJoFbLc97kZHl+3bGjPPcOD5cjN++9V04Q+8478py7qqAg4O23gf795Tk7mdevv8qv2dlmewsW2LakqAj44w/ZO71njyxSzpyRxWx1gYGyZzgkRBbDd98NhIbW72oMh2STOfz735W92CNGVC6nZitYYBMRSe++C8TFWTsKIttUViZvd9y9G1i+XP7crZs8L//zT1kE5+TIWzNrcvKkLKhXrKj7/c6cASZOrPzZx0ee47dtKzvVMjLkbZp33CFHnv75p1zFJTJSjhps3Vq+7vJl2eF165bs7HLgasy12rEDWLjQLLtmgW1pZ8/K+5137pR/qIWF8l6AGzeAq1cNv6Z1a1m4DBoke4aDguQfHYeUkC0ZNgx49lngo4/kf0w//SSv2NqK7dvlV81cBERkegUFlY+kJOD77+Woqa+/BiIi5HDIP/+Uc4OcOyfnARk7Vnc214oK+f8b/48jInMrLpZLxqakyGL65EnD7fbtq/y+6q2SrVvLkXv33y9HfLZrJ0eMpqcDn30mb5XUjBz19paPEyfk/EfNmwMDBshCT9MGkCNG8/PlPjTKy4Fduyp/3rpVPury5JNykmPNUqXDhsnbNTVu3pS970rMt2Zc2lclhC2vq2MdRUVF8PT0RGFhITwaM5t1SYkcUr1rl/xj/OMPORy7NgEBsoi+/XZg4EDZO92unTI/+GR/Ll6svJIKyKXWRo+2Wjg6NH9DQ4bIq9JGMFlOsCNKPGaqQ3l55cmYZpLMsjJZSP/6q7yIlZpquvfr3h2Ij5f/L2pODqlxqp5LGHn6p8ScoMRjtltlZXLo9bffyvx0/Diwd688J9HMNeTrK3t4jx+XF/Vat5Y90RUVhvfZvDlw/Tpw220yD509K3uJX3wR6NlTXjQMCak7tmvXZOHepYscLl6TrVuBdetkwd+rl+xM27FDThocGChX2XnzTSN/MUb66y/d87imSJMHd+4Ehg416qX1zQnswTalnBx5n3RamvxH2727cs1JDUdHOZT7zjtlId2xY+VkIwEBclgIkb2qfs/9ww8Dn38OPPGEdeLR2Ly58vuyMuvFQWRJFRWVQwT/+ksWv/36yduRfv9dnrR16ADk5sqTxuPHZVvNco7XrsllFv/4Q/a2nD9feasFIE9QDY0IcXCQq1C0bq3bA1OVSlV3gZeeLnt3NGbMkKO52raVt0M5OspJM3kBun6qXuD/8EPrxUFkjJs3Ze+uo6M8x05Plzns4kU5CubiRXn+ffmy4ddXncj3r78qJ2G9datytRsfH1n8Xr0KPPSQPEdv0UKer5tireTmzStXW6nNuHHyUZsFCyq/P3cOeOkl4IsvgEmT5P3eqany/d5/v2Gx+vrK/H3pkrxoGhnZsP3Yqqr/73ToYLa3YQ+2AUZdsSwrA9avBz79VF4pq/7rbN1a/qF27y4nL/jb3+QfLVFTVv2E19pppmo8K1cCL7xg1MuV2IuhxGO2K0LI4regADh2TJ40Hjwoi2UXF/lVM9SxZUtZLFctjk3tiSeAkSPlyZivr/7z//wncOSIPMmMjJQXlAF5e9QPP8h4W7WSPU9OTkBUVOVSKnWJjJRDMTmpZu0SEoD77pPfFxUZfS6ixJygxGO2mhs35Gf01Cl5b3NmphwFauyqJIGBMr907Spf27dv5YS/N28C330nL9INHCjbtm8vR8g09Qt1GRnywuT+/cDjj+s+9/bbwGuvGX7d++/LYebx8fI+8bZtzR6qWe3YIYfJAw3qra9vTmCBbYBRCfWvv+QfcWGh/LlnT/lHPGSILKz79Gn6f7REhlT93P/0k5z4zBZiuXjR6JEiSjzJUuIx2wTNf8n5+XIk1PnzssfG0VFuU6nk7Ud798qfG6N7d7lfHx9ZqB86JLd7ecmJM3v0kPcLVlTIVQGCgionz8nJkb0nt90me5nN8RkpKZHDM198UY6EMYZmKHtRkYzT0RHo1El+VarYWOCDD+T3mn9HIygxJyjxmE2qqEh+1tzdZQFdUSEvCK5YIf9Gc3Mr2x48aHhS36rCwuRkY5oRNpriuXlz+ZzS/8Yba84cYMmSuttduiRzvz2KjweeeUZ+f+WK/CwZgUPELcXXV06KcOoUMG2avF+aiOR/lJr/6DZutF6BXX14U233PxHVJC9PFreFhXLIdG6uXOJDrZYnj+Xlsof4+nVZFPfqJYvl8nI5DM3Pr3LGWZVKzs3Rr59s6+Iie27Ky+X/JZoLtsaYOFH2VGdmAqNGyRPZ0FB5Unv5shz+GBwsh2+bYkKb9u0b9/r6UKvlY9Mm+cjMlCfr2dnyd/rll8DcuYZfW9OKGrGxwNKl8nulXfzWFNeA0cU12biKCpmjzp2T9wlfuCBHWN68KYdI37gh/z++fl327qrV8vniYjksurxc5oeAAJmP1GrZXgh58ezqVXlx+tYtWZC4ucm/satX5b4zM+WImWvXZBz5+TKOhnj8cdmz3LatLOLatpWzZzs68nNrbu++Kx+AvIg7ZIjhdi1byq8FBZXf24uqI7k0t+iaAXuwDeAVSyITCQiovMepvNw6S0ZUP4nWzFBsBCXmBLs75osX5RC406dlr6tKJXtPnJ3l59DPz/CEkfn5sufk6lVZNDdrJtuUl8sTxN9+kz3IZlwvs0YuLnJm2pYtK++ZfvZZeXy33y5vO2reXHmFYnVCAG+8IYc5GuPZZ4FVq+SJ+3vvAXfdJYeNNlU9elTeE9+AUz+7ywkmYDPHLITu3/nly/IiXXJy5bKudfX+2gKVSua1vn3lxW8PD1lEN29eOQJU6fnMlqSmyhFEw4bJEUyTJ+s+36+f/P/TnlQdyWPG80EW2AbYTEIlsndz51ZeDQUsfy92aan+FUqeWNaL2Y/5xg1ZEJ89K3tsr1+XvS1Xr8r/8Bwd5TC07Gx5QlZRIR+ae3Rv3ZLDlHNyZLvqE0oa4uEh77Vzd5fDoE+elD0+xnBxkYWKr6/s8bl1S/YEOTvLx+HDsrf4xAnZ89K8uVxF4vp1eYFJpZJFfFmZ7KVp00YOhS4tlbcV3X67/MwGBppn2LUS7N4tl/4aOVIW0a1ayZEB9R1FM2SIHCZZU++NvWrEDOIA86BZjrmiQvYwnz8vl687dEjmpGPH5LaSEpljhJAXCX195cXEqhN3aahUMr8FBsr2QUEyV7ZuLV9bXi73WVws9+ntLXNMixbyZ00vtBCVcVVUyPd0dpb7cHWV+ba8XOZwDw+ZE9u3l88HBsq2SUnAmDHyNkkvL9m2WTO5b85DZN/Cw+WFZ40HHpD3tdsLC+VBFtgGKPE/ESKzKC/XHdK1eDEwb578vgFXDo1WfdkwgCeW9WSSY9YMmU5Pl0XmoUNyJuNz5+TJZE1LozRU+/byZK6sTH7umjWTMZw6JU8Ka9Ovn+zhvnGjshBu1Ure19erl+wtVqnYY2zPhAA+/lhe+CsoqLt9Xl7TmTjt0iVZUGkwD9aLyY65okLmwX375NBbzYXBo0dlwdsQXboA99wDDBoke4RDQkwz4zVRXTIz5SpIGosX13y7jq2xUIHNmxmIyHwcHSuLHaCyuAZk4XvxonnfvyH3spLxLl8GtmyRwxQvXZKTP2Zm1j37q6enXGbJ3V0Og3Zzk9vd3eXX5s1l0XzzpvxP0c1NPm7dkkVwmzayd6VZMzkM3Mur5vcqLpZLKF6+LIv+a9fke/fsab+TtZBxVCo5V8q0afIz9O67cmg5AGzbJlcXyMmpbK+5ODd/vvHDz23NihXWjkAZsrPlxcTMTFk8X7kiL/BlZcnROYao1TKXdeggi+QOHWRuCgqS+c7ZWRbox4/LC4B+frK4aeprFZPt0izv6Ocnf543T466+Ne/rBtXXWpaNtIM2INtgBKv0hKZVU09fuZOP7t3AxERlT9PmiRnkDSSEnOCUceckSHvnatJq1ayl6VPH7nqgp+fbK+EpVHI/lS/tUVj+nT7XD/6p5/kcPmq2INdL0Yd88aN8v+YmjRrJu/xHzhQFs+tWskZsTt1ksOsiezNkiVy5nENWy8pq55vaG41MxJ7sInIdlRUyPsZ9+3T3V61d9scnn1W9724fId5hIQA48fLE8WWLWWvcseOsve5eXPTzFpNZClxcbLX8K23dLevWiUff/wB9O5tndgaonpxXdMM69Q4t98u/4/p0UNeSOzaVRbRQUHy9pNevTgLNjUtr74qR45FRcmfVSpg5Uo5GsjWTZtm1t2zB9sAJV6lJbKYwsLKobxHj9be89lYjbzXRkOJOUGJx0yk59Yt/d7FgQN1J/mxddUvbt17L/Cf/xi9GyXmBKOOWQh5KwqXgiQlqT7XDmCby3ft2SOXe9N48cUG3TpT35xghTVziEjRPD3lFX5Afk1MlInPHNf6rLEsGBE1HZr7X6vO2vz77/I+fnu1caO1I2iaNCsEECmJoyOwdKnuNm9vOcrHlvpwqxbXAPDMM2Z9O6uffa5evRrBwcFwdXVFaGgokpOTa22/a9cuhIaGwtXVFR06dMDatWt1nv/6668RFhYGLy8vNGvWDH379sWnn35qzkMgImMdPVr5/YgRMvFpZm7eu9d076OZpbpnT9Ptk4iURaWSQ3zz8yu3NW9un5MovvFG05kZnYhsw0svyWK6c+fKbYcPy/O6//4X+OUX68UG6Bf6sbFy5RAzsmqBvXXrVsyaNQvz589HamoqIiIiMHLkSGRnZxtsn5WVhVGjRiEiIgKpqamYN28eZsyYgW3btmnbtGzZEvPnz8e+fftw6NAhPPPMM3jmmWewfft2Sx0WEdXF0ARCGo88Ypr3OH++8vvMTNPsk4iUy9sbmDKl8mcvL1l8V71gaOuqruRARGRKJ07obxs+HPjb34AdOywfj0ZRke7PS5aY/S2teg/2wIED0b9/f6xZs0a7LSQkBKNHj0ZcXJxe+1dffRXfffcdMjIytNuioqLwxx9/YF/1yZOq6N+/P+677z68VX3Ckhoo8T4jIov780/dq50azZvXvJyJMbp3l7NbA7Kgf/XVBu9KiTlBicdMVC/9+wOpqTU/n5UlJ/izBaWlcpJBAEhO1h8maQQl5gQlHjNRowlh+BY9a002W/V8c9Mm4MknG7wrm78Hu7S0FCkpKYiMjNTZHhkZib01DBHdt2+fXvsRI0bgwIEDuGVgqnUhBHbs2IHjx4/jzjvvrDGWkpISFBUV6TyIyMw6dZITwhw+rLv92jXT3LdTdWIfW5tsoxreKkNkR37/vfbng4OB1astE0tdqg5rHzzYenHUA/MgUROhUsnJz+67T3e7tWbR1+TBdu0aVVwbw2oFdn5+PsrLy+Hr66uz3dfXF7m5uQZfk5uba7B9WVkZ8qv8J1JYWIjmzZvDxcUF9913H1auXInhw4fXGEtcXBw8PT21j8DAwEYcGRHVm5ubvD9aCOCbbyq3OzgAV640bt+PPlr5fUhI4/ZlRrxVhsjOODvLnFVWBiQkGG4zfbo8yXzjDaCkxLLxVVX1dhwbnvSReZCoiXFwAH74QRbaVbVp06D1pxvl4EH5teqtg+YmrOT8+fMCgNi7d6/O9rffflt07drV4Gs6d+4sFi9erLNt9+7dAoDIycnRbisvLxcnT54UqampYunSpcLT01P88ssvNcZy8+ZNUVhYqH2cPXtWABCFhYUNP0AiMs65c0LI09bKhxBCpKYKERYmxLffGre/mBi5j+bNGx1aYWGh2XLCgAEDRFRUlM62bt26iTlz5hhsP3v2bNGtWzedbc8995wYNGhQre/Tr18/8dprr9U7LnMeM1GTU1Ehvzo66uexsWOtF1f1fNoIzINE1CB//aWfF3fvttz7WyEPWu1ypo+PDxwdHfV6q/Py8vR6qTX8/PwMtndycoK3t7d2m4ODAzp16oS+ffvipZdewqOPPmrwnm4NtVoNDw8PnQcRWVjbtvrDKrdskTM9HjgAjB4N7N9f//1php7PmWOyEE2Nt8oQNRGaW1LKyoBff9V97ssvLR+PHbGlPEhEZtC6NbB4se62O+6QeVOlAuLjrRKWOVmtwHZxcUFoaCiSkpJ0ticlJWFwDfcJhYeH67VPTExEWFgYnJ2da3wvIQRKrDlEi4jq5/nngWXLKn9+4gnd5wcO1B9uZMi0aXJpCMCml9LhrTJETVBEBHDpku42lUrOonvvvfL7li0tk5s0w8K/+sr879VAtpQHeaGRyEzmzgVu3DD83DPPyLz4+efmjeHuu827/yqsekNObGwsPv74Y2zYsAEZGRmIiYlBdnY2oqKiAABz587FU089pW0fFRWFM2fOIDY2FhkZGdiwYQPWr1+Pl19+WdsmLi4OSUlJyMzMxLFjx7Bs2TJs3LgREyZMsPjxEVEDzJpV+/PVT1wN+fjjyu+7d29UOJagqjohG+RFwerb6mpffXuLFi2QlpaG//3vf3jnnXcQGxuLnTt31rjPuXPnorCwUPs4e/ZsA46EiAAAt92mP1njsGGA5v7fy5eBPn3MH0ezZvJrr17mf69GsoU8yAuNRGbk6gpUVNT8/PjxwN//btr3LC6u/P7rr02771pYaTo3ady4cSgoKMCiRYuQk5ODnj17IiEhAUFBQQCAnJwcnQkugoODkZCQgJiYGKxatQpt2rTBihUrMGbMGG2b69evIzo6GufOnYObmxu6deuGzz77DOPGjbP48RFRA6hUcmj4448bfr5XL6CGXg0A+ie1o0ebLDRTs8StMgDQt29fZGRkIC4uDnfddZfB/arVaqg1y/kQkWlcviyLbUPOnAGmTgXWrjXP7LpXr1YueVhDPrEFtpQH586di9jYWO3PRUVFLLKJTEmlqrwjurQU+OQTOXpRY/ZsOTnkzZsyf3p5Ne79NBObNWsGeHo2bl9GsPqUktHR0Th9+jRKSkqQkpKic29MfHy83pXGoUOH4uDBgygpKUFWVpa2t1vj7bffxsmTJ3Hjxg1cunQJe/fuZXFNZG8ee0z356pF819/1f7a69d1f7ZgQjUWb5UhauK8vGT+OnUKePFFuQZrlQIO69fLWclVKtPnqqprXtvw3DK2lAc5Jw+RhahUgFoNREXp9jIDsrgGar44aYwff5Rfr1/XXb7VzKxeYBMR6dFc4Tx7tvI+xQ0bKp9/772aX1t9XW0LJtSG4K0yRArQoQOwYoVcg/X994F16/TbFBWZdnjkoUOV3zMPMg8S2So3N/3Rhxqac7+zZ+XyXjW1q0lMTONia6hGz1feBHFZBiIbVXWphfx8w2369jXpkgxCmD8nrFq1SgQFBQkXFxfRv39/sWvXLu1zkyZNEkOHDtVpv3PnTtGvXz/h4uIi2rdvL9asWaPz/Pz580WnTp2Eq6uruO2220R4eLjYsmWLUTExDxKZ2Usv6S9dU/WRm9vwfVdUMA8yDxLZn1de0c+Fgwbp/jxjRv33Z6U8qJLvTVUVFRXB09MThYWFHB5EZEuq9sJERQFr1ui3GTtWd8ZcE6Q4JeYEJR4zkdW89x7w6qv622/dqrw/+9//Bvz85GoKdfn6a0AzP82//gVU6f1tKCXmBCUeM5FVCSEns339dcPneFXb1eXGDcDdXX6/Zw9Qwy0nxqhvTuAQcSKyH1XvzdZM3lPdxYuV39cyWywRkc2YPRvo2FF/u+b+bJVKTtg4aBDw229176/K5K+4/36ThUlEZFYqFeDtDaxeXXu7/58Qu1ZVV2qw8IoyLLCJyH58+GHl95s2yd4dALhyRSblBx4Adu2S20aPBoYOtXSEREQNc/KkzGWavFaT8PDal7qprmXLRoVFRGQVn35a+f1vvwHTp1f+nJ2tOzePISdPVn7f2NnIjcQCm4jsR6tWuieLW7cC8+ZVzjT5ww+Vz7m4WDY2IqLG0Mwk7uQELF1ae9s5c2p+ruqMvDUtd0hEZOsmTKi8g3rgQGDlSt3nv/ii5tfWtpyrBbDAJiL7cuRI5fd+fkBcnOF2a9daJh4iIlObNQtISQGefRbo0kVuq5rrapttfPv2yu9nzzZLeEREFqdZYUZzu6BmxKIh/v6V32/aZN64DGCBTUT2pWrS/O47w23c3EyzfiIRkTU4OgL9+wP//Cdw/Lg8qZwzBxg3rrLN0qX6yxICwCOPVH7fr5/5YyUisiRNXrt5E+jZE7h8uXL7nXfqt3/yScvF9v9YYBOR/dFMVlF9uJDGo49aLhYiIkupOvHPK68AvXtX3o/9ww/A3XdbJy4iIkupehHx6FF56+BrrwFpaUBysu6KM1biZO0AiIiM1q0bkJ5e8/MdOlguFiIiSzE0YZmjo+G2991n3liIiKxBc9tMVe+8Y7jt77+bN5YasAebiOzP+PG6P1cdNgkAhYWWi4WIyJK6dq1fu++/N28cRETWkpJSv3ahoeaNowYssInI/jzyiO4aiCtW6PZav/CC5WMiIrKEPXvk2ta1Fdq3324TwySJiMyif385N0VdahrhY2YssInIPp0+Ddy4AZSUAK1bA7/8IrerVEDHjlYNjYjIbLy9Ze90Robh54cOBfbvt2xMRETWUFBQ+f3+/UBsbOXPVVdUsDDeg01E9svVtfL7du3kTJJVtxERNVWaJWsAmftu3tRdZYGIqKlr2RK4fh0oLwdatJCjd5YutfoIHhbYRNR0eHlZOwIiIsvjsoREpFTu7ro/28DtMRwiTkRERERERGQCLLCJiIiIiIiITIAFNhEREREREZEJsMAmIiIiIiIiMgEW2EREREREREQmwAKbiIiIiIiIyARYYBMRERERERGZAAtsIiIiIiIiIhNggU1ERERERERkAk7WDsAWCSEAAEVFRVaOhIhsgSYXaHKDEjAPElFVzINEpHT1zYMssA24evUqACAwMNDKkRCRLbl69So8PT2tHYZFMA8SkSHMg0SkdHXlQZVQ0qXIeqqoqMCFCxfQokULqFSqOtsXFRUhMDAQZ8+ehYeHhwUiNC17jp+xW489x29s7EIIXL16FW3atIGDgzLurFFSHrTn2AH7jt+eYwfsO37mwboxD9oPe47fnmMH7Dt+c+VB9mAb4ODggICAAKNf5+HhYXcfrKrsOX7Gbj32HL8xsSulx0ZDiXnQnmMH7Dt+e44dsO/4mQdrxjxof+w5fnuOHbDv+E2dB5VxCZKIiIiIiIjIzFhgExEREREREZkAC2wTUKvVWLBgAdRqtbVDaRB7jp+xW489x2/Psdsqe/6d2nPsgH3Hb8+xA/Ydvz3Hbqvs+Xdqz7ED9h2/PccO2Hf85oqdk5wRERERERERmQB7sImIiIiIiIhMgAU2ERERERERkQmwwCYiIiIiIiIyARbY9bR69WoEBwfD1dUVoaGhSE5OrrX9rl27EBoaCldXV3To0AFr1661UKT6jIn966+/xvDhw9GqVSt4eHggPDwc27dvt2C0+oz93Wvs2bMHTk5O6Nu3r3kDrIWxsZeUlGD+/PkICgqCWq1Gx44dsWHDBgtFq8/Y+Ddt2oQ+ffrA3d0d/v7+eOaZZ1BQUGChaCv9+uuveOCBB9CmTRuoVCp8++23db7Glv5mbRXzoPUwDzIPGot50DyYB63DnnMgYN950F5zIGDFPCioTlu2bBHOzs5i3bp1Ij09XcycOVM0a9ZMnDlzxmD7zMxM4e7uLmbOnCnS09PFunXrhLOzs/jqq68sHLnxsc+cOVMsWbJE7N+/X5w4cULMnTtXODs7i4MHD1o4csnY+DWuXLkiOnToICIjI0WfPn0sE2w1DYn9wQcfFAMHDhRJSUkiKytL/P7772LPnj0WjLqSsfEnJycLBwcH8Y9//ENkZmaK5ORk0aNHDzF69GgLRy5EQkKCmD9/vti2bZsAIL755pta29vS36ytYh5kHmwI5kHmwaaEedA6edCec6AQ9p0H7TkHCmG9PMgCux4GDBggoqKidLZ169ZNzJkzx2D72bNni27duulse+6558SgQYPMFmNNjI3dkO7du4uFCxeaOrR6aWj848aNE6+99ppYsGCB1ZKqsbH/5z//EZ6enqKgoMAS4dXJ2Pj//ve/iw4dOuhsW7FihQgICDBbjPVRn4RqS3+ztop5kHmwIZgHmQebEuZB6+RBe86BQth3HmwqOVAIy+ZBDhGvQ2lpKVJSUhAZGamzPTIyEnv37jX4mn379um1HzFiBA4cOIBbt26ZLdbqGhJ7dRUVFbh69SpatmxpjhBr1dD4P/nkE5w6dQoLFiwwd4g1akjs3333HcLCwvDee++hbdu26NKlC15++WXcuHHDEiHraEj8gwcPxrlz55CQkAAhBP766y989dVXuO+++ywRcqPYyt+srWIeZB5sCOZB5sGmhHnQOnnQnnMgYN95UGk5EDDd36yTqQNravLz81FeXg5fX1+d7b6+vsjNzTX4mtzcXIPty8rKkJ+fD39/f7PFW1VDYq/u/fffx/Xr1/HYY4+ZI8RaNST+kydPYs6cOUhOToaTk/U+3g2JPTMzE7t374arqyu++eYb5OfnIzo6GpcuXbL4fTcNiX/w4MHYtGkTxo0bh5s3b6KsrAwPPvggVq5caYmQG8VW/mZtFfMg82BDMA8yDzYlzIPWyYP2nAMB+86DSsuBgOn+ZtmDXU8qlUrnZyGE3ra62hvabgnGxq6xefNmvPnmm9i6dStat25trvDqVN/4y8vL8eSTT2LhwoXo0qWLpcKrlTG/+4qKCqhUKmzatAkDBgzAqFGjsGzZMsTHx1ul9wYwLv709HTMmDEDb7zxBlJSUvDTTz8hKysLUVFRlgi10Wzpb9ZWMQ8yDzYE8yDzYFPCPGidPGjPORCw7zyopBwImOZvlj3YdfDx8YGjo6PelZq8vDy9Kxwafn5+Bts7OTnB29vbbLFW15DYNbZu3YopU6bgyy+/xLBhw8wZZo2Mjf/q1as4cOAAUlNT8cILLwCQSUoIAScnJyQmJuJvf/ubTcYOAP7+/mjbti08PT2120JCQiCEwLlz59C5c2ezxlxVQ+KPi4vDkCFD8MorrwAAevfujWbNmiEiIgJvv/22Tfd+2MrfrK1iHmQetETsAPOgNdnK36ytYh60Th605xwI2HceVFoOBEz3N8se7Dq4uLggNDQUSUlJOtuTkpIwePBgg68JDw/Xa5+YmIiwsDA4OzubLdbqGhI7IK9UPv300/j888+tes+EsfF7eHjg8OHDSEtL0z6ioqLQtWtXpKWlYeDAgZYKvUG/+yFDhuDChQu4du2adtuJEyfg4OCAgIAAs8ZbXUPiLy4uhoODbkpxdHQEUHn1z1bZyt+srWIeZB5sCOZBiXmwaWAetE4etOccCNh3HlRaDgRM+Ddr1JRoCqWZon79+vUiPT1dzJo1SzRr1kycPn1aCCHEnDlzxMSJE7XtNVO8x8TEiPT0dLF+/XqrL8tQ39g///xz4eTkJFatWiVycnK0jytXrlg89obEX501Z440NvarV6+KgIAA8eijj4qjR4+KXbt2ic6dO4upU6faRfyffPKJcHJyEqtXrxanTp0Su3fvFmFhYWLAgAEWj/3q1asiNTVVpKamCgBi2bJlIjU1VbushC3/zdoq5kHmwYZgHmQebEqYB62TB+05Bwph33nQnnOgENbLgyyw62nVqlUiKChIuLi4iP79+4tdu3Zpn5s0aZIYOnSoTvudO3eKfv36CRcXF9G+fXuxZs0aC0dcyZjYhw4dKgDoPSZNmmT5wP+fsb/7qqydVI2NPSMjQwwbNky4ubmJgIAAERsbK4qLiy0cdSVj41+xYoXo3r27cHNzE/7+/mL8+PHi3LlzFo5aiF9++aXWz7Gt/83aKubBSZYP/P8xDzIPGot50DyYBydZPnBh3zlQCPvOg/aaA4WwXh5UCWEH/fVERERERERENo73YBMRERERERGZAAtsIiIiIiIiIhNggU1ERERERERkAiywiYiIiIiIiEyABTYRERERERGRCbDAJiIiIiIiIjIBFthEREREREREJsACm4iIiIiIiMgEWGA3EUIIPPvss2jZsiVUKhXS0tJw1113YdasWbW+rn379li+fLlFYiRdKpUK3377LQDg9OnT2n+3xpo4cSIWL15s1Gvi4+Ph5eXV6Pc2p6effhqjR4+uV9u8vDy0atUK58+fN29QZHXMffbHlnJfXXbu3AmVSoUrV66YdL+mUJ/Pucbhw4cREBCA69evmzcoslvMpfbHnnKpsaoem12e0wkyq5ycHPHCCy+I4OBg4eLiIgICAsT9998v/vvf/5r0fRISEoSzs7PYs2ePyMnJEbdu3RIFBQWiqKio1tcFBQWJDz74wKSxkK4FCxaIPn366G3PyckRN2/eFEIIkZWVJQCI1NTURr3XH3/8IW677TaD/+6bNm0SDg4O4rnnntN77pNPPhGenp6Nem9z7/PKlSvi8uXL9W4fExMjpkyZYrL3J+Mw95G1c9/QoUMFAL2HoRxYk5KSEpGTkyMqKirqbPvLL78IAEblqcaoz+e8qocffli89dZbZoyIzIG5lKyVSzX7rO2xYMGCGvfVmJgAiG+++Ub7s72d0zlZuJ5XlNOnT2PIkCHw8vLCe++9h969e+PWrVvYvn07pk+fjmPHjpnsvU6dOgV/f38MHjxYu61ly5Ym239TVFpaChcXF6u9v5+fn8n3+eGHH2Ls2LFo0aKF3nMbNmzA7NmzsWbNGixbtgzu7u4mf39zKC8vh0qlgqenp1Gve+aZZzBgwAD8/e9/x2233Wam6MgQ5j7bpqTcN23aNCxatEhnmzG5z8XFxSzxmoKxn/NnnnkGUVFRmDt3LhwdHc0UFZkSc6lta+q51N3dHTk5Odrnli5dip9++gn//e9/tduaN29u8hgMsbtzOmtX+E3ZyJEjRdu2bcW1a9f0nqt6hfvMmTPiwQcfFM2aNRMtWrQQY8eOFbm5udrnNVeuNm7cKIKCgoSHh4cYN26c9qripEmTdK4mBQUFCSHk1fuZM2dq9/PXX3+J+++/X7i6uor27duLzz77TO/K45UrV8S0adNEq1atRIsWLcTdd98t0tLS6h2LEEKUl5eLd999V3Ts2FG4uLiIwMBA8fbbb2ufP3funHjssceEl5eXaNmypXjwwQdFVlZWjb9HTa/ADz/8IHr37i3UarUYMGCAOHTokE67PXv2iIiICOHq6ioCAgLEiy++qPO7DwoKEm+99ZaYNGmS8PDwEE899ZQQQojdu3eLO++8U7i5uQkvLy8RGRkpLl26JIQQoqKiQixZskQEBwcLV1dX0bt3b/Hll1/qxfbf//5XhIaGCjc3NxEeHi6OHTsmhJC9uKh2te+TTz4RQuhenTN0le/o0aNi5MiRolmzZqJ169ZiwoQJ4uLFizX+nsrLy4WXl5f44Ycf9J7LysoSbm5u4sqVK2LgwIHiX//6l87zhnqbv/vuO9G/f3+hVqtFcHCwePPNN8WtW7e0z7///vuiZ8+ewt3dXQQEBIjnn39eXL16Vef3AgNXOS9duiQmTpwovLy8hJubm7j33nvFiRMn9GL5/vvvRUhIiHB0dBSZmZli0qRJ4qGHHtI53to+Z0II0b59e7F+/foaf2dkHsx9zH22kPuqfw6q07z35s2bRXh4uFCr1aJ79+7il19+0TtOzef29OnT4v777xdeXl7C3d1ddO/eXfz4448Ge3omTZpk1O/yp59+En379hWurq7i7rvvFn/99ZdISEgQ3bp1Ey1atBCPP/64uH79eo3Hd/PmTfHKK6+IgIAA4eLiIjp16iQ+/vhj7fMlJSVCrVaLHTt21Pg7IdvCXMpcagu5VKN6T3p5eblYuHChaNu2rXBxcRF9+vQR//nPf7TPV4976NChQggh9u/fL4YNGya8vb2Fh4eHuPPOO0VKSorOe1U9Ng17OqdjgW0mBQUFQqVSicWLF9farqKiQvTr10/ccccd4sCBA+K3334T/fv3134IhZAf6ObNm4tHHnlEHD58WPz666/Cz89PzJs3Twghk9miRYtEQECAyMnJEXl5eUII/cQ4cuRI0bNnT7F3715x4MABMXjwYOHm5qZNjBUVFWLIkCHigQceEP/73//EiRMnxEsvvSS8vb1FQUFBvWIRQojZs2eL2267TcTHx4s///xTJCcni3Xr1gkhhLh+/bro3LmzmDx5sjh06JBIT08XTz75pOjatasoKSkx+DvSJJ+QkBCRmJgoDh06JO6//37Rvn17UVpaKoQQ4tChQ6J58+bigw8+ECdOnBB79uwR/fr1E08//bR2P5pE/ve//12cPHlSnDx5UqSmpgq1Wi2ef/55kZaWJo4cOSJWrlypTUDz5s0T3bp1Ez/99JM4deqU+OSTT4RarRY7d+7UiW3gwIFi586d4ujRoyIiIkIMHjxYCCFEcXGxeOmll0SPHj1ETk6OyMnJEcXFxUKI2hPjhQsXhI+Pj5g7d67IyMgQBw8eFMOHDxd33313jZ+l1NRUAUDnP1WN119/XTz66KNCCCFWrlwp7rzzTp3nqxfYP/30k/Dw8BDx8fHi1KlTIjExUbRv3168+eab2jYffPCB+Pnnn0VmZqbYsWOH6Nq1q3j++eeFEPJEbvny5cLDw0N73Jri+8EHHxQhISHi119/FWlpaWLEiBGiU6dO2n/LTz75RDg7O4vBgweLPXv2iGPHjolr167pFdi1fc40HnvsMZ3PAJkfcx9znxC2kfvqW2AHBASIr776SqSnp4upU6eKFi1aiPz8fJ3j1BQz9913nxg+fLg4dOiQOHXqlPj+++/Frl27RFlZmdi2bZsAII4fPy5ycnLElStXjPpdDho0SOzevVscPHhQdOrUSQwdOlRERkaKgwcPil9//VV4e3uLd999t8bje+yxx0RgYKD4+uuvxalTp8R///tfsWXLFp1jHjBggE4eJ9vFXMpcKoRt5NKqn6OqBfayZcuEh4eH2Lx5szh27JiYPXu2cHZ21naa7N+/X3vxICcnR/sZ2LFjh/j0009Fenq6SE9PF1OmTBG+vr46F1kMFdj2dE7HAttMfv/9dwFAfP3117W2S0xMFI6OjiI7O1u77ejRowKA2L9/vxBCfqDd3d11PnivvPKKGDhwoPbnDz74QHvFUaNqYjx+/LgAIH777Tft8xkZGQKANjHu2LFDeHh4aO/n0OjYsaP45z//Wa9YioqKhFqt1it0NNavXy+6du2qcz9bSUmJcHNzE9u3bzf4Gk3yqXqiUFBQINzc3MTWrVuFEEJMnDhRPPvsszqvS05OFg4ODuLGjRtCCJkYR48erdPmiSeeEEOGDDH4vteuXROurq5i7969OtunTJkinnjiCZ3Yqt4L9eOPPwoA2vet6d6Z2hLj66+/LiIjI3Xanz17VnvyZsg333wjHB0d9e4VLC8vF4GBgeLbb78VQghx8eJF4ezsLE6ePKltU73AjoiI0PtP/dNPPxX+/v4G31sIIb744gvh7e1d4z6FEOLEiRMCgNizZ492W35+vnBzcxNffPGF9nUAdK54CyF0Cuy6PmcaMTEx4q677qq1DZkWcx9zn63kvqFDhwpnZ2fRrFkznUd8fLzOe1ctWm/duiUCAgLEkiVLdI5TU2D36tWrxgLV0D3YDf1dxsXFCQDi1KlT2m3PPfecGDFihM7xVf+cJyUlGYxN4+GHH7abE1SlYy5lLrWVXKpRPY42bdqId955R6fN7bffLqKjow3GVJOysjLRokUL8f333xs8Ng17OqfjPdhmIoQAIGfBq01GRgYCAwMRGBio3da9e3d4eXkhIyMDt99+OwA5S2PVe8v8/f2Rl5dX73gyMjLg5OSEsLAw7bZu3brpzBydkpKCa9euwdvbW+e1N27cwKlTp7Q/1xZLRkYGSkpKcM899xiMIyUlBX/++afefXI3b97UeQ9DwsPDtd+3bNkSXbt2RUZGhs5+N23apG0jhEBFRQWysrIQEhICADrHDwBpaWkYO3aswfdLT0/HzZs3MXz4cJ3tpaWl6Nevn8623r17a7/39/cHIGc9bNeuXa3HVJOUlBT88ssvBu9tOXXqFLp06aK3/caNG1Cr1XqfucTERFy/fh0jR44EAPj4+CAyMhIbNmyocZbIlJQU/O9//8M777yj3VZeXo6bN2+iuLgY7u7u+OWXX7B48WKkp6ejqKgIZWVluHnzJq5fv45mzZoZ3K/mczhw4EDtNm9vb51/S0De91j1d2poP7V9zjTc3NxQXFxcaxsyLeY+5j5byX0AMH78eMyfP19nW+vWrXV+rvr71XxWquajqmbMmIHnn38eiYmJGDZsGMaMGVNrrmro79LX1xfu7u7o0KGDzrb9+/cbfJ+0tDQ4Ojpi6NChNcYCMCfaE+ZS5lJbyqXVFRUV4cKFCxgyZIjO9iFDhuCPP/6o9bV5eXl444038PPPP+Ovv/5CeXk5iouLkZ2dXevr7Cl/scA2k86dO0OlUiEjI6PWpYWEEAY/yNW3Ozs76zyvUqlQUVFR73jqk6grKirg7++PnTt36j1XNYHWFoubm1utcVRUVCA0NFQngWm0atWq1tcaojmeiooKPPfcc5gxY4Zem6rJqXrhV1u8mmP68ccf0bZtW53n1Gq1zs9VfydVY2qoiooKPPDAA1iyZInec5rEW52Pjw+Ki4v1Jt3YsGEDLl26pDOxT0VFBVJTU/HWW28ZnOymoqICCxcuxCOPPKL3nKurK86cOYNRo0YhKioKb731Flq2bIndu3djypQpuHXrVo3HpfkcGtpe9bPp5uZW62e1rs+ZxqVLlxr0uaKGY+6r+T2Y++pmytwHAJ6enujUqZPRcdT0eZk6dSpGjBiBH3/8EYmJiYiLi8P777+PF1980WD7xvwujfnsG5MTO3bsWK+2ZF3MpTW/B3Np3UydS2tS/fNQ0+exqqeffhoXL17E8uXLERQUBLVajfDwcJSWltb6Ons6p+M62GbSsmVLjBgxAqtWrTK47qRmTc3u3bsjOzsbZ8+e1T6Xnp6OwsJC7dUyUwgJCUFZWRkOHDig3Xb8+HGdtT379++P3NxcODk5oVOnTjoPHx+fer1P586d4ebmhh07dhh8vn///jh58iRat26t9x51zRL922+/ab+/fPkyTpw4gW7dumn3e/ToUb19durUqdYk0bt37xpj7d69O9RqNbKzs/X2WfVKcV1cXFxQXl5e7/ZVj6d9+/Z6711T73Dfvn0ByM+PRkFBAf79739jy5YtSEtL03lcu3YN//nPf2p8/+PHjxv8fTo4OODAgQMoKyvD+++/j0GDBqFLly64cOFCncfdvXt3lJWV4ffff9eJ8cSJE0Z93uv6nGkcOXJE7yoxmRdzH3OfhjVznzGq/n7LysqQkpKi/f0aEhgYiKioKHz99dd46aWXsG7dOgDQ/r6rHrOpfpd16dWrFyoqKrBr165a2zEn2g/mUuZSDVvMpR4eHmjTpg12796ts33v3r3az52hnAgAycnJmDFjBkaNGoUePXpArVYjPz+/zve0p/zFAtuMVq9ejfLycgwYMADbtm3DyZMnkZGRgRUrVmiHqQwbNgy9e/fG+PHjcfDgQezfvx9PPfUUhg4dqjcMpTG6du2Ke++9F9OmTcPvv/+OlJQUTJ06VefK27BhwxAeHo7Ro0dj+/btOH36NPbu3YvXXntNJ6HWxtXVFa+++ipmz56NjRs34tSpU/jtt9+wfv16AHK4no+PDx566CEkJycjKysLu3btwsyZM3Hu3Lla971o0SLs2LEDR44cwdNPPw0fHx/tVd1XX30V+/btw/Tp05GWloaTJ0/iu+++q7FXQWPu3Ln43//+h+joaBw6dAjHjh3DmjVrkJ+fjxYtWuDll19GTEwM/vWvf+HUqVNITU3FqlWr8K9//atevw9ADoXKyspCWloa8vPzUVJSUudrpk+fjkuXLuGJJ57A/v37kZmZicTEREyePLnGJNuqVSv0799fJ9l9+umn8Pb2xtixY9GzZ0/to3fv3rj//vu1/y7VvfHGG9i4cSPefPNNHD16FBkZGdi6dStee+01AEDHjh1RVlaGlStXIjMzE59++inWrl2rd9zXrl3Djh07kJ+fj+LiYnTu3BkPPfQQpk2bht27d+OPP/7AhAkT0LZtWzz00EP1/ZXW+TkDgOLiYqSkpCAyMrLe+yXTYO5j7gOsm/s0iouLkZubq/O4fPmyTptVq1bhm2++wbFjxzB9+nRcvnwZkydPNvhes2bNwvbt25GVlYWDBw/i559/1p5MBgUFQaVS4YcffsDFixdx7do1k/0u69K+fXtMmjQJkydPxrfffousrCzs3LkTX3zxhbbN6dOncf78eQwbNsxk70vmxVzKXArYRi415JVXXsGSJUuwdetWHD9+HHPmzEFaWhpmzpwJQN6O4+bmhp9++gl//fUXCgsLAQCdOnXCp59+ioyMDPz+++8YP358nSMX7O6cztI3fSvNhQsXxPTp00VQUJBwcXERbdu2FQ8++KDOMiD1XV6hquqTUdQ1OYUQckH6++67T6jVatGuXTvtEglVl1coKioSL774omjTpo1wdnYWgYGBYvz48drJM+oTS3l5uXj77bdFUFCQcHZ2Fu3atdOZMCsnJ0c89dRTwsfHR6jVatGhQwcxbdo0UVhYaPB3qJkA4vvvvxc9evQQLi4u4vbbb9ebBGv//v1i+PDhonnz5qJZs2aid+/eOpMvVD9WjZ07d4rBgwcLtVotvLy8xIgRI7ST1FRUVIh//OMfomvXrsLZ2Vm0atVKjBgxQuzatUsntqqT2mhmYdQsGXHz5k0xZswY4eXlZdTyCidOnBAPP/ywdjmrbt26iVmzZtU4+YQQQqxdu1YMGjRI+3OvXr20k01Ut23bNuHk5CRyc3MNTkj2008/aWcI9fDwEAMGDBAfffSR9vlly5YJf39/4ebmJkaMGCE2btyo97uIiooS3t7eBpfp8vT01L7W0DJd1Rlapqu2z9nnn38uunbtWuPvisyLuY+5z5q5Twj5OUC1ZWIAaCcK07z3559/LgYOHChcXFxESEiIzjJW1Y/zhRdeEB07dhRqtVq0atVKTJw4UTvjuBBCLFq0SPj5+QmVSqWzTJexv0tDebD6Z7D65/zGjRsiJiZG+Pv7a5fp2rBhg/b5xYsX60ySRvaBuZS51Nq5VKO2ZbqcnZ31lukSQoh169aJwMBA4eDgoJ3Z/uDBgyIsLEyo1WrRuXNn8eWXX+r9bqsemxD2d06nEqKGmyKJbMTOnTtx99134/Llyzr38JC+mzdvomvXrtiyZYvOZB5KNGDAAMyaNQtPPvmktUMhahDmvvprSO47ffo0goODkZqaqh0a2VSVlJSgc+fO2Lx5s96kRERNHXNp/dnqeaS9ndNxiDhRE+Lq6oqNGzfW616WpiwvLw+PPvoonnjiCWuHQkQWwNxXuzNnzmD+/PksromoVraYS+3xnI6ziBM1MXUt06IErVu3xuzZs60dBhFZEHNfzbp06WJwWR4ioupsLZfa4zkdh4gTERERERERmQCHiBMRERERERGZAAtsIiIiIiIiIhNggU1ERERERERkAiywiYiIiIiIiEyABTYRERERERGRCbDAJiIiIiIiIjIBFthEREREREREJsACm4iIiIiIiMgEWGATERERERERmcD/AeBe+RVvtmG3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyHUlEQVR4nOzdeVxU5f4H8A+yo4i4sSggaAVJhjJmaGgLYerttmjXzExzuRGaC5W5leZGLvnjmiJXQs3rkre028Y1SAUtsVygLMlMcQ0uYQYixvr8/jjOcpgZGJaZMwOf9+t1XnPOM88553tG5ni+85zzPHZCCAEiIiIiIiIianZtlA6AiIiIiIiIqKVi0k1ERERERERkJky6iYiIiIiIiMyESTcRERERERGRmTDpJiIiIiIiIjITJt1EREREREREZsKkm4iIiIiIiMhMmHQTERERERERmYmD0gG0ZDU1Nfj111/h7u4OOzs7pcMhomYmhMD169fh6+uLNm34G6Yaz31ELRvPfYbx3EfUsjXl3Mek24x+/fVX+Pn5KR0GEZnZpUuX0L17d6XDsBo89xG1Djz3yfHcR9Q6NObcx6TbjNzd3QFI/zDt27dXOBoiam4lJSXw8/PTfNdJwnMfUcvGc59hPPcRtWxNOfcx6TYj9a1F7du358mXqAXjbYRyPPcRtQ4898nx3EfUOjTm3McHcYiIiIiIiIjMhEk3ERERERERkZkw6SYiIiIiIiIyEz7TbQWqq6tRWVmpdBjUyjg6OsLe3l7pMIiIiIiIWjQm3QoSQqCgoAB//PGH0qFQK9WhQwd4e3uzMxwiIiIiIjNh0q0gdcLdtWtXuLm5MfEhixFCoKysDIWFhQAAHx8fhSMiIiIiImqZmHQrpLq6WpNwd+rUSelwqBVydXUFABQWFqJr16681ZyIiIiIyAzYkZpC1M9wu7m5KRwJtWbqvz/2KUBEREREZB5MuhXGW8pJSfz7q+X0aWDPHqWjILJNZ87w+0NErVt1NZCRARw7pnQkZGWYdBMRqQUHAyNHAunpSkdCZDuEAKZNA26/Xfr+2NlJ059/Kh0ZEZF5bdoEhIZqz3sODsADDwD9+wM//2x4nU8/BVatsmycpDgm3WR2dnZ2+M9//qP4Nizp/PnzsLOzQ05OjlVuj+rBX6iJDKuqApYuBT78EDh7FvD3B9q0Adav16/r6gqkpAD5+dJyTY2UoBMR2aKSEu05rKBASrInTQJ+/NFw/TvukOq88Ya27LffgL/+FZg9G/jsM/PHTFaDSTc12IQJE2BnZ6c3/fLLLwbr5+fnY9iwYSZte9GiRQgLC2vSNloiPz8/5OfnIzQ0FACQkZEBOzs7DjdHROZRXAxcviwv++MPwNEReP114KmngF69gEuX6t7O5MmAr6904WlvLyXoZWX17/+DD4DwcID9TRCRNRg1CvDwkM5hdnZAQ0Z9WbJE2xLetau2/NFHgXfeMb7ejRvASy8BBw82Pm6yGoon3YmJiQgMDISLiwvCw8Nx6NChOutnZmYiPDwcLi4uCAoKQlJSkuz9PXv2QKVSoUOHDmjbti3CwsLwr3/9S1anR48eBpPGqVOnauoYSizvvffe5jtwG/fII48gPz9fNgUGBsrqVFRUAAC8vb3h7OzcpP01xzZsmb29Pby9veHgwAEHLILPulNrlp0NdOgA+PlJ34WnnpJePT3rXu/gQeD774GTJ+uu17YtcPMmUFSk/15ZmZRw/+1vwIkTgJNTow+DiKjJ1D8a7t5df92zZ6WWcCGkHxlNMX068NNP+uXV1YC7O7BuHTBkCHD9esPiJqujaNK9a9cuzJw5E/Pnz0d2djYiIyMxbNgwXLx40WD9vLw8DB8+HJGRkcjOzsa8efMwffp07Nb5InTs2BHz589HVlYWvv/+ezz//PN4/vnn8cUXX2jqHD16VJYspt96fvOpp56S7a92YpmammqGT8E2OTs7w9vbWzY99NBDmDZtGuLi4tC5c2c8/PDDAPRvDb98+TKefvppdOzYEW3btoVKpcI333yDLVu24M0338R3332n+aFjy5YtBrdx8uRJPPjgg3B1dUWnTp3w97//HaWlpZr3J0yYgMcffxyrV6+Gj48POnXqhKlTp5rUS/fcuXMN/sDSp08fLFy4ULO8efNmhISEwMXFBcHBwUhMTKxzu5mZmbjnnnvg7OwMHx8fzJkzB1VVVZr3a2pqsGLFCvTq1QvOzs7w9/fHsmXLAMhvLz9//jweeOABAICnpyfs7OwwYcIEbN26FZ06dUJ5eblsvyNHjsRzzz1X73ETUStXXi5dXPbrJy//8EPj6+zbJ7XGVFQAkZHAXXdJzzcKAQwebHw9NzegSxdpf+rHZpKSpIT8b3+T11W3EDk6Ar//rl2uq4WIiKixhAB27AAGDtQ+HmNIbKw2yRYCCArSvldVJZWtW1f//kJCAHXuI4T22XDdx3EiIxt3LGQ9hILuueceERMTIysLDg4Wc+bMMVh/9uzZIjg4WFb2wgsviHvvvbfO/fTt21csWLDA6PszZswQPXv2FDU1NZqy8ePHi8cee6yeI6hbcXGxACCKi4v13rt586Y4deqUuHnzprawpkaI0lLLTzrHbQpjn82QIUNEu3btxKuvvip++uknkZubK4QQAoD46KOPhBBCXL9+XQQFBYnIyEhx6NAhcebMGbFr1y5x+PBhUVZWJl5++WXRu3dvkZ+fL/Lz80VZWZneNm7cuCF8fX3Fk08+KU6ePCn27dsnAgMDxfjx42Uxtm/fXsTExIjc3Fzx6aefCjc3N7Fx48Z6j+/kyZMCgPjll180ZT/88IMAIE6fPi2EEGLjxo3Cx8dH7N69W5w7d07s3r1bdOzYUWzZskUIIUReXp4AILKzs4UQQly+fFm4ubmJ2NhYkZubKz766CPRuXNnsXDhQs0+Zs+eLTw9PcWWLVvEL7/8Ig4dOiSSk5P1tldVVSV2796tiSc/P1/88ccfoqysTHh4eIh///vfmm3+9ttvwsnJSezfv9/gsRr8O2zN1P91xsebVL2u73hrxs/FzM6dE+L6dSEyM4X47bfm227PnrqXj4anAQMavt0bN4S4dEmI8nLj2xWi/n0bmq5ebb7jJ5PxO24YP5cWwtj5pmtXIT7/XIiSkoZvMzlZ2sabbwqRny/EXXfpb799+7rPdz/+KE3Ned6nBmnKd1yxpLu8vFzY29uLPXv2yMqnT58uBg8ebHCdyMhIMX36dFnZnj17hIODg6ioqNCrX1NTI7788kvh5uYm0tLSjMbRqVMnsWzZMln5+PHjhYeHh+jSpYu47bbbxOTJk8X//ve/hhxiw5Pu0tLGXXQ0dSotbdBxjR8/Xtjb24u2bdtqplGjRokhQ4aIsLAwvfq6CfM///lP4e7uLq4auVBauHChuPvuu+vcxsaNG4Wnp6co1Yn7888/F23atBEFBQWaGAMCAkRVVZWmzlNPPSVGjx5t0jH26dNHLF68WLM8d+5c0b9/f82yn5+f2LFjh2ydJUuWiIiICCGEftI9b948cccdd8h+2Fm/fr1o166dqK6uFiUlJcLZ2VmTZNdWe3sHDhwQAMS1a9dk9V588UUxbNgwzXJCQoIICgqS7VcXk+5a1N+Jt94yqTovsAzj59KMqqqE+Oyzus/hOj8QytZ7910hap0jjNqwQb7NAwek8ldekZYXLZK22VRvvGHa/0u+vkJERJj+/9jly02PjUzG77hh/FxagH/8Q//8kppqnn1lZNR/brvnHuPvubsLcatxiiyjKd9xxW4vLyoqQnV1Nby8vGTlXl5eKCgoMLhOQUGBwfpVVVUo0nk2rLi4GO3atYOTkxNGjBiBd955R3Orc23/+c9/8Mcff2DChAmy8mHDhmH79u3Yv38/3n77bRw9ehQPPvig3q27usrLy1FSUiKbWqoHHngAOTk5mmnt2rUAAJVKVed6OTk56Nu3Lzp27Njofefm5uLuu+9G27ZtNWWDBg1CTU0NTp8+rSnr3bs37HWeqfHx8UFhYaFJ+xg7diy2b98OABBCYOfOnRg7diwA4LfffsOlS5cwadIktGvXTjMtXboUZ8+eNRpzRESEbFzsQYMGobS0FJcvX0Zubi7Ky8vx0EMPmf5BGDBlyhSkpaXhypUrAKRb4NX9ExCRlSotBVJTpeec1YqKgL//XbrF8C9/qXv9Xr20t1zrDlszebL8OWwhgO3bpWema9d/8UVtvT//BO6/X5pftkwa9mbhQtOfUazLm29qLxmNdagmBHDlivSZmKp7d+k4rl5teoxE1DpVVwMzZmiXn3tO6mHcXB35Dhli/Lbx336TRnz45hvj61+/DqxYIc3/8QeQliY9JkRWSfFemWonA0KIOhMEQ/Vrl7u7uyMnJwelpaXYt28f4uLiEBQUhPvVFxE6UlJSMGzYMPj6+srKR48erZkPDQ2FSqVCQEAAPv/8czz55JMGY4uPj8ebb75pNPZ6ublJF1+W5ubW4FXatm2LXr16GSyvi6ura4P3VVtdfyO65Y6Ojnrv1dTUmLSPZ555BnPmzMGJEydw8+ZNXLp0CU8//TQAaLaRnJyMAQMGyNazN3JRaihm3b/d5vhcAKBv3764++67sXXrVgwdOhQnT57Ep59+2izbJqJmlp4OREfrl0dHSxdPxgQGAnl5pu+nIT+6/e9/gG6nlU5OwG23mb5+Q7i6AosXy4fT0X1+skMHKQEHpGfGBw2SLlJnzQIuXJCWa7v3XuDMGWleCHaKSESmuXoV6NxZu3zkCFDrGs8sDh4E4uOBefOk5Vde0R/DOzsb6NvX8PpvvilNutTnTbIqirV0d+7cGfb29nqt2oWFhXqt2Wre3t4G6zs4OKBTp06asjZt2qBXr14ICwvDyy+/jFGjRiE+Pl5vexcuXMCXX36JyZMn1xuvj48PAgICcEb9n7kBc+fORXFxsWa6VN9QKrXZ2UmdyFh6suBFSZ8+fZCTk4Pff//d4PtOTk6orq6ucxt33nkncnJycOPGDU3Z119/jTZt2uD2229vlji7d++OwYMHY/v27di+fTuioqI0f5deXl7o1q0bzp07h169esmm2j2468Z8+PBhTaINAIcPH4a7uzu6deuG2267Da6urti3b59J8Tnd6tHX0Gc1efJkbN68GZs2bUJUVBT8/PwaevhkJZQY3SE+Ph79+/eHu7s7unbtiscff1x2Bwk1UVkZkJUF9O5tOOEG9BPuGTOAo0e1LcTnzmnnTemkx1Q//SQfzsYSXn8d2LhRmi8sBLy9DddzcpI+g9WrgW7dpA6O/v1v/c/wl1+k/9PuvFMa2ufYMfPGT0SWVVMjTfn52lbdmhrTEs0ff5Q6bPzuO+Dxx6VOH9V3++gm3G++aZmEW23uXOAf/5B+SHzpJf33Q0O18R0+XP/2mHRbJcWSbicnJ4SHh2t6DldLT0/HwIEDDa4TERGhVz8tLQ0qlUqvVVOXEMLgbeGbN29G165dMWLEiHrjvXr1Ki5dugSfOsblc3Z2Rvv27WUTyY0ZMwbe3t54/PHH8fXXX+PcuXPYvXs3srKyAEjDueXl5SEnJwdFRUUG/93Gjh0LFxcXjB8/Hj/88AMOHDiAl156CePGjTP6g01jjB07Fu+//z4++OADPPvss7L3Fi1ahPj4ePzjH//Azz//jJMnT2Lz5s1Ys2aNwW3Fxsbi0qVLeOmll/DTTz/h448/xsKFCxEXF4c2bdrAxcUFr732GmbPno2tW7fi7NmzOHLkCFJSUgxuLyAgAHZ2dvjss8/w22+/yXpuHzt2LK5cuYLk5GRMnDix2T6PVsUKWseUGt0hMzMTU6dOxZEjR5Ceno6qqipER0fLfuSiRigslHrfbttWShhPndK+16WLfksFAHzxhXTxlJAAGHt0Z+pUqU51tdQarPvEn6G/laeeAhYskJL/mhopDvUF6x13NMuhNtiUKdL+u3Rp2HpPPaX9jD75RP5ebq702r9/88RIRMpS37liby9Nvr6Ai4u2TD1+tu51oxBSy3G/ftJ7oaHSozRhYcDHH0tJuCGvvWaRQ5KZPh346ivA31//PQcH4Px56RGkiAjpuK5dM76tTZuA+fMND0VGymnGZ8sb7P333xeOjo4iJSVFnDp1SsycOVO0bdtWnD9/XgghxJw5c8S4ceM09c+dOyfc3NzErFmzxKlTp0RKSopwdHQUH374oabO8uXLRVpamjh79qzIzc0Vb7/9tnBwcNDroKq6ulr4+/uL1157TS+u69evi5dfflkcPnxY5OXliQMHDoiIiAjRrVs3UdKAHgsb3JGajair9/IZM2bolUOnEzQhhDh//rwYOXKkaN++vXBzcxMqlUp88803Qggh/vzzTzFy5EjRoUMHAUBs3rzZ4Da+//578cADDwgXFxfRsWNHMWXKFHH9+vU6Y5wxY4YYMmSIycd57do14ezsLNzc3GTbVtu+fbsICwsTTk5OwtPTUwwePFjTMWDtjs+EECIjI0P0799fODk5CW9vb/Haa6+JyspKzfvV1dVi6dKlIiAgQDg6Ogp/f3+xfPlyo9tbvHix8Pb2FnZ2drKe24UQYty4caJjx47izz//rPMYbfnv0CzU6cqKFSZVN2enOdYyukNhYaEAIDIzM02M3AY7Eyorkzq0UXcU9vvvQixeLMQPPzRsO7//LsTHHwvxzTdCbN0qxM8/C3H0aMM6AKuuFuJ//2vwqBJ1Htv8+UL8+mvzbM+aGfuM33hD6chaHJv7jlsIP5dGKi+Xzn3l5Ybfz801X2fCulO7dpY97qYKCJDi7t5diIEDDR9TrQ6rqWlssvdytfXr14uAgADh5OQk+vXrJ7uwGz9+vF6SlJGRIfr27SucnJxEjx49xIYNG2Tvz58/X/Tq1Uu4uLgIT09PERERId5//329/X7xxRcC0A4BpausrExER0eLLl26aJKf8ePHi4sXLzbo2Fpq0k3WLyoqSrz00kv11uPfYS1WknRby+gOQghx5swZAUCcPHnS5Pit5sKzpka6kKusFOLPP6Whq9Tlzzxj2kXYwoVCLF0qJa3V1dptp6c3/sLu1VeFWLZMCAP/LtQEdX3m6h/MN2+Wlh94QNFQbZ3VfMetDD+XBqqpEeKTT+Tf1TVrhFiyRIi8PGkUheZOrCdOFOK++4Q4flzax6lTzfcjp6WVlEhDiKmZ8uNuTY0Qy5cLodOQRaZryndc8Y7UYmNjERsba/C9LVu26JUNGTIEJ06cMLq9pUuXYunSpfXuNzo6GsLIMw+urq6y2y2JbMXvv/+OtLQ07N+/H+ua81nP1kbh28vNMbqD+tGY4uJidOvWDeXl5bC3t0diYqLR0R2EEIiLi8N9992H0NBQo/GWl5fLHgVRfOSGvXubr7dZ9W3fCxY0fVu7dgF/+1vTt0OGnToFLFkCPPSQ9Gz3gQPann9rP+514ABQWSnd8k9Elvf998Ddd+uXx8VJr6+/bni9qirpdvLCQmDlSmD5cqnPB6D+/7tv3pRuSW8p3N2l/ivUjhyROpOsrXt3aJ7zfvttbadtZ88CQUHmj5MAKPhMN5FSDh06JBvqq/Zky/r164cXXngBK1aswB1KPZ9JzcacozscPXoUy5YtQ1xcHDIyMgxub9q0afj++++xc+fOOuOMj4+Hh4eHZlKk876ff5Z6Ax84sHEJt+4zfLffrh2GpaHeeAMICQHUnXv27i1d6AnBhNvcQkKAHTuASZOk3oB37aq7vpH+EYjITDIztR2XGUq465KbK51H1aPEdO0qdayoTriB+tu5W1LCbciAAcCoUdJ8Zqb8vaAgqf+OV1/VlvXsKf0ASRbBpJtaHZVKJRtjvPZky86fP4/i4mK88sorSodCTWANozu89NJL+OSTT3DgwAF07969znibPHJDUxQXAz16SJ2ARUdLPYPrCg+XOtx59VXgmWe05UOHyi/G3npLO3/6NDB7NrBtm9ST7K+/6vcoO326NI5q7Yu6N9+UWlyLiqTlH35o+Rd61iogAPjPf4y/b2DYS7IOHLnBhtXUSMNg2dlJ5+U//5QSZjs7wMDQvejbV/vD5DffSB0k6g4jePmy9F5wsMUOwaZ98IH0eQ0eDHz9tbY8L0/7g4WuBx+0XGytHJNuanVcXV31hvrSnaiVOn9eO6/w7eVKju4ghMC0adOwZ88e7N+/3+gweLoUGbnhzTelf6cOHaQxm3X5+ko92AohDRl15Yp0G+L27drkeO/e+vcxdiywdi3g4yO96ibX//iHfIgZsk6PPSb9e23davj9O+6QLvjJanDkBgu7cgVYtgxwdZV+iNL53Or16afSeXjcOGlIPw8PKbEbMkR6/+efpe3q3gKt5uws/aB54oT2h8l77pGGAnzzTWlEBiGkIQKpcYxcL+ixs9OO+EDm06xPl5OMKR2plZWVKRAZkaSsrIwdqan16aNNqVatMmkVc3aao9ToDi+++KLw8PAQGRkZIj8/XzM15Fxlts+lrEzq3XbWLP0bB++9V4jdu4U4cqR590ktzzff6P/9UINw5AbDrLYjNfXf/PLl2r/5pUvr73RsyBDpNTVViKIibWeSTelNPDdX0Y+i1fnPf/T/DXJyhDh5Ur88P1/paK2eTXek1lqpW57Kysrg6uqqcDTUWpWVlQFAnS2hrcb33ysdgczo0aNx9epVLF68GPn5+QgNDUVqaioCAgIAAPn5+bKWn8DAQKSmpmLWrFlYv349fH19sXbtWowcOVJT58aNG4iNjcXly5fh6uqK4OBgbNu2DaNHj9bU2bBhAwDg/lq3AW7evBkTJkww3wEbc+0a0LGj8fefeEJ6ro+dwZCp7rlHGqdX93GiEyeksXxJURUVFTh+/DjmzJkjK4+Ojsbhw4cNrpOVlYXo6GhZ2dChQ5GSkoLKykq9/9+EENi/fz9Onz6NFXX03VBcXAxAaiU3xuo6kaxtxQpA97NUd6AFmNY5pPq54OHDG7bfHj2A7GypM7SMDOC++6S7jdzdG7Ydajr13T7qO/j8/KTn6Wtq9Ov++9/So1NkFky6FWJvb48OHTqgsLAQAODm5lZnB0lEzUkIgbKyMhQWFqJDhw6wN/ScDylOidEdhJFRHSyupgaYMQMw1gv/okXSc388b1JjbNsG6PbIHx4OrF8PGPm+kWXY2sgN8fHxeFM9woFS3nlHP1G6806pbwlTLF8OqFTAoEHSM8C1fsCoU9u20g+jP/8MvPyy1DdGWJg8NrIORUXS30RkpLTcpg3wv/8BKSnaH2NmzGDSbUZMuhXk7e0NAJrEm8jSOnTooPk7JB1M5JT13XfyCzc1Ly/pIuFf/wKefdbiYVEL0ru3vPUHkJ4jZdJtFcw5ckNpaSn27duHuLg4BAUF6d3VA2hHbvjqq6/qjHPu3LmIUw9xBaml22KjN3zwgfEREWon3EOGSMlVaCjw4YdS52UffST9vet+dg8/rL3ZWD281r//DYwZI99e9+5S7//qdXv3Nq2fDFJOp07ahFuta1dg7lzpjoTqaqmsqgpwYHpoDvxUFWRnZwcfHx907doVlZWVSodDrYyjoyNbuMm6FBVJLdjr12vLvLyAkyeBLl0UC4tasJ9/loaIA4Dr15WNhSwycgMAhIWFITc3F/Hx8XpJt3rkhoMHD9Y7coOzszOcnZ1NPbymy8oy3jmWnZ12LGZdNTXa5Fi308CpU43vx84OcHOT5p9+Wpqo5bp2DVB3gHrhgjSUGDU7Jt1WwN7enskPEbU+QkjP1c6dC+j0IqyxaxfHtibzuu02YOdOqSXv5k2gokI+7i9ZlO7IDU888YSmPD09HY899pjBdSIiIvDpp5/Kyho7csNLL72Ejz76CBkZGSaN3GAxQkjDGK5erf/e3/8O/POf2uWrV4HKSukHS961RaZwd5em69elkVz8/QH29dPsmHQTEdXGCxXLqKqSbnus3cI4cCBw4ACTH7IM3U6inJ2B1FRg2DDl4mnl4uLiMG7cOKhUKkRERGDjxo24ePEiYmJiAEi3dF+5cgVbbw0DFxMTg3Xr1iEuLg5TpkxBVlYWUlJSsHPnTs024+PjoVKp0LNnT1RUVCA1NRVbt27VdBwJAFOnTsWOHTvw8ccfw93dXdN67uHhoVyHt0JIifbs2frvRUUBn3wiDcmlS6d1n8hkYWHAoUPS31XPnsDp04bH9aZGY9JNRETKcHSULiZff11anjZN6oinbVtl46LWpfa48vHxTLoVxJEbbikr0z8XurpK/VqwF3Bqbr6+2vmzZ4GCAo6R3szshNV0VdvylJSUwMPDA8XFxWhf+z91IrIuuq3bb78N6HSOYwy/44Y1+HMpK9M+P0ikhEcfBT77TLvMS6M68dxnWLN9Ltu2AePGycvS06VWSCJzmDIFePdd7fKhQ9JQbyTTlO84W7qJiEhZTLhJaR99xGcYSXl//ql/u7iTE1Bayr9PMq99++TLkZHAH38AHh6KhNMStVE6ACIiIiJFOThIPZmrlZYqFwu1Trt26Sfc334LlJcz4SbzCwrSL3vvPcvH0YIx6SYiqo2dhxC1PrrD5Li7Sz1AE5nbn39KjzfpDss1bpz0iEP//srFRa3LJ58AK1fKy06dAl57jT9CNhMm3UREtTnwyRuiVqdNrUuiZ58F+vYFPv5YmXio5bpxA1i/Xkq2a7dunzgB3OqZnchi3NyAV1+VEm21f/5TSsTZI36zYNJNRFRb7YtvImodtmzRzv/739I48o8/Lo3hTdRcysul0RpqKymRfughUkpIiH4HahUVysTSwvDKkoiIiAjQ7zFaTbdnc6Km6tgReOIJ7fIff0i3k3MoMLIGgwfrl/EW8yZj0k1EREQESHe56I5Xq/b995aPhVq2PXukRFsI9hBN1sXQj4+ffmr5OFoYJt1ERLXpjtlNRK2LoQT7hx8sHwcRkRKCg4GDB4HkZG3ZM88oF08LwaSbiIiISK1TJ6CmRmqBXLJEKvvf/5SNiYjIkiIjgcmT5aO5CKFcPC0Ak24iIiIiXeq7XW7ckF6zspSLhYhIKbq3lX/3nXJxtABMuomIauPt5UQEyMdJ5jBORNTaPPKIdp496zcJk24iIiIiQ0JDtfPjx3PoMCJqXdgI0WyYdBMR1Xb1qtIREJE1qN2T+YEDysRBRGQNOHRYozHpJiKqbf58pSMgImvQrh2wd692ecQI4MwZ5eIhIrK0F17Qzr/8snJx2DjFk+7ExEQEBgbCxcUF4eHhOHToUJ31MzMzER4eDhcXFwQFBSEpKUn2/p49e6BSqdChQwe0bdsWYWFh+Ne//iWrs2jRItjZ2ckmb29vWR0hBBYtWgRfX1+4urri/vvvx48//tg8B01ERES2YehQ+fLttwNlZcrEQkRkaStWaOc3blQuDhunaNK9a9cuzJw5E/Pnz0d2djYiIyMxbNgwXLx40WD9vLw8DB8+HJGRkcjOzsa8efMwffp07N69W1OnY8eOmD9/PrKysvD999/j+eefx/PPP48vvvhCtq3evXsjPz9fM508eVL2/sqVK7FmzRqsW7cOR48ehbe3Nx5++GFcv369+T8IIiIisl6zZ8uX27ZVJg4iIkvz8FA6ghZB0aR7zZo1mDRpEiZPnoyQkBAkJCTAz88PGzZsMFg/KSkJ/v7+SEhIQEhICCZPnoyJEydi9erVmjr3338/nnjiCYSEhKBnz56YMWMG+vTpg6+++kq2LQcHB3h7e2umLl26aN4TQiAhIQHz58/Hk08+idDQULz33nsoKyvDjh07zPNhEBERkXWaMkW/rKbG8nEQESlh0SKlI7B5iiXdFRUVOH78OKKjo2Xl0dHROHz4sMF1srKy9OoPHToUx44dQ2VlpV59IQT27duH06dPY/DgwbL3zpw5A19fXwQGBuLpp5/GuXPnNO/l5eWhoKBAti9nZ2cMGTLEaGxERM1NicdvGrNfohavVy/g7Fl5mb29MrEQEVlap05KR2DzFEu6i4qKUF1dDS8vL1m5l5cXCgoKDK5TUFBgsH5VVRWKioo0ZcXFxWjXrh2cnJwwYsQIvPPOO3j44Yc17w8YMABbt27FF198geTkZBQUFGDgwIG4eqvHYvX+GxIbAJSXl6OkpEQ2ERE1hlKP3zR0v0StRlAQUF6udBRERJb36KPa+epq5eKwYYp3pGZXa/w3IYReWX31a5e7u7sjJycHR48exbJlyxAXF4eMjAzN+8OGDcPIkSNx1113ISoqCp9//jkA4L333mtSbPHx8fDw8NBMfn5+RusSEdVFqcdvGrpfolbFyQkwcHcIEVGLptsQ+eST+nf+UL0US7o7d+4Me3t7vZbjwsJCvRZmNW9vb4P1HRwc0Enntoc2bdqgV69eCAsLw8svv4xRo0YhPj7eaCxt27bFXXfdhTO3hgFR92TekNgAYO7cuSguLtZMly5dMlqXiMgYpR6/acx+Ad7lQ63M/fdLrw4OfK6biFoHFxft/CefAFOnKheLjVIs6XZyckJ4eDjS09Nl5enp6Rg4cKDBdSIiIvTqp6WlQaVSwdHR0ei+hBAor+OWsPLycuTm5sLHxwcAEBgYCG9vb9m+KioqkJmZaTQ2QHruu3379rKJiKihlHr8pjH7BXiXD7Uy6u9HVRXw22/KxkJEpIRao0JR/RS9vTwuLg7vvvsuNm3ahNzcXMyaNQsXL15ETEwMAKnl+LnnntPUj4mJwYULFxAXF4fc3Fxs2rQJKSkpeOWVVzR14uPjkZ6ejnPnzuGnn37CmjVrsHXrVjz77LOaOq+88goyMzORl5eHb775BqNGjUJJSQnGjx8PQLqtfObMmVi+fDk++ugj/PDDD5gwYQLc3NzwzDPPWOjTIaLWTonHbxqzX97lQ62K7o/8776rXBxERGQzHJTc+ejRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5ss57AgMDkZqailmzZmH9+vXw9fXF2rVrMXLkSE2dGzduIDY2FpcvX4arqyuCg4Oxbds2jB49WlPn8uXLGDNmDIqKitClSxfce++9OHLkiGa/ADB79mzcvHkTsbGxuHbtGgYMGIC0tDS4u7tb4JMhotbMEo/fAEBYWBhyc3MRHx+P+++/v1H7BaS7fJydnRt0jEQtQkWF0hEQESnjm2+AAQOUjsJmKJp0A0BsbCxiY2MNvrdlyxa9siFDhuDEiRNGt7d06VIsXbq0zn2+//779cZlZ2eHRYsWYRHHpSMiC9N9/OaJJ57QlKenp+Oxxx4zuE5ERAQ+/fRTWVlDH79pzH6JWqVRo4APPwS6dlU6EiIiy9i1C9BpxMS0acDRo8rFY2MUT7qJiEhfXFwcxo0bB5VKhYiICGzcuFHv8ZsrV65g69atAKTHb9atW4e4uDhMmTIFWVlZSElJwc6dOzXbjI+Ph0qlQs+ePVFRUYHU1FRs3bpV1jN5ffslIgBubtLrjRvKxkFEZCl/+5s0qR83Cw1VNh4bo/iQYUREpG/06NFISEjA4sWLERYWhoMHD5r0+E1GRgbCwsKwZMkSo4/f9O7dGwMHDsSHH36Ibdu2YfLkySbvl4gAtG0rvTLpNovExEQEBgbCxcUF4eHhOHToUJ31MzMzER4eDhcXFwQFBSEpKUn2/p49e6BSqdChQwe0bdsWYWFh+JeBod8aul+iVmnuXOmVHUY3CFu6iYislBKP39S3XyICoO7fhb2XN7tdu3Zh5syZSExMxKBBg/DPf/4Tw4YNw6lTp+Dv769XPy8vD8OHD8eUKVOwbds2fP3114iNjUWXLl00Pzp27NgR8+fPR3BwMJycnPDZZ5/h+eefR9euXTF06NBG7Zeo1VL/6FhaqmwcNsZOqLu3pWZXUlICDw8PFBcXc/gwImtXu3duE06N/I4bxs+FWrw33gCWLJHmq6uBNq3rxkFzfscHDBiAfv36yR57CQkJweOPP474+Hi9+q+99ho++eQT5ObmaspiYmLw3XffISsry+h++vXrhxEjRmDJrX/Hhu7XEJ77qFWYMQNYu1aab2VpZFO+463rfwkiIiKiptIZEQA//6xcHC1MRUUFjh8/jujoaFl5dHQ0Dh8+bHCdrKwsvfpDhw7FsWPHUFlZqVdfCIF9+/bh9OnTGDx4cKP3S9Rq+fpq51tZ0t0UTLqJiIiIGmL6dO08hw1rNkVFRaiurtYbotDLy0tvKEO1goICg/WrqqpQVFSkKSsuLka7du3g5OSEESNG4J133sHDDz/c6P0CQHl5OUpKSmQTUYunM7oJvvtOuThsDJNuIiIAuPNOpSMgIlthZwd4e0vzTLqbnV2tx32EEHpl9dWvXe7u7o6cnBwcPXoUy5YtQ1xcHDIyMpq03/j4eHh4eGgmPz+/Oo+LqEXo0UM7X1ysWBi2hkk3ERHQ6p7JJKImUreA5uUpG0cL0rlzZ9jb2+u1LhcWFuq1Qqt5e3sbrO/g4IBOOo8BtGnTBr169UJYWBhefvlljBo1SvOsdmP2C0hDNxYXF2umS5cuNeh4iWySkxMQFibNX72qaCi2hFeZREQAn0siosYpL1c6ghbDyckJ4eHhSE9Pl5Wnp6dj4MCBBteJiIjQq5+WlgaVSgVHR0ej+xJCoPzWv11j9gsAzs7OaN++vWwiahXUPfoXFiobhw3hkGFEREREDfXAA8CBA4CBzrqo8eLi4jBu3DioVCpERERg48aNuHjxImJiYgBIrctXrlzB1q1bAUg9la9btw5xcXGYMmUKsrKykJKSgp07d2q2GR8fD5VKhZ49e6KiogKpqanYunWrrKfy+vZLRDq6dJFedfpNoLox6SYiAtjSTUQNc+CA9JqSAjz/vLKxtCCjR4/G1atXsXjxYuTn5yM0NBSpqakICAgAAOTn5+PixYua+oGBgUhNTcWsWbOwfv16+Pr6Yu3atZoxugHgxo0biI2NxeXLl+Hq6org4GBs27YNo0ePNnm/RKSjQwfp9fXXgZdfBlxdFQ3HFnCcbjPieI1ENiQ0FPjxR+0yx+luNH4u1Cr06gWcPQuEhACnTikdjUXxO24YPxdqNSZOBDZvlubXrwdiY5WNx0I4TjcRUVPZ2ysdARHZkhkzpNe77lI2DiIiS9PtfHbLFsXCsCVMuomIACbdRNQwbm7Sa2amsnEQEVnamjXa+Z9+Ui4OG8Kkm4gI4JBhRNQw6l7L//c/4JtvlI2FiMiSdG+tvn5duThsCK8yiYgAtnQTUcP07Kmdv/de5eJoDllZwIABwJEjSkdCRLZi0CClI7ApTLqJiAD5r7ZERPV5+GH58pdfKhNHcxg4EPj2W15EE5Hp4uKkV5VK2ThsBJNuIkt47DHAzk4+tW8PeHpKLax//ql0hOTAERSJqAHatAEefVS7XDsJt0U1NUpHQES2wtlZeuVY3SbhVSaRueTlAUFBxt/XfQbG1RWorGTipySOnkhEDbVtG+DhoXQURESWp+7X4vx5RcOwFWzpJmpO1dVSq/U339SdcBvi6AikpQGdOwMvvWSe+Mg4Jt1E1FDt2wP9+mmXq6uVi4WIyJJ8fLTzly4pF4eNYNJN1BTV1VJnOupbxh0cpFZrQ53qXL4sdVKTmQmUlQEPPaR/O+LQocDVq8C6dVKPuIZs3qx/q7r610ZqPCbdRNQYus9ysxdfImotQkK089OnKxeHjWDSTdQYV68CU6ZISfa5c8br/d//ScmcEEC3blLvsIMHS4n5l19KLdvGkuv77jO8vYkT9cuzshp3HKTFpJuIGqNDB+38oUOKhUFEZFG6577//Ed6TJKMYtJN1BA3bkgty507A+++W3/9mTPrr9O1q5Tw1R6q5ZdfgAULtMsffaTtKbI2dmLRdEy6iagx7Oy087y9nIhaE92+iObOVS4OG8Ckm8hUZWVAu3aG3xNCutg6cwbYsEHbut0QAwZI61y4oC1btkx7C/mTT2rL33sP+P137TBXTz1V//ZLSoCbN+XLJSUNi7ElY9JNRI2lPgfn5CgaBhGRRe3erZ1/+23l4rABTLqJjNFNwv74A2jbVv7+N99Iz++p67VpA/TqBcTENG2//v51v3/xIvDcc9JwY7pDjfXuDfTvr1+/pkZK2j08ADc3qUW9Y0dp2cNDnoi3Zky6iaix7rxTen3zTWXjICKypL/+VekIbAaTbiJdhw5pW5bbtJFe77hDSnB1VVcD99xjvOW7qYwlgKtWAX5+2uXvv9fOnzoFHDsmxdypk7bDNXt7+TYiIoBr17TLH3wgvVZXS8M+2NkB8+Y1y2HYFCbdRNRYuncNzZ+vXBxERJb23HNKR2ATFE+6ExMTERgYCBcXF4SHh+NQPZ2QZGZmIjw8HC4uLggKCkJSUpLs/T179kClUqFDhw5o27YtwsLC8K9//UtWJz4+Hv3794e7uzu6du2Kxx9/HKdPn5bVmTBhAuzs7GTTvYZ6pKaW4//+T+rkrLaff9bOL1woJWdtLPDVKSmRejdPTgZ++kna7yuvyOvccYfhdX//3XCHa4YsWwZ4eUnP5QQGSmXx8VIv662JFSbdzX1+TE5ORmRkJDw9PeHp6YmoqCh8++23sjpVVVVYsGABAgMD4erqiqCgICxevBg1NTXNfnxELcbtt2vnc3OVi4OIyNLWrtXOf/qpcnE0xvXrUoObJa5xhILef/994ejoKJKTk8WpU6fEjBkzRNu2bcWFCxcM1j937pxwc3MTM2bMEKdOnRLJycnC0dFRfPjhh5o6Bw4cEHv27BGnTp0Sv/zyi0hISBD29vZi7969mjpDhw4VmzdvFj/88IPIyckRI0aMEP7+/qK0tFRTZ/z48eKRRx4R+fn5munq1asNOr7i4mIBQBQXFzfwkyGz+v13ITZsEOL994WYPl2IF18UYvZs9VPYxqdp05SO3LAbN+qPHRDiv/81rZ7udPOm0kdnOYMHy4/dBOb8jpvj/PjMM8+I9evXi+zsbJGbmyuef/554eHhIS5fvqyps3TpUtGpUyfx2Wefiby8PPHBBx+Idu3aiYSEBJNj57mPWp0//5SfP1QqpSNqGCs699kyfi7UKlVXN/gcYjX69ZNiXr/epOpN+Y4r+sncc889IiYmRlYWHBws5syZY7D+7NmzRXBwsKzshRdeEPfee2+d++nbt69YsGCB0fcLCwsFAJGZmakpGz9+vHjsscfqOYK68eSrgD/+EOJ//xMiM1M/gXzxRdMSzQMHhFD/ALN9uxDvvms7yaeh4/nmG+m9mhohli4VIilJWj540LTP49w55Y7HkiIjrerC0xLnx6qqKuHu7i7ee+89TdmIESPExIkTZfWefPJJ8eyzz5ocO8991CoNGSI/hxw5onREprOic58t4+dCrZatJt3qmO+5x6TqTfmOK3Z7eUVFBY4fP47o6GhZeXR0NA4fPmxwnaysLL36Q4cOxbFjx1BpYGw4IQT27duH06dPY7Ch24ZvKS4uBgB07NhRVp6RkYGuXbvi9ttvx5QpU1BYWFjnMZWXl6OkpEQ2kYVcuAA4O0tjBnp5AUOG6NfZsKH+7RQVAfffr+007ZlngEmTABeX5ozWfHRPe8XF0nji99wjvWdnJz1r+MIL0vKAAfJ133oLKC8Hfv1VXh4UZP64rYEV3V5uifMjAJSVlaGyslJ27rvvvvuwb98+/HzrsYrvvvsOX331FYYPH240Xp77iAA88IB8+d57AVdXoJ5rByIim9ejh3a+vFyxMBrk5EmL7k6xpLuoqAjV1dXw8vKSlXt5eaGgoMDgOgUFBQbrV1VVoUhnnOLi4mK0a9cOTk5OGDFiBN555x08/PDDBrcphEBcXBzuu+8+hIaGasqHDRuG7du3Y//+/Xj77bdx9OhRPPjggyiv4w8pPj4eHh4emslPt8MrarrSUiA7G3By0nZ2duoU8PHH0pe9osL0bb36KpCQIA3vsmULsGIFUFAgdUDWUrRvL/VSboyTE/Ddd8CHH0oJ+muvSWU+PtrO1dRaQycZVpR0m/P8qGvOnDno1q0boqKiNGWvvfYaxowZg+DgYDg6OqJv376YOXMmxowZYzRenvuIIJ1Da/vzT+DZZy0fCxGRJf3wg3Y+I0OxMBpEt88mC3Cov4p52dnZyZaFEHpl9dWvXe7u7o6cnByUlpZi3759iIuLQ1BQEO6//3697U2bNg3ff/89vvrqK1n56NGjNfOhoaFQqVQICAjA559/jid1x0vWMXfuXMTFxWmWS0pKePHZHD780Pg41L17y5dDQ6WexocOlTodc3aWyv/3P+DKFSAsTL8TtLvvbvaQbUafPtJU26hR0rjkbm7S8r/+BWzdatnYLM2Kkm41c5wf1VauXImdO3ciIyMDLjp3cuzatQvbtm3Djh070Lt3b+Tk5GDmzJnw9fXF+PHjDe6X5z4iSHdECQHMnAn84x/act3RIoiIWiLdYXUfeQQ4ehRQqZSLxxQWvu5TLOnu3Lkz7O3t9VptCgsL9Vpr1Ly9vQ3Wd3BwQCedFso2bdqgV69eAICwsDDk5uYiPj5eL+l+6aWX8Mknn+DgwYPo3r17nfH6+PggICAAZ86cMVrH2dkZzuokj0xXUSG1sKr/+K9eBbp3b/jtKf/9r/RFN8TLS5rIdK6uUi+Ujz4qLRcVAZ07KxuTOVlR0m3O8yMArF69GsuXL8eXX36JPrV+dHn11VcxZ84cPP300wCAu+66CxcuXEB8fLzRpJvnPiIdYWHy5WPHFAmDiEgxgwZZ/23mRh69MxfFbi93cnJCeHg40tPTZeXp6ekYOHCgwXUiIiL06qelpUGlUsHR0dHovoQQstvChRCYNm0a9uzZg/379yNQPUxSHa5evYpLly7Bx8en3rotWnY2MHasdEv3zZvSL/qdOkm3J5tC9w/899+BYcOk1mj1uNht2gBduhj/ov7tb8DZs1KCpHsLdGmp8YSbGm/ECO18z57KxWEJVpR0m/P8uGrVKixZsgR79+6FysCv0GVlZWhT624Qe3t7DhlGZCp7e/2yK1csHwcRkVIqKiwzDFdTzJ9v2f01uOu1ZqQeEiclJUWcOnVKzJw5U7Rt21acP39eCCHEnDlzxLhx4zT11UPizJo1S5w6dUqkpKToDYmzfPlykZaWJs6ePStyc3PF22+/LRwcHERycrKmzosvvig8PDxERkaGbEiwsrIyIYQQ169fFy+//LI4fPiwyMvLEwcOHBARERGiW7duoqSkxOTjaxG9WGZkNGyIKVdXaQirq1eFuHBBiJdflobounpViFdfbfiQVeqpvFzpT6L10v132LdP6WjMZ8AAq+rB1xznxxUrVggnJyfx4Ycfys59169f19QZP3686Natm2bIsD179ojOnTuL2bNnmxx7izj3ETVWTY0QU6YI4eGhPZ/ccYfSUdXNis59toyfC7Vqly/LzyWffqp0RHXTjdUCvZcr3q/7+vXrRUBAgHBychL9+vXTG7ZryJAhsvoZGRmib9++wsnJSfTo0UNs2LBB9v78+fNFr169hIuLi/D09BQRERHi/fffl9UBYHDavHmzEEKIsrIyER0dLbp06SIcHR2Fv7+/GD9+vLh48WKDjs3qT75lZUJ88IEQb70lxKhRQqSmSsntn38K8eijjU+QGzrZ2emXnT6t9KdDas89J/+30RnzvkW55x6ru/Bs7vNjQECAwXPfwoULNXVKSkrEjBkzhL+/v3BxcRFBQUFi/vz5orwBP3xZ/bmPyBIuXbKdYXSs7Nxnq/i5UKuney5ZvlzpaOpm4aTbTtonmUNJSQk8PDxQXFyM9u3bW27HlZXSn1B1tTRUyZo1QFUVMHs2kJQEHD4MHDzYuG0fPAh4eABjxkjDcyUlSc/6zp0LfPNNw7dXUQHU8WgAWYG8PPmwYfffDxw4oFg4ZnPPPVLHH2omnBoV+45bOX4uRLeoOzHs0MG6O1TT7WyR575G4+dCBPn5ZPp0eceS1kQ3znvuMSmPacp3XPHey6mZVFUBe/dqO70yJDGxcdvOzwe8veVlP/4oXz5yRPqP+p//BNLTpbGeu3UDnnwSWLUKuO8+6fngoUOlWGtqtD2Lk3Wr3edBRob0Y0tMjCLhmA1/fySi5rZ1qzTk4p13Kh0JEZHlrV0LLFsGtGundCSKY9Jty4QAZswA3nmncevPmwf07y8lv488AqxeDWzfLl0cLFjQ8IsEOzspEaudjD3zjHyZLdu2RwjgttuAX36Rll98sWUn3XWNb05EZCr1cHyHDwMlJQBbP4motfn9dybdULD3cmqiI0ek7vgNJdzqsfJefVVqka6oAH77TfrF/epV7RMMy5YBjz8u9SBuZyfVz8kBduzgr/Kkr/adEnZ2wJYtioRiFrpJ97RpysVBRC2H7ti1R44oF4eNSUxMRGBgIFxcXBAeHo5Dhw7VWT8zMxPh4eFwcXFBUFAQkpKSZO8nJycjMjISnp6e8PT0RFRUFL799ltZnaqqKixYsACBgYFwdXVFUFAQFi9ezJEbiBpqzhz58v/+p0wcVoZJt60pKQE8PYGICCArS1v+xhvAV19JiUNpqfS6cqWUPDs6SuMrjxvHFjxqvIcfBi5elJc9/7z0uEBLoJt0Gxryh4ioKbp0UToCm7Br1y7MnDkT8+fPR3Z2NiIjIzFs2DBcrP3/zy15eXkYPnw4IiMjkZ2djXnz5mH69OnYvXu3pk5GRgbGjBmDAwcOICsrC/7+/oiOjsYVnaHcVqxYgaSkJKxbtw65ublYuXIlVq1ahXcaezchUWu1aBHw5Zfa5XvuUSwUk+k+320mvL3cFty8CahUwKlT+u+dOQP06mX5mKh18vPTL3N0bBkd4vGZbiJqbg89pJ3nOcYka9aswaRJkzB58mQAQEJCAr744gts2LAB8fHxevWTkpLg7++PhIQEAEBISAiOHTuG1atXY+TIkQCA7du3y9ZJTk7Ghx9+iH379uG5554DAGRlZeGxxx7DiBEjAAA9evTAzp07cezYMXMdKlHL5OwsP/fZAgucn9nSbc1u3ABGjwbc3PQT7thYqZdyJtxkDT76SOkImo4XxETU3Jydga5dpfnz5xUNxRZUVFTg+PHjiI6OlpVHR0fj8OHDBtfJysrSqz906FAcO3YMlZWVBtcpKytDZWUlOurc/Xffffdh3759+PnnnwEA3333Hb766isMHz7caLzl5eUoKSmRTURkwPXrSkegOCbd1mrxYqnTgX//W17+3/8C5eXA+vWAA29UIAVcvqx0BObBpJuIzKGwUHrNzVU2DhtQVFSE6upqeHl5ycq9vLxQUFBgcJ2CggKD9auqqlBUVGRwnTlz5qBbt26IiorSlL322msYM2YMgoOD4ejoiL59+2LmzJkYM2aM0Xjj4+Ph4eGhmfwM3Q1G1Frp/ui1bp1ycVgJJt3WpLpa6mjFzg5YuFD+3qVLUlLwyCOAk5My8REB0lBw6s741DZvVi6e5sKkm4jMIShIel2wQNk4bIhdrecrhRB6ZfXVN1QOACtXrsTOnTuxZ88euKh7l4f0LPm2bduwY8cOnDhxAu+99x5Wr16N9957z+h+586di+LiYs106dIlk46PqFXQbRycN0+5OKwEm0qtxe7dwKhR+uXFxRxihKzf3r1KR9B0TLqJyBzOnVM6ApvRuXNn2Nvb67VqFxYW6rVmq3l7exus7+DggE6dOsnKV69ejeXLl+PLL79Enz59ZO+9+uqrmDNnDp5++mkAwF133YULFy4gPj4e48ePN7hvZ2dnODs7N+gYicgKWaAjNbZ0W4Pqamn4Ll3btklJABNusmYqldIRNB/dpJsJOBE1F90W7q+/Vi4OG+Dk5ITw8HCkp6fLytPT0zFw4ECD60REROjVT0tLg0qlgqNOB5+rVq3CkiVLsHfvXqgM/N9VVlaGNm3kl8X29vYcMoyoKe6/X+kITMOO1FoJe3tg504gIADYuBGoqQHGjlU6KqL6rV+vdATNh4k2EZnD3/6mnd+xQ7k4bERcXBzeffddbNq0Cbm5uZg1axYuXryImJgYANIt3eoexwEgJiYGFy5cQFxcHHJzc7Fp0yakpKTglVde0dRZuXIlFixYgE2bNqFHjx4oKChAQUEBSktLNXUeffRRLFu2DJ9//jnOnz+Pjz76CGvWrMETTzxhuYMnamkyMpSOwGrw9nJrcccd7NmUbE/nztr5fv2AEyeUi6WpmHQTkTmEhmrndc+ZZNDo0aNx9epVLF68GPn5+QgNDUVqaioCAgIAAPn5+bIxuwMDA5GamopZs2Zh/fr18PX1xdq1azXDhQFAYmIiKioqMKrWY3wLFy7EokWLAADvvPMOXn/9dcTGxqKwsBC+vr544YUX8MYbb5j/oIlaqtWrgVdeAdpYeTsvx+kmIqsWGKidz86Wfjjq0UOpaJqGSTcRmYOdHRAXB6xZA/z+u9LR2ITY2FjExsYafG/Lli16ZUOGDMGJOn70PW9Co4a7uzsSEhI0430TUTO4/XbptSU9jthIVv6zAxFZtdq/DE6frkwczYFJNxGZi3q4MA6bQ0StibqjwYoKZeOwAky6iahpdFsQPv1UPi6jLWHSTUTmonuLuZ0dUF6uXCxERJaiHuY4J0fRMOrFjtSIyOrdes5OQ30rka1h7+VEZC6TJsmXH31UmTiIiCxJZwSB1o5JNxE1XWqqdv78eeDPPxULpdGYaBORudT+MTI9Hag1hjQRUYuj28+PNV9ncZxuIrIJw4ZJw96pffutcrE0ljX/Z0BEts3ODqiqkpexUzUiaunatdPO//yzcnFYASbdRNQ8nn5aO2+BXwybHZNuIjIne3vg7FmloyAispy2bbXzwcHKxWEFmHQTUfO56y7p1RZvLy8oUDoCImrpgoKADz5QOgoiIstw4OjUaky6iaj5nDwpvb78srJxNEZZmdIREFFroNtz+cWLysVBRGQJt92mdARWgUk3ETW/kyd5uzYRkSF9+2rnjx9XLg4iIkt45BGlI7AKTLqJqPn4+2vnDx5ULo6m4g8GRGQuISHa+SefBD79FPj1V+XiISIypwkTtPM1NYqFoTQm3UTUfP79b+38gw8qF0cLkZiYiMDAQLi4uCA8PByHDh2qs35mZibCw8Ph4uKCoKAgJCUlyd5PTk5GZGQkPD094enpiaioKHxroKf5K1eu4Nlnn0WnTp3g5uaGsLAwHGeLHFHzqN3R5F//CnTrpkwsQKu+CCYiC3B11c5/8YVycSiMSTcRNZ8BA7TzuidZa2eFLdu7du3CzJkzMX/+fGRnZyMyMhLDhg3DRSPPgObl5WH48OGIjIxEdnY25s2bh+nTp2P37t2aOhkZGRgzZgwOHDiArKws+Pv7Izo6GleuXNHUuXbtGgYNGgRHR0f897//xalTp/D222+jQ4cO5j5kotYtP1+Z/Y4ercx+iah1cHbWzmdlKReHwhRPupu7JWfPnj1QqVTo0KED2rZti7CwMPzrX/9q8H6FEFi0aBF8fX3h6uqK+++/Hz/++GPTD5iotbhxA6isVDoK01hhS8+aNWswadIkTJ48GSEhIUhISICfnx82bNhgsH5SUhL8/f2RkJCAkJAQTJ48GRMnTsTq1as1dbZv347Y2FiEhYUhODgYycnJqKmpwb59+zR1VqxYAT8/P2zevBn33HMPevTogYceegg9e/Y0+zETtWq+vsrs98MPldkvEbUOgYHa+SVLgF69gAsXlItHIQ1Kur/99ltUV1drlkWt1qHy8nL8W/f20nqYoyWnY8eOmD9/PrKysvD999/j+eefx/PPP48vdG5nMGW/K1euxJo1a7Bu3TocPXoU3t7eePjhh3H9+nWTj4+oVdLtMMPJSbk4GsLKku6KigocP34c0dHRsvLo6GgcPnzY4DpZWVl69YcOHYpjx46h0siPH2VlZaisrETHjh01ZZ988glUKhWeeuopdO3aFX379kVycnKd8ZaXl6OkpEQ2EVEdNm4Ehg1TOgoiIvOr/UjN2bPAxInKxKIk0QBt2rQR//vf/zTL7u7u4uzZs5rlgoIC0aZNG5O3d88994iYmBhZWXBwsJgzZ47B+rNnzxbBwcGyshdeeEHce++9de6nb9++YsGCBSbvt6amRnh7e4u33npL8/6ff/4pPDw8RFJSUv0HdktxcbEAIIqLi01eh8jm3bghhHTDtjTZgvJyecxvvGHSaub6jl+5ckUAEF9//bWsfNmyZeL22283uM5tt90mli1bJiv7+uuvBQDx66+/GlwnNjZW9OzZU9y8eVNT5uzsLJydncXcuXPFiRMnRFJSknBxcRHvvfee0XgXLlwoAOhNPPcR1ePYMfm5R+cay2J092/iOZvXN4bxcyEy4l//0j/XGLk2sRjdWAYMMGmVpnzHG9TSLWq1bNdeNlZmiCVacoQQ2LdvH06fPo3BgwebvN+8vDwUFBTI6jg7O2PIkCFGYyOiW9zcgL/9TekoGubIEfmylTzjbVfr12EhhF5ZffUNlQPS3Tw7d+7Enj174OLioimvqalBv379sHz5cvTt2xcvvPACpkyZYvS2dgCYO3cuiouLNdOlS5dMOj6iVi88XL58+rQycRARmdOzz+qX7d9v+TgU1OzPdNd1QairqKgI1dXV8PLykpV7eXmhoKDA4DoFBQUG61dVVaGoqEhTVlxcjHbt2sHJyQkjRozAO++8g4cfftjk/apfGxIbwFssiTQiI5WOoGG+/FLpCGQ6d+4Me3t7vfNNYWGh3nlJzdvb22B9BwcHdOrUSVa+evVqLF++HGlpaejTp4/sPR8fH9x5552yspCQEKOP/QDSj5Lt27eXTURkonPntPO3GgiIiFqcRYvky2fPKhKGUhTvSM0cLTnu7u7IycnB0aNHsWzZMsTFxSEjI6PB+21obPHx8fDw8NBMfn5+RusStWh33610BA1z86bSEcg4OTkhPDwc6enpsvL09HQMHDjQ4DoRERF69dPS0qBSqeDo6KgpW7VqFZYsWYK9e/dCpVLpbWfQoEE4Xau17eeff0ZAQEBjD4eI6qLbyRARUUs1dy6wbZt2eeFC5WKpzcRG46ZwaOgKp06d0rSmCCHw008/obS0FABkrc31MWdLTps2bdCrVy8AQFhYGHJzcxEfH4/777/fpP16e3sDkFq8fXx8TIoNkG6xjIuL0yyXlJQw8abWycNDO3/jBtC2rXKxmMIKb3GKi4vDuHHjoFKpEBERgY0bN+LixYuIiYkBIJ1vrly5gq1btwIAYmJisG7dOsTFxWHKlCnIyspCSkoKdu7cqdnmypUr8frrr2PHjh3o0aOH5jzYrl07tGvXDgAwa9YsDBw4EMuXL8ff/vY3fPvtt9i4cSM2btxo4U+AqBUJDweOH1c6CiIi83FyAsaO1d5qbqQRQREWeKywwS3dDz30EMLCwhAWFoaysjL85S9/QVhYGPr27YuoqCiTt2POlpzahBAoLy83eb+BgYHw9vaW1amoqEBmZqbR2ADeYkmkoXt7cny8cnGYSmdUBmsxevRoJCQkYPHixQgLC8PBgweRmpqqaXHOz8+X3fIdGBiI1NRUZGRkICwsDEuWLMHatWsxcuRITZ3ExERUVFRg1KhR8PHx0Uy6w4r1798fH330EXbu3InQ0FAsWbIECQkJGDt2rOUOnqi1SUjQztfxGBsRkc2bN0967d9f2TgsrEEt3Xl5ec26c3O05MTHx0OlUqFnz56oqKhAamoqtm7dKusEqL792tnZYebMmVi+fDluu+023HbbbVi+fDnc3NzwzDPPNOtnQNQiOeicWpYtA5YuVS4WU1jZkGFqsbGxiI2NNfjeli1b9MqGDBmCEydOGN3e+fPnTdrvX/7yF/zlL38xqS4RNYPu3bXzv/8O3LrjjoioxVEPJ1teLg0d5uQEJCUpG5MFNCjpNuWZvpycHJOf/Rs9ejSuXr2KxYsXIz8/H6GhoSa15MyaNQvr16+Hr6+vXkvOjRs3EBsbi8uXL8PV1RXBwcHYtm0bRo8ebfJ+AWD27Nm4efMmYmNjce3aNQwYMABpaWlwd3c36diISMeMGcA//qF0FMZZSW/lRNRK9eihnbfCO2+IiJqNOunWTbSXLAG6dFEmHguxE6aO8VWH4uJibN++He+++y6+++47VPM/DADSM90eHh4oLi7mrebU+mRnA/36SfPdugGXLysbT12GDwf++1/t8oIF0n8A9eB33DB+LkSN4OcnnSePHdMfSsycancgZMJlIb/jhvFzITLB4sWGO1GzdAOI7rnv3nuBrKx6V2nKd7xJvZfv378fzz77LHx8fPDOO+9g+PDhOHbsWFM2SUQtRd++2vkrV5SLwxS3OhEjIlKM+odJA6MKEBG1GNbUa7maNXakdvnyZSxduhRBQUEYM2YMPD09UVlZid27d2Pp0qXoq3uhTURkC3QeUSEiUlxZmdSh2v79fPyFiFqWjz9WOgJFNCjpHj58OO68806cOnUK77zzDn799Ve888475oqNiGxdcrL0ak3DQhjSpkk3/RARNa89e6TbHR96CPj6a6WjISJqPn/9K/D22/rlp09bPhY1C4zT3aArzbS0NEyePBlvvvkmRowYAXt7e3PFRUQtgb+/9HrypLJx1KeqSukIiKi10x3KdNw44MIFad7ASAUtXWJiIgIDA+Hi4oLw8HAcOnSozvqZmZkIDw+Hi4sLgoKCkFSrJ+Tk5GRERkbC09MTnp6eiIqKwrfffqu3nStXruDZZ59Fp06d4ObmhrCwMBzn+OlEzS8uTuq/Ii5OW6YzfGlL1KCk+9ChQ7h+/TpUKhUGDBiAdevW4bfffjNXbERk67p2lV6vX5cuIq0VO38kIqVFRRkuT0mxbBwK27VrF2bOnIn58+cjOzsbkZGRGDZsmGw0G115eXkYPnw4IiMjkZ2djXnz5mH69OnYvXu3pk5GRgbGjBmDAwcOICsrC/7+/oiOjsYVnf5Grl27hkGDBsHR0RH//e9/cerUKbz99tvo0KGDuQ+ZqHUKD5e3eFv7XZFN1KCkOyIiAsnJycjPz8cLL7yA999/H926dUNNTQ3S09Nx/fp1c8VJRLZId/jAbduUi6M+tZNuPkNJRNZi5kzt/LVrLf5HwjVr1mDSpEmYPHkyQkJCkJCQAD8/P2zYsMFg/aSkJPj7+yMhIQEhISGYPHkyJk6ciNU6rWbbt29HbGwswsLCEBwcjOTkZNTU1GDfvn2aOitWrICfnx82b96Me+65Bz169MBDDz2Enj17mv2YiVq1v/5Veq2sVC4Ga+xIDQDc3NwwceJEfPXVVzh58iRefvllvPXWW+jatSv+qv7giIg8PeXLBm7nswot/CKWiGyEoQ6GEhKAigogMRHo2BEYO9biYVlKRUUFjh8/jujoaFl5dHQ0Dh8+bHCdrKwsvfpDhw7FsWPHUGnkIr6srAyVlZXo2LGjpuyTTz6BSqXCU089ha5du6Jv375IVvdLQkTm4+wsvbbwEbCa3HvQHXfcgZUrV+Ly5ct4//33YWeBB9GJyIbo3OKHAQOAmzeVi8UYJt1EZA3++ldg61b98kOHgKlTpflduywbkwUVFRWhuroaXl5esnIvLy8UFBQYXKegoMBg/aqqKhQVFRlcZ86cOejWrRuidG7pP3fuHDZs2IDbbrsNX3zxBWJiYjB9+nRsNfTvcUt5eTlKSkpkExE10AcfSK9K/shlgfzVoSGVJ06cWG+dTp06NToYImqBHn5YvvzTT/IxvK0BO1IjImvx+OP6Zc88Y/EwlFS7AUcIUWejjqH6hsoBYOXKldi5cycyMjLg4uKiKa+pqYFKpcLy5csBAH379sWPP/6IDRs24LnnnjO43/j4eLz55pumHRQR1e/mTcDVVekozKJBLd1btmzBgQMH8Mcff+DatWsGpz/++MNMoRKRTWrXTr7cr58ycdRFpzMdIiJFubsDNTXyZwwLC+V1WujdOZ07d4a9vb1eq3ZhYaFea7aat7e3wfoODg56DUGrV6/G8uXLkZaWhj59+sje8/HxwZ133ikrCwkJMdqBGwDMnTsXxcXFmunSpUv1HiMR1bJzp3b+9deVi8PMGpR0x8TEoLi4GOfOncMDDzyAlJQUfPTRR7Jpz5495oqViGyRnZ1+z+XW1rK8bJl8uY7bCYmIzE7dQjt4sOH3W2jS7eTkhPDwcKTrDp8GID09HQON9GwcERGhVz8tLQ0qlQqOjo6aslWrVmHJkiXYu3cvVCqV3nYGDRqE07XGCf75558RoNshaC3Ozs5o3769bCKiBho1Sjv/0UfKxWFmDUq6ExMTkZ+fj9deew2ffvop/Pz88Le//Q1ffPGF5lYeIiI9W7cCQ4dqlzMzlYvFFGytICJr8Je/GC5voUk3AMTFxeHdd9/Fpk2bkJubi1mzZuHixYuIiYkBILUu697uHRMTgwsXLiAuLg65ubnYtGkTUlJS8Morr2jqrFy5EgsWLMCmTZvQo0cPFBQUoKCgAKWlpZo6s2bNwpEjR7B8+XL88ssv2LFjBzZu3Iip6mfpicg8HHSedh49Wrk4zKzBHak5OztjzJgxSE9Px6lTp9C7d2/ExsYiICBAdvIiIpLZu1c7b2w8WiIi0vLxMVzegpPu0aNHIyEhAYsXL0ZYWBgOHjyI1NRUTYtzfn6+7JbvwMBApKamIiMjA2FhYViyZAnWrl2LkSNHauokJiaioqICo0aNgo+Pj2bSHVasf//++Oijj7Bz506EhoZiyZIlSEhIwNgW3Fs8kdV47DHpNT4eKCtTNhYzaVBHarXZ2dnBzs4OQgjU1NQ0V0xE1BqUluo/701ERFrGbldurkd0rHE0CQCxsbGIjY01+N6WLVv0yoYMGYITJ04Y3d758+dN2u9f/vIX/MXY3QVEZD66wyW++iqwfr1ysZhJg1u6y8vLsXPnTjz88MO44447cPLkSaxbtw4XL15EO15AE1FdJkzQzl+7plgYREQ2wchzzM3W0s0GEyKyBkOGaOcTE6VhEluYBiXdsbGx8PHxwYoVK/CXv/wFly9fxgcffIDhw4ejTZsmD/lNRC3dpk3a+dq98Srp2WeVjoCISF/nzkBSEuDsDHz5pbZ848bm2T774yEia6B7fQgAjz6qTBxm1KDby5OSkuDv74/AwEBkZmYi00hnSOzBnIgM0h0zdcsWIDxcsVBk3N2VjoCIyLAXXpAmXfPmAXPnNn3bbOkmImsQFCRfLi6Wrhl//BGoNZRfs1DgB8cGJd3PPfcc7HQvmomIGqp3b+kkum4d8PTTwKBBSkfUojslIiIyqva5j9d4RKSUnBwgLExe1ru3eRJkBX5wbFDSbajzCiKiBvnxR+18XBzwzTfKxaJmbeOGExEZ4uravJ2fsaWbiKzF3XcDwcHATz/Jy0tKjHcq2VgHDzbv9kzAB7GJyLL++U/tfLduysWhiy3dRGQL1OfP5hp2sXbSzZZuIlKS7vCyahMnSq+Vlc23n/Hjm29bJmLSTUSW9fe/A7NnS/MdOyobixqTbiKyBa6u0uuffzbP9tjSTUTWJCBAv2z3buC55wAnJ2Dr1ubZjwJ3ODLpJiLLy8uTXlNSlI1DzUqT7sTERAQGBsLFxQXh4eE4VM8QGpmZmQgPD4eLiwuCgoKQlJQkez85ORmRkZHw9PSEp6cnoqKi8O233xrdXnx8POzs7DBz5szmOBwiaipnZ+m1vLx5tsekm4isjbplW9e//iW9NlcLde2k2wJ3+TDpJiLLy87Wzv/8s3JxqFlh0r1r1y7MnDkT8+fPR3Z2NiIjIzFs2DBcvHjRYP28vDwMHz4ckZGRyM7Oxrx58zB9+nTs3r1bUycjIwNjxozBgQMHkJWVBX9/f0RHR+PKlSt62zt69Cg2btyIPn36mO0YiaiB1El3bm7zbM8Kz31E1MqlpABff23efdROui3QmzmTbiKyPN0LxqIi5eJQs8ILzzVr1mDSpEmYPHkyQkJCkJCQAD8/P2zYsMFgffWQjgkJCQgJCcHkyZMxceJErF69WlNn+/btiI2NRVhYGIKDg5GcnIyamhrs27dPtq3S0lKMHTsWycnJ8PT0NOtxElEDqJPu0tLmaZnhM91EZI0GDgTeeMN82+ft5UTUKjg4aHuitIaLPCtLuisqKnD8+HFER0fLyqOjo3H48GGD62RlZenVHzp0KI4dO4ZKI52PlJWVobKyEh1rPVs/depUjBgxAlEmdtZUXl6OkpIS2UREZpCfL18uK2va9nh7ORFZK/WPjObApJuIWo3u3aXXGzeUjQOwuqS7qKgI1dXV8PLykpV7eXmhoKDA4DoFBQUG61dVVaHIyN0Ec+bMQbdu3WTJ9fvvv48TJ04gPj7e5Hjj4+Ph4eGhmfz8/Exel4ga4Lbb5MtnzzZte2zpJiJr1batfllwcPNsuzUm3Up0FNSjRw/Y2dnpTVOnTtXUmTBhgt779957b/MdOFFr17mz9Pree8rGAVhd0q1mV+sCWAihV1ZffUPlALBy5Urs3LkTe/bsgYuLCwDg0qVLmDFjBrZt26YpM8XcuXNRXFysmS5dumTyukTUAP36yZfXrm3a9mon3RZ4rpGIyCR//7t2/tlnpdeffgKuXm36tmtf97X0jtSU6ijo6NGjyM/P10zp6ekAgKeeekq2v0ceeURWLzU11QyfAlErpT7BbdumbByAIr941qVz586wt7fXa9UuLCzUa81W8/b2NljfwcEBnTp1kpWvXr0ay5cvR1pamqyjtOPHj6OwsBDh4eFwcHCAg4MDMjMzsXbtWjg4OKDayI8Tzs7OaN++vWwiIjOwswMOHtQut2vXtO3x9nIislaurtLdkDk58h7NJ0xo+rYV+MFR0aRbqY6CunTpAm9vb8302WefoWfPnhgyZIhsf87OzrJ6tZ97JKIm0L1N0sgt0xZjZS3dTk5OCA8P1/wgqJaeno6BAwcaXCciIkKvflpaGlQqFRwdHTVlq1atwpIlS7B3716oVCpZ/YceeggnT55ETk6OZlKpVBg7dixycnJgb2/fTEdIRI0WGamd79WradtSoLWHiMhkbm7A3XcDuh2+fvaZcvE0gWJJt9IdBenGsW3bNkycOFHvFsyMjAx07doVt99+O6ZMmYLCwkJTD4+I6qPb+qp0D+ZWlnQDQFxcHN59911s2rQJubm5mDVrFi5evIiYmBgA0i3dzz33nKZ+TEwMLly4gLi4OOTm5mLTpk1ISUnBK6+8oqmzcuVKLFiwAJs2bUKPHj1QUFCAgoIClJaWAgDc3d0RGhoqm9q2bYtOnTohNDTUsh8AERmn/u43tU8MtnQTkS3QvQYxx4+DLfn2ciU7CtL1n//8B3/88Qcm1LpVYdiwYdi+fTv279+Pt99+G0ePHsWDDz6I8vJyo8fEHnyJGiAuTjt/9KhycQBWmXSPHj0aCQkJWLx4McLCwnDw4EGkpqYiICAAAJCfny97FCcwMBCpqanIyMhAWFgYlixZgrVr12LkyJGaOomJiaioqMCoUaPg4+OjmXTvFiIiG6DuYKipvZezpZuIbMHo0dp5G+17wkHpACzRUVBGRobRToFSUlIwbNgw+Pr6yspH6/zjhoaGQqVSISAgAJ9//jmefPJJg9uKj4/Hm2++aTR2ItLRtat2Pj4eeP554PffgQ4dgDYW/j3QCpNuAIiNjUVsbKzB97Zs2aJXNmTIEJw4ccLo9s6fP9/gGDIyMhq8DhGZmaur9JqT07TtNHV9IiJLaAE/CCrW0q1UR0G6Lly4gC+//BKTJ0+uN14fHx8EBATgzJkzRuuwB1+iRjpzBjhyRLrlfNo0y+/fSpNuIiKDPvxQev3446ZtJzCw6bEQEVnC5s3Sa62G0mbRkjtSU6qjIF2bN29G165dMWLEiHrjvXr1Ki5dugQfHx+jddiDL1ETRERIr0Y6UjQrJt1EZEuaa6zaFtB6RESthDrZ7tJF2TgaSdHey5XoKEitpqYGmzdvxvjx4+HgIL/LvrS0FK+88gqysrJw/vx5ZGRk4NFHH0Xnzp3xxBNPmPETIWpldIb7UxSTbiKyJc88o51vSgsNn+kmIluhfvTQHB1AWuDcp+gz3aNHj8bVq1exePFi5OfnIzQ01KSOgmbNmoX169fD19e3zo6CdC1cuBCLFi3SLH/55Ze4ePEiJuqO+3aLvb09Tp48ia1bt+KPP/6Aj48PHnjgAezatQvu7u7N/CkQtWJ//avh8ooKwMnJcnEw6SYiW/LTT9r57duBZ59t3HbYezkR2Qp10l1VpWwcjWQnhI12AWcDSkpK4OHhgeLiYt5qTmSMoV8Xf/lFmqKjLdPyEhoK/PijvMyEUyO/44bxcyEys6+/Bu67T5ofNAj46qvGbefLL4GHH9YuOzkBdYzSosbvuGH8XIjMSPd8VVPTtOvD2uveey+QlVXvak35jiveezkRkZ5evaTXu+4Cvv/e/PtjSzcR2ZL+/bXzTbkDjy3dRGQrfvhBO19VBej052ULFH2mm4gINTXSidTQuPYnT1omBibdRGRLdC82b7ut8dth0k1EtkLdIAMAlZXKxdFITLqJSFl2dkDv3sZbayzx7A6TbiKyJbq3Rr77buO3U3ucbnakRkTWSvdRGCbdRETN7LPPzL8PJt1EZKtu3pReKyoa3pP53LnyZROe5yYiUoTuHT5NSboNnSdb8jjdRER6XF31y7ZsMf9+mXQTka1RD5faqxdQVgb07Cl1PtkCJCYmIjAwEC4uLggPD8ehQ4fqrJ+ZmYnw8HC4uLggKCgISUlJsveTk5MRGRkJT09PeHp6IioqCt9++63R7cXHx8POzg4zZ85sjsMhoubQRidtLStr/HYUuuZj0k1E1qOsDMjOBi5d0pYVF5t/v0y6icjWDBwovf7yC9C2LXD5stS7r40/p71r1y7MnDkT8+fPR3Z2NiIjIzFs2DDZELK68vLyMHz4cERGRiI7Oxvz5s3D9OnTsXv3bk2djIwMjBkzBgcOHEBWVhb8/f0RHR2NK1eu6G3v6NGj2LhxI/r06WO2YySiJho/vvHrMukmIgIQFgZ07w6MGSMtDx9u/n0y6SYiW2MsuT592rJxNLM1a9Zg0qRJmDx5MkJCQpCQkAA/Pz9s2LDBYP2kpCT4+/sjISEBISEhmDx5MiZOnIjVq1dr6mzfvh2xsbEICwtDcHAwkpOTUVNTg3379sm2VVpairFjxyI5ORmenp5mPU4iaoKMDODYscatq9Bo2Uy6icg6tWsnvV6+bP59MekmIlvTu7fhckvcHWQmFRUVOH78OKJr3SYfHR2Nw4cPG1wnKytLr/7QoUNx7NgxVBp57rOsrAyVlZXo2LGjrHzq1KkYMWIEoqKiTIq3vLwcJSUlsomILOTs2catZ+gHSz7TTUStlrOz9Lp2LVBaat59MekmIlvj5WW43NRnHc+da75YmklRURGqq6vhVevYvLy8UFBQYHCdgoICg/WrqqpQVFRkcJ05c+agW7dusuT6/fffx4kTJxAfH29yvPHx8fDw8NBMfn5+Jq9LRE3UoUPj1rtwoVnDMBWTbiKyTvv3a+cb+2umqZh0E5GtcXMzXL53b/3rnjoldbxmpexqDV0mhNArq6++oXIAWLlyJXbu3Ik9e/bAxcUFAHDp0iXMmDED27Zt05SZYu7cuSguLtZMl3T7IyGi5qf7HWts6/SAAc0TSwM5KLJXIqL6nDqlnQ8LM++tP0y6icjWqO8Gqu333+tfd/v25o2lmXTu3Bn29vZ6rdqFhYV6rdlq3t7eBus7ODigU6dOsvLVq1dj+fLl+PLLL2UdpR0/fhyFhYUIDw/XlFVXV+PgwYNYt24dysvLYW9vr7dvZ2dnOBv7dyCi5te9u3Z+0ybgkUcavo3r15svngZgSzcRWaczZyy3LybdRGSL/vxTvywlpf71kpObP5Zm4OTkhPDwcKSnp8vK09PTMVDdW3stERERevXT0tKgUqngqDOu76pVq7BkyRLs3bsXKpVKVv+hhx7CyZMnkZOTo5lUKhXGjh2LnJwcgwk3ESnsgw+UjqBB2NJNRNapVy/58unTwB13mGdfTLqJyBY5OwM3bwKurg1bb8AA4LPPzBNTE8XFxWHcuHFQqVSIiIjAxo0bcfHiRcTExACQbum+cuUKtm7dCgCIiYnBunXrEBcXhylTpiArKwspKSnYuXOnZpsrV67E66+/jh07dqBHjx6alvF27dqhXbt2cHd3R2hoqCyOtm3bolOnTnrlRNQCsSM1ImrVdIeDmDfPfPth0k1EtsrFpeEt1wEB5omlGYwePRoJCQlYvHgxwsLCcPDgQaSmpiLgVsz5+fmyMbsDAwORmpqKjIwMhIWFYcmSJVi7di1GjhypqZOYmIiKigqMGjUKPj4+mkl3WDEiskEKDf/VGGzpJiLr1bWrdn7PHkDdKc7vvwPNNYaqEDZ10iYi0jN5svScYlwc4ONTf30rP+fFxsYiNjbW4HtbtmzRKxsyZAhOnDhhdHvnz59vcAwZGRkNXoeILOz8eSAwsOnbYUs3EbVqxoZf2bOn+fbBVm4iaglCQqRXY0OJ6TI0Ti0Rka2pqFA6ApMx6SYi62botkkPj+bbPi8+iaglUHf2Zco5jec9IrJV8fHa+fLy5tlmHUMSNhcm3URk3SZP1i978UWgslKab+otQVbc0p2YmIjAwEC4uLggPDwchw4dqrN+ZmYmwsPD4eLigqCgICQlJcneT05ORmRkJDw9PeHp6YmoqCh8++23sjrx8fHo378/3N3d0bVrVzz++OM4ffp0sx8bETUzddJtyjmtqsq8sRARmcvLL2vnmyvp5u3lREQA3ngDuP127XJREeDkJP0y6esLFBY2fttWmnTv2rULM2fOxPz585GdnY3IyEgMGzZM1oGQrry8PAwfPhyRkZHIzs7GvHnzMH36dOzevVtTJyMjA2PGjMGBAweQlZUFf39/REdH48qVK5o6mZmZmDp1Ko4cOYL09HRUVVUhOjoaN27cMPsxE1ETNCTpttLzHhFRvRwdgdtuk+ZtKOm2E8LKe9OwYSUlJfDw8EBxcTHat2+vdDhEts/Y7T8bNgC3hpNpsOJioEMH/XITTo3m/I4PGDAA/fr1w4YNGzRlISEhePzxxxGve2vVLa+99ho++eQT5ObmaspiYmLw3XffISsry+A+qqur4enpiXXr1uG5554zWOe3335D165dkZmZicGDB5sUO899RAr46isgMlK6GP3557rrPvsssH274fcUPvfZMn4uRBZy113ADz8AX34JPPRQw9Y1dC2pUgFHj9a7alO+42zpJiLbcfy44fL6LjDrYoUtPhUVFTh+/Diio6Nl5dHR0Th8+LDBdbKysvTqDx06FMeOHUOl+lb8WsrKylBZWYmOHTsajaW4uBgA6qxDRFaAt5cTUWvh7Cy92lBLN5NuIrId/foZLv+//2v8Nq0w6S4qKkJ1dTW8avVC7OXlhYKCAoPrFBQUGKxfVVWFoqIig+vMmTMH3bp1Q1RUlMH3hRCIi4vDfffdh9DQUKPxlpeXo6SkRDYRkYW1uXVJd+4cYOQ8ocGkm4hsmfpHxuvXlY2jAZh0E1Hrpk66LdBzZUPZ1YpJCKFXVl99Q+UAsHLlSuzcuRN79uyBi4uLwe1NmzYN33//PXbu3FlnnPHx8fDw8NBMfsaGeiMi87l5Uztf3+M2TLqJyJapO4F9+mngiSeavj22dBMR1fLBB9KrsVbvhlIn3epfTa1A586dYW9vr9eqXVhYqNearebt7W2wvoODAzp16iQrX716NZYvX460tDT06dPH4PZeeuklfPLJJzhw4AC6d+9eZ7xz585FcXGxZrp06VJ9h0hEzS0yUjt/7VrddZl0E1FL8Z//KB2BSZh0E5FtGTVK+kXy+HHg3/+Wyvz9G789K0y6nZycEB4ejvT0dFl5eno6Bg4caHCdiIgIvfppaWlQqVRwdHTUlK1atQpLlizB3r17oVKp9LYjhMC0adOwZ88e7N+/H4GBgfXG6+zsjPbt28smIrIwe3ugVy9pfvjwuusy6SailsQG+gVn0k1Etkvd6mvk9miT1NRIr1aUdANAXFwc3n33XWzatAm5ubmYNWsWLl68iJhbt43OnTtX1uN4TEwMLly4gLi4OOTm5mLTpk1ISUnBK6+8oqmzcuVKLFiwAJs2bUKPHj1QUFCAgoIClJaWaupMnToV27Ztw44dO+Du7q6pc1P31lUisk7qZHrXrrrrWWFfFkREJktLky+3aQNYeX8yiifdiYmJCAwMhIuLC8LDw3Ho0KE662dmZiI8PBwuLi4ICgpCUlKS7P3k5GRERkbC09MTnp6eiIqKwrfq+/5vWbRoEezs7GSTt7e3rI4QAosWLYKvry9cXV1x//3348cff2yegyai5qFOlH/+ufEtN+qLzzaKnw5lRo8ejYSEBCxevBhhYWE4ePAgUlNTERAQAADIz8+XjdkdGBiI1NRUZGRkICwsDEuWLMHatWsxcuRITZ3ExERUVFRg1KhR8PHx0UyrV6/W1NmwYQOKi4tx//33y+rsqu8inoiUd/689JqdXXc9tnQTkS1r106/bNSo+tdTsAHBQbE9A9i1axdmzpyJxMREDBo0CP/85z8xbNgwnDp1Cv4GbhfNy8vD8OHDMWXKFGzbtg1ff/01YmNj0aVLF82FZUZGBsaMGYOBAwfCxcUFK1euRHR0NH788Ud069ZNs63evXvjyy+/1Czb12rlWrlyJdasWYMtW7bg9ttvx9KlS/Hwww/j9OnTcHd3N9MnQkQNovu9/egj4KmnGr4NK7y9XC02NhaxsbEG39uyZYte2ZAhQ3DixAmj2zuvviCvg7CBW7SIqImYdBORLVMPGaar1iN2BtU3soMZKdq0s2bNGkyaNAmTJ09GSEgIEhIS4Ofnhw0bNhisn5SUBH9/fyQkJCAkJASTJ0/GxIkTZa0027dvR2xsLMLCwhAcHIzk5GTU1NRg3759sm05ODjA29tbM3Xp0kXznhACCQkJmD9/Pp588kmEhobivffeQ1lZGXbs2GGeD4OIGq6iQjt/azzpBrPipJuIqEGWLpVen3yy7npMuonIlhnqTPf55xu/PSMNHM1JsaS7oqICx48fR3R0tKw8Ojoahw8fNrhOVlaWXv2hQ4fi2LFjqKysNLhOWVkZKisr0bFjR1n5mTNn4Ovri8DAQDz99NM4d+6c5r28vDwUFBTI9uXs7IwhQ4YYjQ3gWLVEFnflina+9vM9plIn3b//3vR4iIiUlJsrve7ZU3c9PtNNRLaupgaYPl27vHlz47fVs2fT46mHYkl3UVERqqur9Ya/8fLy0hv2Rq2goMBg/aqqKhQVFRlcZ86cOejWrRuioqI0ZQMGDMDWrVvxxRdfIDk5GQUFBRg4cCCuXr2q2Y9626bGBnCsWiKLe/pp7bx6KLGG2r27eWIhIlKaTj8Pdfbma6ShgojIZtjZAZ6eSkdhMsV7DrKzs5MtCyH0yuqrb6gckJ7L3rlzJ/bs2QMXnd6Nhw0bhpEjR+Kuu+5CVFQUPv/8cwDAe++916TYOFYtkYXZ2QHBwdL86NGN28bJk80XDxGRkmbP1s5/953xeky6iagluDWii8n+/FM7P2NG88ZSD8WS7s6dO8Pe3l6v5biwsFCvhVnN29vbYH0HBwd06tRJVr569WosX74caWlp6NOnT52xtG3bFnfddRfOnDmj2Q+ABsUGcKxaIkU8+qj02r1749bns9xE1FIMHaqd79tXOyRibUy6iagl8PYGwsJMr6/u9wIAli1r9nDqoljS7eTkhPDwcKTX6mkuPT0dAwcONLhORESEXv20tDSoVCo4OjpqylatWoUlS5Zg7969UKlU9cZSXl6O3Nxc+Pj4AJCG3vH29pbtq6KiApmZmUZjIyKFqJPmxj6j+Mwz2vn77mt6PEREStG5FgIAvP224Xq6nVASEdmy5GTT637xheHyOu5kbi6K3l4eFxeHd999F5s2bUJubi5mzZqFixcvIubWrQJz587Fc889p6kfExODCxcuIC4uDrm5udi0aRNSUlLwyiuvaOqsXLkSCxYswKZNm9CjRw8UFBSgoKAApaWlmjqvvPIKMjMzkZeXh2+++QajRo1CSUkJxo8fD0C6rXzmzJlYvnw5PvroI/zwww+YMGEC3Nzc8IzuBToRKU+ddBtr0amPetiJsDBgzhxp3oQf64iIrN78+YbLmXQTUUuhMyR0vW7136XHAsOlKjpO9+jRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5uKjTKUhgYCBSU1Mxa9YsrF+/Hr6+vli7dq1mjG4ASExMREVFBUbVGiB94cKFWLRoEQDg8uXLGDNmDIqKitClSxfce++9OHLkiGa/ADB79mzcvHkTsbGxuHbtGgYMGIC0tDSO0U1kbdrc+u1w7Vrg+++BAwcatr76NsvaLURERLZo/HhA3UfNyy8brsOkm4haCgeddFYI01utLdC6rUvRpBsAYmNjEWtkbLQtW7bolQ0ZMgQnTpwwur3z58/Xu8/333+/3jp2dnZYtGiRJlEnIiul+0x2RkbD19dNui18AiYianZvvaVNuo09dsOkm4haCt3rwOpqeRJem5OT4fNfS7+9nIioyb75pmnrG2rptsBtRkREZuHtre3Rt7zccB31RefQoXX3ck5EZO10k+yqqrrrKviDI5NuIrJte/c2bX22dBNRS3OrY9h6k+4tWziCAxHZtoYk3Qpi0k1Etk23d15f34avz5ZuImpp1B1E7t4N/Pqr/L3qam3Hk05O/LGRiGxbY5NuC5/7mHQTkW2bPh1ITJTm8/Mbvj5buomopfntN+m1qEjq2besTPuebuu3k5Nl4yIiam66SXdjh4+1ACbdRGTb7O2142sL0fBnvNnSTUQtzdmz8uVp07Tzus80WmlLd2JiIgIDA+Hi4oLw8HAcOnSozvqZmZkIDw+Hi4sLgoKCkJSUJHs/OTkZkZGR8PT0hKenJ6KiovDtt9/K6sTHx6N///5wd3dH165d8fjjj+P06dPNfmxE1MzatNGex+pr6Q4Kkl47djRvTAYw6SYi26e+lRIAXnmlYeuypZuIWprarT2bN2vPdbpJtxUOlbhr1y7MnDkT8+fPR3Z2NiIjIzFs2DDZELK68vLyMHz4cERGRiI7Oxvz5s3D9OnTsXv3bk2djIwMjBkzBgcOHEBWVhb8/f0RHR2NK1euaOpkZmZi6tSpOHLkCNLT01FVVYXo6GjcuHHD7MdMRE2kbiz588+664WHS6+LFvH2ciKiBnNx0c536tSwddW/irKlm4haCkPjc6tvK1cn3Vb6Q+OaNWswadIkTJ48GSEhIUhISICfnx82bNhgsH5SUhL8/f2RkJCAkJAQTJ48GRMnTsTq1as1dbZv347Y2FiEhYUhODgYycnJqKmpwb59+zR19u7diwkTJqB37964++67sXnzZly8eBHHjx83+zETUTOZM6fu9w3d3QhwyDAiIpPoJt11jc9oCFu6iailGTJEv0ydbKtf1XcIWdF5r6KiAsePH0d0dLSsPDo6GocPHza4TlZWll79oUOH4tixY6hUn99rKSsrQ2VlJTrWcYtpcXExANRZh4iszPvv1/2+saTbAhp4dUpEZIV0by9v6AWkgidgIiKLqZ10W2EnakVFRaiuroaXl5es3MvLCwUFBQbXKSgoMFi/qqoKRUVF8FEPn6Zjzpw56NatG6KiogxuUwiBuLg43HfffQgNDTUab3l5Ocp1OqYrKSkxWpeIrICC13xs6SYi2+fhAXh7S/NtGnhaY0dqRNQa1L69XJ10W1FLt5pdrZiEEHpl9dU3VA4AK1euxM6dO7Fnzx646N4lpWPatGn4/vvvsXPnzjrjjI+Ph4eHh2by8/Orsz4RmZm6Y11j1Nd8CnQiyaSbiFqGt96SXm/dEmgy3l5ORK2B+tlkK27p7ty5M+zt7fVatQsLC/Vas9W8vb0N1ndwcECnWn18rF69GsuXL0daWhr69OljcHsvvfQSPvnkExw4cADdu3evM965c+eiuLhYM126dKm+QyQic/rqq7rfZ0s3EVETdeggvXLIMCIi4B//kC+/8IL0WlfSrfDzy05OTggPD0d6erqsPD09HQMHDjS4TkREhF79tLQ0qFQqOOqc11etWoUlS5Zg7969UKlUetsRQmDatGnYs2cP9u/fj8DAwHrjdXZ2Rvv27WUTESmgvhZuNSbdRERN5OEhvf7xB5Cfb/p6bOkmopZo+nT50GFFRdJrXbeX799vmdjqEBcXh3fffRebNm1Cbm4uZs2ahYsXLyImJgaA1Lr83HPPaerHxMTgwoULiIuLQ25uLjZt2oSUlBS8ojN85MqVK7FgwQJs2rQJPXr0QEFBAQoKClBaWqqpM3XqVGzbtg07duyAu7u7ps7Nmzctd/BE1DhxcdJrWFjd9Yxd89XXQt4M2JEaEbUMbm7aeV9faaxG3Q7WjFGfgHV7PWdLNxG1BIb6uKirpbuhQy6awejRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5sjG7AwMDkZqailmzZmH9+vXw9fXF2rVrMXLkSE2dxMREVFRUYNSoUbJ9LVy4EIsWLQIAzZBk999/v6zO5s2bMWHChOY/UCJqPq6u0qvuD42GGGvpvnGj+WOqhS3dRNQy1L6tb+tW09az4pbuxMREBAYGwsXFBeHh4Th06FCd9TMzMxEeHg4XFxcEBQUhKSlJ9n5ycjIiIyPh6ekJT09PREVF4dtvv23yfonIRpSUaDtUs+KO1GJjY3H+/HmUl5fj+PHjGDx4sOa9LVu2ICMjQ1Z/yJAhOHHiBMrLy5GXl6dpFVc7f/48hBB6kzrhBmDwfSEEE24iW6A+j508CTz2mPF6vL2ciKiJgoPly+3ambZeVZX0amXPdO/atQszZ87E/PnzkZ2djcjISAwbNkzWwqMrLy8Pw4cPR2RkJLKzszFv3jxMnz4du3fv1tTJyMjAmDFjcODAAWRlZcHf3x/R0dG4cuVKo/dLRDbEw6Pulm4rTMCJiOp14IB2/pNPjNczlnRb4LqPSTcRtRy6J011x2r1sdKW7jVr1mDSpEmYPHkyQkJCkJCQAD8/P80tkLUlJSXB398fCQkJCAkJweTJkzFx4kSsXr1aU2f79u2IjY1FWFgYgoODkZycjJqaGuzbt6/R+yUiG8Okm4haGp0+HAAANTWG6yl4zcekm4halogI6VV9C2V9rLD38oqKChw/fhzR0dGy8ujoaBw+fNjgOllZWXr1hw4dimPHjqFSfYy1lJWVobKyEh1v9VjcmP0SkZW79Sy0hnpYRSu+vZyIqEE6d5YvG3tGm7eXExE1E3XnaeqeeutjhS3dRUVFqK6u1huX1svLS288WrWCggKD9auqqlBk5LOYM2cOunXrhqioqEbvFwDKy8tRUlIim4jISsyfL19+8UXp1VBHk1ZyDiQiapLr1w2X8/ZyIqJmom7hnjIF+O23+utbce/ldrUugIUQemX11TdUDkhD6OzcuRN79uyBi4tLk/YbHx8PDw8PzeTn52e0LhFZmLEhrwy1dDPpJqKWQGc4QBljDS1MuomIGigrSzt/333117fClu7OnTvD3t5er3W5sLBQrxVazdvb22B9BwcHdKo1DNDq1auxfPlypKWloU+fPk3aLyCNm1tcXKyZLl26ZNJxEpEFGDuvGXqmm4ioJbjjDvlyTQ1w6ZLxlu7wcLOHxKSbiFqu/v3rr2OFz3Q7OTkhPDwc6enpsvL09HQMHDjQ4DoRERF69dPS0qBSqeCoc2yrVq3CkiVLsHfvXqhUqibvFwCcnZ3Rvn172UREVmLQIMPl7EiNiFoS9Wg0at27A0OHSreav/AC4O8PlJVJ79VOunv1Mnt4TLqJqGW5/Xbt/Pbt9dfXHTLMii444+Li8O6772LTpk3Izc3FrFmzcPHiRc34s3PnzsVzzz2nqR8TE4MLFy4gLi4Oubm52LRpE1JSUvCKTo+eK1euxIIFC7Bp0yb06NEDBQUFKCgoQKnObVj17ZeIbEy/fsChQ/rlvL2ciFoSe3v58pUrQFoa8MwzwLvvyt9ToCM1h/qrEBHZkOxsoG1b0+vrtnQ7O0u/hPr4mCe2Bhg9ejSuXr2KxYsXIz8/H6GhoUhNTUXArZ6I8/PzZWNnBwYGIjU1FbNmzcL69evh6+uLtWvXYuTIkZo6iYmJqKiowKhRo2T7WrhwIRYtWmTSfonIBhl61EaddOve2cOkm4hams8+0y9ToKHFTggr6TGoBSopKYGHhweKi4t5uyWRJemeSE+flrd+66qq0v7a+dlnwIgRDdoNv+OG8XMhskK1LzD79QOOHwfOntXeWllYCHTpUu+m+B03jJ8LkcI++QR47LH6612/Dri6ajvRzc4GwsLqXa0p33HeXk5ELZuxYSMAQOfWayVuNSIiUsyJE/plbOkmIlv217+aVq92nxatoffyxMREBAYGwsXFBeHh4Thk6LkjHZmZmQgPD4eLiwuCgoKQlJQkez85ORmRkZHw9PSEp6cnoqKi8O2338rqxMfHo3///nB3d0fXrl3x+OOP4/Tp07I6EyZMgJ2dnWy69957m+egici8fvlFO2/sl8iSEuAf/9AuM+kmopZs8+b66zDpJqLWQIHbyxVNunft2oWZM2di/vz5yM7ORmRkJIYNGyZ7TlFXXl4ehg8fjsjISGRnZ2PevHmYPn06du/eramTkZGBMWPG4MCBA8jKyoK/vz+io6Nx5coVTZ3MzExMnToVR44cQXp6OqqqqhAdHY0bN27I9vfII48gPz9fM6WmpprngyCi5tWzp3a+utpwnU2b5MtMuomoJQsKMlzOpwyJqCV78EH5soODfsJtgQRc0Y7U1qxZg0mTJmHy5MkAgISEBHzxxRfYsGED4uPj9eonJSXB398fCQkJAICQkBAcO3YMq1ev1nQWtL1Wb8XJycn48MMPsW/fPk1Pv3v37pXV2bx5M7p27Yrjx49j8ODBmnJnZ2d4e3s32/ESkQL27gWCg/XLb96ULzPpJqKWrHbPvnPn6tdhSzcR2Tpvb6CgQLtc+/rO0HCJFqBYS3dFRQWOHz+O6OhoWXl0dDQOHz5scJ2srCy9+kOHDsWxY8dQqe6BuJaysjJUVlaiY8eORmMpLi4GAL06GRkZ6Nq1K26//XZMmTIFhYWFdR5TeXk5SkpKZBMRKax7d8Pl8+bJl5l0E1FL1qbWJd8DD+jXYdJNRLZuxQr5cu0c0dBwiTU15o0JCibdRUVFqK6uhpeXl6zcy8sLBbq/TugoKCgwWL+qqgpFRUUG15kzZw66deuGqKgog+8LIRAXF4f77rsPoaGhmvJhw4Zh+/bt2L9/P95++20cPXoUDz74IMrLy40eU3x8PDw8PDSTn5+f0bpEZGaRkdKrqSdSB46gSEQtWO2k+/ffpVfeXk5ELcmYMfJlU5Luhgw120iKX2Xa1fpVVQihV1ZffUPlALBy5Urs3LkTGRkZcHFxMbi9adOm4fvvv8dXX30lKx89erRmPjQ0FCqVCgEBAfj888/x5JNPGtzW3LlzERcXp1kuKSlh4k2kFFdX6bW8HPj1V+nZ7rq+j2zpJqKWrPbt5YaSbbZ0E5Gtc3SUzm979gAjR0rXgbp071x+913pVvQ77jB7WIol3Z07d4a9vb1eq3ZhYaFea7aat7e3wfoODg7o1KmTrHz16tVYvnw5vvzyS/Tp08fg9l566SV88sknOHjwILobuwX1Fh8fHwQEBODMmTNG6zg7O8PZ2bnO7RCRhRw5Ir3u3w/c6s8BZWVSMp6Xp1+fSTcRtSY+PvplTLqJqKVQN7jW6ihbZtIky8QCBW8vd3JyQnh4ONLT02Xl6enpGDhwoMF1IiIi9OqnpaVBpVLBUeeCedWqVViyZAn27t0LlUqltx0hBKZNm4Y9e/Zg//79CAwMrDfeq1ev4tKlS/Ax9J8UEVkfdZ8KW7Zoy9Q/mhnqxZdJNxG1ZGVl8mV1x7G6Ld5MuomopfnxR6UjAKDw7eVxcXEYN24cVCoVIiIisHHjRly8eBExMTEApNu1r1y5gq1btwIAYmJisG7dOsTFxWHKlCnIyspCSkoKdu7cqdnmypUr8frrr2PHjh3o0aOHpmW8Xbt2aNeuHQBg6tSp2LFjBz7++GO4u7tr6nh4eMDV1RWlpaVYtGgRRo4cCR8fH5w/fx7z5s1D586d8cQTT1jyIyKixureHbh8WV727rvA2rWG6zPptighBKqqqlBtbEg3IjOxt7eHg4NDnY+ytUilpdr5I0eYYCukurraaOe/RObU6s59Bw8qHYGMokn36NGjcfXqVSxevBj5+fkIDQ1FamoqAgICAAD5+fmyMbsDAwORmpqKWbNmYf369fD19cXatWs1w4UBQGJiIioqKjBq1CjZvhYuXIhFixYBADZs2AAAuP/++2V1Nm/ejAkTJsDe3h4nT57E1q1b8ccff8DHxwcPPPAAdu3aBXd3dzN8EkTU7CZPBm595zXeecd40t1a/hOyAhUVFcjPz0dZ7ZY3Igtxc3ODj48PnBQaOkYRPXtq5wcMMFyH50GzKi0txeXLlzX9ERFZWqs69912m9IRyNgJfvPNpqSkBB4eHiguLkb79u2VDoeodfH3By5d0i8vKQEMfR9//dXwM4514HfcsLo+l5qaGpw5cwb29vbo0qULnJycWs+v7qQ4IQQqKirw22+/obq6Grfddhva1O7VuyVLTwd8fYHevbVlP/+s7UTo+nXg1l2BdeG5z7C6Ppfq6mqcOXMGbm5u6NKlC897ZFGt8tyXny+d72pr00bqXLcRmnLuU7z3ciIis3juOWDZMv1yQyfJ8eMbnHBT41RUVKCmpgZ+fn5wc3NTOhxqhVxdXeHo6IgLFy6goqLC6OgmLdLDDysdQatVWVkJIQS6dOkCV/XoGkQW1OrOfcYeG4yNtWwct7TwnziIqNV68EHT6+p2tkYW0eJ/YSerxr8/HexIzaLYwk1KalXnPgcjbcsK9eHTij55ImpVTLhFEoD07DcRETHpJqKWw1hyrVBHhky6iahlMrXTw1deMW8c1GrZ2dnhP//5j+LbsKTz58/Dzs4OOTk5Vrk9MoAt3dTMeO6zvu21SsZauv/4w6JhqDHpJqKWydSkW92BEFE9JkyYADs7O73pl19+MVg/Pz8fw4YNM2nbixYtQlhYWJO20RL5+flpRjcBgIyMDNjZ2eEPhS6aiFojnvssj+e+ZmAs6VaoTwUm3UTUMukm3SkphuuUlFgmFmoxHnnkEeTn58umwMBAWZ2KigoAgLe3N5ydnZu0v+bYhi2zt7eHt7c3HIxdPFHzspKW7sTERAQGBsLFxQXh4eE4dOhQnfUzMzMRHh4OFxcXBAUFISkpSfZ+cnIyIiMj4enpCU9PT0RFReHbb79t8n5bE577LIvnvmZg7Pl1hTqQY9JNRC2T7jPdw4frvz9okOmt4US3ODs7w9vbWzY99NBDmDZtGuLi4tC5c2c8fKuH6Nq3R16+fBlPP/00OnbsiLZt20KlUuGbb77Bli1b8Oabb+K7777TtCBtudW5X+1tnDx5Eg8++CBcXV3RqVMn/P3vf0dpaanm/QkTJuDxxx/H6tWr4ePjg06dOmHq1KmoNOEZtrlz5+Lee+/VK+/Tpw8WLlyoWd68eTNCQkLg4uKC4OBgJCYm1rndzMxM3HPPPXB2doaPjw/mzJmDqqoqzfs1NTVYsWIFevXqBWdnZ/j7+2PZrZEHdG+xPH/+PB544AEAgKenJ+zs7DBhwgRs3boVnTp1Qnl5uWy/I0eOxHPPPVfvcbd6VnZ7+a5duzBz5kzMnz8f2dnZiIyMxLBhw3Dx4kWD9fPy8jB8+HBERkYiOzsb8+bNw/Tp07F7925NnYyMDIwZMwYHDhxAVlYW/P39ER0djStXrjR6v60Nz30899kcY+cze3vLxqEmyGyKi4sFAFFcXKx0KESt03//K8Tu3dL87t1CSJeX0nT//U3ePL/jhtX1udy8eVOcOnVK3Lx5UyqoqRGitFSZqaamQcc1fvx48dhjj+mVDxkyRLRr1068+uqr4qeffhK5ublCCCEAiI8++kgIIcT169dFUFCQiIyMFIcOHRJnzpwRu3btEocPHxZlZWXi5ZdfFr179xb5+fkiPz9flJWV6W3jxo0bwtfXVzz55JPi5MmTYt++fSIwMFCMHz9eFmP79u1FTEyMyM3NFZ9++qlwc3MTGzdurPf4Tp48KQCIX375RVP2ww8/CADi9OnTQgghNm7cKHx8fMTu3bvFuXPnxO7du0XHjh3Fli1bhBBC5OXlCQAiOztbCCHE5cuXhZubm4iNjRW5ubnio48+Ep07dxYLFy7U7GP27NnC09NTbNmyRfzyyy/i0KFDIjk5WW97VVVVYvfu3Zp48vPzxR9//CHKysqEh4eH+Pe//63Z5m+//SacnJzE/v37DR6r3t9ha3bqlPa8+OefJq1iznPfPffcI2JiYmRlwcHBYs6cOQbrz549WwQHB8vKXnjhBXHvvfca3UdVVZVwd3cX7733XqP3awjPfTz38dxnZXSv+9TTyy83enNNOfcx6TYjXpATWSH1STcqqsmb4nfcsAZdeJaWGv5P0RJTaWmDjmv8+PHC3t5etG3bVjONGjVKDBkyRISFhenV171o/Oc//ync3d3F1atXDW574cKF4u67765zGxs3bhSenp6iVCfuzz//XLRp00YUFBRoYgwICBBVVVWaOk899ZQYPXq0ScfYp08fsXjxYs3y3LlzRf/+/TXLfn5+YseOHbJ1lixZIiIiIoQQ+hee8+bNE3fccYeo0bnIX79+vWjXrp2orq4WJSUlwtnZWXOhWVvt7R04cEAAENeuXZPVe/HFF8WwYcM0ywkJCSIoKEi2X12t7sKzLrpJd3m5SauY69xXXl4u7O3txZ49e2Tl06dPF4MHDza4TmRkpJg+fbqsbM+ePcLBwUFUVFQYXKekpES4uLiITz/9tNH7FUKIP//8UxQXF2umS5cu8dwneO4Tguc+q/HWW/p//7NnN3pzTTn38fZyImqdFBqnkWzbAw88gJycHM20du1aAIBKpapzvZycHPTt2xcdO3Zs9L5zc3Nx9913o23btpqyQYMGoaamBqdPn9aU9e7dG/Y6t8/5+PigsLDQpH2MHTsW27dvBwAIIbBz506MHTsWAPDbb7/h0qVLmDRpEtq1a6eZli5dirNnzxqNOSIiQjY28aBBg1BaWorLly8jNzcX5eXleOihh0z/IAyYMmUK0tLSNLcLb968WdP5EzWAwp9XUVERqqur4eXlJSv38vJCQUGBwXUKCgoM1q+qqkJRUZHBdebMmYNu3bohKiqq0fsFgPj4eHh4eGgmPz+/eo/RVvHcx3OfTXrtNeDKFeDvf9eWKTRWOZ/OJ6LWiUm3dXBzA3Sey7P4vhuobdu26NWrl8Hyurg2Q2+pQgijF1K65Y61/rbt7OxQU1Nj0j6eeeYZzJkzBydOnMDNmzdx6dIlPP300wCg2UZycjIGDBggW8/eyDNyhmIWt54htrOza5bPBQD69u2Lu+++G1u3bsXQoUNx8uRJfPrpp82ybbI8Q38zdSURdf2N1bZy5Urs3LkTGRkZcKnVoVJD9zt37lzExcVplktKSkxPvHnuMxnPfcbx3GcCX1/gn/8ENm6UlhV6ppst3UTUOtlA0t3cPfj++OOPGDlyJHr06AE7OzskJCTobaOqqgoLFixAYGAgXF1dERQUhMWLF5t84dJgdnZA27bKTBZsCejTpw9ycnLw+++/G3zfyckJ1dXVdW7jzjvvRE5ODm7cuKEp+/rrr9GmTRvcfvvtzRJn9+7dMXjwYGzfvh3bt29HVFSUpvXPy8sL3bp1w7lz59CrVy/ZVLsXY92YDx8+rLnYBIDDhw/D3d0d3bp1w2233QZXV1fs27fPpPicnJwAwOBnNXnyZGzevBmbNm1CVFRUi251bFZW1JFa586dYW9vr9e6XFhYqNcKrebt7W2wvoODAzp16iQrX716NZYvX460tDT06dOnSfsFpM7F2rdvL5tMxnMfAJ77eO5TAJNuIiILsvKk2xw9+JaVlSEoKAhvvfUWvL29DW5nxYoVSEpKwrp165Cbm4uVK1di1apVeOedd8xynK3FmDFj4O3tjccffxxff/01zp07h927dyMrKwsA0KNHD+Tl5SEnJwdFRUV6vdEC0u2PLi4uGD9+PH744QccOHAAL730EsaNG1dnYtBQY8eOxfvvv48PPvgAzz77rOy9RYsWIT4+Hv/4xz/w888/4+TJk9i8eTPWrFljcFuxsbG4dOkSXnrpJfz000/4+OOPsXDhQsTFxaFNmzZwcXHBa6+9htmzZ2Pr1q04e/Ysjhw5ghQjw/wFBATAzs4On332GX777TdZ78Vjx47FlStXkJycjIkTJzbb59GqKJx0Ozk5ITw8HOnp6bLy9PR0DBw40OA6ERERevXT0tKgUqlkLZ+rVq3CkiVLsHfvXr1bohuzXzINz30891kdhW4vZ0dqZsROloiskLojjWefbfKmbLkH34CAAPF///d/euUjRowQEydOlJU9+eST4tkGfF4N6kjNhtTVg++MGTP0yqHTEZAQQpw/f16MHDlStG/fXri5uQmVSiW++eYbIYTUIdPIkSNFhw4dBACxefNmg9v4/vvvxQMPPCBcXFxEx44dxZQpU8T169frjHHGjBliyJAhJh/ntWvXhLOzs3Bzc5NtW2379u0iLCxMODk5CU9PTzF48GBNB1S1O/8RQoiMjAzRv39/4eTkJLy9vcVrr70mKisrNe9XV1eLpUuXioCAAOHo6Cj8/f3F8uXLjW5v8eLFwtvbW9jZ2cl6LxZCiHHjxomOHTuKP+vphduW/w6b3Y8/as+L1dUmrWLOc9/7778vHB0dRUpKijh16pSYOXOmaNu2rTh//rwQQog5c+aIcePGaeqfO3dOuLm5iVmzZolTp06JlJQU4ejoKD788ENNnRUrVggnJyfx4YcfanrJzs/Pl/1917dfU/DcJ+G5T8Jzn5VRn+eWLGn0Jth7uZVi0k1khdQn3eefb/KmbLkHX2NJd3x8vAgICNAMk5KTkyO6du2q12trXVrqhSdZv6ioKPHSSy/VW49/hzqsLOkWQurlOSAgQDg5OYl+/fqJzMxMzXvjx4/XS6QyMjJE3759hZOTk+jRo4fYsGGD7P2AgAABQG/SHb6pvv2aguc+UgrPfSZQn+eWLWv0Jppy7mNHakTUOlnx7eXm6MHXx8fHpH2/9tprKC4uRnBwMOzt7VFdXY1ly5ZhzJgxRtcpLy+X3RJYUlJi0r6Imsvvv/+OtLQ07N+/H+vWrVM6HNtiRc90q8XGxiI2Ntbge1u2bNErGzJkCE6cOGF0e+fPn2/yfomsEc99jaDQM91MuomodbLipFvNnD34GrNr1y5s27YNO3bsQO/evZGTk4OZM2fC19cX48ePN7hOfHw83nzzTZP3Qco4dOgQhg0bZvT9UqV6Um4G/fr1w7Vr17BixQrccccdSodju6wk6SZqTjz3kQyTbiIiCxgxAvj8cyAmRulIjDJ3D751efXVVzFnzhzNUCl33XUXLly4gPj4eKNJd5OGzSGLUalUyMnJUToMszC1JZMMCAqSXm3gh0iixuC5jwAA/foBJ04AI0cqsnsm3UTUunz8MXDtGtC5s9KRGKXbk+4TTzyhKU9PT8djjz1mcJ2IiAi9sTkN9eBbn7KyMrSp1bOnvb19nUOGOTs7w9nZ2eR9kDJcXV0NjrNLrZyrK1BSAjjwkpBaJp77CADwzTfSua5jR0V2zzMsEbUu9vZWnXCrxcXFYdy4cVCpVIiIiMDGjRtx8eJFxNxqoZ87dy6uXLmCrVu3AgBiYmKwbt06xMXFYcqUKcjKykJKSgp27typ2WZFRQVOnTqlmb9y5QpycnLQrl07zQXJo48+imXLlsHf3x+9e/dGdnY21qxZw2FIiFoyd3elIyAiMi8HB8USboBJNxGRVRo9ejSuXr2KxYsXIz8/H6GhoUhNTUVAQAAAID8/XzZmd2BgIFJTUzFr1iysX78evr6+WLt2LUbq3Eb166+/om/fvprl1atXY/Xq1RgyZAgyMjIAAO+88w5ef/11xMbGorCwEL6+vnjhhRfwxhtvNOvxCd3Om4gsjH9/pBT+7ZGS+PenHDvBT99sSkpK4OHhgeLiYrRv317pcIiomfE7blhdn0t1dTV+/vlndO3atUHPmhM1p6tXr6KwsBC333477BXqVMeW8dxnWF2fS2VlJX755Rf4+vrCw8NDoQipteO5r2macu5jSzcREVmMvb09OnTogMLCQgCAm5tbg3pXJ2oKIQTKyspQWFiIDh068KKTLMbBwQFubm747bff4OjoqNd3BpE58dynPCbdRERkUd7e3gCgSbyJLK1Dhw6av0MiS7Czs4OPjw/y8vJw4cIFpcOhVornPuUw6SYiIotSX3x27doVlZWVSodDrYyjoyNbeUgRTk5OuO2221BRUaF0KNQK8dynLCbdRESkCHt7e14AEFGr0qZNG7i4uCgdBhFZGB8oISIiIiIiIjITJt1EREREREREZsKkm4iIiIiIiMhM+Ey3GamHQC8pKVE4EiIyB/V3W/1dJwnPfUQtG899hvHcR9SyNeXcx6TbjK5fvw4A8PPzUzgSIjKn69evw8PDQ+kwrAbPfUStA899cjz3EbUOjTn32Qn+TGk2NTU1+PXXX+Hu7g47O7s665aUlMDPzw+XLl1C+/btLRShZfEYbV9LPz6gYccohMD169fh6+uLNm34tI4az31yLf0YW/rxATzG2njuM4znPrmWfowt/fgAHmNtTTn3saXbjNq0aYPu3bs3aJ327du32D9qNR6j7WvpxweYfoxs5dHHc59hLf0YW/rxATxGXTz36eO5z7CWfowt/fgAHqOuxp77+PMkERERERERkZkw6SYiIiL6//buPSyqav0D+DvCzDAgiFxUFAQVBbEoURGkJJ8QNO+VnswL5iU1y8vjybSbpmV6ysvJY3r0qKgnryGWmUii4IWU5KIpgxCCWo4XVDJEUJjv7w9+sw+bucAII3vw/TzPPI+z95q919przddZe5i9GWOMMQvhSbdEKJVKmj9/PimVyoauisVwG61fY28f0ZPRRil5Eo53Y29jY28fEbeR1b8n4Xg39jY29vYRcRvrE19IjTHGGGOMMcYYsxD+ppsxxhhjjDHGGLMQnnQzxhhjjDHGGGMWwpNuxhhjjDHGGGPMQnjSbUFff/01tWvXjuzs7Khbt2507Ngxk+WTk5OpW7duZGdnR+3bt6e1a9fqlYmNjaWAgABSKpUUEBBAcXFxlqp+jcxp3549e6hv377k7u5OTk5OFBoaSgcPHhSViYmJIZlMpvcoLS21dFOMMqeNSUlJBuufnZ0tKielPiQyr43jxo0z2MYuXboIZaTUj0ePHqVBgwZR69atSSaT0d69e2t8jbW9D6WIs+9/OPv+x1r70Npyj4izryE09twj4uyrjrNPen0o6ewDs4gdO3ZALpdj/fr1yMrKwowZM+Dg4IBLly4ZLH/x4kXY29tjxowZyMrKwvr16yGXy/Htt98KZVJSUmBjY4PFixdDrVZj8eLFsLW1xcmTJx9XswTmtm/GjBlYunQpUlNTkZOTg3nz5kEulyM9PV0os2nTJjg5OUGj0YgeDcXcNh45cgREhAsXLojqX15eLpSRUh8C5rexqKhI1LYrV67AxcUF8+fPF8pIqR9//PFHfPDBB4iNjQURIS4uzmR5a3sfShFnnxhnXyVr7kNryz2As+9xa+y5B3D2GcLZJ70+lHL28aTbQoKDgzFlyhTRMn9/f8ydO9dg+Tlz5sDf31+0bPLkyQgJCRGejxgxAv369ROViYqKwmuvvVZPta49c9tnSEBAAD755BPh+aZNm9CsWbP6qmKdmdtGXfjeuXPH6Dal1IdA3fsxLi4OMpkMBQUFwjKp9aNObcLX2t6HUsTZVzPOvkrW2ofWlHsAZ9/j0NhzD+DsM4SzT3p9WJXUso//vNwCHjx4QGlpaRQZGSlaHhkZSSkpKQZf8/PPP+uVj4qKotOnT9PDhw9NljG2TUt5lPZVp9Vq6a+//iIXFxfR8uLiYvL29iZPT08aOHAgZWRk1Fu9zVGXNnbt2pU8PDzoxRdfpCNHjojWSaUPieqnHzds2EARERHk7e0tWi6VfjSXNb0PpYizr2acff9jrX3Y2HKPyLreh1LT2HOPiLOPs68SZ5+4jLl9yJNuCygsLKSKigpq2bKlaHnLli3p2rVrBl9z7do1g+XLy8upsLDQZBlj27SUR2lfdcuWLaN79+7RiBEjhGX+/v4UExND33//PW3fvp3s7OwoLCyMcnNz67X+tfEobfTw8KB169ZRbGws7dmzh/z8/OjFF1+ko0ePCmWk0odEde9HjUZDBw4coIkTJ4qWS6kfzWVN70Mp4uyrGWdf7bZpKZx7hlnT+1BqGnvuEXH2cfZx9tVHH9rWrarMFJlMJnoOQG9ZTeWrLzd3m5b0qHXZvn07LViwgL777jtq0aKFsDwkJIRCQkKE52FhYRQUFESrVq2ir776qv4qbgZz2ujn50d+fn7C89DQULpy5Qp9+eWX1Lt370fa5uPwqPWJiYkhZ2dnGjp0qGi5FPvRHNb2PpQizj7DOPusvw8ba+4RWd/7UGoae+4RcfZVx9knzT401+N6L/I33Rbg5uZGNjY2emdAbty4oXemRKdVq1YGy9va2pKrq6vJMsa2aSmP0j6dnTt30oQJE2jXrl0UERFhsmyTJk2oR48eDXK2rC5trCokJERUf6n0IVHd2giANm7cSGPGjCGFQmGybEP2o7ms6X0oRZx9xnH2WX8fNtbcI7Ku96HUNPbcI+Ls4+zj7KuPPuRJtwUoFArq1q0b/fTTT6LlP/30E/Xq1cvga0JDQ/XKJyQkUPfu3Ukul5ssY2yblvIo7SOqPNM5btw42rZtGw0YMKDG/QCgzMxM8vDwqHOdzfWobawuIyNDVH+p9CFR3dqYnJxMv/32G02YMKHG/TRkP5rLmt6HUsTZZxhnn/X3IVHjzT0i63ofSk1jzz0izj7OPs6+eulDsy67xmpNd1n+DRs2ICsrCzNnzoSDg4Nwxb+5c+dizJgxQnndJetnzZqFrKwsbNiwQe+S9SdOnICNjQ2WLFkCtVqNJUuWNPhtB2rbvm3btsHW1harV68W3VKgqKhIKLNgwQLEx8cjLy8PGRkZeOONN2Bra4tTp0499vYB5rdxxYoViIuLQ05ODs6dO4e5c+eCiBAbGyuUkVIfAua3UWf06NHo2bOnwW1KqR//+usvZGRkICMjA0SE5cuXIyMjQ7g9hrW/D6WIs4+zT+rZ19hzD+Dse9wae+4BnH0AZ58hUutDKWcfT7otaPXq1fD29oZCoUBQUBCSk5OFddHR0QgPDxeVT0pKQteuXaFQKODj44M1a9bobXP37t3w8/ODXC6Hv7+/6I39uJnTvvDwcBCR3iM6OlooM3PmTLRt2xYKhQLu7u6IjIxESkrKY2yRPnPauHTpUnTo0AF2dnZo3rw5nnvuOezfv19vm1LqQ8D8cVpUVASVSoV169YZ3J6U+lF3Ow9j464xvA+liLMvXHjO2fc/1tqHgHXlHsDZ1xAae+4BnH2cffqk1odSzj4Z8P+/FmeMMcYYY4wxxli94t90M8YYY4wxxhhjFsKTbsYYY4wxxhhjzEJ40s0YY4wxxhhjjFkIT7oZY4wxxhhjjDEL4Uk3Y4wxxhhjjDFmITzpZowxxhhjjDHGLIQn3YwxxhhjjDHGmIXwpJsxxhhjjDHGGLMQnnQ/oQDQm2++SS4uLiSTySgzM5NeeOEFmjlzpsnX+fj40MqVKx9LHZmYTCajvXv3EhFRQUGB0G91NWbMGFq8eLFZr4mJiSFnZ+c679uSxo0bR0OHDq1V2Rs3bpC7uzv98ccflq0UaxCcd9ZHSnlXk6SkJJLJZFRUVFSv260PtRnnOr/++it5enrSvXv3LFspZlU4P62PNeWnuaq2zeo+u4FJikajwdtvv4127dpBoVDA09MTAwcOxKFDh+p1Pz/++CPkcjlOnDgBjUaDhw8f4tatW7h7967J13l7e2PFihX1WhcmNn/+fDzzzDN6yzUaDUpLSwEA+fn5ICJkZGTUaV9nzpxB8+bNDfb7N998gyZNmmDy5Ml66zZt2oRmzZrVad+W3mZRURHu3LlT6/KzZs3ChAkT6m3/rGacd6yh8y48PBxEpPcwlHvGlJWVQaPRQKvV1lj2yJEjICKzsqkuajPOqxo2bBgWLVpkwRqx+sL5yRoqP3XbNPWYP3++0W3VpU5EhLi4OOG5NX12s33Mc3xmQkFBAYWFhZGzszP94x//oMDAQHr48CEdPHiQpk2bRtnZ2fW2r7y8PPLw8KBevXoJy1xcXOpt+43RgwcPSKFQNNj+W7VqVe/b/Ne//kXDhw8nR0dHvXUbN26kOXPm0Jo1a2j58uVkb29f7/u3hIqKCpLJZNSsWTOzXvfGG29QcHAwffHFF9S8eXML1Y7pcN5J25OUd5MmTaKFCxeKlpmTdwqFwiL1rQ/mjvM33niDpkyZQvPmzSMbGxsL1YrVFeentDX2/LS3tyeNRiOs+/LLLyk+Pp4OHTokLGvatGm918EQq/rs1tCzfvY//fv3R5s2bVBcXKy3rupZ8UuXLmHw4MFwcHCAo6Mjhg8fjmvXrgnrdWe+tmzZAm9vbzg5OeFvf/ubcFYyOjpadDbK29sbQOUZ/xkzZgjbuX79OgYOHAg7Ozv4+Pjgv//9r96Zy6KiIkyaNAnu7u5wdHREnz59kJmZWeu6AEBFRQWWLFmCDh06QKFQwMvLC59++qmw/vfff8eIESPg7OwMFxcXDB48GPn5+UaPo+6bhB9++AGBgYFQKpUIDg7G2bNnReVOnDiB559/HnZ2dvD09MQ777wjOvbe3t5YtGgRoqOj4eTkhLFjxwIAjh8/jt69e0OlUsHZ2RmRkZG4ffs2AECr1WLp0qVo164d7OzsEBgYiN27d+vV7dChQ+jWrRtUKhVCQ0ORnZ0NoPLbXqp2tnDTpk0AxGf3DJ0lPH/+PPr37w8HBwe0aNECo0ePxs2bN40ep4qKCjg7O+OHH37QW5efnw+VSoWioiL07NkTmzdvFq039K30999/j6CgICiVSrRr1w4LFizAw4cPhfXLli3DU089BXt7e3h6emLq1Kn466+/RMeFDJwlvX37NsaMGQNnZ2eoVCr069cPOTk5enXZt28fOnfuDBsbG1y8eBHR0dEYMmSIqL2mxhkA+Pj4YMOGDUaPGas/nHecd1LIu+rjoDrdvrdv347Q0FAolUoEBATgyJEjeu3UjduCggIMHDgQzs7OsLe3R0BAAPbv32/w26Ho6GizjmV8fDyeffZZ2NnZoU+fPrh+/Tp+/PFH+Pv7w9HREa+99hru3btntH2lpaV499134enpCYVCAV9fX/znP/8R1peVlUGpVCIxMdHoMWENj/OT81MK+alT/Rv3iooKfPLJJ2jTpg0UCgWeeeYZHDhwQFhfvd7h4eEAgNTUVERERMDV1RVOTk7o3bs30tLSRPuq2jYda/nsxpNuibh16xZkMhkWL15sspxWq0XXrl3x3HPP4fTp0zh58iSCgoKEAQtUDv6mTZvi5Zdfxq+//oqjR4+iVatWeP/99wFUBt/ChQvh6ekJjUaDGzduANAP0f79++Opp55CSkoKTp8+jV69ekGlUgkhqtVqERYWhkGDBuGXX35BTk4OZs+eDVdXV9y6datWdQGAOXPmoHnz5oiJicFvv/2GY8eOYf369QCAe/fuoWPHjhg/fjzOnj2LrKwsvP766/Dz80NZWZnBY6QLqs6dOyMhIQFnz57FwIED4ePjgwcPHgAAzp49i6ZNm2LFihXIycnBiRMn0LVrV4wbN07Yji70v/jiC+Tm5iI3NxcZGRlQKpWYOnUqMjMzce7cOaxatUoIq/fffx/+/v6Ij49HXl4eNm3aBKVSiaSkJFHdevbsiaSkJJw/fx7PP/88evXqBQAoKSnB7Nmz0aVLF2g0Gmg0GpSUlAAwHaJXr16Fm5sb5s2bB7VajfT0dPTt2xd9+vQxOpYyMjJARKL/gHU++ugjvPrqqwCAVatWoXfv3qL11Sfd8fHxcHJyQkxMDPLy8pCQkAAfHx8sWLBAKLNixQocPnwYFy9eRGJiIvz8/DB16lQAlR/0Vq5cCScnJ6Hdugn54MGD0blzZxw9ehSZmZmIioqCr6+v0JebNm2CXC5Hr169cOLECWRnZ6O4uFhv0m1qnOmMGDFCNAaYZXDecd4B0si72k66PT098e233yIrKwsTJ06Eo6MjCgsLRe3UTXYGDBiAvn374uzZs8jLy8O+ffuQnJyM8vJyxMbGgohw4cIFaDQaFBUVmXUsQ0JCcPz4caSnp8PX1xfh4eGIjIxEeno6jh49CldXVyxZssRo+0aMGAEvLy/s2bMHeXl5OHToEHbs2CFqc3BwsCi7mbRwfnJ+AtLIz6rjqOqke/ny5XBycsL27duRnZ2NOXPmQC6XC1+YpKamCicUNBqNMAYSExOxdetWZGVlISsrCxMmTEDLli1FJ14MTbqt5bMbT7ol4tSpUyAi7Nmzx2S5hIQE2NjY4PLly8Ky8+fPg4iQmpoKoHLw29vbiwbpu+++i549ewrPV6xYIZyx1KkaohcuXAAR4eTJk8J6tVoNIhJCNDExEU5OTsLvRnQ6dOiAf//737Wqy927d6FUKvUmPzobNmyAn5+f6LdyZWVlUKlUOHjwoMHX6IKq6geJW7duQaVSYefOnQCAMWPG4M033xS97tixY2jSpAnu378PoDJEhw4dKiozcuRIhIWFGdxvcXEx7OzskJKSIlo+YcIEjBw5UlS3qr+52r9/P4hI2K+x3+iYCtGPPvoIkZGRovJXrlwRPtwZEhcXBxsbG73fIVZUVMDLywt79+4FANy8eRNyuRy5ublCmeqT7ueff17vA8DWrVvh4eFhcN8AsGvXLri6uhrdJgDk5OSAiHDixAlhWWFhIVQqFXbt2iW8johEZ8wBiCbdNY0znVmzZuGFF14wWYbVHecd551U8i48PBxyuRwODg6iR0xMjGjfVSeyDx8+hKenJ5YuXSpqp27S/fTTTxudtBr6TfejHsvPP/8cRIS8vDxh2eTJkxEVFSVqX/Vx/tNPPxmsm86wYcOs4gPsk4rzk/NTKvmpU70erVu3xmeffSYq06NHD7z11lsG62RMeXk5HB0dsW/fPoNt07GWz278m26JAEBElVflM0WtVpOXlxd5eXkJywICAsjZ2ZnUajX16NGDiCqvGln1d2seHh5048aNWtdHrVaTra0tde/eXVjm7+8vumJ1WloaFRcXk6urq+i19+/fp7y8POG5qbqo1WoqKyujF1980WA90tLS6LffftP7DV5paaloH4aEhoYK/3ZxcSE/Pz9Sq9Wi7X7zzTdCGQCk1WopPz+fOnfuTEQkaj8RUWZmJg0fPtzg/rKysqi0tJT69u0rWv7gwQPq2rWraFlgYKDwbw8PDyKqvApj27ZtTbbJmLS0NDpy5IjB39Dk5eVRp06d9Jbfv3+flEql3phLSEige/fuUf/+/YmIyM3NjSIjI2njxo1Gr1qZlpZGv/zyC3322WfCsoqKCiotLaWSkhKyt7enI0eO0OLFiykrK4vu3r1L5eXlVFpaSvfu3SMHBweD29WNw549ewrLXF1dRX1JVPmbyqrH1NB2TI0zHZVKRSUlJSbLsLrjvOO8k0reERGNGjWKPvjgA9GyFi1aiJ5XPb66sVI1g6qaPn06TZ06lRISEigiIoJeeeUVk/n0qMeyZcuWZG9vT+3btxctS01NNbifzMxMsrGxofDwcKN1IeIclDrOT85PKeVndXfv3qWrV69SWFiYaHlYWBidOXPG5Gtv3LhBH3/8MR0+fJiuX79OFRUVVFJSQpcvXzb5OmvJLJ50S0THjh1JJpORWq02eZsjAAYHffXlcrlctF4mk5FWq611fWoT6lqtljw8PCgpKUlvXdWwNVUXlUplsh5arZa6desmCjsdd3d3k681RNcerVZLkydPpunTp+uVqRpk1SeDpuqra9P+/fupTZs2onVKpVL0vOoxqVqnR6XVamnQoEG0dOlSvXW6kK7Ozc2NSkpK9C74sXHjRrp9+7boQkJarZYyMjJo0aJFBi+uo9Vq6ZNPPqGXX35Zb52dnR1dunSJXnrpJZoyZQotWrSIXFxc6Pjx4zRhwgR6+PCh0XbpxqGh5VXHpkqlMjlWaxpnOrdv336kccXMw3lnfB+cdzWrz7wjImrWrBn5+vqaXQ9j42XixIkUFRVF+/fvp4SEBPr8889p2bJl9M477xgsX5djac7YNycHO3ToUKuy7PHj/DS+D87PmtV3fhpTfTwYG49VjRs3jm7evEkrV64kb29vUiqVFBoaSg8ePDD5Omv57Mb36ZYIFxcXioqKotWrVxu8R6bu/p8BAQF0+fJlunLlirAuKyuL/vzzT+FsW33o3LkzlZeX0+nTp4VlFy5cEN2HNCgoiK5du0a2trbk6+sreri5udVqPx07diSVSkWJiYkG1wcFBVFubi61aNFCbx81XZ365MmTwr/v3LlDOTk55O/vL2z3/Pnzetv09fU1GSiBgYFG6xoQEEBKpZIuX76st82qZ5prolAoqKKiotblq7bHx8dHb9/GvkV+9tlniahy/OjcunWLvvvuO9qxYwdlZmaKHsXFxXTgwAGj+79w4YLB49mkSRM6ffo0lZeX07JlyygkJIQ6depEV69erbHdAQEBVF5eTqdOnRLVMScnx6zxXtM40zl37pzeWWZW/zjvOO90GjLvzFH1+JaXl1NaWppwfA3x8vKiKVOm0J49e2j27Nm0fv16IiLheFdtc30dy5o8/fTTpNVqKTk52WQ5zkFp4/zk/NSRYn46OTlR69at6fjx46LlKSkpwrgzlINERMeOHaPp06fTSy+9RF26dCGlUkmFhYU17tNaMosn3RLy9ddfU0VFBQUHB1NsbCzl5uaSWq2mr776SvjTl4iICAoMDKRRo0ZReno6paam0tixYyk8PFzvT1vqws/Pj/r160eTJk2iU6dOUVpaGk2cOFF05i4iIoJCQ0Np6NChdPDgQSooKKCUlBT68MMPReFrip2dHb333ns0Z84c2rJlC+Xl5dHJkydpw4YNRFT5Z39ubm40ZMgQOnbsGOXn51NycjLNmDGDfv/9d5PbXrhwISUmJtK5c+do3Lhx5ObmJpwVfu+99+jnn3+madOmUWZmJuXm5tL3339v9JsInXnz5tEvv/xCb731Fp09e5ays7NpzZo1VFhYSI6OjvT3v/+dZs2aRZs3b6a8vDzKyMig1atX0+bNm2t1PIgq/7wqPz+fMjMzqbCwkMrKymp8zbRp0+j27ds0cuRISk1NpYsXL1JCQgKNHz/eaCC7u7tTUFCQKBi3bt1Krq6uNHz4cHrqqaeER2BgIA0cOFDol+o+/vhj2rJlCy1YsIDOnz9ParWadu7cSR9++CEREXXo0IHKy8tp1apVdPHiRdq6dSutXbtWr93FxcWUmJhIhYWFVFJSQh07dqQhQ4bQpEmT6Pjx43TmzBkaPXo0tWnThoYMGVLbQ1rjOCMiKikpobS0NIqMjKz1dtmj47zjvCNq2LzTKSkpoWvXroked+7cEZVZvXo1xcXFUXZ2Nk2bNo3u3LlD48ePN7ivmTNn0sGDByk/P5/S09Pp8OHDwodNb29vkslk9MMPP9DNmzepuLi43o5lTXx8fCg6OprGjx9Pe/fupfz8fEpKSqJdu3YJZQoKCuiPP/6giIiIetsvq3+cn5yfRNLIT0PeffddWrp0Ke3cuZMuXLhAc+fOpczMTJoxYwYRVf58R6VSUXx8PF2/fp3+/PNPIiLy9fWlrVu3klqtplOnTtGoUaNq/AsHq/rs9rh/RM5Mu3r1KqZNmwZvb28oFAq0adMGgwcPFt2epLa3gKiq+oUwarowBgBoNBoMGDAASqUSbdu2FW7jUPUWEHfv3sU777yD1q1bQy6Xw8vLC6NGjRIu3FGbulRUVODTTz+Ft7c35HI52rZtK7ool0ajwdixY+Hm5galUon27dtj0qRJ+PPPPw0eQ93FJ/bt24cuXbpAoVCgR48eehfaSk1NRd++fdG0aVM4ODggMDBQdOGH6m3VSUpKQq9evaBUKuHs7IyoqCjhojharRb//Oc/4efnB7lcDnd3d0RFRSE5OVlUt6oX0dFdFVJ3W4vS0lK88sorcHZ2NusWEDk5ORg2bJhway1/f3/MnDnT6IUvAGDt2rUICQkRnj/99NPChS6qi42Nha2tLa5du2bwomfx8fHCFUudnJwQHByMdevWCeuXL18ODw8PqFQqREVFYcuWLXrHYsqUKXB1dTV4y7BmzZoJrzV0y7DqDN0yzNQ427ZtG/z8/IweK1b/OO847xoy74DKcUDVbl9DRMLFyHT73rZtG3r27AmFQoHOnTuLbqlVvZ1vv/02OnToAKVSCXd3d4wZM0a40jkALFy4EK1atYJMJhPdMszcY2ko+6qPwerj/P79+5g1axY8PDyEW4Zt3LhRWL948WLRhdiYdHF+cn42dH7qmLplmFwu17tlGACsX78eXl5eaNKkiXBF/fT0dHTv3h1KpRIdO3bE7t279Y5t1bYB1vXZTQYY+dEkY1YqKSmJ+vTpQ3fu3BH9VojpKy0tJT8/P9qxY4foQiJPouDgYJo5cya9/vrrDV0VxmqN8672HiXvCgoKqF27dpSRkSH8iWVjVVZWRh07dqTt27frXQSJscaI87P2pPp50Zo+u/GflzP2BLOzs6MtW7bU6jczjdmNGzfo1VdfpZEjRzZ0VRhjFsJ5Z9qlS5fogw8+4Ak3Y0yPFPPT2j678dXLGXvC1XT7mCdBixYtaM6cOQ1dDcaYhXHeGdepUyeDtwtijDEi6eWntX124z8vZ4wxxhhjjDHGLIT/vJwxxhhjjDHGGLMQnnQzxhhjjDHGGGMWwpNuxhhjjDHGGGPMQnjSzRhjjDHGGGOMWQhPuhljjDHGGGOMMQvhSTdjjDHGGGOMMWYhPOlmjDHGGGOMMcYshCfdjDHGGGOMMcaYhfCkmzHGGGOMMcYYs5D/A7XRfhdKYRCzAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -631,7 +735,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAFUCAYAAADS2eS8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7pklEQVR4nO3deViUVf8/8PfILptArKm44YYbroCPWuGSmo9aZou5VfpYPrllFqalX03y+eojuKRpKKkFVrj1y3IpgVTcQU3NJSlRB1FQBlD28/vDL5P3DMvMMMNs79d1zXV57jnnvj/3EKf5cO5zjkwIIUBEREREREREBtHA2AEQERERERERWTIm3kREREREREQGxMSbiIiIiIiIyICYeBMREREREREZEBNvIiIiIiIiIgNi4k1ERERERERkQEy8iYiIiIiIiAyIiTcRERERERGRATHxJiIiIiIiIjIgJt5EREREREREBsTEuw5SUlIwbNgwBAQEQCaTYefOnQa9XlRUFHr06AFXV1f4+PhgxIgRuHTpkkGvSURUFfZ/RGSN2PcRka6YeNdBYWEhOnfujNWrV9fL9ZKTkzF16lQcPXoU+/fvR1lZGQYOHIjCwsJ6uT4RUSX2f0Rkjdj3EZGuZEIIYewgLIFMJsOOHTswYsQI5bGSkhLMmzcPX331Fe7fv48OHTpg6dKleOqpp/RyzTt37sDHxwfJycno27evXs5JRKQt9n9EZI3Y9xGRNmyNHYAlmzhxIv78808kJCQgICAAO3bswLPPPotz584hKCiozufPy8sDAHh6etb5XERE+sT+j4isEfs+IqoOR7z1RPWvnn/88QeCgoJw48YNBAQEKOv1798fPXv2xJIlS+p0PSEEhg8fjnv37uHXX3+t07mIiOqC/R8RWSP2fUSkDY54G8jp06chhEDr1q0lx4uLi+Hl5QUA+PPPP9G8efMazzN16tQq5xH9+9//xtmzZ3Ho0CH9BU1EpAfs/4jIGrHvI6KaMPE2kIqKCtjY2ODUqVOwsbGRvOfi4gIAePLJJ3Hx4sUaz+Ph4aF27J133sHu3buRkpKCxo0b6y9oIiI9YP9HRNaIfR8R1YSJt4GEhISgvLwc2dnZ6NOnT5V17Ozs0LZtW43PKYTAO++8gx07diApKanWv5gSERkD+z8iskbs+4ioJky866CgoABXr15VljMyMpCeng5PT0+0bt0aY8aMwbhx47B8+XKEhITg7t27+OWXX9CxY0cMGTJE6+tNnToVX3/9NXbt2gVXV1dkZWUBANzd3eHk5KS3+yIiqg37PyKyRuz7iEhngnR28OBBAUDtNX78eCGEECUlJeKjjz4SzZo1E3Z2dsLPz0+MHDlSnD17VqfrVXUtAGLTpk36uykiIg2w/yMia8S+j4h0xVXNiYiIiIiIiAyogbEDICIiIiIiIrJkTLyJiIiIiIiIDIiLq+mgoqICt27dgqurK2QymbHDISITIYRAfn4+AgIC0KCB5f1dk30fEVXHkvs/9n1EVB1t+j4m3jq4desWmjRpYpBz+/j44J///CeysrIgl8shl8tx69Ytg1yLiAwjMzPTIvdZ1Uff1717d5w4cUJZLikpgYODQ11DIyITYYn9n7Z9X9OmTTF8+HC4urrCxcUFRUVF+J//+R8DRkhExqZJ38fEWweurq7/968GAPT7l89OnUKwYcMGZfnOnTvw8fHX6zXMkbNDM63bFBb/qfc4jC3M8TWt26QWbTVAJFQ1AaDisT7Csuij77O3d8KNGzfg6emJhg0bIicnB4CNvkIkqrP2DUdq3ebCgx0GiMTcWG7/p23fd/36Taxa9ZnKUfZzpsrO5gmt25SW3zVAJPrTzfFlrducKkowQCTWQPO+j4m3Dv5+zEgGfSfe/v7SJFsuz9L7NcyRTKbL/7As73Ozldnr0MryPgdTZ6mPIuqj7ztyJBVNmjQHADg6OsLNzU3ncxEZgo3MTodW/G+4kiX2f4b83kfGJ5PpMjXCtP87sOH3xXqnSd/HxNvE+Pv7ScpZWVlGioSIyLCKiopQVFRk7DCIiIiIDM6yVr+wAFWPeBMREREREZG5YuJtYvz8fCVluVxupEiIiIiIiIhIH5h4mxjVEe+srNtGioSIiIiIiIj0gYm3iVGd480RbyIiIiLzsWXLl7h16zp+//03nDhxFOPGjTV2SERkAri4monx82PiTUSW6403XoeTkxNyc3ORm5uLU6dO486dO8YOi4hIb3x9feDv7698itHLy8vIERGRKWDibUIaNmz4f1vr/I2LqxGRJZkz5120bt1aWX7hhdHYvp17IBOR5VDdzzc/P99IkRCRKeGj5iZEdX43wO3EiMiyqI785ObmGikSIjI1CxYsgEwmk7xUnwR83Pbt2zFgwAB4e3vDzc0NYWFh2Lt3r6ROXFyc2jllMplBtzJ0dXWRlBUKhcGuRUTmgyPeJkT1fy4FBQUoKCgwUjRERPolk8ng4eEhOZabe89I0RCRKQoODsaBAweUZRsbm2rrpqSkYMCAAViyZAkaNWqETZs2YdiwYTh27BhCQkKU9dzc3HDp0iVJW0dHR/0H/3844k1EVWHibUK4sBoRWbJGjRqhQQPpg1Y5OTlGioaITJGtrW2No9yPi46OlpSXLFmCXbt24fvvv5ck3rWNnOub6rRBJt5EBDDxNincSqx6BUXXjB2CSfj14SZjh0CkM09PT7VjfNScTM25wm+NHYJVu3LlCgICAuDg4IBevXphyZIlaNGihUZtKyoqkJ+fr9bXFBQUIDAwEOXl5ejSpQsWLVokScz1TX3Em08vmrKSMstb4PP4wy3GDoGqwDneJoQj3kRkyVTndz98+BAPHz40UjREZGp69eqFzZs3Y+/evdiwYQOysrIQHh6u8ZMxy5cvR2FhIUaPHq081rZtW8TFxWH37t2Ij4+Ho6MjevfujStXrlR7nuLiYigUCslLU05OTmqPx3PEm4gAjniblIYNG6K8vFzZYXNFcyKyJJ6eqvO7OdpNRH8bPHiw8t8dO3ZEWFgYWrZsiS+//BKzZs2qsW18fDwWLFiAXbt2wcfHR3k8NDQUoaGhynLv3r3RtWtXrFq1CitXrqzyXFFRUVi4cKFO96A62g0w8SaiRzjibUJmzJgFe/uG8PNrjC5duiMmZpWxQyIi0hvVEe+cHCbeRFQ9Z2dndOzYscbRaQDYtm0b3njjDXzzzTfo379/jXUbNGiAHj161HjOyMhI5OXlKV+ZmZkax8zEm4iqwxFvE1NRUYHbt2/j9m3O7yYiy6I675Ij3kRUk+LiYly8eBF9+vSptk58fDxef/11xMfHY+jQobWeUwiB9PR0dOzYsdo6Dg4OcHBw0Clm1cS7rKzMoFuXEZH5YOJNRET1wstLmnhzRXMietzs2bMxbNgwNG3aFNnZ2Vi8eDEUCgXGjx8P4NFI9M2bN7F582YAj5LucePGISYmBqGhocjKejRFz8nJCe7u7gCAhQsXIjQ0FEFBQVAoFFi5ciXS09OxZs0ag9wD9/AmourwUXMiIqoX6iPe3MObiP5248YNvPLKK2jTpg2ef/552Nvb4+jRowgMDATwaNHZ69evK+t//vnnKCsrw9SpU+Hv7698TZ8+XVnn/v37mDx5Mtq1a4eBAwfi5s2bSElJQc+ePQ1yD9zDm4iqwxFvIiKqFxzxJqKaJCQk1Ph+XFycpJyUlFTrOVesWIEVK1bUISrtMPEmoupwxJuIiOoF53gTkaVzc3OTlLmHNxFVYuJtIoKCgjB58iT885/D0KNHD/j7+xs7JCIyggULFkAmk0lefn5+1dbfvn07BgwYAG9vb7i5uSEsLAx79+6V1ImLi1M7p0wmq/cFf7iqORFZupMnT2H+/I/xn/8sw9q1n2PXrt3GDomITAQfNTcRffv2weeff6Ysnzx5Cj16hNbQgogsVXBwMA4cOKAs29jYVFs3JSUFAwYMwJIlS9CoUSNs2rQJw4YNw7FjxxASEqKs5+bmhkuXLknaOjo66j/4GhQXF6OwsBDOzs4AOOJNRJYnLS0NaWlpxg6DiEwQE28T4e8vHdGSy+VGioSIjM3W1rbGUe7HRUdHS8pLlizBrl278P3330sS79pGzutDnz5PAXiU8Ht6euL+/ftGjYeIiIiovvBRcxOh+oVYLs8yUiREZGxXrlxBQEAAmjdvjpdffhnXrl3TuG1FRQXy8/PV5lMXFBQgMDAQjRs3xnPPPWfUEZmioiLcunULDx48MFoMRERERPWJI94mQnXEu3IvSiKyLr169cLmzZvRunVr3L59G4sXL0Z4eDjOnz+vNke6KsuXL0dhYSFGjx6tPNa2bVvExcWhY8eOUCgUiImJQe/evXHmzBkEBQVVe67i4mIUFxcry9yPloiICHBzaqN1G8XDS7VXMqKeTmO1bnP84RYDRGK5mHibCNXF1DjiTWSdBg8erPx3x44dERYWhpYtW+LLL7/ErFmzamwbHx+PBQsWYNeuXfDx8VEeDw0NRWjo32tG9O7dG127dsWqVauwcuXKas8XFRWFhQsX1uFuiIiIiAjgo+Ymw8/PV1LmHG8iAgBnZ2d07NgRV65cqbHetm3b8MYbb+Cbb75B//79a6zboEED9OjRo9ZzRkZGIi8vT/nKzMzUOn4iIiIiYuJtMlRHvLOybhspEiIyJcXFxbh48WKNWwzGx8djwoQJ+PrrrzF06NBazymEQHp6eq3bFjo4OMDNzU3yIiKi6v3ww25cuHAWx44dwYEDe/HUU/2MHRIRmQg+am4CGjVqpLatD0e8iazT7NmzMWzYMDRt2hTZ2dlYvHgxFAoFxo8fD+DRKPTNmzexefNmAI+S7nHjxiEmJgahoaHK9SGcnJzg7u4OAFi4cCFCQ0MRFBQEhUKBlStXIj09HWvWrKm3++rcuTP69euLnJwc5ObmIjPzBn777bd6uz4RUX0ICmolWTtj9erPaqhNRNaEibcJqGrU6fZtjngTWaMbN27glVdewd27d+Ht7Y3Q0FAcPXoUgYGBAB79Ue769evK+p9//jnKysowdepUTJ06VXl8/PjxiIuLAwDcv38fkydPRlZWFtzd3RESEoKUlBT07Nmz3u7rqaf6ITp6ubL8yy8HERExsN6uT0RUH1xdXSXl/Px8I0VCRKaGibcJUJ3fnZubK1lJmIisR0JCQo3vVybTlZKSkmo954oVK7BixYo6RFV3Xl7S7c1ycnKMFAkRkeGoTsnJzy8wUiREZGo4x9sEqK9ozsfMiciyqO4rnpt7z0iREBEZho2NDRo2bCg5xhFvIqrExNsEqO/hzcfMiciyeHp6SMq5ublGioSIyDBcXFzUjjHxJqJKTLxNgJ+fNPHmHt5EZGm8vLwkZT5qTkSWRnV+N8DEm4j+ZtaJ94IFCyCTySQv1ST2cUlJSWr1ZTIZfv/993qMWh0fNSciS8dHzYnI0lWVeBcUcI43ET1i9ourBQcH48CBA8qyjY1NrW0uXbokWfzC29vbILFpys7OFmVlZbC1ffTjqNwOiIjIUnBxNSKydKqJ94MHD1BeXm6kaIjI1Jh94m1ra1vjKHdVfHx80KhRI8MEpIOXXnoVDRo0gJeXF/z9/ZGdnW3skIiI9Ep9xJtzvInIsri6Sud4KxQKI0VCRKbI7BPvK1euICAgAA4ODujVqxeWLFmCFi1a1NgmJCQERUVFaN++PebNm4enn366xvrFxcWS7b0M0ZFWVFTgzp07uHPnjt7PTURkTLa2tnB3d5ccy8lh4k1EloV7eFsPxcNLxg5B744/3GLsECyeWc/x7tWrFzZv3oy9e/diw4YNyMrKQnh4eLWPMPr7+2P9+vVITEzE9u3b0aZNG0RERCAlJaXG60RFRcHd3V35atKkiSFuh4jIInl4eKgd44g3EVka7uFNRDWRCSGEsYPQl8LCQrRs2RJz5szBrFmzNGozbNgwyGQy7N69u9o6VY14P0q+bQDI6hg1EVkOAaAceXl5al/ALIFCofi/kWvt+r62bdvi4sVzkmP29g1RWlqq3wCJyIgst//TtO+bOvVtrF4doywnJ6fgqaciDB8gERmR5n2fWY94q3J2dkbHjh1x5coVjduEhobWWt/BwQFubm6SFxERaUZ1fnd+fj6TbiKyOKpzvPmoORE9zqIS7+LiYly8eFFte66apKWlaVWfiIi0wxXNiUgT2m4TCwDJycno1q0bHB0d0aJFC6xbt06tTmJiItq3bw8HBwe0b98eO3bsMEj8nONNRDUx68XVZs+ejWHDhqFp06bIzs7G4sWLoVAoMH78eABAZGQkbt68ic2bNwMAoqOj0axZMwQHB6OkpARbt25FYmIiEhMTjXYPPXr0QLduXZGVlQW5PAvXr1/nPt5EZFG4hzcRaUqbbWIzMjIwZMgQTJo0CVu3bsXhw4fx9ttvw9vbGy+88AIAIDU1FS+99BIWLVqEkSNHYseOHRg9ejQOHTqEXr166TX2X389hOXLV8DV1RWuri44fDhVr+cnIvNm1on3jRs38Morr+Du3bvw9vZGaGgojh49isDAQACAXC7H9evXlfVLSkowe/Zs3Lx5E05OTggODsYPP/yAIUOGGOsWMGzYUMyf/6GynJi4HaNGvWS0eIiI9M3BwQEFBQVwcXn0GCZHvImoOtpsE7tu3To0bdoU0dHRAIB27drh5MmTWLZsmTLxjo6OxoABAxAZGQng0aBMcnIyoqOjER8fr9fYf/ppL376aa9ez0lElsOsE++EhIQa34+Li5OU58yZgzlz5hgwIu2pPuYul2cZKRIiIsNYv34D1q/fAAcHB3h4eNQ4gkVE1k2bbWJTU1MxcOBAybFBgwYhNjYWpaWlsLOzQ2pqKmbOnKlWpzJZJyKqL2adeFsCf3/pX3Wzsph4E5FlKi4uZh9HRNWq3Ca2devWuH37NhYvXozw8HCcP38eXl5eavWzsrLg6+srOebr64uysjLcvXsX/v7+1dapqS+qajcbIqK6sqjF1cyR6uNUHPEmIiIiazR48GC88MIL6NixI/r3748ffvgBAPDll19W20Ymk27vVblL7uPHq6qjeuxxUVFRcHd3V74ebSFLRFQ3TLyNTHXEmwurEREREdW+Tayfn5/ayHV2djZsbW2VI+TV1VEdBX9cZGQk8vLylK/MzMw63gkRERNvo2rQoAF8fHwkx7KybhspGiIiIiLTUds2sWFhYdi/f7/k2L59+9C9e3fY2dnVWCc8PLza6zo4OMDNzU3yIiKqK87xNqInnngCtrbSHwFHvImIiMgaabtN7JQpU7B69WrMmjULkyZNQmpqKmJjYyWrlU+fPh19+/bF0qVLMXz4cOzatQsHDhzAoUOH9B7/4cMpaNCgAfLz85Gfn4/IyHm4fPmy3q9DROaJibcRqf4Ft7y8HNnZ2UaKhojIMN5++y0oFArk5OQgN/cezpw5g6KiImOHRXpgZ6u+4FVtSsu4nRxVTdttYps3b449e/Zg5syZWLNmDQICArBy5UrlVmIAEB4ejoSEBMybNw/z589Hy5YtsW3bNr3v4Q0APXv2kAyoLFq0RO/XIOvj49xD6zbZhScMEAnVlUxUrkJBGlMoFHB3dwdgA6D6xTlqM2jQQPz00w/KclZWFvz9uYAHkfkSAMqRl5dnkY8m6tL32dnZoaTkgeRYmzbBHAWyEEy86W+W2/9p0vc5Ojri4cN8ybFWrdrijz/+MHyAZNGYeJs6zfs+zvE2Iu7hTUSqFixYAJlMJnmp7n6gKjk5Gd26dYOjoyNatGiBdevWqdVJTExE+/bt4eDggPbt22PHjh2GugUJT09PtWO5ubn1cm0iovri6uqqdiw/P7+KmkRkrZh4GxFXNCeiqgQHB0Mulytf586dq7ZuRkYGhgwZgj59+iAtLQ1z587FtGnTkJiYqKyTmpqKl156CWPHjsWZM2cwduxYjB49GseOHTP4vVS19+69e/cMfl0iovrExJuIasM53kbEPbyJqCq2tra1jnJXWrduHZo2bYro6GgAQLt27XDy5EksW7ZMOc8xOjoaAwYMQGRkJIBHCxQlJycjOjpasgiRIXh6ekjK9+/fR3l5uUGvSURU31QT7/Lycjx8+NBI0RCRKeKItxGpjnir7jNJRNbpypUrCAgIQPPmzfHyyy/j2rVr1dZNTU3FwIEDJccGDRqEkydPorS0tMY6R44c0X/wKlQfNedj5kRkiVxdXSRlhUJhpEiIyFQx8TYizvEmIlW9evXC5s2bsXfvXmzYsAFZWVkIDw9HTk7VC1JlZWXB19dXcszX1xdlZWW4e/dujXVq+2NfcXExFAqF5KUt1UfNc3KYeBOR5VEd8eZj5kSkiom3EQkhlCNSAOd4ExEwePBgvPDCC+jYsSP69++PH354tPPBl19+WW0bmUy6ym7lZhWPH6+qjuoxVVFRUXB3d1e+mjTRftcF1UfNOeJNRJaIiTcR1YaJtxH17fs0HByc4e3tj44dQ/DLLweNHRIRmRhnZ2d07NgRV65cqfJ9Pz8/tZHr7Oxs2NraKkebq6ujOgquKjIyEnl5ecpXZmam1vGrjngz8SYiS6S6jVB+foGRIiEiU8XE28iEELh79y5+++033L9/39jhEJGJKS4uxsWLF9WmplQKCwvD/v37Jcf27duH7t27w87OrsY64eHhNV7bwcEBbm5ukpe2VOd481FzIrJEHPEmotow8SYiMiGzZ89GcnIyMjIycOzYMYwaNQoKhQLjx48H8GgUety4ccr6U6ZMwV9//YVZs2bh4sWL2LhxI2JjYzF79mxlnenTp2Pfvn1YunQpfv/9dyxduhQHDhzAjBkzDH4/Xl5cXI2ILJ/q4mpMvIlIFRNvIiITcuPGDbzyyito06YNnn/+edjb2+Po0aMIDAwE8GgtiOvXryvrN2/eHHv27EFSUhK6dOmCRYsWYeXKlcqtxAAgPDwcCQkJ2LRpEzp16oS4uDhs27YNvXr1Mvj9cMSbiKyB+og3HzUnIinu401EZEISEhJqfD8uLk7tWL9+/XD69Oka240aNQqjRo2qS2g64RxvIrIGfNSciGrDEW8iIjIYrmpORNaA+3gTUW044m0kAwcOQKtWrSCXy5GVdRt//PEHsrOzjR0WmbiOzi9q3eZc4bcGiIRIM9zH27KVllW9vzyRtfnllyQ8ePAQrq4ucHV1xYULF40dElmI7MITWrcJdOmvdZu/Cg5o3eZN77e1bvPFnc+0bmMpmHgbyZgxr2LcuNeU5RUrYjBr1uwaWhARmRd7e3uUl5dLjnHEm4gsUWzsRsTGbjR2GERkwph4G4m/v5+kLJfLjRQJEZFhlJSUwM3NE/b29vDw8ICXlxf+/PNPY4dFREREVO+YeBuJn59q4p1lpEiIiAyrpKQEt2/fxu3bt40dChEREZFRcHE1I1Ed8c7KYuJNRERERERkiZh4G4GdnR2eeOIJyTGOeBMREREREVkmJt5G4Ovrq3aMc7yJiIiIiIgsE+d4G4G/v7+kXFJSwpV+iYiIiMyQi4sLfvrpB+Tn5//fqwCzZs1GXl6esUMjIhPCxNsIOL+biKxB79690aJFc+Tk5CA39x7++usvPt1DRBbH3d0dvXuHS469++57RoqGiEwVE28j4IrmRGQNJkwYhzfffF1ZXrlyNaZPn2nEiIiI9M/V1VXtWH5+vhEiISJTxjneRsA9vInIGnh6ekjKnFJDRJZINfF++PAhysvLjRQNEZkqJt5GoDrHOyuLe9sSkeXx8vKSlHNymHgTkWaioqIgk8kwY8aMautMmDABMplM7RUcHKysExcXV2WdoqIivcXq6uoiKSsUCr2dm4gsh86J94QJE5CSkqLPWKwGR7yJyBp4enpKyhzxJiJNnDhxAuvXr0enTp1qrBcTEwO5XK58ZWZmwtPTEy+++KKknpubm6SeXC6Ho6Oj3uJVHfHmY+ZEVBWd53jn5+dj4MCBaNKkCSZOnIjx48fjySef1GdsFotzvAkAAl36a93mXMG3BoiEyDC8vKSJd05OjpEiITI9swPe1rrNslufGSAS01JQUIAxY8Zgw4YNWLx4cY113d3d4e7urizv3LkT9+7dw8SJEyX1ZDKZ2ncvfXJzc5OU8/MLDHYtIk38VXCgXq7zxR3L75P0SecR78TERNy8eRP//ve/8e2336JZs2YYPHgwvvvuO5SWluozRovDVc2JyBqoj3jfM1IkRGQupk6diqFDh6J/f+3/OB0bG4v+/fsjMDBQcrygoACBgYFo3LgxnnvuOaSlpdV4nuLiYigUCsmrJhzxJiJN1GmOt5eXF6ZPn460tDQcP34crVq1wtixYxEQEICZM2fiypUr+orTohQVFaGkpERZ5og3EVkaJycntUc5+ag5EdUkISEBp0+fRlRUlNZt5XI5fvzxR7z55puS423btkVcXBx2796N+Ph4ODo6onfv3jV+R42KilKOpru7u6NJkyY1Xlt1jjcTbyKqil4WV5PL5di3bx/27dsHGxsbDBkyBOfPn0f79u2xYsUKfVzCorRu3R4ODs7w8vJFcHBn/Pbbb8YOiYhIr1QXVgP4qDkRVS8zMxPTp0/H1q1bdZp/HRcXh0aNGmHEiBGS46GhoXjttdfQuXNn9OnTB9988w1at26NVatWVXuuyMhI5OXlKV+ZmZk1Xpsj3kSkCZ3neJeWlmL37t3YtGkT9u3bh06dOmHmzJkYM2aMsgNKSEjAW2+9hZkzuW9rVXJzczkCREQWSfUx8/LycuTl5RkpGiIydadOnUJ2dja6deumPFZeXo6UlBSsXr0axcXFsLGxqbKtEAIbN27E2LFjYW9vX+N1GjRogB49etQ44u3g4AAHBweNY1dPvDnHm4jU6Zx4+/v7o6KiAq+88gqOHz+OLl26qNUZNGgQGjVqVIfwiIjIHKkurHbv3j0IIYwUDRGZuoiICJw7d05ybOLEiWjbti3ef//9apNuAEhOTsbVq1fxxhtv1HodIQTS09PRsWPHOsdciSPeRKQJnRPvFStW4MUXX6zxcSAPDw9kZGToegkiIjJT3EqMiLTh6uqKDh06SI45OzvDy8tLeTwyMhI3b97E5s2bJfViY2PRq1cvtfYAsHDhQoSGhiIoKAgKhQIrV65Eeno61qxZo8fYuY83EdVO5zneBw8erHL18sLCQrz++ut1CoqIiB6JioqCTCbDjBkzqq0zYcIEyGQytVdwcLCyTlxcXJV1ioqKDBK3auKdk8PEm4jqRi6X4/r165JjeXl5SExMrHa0+/79+5g8eTLatWuHgQMH4ubNm0hJSUHPnj31FhdHvIlIEzqPeH/55Zf49NNP1Tqbhw8fYvPmzdi4cWOdgyMismYnTpzA+vXr0alTpxrrxcTE4NNPP1WWy8rK0LlzZ7z44ouSem5ubrh06ZLkmC6LGGlC9VFzjngTkbaSkpIk5bi4OLU67u7uePDgQbXnWLFihcEX+uUcbyLShNaJt0KhgBACQgjk5+dLvrSVl5djz5498PHx0WuQluSll0bD29sbcrkccnkWLl26xJV+iUhNQUEBxowZgw0bNmDx4sU11q3c8qbSzp07ce/ePUycOFFSTyaTwc/PzyDxquIe3kRkLQ4c+Bk3b96Em5sbXF1da10FnYisk9aJd6NGjZSPKLZu3VrtfZlMhoULF+olOEs0ZcpkPPVUP2V5+vRZWLmy+i0tiMg6TZ06FUOHDkX//v1rTbxVxcbGon///ggMDJQcLygoQGBgIMrLy9GlSxcsWrQIISEh1Z6nuLgYxcXFyrI28xZdXKRzHvkHRiKyVB9/zO+9RFQ7rRPvgwcPQgiBZ555BomJiZJRDXt7ewQGBiIgIECvQVoSf3/paFNWVpaRIiEiU5WQkIDTp0/jxIkTWreVy+X48ccf8fXXX0uOt23bFnFxcejYsSMUCgViYmLQu3dvnDlzBkFBQVWeKyoqSuc/pL799r8xffpMeHh4wMvLCwUFfPSSiIiIrJfWiXe/fo9GazMyMtC0aVPIZDKt2ufl5WHHjh349ddf8eeff+LBgwfw9vZGSEgIBg0ahPDwcG1DMiv+/v6SslwuN1IkRGSKMjMzMX36dOzbt0+n+ddxcXFo1KgRRowYITkeGhqK0NBQZbl3797o2rUrVq1ahZUrV1Z5rsjISMyaNUtZVigUaNKkicaxlJaWIjs7G9nZ2drdBBEREZGF0SrxPnv2LDp06IAGDRogLy9Pbb/Fx6kuBiSXy/HRRx/hq6++gp+fH3r27IkuXbrAyckJubm5OHjwIJYtW4bAwEB8/PHHeOmll3S7IxPWsGFDuLm5SY7J5RzxtlZ/FRwwdghkgk6dOoXs7Gx069ZNeay8vBwpKSlYvXo1iouLq93PVgiBjRs3YuzYsbC3t6/xOg0aNECPHj1w5cqVaus4ODjAwcFBtxsh0iM3pzZat1E8vFR7JT3p66T9bi7Lbn2mdZsVrSZp3Wbm1Q1atyEi/fNoqL7dnSbuPfhNz5GQsWiVeHfp0gVZWVnw8fFBly5dIJPJIIRQqyeTyVBeXi451rlzZ4wbNw7Hjx+vcp9F4NGK6Dt37sR///tfZGZmYvbs2dqEZ/KqWtSIj5oT0eMiIiLU/qg5ceJEtG3bFu+//361STcAJCcn4+rVq9Vuq/M4IQTS09PRsWPHOsdMRERERDXTKvHOyMiAt7e38t/aOH/+vLJtdZycnPDKK6/glVdewZ07d2o954IFC9TmH/r6+taYzCYnJ2PWrFk4f/48AgICMGfOHEyZMkWzm6gj1cfMCwoKOO+RiCRcXV3V/jjp7OwMLy8v5fHIyEjcvHkTmzdvltSLjY1Fr169qvzj5sKFCxEaGoqgoCAoFAqsXLkS6enpWLNmjeFuhoiIiIgAaJl4P75CrupqubWpLenWtX5wcDAOHPj7kd2aRoMyMjIwZMgQTJo0CVu3bsXhw4fx9ttvw9vbGy+88IJW8elCdWE1zu8mIl3I5XJcv35dciwvLw+JiYmIiYmpss39+/cxefJkZGVlwd3dHSEhIUhJSUHPnj3rI2QiIovUsmVLxMT8F/n5+cjPL8D9+/cxZ84Hxg6LiEyQ1ourVYqKioKvry9ef106r2njxo24c+cO3n//fbU2b7/9Nv7zn/8ot5nZsmULRo4cqSzfv38fr776Kvbs2aP5Ddjaarwv7bp169C0aVNER0cDANq1a4eTJ09i2bJl9ZJ4q8aZlXXb4NckIvOXlJQkKcfFxanVcXd3x4MHD6o9x4oVK7BixQo9R1Y1Nzc3jBgxHLm5ucjJyUVubi4uXaq/+bZERPXFz88PQ4cOUZaZeBNRdRro2vDzzz9H27Zt1Y4HBwdj3bp11bZ5/Ivh1KlTJavdFhcXY+/evVrFceXKFQQEBKB58+Z4+eWXce3atWrrpqamYuDAgZJjgwYNwsmTJ1FaWlptu+LiYigUCslLFxzxJiJr0LJlS3z55UZ8//1OHDmSgt9+Szd2SEREBuHq6iIp5+fnGykSIjJ1OifeWVlZanOWgUePiFeXUKouxFbVwmza6NWrFzZv3oy9e/diw4YNyMrKQnh4OHJycqqN2dfXV3LM19cXZWVluHv3brXXiYqKgru7u/KlzXY6j1P9vDjiTUSWyNPTQ1LOzc01UiRERIbl6uoqKTPxJqLq6Jx4N2nSBIcPH1Y7fvjwYQQEBNQpKE0NHjwYL7zwAjp27Ij+/fvjhx9+AAB8+eWX1bZR3Xe8MvmvaT/yyMhI5OXlKV+ZmZk6xevnJ036OeJNRJbI09NTUmbiTUSWSnWb2Px8LppLRFXTeY73m2++iRkzZqC0tBTPPPMMAODnn3/GnDlz8O677+otQG04OzujY8eO1e5L6+fnp7bieXZ2NmxtbeHl5VXtefW1l63qiDf38CYiS6Tan+bkMPEmIsvEEW8i0pTOifecOXOQm5uLt99+GyUlJQAAR0dHvP/++4iMjKy23UcffYSGDRsCAEpKSvDJJ5/A3d0dAGpcGEgTxcXFuHjxIvr06VPl+2FhYfj+++8lx/bt24fu3bvDzs6uTtfWhOocb+7hTUSWiI+aE5G14BxvItKUzom3TCbD0qVLMX/+fFy8eBFOTk4ICgqqcWS4b9++kpVtw8PD1RZD69u3r8YxzJ49G8OGDUPTpk2RnZ2NxYsXQ6FQYPz48QDU97qdMmUKVq9ejVmzZmHSpElITU1FbGws4uPjtbl1ndjY2KhtkcYRbyKyRBzxJiJroT7izUfNiahqOifelVxcXODv7w+ZTFbr49iqW+LU1Y0bN/DKK6/g7t278Pb2RmhoKI4eParcY1x1r9vmzZtjz549mDlzJtasWYOAgACsXLmyXrYSc3d3x19//QV/f384Ojoq4yMisjSc401E1oKPmhORpnROvCsqKrB48WIsX74cBQWP/rrn6uqKd999Fx9++CEaNNB83baysjIUFRUp9/PWVEJCQo3vV7XXbb9+/XD69GmtrqMPubm5aNGiNYBHSbi/v3+NK6kTEZkrPmpORNaCiTcRaUrnxPvDDz9EbGwsPv30U/Tu3RtCCBw+fBgLFixAUVERPvnkE7U2e/bsQU5ODsaOHas89sknn2DRokUoKyvDM888g23btsHDw0OtrSWpXB2dyFS90uhtrdvE3//MAJGQOeKj5qRv9g2cjB1CjVIebqyX68y8ukHrNt93Ha11m2Gnv9G6jbVSneOtUCiMFAmZunsPfjN2CCbhg8Zvad2mi6duv1cvn/1Kp3aGovN2Yl9++SW++OILvPXWW+jUqRM6d+6Mt99+Gxs2bKhypBkAli1bJumQjhw5go8++gjz58/HN998g8zMTCxatEjXkIiIyARwxJuIrAXneBORpnROvHNzc9G2bVu1423btq32S9Zvv/2G8PBwZfm7777DgAED8OGHH+L555/H8uXL1VYdJyIi86I+4p1jpEiIiAxLfR9vPmpORFXTOfHu3LkzVq9erXZ89erV6Ny5c5Vt8vPzJV/IDh06pNwDHACCg4Nx69YtXUMiIiIToL642j0jRUJEZFjcToyINKXzHO///Oc/GDp0KA4cOICwsDDIZDIcOXIEmZmZ2LNnT5VtAgICcPHiRTRt2hQFBQU4c+YMVqxYoXw/JydHucc3ERGZH1dXV9jaSv/XwkfNichScXE1ItKUziPe/fr1w+XLlzFy5Ejcv38fubm5eP7553Hp0iX06dOnyjajRo3CjBkzsGXLFkyaNAl+fn4IDQ1Vvn/y5Em0adNG15BM2ltvTcG0ae/gxRdH4R//6I1GjRoZOyQiIr1Tfcwc4KPmRKS9qKgoyGQyzJgxo9o6SUlJkMlkaq/ff/9dUi8xMRHt27eHg4MD2rdvjx07dugtzp9/Poj9+w/g6NFjuHDhAu7eZX9HRFWr0z7eAQEBVa5eXp2PP/4Yt27dwrRp0+Dn54etW7fCxsZG+X58fDyGDRtWl5BM1pw576JZs2bK8siRo7Bz5y7jBUREZACqu1KUlpYqt5wkItLEiRMnsH79enTq1Emj+pcuXZLMtfb29lb+OzU1FS+99BIWLVqEkSNHYseOHRg9ejQOHTqEXr161TnWsWPH1/kcRGQdtEq8z549q3HdqjrLhg0bYsuWLdW2OXjwoDbhmBV/f39JWS7PMlIkRESGk5aWBjs7J3h6esLT0xPu7u7GDomIzEhBQQHGjBmDDRs2YPHixRq18fHxqfZJwujoaAwYMACRkZEAgMjISCQnJyM6Ohrx8fH6CpuIqFZaJd5dunSBTCaDEKLGejKZDOXl5XUKzJI0atQIDg4OkmNyudxI0RARGVZZWRmys7ORnZ1t7FCIyMxMnToVQ4cORf/+/TVOvENCQlBUVIT27dtj3rx5ePrpp5XvpaamYubMmZL6gwYNQnR0dLXnKy4uRnFxsbLMvbmJSB+0SrwzMjLqdLHHVzCvyS+//FKn65ga1dFuALh9+7YRIiEiIiIyTQkJCTh9+jROnDihUX1/f3+sX78e3bp1Q3FxMbZs2YKIiAgkJSWhb9++AICsrCz4+vpK2vn6+iIrq/onD6OiorBw4ULdb4SIqApaJd6BgYF1ulhSUhICAwMxdOhQ2NnZ1elc5sTf309Szs3NlfwllYiIiMiaZWZmYvr06di3bx8cHR01atOmTRvJorxhYWHIzMzEsmXLlIk38OhJzMcJIdSOPS4yMhKzZs1SlhUKBZo0aaLprRARValOi6tt2bIF69atQ0ZGBlJTUxEYGIjo6Gg0b94cw4cPV6v/6aefIi4uDt9++y3GjBmD119/HR06dKhLCGbBz0+aePMxcyIiIqK/nTp1CtnZ2ejWrZvyWHl5OVJSUrB69WoUFxdLFuStTmhoKLZu3aos+/n5qY1uZ2dnq42CP87BwUFtiiARUV3pvJ3Y2rVrMWvWLAwZMgT3799Xzulu1KhRtfNm5syZgwsXLmDnzp3Iz89H79690bNnT6xbt86i58+ojnhnZfExcyIiIqJKEREROHfuHNLT05Wv7t27Y8yYMUhPT9co6QYeLfD4+BS/sLAw7N+/X1Jn3759CA8Pr3PMPXv2xFdfbca6dZ/hf/93KaZOfbvO5yQiy6XziPeqVauwYcMGjBgxAp9++qnyePfu3TF79uwa24aFhSEsLAwxMTH49ttvsWbNGsyePRu3bt2SbAdhKbiiufl4wrmLTu0qRIXWbXIfaL5LQH2Lv/+ZsUOg/xMVFYW5c+di+vTp1f5RMykpSbKYUKWLFy+ibdu2ynJiYiLmz5+PP/74Ay1btsQnn3yCkSNH6jXeiIhn4OTkhNzce8jJycGNGzdQWFio12uQ9blbmG7sEMzWsNPfGDsEjbi6uqo9Bens7AwvLy/l8cjISNy8eRObN28G8GjF8mbNmiE4OBglJSXYunUrEhMTkZiYqDzH9OnT0bdvXyxduhTDhw/Hrl27cODAARw6dKjOMQcFtcKrr76iLKenn8GaNfz/J1FNPr2xVus225942QCR1D+dE++MjAyEhISoHXdwcND4S9bp06eRnJyMixcvokOHDhY775uPmhORLsxpL9tKixYtRFhYqLL8r3+9jfXrN+jt/ERkveRyOa5fv64sl5SUYPbs2bh58yacnJwQHByMH374AUOGDFHWCQ8PR0JCAubNm4f58+ejZcuW2LZtm176PdXBovz8/Dqfk4gsl86Jd/PmzZGenq624NqPP/6I9u3bV9vu1q1biIuLQ1xcHBQKBV577TUcO3asxjbmTvVRc454E1FtzHUvW09PD0k5JydHb+cmIuuSlJQkKcfFxUnKc+bMwZw5c2o9z6hRozBq1Cg9RvaIq6uLpMzEm4hqovMc7/feew9Tp07Ftm3bIITA8ePH8cknn2Du3Ll47733qmwzZMgQtGzZEseOHcP//u//4saNG1i2bJlFJ91AVXO8mXgTUc0e38tWUyEhIfD390dERAQOHjwoeS81NRUDBw6UHBs0aBCOHDlS7fmKi4uhUCgkr9p4eXlJyrm5uRrHT0RkTlxdXSVlJt5EVBOdR7wnTpyIsrIyzJkzBw8ePMCrr76KJ598EjExMXj55aqfw//pp5/g7++P69evY+HChdXukXj69GldwzJJ6nO8+ag5EVXPXPeylclk8PBQHfFm4k1Elkk98S4wUiREZA7qtJ3YpEmTMGnSJNy9excVFRXw8fGpsf7HH39cl8uZJUdHR7VHP/moORFVx5z3snV3d1dbeZgj3kRkqTjiTUTa0DnxXrhwIV577TW0bNkSTzzxhEZtrDHxVl1YDeCj5kRUPXPey9bT01PtGBNvIrJUqnO8LXlrXCKqO53neCcmJqJ169YIDQ3F6tWrcefOnToHU1RUhGXLltX5PKbE2dkZ165dw8OHDwEADx8+RF5enpGjIiJTZY572VZSTbyLiorw4MEDvZ2fiMiUcMSbiLSh84j32bNncf78eXz11Vf473//i1mzZqF///547bXXMGLECDRs2LDKdnfv3sWxY8dgZ2eHiIgI2NjYoLS0FJ999hmioqJQVlZW6z7g5uT8+fNo2fLRI6Bubm4aPx1ARNbJHPeyreTlJU28OdpNRJaMc7yJSBs6j3gDQHBwMJYsWYJr167h4MGDaN68OWbMmFHl49UAcOTIEQQFBWHYsGEYPHgwwsPDceHCBQQHB2PVqlWYN2+eZH9GS6NQKHDt2jVjh0FEZq66vWw7deqEPn364NChQ/jhhx/w/PPPK+tU7mW7adMmdOrUCXFxcXrby7aS6og3F1YjIkvGfbyJSBt1Wlztcc7OznBycoK9vX21Hc/8+fMxaNAgzJs3Dxs3bkR0dDSee+45LFiwAGPHjq1xkR8iImtl6nvZVuJWYkRkTbiPNxFpo04j3hkZGfjkk0/Qvn17dO/eHadPn8aCBQuqXTzszJkzmD9/Pjp06IDFixdDJpNh6dKlGDduHJNuIiIz5+mpupVYjpEiISIyPM7xJiJt6DziHRYWhuPHj6Njx46YOHGich/vmuTm5sLb2xsA0LBhQzRs2BAhISG6hkBERCZE9VHz3Nx7RoqEiMjwOMebiLShc+L99NNP44svvkBwcLDGbWQyGfLz8+Ho6KjcP/bBgwdq2y+ozpkhqi93C9ONHYLZmtvkLZ3aLclcq+dIyFhUHzXniDcZ05MufXRq10j4aN3mfGFi7ZXIotjb28Pe3l5yjCPeRIbxfHqCsUPQC50T7yVLlmhUz83NDenp6WjRogWEEGjdurXyPSGEZMS7MhkvLy/XNSyTM2/eXBQUFEIulyMrKwunTp1GQQH/IkpElkf1UXPO8SYiS2Vvb49ffjkIV1dXuLq6wNXVlft4E1GN9La4WnWEEMp/Hzx40NCXMykNGjTAxx/Ph63t3x9z1649kZaWZsSoiIgMg6uaE5G1KCgoQETEQGOHQURmxOCJ9+P69etXn5czuieeeEKSdAOoduE5IiJz16fPU/Dw8ICnpyc8PT2RkZFh7JCIiIiITEK9Jd6FhYVwdnY2WH1T5O/vLylXVFQgOzvbSNEQERlWWVkZ7ty5gzt37hg7FCIiIiKTUqftxLTRqlUrLFmyBLdu3aq2jhAC+/fvx+DBg7Fy5cr6Cs1g/Px8JeXs7GyLmr9OREREREREtTP4iHfl/txJSUmYN28eFi5ciC5duqB79+4ICAiAo6Mj7t27hwsXLiA1NRV2dnaIjIzE5MmTDR2awamOeMvlfMyciIiIiIjI2tTb4mpt2rTBt99+ixs3buDbb79FSkoKjhw5gocPH+KJJ55ASEgINmzYgCFDhqBBg3obiDcof38/SZnzu4mIiIiIiKyPwRPvH3/8EU8++aSy3LhxY8ycORMzZ8409KWNzs9PmnhzxJuIiIjI/A0cOADDh/8T+fn5yM/Px/nzF7Bz5y5jh0VEJkznxLu8vBxxcXH4+eefkZ2djYqKCsn7v/zyCwDgH//4R90iNGOqI95yudxIkRARGdaTTz6Jrl1DkJOTi9zcXNy5cwc5OTnGDouIyCB69uyBt9+eoizv3LmLiTcR1UjnxHv69OmIi4vD0KFD0aFDB+Vcbvqb6hzvrKzbRoqEiMiwnn76KWzZEqcsnzlzFl26dDNWOEREBuXq6iop5+cXGCkSIjIXOifeCQkJ+OabbzBkyBB9xmNROOJNRNbC09NTUs7NzTVSJEREhqeeeOcbKRIiMhc6r2Jmb2+PVq1a6TMWi8M53kRkLby8pIk3HzMnorqIioqCTCbDjBkzqq2zfft2DBgwAN7e3nBzc0NYWBj27t0rqRMXFweZTKb2KioqqlN8TLyJSFs6j3i/++67iImJwerVq/mYeRVcXV3h7OwsOcZVzetXQ4emWrd5UHzdAJFYhyWZa40dAhmR+oj3PSNFQqbOo2EHrdvce/Cb1m1uFvyqdRsAuKlTK9KnEydOYP369ejUqVON9VJSUjBgwAAsWbIEjRo1wqZNmzBs2DAcO3YMISEhynpubm64dOmSpK2jo2OdYnR1dZGUFQpFnc5HRPqXNaGd1m384i4aIJJHdE68Dx06hIMHD+LHH39EcHAw7OzsJO9v375dUj579qzG566tozUHqvO7AT5qTkSWy9PTQ1Lmo+ZEpIuCggKMGTMGGzZswOLFi2usGx0dLSkvWbIEu3btwvfffy9JvGUymdpTiHXFOd5EpC2dE+9GjRph5MiRGtfv0qULZDKZcl9vVZXvyWQylJeX6xqWyfDz85WU8/Ly8PDhQyNFQ0RkWF5eXpIyHzUnIl1MnToVQ4cORf/+/WtNvFVVVFQgPz9f7QmcgoICBAYGory8HF26dMGiRYskibmq4uJiFBcXK8tVjWbzUXMi0pbOifemTZu0qp+RkaHrpcySnZ0drl69Cn9/fzg7O/MxcyKyaHzUnIjqKiEhAadPn8aJEyd0ar98+XIUFhZi9OjRymNt27ZFXFwcOnbsCIVCgZiYGPTu3RtnzpxBUFBQleeJiorCwoULa7yWmxsTbyLSjs6Jd6U7d+7g0qVLkMlkaN26Nby9vausFxgYWNdLmZWff/4FQUGP5hW4uLjA3d3dyBERERkOF1cjorrIzMzE9OnTsW/fPp3mX8fHx2PBggXYtWsXfHx8lMdDQ0MRGhqqLPfu3Rtdu3bFqlWrsHLlyirPFRkZiVmzZinLCoUCTZo0kdThiDcRaUvnxLuwsBDvvPMONm/ejIqKCgCAjY0Nxo0bh1WrVqFhw4aS+rt379b43P/85z91DcskFRQUoKCAc3+ISHtRUVGYO3cupk+frjafsdL27duxdu1apKeno7i4GMHBwViwYAEGDRqkrBMXF4eJEyeqtX348GGdFxkCuJ0YEdXNqVOnkJ2djW7duimPlZeXIyUlBatXr0ZxcTFsbGyqbLtt2za88cYb+Pbbb9G/f/8ar9OgQQP06NEDV65cqbaOg4MDHBwcajwP53gTkbZ0TrxnzZqF5ORkfP/99+jduzeARwuuTZs2De+++y7WrpWucDxixAiNzmspc7yJiOrKHFb2BR790bVRo0aSYzk5TLyJSHMRERE4d+6c5NjEiRPRtm1bvP/++9Um3fHx8Xj99dcRHx+PoUOH1nodIQTS09PRsWNHnWOVyWQc8SYirem8j3diYiJiY2MxePBguLm5wc3NDUOGDMGGDRvw3XffqdWvqKjQ6FWXpFuTPR+TkpKq3M/x999/1/m6RET69vjKvh4eHjXWjY6Oxpw5c9CjRw8EBQVhyZIlCAoKwvfffy+pV7my7+MvfagqPo54E5E2XF1d0aFDB8nL2dkZXl5e6NDh0RZ0kZGRGDdunLJNfHw8xo0bh+XLlyM0NBRZWVnIyspCXl6ess7ChQuxd+9eXLt2Denp6XjjjTeQnp6OKVOm6Byr6naxABNvIqqdzon3gwcP4Ovrq3bcx8cHDx48qFNQutB0ZKjSpUuXIJfLla/qFtggIjKGx1f21VZtK/s2btwYzz33HNLS0vQSq+qK5gATbyLSP7lcjuvXryvLn3/+OcrKyjB16lT4+/srX9OnT1fWuX//PiZPnox27dph4MCBuHnzJlJSUtCzZ0+d41Ad7Qa4jzcR1U7nR83DwsLw8ccfY/PmzcpHFR8+fIiFCxciLCxMrf7KlSsxefJkODo6VruYRaVp06ZpFYs2ez5W8vHxUXs0kojIFJjKyr6abKkDqM/vLigoQElJiU6xExFVSkpKkpTj4uJqfL8qK1aswIoVK/QXFKpOvDniTUS10TnxjomJwbPPPovGjRujc+fOkMlkSE9Ph6OjI/bu3atWf8WKFRgzZgwcHR1r7ABlMpnWibcuez6GhISgqKgI7du3x7x58/D0009rdc2a2NnZ4ZNPFkEuf/TIk1wux5EjqfwiSkS1MqWVfTXZUgfgiuZEZH1OnToNNzdXuLq6wt7eHmVlZcYOiYhMnM6Jd4cOHXDlyhVs3boVv//+O4QQePnllzFmzBg4OTmp1X98H2997umt7ciQv78/1q9fj27duqG4uBhbtmxBREQEkpKS0Ldv3yrbaDrqU8nPzw/vvfeu5JiXly8fvSSiWpnSyr6abKkDcA9vIrIuly9fRvfuvYwdBhGZmTrt4+3k5IRJkyZp3e7s2bPVzsXeuXOnxiug6zIy1KZNG7Rp00ZZDgsLQ2ZmJpYtW1Zt4q3pqE8l1QWLiouLmXQTkUZMaWVfTbbUAYCvvvoae/b8CE9PT3h5eUEIUWsbIiIiImuiVeK9e/duDB48GHZ2drXuy13TXtyDBg3C4cOH0aJFC8nxxMREjBs3DoWFhRrFU5eRoceFhoZi69at1b6v6ahPJX9/aeKdlZVVawykfw+Kr9deiYxuT/dRWrdxsC3Vuk3E0V1atzGGypV9H1fVyr43b97E5s2bAfy9sm9MTIxyZV/g0R9H3d3dATxa2Tc0NBRBQUFQKBRYuXIl0tPTsWbNmjrHXF5ejrt37+Lu3bt1PhdZvnsPfjN2CFblj5HaLyLWcsdxA0RCRFS//OIuGjsECa0S7xEjRiArKws+Pj41jkrXthf3W2+9hYiICBw5cgT+/v4AHj0i+frrr6stnFETXUeGVKWlpSnjqIqmoz6VVM+VlXVb47ZERLWpaWXfqVOnKo+PHz9e2adWruyblZUFd3d3hISE1HllXyIiIiLSjFaJd0VFRZX/1tZHH32EnJwc9O/fH7/++it++uknvPnmm9iyZQteeOEFjc+jy8hQdHQ0mjVrhuDgYJSUlGDr1q1ITExEYmKizvejys9Pus2aXC7X27mJyPqY6sq+RERERKQZnffx3rx5s2TBsUolJSXKJLcmMTEx6Nq1K0JDQzFp0iTEx8drlXRrSnVkqKSkBLNnz0anTp3Qp08fHDp0CD/88AOef/55vV1TdcRbLuej5kRERERERNZK58XVJk6ciGeffVayXQ3waB/DiRMnYty4cZLjVc0JHzFiBJKTk/HKK69AJpMp69Q0P7w2tY0MzZkzB3PmzNH5/JpQHfHmHG8iIiIiyzBy5Ah0794N+fn5yM8vwOnTaUhNTTV2WERk4nROvIUQkMlkasdv3LihXMzncTXNCd+4cSM2btwIoPb54eaAI95EZE0GDOiPBw8eIjc3F7m5ubh7967Z9+NERNUZOnQI3nhjorIcHb2SiTcR1UrrxDskJAQymQwymQwRERGwtf37FOXl5cjIyMCzzz6r1q4uc8LNjeqq5pzjTUSW7LvvtsHNzU1Z/sc/nsLhw4eNGBERkeG4urpIygqFwkiREJE50Trxrhy5Tk9Px6BBg+Di8nfnY29vj2bNmhlkrra5kMlk8PVVfdScq5oTkWWys7OTJN0AkJOTY6RoiIgMz9XVVVLOz883UiREZE60Trw//vhjAECzZs3w8ssva7XN1rFjx5Cbm4vBgwcrj23evBkff/wxCgsLMWLECKxatUqrc5oaT09P2NvbS45xxJuILJWHh4fasdzcXCNEQkRUP9QT7wIjRUJE5kTnVc3bt2+P9PR0tePHjh3DyZMnq2yzYMECnD17Vlk+d+4c3njjDfTv3x8ffPABvv/+e0RFRekakklQnd9dUVGB27c54k1ElsnLy0vtGBNvIrJkqk/5cMSbiDShc+I9depUZGZmqh2/efMmpk6dWmWb9PR0REREKMsJCQno1asXNmzYgFmzZmHlypX45ptvdA3JJKiuaH737l2UlZUZKRoiIsPy9PSUlBUKBfs8IrJoqnO8mXgTkSZ0TrwvXLiArl27qh0PCQnBhQsXqmxz7949yfzn5ORkyUJsPXr0qDKZNyeqI96c301ElszTU/qoOUe7icjScY43EelC58TbwcGhykeo5XK5ZKXzx/n6+iIjIwMAUFJSgtOnTyMsLEz5fn5+Puzs7HQNySSUlZXh8uXLyk6Y87uJyJKpPmqek8PEm4gsG+d4E5EudN7He8CAAYiMjMSuXbuU+3bfv38fc+fOxYABA6ps8+yzz+KDDz7A0qVLsXPnTjRs2BB9+vRRvn/27Fm0bNlS15BMQnx8AuLjEwAAzs7OaNiwoZEjIjJtQ05+Z+wQqA444k1k2lruOK51m9Kf/GuvpEJRWAGvF25q3c7c2NnZqS0CzBFvItKEzon38uXL0bdvXwQGBiIkJATAozncvr6+2LJlS5VtFi9ejOeffx79+vWDi4sLvvzyS8kK4Bs3bsTAgQN1DcnkFBYWorCw0NhhEBEZjPqIN7cSIyLLpTraDTDxJiLN6Jx4P/nkkzh79iy++uornDlzBk5OTpg4cSJeeeWVah8X9/b2xq+//oq8vDy4uLjAxsZG8v63334r2ReciIhMm+riarm594wUCRGR4VWVeCsUCiNEQkTmRufEG3j0KPXkyZO1blf5aLoq1S9wRERk2ry8pP02R7yJyJKpJt4VFRV8upGINKJV4r17924MHjwYdnZ22L17d411//nPf9YpMCIiMn0c8SYia6KaeBcUcGE1ItKMVon3iBEjkJWVBR8fH4wYMaLaejKZDOXl5XWNjYiITBzneBORNXFz41ZiRKQbrbYTq6iogI+Pj/Lf1b2sNen29fXF//7vUrz77ky8+uoreOaZp40dEhGRQXFVcyIyhKioKMhkMsyYMaPGesnJyejWrRscHR3RokULrFu3Tq1OYmIi2rdvDwcHB7Rv3x47duzQOa7y8nL88ccfyM7ORlFRERNvItKYTnO8S0tLMXDgQHz++edo3bq1vmMyW61atcLs2bOU5YKCAri6etTQgojIvHEfbyLStxMnTmD9+vXo1KlTjfUyMjIwZMgQTJo0CVu3bsXhw4fx9ttvw9vbGy+88AIAIDU1FS+99BIWLVqEkSNHYseOHRg9ejQOHTqEXr16aR3bgQM/o1Wrtsqy6kLBRETV0SnxtrOzw2+//QaZTKbveMyav7+fpJyVlWWkSIiI6kdgYEt4enrCy8sLnp4euHjxorFDIiIzVlBQgDFjxmDDhg1YvHhxjXXXrVuHpk2bIjo6GgDQrl07nDx5EsuWLVMm3tHR0RgwYAAiIyMBAJGRkUhOTkZ0dDTi4+PrHK+1PuVJRNrT6lHzx40bNw6xsbH6jMXs+fv7S8pyORNvIrJsOTk5uHLlCo4ePYo9e35EXl6esUMiIjM2depUDB06FP3796+1bmpqKgYOHCg5NmjQIJw8eRKlpaU11jly5Ij+giYi0oDO24mVlJTgiy++wP79+9G9e3c4OztL3v/vf/9b5+DMjZ+fr6Qsl8uNFAkRERGReUlISMDp06dx4sQJjepnZWXB11f63cvX1xdlZWW4e/cu/P39q61T01OJxcXFKC4uVpa5TzcR6YPWI97Xrl1DRUUFfvvtN3Tt2hVubm64fPky0tLSlK/09HQDhGr6VEe8s7JuGykSIrIUprrAEBGRPmVmZmL69OnYunUrHB0dNW6nOu1RCKF2vKo6NU2XjIqKgru7u/LVpEkTjeMhIqqO1ol3UFAQ7t69i4MHD+LgwYPw8fFBQkKCsnzw4EH88ssvhojV5KnO8eaINxHVhbYLDPXp0wdpaWmYO3cupk2bhsTERGWdygWGxo4dizNnzmDs2LEYPXo0jh07ZujbICKq1alTp5CdnY1u3brB1tYWtra2SE5OxsqVK2Fra1vlXGo/Pz+1kevs7GzY2toqF36sro7qKPjjIiMjkZeXp3xlZmbq4Q6JyNpp/ah55V8SK/34448oLCzUW0DmzM9PNfHmHG+i2kQ1/5fWbSIzPte6zY1XO2rdpvHX57Ruoy/mtsAQWScXxxZatykoumaASEifZIOitG+jeABgss7XjIiIwLlz0j534sSJaNu2Ld5///0qVw8PCwvD999/Lzm2b98+dO/eHXZ2dso6+/fvx8yZMyV1wsPDq43FwcEBDg4OVb736quvoHHjJ5GfX4D8/HwcP34Cly9f1vg+ici0lW7Qblxa8VDAa5pmiyzqPMe7kmoibs044k1E+vL4AkO1Jd7VLR4UGxuL0tJS2NnZITU1VfLFs7JOZbKui1atWsHf3w85ObnIzc1FTk6OckEjIiJtuLq6okOHDpJjzs7O8PLyUh6PjIzEzZs3sXnzZgDAlClTsHr1asyaNQuTJk1CamoqYmNjJX9MnD59Ovr27YulS5di+PDh2LVrFw4cOIBDhw7pFOfrr09ARMQzj51/FhNvItKI1o+ay2QytXkx3Fbs0T6O3t7ekmOc401EuqhcYCgqSrNRp9oWGKqpTm0LDCkUCsnrcW+8MREpKQdx/vwZyOWZ2LSJO10QkeHI5XJcv35dWW7evDn27NmDpKQkdOnSBYsWLcLKlSuVT/oAQHh4OBISErBp0yZ06tQJcXFx2LZtm057eAOP/kDwuPz8fN1uhoisjk6Pmk+YMEH5CE5RURGmTJmitqr59u3b9ROhmfDx8UGDBtK/Y3DEm4i0VbnA0L59+0xigaGFCxdW+76np6eknJubq3G8RES1SUpKkpTj4uLU6vTr1w+nT5+u8TyjRo3CqFGj9BKTmxsTbyLSjdaJ9/jx4yXl1157TW/BmDPVFc0fH2kiItLU4wsMVSovL0dKSgpWr16N4uJitbmOhlxgaNasWcqyQqGQrO7r5cXEm4isC0e8iUhXWifemzZtMkQcZk91fvft27c5/52ItGYuCwwB6iPeOTlMvInIsqkn3gVGioSIzE2dF1ejR1RHvLmiORHpwlwWGAKgHE2vxBFvIrJ0Li4ukjJHvIlIU1ovrkZV8/OTPq7J+d1EZCimsMAQAHh6ekjKOTk5Op+LiMjUOTs7q63nw8SbiDTFEW89KSgoxO+//w5/f3+4u7tzRXMi0htTXGAIqGpxtXt6OzcRkalRfcwcYOJNRJpj4q0n0dExiI6OAQA4OTnB3t7eyBERERmOo6MjGjZsKDnGR82JyJIx8SaiumDibQAPHz7Ew4cPjR0GEZHBqI52A3zUnIgsm2riXVxcjJKSEiNFQ0TmhnO8iYhIa6oLq1VUVCAvL89I0RARGZ6bm5ukzNFuItIGE28iItKa6sJq9+7dQ0VFhZGiISIyPFdXrmhORLrjo+ZEZFSRGZ/Xy3Uaf32u9kqkMW4lRgBQUHTN2CGQAdjKJujQSug7DJPDPbzrV0OHplq3eVB8vfZKRDWQvblRu/qKB8C0yRrV5Yg3ERFpTXWOd04OE28ismzqiTdHvIlIcxzx1oPg4GC88cZEyOVyyOVZuH79OlJSfjV2WEREBuPlpbqVGBNvIrJsQgjk5OTA1dUV9vb2TLyJSCtMvPWgc+dOmDlzurJ8/vx5dOjQxXgBEREZGPfwJiJrs379Bqxf/wUAwN7enlvHEpFWmHjrgZ+fr6Qsl2cZKRIiovqxePESbNgQCy8vL3h6euDOnbvGDomIqN6UlJRwKzEi0goTbz3w9/eXlLOybhspEiKi+pGfn4/8/HxcvXrV2KEQERERmTwurqYHqom3XC43UiRERERERERkaph46wEfNSciIiIiIqLqMPHWA39/P0k5K4uJNxERERERET3COd56wEfNiYiIiCzbuHFj4ejopFzj4vjxE8jOzjZ2WERkJph415GjoyM8PDwkx7i4GhFZMjs7O4SGhiI39x5ycnKQm5vL1X2JyOJ9/PF8tGjRQlkePvx57N79vREjIiJzwsS7jnx9fdWOccSbiCyZn58fUlIOSo41avQE8vLyjBQREZHhubq6Ssr5+flGioSIzBHneNeR6mPmDx8+5JdPIrJonp6eknJZWRn7PSKyeOqJd4GRIiEic2RRiXdUVBRkMhlmzJhRY73k5GR069YNjo6OaNGiBdatW6fzNbmwGhFZGy8vL0n53r17RoqEiCzJ2rVr0alTJ7i5ucHNzQ1hYWH48ccfq60/YcIEyGQytVdwcLCyTlxcXJV1ioqKtIrN1tYWjo6OkmMc8TasB8XXtX7pwtmhmdYvsly2sglavTzd39L43BaTeJ84cQLr169Hp06daqyXkZGBIUOGoE+fPkhLS8PcuXMxbdo0JCYm6nRdPz9p4s2txIjI0nl6Ste1yM3NNVIkRGRJGjdujE8//RQnT57EyZMn8cwzz2D48OE4f/58lfVjYmIgl8uVr8zMTHh6euLFF1+U1HNzc5PUk8vlakl0bVRHuwEm3kSkHYuY411QUIAxY8Zgw4YNWLx4cY11161bh6ZNmyI6OhoA0K5dO5w8eRLLli3DCy+8oPW1VUe8Ob+biCyd6oh3Tg4TbyKqu2HDhknKn3zyCdauXYujR49KRrErubu7w93dXVneuXMn7t27h4kTJ0rqyWQytYESbVWVeCsUijqdk4isi0WMeE+dOhVDhw5F//79a62bmpqKgQMHSo4NGjQIJ0+eRGlpaZVtiouLoVAoJK9KqnO8uaI5EVk61TneHPEmIn0rLy9HQkICCgsLERYWplGb2NhY9O/fH4GBgZLjBQUFCAwMROPGjfHcc88hLS1N63iqSrwLCwu1Pg8RWS+zT7wTEhJw+vRpREVFaVQ/KytLbSVyX19flJWV4e7du1W2iYqKUv5V1d3dHU2aNFG+l52djQsXLijnOHLEm4jqwpTnOFZSTbw54k1E+nLu3Dm4uLjAwcEBU6ZMwY4dO9C+ffta28nlcvz444948803Jcfbtm2LuLg47N69G/Hx8XB0dETv3r1x5cqVas9V1YBLVSuaCyF0u0kiskpmnXhnZmZi+vTp2Lp1q1ZzdWQymaRc2XGqHq8UGRmJvLw85SszM1P53ocfzkdwcGd4evrAyckVK1bE6HAnRESPmPIcx0peXhzxJiLDaNOmDdLT03H06FG89dZbGD9+PC5cuFBru7i4ODRq1AgjRoyQHA8NDcVrr72Gzp07o0+fPvjmm2/QunVrrFq1qtpzVTXg4ubmJqnD+d1EpC2znuN96tQpZGdno1u3bspj5eXlSElJwerVq1FcXAwbGxtJGz8/P7WVx7Ozs2Fra6s2b7GSg4MDHBwcao1H19EjIqJKpjzHsRIfNSciQ7G3t0erVq0AAN27d8eJEycQExODzz//vNo2Qghs3LgRY8eOhb29fY3nb9CgAXr06FHjiHdkZCRmzZqlLCsUCrUdc5h4E5G2zDrxjoiIwLlz5yTHJk6ciLZt2+L9999XS7oBICwsDN9//73k2L59+9C9e3fY2dkZNF4iIm2Ul5fj22+/1escx/LycnTp0gWLFi1CSEhIjecqLi5GcXGxsly5vgUXVyOi+iKEkPRDVUlOTsbVq1fxxhtvaHS+9PR0dOzYsdo6VQ24cA9vIqors068XV1d0aFDB8kxZ2dneHl5KY9HRkbi5s2b2Lx5MwBgypQpWL16NWbNmoVJkyYhNTUVsbGxiI+Pr/f4iYiqcu7cOYSFhaGoqAguLi5az3H8+uuvJccr5zh27NgRCoUCMTEx6N27N86cOYOgoKBqzxcVFYWFCxeqHed2YkRkCHPnzsXgwYPRpEkT5OfnIyEhAUlJSfjpp58AqH+nqxQbG4tevXqpfScEgIULFyI0NBRBQUFQKBRYuXIl0tPTsWbNGq1iq2qONxGRNsw68daEXC7H9evXleXmzZtjz549mDlzJtasWYOAgACsXLlSp63EiIgMoXKO4/3795GYmIjx48cjOTm51uS7pjmOoaGhynLv3r3RtWtXrFq1CitXrqz2fFU9btmkSZMqFlfL0eLuiIiqdvv2bYwdOxZyuRzu7u7o1KkTfvrpJwwYMACA+nc6AMjLy0NiYiJiYqpeY+f+/fuYPHkysrKy4O7ujpCQEKSkpKBnz55axcbEm4jqSia4JKPWFArF/82ptAFQ9YJsRGSNBIBy5OXlqS3EUxf9+/dHy5Yta53j2Lp1azz33HNYsWJFreecNGkSbty4UeOK6aoq+76SkhLJ1Jxu3Xrh9OnTGp+HiCyRYfo/U6BQKPDZZ5/hgw8+UB776qt4vPbaOCNGRfri7NBM6zaFxX/qPQ4yV5r3fRY/4m1I/fr1w4gRw5GVlQW5PAuXLl3GsWPHjB0WEVkYY8xxrI6Li4vaehh81JyILJ2trS3Kyspga/voq3PlmhdERJpi4l0H4eFhmDFjmrL8448/YciQYTW0ICKqmSnPcQTUF1YD+Kg5EVm+9957D++99wGcnBrC1dUVZWVlxg6JiMwME+868PeXbs0jl2dVU5Me5+LYQus2BUXXDBAJUc3KRJxW9RWKB/B0n1yna5ryHEcAuHnzJoKC2sLT0wuenh7w8vLiXEcT1NChqdZtHhRfr70SkZV7+PAhHj58aOwwSI/42DjVFybedaC6J65cLjdSJERkKWJjY2t8Py4uTu2Yu7s7Hjx4UG2bFStWaDTvWxNlZWW4evUqgD/0cj4iIiIia9DA2AGYM39/f0mZI95ERERERESkiol3Hag+ap6VxcSbiIiIiIiIpJh414H6o+ZMvImIiIiIiEiKc7x15OrqCmdnZ8kxzvEmIiIisjzjx49HUVEJ8vMLoFAokJaWjsLCQmOHRURmhIm3jlRHuwE+ak5Elq9169awt3dCTk4ucnNza91fnIjIEsTGxsLGxkZZ7ty5G86ePWvEiIjI3PBRcx2pLqyWl5fH7SWIyOItX74c586l49at6ygqKsD7779n7JCIiAzu8aQbALdRJCKtMfHWkfqK5nzMnIgsn6enp6R8/36ekSIhIjIeJt5EpC0m3jpSfdQ8K+u2kSIhIqo/qol3Tk6OkSIhIjIehUJh7BCIyMww8dYRR7yJyBp5eXlJyrm5uUaKhIjIOEpKSlBSUmLsMIjIzDDx1pF64s2F1YjI8nl4eEjKubn3jBQJEZFx8DFzItIFE28dqe/hzRFvIrJ8trbSzTD4qDkRWRsm3kSkCybeOvrzzz9x/vx55ZdOzvEmImvER82JyNrk5xcYOwQiMkPcx1tH//rXvwDYAJDB3t7e2OGYlYKia8YOgUgzm9/Urv5DYZg4TFRxcTEKCwuNHQZV4UHxdWOHQGSxOOJNRLpg4q0HXGCDiKwRR7uJyBox8SYiXfBRcyIi0gkTbyKyRky8iUgXTLyJiEgnOTlMvInI+igUTLyJSHtMvImISCcc8SYia8QRbyLSBRNvIiLSCUe8icgaMfEmIl0w8dZRTEwMIiM/wIQJ4xESEmLscIiI6h1HvIlIn9auXYtOnTrBzc0Nbm5uCAsLw48//lht/aSkJMhkMrXX77//LqmXmJiI9u3bw8HBAe3bt8eOHTvqFCcTbyLSBVc119G0adOU/163bj3eemuqEaMhIqp/TLyJSJ8aN26MTz/9FK1atQIAfPnllxg+fDjS0tIQHBxcbbtLly7Bzc1NWfb29lb+OzU1FS+99BIWLVqEkSNHYseOHRg9ejQOHTqEXr16aRybq6srXF0bwdXVjX0fEemEI956IJfLjR0CEVkIUx/x6dmzJ559dijGjBmH77//QadzEBFVZdiwYRgyZAhat26N1q1b45NPPoGLiwuOHj1aYzsfHx/4+fkpXzY2Nsr3oqOjMWDAAERGRqJt27aIjIxEREQEoqOjtYqtoKAAcrkcly9fxt27d3W5PSKycky89SAr67axQyAiC1E54nPy5EmcPHkSzzzzDIYPH47z58/X2O7SpUuQy+XKV1BQkPK9yhGfsWPH4syZMxg7dixGjx6NY8eOaR3fiRMnsHfvXnz9dXytMRER6aq8vBwJCQkoLCxEWFhYjXVDQkLg7++PiIgIHDx4UPJeamoqBg4cKDk2aNAgHDlyRO8xExHVhI+a6wFHvIlIX4YNGyYpf/LJJ1i7di2OHj1a46OWPj4+aNSoUZXvPT7iAwCRkZFITk5GdHQ04uPj9RY7EVFdnTt3DmFhYSgqKoKLiwt27NiB9u3bV1nX398f69evR7du3VBcXIwtW7YgIiICSUlJ6Nu3LwAgKysLvr6+kna+vr7IysqqNobi4mIUFxcrywqFQg93RkTWjiPeeiCXV995ExHpiiM+RGRt2rRpg/T0dBw9ehRvvfUWxo8fjwsXLlRbd9KkSejatSvCwsLw2WefYejQoVi2bJmknkwmk5SFEGrHHhcVFQV3d3flq0mTJnW/MSKyeky89aCmv5oSEWnr3LlzcHFxgYODA6ZMmaLRiE9iYiK2b9+ONm3aICIiAikpKco6uoz4AI9GfRQKheRFRGRI9vb2aNWqFbp3746oqCh07twZMTExGrcPDQ3FlStXlGU/Pz+1vi47O1utT3xcZGQk8vLylK/MzEztb4SISAUfNdeD27c5x9sUNXJqp3Wb+w8vGiASMle248u0bCH0ct3KEZ/79+8jMTER48ePR3JycpXJd5s2bdCmTRtlOSwsDJmZmVi2bJnyUUtA+xEf4NGoz8KFC+t4N2QuGjo01brNg+LrBoiE6G9CCMlj37VJS0uDv7+/shwWFob9+/dj5syZymP79u1DeHh4tedwcHCAg4OD5NigQYOQn/8A+fkFuHDhAsrLy7W4CyLAo2EHndrde/CbniMhY2HiXUd37txBaWmpscMgIgtSOeIDAN27d8eJEycQExODzz//XKP2oaGh2Lp1q7Ksy4gP8GjUZ9asWcqyQqFAr169kJubh6Iizb8IExFpYu7cuRg8eDCaNGmC/Px8JCQkICkpCT/99BOAR33SzZs3sXnzZgCP1q9o1qwZgoODUVJSgq1btyIxMRGJiYnKc06fPh19+/bF0qVLMXz4cOzatQsHDhzAoUOHtIqtMgYAcHf34hNARKQ1Jt51xPndRGRoxhjxAaoe9bl58yYA4I8//kCrVm01jomIqDa3b9/G2LFjIZfL4e7ujk6dOuGnn37CgAEDADxazPb69b+fsigpKcHs2bNx8+ZNODk5ITg4GD/88AOGDBmirBMeHo6EhATMmzcP8+fPR8uWLbFt2zat9vBWVVBQoPtNEpHVYuJdR5zfTUT6ZMojPo8rLHxQtxslIlIRGxtb4/txcXGS8pw5czBnzpxazztq1CiMGjWqLqEpFRQUoKKiQi/nIiLrwsS7jjjiTUT6ZC4jPrm5ubrfJBGRmcrPzzd2CERkpph41xH38CYifTKHER8AyMnJ0du5iIjMBRNvItIVtxOro6wsrmhORNYnN/eesUMgIqp3+fmc301EumHiXUcc8SYia8QRbyKyRhzxJiJdMfHW0Z07dwAw8SYi68Q53kRkjZh4E5GuOMdbRz4+PrCzc0RFhTB2KERE9S4nh4k3EVkfJt5EpCsm3nVQWloKQGbsMIiI6h1HvInIGnGONxHpio+aExGR1jjHm4isEUe8iUhXHPHWgRCVj5fzMXNTJkS5Lq30HgdZk0f//fzdR1iWx+/r0Yi3Zd6ntRKiQpdWeo+DzJXl9n+P39OjxNvy7pEMT7fvpQD/ezN1mvd9TLx18PdfO3X5kkL1Ja/ogrFDICuVn58Pd3d3Y4ehd/n5+WjUqJGxwyADeVjyp7FDIAtgif0f+z7Sh/sPzxk7BDIgTfo+mbDEP00aWEVFBW7dugVXV1fIZNrP8VYoFGjSpAkyMzPh5uZmgAiNx5LvDbDs+7PkewPq5/6EEMjPz0dAQAAaNLC8mTx16fvM8b8vc4wZYNz1yRxjBgwTtyX3f3X93mcM5vrfpqHw85Di5yFVl89Dm76PI946aNCgARo3blzn87i5uVnsf+yWfG+AZd+fJd8bYPj7s7SRnsfpo+8zx/++zDFmgHHXJ3OMGdB/3Jba/+nre58xmOt/m4bCz0OKn4eUrp+Hpn2fZf1JkoiIiIiIiMjEMPEmIiIiIiIiMiAm3kbg4OCAjz/+GA4ODsYORe8s+d4Ay74/S743wPLvz9SZ4+dvjjEDjLs+mWPMgPnGTZrjz1iKn4cUPw+p+vo8uLgaERERERERkQFxxJuIiIiIiIjIgJh4ExERERERERkQE28iIiIiIiIiA2LibQCfffYZmjdvDkdHR3Tr1g2//vprtXWTkpIgk8nUXr///ns9Rqy5lJQUDBs2DAEBAZDJZNi5c2etbZKTk9GtWzc4OjqiRYsWWLduneED1YG292ZOP7uoqCj06NEDrq6u8PHxwYgRI3Dp0qVa25nLz06X+zOnn5+5MLe+z1z7M3Psq8yxDzLXfmXt2rXo1KmTcj/asLAw/PjjjzW2MYX/rkk/dOnXLJmufY+l0qV/sBZRUVGQyWSYMWOGwa7BxFvPtm3bhhkzZuDDDz9EWloa+vTpg8GDB+P69es1trt06RLkcrnyFRQUVE8Ra6ewsBCdO3fG6tWrNaqfkZGBIUOGoE+fPkhLS8PcuXMxbdo0JCYmGjhS7Wl7b5XM4WeXnJyMqVOn4ujRo9i/fz/KysowcOBAFBYWVtvGnH52utxfJXP4+ZkDc+z7zLU/M8e+yhz7IHPtVxo3boxPP/0UJ0+exMmTJ/HMM89g+PDhOH/+fJX1jf05k37p2j9Yqrr8HlsibfsHa3HixAmsX78enTp1MuyFBOlVz549xZQpUyTH2rZtKz744IMq6x88eFAAEPfu3auH6PQLgNixY0eNdebMmSPatm0rOfavf/1LhIaGGjCyutPk3sz5Z5ednS0AiOTk5GrrmOvPTgjN7s+cf36myNz7PnPtz8y1rzLHPsic+xUPDw/xxRdfVPmeqX3OpD+a9A/WRpPfY2tTU/9gDfLz80VQUJDYv3+/6Nevn5g+fbrBrsURbz0qKSnBqVOnMHDgQMnxgQMH4siRIzW2DQkJgb+/PyIiInDw4EFDhlmvUlNT1T6PQYMG4eTJkygtLTVSVPpljj+7vLw8AICnp2e1dcz5Z6fJ/VUyx5+fqbGWvs+cfycA0/qszbEPMsd+pby8HAkJCSgsLERYWFiVdUztcyYyJG1+jy2dJv2DNZg6dSqGDh2K/v37G/xaTLz16O7duygvL4evr6/kuK+vL7Kysqps4+/vj/Xr1yMxMRHbt29HmzZtEBERgZSUlPoI2eCysrKq/DzKyspw9+5dI0WlH+b6sxNCYNasWfjHP/6BDh06VFvPXH92mt6fuf78TJG19H3m+jthap+1OfZB5tavnDt3Di4uLnBwcMCUKVOwY8cOtG/fvsq6pvQ5ExmSpr/Hlk6b/sHSJSQk4PTp04iKiqqX69nWy1WsjEwmk5SFEGrHKrVp0wZt2rRRlsPCwpCZmYlly5ahb9++Bo2zvlT1eVR13NyY68/u3//+N86ePYtDhw7VWtccf3aa3p+5/vxMmTX0feb4O2Fqn7U59kHm1q+0adMG6enpuH//PhITEzF+/HgkJydX++XaVD5nIkPSpu+xZNr2D5YqMzMT06dPx759++Do6Fgv1+SItx498cQTsLGxURvhyc7OVvtrck1CQ0Nx5coVfYdnFH5+flV+Hra2tvDy8jJSVIZj6j+7d955B7t378bBgwfRuHHjGuua489Om/uriqn//EyVtfR95vg7UR1jfdbm2AeZY79ib2+PVq1aoXv37oiKikLnzp0RExNTZV1T+ZyJDKmuv8eWRJv+wZKdOnUK2dnZ6NatG2xtbWFra4vk5GSsXLkStra2KC8v1/s1mXjrkb29Pbp164b9+/dLju/fvx/h4eEanyctLQ3+/v76Ds8owsLC1D6Pffv2oXv37rCzszNSVIZjqj87IQT+/e9/Y/v27fjll1/QvHnzWtuY089Ol/uriqn+/EydtfR95vQ7UZv6/qzNsQ+ypH5FCIHi4uIq3zP250xkSPr6PbZkNfUPliwiIgLnzp1Denq68tW9e3eMGTMG6enpsLGx0f9FDbZsm5VKSEgQdnZ2IjY2Vly4cEHMmDFDODs7iz///FMIIcQHH3wgxo4dq6y/YsUKsWPHDnH58mXx22+/iQ8++EAAEImJica6hRrl5+eLtLQ0kZaWJgCI//73vyItLU389ddfQgj1+7t27Zpo2LChmDlzprhw4YKIjY0VdnZ24rvvvjPWLVRL23szp5/dW2+9Jdzd3UVSUpKQy+XK14MHD5R1zPlnp8v9mdPPzxyYY99nrv2ZOfZV5tgHmWu/EhkZKVJSUkRGRoY4e/asmDt3rmjQoIHYt29flTEb+3Mm/aqtf7A2mvweW5Pa+gdrZ+hVzZl4G8CaNWtEYGCgsLe3F127dpVsWTB+/HjRr18/ZXnp0qWiZcuWwtHRUXh4eIh//OMf4ocffjBC1Jqp3CpF9TV+/HghhPr9CSFEUlKSCAkJEfb29qJZs2Zi7dq19R+4BrS9N3P62VV1XwDEpk2blHXM+Weny/2Z08/PXJhb32eu/Zk59lXm2AeZa7/y+uuvK38Pvb29RUREhORLtal9zqRftfUP1kaT32NrUlv/YO0MnXjLhPi/FTSIiIiIiIiISO84x5uIiIiIiIjIgJh4ExERERERERkQE28iIiIiIiIiA2LiTURERERERGRATLyJiIiIiIiIDIiJNxEREREREZEBMfEmIiIiIiIiMiAm3kREREREREQGxMSbrNqCBQvQpUuXWuvNnz8fkydP1urcSUlJkMlkuH//vm7B1QNN7x8AiouL0bRpU5w6dcqwQWkpJSUFw4YNQ0BAAGQyGXbu3GlR1yPSJ0P2ebX5888/IZPJkJ6ertfz6sOECRMwYsQIjepmZ2fD29sbN2/eNGxQtWDfR1T/jNmHaqtZs2aIjo4GYLrf4XRlrv0fE2/Sm+zsbPzrX/9C06ZN4eDgAD8/PwwaNAipqanGDq1Obt++jZiYGMydO1ftvSNHjsDGxgbPPvtsvcSi72R+9uzZ+PnnnzWq6+DggNmzZ+P999/Xy7X1pbCwEJ07d8bq1ast8npkuqypz5swYQJkMpnaS5u+r0mTJpDL5ejQoUOtdes7SY+JiUFcXJxGdX18fDB27Fh8/PHHhg2qFuz7yNxZSx9aVd/5+GvChAk1nk8fiaWpfofTlbn2f7Z6iocIL7zwAkpLS/Hll1+iRYsWuH37Nn7++Wfk5ubW6bylpaWws7PTU5Tai42NRVhYGJo1a6b23saNG/HOO+/giy++wPXr19G0adP6D1AHQgiUl5fDxcUFLi4uGrcbM2YM3nvvPVy8eBHt2rUzYISaGzx4MAYPHlzt+yUlJZg3bx6++uor3L9/Hx06dMDSpUvx1FNPGeR6ZD2src979tlnsWnTJskxBwcHjc9rY2MDPz8/fYSod+7u7lrVnzhxInr27In//d//hYeHh4Giqhn7PjJ31tKHyuVy5Xvbtm3DRx99hEuXLimPOTk51UtcpvgdTlfm2v9xxJv04v79+zh06BCWLl2Kp59+GoGBgejZsyciIyMxdOhQZT2ZTIa1a9di8ODBcHJyQvPmzfHtt98q368c5fjmm2/w1FNPwdHREVu3bgUAbNq0Ce3atYOjoyPatm2Lzz77TBLD+++/j9atW6Nhw4Zo0aIF5s+fj9LSUkmdTz/9FL6+vnB1dcUbb7yBoqKiWu8tISEB//znP9WOFxYW4ptvvsFbb72F5557TqPRkiNHjqBv375wcnJCkyZNMG3aNBQWFirf37p1K7p37w5XV1f4+fnh1VdfRXZ2tvKzefrppwEAHh4ekr+SFhcXY9q0afDx8YGjoyP+8Y9/4MSJE8rzVo6U7927F927d4eDgwN+/fXXKh+Z2rhxI4KDg+Hg4AB/f3/8+9//Vr7n5eWF8PBwxMfH13qvpmLixIk4fPgwEhIScPbsWbz44ot49tlnceXKFWOHRmbMGvu8yhGpx1+PJ52a3mvlKPa9e/cwZswYeHt7w8nJCUFBQcrEvnnz5gCAkJAQyGQyyZelmj6Xxz/PPn36wMnJCT169MDly5dx4sQJdO/eHS4uLnj22Wdx584dZTvVR80rKiqwdOlStGrVCg4ODmjatCk++eQT5fsdO3aEn58fduzYUevnaSzs+8iUWVMf+nif6e7uDplMJjn29ddfo2XLlrC3t0ebNm2wZcsWZdvK5H3kyJGQyWTK8h9//IHhw4fD19cXLi4u6NGjBw4cOFBjXOb4HU5XJtv/CSI9KC0tFS4uLmLGjBmiqKio2noAhJeXl9iwYYO4dOmSmDdvnrCxsREXLlwQQgiRkZEhAIhmzZqJxMREce3aNXHz5k2xfv164e/vrzyWmJgoPD09RVxcnPLcixYtEocPHxYZGRli9+7dwtfXVyxdulT5/rZt24S9vb3YsGGD+P3338WHH34oXF1dRefOnauNNzc3V8hkMnH06FG192JjY0X37t2FEEJ8//33olmzZqKiokL5/sGDBwUAce/ePSGEEGfPnhUuLi5ixYoV4vLly+Lw4cMiJCRETJgwQXLOPXv2iD/++EOkpqaK0NBQMXjwYCGEEGVlZSIxMVEAEJcuXRJyuVzcv39fCCHEtGnTREBAgNizZ484f/68GD9+vPDw8BA5OTmSWDp16iT27dsnrl69Ku7evSs+/vhjyf1/9tlnwtHRUURHR4tLly6J48ePixUrVkjue86cOeKpp56q9jMzJgBix44dyvLVq1eFTCYTN2/elNSLiIgQkZGRer8eWQ9r6/PGjx8vhg8fXuNnoum9pqWlCSGEmDp1qujSpYs4ceKEyMjIEPv37xe7d+8WQghx/PhxAUAcOHBAyOVyZV9W2+dSeY22bduKn376SVy4cEGEhoaKrl27iqeeekocOnRInD59WrRq1UpMmTKl2vubM2eO8PDwEHFxceLq1avi119/FRs2bJDc7+jRoyX9tzGx7yNzY219aKVNmzYJd3d3ZXn79u3Czs5OrFmzRly6dEksX75c2NjYiF9++UUIIUR2drYAIDZt2iTkcrnIzs4WQgiRnp4u1q1bJ86ePSsuX74sPvzwQ+Ho6Cj++usv5bkDAwPN6jucrsyp/2PiTXrz3XffCQ8PD+Ho6CjCw8NFZGSkOHPmjKQOAMmXHSGE6NWrl3jrrbeEEH93oNHR0ZI6TZo0EV9//bXk2KJFi0RYWFi18fznP/8R3bp1U5bDwsKqvHZNHWhaWpoAIK5fv672Xnh4uDLO0tJS8cQTT4j9+/cr31dNvMeOHSsmT54sOcevv/4qGjRoIB4+fFjl9Su/fObn51d5TiGEKCgoEHZ2duKrr75SHispKREBAQHiP//5j6Tdzp07JedXTbwDAgLEhx9+WO3nIYQQMTExolmzZjXWMRbVzvCbb74RAISzs7PkZWtrK0aPHi2E+Pu/uZpeU6dO1eh6ZF2sqc8bP368sLGxUftd+p//+R+t77Uy8R42bJiYOHFilXGo1q1U2+dS2e6LL75Qvh8fHy8AiJ9//ll5LCoqSrRp00Zyf5WJt0KhEA4ODmqJtqqZM2eazBdY9n1kjqypD62kmniHh4eLSZMmSeq8+OKLYsiQIcqypr9v7du3F6tWrVKWq0q8Tfk7nK7Mqf/jHG/SmxdeeAFDhw7Fr7/+itTUVPz000/4z3/+gy+++EKycERYWJikXVhYmNoCOt27d1f++86dO8jMzMQbb7yBSZMmKY+XlZVJ5uV99913iI6OxtWrV1FQUICysjK4ubkp37948SKmTJmidu2DBw9We08PHz4EADg6OkqOX7p0CcePH8f27dsBALa2tnjppZewceNG9O/fv8pznTp1ClevXsVXX32lPCaEQEVFBTIyMtCuXTukpaVhwYIFSE9PR25uLioqKgAA169fR/v27as87x9//IHS0lL07t1beczOzg49e/bExYsXJXUf/1xVZWdn49atW4iIiKi2DvBoLtKDBw9qrGMqKioqYGNjg1OnTsHGxkbyXuXc9ieffFLtc1JlrDmcZNqsqc8DgKeffhpr166VHPP09FQ7f233Wumtt97CCy+8gNOnT2PgwIEYMWIEwsPDq41N088FADp16qT8t6+vL4BHj4c/fqxyGo+qixcvori42Kz7QvZ9ZA6srQ+tysWLF9VWP+/duzdiYmJqbFdYWIiFCxfi//2//4dbt26hrKwMDx8+xPXr12tsZ8r9lr6Ycv/HxJv0ytHREQMGDMCAAQPw0Ucf4c0338THH3+s0YqNj3N2dlb+uzL53LBhA3r16iWpV/kLdfToUbz88stYuHAhBg0aBHd3dyQkJGD58uV1up8nnngCwKO5iN7e3srjsbGxKCsrw5NPPqk8JoSAnZ0d7t27V+Uva0VFBf71r39h2rRpau81bdoUhYWFGDhwIAYOHIitW7fC29sb169fx6BBg1BSUlJtjI/++Kb+GQohavxcVWm6uEdubq7kszBlISEhKC8vR3Z2Nvr06VNlHTs7O7Rt27aeIyNLYS19XmWMrVq10vqcqvdaafDgwfjrr7/www8/4MCBA4iIiMDUqVOxbNmyKutr8rlUenxhpcrrqx6rPJ8qS+gL2feRubCmPrQ6mnx/U/Xee+9h7969WLZsGVq1agUnJyeMGjWqxu+LgGn3W/piyv0fF1cjg2rfvr1k8TDgUWenWq7pP35fX188+eSTuHbtGlq1aiV5VS7Ac/jwYQQGBuLDDz9E9+7dERQUhL/++ktynnbt2lV57Zq0bNkSbm5uuHDhgvJYWVkZNm/ejOXLlyM9PV35OnPmDAIDAyUj2o/r2rUrzp8/r3YPrVq1gr29PX7//XfcvXsXn376Kfr06YO2bduqjcjY29sDAMrLy5XHKtsfOnRIeay0tBQnT57UatVKV1dXNGvWrNbtxX777TeEhIRofF5DKygoUP4MACAjIwPp6em4fv06WrdujTFjxmDcuHHYvn07MjIycOLECSxduhR79uzR+/WILLHP04a29+rt7Y0JEyZg69atiI6Oxvr16wFU3ddp8rnoQ1BQEJycnEy+L2TfR5bI2vrQdu3aSb6/AY8W4n38+5udnZ2kLwSAX3/9FRMmTMDIkSOViz3++eeftV7P2P2Wvpht/6fTA+pEKu7evSuefvppsWXLFnHmzBlx7do18c033whfX1/x+uuvK+sBEE888YSIjY0Vly5dEh999JFo0KCBOH/+vBCi+nl9GzZsEE5OTspFv86ePSs2btwoli9fLoQQYufOncLW1lbEx8eLq1evipiYGOHp6SmZR5OQkCAcHBwk165tkQwhhHj++efFu+++qyzv2LFD2NvbKxc2e9zcuXNFly5dhBDq87HPnDkjnJycxNtvvy3S0tLE5cuXxa5du8S///1vIcSjBTTs7e3Fe++9J/744w+xa9cu0bp1a8nncePGDSGTyURcXJzIzs5Wzv2ePn26CAgIED/++KNkcbXc3NwqY6mkOsc7Li5OODo6ipiYGHH58mVx6tQpsXLlSkmbwMBAsXnz5ho/s/pUeW+qr/HjxwshHs13/+ijj0SzZs2EnZ2d8PPzEyNHjhRnz541yPXIOlhTnyfEoznQzz77rJDL5ZLXnTt3dL7X+fPni507d4orV66I3377TTz33HOiZ8+eQohH62Y4OTmJxYsXi6ysLGV/W9vnUtXnWVX/pzrPUnVxtQULFggPDw/x5ZdfiqtXr4rU1FTJvPHCwkLh5OQkUlJSavwsDYl9H5kza+tDK6n2PTt27BB2dnZi7dq14vLly8rF1Q4ePKisExQUJN566y0hl8uV3+tGjBghunTpItLS0kR6eroYNmyYcHV1FdOnT1e2q2qOt6l9h9OVufZ/TLxJL4qKisQHH3wgunbtKtzd3UXDhg1FmzZtxLx588SDBw+U9QCINWvWiAEDBggHBwcRGBgo4uPjle9X14EKIcRXX30lunTpIuzt7YWHh4fo27ev2L59u/L99957T3h5eQkXFxfx0ksviRUrVkg6NyGE+OSTT8QTTzwhXFxcxPjx48WcOXNq7UB/+ukn8eSTT4ry8nIhhBDPPfecZNGLx506dUoAEKdOnaryy97x48fFgAEDhIuLi3B2dhadOnUSn3zyifL9r7/+WjRr1kw4ODiIsLAwsXv3brXP43/+53+En5+fkMlkyl/4hw8finfeeUc88cQTwsHBQfTu3VscP35c2UbTxFsIIdatWyfatGkj7OzshL+/v3jnnXeU7x05ckQ0atRI8jMlskbW1OcJ8SgxrepLx+MLlGl7r4sWLRLt2rUTTk5OwtPTUwwfPlxcu3ZNWX/Dhg2iSZMmokGDBqJfv34afS76SrzLy8vF4sWLRWBgoLCzsxNNmzYVS5YsUb7/9ddfS+6diLRjbX1oJdW+R4hHO8q0aNFC2NnZidatW6slxrt37xatWrUStra2IjAwUHnfTz/9tHBychJNmjQRq1evFv369asx8eZ3OOOTCfF/E0SJ6oFMJsOOHTsk+6WaOiEEQkNDMWPGDLzyyivGDseoXnzxRYSEhGDu3LnGDoXILFhTn2eO96qrnj17YsaMGXj11VeNHQqRRTPHfsVUvzfyO5zxcY43US1kMhnWr1+PsrIyY4diVMXFxejcuTNmzpxp7FCIyIDY59UsOzsbo0aNMqkv1ERkOkyxD+V3ONPAEW+qV+b4l0siIl1ZU59nTfdKRPWD/QpZEibeRERERERERAbER82JiIiIiIiIDIiJNxEREREREZEBMfEmIiIiIiIiMiAm3kREREREREQGxMSbiIiIiIiIyICYeBMREREREREZEBNvIiIiIiIiIgNi4k1ERERERERkQEy8iYiIiIiIiAzo/wMMyJ48QJByFAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvHUlEQVR4nO3deVzUdf4H8NdwDXiACAMDyoAnKqaSVKKrZpSm5mbXbuWWWdmaltcahbqlq0nuWqFZupoXmtqBuvZLyw5BM80L8yK1REAcHPAARB2uz+8Pl1m/MxwzwwzfOV7Px2Me2/czn8/3+/4O8tl58zm+CiGEABERERERERHZnIfcARARERERERG5KibdRERERERERHbCpJuIiIiIiIjITph0ExEREREREdkJk24iIiIiIiIiO2HSTURERERERGQnTLqJiIiIiIiI7IRJNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqS7EXbt2oURI0YgPDwcCoUCW7Zssev1kpOTcdddd6Fly5YICQnByJEjcerUKbtek4ioBvs8InIX7O+IyJaYdDdCWVkZevbsicWLFzfJ9TIyMjBhwgTs27cP3377LSorKzF48GCUlZU1yfWJyL2xzyMid8H+johsSSGEEHIH4QoUCgU2b96MkSNHGsrKy8sxc+ZMfPLJJ7h69Sq6d++O+fPn495777XJNQsLCxESEoKMjAwMGDDAJuckIjIH+zwichfs74iosbzkDsCVjRkzBufOncPGjRsRHh6OzZs348EHH8SxY8fQqVOnRp+/uLgYANC6detGn4uIqLHY5xGRu2B/R0SW4Ei3jRj/FfT3339Hp06dcP78eYSHhxvq3X///bj77rsxb968Rl1PCIGHH34YV65cwe7duxt1LiIiS7HPIyJ3wf6OiBqLI912cvjwYQgh0LlzZ0m5Xq9HUFAQAODcuXNo165dveeZMGFCreuJXnnlFRw9ehQ//vij7YImIrIS+zwichfs74jIUky67aS6uhqenp44dOgQPD09Je+1aNECANCmTRtkZWXVe57AwECTsldffRVbt27Frl270LZtW9sFTURkJfZ5ROQu2N8RkaWYdNtJbGwsqqqqoNPp0L9//1rreHt7o0uXLmafUwiBV199FZs3b0Z6enqDf0ElImoq7POIyF2wvyMiSzHpboRr167ht99+MxxnZ2fjyJEjaN26NTp37oxRo0bh2WefxbvvvovY2FgUFRXhhx9+wB133IFhw4ZZfL0JEyZg/fr1+M9//oOWLVuioKAAABAQEAA/Pz+b3RcRUW3Y5xGRu2B/R0Q2JchqO3fuFABMXqNHjxZCCFFeXi7efPNNERUVJby9vYVarRaPPPKIOHr0qFXXq+1aAMSqVatsd1NERHVgn0dE7oL9HRHZEncvJyIiIiIiIrITD7kDICIiIiIiInJVTLqJiIiIiIiI7IQbqVmhuroaFy5cQMuWLaFQKOQOh4gcnBACpaWlCA8Ph4eHc/2tk/0dEVnKWfs89ndEZClz+zsm3Va4cOECIiIimvSaaWlpePTRRw3Hb7/9NmbOnNmkMRBR4+Tl5Tndc1fl6O+IyDU4W5/H/o6IrNVQf8ek2wotW7b87395AGiav4RqNBrJcU5OHgDPJrk2uZZ2ze+3uE122Xd2iMSdCADVt/UdzkOO/o6ch5dna4vbVFZdtkMk5Fics89jf0dkvs7NRljc5vT1L+0QidzM6++YdFvhf1OOFJAr6c7NzWuya5Nr8VB4W9GK/9ZswRmnK8rR35HzUCismTrMf0fuwtn6PPZ3RObz5PdJiYb6OybdTsDX1xchISGSsltJNxGR8+rUqRPatAmHVluAgoICFBcXyx0SEZFNXb6sQ0lJCQoLi6DT6TBhwkScO3dO7rCIqIkx6XYCta0vystj0k1Ezm306GcwY0aS4XjDho14+ulnZIyIiMh2/P39ERgYiMDAQERGRgK4tekSEbkf59lS0o1pNNKk+/Lly7h27ZpM0RAR2UZYWJjkuLCwSKZIiIhsT6VSmZQVFhbKEAkRyY1JtxOofT03EZFzU6tDJccFBQUyRUJEZHvGSwPLyspw/fp1maIhIjkx6XYCxiPdubm5MkVCRGQ7arVaclxQcFGmSIiIbE+lCpYcc5SbyH0x6XYCJSWlOHHihGFKOUe6icgVhIVJk26tVitTJEREtmc8vZxLaIjcFzdScwLvv5+C999PAQC0atUKXl78sRGRc/Pw8DCZesmRbiJyJSEh0qRbp9PJFAkRyY3Zm5O5evWq3CEQETVacHAwPD09JWVc001EroQj3URUg9PLiYioyRnvXF5VVcVRICJyKcazedjHEbkvJt1ERNTkjHcuLywsRHV1tUzREBHZHjdSI6IanF5O5GZ+v/a13CEQcedyF1FReUnuEIgclulIN5Nuch1ZZZvlDsGpcKSbiIiaHHcuJyJXx5FuIqrBkW4H99BDwzF48APIzc1Fbm4ejh8/gZMnT8odFhFRo3Ckm4hcHTdSI6IaTj/SnZ+fj7/85S8ICgpCs2bN0KtXLxw6dKjeNhkZGejduzd8fX3Rvn17LF26tImitdygQffi1Vcn4F//mo9PP12PpKTX5Q6JiKjRONJNRK4sICAAPj4+kjJupEbkvpx6pPvKlSvo168fBg0ahO3btyMkJAS///47WrVqVWeb7OxsDBs2DGPHjsW6deuwZ88ejB8/HiqVCo899ljTBW8mjSZCcpybmytTJEREtsORbiJyZcaj3ACnlxO5M6dOuufPn4+IiAisWrXKUBYVFVVvm6VLl0Kj0SAlJQUA0LVrVxw8eBALFixw0KRbIznOzc2TKRIiItsx3r2cz+gmIldy5coVvPrqZISEqKBSqdCqVQBu3Lghd1hEJBOnTrq3bt2KIUOG4IknnkBGRgbatGmD8ePHY+zYsXW22bt3LwYPHiwpGzJkCFasWIGKigp4e3vbO2yLcKSbiFzRnXfeDbVa/d9XKPbu3Sd3SERENnPp0iUsXvyh3GEQkYNw6qT77NmzWLJkCaZOnYrp06dj//79mDhxIpRKJZ599tla2xQUFCA0VDrCEhoaisrKShQVFSEsLMykjV6vh16vNxyXlJTY9kbqoFQqTaZgcqSbiFxBWVkZfv/9d/z+++9yh0JERERkV06ddFdXVyMuLg7z5s0DAMTGxuLEiRNYsmRJnUk3ACgUCsmxEKLW8hrJycmYPXu2jaI2X0REhEkZR7qJiIiIiIich1PvXh4WFoZu3bpJyrp27VpvYqpWq03WDup0Onh5eSEoKKjWNklJSSguLja88vKaZrTZeGr51atXUVpa2iTXJiIiIiIiosZz6pHufv364dSpU5Ky06dPIzIyss428fHx+PLLLyVlO3bsQFxcXJ3ruZVKJZRKZeMDtpDxJmo5ORzlJiIiIiIiciZOPdI9ZcoU7Nu3D/PmzcNvv/2G9evXY9myZZgwYYKhTlJSkmSq+bhx45CTk4OpU6ciKysLK1euxIoVKzBt2jQ5bqFe3ESNiIiIiIjIuTl10n3XXXdh8+bN2LBhA7p37445c+YgJSUFo0aNMtTRarWSZLVdu3bYtm0b0tPT0atXL8yZMweLFi3i48KIiJpIjx49cN99g9C1a1cEBgbKHQ4ROaj8/Hz85S9/QVBQEJo1a4ZevXrh0KFD9bbJyMhA79694evri/bt22Pp0qVNFK3Uvn17kJPzOw4e/Bnbt/8f+vXrJ0scROQYnHp6OQA89NBDeOihh+p8f/Xq1SZlAwcOxOHDh+0YlW1wpJuIXNHEia/ghRfGGI4XLvwAkydPlTEiIqk2Lfpb3Cb/2m47ROK+rly5gn79+mHQoEHYvn07QkJC8Pvvv6NVq1Z1tsnOzsawYcMwduxYrFu3Dnv27MH48eOhUqmafHBFo4lAWFiYYQAlJWVRk16fiByL0yfdrsw06eZINxE5P7Va+tjGixcvyhQJETmq+fPnIyIiAqtWrTKURUVF1dtm6dKl0Gg0SElJAXBrc92DBw9iwYIFTZp0KxQKBAcHS8oKC4ua7PpE5Hicenq5q+P0ciJyRWq1WnJcUMCkm4iktm7diri4ODzxxBMICQlBbGwsli9fXm+bvXv3YvDgwZKyIUOG4ODBg6ioqLBnuBKtWrUy2Zy3sLCwya5PRI6HSbeDCg4Ohp+fn6SM08uJyBWEhRkn3QV11CQid3X27FksWbIEnTp1wjfffINx48Zh4sSJSE1NrbNNQUEBQkOlM2lCQ0NRWVmJoiLTkWa9Xo+SkhLJyxZUKpVJGZNuIvfG6eUOys/PD9u3fw2NJgKRkZHw9fWFVquVOywiokbx8PBASEiIpEyrZdJNRFLV1dWIi4vDvHnzAACxsbE4ceIElixZInkqjTGFQiE5FkLUWg4AycnJmD17tg2jvsU46S4tLcXNmzdtfh0ich4c6XZQeXl5GDZsBLp374WWLQMRHKxGVVWV3GERETVKUFAQvLykf+/lSDcRGQsLC0O3bt0kZV27dq131p9arTbpT3Q6Hby8vBAUFGRSPykpCcXFxYZXXp5tlvGFhEiTbp1OZ5PzEpHz4ki3kyguLpY7BCKiRgsLC5McV1dXc9olEZno168fTp06JSk7ffo0IiMj62wTHx+PL7/8UlK2Y8cOxMXFmayxBgClUgmlUmmbgG9jPNLNTdSIiCPdRETUZIx3LtfpdJzFQ0QmpkyZgn379mHevHn47bffsH79eixbtgwTJkww1ElKSpJMNR83bhxycnIwdepUZGVlYeXKlVixYgWmTZvWpLFzpJuIjDHpJiKiJsOdy4nIHHfddRc2b96MDRs2oHv37pgzZw5SUlIwatQoQx2tViuZbt6uXTts27YN6enp6NWrF+bMmYNFixY1+TO6OdJNRMY4vZyIiJoMdy4nInM99NBDeOihh+p8f/Xq1SZlAwcOxOHDh+0YVcNUKuNndHMJDZG740g3ERE1GeORbu5cTkSuxvgJDTodk24id8eRbgekVCrx6afrkZubh5ycHOTm5uH//u8r3LhxQ+7QiIgahSPdROTqTKeXM+kmcndMuh1Q27Zt8fDDf5SUBQQEMekmIqfHNd1E5Oq4kRoRGWPS7YA0mgjJcXFxMUpKSmSKhojIdox3L+dINzmi/Gu75Q6BnJRCoUBwsPGabm6kRuTumHQ7II1GIznOzc2TKRIichSzZs3C7NmzJWWhoaF1Jq3p6ekYNGiQSXlWVha6dOlilxjNYfycbq1WK1MkRES25+npiUmTpkKlCkZISAhCQlTIz8+XOywikhmTbgdkPNKdk5MjUyRE5EhiYmLw3XffGY49PT0bbHPq1Cn4+/sbjo3XGjY1tbot1Go11Go1wsLUOH78hKzxEBHZUmVlJT76aIncYRCRg2HS7YA40k1EtfHy8jJZE92QkJAQtGrVyj4BWeHGjRvIzs5Gdna23KEQERERNQk+MswBGY905+bmyhQJETmSM2fOIDw8HO3atcOTTz6Js2fPNtgmNjYWYWFhSEhIwM6dOxusr9frUVJSInkRERERkfWYdDsg06SbI91E7u6ee+5BamoqvvnmGyxfvhwFBQXo27cvLl26VGv9sLAwLFu2DGlpadi0aROio6ORkJCAXbt21Xud5ORkBAQEGF4RERH11iciIiKi+imEEELuIJxNSUkJAgICAHgCUNj8/GVlxWjWrJnh+A9/uBd79uyx+XWIqKkIAFUoLi6WrK9ujLKyMnTo0AGJiYmYOnWqWW1GjBgBhUKBrVu31llHr9dDr9cbjktKSv6beNunvyMiV2T7Pq8p2Pv7HRG5IvP6O450O5igoCBJwg1wejkRmWrevDnuuOMOnDlzxuw2ffr0abC+UqmEv7+/5EVERERE1mPS7WCMN1GrqqrChQsXZIqGiByVXq9HVlaWySO46pOZmWlRfVvr06cPEhLuQ0xMDIKCgmSLg4jIXlJTV+P8+XM4fPgAvvlmG5544nG5QyIiB8Ddyx2M8Xru/Px8VFVVyRQNETmKadOmYcSIEdBoNNDpdJg7dy5KSkowevRoAEBSUhLy8/ORmpoKAEhJSUFUVBRiYmJQXl6OdevWIS0tDWlpabLdw8yZSRg+fJjheMaMv2PevHdki4eIyNbatm2DNm1uvQBg27avZY6IiBwBk24HYzzSnZPDqeVEBJw/fx5PPfUUioqKoFKp0KdPH+zbtw+RkZEAAK1WK1mKUl5ejmnTpiE/Px9+fn6IiYnBV199hWHDhtV1CbszftxZQcFFmSIhIrIPlSpYclxYWChTJETkSJh0OxjuXE5Etdm4cWO9769evVpynJiYiMTERDtGZDm1OlRyrNVqZYqEiMg+QkJCJMc6nU6mSIjIkXBNt4PhM7qJyBV5eHggNFSadHOkm4hciYeHh8l+FYWFRTJFQ0SOhCPdDubQocNo2bIlNJoIREZGcqSb6hTYrLtV7a5cP27jSIgaFhQUBC8v6f/lFBQUyBQNkeO4s9nTFrc5fH29HSKhxmrdujU8PT0lZRzpJiKASbfD+ec/F+Cf/1xgOPbw4GQEInJ+xuu5q6ur+WWUiFyKSqUyKSsq4kg3EXF6ucOrrq6WOwQiokYLC5Mm3YWFhXwyAxG5lJAQadJ95coVVFRUyBQNETkSJt1ERGR3xiPdWi2nlhORazEe6ebO5URUg0k3ERHZnfHO5VzPTUSuxjTp5tRyIrqFSTcREdldWFiY5Jg7lxORqzGeXs59K4ioBpNuIiKyOz6jm4hcHUe6iagu3L3cgcyYkYS77opDbm4ecnNzsXNnBg4dOiR3WEREjWa8ppsj3UTkajjSTUR1YdLtQPr3/wOGDBlsOE5KmsGkm4hcAtd0E5Gr40g3EdWF08sdiEYTITnOzc2TKRIiItsyXtPN6eVE5Go40k1EdeFItwPRaDSS49zcXJkiISKyHV9fXwQEBEjKOL2ciFzN/PkLEBUVCZVKhZAQFU6fPiN3SETkIJh0O4jWrVujefPmkjKOdBORK7h58yb8/FoiNDQUYWFhUKtD+UdFInI5qalr5Q6BiBwUk24HYTzKXVVVhfz8fJmiISKyrZs3byInJwc5OTlyh0JERETUpJx6TfesWbOgUCgkL+Mdcm+Xnp5uUl+hUODXX39twqhrFxkpTbrz8/NRVVUlUzRERERERERkC04/0h0TE4PvvvvOcOzp6dlgm1OnTsHf399wbLzbpBxM13NzajnV78r141a1a9Oiv8VtQqrbWHWtzOsbrWpHROQuDl9fL3cIROQiWjfrYXGby9eP2iESMubUI90A4OXlBbVabXiZk0CHhIRI2piTqNub6c7lXO9IRERE7smVZjMSETn9SPeZM2cQHh4OpVKJe+65B/PmzUP79u3rbRMbG4ubN2+iW7dumDlzJgYNGlRvfb1eD71ebzguKSmxSey34+PCiIiIiP7HVWYzEhE5ddJ9zz33IDU1FZ07d8bFixcxd+5c9O3bFydOnEBQUJBJ/bCwMCxbtgy9e/eGXq/H2rVrkZCQgPT0dAwYMKDO6yQnJ2P27Nn2vBVOLycil3XffYPg6emJgoKL0Gq1uHTpEoQQcodFRA6uZjajJUJCQtCqVSv7BFSPGTOSMH78OBQWFkGn02Hbtq+RkrKwyeMgIsfk1En30KFDDf99xx13ID4+Hh06dMCaNWswdepUk/rR0dGIjo42HMfHxyMvLw8LFiyoN+lOSkqSnK+kpAQRERF11rcGp5cTkauaPz8ZcXG9DccvvvhXrFixUsaIiMgZNMVsRlsJDw83vADg7NnsJrkuETkHp1/TfbvmzZvjjjvuwJkzZ8xu06dPnwbrK5VK+Pv7S1625OPjY+ika3Ckm4hcRViYdKRKq9XKFAkROYua2YzffPMNli9fjoKCAvTt2xeXLl2qtX7NbMa0tDRs2rQJ0dHRSEhIwK5du+q8hl6vR0lJieRlrZAQ6TR2nU5n9bmIyPU49Ui3Mb1ej6ysLPTvb/7uzJmZmQgLC7NjVA1r08Z0Z2iOdBORK1AoFAgNDZWUFRRclCkaInIWTTGb0ZbLB43XjhcWFtnkvETkGpx6pHvatGnIyMhAdnY2fv75Zzz++OMoKSnB6NGjAdyaFv7ss88a6qekpGDLli04c+YMTpw4gaSkJKSlpeGVV16R6xYAmE4tLykpQXFxsUzREBHZTlBQELy8pH/fLSgokCkaInJW9pjNmJSUhOLiYsMrL8/6WYYc6Sai+jj1SPf58+fx1FNPoaioCCqVCn369MG+ffsQGRkJ4NYUxttHjMvLyzFt2jTk5+fDz88PMTEx+OqrrzBs2DC5bgEAcPnyFfz738uh0URAo4lAaek1WeMhIrIV45lE1dXV/DJKRBazx2xGpVIJpVJpi/BqGekutMl5icg1OHXSvXHjxnrfX716teQ4MTERiYmJdozIOseOHcO4cePlDoOIyObUaunU8qKiIlRWVsoUDRE5i2nTpmHEiBHQaDTQ6XSYO3euyWzG/Px8pKamArg1mzEqKgoxMTEoLy/HunXrkJaWhrS0NLvH6unpieDgYEmZTsekm4j+x6mTbiIicmzGo0xaLaeWE1HDnGk2Y22PqeVINxHdjkk3ERHZjfFIN9dzE5E5nGk2Y0hIiElZURE3UiOi/7F6I7Xnnnuu3scwEBERqdXSx4Vx53IicjUqlXRq+aVLl1BVVSVTNETkiKwe6S4tLcXgwYMRERGBMWPGYPTo0bU++oqIHEv+td2Wt7FDHOQe+IxuInJ1xiPd3CyS5HL5+lGL20S2uN+qa+Vc+86qdu7K6pHutLQ05Ofn45VXXsHnn3+OqKgoDB06FF988QUqKipsGSMRETkpjnQTkavjM7qJqCGNek53UFAQJk2ahMzMTOzfvx8dO3bEM888g/DwcEyZMsWiZym6q+7du+PQof3YvPkLLFz4PqZMmSx3SERENsM13UTk6viMbiJqSKOS7hparRY7duzAjh074OnpiWHDhuHEiRPo1q0b3n//fVtcwmW1b98Od94Zi5EjH8bEia9g6tRJcodERGQzpruXc3o5EbkWjnQTUUOsTrorKiqQlpaGhx56CJGRkfj8888xZcoUaLVarFmzBjt27MDatWvxj3/8w5bxuhyNRiM5zs3NkykSIiLb8vPzQ0BAgKSM08uJyNVwpJuIGmL1RmphYWGorq7GU089hf3796NXr14mdYYMGYJWrVo1IjzXp9FESI5zcnJkioSIyLZqe4wOp5cTkatZs2Ytjhz5BSqVCipVMDIzj8gdEhE5GKuT7vfffx9PPPEEfH1966wTGBiI7Oxsay/hFoyTbo50E5GryMnJgVLZHKGhoQgLC4NaHYqSkhK5wyIisqmtW7/E1q1fyh0GETkwq6eX79y5s9ZdysvKyvD88883Kih3wunlROTKysvLkZeXh/379/NLKREREbklq5PuNWvW4MaNGyblN27cQGpqaqOCciemI925MkVCREREREREtmbx9PKSkhIIISCEQGlpqWR6eVVVFbZt21brOj4y5e3tbbKzL0e6iYiIiIiIXIfFSXerVq2gUCigUCjQuXNnk/cVCgVmz55tk+BcXZs2beDhIZ1swJFuIiIiIiIi12Hx9PKdO3fi+++/hxACX3zxBX744QfD68cff0Rubi5mzJhhj1hdjvHU8tLSUly9elWeYIjIoc2aNcvwB8+al1qtrrdNRkYGevfuDV9fX7Rv3x5Lly5tomiJiIiIqIbFI90DBw4EAGRnZ0Oj0UChUFjUvri4GJs3b8bu3btx7tw5XL9+HSqVCrGxsRgyZAj69u1raUhOy3QTNY5yE1HdYmJi8N133xmOPT0966ybnZ2NYcOGYezYsVi3bh327NmD8ePHQ6VS4bHHHmuKcPHQQ8NRUVGBgoKL0Gq1KCoqQnV1dZNcm4ioKTzxxOP44IMU6HSFKCwsxOHDmXjttdflDouIHIxFSffRo0fRvXt3eHh4oLi4GMeOHauzbo8ePSTHWq0Wb775Jj755BOo1Wrcfffd6NWrF/z8/HD58mXs3LkTCxYsQGRkJN566y38+c9/tu6OnAgfF0ZElvDy8mpwdLvG0qVLodFokJKSAgDo2rUrDh48iAULFjRZ0r1kyWK0bdvWcPzQQw/jq6+2Ncm1yTJenv5WtauscuxHwLXwbW9Vu2s3z9o4EnJVarUaoaGhCA0NBVD/H0OJHFHOte8armQjdzZ72qp2h6+vt3EkTc+ipLtXr14oKChASEgIevXqBYVCASGEST2FQoGqqipJWc+ePfHss89i//796N69e63nv3HjBrZs2YL33nsPeXl5mDZtmiXhOR3jke6cHI50E1Hdzpw5g/DwcCiVStxzzz2YN28e2revPanYu3cvBg8eLCkbMmQIVqxYgYqKCnh7e9faTq/XQ6/XG46tfa62QqEwfAmtUVBw0apzERE5qpAQleRYp9PJFAkROTKLku7s7GyoVCrDf1vixIkThrZ18fPzw1NPPYWnnnoKhYWFFp3fGUVGcno5EZnnnnvuQWpqKjp37oyLFy9i7ty56Nu3L06cOIGgoCCT+gUFBSZJb2hoKCorK1FUVGTy5IQaycnJNtkMs3Xr1iaJfUFBQaPPS0TkSIy/2xYWFskUCRE5MouS7sjIyFr/2xwNJdyNre+MOL2ciMw1dOhQw3/fcccdiI+PR4cOHbBmzRpMnTq11jbGe27UzEyqby+OpKQkyflKSkoQERFRZ/261JbUX7zIkW4ici0c6SYic1i8e3mN5ORkrFy50qR85cqVmD9/fq1txo8fj2vXrhmO165dKzm+evUqhg0bZm1ITmfFilX497+XY/v2r3Hy5EmcPWvZ7AEicl/NmzfHHXfcgTNnztT6vlqtNhlZ1ul08PLyqnVkvIZSqYS/v7/kZQ21WjrKXlhYiMrKSqvORUTkqDjSTUTmsDrp/ve//40uXbqYlMfExNT5WJp///vfuH79uuF4woQJkr8I6vV6fPPNN9aG5HTeey8F48aNx7BhIxAT0xN79+6VOyQichJ6vR5ZWVl1ThOPj4/Ht99+KynbsWMH4uLi6lzPbUvGcWm1nFpORK6HI91EZA6rk+6CgoJav+ypVCpotdpa2xhvulbbJmxERGRq2rRpyMjIQHZ2Nn7++Wc8/vjjKCkpwejRowHcmhb+7LPPGuqPGzcOOTk5mDp1KrKysrBy5UqsWLGiyTaoNB7p5npuInJFpiPdrr8nERFZzuqkOyIiAnv27DEp37NnD8LDwxsVFBERSZ0/fx5PPfUUoqOj8eijj8LHxwf79u0z7K+h1WolmzG2a9cO27ZtQ3p6Onr16oU5c+Zg0aJFTfa4MONHm3HnciJyNd7e3ggMDJSU6XRMuonIlEUbqd3uxRdfxOTJk1FRUYH77rsPAPD9998jMTERf/vb32wWIBERARs3bqz3/dWrV5uUDRw4EIcPH7ZTRPULC5Mm3XXNgCIiclbBwcEmZRzpJqLaWJ10JyYm4vLlyxg/fjzKy8sBAL6+vnj99deRlJRUZ7s333wTzZo1AwCUl5fj7bffRkBAAABI1nsTEZHz4kg3Ebm6kJAQyXFVVRUuX74sUzRE5MisTroVCgXmz5+Pv//978jKyoKfnx86deoEpVJZZ5sBAwbg1KlThuO+ffvi7NmzJnWIiMi5cU03Ebk6lUo60n3p0iVUV1fLFA0ROTKrk+4aLVq0QFhYGBQKRb0JNwCkp6c39nIu4//+7z8IDw9Hbm4ucnJysWrVGhw5ckTusIiIbMJ093JOLyci12I80s2dy4moLlZvpFZdXY1//OMfCAgIQGRkJDQaDVq1aoU5c+ZY/Fe+yspKyfO63UHPnj0QG9sLDz/8R0yc+AoiItrKHRIRkU34+vqiVatWkjJOLyciV8NndBORuawe6Z4xYwZWrFiBd955B/369YMQAnv27MGsWbNw8+ZNvP322yZttm3bhkuXLuGZZ54xlL399tuYM2cOKisrcd999+HTTz812QnS1Xh5eZns8J6bmydTNGRrzZVRFrcp05+zeRxEcgkNDTUp4/Ryx1ZZVSJ3CHZx7ebZhivJ7N5mL1jcJv36CjtEQpbiM7rJXqz5Lgk4/vfJw9fXyx2CbKxOutesWYOPP/4Yf/zjHw1lPXv2RJs2bTB+/Phak+4FCxZIHlfz008/4c0338Q//vEPdO3aFTNmzMCcOXPw3nvvWRuWU2jTpg08PKSTDG5/1A8RkTMznnJ548YNFBcXyxQNEZF9fP31NygrK0NISAhUqmD89NM+uUMiIgdlddJ9+fJldOnSxaS8S5cude7cePz4cbz77ruG4y+++AIPPPAAZsyYAeDWlMRJkya5fNKt0URIjq9du4YrV67IFA0RkW0dOHAAPj7NEBoaCrVajVatAuQOiYjI5nbv/hG7d/8odxhE5ASsXtPds2dPLF682KR88eLF6NmzZ61tSktLERQUZDj+8ccfDc/4BoCYmBhcuHDB2pCchkajkRzn5OTIFAkRkX1UVFTg/PnzOHjwIL777nu5wyEiIiKSjdVJ9z//+U+sXLkS3bp1wwsvvIAXX3wR3bp1w+rVq/Gvf/2r1jbh4eHIysoCcGt095dffkG/fv0M71+6dMnwDG9XZjzSzfXcRERERP8za9YsKBQKyUutVtfbJiMjA71794avry/at2+PpUuXNlG0RET1szrpHjhwIE6fPo1HHnkEV69exeXLl/Hoo4/i1KlT6N+/f61tHn/8cUyePBlr167F2LFjoVar0adPH8P7Bw8eRHR0tLUhOQ3jkW4m3URERERSMTEx0Gq1htexY8fqrJudnY1hw4ahf//+yMzMxPTp0zFx4kSkpaU1YcRERLVr1HO6w8PDa90wrS5vvfUWLly4gIkTJ0KtVmPdunXw9PQ0vL9hwwaMGDGiMSE5BdORbm6iRkRERHQ7Ly+vBke3ayxduhQajQYpKSkAgK5du+LgwYMmm/gSEcnBoqT76NGjZtft0aOHSVmzZs2wdu3aOtvs3LnTknCcFqeXExEREdXvzJkzCA8Ph1KpxD333IN58+ahffv2tdbdu3cvBg8eLCkbMmQIVqxYgYqKCnh7e5u00ev10Ov1huOSEtd8dB4Ryc+ipLtXr15QKBQQQtRbT6FQoKqqqlGBmWPWrFmYPXu2pCw0NLTe58FmZGRg6tSpOHHiBMLDw5GYmIhx48bZO1SJyMhIyTFHuonIlTz55J9RXFwMrbYABQUF0Ol0qK6uljssInIi99xzD1JTU9G5c2dcvHgRc+fORd++fXHixAnJprw1CgoKEBoaKikLDQ1FZWUlioqKEBYWZtImOTnZ5HukuXr06IFvv90OnU6HwsIiaLVajBr1rFXnIiLXZ1HSnZ2d3aiL3b5TeX1++OEHs88ZExOD7777znB8+3R1YzXrfcaOHYt169Zhz549GD9+PFQqVZNNPQoICEDLli0lZRzpJiJXoVAosGbNSvj4+BjK4uL64NChQzJGRUTOZujQoYb/vuOOOxAfH48OHTpgzZo1mDp1aq1tFAqF5LhmkMi4vEZSUpLkXCUlJYiIiKi1rrHQ0BCEhNx6AcDFixfNakdE7smipNt4hNZS6enpiIyMxPDhw2ud5mMNZ1vvY/wZVldXIz8/v0muTURkb4GBgZKEG0C9s4+IiMzRvHlz3HHHHThz5kyt76vVapO+RqfTwcvLq9aRcQBQKpVQKpVWxVOTbP/vWoVWnYeI3EOjNlJbu3Ytli5diuzsbOzduxeRkZFISUlBu3bt8PDDD5vUf+edd7B69Wp8/vnnGDVqFJ5//nl07969MSHYfb2PrRmv59ZqtaioqLD7dYmImkJtUzg5AkREjaXX65GVlVXnE3Li4+Px5ZdfSsp27NiBuLg4u3y/U6lUkuPCQibdRFQ3qx8ZtmTJEkydOhXDhg3D1atXDWu4W7VqZRhJNpaYmIiTJ09iy5YtKC0tRb9+/XD33Xdj6dKlVm1eUbPe55tvvsHy5ctRUFCAvn374tKlS7XWb2i9T130ej1KSkokL2vxcWFE5MrUamkfW1hYiMrKSpmiISJnNW3aNGRkZCA7Oxs///wzHn/8cZSUlGD06NEAbk0Nf/bZ/62hHjduHHJycjB16lRkZWVh5cqVWLFiBaZNm2aX+EJCpEm3Tqezy3WIyDVYPdL9wQcfYPny5Rg5ciTeeecdQ3lcXFyDHVx8fDzi4+OxcOFCfP755/jwww8xbdo0XLhwAf7+/mbH0BTrfYDGbbRhbN++nzFjxt8RGRkJjSYCJ06ctMl5yXGU6c/JHQKRbIxHugsKOMptLQ+PZla1q66+buNIyJ7Sr6+QOwSHdP78eTz11FMoKiqCSqVCnz59sG/fPsMyPa1WK9mItl27dti2bRumTJmCDz/8EOHh4Vi0aJHdlg+ajnTXPXhDjsfLs5XFbSqrrto8jrrwu6TrsTrpzs7ORmxsrEm5UqlEWVmZWec4fPgwMjIykJWVhe7duzd6+o891vsAjdtow9jhw4dx+PBhq9oSETk645FurVYrUyRE5Mw2btxY7/urV682KRs4cGCTfcfiSDcRWcLq6eXt2rXDkSNHTMq3b9+Obt261dnuwoULmDdvHjp37ozHH38crVu3xs8//4x9+/bBz8/P2nAA/G+9T21rCoFbI+zffvutpMyc9T5KpRL+/v6SFxERmTLe2JIj3UTkijjSTUSWsHqk+7XXXsOECRNw8+ZNCCGwf/9+bNiwAcnJyfj4449rbTNs2DDs3LkTgwcPxr/+9S8MHz4cXl7W7+U2bdo0jBgxAhqNBjqdDnPnzjVZ75Ofn4/U1FQAt9b7LF68GFOnTsXYsWOxd+9erFixAhs2bLA6BiIi+p+wMOOkmzuXE5Hr4Ug3EVnC6ox3zJgxqKysRGJiIq5fv46nn34abdq0wcKFC/Hkk0/W2ubrr79GWFgYcnNzMXv27DrXSZs7NcjR1/sQEbkbjnQTkTvg7uVEZIlGPTJs7NixGDt2LIqKilBdXW3yzEJjb731VmMuZ8LR1/sQEbkbrukmIldXs+zwdnxONxHVx+qke/bs2fjLX/6CDh06IDg42Kw2tk66iYjIsZjuXs7p5UTkWoxHuQGOdBNR/azeSC0tLQ2dO3dGnz59sHjxYpt0Njdv3sSCBQsafR5H9fTTT6GoqACHDu3H5s1f4I03EuUOiYjIZpRKJQIDAyVlnF5ORK7GeGZnRUUFrl69Kk8wROQUrE66jx49iqNHj+K+++7De++9hzZt2mDYsGFYv349rl+v+xmhRUVF+Oqrr7Bjxw5UVVUBuNVZLVy4EFFRUZJnfrsajSYCQUFBuPPOWIwc+TDuvXeg3CEREdlMaGioSRmnlxORq1GppDM8i4qKIISQKRoicgZWJ90AEBMTg3nz5uHs2bPYuXMn2rVrh8mTJ5tspFPjp59+QqdOnTBixAgMHToUffv2xcmTJxETE4MPPvgAM2fOlGx85mo0Go3kODc3T6ZIiIhsz3hq+c2bN1FcXCxTNERE9sHHhRGRpRq1kdrtmjdvDj8/P/j4+KC0tLTWOn//+98xZMgQzJw5EytXrkRKSgoeeughzJo1C8888wwUCoWtwnFIGk2E5NiV/8BARO4nKKi15JjruYnIFR058gumT58JlUqFkJAQnD9/Xu6QiMjBNSrpzs7Oxvr16/HJJ5/g9OnTGDBgAGbNmoUnnnii1vq//PILMjIyEBMTg7lz52LhwoWYP39+nfVdTWQkR7qJyHVt27Yd3t5+CAkJgVqthp+fn9whERHZ3PHjx3H8+HG5wyAiJ2J10h0fH4/9+/fjjjvuwJgxYwzP6a7P5cuXDVNymjVrhmbNmiE2NtbaEJxOzfPDa+Tk5MgUCRGRfVRWVuLChQu4cOGC3KEQEREROQSrk+5Bgwbh448/RkxMjNltFAoFSktL4evrCyEEFAoFrl+/jpKSEkk942cfuoKAgAC0bNlSUuYqI92eHi2saldVfc3iNt5eQVZdq6LyklXtiIjkUl1d96akZB5/v2ir2pXcOGXjSGzr6cDxVrVbf+UjG0dC5Jwqq67KHYJdWNPnOXp/5yqsTrrnzZtnVj1/f38cOXIE7du3hxACnTt3NrwnhJCMdNck4jW7mrsS403UqqurkZ+fL1M0RERERERE1BRstpFaXW5/hMLOnTvtfTmHZbyJWkFBAcrLy2WKhoiIiIiIiJqC3ZPu2w0c6L7PpebjwoiIiIiIiNxPkyXdZWVlaN68ud3qOzo+LoyIXN0LLzyPgoICaLUF//1frWS2ExGRs/Pz80Nu7lnodDoUFhZBp9Nh/PhXUVTEZ3UTUd2aLOnu2LEjXn31VTz33HMIDw+vtY4QAt999x3ee+89DBgwAElJSU0Vnt2ZJt0c6SYi19G6dWt8/PG/JWUREe34/FoicikqlQrBwcEIDg42lI0dO07GiIjIGdg96VYoFACA9PR0zJw5E7Nnz0avXr0QFxeH8PBw+Pr64sqVKzh58iT27t0Lb29vJCUl4aWXXrJ3aE2K08uJyJWFhYWZlF28eFGGSIiI7Kfm0bc1ysvLUVxcLFM0ROQsmmwjtejoaHz++ec4f/48Pv/8c+zatQs//fQTbty4geDgYMTGxmL58uUYNmwYPDw87B1Wk+P0ciJyZWp1qOS4qKgIFRUVMkVDRGQfISHSpLuwsFCmSIjImdg96d6+fTvatGljOG7bti2mTJmCKVOm2PvSDsPLy0vyGQAc6SYi16JWqyXHWm2BTJEQEdmP8Uh3YSHXchNRw6xOuquqqrB69Wp8//330Ol0qK6ulrz/ww8/AAD+8Ic/NC5CF+Dh4YHnnnsBGk0ENBoNNJoI5OTkyB0WETmx5ORkTJ8+HZMmTUJKSkqtddLT0zFo0CCT8qysLHTp0sWm8YSFSZPuggIm3UTkeoxHunU6nUyREJEzsTrpnjRpElavXo3hw4eje/fuhrXbZKq8vBzr1n0idxhE5CIOHDiAZcuWoUePHmbVP3XqFPz9/Q3HxiM1tmA80l1QwPXcROR6ONJNRNawOuneuHEjPvvsMwwbNsyW8RARUT2uXbuGUaNGYfny5Zg7d65ZbUJCQtCqVSu7xmU6vVxr1+sREckhJCREcsw13URkDqt3LPPx8UHHjh1tGQsRETVgwoQJGD58OO6//36z28TGxiIsLAwJCQnYuXOnXeIy3kiNI91E5IpUqmDJMaeXE5E5rB7p/tvf/oaFCxdi8eLFnFru5qqqrzXZtSoqLzXZtZpSK7+uFre5eiPLDpHYVn+/MRa32X1jlR0icQ0bN27E4cOHceDAAbPqh4WFYdmyZejduzf0ej3Wrl2LhIQEpKenY8CAAbW20ev10Ov1huOSkhIzr8U13eR4Sm6ckjsEu1h/5SOr2k0JG29xm/e11l3LVXF6OTkyR+/zhja37pHQ28uW2TiSpmd10v3jjz9i586d2L59O2JiYuDt7S15f9OmTZLjo0ePmn1uc9cpEhG5i7y8PEyaNAk7duyAr6+vWW2io6MRHR1tOI6Pj0deXh4WLFhQZ9KdnJyM2bNnWxwfp5cTkTvgRmpEZA2rk+5WrVrhkUceMbt+r169oFAoDM/tNlbznkKhQFVVlbVhOSSlUikZOSIistShQ4eg0+nQu3dvQ1lVVRV27dqFxYsXQ6/Xw9PTs8Hz9OnTB+vWravz/aSkJEydOtVwXFJSgoiIiHrP6ePjg9atW0vKOL2ciFwRR7qJyBpWJ92rVlk2BTQ7O9vaSzm9ixfzUVFRgdzcPOTm5uK1197Ab7/9JndYROREEhIScOzYMUnZmDFj0KVLF7z++utmJdwAkJmZibCwsDrfVyqVUCqVFsVmPMoNcKSbiFxPs2bN0Lx5c0kZR7qJyBxWJ901CgsLcerUKSgUCnTu3LnOR9FERkY29lJOyd/fHwEBAQCA4OBg3HlnLP72t0SZoyIiZ9OyZUt0795dUta8eXMEBQUZypOSkpCfn4/U1FQAQEpKCqKiohATE/PfRxeuQ1paGtLS0mwam3HSffPmTRQXF9v0GkREcqvtOy53Lycic1iddJeVleHVV19FamoqqqurAQCenp549tln8cEHH6BZs2aS+lu3bjX73H/84x+tDcvhaDQak7Lz58/LEAkRuTqtVovc3FzDcXl5OaZNm4b8/Hz4+fkhJiYGX331lc0f9Wi6czk3USMi12OcdJeXl5u92SQRuTerk+6pU6ciIyMDX375Jfr16wfg1uZqEydOxN/+9jcsWbJEUn/kyJFmndfV1nRrNNK1kBcuXEB5eblM0RCRK0lPT5ccr169WnKcmJiIxET7z6wJDAxEdXU1PDxuPYVSq2XSTUSup6CgAG+8MR0qlQoqlcrsZT1ERFYn3Wlpafjiiy9w7733GsqGDRsGPz8//OlPfzJJumtGw92N8Uh3bm6eTJEQEdnHmjWpWLfuE6hUKqjVakPyTURkC8nJyZg+fTomTZqElJSUWuukp6dj0KBBJuVZWVno0qWLTeI4f/485s//l03ORUTuxeqk+/r16wgNDTUpDwkJwfXr1xsVlCsxHum+feonEZGrqKqqQkFBAaeWE5FNHThwAMuWLTP7cbKnTp2Cv7+/4biuvYaIiJqS1Ul3fHw83nrrLaSmphqeGXvjxg3Mnj0b8fHxJvUXLVqEl156Cb6+vli0aFG95544caK1YTkcjnQTERERWe7atWsYNWoUli9fjrlz55rVJiQkBK1atbJvYEREFrI66V64cCEefPBBtG3bFj179oRCocCRI0fg6+uLb775xqT++++/j1GjRsHX1xfvv/9+nedVKBQulnQbj3Qz6SYiIiJqyIQJEzB8+HDcf//9ZifdsbGxuHnzJrp164aZM2fWOuW8hl6vh16vNxxzUzQisherk+7u3bvjzJkzWLduHX799VcIIfDkk09i1KhR8PPzM6l/+3O63emZ3ZxeTkRERGSZjRs34vDhwzhw4IBZ9cPCwrBs2TL07t0ber0ea9euRUJCAtLT0zFgwIBa2yQnJ2P27Nm2DJuIqFaNek63n58fxo4da3G7o0eP1rk2Z8uWLWbvdO7oPD090aZNG0kZR7qJiIiI6paXl4dJkyZhx44dhiWMDYmOjkZ0dLThOD4+Hnl5eViwYEGdSXdSUhKmTp1qOC4pKUFEREStdYmIGkMhhBDmVt66dSuGDh0Kb2/vBp+7Xd+ztsPCwrBnzx60b99eUp6WloZnn30WZWVl5oYki5KSEgQEBADwBKCos17btm2Rlycd1Q8OVuPSpUv2DZDIDY0JGm9xm1WXPrJDJLURAKpQXFws2eDHGTTU3zVr1gyjRj0NrVaLgoKLKCgoQH5+Piz4vxYicjmN6/O2bNmCRx55RPJIrqqqKigUCnh4eECv15v1uK63334b69atQ1ZWllnXbai/y8w8CF9fJQoLi6DT6TB79lwcO3bM3NuiBnh4NLO4TXU1N292B9Z8x/P3se5aC7WWfjc0r7+zaKR75MiRKCgoQEhISL2j0Q09a/vll19GQkICfvrpJ4SFhQEAPv30Uzz//PMmz5l1ZsabqF2/fp0JNxG5lKioKCxbJn1EpFLZHOXl5TJFRETOLiEhwSSZHTNmDLp06YLXX3/d7OdjZ2ZmGr5n2kJ0dGf4+fmh5glk//rXezY7NxG5NouS7tuftd2Y526/+eabuHTpEu6//37s3r0bX3/9NV588UWsXbsWjz32mNXndTRcz01Erk6tlj468tKlS0y4iahRWrZsie7du0vKmjdvjqCgIEN5UlIS8vPzkZqaCgBISUlBVFQUYmJiUF5ejnXr1iEtLQ1paWk2ial58+YmexYVFhba5NxE5Po8rG2Ympoq2fGxRnl5uaEDrM/ChQtx5513ok+fPhg7diw2bNjgUgk3AERG8nFhROTajEeRtFqtTJEQkTvRarWSwYzy8nJMmzYNPXr0QP/+/fHjjz/iq6++wqOPPmqT64WEhJiU6XQ6m5ybiFyf1RupjRkzBg8++KBJJ1RaWooxY8bg2WeflZTXtgZ85MiRyMjIwFNPPQWFQmGoU996cGfCZ3QTkaszHukuKLgoUyRE5MrS09Mlx8bLERMTE5GYmGi366tUKsnxzZs3ce3aNbtdj4hci9VJtxACCoXpJhPnz5//7yYUUvWtAV+5ciVWrlwJoOH14PVJTk7G9OnTMWnSJKSkpNRaJz09vdZnNmZlZaFLzSIdG1m6dBn27fsZERFtodFokJGxy6bnJyKSm1qtlhwz6SYiVxQSIk26OcpNRJawOOmOjY2FQqGAQqFAQkICvLz+d4qqqipkZ2fjwQcfNGnXmDXg5jhw4ACWLVtW56PIjJ06dUqyw5zxXzBt4dixY9zVkohcGqeXE5E7MP6eWFhYJFMkROSMLE66a0asjxw5giFDhqBFixaG93x8fBAVFdXka7OvXbuGUaNGYfny5Zg7d65ZbUJCQtCqVSv7BkZE5OJMp5cXyBQJEZH9qFTBkmNuokZElrA46X7rrbcA3HpMzJNPPgmlUml2259//hmXL1/G0KFDDWWpqal46623UFZWhpEjR+KDDz6w6JwAMGHCBAwfPhz333+/2Ul3bGwsbt68iW7dumHmzJm1TjmvodfrJZvGlZSUWBQfEZGr4ppuInIHxnsY6XRMuonIfFbvXt6tWzccOXLEpPznn3/GwYMHa20za9YsHD161HB87NgxvPDCC7j//vvxxhtv4Msvv0RycrJFcWzcuBGHDx82u11YWBiWLVuGtLQ0bNq0CdHR0UhISMCuXXWvt05OTkZAQIDhFRERUWddIiJ3wunlROQOTKeXM+kmIvNZnXRPmDABeXmmu3Hn5+djwoQJtbY5cuQIEhISDMcbN27EPffcg+XLl2Pq1KlYtGgRPvvsM7NjyMvLw6RJk7Bu3Tr4+vqa1SY6Ohpjx47FnXfeifj4eHz00UcYPnw4FixYUGebpKQkFBcXG1613TcRkbvx8fFB69atJWUc6SYiV8SN1IioMaxOuk+ePIk777zTpDw2NhYnT56stc2VK1cQGvq/qYgZGRmSTdfuuusuixLaQ4cOQafToXfv3vDy8oKXlxcyMjKwaNEieHl5mb0Lep8+fXDmzJk631cqlfD395e8GuLv749mzZqZfS9ERM7GeOdygCPdROSauJEaETWG1Um3UqnExYumIxparVayo/ntQkNDkZ2dDQAoLy/H4cOHER8fb3i/tLQU3t7eZseQkJCAY8eO4ciRI4ZXXFwcRo0ahSNHjsDT09Os82RmZppMkWys119/DWVlxSgs1OLQof1ITJxm0/MTEcnNOOnW6/W4evWqPMEQEdkRN1Ijosaw+jndDzzwAJKSkvCf//zH8Fzuq1evYvr06XjggQdqbfPggw/ijTfewPz587FlyxY0a9YM/fv3N7x/9OhRdOjQwewYWrZsie7du0vKmjdvjqCgIEN5UlIS8vPzkZqaCgBISUlBVFQUYmJiUF5ejnXr1iEtLQ1paWkW3X9DNBoNACA4OBjBwcFIT8+w6fmJXNUj/uOsarfq0kc2joQawp3LichdcCM1+6uuvi53COSgXOE7ntVJ97vvvosBAwYgMjISsbGxAG6t2Q4NDcXatWtrbTN37lw8+uijGDhwIFq0aIE1a9bAx8fH8P7KlSsxePBga0OqlVarRW5uruG4vLwc06ZNQ35+Pvz8/BATE4OvvvoKw4YNs+l1NRrpZmu5uVwHTkSuxXQTNSbdROR6WrRoYbJ3EEe6icgSVifdbdq0wdGjR/HJJ5/gl19+gZ+fH8aMGYOnnnqqziniKpUKu3fvRnFxMVq0aGEy/fvzzz+XPPfbGunp6ZLj1atXS44TExORmJjYqGuYwzjpzsnJsfs1iYiakr9/S1RVVRn6co50E5ErEkIgMfENhISEQKVSQaUK5kZqRGQRhRBCyB2EsykpKfnvlHpPAAqT9z09PXHz5jXJ2vbeve/B4cOHmy5IIidl7fTyzSVLbRyJLQkAVSguLjZrI0ZH0lB/5+HhgeDgYISFhaGioqLOjTSJyJ04Z5/XUH9HRGTKvP7OopHurVu3YujQofD29sbWrVvrrfvHP/7RklO7lLCwMJPN5G6f4k5E5Cqqq6uh0+k46kNERERUB4uS7pEjR6KgoAAhISEYOXJknfUUCoXZj+tyRTWbqNW4ceMGior4aAkiIiIiIiJ3Y1HSXV1dXet/k5TpJmoc5SYiIiIiInJHVj2nu6KiAoMGDcLp06dtHY9L4M7lREREREREBFiZdHt7e+P48eNQKLjJRG2Mp5cz6SYiIiIiInJPViXdAPDss89ixYoVtozFZXB6ORG5upCQEPz1ry/hj38cgbvvvhsRERENNyIickKffbYBv/56HLt3p2PTps8xePADcodERE7G6ud0l5eX4+OPP8a3336LuLg4NG/eXPL+e++91+jgnBVHuonI1cXEdMPSpR8aji9fvoygoFAZIyIiso+OHTsiOjoa0dHRAID//OdLmSMiImdjcdJ99uxZREVF4fjx47jzzjsBwGRtt7tPO+dINxG5urCwMMmxVquVKRIiIvtSqYIlx4WFhTJFQkTOyuKku1OnTtBqtdi5cycA4M9//jMWLVqE0FCOcABAy5YtERgYKCnjSDcRuRq1WtrnFxRclCkSIiL7CgkJkRzrdEy6icgyFifdQgjJ8fbt21FWVmazgJyd8dRyADh//rwMkRA5p80lS5vsWrMix1nXLqfpYnRUarVacsykm8g1VYrVFrcpKbmO1gEv2T4YGfj7+8PHx0dSxpFuIrKU1Wu6axgn4e4uOzsbAwfeB41GA40mAsHBwbh586bcYRER2RSnlxORO1CpVCZlTLqJyFIWJ90KhcJkzba7r+G+3fXr17Fr1265wyAisivT6eUFMkVCRGQ/xlPLy8rKcP36dZmiISJnZdX08ueeew5KpRIAcPPmTYwbN85k9/JNmzbZJkIiInI4XNNNRO6Am6gRkS1YnHSPHj1acvyXv/zFZsEQEZFz4PRyInIH3ESNiGzB4qR71apV9oiDiIichI+PD4KCgiRlHOkmIlfEkW4isgUPuQMgIiLnUtsjIjnSTUSuyHgjtcLCIpkiISJnxqTbhjw8PNClSxc0a9ZM7lCIiOzG+HFh5eXluHLlikzREBHZj+n0cp1MkRCRM2PSbUNhYWHIyjqGsrJiFBZqcejQfvj7+8sdFhG5oOTkZCgUCkyePLneehkZGejduzd8fX3Rvn17LF3a+GeMc+dyInIXnF5ORLbApNuGNBqN4b+Dg4PRrVtXlJaWyhgREbmiAwcOYNmyZejRo0e99bKzszFs2DD0798fmZmZmD59OiZOnIi0tLRGXd90EzUm3UTkmriRGhHZApNuG9JoIiTHubm5EELIFA0RuaJr165h1KhRWL58OQIDA+utu3TpUmg0GqSkpKBr16548cUX8fzzz2PBggWNioEj3UTUlOSc2cORbiKyBYt3L6e6mSbdeTJFQkSuasKECRg+fDjuv/9+zJ07t966e/fuxeDBgyVlQ4YMwYoVK1BRUQFvb2+TNnq9Hnq93nBcUlJiUqdZs2aorKyEl9et/wvhzuVEZC+WzuwZO3Ys1q1bhz179mD8+PFQqVR47LHHrL7+v/71HsLDwxASEgKVKhjnzuVYfS4icl9Mum3o9unlAJNuIrKtjRs34vDhwzhw4IBZ9QsKCkx2Gg8NDUVlZSWKiopMpokDt0aUZs+eXe9533hjOpKSZiAoKAhhYWEoKysz/yaIiMx0+8yehv7IePvMHgDo2rUrDh48iAULFjQq6V64cJHVbYmIajDptqHappcTkeOaldP4qYdNJS8vD5MmTcKOHTvg6+trdjuFQiE5rlnyYlxeIykpCVOnTjUcl5SUICIiwqSeEAJFRUUoKuLjc4hcmZfiOSta2WZpnSPM7CFqrGZKTcOVjFzXM4eQS6VYbVH9kpLraB3wUoP1mHTbEEe6icheDh06BJ1Oh969exvKqqqqsGvXLixevBh6vR6enp6SNmq12mS9tU6ng5eXF4KCgmq9jlKphFKptP0NEBFZwFFm9hAR2QKTbhviSDcR2UtCQgKOHTsmKRszZgy6dOmC119/3SThBoD4+Hh8+eWXkrIdO3YgLi6u1lEfIiJH4Ggze4iIGotJt420aNECrVu3lpRxpJuIbKVly5bo3r27pKx58+YICgoylCclJSE/Px+pqakAgHHjxmHx4sWYOnUqxo4di71792LFihXYsGFDk8dPRGQuzuwhIlfDpNtGavvLaF4ek24iajparVYyw6Zdu3bYtm0bpkyZgg8//BDh4eFYtGhRozYVIiKyN87sISJXw6TbRiIjpeu5dTodbt68KVM0ROQO0tPTJcerV682qTNw4EAcPnzYZtds164dhgwZjIKCAhQUXER+fj7/wEhENuUoM3vmzZuLJ554DDpdIQoLC7F583+wZk2q9TdGRG6LSbeNGG+ilpPD9dxE5Hr69LkHS5YsNhyfOHEC3bv3ki8gInJLTTGzJyoqEh07dkTHjh0BAFlZvzY6biJyT0y6bYSbqBGRO1Cr1ZLjgoKLMkVCRO5Ejpk9KpVKclxYWGizcxORe/GQOwBXwceFEZE7UKulj+Rh0k1EriokJERyrNMx6SYi6zDpthHTkW4m3UTkeoyfdWu8WzARkatQqYIlxxzpJiJrcXq5jTzzzHNo374dNBoNNJoI7Nq1W+6QiIhsznikW6vVyhQJEZH9KBQKk+nlHOkmImsx6baRvLw87uBLRC6Pa7qJyB20atUKXl7Sr8kc6SYia3F6ORERmS0szDjp5vRyInI9xuu5ASbdRGQ9jnQT1UHpHdpwpVroKzjyR67J29sbwcHSNY5aLZNuInI9xuu5S0pKoNfrZYqGnNl1PZ9o5Ey8FM9Z2EKYVculRrqTk5OhUCgwefLkeutlZGSgd+/e8PX1Rfv27bF06dKmCZCIyImFhpr+IYoj3UTkikx3LtfJFAkRuQKXSboPHDiAZcuWoUePHvXWy87OxrBhw9C/f39kZmZi+vTpmDhxItLS0pooUiIi52S8nru8vByXL1+WKRoiIvsxfUZ3kUyREJErcImk+9q1axg1ahSWL1+OwMDAeusuXboUGo0GKSkp6Nq1K1588UU8//zzWLBggdXXj46ORnR0NJo1a2b1OYiIHJ3pM7o5yk1ErikkxHjnco50E5H1XCLpnjBhAoYPH47777+/wbp79+7F4MGDJWVDhgzBwYMHUVFRYdX158+fh19/PY6ysmIUFmoxbtxfrToPEZEjM31GN/cvICLXxJFuIrIlp99IbePGjTh8+DAOHDhgVv2CggKTdYmhoaGorKxEUVGRyZdKANDr9ZLNM0pKSiTvazQaw38HBwejvLzcklsgInIKHOkmIndhvJEady4nosZw6pHuvLw8TJo0CevWrYOvr6/Z7RQKheRYCFFreY3k5GQEBAQYXhEREZL3NRrpcW4udykkItdjvKabO5cTkasy3UiNSTcRWc+pR7oPHToEnU6H3r17G8qqqqqwa9cuLF68GHq9Hp6enpI2arXaZHRGp9PBy8sLQUFBtV4nKSkJU6dONRyXlJQYEu/mzZubtMvJYdJNRK7Hx8cHFRUV8Pb2BsCRbiJyXatXp2L//gNQqVQICVHh5MmTcodERE7MqZPuhIQEHDt2TFI2ZswYdOnSBa+//rpJwg0A8fHx+PLLLyVlO3bsQFxcnOGLpDGlUgmlUlnre7dPLa+Rl5dn7i0QETmNsWP/ipdeGofWrVtDrVbj6tWrcodERGQXa9eukzsEInIhTp10t2zZEt27d5eU1Yw815QnJSUhPz8fqampAIBx48Zh8eLFmDp1KsaOHYu9e/dixYoV2LBhg1UxGE8t1+l0uHnzplXnIiJydEIIXLp0CZcuXZI7FCIiIiKn4NRrus2h1Wola6zbtWuHbdu2IT09Hb169cKcOXOwaNEiPPbYY1ad33ikOzeXo9xERERERER0i1OPdNcmPT1dcrx69WqTOgMHDsThw4dtcj1uokZERERERER1cfmRbnvjSDcRERERERHVxeVGupua6Ug3k25Xoa+4KHcI5KAqxWqL6peUXEfrgJfsEwyRDXh5trKqXWXVVZvGUZ/myiiL25Tpz9k8DiIiIksx6W4kTi8nIndwxx13oH///igoKIBWW4C8vDycP39e7rCIiGxuzJjnMGNGEgoLi6DT6bB37z68884/5Q6LiJwYk+5G8PDwQNu2bSVlHOkmIld0//0JeO+9BYbjH37YiYSEwTJGRERkHxEREejQoQM6dOgAAKiurpY5IiJydlzT3QihoaHw8fGRlHGkm4hckVqtlhwXFBTIFAkRkX2pVMGS48LCIpkiISJXwaS7ESIjIyXHer0eOp1OpmiIiOxHrQ6VHGu1TLqJyDWFhIRIjvndjogai0l3Ixiv587Ly4MQQqZoiIjsJywsTHLMkW4iclUqlUpyzJFuImosruluhE2bNqNdu07QaCJMHh1GRORKjEe6Cwq4uz8RuSbT6eWFMkVCRK6CSXcjVFZW4ty5czh37pzcoRAR2RXXdBORu+D0ciKyNU4vJyKienl7e5tMt+SabiJyRR4eHggKCpKUcXo5ETUWk24iIqqX8agPwJFuInJNrVu3hqenp6SMI91E1FhMuomIqF7GU8srKipw+fJlmaIhIrIf41k9AFBUxJFuImocJt1ERFSv2nYu55MaiMgVGc/suXLlCioqKmSKhohcBZNuKwUGBuKBBx5AdHQ0mjVrJnc4RER2Y7qJGncuJyLXZPq4MO5cTkSNx6TbSnfddRd27NiOX389jrKyYvz663G5QyIisgvuXE5ETW3JkiXo0aMH/P394e/vj/j4eGzfvr3O+unp6VAoFCavX3/91aLrmu5czqSbiBqPjwyzkvFzua9dK5MpEiJqal6K5yxs4dxTsY2nl3Pncsfm5dnK4jaVVVdtHkddlN6hDVeqRZn+nG0DIYfWtm1bvPPOO+jYsSMAYM2aNXj44YeRmZmJmJiYOtudOnUK/v7+huPa1mjXhyPdzsXbK6jhSrWoqLxk40iI6sek20rGSXdubq5MkRAR2RdHuomoqY0YMUJy/Pbbb2PJkiXYt29fvUl3SEgIWrVqZfV1OdJNRPbApNtKpkl3nkyREBHZl0KhgF6vh1KpBMA13UTUtKqqqvD555+jrKwM8fHx9daNjY3FzZs30a1bN8ycORODBg2qs65er4derzccl5SUYNu2bSguLoVKpUJIiAqHDh222X0Qkfti0m0ljnQTkbt49NFHAXgiMLA11Go1p1sSUZM4duwY4uPjcfPmTbRo0QKbN29Gt27daq0bFhaGZcuWoXfv3tDr9Vi7di0SEhKQnp6OAQMG1NomOTkZs2fPNin/6quvAShseStE5OYUgs99sVhJSQkKCwvRoUMHQ9kTTzyJL75IkzEqInJcAkAViouLJWsNnUFJSQkCAgIAeIJfQp2Dq67p1ldwhoXzsE2fV15ejtzcXFy9ehVpaWn4+OOPkZGRUWfibWzEiBFQKBTYunVrre/XNtIdEREB9nfOg2u6SX7m9XfcvdxKtzrl/+H0ciKyJ7l28iUikouPjw86duyIuLg4JCcno2fPnli4cKHZ7fv06YMzZ87U+b5SqTT0qTUvIiJ74PRyK/n4+EiOOb2ciOxJrp18iYgchRBCMjLdkMzMTJOnLxARyYFJtw2Ul5fj4kVOeyMi+5FrJ18iIjlMnz4dQ4cORUREBEpLS7Fx40akp6fj66+/BgAkJSUhPz8fqampAICUlBRERUUhJiYG5eXlWLduHdLS0pCWxqV/RCQ/Jt02kJeXBy6NJ6KmYq+dfImIHMXFixfxzDPPQKvVIiAgAD169MDXX3+NBx54AACg1WolswzLy8sxbdo05Ofnw8/PDzExMfjqq68wbNgwuW6BiMiAG6lZoaSkRDJd84cfdiIhYbCMERGRY7PNpkLGO/muX7++zi+Up06dwq5duyQ7+S5durTenXyB2jcWmj9/PgoKdNBqL+LcuXPIz8+3+h7I/riRGsnPOTePLCkpwaVLl1BYWASdToezZ7MxadIUucOienAjNZKfef0dR7ptgJuoEVFTiI6OxpEjRww7+Y4ePbrOnXyjo6MRHR1tOI6Pj0deXh4WLFhQb9Jd2yN0bv/b7IYNG/H008/Y4G6IiBxPu3bt0K5dOwC3/nhJRGQL3L3cBriJGhE1BXvv5AvcWidZXFxseOXlSf+oqNUWWBU7EZGz0ekK5Q6BiFwER7ptgCPdRCQHe+zkq1QqoVQq63y/oIBJNxG5h8JCJt1EZBtMum2AI93W8fK0fJ1XZVWJVdfy8bL8MUnllfw/W3IcjrKTb0EB19Vaw8PD1+I21dU3rbpWU67PtgbXZpOz4Ei3dTw8mlnVrrr6usVtmnJtNtePU2Mw6bZS+/btodG0g0ajwZEjv8gdDhG5OEfZyVer1TaqPRGRs+BINxHZCpNuK2VnZyM7OxeAQu5QiMgNrFixot73V69eLTlOTExEYmKizePgSDcRuQuOdBORrXAjNSIiMhtHuonIXXCkm4hshUk3ERGZpaKiApcvX5Y7DCKiJqHT6eQOgYhcBJNuIiIyy8WLFyXP7CYicmWFhUVyh0BELoJJNxERmYXP6CYid8KRbiKyFSbdVoqOjkazZtY9EoGIyBnxGd1E5E4uXeKjnojINph0W+nXX39FWVkJHnlkpNyhEBE1Ce5cTkTuoqioCFVVVXKHQUQugkl3I+XnX5A7BCKiJsGdy4nIXXDnciKyJSbdjZSbmyt3CERETYIj3UTkLviMbiKyJS+5A3Bm5eXluHiRX0KJyD1wpJuIXN3y5cuhUoXg+PETcodCRC6ESbcVah6Zc/78eQhRLXM0zsu6Rw9Z97gi635OfDQS2cqtf0vO+LgtIQRatWoFtTr8v7uXO989OIKm7O+I5OecfZ4QAi+99BJuTQRVyB2O07L+5+7Y/16s/87v2PdFjWVef8ek2wqlpaVo1aqV3GE4varqK012rYoqzkgg+ZWWliIgIEDuMCxSWlqK4uJiFBcXyx2KUxOiTO4QiJqcs/V5paWl//0vDqg0hhClDVdyQpVVXHJAdWuov1MIZ/szpAOorq7GhQsX0LJlSygU1v0ltKSkBBEREcjLy4O/v7+NI3QMrn6Prn5/AO/RVoQQKC0tRXh4ODw8nGsrjcb2d87+b4jxy4vxy8va+J21z7PF9zs5Ofu/N3vh51I3fja1s+RzMbe/40i3FTw8PNC2bVubnMvf39/l/5G7+j26+v0BvEdbcKbRntvZqr9z9n9DjF9ejF9e1sTvjH2eLb/fycnZ/73ZCz+XuvGzqZ25n4s5/Z3z/PmRiIiIiIiIyMkw6SYiIiIiIiKyEybdMlEqlXjrrbegVCrlDsVuXP0eXf3+AN4jNZ6zf76MX16MX17OHr+74c+rdvxc6sbPpnb2+Fy4kRoRERERERGRnXCkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJtJx999BHatWsHX19f9O7dG7t3766zbnp6OhQKhcnr119/bcKILbNr1y6MGDEC4eHhUCgU2LJlS4NtMjIy0Lt3b/j6+qJ9+/ZYunSp/QNtBEvv0dl+jsnJybjrrrvQsmVLhISEYOTIkTh16lSD7Zzp52jNPTrbz9EROGt/5+z9mLP3Uc7eBzl7/7JkyRL06NHD8Bza+Ph4bN++vd42jvLZk5Q1fZk7sLaPcXXW/O67o+TkZCgUCkyePNkm52PSbQeffvopJk+ejBkzZiAzMxP9+/fH0KFDkZubW2+7U6dOQavVGl6dOnVqoogtV1ZWhp49e2Lx4sVm1c/OzsawYcPQv39/ZGZmYvr06Zg4cSLS0tLsHKn1LL3HGs7yc8zIyMCECROwb98+fPvtt6isrMTgwYNRVlZWZxtn+zlac481nOXnKDdn7u+cvR9z9j7K2fsgZ+9f2rZti3feeQcHDx7EwYMHcd999+Hhhx/GiRMnaq3vSJ89SVnbF7i6xvyOujJLf/fd0YEDB7Bs2TL06NHDdicVZHN33323GDdunKSsS5cu4o033qi1/s6dOwUAceXKlSaIzvYAiM2bN9dbJzExUXTp0kVS9te//lX06dPHjpHZjjn36Ow/R51OJwCIjIyMOus4+8/RnHt09p9jU3OV/s7Z+zFX6KOcvQ9yhf4lMDBQfPzxx7W+58ifPf2POX2BuzLnd9Rd1fe7725KS0tFp06dxLfffisGDhwoJk2aZJPzcqTbxsrLy3Ho0CEMHjxYUj548GD89NNP9baNjY1FWFgYEhISsHPnTnuG2eT27t1r8pkMGTIEBw8eREVFhUxR2Yez/hyLi4sBAK1bt66zjrP/HM25xxrO+nNsSu7W3zn7v/8ajvrZO3sf5Mz9S1VVFTZu3IiysjLEx8fXWseRP3sic1jyO+ouzPnddzcTJkzA8OHDcf/999v0vEy6bayoqAhVVVUIDQ2VlIeGhqKgoKDWNmFhYVi2bBnS0tKwadMmREdHIyEhAbt27WqKkJtEQUFBrZ9JZWUlioqKZIrKtpz55yiEwNSpU/GHP/wB3bt3r7OeM/8czb1HZ/45NjV36++c+d8/4NifvbP3Qc7avxw7dgwtWrSAUqnEuHHjsHnzZnTr1q3Wuo762ROZw9zfUXdhye++O9m4cSMOHz6M5ORkm5/by+ZnJACAQqGQHAshTMpqREdHIzo62nAcHx+PvLw8LFiwAAMGDLBrnE2pts+ktnJn5cw/x1deeQVHjx7Fjz/+2GBdZ/05mnuPzvxzlIs79XfO+u8fcOzP3tn7IGftX6Kjo3HkyBFcvXoVaWlpGD16NDIyMur88u2Inz2ROSzpY9yBpb/77iAvLw+TJk3Cjh074Ovra/Pzc6TbxoKDg+Hp6WkyyqPT6Uz+QlyfPn364MyZM7YOTzZqtbrWz8TLywtBQUEyRWV/zvBzfPXVV7F161bs3LkTbdu2rbeus/4cLbnH2jjDz1EO7tbfOeu///o4wmfv7H2QM/cvPj4+6NixI+Li4pCcnIyePXti4cKFtdZ1xM+eyByN/R11RZb87ruLQ4cOQafToXfv3vDy8oKXlxcyMjKwaNEieHl5oaqqqlHnZ9JtYz4+Pujduze+/fZbSfm3336Lvn37mn2ezMxMhIWF2To82cTHx5t8Jjt27EBcXBy8vb1lisr+HPnnKITAK6+8gk2bNuGHH35Au3btGmzjbD9Ha+6xNo78c5STu/V3zvbv3xxyfvbO3ge5Yv8ihIBer6/1PUf67InMYavfUXdQ3+++u0hISMCxY8dw5MgRwysuLg6jRo3CkSNH4Onp2bgL2GQ7NpLYuHGj8Pb2FitWrBAnT54UkydPFs2bNxfnzp0TQgjxxhtviGeeecZQ//333xebN28Wp0+fFsePHxdvvPGGACDS0tLkuoUGlZaWiszMTJGZmSkAiPfee09kZmaKnJwcIYTpPZ49e1Y0a9ZMTJkyRZw8eVKsWLFCeHt7iy+++EKuW2iQpffobD/Hl19+WQQEBIj09HSh1WoNr+vXrxvqOPvP0Zp7dLafo9ycub9z9n7M2fsoZ++DnL1/SUpKErt27RLZ2dni6NGjYvr06cLDw0Ps2LGj1tgd6bMnqYb6Andlzu+oO2rod5/+x5a7lzPptpMPP/xQREZGCh8fH3HnnXdKHk8wevRoMXDgQMPx/PnzRYcOHYSvr68IDAwUf/jDH8RXX30lQ9Tmq3nsifFr9OjRQgjTexRCiPT0dBEbGyt8fHxEVFSUWLJkSdMHbgFL79HZfo613RsAsWrVKkMdZ/85WnOPzvZzdATO2t85ez/m7H2Us/dBzt6/PP/884bfW5VKJRISEiRfuh35syephvoCd2XO76g7auh3n/7Hlkm3Qoj/7oJBRERERERERDbFNd1EREREREREdsKkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJNREREREREZCdMuomIiIiIiIjshEk3ERERERERkZ0w6SYiIiIiIiKyEybdRP81a9Ys9OrVq8F6f//73/HSSy9ZdO709HQoFApcvXrVuuCagLn3DwB6vR4ajQaHDh2yb1CNsGvXLowYMQLh4eFQKBTYsmWLS12PyBr27Ocacu7cOSgUChw5csSm57WF5557DiNHjjSrrk6ng0qlQn5+vn2DsgD7OyL7kbPftFRUVBRSUlIAOMd3NWs5Y5/HpJvsQqfT4a9//Ss0Gg2USiXUajWGDBmCvXv3yh1ao1y8eBELFy7E9OnTTd776aef4OnpiQcffLBJYrF1Ij9t2jR8//33ZtVVKpWYNm0aXn/9dZtc2x7KysrQs2dPLF682CWvR/Jzp37uueeeg0KhMHlZ0t9FRERAq9Wie/fuDdZt6gR94cKFWL16tVl1Q0JC8Mwzz+Ctt96yb1AWYH9HzsJd+s3a+svbX88991y957NFIukM39Ws5Yx9npcN4yEyeOyxx1BRUYE1a9agffv2uHjxIr7//ntcvny5UeetqKiAt7e3jaK03IoVKxAfH4+oqCiT91auXIlXX30VH3/8MXJzc6HRaJo+QCsIIVBVVYUWLVqgRYsWZrcbNWoUXnvtNWRlZaFr1652jNA6Q4cOxdChQ+t8v7y8HDNnzsQnn3yCq1evonv37pg/fz7uvfdeu1yPXI+79XMPPvggVq1aJSlTKpVmn9fT0xNqtdoWIdpcQECARfXHjBmDu+++G//6178QGBhop6jMx/6OnIW79Jtardbw3qeffoo333wTp06dMpT5+fk1SVyO/l3NWs7Y53Gkm2zu6tWr+PHHHzF//nwMGjQIkZGRuPvuu5GUlIThw4cb6ikUCixZsgRDhw6Fn58f2rVrh88//9zwfs1Ix2effYZ7770Xvr6+WLduHQBg1apV6Nq1K3x9fdGlSxd89NFHkhhef/11dO7cGc2aNUP79u3x97//HRUVFZI677zzDkJDQ9GyZUu88MILuHnzZoP3tnHjRvzxj380KS8rK8Nnn32Gl19+GQ899JBZIyY//fQTBgwYAD8/P0RERGDixIkoKyszvL9u3TrExcWhZcuWUKvVePrpp6HT6QyfzaBBgwAAgYGBkr+a6vV6TJw4ESEhIfD19cUf/vAHHDhwwHDemhHyb775BnFxcVAqldi9e3et06dWrlyJmJgYKJVKhIWF4ZVXXjG8FxQUhL59+2LDhg0N3qsjGjNmDPbs2YONGzfi6NGjeOKJJ/Dggw/izJkzcodGTsAd+7maUanbX7cnnObea83o9ZUrVzBq1CioVCr4+fmhU6dOhqS+Xbt2AIDY2FgoFArJF6X6PpfbP8/+/fvDz88Pd911F06fPo0DBw4gLi4OLVq0wIMPPojCwkJDO+Pp5dXV1Zg/fz46duwIpVIJjUaDt99+2/D+HXfcAbVajc2bNzf4eToC9nfkCNyp37y9nwwICIBCoZCUrV+/Hh06dICPjw+io6Oxdu1aQ9uaxP2RRx6BQqEwHP/+++94+OGHERoaihYtWuCuu+7Cd999V29czv5dzVoO2ecJIhurqKgQLVq0EJMnTxY3b96ssx4AERQUJJYvXy5OnTolZs6cKTw9PcXJkyeFEEJkZ2cLACIqKkqkpaWJs2fPivz8fLFs2TIRFhZmKEtLSxOtW7cWq1evNpx7zpw5Ys+ePSI7O1ts3bpVhIaGivnz5xve//TTT4WPj49Yvny5+PXXX8WMGTNEy5YtRc+ePeuM9/Lly0KhUIh9+/aZvLdixQoRFxcnhBDiyy+/FFFRUaK6utrw/s6dOwUAceXKFSGEEEePHhUtWrQQ77//vjh9+rTYs2ePiI2NFc8995zknNu2bRO///672Lt3r+jTp48YOnSoEEKIyspKkZaWJgCIU6dOCa1WK65evSqEEGLixIkiPDxcbNu2TZw4cUKMHj1aBAYGikuXLkli6dGjh9ixY4f47bffRFFRkXjrrbck9//RRx8JX19fkZKSIk6dOiX2798v3n//fcl9JyYminvvvbfOz8xRABCbN282HP/2229CoVCI/Px8Sb2EhASRlJRk8+uR63G3fm706NHi4YcfrvczMfdeMzMzhRBCTJgwQfTq1UscOHBAZGdni2+//VZs3bpVCCHE/v37BQDx3XffCa1Wa+i/Gvpcaq7RpUsX8fXXX4uTJ0+KPn36iDvvvFPce++94scffxSHDx8WHTt2FOPGjavz/hITE0VgYKBYvXq1+O2338Tu3bvF8uXLJff7pz/9SdJnOwr2d+So3K3frLFq1SoREBBgON60aZPw9vYWH374oTh16pR49913haenp/jhhx+EEELodDoBQKxatUpotVqh0+mEEEIcOXJELF26VBw9elScPn1azJgxQ/j6+oqcnBzDuSMjI532u5q1nKXPY9JNdvHFF1+IwMBA4evrK/r27SuSkpLEL7/8IqkDQPKlRwgh7rnnHvHyyy8LIf7XqaakpEjqREREiPXr10vK5syZI+Lj4+uM55///Kfo3bu34Tg+Pr7Wa9fXqWZmZgoAIjc31+S9vn37GuKsqKgQwcHB4ttvvzW8b5x0P/PMM+Kll16SnGP37t3Cw8ND3Lhxo9br13wJLS0trfWcQghx7do14e3tLT755BNDWXl5uQgPDxf//Oc/Je22bNkiOb9x0h0eHi5mzJhR5+chhBALFy4UUVFR9dZxBMYd5GeffSYAiObNm0teXl5e4k9/+pMQ4n///up7TZgwwazrkWtyp35u9OjRwtPT0+R35h//+IfF91qTdI8YMUKMGTOm1jiM69Zo6HOpaffxxx8b3t+wYYMAIL7//ntDWXJysoiOjpbcX03SXVJSIpRKpUmSbWzKlCkO+UWW/R05MnfqN2sYJ919+/YVY8eOldR54oknxLBhwwzH5v5edevWTXzwwQeG49qSbmf5rmYtZ+nzuKab7OKxxx7D8OHDsXv3buzduxdff/01/vnPf+Ljjz+WbB4RHx8vaRcfH2+ycU5cXJzhvwsLC5GXl4cXXngBY8eONZRXVlZK1uR98cUXSElJwW+//YZr166hsrIS/v7+hvezsrIwbtw4k2vv3Lmzznu6ceMGAMDX11dSfurUKezfvx+bNm0CAHh5eeHPf/4zVq5cifvvv7/Wcx06dAi//fYbPvnkE0OZEALV1dXIzs5G165dkZmZiVmzZuHIkSO4fPkyqqurAQC5ubno1q1bref9/fffUVFRgX79+hnKvL29cffddyMrK0tS9/bP1ZhOp8OFCxeQkJBQZx3g1pqk69ev11vHEVVXV8PT0xOHDh2Cp6en5L2ade1t2rQx+cyMOcJaTpKPO/VzADBo0CAsWbJEUta6dWuT8zd0rzVefvllPPbYYzh8+DAGDx6MkSNHom/fvnXGZu7nAgA9evQw/HdoaCiAW1PCby+rWa5jLCsrC3q93mX6P/Z35Ejcrd+sTVZWlsku5/369cPChQvrbVdWVobZs2fj//7v/3DhwgVUVlbixo0byM3Nrbeds/RVtuKofR6TbrIbX19fPPDAA3jggQfw5ptv4sUXX8Rbb71l1o6Nt2vevLnhv2sSz+XLl+Oee+6R1Kv5xdq3bx+efPJJzJ49G0OGDEFAQAA2btyId999t1H3ExwcDODWOkSVSmUoX7FiBSorK9GmTRtDmRAC3t7euHLlSq2/tNXV1fjrX/+KiRMnmryn0WhQVlaGwYMHY/DgwVi3bh1UKhVyc3MxZMgQlJeX1xnjrT/AmX6GQoh6P1dj5m7wcfnyZcln4SxiY2NRVVUFnU6H/v3711rH29sbXbp0aeLIyNm4Sz9XE2PHjh0tPqfxvdYYOnQocnJy8NVXX+G7775DQkICJkyYgAULFtRa35zPpcbtGyrVXN+4rOZ8xlyt/2N/R47GnfrNupjzPc3Ya6+9hm+++QYLFixAx44d4efnh8cff7ze74WA8/RVtuKofR43UqMm061bN8lGYcCtDtD4uL5fgtDQULRp0wZnz55Fx44dJa+ajXf27NmDyMhIzJgxA3FxcejUqRNycnIk5+natWut165Phw4d4O/vj5MnTxrKKisrkZqainfffRdHjhwxvH755RdERkZKRrJvd+edd+LEiRMm99CxY0f4+Pjg119/RVFREd555x30798fXbp0MRmV8fHxAQBUVVUZymra//jjj4ayiooKHDx40KJdK1u2bImoqKgGHyF2/PhxxMbGmn3epnTt2jXDzwMAsrOzceTIEeTm5qJz584YNWoUnn32WWzatAnZ2dk4cOAA5s+fj23bttn8euQ+XLGfs4Sl96pSqfDcc89h3bp1SElJwbJlywDU3r+Z87nYQqdOneDn5+dU/R/7O3Jm7tZvdu3aVfI9Dbi1ue7t39O8vb0l/R8A7N69G8899xweeeQRw2aO586da/B6jtRX2YpT9nkWT0gnakBRUZEYNGiQWLt2rfjll1/E2bNnxWeffSZCQ0PF888/b6gHQAQHB4sVK1aIU6dOiTfffFN4eHiIEydOCCHqXtO3fPly4efnZ9jg6+jRo2LlypXi3XffFUIIsWXLFuHl5SU2bNggfvvtN7Fw4ULRunVryXqajRs3CqVSKbl2QxtlCCHEo48+Kv72t78Zjjdv3ix8fHwMm5jdbvr06aJXr15CCNP117/88ovw8/MT48ePF5mZmeL06dPiP//5j3jllVeEELc20fDx8RGvvfaa+P3338V//vMf0blzZ8nncf78eaFQKMTq1auFTqczrPWeNGmSCA8PF9u3b5dspHb58uVaY6lhvKZ79erVwtfXVyxcuFCcPn1aHDp0SCxatEjSJjIyUqSmptb7mcml5j6NX6NHjxZC3Frr/uabb4qoqCjh7e0t1Gq1eOSRR8TRo0ftcj1yLe7Uzwlxa83zgw8+KLRareRVWFho9b3+/e9/F1u2bBFnzpwRx48fFw899JC4++67hRC39sbw8/MTc+fOFQUFBYY+tqHPpbbPs7Y+z3iNpfFGarNmzRKBgYFizZo14rfffhN79+6VrBMvKysTfn5+YteuXfV+lk2F/R05A3frN2sY9zebN28W3t7eYsmSJeL06dOGjdR27txpqNOpUyfx8ssvC61Wa/j+NnLkSNGrVy+RmZkpjhw5IkaMGCFatmwpJk2aZGhX25puR/6uZi1n7POYdJPN3bx5U7zxxhvizjvvFAEBAaJZs2YiOjpazJw5U1y/ft1QD4D48MMPxQMPPCCUSqWIjIwUGzZsMLxfV6cqhBCffPKJ6NWrl/Dx8RGBgYFiwIABYtOmTYb3X3vtNREUFCRatGgh/vznP4v3339f0uEJIcTbb78tgoODRYsWLcTo0aNFYmJig53q119/Ldq0aSOqqqqEEEI89NBDko0vbnfo0CEBQBw6dKjWL3379+8XDzzwgGjRooVo3ry56NGjh3j77bcN769fv15ERUUJpVIp4uPjxdatW00+j3/84x9CrVYLhUJh+MW/ceOGePXVV0VwcLBQKpWiX79+Yv/+/YY25ibdQgixdOlSER0dLby9vUVYWJh49dVXDe/99NNPolWrVpKfKZG7cKd+TohbSWltXzhu34zM0nudM2eO6Nq1q/Dz8xOtW7cWDz/8sDh79qyh/vLly0VERITw8PAQAwcONOtzsVXSXVVVJebOnSsiIyOFt7e30Gg0Yt68eYb3169fL7l3ImqYu/WbNYz7GyFuPSGmffv2wtvbW3Tu3NkkKd66davo2LGj8PLyEpGRkYb7HjRokPDz8xMRERFi8eLFYuDAgfUm3fyu5jgUQvx3EShRE1MoFNi8ebPk2aiOTgiBPn36YPLkyXjqqafkDkdWTzzxBGJjYzF9+nS5QyFyWO7UzznjvVrr7rvvxuTJk/H000/LHQqRy3HGvsRRvx/yu5rj4JpuIgsoFAosW7YMlZWVcociK71ej549e2LKlClyh0JENsZ+rn46nQ6PP/64Q32xJiJ5OWK/ye9qjoUj3SQbZ/xLJhGRJdypn3OneyUi+2FfQq6ISTcRERERERGRnXB6OREREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdBMRERERERHZCZNuIiIiIiIiIjth0k1ERERERERkJ0y6iYiIiIiIiOyESTcRERERERGRnfw/cnbPWDcYpjAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -641,7 +745,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEOElEQVR4nO3deXwO5/7/8fctu1hqzUJCLCW20oQK0lQRpZtTVdRaor9ILZGjVdTe0kWdUMRSS5Wi56t7U5U6OJb02JJWCa2WRklOGkWsiSTz+8PX/e0td0g0cRtez8djHg9zzWeu65pMnfM2mcViGIYhAAAAwETKOHoCAAAAQHERYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgGgiCwWiz755BOH93ErHT16VBaLRcnJybdlfwDuXoRYAHetgQMHymKxFFgOHz5stz4tLU1dunQpUt+TJ09W8+bN/1IfdyI/Pz+lpaWpSZMmkqTNmzfLYrHo9OnTjp0YANNxdvQEAMCRHnnkES1btsymrVq1ajbrOTk5cnV1lbe3918eryT6MDMnJ6e7/mcAoGRwJRbAXc3NzU3e3t42S4cOHTRs2DDFxMSoatWq6tSpk6SCtwL89ttv6tWrlypXrixPT08FBwfrP//5j5YvX64pU6bou+++s17dXb58ud0+9u3bp4cfflgeHh6qUqWKnn/+eZ07d866feDAgerWrZtmzpwpHx8fValSRS+88IIuX758w2MbO3asWrduXaC9WbNmmjRpknV92bJlCgwMlLu7uxo2bKj58+dft98tW7aoVatWcnNzk4+Pj15++WXl5uZat+fn5+uNN95QvXr15ObmJn9/f7322muSbG8nOHr0qNq3by9JqlSpkiwWiwYOHKgVK1aoSpUqys7Othm3e/fu6t+//w2PG8DdgSuxAGDHe++9p6FDh2r79u0yDKPA9nPnziksLEw1atTQZ599Jm9vb+3du1f5+fnq2bOnfvjhB61fv17ffPONJKlixYoF+rhw4YIeeeQRtW7dWrt27VJGRoYiIiI0bNgwa+iVpE2bNsnHx0ebNm3S4cOH1bNnTzVv3lxDhgy57jH06dNHr7/+un7++WfVrVtXkrR//37t27dP//M//yNJWrx4sSZNmqS5c+eqRYsWSkpK0pAhQ+Tp6akBAwYU6PP48ePq2rWrNWwePHhQQ4YMkbu7uyZPnizpSnhevHix/vGPf6hdu3ZKS0vTwYMHC/Tl5+endevWqXv37jp06JAqVKggDw8Pubq6asSIEfrss8/Uo0cPSVJmZqa++OILrV+//rrHDOAuYgDAXWrAgAGGk5OT4enpaV2efvppIywszGjevHmBeknGxx9/bBiGYSxcuNAoX768cfLkSbt9T5o0ybjvvvuu28eiRYuMSpUqGefOnbNu//LLL40yZcoY6enp1jnWqlXLyM3Ntdb06NHD6NmzZ5GOsVmzZsbUqVOt62PHjjVatmxpXffz8zM++OADm32mTZtmhISEGIZhGEeOHDEkGUlJSYZhGMa4ceOMBg0aGPn5+db6efPmGeXKlTPy8vKMrKwsw83NzVi8eLHd+Vzb36ZNmwxJxqlTp2zqhg4danTp0sW6Hhsba9SpU8dmXAB3N24nAHBXa9++vZKTk63LnDlzJEnBwcHX3S85OVktWrRQ5cqVb3rslJQU3XffffL09LS2tW3bVvn5+Tp06JC1rXHjxnJycrKu+/j4KCMjo0hj9OnTR6tWrZIkGYah1atXq0+fPpKk33//XceOHdPgwYNVrlw56/Lqq6/q559/LnTOISEhslgsNnM+d+6cfvvtN6WkpCg7O1sdOnQo+g/CjiFDhmjDhg06fvy4pCu3PFx9EA8AJG4nAHCX8/T0VL169ey2X4+Hh8dfHtswjEJD2Z/bXVxcCmzLz88v0hjPPvusXn75Ze3du1cXL17UsWPH1KtXL0my9rF48WI98MADNvv9OTTfaM7G/95uYbFYSuTnIkktWrTQfffdpxUrVqhz587at2+fPv/88xLpG8CdgSuxAHATmjVrpuTkZP3xxx92t7u6uiovL++6fTRq1EjJyck6f/68tW379u0qU6aM7r333hKZZ82aNfXggw9q1apVWrVqlTp27CgvLy9JkpeXl2rUqKFffvlF9erVs1kCAgIKnfOOHTts7hPesWOHypcvrxo1aqh+/fry8PDQxo0bizQ/V1dXSbL7s4qIiNCyZcu0dOlSdezYUX5+fsU9fAB3MEIsANyE3r17y9vbW926ddP27dv1yy+/aN26dUpMTJQk1a5dW0eOHFFycrIyMzMLPGkvXflVv7u7uwYMGKAffvhBmzZt0vDhw9WvXz9r0CwJffr00Zo1a/TPf/5Tffv2tdk2efJkzZgxQ7Nnz9aPP/6offv2admyZZo1a5bdvqKionTs2DENHz5cBw8e1KeffqpJkyYpJiZGZcqUkbu7u8aMGaOXXnpJK1as0M8//6xvv/1WS5YssdtfrVq1ZLFY9MUXX+j333+3eTNDnz59dPz4cS1evFiDBg0qsZ8HgDsDIRYAboKrq6s2bNig6tWrq2vXrmratKlef/1166/hu3fvrkceeUTt27dXtWrVtHr16gJ9lC1bVl9//bX++OMPtWzZUk8//bQ6dOiguXPnluhce/TooZMnT+rChQvq1q2bzbaIiAi9++67Wr58uZo2baqwsDAtX7680CuxNWrUUHx8vHbu3Kn77rtPkZGRGjx4sF555RVrzYQJE/T3v/9dEydOVGBgoHr27FnoPbw1atTQlClT9PLLL8vLy0vDhg2zbqtQoYK6d++ucuXKFZg3AFgMw867YwAAuA106tRJgYGB1gfuAOAqQiwA4Lbzxx9/aMOGDerTp48OHDigBg0aOHpKAG4zvJ0AAExq69at6tKlS6Hb/3x/qdncf//9OnXqlN544w0CLAC7uBILACZ18eJF63tU7bH36jAAuFMQYgEAAGA6vJ0AAAAApkOIBQAAgOnwYJcd+fn5OnHihMqXL893ugEAAG4hwzB09uxZ+fr6qkyZwq+3EmLtOHHiBJ83BAAAcKBjx46pZs2ahW53eIidP3++3nrrLaWlpalx48aKjY1VaGhoofVbtmxRTEyM9u/fL19fX7300kuKjIy0bl++fLmee+65AvtdvHhR7u7uRZpT+fLlJV354VWoUKGYRwQAAICblZWVJT8/P2seK4xDQ+zatWsVHR2t+fPnq23btlq4cKG6dOmiAwcOyN/fv0D9kSNH1LVrVw0ZMkQrV67U9u3bFRUVpWrVqql79+7WugoVKujQoUM2+xY1wEqy3kJQoUIFQiwAAIAD3OiWToe+YuuBBx7Q/fffr7i4OGtbYGCgunXrphkzZhSoHzNmjD777DOlpKRY2yIjI/Xdd98pMTFR0pUrsdHR0Tp9+vRNzysrK0sVK1bUmTNnCLEAAAC3UFFzmMPeTpCTk6M9e/YoPDzcpj08PFw7duywu09iYmKB+s6dO2v37t26fPmyte3cuXOqVauWatasqccee0xJSUklfwAAAABwGIeF2MzMTOXl5cnLy8um3cvLS+np6Xb3SU9Pt1ufm5urzMxMSVLDhg21fPlyffbZZ1q9erXc3d3Vtm1b/fTTT4XOJTs7W1lZWTYLAAAAbl8Of7Dr2vsdDMO47j0Q9ur/3N66dWu1bt3aur1t27a6//779c4772jOnDl2+5wxY4amTJlS7Lnn5eXZXAGGObm4uMjJycnR0wAAAMXgsBBbtWpVOTk5FbjqmpGRUeBq61Xe3t52652dnVWlShW7+5QpU0YtW7a87pXYsWPHKiYmxrp+9am4whiGofT09L903y1uL/fcc4+8vb15LzAAACbhsBDr6uqqoKAgJSQk6G9/+5u1PSEhQU8++aTdfUJCQvT555/btG3YsEHBwcFycXGxu49hGEpOTlbTpk0LnYubm5vc3NyKPPerAbZ69eoqW7YswcfEDMPQhQsXlJGRIUny8fFx8IwAAEBROPR2gpiYGPXr10/BwcEKCQnRokWLlJqaan3v69ixY3X8+HGtWLFC0pU3EcydO1cxMTEaMmSIEhMTtWTJEq1evdra55QpU9S6dWvVr19fWVlZmjNnjpKTkzVv3rwSmXNeXp41wBZ29Rfm4uHhIenKVf3q1atzawEAACbg0BDbs2dPnTx5UlOnTlVaWpqaNGmi+Ph41apVS5KUlpam1NRUa31AQIDi4+M1atQozZs3T76+vpozZ47NO2JPnz6t559/Xunp6apYsaJatGihf//732rVqlWJzPnqPbBly5Ytkf5we7h6Pi9fvkyIBQDABBz6ntjb1fXeT3bp0iUdOXJEAQEBxfqAAm5vnFcAAG4Pt/17YgEAAICb5fBXbME8jh49qoCAACUlJal58+aOno6NgQMH6vTp0/rkk08cPRUAMKWkrkV7zqNF/MlSnglQNITYEpSd4npLx3MLzClW/cCBA/Xee+8VaO/cubPWr19/w/39/PyUlpamqlWr3rD2Vgfe2bNniztjANwp7pZAebccJ0oHIfYu88gjj2jZsmU2bUV9vZiTk5O8vb1LY1p/WcWKFR09BQAAcAtxT+xdxs3NTd7e3jZLpUqVJF356llcXJy6dOkiDw8PBQQE6J///Kd136NHj8pisSg5OVmSdOrUKfXp00fVqlWTh4eH6tevbw3IAQEBkqQWLVrIYrHooYcesvazbNkyBQYGyt3dXQ0bNtT8+fMLjPHhhx8qNDRUHh4eatmypX788Uft2rVLwcHBKleunB555BH9/vvv1v0GDhyobt26Wdfz8/P1xhtvqF69enJzc5O/v79ee+21kv5xAgAAB+FKLGxMmDBBr7/+umbPnq33339fvXv3VpMmTRQYGGi39sCBA/rqq69UtWpVHT58WBcvXpQk7dy5U61atdI333yjxo0by9X1yq0Wixcv1qRJkzR37ly1aNFCSUlJGjJkiDw9PTVgwABr35MmTVJsbKz8/f01aNAg9e7dWxUqVNDs2bNVtmxZPfPMM5o4caLi4uLsHsfYsWO1ePFi/eMf/1C7du2UlpamgwcPlsJPDMCdjl95A7cnQuxd5osvvlC5cuVs2saMGaMJEyZIknr06KGIiAhJ0rRp05SQkKB33nnH5mrpVampqWrRooWCg4MlSbVr17Zuq1atmiSpSpUqNrcgTJs2TW+//baeeuopSVeu2B44cEALFy60CbGjR49W586dJUkjR45U7969tXHjRrVt21aSNHjwYC1fvtzuMZ49e1azZ8/W3LlzrX3WrVtX7dq1K9oPCQAA3PYIsXeZ9u3bF7h6WblyZeufQ0JCbLaFhIRYbx+41tChQ9W9e3ft3btX4eHh6tatm9q0aVPo2L///ruOHTumwYMHa8iQIdb23NzcAve0NmvWzPpnLy8vSbL5dLCXl5f1U7HXSklJUXZ2tjp06FDoXAAAgLkRYu8ynp6eqlevXrH2sVgsdtu7dOmiX3/9VV9++aW++eYbdejQQS+88IJmzpxptz4/P1/SlVsKHnjgAZtt134ly8XFpcD417Zd7e9aVz8jCwAoeS5NY4pUd3nfrFKeCe52hFjY+Pbbb9W/f3+b9RYtWhRaX61aNQ0cOFADBw5UaGioXnzxRc2cOdN6D2xeXp611svLSzVq1NAvv/yiPn36lNox1K9fXx4eHtq4caP11ggAd4ai3J/qqHtTixLuSjrYOWJM4HZBiL3LZGdnKz093abN2dnZ+u7Xf/7znwoODla7du20atUq7dy5U0uWLLHb18SJExUUFKTGjRsrOztbX3zxhfUBsOrVq8vDw0Pr169XzZo15e7urooVK2ry5MkaMWKEKlSooC5duig7O1u7d+/WqVOnFBNTtH/d34i7u7vGjBmjl156Sa6urmrbtq1+//137d+/X4MHDy6RMYC7HQ87AXA0QuxdZv369fLx8bFpa9CggfXJ/SlTpmjNmjWKioqSt7e3Vq1apUaNGtnty9XVVWPHjtXRo0fl4eGh0NBQrVmzRtKVYDxnzhxNnTpVEydOVGhoqDZv3qyIiAiVLVtWb731ll566SV5enqqadOmio6OLtHjnDBhgpydnTVx4kSdOHFCPj4+ioyMLNExANye+HU3cHewGHzmqICsrCxVrFhRZ86cUYUKFWy2Xbp0SUeOHFFAQIDc3d0dNMPSYbFY9PHHH9u8b/VucSefV9z5HHFVtKhjtjo24MZFKnqgLMq4jhizqOPeLWMWdVyu6MOe6+WwP+NjBwAAADAdbicAgBLElaWbk53iWsTK8qYeE0DJIcTCijtLgDtbUe8VPffh3CJUEexuBsH55nCfM+whxAIAcAcjOONORYgFcMe6nX+1z5UlAPhrCLEAcBsr2lU0rqABuPsQYgHc9fjqEQCYDyEWwC1xO38utCi4rxAAbi+EWAC3jZJ9el4iUALAnYsQC6vNmzerffv2OnXqlO655x5HT8euyZMn65NPPlFycrKjpwIAMKHb+YFPFA8htgQV9S9GSbnZv2A7duxQaGioOnXqpPXr15fwrGyVdDAePXq0hg8f/tcndpcz+6/2AQAgxN6Fli5dquHDh+vdd99Vamqq/P39HT2lGzIMQ3l5eSpXrpzKlSvn6OncFfjVPgDgdlbG0RPArXX+/Hl9+OGHGjp0qB577DEtX778uvU7duzQgw8+KA8PD/n5+WnEiBE6f/68dfvKlSsVHBys8uXLy9vbW88++6wyMjIkSUePHlX79u0lSZUqVZLFYtHAgQMlSdnZ2RoxYoSqV68ud3d3tWvXTrt27bL2u37lu7JYLPp06Xzd37SR3NxclbB6mcYPj1SzwAa68FOyLvyULOlKKG/cuLHc3Nzk4+OjYcOG3dTPJifjmA4831pJXatcdylJNxqruGNmp7gWaQEAwOy4EnuXWbt2rRo0aKAGDRqob9++Gj58uCZMmCCLxVKgdt++fercubOmTZumJUuW6Pfff9ewYcM0bNgwLVu2TJKUk5OjadOmqUGDBsrIyNCoUaM0cOBAxcfHy8/PT+vWrVP37t116NAhVahQQR4eHpKkl156SevWrdN7772nWrVq6c0331Tnzp11+PBhVa5c2TqHV96M1fSXYxTgV0MVy5fXtp17bOYYFxenmJgYvf766+rSpYvOnDmj7du3l+JP0DGf7iz6mEUqAwDA9Aixd5klS5aob9++kqRHHnlE586d08aNG9WxY8cCtW+99ZaeffZZRUdHS5Lq16+vOXPmKCwsTHFxcXJ3d9egQYOs9XXq1NGcOXPUqlUrnTt3TuXKlbMG0urVq1vviT1//rzi4uK0fPlydenSRZK0ePFiJSQkaMmSJXrxxRetfU4YOVQd2rYu9HgmTZ6iZ/sPUbuOT+nsZalMWQ+FduquPfuP2dQFNfYr/g8LAHDT+FAHShsh9i5y6NAh7dy5Ux999JEkydnZWT179tTSpUvthtg9e/bo8OHDWrXyfWubYRjKz8/XgU3xalivjpIPHNT0dxbo+5RDOpV1Tvn5+ZKk1NRUNWrUqECf+Rf36Kf9P+ny5csKCaqg/ItXrqw6SWoZdK8O7Nuq/IsPW+vvb9K40OPJOPmHfs/4r1q1bnvDY786TqHbs2/YBQAAuI0QYu8iS5YsUW5urmrUqGFtMwxDLi7OOnlik/Kzf5Qk5V9MVr5beeXnXdDzg/+m5596tkBffj4+On/hop58bqgebheiJW+9pqzyAUpPO6Fh/6+vklNSddEor0NHrtwfm5zym8pXOKsWda6MKanALQyGYRRoK1vWo9Dj8XBzu7kfBAAAMD1CrIldfbDpWik5BR8Eys3N1dKlyxX94gS1bvOgJCmw5pVXKPV49iV9sOYrNW5c12afFs0b6kDKL6pby/7bC/b/+JMyT53WtNEjVNPHWyk5VXRg//c2NS4uLpKkvP+9QitJ9er6ydXVRdt2JOvZno9Iki5fztWevSkaOax3EY78ivLlPOVbw087v92u4FZtirwfAAAwP95OcJfYtmWjsrLOqNtTPVWvfgPVq99ATRrXU5PG9dS9Wwctfe/TAvu8FDNAif/5XqMmz9B3Bw7p8NFf9eXGzfr71NclSTV9veXq4qK499foSOpv2rJpg95dOMemDx/fmrJYLNq25Rud+uOkzp27IE9PD0UOeVpjxs3W+g07dCDlFz3/wqu6cPGSBg14sljH9XxUtFa9t0hrVi5V6q9HdPDAPq1Ztezmf1AAAMAUuBJ7l/j0ozVq1bqdypWvUGDbU906aMZby5SUfNCmvVnT+tr09SKNGxun8D6DZBiGAvxq6umunSVJ1SpX1sI3pmjyrLmKW7FaDQKbKnr0eMUMG2zto7qXt/7fCzF65x+va8oro9Wvz6NatmiyZkwbpvz8fA2ImKizZy8o+P5AffXpO6pUqeD8ruexJ3soOztbH7y/RLEzX9M9lSqpQ6euN/ETAgDg/xT1rTCX980q5ZmgMITYEvRXvnB0owePrrr0m9NN9f+PeYVfnby/RUPlXdgtSRo1oq/NtpbBjfX5srhC933msS565rErbxi4ehvD7h9SbWoiIkcqInKkJKlFnSv3yLq7u2n22y9q9tsvyp4HHwjW+R+TCrSPHxGp8SMibdq6P9NX3Z/pW6AWAADcubidAAAAAKZDiAUAAIDpEGIBAABgOtwTCwAA7gh8JezuwpVYAAAAmA4hFgAAAKbj8BA7f/58BQQEyN3dXUFBQdq6det167ds2aKgoCC5u7urTp06WrBgQaG1a9askcViUbdu3Up41gAAAEWX1LXKDRcUj0ND7Nq1axUdHa3x48crKSlJoaGh6tKli1JTU+3WHzlyRF27dlVoaKiSkpI0btw4jRgxQuvWrStQ++uvv2r06NEKDQ0t7cMAAADALebQEDtr1iwNHjxYERERCgwMVGxsrPz8/BQXZ//l+gsWLJC/v79iY2MVGBioiIgIDRo0SDNnzrSpy8vLU58+fTRlyhTVqVPnVhwKAAAAbiGHhdicnBzt2bNH4eHhNu3h4eHasWOH3X0SExML1Hfu3Fm7d+/W5cuXrW1Tp05VtWrVNHjw4Gu7sCs7O1tZWVk2C0rG4+Ft9MH77zp6GgAA4A7jsFdsZWZmKi8vT15eXjbtXl5eSk9Pt7tPenq63frc3FxlZmbKx8dH27dv15IlS5ScnFzkucyYMUNTpkwp9jFcq6jfWS4pZz7qX+Ta4Cb+193ev+9jWrZocqHbPe9toTXzZunxTu2LPCYAAEBpcfh7Yi0Wi826YRgF2m5Uf7X97Nmz6tu3rxYvXqyqVasWeQ5jx45VTMz/BdCsrCz5+fkVeX8zWL95t/XPCV99rgXzZunH7/9pbfPwcHfEtAAAwP8q6sWwy/tmlfJMzMFhIbZq1apycnIqcNU1IyOjwNXWq7y9ve3WOzs7q0qVKtq/f7+OHj2qxx9/3Lo9Pz9fkuTs7KxDhw6pbt26Bfp1c3OTm5vbXz2k21rVqtWtfy5XvoIsFou8vf8v6Mct+h/Nmv2+jv32XwXU9tW4MYPV79lHJUmB7btKknq9cOUvl38NH6Vsitcvqcf08oy3tTN5ny5cvKhaAfX1QvQYPRDCw3QAAKB0OeyeWFdXVwUFBSkhIcGmPSEhQW3atLG7T0hISIH6DRs2KDg4WC4uLmrYsKH27dun5ORk6/LEE0+offv2Sk5OvuOurpaUjz/dpFEvzlTMiL76fvdaPT/4KQ3+f1O1acuVq7f/XrdSkrTg9Sn6eXuCdf3c+QvqHNZOXyxfoB2frFbrtmGKGTZI6WnHHXYsAADg7uDQ2wliYmLUr18/BQcHKyQkRIsWLVJqaqoiIyMlXfk1//Hjx7VixQpJUmRkpObOnauYmBgNGTJEiYmJWrJkiVavXi1Jcnd3V5MmTWzGuOeeeySpQDv+z6zZ72tA38c19P/1kCTdW7+Wvt35g96OfV/tw4JVrXJlSdI95cvLu9r/Xb1tFthAzQIbWNejRryozRvXa8umBPV8duAtPQYAAHB3cWiI7dmzp06ePKmpU6cqLS1NTZo0UXx8vGrVqiVJSktLs3lnbEBAgOLj4zVq1CjNmzdPvr6+mjNnjrp37+6oQ7gjpBw6qohBT9m0tQ25T3PmrbnufucvXNT0uQu1ftO/lZbxu3Jy85WdfYkrsQAAoNQ5/MGuqKgoRUVF2d22fPnyAm1hYWHau3dvkfu31wcKuvZZuisP2F1/n/Fv/kPfbE3U9DGjVKeWn044eWvMqEjl/ul1ZwAA3MmyU1yLWFm+VOdxN3J4iIXjBTaore07vlP/Po9Z23Z8+70aNgiwrru4OCsvP89mv+27k9T3qcf1RPjDkqTs0+46ceI3Bd2aaQMAgOso6qdsW8SfLOWZlA5CLPT36P7q1e9ltWjeQB3at9IX8f/Wx59u0oYv51lratXw1ebEnWp9f3O5ubqqUsUKquvvp083/Etd2ofJYpHG/+NdGf/7NggAAIDS5NDPzuL20O2Jh/SPt0br7dj31TToGS1a8pGWLJyohx4MttbMeDlG/9r+rRqEdVGbbr0kSW+MG617KlZQh14D1SMyWiFtw9QgkAfoAABA6eNKbAn6Ky8fzr+4p0h1l35zuukxrnq8Ww893q2HpAxr29Dnn9bQ558udJ+uD4ep68NhNm21avrqqxWLrOspOVX0TO8BNjWfb7D/CWEAAIC/ghALAABgIjxMdgUhFgAA4C5WlM/d3o6fuuWeWAAAAJgOIRYAAACmQ4gFAACA6RBib1I+70O9o+QbkgxDuuaDDgAA4PbEg13F5OrqqjJlyujEiROqVq2aXF1dZbnR91mLID+7aHXZeUYROsstUl+XSnLMIo7riDGvN65hSJdzpd9PXlLe2T+kMxn2CwEAwG2FEFtMZcqUUUBAgNLS0nTixIkS69e4/HuR6i6fuvHF899zLxSpLw/jbImNWdRxHTHmDcc1cuWu3dLKD2TJK1ooBgAAjkWIvQmurq7y9/dXbm6u8vJK5tfPOT8/UaS6w0s8b1gzLL1bkfra+49VJTZmUcd1xJjXHzdfTpazctIZnTlbrkh9AQAAxyPE3iSLxSIXFxe5uLiUTH9lfi1aXeaNX1z8a1pWkfpyK8ExizquI8YszrgAAMAceLALAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApuPwEDt//nwFBATI3d1dQUFB2rp163Xrt2zZoqCgILm7u6tOnTpasGCBzfaPPvpIwcHBuueee+Tp6anmzZvr/fffL81DAAAAwC3m0BC7du1aRUdHa/z48UpKSlJoaKi6dOmi1NRUu/VHjhxR165dFRoaqqSkJI0bN04jRozQunXrrDWVK1fW+PHjlZiYqO+//17PPfecnnvuOX399de36rAAAABQyhwaYmfNmqXBgwcrIiJCgYGBio2NlZ+fn+Li4uzWL1iwQP7+/oqNjVVgYKAiIiI0aNAgzZw501rz0EMP6W9/+5sCAwNVt25djRw5Us2aNdO2bdtu1WEBAACglDksxObk5GjPnj0KDw+3aQ8PD9eOHTvs7pOYmFigvnPnztq9e7cuX75coN4wDG3cuFGHDh3Sgw8+WOhcsrOzlZWVZbMAAADg9uWwEJuZmam8vDx5eXnZtHt5eSk9Pd3uPunp6Xbrc3NzlZmZaW07c+aMypUrJ1dXVz366KN655131KlTp0LnMmPGDFWsWNG6+Pn5/YUjAwAAQGlz+INdFovFZt0wjAJtN6q/tr18+fJKTk7Wrl279NprrykmJkabN28utM+xY8fqzJkz1uXYsWM3cSQAAAC4VZwdNXDVqlXl5ORU4KprRkZGgautV3l7e9utd3Z2VpUqVaxtZcqUUb169SRJzZs3V0pKimbMmKGHHnrIbr9ubm5yc3P7C0cDAACAW8lhV2JdXV0VFBSkhIQEm/aEhAS1adPG7j4hISEF6jds2KDg4GC5uLgUOpZhGMrOzv7rkwYAAMBtwWFXYiUpJiZG/fr1U3BwsEJCQrRo0SKlpqYqMjJS0pVf8x8/flwrVqyQJEVGRmru3LmKiYnRkCFDlJiYqCVLlmj16tXWPmfMmKHg4GDVrVtXOTk5io+P14oVKwp94wEAAADMx6EhtmfPnjp58qSmTp2qtLQ0NWnSRPHx8apVq5YkKS0tzeadsQEBAYqPj9eoUaM0b948+fr6as6cOerevbu15vz584qKitJvv/0mDw8PNWzYUCtXrlTPnj1v+fEBAACgdDg0xEpSVFSUoqKi7G5bvnx5gbawsDDt3bu30P5effVVvfrqqyU1PQAAANyGinVP7M6dO5WXl2ddv/pmgKuys7P14YcflszMAAAAgEIUK8SGhITo5MmT1vWKFSvql19+sa6fPn1avXv3LrnZAQAAAHYUK8Ree+X12vXC2gAAAICSVOKv2LrehwoAAACAkuDwL3YBAAAAxVXstxMcOHDA+tUswzB08OBBnTt3TpKUmZlZsrMDAAAA7Ch2iO3QoYPNfa+PPfaYpCu3ERiGwe0EAAAAKHXFCrFHjhwprXkAAAAARVasEHv1S1oAAACAIxXrwa4//vhDv/32m03b/v379dxzz+mZZ57RBx98UKKTAwAAAOwpVoh94YUXNGvWLOt6RkaGQkNDtWvXLmVnZ2vgwIF6//33S3ySAAAAwJ8VK8R+++23euKJJ6zrK1asUOXKlZWcnKxPP/1U06dP17x580p8kgAAAMCfFSvEpqenKyAgwLr+r3/9S3/729/k7Hzl1tonnnhCP/30U8nOEAAAALhGsUJshQoVdPr0aev6zp071bp1a+u6xWJRdnZ2iU0OAAAAsKdYIbZVq1aaM2eO8vPz9T//8z86e/asHn74Yev2H3/8UX5+fiU+SQAAAODPivWKrWnTpqljx45auXKlcnNzNW7cOFWqVMm6fc2aNQoLCyvxSQIAAAB/VqwQ27x5c6WkpGjHjh3y9vbWAw88YLO9V69eatSoUYlOEAAAALhWsT87W61aNT355JN2tz366KN/eUIAAADAjRQrxK5YsaJIdf3797+pyQAAAABFUawQO3DgQJUrV07Ozs4yDMNujcViIcQCAACgVBUrxAYGBuq///2v+vbtq0GDBqlZs2alNS8AAACgUMV6xdb+/fv15Zdf6uLFi3rwwQcVHBysuLg4ZWVlldb8AAAAgAKKFWIl6YEHHtDChQuVlpamESNG6MMPP5SPj4/69OnDhw4AAABwSxQ7xF7l4eGh/v37a8qUKWrVqpXWrFmjCxculOTcAAAAALtuKsQeP35c06dPV/369dWrVy+1bNlS+/fvt/nwAQAAAFBaivVg14cffqhly5Zpy5Yt6ty5s95++209+uijcnJyKq35AQAAAAUUK8T26tVL/v7+GjVqlLy8vHT06FHNmzevQN2IESNKbIIAAADAtYoVYv39/WWxWPTBBx8UWmOxWAixAAAAKFXFCrFHjx69Yc3x48dvdi4AAABAkdz02wmulZ6erhEjRqhevXol1SUAAABgV7FC7OnTp9WnTx9Vq1ZNvr6+mjNnjvLz8zVx4kTVqVNHiYmJWrp0aWnNFQAAAJBUzNsJxo0bp3//+98aMGCA1q9fr1GjRmn9+vW6dOmSvvrqK4WFhZXWPAEAAACrYoXYL7/8UsuWLVPHjh0VFRWlevXq6d5771VsbGwpTQ8AAAAoqFi3E5w4cUKNGjWSJNWpU0fu7u6KiIgolYkBAAAAhSlWiM3Pz5eLi4t13cnJSZ6eniU+KQAAAOB6inU7gWEYGjhwoNzc3CRJly5dUmRkZIEg+9FHH5XcDAEAAIBrFCvEDhgwwGa9b9++JToZAAAAoCiKFWKXLVtWWvMAAAAAiqzEPnYAAAAA3CoOD7Hz589XQECA3N3dFRQUpK1bt163fsuWLQoKCpK7u7vq1KmjBQsW2GxfvHixQkNDValSJVWqVEkdO3bUzp07S/MQAAAAcIs5NMSuXbtW0dHRGj9+vJKSkhQaGqouXbooNTXVbv2RI0fUtWtXhYaGKikpSePGjdOIESO0bt06a83mzZvVu3dvbdq0SYmJifL391d4eLiOHz9+qw4LAAAApcyhIXbWrFkaPHiwIiIiFBgYqNjYWPn5+SkuLs5u/YIFC+Tv76/Y2FgFBgYqIiJCgwYN0syZM601q1atUlRUlJo3b66GDRtq8eLFys/P18aNG2/VYQEAAKCUOSzE5uTkaM+ePQoPD7dpDw8P144dO+zuk5iYWKC+c+fO2r17ty5fvmx3nwsXLujy5cuqXLlyyUwcAAAADlestxOUpMzMTOXl5cnLy8um3cvLS+np6Xb3SU9Pt1ufm5urzMxM+fj4FNjn5ZdfVo0aNdSxY8dC55Kdna3s7GzrelZWVnEOBQAAALeYwx/sslgsNuuGYRRou1G9vXZJevPNN7V69Wp99NFHcnd3L7TPGTNmqGLFitbFz8+vOIcAAACAW8xhIbZq1apycnIqcNU1IyOjwNXWq7y9ve3WOzs7q0qVKjbtM2fO1PTp07VhwwY1a9bsunMZO3aszpw5Y12OHTt2E0cEAACAW8VhIdbV1VVBQUFKSEiwaU9ISFCbNm3s7hMSElKgfsOGDQoODpaLi4u17a233tK0adO0fv16BQcH33Aubm5uqlChgs0CAACA25dDbyeIiYnRu+++q6VLlyolJUWjRo1SamqqIiMjJV25Qtq/f39rfWRkpH799VfFxMQoJSVFS5cu1ZIlSzR69GhrzZtvvqlXXnlFS5cuVe3atZWenq709HSdO3fulh8fAAAASofDHuySpJ49e+rkyZOaOnWq0tLS1KRJE8XHx6tWrVqSpLS0NJt3xgYEBCg+Pl6jRo3SvHnz5Ovrqzlz5qh79+7Wmvnz5ysnJ0dPP/20zViTJk3S5MmTb8lxAQAAoHQ5NMRKUlRUlKKiouxuW758eYG2sLAw7d27t9D+jh49WkIzAwAAwO3K4W8nAAAAAIqLEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB2Hh9j58+crICBA7u7uCgoK0tatW69bv2XLFgUFBcnd3V116tTRggULbLbv379f3bt3V+3atWWxWBQbG1uKswcAAIAjODTErl27VtHR0Ro/frySkpIUGhqqLl26KDU11W79kSNH1LVrV4WGhiopKUnjxo3TiBEjtG7dOmvNhQsXVKdOHb3++uvy9va+VYcCAACAW8ihIXbWrFkaPHiwIiIiFBgYqNjYWPn5+SkuLs5u/YIFC+Tv76/Y2FgFBgYqIiJCgwYN0syZM601LVu21FtvvaVevXrJzc3tVh0KAAAAbiGHhdicnBzt2bNH4eHhNu3h4eHasWOH3X0SExML1Hfu3Fm7d+/W5cuXb3ou2dnZysrKslkAAABw+3JYiM3MzFReXp68vLxs2r28vJSenm53n/T0dLv1ubm5yszMvOm5zJgxQxUrVrQufn5+N90XAAAASp/DH+yyWCw264ZhFGi7Ub299uIYO3aszpw5Y12OHTt2030BAACg9Dk7auCqVavKycmpwFXXjIyMAldbr/L29rZb7+zsrCpVqtz0XNzc3Lh/FgAAwEQcdiXW1dVVQUFBSkhIsGlPSEhQmzZt7O4TEhJSoH7Dhg0KDg6Wi4tLqc0VAAAAtxeH3k4QExOjd999V0uXLlVKSopGjRql1NRURUZGSrrya/7+/ftb6yMjI/Xrr78qJiZGKSkpWrp0qZYsWaLRo0dba3JycpScnKzk5GTl5OTo+PHjSk5O1uHDh2/58QEAAKB0OOx2Aknq2bOnTp48qalTpyotLU1NmjRRfHy8atWqJUlKS0uzeWdsQECA4uPjNWrUKM2bN0++vr6aM2eOunfvbq05ceKEWrRoYV2fOXOmZs6cqbCwMG3evPmWHRsAAABKj0NDrCRFRUUpKirK7rbly5cXaAsLC9PevXsL7a927drWh70AAABwZ3L42wkAAACA4iLEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdh4fY+fPnKyAgQO7u7goKCtLWrVuvW79lyxYFBQXJ3d1dderU0YIFCwrUrFu3To0aNZKbm5saNWqkjz/+uLSmDwAAAAdwaIhdu3atoqOjNX78eCUlJSk0NFRdunRRamqq3fojR46oa9euCg0NVVJSksaNG6cRI0Zo3bp11prExET17NlT/fr103fffad+/frpmWee0X/+859bdVgAAAAoZQ4NsbNmzdLgwYMVERGhwMBAxcbGys/PT3FxcXbrFyxYIH9/f8XGxiowMFAREREaNGiQZs6caa2JjY1Vp06dNHbsWDVs2FBjx45Vhw4dFBsbe4uOCgAAAKXNYSE2JydHe/bsUXh4uE17eHi4duzYYXefxMTEAvWdO3fW7t27dfny5evWFNYnAAAAzMfZUQNnZmYqLy9PXl5eNu1eXl5KT0+3u096errd+tzcXGVmZsrHx6fQmsL6lKTs7GxlZ2db18+cOSNJysrKKtYx/RXZ54wi1Z27fOM6Iy/7hjWSlFWCYxZ1XEeMWdRx75Yxizru3TJmUcflv13Hj1nUcfnvyPFjFnXcu2XMoo57W/+3ewsz0dWxDOMG8zcc5Pjx44YkY8eOHTbtr776qtGgQQO7+9SvX9+YPn26Tdu2bdsMSUZaWpphGIbh4uJifPDBBzY1K1euNNzc3Aqdy6RJkwxJLCwsLCwsLCwst8ly7Nix62ZJh12JrVq1qpycnApcIc3IyChwJfUqb29vu/XOzs6qUqXKdWsK61OSxo4dq5iYGOt6fn6+/vjjD1WpUkUWi0VZWVny8/PTsWPHVKFChWIdJ24/nM87D+f0zsM5vbNwPu88pXlODcPQ2bNn5evre906h4VYV1dXBQUFKSEhQX/729+s7QkJCXryySft7hMSEqLPP//cpm3Dhg0KDg6Wi4uLtSYhIUGjRo2yqWnTpk2hc3Fzc5Obm5tN2z333FOgrkKFCvzlu4NwPu88nNM7D+f0zsL5vPOU1jmtWLHiDWscFmIlKSYmRv369VNwcLBCQkK0aNEipaamKjIyUtKVK6THjx/XihUrJEmRkZGaO3euYmJiNGTIECUmJmrJkiVavXq1tc+RI0fqwQcf1BtvvKEnn3xSn376qb755htt27bNIccIAACAkufQENuzZ0+dPHlSU6dOVVpampo0aaL4+HjVqlVLkpSWlmbzztiAgADFx8dr1KhRmjdvnnx9fTVnzhx1797dWtOmTRutWbNGr7zyiiZMmKC6detq7dq1euCBB2758QEAAKB0ODTESlJUVJSioqLsblu+fHmBtrCwMO3du/e6fT799NN6+umnS2J6kq7cbjBp0qQCtxzAnDifdx7O6Z2Hc3pn4XzeeW6Hc2oxjBu9vwAAAAC4vTj0i10AAADAzSDEAgAAwHQIsQAAADAdQuwNzJ8/XwEBAXJ3d1dQUJC2bt3q6CmhCGbMmKGWLVuqfPnyql69urp166ZDhw7Z1BiGocmTJ8vX11ceHh566KGHtH//fgfNGMU1Y8YMWSwWRUdHW9s4p+Zz/Phx9e3bV1WqVFHZsmXVvHlz7dmzx7qdc2ouubm5euWVVxQQECAPDw/VqVNHU6dOVX5+vrWGc3r7+ve//63HH39cvr6+slgs+uSTT2y2F+XcZWdna/jw4apatao8PT31xBNP6LfffiuV+RJir2Pt2rWKjo7W+PHjlZSUpNDQUHXp0sXmtV+4PW3ZskUvvPCCvv32WyUkJCg3N1fh4eE6f/68tebNN9/UrFmzNHfuXO3atUve3t7q1KmTzp4968CZoyh27dqlRYsWqVmzZjbtnFNzOXXqlNq2bSsXFxd99dVXOnDggN5++22bj81wTs3ljTfe0IIFCzR37lylpKTozTff1FtvvaV33nnHWsM5vX2dP39e9913n+bOnWt3e1HOXXR0tD7++GOtWbNG27Zt07lz5/TYY48pLy+v5Cd83Y/S3uVatWplREZG2rQ1bNjQePnllx00I9ysjIwMQ5KxZcsWwzAMIz8/3/D29jZef/11a82lS5eMihUrGgsWLHDUNFEEZ8+eNerXr28kJCQYYWFhxsiRIw3D4Jya0ZgxY4x27doVup1zaj6PPvqoMWjQIJu2p556yujbt69hGJxTM5FkfPzxx9b1opy706dPGy4uLsaaNWusNcePHzfKlCljrF+/vsTnyJXYQuTk5GjPnj0KDw+3aQ8PD9eOHTscNCvcrDNnzkiSKleuLEk6cuSI0tPTbc6vm5ubwsLCOL+3uRdeeEGPPvqoOnbsaNPOOTWfzz77TMHBwerRo4eqV6+uFi1aaPHixdbtnFPzadeunTZu3Kgff/xRkvTdd99p27Zt6tq1qyTOqZkV5dzt2bNHly9ftqnx9fVVkyZNSuX8OvxjB7erzMxM5eXlycvLy6bdy8tL6enpDpoVboZhGIqJiVG7du3UpEkTSbKeQ3vn99dff73lc0TRrFmzRnv37tWuXbsKbOOcms8vv/yiuLg4xcTEaNy4cdq5c6dGjBghNzc39e/fn3NqQmPGjNGZM2fUsGFDOTk5KS8vT6+99pp69+4tib+nZlaUc5eeni5XV1dVqlSpQE1pZCdC7A1YLBabdcMwCrTh9jZs2DB9//332rZtW4FtnF/zOHbsmEaOHKkNGzbI3d290DrOqXnk5+crODhY06dPlyS1aNFC+/fvV1xcnPr372+t45yax9q1a7Vy5Up98MEHaty4sZKTkxUdHS1fX18NGDDAWsc5Na+bOXeldX65naAQVatWlZOTU4F/OWRkZBT4VwhuX8OHD9dnn32mTZs2qWbNmtZ2b29vSeL8msiePXuUkZGhoKAgOTs7y9nZWVu2bNGcOXPk7OxsPW+cU/Pw8fFRo0aNbNoCAwOtD8/y99R8XnzxRb388svq1auXmjZtqn79+mnUqFGaMWOGJM6pmRXl3Hl7eysnJ0enTp0qtKYkEWIL4erqqqCgICUkJNi0JyQkqE2bNg6aFYrKMAwNGzZMH330kf71r38pICDAZntAQIC8vb1tzm9OTo62bNnC+b1NdejQQfv27VNycrJ1CQ4OVp8+fZScnKw6depwTk2mbdu2BV599+OPP6pWrVqS+HtqRhcuXFCZMrbRwsnJyfqKLc6peRXl3AUFBcnFxcWmJi0tTT/88EPpnN8Sf1TsDrJmzRrDxcXFWLJkiXHgwAEjOjra8PT0NI4ePeroqeEGhg4dalSsWNHYvHmzkZaWZl0uXLhgrXn99deNihUrGh999JGxb98+o3fv3oaPj4+RlZXlwJmjOP78dgLD4Jyazc6dOw1nZ2fjtddeM3766Sdj1apVRtmyZY2VK1daazin5jJgwACjRo0axhdffGEcOXLE+Oijj4yqVasaL730krWGc3r7Onv2rJGUlGQkJSUZkoxZs2YZSUlJxq+//moYRtHOXWRkpFGzZk3jm2++Mfbu3Ws8/PDDxn333Wfk5uaW+HwJsTcwb948o1atWoarq6tx//33W1/RhNubJLvLsmXLrDX5+fnGpEmTDG9vb8PNzc148MEHjX379jlu0ii2a0Ms59R8Pv/8c6NJkyaGm5ub0bBhQ2PRokU22zmn5pKVlWWMHDnS8Pf3N9zd3Y06deoY48ePN7Kzs601nNPb16ZNm+z+f+eAAQMMwyjaubt48aIxbNgwo3LlyoaHh4fx2GOPGampqaUyX4thGEbJX98FAAAASg/3xAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxALALbR582ZZLBadPn3a0VO5I1gsFn3yySeOngYAByDEArgrDBw4UBaLpcBy+PDhUhvzoYceUnR0tE1bmzZtlJaWpooVK5bauABwN3B29AQA4FZ55JFHtGzZMpu2atWqFajLycmRq6trqczB1dVV3t7epdL39ZTmMQGAI3AlFsBdw83NTd7e3jaLk5OTHnroIQ0bNkwxMTGqWrWqOnXqJEmaNWuWmjZtKk9PT/n5+SkqKkrnzp2z6XP79u0KCwtT2bJlValSJXXu3FmnTp3SwIEDtWXLFs2ePdt61ffo0aN2bydYt26dGjduLDc3N9WuXVtvv/22zRi1a9fW9OnTNWjQIJUvX17+/v5atGjRdY+1sGM6cOCAunbtqnLlysnLy0v9+vVTZmamzX7Dhw9XdHS0KlWqJC8vLy1atEjnz5/Xc889p/Lly6tu3br66quvbMbbsmWLWrVqJTc3N/n4+Ojll19Wbm6uJGnhwoWqUaOG8vPzbfZ54oknNGDAAOv6559/rqCgILm7u6tOnTqaMmWKtQ9J+umnn/Tggw/K3d1djRo1UkJCwnV/BgDubIRYAJD03nvvydnZWdu3b9fChQslSWXKlNGcOXP0ww8/6L333tO//vUvvfTSS9Z9kpOT1aFDBzVu3FiJiYnatm2bHn/8ceXl5Wn27NkKCQnRkCFDlJaWprS0NPn5+RUYd8+ePXrmmWfUq1cv7du3T5MnT9aECRO0fPlym7q3335bwcHBSkpKUlRUlIYOHaqDBw8W65jS0tIUFham5s2ba/fu3Vq/fr3++9//6plnnimwX9WqVbVz504NHz5cQ4cOVY8ePdSmTRvt3btXnTt3Vr9+/XThwgVJ0vHjx9W1a1e1bNlS3333neLi4rRkyRK9+uqrkqQePXooMzNTmzZtso5x6tQpff311+rTp48k6euvv1bfvn01YsQIHThwQAsXLtTy5cv12muvSZLy8/P11FNPycnJSd9++60WLFigMWPGFOXUArhTGQBwFxgwYIDh5ORkeHp6Wpenn37aMAzDCAsLM5o3b37DPj788EOjSpUq1vXevXsbbdu2LbQ+LCzMGDlypE3bpk2bDEnGqVOnDMMwjGeffdbo1KmTTc2LL75oNGrUyLpeq1Yto2/fvtb1/Px8o3r16kZcXNx1x772mCZMmGCEh4fbtB07dsyQZBw6dMi6X7t27azbc3NzDU9PT6Nfv37WtrS0NEOSkZiYaBiGYYwbN85o0KCBkZ+fb62ZN2+eUa5cOSMvL88wDMN44oknjEGDBlm3L1y40PD29jZyc3MNwzCM0NBQY/r06TZze//99w0fHx/DMAzj66+/NpycnIxjx45Zt3/11VeGJOPjjz8u9OcA4M7FPbEA7hrt27dXXFycdd3T09P65+Dg4AL1mzZt0vTp03XgwAFlZWUpNzdXly5d0vnz5+Xp6ank5GT16NHjL80pJSVFTz75pE1b27ZtFRsbq7y8PDk5OUmSmjVrZt1usVjk7e2tjIyM6/Z97THt2bNHmzZtUrly5QrU/vzzz7r33nsLjOXk5KQqVaqoadOm1jYvLy9Jso6fkpKikJAQWSwWm2M4d+6cfvvtN/n7+6tPnz56/vnnNX/+fLm5uWnVqlXq1auX9fj27NmjXbt2Wa+8SlJeXp4uXbqkCxcuKCUlRf7+/qpZs6Z1e0hIyHWPH8CdjRAL4K7h6empevXqFbrtz3799Vd17dpVkZGRmjZtmipXrqxt27Zp8ODBunz5siTJw8PjL8/JMAyb8He17VouLi426xaLpcA9pte69pjy8/P1+OOP64033ihQ6+Pjc92x/tx2db5Xx7/eMVxtf/zxx5Wfn68vv/xSLVu21NatWzVr1iybuU2ZMkVPPfVUgbm5u7vb/ZlcOyaAuwshFgDs2L17t3Jzc/X222+rTJkrjw98+OGHNjXNmjXTxo0bNWXKFLt9uLq6Ki8v77rjNGrUSNu2bbNp27Fjh+69917rVcqScv/992vdunWqXbu2nJ1L7n/+GzVqpHXr1tmE2R07dqh8+fKqUaOGpCuB/6mnntKqVat0+PBh3XvvvQoKCrKZ26FDhwr9R0ajRo2UmpqqEydOyNfXV5KUmJhYYscAwHx4sAsA7Khbt65yc3P1zjvv6JdfftH777+vBQsW2NSMHTtWu3btUlRUlL7//nsdPHhQcXFx1qf9a9eurf/85z86evSoMjMz7V45/fvf/66NGzdq2rRp+vHHH/Xee+9p7ty5Gj16dIkf0wsvvKA//vhDvXv31s6dO/XLL79ow4YNGjRo0A3D9vVERUXp2LFjGj58uA4ePKhPP/1UkyZNUkxMjPUfAJLUp08fffnll1q6dKn69u1r08fEiRO1YsUKTZ48Wfv371dKSorWrl2rV155RZLUsWNHNWjQQP3799d3332nrVu3avz48Tc9ZwDmR4gFADuaN2+uWbNm6Y033lCTJk20atUqzZgxw6bm3nvv1YYNG/Tdd9+pVatWCgkJ0aeffmq9yjl69Gg5OTmpUaNGqlatmlJTUwuMc//99+vDDz/UmjVr1KRJE02cOFFTp07VwIEDS/yYfH19tX37duXl5alz585q0qSJRo4cqYoVK9qEzeKqUaOG4uPjtXPnTt13332KjIzU4MGDrQH0qocffliVK1fWoUOH9Oyzz9ps69y5s7744gslJCSoZcuWat26tWbNmqVatWpJuvKmiI8//ljZ2dlq1aqVIiIibO6fBXD3sRj2bjQCAAAAbmNciQUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKbz/wEi075LUfSB/QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDx0lEQVR4nO3deVhV5f7+8XvLLCo5AhooaCnOClqohB4V0uas1JxI8UTkgDQ55FxpZR4iFdNQMi2tr9lgZpKpOdBxgo4p2qRiBocwFYcEgfX7w5/7tGOjYMBm6/t1Xeu6XM/6rGc9i5Xn3D6swWQYhiEAAADAjlSz9QAAAACAsiLEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAJAKZlMJn300Uc276MyHTlyRCaTSWlpaVWyPwA3LkIsgBtWRESETCZTseXHH3+0Wp+Zmak+ffqUqu9p06apffv2f6uP65GPj48yMzPVunVrSdLmzZtlMpl06tQp2w4MgN1xtPUAAMCW7rzzTi1dutSirX79+hbr+fn5cnZ2lpeX198+Xnn0Yc8cHBxu+J8BgPLBTCyAG5qLi4u8vLwslp49e2rUqFGKjY1VvXr11Lt3b0nFbwX45ZdfNGDAANWpU0fu7u4KCgrSv//9byUlJWn69On69ttvzbO7SUlJVvvYt2+f/vGPf8jNzU1169bVP//5T509e9a8PSIiQvfff7/mzJkjb29v1a1bV08++aQuXrx41XObMGGCbr/99mLtbdu21dSpU83rS5cuVUBAgFxdXdWiRQstWLDgiv1u2bJFnTt3louLi7y9vTV+/HgVFBSYtxcVFenll19Ws2bN5OLiIl9fX7344ouSLG8nOHLkiHr06CFJql27tkwmkyIiIrRs2TLVrVtXeXl5Fsft16+fhg4detXzBnBjYCYWAKx4++239cQTT2j79u0yDKPY9rNnzyo0NFSNGjXSJ598Ii8vL+3du1dFRUXq37+/vvvuO61fv15ffvmlJMnDw6NYH+fPn9edd96p22+/Xbt27VJ2drYiIyM1atQoc+iVpE2bNsnb21ubNm3Sjz/+qP79+6t9+/YaOXLkFc9h0KBBmj17tn766Sc1bdpUkrR//37t27dP//d//ydJWrx4saZOnap58+apQ4cOSk1N1ciRI+Xu7q5hw4YV6/P48ePq27evOWwePHhQI0eOlKurq6ZNmybpUnhevHix/vWvf6lbt27KzMzUwYMHi/Xl4+Oj1atXq1+/fjp06JBq1aolNzc3OTs7a8yYMfrkk0/08MMPS5JycnK0du1arV+//ornDOAGYgDADWrYsGGGg4OD4e7ubl4eeughIzQ01Gjfvn2xeknGmjVrDMMwjDfffNOoWbOmceLECat9T5061WjXrt0V+1i0aJFRu3Zt4+zZs+btn332mVGtWjUjKyvLPMbGjRsbBQUF5pqHH37Y6N+/f6nOsW3btsaMGTPM6xMmTDA6depkXvfx8THeffddi31mzpxpBAcHG4ZhGIcPHzYkGampqYZhGMbEiRON5s2bG0VFReb6+fPnGzVq1DAKCwuN3Nxcw8XFxVi8eLHV8fy1v02bNhmSjJMnT1rUPfHEE0afPn3M63FxcYa/v7/FcQHc2LidAMANrUePHkpLSzMv8fHxkqSgoKAr7peWlqYOHTqoTp0613zs9PR0tWvXTu7u7ua2rl27qqioSIcOHTK3tWrVSg4ODuZ1b29vZWdnl+oYgwYN0ooVKyRJhmHovffe06BBgyRJv/32m44dO6YRI0aoRo0a5uWFF17QTz/9VOKYg4ODZTKZLMZ89uxZ/fLLL0pPT1deXp569uxZ+h+EFSNHjtSGDRt0/PhxSZduebj8IB4ASNxOAOAG5+7urmbNmlltvxI3N7e/fWzDMEoMZX9ud3JyKratqKioVMd49NFHNX78eO3du1d//PGHjh07pgEDBkiSuY/Fixfrtttus9jvz6H5amM2/v/tFiaTqVx+LpLUoUMHtWvXTsuWLVN4eLj27dunTz/9tFz6BnB9YCYWAK5B27ZtlZaWpt9//93qdmdnZxUWFl6xj5YtWyotLU3nzp0zt23fvl3VqlXTrbfeWi7jvPnmm3XHHXdoxYoVWrFihXr16iVPT09Jkqenpxo1aqSff/5ZzZo1s1j8/PxKHPOOHTss7hPesWOHatasqUaNGumWW26Rm5ubNm7cWKrxOTs7S5LVn1VkZKSWLl2qJUuWqFevXvLx8Snr6QO4jhFiAeAaDBw4UF5eXrr//vu1fft2/fzzz1q9erVSUlIkSU2aNNHhw4eVlpamnJycYk/aS5d+1e/q6qphw4bpu+++06ZNmzR69GgNGTLEHDTLw6BBg7Ry5Up98MEHGjx4sMW2adOmadasWXr99df1/fffa9++fVq6dKnmzp1rta/o6GgdO3ZMo0eP1sGDB/Xxxx9r6tSpio2NVbVq1eTq6qrnnntOzz77rJYtW6affvpJ33zzjRITE63217hxY5lMJq1du1a//fabxZsZBg0apOPHj2vx4sUaPnx4uf08AFwfCLEAcA2cnZ21YcMGNWjQQH379lWbNm00e/Zs86/h+/XrpzvvvFM9evRQ/fr19d577xXro3r16vriiy/0+++/q1OnTnrooYfUs2dPzZs3r1zH+vDDD+vEiRM6f/687r//fottkZGReuutt5SUlKQ2bdooNDRUSUlJJc7ENmrUSOvWrdPOnTvVrl07RUVFacSIEXr++efNNZMnT9ZTTz2lKVOmKCAgQP379y/xHt5GjRpp+vTpGj9+vDw9PTVq1Cjztlq1aqlfv36qUaNGsXEDgMkwrLw7BgCAKqB3794KCAgwP3AHAJcRYgEAVc7vv/+uDRs2aNCgQTpw4ICaN29u6yEBqGJ4OwEA2KmtW7eqT58+JW7/8/2l9qZjx446efKkXn75ZQIsAKuYiQUAO/XHH3+Y36NqjbVXhwHA9YIQCwAAALvD2wkAAABgdwixAAAAsDs82GVFUVGRfv31V9WsWZPvdAMAAFQiwzB05swZNWzYUNWqXWG+1bCx+fPnG02aNDFcXFyMjh07Gl9//fUV6zdv3mx07NjRcHFxMfz8/IyEhASL7UuXLjUkFVv++OOPUo/p2LFjVvtgYWFhYWFhYWGpnOXYsWNXzGs2nYldtWqVYmJitGDBAnXt2lVvvvmm+vTpowMHDsjX17dY/eHDh9W3b1+NHDlSy5cv1/bt2xUdHa369eurX79+5rpatWrp0KFDFvu6urqWelw1a9aUJB07dky1atW6xrMDAABAWeXm5srHx8ecx0pi07cT3HbbberYsaMSEhLMbQEBAbr//vs1a9asYvXPPfecPvnkE6Wnp5vboqKi9O2335q/V56UlKSYmBidOnXqmseVm5srDw8PnT59mhALAABQiUqbw2z2YFd+fr727NmjsLAwi/awsDDt2LHD6j4pKSnF6sPDw7V7925dvHjR3Hb27Fk1btxYN998s+6++26lpqZecSx5eXnKzc21WAAAAFB12SzE5uTkqLCwUJ6enhbtnp6eysrKsrpPVlaW1fqCggLl5ORIklq0aKGkpCR98skneu+99+Tq6qquXbvqhx9+KHEss2bNkoeHh3nx8fH5m2cHAACAimTzV2z99el/wzCu+EYAa/V/br/99ts1ePBgtWvXTiEhIXr//fd166236o033iixzwkTJuj06dPm5dixY9d6OgAAAKgENnuwq169enJwcCg265qdnV1stvUyLy8vq/WOjo6qW7eu1X2qVaumTp06XXEm1sXFRS4uLmU8AwAAUJkKCwstbh+EfXJycpKDg8Pf7sdmIdbZ2VmBgYFKTk7WAw88YG5PTk7WfffdZ3Wf4OBgffrppxZtGzZsUFBQkJycnKzuYxiG0tLS1KZNm/IbPAAAqDSGYSgrK+tvPbSNquWmm26Sl5fX33ofv01fsRUbG6shQ4YoKChIwcHBWrRokTIyMhQVFSXp0q/5jx8/rmXLlkm69CaCefPmKTY2ViNHjlRKSooSExP13nvvmfucPn26br/9dt1yyy3Kzc1VfHy80tLSNH/+fJucIwAA+HsuB9gGDRqoevXqfIjIjhmGofPnzys7O1uS5O3tfc192TTE9u/fXydOnNCMGTOUmZmp1q1ba926dWrcuLEkKTMzUxkZGeZ6Pz8/rVu3TuPGjdP8+fPVsGFDxcfHW7wj9tSpU/rnP/+prKwseXh4qEOHDvr666/VuXPnSj8/AADw9xQWFpoDbEm3DsK+uLm5Sbp0S2iDBg2u+dYCm74ntqriPbEAAFQNFy5c0OHDh9WkSRNz+IH9++OPP3TkyBH5+fkV+yBVlX9PLAAAQGlxC8H1pTyuJyEWAAAAdsem98QCAIDiUvuW7t7PDutO2PUxcWWXf92empqq9u3b23o4FiIiInTq1Cl99NFHNhsDIRYAANilvHTnSj2eS0B+meojIiL09ttvF2sPDw/X+vXrr7q/j4+PMjMzVa9evavWVnbgff3112Xrx6oIsQAAXEFVnqF0ahN71ZqL++ZWwkhQkjvvvFNLly61aCvtB5YcHBzk5eVVEcP62zw8PGw9BO6JBQCgPDi1ib3qghuPi4uLvLy8LJbatWtLuvRwU0JCgvr06SM3Nzf5+fnpgw8+MO975MgRmUwmpaWlSZJOnjypQYMGqX79+nJzc9Mtt9xiDsh+fn6SpA4dOshkMql79+7mfpYuXaqAgAC5urqqRYsWWrBgQbFjvP/++woJCZGbm5s6deqk77//Xrt27VJQUJBq1KihO++8U7/99pt5v4iICN1///3m9aKiIr388stq1qyZXFxc5OvrqxdffLG8f5wWmIkFANiN0syKcs9mxSptGGcGuHQmT56s2bNn6/XXX9c777yjgQMHqnXr1goICLBae+DAAX3++eeqV6+efvzxR/3xxx+SpJ07d6pz58768ssv1apVKzk7X7rVYvHixZo6darmzZunDh06KDU1VSNHjpS7u7uGDRtm7nvq1KmKi4uTr6+vhg8froEDB6pWrVp6/fXXVb16dT3yyCOaMmWKEhISrJ7HhAkTtHjxYv3rX/9St27dlJmZqYMHD1bAT+x/CLEAgDKz91+xS7YJWaW/h7NmhY4DlWft2rWqUaOGRdtzzz2nyZMnS5IefvhhRUZGSpJmzpyp5ORkvfHGGxazpZdlZGSoQ4cOCgoKkiQ1adLEvK1+/fqSpLp161rcgjBz5ky99tprevDBByVdmrE9cOCA3nzzTYsQ+/TTTys8PFySNHbsWA0cOFAbN25U165dJUkjRoxQUlKS1XM8c+aMXn/9dc2bN8/cZ9OmTdWtW7fS/ZCuESEWAHBDIlCiMvTo0aPY7GWdOnXMfw4ODrbYFhwcbL594K+eeOIJ9evXT3v37lVYWJjuv/9+denSpcRj//bbbzp27JhGjBihkSNHmtsLCgqK3dPatm1b8589PT0lSW3atLFou/yp2L9KT09XXl6eevbsWeJYKgIhFgDs3PUwK3r2/Xml7JFACfvi7u6uZs2alWmfkj4E0KdPHx09elSfffaZvvzyS/Xs2VNPPvmk5syZY7W+qKhI0qVbCm677TaLbX/91KuTk1Ox4/+17XJ/f2WrL6nxYBcAAICNfPPNN8XWW7RoUWJ9/fr1FRERoeXLlysuLk6LFi2SJPM9sIWFheZaT09PNWrUSD///LOaNWtmsVx+EKw83HLLLXJzc9PGjRvLrc/SYCYWAG4Q5TsryowoUBp5eXnKysqyaHN0dDS/+/WDDz5QUFCQunXrphUrVmjnzp1KTEy02teUKVMUGBioVq1aKS8vT2vXrjU/ANagQQO5ublp/fr1uvnmm+Xq6ioPDw9NmzZNY8aMUa1atdSnTx/l5eVp9+7dOnnypGJjy+eNGa6urnruuef07LPPytnZWV27dtVvv/2m/fv3a8SIEeVyDGsIsQBQhZXuvk0CJUrGvb+2tX79enl7e1u0NW/e3Pzk/vTp07Vy5UpFR0fLy8tLK1asUMuWLa325ezsrAkTJujIkSNyc3NTSEiIVq5cKelSMI6Pj9eMGTM0ZcoUhYSEaPPmzYqMjFT16tX16quv6tlnn5W7u7vatGmjmJiYcj3PyZMny9HRUVOmTNGvv/4qb29vRUVFlesx/spk2PpzC1VQbm6uPDw8dPr0adWqVcvWwwFwAytNADnwVOnCR+djw65epNLNxNrimKU9ri2OWdrj3ijHlMrv7Q8XLlzQ4cOH5efnJ1dX13Lps6owmUxas2aNxftWbxRXuq6lzWHMxAJAKZR2Nqv8w12pygDghsODXQAAALA7zMQCuG5V5VdPAQB3dP49hFgAN7zSPLXPr/UBoGohxAKoFKWZFS3vB3J42hqo2krzvwtGPR+5TXivEkYDe0OIBfC38PoeAIAtEGKBG1D5zor+3dEAAFB2hFjgOsKsKADgRkGIBWyIp+cBALg2hFjg/yvvQFmenwst/TfvS1UGAKgCNm/erB49eujkyZO66aabbD0cq6ZNm6aPPvpIaWlpth5KMYRYVCrbffWoNE+zEygBwJ6UdvKhvFzrb8V27NihkJAQ9e7dW+vXry/nUVkq72D89NNPa/To0X9/YBWAEHsDK+9Aya+8AQAobsmSJRo9erTeeustZWRkyNfX19ZDuirDMFRYWKgaNWqoRo0ath6OVXx2FuXGqU3sVRcAAG4k586d0/vvv68nnnhCd999t5KSkq5Yv2PHDt1xxx1yc3OTj4+PxowZo3Pnzpm3L1++XEFBQapZs6a8vLz06KOPKjs7W5J05MgR9ejRQ5JUu3ZtmUwmRURESJLy8vI0ZswYNWjQQK6ururWrZt27dpl7nfz5s0ymUz64osvFBQUJBcXF23dulXTpk1T+/btLca4ZMkStWrVSi4uLvL29taoUaP+/g/qGjATa2d4NRIA4EZz9Nffdb7AVapmGVvsYSZu1apVat68uZo3b67Bgwdr9OjRmjx5skwmU7Haffv2KTw8XDNnzlRiYqJ+++03jRo1SqNGjdLSpUslSfn5+Zo5c6aaN2+u7OxsjRs3ThEREVq3bp18fHy0evVq9evXT4cOHVKtWrXk5uYmSXr22We1evVqvf3222rcuLFeeeUVhYeH68cff1SdOnXMY3j22Wc1Z84c+fv766abbtKWLVssxpiQkKDY2FjNnj1bffr00enTp7V9+/YK/AmWjBBbRfBqJAAArj+JiYkaPHiwJOnOO+/U2bNntXHjRvXq1atY7auvvqpHH31UMTExkqRbbrlF8fHxCg0NVUJCglxdXTV8+HBzvb+/v+Lj49W5c2edPXtWNWrUMAfSBg0amO+JPXfunBISEpSUlKQ+ffpIkhYvXqzk5GQlJibqmWeeMfc5Y8YM9e7du8TzeeGFF/TUU09p7Nix5rZOnTpd2w/nb7KHf8QAAADYnUOHDmnnzp0aMGCAJMnR0VH9+/fXkiVLrNbv2bNHSUlJ5vtQa9SoofDwcBUVFenw4cOSpNTUVN13331q3Lixatasqe7du0uSMjIyShzHTz/9pIsXL6pr167mNicnJ3Xu3Fnp6ekWtUFBQSX2k52drV9//VU9e/Ys1flXNGZiAQAAKkBiYqIKCgrUqFEjc5thGHJyctLJkyeL1RcVFenxxx/XmDFjim3z9fXVuXPnFBYWprCwMC1fvlz169dXRkaGwsPDlZ+fX+I4DMOQpGK3MBiGUazN3d29xH4u35pQVTATCwAAUM4KCgq0bNkyvfbaa0pLSzMv3377rRo3bqwVK1YU26djx47av3+/mjVrVmxxdnbWwYMHlZOTo9mzZyskJEQtWrQwP9R1mbPzpdsTCwsLzW2X99+2bZu57eLFi9q9e7cCAgJKfU41a9ZUkyZNtHHjxrL+OCoEM7EAAKDclecHX+zR2rVrdfLkSY0YMUIeHh4W2x566CElJibqX//6l0X7c889p9tvv11PPvmkRo4cKXd3d6Wnpys5OVlvvPGGfH195ezsrDfeeENRUVH67rvvNHPmTIs+GjduLJPJpLVr16pv375yc3NTjRo19MQTT+iZZ55RnTp15Ovrq1deeUXnz5/XiBEjynRe06ZNU1RUlBo0aKA+ffrozJkz2r59u03eJctMLAAAQDlLTExUr169igVYSerXr5/S0tK0d+9ei/a2bdtqy5Yt+uGHHxQSEqIOHTpo8uTJ8vb2liTVr19fSUlJ+uCDD9SyZUvNnj1bc+bMseijUaNGmj59usaPHy9PT0/z669mz56tfv36aciQIerYsaN+/PFHffHFF6pdu3aZzmvYsGGKi4vTggUL1KpVK91999364YcfytRHeWEmFgAA2KWiV9Ms1gNb+dhmIFZ8+umnJW7r2LGj+T7V2FjLd6h36tRJGzZsKHHfgQMHauDAgRZtl/u6bPLkyZo8ebJFm6urq+Lj4xUfH2+13+7duxfrR7o08zpt2jSLtscff1yPP/54iWOsLMzEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B0e7AIAADeM8z+klaqu+i3tK3Qc+PtsPhO7YMEC+fn5ydXVVYGBgdq6desV67ds2aLAwEC5urrK399fCxcuLLF25cqVMplMuv/++8t51AAAALAlm4bYVatWKSYmRpMmTVJqaqpCQkLUp0+fEr//e/jwYfXt21chISFKTU3VxIkTNWbMGK1evbpY7dGjR/X0008rJCSkok8DAAAAlcymIXbu3LkaMWKEIiMjFRAQoLi4OPn4+CghIcFq/cKFC+Xr66u4uDgFBAQoMjJSw4cPL/ai38LCQg0aNEjTp0+Xv79/ZZwKAAAAKpHNQmx+fr727NmjsLAwi/awsDDt2LHD6j4pKSnF6sPDw7V7925dvHjR3DZjxgzVr1+/1J9Sy8vLU25ursUCAACAqstmITYnJ0eFhYXy9PS0aPf09FRWVpbVfbKysqzWFxQUKCcnR5K0fft2JSYmavHixaUey6xZs+Th4WFefHyqzhc/AAAASqtJkyaKi4uz9TAqhc3fTmAymSzWDcMo1na1+svtZ86c0eDBg7V48WLVq1ev1GOYMGGCxWffcnNzCbIAAFRxtw/4VwX2vqxYy8V9c0u995WyjCQNGzZMSUlJV9x/zZo1PJx+BTYLsfXq1ZODg0OxWdfs7Oxis62XeXl5Wa13dHRU3bp1tX//fh05ckT33HOPeXtRUZEkydHRUYcOHVLTpk2L9evi4iIXF5e/e0oAAACSpMzMTPOfV61apSlTpujQoUPmNjc3N1sM67pis9sJnJ2dFRgYqOTkZIv25ORkdenSxeo+wcHBxeo3bNigoKAgOTk5qUWLFtq3b5/S0tLMy7333qsePXooLS2N2VUAAHDN9uw/VmwpiZeXl3nx8PCQyWSyaHv33XfVtGlTOTs7q3nz5nrnnXfM+zZp0kSS9MADD8hkMpnXf/rpJ913333y9PRUjRo11KlTJ3355ZcVecpVmk3fThAbG6u33npLS5YsUXp6usaNG6eMjAxFRUVJuvRr/qFDh5rro6KidPToUcXGxio9PV1LlixRYmKinn76aUmSq6urWrdubbHcdNNNqlmzplq3bi1nZ2ebnCcAAMBla9as0dixY/XUU0/pu+++0+OPP67HHntMmzZtkiTt2rVLkrR06VJlZmaa18+ePau+ffvqyy+/VGpqqsLDw3XPPfeU+GrS651N74nt37+/Tpw4oRkzZigzM1OtW7fWunXr1LhxY0mXpuL/fGH8/Py0bt06jRs3TvPnz1fDhg0VHx+vfv362eoUAAAAymTOnDmKiIhQdHS0pEuTet98843mzJmjHj16qH79+pKkm266SV5eXub92rVrp3bt2pnXX3jhBa1Zs0affPKJRo0aVbknUQXY/MGu6Oho80X8K2s3PIeGhmrv3r2l7v9KN00DAABUtvT0dP3zn/+0aOvatatef/31K+537tw5TZ8+XWvXrtWvv/6qgoIC/fHHH8zEAgAAoIIUFer8D2nmP+f/N+N/65Lysn+56hsNnnnmGX3xxReaM2eOmjVrJjc3Nz300EPKz8+vuHFXYTa9JxYAAOBG07ypn1L2pFm0/Tv1WwUEBJjXnZycVFhYaFGzdetWRURE6IEHHlCbNm3k5eWlI0eOVMKIqyZmYgEAACpRzIhhGhLzrNq3aqHuwZ217quv9fGGrzR/8bvmNx54N7xZKz/4WDXqNZGzk7Nqedykeg0aafm7q3TPPffIZDJp8uTJ5leJ3oiYiQUAAKhE9/TuoVcnPaO4t5Yp6K6HtGTVai2cNU1BnYPNNTHPPK9/p2zVXb1u16CH+0qSYp+bolq1PNSlSxfdc889Cg8PV8eOHW11GjbHTCwAALBL36wcZ7HewT/7qvtc+MWhVH2n59e9pjFZExERoUe6trdoG/noIxr56CN/Oeb//nxH9966o3tvi+0NG/lo4ZKVCmz1v/feP/nkkxY1N9LtBczEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAFRdRYUyDEkybD0SlKPyeL8tr9gCAABV1+lsnTh9XrVqnJZr9ZqSqeRXZF3Iu3p3eYWlDMNFBaUqu3DhQqnqSnXccj5mVWQYhvLz8/Xbb7+pWrVqcnZ2vua+CLEAAKDKMhUW6Nm4zXq8XzsFBnjL0bHkXyK7GWeu2t/Fk6X7JfRvBedLVXfYsXSBMj/7t0o/ZlVWvXp1+fr6qlq1a78pgBALAACqtN9O/aEXl3wjjxouqlndWdWqmazW7f3Xiqv29WOie6mOOSrr/lLVleaYpT1uaY/53SfjS1VXVTk4OMjR0VEmk/XrWFqEWAAAUOUZhnTqTJ5OnSn5ngGXakev2o8pp2apjnc0M7dUdaU5ZmmPW9pjurq6lqrueseDXQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHdsHmIXLFggPz8/ubq6KjAwUFu3br1i/ZYtWxQYGChXV1f5+/tr4cKFFts//PBDBQUF6aabbpK7u7vat2+vd955pyJPAQAAAJXMpiF21apViomJ0aRJk5SamqqQkBD16dNHGRkZVusPHz6svn37KiQkRKmpqZo4caLGjBmj1atXm2vq1KmjSZMmKSUlRf/5z3/02GOP6bHHHtMXX3xRWacFAACACmbTEDt37lyNGDFCkZGRCggIUFxcnHx8fJSQkGC1fuHChfL19VVcXJwCAgIUGRmp4cOHa86cOeaa7t2764EHHlBAQICaNm2qsWPHqm3bttq2bVtlnRYAAAAqmKOtDpyfn689e/Zo/PjxFu1hYWHasWOH1X1SUlIUFhZm0RYeHq7ExERdvHhRTk5OFtsMw9BXX32lQ4cO6eWXXy7fEwAAAKjCUvvWLVVdh3UnKngkFcNmITYnJ0eFhYXy9PS0aPf09FRWVpbVfbKysqzWFxQUKCcnR97e3pKk06dPq1GjRsrLy5ODg4MWLFig3r17lziWvLw85eXlmddzc3Ov9bQAAABQCWwWYi8zmUwW64ZhFGu7Wv1f22vWrKm0tDSdPXtWGzduVGxsrPz9/dW9e3erfc6aNUvTp0+/xjMAAABAZbNZiK1Xr54cHByKzbpmZ2cXm229zMvLy2q9o6Oj6tb935R5tWrV1KxZM0lS+/btlZ6erlmzZpUYYidMmKDY2Fjzem5urnx8fK7ltAAAAFAJbPZgl7OzswIDA5WcnGzRnpycrC5duljdJzg4uFj9hg0bFBQUVOx+2D8zDMPidoG/cnFxUa1atSwWAAAAVF02vZ0gNjZWQ4YMUVBQkIKDg7Vo0SJlZGQoKipK0qUZ0uPHj2vZsmWSpKioKM2bN0+xsbEaOXKkUlJSlJiYqPfee8/c56xZsxQUFKSmTZsqPz9f69at07Jly0p84wEAAADsj01DbP/+/XXixAnNmDFDmZmZat26tdatW6fGjRtLkjIzMy3eGevn56d169Zp3Lhxmj9/vho2bKj4+Hj169fPXHPu3DlFR0frl19+kZubm1q0aKHly5erf//+lX5+AAAAVZ1Tm9ir1lzcN7cSRlI2Nn+wKzo6WtHR0Va3JSUlFWsLDQ3V3r17S+zvhRde0AsvvFBewwMAAEAVZPPPzgIAAABlVaaZ2J07dyowMFAODg6Sir8OKy8vTx9//LEeeeSR8h0lAAAAJEl56c6lrKxZoeOwtTLNxAYHB+vEif991cHDw0M///yzef3UqVMaOHBg+Y0OAAAAsKJMIfbyhwVKWi+pDQAAAChP5X5P7JW+tgUAAACUBx7sAgAAgN0p8yu2Dhw4YP70q2EYOnjwoM6ePStJysnJKd/RAQAAAFaUOcT27NnT4r7Xu+++W9Kl2wj++rYCAAAAoCKUKcQePny4osYBAAAAlFqZQuzlz8ECAAAAtlSmB7t+//13/fLLLxZt+/fv12OPPaZHHnlE7777brkODgAAALCmTCH2ySef1Ny5c83r2dnZCgkJ0a5du5SXl6eIiAi988475T5IAAAA4M/KFGK/+eYb3Xvvveb1ZcuWqU6dOkpLS9PHH3+sl156SfPnzy/3QQIAAAB/VqYQm5WVJT8/P/P6V199pQceeECOjpdurb333nv1ww8/lO8IAQAAgL8oU4itVauWTp06ZV7fuXOnbr/9dvO6yWRSXl5euQ0OAAAAsKZMIbZz586Kj49XUVGR/u///k9nzpzRP/7xD/P277//Xj4+PuU+SAAAAODPyvSKrZkzZ6pXr15avny5CgoKNHHiRNWuXdu8feXKlQoNDS33QQIAAAB/VqYQ2759e6Wnp2vHjh3y8vLSbbfdZrF9wIABatmyZbkOEAAAAPirMn92tn79+rrvvvusbrvrrrv+9oAAAACAqylTiF22bFmp6oYOHXpNgwEAAABKo0whNiIiQjVq1JCjo6MMw7BaYzKZCLEAAACoUGUKsQEBAfrvf/+rwYMHa/jw4Wrbtm1FjQsAAAAoUZlesbV//3599tln+uOPP3THHXcoKChICQkJys3NrajxAQAAAMWUKcRK0m233aY333xTmZmZGjNmjN5//315e3tr0KBBfOgAAAAAlaLMIfYyNzc3DR06VNOnT1fnzp21cuVKnT9/vjzHBgAAAFh1TSH2+PHjeumll3TLLbdowIAB6tSpk/bv32/x4QMAAACgopTpwa73339fS5cu1ZYtWxQeHq7XXntNd911lxwcHCpqfAAAAEAxZQqxAwYMkK+vr8aNGydPT08dOXJE8+fPL1Y3ZsyYchsgAAAA8FdlCrG+vr4ymUx69913S6wxmUyEWAAAAFSoMoXYI0eOXLXm+PHj1zoWAAAAoFSu+e0Ef5WVlaUxY8aoWbNm5dUlAAAAYFWZQuypU6c0aNAg1a9fXw0bNlR8fLyKioo0ZcoU+fv7KyUlRUuWLKmosQIAAACSyng7wcSJE/X1119r2LBhWr9+vcaNG6f169frwoUL+vzzzxUaGlpR4wQAAADMyhRiP/vsMy1dulS9evVSdHS0mjVrpltvvVVxcXEVNDwAAACguDLdTvDrr7+qZcuWkiR/f3+5uroqMjKyQgYGAAAAlKRMIbaoqEhOTk7mdQcHB7m7u5f7oAAAAIArKdPtBIZhKCIiQi4uLpKkCxcuKCoqqliQ/fDDD8tvhAAAAMBflCnEDhs2zGJ98ODB5ToYAAAAoDTKFGKXLl1aUeMAAAAASq3cPnYAAAAAVBabh9gFCxbIz89Prq6uCgwM1NatW69Yv2XLFgUGBsrV1VX+/v5auHChxfbFixcrJCREtWvXVu3atdWrVy/t3LmzIk8BAAAAlcymIXbVqlWKiYnRpEmTlJqaqpCQEPXp00cZGRlW6w8fPqy+ffsqJCREqampmjhxosaMGaPVq1ebazZv3qyBAwdq06ZNSklJka+vr8LCwnT8+PHKOi0AAABUMJuG2Llz52rEiBGKjIxUQECA4uLi5OPjo4SEBKv1CxculK+vr+Li4hQQEKDIyEgNHz5cc+bMMdesWLFC0dHRat++vVq0aKHFixerqKhIGzdurKzTAgAAQAWzWYjNz8/Xnj17FBYWZtEeFhamHTt2WN0nJSWlWH14eLh2796tixcvWt3n/PnzunjxourUqVPiWPLy8pSbm2uxAAAAoOqyWYjNyclRYWGhPD09Ldo9PT2VlZVldZ+srCyr9QUFBcrJybG6z/jx49WoUSP16tWrxLHMmjVLHh4e5sXHx6eMZwMAAIDKZPMHu0wmk8W6YRjF2q5Wb61dkl555RW99957+vDDD+Xq6lpinxMmTNDp06fNy7Fjx8pyCgAAAKhkZXpPbHmqV6+eHBwcis26ZmdnF5ttvczLy8tqvaOjo+rWrWvRPmfOHL300kv68ssv1bZt2yuOxcXFxfwVMgAAAFR9NpuJdXZ2VmBgoJKTky3ak5OT1aVLF6v7BAcHF6vfsGGDgoKC5OTkZG579dVXNXPmTK1fv15BQUHlP3gAAADYlE1vJ4iNjdVbb72lJUuWKD09XePGjVNGRoaioqIkXfo1/9ChQ831UVFROnr0qGJjY5Wenq4lS5YoMTFRTz/9tLnmlVde0fPPP68lS5aoSZMmysrKUlZWls6ePVvp5wcAAICKYbPbCSSpf//+OnHihGbMmKHMzEy1bt1a69atU+PGjSVJmZmZFu+M9fPz07p16zRu3DjNnz9fDRs2VHx8vPr162euWbBggfLz8/XQQw9ZHGvq1KmaNm1apZwXAAAAKpZNQ6wkRUdHKzo62uq2pKSkYm2hoaHau3dvif0dOXKknEYGAACAqsrmbycAAAAAyooQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOyOzUPsggUL5OfnJ1dXVwUGBmrr1q1XrN+yZYsCAwPl6uoqf39/LVy40GL7/v371a9fPzVp0kQmk0lxcXEVOHoAAADYgk1D7KpVqxQTE6NJkyYpNTVVISEh6tOnjzIyMqzWHz58WH379lVISIhSU1M1ceJEjRkzRqtXrzbXnD9/Xv7+/po9e7a8vLwq61QAAABQiWwaYufOnasRI0YoMjJSAQEBiouLk4+PjxISEqzWL1y4UL6+voqLi1NAQIAiIyM1fPhwzZkzx1zTqVMnvfrqqxowYIBcXFwq61QAAABQiWwWYvPz87Vnzx6FhYVZtIeFhWnHjh1W90lJSSlWHx4ert27d+vixYvXPJa8vDzl5uZaLAAAAKi6bBZic3JyVFhYKE9PT4t2T09PZWVlWd0nKyvLan1BQYFycnKueSyzZs2Sh4eHefHx8bnmvgAAAFDxbP5gl8lkslg3DKNY29XqrbWXxYQJE3T69GnzcuzYsWvuCwAAABXP0VYHrlevnhwcHIrNumZnZxebbb3My8vLar2jo6Pq1q17zWNxcXHh/lkAAAA7YrOZWGdnZwUGBio5OdmiPTk5WV26dLG6T3BwcLH6DRs2KCgoSE5OThU2VgAAAFQtNr2dIDY2Vm+99ZaWLFmi9PR0jRs3ThkZGYqKipJ06df8Q4cONddHRUXp6NGjio2NVXp6upYsWaLExEQ9/fTT5pr8/HylpaUpLS1N+fn5On78uNLS0vTjjz9W+vkBAACgYtjsdgJJ6t+/v06cOKEZM2YoMzNTrVu31rp169S4cWNJUmZmpsU7Y/38/LRu3TqNGzdO8+fPV8OGDRUfH69+/fqZa3799Vd16NDBvD5nzhzNmTNHoaGh2rx5c6WdGwAAACqOTUOsJEVHRys6OtrqtqSkpGJtoaGh2rt3b4n9NWnSxPywFwAAAK5PNn87AQAAAFBWhFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDu2DzELliwQH5+fnJ1dVVgYKC2bt16xfotW7YoMDBQrq6u8vf318KFC4vVrF69Wi1btpSLi4tatmypNWvWVNTwAQAAYAM2DbGrVq1STEyMJk2apNTUVIWEhKhPnz7KyMiwWn/48GH17dtXISEhSk1N1cSJEzVmzBitXr3aXJOSkqL+/ftryJAh+vbbbzVkyBA98sgj+ve//11ZpwUAAIAKZtMQO3fuXI0YMUKRkZEKCAhQXFycfHx8lJCQYLV+4cKF8vX1VVxcnAICAhQZGanhw4drzpw55pq4uDj17t1bEyZMUIsWLTRhwgT17NlTcXFxlXRWAAAAqGg2C7H5+fnas2ePwsLCLNrDwsK0Y8cOq/ukpKQUqw8PD9fu3bt18eLFK9aU1CcAAADsj6OtDpyTk6PCwkJ5enpatHt6eiorK8vqPllZWVbrCwoKlJOTI29v7xJrSupTkvLy8pSXl2deP336tCQpNze3TOf0d+SdNUpVd/bi1euMwryr1khSbjkes7THtcUxS3vcG+WYpT3ujXLM0h6X/3Ztf8zSHpf/jmx/zNIe90Y5ZmmPW6X/263ETHT5WIZxlfEbNnL8+HFDkrFjxw6L9hdeeMFo3ry51X1uueUW46WXXrJo27ZtmyHJyMzMNAzDMJycnIx3333Xomb58uWGi4tLiWOZOnWqIYmFhYWFhYWFhaWKLMeOHbtilrTZTGy9evXk4OBQbIY0Ozu72EzqZV5eXlbrHR0dVbdu3SvWlNSnJE2YMEGxsbHm9aKiIv3++++qW7euTCaTcnNz5ePjo2PHjqlWrVplOk9UPVzP6w/X9PrDNb2+cD2vPxV5TQ3D0JkzZ9SwYcMr1tksxDo7OyswMFDJycl64IEHzO3Jycm67777rO4THBysTz/91KJtw4YNCgoKkpOTk7kmOTlZ48aNs6jp0qVLiWNxcXGRi4uLRdtNN91UrK5WrVr85buOcD2vP1zT6w/X9PrC9bz+VNQ19fDwuGqNzUKsJMXGxmrIkCEKCgpScHCwFi1apIyMDEVFRUm6NEN6/PhxLVu2TJIUFRWlefPmKTY2ViNHjlRKSooSExP13nvvmfscO3as7rjjDr388su677779PHHH+vLL7/Utm3bbHKOAAAAKH82DbH9+/fXiRMnNGPGDGVmZqp169Zat26dGjduLEnKzMy0eGesn5+f1q1bp3Hjxmn+/Plq2LCh4uPj1a9fP3NNly5dtHLlSj3//POaPHmymjZtqlWrVum2226r9PMDAABAxbBpiJWk6OhoRUdHW92WlJRUrC00NFR79+69Yp8PPfSQHnroofIYnqRLtxtMnTq12C0HsE9cz+sP1/T6wzW9vnA9rz9V4ZqaDONq7y8AAAAAqhabfrELAAAAuBaEWAAAANgdQiwAAADsDiH2KhYsWCA/Pz+5uroqMDBQW7dutfWQUAqzZs1Sp06dVLNmTTVo0ED333+/Dh06ZFFjGIamTZumhg0bys3NTd27d9f+/fttNGKU1axZs2QymRQTE2Nu45ran+PHj2vw4MGqW7euqlevrvbt22vPnj3m7VxT+1JQUKDnn39efn5+cnNzk7+/v2bMmKGioiJzDde06vr66691zz33qGHDhjKZTProo48stpfm2uXl5Wn06NGqV6+e3N3dde+99+qXX36pkPESYq9g1apViomJ0aRJk5SamqqQkBD16dPH4rVfqJq2bNmiJ598Ut98842Sk5NVUFCgsLAwnTt3zlzzyiuvaO7cuZo3b5527dolLy8v9e7dW2fOnLHhyFEau3bt0qJFi9S2bVuLdq6pfTl58qS6du0qJycnff755zpw4IBee+01i4/NcE3ty8svv6yFCxdq3rx5Sk9P1yuvvKJXX31Vb7zxhrmGa1p1nTt3Tu3atdO8efOsbi/NtYuJidGaNWu0cuVKbdu2TWfPntXdd9+twsLC8h/wFT9Ke4Pr3LmzERUVZdHWokULY/z48TYaEa5Vdna2IcnYsmWLYRiGUVRUZHh5eRmzZ88211y4cMHw8PAwFi5caKthohTOnDlj3HLLLUZycrIRGhpqjB071jAMrqk9eu6554xu3bqVuJ1ran/uuusuY/jw4RZtDz74oDF48GDDMLim9kSSsWbNGvN6aa7dqVOnDCcnJ2PlypXmmuPHjxvVqlUz1q9fX+5jZCa2BPn5+dqzZ4/CwsIs2sPCwrRjxw4bjQrX6vTp05KkOnXqSJIOHz6srKwsi+vr4uKi0NBQrm8V9+STT+quu+5Sr169LNq5pvbnk08+UVBQkB5++GE1aNBAHTp00OLFi83buab2p1u3btq4caO+//57SdK3336rbdu2qW/fvpK4pvasNNduz549unjxokVNw4YN1bp16wq5vjb/2EFVlZOTo8LCQnl6elq0e3p6Kisry0ajwrUwDEOxsbHq1q2bWrduLUnma2jt+h49erTSx4jSWblypfbu3atdu3YV28Y1tT8///yzEhISFBsbq4kTJ2rnzp0aM2aMXFxcNHToUK6pHXruued0+vRptWjRQg4ODiosLNSLL76ogQMHSuLvqT0rzbXLysqSs7OzateuXaymIrITIfYqTCaTxbphGMXaULWNGjVK//nPf7Rt27Zi27i+9uPYsWMaO3asNmzYIFdX1xLruKb2o6ioSEFBQXrppZckSR06dND+/fuVkJCgoUOHmuu4pvZj1apVWr58ud599121atVKaWlpiomJUcOGDTVs2DBzHdfUfl3Ltauo68vtBCWoV6+eHBwciv3LITs7u9i/QlB1jR49Wp988ok2bdqkm2++2dzu5eUlSVxfO7Jnzx5lZ2crMDBQjo6OcnR01JYtWxQfHy9HR0fzdeOa2g9vb2+1bNnSoi0gIMD88Cx/T+3PM888o/Hjx2vAgAFq06aNhgwZonHjxmnWrFmSuKb2rDTXzsvLS/n5+Tp58mSJNeWJEFsCZ2dnBQYGKjk52aI9OTlZXbp0sdGoUFqGYWjUqFH68MMP9dVXX8nPz89iu5+fn7y8vCyub35+vrZs2cL1raJ69uypffv2KS0tzbwEBQVp0KBBSktLk7+/P9fUznTt2rXYq+++//57NW7cWBJ/T+3R+fPnVa2aZbRwcHAwv2KLa2q/SnPtAgMD5eTkZFGTmZmp7777rmKub7k/KnYdWblypeHk5GQkJiYaBw4cMGJiYgx3d3fjyJEjth4aruKJJ54wPDw8jM2bNxuZmZnm5fz58+aa2bNnGx4eHsaHH35o7Nu3zxg4cKDh7e1t5Obm2nDkKIs/v53AMLim9mbnzp2Go6Oj8eKLLxo//PCDsWLFCqN69erG8uXLzTVcU/sybNgwo1GjRsbatWuNw4cPGx9++KFRr14949lnnzXXcE2rrjNnzhipqalGamqqIcmYO3eukZqaahw9etQwjNJdu6ioKOPmm282vvzyS2Pv3r3GP/7xD6Ndu3ZGQUFBuY+XEHsV8+fPNxo3bmw4OzsbHTt2NL+iCVWbJKvL0qVLzTVFRUXG1KlTDS8vL8PFxcW44447jH379tlu0Cizv4ZYrqn9+fTTT43WrVsbLi4uRosWLYxFixZZbOea2pfc3Fxj7Nixhq+vr+Hq6mr4+/sbkyZNMvLy8sw1XNOqa9OmTVb/v3PYsGGGYZTu2v3xxx/GqFGjjDp16hhubm7G3XffbWRkZFTIeE2GYRjlP78LAAAAVBzuiQUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFgEq0efNmmUwmnTp1ytZDuS6YTCZ99NFHth4GABsgxAK4IURERMhkMhVbfvzxxwo7Zvfu3RUTE2PR1qVLF2VmZsrDw6PCjgsANwJHWw8AACrLnXfeqaVLl1q01a9fv1hdfn6+nJ2dK2QMzs7O8vLyqpC+r6QizwkAbIGZWAA3DBcXF3l5eVksDg4O6t69u0aNGqXY2FjVq1dPvXv3liTNnTtXbdq0kbu7u3x8fBQdHa2zZ89a9Ll9+3aFhoaqevXqql27tsLDw3Xy5ElFRERoy5Ytev31182zvkeOHLF6O8Hq1avVqlUrubi4qEmTJnrttdcsjtGkSRO99NJLGj58uGrWrClfX18tWrToiuda0jkdOHBAffv2VY0aNeTp6akhQ4YoJyfHYr/Ro0crJiZGtWvXlqenpxYtWqRz587pscceU82aNdW0aVN9/vnnFsfbsmWLOnfuLBcXF3l7e2v8+PEqKCiQJL355ptq1KiRioqKLPa59957NWzYMPP6p59+qsDAQLm6usrf31/Tp0839yFJP/zwg+644w65urqqZcuWSk5OvuLPAMD1jRALAJLefvttOTo6avv27XrzzTclSdWqVVN8fLy+++47vf322/rqq6/07LPPmvdJS0tTz5491apVK6WkpGjbtm265557VFhYqNdff13BwcEaOXKkMjMzlZmZKR8fn2LH3bNnjx555BENGDBA+/bt07Rp0zR58mQlJSVZ1L322msKCgpSamqqoqOj9cQTT+jgwYNlOqfMzEyFhoaqffv22r17t9avX6///ve/euSRR4rtV69ePe3cuVOjR4/WE088oYcfflhdunTR3r17FR4eriFDhuj8+fOSpOPHj6tv377q1KmTvv32WyUkJCgxMVEvvPCCJOnhhx9WTk6ONm3aZD7GyZMn9cUXX2jQoEGSpC+++EKDBw/WmDFjdODAAb355ptKSkrSiy++KEkqKirSgw8+KAcHB33zzTdauHChnnvuudJcWgDXKwMAbgDDhg0zHBwcDHd3d/Py0EMPGYZhGKGhoUb79u2v2sf7779v1K1b17w+cOBAo2vXriXWh4aGGmPHjrVo27RpkyHJOHnypGEYhvHoo48avXv3tqh55plnjJYtW5rXGzdubAwePNi8XlRUZDRo0MBISEi44rH/ek6TJ082wsLCLNqOHTtmSDIOHTpk3q9bt27m7QUFBYa7u7sxZMgQc1tmZqYhyUhJSTEMwzAmTpxoNG/e3CgqKjLXzJ8/36hRo4ZRWFhoGIZh3Hvvvcbw4cPN2998803Dy8vLKCgoMAzDMEJCQoyXXnrJYmzvvPOO4e3tbRiGYXzxxReGg4ODcezYMfP2zz//3JBkrFmzpsSfA4DrF/fEArhh9OjRQwkJCeZ1d3d385+DgoKK1W/atEkvvfSSDhw4oNzcXBUUFOjChQs6d+6c3N3dlZaWpocffvhvjSk9PV333XefRVvXrl0VFxenwsJCOTg4SJLatm1r3m4ymeTl5aXs7Owr9v3Xc9qzZ482bdqkGjVqFKv96aefdOuttxY7loODg+rWras2bdqY2zw9PSXJfPz09HQFBwfLZDJZnMPZs2f1yy+/yNfXV4MGDdI///lPLViwQC4uLlqxYoUGDBhgPr89e/Zo165d5plXSSosLNSFCxd0/vx5paeny9fXVzfffLN5e3Bw8BXPH8D1jRAL4Ibh7u6uZs2albjtz44ePaq+ffsqKipKM2fOVJ06dbRt2zaNGDFCFy9elCS5ubn97TEZhmER/i63/ZWTk5PFuslkKnaP6V/99ZyKiop0zz336OWXXy5W6+3tfcVj/bnt8ngvH/9K53C5/Z577lFRUZE+++wzderUSVu3btXcuXMtxjZ9+nQ9+OCDxcbm6upq9Wfy12MCuLEQYgHAit27d6ugoECvvfaaqlW79PjA+++/b1HTtm1bbdy4UdOnT7fah7OzswoLC694nJYtW2rbtm0WbTt27NCtt95qnqUsLx07dtTq1avVpEkTOTqW3//8t2zZUqtXr7YIszt27FDNmjXVqFEjSZcC/4MPPqgVK1boxx9/1K233qrAwECLsR06dKjEf2S0bNlSGRkZ+vXXX9WwYUNJUkpKSrmdAwD7w4NdAGBF06ZNVVBQoDfeeEM///yz3nnnHS1cuNCiZsKECdq1a5eio6P1n//8RwcPHlRCQoL5af8mTZro3//+t44cOaKcnByrM6dPPfWUNm7cqJkzZ+r777/X22+/rXnz5unpp58u93N68skn9fvvv2vgwIHauXOnfv75Z23YsEHDhw+/ati+kujoaB07dkyjR4/WwYMH9fHHH2vq1KmKjY01/wNAkgYNGqTPPvtMS5Ys0eDBgy36mDJlipYtW6Zp06Zp//79Sk9P16pVq/T8889Lknr16qXmzZtr6NCh+vbbb7V161ZNmjTpmscMwP4RYgHAivbt22vu3Ll6+eWX1bp1a61YsUKzZs2yqLn11lu1YcMGffvtt+rcubOCg4P18ccfm2c5n376aTk4OKhly5aqX7++MjIyih2nY8eOev/997Vy5Uq1bt1aU6ZM0YwZMxQREVHu59SwYUNt375dhYWFCg8PV+vWrTV27Fh5eHhYhM2yatSokdatW6edO3eqXbt2ioqK0ogRI8wB9LJ//OMfqlOnjg4dOqRHH33UYlt4eLjWrl2r5ORkderUSbfffrvmzp2rxo0bS7r0pog1a9YoLy9PnTt3VmRkpMX9swBuPCbD2o1GAAAAQBXGTCwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3fl/EKGhWPydnasAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -651,7 +755,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5Z0lEQVR4nO3deVxU9f4/8NeZGWZAlEFlEQVxLVByiTEFr3YtL14rM7+3q7fFpaAkcgvT9Fo31IxWxRa4Wi7XpfLadlsso991wahMGlJzTTBShsuiDoLKMDPn9wdx5DADMjgzLPN6Ph48ct58zvl83hx4dz7zOXOOIIqiCCIiIiIiIiK6LoqWHgARERERERFRe8AJNhEREREREZETcIJNRERERERE5AScYBMRERERERE5ASfYRERERERERE7ACTYRERERERGRE3CCTUREREREROQEnGATEREREREROQEn2EREREREREROwAk2tYjdu3dDEARcuHChpYfSoJSUFAwZMqSlh0FEBAA4ffo0BEFAbm5uSw/FxowZM3DPPfe09DCIiNyqV69eSEtLa+lhUCvDCTa5VHZ2NpRKJf785z+7vC9nT9qffPJJ/L//9/+csi8iohkzZkAQBJuvptbHsLAwGAwGREVFXbOtuyfjq1evxsaNG93SFxFRffZqa92vGTNmXHP7jz/+2C1jpfZP1dIDoPZt/fr1mD17Nt5++20UFBSgZ8+eLT2kaxJFERaLBR07dkTHjh1bejhE1I78+c9/xoYNG2QxjUbTpG2VSiW6devmimFdN61W29JDICIPZjAYpH9v27YN//jHP3D8+HEp5uPj0xLDIg/FFWxymcrKSvz73//GY489hrvuuuuaqxvZ2dkYPXo0fHx8EBYWhjlz5qCyslL6/pYtW6DT6dCpUyd069YN999/P4qLiwHUrNaMGTMGANC5c2fZu5VVVVWYM2cOgoKC4O3tjT/84Q/44YcfpP3Wrnzv3LkTOp0OGo0GWVlZdi8RX79+PQYOHAiNRoOQkBDMmjXr+n9QROQxNBoNunXrJvvq3LkzgJoVlIyMDIwfPx4+Pj7o3bs3tm/fLm1bf1X6/PnzeOCBBxAYGAgfHx/0799fmrz37t0bADB06FAIgoA//vGP0n42bNiAyMhIeHt7IyIiAunp6TZ9/Pvf/8aoUaPg4+ODYcOG4cSJE/jhhx+g0+nQsWNH/PnPf0ZJSYm0Xf1LxK1WK1588UX069cPGo0GPXv2xIoVK5z94yQiAgBZTdVqtRAEQRZ755130LdvX6jVatx4443YvHmztG2vXr0AAJMmTYIgCNLrU6dOYeLEiQgODkbHjh0xbNgwfP311y2QHbU1nGCTy2zbtg033ngjbrzxRjz44IPYsGEDRFG02/bQoUMYN24c/u///g8HDx7Etm3bsG/fPtkE1mQyYfny5fjpp5/w8ccfIz8/X5pEh4WF4YMPPgAAHD9+HAaDAatXrwYALFy4EB988AH+9a9/4ccff0S/fv0wbtw4nDt3TjaGhQsXIjU1FUePHsWgQYNsxpiRkYHHH38cjz76KA4dOoRPPvkE/fr1c8aPiogIAPDMM8/gL3/5C3766Sc8+OCDuO+++3D06NEG2x45cgRffPEFjh49ioyMDAQEBAAA9u/fDwD4+uuvYTAY8OGHHwIA3nrrLSxZsgQrVqzA0aNH8fzzz+OZZ57Bv/71L9m+n332WTz99NP48ccfoVKpcN9992HhwoVYvXo1srKycOrUKfzjH/9oMI/FixfjxRdflMb4zjvvIDg42Bk/IiIih3z00UeYO3cu5s+fj8OHD2PmzJl46KGHsGvXLgCQFl02bNgAg8Egva6oqMAdd9yBr7/+Gnq9HuPGjcOECRNQUFDQYrlQGyESuUhsbKyYlpYmiqIoVldXiwEBAWJmZqYoiqK4a9cuEYB4/vx5URRFcerUqeKjjz4q2z4rK0tUKBTi5cuX7e5///79IgDx4sWLdvcpiqJYUVEhenl5iVu3bpViJpNJ7N69u/jSSy/Jtvv4449l+3/22WfFwYMHS6+7d+8uLlmyxPEfBBGRKIrTp08XlUql6OvrK/tatmyZKIqiCEBMTEyUbTN8+HDxscceE0VRFPPz80UAol6vF0VRFCdMmCA+9NBDdvuq37ZWWFiY+M4778hiy5cvF2NiYmTbvf3229L33333XRGA+P/+3/+TYqmpqeKNN94oy23ixImiKIpieXm5qNFoxLfeequJPxkiIufZsGGDqNVqpdexsbHiI488Imvz17/+Vbzjjjuk1wDEjz766Jr7HjBggPj6669Lr8PDw8VVq1Zd75CpneFnsMkljh8/jv3790urJiqVClOmTMH69esxduxYm/Y5OTn45ZdfsHXrVikmiiKsVivy8/MRGRkJvV6PlJQU5Obm4ty5c7BarQCAgoICDBgwwO44Tp06herqaowcOVKKeXl54ZZbbrFZFdLpdA3mU1xcjMLCQtx+++1N/yEQEdUzZswYZGRkyGJdunSR/h0TEyP7XkxMTIM3Knvsscfwl7/8BT/++CPi4uJwzz33IDY2tsG+S0pK8NtvvyE+Ph6PPPKIFDebzTafoa57FU/tyvNNN90ki9V+RKe+o0ePoqqqivWSiFqFo0eP4tFHH5XFRo4cKV3p2JDKykosXboUn332GQoLC2E2m3H58mWuYNM1cYJNLrFu3TqYzWb06NFDiomiCC8vL5w/f96mvdVqxcyZMzFnzhyb7/Xs2ROVlZWIi4tDXFwctmzZgsDAQBQUFGDcuHEwmUwNjkP8/ZJ0QRBs4vVjvr6+De6HN8cgImfw9fV1+KMl9WtVrfHjx+PXX3/F559/jq+//hq33347Hn/8cbzyyit229e+KfnWW29h+PDhsu8plUrZay8vL5v+68dq91cf6yURtTZNOQ+sb8GCBdi5cydeeeUV9OvXDz4+Prj33nsbPe8kAvgZbHIBs9mMTZs24dVXX0Vubq709dNPPyE8PFy2Sl3r5ptvxs8//4x+/frZfKnVahw7dgylpaV44YUXMGrUKERERNisnqjVagCAxWKRYrXb79u3T4pVV1fjwIEDiIyMbHJOnTp1Qq9evfjYLiJyqe+++87mdURERIPtAwMDMWPGDGzZsgVpaWlYu3YtAPv1MDg4GD169EBeXp5Nna29KZoz9O/fHz4+PqyXRNQqREZGys4DgZob69Y9D/Ty8pLVSwDIysrCjBkzMGnSJNx0003o1q0bTp8+7Y4hUxvHFWxyus8++wznz59HfHy8zWWH9957L9atW4dVq1bJ4k899RRGjBiBxx9/HI888gh8fX1x9OhRZGZm4vXXX0fPnj2hVqvx+uuvIzExEYcPH8by5ctl+wgPD4cgCPjss89wxx13wMfHBx07dsRjjz2GBQsWoEuXLujZsydeeuklXLp0CfHx8Q7llZKSgsTERAQFBWH8+PG4ePEivvnmG8yePbt5Pygi8jhVVVUoKiqSxVQqlXRzsu3bt0On0+EPf/gDtm7div3792PdunV29/WPf/wD0dHRGDhwIKqqqvDZZ59JJ4xBQUHw8fHBl19+idDQUHh7e0Or1SIlJQVz5syBn58fxo8fj6qqKhw4cADnz59HcnKyU3L09vbGU089hYULF0KtVmPkyJEoKSnBzz//7HDdJSK6XgsWLMDkyZNx88034/bbb8enn36KDz/8UHZH8NpFlJEjR0Kj0aBz587o168fPvzwQ0yYMAGCIOCZZ55p8Modorq4gk1Ot27dOowdO9buc1H/8pe/IDc3Fz/++KMsPmjQIOzZswcnT57EqFGjMHToUDzzzDMICQkBULNKs3HjRmzfvh0DBgzACy+8YHMZZI8ePbB06VIsWrQIwcHB0h3IX3jhBfzlL3/B1KlTcfPNN+OXX37Bzp07pUfjNNX06dORlpaG9PR0DBw4EHfddRdOnjzp0D6IyLN9+eWXCAkJkX394Q9/kL6/dOlSvPfeexg0aBD+9a9/YevWrQ3eY0KtVmPx4sUYNGgQRo8eDaVSiffeew9AzaT9tddew5o1a9C9e3dMnDgRAJCQkIC3334bGzduxE033YRbb70VGzdudOoKNlBzh/P58+fjH//4ByIjIzFlypQGP7NNRORK99xzD1avXo2XX34ZAwcOxJo1a7BhwwbZ4wtfffVVZGZmIiwsDEOHDgUArFq1Cp07d0ZsbCwmTJiAcePG4eabb26hLKgtEUSxgecmERERkdsIgoCPPvpI9jxpIiIialu4gk1ERERERETkBJxgExERERERETkBb3JGRETUCvATW0RERG0fV7CJiIiIiIiInIATbCIiIiIiIiIn4ASbiIiIiIiIyAnaxGewrVYrCgsL0alTJwiC0NLDIaI2TBRFXLx4Ed27d4dC0fbfY2R9JCJnYo0kIrKvqfWxTUywCwsLERYW1tLDIKJ25LfffkNoaGhLD+O6sT4SkSuwRhIR2Xet+tgmJtidOnUCUJOMn59fC4+GiNqy8vJyhIWFSXWlrWN9JCJnYo0kIrKvqfWxTUyway/p8fPzY3EkIqdoL5cKsj4SkSuwRhIR2Xet+tj2P1xDRERERERE1Apwgk1ERERERETkBM26RDw9PR0vv/wyDAYDBg4ciLS0NIwaNarB9lVVVVi2bBm2bNmCoqIihIaGYsmSJXj44YebPXCiprBYLKiurm7pYVALUCqVUKlU7eYyRyJnY330bF5eXlAqlS09DKJWSRRFmM1mWCyWlh4KtYDrrY8OT7C3bduGefPmIT09HSNHjsSaNWswfvx4HDlyBD179rS7zeTJk/G///0P69atQ79+/VBcXAyz2dzsQRM1RUVFBc6cOQNRFFt6KNRCOnTogJCQEKjVarf16cgbkDNmzMC//vUvm/iAAQPw888/u3qo5MFYH0kQBISGhqJjx44tPRSiVsVkMsFgMODSpUstPRRqIddbHwXRwf+7Dh8+HDfffDMyMjKkWGRkJO655x6kpqbatP/yyy/xt7/9DXl5eejSpUuzBlleXg6tVguj0cgbVFCTWCwWnDx5Eh06dEBgYCBXMT2MKIowmUwoKSmBxWJB//79pecVurKebNu2DVOnTpW9Afn22283+Aak0WjE5cuXpddmsxmDBw/G7NmzkZKS0qQ+WR/JUayPJIoiSkpKcOnSJfTv31+2UtPeakp7y4dcy2q14uTJk1AqlQgMDIRarWaN9DDOqI8OrWCbTCbk5ORg0aJFsnhcXByys7PtbvPJJ59Ap9PhpZdewubNm+Hr64u7774by5cvh4+PjyPdEzVZdXU1RFFEYGAgf888lI+PD7y8vPDrr7/CZDLB29vb5X2uXLkS8fHxSEhIAACkpaVh586dyMjIsPsGpFarhVarlV5//PHHOH/+PB566CGXj5U8F+sjAUBgYCBOnz6N6upqt14q7ujHDLdu3YqXXnoJJ0+ehFarxZ///Ge88sor6Nq1q9vGTJ7DZDLBarUiLCwMHTp0aOnhUAu53vro0AS7tLQUFosFwcHBsnhwcDCKiorsbpOXl4d9+/bB29sbH330EUpLS5GUlIRz585h/fr1drepqqpCVVWV9Lq8vBxAzepO7aXlCoUCCoUCVqsVVqtValsbt1gsskvfGoorlUoIgmBzyXrtD7P+Zy8aiqtUKoiiKIsLggClUmkzxobizMl5OdXdtu6/BUGwe0lka4s7orWNvTXlpFAopM9R1f7u1P09dKbmvAFZ37p16zB27FiEh4c32Ib1kTmxPjZdaxt7a8ypfu1wJUc/Zrhv3z5MmzYNq1atwoQJE3D27FkkJiYiISEBH330kUvHSp7N1X8L1Lpd71ULzbrJWf1ORVFscCBWqxWCIGDr1q3SSs3KlStx77334s0337T77nlqaiqWLl1qE9fr9fD19QVQ885C3759kZ+fj5KSEqlNaGgoQkNDceLECRiNRinep08fBAUF4fDhw7JLMiMiIuDv7w+9Xi87CRk0aBDUajUOHDggG4NOp4PJZMLBgwelmFKpxLBhw2A0GnHs2DEp7uPjg8GDB6O0tBR5eXlSXKvVIjIyEoWFhThz5owUZ07OyykqKgpWqxWXLl2CxWLBiy++iKKiInh5ecFqtdqcFKtUqgbjFovF5uRXqVRK8W7duuGpp56CWq2GWq3GlStXZPvRaDTw8vLC5cuXZfvx9vaGSqXCpUuXZCc/Pj4+UCgUqKyslOXk6+sLq9Uq+7kIggBfX19YLBZcuXJFNsYOHTrAbDbLJmNKpRI+Pj6orq6GyWSS4iqVCt7e3qiqqpKdpLf1nICaiefhw4eleN0VY2dqzhuQdRkMBnzxxRd45513Gm3H+sic2lJ9BIBu3brhmWeeadO1xFPqY2hoqEsvo3b0Kp/vvvsOvXr1wpw5cwAAvXv3xsyZM/HSSy+5bIxE9S1fvhwGg8El+w4JCcEzzzzjkn1Ty3HoM9gmkwkdOnTA9u3bMWnSJCk+d+5c5ObmYs+ePTbbTJ8+Hd988w1++eUXKXb06FEMGDAAJ06cQP/+/W22sbdCExYWhrKyMqnwczWDOTU29urqapw+fRq9evWCt7c3kpKSsGP/UXTQBsCZLhlLccctkUhPTwfQ+EpB7VhqL1UePnw41qxZI2ufkJCA6dOnN3q53O7du2EymRAXFwegZmL2wAMP4L///a9Nny2xEvPrr79Cp9PJJgyOKCwsxIMPPijlk5KSgr///e/S56AcGUtVVRXy8vLQs2dP6edeUVGBzp07O/3zeIWFhejRoweys7MRExMjxVesWIHNmzfLJmL2pKam4tVXX0VhYWGjN2VjfWRObaU+AvIaea2/3969e8tq5IgRI2T3ewEcr5GCIODs2bOymlK3z4bG4sp4fn4+hg0b1uwaWb/m19ZIjUZz3fVRoVCgoqLCJZ9Zbs45ZHZ2NsaMGYOPPvoI48ePR3FxMSZPnozIyEj885//tNsPayRzup6crly5gt9++02qjwB4DunGeGs5h7xy5QpOnz6N8PBw2TlZU88hHVrBVqvViI6ORmZmpqw4ZmZmYuLEiXa3GTlyJLZv346KigrpTmwnTpyAQqFAaGio3W00Gg00Go3tYFUq6V3XWrV/TPU1dL18Q/H6+21OvPYd/foaGqOjcU/JyRnvFGq1Wtx5551Qq9VQqVSoqKiA2tcfQ/46x257hSA06zO62ZtehCAIsis4Grus5P3330dUVJQsVtveYrFg3bp11+xzz549qKiowLhx4wAA3bt3x65du+y2bWgsro5f63uN6dGjhyyfZcuWYcGCBVJNaM4Y69YOV132FRAQAKVSabNaXVxcbLOqXZ8oili/fj2mTp16zTuesz56dk5tqT4CtjXyWn+/9mpkrebWyPo1pX6fLRVvbo2sX/Pr1sjrrY+u1JyrfGJjY7F161ZMmTIFV65cgdlsxt13343XX3+9wX54lY9n57RmzRr4+/vLatYvv/yCixcvYvDgwbJae/ToUZhMJgwePFiKaTQa9O3bF97e3tK85cqVK9B06owhf50DQRDk9VoUIYoi1Bq17ZsGit/fNBDrxhVQKhSwWK34dvOLMJvNqKysvOYVMaIoYtOmTRgwYAAASPnVXhFjsViwevVq6crghq6IyczMREVFBUaOHAlBENC9e3dkZmbK2rfkVT41P1JRNh5HrvLx9/fHrl27YDabceXKFSxbtgyPPfYY/Pz8HMqpdrxnzpzBuXPnpHhTr4J0uKImJydj6tSp0Ol0iImJwdq1a1FQUIDExEQAwOLFi3H27Fls2rQJAHD//fdj+fLleOihh7B06VKUlpZiwYIFePjhh3lzFbLLYDDg8++PXNc7hSGBZow1W1FpskBhBqotVlghwmzv87eiCFULPAt048aNeO+99xAUFIQjR47g9ddfx+LFi/Hkk0/irrvugtFoxPz58/H9999DoVAgOjoac+bMwT//+U9YrVZ8/fXX+L//+z9MmzYNOp0OpaWlAGru3P/3v/8dZrMZnTt3RkZGBgYMGIDdu3dj3rx5iI2NxTfffAOz2Yx//etf0Ol0dsdXUFAAnU6HM2fOSJO+6dOnS+P44Ycf8NRTT6G8vBxWqxVLlizBX/7yF5v9NDQeANiwYQNWr14NURTh5eWF999/HwCkfGrrSmxsLBQKBT755BMMGzYM+fn50s1H7rvvPowePRqPPfaYcw+Qg5rzBmStPXv24JdffkF8fLyrh0ltnKfUR4A1EmhfNbKWIx8zPHLkCObMmYN//OMfGDduHAwGAxYsWIDExMQG32xZvHgxkpOTpde1K9hDhw6VrWADNZec173nRW38hhtusFkZBWo+XlF/ZRQAhg4dKhtDbbz+707tyby93ymtViuL1/5MAgICZE/hqY13794d3bp1sxmjp+dkMBiw8dPd8PW/WiPNFitEUcS+X+SrtGazBSKAvSeuTt67BXbBU4/0wsUr1bhUXXOPk8tVNTc+q62RQp3Jovh7jRQEBZRK2zdKBYUCSjTwxqqggEqlkt74AdDgm5mCIMDHx0dqu3HjRmzbtk2qj6+99hr+/ve/Y/78+bjrrrtgNpsxf/587N+/HwqFAjfffDPmzJmD9evXw2q1Yu/evZg0aRKmT58uWzH+8ssvsWTJEqkepaenS/XxiSeekNXHjRs3yo5v3QWAgoICDBs2DGfOnJFymjFjhjSO+vXx73//u1Qfaz8K09h4gJr6+Nprr0n1cfv27QAgXSE0f/58ADX3wqlbH/Py8qT6eP/992P06NFITEyEl5eXlEvtR3BCQ0PRp08fKV5RUWH3+NTn8AR7ypQpKCsrw7Jly2AwGBAVFYUdO3ZIv/gGgwEFBQVS+44dOyIzMxOzZ8+GTqdD165dMXnyZDz33HOOdk0epIM2ALHTnmr29v4aQOPrBV//ACi9NPDy7gCF4gpUXraFy1x9xc4eXOPee++VCs306dOxb98+6PV6ux+VmDdvHjp27IiffvoJCoUCJSUlCAwMRGJiIioqKvDKK68AAE6fPi1tU1xcjAcffBC7du3CTTfdhK1bt2Ly5MnSZ+x+/vlnvP3220hPT8c///lPLFmyBDt37rQ71p49e2LIkCH45JNPcO+996KiogKffvopVq5ciQsXLmDmzJn4/PPPERISgtLSUkRHR2PkyJGyfTQ2nt27d2PFihXIyspCSEiI9LzJ4uJiaft//vOfWLNmDbKzs6V3kseOHYt33nkHCQkJKCoqwtdff4233nqrmUfEuRx9A7LWunXrMHz48AZX7ojqaq/1EWCNbM81sjlX+aSmpmLkyJFYsGABgJpVVF9fX4waNQrPPfccQkJCbLbhVT7MSd2xM4bd/6Td711L/foIAF7eHSBco0Y2dD3KteKOXAX517/+9Zr1sXZ/TzzxhEP1URAEFBcXY+rUqbJ6NGXKFBw+fBiCINjUx6efflpWH+uOPTw8vMH6aDQa7dbHP/zhD7J9NTae3bt34/nnn2+wPgqCgDVr1mDt2rU29fHdd9+1qY/1f+61rxUKhex3uKlXQTbrWsmkpCScPn0aVVVVyMnJwejRo6Xvbdy4Ebt375a1j4iIQGZmJi5duoTffvsNr776KlevySO9//77yM3NRW5uLjp37ow//OEPdk8cAeCzzz7DggULpD/mwMDAa+7/+++/x5AhQ3DTTTcBAB544AGcOXNGuqT0xhtvlN5tjImJwalTpxrd30MPPYSNGzcCAP7973/jtttuQ9euXZGdnY28vDyMHz8eQ4YMwdixYyGKIo4fP97k8Xz++eeYNm2adILUoUOHJj0SY+7cuXjzzTcBAGvWrMH9998vFc6WNmXKFKSlpWHZsmUYMmQI9u7d2+gbkEDNs7A/+OADrl4TgTWyPdfIulf51JWZmYnY2Fi721y6dMnmhLZ2UnW9d2MnamtYH9tOfXT9h26IqEHO/qNu6FK72ljdS4+USqXNDT/qmzRpEubMmYOioiJs2LABixcvlvoZNGgQ9u7da7NN3dWia42nOW655RZ4e3tjz549eOutt2xuzNHSkpKSkJSUZPd7tf+jqUur1UrvvBKRHGuk41pzjXT0Kp8JEybgkUceQUZGhnSJ+Lx583DLLbege/fuLZkKUYtjfXScu+ojJ9jkMS4bS3HgnZdt4larGQrYv4zpWi4ZSwEEOWF0tu6++268/PLLWL16tezyHj8/P5w9e9buNjExMYiPj8fRo0cRGRmJ9957D6GhoejWrds172Jtj7e3N/7617/i2WefRV5ennTToNjYWJw8eRL//e9/cdtttwEAcnNzpc/FNGU8EyZMwMMPP4xHH30U3bp1a3CS2alTJxiNRtn/SObOnYsHH3wQAwcOxA033OBwXkQk54r6CLBGskbKOfoxwxkzZuDixYt44403MH/+fPj7++O2227Diy++2FIpkIfiOSTroyM4wSaPEBjcDWOG2v9e9ZVL8FIq0KlTp2bsOcjuZ8CcYdWqVXjiiScQFRUFtVqNYcOG4a233sKkSZOwefNmDBkyRLqBT63AwEBs3rwZDzzwACwWC/z9/fHvf//7usbx0EMP4ZZbbsFTTz0lXZrXuXNnfPrpp1iwYAGeeOIJVFdXo2fPnvj4449l2zY2ntGjR+Ppp5+WHqWjVqulG/jUNX/+fNx2223w8fHBV199haCgINx777147LHHMGvWrOvKjYhcWR8B1kjWyPocvcpn9uzZmD17totHRdQwnkM2n6fWR4eeg91SysvLXfJMRmqdkpKSsOtY8XXfxGdSPy+EhPaUblLRkIqyInTyVsnuUEmt2/79+/Hggw/i2LFjjd5w4sqVK8jPz5eerwu0v3rS3vKhxrE+UlM0pUbaq49A+6sp7S0fatz11khH6iPAGtkWuaM+cgWbiNqUhIQEfPXVV3j77bdd9kxrIqK2ijWSiMg+d9VHTrCJPFxubi5mzJhhE58+fTqeeOIJ9w/oGt5+++2WHgIReRDWSCIi+1gf7eMEm8jDDRkyBLm5uS09DCKiVok1kojIPtZH+3jtELVLogiIv/+XPFcbuMUEkduxPhLA+khkz9X6yL8PT3a9x58TbGqXTBbAahVhtVS39FCoBdU+tsHLy6uFR0LUerA+EgCYTCYAkO7sS0TAJTNgsYqwmKpaeijUgq63PvIScWqXLluAMxet6HjhHLRKVaMPpbdaLTCba+4YSO2DKIq4dOkSiouL4e/vzxNIojpYH8lqtaKkpAQdOnRo9jPOidqjaitwpNQMjaoEXQAo1RrWSA/jjPrIqkrt1vdFVnT1uYxLV35Dw6URqKosR7lKIb1bRe2Hv78/unXr1tLDIGp1WB9JoVCgZ8+ejU4eiDxRTgkAmDDA/D8oFQJrpAe63vrICTa1W5Vm4INfLOjoZYGikb8P/cdbMLxPVzz77LPuGxy5nJeXF1euiRrA+khqtZqP8SJqQE4JcLDMjA4qoLE5Fmtk+3S99ZETbGrXrCJQfo03FQ0l52DsqpI9SJ6IqL1jfSQiali1FTCyRlIz8K1LIiIiIiIiIifgBJuIiIiIiIjICTjBJiIiIiIiInICTrCJiIiIiIiInIATbCIiIiIiIiIn4ASbiIiIiIiIyAk4wSYiIiIiIiJyAk6wiYiIiIiIiJyAE2wiIiIiIiIiJ+AEm4iIiIjcIj09Hb1794a3tzeio6ORlZXVYNsZM2ZAEASbr4EDB7pxxEREjuEEm4iIiIhcbtu2bZg3bx6WLFkCvV6PUaNGYfz48SgoKLDbfvXq1TAYDNLXb7/9hi5duuCvf/2rm0dORNR0nGATERERkcutXLkS8fHxSEhIQGRkJNLS0hAWFoaMjAy77bVaLbp16yZ9HThwAOfPn8dDDz3k5pETETUdJ9hERE7kyOWPAFBVVYUlS5YgPDwcGo0Gffv2xfr16900WiIi9zCZTMjJyUFcXJwsHhcXh+zs7CbtY926dRg7dizCw8NdMUQiIqdQtfQAiIjai9rLH9PT0zFy5EisWbMG48ePx5EjR9CzZ0+720yePBn/+9//sG7dOvTr1w/FxcUwm81uHjkRkWuVlpbCYrEgODhYFg8ODkZRUdE1tzcYDPjiiy/wzjvvNNquqqoKVVVV0uvy8nIAgNlslmqrQqGAQqGA1WqF1WqV2tbGLRYLRFG8ZlypVEIQBJuarVQqAQAWi6VJcZVKBVEUZXFBEKBUKm3G2FCcOdXEAUClVECJq+0tEAAIstjVOKCE2MS4AoAoi6uUNX3yOHlGTnX/3RhOsImInKTu5Y8AkJaWhp07dyIjIwOpqak27b/88kvs2bMHeXl56NKlCwCgV69e7hwyEZFbCYIgey2Kok3Mno0bN8Lf3x/33HNPo+1SU1OxdOlSm7her4evry8AIDAwEH379kV+fj5KSkqkNqGhoQgNDcWJEydgNBqleJ8+fRAUFITDhw/j8uXLUjwiIgL+/v7Q6/Wyk/lBgwZBrVbjwIEDsjHodDqYTCYcPHhQiimVSgwbNgxGoxHHjh2T4j4+Phg8eDBKS0uRl5cnxbVaLSIjI1FYWIgzZ85IceZUkxMA3Dlah96+56X48SudYLSoMcT3gmxyfOiSFiZRgeg6bQEgp7Iz1IIVN3W4um8LBORUdoFWWY0bvS9K8S6jdSg3nOZx8pCctFotmkIQ67510EqVl5dDq9XCaDTCz8+vpYdDLpaUlIRdx4oRO+0pt/SXvelFjIkIQnp6ulv6o5blqnpiMpnQoUMHbN++HZMmTZLic+fORW5uLvbs2WOzTVJSEk6cOAGdTofNmzfD19cXd999N5YvXw4fH58WzYdaJ9ZHcrXWVCNriaKIG264AXfddRdWrVrVaD/2VrDDwsJQVlYm5eNJK26eltOsWbOQdbIUMQ/Ml+KuXMH+duurGNU/AG+88QaPkwfkVFFRgc6dO1+zPnIFm4jICZpz+WNeXh727dsHb29vfPTRRygtLUVSUhLOnTvX4OewefmjZ+cE8PJHoPUfp7ack6uo1WpER0cjMzNTNsHOzMzExIkTG912z549+OWXXxAfH3/NfjQaDTQajU1cpVJBpZKf9tb+HOqr/dk3NV5/v82JC4JgN97QGB2Ne1JOZov193omZy9WE7d/BYX9uCCLmy3WRsfI49S+cmpqjeQEm4jIiRy5/NFqtUIQBGzdulW67GjlypW499578eabb9pdxeblj56dE8DLH9vCcWrLObnySpjk5GRMnToVOp0OMTExWLt2LQoKCpCYmAgAWLx4Mc6ePYtNmzbJtlu3bh2GDx+OqKgol42NiMhZmnWJeHp6Ol5++WUYDAYMHDgQaWlpGDVqlN22u3fvxpgxY2ziR48eRURERJP64yWQnoWXQJIrtabLH6dPn45vvvkGv/zyixQ7evQoBgwYgBMnTqB///422/DyR8/OiZc/to3j1JZzqqiocOk5V3p6Ol566SUYDAZERUVh1apVGD16NABgxowZOH36NHbv3i21NxqNCAkJwerVq/HII4843B/PIT0LzyHJlZpaTxxewW7OXXIB4Pjx47KBBAYGOto1EVGr1ZzLH0eOHInt27ejoqICHTt2BACcOHECCoUCoaGhdrfh5Y/MiZc/to3j1JZzcqWkpCQkJSXZ/d7GjRttYlqtFpcuXXLxqIiInMfhqlr3LrmRkZFIS0tDWFgYMjIyGt0uKCgI3bp1k74a+h8PEVFblZycjLfffhvr16/H0aNH8cQTT9hc/jht2jSp/f3334+uXbvioYcewpEjR7B3714sWLAADz/8cJNvckZERERErYdDK9gmkwk5OTlYtGiRLB4XF4fs7OxGtx06dCiuXLmCAQMG4Omnn7Z72Xgt3sTHs3MCeBMfoPUfp7aaU1OfYdgcU6ZMQVlZGZYtWyZd/rhjxw6Eh4cDqHmOa0FBgdS+Y8eOyMzMxOzZs6HT6dC1a1dMnjwZzz33nMvGSERERESu49AEuzl3yQ0JCcHatWsRHR2NqqoqbN68Gbfffjt2794tfeamPt7Ex7NzAngTn7ZwnNpqTk19hmFzOXr5Y0REBDIzM106JiIiIiJyD4duclZYWIgePXogOzsbMTExUnzFihXYvHmz7GS4MRMmTIAgCPjkk0/sfp838fHsnHgTn7ZxnNpqTk19hmFbwRv4eBbewIdcrb3VlPaWDzWONZJcySU3OQsICIBSqbRZrS4uLrZZ1W7MiBEjsGXLlga/z5v4MCfexKdtHKe2mJO7b+hDRERERJ7DoTPNunfJrSszMxOxsbFN3o9er0dISIgjXRMRERERERG1ag4/pis5ORlTp06FTqdDTEwM1q5da3OX3LNnz2LTpk0AgLS0NPTq1QsDBw6EyWTCli1b8MEHH+CDDz5wbiZERERERERELcjhCbajd8k1mUx48skncfbsWfj4+GDgwIH4/PPPcccddzgvCyIiIiIiIqIW5vAEG3DsLrkLFy7EwoULm9MNERERERERUZvBu/0QEREREREROQEn2EREREREREROwAk2ERERERERkRNwgk1ERERERETkBJxgExERERERETkBJ9hERERERERETsAJNhEREREREZETcIJNRERERERE5AScYBMRERERERE5ASfYRERERERERE7ACTYRERERERGRE3CCTURERERukZ6ejt69e8Pb2xvR0dHIyspqtH1VVRWWLFmC8PBwaDQa9O3bF+vXr3fTaImIHKdq6QEQERERUfu3bds2zJs3D+np6Rg5ciTWrFmD8ePH48iRI+jZs6fdbSZPnoz//e9/WLduHfr164fi4mKYzWY3j5yIqOk4wSYiIiIil1u5ciXi4+ORkJAAAEhLS8POnTuRkZGB1NRUm/Zffvkl9uzZg7y8PHTp0gUA0KtXL3cOmYjIYZxgExEREZFLmUwm5OTkYNGiRbJ4XFwcsrOz7W7zySefQKfT4aWXXsLmzZvh6+uLu+++G8uXL4ePj4/dbaqqqlBVVSW9Li8vBwCYzWZp5VuhUEChUMBqtcJqtUpta+MWiwWiKF4zrlQqIQiCzYq6UqkEAFgslibFVSoVRFGUxQVBgFKptBljQ3HmVBMHAJVSASWutrdAACDIYlfjgBJiE+MKAKIsrlLW9Mnj5Bk51f13YzjBJiIiIiKXKi0thcViQXBwsCweHByMoqIiu9vk5eVh37598Pb2xkcffYTS0lIkJSXh3LlzDX4OOzU1FUuXLrWJ6/V6+Pr6AgACAwPRt29f5Ofno6SkRGoTGhqK0NBQnDhxAkajUYr36dMHQUFBOHz4MC5fvizFIyIi4O/vD71eLzuZHzRoENRqNQ4cOCAbg06ng8lkwsGDB6WYUqnEsGHDYDQacezYMSnu4+ODwYMHo7S0FHl5eVJcq9UiMjIShYWFOHPmjBRnTjU5AcCdo3Xo7Xteih+/0glGixpDfC/IJseHLmlhEhWIrtMWAHIqO0MtWHFTh6v7tkBATmUXaJXVuNH7ohTvMlqHcsNpHicPyUmr1aIpBLHuWwetVHl5ObRaLYxGI/z8/Fp6OORiSUlJ2HWsGLHTnnJLf9mbXsSYiCCkp6e7pT9qWe2tnrS3fKhxrI/kaq6qKYWFhejRoweys7MRExMjxVesWIHNmzfLToZrxcXFISsrC0VFRdKJ7Ycffoh7770XlZWVdlex7a1gh4WFoaysTMrHk1bcPC2nWbNmIetkKWIemC/FXbmC/e3WVzGqfwDeeOMNHicPyKmiogKdO3e+Zn3kCjYRERERuVRAQACUSqXNanVxcbHNqnatkJAQ9OjRQ7ZqFBkZCVEUcebMGfTv399mG41GA41GYxNXqVRQqeSnvbUn0fXVnrg3NV5/v82JC4JgN97QGB2Ne1JOZov198mwnL1YTVxwIC7I4maLtdEx8ji1r5zstbGHj+kiIiIiIpdSq9WIjo5GZmamLJ6ZmYnY2Fi724wcORKFhYWoqKiQYidOnIBCoUBoaKhLx0tE1FycYBMROZEjz3jdvXs3BEGw+bJ3qSQRUVuXnJyMt99+G+vXr8fRo0fxxBNPoKCgAImJiQCAxYsXY9q0aVL7+++/H127dsVDDz2EI0eOYO/evViwYAEefvjhBm9yRkTU0niJOBGRkzTnGa8AcPz4cdlneQIDA90xXCIit5oyZQrKysqwbNkyGAwGREVFYceOHQgPDwcAGAwGFBQUSO07duyIzMxMzJ49GzqdDl27dsXkyZPx3HPPtVQKRETXxAk2EZGTOPqM11pBQUHw9/d30yiJiFpOUlISkpKS7H5v48aNNrGIiAiby8qJiFozTrCJiJygOc94rTV06FBcuXIFAwYMwNNPP40xY8Y02JbPePXsnAA+4xVo/cepLedERETXhxNsIiInaM4zXkNCQrB27VpER0ejqqoKmzdvxu23347du3dj9OjRdrfhM149OyeAz3htC8epLefEx/0REV0fPgebWh0+55VcqTU949WeCRMmQBAEfPLJJ3a/z2e8enZOfMZr2zhObTmnioqKdnXOxXNIz8JzSHKlptYTrmATETlBc57xas+IESOwZcuWBr/PZ7wyJz7jtW0cp7acExERNR+rKhGREzTnGa/26PV6hISEOHt4REREROQGXMEmInKS5ORkTJ06FTqdDjExMVi7dq3NM17Pnj2LTZs2Aai5y3ivXr0wcOBAmEwmbNmyBR988AE++OCDlkyDiIiIiJqJE2wiIidx9BmvJpMJTz75JM6ePQsfHx8MHDgQn3/+Oe64446WSoGIiIiIrgMn2ERETuTIM14XLlyIhQsXumFUREREROQOzfoMdnp6Onr37g1vb29ER0cjKyurSdt98803UKlUGDJkSHO6JSIiIiIiImq1HJ5gb9u2DfPmzcOSJUug1+sxatQojB8/XnbZoz1GoxHTpk3D7bff3uzBEhEREREREbVWDk+wV65cifj4eCQkJCAyMhJpaWkICwtDRkZGo9vNnDkT999/v+z5sERERERERETthUOfwTaZTMjJycGiRYtk8bi4OGRnZze43YYNG3Dq1Cls2bIFzz333DX7qaqqQlVVlfS6vLwcAGA2m2E2mwFcfXaj1WqF1WqV2tbGLRYLRFG8ZlypVEIQBGm/deMAYLFYmhRXqVQQRVEWFwQBSqXSZowNxZkTpOdxqpQKKHG1fc1zWQVZ7GocUEJsYlwBQJTFVcqaPnmcPCOnuv8mIiIiInImhybYpaWlsFgsCA4OlsWDg4NRVFRkd5uTJ09i0aJFyMrKgkrVtO5SU1OxdOlSm7her4evry8AIDAwEH379kV+fj5KSkqkNqGhoQgNDcWJEydgNBqleJ8+fRAUFITDhw/j8uXLUjwiIgL+/v7Q6/Wyk/lBgwZBrVbjwIEDsjHodDqYTCYcPHhQiimVSgwbNgxGoxHHjh2T4j4+Phg8eDBKS0uRl5cnxbVaLSIjI1FYWIgzZ85IceZUkxMA3Dlah96+56X48SudYLSoMcT3gmxyfOiSFiZRgeg6bQEgp7Iz1IIVN3W4um8LBORUdoFWWY0bvS9K8S6jdSg3nOZx8pCctFotiIiIiIhcQRDrLj9dQ2FhIXr06IHs7GzZpd4rVqzA5s2bZSfDQM2q1IgRIxAfHy89BzYlJQUff/wxcnNzG+zH3gp2WFgYysrK4OfnB8CzVtw8LadZs2Yh62QpYh6YL8VduYL97dZXMap/AN544w0eJw/IqaKiAp07d4bRaJTqSVtWXl4OrVbbbvKhxiUlJWHXsWLETnvKLf1lb3oRYyKCkJ6e7pb+qOW1t5rS3vKhxrFGkis1tZ44tIIdEBAApVJps1pdXFxss6oNABcvXsSBAweg1+sxa9YsADWXZ4qiCJVKha+++gq33XabzXYajQYajcZ2sCqVzSp47Ul0fbUn7k2NN7S67khcEAS78YbG6Gjck3IyW6y/T4bl7MVq4oIDcUEWN1usjY6Rx6l95WSvDRERERGRMzh0pqlWqxEdHY3MzExZPDMzE7GxsTbt/fz8cOjQIeTm5kpfiYmJuPHGG5Gbm4vhw4df3+iJiIiIiIiIWgmHVrABIDk5GVOnToVOp0NMTAzWrl2LgoIC6RLwxYsX4+zZs9i0aRMUCgWioqJk2wcFBcHb29smTkRERERERNSWOTzBnjJlCsrKyrBs2TIYDAZERUVhx44dCA8PBwAYDIZrPhObiIiIiIiIqL1xeIIN1NxAICkpye73Nm7c2Oi2KSkpSElJaU63RERERERERK0W7/ZDRERERERE5AScYBMRERGRW6Snp6N3797w9vZGdHQ0srKyGmy7e/duCIJg81X/sbBERK0JJ9hERERE5HLbtm3DvHnzsGTJEuj1eowaNQrjx4+/5r17jh8/DoPBIH3179/fTSMmInIcJ9hERERE5HIrV65EfHw8EhISEBkZibS0NISFhSEjI6PR7YKCgtCtWzfpS6lUumnERESOa9ZNzoiIiIiImspkMiEnJweLFi2SxePi4pCdnd3otkOHDsWVK1cwYMAAPP300xgzZkyDbauqqlBVVSW9Li8vBwCYzWaYzWYAgEKhgEKhgNVqhdVqldrWxi0WC0RRvGZcqVRCEARpv3XjAGCxWJoUV6lUEEVRFhcEAUql0maMDcWZU00cAFRKBZS42t4CAYAgi12NA0qITYwrAIiyuEpZ0yePk2fkVPffjeEEm4iIiIhcqrS0FBaLBcHBwbJ4cHAwioqK7G4TEhKCtWvXIjo6GlVVVdi8eTNuv/127N69G6NHj7a7TWpqKpYuXWoT1+v18PX1BQAEBgaib9++yM/PR0lJidQmNDQUoaGhOHHiBIxGoxTv06cPgoKCcPjwYVy+fFmKR0REwN/fH3q9XnYyP2jQIKjVahw4cEA2Bp1OB5PJhIMHD0oxpVKJYcOGwWg0yj5b7uPjg8GDB6O0tBR5eXlSXKvVIjIyEoWFhThz5owUZ041OQHAnaN16O17Xoofv9IJRosaQ3wvyCbHhy5pYRIViK7TFgByKjtDLVhxU4er+7ZAQE5lF2iV1bjR+6IU7zJah3LDaR4nD8lJq9WiKQSx7lsHrVR5eTm0Wi2MRiP8/PxaejjkYklJSdh1rBix055yS3/Zm17EmIggpKenu6U/alntrZ60t3yocayP5GquqimFhYXo0aMHsrOzERMTI8VXrFiBzZs3N/nGZRMmTIAgCPjkk0/sft/eCnZYWBjKysqkfDxpxc3Tcpo1axayTpYi5oH5UtyVK9jfbn0Vo/oH4I033uBx8oCcKioq0Llz52vWR65gExEREZFLBQQEQKlU2qxWFxcX26xqN2bEiBHYsmVLg9/XaDTQaDQ2cZVKBZVKftpbexJdX0Of8W4oXn+/zYkLgmA33tAYHY17Uk5mi/X3ybCcvVhNXHAgLsjiZou10THyOLWvnOy1sYc3OSMiIiIil1Kr1YiOjkZmZqYsnpmZidjY2CbvR6/XIyQkxNnDIyJyGq5gExEREZHLJScnY+rUqdDpdIiJicHatWtRUFCAxMREAMDixYtx9uxZbNq0CQCQlpaGXr16YeDAgTCZTNiyZQs++OADfPDBBy2ZBhFRozjBJiIiIiKXmzJlCsrKyrBs2TIYDAZERUVhx44dCA8PBwAYDAbZM7FNJhOefPJJnD17Fj4+Phg4cCA+//xz3HHHHS2VAhHRNXGCTURERERukZSUhKSkJLvf27hxo+z1woULsXDhQjeMiojIefgZbCIiIiIiIiIn4ASbiMiJ0tPT0bt3b3h7eyM6OhpZWVlN2u6bb76BSqXCkCFDXDtAIiIiInIZTrCJiJxk27ZtmDdvHpYsWQK9Xo9Ro0Zh/Pjxss8U2mM0GjFt2jTcfvvtbhopEREREbkCJ9hERE6ycuVKxMfHIyEhAZGRkUhLS0NYWBgyMjIa3W7mzJm4//77ERMT46aREhEREZEr8CZnREROYDKZkJOTg0WLFsnicXFxyM7ObnC7DRs24NSpU9iyZQuee+65a/ZTVVWFqqoq6XV5eTkAwGw2w2w2AwAUCgUUCgWsViusVqvUtjZusVggiuI140qlEoIgSPutGwcAi8XSpLhKpYIoirK4IAhQKpU2Y2wozpxq4gCgUiqgxNX2FggABFnsahxQQmxiXAFAlMVVypo+eZw8JyciIro+nGATETlBaWkpLBYLgoODZfHg4GAUFRXZ3ebkyZNYtGgRsrKyoFI1rRynpqZi6dKlNnG9Xg9fX18AQGBgIPr27Yv8/HyUlJRIbUJDQxEaGooTJ07AaDRK8T59+iAoKAiHDx/G5cuXpXhERAT8/f2h1+tlJ/ODBg2CWq3GgQMHZGPQ6XQwmUw4ePCgFFMqlRg2bBiMRiOOHTsmxX18fDB48GCUlpYiLy9Pimu1WkRGRqKwsBBnzpyR4sypJicAuHO0Dr19z0vx41c6wWhRY4jvBdnk+NAlLUyiAtF12gJATmVnqAUrbupwdd8WCMip7AKtsho3el+U4l1G61BuOM3j5EE5+fn5gYiImk8Q67692kqVl5dDq9XCaDSy8HuApKQk7DpWjNhpT7mlv+xNL2JMRBDS09Pd0h+1LFfVk8LCQvTo0QPZ2dmyS71XrFiBzZs3y06GgZpVqREjRiA+Ph6JiYkAgJSUFHz88cfIzc1tsB97K9hhYWEoKyuT8vG0FTdPymnWrFnIOlmKmAfmS3FXrmB/u/VVjOofgDfeeIPHyUNyqqioaFfnXDyH9Cw8hyRXamo94Qo2EZETBAQEQKlU2qxWFxcX26xqA8DFixdx4MAB6PV6zJo1C0DNZbiiKEKlUuGrr77CbbfdZrOdRqOBRqOxiatUKptV8NqT6PpqT9ybGm9odd2RuCAIduMNjdHRuCflZLZYf58My9mL1cQFB+KCLG62WBsdI49T+8yJiIiaj1WViMgJ1Go1oqOjkZmZKYtnZmYiNjbWpr2fnx8OHTqE3Nxc6SsxMRE33ngjcnNzMXz4cHcNnYiIiIichCvYREROkpycjKlTp0Kn0yEmJgZr165FQUGBdAn44sWLcfbsWWzatAkKhQJRUVGy7YOCguDt7W0TJyIiIqK2gRNsIiInmTJlCsrKyrBs2TIYDAZERUVhx44dCA8PBwAYDIZrPhObiIiIiNouTrCJiJwoKSkJSUlJdr+3cePGRrdNSUlBSkqK8wdFRERERG7Bz2ATEREREREROQEn2EREREREREROwAk2ERERERERkRNwgk1ERERERETkBJxgExERERERETkBJ9hERERERERETtCsCXZ6ejp69+4Nb29vREdHIysrq8G2+/btw8iRI9G1a1f4+PggIiICq1atavaAiYiIiIiIiFojhyfY27Ztw7x587BkyRLo9XqMGjUK48ePR0FBgd32vr6+mDVrFvbu3YujR4/i6aefxtNPP421a9de9+CJiIiIqO1wZJGmrm+++QYqlQpDhgxx7QCJiK6TwxPslStXIj4+HgkJCYiMjERaWhrCwsKQkZFht/3QoUNx3333YeDAgejVqxcefPBBjBs3rskFlYiIiIjaPkcXaWoZjUZMmzYNt99+u5tGSkTUfA5NsE0mE3JychAXFyeLx8XFITs7u0n70Ov1yM7Oxq233upI10RERETUhjm6SFNr5syZuP/++xETE+OmkRIRNZ/KkcalpaWwWCwIDg6WxYODg1FUVNTotqGhoSgpKYHZbEZKSgoSEhIabFtVVYWqqirpdXl5OQDAbDbDbDYDABQKBRQKBaxWK6xWq9S2Nm6xWCCK4jXjSqUSgiBI+60bBwCLxdKkuEqlgiiKsrggCFAqlTZjbCjOnGriAKBSKqDE1fYWCAAEWexqHFBCbGJcAUCUxVXKmj55nDwjp7r/JiIi96hdpFm0aJEsfq1Fmg0bNuDUqVPYsmULnnvuOVcPk4joujk0wa4lCILstSiKNrH6srKyUFFRge+++w6LFi1Cv379cN9999ltm5qaiqVLl9rE9Xo9fH19AQCBgYHo27cv8vPzUVJSIrUJDQ1FaGgoTpw4AaPRKMX79OmDoKAgHD58GJcvX5biERER8Pf3h16vl53MDxo0CGq1GgcOHJCNQafTwWQy4eDBg1JMqVRi2LBhMBqNOHbsmBT38fHB4MGDUVpairy8PCmu1WoRGRmJwsJCnDlzRoozp5qcAODO0Tr09j0vxY9f6QSjRY0hvhdkk+NDl7QwiQpE12kLADmVnaEWrLipw9V9WyAgp7ILtMpq3Oh9UYp3Ga1DueE0j5OH5KTVakFERO7VnEWakydPYtGiRcjKyoJK1bRTVi7SeHZOABdpgNZ/nNpqTk1dpBHEupldg8lkQocOHbB9+3ZMmjRJis+dOxe5ubnYs2dPk/bz3HPPYfPmzTh+/Ljd79srjmFhYSgrK4Ofnx8AzzqYnpbTrFmzkHWyFDEPzJfiriyO3259FaP6B+CNN97gcfKAnCoqKtC5c2cYjUapnrRl5eXl0Gq17SYfalxSUhJ2HStG7LSn3NJf9qYXMSYiCOnp6W7pj1qeq2pKYWEhevTogezsbNml3itWrMDmzZtlb6gCNf9fGDFiBOLj45GYmAgASElJwccff4zc3NwG+0lJSbG7SPP111/bLNKcOnXK7pvKR48etfum8k8//WT3TeUffvjhut9UvnDhgt03lYuLi+2+qXzmzBm7byp7ek4pKSnwC+mF3hGDpHjtIk207zknLNKYZIs0+ccOotxwGikpKTxOHpCTVqvFgAEDrlkfHZpgA8Dw4cMRHR0t+5/tgAEDMHHiRKSmpjZpH8uXL8e6detw+vTpJrXnCaRn4QkkuVJ7qyftLR9qHOsjuZqraoqjizQXLlxA586dpTdigZrVI1EUoVQq8dVXX+G2226z6YeLNJ6dExdp2sZxaqs5NXWRxuFLxJOTkzF16lTodDrExMRg7dq1KCgokN5dXLx4Mc6ePYtNmzYBAN5880307NkTERERAGqei/3KK69g9uzZjnZNRERERG2QWq1GdHQ0MjMzZRPszMxMTJw40aa9n58fDh06JIulp6fjv//9L95//3307t3bbj8ajQYajcYmrlKpbC4zrz2Jrq/upL4p8YYuX3ckLgiC3XhDY3Q07kk5mS3W3yfDcvZiNXH7H3O1HxdkcbPF2ugYeZzaV0722tgdU5Na1TFlyhSUlZVh2bJlMBgMiIqKwo4dOxAeHg4AMBgMssctWK1WLF68GPn5+VCpVOjbty9eeOEFzJw509GuiYiIiKiNcmSRRqFQICoqSrZ9UFAQvL29beJERK1Js25ylpSUhKSkJLvf27hxo+z17NmzuVpNRERE5OEcXaQhImqLmjXBJiIiIiJylCOLNPWlpKQgJSXF+YMiInKipl1ITkRERERERESN4gSbiIiIiIiIyAk4wSYiIiIiIiJyAk6wiYiIiIiIiJyAE2wiIiIiIiIiJ+AEm4iIiIiIiMgJOMEmInKi9PR09O7dG97e3oiOjkZWVlaDbfft24eRI0eia9eu8PHxQUREBFatWuXG0RIRERGRM/E52ERETrJt2zbMmzcP6enpGDlyJNasWYPx48fjyJEj6Nmzp017X19fzJo1C4MGDYKvry/27duHmTNnwtfXF48++mgLZEBERERE14Mr2ERETrJy5UrEx8cjISEBkZGRSEtLQ1hYGDIyMuy2Hzp0KO677z4MHDgQvXr1woMPPohx48Y1uupNRERERK0XJ9hERE5gMpmQk5ODuLg4WTwuLg7Z2dlN2oder0d2djZuvfVWVwyRiIiIiFyMl4gTETlBaWkpLBYLgoODZfHg4GAUFRU1um1oaChKSkpgNpuRkpKChISEBttWVVWhqqpKel1eXg4AMJvNMJvNAACFQgGFQgGr1Qqr1Sq1rY1bLBaIonjNuFKphCAI0n7rxgHAYrE0Ka5SqSCKoiwuCAKUSqXNGBuKM6eaOAColAoocbW9BQIAQRa7GgeUEJsYVwAQZXGVsqZPHifPyYmIiK4PJ9hERE4kCILstSiKNrH6srKyUFFRge+++w6LFi1Cv379cN9999ltm5qaiqVLl9rE9Xo9fH19AQCBgYHo27cv8vPzUVJSIrUJDQ1FaGgoTpw4AaPRKMX79OmDoKAgHD58GJcvX5biERER8Pf3h16vl53MDxo0CGq1GgcOHJCNQafTwWQy4eDBg1JMqVRi2LBhMBqNOHbsmBT38fHB4MGDUVpairy8PCmu1WoRGRmJwsJCnDlzRoozp5qcAODO0Tr09j0vxY9f6QSjRY0hvhdkk+NDl7QwiQpE12kLADmVnaEWrLipw9V9WyAgp7ILtMpq3Oh9UYp3Ga1DueE0j5MH5eTn5wciImo+Qaz79morVV5eDq1WC6PRyMLvAZKSkrDrWDFipz3llv6yN72IMRFBSE9Pd0t/1LJcVU9MJhM6dOiA7du3Y9KkSVJ87ty5yM3NxZ49e5q0n+eeew6bN2/G8ePH7X7f3gp2WFgYysrKpHw8bcXNk3KaNWsWsk6WIuaB+VLclSvY3259FaP6B+CNN97gcfKQnCoqKtrVORfPIT0LzyHJlZpaT7iCTUTkBGq1GtHR0cjMzJRNsDMzMzFx4sQm70cURdkEuj6NRgONRmMTV6lUUKnkJb32JLq+2hP3psbr77c5cUEQ7MYbGqOjcU/KyWyx/j4ZlrMXq4nbv4LCflyQxc0Wa6Nj5HFqnzkREVHzcYJNROQkycnJmDp1KnQ6HWJiYrB27VoUFBQgMTERALB48WKcPXsWmzZtAgC8+eab6NmzJyIiIgDUPBf7lVdewezZs1ssByIiIiJqPk6wiYicZMqUKSgrK8OyZctgMBgQFRWFHTt2IDw8HABgMBhQUFAgtbdarVi8eDHy8/OhUqnQt29fvPDCC5g5c2ZLpUBERERE14ETbCIiJ0pKSkJSUpLd723cuFH2evbs2VytJiIiImpHOMGma1q+fDkMBoPb+tu7dy8uaELc1h8REREREZEzcIJN12QwGPD590fQQRvglv7O/O88fHoEuqUvIiIiIiIiZ+EEm5qkgzbAbY88+HDJ39zSDxERERERkTPx2QxERERE5Bbp6eno3bs3vL29ER0djaysrAbb7tu3DyNHjkTXrl3h4+ODiIgIrFq1yo2jJSJyHFewiYiIiMjltm3bhnnz5iE9PR0jR47EmjVrMH78eBw5cgQ9e/a0ae/r64tZs2Zh0KBB8PX1xb59+zBz5kz4+vri0UcfbYEMiIiujSvYRERERORyK1euRHx8PBISEhAZGYm0tDSEhYUhIyPDbvuhQ4fivvvuw8CBA9GrVy88+OCDGDduXKOr3kRELY0TbCIiIiJyKZPJhJycHMTFxcnicXFxyM7ObtI+9Ho9srOzceutt7piiERETsFLxImIiIjIpUpLS2GxWBAcHCyLBwcHo6ioqNFtQ0NDUVJSArPZjJSUFCQkJDTYtqqqClVVVdLr8vJyAIDZbIbZbAYAKBQKKBQKWK1WWK1WqW1t3GKxQBTFa8aVSiUEQZD2WzcOABaLpUlxlUoFURRlcUEQoFQqbcbYUJw51cQBQKVUQImr7S0QAAiy2NU4oITYxLgCgCiLq5Q1ffI4eUZOdf/dGE6wiYiIiMgtBEGQvRZF0SZWX1ZWFioqKvDdd99h0aJF6NevH+677z67bVNTU7F06VKbuF6vh6+vLwAgMDAQffv2RX5+PkpKSqQ2oaGhCA0NxYkTJ2A0GqV4nz59EBQUhMOHD+Py5ctSPCIiAv7+/tDr9bKT+UGDBkGtVuPAgQOyMeh0OphMJhw8eFCKKZVKDBs2DEajEceOHZPiPj4+GDx4MEpLS5GXlyfFtVotIiMjUVhYiDNnzkhx5lSTEwDcOVqH3r7npfjxK51gtKgxxPeCbHJ86JIWJlGB6DptASCnsjPUghU3dbi6bwsE5FR2gVZZjRu9L0rxLqN1KDec5nHykJy0Wi2aQhDrvnXQSpWXl0Or1cJoNMLPz6+lh+NxkpKSsOtYsVsf0+UV2BMT5r3klv6yN72IMRFBSE9Pd0t/1LLaWz1pb/lQ49xdj1kfPY+raorJZEKHDh2wfft2TJo0SYrPnTsXubm52LNnT5P289xzz2Hz5s04fvy43e/bW8EOCwtDWVmZlI8nrbh5Wk6zZs1C1slSxDwwX4q7cgX7262vYlT/ALzxxhs8Th6QU0VFBTp37nzN+sgVbCIiIiJyKbVajejoaGRmZsom2JmZmZg4cWKT9yOKomwCXZ9Go4FGo7GJq1QqqFTy097ak+j6ak/cmxqvv9/mxAVBsBtvaIyOxj0pJ7PF+vtkWM5erCZu/woK+3FBFjdbrI2OkcepfeVkr43dMTWpFRERERHRdUhOTsbUqVOh0+kQExODtWvXoqCgAImJiQCAxYsX4+zZs9i0aRMA4M0330TPnj0REREBoOa52K+88gpmz57dYjkQEV0LJ9hERERE5HJTpkxBWVkZli1bBoPBgKioKOzYsQPh4eEAAIPBgIKCAqm91WrF4sWLkZ+fD5VKhb59++KFF17AzJkzWyoFIqJratZjutLT09G7d294e3sjOjq60ecRfvjhh/jTn/6EwMBA+Pn5ISYmBjt37mz2gImIiIiobUpKSsLp06dRVVWFnJwcjB49Wvrexo0bsXv3bun17NmzcfjwYVRWVsJoNOLHH3/EY4891uTLNImIWoLDFWrbtm2YN28elixZAr1ej1GjRmH8+PGydxzr2rt3L/70pz9hx44dyMnJwZgxYzBhwgTo9frrHjwRERERERFRa+HwBHvlypWIj49HQkICIiMjkZaWhrCwMGRkZNhtn5aWhoULF2LYsGHo378/nn/+efTv3x+ffvrpdQ+eiIiIiIiIqLVw6DPYJpMJOTk5WLRokSweFxeH7OzsJu3DarXi4sWL6NKlS4Nt7D1iAQDMZrN063ZPuiV8S+ekUCjgpVJCCStECLBCgAARijqPKWgoboUAsZG4AiKEevGavpWyxym48hELKmXN+0xt/Ti1x989V+RU999ERERERM7k0AS7tLQUFosFwcHBsnhwcDCKioqatI9XX30VlZWVmDx5coNtUlNTsXTpUpu4Xq+Hr68vAM96qHlL5zR48GCE9jWhs+95XLYqceiyPwJUVeitqZTaGy1eOH7FD929LqOH+upYSswa5Fd1RC9NJQJVV980OWvywdnqDujvfRFaZbUUz6+qOb6Tx41GpO95KX78SicYLWoM8b0gmxwfuqSFSVQguk5bAMip7Ay1YMVNHa7+vCwQkFPZBVplNW70vijFu4zWodxwus0fp/b4u+eKnLRaLYiIiIiIXEEQ6y4/XUNhYSF69OiB7OxsxMTESPEVK1Zg8+bNspNhe959910kJCTgP//5D8aOHdtgO3sr2GFhYSgrK5Me6u1JK24tndPs2bOx90QJRtyf7JYV7A+W3AefkN64a9YKKe7KFexvt76KUf0D8MYbb7Tp49Qef/dckVNFRQU6d+4Mo9Eo1ZO2rLy8HFqttt3kQ41LSkrCrmPFiJ32lFv6y970IsZEBCE9Pd0t/VHLa281pb3lQ41jjSRXamo9cWgFOyAgAEql0ma1uri42GZVu75t27YhPj4e27dvb3RyDQAajQYajcZ2sCqVzUPDPeGh5rVaKier1Ypqs+X3yWkNEYI0ia3L0bj194lzfeZ6/dWyF6uJ2+6j4bh8LGZLzeSrrR+n9vi754qcePdZIiIiInIVh8401Wo1oqOjkZmZKYtnZmYiNja2we3effddzJgxA++88w7uvPPO5o2UiIiIiIiIqBVzaAUbAJKTkzF16lTodDrExMRg7dq1KCgoQGJiIgBg8eLFOHv2LDZt2gSgZnI9bdo0rF69GiNGjJBWv318fPhZSCIiIiIiImo3HJ5gT5kyBWVlZVi2bBkMBgOioqKwY8cOhIeHAwAMBoPsmdhr1qyB2WzG448/jscff1yKT58+HRs3brz+DIiIiIiIiIhaAYcn2EDNDQSSkpLsfq/+pHn37t3N6YKIiIiIiIioTeHdfoiIiIiIiIicgBNsIiInSk9PR+/eveHt7Y3o6GhkZWU12PbDDz/En/70JwQGBsLPzw8xMTHYuXOnG0dLRERERM7ECTYRkZNs27YN8+bNw5IlS6DX6zFq1CiMHz9edl+Kuvbu3Ys//elP2LFjB3JycjBmzBhMmDABer3ezSMnIiIiImfgBJuIyElWrlyJ+Ph4JCQkIDIyEmlpaQgLC0NGRobd9mlpaVi4cCGGDRuG/v374/nnn0f//v3x6aefunnkREREROQMzbrJGRERyZlMJuTk5GDRokWyeFxcHLKzs5u0D6vViosXL6JLly4NtqmqqkJVVZX0ury8HABgNpthNpsBAAqFAgqFAlarFVarVWpbG7dYLBBF8ZpxpVIJQRCk/daNA4DFYmlSXKVSQRRFWVwQBCiVSpsxNhRnTjVxAFApFVDiansLBACCLHY1DighNjGuACDK4iplTZ88Tp6TExERXR9OsImInKC0tBQWiwXBwcGyeHBwMIqKipq0j1dffRWVlZWYPHlyg21SU1OxdOlSm7her4evry8AIDAwEH379kV+fj5KSkqkNqGhoQgNDcWJEydgNBqleJ8+fRAUFITDhw/j8uXLUjwiIgL+/v7Q6/Wyk/lBgwZBrVbjwIEDsjHodDqYTCYcPHhQiimVSgwbNgxGoxHHjh2T4j4+Phg8eDBKS0uRl5cnxbVaLSIjI1FYWIgzZ85IceZUkxMA3Dlah96+56X48SudYLSoMcT3gmxyfOiSFiZRgeg6bQEgp7Iz1IIVN3W4um8LBORUdoFWWY0bvS9K8S6jdSg3nOZx8qCc/Pz8QEREzSeIdd9ebaXKy8uh1WphNBpZ+FtAUlISdh0rRuy0p9zS34dL/gavwJ6YMO8lt/SXvelFjIkIQnp6ulv6o5blqnpSWFiIHj16IDs7GzExMVJ8xYoV2Lx5s+xk2J53330XCQkJ+M9//oOxY8c22M7eCnZYWBjKysqkfDxtxc2Tcpo1axayTpYi5oH5UtyVK9jfbn0Vo/oH4I033uBx8pCcKioq2tU5F88hPYu7z1l5DulZmlpPuIJNROQEAQEBUCqVNqvVxcXFNqva9W3btg3x8fHYvn17o5NrANBoNNBoNDZxlUoFlUpe0mtPouurPXFvarz+fpsTFwTBbryhMToa96SczBbr75NhOXuxmrjgQFyQxc0Wa6Nj5HFqnzkREVHzcYJNROQEarUa0dHRyMzMxKRJk6R4ZmYmJk6c2OB27777Lh5++GG8++67uPPOO90xVHKi5cuXw2AwuK2/vXv34oImxG39ERERkWM4wSYicpLk5GRMnToVOp0OMTExWLt2LQoKCpCYmAgAWLx4Mc6ePYtNmzYBqJlcT5s2DatXr8aIESOk1W8fHx9otdoWy4OazmAw4PPvj6CDNsAt/Z3533n49Ah0S19ERETkOE6wiYicZMqUKSgrK8OyZctgMBgQFRWFHTt2IDw8HEDNZKzuM7HXrFkDs9mMxx9/HI8//rgUnz59OjZu3Oju4VMzddAGuPUeFURtWXp6Ol5++WUYDAYMHDgQaWlpGDVqlN22H374ITIyMpCbm4uqqioMHDgQKSkpGDdunJtHTUTUdJxgExE5UVJSEpKSkux+r/6keffu3a4fEBFRK7Ft2zbMmzcP6enpGDlyJNasWYPx48fjyJEj6Nmzp037vXv34k9/+hOef/55+Pv7Y8OGDZgwYQK+//57DB06tAUyICK6Nt7ZgoiIiIhcbuXKlYiPj0dCQgIiIyORlpaGsLAwZGRk2G2flpaGhQsXYtiwYejfvz+ef/559O/fH59++qmbR05E1HRcwSYiIiIilzKZTMjJycGiRYtk8bi4OGRnZzdpH1arFRcvXkSXLl0abGPvUYYAYDabpUekedqj1zwpJwBQKRWyxxa68lGGKmVNnzxOnpFT3X83hhNsIiIiInKp0tJSWCwWm8cWBgcH2zzesCGvvvoqKisrMXny5AbbpKamYunSpTZxvV4PX19fAEBgYCD69u2L/Px8lJSUSG1CQ0MRGhqKEydOwGg0SvE+ffogKCgIhw8fxuXLl6V4REQE/P39odfrZSfzgwYNglqtxoEDB2Rj0Ol0MJlMOHjwoBRTKpUYNmwYjEYjjh07JsV9fHwwePBglJaWIi8vT4prtVpERkaisLAQZ86ckeLMqSYnALhztA69fc9L8eNXOsFoUWOI7wXZ5PjQJS1MogLRddoCQE5lZ6gFK27qcHXfFgjIqewCrbIaN3pflOJdRutQbjjN4+QhOTX1BrScYBMRERGRWwiC/PnroijaxOx59913kZKSgv/85z8ICgpqsN3ixYuRnJwsvS4vL0dYWBiGDh0KPz8/AFdXOnv37i3dhLJu/IYbbrC7MhoVFWWz4gbA5vPgtXGdTmcT9/HxsYkDNSfudeO1P5OAgADZin1tvHv37ujWrZvNGJkT8PneA4gJu1WK165I51b6y8ZXG8+p7GwTvywqbeIAYLR4yeLf7j2AUf0DeJw8JKeKigqbvuzhBJuIiIiIXCogIABKpdJmtbq4uNhmVbu+bdu2IT4+Htu3b8fYsWMbbavRaKDRaGziKpUKKpX8tLf2MtD6ak/omxqvv9/mxAVBsBtvaIyOxj0pJ7PF+vvl3HL2YjVx+2/w2I8LsrjZYm10jDxO7Ssne23s4U3OiIiIiMil1Go1oqOjkZmZKYtnZmYiNja2we3effddzJgxA++88w7uvPNOVw+TiOi6cQWbiIiIiFwuOTkZU6dOhU6nQ0xMDNauXYuCggIkJiYCqLm8++zZs9i0aROAmsn1tGnTsHr1aowYMUJa/fbx8WnyZyGJiNyNE2wiIiIicrkpU6agrKwMy5Ytg8FgQFRUFHbs2CF9xtFgMKCgoEBqv2bNGpjNZjz++ON4/PHHpfj06dOxceNGdw+fiKhJOMEmIiIiIrdISkpCUlKS3e/VnzTv3r3b9QMiInIyfgabiIiIiIiIyAk4wSYiIiIiIiJyAk6wiYiIiIiIiJyAE2wiIiIiIiIiJ+AEm4iIiIiIiMgJOMEmIiIiIiIicgJOsImIiIiIiIicgBNsIiIiIiIiIidQtfQAiFpa6emj2Ft8DElJSW7rMyQkBM8884zb+iMiIiIiItdr1gQ7PT0dL7/8MgwGAwYOHIi0tDSMGjXKbluDwYD58+cjJycHJ0+exJw5c5CWlnY9YyZyKnPVFZxVaLHrWLFb+rtkLMWdw93SFRERERERuZHDE+xt27Zh3rx5SE9Px8iRI7FmzRqMHz8eR44cQc+ePW3aV1VVITAwEEuWLMGqVaucMmgiZ/PqqEXstKfc0lf2phfd0g8REREREbmXw5/BXrlyJeLj45GQkIDIyEikpaUhLCwMGRkZdtv36tULq1evxrRp06DVaq97wEREREREREStkUMr2CaTCTk5OVi0aJEsHhcXh+zsbKcNqqqqClVVVdLr8vJyAIDZbIbZbAYAKBQKKBQKWK1WWK1WqW1t3GKxQBTFa8aVSiUEQZD2WzcOABaLpUlxlUoFURRlcUEQoFQqbcbYULy15qRQKOClUkIJK0QIsEKAABEKXO2zobgVAsRG4gqIEOrFa/qu6a+WBQIAQRa7GgeUdfbReFwBQJTFvVQ1fwauzKlu3EulhEKhgCiK/N1rgZzq/puIiIiIyJkcmmCXlpbCYrEgODhYFg8ODkZRUZHTBpWamoqlS5faxPV6PXx9fQEAgYGB6Nu3L/Lz81FSUiK1CQ0NRWhoKE6cOAGj0SjF+/Tpg6CgIBw+fBiXL1+W4hEREfD394der5edzA8aNAhqtRoHDhyQjUGn08FkMuHgwYNSTKlUYtiwYTAajTh27JgU9/HxweDBg1FaWoq8vDwprtVqERkZicLCQpw5c0aKt9acBg8ejNC+JnT2PY/LViUOXfZHgKoKvTWVUnujxQvHr/ihu9dl9FBfHUuJWYP8qo7opalEoOrqmyZnTT44W90B/b0vQqusluL5VTXHd/K40Yj0PS/Fj1/pBKNFjSG+F2ST40OXtDCJCkTXaQsAOZWdoRasuKnD1Z+XBQJyKrtAq6zGjd4Xpbj3vRPx3v/7waU5lZi9MdDHCB+FBX3Gj0bXjmoYjUb+7rVATryShoiIiIhcpVk3ORMEQfa6diXOWRYvXozk5GTpdXl5OcLCwjB06FD4+fkBqFmdAoDevXsjPDxcalsbv+GGG2xW3AAgKirKZsUNAIYOHSobQ21cp9PZxH18fGziQM2Je9147c8kICAAXbp0sYl3794d3bp1sxlja8vpp59+wt4TJRhxvw7i7yvDpWYNzpnVUrvaeGG1D4qqvaV47Yr06SpfFFR1sImfvNLJ7gr2v3fuxV39x0nx2hXp3Ep/2fhq4zmVnW3il0WlTRyomTjXjX/8/n+Azt1dntPPl7UQIOK7L/Zi9A2BSEhIAMDfPXfnVFFRYdMXEREREZEzODTBDggIgFKptFmtLi4utlnVvh4ajQYajcYmrlKpoFLJh1x7GWh9tSf0TY3X329z4oIg2I03NEZH4y2Vk9VqRbXZ8vvl1TVECNLkti5H49bfL/2uz1yvv1r2YjVx+2/w2I/Lx1JtNsOrGWN3NKfaeLXZAqvVKk0M+bvn3pzstXEmPmWBiIiIyHM5dKapVqsRHR2NzMxMWTwzMxOxsbFOHRgRUVtT+5SFJUuWQK/XY9SoURg/fjwKCgrstq/7lIXBgwe7ebRERERE5GwOXyKenJyMqVOnQqfTISYmBmvXrkVBQQESExMB1FzeffbsWWzatEnaJjc3F0DNpZklJSXIzc2FWq3GgAEDnJMFEVErUPcpCwCQlpaGnTt3IiMjA6mpqTbta5+yAADr169361iJiIhcbfny5TAYDG7rb+/evbigCXFbf0T2ODzBnjJlCsrKyrBs2TIYDAZERUVhx44d0mccDQaDzWpN3c9j5uTk4J133kF4eDhOnz59faMnImol+JQFz7zTfXt/yoJKWXOhW1s/Tu3xd89VORE5k8FgwOffH0EHbYBb+jvzv/Pw6RHolr6IGtKsm5wlJSUhKSnJ7vc2btxoE6v7PxgiovaIT1nwzDvdt/enLHQZrUO54XSbP07t8XfPVTnV3kyWyFk6aAMQO+0pt/T14ZK/uaUfosY0a4JNRET28SkLnnWn+/b+lIVv9x7AqP4Bbf44tcffPVfl5OonLfBGkETU3nGCTUTkBHzKQuPx9nqn+/b+lIWiUz9jr0HArFmz7O7DFUJCQvDMM88A4O9eQ3FX5+QqtTeCTE9Px8iRI7FmzRqMHz8eR44cQc+ePW3a170R5KpVq9w2TiKi68EJNhGRE9R9ysKkSZOkeGZmJiZOnNiCIyNqPnPVFZxVaLHrWLFb+rtkLMWdw93SFbUA3giSiDwBJ9hERE7CpyxQe+TVUeu2z09mb3rRLf2Q+/FGkJ55Mz7eCLJtHKf2+Lvnipzq/rsxnGATETkJn7JARGQfbwTpmTfj440g28Zxao+/e67ISavVoik4wSYiciI+ZYGIqGG8EaRn3YyPN4JsG8epPf7uuSKnpt4EkhNsIiIiInIp3giy8Xh7vRlfe78RpNlSc8lwWz9O7fF3zxU5NfWmkO67dSQREREReaS6N4KsKzMzE7GxsS00KiIi5+MKNhERERG5HG8ESUSegBNsIiIiInI53giSiDwBJ9hERERE5Ba8ESQRtXf8DDYRERERERGRE3CCTUREREREROQEvESciIiIiIjIQaWnj2Jv8bEGP/bgCiEhIXjmmWfc1h85jhNsIiIiIiIiB5mrruCsQotdx4rd0t8lYynuHO6Wrug6cIJNRERERETUDF4dtYid9pRb+sre9KJb+qHrw89gExERERERETkBJ9hERERERERETsAJNhEREREREZETcIJNRERERERE5AScYBMRERERERE5ASfYRERERERERE7ACTYRERERERGRE3CCTUREREREROQEqpYeADlu+fLlMBgMbutv7969uKAJcVt/REREREREbREn2G2QwWDA598fQQdtgFv6O/O/8/DpEeiWvoiIiIiIiNoqTrDbqA7aAMROe8otfX245G9u6YeIiIiIiKgt4wSbyM1KTx/F3uJjSEpKclufISEheOaZZ9zWHxERERGRJ+IEm8jNzFVXcFahxa5jxW7p75KxFHcOd0tXREREREQejRNsohbg1VHrtkv8sze96JZ+iIiIiIg8XbMm2Onp6Xj55ZdhMBgwcOBApKWlYdSoUQ2237NnD5KTk/Hzzz+je/fuWLhwIRITE5s9aCKi1or1seW580kLfMqCc/EjNO0fayQRtXcOT7C3bduGefPmIT09HSNHjsSaNWswfvx4HDlyBD179rRpn5+fjzvuuAOPPPIItmzZgm+++QZJSUkIDAzEX/7yF6ckQUTUGrA+tg7ufNICn7LgXPwITfvGGklEnsDhCfbKlSsRHx+PhIQEAEBaWhp27tyJjIwMpKam2rT/5z//iZ49eyItLQ0AEBkZiQMHDuCVV15xWXF093OiDxw4AADQ6XRu6Y8rJuQIrgi5T1uoj57CXU9a4FMWnI8foWm/WCNbnrvPkXnO6lzuPqfz1PO56+XQBNtkMiEnJweLFi2SxePi4pCdnW13m2+//RZxcXGy2Lhx47Bu3TpUV1fDy8vLwSFfm9ufE51/FiptMC666R13rpiQI9y9ImQ4loPQLr5u/R94a/gfQFupjwDfhCSqxTcg3aet1EhPqI+Gah8E9Qh3S388Z3Uud57Teer5nDM4NMEuLS2FxWJBcHCwLB4cHIyioiK72xQVFdltbzabUVpaipAQ25OgqqoqVFVVSa+NRiMA4Ny5czCbzQAAhUIBhUIBq9UKq9UqtVUoFDCZTFBAhAJX4xaLFVZRhEqpgCAIUtxssUIURXiplLIxmM0WiIBNvNpsgQBAVSfupVLCarXAajFDpVRIcVEUYbZYoRAEKO3FFQKUiqtxq1WExWqFUqGAQnF1jBarFVbr1bF7qZQQL5Xjmw0rXJaTFBcECNZqiJfK8d2mVJflJMUtVlRfuQRlpRHfbbr6brazc6p7nGA2wVR+Dt9sWOGynOoep9qf574NK1yWU93jJFiroVQIUMDqspyksVusMFddQVFVZ3zx3aE6OZkhioCXl7zkVFebIQiASmUvLshyFUURZrOlZuxKeXxstAkXLlywqQX2akRFRYW0nTO1lfqoUCjw22+/IfPAUSlusVhqjrNKKT+eZkvN72i94+bo8Sw+/Su8/INRUud3orHjWRNXyP4erVYrLBYrlMqaHK6OvSbHumO/UHoBgq8KWeufY31sRk6eVB8tly+iSBmAL7475JTfvZp4439PXYR9+O2332T7ByDbd3PjgiDI+gSAV155pcFaYC/u6TXy119/xdc5xxw6ptdTIy8UFsLq0xmGfblN/n/e9fyeXii9AJWfBqLF7JZzyNpzVtbI5udUv0YqFQKsFrPLa6S12iQ7n3NHjexYvUtWH2v3D7imRr744otQKpVNrpFNrY/NuslZ/eItiqJN7Frt7cVrpaamYunSpTbx3r17OzpUN/oNxvyD7uuu6DeUnvyx3fZXea4IZb/o3dYfcIbHz4kqzxWhzG29Aetyv8G6desc2ubixYvQarVOHwvrYwPOF8Po1g7P4nzeT+7pivXRudxdH/GbW+vVWQCHDh26Zjtneeutt5q1HWukO51FuTu7+9/Z9n8OwhrpHKWFbq2PAHDs2DG39eWq+ujQBDsgIABKpdLmncbi4mKbdxhrdevWzW57lUqFrl272t1m8eLFSE5Oll5brVacO3cOXbt2bbQI1yovL0dYWBh+++03+Pn5XbN9a9ZecmEerUt7yQNwPBdRFHHx4kV0797dqeNoK/URaD/Hn3m0Lu0lD6D95NKcPDy9RnrysW+t2ksuzKN1cWV9dGiCrVarER0djczMTEyaNEmKZ2ZmYuLEiXa3iYmJwaeffiqLffXVV9DpdA1+dkaj0UCj0chi/v7+jgwVAODn59emD3xd7SUX5tG6tJc8AMdyccWqTFurj0D7Of7Mo3VpL3kA7ScXR/NgjfTcY9+atZdcmEfr4or6qLhmi3qSk5Px9ttvY/369Th69CieeOIJFBQUSM8kXLx4MaZNmya1T0xMxK+//ork5GQcPXoU69evx7p16/Dkk0862jURUavG+khE1DDWSCLyBA5/BnvKlCkoKyvDsmXLYDAYEBUVhR07diA8vOZuhAaDAQUFBVL73r17Y8eOHXjiiSfw5ptvonv37njttdf4eAUiandYH4mIGsYaSUSeoFk3OUtKSmrwkRYbN260id1666348Uf33dxAo9Hg2WeftblEqC1qL7kwj9alveQBtL5cWnt9BFrfz6y5mEfr0l7yANpPLq0xj9ZeI1vjz6w52kseQPvJhXm0Lq7MQxCd/RwGIiIiIiIiIg/k8GewiYiIiIiIiMgWJ9hERERERERETsAJNhEREREREZETtNkJdnp6Onr37g1vb29ER0cjKyur0fZ79uxBdHQ0vL290adPH/zzn/9000gb50geH374If70pz8hMDAQfn5+iImJwc6dO9042sY5ekxqffPNN1CpVBgyZIhrB9hEjuZRVVWFJUuWIDw8HBqNBn379sX69evdNNqGOZrH1q1bMXjwYHTo0AEhISF46KGHUFZW5qbR2rd3715MmDAB3bt3hyAI+Pjjj6+5TWv9W3c31sjWVSNZH1tXfQTafo1kfWw+1kfWR1dpLzWyrddHoIVrpNgGvffee6KXl5f41ltviUeOHBHnzp0r+vr6ir/++qvd9nl5eWKHDh3EuXPnikeOHBHfeust0cvLS3z//ffdPHI5R/OYO3eu+OKLL4r79+8XT5w4IS5evFj08vISf/zxRzeP3JajudS6cOGC2KdPHzEuLk4cPHiwewbbiObkcffdd4vDhw8XMzMzxfz8fPH7778Xv/nmGzeO2pajeWRlZYkKhUJcvXq1mJeXJ2ZlZYkDBw4U77nnHjePXG7Hjh3ikiVLxA8++EAEIH700UeNtm+tf+vuxhrZumok62Prqo+i2D5qJOtj87A+sj66Snupke2hPopiy9bINjnBvuWWW8TExERZLCIiQly0aJHd9gsXLhQjIiJksZkzZ4ojRoxw2RibwtE87BkwYIC4dOlSZw/NYc3NZcqUKeLTTz8tPvvss62iQDqaxxdffCFqtVqxrKzMHcNrMkfzePnll8U+ffrIYq+99poYGhrqsjE6qinFsbX+rbsba+RVraFGsj62rvooiu2vRrI+Nh3r41Wsj87VXmpke6uPouj+GtnmLhE3mUzIyclBXFycLB4XF4fs7Gy723z77bc27ceNG4cDBw6gurraZWNtTHPyqM9qteLixYvo0qWLK4bYZM3NZcOGDTh16hSeffZZVw+xSZqTxyeffAKdToeXXnoJPXr0wA033IAnn3wSly9fdseQ7WpOHrGxsThz5gx27NgBURTxv//9D++//z7uvPNOdwzZaVrj37q7sUZe1RpqJOtj66qPgOfWyNb4d+5urI9XsT46V3upkZ5aHwHn/q2rnDkwdygtLYXFYkFwcLAsHhwcjKKiIrvbFBUV2W1vNptRWlqKkJAQl423Ic3Jo75XX30VlZWVmDx5siuG2GTNyeXkyZNYtGgRsrKyoFK1jl/D5uSRl5eHffv2wdvbGx999BFKS0uRlJSEc+fOtdhnaJqTR2xsLLZu3YopU6bgypUrMJvNuPvuu/H666+7Y8hO0xr/1t2NNfKq1lAjWR9bV30EPLdGtsa/c3djfbyK9dG52kuN9NT6CDj3b73NrWDXEgRB9loURZvYtdrbi7ubo3nUevfdd5GSkoJt27YhKCjIVcNzSFNzsVgsuP/++7F06VLccMMN7hpekzlyTKxWKwRBwNatW3HLLbfgjjvuwMqVK7Fx48YWX6VxJI8jR45gzpw5+Mc//oGcnBx8+eWXyM/PR2JiojuG6lSt9W/d3VgjW1eNZH1sXfUR8Mwa2Vr/zt2N9ZH10VXaS430xPoIOO9vvfW89dNEAQEBUCqVNu+iFBcX27zrUKtbt25226tUKnTt2tVlY21Mc/KotW3bNsTHx2P79u0YO3asK4fZJI7mcvHiRRw4cAB6vR6zZs0CUFNkRFGESqXCV199hdtuu80tY6+rOcckJCQEPXr0gFarlWKRkZEQRRFnzpxB//79XTpme5qTR2pqKkaOHIkFCxYAAAYNGgRfX1+MGjUKzz33XJtZ2WiNf+vuxhrZumok62Prqo+A59bI1vh37m6sj6yPrtJeaqSn1kfAuX/rbW4FW61WIzo6GpmZmbJ4ZmYmYmNj7W4TExNj0/6rr76CTqeDl5eXy8bamObkAdS86zhjxgy88847reazDY7m4ufnh0OHDiE3N1f6SkxMxI033ojc3FwMHz7cXUOXac4xGTlyJAoLC1FRUSHFTpw4AYVCgdDQUJeOtyHNyePSpUtQKOTlQKlUArj67l1b0Br/1t2NNbJ11UjWx9ZVHwHPrZGt8e/c3VgfWR9dpb3USE+tj4CT/9Ydvi1aK1B7+/h169aJR44cEefNmyf6+vqKp0+fFkVRFBctWiROnTpVal972/UnnnhCPHLkiLhu3bpW9YiFpubxzjvviCqVSnzzzTdFg8EgfV24cKGlUpA4mkt9reUukI7mcfHiRTE0NFS89957xZ9//lncs2eP2L9/fzEhIaGlUhBF0fE8NmzYIKpUKjE9PV08deqUuG/fPlGn04m33HJLS6UgimLNz1ev14t6vV4EIK5cuVLU6/XSoyLayt+6u7FGtq4ayfrYuuqjKLaPGsn62Dysj6yPrtJeamR7qI+i2LI1sk1OsEVRFN98800xPDxcVKvV4s033yzu2bNH+t706dPFW2+9VdZ+9+7d4tChQ0W1Wi326tVLzMjIcPOI7XMkj1tvvVUEYPM1ffp09w/cDkePSV2tqUA6msfRo0fFsWPHij4+PmJoaKiYnJwsXrp0yc2jtuVoHq+99po4YMAA0cfHRwwJCREfeOAB8cyZM24etdyuXbsa/Z1vS3/r7sYa2bpqJOtj66qPotj2ayTrY/OxPrI+ukp7qZFtvT6KYsvWSEEU29DaPREREREREVEr1eY+g01ERERERETUGnGCTUREREREROQEnGATEREREREROQEn2EREREREREROwAk2ERERERERkRNwgk1ERERERETkBJxgExERERERETkBJ9hERERERERETsAJNhEREREREZETcIJN1ER//OMfMW/ePOl1r169kJaW1mLjISJqTVgjiYjsY330LJxgU4NmzJgBQRAgCAK8vLzQp08fPPnkk6isrAQAnD59GoIgIDc3FykpKVLbhr5Onz7dYF//+te/cMstt8DX1xedOnXC6NGj8dlnn7kpU7ndu3dDEARcuHBBFv/www+xfPnyFhkTEbU+rJEXZHHWSCKqxfp4QRZnffQsnGBTo/785z/DYDAgLy8Pzz33HNLT0/Hkk0/atHvyySdhMBikr9DQUCxbtkwWCwsLs9vHk08+iZkzZ2Ly5Mn46aefsH//fowaNQoTJ07EG2+84eoUm6xLly7o1KlTSw+DiFoR1sirWCOJqC7Wx6tYHz2MSNSA6dOnixMnTpTFEhISxG7duomiKIr5+fkiAFGv19tsGx4eLq5ateqafXz77bciAPG1116z+V5ycrLo5eUlFhQUiKIois8++6w4ePBgWZtVq1aJ4eHh0uv9+/eLY8eOFbt27Sr6+fmJo0ePFnNycmTbABDfeust8Z577hF9fHzEfv36if/5z39kOdX9mj59uiiKonjrrbeKc+fObTDHCxcuiI888ogYGBgodurUSRwzZoyYm5srfT83N1f84x//KHbs2FHs1KmTePPNN4s//PDDNX9GRNQ6sUayRhKRfayPrI+ejCvY5BAfHx9UV1c7bX/vvvsuOnbsiJkzZ9p8b/78+aiursYHH3zQ5P1dvHgR06dPR1ZWFr777jv0798fd9xxBy5evChrt3TpUkyePBkHDx7EHXfcgQceeADnzp1DWFiY1N/x48dhMBiwevXqa/YriiLuvPNOFBUVYceOHcjJycHNN9+M22+/HefOnQMAPPDAAwgNDcUPP/yAnJwcLFq0CF5eXk3OjYhaP9ZI+1gjiYj10T7Wx/ZH1dIDoLZj//79eOedd3D77bc7bZ8nTpxA3759oVarbb7XvXt3aLVanDhxosn7u+2222Sv16xZg86dO2PPnj246667pPiMGTNw3333AQCef/55vP7669i/fz/+/Oc/o0uXLgCAoKAg+Pv7N6nfXbt24dChQyguLoZGowEAvPLKK/j444/x/vvv49FHH0VBQQEWLFiAiIgIAED//v2bnBcRtX6skQ1jjSTybKyPDWN9bH+4gk2N+uyzz9CxY0d4e3sjJiYGo0ePxuuvv+62/kVRtFs4G1JcXIzExETccMMN0Gq10Gq1qKioQEFBgazdoEGDpH/X3hSjuLi42ePMyclBRUUFunbtio4dO0pf+fn5OHXqFAAgOTkZCQkJGDt2LF544QUpTkRtF2tk07BGEnke1semYX1sf7iCTY0aM2YMMjIy4OXlhe7duzv9cpT+/ftj3759MJlMNkWwsLAQ5eXluOGGGwAACoUCoijK2tS/1GjGjBkoKSlBWloawsPDodFoEBMTA5PJJGtXPw9BEGC1Wpudh9VqRUhICHbv3m3zvdp3MFNSUnD//ffj888/xxdffIFnn30W7733HiZNmtTsfomoZbFGNg1rJJHnYX1sGtbH9ocr2NQoX19f9OvXD+Hh4S75rMd9992HiooKrFmzxuZ7r7zyCry9vTFlyhQAQGBgIIqKimQFMjc3V7ZNVlYW5syZgzvuuAMDBw6ERqNBaWmpQ2OqLdIWi6XJ29x8880oKiqCSqVCv379ZF8BAQFSuxtuuAFPPPEEvvrqK/zf//0fNmzY4NDYiKh1YY1sGtZIIs/D+tg0rI/tDyfY1KJiYmIwd+5cLFiwAK+++ipOnTqFY8eO4emnn8Zrr72Gt956C127dgUA/PGPf0RJSQleeuklnDp1Cm+++Sa++OIL2f769euHzZs34+jRo/j+++/xwAMPwMfHx6ExhYeHQxAEfPbZZygpKUFFRcU1txk7dixiYmJwzz33YOfOnTh9+jSys7Px9NNP48CBA7h8+TJmzZqF3bt349dff8U333yDH374AZGRkQ6NjYg8C2skayQR2cf6yPrYWnGCTS0uLS0N6enpePfddxEVFYXIyEi8/PLL+O9//4sHH3xQahcZGYn09HS8+eabGDx4MPbv32/zPMX169fj/PnzGDp0KKZOnYo5c+YgKCjIofH06NEDS5cuxaJFixAcHIxZs2ZdcxtBELBjxw6MHj0aDz/8MG644Qb87W9/w+nTpxEcHAylUomysjJMmzYNN9xwAyZPnozx48dj6dKlDo2NiDwPayQRkX2sj9QaCWL9DyQQtbDTp0/j1ltvRUxMDLZu3QqlUtnSQyIiajVYI4mI7GN9pNaAK9jU6vTq1Qu7d+9GRESEzedjiIg8HWskEZF9rI/UGnAFm4iIiIiIiMgJuIJNRERERERE5AScYBMRERERERE5ASfYRERERERERE7ACTYRERERERGRE3CCTUREREREROQEnGATEREREREROQEn2EREREREREROwAk2ERERERERkRNwgk1ERERERETkBP8fHxaxqAtoHkkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/mElEQVR4nO3deVxU9f4/8NeZGWZAlEFlEQURV0gDjbFCr7ZolHnNvHX12+JSUBJZGpXpz7qhZbYqlkFaKlezrte0botldK8LRhs0ZOZWghEyxJIOgsowM+f3B3HkMAMyODMs83o+HvNI3nzOOZ83B96dz3zOfI4giqIIIiIiIiIiIrokivbuABEREREREVFXwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATa1iz179kAQBJw+fbq9u9Ks1NRUjBw5sr27QUQEADhx4gQEQUB+fn57d8XGnDlzcOutt7Z3N4iI3GrAgAFIS0tr725QB8MBNrlUTk4OlEolbrrpJpcfy9mD9sceewz//e9/nbIvIqI5c+ZAEASbV2vrY1hYGAwGA0aMGHHRtu4ejK9evRqZmZluORYRUVP2amvj15w5cy66/QcffOCWvlLXp2rvDlDXtmHDBjz00EN46623UFRUhP79+7d3ly5KFEVYLBZ0794d3bt3b+/uEFEXctNNN2Hjxo2ymEajadW2SqUSffr0cUW3LplWq23vLhCRBzMYDNK/t27din/84x84evSoFPPx8WmPbpGH4gw2uUxNTQ3+/e9/44EHHsBf//rXi85u5OTkYPz48fDx8UFYWBgefvhh1NTUSN9/++23odPp0KNHD/Tp0wd33nknysrKANTP1lx33XUAgJ49e8reraytrcXDDz+MoKAgeHt74y9/+Qu+++47ab8NM9+7du2CTqeDRqNBdna23VvEN2zYgOHDh0Oj0SAkJATz5s279B8UEXkMjUaDPn36yF49e/YEUD+DkpGRgUmTJsHHxwcRERHYtm2btG3TWelTp07hrrvuQmBgIHx8fDBkyBBp8B4REQEAGDVqFARBwLXXXivtZ+PGjYiKioK3tzciIyORnp5uc4x///vfGDduHHx8fDB69GgcO3YM3333HXQ6Hbp3746bbroJ5eXl0nZNbxG3Wq144YUXMHjwYGg0GvTv3x/Lly939o+TiAgAZDVVq9VCEARZ7J133sGgQYOgVqsxbNgwbN68Wdp2wIABAIBp06ZBEATp6+PHj2Pq1KkIDg5G9+7dMXr0aHzxxRftkB11Nhxgk8ts3boVw4YNw7Bhw3D33Xdj48aNEEXRbtsff/wRN954I/72t7/hwIED2Lp1K/bv3y8bwJpMJjzzzDP44Ycf8MEHH6CwsFAaRIeFhWH79u0AgKNHj8JgMGD16tUAgIULF2L79u345z//ie+//x6DBw/GjTfeiD/++EPWh4ULF2LFihU4fPgwoqOjbfqYkZGBBx98EPfffz9+/PFHfPjhhxg8eLAzflRERACAp556Crfddht++OEH3H333bjjjjtw+PDhZtseOnQIn376KQ4fPoyMjAwEBAQAAL799lsAwBdffAGDwYAdO3YAAN58800sWbIEy5cvx+HDh/Hcc8/hqaeewj//+U/Zvp9++mk8+eST+P7776FSqXDHHXdg4cKFWL16NbKzs3H8+HH84x//aDaPxYsX44UXXpD6+M477yA4ONgZPyIiIoe8//77mD9/Ph599FEcPHgQc+fOxT333IPdu3cDgDTpsnHjRhgMBunr6upq3Hzzzfjiiy+g1+tx4403YsqUKSgqKmq3XKiTEIlcZMyYMWJaWpooiqJYV1cnBgQEiFlZWaIoiuLu3btFAOKpU6dEURTFmTNnivfff79s++zsbFGhUIjnzp2zu/9vv/1WBCCeOXPG7j5FURSrq6tFLy8vccuWLVLMZDKJffv2FV988UXZdh988IFs/08//bQYExMjfd23b19xyZIljv8giIhEUZw9e7aoVCpFX19f2WvZsmWiKIoiADEpKUm2zVVXXSU+8MADoiiKYmFhoQhA1Ov1oiiK4pQpU8R77rnH7rGatm0QFhYmvvPOO7LYM888I8bFxcm2e+utt6Tvv/vuuyIA8b///a8UW7FihThs2DBZblOnThVFURSrqqpEjUYjvvnmm638yRAROc/GjRtFrVYrfT1mzBjxvvvuk7X5+9//Lt58883S1wDE999//6L7vuyyy8TXXntN+jo8PFxctWrVpXaZuhh+Bptc4ujRo/j222+lWROVSoUZM2Zgw4YNmDhxok37vLw8/PLLL9iyZYsUE0URVqsVhYWFiIqKgl6vR2pqKvLz8/HHH3/AarUCAIqKinDZZZfZ7cfx48dRV1eHsWPHSjEvLy9ceeWVNrNCOp2u2XzKyspQUlKCCRMmtP6HQETUxHXXXYeMjAxZrFevXtK/4+LiZN+Li4trdqGyBx54ALfddhu+//57xMfH49Zbb8WYMWOaPXZ5eTl+++03JCQk4L777pPiZrPZ5jPUje/iaZh5vvzyy2Wxho/oNHX48GHU1tayXhJRh3D48GHcf//9stjYsWOlOx2bU1NTg6VLl+Ljjz9GSUkJzGYzzp07xxlsuigOsMkl1q9fD7PZjH79+kkxURTh5eWFU6dO2bS3Wq2YO3cuHn74YZvv9e/fHzU1NYiPj0d8fDzefvttBAYGoqioCDfeeCNMJlOz/RD/vCVdEASbeNOYr69vs/vh4hhE5Ay+vr4Of7Skaa1qMGnSJPz666/45JNP8MUXX2DChAl48MEH8fLLL9tt3/Cm5JtvvomrrrpK9j2lUin72svLy+b4TWMN+2uK9ZKIOprWXAc29fjjj2PXrl14+eWXMXjwYPj4+OD2229v8bqTCOBnsMkFzGYzNm3ahFdeeQX5+fnS64cffkB4eLhslrrBFVdcgZ9++gmDBw+2eanVahw5cgQVFRV4/vnnMW7cOERGRtrMnqjVagCAxWKRYg3b79+/X4rV1dUhNzcXUVFRrc6pR48eGDBgAB/bRUQu9fXXX9t8HRkZ2Wz7wMBAzJkzB2+//TbS0tKwbt06APbrYXBwMPr164eCggKbOtuwKJozDBkyBD4+PqyXRNQhREVFya4DgfqFdRtfB3p5ecnqJQBkZ2djzpw5mDZtGi6//HL06dMHJ06ccEeXqZPjDDY53ccff4xTp04hISHB5rbD22+/HevXr8eqVatk8SeeeAJXX301HnzwQdx3333w9fXF4cOHkZWVhddeew39+/eHWq3Ga6+9hqSkJBw8eBDPPPOMbB/h4eEQBAEff/wxbr75Zvj4+KB79+544IEH8Pjjj6NXr17o378/XnzxRZw9exYJCQkO5ZWamoqkpCQEBQVh0qRJOHPmDL788ks89NBDbftBEZHHqa2tRWlpqSymUqmkxcm2bdsGnU6Hv/zlL9iyZQu+/fZbrF+/3u6+/vGPfyA2NhbDhw9HbW0tPv74Y+mCMSgoCD4+Pvjss88QGhoKb29vaLVapKam4uGHH4afnx8mTZqE2tpa5Obm4tSpU0hJSXFKjt7e3njiiSewcOFCqNVqjB07FuXl5fjpp58crrtERJfq8ccfx/Tp03HFFVdgwoQJ+Oijj7Bjxw7ZiuANkyhjx46FRqNBz549MXjwYOzYsQNTpkyBIAh46qmnmr1zh6gxzmCT061fvx4TJ060+1zU2267Dfn5+fj+++9l8ejoaOzduxc///wzxo0bh1GjRuGpp55CSEgIgPpZmszMTGzbtg2XXXYZnn/+eZvbIPv164elS5di0aJFCA4OllYgf/7553Hbbbdh5syZuOKKK/DLL79g165d0qNxWmv27NlIS0tDeno6hg8fjr/+9a/4+eefHdoHEXm2zz77DCEhIbLXX/7yF+n7S5cuxb/+9S9ER0fjn//8J7Zs2dLsGhNqtRqLFy9GdHQ0xo8fD6VSiX/9618A6gftr776KtauXYu+ffti6tSpAIDExES89dZbyMzMxOWXX45rrrkGmZmZTp3BBupXOH/00Ufxj3/8A1FRUZgxY0azn9kmInKlW2+9FatXr8ZLL72E4cOHY+3atdi4caPs8YWvvPIKsrKyEBYWhlGjRgEAVq1ahZ49e2LMmDGYMmUKbrzxRlxxxRXtlAV1JoIoNvPcJCIiInIbQRDw/vvvy54nTURERJ0LZ7CJiIiIiIiInIADbCIiIiIiIiIn4CJnREREHQA/sUVERNT5cQabiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJygU3wG22q1oqSkBD169IAgCO3dHSLqxERRxJkzZ9C3b18oFJ3/PUbWRyJyJtZIIiL7WlsfO8UAu6SkBGFhYe3dDSLqQn777TeEhoa2dzcuGesjEbkCayQRkX0Xq4+dYoDdo0cPAPXJ+Pn5tXNviKgzq6qqQlhYmFRXOjvWRyJyJtZIIiL7WlsfO8UAu+GWHj8/PxZHInKKrnKrIOsjEbkCayQRkX0Xq4+d/8M1RERERERERB0AB9hERERERERETtApbhEnaiuLxYK6urr27ga1A6VSCZVK1WVucyRyNtZHz+bl5QWlUtne3SDqkERRhNlshsViae+uUDu41PrIATZ1WdXV1SguLoYoiu3dFWon3bp1Q0hICNRqtduOmZ6ejpdeegkGgwHDhw9HWloaxo0bZ7ftnDlz8M9//tMmftlll+Gnn35ydVfJg7E+kiAICA0NRffu3du7K0QdislkgsFgwNmzZ9u7K9ROLrU+coBNXZLFYkFxcTG6deuGwMBAzmJ6GFEUYTKZUF5ejsLCQgwZMsQtz3PdunUrFixYgPT0dIwdOxZr167FpEmTcOjQIfTv39+m/erVq/H8889LX5vNZsTExODvf/+7y/tKnov1kURRRHl5OYqLizFkyBDOZBP9yWq1orCwEEqlEn379oVarWaN9DDOqI8cYFOXVFdXB1EUERgYCB8fn/buDrUDHx8feHl54ddff4XJZIK3t7fLj7ly5UokJCQgMTERAJCWloZdu3YhIyMDK1assGmv1Wqh1Wqlrz/44AOcOnUK99xzj8v7Sp6L9ZEAIDAwECdOnEBdXR0H2ER/MplMsFqtCAsLQ7du3dq7O9ROLrU+cpEz6tL4rqNnc8esdQOTyYS8vDzEx8fL4vHx8cjJyWnVPtavX4+JEyciPDzcFV0kkmF99Gw8/0TNc+f1A3U8l1ofOYNNHuGZZ56BwWBwyb5DQkLw1FNPuWTf1HlUVFTAYrEgODhYFg8ODkZpaelFtzcYDPj000/xzjvvtNiutrYWtbW10tdVVVUA6m8vN5vNAOovDBQKBaxWK6xWq9S2IW6xWGSfvW0urlQqIQiCtN/GcQA2i780F1epVBBFURYXBAFKpdKmj83FmZPzcmrYVhRFiKIo1UdBEOx+JvtS4w010ln7d4SrcnJ23BHOPGbDQk6Na4erObJOBQBs2bIFL774In7++WdotVrcdNNNePnll9G7d2+X95UI4DUkOY4DbPIIBoMBn3xzCN20AU7d71ljBSZf1bq2AwYMgLe3t3Sr8tVXX4033nhD1iYxMRGzZ89u8WJjz549MJlM0kxpSUkJ7rrrLuzevbttSTjZiRMnoNPpUFFR0abtm+aTmpqK//f//p9bFyq7FE3f9RRFsVXvhGZmZsLf3x+33npri+1WrFiBpUuX2sT1ej18fX0B1N/aNGjQIBQWFqK8vFxqExoaitDQUBw7dgxGo1GKDxw4EEFBQTh48CDOnTsnxSMjI+Hv7w+9Xi8bpEVHR0OtViM3N1fWB51OB5PJhAMHDkgxpVKJ0aNHw2g04siRI1Lcx8cHMTExqKioQEFBgRTXarWIiopCSUkJiouLpThzcl5OI0aMgNVqxdmzZ2GxWPDbb79hV94x+PoHQgQgio3eHIBQP0CDKBukSXFRhIjm4+eMlbgx1oy6ujqo1WqcP39e1keNRgMvLy+cO3cOUVFR0Gg08Pb2hiAIiIuLwyuvvCI77vz58zF79mxcccUVspx8fX1htVpx7tw5ZGdnw2QyYeLEifD19cVvv/2Gu+++Gzt37gRQP4js1q0bzGaz7M0qpVIJHx8f1NXVwWQySXGVSgVvb2/U1tbK3sRQq9UXzanxGyfe3t5QqVQ4fPgwxo0bh19//RVA/e+NQqFATU1NszlJP19BgNFoxJ133omPP/4YAPDcc89h4cKF8Pf3dygnoP6NuYMHD0rx0NBQ+Pn5wVUcXadi//79mDVrFlatWoUpU6bg5MmTSEpKQmJiIt5//32X9ZOoMV5Duk9XuYYUxE6whGhVVRW0Wi2MRqNLCz91DM54p1Cr1WLy5MkICQmBSqXCk08+ia9/PQPdHSl22ysEoU2f0c3Z9AKuiwxCenr6RdsOGDAAH3/8MUaMGGH3+xaLpVWf80hNTUV1dTVefvllh/vrDpdaHJsSBAFnzpxp00qO58+fR2FhISIiIqTz66p6YjKZ0K1bN2zbtg3Tpk2T4vPnz0d+fj727t3b7LaiKGLo0KH461//ilWrVrV4HHsz2GFhYaisrJTy4Wxv181p+fLl+P3332V9adi26exjc/EePXpg8uTJ6Nu3L1QqFZYsWSKrj03fDhIEARo79VEAYO8ConH8q00v4NphgUhPT7/oDGtERAQ++ugjqUY2bd+WGtnRZqoFQUBhYSFGjx4te1PFEU33rVAoUFVVhR49ejjUl9raWhQUFKB///5SfVQoFKiurnbZNddVV12FK664AhkZGVIsKioKt956q911Kl5++WVkZGTg+PHjUuy1117Diy++iN9++61Vx+Q1pGe51GvIptePAHgN6UYd5RrS3vUj0Pp6wg8YUIfT8E7h7iNlbX59U1CJWrMVNSYLzpw3o85ihRUizFar7ctigbUd3mfKzMzETTfdhFmzZkGn0+Hbb7/FtddeK81KGI1GJCYm4vLLL0dMTAzuvfde5Ofn44033sCmTZswcuRILFu2DCdOnEBAwIV3VT/77DNcccUViI6OxjXXXINDhw4BqH/XcuTIkUhOTkZMTAyGDx9uM7PVWFFREYKCgmSzHrNnz8arr74KAPjuu+9w/fXXQ6fT4YorrsD27dvt7qe5/gDAxo0bMXLkSMTExECn0+HEiROyfJKSkgAAY8aMwciRI1FUVITg4GDZozPuuOMO2cVae1Gr1YiNjUVWVpYsnpWVhTFjxrS47d69e/HLL78gISHhosfRaDTw8/OTvYD6AV/Dq2FApVAo7MYbnhF+sXjDzHvjWENcEIRWxwHYxBsuBJr2sbk4c6qPGwwGfPTVQfz3UKn0aqh7jWMtxRvqY3WtGVXn6mzqY13j15/1UQBsXrATaxpv+Dk1/Nwb/t341RBv+v3MzExMmjQJs2fPxujRo/Hdd9/huuuuwyeffAJBEFBVVYX77rsP0dHRGDlyJBISEvDDDz9g7dq12Lx5M0aNGoVly5bh119/lVZLFwQBu3btwhVXXIGYmBhce+21OHz4MARBwN69ezFy5Eg8+OCDGDlyJEaMGIG8vLxm+/7bb78hKCgIdXV1UmzOnDl47bXXAAC5ubmYMGECRo8ejdjYWOzYscNurrt27UJsbKxNfxp+BqNGjcLIkSMxevRo/Prrrzhx4oSUzwMPPAAAGDt2LEaOHInffvsNffr0wblz56R93HHHHXjjjTea/bnb+91zhbasUzFmzBgUFxdj586dEEURv//+O9577z1Mnjy52ePU1taiqqpK9gIufIzGbDZLbz5ZrVa7cYvF0qp4wxsXjWMN8ca3318sDsAm3vDmXdM+NhdnTvVxg8GAXblHsf+XSum152g5dh8pk8X2/1KJPX/WyMaxvKLT0vVjda0Z1bX115BioxppafRquIYUAZsX7MQaxxt+Rg2vpl83jjf93saNG2XXkN988w2uvfZafPTRRxBFEadPn0ZCQoJ0DXnPPfdAr9fLriGXLl0qXXM17PfTTz+VXbP99NNPEEURu3fvtrmG/O6775rt+6+//ipdQzbEZs+ejdWrV0MURZtryPfee89urs31RxRFbNiwQXYNWVhYiMLCQimfuXPnSnWk8TVkTU2NtI+Ga8jmfu7N/e5dTJtuEXf08zO1tbVYtmwZ3n77bZSWliI0NBRLlizBvffe25bDkwfopg3AmFlPtHl7fw2g8fWCr38AlF4aeHl3g0JxHiov23cYzXXnL6WrDrn99tuld8Jmz56N/fv3Q6/XY8iQITZtFyxYgO7du+OHH36AQqFAeXk5AgMDkZSUJHv38cSJE9I2ZWVluPvuu7F7925cfvnl2LJlC6ZPny7dAvjTTz/hrbfeQnp6Ot544w0sWbIEu3btstvX/v37Y+TIkfjwww9x++23o7q6Gh999BFWrlyJ06dPY+7cufjkk08QEhKCiooKxMbGYuzYsbJ9tNSfPXv2YPny5cjOzkZISIg0aC4rK5O2f+ONN7B27Vrk5ORI7z5OnDgR77zzDhITE1FaWoovvvgCb775ZhvPiHOlpKRg5syZ0Ol0iIuLw7p161BUVCS9UbB48WKcPHkSmzZtkm23fv16XHXVVc2+M03UWFetjwBrZFeukW1Zp2LMmDHYsmULZsyYgfPnz8NsNuOWW26R3sSwhx+j8eycAODvU25ERGS0FD96vgeMFjViff+AstF9Nz+e1cIkKhDre0qKeXspofH1Q3f/3uihqR8m+Xj7QKE4B5WXNwRBhKLRPqwWK0Sx/mVz55JCCdFqhbXxx24EBZQNdy6J9YO3mpqai37kRBRF3HbbbVJ9nDVrFvbv348vv/wSgwYNAlD/hkNDH+bNm4fu3bvjyy+/hEKhwNmzZ9G7d2/ce++9qK6uxnPPPQdBEKSfa01NDcrLy3H33Xfj008/xZVXXol//vOf+Pvf/45vv/0W58+fl+pjWloaMjIysHjxYnzwwQd2P0bTu3dvREdH48MPP8TkyZNhNBrx0UcfYdmyZaioqMDcuXOxbds2BAcHo6KiAuPHj8fVV18NoH5w3bg///3vfxETE4MNGzZI/cnOzsZzzz2HPXv2wN/fX6qPDTPfFosFr7zyCtatW4fPP/8cfn5+6NatG66//nps3LgRc+bMwe+//y7Vx6Yfo2k4B8XFxfjjjz9kv6ut4fAA29HPzwDA9OnT8fvvv2P9+vUYPHgwysrKbG7PI/IE7733njSIyszMxF/+8he7F44A8PHHHyMvL0+aUQgMDLzo/r/55huMHDkSl19+OQDgrrvuwoMPPijdLjVs2DDodDoAQFxc3EVvEbrnnnuQmZmJ22+/Hf/+979x/fXXo3fv3ti5cycKCgowadIkqa0oijh69KhsBeyW+vPJJ59g1qxZCAkJAYBWPw5j/vz5mDt3LhITE7F27Vrceeedbbp93BVmzJiByspKLFu2DAaDASNGjMDOnTuln4nBYEBRUZFsG6PRiO3bt2P16tXt0WWiDoU1smvXSMCxdSoOHTqEhx9+GP/4xz9w4403wmAw4PHHH0dSUhLWr19vd5vFixcjJeXCrbwNH6MZNWqU7GM0ABARESE7Hw3xoUOH2tyGD9SvX9D0IycAMGrUKFkfGuINv0uN4z4+PjZxoP7CvXG84WcSEBCAXr162cT79u2LPn362PSROQGf7MtFXNg1Utzy5/00+TX+sv41xPNqekoxfw0wCIAIATXW+pzNEBrNOAto/IEhi8UMpUJRP3BW2t4BIigUUNq5YVihUEAh1N+91PDGD4BmbzUXBAHbt2+3qY/R0RfeSFAqldLPYNeuXcjNzUWPHj0AQDqGl5cXvLy8ZMds+P7//vc/jBo1CqNHjwZQP4ifP38+qqqq4O3tLdVHURRxzTXX4LXXXpPtR6PRQKPRSF/fe++9yMzMxG233YZ33nkH119/Pfr37y/Vx9tuu03Wh19++QUDBgyAIAiy/sTExEj7e/TRR1FVVYX//ve/mDlzJvr16yfLr2EtC6VSKcV8fX2lR1IuWLAASUlJePDBB7F582bccccd6N69O0RRhJeXl9SX8+fr31wODQ2V3rgBgOrqarvnpymHB9iOPuf1s88+w969e1FQUCD9MQ0YMMDRwxJ1Sc6+6GnuQqUh1rhwK5XKi77RNW3aNDz88MMoLS3Fxo0bsXjxYuk40dHR2Ldvn802jWeLLtaftrjyyivh7e2NvXv34s0338T//ve/Nu/LFZKTk5GcnGz3e5mZmTYxrVYru+WdiC5gjXRcR62RAQEBUCqVNrPVZWVlNrPaDVasWIGxY8fi8ccfB1A/i+rr64tx48bh2Wefld58aKzpRX6Dxh/vaNCw3kFTzX2Wtbl40/22Jd5wu35TzfXR0bgn5WS2WGGxM6i1F6uPC43+3Zhw0X+Ldr7b3B7sxRt/ZKPh6+Y0/XhH9+7dbdrb+0iOve/bi9vbHqj/+QuNPmfecF7NZnOLff/b3/6G+fPn4/fff0dmZiYWL14stblYfWwph4b+XCwPez+Tq666Ct7e3ti3bx/eeustqT42t5+Gj3A1PnZrODTAbvj8zKJFi2Txlj4/8+GHH0Kn0+HFF1/E5s2b4evri1tuuQXPPPOM9G4CkTucM1Yg952XbOJWqxkK2P+fwMWcNVYACHJC72zdcssteOmll7B69WrZ7Y9+fn44efKk3W3i4uKQkJCAw4cPIyoqCv/6178QGhqKPn36yG7Tai1vb2/8/e9/x9NPP42CggLceOONAOpv2/v555/xv//9D9dffz0AID8/H5dddlmr+zNlyhTce++9uP/++9GnT59mB5k9evSA0WiUXWjPnz8fd999N4YPH46hQ4c6nBcRybmiPgKskayRFzRep6LxQpBZWVmYOnWq3W3Onj1r87vXMKjqBGv0UhfCa0jWR0c49NvQls/PFBQUYP/+/fD29sb777+PiooKJCcn448//sCGDRvsbsPnvHp2TgCgUiqgxIX2lj+XzGkcuxCH7DM1f/boz//WLykRGNwH142CXXXnz8JLqbA7U3LxFWID0adPH6lNS+2BC4s2NPy78X8bNLRZuXIlHnnkEYwYMQJqtRo6nQ5vvvkmbr31VmzevBkjR47EtGnTMHv2bGm7gIAAbNq0CXfddRcsFgv8/f2xdevWZhfKaHz85vp+zz334Morr8TChQuhUCggiiL8/f3x0Ucf4fHHH8cjjzyCuro69O/fX/bYlIv1Z9y4cViyZAni4+MhCALUajW2bdtm06+UlBRcf/318PHxweeff47AwEDcdttteOCBB/Dggw9KM0Ctfc5raxeoIPIUramPDbcZOi7I7iyjM6xatUpWI0ePHo0333wT06ZNk2rk3/72N8yaNUvaJjAwEJs3b5bVpH//+9+X1I+GGvnEE09I/z/t2bOn3Rr5wQcfyLZtqT/jx4/Hk08+KauR7733ns3xH330UVmNDAoKwu23344HHngA8+bNu6TcnM3RdSqmTJmC++67DxkZGdIt4gsWLMCVV16Jvn37tmcq5EFcVyNZH7tqfXToMV0lJSXo168fcnJyEBcXJ8WXL1+OzZs32313Iz4+HtnZ2SgtLZU+GL5jxw7cfvvtqKmpsTuLnZqaaneBii+++MJmgYrjx4/bXfjg8OHDdhdz+OGHH+wu5vDdd99d8mIOp0+ftruYQ1lZmd3FHIqLi+0u5uDpOaWmpsIvZECbF6gAgOPmnpg6WIOIsH7w+vPZdyKAs1YVlIIIb+HCz6X2/DlY6mrRt29fu88PNZlMdp+J2rDgSoOGBSrOnTtnd4GKs2fP2n0masNqho1/xo48E9XX1xdms1n6vAhw4TmvdXV1XTKnL7/8EomJifj+++/h5eXVbE4AcOzYMdk7m1qtFpdddlmXeWQLH0HjWZKTk7H7SNklL3I2bbAXQkL7Q+lleyttY9WVpejhrZJ9/pE6vm+//RZ33303jhw50uwtjZf6GJq2Sk9Px4svviitU7Fq1SqMHz8eADBnzhycOHECe/bskdq/9tpreOONN1BYWAh/f39cf/31eOGFF6TPXl4Ma6RnudQa6Uh9BFgjOyN31EeHZrDb8vmZkJAQ9OvXT7bqWlRUFERRRHFxsd3FS7hABXO6lAUqAKCHpn5BinOiAiar/DM6FlFAjXghVlNdg+4ald3PZwEXFoRoqrnPeTW3QEVzH4lobuGapgtQAPU/H3vxxos5NNYVc0pKSkJWVhbefPNN2TvG9nKqra2FSqXCiBEjpBxau0AFEVFnlJiYiM8//xxvvfWWSx+71VaOrlPx0EMP4aGHHnJxr4jIE7irPjo0wG7L52fGjh2Lbdu2obq6WroF99ixY1AoFAgNDbW7DReoYE6XskCFXOOnsTaN12sY3ze3sER7xR1xKcfMz8/HnDlzbNrMnj0bjzzyyCXvv62a20dzK8e21JfGtaMjXnASUcfVmhrZkbz11lvt3QUi8hCsj/Y5/Il8Rz8/c+edd+KZZ57BPffcg6VLl6KiogKPP/447r33Xi5yRtQBjBw5Evn5+e3dDSKiDok1kojIPtZH+xweYDv6nNfu3bsjKysLDz30EHQ6HXr37o3p06fj2WefdV4WRE2I4p/Lm3GRUY/GVWaJbLE+EsD6SGTPhfrIvw9Pdqnnv03P3XD08zORkZHIyspqy6GI2sRkAaxWEVZLHYCLL1JBXVPD4mb2Pm9O5KlYHwmAtChkcx/VIvJEZ82AxSrCYqqFSm1//Rnq+i61PrbtwZZEHdw5C1B8xorup/+AVqlq8TPBVqsFZjNkK1ZT5yaKIs6ePYuysjL4+/vzApKoEdZHslqtKC8vR7du3dr8jHOirqjOChyqMEOjKkcvAEq1hjXSwzijPrKqUpf1TakVvX3O4ez535pdAg0AamuqUKVSyB7xRF2Dv7+/bFV7IqrH+kgKhQL9+/d3yqKURF1JXjkAmHCZ+XcoFQJrpAe61PrIATZ1WTVmYPsvFnT3skDRwt+H/oO3cdXA3nj66afd1zlyOS8vL85cEzWD9ZHUajWfqkDUjLxy4EClGd1UQEtjLNbIrulS6yMH2NSlWUWg6iJvKhrK/4Cxt6rZZz0TEXVFrI9ERM2rswJG1khqA751SUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERuUV6ejoiIiLg7e2N2NhYZGdnN9t2zpw5EATB5jV8+HA39piIyDEcYBMROZEjF48AUFtbiyVLliA8PBwajQaDBg3Chg0b3NRbIiL32bp1KxYsWIAlS5ZAr9dj3LhxmDRpEoqKiuy2X716NQwGg/T67bff0KtXL/z97393c8+JiFqPA2wiIidx9OIRAKZPn47//ve/WL9+PY4ePYp3330XkZGRbuw1EZF7rFy5EgkJCUhMTERUVBTS0tIQFhaGjIwMu+21Wi369OkjvXJzc3Hq1Cncc889bu45EVHrqdq7A0REXUXji0cASEtLw65du5CRkYEVK1bYtP/ss8+wd+9eFBQUoFevXgCAAQMGuLPLRERuYTKZkJeXh0WLFsni8fHxyMnJadU+1q9fj4kTJyI8PNwVXSQicgoOsImInKAtF48ffvghdDodXnzxRWzevBm+vr645ZZb8Mwzz8DHx8cd3SYicouKigpYLBYEBwfL4sHBwSgtLb3o9gaDAZ9++ineeeedFtvV1taitrZW+rqqqgoAYDabYTabAQAKhQIKhQJWqxVWq1Vq2xC3WCwQRfGicaVSCUEQpP02jgOAxWJpVVylUkEURVlcEAQolUqbPjYXZ071cQBQKRVQ4kJ7CwQAgix2IQ4oIbYyrgAgyuIqZf0xeZ48I6fG/24JB9hERE7QlovHgoIC7N+/H97e3nj//fdRUVGB5ORk/PHHH81+DpsXj56dE8CLR6Djn6fOnJOrCYIg+1oURZuYPZmZmfD398ett97aYrsVK1Zg6dKlNnG9Xg9fX18AQGBgIAYNGoTCwkKUl5dLbUJDQxEaGopjx47BaDRK8YEDByIoKAgHDx7EuXPnpHhkZCT8/f2h1+tl5yM6OhpqtRq5ubmyPuh0OphMJhw4cECKKZVKjB49GkajEUeOHJHiPj4+iImJQUVFBQoKCqS4VqtFVFQUSkpKUFxcLMWZU31OADB5vA4Rvqek+NHzPWC0qDHS97Ssvv14VguTqEBso7YAkFfTE2rBisu7Xdi3BQLyanpBq6zDMO8zUrzXeB2qDCd4njwkJ61Wi9YQxMbVv4OqqqqCVquF0WiEn59fe3eHXCw5ORm7j5RhzKwn3HK8nE0v4LrIIKSnp7vleNS+XFVPSkpK0K9fP+Tk5CAuLk6KL1++HJs3b5YV+gbx8fHIzs5GaWmpVLR37NiB22+/HTU1NXZnsVNTU+1ePH7xxRc2F4/Hjx+3+z+7w4cP2/2f3Q8//GD3f3bffffdJf/P7vTp03b/Z1dWVmb3f3bFxcV2/2fn6TmlpqbCL2QAIiKjpXjDxWOs7x9OuHg0yS4eC48cQJXhBFJTU3mePCQnPz8/l9RIk8mEbt26Ydu2bZg2bZoUnz9/PvLz87F3795mtxVFEUOHDsVf//pXrFq1qsXj2HsTMiwsDJWVlVI+nvamiSflNG/ePGT/XIG4ux6V4q58E/KrLa9g3JAArFmzhufJA3Kqrq5Gz549L1ofOcCmDocDbHIlV9WTtlw8zp49G19++SV++eUXKXb48GFcdtllOHbsGIYMGWKzDS8ePTsnXjx2jvPUmXOqrq522TXXVVddhdjYWNn/by+77DJMnTrV7joVDfbs2YPrrrsOP/74I0aMGOHQMXkN6Vl4DUmu1Np6wlvEiYicQK1WIzY2FllZWbIBdlZWFqZOnWp3m7Fjx2Lbtm2orq5G9+7dAQDHjh2DQqFAaGio3W00Gg00Go1NXKVSQaWSl/SGi+imGi7cWxtvut+2xAVBsBtvro+Oxj0pJ7PF+udgWM5erD5u//Zb+3FBFjdbrC32keepa+bkKikpKZg5cyZ0Oh3i4uKwbt06FBUVISkpCQCwePFinDx5Eps2bZJtt379elx11VUOD66JiNoDH9NFROQkKSkpeOutt7BhwwYcPnwYjzzyiM3F46xZs6T2d955J3r37o177rkHhw4dwr59+/D444/j3nvv5SJnRNTlzJgxA2lpaVi2bBlGjhyJffv2YefOndKq4AaDweaxhkajEdu3b0dCQkJ7dJmIyGGcwSYicpIZM2agsrISy5Ytg8FgwIgRI1q8eOzevTuysrLw0EMPQafToXfv3pg+fTqeffbZ9kqBiMilkpOTkZycbPd7mZmZNjGtVouzZ8+6uFdERM7DATYRkRM5evEYGRmJrKwsF/eKiIiIiNyBt4gTEREREREROQEH2ERERERERERO0KYBdnp6OiIiIuDt7Y3Y2FhkZ2c323bPnj0QBMHmZe+ZsERERERERESdlcMD7K1bt2LBggVYsmQJ9Ho9xo0bh0mTJtms+tjU0aNHYTAYpJe957sSERERERERdVYOD7BXrlyJhIQEJCYmIioqCmlpaQgLC0NGRkaL2wUFBaFPnz7Sq7nnQxIRERERERF1Rg4NsE0mE/Ly8hAfHy+Lx8fHIycnp8VtR40ahZCQEEyYMAG7d+92vKdEREREREREHZhDj+mqqKiAxWJBcHCwLB4cHIzS0lK724SEhGDdunWIjY1FbW0tNm/ejAkTJmDPnj0YP3683W1qa2tRW1srfV1VVQUAMJvNMJvNAACFQgGFQgGr1Qqr1Sq1bYhbLBaIonjRuFKphCAI0n4bxwHAYrG0Kq5SqSCKoiwuCAKUSqVNH5uLM6f6OAColAoocaG9BQIAQRa7EAeUEFsZVwAQZXGVsv6YPE+ekVPjfxMREREROVObnoMtCILsa1EUbWINhg0bhmHDhklfx8XF4bfffsPLL7/c7AB7xYoVWLp0qU1cr9fD19cXABAYGIhBgwahsLAQ5eXlUpvQ0FCEhobi2LFjMBqNUnzgwIEICgrCwYMHce7cOSkeGRkJf39/6PV62cV8dHQ01Go1cnNzZX3Q6XQwmUw4cOCAFFMqlRg9ejSMRqNs8TYfHx/ExMSgoqICBQUFUlyr1SIqKgolJSUoLi6W4sypPicAmDxehwjfU1L86PkeMFrUGOl7WjY4/vGsFiZRgdhGbQEgr6Yn1IIVl3e7sG8LBOTV9IJWWYdh3mekeK/xOlQZTvA8eUhOWq0WRERERESuIIiNp58uwmQyoVu3bti2bRumTZsmxefPn4/8/Hzs3bu3VftZvnw53n77bRw+fNju9+3NYIeFhaGyshJ+fn4APGvGzdNymjdvHrJ/rkDcXY9KcVfOYH+15RWMGxKANWvW8Dx5QE7V1dXo2bMnjEajVE86s6qqKmi12i6TD7UsOTkZu4+UYcysJ9xyvJxNL+C6yCCkp6e75XjU/rpaTelq+VDLWCPJlVpbTxyawVar1YiNjUVWVpZsgJ2VlYWpU6e2ej96vR4hISHNfl+j0UCj0dh2VqWCSiXvcsNFdFPNLaLWXLzpftsSFwTBbry5Pjoa96SczBbrn4NhOXux+rj9OyjsxwVZ3GyxtthHnqeulZO9NkREREREzuDwLeIpKSmYOXMmdDod4uLisG7dOhQVFSEpKQkAsHjxYpw8eRKbNm0CAKSlpWHAgAEYPnw4TCYT3n77bWzfvh3bt293biZERERERERE7cjhAfaMGTNQWVmJZcuWwWAwYMSIEdi5cyfCw8MBAAaDQfZMbJPJhMceewwnT56Ej48Phg8fjk8++QQ333yz87IgIiIiIiIiamdtWuQsOTkZycnJdr+XmZkp+3rhwoVYuHBhWw5DRERERERE1Gnww4hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATURERERukZ6ejoiICHh7eyM2NhbZ2dkttq+trcWSJUsQHh4OjUaDQYMGYcOGDW7qLRGR49r0HGwiIiIiIkds3boVCxYsQHp6OsaOHYu1a9di0qRJOHToEPr37293m+nTp+P333/H+vXrMXjwYJSVlcFsNru550RErccBNhERERG53MqVK5GQkIDExEQAQFpaGnbt2oWMjAysWLHCpv1nn32GvXv3oqCgAL169QIADBgwwJ1dJiJyGAfYRERERORSJpMJeXl5WLRokSweHx+PnJwcu9t8+OGH0Ol0ePHFF7F582b4+vrilltuwTPPPAMfHx+729TW1qK2tlb6uqqqCgBgNpulmW+FQgGFQgGr1Qqr1Sq1bYhbLBaIonjRuFKphCAINjPqSqUSAGCxWFoVV6lUEEVRFhcEAUql0qaPzcWZU30cAFRKBZS40N4CAYAgi12IA0qIrYwrAIiyuEpZf0yeJ8/IqfG/W8IBNhERERG5VEVFBSwWC4KDg2Xx4OBglJaW2t2moKAA+/fvh7e3N95//31UVFQgOTkZf/zxR7Ofw16xYgWWLl1qE9fr9fD19QUABAYGYtCgQSgsLER5ebnUJjQ0FKGhoTh27BiMRqMUHzhwIIKCgnDw4EGcO3dOikdGRsLf3x96vV52MR8dHQ21Wo3c3FxZH3Q6HUwmEw4cOCDFlEolRo8eDaPRiCNHjkhxHx8fxMTEoKKiAgUFBVJcq9UiKioKJSUlKC4uluLMqT4nAJg8XocI31NS/Oj5HjBa1Bjpe1o2OP7xrBYmUYHYRm0BIK+mJ9SCFZd3u7BvCwTk1fSCVlmHYd5npHiv8TpUGU7wPHlITlqtFq0hiI3fOuigqqqqoNVqYTQa4efn197dIRdLTk7G7iNlGDPrCbccL2fTC7guMgjp6eluOR61r65WT7paPtQy1kdyNVfVlJKSEvTr1w85OTmIi4uT4suXL8fmzZtlF8MN4uPjkZ2djdLSUunCdseOHbj99ttRU1Njdxbb3gx2WFgYKisrpXw8acbN03KaN28esn+uQNxdj0pxV85gf7XlFYwbEoA1a9bwPHlATtXV1ejZs+dF6yNnsImInCg9PR0vvfQSDAYDhg8fjrS0NIwbN85u2z179uC6666ziR8+fBiRkZGu7ioRkdsEBARAqVTazFaXlZXZzGo3CAkJQb9+/WSzRlFRURBFEcXFxRgyZIjNNhqNBhqNxiauUqmgUskvexsuoptquHBvbbzpftsSFwTBbry5Pjoa96SczBbrn4NhOXux+rjgQFyQxc0Wa4t95HnqWjnZa2MPH9NFROQkDSvkLlmyBHq9HuPGjcOkSZNQVFTU4nZHjx6FwWCQXvYuGomIOjO1Wo3Y2FhkZWXJ4llZWRgzZozdbcaOHYuSkhJUV1dLsWPHjkGhUCA0NNSl/SUiaisOsImInKTxCrlRUVFIS0tDWFgYMjIyWtwuKCgIffr0kV7NvatLRNSZpaSk4K233sKGDRtw+PBhPPLIIygqKkJSUhIAYPHixZg1a5bU/s4770Tv3r1xzz334NChQ9i3bx8ef/xx3Hvvvc0uckZE1N54izgRkRO0ZYXcBqNGjcL58+dx2WWX4cknn7R723gDrpDr2TkBXCEX6PjnqTPn5EozZsxAZWUlli1bBoPBgBEjRmDnzp0IDw8HABgMBtkdP927d0dWVhYeeugh6HQ69O7dG9OnT8ezzz7r0n4SEV0KDrCJiJygLSvkhoSEYN26dYiNjUVtbS02b96MCRMmYM+ePRg/frzdbbhCrmfnBHCF3M5wnjpzTq5eLDE5ORnJycl2v5eZmWkTi4yMtLmtnIioI+Mq4tThcJVccqWOtEKuPVOmTIEgCPjwww/tfp8r5Hp2Tlwht3Ocp86cU3V1dZe65uI1pGfhNSS5UmvrCWewiYicoC0r5Npz9dVX4+233272+1whlzlxhdzOcZ46c05ERNR2rKpERE7QlhVy7dHr9QgJCXF294iIiIjIDTiDTUTkJCkpKZg5cyZ0Oh3i4uKwbt06mxVyT548iU2bNgEA0tLSMGDAAAwfPhwmkwlvv/02tm/fju3bt7dnGkRERETURhxgExE5iaMr5JpMJjz22GM4efIkfHx8MHz4cHzyySe4+eab2ysFIiIiIroEHGATETmRIyvkLly4EAsXLnRDr4iIiIjIHfgZbCIiIiIiIiIn4ACbiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJyAA2wiIiIiIiIiJ+AAm4iIiIiIiMgJ2jTATk9PR0REBLy9vREbG4vs7OxWbffll19CpVJh5MiRbTksERERERERUYfl8AB769atWLBgAZYsWQK9Xo9x48Zh0qRJKCoqanE7o9GIWbNmYcKECW3uLBEREREREVFH5fAAe+XKlUhISEBiYiKioqKQlpaGsLAwZGRktLjd3LlzceeddyIuLq7NnSUiIiIiIiLqqFSONDaZTMjLy8OiRYtk8fj4eOTk5DS73caNG3H8+HG8/fbbePbZZy96nNraWtTW1kpfV1VVAQDMZjPMZjMAQKFQQKFQwGq1wmq1Sm0b4haLBaIoXjSuVCohCIK038ZxALBYLK2Kq1QqiKIoiwuCAKVSadPH5uLMqT4OACqlAkpcaG+BAECQxS7EASXEVsYVAERZXKWsPybPk2fk1PjfRERERETO5NAAu6KiAhaLBcHBwbJ4cHAwSktL7W7z888/Y9GiRcjOzoZK1brDrVixAkuXLrWJ6/V6+Pr6AgACAwMxaNAgFBYWory8XGoTGhqK0NBQHDt2DEajUYoPHDgQQUFBOHjwIM6dOyfFIyMj4e/vD71eL7uYj46OhlqtRm5urqwPOp0OJpMJBw4ckGJKpRKjR4+G0WjEkSNHpLiPjw9iYmJQUVGBgoICKa7VahEVFYWSkhIUFxdLceZUnxMATB6vQ4TvKSl+9HwPGC1qjPQ9LRsc/3hWC5OoQGyjtgCQV9MTasGKy7td2LcFAvJqekGrrMMw7zNSvNd4HaoMJ3iePCQnrVYLIiIiIiJXEMTG008XUVJSgn79+iEnJ0d2q/fy5cuxefNm2cUwUD8rdfXVVyMhIQFJSUkAgNTUVHzwwQfIz89v9jj2ZrDDwsJQWVkJPz8/AJ414+ZpOc2bNw/ZP1cg7q5HpbgrZ7C/2vIKxg0JwJo1a3iePCCn6upq9OzZE0ajUaonnVlVVRW0Wm2XyYdalpycjN1HyjBm1hNuOV7OphdwXWQQ0tPT3XI8an9draZ0tXyoZayR5EqtrScOzWAHBARAqVTazFaXlZXZzGoDwJkzZ5Cbmwu9Xo958+YBqL89UxRFqFQqfP7557j++uttttNoNNBoNLadValsZsEbLqKbarhwb228udl1R+KCINiNN9dHR+OelJPZYv1zMCxnL1YfFxyIC7K42WJtsY88T10rJ3ttiIiIiIicwaErTbVajdjYWGRlZcniWVlZGDNmjE17Pz8//Pjjj8jPz5deSUlJGDZsGPLz83HVVVddWu+JiIiIqNNw5FGve/bsgSAINq+md0wSEXUkDs1gA0BKSgpmzpwJnU6HuLg4rFu3DkVFRdIt4IsXL8bJkyexadMmKBQKjBgxQrZ9UFAQvL29beJERERE1HU1POo1PT0dY8eOxdq1azFp0iQcOnQI/fv3b3a7o0ePym7HDAwMdEd3iYjaxOEB9owZM1BZWYlly5bBYDBgxIgR2LlzJ8LDwwEABoPhos/EJiIiIiLP0vhRrwCQlpaGXbt2ISMjAytWrGh2u6CgIPj7+7upl0REl6ZNH0ZMTk7GiRMnUFtbi7y8PIwfP176XmZmJvbs2dPstqmpqS0ucEZEREREXUvDo17j4+Nl8Ys96hUARo0ahZCQEEyYMAG7d+92ZTeJiC6ZwzPYRERERESOaMujXkNCQrBu3TrExsaitrYWmzdvxoQJE7Bnzx7Z5E5j9p5EAwBms1l6woUnPTnD03ICAJVSIXvqjCufRKNS1h+T58kzcmr875ZwgE1EREREbiEI8qd7iKJoE2swbNgwDBs2TPo6Li4Ov/32G15++eVmB9grVqzA0qVLbeJ6vR6+vr4A6j/DPWjQIBQWFqK8vFxqExoaitDQUBw7dgxGo1GKDxw4EEFBQTh48CDOnTsnxSMjI+Hv7w+9Xi+7mI+OjoZarUZubq6sDzqdDiaTCQcOHJBiSqUSo0ePhtFolC3e5uPjg5iYGFRUVKCgoECKa7VaREVFoaSkBMXFxVKcOdXnBACTx+sQ4XtKih893wNGixojfU/LBsc/ntXCJCoQ26gtAOTV9IRasOLybhf2bYGAvJpe0CrrMMz7jBTvNV6HKsMJnicPyUmr1aI1HHoOdnvhMww9C59hSK7U1epJV8uHWsb6SK7mqppiMpnQrVs3bNu2DdOmTZPi8+fPR35+Pvbu3duq/Sxfvhxvv/02Dh8+bPf79maww8LCUFlZKeXjSTNunpbTvHnzkP1zBeLuelSKu3IG+6str2DckACsWbOG58kDcqqurkbPnj2d+xxsIiIiIiJHNX7Ua+MBdlZWFqZOndrq/ej1eoSEhDT7fY1GA41GYxNXqVRQqeSXvQ0X0U01XLi3Nt50v22JC4JgN95cHx2Ne1JOZov1z8GwnL1Yfdz+HRT244IsbrZYW+wjz1PXysleG7t9alUrIiIiIqJL4MijXoH6VcYHDBiA4cOHw2Qy4e2338b27duxffv29kyDiKhFHGATERERkcs5+qhXk8mExx57DCdPnoSPjw+GDx+OTz75BDfffHN7pUBEdFEcYBMRERGRWyQnJyM5Odnu9zIzM2VfL1y4EAsXLnRDr4iInKdNz8EmIiL70tPTERERAW9vb8TGxiI7O7tV23355ZdQqVQYOXKkaztIRERERC7DATYRkZNs3boVCxYswJIlS6DX6zFu3DhMmjRJdsujPUajEbNmzcKECRPc1FMiIiIicgUOsImInGTlypVISEhAYmIioqKikJaWhrCwMGRkZLS43dy5c3HnnXciLi7OTT0lIiIiIlfgZ7CJiJzAZDIhLy8PixYtksXj4+ORk5PT7HYbN27E8ePH8fbbb+PZZ5+96HHsPeMVAMxms/TsSE96JqWn5QQAKqVC9jxXVz7jVaWsPybPk+fkREREl4YDbCIiJ6ioqIDFYkFwcLAsHhwcjNLSUrvb/Pzzz1i0aBGys7Obfb5jUytWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUpw51ecEAJPH6xDhe0qKHz3fA0aLGiN9T8sGxz+e1cIkKhDbqC0A5NX0hFqw4vJuF/ZtgYC8ml7QKuswzPuMFO81XocqwwmeJw/Kyc/PD0RE1HaC2Pjt1Q6qqqoKWq0WRqORhd8DJCcnY/eRMoyZ9YRbjpez6QVcFxmE9PR0txyP2per6klJSQn69euHnJwc2a3ey5cvx+bNm2UXw0D9rNTVV1+NhIQE6Rmwqamp+OCDD5Cfn9/scezNYIeFhaGyslLKx9Nm3Dwpp3nz5iH75wrE3fWoFHflDPZXW17BuCEBWLNmDc+Th+RUXV3dpa65eA3pWXgNSa7U2nrCGWwiIicICAiAUqm0ma0uKyuzmdUGgDNnziA3Nxd6vR7z5s0DUH8briiKUKlU+Pzzz3H99dfbbKfRaKDRaGziKpXKZha84SK6qYYL99bGm5tddyQuCILdeHN9dDTuSTmZLdY/B8Ny9mL1ccGBuCCLmy3WFvvI89Q1cyIiorZjVSUicgK1Wo3Y2FhkZWXJ4llZWRgzZoxNez8/P/z444/Iz8+XXklJSRg2bBjy8/Nx1VVXuavrREREROQknMEmInKSlJQUzJw5EzqdDnFxcVi3bh2KioqkW8AXL16MkydPYtOmTVAoFBgxYoRs+6CgIHh7e9vEiYiIiKhz4ACbiMhJZsyYgcrKSixbtgwGgwEjRozAzp07ER4eDgAwGAwXfSY2EREREXVeHGATETlRcnIykpOT7X4vMzOzxW1TU1ORmprq/E4RERERkVvwM9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2ERERETkFunp6YiIiIC3tzdiY2ORnZ3dqu2+/PJLqFQqjBw50rUdJCK6RBxgExEREZHLbd26FQsWLMCSJUug1+sxbtw4TJo0CUVFRS1uZzQaMWvWLEyYMMFNPSUiajsOsImIiIjI5VauXImEhAQkJiYiKioKaWlpCAsLQ0ZGRovbzZ07F3feeSfi4uLc1FMiorZr0wDbkdt79u/fj7Fjx6J3797w8fFBZGQkVq1a1eYOExEREVHnYjKZkJeXh/j4eFk8Pj4eOTk5zW63ceNGHD9+HE8//bSru0hE5BQqRzdouL0nPT0dY8eOxdq1azFp0iQcOnQI/fv3t2nv6+uLefPmITo6Gr6+vti/fz/mzp0LX19f3H///U5JgoiIiIg6roqKClgsFgQHB8viwcHBKC0ttbvNzz//jEWLFiE7OxsqVesuWWtra1FbWyt9XVVVBQAwm80wm80AAIVCAYVCAavVCqvVKrVtiFssFoiieNG4UqmEIAjSfhvHAcBisbQqrlKpIIqiLC4IApRKpU0fm4szp/o4AKiUCihxob0FAgBBFrsQB5QQWxlXABBlcZWy/pg8T56RU+N/t8ThAXbj23sAIC0tDbt27UJGRgZWrFhh037UqFEYNWqU9PWAAQOwY8cOZGdnc4BNRERE5EEEQZB9LYqiTQyov2i+8847sXTpUgwdOrTV+1+xYgWWLl1qE9fr9fD19QUABAYGYtCgQSgsLER5ebnUJjQ0FKGhoTh27BiMRqMUHzhwIIKCgnDw4EGcO3dOikdGRsLf3x96vV52MR8dHQ21Wo3c3FxZH3Q6HUwmEw4cOCDFlEolRo8eDaPRiCNHjkhxHx8fxMTEoKKiAgUFBVJcq9UiKioKJSUlKC4uluLMqT4nAJg8XocI31NS/Oj5HjBa1Bjpe1o2OP7xrBYmUYHYRm0BIK+mJ9SCFZd3u7BvCwTk1fSCVlmHYd5npHiv8TpUGU7wPHlITlqtFq0hiI3fOrgIk8mEbt26Ydu2bZg2bZoUnz9/PvLz87F3796L7kOv12PSpEl49tlnpUF6U/befQwLC0NlZSX8/PwAeNa7JZ6W07x585D9cwXi7npUirvy3cevtryCcUMCsGbNGp4nD8ipuroaPXv2hNFolOpJZ1ZVVQWtVttl8qGWJScnY/eRMoyZ9YRbjpez6QVcFxmE9PR0txyP2p+raoqj15CnT59Gz549pf9PAPWzR6IoQqlU4vPPP8f1119vcxxeQ3p2TryG7BznqbPm1NprSIdmsNtye0+D0NBQlJeXw2w2IzU1tdnBNcB3Hz09J4DvPnaG89RZc2rtu49EROQ8arUasbGxyMrKkg2ws7KyMHXqVJv2fn5++PHHH2Wx9PR0/O9//8N7772HiIgIu8fRaDTQaDQ2cZVKZXObecNFdFONB/WtiTd3+7ojcUEQ7Mab66OjcU/KyWyx/jkYlrMXq4/b3kHRfFyQxc0Wa4t95HnqWjnZa2OPQzPYJSUl6NevH3JycmQrOS5fvhybN2+WXQw3VVhYiOrqanz99ddYtGgR1qxZgzvuuMNuW7776Nk58d3HznGeOmtOnMGmzowz2ORqrqwpW7duxcyZM/HGG28gLi4O69atw5tvvomffvoJ4eHhWLx4MU6ePIlNmzbZ3T41NRUffPAB8vPzW31M1kjPwhpJrtTaeuLQDHZAQACUSqXNbHVZWZnNrHZTDe80Xn755fj999+Rmpra7ACb7z4yJ7772DnOU2fMqbXvPhIRkXPNmDEDlZWVWLZsGQwGA0aMGIGdO3ciPDwcAGAwGC76TGwioo7OoSvNxrf3NJaVlYUxY8a0ej+iKMpmqImIiIio60tOTsaJEydQW1uLvLw8jB8/XvpeZmYm9uzZ0+y2qampDs1eExG1B4dXEU9JScHMmTOh0+mk23uKioqQlJQEADa397z++uvo378/IiMjAdQ/F/vll1/GQw895MQ0iIiIiIiIiNqXwwNsR2/vsVqtWLx4MQoLC6FSqTBo0CA8//zzmDt3rvOyICIiIiIiImpnDg+wgfrbe5KTk+1+LzMzU/b1Qw89xNlqIiIiIiIi6vK42g8RERERERGRE3CATUREREREROQEHGATETlReno6IiIi4O3tjdjYWGRnZzfbdv/+/Rg7dix69+4NHx8fREZGYtWqVW7sLRERERE5U5s+g01ERLa2bt2KBQsWID09HWPHjsXatWsxadIkHDp0CP3797dp7+vri3nz5iE6Ohq+vr7Yv38/5s6dC19fX9x///3tkAERERERXQrOYBMROcnKlSuRkJCAxMREREVFIS0tDWFhYcjIyLDbftSoUbjjjjswfPhwDBgwAHfffTduvPHGFme9iYiIiKjj4gCbiMgJTCYT8vLyEB8fL4vHx8cjJyenVfvQ6/XIycnBNddc44ouEhEREZGL8RZxIiInqKiogMViQXBwsCweHByM0tLSFrcNDQ1FeXk5zGYzUlNTkZiY2Gzb2tpa1NbWSl9XVVUBAMxmM8xmMwBAoVBAoVDAarXCarVKbRviFosFoiheNK5UKiEIgrTfxnEAsFgsrYqrVCqIoiiLC4IApVJp08fm4sypPg4AKqUCSlxob4EAQJDFLsQBJcRWxhUARFlcpaw/Js+T5+RERESXhgNsIiInEgRB9rUoijaxprKzs1FdXY2vv/4aixYtwuDBg3HHHXfYbbtixQosXbrUJq7X6+Hr6wsACAwMxKBBg1BYWIjy8nKpTWhoKEJDQ3Hs2DEYjUYpPnDgQAQFBeHgwYM4d+6cFI+MjIS/vz/0er3sYj46OhpqtRq5ubmyPuh0OphMJhw4cECKKZVKjB49GkajEUeOHJHiPj4+iImJQUVFBQoKCqS4VqtFVFQUSkpKUFxcLMWZU31OADB5vA4Rvqek+NHzPWC0qDHS97RscPzjWS1MogKxjdoCQF5NT6gFKy7vdmHfFgjIq+kFrbIOw7zPSPFe43WoMpzgefKgnPz8/EBERG0niI3fXu2gqqqqoNVqYTQaWfg9QHJyMnYfKcOYWU+45Xg5m17AdZFBSE9Pd8vxqH25qp6YTCZ069YN27Ztw7Rp06T4/PnzkZ+fj71797ZqP88++yw2b96Mo0eP2v2+vRnssLAwVFZWSvl42oybJ+U0b948ZP9cgbi7HpXirpzB/mrLKxg3JABr1qzhefKQnKqrq7vUNRevIT0LryHJlVpbTziDTUTkBGq1GrGxscjKypINsLOysjB16tRW70cURdkAuimNRgONRmMTV6lUUKnkJb3hIrqphgv31sab7rctcUEQ7Mab66OjcU/KyWyx/jkYlrMXq4/bv4PCflyQxc0Wa4t95HnqmjkREVHbcYBNROQkKSkpmDlzJnQ6HeLi4rBu3ToUFRUhKSkJALB48WKcPHkSmzZtAgC8/vrr6N+/PyIjIwHUPxf75ZdfxkMPPdRuORARERFR23GATUTkJDNmzEBlZSWWLVsGg8GAESNGYOfOnQgPDwcAGAwGFBUVSe2tVisWL16MwsJCqFQqDBo0CM8//zzmzp3bXikQERER0SXgAJuIyImSk5ORnJxs93uZmZmyrx966CHOVhMRERF1IfzgDREREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERuUV6ejoiIiLg7e2N2NhYZGdnN9t2//79GDt2LHr37g0fHx9ERkZi1apVbuwtEZHjuIo4EREREbnc1q1bsWDBAqSnp2Ps2LFYu3YtJk2ahEOHDqF///427X19fTFv3jxER0fD19cX+/fvx9y5c+Hr64v777+/HTIgIro4zmATERERkcutXLkSCQkJSExMRFRUFNLS0hAWFoaMjAy77UeNGoU77rgDw4cPx4ABA3D33XfjxhtvbHHWm4iovXEGm4iIiIhcymQyIS8vD4sWLZLF4+PjkZOT06p96PV65OTk4Nlnn222TW1tLWpra6Wvq6qqAABmsxlmsxkAoFAooFAoYLVaYbVapbYNcYvFAlEULxpXKpUQBEHab+M4AFgsllbFVSoVRFGUxQVBgFKptOljc3HmVB8HAJVSASUutLdAACDIYhfigBJiK+MKAKIsrlLWH5PnyTNyavzvlnCATUREREQuVVFRAYvFguDgYFk8ODgYpaWlLW4bGhqK8vJymM1mpKamIjExsdm2K1aswNKlS23ier0evr6+AIDAwEAMGjQIhYWFKC8vlx0nNDQUx44dg9FolOIDBw5EUFAQDh48iHPnzknxyMhI+Pv7Q6/Xyy7mo6OjoVarkZubK+uDTqeDyWTCgQMHpJhSqcTo0aNhNBpx5MgRKe7j44OYmBhUVFSgoKBAimu1WkRFRaGkpATFxcVSnDnV5wQAk8frEOF7SoofPd8DRosaI31PywbHP57VwiQqENuoLQDk1fSEWrDi8m4X9m2BgLyaXtAq6zDM+4wU7zVehyrDCZ4nD8lJq9WiNQSx8VsHHVRVVRW0Wi2MRiP8/PzauzvkYsnJydh9pAxjZj3hluPlbHoB10UGIT093S3Ho/bV1epJV8uHWsb6SK7mqppSUlKCfv36IScnB3FxcVJ8+fLl2Lx5s+xiuKnCwkJUV1fj66+/xqJFi7BmzRrccccddtvam8EOCwtDZWWllI8nzbh5Wk7z5s1D9s8ViLvrUSnuyhnsr7a8gnFDArBmzRqeJw/Iqbq6Gj179rxofeQMNhERERG5VEBAAJRKpc1sdVlZmc2sdlMREREAgMsvvxy///47UlNTmx1gazQaaDQam7hKpYJKJb/sbbiIbqrhwr218ab7bUtcEAS78eb66Gjck3IyW6x/Dobl7MXq44IDcUEWN1usLfaR56lr5WSvjT1c5IyIiIiIXEqtViM2NhZZWVmyeFZWFsaMGdPq/YiiKJuhJiLqaDiDTUREREQul5KSgpkzZ0Kn0yEuLg7r1q1DUVERkpKSAACLFy/GyZMnsWnTJgDA66+/jv79+yMyMhJA/XOxX375ZTz00EPtlgMR0cVwgE1ERERELjdjxgxUVlZi2bJlMBgMGDFiBHbu3Inw8HAAgMFgQFFRkdTearVi8eLFKCwshEqlwqBBg/D8889j7ty57ZUCEdFFcYBNRERERG6RnJyM5ORku9/LzMyUff3QQw9xtpqIOh1+BpuIiIiIiIjICdo0wE5PT0dERAS8vb0RGxuL7OzsZtvu2LEDN9xwAwIDA+Hn54e4uDjs2rWrzR0mIiIiIiIi6ogcHmBv3boVCxYswJIlS6DX6zFu3DhMmjRJ9pmZxvbt24cbbrgBO3fuRF5eHq677jpMmTIFer3+kjtPRERERERE1FE4PMBeuXIlEhISkJiYiKioKKSlpSEsLAwZGRl226elpWHhwoUYPXo0hgwZgueeew5DhgzBRx99dMmdJyIiIiIiIuooHFrkzGQyIS8vD4sWLZLF4+PjkZOT06p9WK1WnDlzBr169Wq2TW1trewZh1VVVQAAs9kMs9kM4MKDv61WK6xWq9S2IW6xWCCK4kXjSqUSgiBI+20cBwCLxdKquEqlgiiKsrggCFAqlTZ9bC7OnC48wF2lVECJC+0tEAAIstiFOKCE2Mq4AoAoi6uU9cfkefKMnBr/m4iIiIjImRwaYFdUVMBisSA4OFgWDw4ORmlpaav28corr6CmpgbTp09vts2KFSuwdOlSm7her4evry8AIDAwEIMGDUJhYSHKy8ulNqGhoQgNDcWxY8dgNBql+MCBAxEUFISDBw/i3LlzUjwyMhL+/v7Q6/Wyi/no6Gio1Wrk5ubK+qDT6WAymXDgwAEpplQqMXr0aBiNRhw5ckSK+/j4ICYmBhUVFSgoKJDiWq0WUVFRKCkpQXFxsRRnTvU5AcDk8TpE+J6S4kfP94DRosZI39OywfGPZ7UwiQrENmoLAHk1PaEWrLi824V9WyAgr6YXtMo6DPM+I8V7jdehynCC58lDctJqtSAiIiIicgVBbDz9dBElJSXo168fcnJyEBcXJ8WXL1+OzZs3yy6G7Xn33XeRmJiI//znP5g4cWKz7ezNYIeFhaGyshJ+fn4APGvGzdNymjdvHrJ/rkDcXY9KcVfOYH+15RWMGxKANWvW8Dx5QE7V1dXo2bMnjEajVE86s6qqKmi12i6TD7UsOTkZu4+UYcysJ9xyvJxNL+C6yCCkp6e75XjU/rpaTelq+VDLWCPJlVpbTxyawQ4ICIBSqbSZrS4rK7OZ1W5q69atSEhIwLZt21ocXAOARqOBRqOx7axKBZVK3uWGi+imGi7cWxtvut+2xAVBsBtvro+Oxj0pJ7PF+udgWM5erD4uOBAXZHGzxdpiH3meulZO9toQERERETmDQ1eaarUasbGxyMrKksWzsrIwZsyYZrd79913MWfOHLzzzjuYPHly23pKRERERERE1IE5NIMNACkpKZg5cyZ0Oh3i4uKwbt06FBUVISkpCQCwePFinDx5Eps2bQJQP7ieNWsWVq9ejauvvlqa/fbx8eFnIYmIiIiIiKjLcPheyRkzZiAtLQ3Lli3DyJEjsW/fPuzcuRPh4eEAAIPBIHsm9tq1a2E2m/Hggw8iJCREes2fP995WRARdRDp6emIiIiAt7c3YmNjkZ2d3WzbHTt24IYbbkBgYCD8/PwQFxeHXbt2ubG3RERERORMDs9gA/ULCCQnJ9v9XmZmpuzrPXv2tOUQRESdztatW7FgwQKkp6dj7NixWLt2LSZNmoRDhw6hf//+Nu337duHG264Ac899xz8/f2xceNGTJkyBd988w1GjRrVDhkQERER0aXgaj9ERE6ycuVKJCQkIDExEVFRUUhLS0NYWBgyMjLstk9LS8PChQsxevRoDBkyBM899xyGDBmCjz76yM09JyIiIiJnaNMMNhERyZlMJuTl5WHRokWyeHx8PHJyclq1D6vVijNnzqBXr17NtrH3GEMAMJvN0uPRPOmxa56WEwColArZIwtd+RhDlbL+mDxPnpMTERFdGg6wiYicoKKiAhaLxeaRhcHBwTaPNmzOK6+8gpqaGkyfPr3ZNitWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUpw51ecEAJPH6xDhe0qKHz3fA0aLGiN9T8sGxz+e1cIkKhDbqC0A5NX0hFqw4vJuF/ZtgYC8ml7QKuswzPuMFO81XocqwwmeJw/Kic+KJiK6NILY+O3VDqq1D/Um13jmmWdgMBjcdrx9+/ahUhOCmx96zi3Hy9n0Aq6LDEJ6erpbjkfty1X1pKSkBP369UNOTg7i4uKk+PLly7F582bZxbA97777LhITE/Gf//wHEydObLadvRnssLAwVFZWSvl42oybJ+U0b948ZP9cgbi7HpXirpzB/mrLKxg3JABr1qzhefKQnKqrq7vUNRevIT1LcnIydh8pw5hZT7jleLyG9CytrSecwaaLMhgM+OSbQ+imDXDL8Yp/PwWffoFuORaRswQEBECpVNrMVpeVldnMaje1detWJCQkYNu2bS0OrgFAo9FAo9HYxFUqFVQqeUlvuIhuquHCvbXxpvttS1wQBLvx5vroaNyTcjJbrH8OhuXsxerjggNxQRY3W6wt9pHnqWvmREREbccBNrVKN22A294N3LHk/9xyHCJnUqvViI2NRVZWFqZNmybFs7KyMHXq1Ga3e/fdd3Hvvffi3XffxeTJk93RVSIiIiJyEQ6wiYicJCUlBTNnzoROp0NcXBzWrVuHoqIiJCUlAQAWL16MkydPYtOmTQDqB9ezZs3C6tWrcfXVV0uz3z4+PtBqte2WBxERERG1De8LIiJykhkzZiAtLQ3Lli3DyJEjsW/fPuzcuRPh4eEA6j9uUVRUJLVfu3YtzGYzHnzwQYSEhEiv+fPnt1cKREQulZ6ejoiICHh7eyM2NhbZ2dnNtt2xYwduuOEGBAYGws/PD3Fxcdi1a5cbe0tE5DjOYBMROVFycjKSk5Ptfi8zM1P29Z49e1zfISKiDmLr1q1YsGAB0tPTMXbsWKxduxaTJk3CoUOH0L9/f5v2+/btww033IDnnnsO/v7+2LhxI6ZMmYJvvvkGo0aNaocMiIgujjPYRERERORyK1euREJCAhITExEVFYW0tDSEhYUhIyPDbvu0tDQsXLgQo0ePxpAhQ/Dcc89hyJAh+Oijj9zccyKi1uMMNnm8ihOHsa/sSLOzjq4QEhKCp556ym3HIyIiak8mkwl5eXlYtGiRLB4fH4+cnJxW7cNqteLMmTPo1auXK7pIROQUHGCTxzPXnsdJhRa7j5S55XhnjRWYfJVbDkVERNQhVFRUwGKx2Dy2MDg42Obxhs155ZVXUFNTg+nTpzfbpra2FrW1tdLXVVVVAACz2Sw9g9zTnm3uSTkBgEqpgBIX2tc/elCQxS7EASXEVsYVAERZXKWsPybPk2fk1PjfLeEAmwiAV3et2x5DlrPpBbcch4iIqKMRBPnz10VRtInZ8+677yI1NRX/+c9/EBQU1Gy7FStWYOnSpTZxvV4PX19fAEBgYCAGDRqEwsJClJeXS21CQ0MRGhqKY8eOwWg0SvGBAwciKCgIBw8exLlz56R4ZGQk/P39odfrZRfz0dHRUKvVyM3NlfVBp9PBZDLhwIEDUkypVGL06NEwGo04cuSIFPfx8UFMTAwqKipQUFAgxbVaLaKiolBSUoLi4mIpzpzqcwKAyeN1iPA9JcWPnu8Bo0WNkb6nZYPjH89qYRIViG3UFgDyanpCLVhxebcL+7ZAQF5NL2iVdRjmfUaK9xqvQ5XhBM+Th+TU2ie8cIBNRERERC4VEBAApVJpM1tdVlZmM6vd1NatW5GQkIBt27Zh4sSJLbZdvHgxUlJSpK+rqqoQFhaGUaNGwc/PD8CFmc6IiAjpKQ+N40OHDrU7MzpixAibGTcANguuNcR1Op1N3MfHxyYO1F+4N443vOkQEBAguyW+Id63b1/06dPHpo/MCfhkXy7iwq6R4g0z0vk1/rL+NcTzanraxM+JSps4ABgtXrL4V/tyMW5IAM+Th+RUXV1tcyx7OMAmIiIiIpdSq9WIjY1FVlYWpk2bJsWzsrIwderUZrd79913ce+99+Ldd9/F5MmTL3ocjUYDjUZjE1epVFCp5Je9DbeBNtVwQd/aeNP9tiUuCILdeHN9dDTuSTmZLdY/b+eWsxerj9u/g8J+XJDFzRZri33keepaOdlrY7dPrWpFRERERHQJUlJSMHPmTOh0OsTFxWHdunUoKipCUlISgPrZ55MnT2LTpk0A6gfXs2bNwurVq3H11VdLs98+Pj6tvlWTiMjdOMAmIiIiIpebMWMGKisrsWzZMhgMBowYMQI7d+6UbsE0GAwoKiqS2q9duxZmsxkPPvggHnzwQSk+e/ZsZGZmurv7REStwgE2EREREblFcnJys4/FbDpo3rNnj+s7RETkZK27kZyIiIiIiIiIWsQBNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AVcSJiIja6JlnnoHBYHDb8fbt24fTmhC3HY+IiIgcwwE2ERFRGxkMBnzyzSF00wa45XjFv5+CT79AtxyLiIiIHMcBNhER0SXopg3AmFlPuOVYO5b8n1uO06DixGHsKzvS7HOLXSEkJARPPfWU245HRETkTBxgExERkV3m2vM4qdBi95EytxzvrLECk69yy6GIiIhcggNsIiIiapZXd63bZuhzNr3gluMQERG5SptWEU9PT0dERAS8vb0RGxuL7OzsZtsaDAbceeedGDZsGBQKBRYsWNDWvhIRERERERF1WA4PsLdu3YoFCxZgyZIl0Ov1GDduHCZNmoSioiK77WtraxEYGIglS5YgJibmkjtMRERERERE1BE5PMBeuXIlEhISkJiYiKioKKSlpSEsLAwZGRl22w8YMACrV6/GrFmzoNVqL7nDRERERERERB2RQwNsk8mEvLw8xMfHy+Lx8fHIyclxaseIiIiIiIiIOhOHFjmrqKiAxWJBcHCwLB4cHIzS0lKndaq2tha1tbXS11VVVQAAs9kMs9kMAFAoFFAoFLBarbBarVLbhrjFYoEoiheNK5VKCIIg7bdxHAAsFkur4iqVCqIoyuKCIECpVNr0sbl4R81JoVDAS6WEElaIEGCFAAEiFLhwzObiVggQW4grIEJoEq8/dv3xGlggABBksQtxQNloHy3HFQBEWdxLVf9n4MqcGse9VEooFAqIosjfvXbIqfG/iYiIiIicqU2riAuCIPu6YaDgLCtWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUryj5hQTE4PQQSb09D2Fc1YlfjznjwBVLSI0NVJ7o8ULR8/7oa/XOfRTX+hLuVmDwtruGKCpQaDqwpsmJ00+OFnXDUO8z0CrrJPihbX153f6jeMR5XtKih893wNGixojfU/LBsc/ntXCJCoQ26gtAOTV9IRasOLybhd+XhYIyKvpBa2yDsO8z0hx79un4l///c6lOZWbvTHcxwgfhQUDJ41H7+5qGI1G/u61Q06u/qhKeno6XnrpJRgMBgwfPhxpaWkYN26c3bYGgwGPPvoo8vLy8PPPP+Phhx9GWlqaS/tHRERERK7j0AA7ICAASqXSZra6rKzMZlb7UixevBgpKSnS11VVVQgLC8OoUaPg5+cHoH52CgAiIiIQHh4utW2IDx061GbGDQBGjBhhM+MGAKNGjZL1oSGu0+ls4j4+PjZxoP7CvXG84U2HgIAA9OrVyybet29f9OnTx6aPHS2nH374AfuOlePqO3UQ/5wZrjBr8IdZLbVriJfU+aC0zluKN8xIn6j1RVFtN5v4z+d72J3B/veuffjrkBuleMOMdH6Nv6x/DfG8mp428XOi0iYO1A+cG8c/eO8/QM++Ls/pp3NaCBDx9af7MH5oIBITEwHwd8/dOVVXV9scy1kaFoFMT0/H2LFjsXbtWkyaNAmHDh1C//79bdo3XgRy1apVLusXEREREbmHQwNstVqN2NhYZGVlYdq0aVI8KysLU6dOdVqnNBoNNBqNTVylUkGlkne54TbQphou6Fsbb7rftsQFQbAbb66PjsbbKyer1Yo6s+XP26vriRCkwW1jjsatf9763ZS5yfEa2IvVx+3fQWE/Lu9LndkMrzb03dGcGuJ1ZgusVqs0MOTvnntzstfGWRovAgkAaWlp2LVrFzIyMrBixQqb9g2LQALAhg0bXNYvIiIiInIPh28RT0lJwcyZM6HT6RAXF4d169ahqKgISUlJAOpnn0+ePIlNmzZJ2+Tn5wOonzkqLy9Hfn4+1Go1LrvsMudkQUTUzhoWgVy0aJEs7uxFILlGRcfKiWtUcI2Krvb3REREl8bhAfaMGTNQWVmJZcuWwWAwYMSIEdi5c6d0C6bBYLB5Jnbj20Xz8vLwzjvvIDw8HCdOnLi03hMRdRDuWgSSa1R0rJy4RgXXqOhqf08NH8UjIqK2adMiZ8nJyUhOTrb7vczMTJtY43dwiYi6MlcvAsk1KjpWTlyjgmtUdLW/J1euUwFwIUgi6vraNMAmIiI5dy0CyTUqOlZOXKOCa1R0xb8nV+FCkETkCfhhGyIiJ2i8CGRjWVlZGDNmTDv1ioio42i8EGRUVBTS0tIQFhaGjIwMu+0bFoKcNWuWyx+xSETkLJzBJiJyEi4CSURkHxeC5GJ87sgJAFRKhdsWglQp64/J8+QZOTX+d0s4wCYichIuAklEZB8XguRifO7ICQAmj9chwk0LQXYbOQhffPoRnn76adnHHM6cOYNffvkFISEhsvUPKisrUVRUhP79+6N3795SvLS0FAaDAYMHD0aPHj2keFFRESorKxEVFQVv7/r1Lry9vTFlypROfZ466+9ea++k4QCbiMiJuAgkEVHzuBAkF+NzdU6f7MtFXNg1UtylC0H+ewfqvHyxI+cIlN8ck+KiKMJssUJxrBxKxUEpbrWKsFitUB6rgEJx4ffeYrXCahWR/XOF7O/BYrHCKl6InzVW4qbRkbj77rsBdO7z1Bl/91q7CCQH2ERERETkUlwIsuU4F+NzXk5mi9W9C0H21OLqmQvt7sPZcja9wIUgWxF3VU6tXRSSi5wRERERkUtxIUgi8hScwSYiIiIil+NCkETkCTjAJiIiIiKX40KQROQJOMAmIiIiIrfgQpBE1NVxgE1ERERERE73zDPPwGAwuO14+/btw2lNiNuOR2QPB9hEREREROR0BoMBn3xzCN20AW45XvHvp+DTL9AtxyJqDgfYRERERETkEt20ARgz6wm3HGvHkv9zy3GIWsLHdBERERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETqBq7w4QeZqKE4exr+wIkpOT3XbMkJAQPPXUU247HhERERGRJ+IAm8jNzLXncVKhxe4jZW453lljBSZf5ZZDERERERF5NA6widqBV3ctxsx6wi3Hytn0gluOQ0RERETk6TjAJiIiog6BH6EhIqLOjgNsIiIi6hD4ERoiIursOMDuhJ555hkYDAa3HW/fvn04rQlx2/GIiMhz8SM0RETUmbVpgJ2eno6XXnoJBoMBw4cPR1paGsaNG9ds+7179yIlJQU//fQT+vbti4ULFyIpKanNnfZ0BoMBn3xzCN20AW45XvHvp+DTL9AtxyLn4y2X7sX6SETUPNZIIurqHB5gb926FQsWLEB6ejrGjh2LtWvXYtKkSTh06BD69+9v076wsBA333wz7rvvPrz99tv48ssvkZycjMDAQNx2221OScITddMGuO0d/h1L/s8txyHX4C2X7sP62DG48y4f3uFD1HqskUSXxt2TJp48YXIpHB5gr1y5EgkJCUhMTAQApKWlYdeuXcjIyMCKFSts2r/xxhvo378/0tLSAABRUVHIzc3Fyy+/7LLi6O5bqHNzcwEAOp3OLcfjBR05yp23XH64bA727dvnkTPmnaE+egJ33uXDO3w6N97h416ske2PHzPs3Nw5aeLJEyaXyqEBtslkQl5eHhYtWiSLx8fHIycnx+42X331FeLj42WxG2+8EevXr0ddXR28vLwc7PLFuf0W6sKTUGmDccZNM4S8oKOOzFNnzDtLfQQ8401IkyYEE93wphLv8Onc3F2vDEfyENrL161/fx1lQN9ZaqQn1EdDnQ+C+oW75Xi8ZnU+d02auHvCxN1/C4Dr6qNDA+yKigpYLBYEBwfL4sHBwSgtLbW7TWlpqd32ZrMZFRUVCAmxfVertrYWtbW10tdGoxEA8Mcff8BsNgMAFAoFFAoFrFYrrFar1FahUMBkMkEBEQpciFssVlhFESqlAoIgSHGzxQpRFOGlUsr6YDZbIAI28TqzBQIAVaO4l0oJq9UCq8UMlVIhxUVRhNlihUIQoLQXVwhQKi7ErVYRFqsVSoUCCsWFPlqsVlitF/rupVJCPFuFLzcud1lOUlwQIFjrIJ6twtebVrgsJylusaLu/Fkoa4z4etOFd7OdnVPj8wSzCaaqP/DlxuUuy6nxeWr4ee7fuNxlOTU+T3bPn5Nzkvr+5/nz8fWX/f05O6fG50kBESaTCadPn7apBfZqRHV1tbQ/Z+os9VGhUOC3335DVu5hKW6xWOrPs0opP59mS/3vqJf8fxVmsxmiCJt4XZ0ZggCoVPJ42Ylf4eUfjPKvf5RioijCbLbU/y4qlXbiCtl5tlqtsFisUCrrc7jQ9/ocG/f9dMVpCL4qZG94lvWxDTl5Wn1UKgQoYHVLfTTXnkdpbU982uhvwdG/p/q4IMu1pb+nibGtr48KhcLja+Svv/6KL/KONDmnrquRp0tKYPXpCcP+/Faf00upkacrTkPlp4FoMbvlGrLhmpU1su05tVeNrD1zGqXKYKleOeP/z/Vx+39P5b8WQekXKLtWqM/JdTXyBp0ZVVVVzV4vtfkaUnTAyZMnRQBiTk6OLP7ss8+Kw4YNs7vNkCFDxOeee04W279/vwhANBgMdrd5+umnRQB88cUXXy57/fbbb46Uv4tifeSLL7660os1ki+++OLL/uti9dGhGeyAgAAolUqbdxrLysps3mFs0KdPH7vtVSoVevfubXebxYsXIyUlRfraarXijz/+QO/evWXvdDSnqqoKYWFh+O233+Dn53fR9h1ZV8mFeXQsXSUPwPFcRFHEmTNn0LdvX6f2o7PUR6DrnH/m0bF0lTyArpNLW/Lw9Brpyee+o+oquTCPjsWV9dGhAbZarUZsbCyysrIwbdo0KZ6VlYWpU6fa3SYuLg4fffSRLPb5559Dp9M1+9kZjUYDjUYji/n7+zvSVQCAn59fpz7xjXWVXJhHx9JV8gAcy0Wr1Tr9+J2tPgJd5/wzj46lq+QBdJ1cHM2DNdJzz31H1lVyYR4diyvqo+KiLZpISUnBW2+9hQ0bNuDw4cN45JFHUFRUJD2TcPHixZg1a5bUPikpCb/++itSUlJw+PBhbNiwAevXr8djjz3m6KGJiDo01kciouaxRhKRJ3D4MV0zZsxAZWUlli1bBoPBgBEjRmDnzp0IDw8HUL+Cd1FRkdQ+IiICO3fuxCOPPILXX38dffv2xauvvsrHKxBRl8P6SETUPNZIIvIEDg+wASA5ObnZJdszMzNtYtdccw2+//77thyqTTQaDZ5++mmbW4Q6o66SC/PoWLpKHkDHy6Wj10eg4/3M2op5dCxdJQ+g6+TSEfPo6DWyI/7M2qKr5AF0nVyYR8fiyjwEUXTycxiIiIiIiIiIPJDDn8EmIiIiIiIiIlscYBMRERERERE5AQfYRERERERERE7QaQfY6enpiIiIgLe3N2JjY5Gdnd1i+7179yI2Nhbe3t4YOHAg3njjDTf1tGWO5LFjxw7ccMMNCAwMhJ+fH+Li4rBr1y439rZljp6TBl9++SVUKhVGjhzp2g62kqN51NbWYsmSJQgPD4dGo8GgQYOwYcMGN/W2eY7msWXLFsTExKBbt24ICQnBPffcg8rKSjf11r59+/ZhypQp6Nu3LwRBwAcffHDRbTrq37q7sUZ2rBrJ+tix6iPQ+Wsk62PbsT6yPrpKV6mRnb0+Au1cI8VO6F//+pfo5eUlvvnmm+KhQ4fE+fPni76+vuKvv/5qt31BQYHYrVs3cf78+eKhQ4fEN998U/Ty8hLfe+89N/dcztE85s+fL77wwgvit99+Kx47dkxcvHix6OXlJX7//fdu7rktR3NpcPr0aXHgwIFifHy8GBMT457OtqAtedxyyy3iVVddJWZlZYmFhYXiN998I3755Zdu7LUtR/PIzs4WFQqFuHr1arGgoEDMzs4Whw8fLt56661u7rnczp07xSVLlojbt28XAYjvv/9+i+076t+6u7FGdqwayfrYseqjKHaNGsn62Dasj6yPrtJVamRXqI+i2L41slMOsK+88koxKSlJFouMjBQXLVpkt/3ChQvFyMhIWWzu3Lni1Vdf7bI+toajedhz2WWXiUuXLnV21xzW1lxmzJghPvnkk+LTTz/dIQqko3l8+umnolarFSsrK93RvVZzNI+XXnpJHDhwoCz26quviqGhoS7ro6NaUxw76t+6u7FGXtARaiTrY8eqj6LY9Wok62PrsT5ewProXF2lRna1+iiK7q+Rne4WcZPJhLy8PMTHx8vi8fHxyMnJsbvNV199ZdP+xhtvRG5uLurq6lzW15a0JY+mrFYrzpw5g169ermii63W1lw2btyI48eP4+mnn3Z1F1ulLXl8+OGH0Ol0ePHFF9GvXz8MHToUjz32GM6dO+eOLtvVljzGjBmD4uJi7Ny5E6Io4vfff8d7772HyZMnu6PLTtMR/9bdjTXygo5QI1kfO1Z9BDy3RnbEv3N3Y328gPXRubpKjfTU+gg4929d5cyOuUNFRQUsFguCg4Nl8eDgYJSWltrdprS01G57s9mMiooKhISEuKy/zWlLHk298sorqKmpwfTp013RxVZrSy4///wzFi1ahOzsbKhUHePXsC15FBQUYP/+/fD29sb777+PiooKJCcn448//mi3z9C0JY8xY8Zgy5YtmDFjBs6fPw+z2YxbbrkFr732mju67DQd8W/d3VgjL+gINZL1sWPVR8Bza2RH/Dt3N9bHC1gfnaur1EhPrY+Ac//WO90MdgNBEGRfi6JoE7tYe3txd3M0jwbvvvsuUlNTsXXrVgQFBbmqew5pbS4WiwV33nknli5diqFDh7qre63myDmxWq0QBAFbtmzBlVdeiZtvvhkrV65EZmZmu8/SOJLHoUOH8PDDD+Mf//gH8vLy8Nlnn6GwsBBJSUnu6KpTddS/dXdjjexYNZL1sWPVR8Aza2RH/Tt3N9ZH1kdX6So10hPrI+C8v/WO89ZPKwUEBECpVNq8i1JWVmbzrkODPn362G2vUqnQu3dvl/W1JW3Jo8HWrVuRkJCAbdu2YeLEia7sZqs4msuZM2eQm5sLvV6PefPmAagvMqIoQqVS4fPPP8f111/vlr431pZzEhISgn79+kGr1UqxqKgoiKKI4uJiDBkyxKV9tqcteaxYsQJjx47F448/DgCIjo6Gr68vxo0bh2effbbTzGx0xL91d2ON7Fg1kvWxY9VHwHNrZEf8O3c31kfWR1fpKjXSU+sj4Ny/9U43g61WqxEbG4usrCxZPCsrC2PGjLG7TVxcnE37zz//HDqdDl5eXi7ra0vakgdQ/67jnDlz8M4773SYzzY4moufnx9+/PFH5OfnS6+kpCQMGzYM+fn5uOqqq9zVdZm2nJOxY8eipKQE1dXVUuzYsWNQKBQIDQ11aX+b05Y8zp49C4VCXg6USiWAC+/edQYd8W/d3VgjO1aNZH3sWPUR8Nwa2RH/zt2N9ZH10VW6So301PoIOPlv3eFl0TqAhuXj169fLx46dEhcsGCB6OvrK544cUIURVFctGiROHPmTKl9w7LrjzzyiHjo0CFx/fr1HeoRC63N45133hFVKpX4+uuviwaDQXqdPn26vVKQOJpLUx1lFUhH8zhz5owYGhoq3n777eJPP/0k7t27VxwyZIiYmJjYXimIouh4Hhs3bhRVKpWYnp4uHj9+XNy/f7+o0+nEK6+8sr1SEEWx/uer1+tFvV4vAhBXrlwp6vV66VERneVv3d1YIztWjWR97Fj1URS7Ro1kfWwb1kfWR1fpKjWyK9RHUWzfGtkpB9iiKIqvv/66GB4eLqrVavGKK64Q9+7dK31v9uzZ4jXXXCNrv2fPHnHUqFGiWq0WBwwYIGZkZLi5x/Y5ksc111wjArB5zZ492/0dt8PRc9JYRyqQjuZx+PBhceLEiaKPj48YGhoqpqSkiGfPnnVzr205mserr74qXnbZZaKPj48YEhIi3nXXXWJxcbGbey23e/fuFn/nO9PfuruxRnasGsn62LHqoyh2/hrJ+th2rI+sj67SVWpkZ6+Poti+NVIQxU40d09ERERERETUQXW6z2ATERERERERdUQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgE7XStddeiwULFkhfDxgwAGlpae3WHyKijoQ1kojIPtZHz8IBNjVrzpw5EAQBgiDAy8sLAwcOxGOPPYaamhoAwIkTJyAIAvLz85Gamiq1be514sSJZo/1z3/+E1deeSV8fX3Ro0cPjB8/Hh9//LGbMpXbs2cPBEHA6dOnZfEdO3bgmWeeaZc+EVHHwxp5WhZnjSSiBqyPp2Vx1kfPwgE2teimm26CwWBAQUEBnn32WaSnp+Oxxx6zaffYY4/BYDBIr9DQUCxbtkwWCwsLs3uMxx57DHPnzsX06dPxww8/4Ntvv8W4ceMwdepUrFmzxtUptlqvXr3Qo0eP9u4GEXUgrJEXsEYSUWOsjxewPnoYkagZs2fPFqdOnSqLJSYmin369BFFURQLCwtFAKJer7fZNjw8XFy1atVFj/HVV1+JAMRXX33V5nspKSmil5eXWFRUJIqiKD799NNiTEyMrM2qVavE8PBw6etvv/1WnDhxoti7d2/Rz89PHD9+vJiXlyfbBoD45ptvirfeeqvo4+MjDh48WPzPf/4jy6nxa/bs2aIoiuI111wjzp8/v9kcT58+Ld53331iYGCg2KNHD/G6664T8/Pzpe/n5+eL1157rdi9e3exR48e4hVXXCF+9913F/0ZEVHHxBrJGklE9rE+sj56Ms5gk0N8fHxQV1fntP29++676N69O+bOnWvzvUcffRR1dXXYvn17q/d35swZzJ49G9nZ2fj6668xZMgQ3HzzzThz5oys3dKlSzF9+nQcOHAAN998M+666y788ccfCAsLk4539OhRGAwGrF69+qLHFUURkydPRmlpKXbu3Im8vDxcccUVmDBhAv744w8AwF133YXQ0FB89913yMvLw6JFi+Dl5dXq3Iio42ONtI81kohYH+1jfex6VO3dAeo8vv32W7zzzjuYMGGC0/Z57NgxDBo0CGq12uZ7ffv2hVarxbFjx1q9v+uvv1729dq1a9GzZ0/s3bsXf/3rX6X4nDlzcMcddwAAnnvuObz22mv49ttvcdNNN6FXr14AgKCgIPj7+7fquLt378aPP/6IsrIyaDQaAMDLL7+MDz74AO+99x7uv/9+FBUV4fHHH0dkZCQAYMiQIa3Oi4g6PtbI5rFGEnk21sfmsT52PZzBphZ9/PHH6N69O7y9vREXF4fx48fjtddec9vxRVG0WzibU1ZWhqSkJAwdOhRarRZarRbV1dUoKiqStYuOjpb+3bAoRllZWZv7mZeXh+rqavTu3Rvdu3eXXoWFhTh+/DgAICUlBYmJiZg4cSKef/55KU5EnRdrZOuwRhJ5HtbH1mF97Ho4g00tuu6665CRkQEvLy/07dvX6bejDBkyBPv374fJZLIpgiUlJaiqqsLQoUMBAAqFAqIoyto0vdVozpw5KC8vR1paGsLDw6HRaBAXFweTySRr1zQPQRBgtVrbnIfVakVISAj27Nlj872GdzBTU1Nx55134pNPPsGnn36Kp59+Gv/6178wbdq0Nh+XiNoXa2TrsEYSeR7Wx9Zhfex6OINNLfL19cXgwYMRHh7uks963HHHHaiursbatWttvvfyyy/D29sbM2bMAAAEBgaitLRUViDz8/Nl22RnZ+Phhx/GzTffjOHDh0Oj0aCiosKhPjUUaYvF0uptrrjiCpSWlkKlUmHw4MGyV0BAgNRu6NCheOSRR/D555/jb3/7GzZu3OhQ34ioY2GNbB3WSCLPw/rYOqyPXQ8H2NSu4uLiMH/+fDz++ON45ZVXcPz4cRw5cgRPPvkkXn31Vbz55pvo3bs3AODaa69FeXk5XnzxRRw/fhyvv/46Pv30U9n+Bg8ejM2bN+Pw4cP45ptvcNddd8HHx8ehPoWHh0MQBHz88ccoLy9HdXX1RbeZOHEi4uLicOutt2LXrl04ceIEcnJy8OSTTyI3Nxfnzp3DvHnzsGfPHvz666/48ssv8d133yEqKsqhvhGRZ2GNZI0kIvtYH1kfOyoOsKndpaWlIT09He+++y5GjBiBqKgovPTSS/jf//6Hu+++W2oXFRWF9PR0vP7664iJicG3335r8zzFDRs24NSpUxg1ahRmzpyJhx9+GEFBQQ71p1+/fli6dCkWLVqE4OBgzJs376LbCIKAnTt3Yvz48bj33nsxdOhQ/N///R9OnDiB4OBgKJVKVFZWYtasWRg6dCimT5+OSZMmYenSpQ71jYg8D2skEZF9rI/UEQli0w8kELWzEydO4JprrkFcXBy2bNkCpVLZ3l0iIuowWCOJiOxjfaSOgDPY1OEMGDAAe/bsQWRkpM3nY4iIPB1rJBGRfayP1BFwBpuIiIiIiIjICTiDTUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AT/H3E7OcuNjZFpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -673,7 +777,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -687,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -699,46 +803,100 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/2 [00:00.predict_function at 0x2ad5811f0dc0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 2/2 [00:04<00:00, 2.02s/it]\n" + "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2ad5811f0dc0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 8ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 2/2 [00:04<00:00, 2.48s/it]\n" ] } ], @@ -786,7 +944,7 @@ " model.model_name = f\"model_split{data_seed}.h5\"\n", " model.save_model()\n", " \n", - " mu, var = model.predict(x_test, y_scaler)\n", + " mu, var = model.predict_uncertainty(x_test, y_scaler)\n", " mae = np.mean(np.abs(mu[:, 0]-test_data[output_cols[0]]))\n", " \n", " ensemble_mu[data_seed] = mu\n", @@ -797,32 +955,32 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### We can now use the method predict_ensemble to accomplish the same thing given pretrained models:" + "##### Use the method predict_ensemble to accomplish the same thing given pretrained models:" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3/3 [==============================] - 0s 3ms/step\n", - "3/3 [==============================] - 0s 2ms/step\n" + "3/3 [==============================] - 0s 6ms/step\n", + "3/3 [==============================] - 0s 6ms/step\n" ] } ], "source": [ "models = [f\"./model_split{data_seed}.h5\" for data_seed in range(n_splits)]\n", "\n", - "ensemble_mu, ensemble_var = model.predict_ensemble(x_valid, models, scaler = y_scaler)" + "ensemble_mu, ensemble_var = model.predict_ensemble(x_test, models, scaler = y_scaler)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -832,14 +990,14 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.049026959839657096 0.08040810690069572\n" + "0.020515849193125695 0.08046230428861377\n" ] } ], @@ -849,7 +1007,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -862,7 +1020,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFUCAYAAAAAmsQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/1klEQVR4nO3de1xUZf4H8M+ZgRnuJCiKioj3u5mgoXgp75bFa1u11hQv7aYhZnTTarM2C93f1mZptppCrddcpLWLrq4XvGcqqKlp3tGGBVNBQbnMPL8/lMOMDDDgM8whPu/Xa2rmOc/5nu88HPxyzpzzjCKEECAiIiLN0bk6ASIiIrKPRZqIiEijWKSJiIg0ikWaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ikWaqAYpioKvvvrK5TFq0rlz56AoCtLT0zUZj0jLWKSJ7sH48eOhKEqZx6lTp+z2N5lMGDZsmEOx33rrLdx///33FOO3KCQkBCaTCZ06dQIAbNu2DYqi4Nq1a65NjMgJ3FydAFFtN3ToUCQmJtq0NWjQwOZ1YWEhDAYDGjVqdM/bkxGjNtPr9XV+DKju4JE00T0yGo1o1KiRzWPAgAGYOnUq4uPjUb9+fQwaNAhA2VPVFy9exJNPPomAgAB4e3sjPDwc33//PZKSkvD222/j0KFD6tF5UlKS3RhHjhzBww8/DE9PTwQGBuJPf/oTbty4oS4fP348oqOj8be//Q3BwcEIDAxEbGwsioqKKn1vM2fOxIMPPlimvUuXLpg1a5b6OjExEe3bt4eHhwfatWuHTz75pMK4qamp6NGjB4xGI4KDgzFjxgwUFxeryy0WC+bOnYtWrVrBaDSiWbNmePfddwHYnu4+d+4cHnroIQBAvXr1oCgKxo8fjy+++AKBgYEoKCiw2e4TTzyBcePGVfq+iTRDEFG1xcTEiMcff7xMe79+/YSPj494+eWXxU8//SSOHz8uhBACgEhJSRFCCHH9+nXRokUL0adPH7Fjxw7x888/i9WrV4vdu3eL/Px88eKLL4qOHTsKk8kkTCaTyM/PLxMjLy9PNG7cWPzud78TR44cEZs3bxZhYWEiJibGJkc/Pz8xefJkcfz4cfH1118LLy8vsWjRokrf35EjRwQAcerUKbXtxx9/FADEiRMnhBBCLFq0SAQHB4vk5GRx5swZkZycLAICAkRSUpIQQoizZ88KACItLU0IIcTFixeFl5eXeO6558Tx48dFSkqKqF+/vpg1a5a6jVdeeUXUq1dPJCUliVOnTokdO3aIxYsXl4lXXFwskpOT1XxMJpO4du2ayM/PF/7+/uLLL79UY2ZnZwuDwSC2bNlS6fsm0oo6XaRTU1PFo48+KoKDg23+4futbI+cLyYmRuj1euHt7a0+fv/734t+/fqJ+++/v0x/65/7P/7xD+Hr6yt+/fVXu7FnzZolunbtWmGMRYsWiXr16okbN26oy7/99luh0+lEZmammmNoaKgoLi5W+4wcOVKMHj3aoffYpUsX8Ze//EV9PXPmTBEREaG+DgkJEStWrLBZ55133hGRkZFCiLJF+rXXXhNt27YVFotF7b9gwQLh4+MjzGazyM3NFUajUS3Kd7s73tatWwUAcfXqVZt+U6ZMEcOGDVNff/jhh6JFixY22yXSujp9ujsvLw9du3bF/Pnzf5Pbo5rx0EMPIT09XX189NFHAIDw8PAK10tPT0e3bt0QEBBQ7W0fP34cXbt2hbe3t9rWu3dvWCwWnDhxQm3r2LEj9Hq9+jo4OBhZWVkObWPMmDFYvnw5AEAIgZUrV2LMmDEAgOzsbGRkZGDSpEnw8fFRH7Nnz8bp06fLzTkyMhKKotjkfOPGDVy8eBHHjx9HQUEBBgwY4PhA2PHHP/4RGzduxKVLlwDcPiVfcqEfUW1Rpy8cGzZsWIVXyRYWFuKNN97A8uXLce3aNXTq1Alz585F//79nbI9qp28vb3RqlUru+0V8fT0vOdtCyHKLTrW7e7u7mWWWSwWh7bxhz/8ATNmzMDBgwdx8+ZNZGRk4MknnwQANcbixYvRs2dPm/Ws/yioLGchhJqXjHEBgG7duqFr16744osvMGTIEBw5cgRff/21lNhENaVOH0lXZsKECdi1axdWrVqFw4cPY+TIkRg6dCh+/vlnV6dGvwFdunRBeno6rly5Yne5wWCA2WyuMEaHDh2Qnp6OvLw8tW3Xrl3Q6XRo06aNlDybNm2Kvn37Yvny5Vi+fDkGDhyIhg0bAgAaNmyIJk2a4MyZM2jVqpXNIywsrNycd+/erRZmANi9ezd8fX3RpEkTtG7dGp6enti8ebND+RkMBgCwO1bPPPMMEhMTsXTpUgwcOBAhISFVfftELsUiXY7Tp09j5cqVWLNmDfr06YOWLVvipZdeQlRUVJnbbYiq46mnnkKjRo0QHR2NXbt24cyZM0hOTsaePXsAAM2bN8fZs2eRnp6Oy5cvl7lSGbh9KtrDwwMxMTH48ccfsXXrVsTFxWHs2LFqIZVhzJgxWLVqFdasWYOnn37aZtlbb72FhIQEzJs3DydPnsSRI0eQmJiIDz74wG6s5557DhkZGYiLi8NPP/2Ef//735g1axbi4+Oh0+ng4eGBV199Fa+88gq++OILnD59Gnv37sWSJUvsxgsNDYWiKPjmm2+QnZ1tc2X7mDFjcOnSJSxevBgTJ06UNh5ENYVFuhwHDx6EEAJt2rSx+awtNTVV/ayt5FaQih5Tp0518TshrTIYDNi4cSOCgoIwfPhwdO7cGXPmzFFPEz/xxBMYOnQoHnroITRo0AArV64sE8PLywv/+c9/cOXKFUREROD3v/89BgwYIP26h5EjR+LXX39Ffn4+oqOjbZY988wz+Oyzz5CUlITOnTujX79+SEpKKvdIukmTJvjuu++wb98+dO3aFZMnT8akSZPwxhtvqH3+/Oc/48UXX8Sbb76J9u3bY/To0eV+ht6kSRO8/fbbmDFjBho2bGjzO+fn54cnnngCPj4+ZfImqg0UYX3OqQ5TFAUpKSnqL/Lq1asxZswYHD16tMxnaz4+PmjUqBGKiorKvTimRL169ewe0dy9PSJyjkGDBqF9+/bqBX1EtUmdvnCsIt26dYPZbEZWVhb69Oljt4+7uzvatWtXw5kRkSOuXLmCjRs3YsuWLbyjgmqtOl2kb9y4YTPHcsnnfwEBAWjTpg3GjBmDcePG4f3330e3bt1w+fJlbNmyBZ07d8bw4cOlbq9Zs2ZS3hNRVezYsaPCOw6sP9+tbR544AFcvXoVc+fORdu2bV2dDlG11OnT3du2bVOnFLQWExODpKQkFBUVYfbs2fjiiy9w6dIlBAYGIjIyEm+//TY6d+4sfXtENe3mzZvqfcT22Lu1jIhqTp0u0kRERFrGq7uJiIg0ikWaiIhIo+rchWMWiwW//PILfH19OYcvERFVmxAC169fR+PGjaHTOeeYt84V6V9++YVTAxIRkTQZGRlo2rSpU2LXuSLt6+t755kOgJaPpGX/VebYlylQzVEUD6nxhLglNZ58zjjS0PZ+rfWfsadB7gFLX/dBUuMBQIa4KjXesfwUidEEAItVXZGvzhXp0lPcCrRcpGWfihdCu++1rqprP2NnfLxU196z7PerKHL/cHJXDFLjAYAe7pV3qhL5+4wzPzrlhWNEREQaxSJNRESkUSzSREREGsUiTUREpFEuLdILFy5Ely5d4OfnBz8/P0RGRmL9+vUVrpOamoru3bvDw8MDLVq0wKefflpD2RIREdUslxbppk2bYs6cOdi/fz/279+Phx9+GI8//jiOHj1qt//Zs2cxfPhw9OnTB2lpaXjttdcwbdo0JCcn13DmREREzqe5L9gICAjA//3f/2HSpElllr366qtYt24djh8/rrZNnjwZhw4dwp49exyKn5ubC39/fwB6aPsWLLl/Pwmh7ftJ6yKdTu49tBaLtu+Tlr1PA9rfr7X+M/Yyyv2K3Ifdy//a0+o6L65IjXckb43EaAKAGTk5OfDz85MYt5RmPpM2m81YtWoV8vLyEBkZabfPnj17MHjwYJu2IUOGYP/+/SgqKqqJNImIiGqMyyczOXLkCCIjI3Hr1i34+PggJSUFHTp0sNs3MzMTDRs2tGlr2LAhiouLcfnyZQQHB5dZp6CgAAUFBerr3NxcAIDRrZHUv+wLzXJnxRGiUGo82UcxiuRJC2S/X60fYQHyj4qccaQqkzN+Jnqdj9R4FpEvNZ5sso98bxVlSY2XpZM/fu+0k7tfjzwSKC2WEBYUm7OlxbPH5b/Vbdu2RXp6Ovbu3YspU6YgJiYGx44dK7f/3TO7lJytL2/Gl4SEBPj7+6sPzttNRES1hcuLtMFgQKtWrRAeHo6EhAR07doV8+bNs9u3UaNGyMzMtGnLysqCm5sbAgPt/3U0c+ZM5OTkqI+MjAzp74GIiMgZXH66+25CCJvT09YiIyPx9ddf27Rt3LgR4eHhcHe3P7+r0WiE0WiUnicREZGzufRI+rXXXsOOHTtw7tw5HDlyBK+//jq2bduGMWPGALh9FDxu3Di1/+TJk3H+/HnEx8fj+PHjWLp0KZYsWYKXXnrJVW+BiIjIaVx6JP2///0PY8eOhclkgr+/P7p06YINGzZg0KDbX3dmMplw4cIFtX9YWBi+++47vPDCC1iwYAEaN26Mjz76CE888YSr3gIREZHTuLRIL1mypMLlSUlJZdr69euHgwcPOikjIiIi7XD5hWNERERkH4s0ERGRRrFIExERaZTmbsGqKe56byiKXlo8H0PDyjtVgVHxlRqvQFyXGu/qzVNS4xnc6kmNV2SW+34BQKeTeytfseRZ6mRz08v9mZgteVLjAYBAsfSYMsmeVS6/4ELlnVzokv6c9JibTZ2lxnvUa6S0WEWiEN9cXyQtnj08kiYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSqDo745hZFEKR+DdKfnGBtFgAcLVI7oxesrnr5c6IJnvGtmBESY0HACb8LDXejUKD1HgebvdJjXer+JrUeGbIn3FMkfxPmIchSGq8gqIrUuPJ/r1z1/tIjdfS3FpqPAC4USQ33nGzSVoss5CcnB08kiYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijaqz04LqFQMURS8t3q1ibU//V2i+qul4BWa50xP+VLxFajwAsFjkTv2q0xmlxiu0yJ12U/aUkU2MXaXGA4Cs4tNS4xWZb0iNJ/tnXFD8P6nxZP+Mr+quS40HACfzLXID1rJD01qWLhERUd3BIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaVWdnHLtRcBaKokiLp1O8pMW6HVBuOA/3IKnxLJYiqfHyCjOkxvMzhkmNBwC3iq9JjSd7tietkz07GAAEuIVKjeenryc1Xr4idwau9pD7fo/jvNR4bhZ5sziW6OAj99/WvfnyZubTQV4NKX8bREREpEkuLdIJCQmIiIiAr68vgoKCEB0djRMnTlS63oIFC9C+fXt4enqibdu2+OKLL2ogWyIioprl0iKdmpqK2NhY7N27F5s2bUJxcTEGDx6MvLzyT0csXLgQM2fOxFtvvYWjR4/i7bffRmxsLL7++usazJyIiMj5XPqZ9IYNG2xeJyYmIigoCAcOHEDfvn3trvPPf/4Tzz77LEaPHg0AaNGiBfbu3Yu5c+dixIgRTs+ZiIiopmjqM+mcnBwAQEBAQLl9CgoK4OHhYdPm6emJffv2oahI7sVMRERErqSZIi2EQHx8PKKiotCpU6dy+w0ZMgSfffYZDhw4ACEE9u/fj6VLl6KoqAiXL18u07+goAC5ubk2DyIiotpAM0V66tSpOHz4MFauXFlhvz//+c8YNmwYHnzwQbi7u+Pxxx/H+PHjAQB6fdnL/xMSEuDv768+QkJCnJE+ERGRdJoo0nFxcVi3bh22bt2Kpk2bVtjX09MTS5cuRX5+Ps6dO4cLFy6gefPm8PX1Rf369cv0nzlzJnJyctRHRobc+3GJiIicxaUXjgkhEBcXh5SUFGzbtg1hYY5PQOHu7q4W9FWrVuHRRx+FTlf2bw6j0Qij0SgtZyIiopri0iIdGxuLFStW4N///jd8fX2RmZkJAPD394enpyeA20fCly5dUu+FPnnyJPbt24eePXvi6tWr+OCDD/Djjz/i888/d9n7cIZi81Wp8fSKQWo8nc5dajxvvdyPIWTPDgYAhZJ/JrLHsMgsbyYlAAj0aC01nh5y3y8AhJqbSY0X6C739yS+c77UeEt/kjuj1/lbvlLjmXTnpMYDANNNf6nxPC0elXdykFk4/2S0S093L1y4EDk5Oejfvz+Cg4PVx+rVq9U+JpMJFy5cUF+bzWa8//776Nq1KwYNGoRbt25h9+7daN68uQveARERkfO4/HR3ZZKSkmxet2/fHmlpaU7KiIiISDs0ceEYERERlcUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEuncyEaq+bhRelxjO6NZQazxk83INcnUKFZE/jmVv0i9R4we4dpMYDgI+izkqNF9bppNR4Ly17XGq89JtXpMYzKT9LjdfWfL/UeABwSzFLjVekFEmLZYa8WOXhkTQREZFGsUgTERFpVJWL9LRp0/DRRx+VaZ8/fz6mT58uIyciIiJCNYp0cnIyevfuXaa9V69e+Ne//iUlKSIiIqpGkf7111/h71/2+z39/Pxw+fJlKUkRERFRNYp0q1atsGHDhjLt69evR4sWLaQkRURERNW4BSs+Ph5Tp05FdnY2Hn74YQDA5s2b8f777+PDDz+UnR8REVGdVeUiPXHiRBQUFODdd9/FO++8AwBo3rw5Fi5ciHHjxklPkIiIqK6q1mQmU6ZMwZQpU5CdnQ1PT0/4+PjIzouIiKjOu6cZxxo0aCArj1pPoFhqPJ3iJTVekfm61Hhu+npS4xWar0qNp9d5S40HAEVFcsfQXe8rNd59Qu6sbWPrPyA13sT7D0mNBwA3b3lIjffr+WCp8U7cuCU1HhS54byV+lLj5SuS3y+A07pzUuO1Mcub+a5YOH/SToe28MADD2Dz5s2oV68eunXrBkUpf085ePCgtOSIiIjqMoeK9OOPPw6j0QgAiI6OdmY+REREdIdDRXrWrFkAALPZjP79+6NLly6oV0/u6U4iIiKyVaX7pPV6PYYMGYJr1645KR0iIiIqUeXJTDp37owzZ844IxciIiKyUuUi/e677+Kll17CN998A5PJhNzcXJsHERERyVHl68eHDh0KAHjsscdsrvIWQkBRFJjNcr+gm4iIqK6qcpHeunWrM/IgIiKiu1S5SPfr188ZeRAREdFdqjVdyrVr17BkyRIcP34ciqKgQ4cOmDhxot2vsNQqneJV4aQsVY6nM0qLBQBFxb9KjafTyZ2ZyWyRO8OabMWSZzADgECvLlLjDXLvJTXe4MZ5UuP1biV3YqJL2UFS4wFAr9/9R2q8Nz6cJDXeVV221Hj5itxZ7/yE3FtpjxelSo0HAFHuj0iNl67bLy2WRTj/490qXzi2f/9+tGzZEn//+99x5coVXL58GR988AFatmzJ2caIiIgkqvKR9AsvvIDHHnsMixcvhpvb7dWLi4vxzDPPYPr06di+fbv0JImIiOqiKhfp/fv32xRoAHBzc8Mrr7yC8PBwqckRERHVZVU+3e3n54cLFy6Uac/IyICvr9xv9SEiIqrLqlykR48ejUmTJmH16tXIyMjAxYsXsWrVKjzzzDN46qmnnJEjERFRnVTl091/+9vfoCgKxo0bh+Li21f4uru7Y8qUKZgzZ470BImIiOqqKhdpg8GAefPmISEhAadPn4YQAq1atYKXl5cz8iMiIqqzqny6e+LEibh+/Tq8vLzQuXNndOnSBV5eXsjLy8PEiROrFCshIQERERHw9fVFUFAQoqOjceLEiUrXW758Obp27QovLy8EBwdjwoQJ+PVXufcVExERuVqVi/Tnn3+Omzdvlmm/efMmvvjiiyrFSk1NRWxsLPbu3YtNmzahuLgYgwcPRl5e+ZMy7Ny5E+PGjcOkSZNw9OhRrFmzBj/88AOeeeaZqr4VIiIiTXP4dHdubi6EEBBC4Pr16/DwKJ3Bymw247vvvkNQUNVmFNqwYYPN68TERAQFBeHAgQPo27ev3XX27t2L5s2bY9q0aQCAsLAwPPvss/jrX/9apW0TERFpncNF+r777oOiKFAUBW3atCmzXFEUvP322/eUTE5ODgAgICCg3D69evXC66+/ju+++w7Dhg1DVlYW/vWvf+GRR6o2dZxAMQB504JqfZpMrQvyul9qvE6WTlLjAUB7X4PUeCFecvcZN51FarzQPmlS47V46R9S4wHAe2GNpca7KHdmVXRybyA13tbiDKnxwkRTqfFgiJIbD8D/kCM9Zm3icJHeunUrhBB4+OGHkZycbFNIDQYDQkND0bhx9X9hhBCIj49HVFQUOnUq/x/YXr16Yfny5Rg9ejRu3bqF4uJiPPbYY/j444/t9i8oKEBBQYH6mt95TUREtYXDRbrk26/Onj2LkJAQ6HRV/ji7QlOnTsXhw4exc+fOCvsdO3YM06ZNw5tvvokhQ4bAZDLh5ZdfxuTJk7FkyZIy/RMSEu75CJ+IiMgVqnwLVmhoKAAgPz8fFy5cQGFhoc3yLl2q/k1BcXFxWLduHbZv346mTSs+/ZKQkIDevXvj5ZdfVrfn7e2NPn36YPbs2QgODrbpP3PmTMTHx6uvc3NzERISUuUciYiIalqVi3R2djYmTJiA9evX211uNjv+1V1CCMTFxSElJQXbtm1DWFhYpevk5+fbzBsOAHq9Xo13N6PRCKNR7tdIEhER1YQqn7OePn06rl69ir1798LT0xMbNmzA559/jtatW2PdunVVihUbG4tly5ZhxYoV8PX1RWZmJjIzM21u8Zo5cybGjRunvh4xYgTWrl2LhQsX4syZM9i1axemTZuGHj163NNn4kRERFpT5SPpLVu24N///jciIiKg0+kQGhqKQYMGwc/PDwkJCVW6ynrhwoUAgP79+9u0JyYmYvz48QAAk8lk84Ue48ePx/Xr1zF//ny8+OKLuO+++/Dwww9j7ty5VX0rREREmlblIp2Xl6feDx0QEIDs7Gy0adMGnTt3xsGDB6sUy97p6bslJSWVaYuLi0NcXFyVtkVERFTbVPl0d9u2bdWpO++//3784x//wKVLl/Dpp5+WuWiLiIiIqq/KR9LTp0+HyWQCAMyaNQtDhgzB8uXLYTAY7B71EhERUfUowpFzzhXIz8/HTz/9hGbNmqF+/fqy8nKa3Nxc+Pv7Q1G8oSjyZhyzWG5Ji+UMiiL3vvbG3r2lxmtvaSs1Xo9Ad6nxACDEq6DyTlXQPfii1Hj3/36z1HhKq6pN81uZhXFVmxXQEfNMcsewPUKlxjuC01LjyeYpvKXGc4fcWfkAoKHwlxrvopItLZZZFOHn/HXIycmBn5+ftLjWqv0vd2FhIU6cOAGDwYAHHnigVhRoIiKi2qTKRTo/Px+TJk2Cl5cXOnbsqF55PW3aNMyZM0d6gkRERHVVlYv0zJkzcejQIWzbts3mm7AGDhyI1atXS02OiIioLqvyhWNfffUVVq9ejQcffNDmM90OHTrg9Gltf/5CRERUm1T5SDo7O9vu90bn5eVJvRCLiIiorqtykY6IiMC3336rvi4pzIsXL0ZkZKS8zIiIiOq4Kp/uTkhIwNChQ3Hs2DEUFxdj3rx5OHr0KPbs2YPU1FRn5EhERFQnVflIulevXti1axfy8/PRsmVLbNy4EQ0bNsSePXvQvXt3Z+RIRERUJ1X5SBoAOnfujM8//1x2LkRERGTFoSKdm5vrcEBnzboimxC3IIR2L3STPUOYbJn5aVLjjWrYWWq8ZyL2SY0HAM1GHZUar7BzD6nxCsLekRpPvPmR1HjLLsqdsQ0AmkDu19Oe112RGi9AyJ3kqVgxS43XSh8oNd4p869S4wGAh04vNV6guZ60WMWiUFqs8jhUpO+7775Kr9wWQkBRFJjNcnciIiKiusqhIr1161aHgqWlyT26IiIiqsscKtL9+vUrd1lOTg6WL1+Ozz77DIcOHcL06dNl5UZERFSnVfuDzy1btuDpp59GcHAwPv74YwwfPhz79++XmRsREVGdVqWruy9evIikpCQsXboUeXl5GDVqFIqKipCcnIwOHTo4K0ciIqI6yeEj6eHDh6NDhw44duwYPv74Y/zyyy/4+OOPnZkbERFRnebwkfTGjRsxbdo0TJkyBa1bt3ZmTkRERIQqHEnv2LED169fR3h4OHr27In58+cjOzvbmbkRERHVaQ4X6cjISCxevBgmkwnPPvssVq1ahSZNmsBisWDTpk24fv26M/MkIiKqc6p8dbeXlxcmTpyInTt34siRI3jxxRcxZ84cBAUF4bHHHnNGjkRERHVStebuLtG2bVv89a9/RUJCAr7++mssXbpUVl61jtan8RTCIjeeUiw13q5rcs/ExBuLpMYDAHPLdlLj5f39F6nx7vu93As59+6R+4U59XSeUuMBgLvk77AP0sudxjOrUO5UqC09PaTGy7gpd1pLTyE3PwBo4CV3WtDjBZnSYlmE/H9n7ialsuj1ekRHR2PdunUywhEREREkFWkiIiKSj0WaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ikWaiIhIo+5pxrHaTQdF8mxFMsmeIUzrDhSkSI134sxAqfEAIPj0f6TGM97nLzWexT9Qarz1F5pJjdfYQ/7v2/ViITWeWciN19JL7gxc6TevSI3XzhAgNR7kTmAGAHCTfCjpLozSYpmF849zeSRNRESkUSzSREREGuXSIp2QkICIiAj4+voiKCgI0dHROHHiRIXrjB8/HoqilHl07NixhrImIiKqGS4t0qmpqYiNjcXevXuxadMmFBcXY/DgwcjLyyt3nXnz5sFkMqmPjIwMBAQEYOTIkTWYORERkfO59MKxDRs22LxOTExEUFAQDhw4gL59+9pdx9/fH/7+pRfcfPXVV7h69SomTJjg1FyJiIhqmqY+k87JyQEABAQ4fsXhkiVLMHDgQISGhjorLSIiIpfQzC1YQgjEx8cjKioKnTp1cmgdk8mE9evXY8WKFeX2KSgoQEFB6Rev5+bm3nOuRERENUEzR9JTp07F4cOHsXLlSofXSUpKwn333Yfo6Ohy+yQkJKinyP39/RESEiIhWyIiIufTRJGOi4vDunXrsHXrVjRt2tShdYQQWLp0KcaOHQuDwVBuv5kzZyInJ0d9ZGRkyEqbiIjIqVx6ulsIgbi4OKSkpGDbtm0ICwtzeN3U1FScOnUKkyZNqrCf0WiE0WhvhhkLhNDujGOKIvfvJ63PYGYR+VLjDdq3Tmo8AIj+05+kxnuvzxGp8Rp/eU5qvPb+N6TGW/9rkdR4ABAIH6nxLirZUuMFFtWTGs8d7lLj7S4+KTXeA26tpMYDAA+93Hid3BpLi1UkCvGztGj2ufRIOjY2FsuWLcOKFSvg6+uLzMxMZGZm4ubNm2qfmTNnYty4cWXWXbJkCXr27Onw59dERES1jUuL9MKFC5GTk4P+/fsjODhYfaxevVrtYzKZcOHCBZv1cnJykJycXOlRNBERUW3m8tPdlUlKSirT5u/vj/x8uadHiYiItEYTF44RERFRWSzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUYpw5Gbl35Dc3Nw730etByBvWlDZ03jKpvVpQfU6udM7ChRLjQcAiuRpBZp7RUmNl9RV8vyJku0xNZEeM+2K3J/JlSK5+42XXu6/C1lFt6TG00s+TvPUyZ9646ZF7s/kkv4XabEsoghn8/6DnJwc+Pn5SYtrTduVhYiIqA5jkSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNkj89TB0le0Yvrc9gJptF5Ls6hUoJFEqNdzZ/m9R4Tx6KkBqvubml1Hi9AuT/c3O92Cw1XgOj3BzN2p7oD1m6X6XGc4dBajwAGFG/vtR4/2f6QVqsmpjJsW5VAiIiolqERZqIiEijWKSJiIg0ikWaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ijOOaZTsmWx0Og+p8SyWW1LjyaYo8mc+UiT/uhjdA6TGyy3OlBrvtFuR1Hhpl3+RGg8AWrr1lBov96av1HhBBqPUeMEGT6nxfi2+KjVeY9STGg8AUi/flBrPXe8tLZYQFhSbs6XFs4dH0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLi3SCQkJiIiIgK+vL4KCghAdHY0TJ05Uul5BQQFef/11hIaGwmg0omXLlli6dGkNZExERFRzXDrjWGpqKmJjYxEREYHi4mK8/vrrGDx4MI4dOwZv7/JnhRk1ahT+97//YcmSJWjVqhWysrJQXFxcg5kTERE5nyKEEK5OokR2djaCgoKQmpqKvn372u2zYcMGPPnkkzhz5gwCAqo+rWJubi78/f0B6AEo95Yw1SmKIvfEk+ypS70NIVLj3Sg4LTWeM8iePtfL2ExqvD5uQ6XGc1fk/psV7KmXGm9H/iWp8QAgyBIoNd5h7JEWSwgzcm4dQ05ODvz8/KTFtaapz6RzcnIAoMLiu27dOoSHh+Ovf/0rmjRpgjZt2uCll17CzZty53clIiJyNc18wYYQAvHx8YiKikKnTp3K7XfmzBns3LkTHh4eSElJweXLl/Hcc8/hypUrdj+XLigoQEFBgfo6NzfXKfkTERHJppkj6alTp+Lw4cNYuXJlhf0sFgsURcHy5cvRo0cPDB8+HB988AGSkpLsHk0nJCTA399ffYSEyD0lSERE5CyaKNJxcXFYt24dtm7diqZNm1bYNzg4GE2aNLnzufJt7du3hxACFy9eLNN/5syZyMnJUR8ZGRnS8yciInIGlxZpIQSmTp2KtWvXYsuWLQgLC6t0nd69e+OXX37BjRs31LaTJ09Cp9PZLfBGoxF+fn42DyIiotrApUU6NjYWy5Ytw4oVK+Dr64vMzExkZmbanLaeOXMmxo0bp77+wx/+gMDAQEyYMAHHjh3D9u3b8fLLL2PixInw9JT7hehERESu5NIivXDhQuTk5KB///4IDg5WH6tXr1b7mEwmXLhwQX3t4+ODTZs24dq1awgPD8eYMWMwYsQIfPTRR654C0RERE7j0qu7HblFOykpqUxbu3btsGnTJidkREREpB2auQWrppT+YaCZOVyolpA/74/ceEKYJcerDb8jssdQ7uQoxaJQajzZEzAVWuSeTDWLIqnxAPljKCDv96Tkd86ZvyuamnGsJly8eJG3YRERkTQZGRmV3plUXXWuSFssFvzyyy/w9fWFInmKPZlyc3MREhKCjIyMWnNFOnOuGbUxZ6B25s2ca0ZtzvnYsWNo27YtdDrnXOJV5053l3erllbVxtvGmHPNqI05A7Uzb+ZcM2pjzk2aNHFagQY0MpkJERERlcUiTUREpFEs0hplNBoxa9YsGI1GV6fiMOZcM2pjzkDtzJs51wzmXL46d+EYERFRbcEjaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBbpGvLJJ58gLCwMHh4e6N69O3bs2FFu3/Hjx0NRlDKPjh07qn2SkpLs9rl165aUfLdv344RI0agcePGUBQFX331VaXrpKamonv37vDw8ECLFi3w6aeflumTnJyMDh06wGg0okOHDkhJSZGSb3VyXrt2LQYNGoQGDRrAz88PkZGR+M9//mPTR2vjvG3bNrv5/PTTTzb9nDnO1cnb1ft0QkICIiIi4Ovri6CgIERHR+PEiROVrufqfbo6ebt6v65Ozq7er6uTc03t0yzSNWD16tWYPn06Xn/9daSlpaFPnz4YNmyYzVdwWps3bx5MJpP6yMjIQEBAAEaOHGnTz8/Pz6afyWSCh4eHlJzz8vLQtWtXzJ8/36H+Z8+exfDhw9GnTx+kpaXhtddew7Rp05CcnKz22bNnD0aPHo2xY8fi0KFDGDt2LEaNGoXvv//eJTlv374dgwYNwnfffYcDBw7goYcewogRI5CWlmbTT0vjXOLEiRM2+bRu3Vpd5uxxrk7ert6nU1NTERsbi71792LTpk0oLi7G4MGDkZeXV+46Wtinq5O3q/fr6uRcwlX7dXVyrrF9WpDT9ejRQ0yePNmmrV27dmLGjBkOrZ+SkiIURRHnzp1T2xITE4W/v7/MNMsFQKSkpFTY55VXXhHt2rWzaXv22WfFgw8+qL4eNWqUGDp0qE2fIUOGiCeffFJariUcydmeDh06iLffflt9rbVx3rp1qwAgrl69Wm6fmhxnIao31q7ep7OysgQAkZqaWm4fre3TQjiWtz2u3K8dyVlr+3V1xtlZ+zSPpJ2ssLAQBw4cwODBg23aBw8ejN27dzsUY8mSJRg4cCBCQ0Nt2m/cuIHQ0FA0bdoUjz76aJm/lGvSnj17yrzHIUOGYP/+/SgqKqqwj6Pj4GwWiwXXr19HQECATbuWxrlEt27dEBwcjAEDBmDr1q02y7Q+zoDr9+mcnBwAKPOztqbFfdqRvO/m6v26KjlrZb+uzjg7a59mkXayy5cvw2w2o2HDhjbtDRs2RGZmZqXrm0wmrF+/Hs8884xNe7t27ZCUlIR169Zh5cqV8PDwQO/evfHzzz9Lzd9RmZmZdt9jcXExLl++XGEfR8ahJrz//vvIy8vDqFGj1DatjXNwcDAWLVqE5ORkrF27Fm3btsWAAQOwfft2tY/Wx9nV+7QQAvHx8YiKikKnTp3K7ae1fdrRvO/myv3a0Zy1tF9XZ5yduk/f03E4VerSpUsCgNi9e7dN++zZs0Xbtm0rXf+9994TgYGBoqCgoMJ+ZrNZdO3aVcTFxd1TvvbAgdOZrVu3Fu+9955N286dOwUAYTKZhBBCuLu7ixUrVtj0WbZsmTAajVLzFaLqp2BXrFghvLy8xKZNmyrs5+pxtufRRx8VI0aMUF/X5DgLUfW8Xb1PP/fccyI0NFRkZGRU2E9r+7SjeVtz9X5dnZxLuGq/rk7OztyneSTtZPXr14dery/z115WVlaZvwrvJoTA0qVLMXbsWBgMhgr76nQ6REREuOwIr1GjRnbfo5ubGwIDAyvsU9k4ONvq1asxadIkfPnllxg4cGCFfV09zvY8+OCDNvlodZwB1+/TcXFxWLduHbZu3VrpV9ZqaZ+uSt4lXL1fVydna67Yr6uTs7P3aRZpJzMYDOjevTs2bdpk075p0yb06tWrwnVTU1Nx6tQpTJo0qdLtCCGQnp6O4ODge8q3uiIjI8u8x40bNyI8PBzu7u4V9qlsHJxp5cqVGD9+PFasWIFHHnmk0v6uHmd70tLSbPLR4jiXcNU+LYTA1KlTsXbtWmzZsgVhYWGVrqOFfbo6eQOu3a+rm/PdanK/vpecnb5PO3zMTdW2atUq4e7uLpYsWSKOHTsmpk+fLry9vdWrAGfMmCHGjh1bZr2nn35a9OzZ027Mt956S2zYsEGcPn1apKWliQkTJgg3Nzfx/fffS8n5+vXrIi0tTaSlpQkA4oMPPhBpaWni/PnzdnM+c+aM8PLyEi+88II4duyYWLJkiXB3dxf/+te/1D67du0Ser1ezJkzRxw/flzMmTNHuLm5ib1797ok5xUrVgg3NzexYMECYTKZ1Me1a9fUPlob57///e8iJSVFnDx5Uvz4449ixowZAoBITk5W+zh7nKuTdwlX7dNTpkwR/v7+Ytu2bTY/6/z8fLWPFvfp6uTt6v26Ojm7er+uTs4lnL1Ps0jXkAULFojQ0FBhMBjEAw88YHNpf0xMjOjXr59N/2vXrglPT0+xaNEiu/GmT58umjVrJgwGg2jQoIEYPHhwmc+970XJLRF3P2JiYsrNedu2baJbt27CYDCI5s2bi4ULF5aJu2bNGtG2bVvh7u4u2rVrZ/NLWNM59+vXr8L+QmhvnOfOnStatmwpPDw8RL169URUVJT49ttvy8R15jhXJ28hXLtP28sVgEhMTFT7aHGfrk7ert6vq5Ozq/fr6u4fNbFP86sqiYiINIqfSRMREWkUizQREZFGsUgTERFpFIs0ERGRRrFIExERaRSLNBERkUaxSBMREWkUizTRb9S5c+egKArS09NdnUoZ48ePR3R0tKvToFpo+/btGDFiBBo3bgxFUfDVV1/9prZ3NxZpIo0aP348FEUp8xg6dKhD64eEhMBkMjn0dXs1XdDnzZuHpKSkGtkW/bbk5eWha9eumD9//m9ye3dzc8lWicghQ4cORWJiok2b0Wh0aF29Xo9GjRo5I6175u/v7+oUqJYaNmwYhg0bVu7ywsJCvPHGG1i+fDmuXbuGTp06Ye7cuejfv79TtudsPJIm0jCj0YhGjRrZPOrVqwcAUBQFCxcuxLBhw+Dp6YmwsDCsWbNGXffuo+OrV69izJgxaNCgATw9PdG6dWv1D4CSb/3p1q0bFEWx+QctMTER7du3h4eHB9q1a4dPPvmkzDa+/PJL9OnTB56enoiIiMDJkyfxww8/IDw8HD4+Phg6dCiys7PV9e4+3W2xWDB37ly0atUKRqMRzZo1w7vvvit7OKkOmDBhAnbt2oVVq1bh8OHDGDlyJIYOHaqpr5etCh5JE9Vif/7znzFnzhzMmzcP//znP/HUU0+hU6dOaN++vd2+x44dw/r161G/fn2cOnUKN2/eBADs27cPPXr0wH//+1907NhR/V7cxYsXY9asWZg/fz66deuGtLQ0/PGPf4S3tzdiYmLU2LNmzcKHH36IZs2aYeLEiXjqqafg5+eHefPmwcvLC6NGjcKbb76JhQsX2n0fM2fOxOLFi/H3v/8dUVFRMJlM+Omnn5wwYvRbdvr0aaxcuRIXL15E48aNAQAvvfQSNmzYgMTERLz33nsuzrAaqvZdIURUU2JiYoRerxfe3t42j7/85S9CiNvf3DN58mSbdXr27CmmTJkihBDi7NmzAoBIS0sTQggxYsQIMWHCBLvburtviZCQELFixQqbtnfeeUdERkbarPfZZ5+py1euXCkAiM2bN6ttCQkJom3btjbv7fHHHxdCCJGbmyuMRqNYvHixgyNDdBsAkZKSor7+8ssvBYAyvzNubm5i1KhRQojSfbaiR2xsrEPbqwk8kibSsIceeqjM0WdAQID6PDIy0mZZZGRkuRd/TZkyBU888QQOHjyIwYMHIzo6Gr169Sp329nZ2cjIyMCkSZPwxz/+UW0vLi4u85lyly5d1OcNGzYEAHTu3NmmLSsry+52jh8/joKCAgwYMKDcXIgcYbFYoNfrceDAAej1eptlPj4+AIAmTZrg+PHjFcYp+UhJC1ikiTTM29sbrVq1qtI6iqLYbR82bBjOnz+Pb7/9Fv/9738xYMAAxMbG4m9/+5vd/haLBcDtU949e/a0WXb3P4Du7u5ltn93W0m8u3l6elbyjogc061bN5jNZmRlZaFPnz52+7i7u6Ndu3Y1nFn18cIxolps7969ZV5X9A9QgwYNMH78eCxbtgwffvghFi1aBADqZ9Bms1nt27BhQzRp0gRnzpxBq1atbB4lF5rJ0Lp1a3h6emLz5s3SYtJv140bN5Cenq6eMTp79izS09Nx4cIFtGnTBmPGjMG4ceOwdu1anD17Fj/88APmzp2L7777Tvr2agKPpIk0rKCgAJmZmTZtbm5uqF+/PgBgzZo1CA8PR1RUFJYvX459+/ZhyZIldmO9+eab6N69Ozp27IiCggJ888036gVmQUFB8PT0xIYNG9C0aVN4eHjA398fb731FqZNmwY/Pz8MGzYMBQUF2L9/P65evYr4+Hgp79HDwwOvvvoqXnnlFRgMBvTu3RvZ2dk4evQoJk2aJGUb9Nuxf/9+PPTQQ+rrkv0wJiYGSUlJSExMxOzZs/Hiiy/i0qVLCAwMRGRkJIYPH+6U7TldjX4CTkQOi4mJsXtRS8kFWADEggULxKBBg4TRaBShoaFi5cqV6vp3Xwz2zjvviPbt2wtPT08REBAgHn/8cXHmzBm1/+LFi0VISIjQ6XSiX79+avvy5cvF/fffLwwGg6hXr57o27evWLt2rd1tCCHE1q1bBQBx9epVtS0xMVH4+/vbvLeSC8eEEMJsNovZs2eL0NBQ4e7uLpo1aybee++9ex9EolpOEUII5/8pQESyKYqClJQUTq9J9BvGz6SJiIg0ikWaiIhIo3jhGFEtxU+qiH77eCRNRESkUSzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFF18vukb926hcLCQlenQUREtZzBYICHh4fT4te5In3r1i14enq6Og0iIvoNaNSoEc6ePeu0Ql3ninTpEbQegHLnuYKSM/8KdIBS8imA7vZrAIrapkBR9Grfknab5zbLlTvP9epyHUr7WcdXrHLQWcW4vY7e6rkOCvRWGerUbajrC6tYVuuVtJe+m9vRAEAndFBQkq9S2m7dppS2WY3I7TZFKR1RxWq51XOdAqtYVqOvlIw4oJS0Wy9H2eU6pfQnaG996+WKveVViQWhdtApd16XiSXU57o7z63fm4LStvL7lsR1bLkCYfUehLoNnWK9XmmbdVz1uSIAtb00vs1zq+2Wxitnud3nVjmWs97d6+gUi9126IRVLEvp8js7ic12dSXr24+l6Kxi6KxysVqv9DlK+9lstyQvS5ntlmnTla4HtR1l+sK6r660r5qLTZvV9u7+Zbk9UFbbUKx2SPUNWe30utuPu/uqbTqIkueK3qa95Lmw0wadHkKxXk9/p69SuvxO293P1ZhKyXM9oHOz6lvy/M72FTer5W6ly6G3ab89BG62z5U7z3Vupf+O32nTKbZtOp0Oubk30TzkeRQWFrJIO4NaUhQFsCpE6s4LpbRoqW3lFGabIm1vud6m/XY/q8KrlBbeqhXp0iJsv+2uIq0+V6yWK1bL761I2yvMjhXpkri2hbN0Oewud7RI2y+8dxWPCvsKm7jVKtL2CmSZvlUr0roqFWlhPwebdvsFtDpF+u6CbK/NbpFWi3D5hbU0Vtliab9IK+UuV/+QtlukbddT+1n/QaAWZJTZbpk2q/VsCu6dH5rVPzPqjqPoYLUjo7TNqhhbHUM4XqSti7V1m81zq4J75//2i7B1kdbbWW5VpHXWRdpqeYVFWn/Xc3tF+s7y8or0Xe2337oboHMvfW5TpK36wF6RvpOjk/HCMSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0qg6fQuWuHMrye3/CZS+KO85AFhQej9EeayXizLPhZ02C0pvbbl9w5L189v9rG5kUvta33OhwHKnpw7C6j5pcWe5dXvp2jqU3HwkhA6Wym7BsmorcwsWrO6Tvmv53XeF2C63vWvE+u51dbmwWs77pHmftBrrt3Sf9F3v0e490dW5T9p6G1bt6i+HsOpbut3bfS1lYonSeyttt3XnuSgnllDK5ijU+AJCJ+w+V/vdGXOhs1jFtVj1Nd9erlis8raUbgNmtU/J/xXFbPW8evdJO1udK9JCCPj4+ODGjRv2l6v/sXp9VxsRERFwe8Yxg8HgtPh1rkgrioIbN24gIyMDfn5+rk6nVsvNzUVISAjH8h5xHOXgOMrDsXQc5+52Ej8/P+58knAs5eA4ysFxlIdj6Xq8cIyIiEijWKSJiIg0qs4VaaPRiFmzZsFoNLo6lVqPYykHx1EOjqM8HEvtUIQQvG6ZiIhIg+rckTQREVFtwSJNRESkUSzSREREGsUiTUREpFF1rkh/8sknCAsLg4eHB7p3744dO3a4OiVNS0hIQEREBHx9fREUFITo6GicOHHCpo8QAm+99RYaN24MT09P9O/fH0ePHnVRxrVDQkICFEXB9OnT1TaOo+MuXbqEp59+GoGBgfDy8sL999+PAwcOqMs5lpUrLi7GG2+8gbCwMHh6eqJFixb4y1/+AovFovbhOGqAqENWrVol3N3dxeLFi8WxY8fE888/L7y9vcX58+ddnZpmDRkyRCQmJooff/xRpKeni0ceeUQ0a9ZM3LhxQ+0zZ84c4evrK5KTk8WRI0fE6NGjRXBwsMjNzXVh5tq1b98+0bx5c9GlSxfx/PPPq+0cR8dcuXJFhIaGivHjx4vvv/9enD17Vvz3v/8Vp06dUvtwLCs3e/ZsERgYKL755htx9uxZsWbNGuHj4yM+/PBDtQ/H0fXqVJHu0aOHmDx5sk1bu3btxIwZM1yUUe2TlZUlAIjU1FQhhBAWi0U0atRIzJkzR+1z69Yt4e/vLz799FNXpalZ169fF61btxabNm0S/fr1U4s0x9Fxr776qoiKiip3OcfSMY888oiYOHGiTdvvfvc78fTTTwshOI5aUWdOdxcWFuLAgQMYPHiwTfvgwYOxe/duF2VV++Tk5AAAAgICAABnz55FZmamzbgajUb069eP42pHbGwsHnnkEQwcONCmnePouHXr1iE8PBwjR45EUFAQunXrhsWLF6vLOZaOiYqKwubNm3Hy5EkAwKFDh7Bz504MHz4cAMdRK+rMF2xcvnwZZrMZDRs2tGlv2LAhMjMzXZRV7SKEQHx8PKKiotCpUycAUMfO3rieP3++xnPUslWrVuHgwYP44YcfyizjODruzJkzWLhwIeLj4/Haa69h3759mDZtGoxGI8aNG8exdNCrr76KnJwctGvXDnq9HmazGe+++y6eeuopANwntaLOFOkSSsk3t98hhCjTRvZNnToVhw8fxs6dO8ss47hWLCMjA88//zw2btxY4dfacRwrZ7FYEB4ejvfeew8A0K1bNxw9ehQLFy7EuHHj1H4cy4qtXr0ay5Ytw4oVK9CxY0ekp6dj+vTpaNy4MWJiYtR+HEfXqjOnu+vXrw+9Xl/mqDkrK6vMX4pUVlxcHNatW4etW7eiadOmanujRo0AgONaiQMHDiArKwvdu3eHm5sb3NzckJqaio8++ghubm7qWHEcKxccHIwOHTrYtLVv3x4XLlwAwH3SUS+//DJmzJiBJ598Ep07d8bYsWPxwgsvICEhAQDHUSvqTJE2GAzo3r07Nm3aZNO+adMm9OrVy0VZaZ8QAlOnTsXatWuxZcsWhIWF2SwPCwtDo0aNbMa1sLAQqampHFcrAwYMwJEjR5Cenq4+wsPDMWbMGKSnp6NFixYcRwf17t27zG2AJ0+eRGhoKADuk47Kz8+HTmdbAvR6vXoLFsdRI1x40VqNK7kFa8mSJeLYsWNi+vTpwtvbW5w7d87VqWnWlClThL+/v9i2bZswmUzqIz8/X+0zZ84c4e/vL9auXSuOHDkinnrqKd6m4QDrq7uF4Dg6at++fcLNzU28++674ueffxbLly8XXl5eYtmyZWofjmXlYmJiRJMmTdRbsNauXSvq168vXnnlFbUPx9H16lSRFkKIBQsWiNDQUGEwGMQDDzyg3kpE9gGw+0hMTFT7WCwWMWvWLNGoUSNhNBpF3759xZEjR1yXdC1xd5HmODru66+/Fp06dRJGo1G0a9dOLFq0yGY5x7Jyubm54vnnnxfNmjUTHh4eokWLFuL1118XBQUFah+Oo+vxqyqJiIg0qs58Jk1ERFTbsEgTERFpFIs0ERGRRrFIExERaRSLNBERkUaxSBMREWkUizQREZFGsUgTERFpFIs0ERGRRrFIExERaRSLNBERkUaxSBMREWnU/wNJQsXOppS7dQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFUCAYAAAAAmsQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCW0lEQVR4nO3deVxU9f4/8NcZYIYdRWVTRExz10hIcTd3y+Jxu1pdU1DrdzWXzDbNbuYtL3q/bZZGV1Oob255EbNSv5oLbpmpkAumuSUaKJrsOizz+f1hHBkGkIHPMEfn9ewxOfM5n/M+n8+ZOfPmzDnncxQhhAARERFpjs7eDSAiIqLKMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJE9mZoihYv3693WPUp/Pnz0NRFKSmpmoyHpFWMEkTSRYTEwNFUSwep0+frrR+RkYGhg0bVqPYb731Fh544IE6xbgXBQcHIyMjAx07dgQA7Ny5E4qiIDs7274NI6ojZ3s3gOheNHToUMTHx5uVNWnSxOx1UVER9Ho9AgIC6rw8GTHuZk5OTg6/DujexD1pIhswGAwICAgwewwYMABTpkzBjBkz0LhxYwwaNAiA5U/VFy9exFNPPQVfX194eHggPDwcP/74IxISEjB37lz8/PPP6t55QkJCpTGOHj2Khx9+GG5ubmjUqBH+3//7f8jPz1enx8TEICoqCu+++y4CAwPRqFEjTJ48GcXFxXfs26xZs9C9e3eL8s6dO2POnDnq6/j4eLRr1w6urq5o27YtPvnkk2rjJicn46GHHoLBYEBgYCBmzpyJkpISdbrJZMKCBQvQqlUrGAwGNG/eHPPmzQNg/nP3+fPn0b9/fwBAw4YNoSgKYmJi8MUXX6BRo0YwGo1my33iiScwduzYO/abyC4EEUkVHR0tHn/8cYvyvn37Ck9PT/HKK6+IX375RZw4cUIIIQQAkZSUJIQQIi8vT7Rs2VL07t1b7N69W/z6669izZo1Yt++faKwsFC89NJLokOHDiIjI0NkZGSIwsJCixgFBQUiKChI/OUvfxFHjx4V27ZtE6GhoSI6Otqsjd7e3mLixInixIkT4ptvvhHu7u5iyZIld+zf0aNHBQBx+vRptezYsWMCgDh58qQQQoglS5aIwMBAkZiYKM6ePSsSExOFr6+vSEhIEEIIce7cOQFApKSkCCGEuHjxonB3dxfPP/+8OHHihEhKShKNGzcWc+bMUZfx6quvioYNG4qEhARx+vRpsXv3brF06VKLeCUlJSIxMVFtT0ZGhsjOzhaFhYXCx8dHfPXVV2rMrKwsodfrxfbt2+/YbyJ7cOgknZycLB599FERGBho9iV3ryyP7CM6Olo4OTkJDw8P9fHXv/5V9O3bVzzwwAMW9ct/Fv7zn/8ILy8vce3atUpjz5kzR3Tp0qXaGEuWLBENGzYU+fn56vTvvvtO6HQ6kZmZqbYxJCRElJSUqHVGjhwpnnzyyRr1sXPnzuKf//yn+nrWrFkiIiJCfR0cHCxWrlxpNs/bb78tIiMjhRCWSfr1118Xbdq0ESaTSa2/ePFi4enpKUpLS0Vubq4wGAxqUq6oYrwdO3YIAOL69etm9SZNmiSGDRumvv7www9Fy5YtzZZLpCUO/XN3QUEBunTpgkWLFt2TyyP76d+/P1JTU9XHRx99BAAIDw+vdr7U1FSEhYXB19e31ss+ceIEunTpAg8PD7WsZ8+eMJlMOHnypFrWoUMHODk5qa8DAwNx5cqVGi1j9OjRWLFiBQBACIFVq1Zh9OjRAICsrCykp6djwoQJ8PT0VB/vvPMOzpw5U2WbIyMjoSiKWZvz8/Nx8eJFnDhxAkajEQMGDKj5iqjEc889hy1btuDSpUsAbv0kX3aiH5EWOfSJY8OGDav2jNiioiK88cYbWLFiBbKzs9GxY0csWLAA/fr1s8ny6N7h4eGBVq1aVVpeHTc3tzovWwhRZdIpX+7i4mIxzWQy1WgZf/vb3zBz5kwcPnwYN27cQHp6Op566ikAUGMsXboU3bp1M5uv/B8Fd2qzEEJtl4z1AgBhYWHo0qULvvjiCwwZMgRHjx7FN998IyU2kS049J70nYwbNw579+7F6tWrceTIEYwcORJDhw7Fr7/+au+m0T2qc+fOSE1NxR9//FHpdL1ej9LS0mpjtG/fHqmpqSgoKFDL9u7dC51Oh/vvv19KO5s1a4Y+ffpgxYoVWLFiBQYOHAh/f38AgL+/P5o2bYqzZ8+iVatWZo/Q0NAq27xv3z41MQPAvn374OXlhaZNm6J169Zwc3PDtm3batQ+vV4PAJWuq2effRbx8fFYvnw5Bg4ciODgYGu7T1RvmKSrcObMGaxatQpr165F7969cd999+Hll19Gr169LC6tIZLl6aefRkBAAKKiorB3716cPXsWiYmJ+OGHHwAALVq0wLlz55CamoqrV69anKkM3Pop2tXVFdHR0Th27Bh27NiBqVOnYsyYMWoilWH06NFYvXo11q5di2eeecZs2ltvvYXY2FgsXLgQp06dwtGjRxEfH4/333+/0ljPP/880tPTMXXqVPzyyy/4+uuvMWfOHMyYMQM6nQ6urq547bXX8Oqrr+KLL77AmTNnsH//fixbtqzSeCEhIVAUBd9++y2ysrLMzmwfPXo0Ll26hKVLl2L8+PHS1geRLTBJV+Hw4cMQQuD+++83O66WnJysHlcru+yjuseUKVPs3BO6m+j1emzZsgV+fn4YPnw4OnXqhPnz56s/Ez/xxBMYOnQo+vfvjyZNmmDVqlUWMdzd3fF///d/+OOPPxAREYG//vWvGDBggPRzIUaOHIlr166hsLAQUVFRZtOeffZZfPbZZ0hISECnTp3Qt29fJCQkVLkn3bRpU2zcuBEHDhxAly5dMHHiREyYMAFvvPGGWucf//gHXnrpJbz55pto164dnnzyySqPoTdt2hRz587FzJkz4e/vb7Ydent744knnoCnp6dFu4m0RhHlf19yYIqiICkpSd1o16xZg9GjR+P48eMWx9E8PT0REBCA4uLiKk+EKdOwYcNK914qLo+I6s+gQYPQrl079YQ+Iq1y6BPHqhMWFobS0lJcuXIFvXv3rrSOi4sL2rZtW88tI6La+uOPP7BlyxZs376dV1nQXcGhk3R+fr7ZeMplx/p8fX1x//33Y/To0Rg7dizee+89hIWF4erVq9i+fTs6deqE4cOHS11e8+bNpfSJqK52795d7VUI5Y/v3m0efPBBXL9+HQsWLECbNm3s3RyiO3Lon7t37typDh9YXnR0NBISElBcXIx33nkHX3zxBS5duoRGjRohMjISc+fORadOnaQvj0gLbty4oV5HXJnKLi0jIttw6CRNRESkZTy7m4iISKOYpImIiDTK4U4cM5lM+P333+Hl5cXxeomIyKaEEMjLy0NQUBB0Ouv3ix0uSf/+++8cBpCIiOpVeno6mjVrZvV8Dpekvby8AAB/9xsHvU4vLe7+7EJpscocM+2WGu9m0WWp8QBAoEh6TCKie4cAYFJzj7UcLkmX/cSt1+lh0BmkxXVWSqTFKqMock8ZsMXP+0LwkAER0Z3U9vuXJ44RERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjncYCZl1uT9DJ0ir/thus7SYpXx0DWRG89ZbjwAKBXF0mNev3FMajwhTFLjERHVF+5JExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWmUw444VlCSBUVxkhbvlPMFabHKBJvaSI13yrRfajxbaeweJjVeXtHvUuMBgLHkstR4HBWNiCrDPWkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKLsm6bi4OHTu3Bne3t7w9vZGZGQkNm3aVGX9jIwM/O1vf0ObNm2g0+kwffr0+mssERFRPbPriGPNmjXD/Pnz0apVKwDA559/jscffxwpKSno0KGDRX2j0YgmTZpg9uzZ+OCDD+q0bL3OU+qIYwXIlharjA98pca7X9ddajwASCveIT3mtaJMqfEauLaSGg8AdDoXqfGKSrKlxgMAnWKQHrOoJEt6TCKqml2T9IgRI8xez5s3D3Fxcdi/f3+lSbpFixZYuHAhAGD58uX10kYiIiJ70czY3aWlpVi7di0KCgoQGRkpLa7RaITRaFRf5+bmSotNRERkS3Y/cezo0aPw9PSEwWDAxIkTkZSUhPbt20uLHxsbCx8fH/URHBwsLTYREZEt2T1Jt2nTBqmpqdi/fz8mTZqE6OhopKWlSYs/a9Ys5OTkqI/09HRpsYmIiGzJ7j936/V69cSx8PBw/PTTT1i4cCH+85//SIlvMBhgMMg/gYaIiMjW7L4nXZEQwuwYMhERkaOy657066+/jmHDhiE4OBh5eXlYvXo1du7cic2bNwO49VP1pUuX8MUXX6jzpKamAgDy8/ORlZWF1NRU6PV6qcexiYiItMCuSfry5csYM2YMMjIy4OPjg86dO2Pz5s0YNGgQgFuDl1y4cMFsnrCwMPX5oUOHsHLlSoSEhOD8+fP12XQiIiKbs2uSXrZsWbXTExISLMqEEDZqDRERkbZo7pg0ERER3WL3s7vtpbD4KhRF3t8oJucG0mKVOYsU6TFl8zdYjgxXV5eNx6XGyy/KkBoPAEpKc6TG0zs3khoPAFxt8Jn0db1ParyrN+RdblnGZLopP6Yokh6TqCa4J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ474pizkysUxUlaPBedu7RYZfKKfpcar4EhRGo8WwnVd5ca74xxj9R4ACBQIjWeseSy1HgAUGIqkB/TRe5tZPU2GBXN1Ul+TCfFRWq8azdOSI0HACZTofSYZH/ckyYiItIoJmkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKIcdcUyv85Q64pjs0cEAwFXyaEy5xfLbWFJ6Q3pMH0NzqfEecBkqNR4AHDQlSo0nxE2p8QDAJOSOigYAN4uvSo1nizba4jOpd/aSGi/UvY/UeABQgGyp8WzxfVFovCA95r2Oe9JEREQaZdckHRcXh86dO8Pb2xve3t6IjIzEpk2bqp0nOTkZXbt2haurK1q2bIlPP/20nlpLRERUv+yapJs1a4b58+fj4MGDOHjwIB5++GE8/vjjOH78eKX1z507h+HDh6N3795ISUnB66+/jmnTpiExUe5Pj0RERFpg12PSI0aMMHs9b948xMXFYf/+/ejQoYNF/U8//RTNmzfHhx9+CABo164dDh48iHfffRdPPPFEfTSZiIio3mjmmHRpaSlWr16NgoICREZGVlrnhx9+wODBg83KhgwZgoMHD6K4uLg+mklERFRv7H5299GjRxEZGYmbN2/C09MTSUlJaN++faV1MzMz4e/vb1bm7++PkpISXL16FYGBgRbzGI1GGI2374Gbm5srtwNEREQ2Yvc96TZt2iA1NRX79+/HpEmTEB0djbS0tCrrK4pi9loIUWl5mdjYWPj4+KiP4OBgeY0nIiKyIbsnab1ej1atWiE8PByxsbHo0qULFi5cWGndgIAAZGZmmpVduXIFzs7OaNSoUaXzzJo1Czk5OeojPT1deh+IiIhswe4/d1ckhDD7ebq8yMhIfPPNN2ZlW7ZsQXh4OFxcXCqdx2AwwGAwSG8nERGRrdl1T/r111/H7t27cf78eRw9ehSzZ8/Gzp07MXr0aAC39oLHjh2r1p84cSJ+++03zJgxAydOnMDy5cuxbNkyvPzyy/bqAhERkc3YdU/68uXLGDNmDDIyMuDj44POnTtj8+bNGDRoEAAgIyMDFy7cHkYuNDQUGzduxIsvvojFixcjKCgIH330Ua0uvzKJYigwSeuLlz5IWqwyDRW5MU8bt0mNBwCuLo2lxywoyZIa77JLhtR4ANDKfYDUeKcL5b83NhlqFK5S49mijSXyNmtVsfGa1Hi/SR5eFQBC3HpIjefvFCI1HgCkuzeQHlOvc5ca7+qNqs+Jqg0hBEpN12s9v12T9LJly6qdnpCQYFHWt29fHD582EYtIiIi0g67nzhGRERElbM6SU+bNg0fffSRRfmiRYswffp0GW0iIiIi1CJJJyYmomfPnhblPXr0wH//+18pjSIiIqJaJOlr167Bx8fHotzb2xtXr8o/GYKIiMhRWZ2kW7Vqhc2bN1uUb9q0CS1btpTSKCIiIqrF2d0zZszAlClTkJWVhYcffhgAsG3bNrz33nvq3amIiIio7qxO0uPHj4fRaMS8efPw9ttvAwBatGiBuLg4s4FHiIiIqG5qdZ30pEmTMGnSJGRlZcHNzQ2enp6y20VEROTwFFF2GykHkZubCx8fHyhwq/LOWbXRyL2TtFhlSoX275FtskEb84suSY3XwTBMajwAyNflSI13ueSU1HgAUGi8KD2mSRRJjefqYnl72boyiRIbxKz8fgK1VWrKlxoPABRF7mhwzjoPqfEAwNnJTXrMEOeuUuM1NjWQGq9EFOGHm58jJycH3t7eVs9foz3pBx98ENu2bUPDhg0RFhZWbXLjaGBERERy1ChJP/744+qdpKKiomzZHiIiIvpTjZL0nDlzAAClpaXo168fOnfujIYNG9q0YURERI7OquuknZycMGTIEGRnZ9uoOURERFTG6sFMOnXqhLNnz9qiLURERFSO1Ul63rx5ePnll/Htt98iIyMDubm5Zg8iIiKSw+rrpIcOHQoAeOyxx8zO8hZCQFEUlJaWymsdERGRA7M6Se/YscMW7SAiIqIKrE7Sffv2tUU7iIiIqIJaDQuanZ2NZcuW4cSJE1AUBe3bt8f48eMrvYWlVjk7eUNRrD4kX6UbpdelxSrj49xUajx/U7DUeABggIv0mCf0B6TGu6ErlBoPADxNcj/rBc5+UuMBQEnpDekxi0quyY1XKnfkNlvRKbX6qqySk07+UMqyRwgrMRVIjQcAOsVLekzZSmDSVDyrs9TBgwdx33334YMPPsAff/yBq1ev4v3338d9993H0caIiIgksvrPwxdffBGPPfYYli5dCmfnW7OXlJTg2WefxfTp07Fr1y7pjSQiInJEVifpgwcPmiVoAHB2dsarr76K8PBwqY0jIiJyZFb/3O3t7Y0LFy5YlKenp8PLS/vHG4iIiO4WVifpJ598EhMmTMCaNWuQnp6OixcvYvXq1Xj22Wfx9NNPWxUrNjYWERER8PLygp+fH6KionDy5Mk7zrd48WK0a9cObm5uaNOmDb744gtru0FERKR5Vv/c/e6770JRFIwdOxYlJbfu2+ri4oJJkyZh/vz5VsVKTk7G5MmTERERgZKSEsyePRuDBw9GWloaPDwqP1MxLi4Os2bNwtKlSxEREYEDBw7gueeeQ8OGDTFixAhru0NERKRZihBC1GbGwsJCnDlzBkIItGrVCu7u7nVuTFZWFvz8/JCcnIw+ffpUWqdHjx7o2bMn/ud//kctmz59Og4ePIg9e/bccRm5ubnw8fGBi5O/1Euw9M7yf+q/Ky7BEja4BAtyL8Hyc2olNR4AuJnq/nkv77LuN6nxACDbKD+m7EuwIPnSJluRfQmWLdwNl2C5ujSWHjPYqYvUeA1M3lLjlYgi/HTzf5GTkwNvb+tjW52lxo8fj7y8PLi7u6NTp07o3Lkz3N3dUVBQgPHjx1vdgPJycm5dM+nr61tlHaPRCFdXV7MyNzc3HDhwAMXFxXVaPhERkZZYnaQ///xz3LhhOUjCjRs36nRsWAiBGTNmoFevXujYsWOV9YYMGYLPPvsMhw4dghACBw8exPLly1FcXIyrV69a1DcajbwJCBER3ZVq/BtObm4uhBAQQiAvL89sb7a0tBQbN26En1/tR02aMmUKjhw5csefrP/xj38gMzMT3bt3hxAC/v7+iImJwb///W84OTlZ1I+NjcXcuXNr3S4iIiJ7qfExaZ1OZ3bXK4tAioK5c+di9uzZVjdi6tSpWL9+PXbt2oXQ0NAazVNcXIzLly8jMDAQS5YswWuvvYbs7GzodOY/DhiNRhiNRvV1bm4ugoODoShe1fbHWrY4ZuXvJvdYS/PSllLjAYCnopce01cv9zj3L0WSj6MCaO1S9SGZ2vih9JjUeABwzXhaekzZxyl1ikFqPMA254cUFmVKjWeL7wvZx3tNokRqPABo7RQpPabs8zkaikCp8UpFMU4Vrq/1Mekaf1J27NgBIQQefvhhJCYmmh031uv1CAkJQVBQkFULF0Jg6tSpSEpKws6dO2ucoIFbZ5Q3a9YMALB69Wo8+uijFgkaAAwGAwwG+V8EREREtlbjJF1296tz584hODi40oRorcmTJ2PlypX4+uuv4eXlhczMW3+t+vj4wM3NDQAwa9YsXLp0ST3eferUKRw4cADdunXD9evX8f777+PYsWP4/PPP69weIiIiLbH6N5eQkBAAty7BunDhAoqKisymd+7cucax4uLiAAD9+vUzK4+Pj0dMTAwAICMjw2yEs9LSUrz33ns4efIkXFxc0L9/f+zbtw8tWrSwtitERESaZnWSzsrKwrhx47Bp06ZKp5eWltY4Vk0OhyckJJi9bteuHVJSUmq8DCIioruV1b9ZT58+HdevX8f+/fvh5uaGzZs34/PPP0fr1q2xYcMGW7SRiIjIIVm9J719+3Z8/fXXiIiIgE6nQ0hICAYNGgRvb2/ExsbikUcesUU7iYiIHI7Ve9IFBQXq9dC+vr7IysoCAHTq1AmHDx+W2zoiIiIHZnWSbtOmjXqnqgceeAD/+c9/cOnSJXz66acIDJR7fRkREZEjs/rn7unTpyMjIwMAMGfOHAwZMgQrVqyAXq+3OMmLiIiIas/qJD169Gj1eVhYGM6fP49ffvkFzZs3R+PG8u9wYis6xVnqiGON3dpLi2UrDXTyB3UxCpP0mMFybzCFtt4N5QYE8EuuvM8OAOSUXJIaz1ZkjxDmboO7IrnoJH+AAAS5d5AeUzYnIXcUs0DRSGo8AGjhLn+EwvOFckeY6+Ijt41GkxGnCms/f61HJCkqKsLJkyeh1+vx4IMP3lUJmoiI6G5gdZIuLCzEhAkT4O7ujg4dOqgDjUybNg3z58+X3kAiIiJHZXWSnjVrFn7++Wfs3LnT7E5YAwcOxJo1a6Q2joiIyJFZfRBj/fr1WLNmDbp37252TLd9+/Y4c+aM1MYRERE5Mqv3pLOysiq9b3RBQYHUE7GIiIgcndVJOiIiAt999536uiwxL126FJGR8u8VSkRE5Kis/rk7NjYWQ4cORVpaGkpKSrBw4UIcP34cP/zwA5KTk23RRiIiIodk9Z50jx49sHfvXhQWFuK+++7Dli1b4O/vjx9++AFdu3a1RRuJiIgcUq2ufu/UqRM+//xz2W0hIiKicmqUpHNzc2sc0Nvbu9aNqU/OOncoSq3HcrFQZKrDkDJVeNilp9R4Hs7yT+zr1KBYesy8YrmjmOUWy3ufy7TwvPO90K0x0X2o1HgAkGWUHhJeLnLj/ZxzQ25AAJA/CB46erlJjZeaVyA1HgB4KnJHysoRN6XGA4BSIX/EsfbecmNeltzt4jp+VdQoSTdo0OCOZ24LIaAoCkpLS+vWIiIiIgJQwyS9Y8eOGgVLSUmpU2OIiIjothol6b59+1Y5LScnBytWrMBnn32Gn3/+GdOnT5fVNiIiIodW64N127dvxzPPPIPAwEB8/PHHGD58OA4ePCizbURERA7NqrO7L168iISEBCxfvhwFBQUYNWoUiouLkZiYiPbttX+rRiIiortJjfekhw8fjvbt2yMtLQ0ff/wxfv/9d3z88ce2bBsREZFDq/Ge9JYtWzBt2jRMmjQJrVu3tmWbiIiICFbsSe/evRt5eXkIDw9Ht27dsGjRImRlZdmybURERA6txkk6MjISS5cuRUZGBv7+979j9erVaNq0KUwmE7Zu3Yq8vDyrFx4bG4uIiAh4eXnBz88PUVFROHny5B3nW7FiBbp06QJ3d3cEBgZi3LhxuHbtmtXLJyIi0jKrz+52d3fH+PHjsWfPHhw9ehQvvfQS5s+fDz8/Pzz22GNWxUpOTsbkyZOxf/9+bN26FSUlJRg8eDAKCqoejWfPnj0YO3YsJkyYgOPHj2Pt2rX46aef8Oyzz1rbFSIiIk1ThBB1Ht+wtLQU33zzDZYvX44NGzbUOk7ZvaqTk5PRp0+fSuu8++67iIuLw5kzZ9Syjz/+GP/+97+Rnp5+x2Xk5ubCx8cHoR5DoFPkjXHYDiHSYpV5qLHcYTwHBv8mNR4AlJrkD7nZ0Mv6X2Wq4+EhfwhGH3/t/3JzOu1+6THXn7lParzdV+UPPdmtodwhPAHgjyK58XLrOlZkJYLd5X5f3LxLBo88VItfcauTp8uXGq9UFONU4Xrk5OTUathsKd+wTk5OiIqKqlOCBm4NjAIAvr6+Vdbp0aMHLl68iI0bN0IIgcuXL+O///0vHnnkkUrrG41G5Obmmj2IiIjuBvJ3g2pJCIEZM2agV69e6NixY5X1evTogRUrVuDJJ5+EXq9HQEAAGjRoUOXlYLGxsfDx8VEfwcHBtuoCERGRVJpJ0lOmTMGRI0ewatWqauulpaVh2rRpePPNN3Ho0CFs3rwZ586dw8SJEyutP2vWLOTk5KiPmvwkTkREpAW1up+0bFOnTsWGDRuwa9cuNGvWrNq6sbGx6NmzJ1555RUAQOfOneHh4YHevXvjnXfeQWBgoFl9g8EAg8Fgs7YTERHZil33pIUQmDJlCtatW4ft27cjNDT0jvMUFhZCpzNvtpOTkxqPiIjoXmHXJD158mR8+eWXWLlyJby8vJCZmYnMzEzcuHH7RvCzZs3C2LFj1dcjRozAunXrEBcXh7Nnz2Lv3r2YNm0aHnroIQQFBdmjG0RERDZh15+74+LiAAD9+vUzK4+Pj0dMTAwAICMjAxcuXFCnxcTEIC8vD4sWLcJLL72EBg0a4OGHH8aCBQvqq9lERET1wq5JuiY/TyckJFiUTZ06FVOnTrVBi4iIiLRDM2d3ExERkTlNnN1tD9mmTCiKk7R414S/tFhlSk1yR066VuAlNR4ARHQ+Kj2ms8EoNd7Zk62kxgOAoEi5/S660lBqPABo1f6U9JivhR2XGq/FpsFS4wHAzsvSQ+J6UYnUeA81kr9/9M3VHKnx2hoaSI0HAOk3b9y5kpUuO2VIjZdVLHe7EcJUp/m5J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ474lh+USYURd7fKIcgd9QbADh9rbnUeAWXs6TGA4Bmp7pIj+lf2lhqPE+di9R4APBYxjNS4xlN8v9efjj0tPSYbQbvkxpv/Im+UuMBwIC/fCI9ZnGx3K/K9358QGo8ALihyB3Nq1Q0kBoPAC44pUuP6Sw5jd0svio1Xl1vocw9aSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKEXUdcyyu0xubi58fHwAuEBRFGlxFcVVWixbcdcHSI8pewg9AAhx6yE13rXS36TGAwCdIneo0W5Kd6nxACDQTf6ovwbJf9Y/1LhAbkAADwTJH3rS2ytfarxvjnWWGg8A7vfJlhrv89N+UuMBwDljnvSYx0zJUuOZTMVS4wlhgrHkEnJycuDt7W31/Hbdk46NjUVERAS8vLzg5+eHqKgonDx5stp5YmJioCiKxaNDhw711GoiIqL6YdcknZycjMmTJ2P//v3YunUrSkpKMHjwYBQUVP3X9cKFC5GRkaE+0tPT4evri5EjR9Zjy4mIiGzPrnfB2rx5s9nr+Ph4+Pn54dChQ+jTp0+l8/j4+Pz5c/Ut69evx/Xr1zFu3DibtpWIiKi+aerEsZycHACAr69vjedZtmwZBg4ciJCQEFs1i4iIyC40cz9pIQRmzJiBXr16oWPHjjWaJyMjA5s2bcLKlSurrGM0GmE0GtXXubm5dW4rERFRfdDMnvSUKVNw5MgRrFq1qsbzJCQkoEGDBoiKiqqyTmxsrPoTuY+PD4KDgyW0loiIyPY0kaSnTp2KDRs2YMeOHWjWrFmN5hFCYPny5RgzZgz0en2V9WbNmoWcnBz1kZ4u//IMIiIiW7Drz91CCEydOhVJSUnYuXMnQkNDazxvcnIyTp8+jQkTJlRbz2AwwGAw1LWpRERE9c6ue9KTJ0/Gl19+iZUrV8LLywuZmZnIzMzEjRs31DqzZs3C2LFjLeZdtmwZunXrVuPj10RERHcbu+5Jx8XFAQD69etnVh4fH4+YmBgAt04Ou3Dhgtn0nJwcJCYmYuHChbVetgJnKJA34tjdoMB4XnpMJ52n9JiyRwjLNcofcUzv5HPnSlZIM5yVGg8A0m5KDwl34SU13k75A46hxW+t5Mf0kPtVmSN3UCsAgEFn/WhW1flghNyRvAAg6r8PSo+pUySnMcm7rkKY6jS/3X/uvpOEhASLMh8fHxQWFtqgRURERNqhiRPHiIiIyBKTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUZp5laV9U2gBJA44pgwFUmLVUZRtP83lE6RPy76zZJsuQFFidx4AFydG0iNd61E/ohjzjZ4by5Lfm8aGOTfB74QedJj/p7fSGo8d+EqNR4AZKVXfaOh2vjuUi+p8QDg9bbZ0mM+c0JuvJvFV6XGq8mgXdXRfhYgIiJyUEzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBqliLqOWXaXyc3NhY+PDwAnyBwW1BbuhmFBFRuMLGsScodY1Slyh0u0BXdDM+kxZQ9vCAAmyUOs6hT5nx9vQwvpMfU6d6nxmpe2lhoPAEINXlLjedhg0GgfF/kx8yWP+vvZ1U+lxruVYouRk5MDb29vq+fXfhYgIiJyUEzSREREGsUkTUREpFFM0kRERBpl1yQdGxuLiIgIeHl5wc/PD1FRUTh58uQd5zMajZg9ezZCQkJgMBhw3333Yfny5fXQYiIiovpjg/P3ai45ORmTJ09GREQESkpKMHv2bAwePBhpaWnw8PCocr5Ro0bh8uXLWLZsGVq1aoUrV66gpETyKX5ERER2ZtckvXnzZrPX8fHx8PPzw6FDh9CnT58q50lOTsbZs2fh6+sLAGjRooWtm0pERFTvNHVMOicnBwDU5FuZDRs2IDw8HP/+97/RtGlT3H///Xj55Zdx48aNSusbjUbk5uaaPYiIiO4Gdt2TLk8IgRkzZqBXr17o2LFjlfXOnj2LPXv2wNXVFUlJSbh69Sqef/55/PHHH5Uel46NjcXcuXMrW6LE1tvG3THOjC3aKDfm3bAehSi1QUz5/ZYdU9jg82OLdSl7EJdSyQP2AECxMEqNV2SSGg4AYLRBTNntlL/diLrFFRrx/PPPi5CQEJGenl5tvUGDBglXV1eRnZ2tliUmJgpFUURhYaFF/Zs3b4qcnBz1kZaWJv5ca3zwwQcffPBRL4875baqaGJPeurUqdiwYQN27dqFZs2qHx4xMDAQTZs2/XNoz1vatWsHIQQuXryI1q3Nh9szGAwwGAzqa09PT6Snp8PLywuKoo1hQXNzcxEcHIz09PRaDRunNfdaf4B7r0/sj7bda/0B7r0+1bQ/Qgjk5eUhKCioVsuxa5IWQmDq1KlISkrCzp07ERoaesd5evbsibVr1yI/Px+enp4AgFOnTkGn090xwQOocT178Pb2vic+vGXutf4A916f2B9tu9f6A9x7fapJf8rvVFrLrieOTZ48GV9++SVWrlwJLy8vZGZmIjMz0+wksFmzZmHs2LHq67/97W9o1KgRxo0bh7S0NOzatQuvvPIKxo8fDzc3N3t0g4iIyCbsmqTj4uKQk5ODfv36ITAwUH2sWbNGrZORkYELFy6orz09PbF161ZkZ2cjPDwco0ePxogRI/DRRx/ZowtEREQ2Y/efu+8kISHBoqxt27bYunWrDVpkHwaDAXPmzDE7dn43u9f6A9x7fWJ/tO1e6w9w7/WpvvrjcPeTJiIiultoajATIiIiuo1JmoiISKOYpImIiDSKSZqIiEijmKRt5JNPPkFoaChcXV3RtWtX7N69u8q669atw6BBg9CkSRN4e3sjMjIS//d//2dWJyEhAYqiWDxu3rxp664AsK4/O3furLStv/zyi1m9xMREtG/fHgaDAe3bt0dSUpKtu6Gypj8xMTGV9qdDhw5qHXu+P7t27cKIESMQFBQERVGwfv36O86TnJyMrl27wtXVFS1btsSnn35qUcde74+1/dH69mNtf+6G7cfaPml5G4qNjUVERAS8vLzg5+eHqKgonDx58o7z1dc2xCRtA2vWrMH06dMxe/ZspKSkoHfv3hg2bJjZ9d7l7dq1C4MGDcLGjRtx6NAh9O/fHyNGjEBKSopZPW9vb2RkZJg9XF1dNdefMidPnjRra/khW3/44Qc8+eSTGDNmDH7++WeMGTMGo0aNwo8//mjr7ljdn4ULF5r1Iz09Hb6+vhg5cqRZPXu9PwUFBejSpQsWLVpUo/rnzp3D8OHD0bt3b6SkpOD111/HtGnTkJiYqNax5/tjbX+0vv1Y258yWt1+AOv7pOVtKDk5GZMnT8b+/fuxdetWlJSUYPDgwSgoKKhynnrdhmo14jdV66GHHhITJ040K2vbtq2YOXNmjWO0b99ezJ07V30dHx8vfHx8ZDXRKtb2Z8eOHQKAuH79epUxR40aJYYOHWpWNmTIEPHUU0/Vub13Utf3JykpSSiKIs6fP6+W2fP9KQ+ASEpKqrbOq6++Ktq2bWtW9ve//110795dfW3P96e8mvSnMlrafsqrSX+0vv1UVJv3SMvb0JUrVwQAkZycXGWd+tyGuCctWVFREQ4dOoTBgweblQ8ePBj79u2rUQyTyYS8vDyL+2rn5+cjJCQEzZo1w6OPPmqxp2ALdelPWFgYAgMDMWDAAOzYscNs2g8//GARc8iQITVeR7Ul4/1ZtmwZBg4ciJCQELNye7w/tVHVuj948CCKi4urrWPr90cGLW0/daHF7UcWLW9DOTk5AGDx+SmvPrchJmnJrl69itLSUvj7+5uV+/v7IzMzs0Yx3nvvPRQUFGDUqFFqWdu2bZGQkIANGzZg1apVcHV1Rc+ePfHrr79KbX9FtelPYGAglixZgsTERKxbtw5t2rTBgAEDsGvXLrVOZmZmndZRbdX1/cnIyMCmTZvw7LPPmpXb6/2pjarWfUlJCa5evVptHVu/PzJoafupDS1vPzJoeRsSQmDGjBno1asXOnbsWGW9+tyGNHGryntRxdtgCiFqdGvMVatW4a233sLXX38NPz8/tbx79+7o3r27+rpnz5548MEH8fHHH9fLuOXW9KdNmzZo06aN+joyMhLp6el499130adPn1rFlK22y05ISECDBg0QFRVlVm7v98dalfW/Yrk935/a0ur2Y427YfupCy1vQ1OmTMGRI0ewZ8+eO9atr22Ie9KSNW7cGE5OThZ/LV25csXir6qK1qxZgwkTJuCrr77CwIEDq62r0+kQERFh878y69Kf8rp3727W1oCAgDrHrI269EcIgeXLl2PMmDHQ6/XV1q2v96c2qlr3zs7OaNSoUbV1bP3+1IUWtx9ZtLL91JWWt6GpU6diw4YN2LFjxx1vZ1yf2xCTtGR6vR5du3a1uAHI1q1b0aNHjyrnW7VqFWJiYrBy5Uo88sgjd1yOEAKpqakIDAysc5urU9v+VJSSkmLW1sjISIuYW7ZssSpmbdSlP8nJyTh9+jQmTJhwx+XU1/tTG1Wt+/DwcLi4uFRbx9bvT21pdfuRRSvbT11pcRsSQmDKlClYt24dtm/fjtDQ0DvOU6/bkFWnmVGNrF69Wri4uIhly5aJtLQ0MX36dOHh4aGeyThz5kwxZswYtf7KlSuFs7OzWLx4scjIyFAf2dnZap233npLbN68WZw5c0akpKSIcePGCWdnZ/Hjjz9qrj8ffPCBSEpKEqdOnRLHjh0TM2fOFABEYmKiWmfv3r3CyclJzJ8/X5w4cULMnz9fODs7i/3792uuP2WeeeYZ0a1bt0pj2vP9ycvLEykpKSIlJUUAEO+//75ISUkRv/32mxDCsj9nz54V7u7u4sUXXxRpaWli2bJlwsXFRfz3v/9V69jz/bG2P1rffqztj9a3n9r0qYwWt6FJkyYJHx8fsXPnTrPPT2FhoVrHntsQk7SNLF68WISEhAi9Xi8efPBBs9P5o6OjRd++fdXXffv2FQAsHtHR0Wqd6dOni+bNmwu9Xi+aNGkiBg8eLPbt26fJ/ixYsEDcd999wtXVVTRs2FD06tVLfPfddxYx165dK9q0aSNcXFxE27Ztzb6EbM2a/gghRHZ2tnBzcxNLliypNJ4935+yS3aq+vxU1p+dO3eKsLAwodfrRYsWLURcXJxFXHu9P9b2R+vbj7X9uRu2n9p85rS6DVXWDwAiPj5erWPPbYi3qiQiItIoHpMmIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKCZpIgdx/vx5KIqC1NRUezfFQkxMjMUNF4hqa9euXRgxYgSCgoKgKArWr19/1y6PSZroLhETEwNFUSweQ4cOrdH8wcHByMjIqPYWfGXqO6EvXLgQCQkJ9bIsuvcVFBSgS5cuWLRo0V2/PN6qkuguMnToUMTHx5uVGQyGGs3r5OSEgIAAWzSrznx8fOzdBLqHDBs2DMOGDatyelFREd544w2sWLEC2dnZ6NixIxYsWIB+/frZZHl1wT1poruIwWBAQECA2aNhw4YAbt27Ni4uDsOGDYObmxtCQ0Oxdu1add6Ke8fXr1/H6NGj0aRJE7i5uaF169bqHwBldwIKCwuDoihmX17x8fFo164dXF1d0bZtW3zyyScWy/jqq6/Qu3dvuLm5ISIiAqdOncJPP/2E8PBweHp6YujQocjKylLnq/hzt8lkwoIFC9CqVSsYDAY0b94c8+bNk706yUGNGzcOe/fuxerVq3HkyBGMHDkSQ4cO1eStS7knTXQP+cc//oH58+dj4cKF+N///V88/fTT6NixI9q1a1dp3bS0NGzatAmNGzfG6dOncePGDQDAgQMH8NBDD+H7779Hhw4d1Hv/Ll26FHPmzMGiRYsQFhaGlJQUPPfcc/Dw8EB0dLQae86cOfjwww/RvHlzjB8/Hk8//TS8vb2xcOFCuLu7Y9SoUXjzzTcRFxdXaT9mzZqFpUuX4oMPPkCvXr2QkZGBX375xQZrjBzNmTNnsGrVKly8eBFBQUEAgJdffhmbN29GfHw8/vWvf9m5hRVYfUsOIrKL6Oho4eTkJDw8PMwe//znP4UQt+7mM3HiRLN5unXrJiZNmiSEEOLcuXMCgEhJSRFCCDFixAgxbty4SpdVsW6Z4OBgsXLlSrOyt99+W0RGRprN99lnn6nTV61aJQCIbdu2qWWxsbGiTZs2Zn17/PHHhRBC5ObmCoPBIJYuXVrDNUNUNQAiKSlJff3VV18JABbbkbOzsxg1apQQ4vbnuLrH5MmTa7S8uuKeNNFdpH///hZ7n76+vurzyMhIs2mRkZFVnvw1adIkPPHEEzh8+DAGDx6MqKioam9In5WVhfT0dEyYMAHPPfecWl5SUmJxTLlz587qc39/fwBAp06dzMquXLlS6XJOnDgBo9GIAQMGVNkWotoymUxwcnLCoUOH4OTkZDbN09MTANC0aVOcOHGi2jhlh5lsjUma6C7i4eGBVq1aWTWPoiiVlg8bNgy//fYbvvvuO3z//fcYMGAAJk+ejHfffbfS+iaTCcCtn7y7detmNq3il52Li4vF8iuWlcWryM3N7Q49Iqq9sLAwlJaW4sqVK+jdu3eldVxcXNC2bdt6blnleOIY0T1k//79Fq+r+7Jp0qQJYmJi8OWXX+LDDz/EkiVLAEA9Bl1aWqrW9ff3R9OmTXH27Fm0atXK7FF2opkMrVu3hpubG7Zt2yYtJjmW/Px8pKamqr8inTt3Dqmpqbhw4QLuv/9+jB49GmPHjsW6detw7tw5/PTTT1iwYAE2btwofXl1xT1poruI0WhEZmamWZmzszMaN24MAFi7di3Cw8PRq1cvrFixAgcOHMCyZcsqjfXmm2+ia9eu6NChA4xGI7799lv1BDM/Pz+4ublh8+bNaNasGVxdXeHj44O33noL06ZNg7e3N4YNGwaj0YiDBw/i+vXrmDFjhpQ+urq64rXXXsOrr74KvV6Pnj17IisrC8ePH8eECROkLIPubQcPHkT//v3V12WfzejoaCQkJCA+Ph7vvPMOXnrpJVy6dAmNGjVCZGQkhg8fbpPl1Ym0o9tEZFPR0dGVnsBSdgIWALF48WIxaNAgYTAYREhIiFi1apU6f8WTwd5++23Rrl074ebmJnx9fcXjjz8uzp49q9ZfunSpCA4OFjqdTvTt21ctX7FihXjggQeEXq8XDRs2FH369BHr1q2rdBlCCLFjxw4BQFy/fl0ti4+PFz4+PmZ9KztxTAghSktLxTvvvCNCQkKEi4uLaN68ufjXv/5V95VIdJdRhBCibmmeiLRAURQkJSVxeE2iewiPSRMREWkUkzQREZFG8cQxonsEj1wR3Xu4J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ55P+mbN2+iqKjI3s0gIiIHoNfr4erqWqt5HS5J37x5E25ubvZuBhEROYiAgACcO3euVona4ZL07T1oJwDKn88VlP3yr0AHKGVHAW6XKWrZrXkUxelWXQCKojN7bjldgQIns+k66KAoThbxlXLL1JWbfmsep3LPdWpM3Z9tKl+mQAed0FWY/9Z/AKATOtzukU6Nc3seRf33dnxFLdcpt8tux1HUcnXNKuWml3uuU8rPA7N5dArKzXPrYTYd5tPvNH/F6UqF6WUx1eeKeSyL6RBqBV25MvNYQn1+q56wiKlAlGuTMKtb1l71eQ2mKyh7Xn6ZwrydFcoqtlNRhBoTirjVV7P+iNvPldvPb8c0n662rdLnsIxTbvmVzaNTTGbl6r+6isssV08Hy3l0AopiqrR9FtN1t6eXLUdRTOWeQ62H8jF1ZfNUXlZ+WRXLoIhyX0O350fFmDoBlGubGkstKxf/9tdc+Q9mueWU31jUTpX78Ohu/6srtwGULwcgdDrgz++uW3UrmW4W61ZdUdYQxel2mbocJwidU6XPKy5T6JwAnXOF6c63l684l5vufHs6nMzKoHOGolTy/M9/FZ3z7e9wxRm6svLyZTodcnNvoEXwCygqKmKStlZZwrn1gbydlNQPaLkyRS2rPDFbJumK082TtFIhSevU8vJlNU3SlZeVlVeapP+sbT5dKTe9bkm6ssRc8yRdfh7rk7C108vaa57czNtZMUmXT+gWZahhki6XeGUkaZ3VSVpYtLNikrRI0krdknTFhFxZWaVJWk3ClSdppdokXVUSVqyefjsxK+oyzZJtWZ4xS8iVl1kmaZgt53Z52Y4BUHEDUnQo98FGxf0L8zJrknT5ZF2xzKxeTZJwxelO1SdpXfkkfbus+iTtVOF5ZUm6bDlVJGnFvMw8SbtUkaTLEnNVSfrPdtYBTxwjIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNcuhLsMSfl43c+kfg9ovyzyuWmf78t+y6h6qUny4snosKZaayS13Uf3Vq3dsXJIlyz3Vq3fLXYCh/tk9AB1HhOulbF9T8+Vzoys1dNl1R5zHd6RKscv+aXYKlzle+zPJ5ZWWVXgdtFuvP6aLcdF4nrU7nddJVXYIFy3nuquukLfupltX5OukKl21V3BiVchtb+WWXv4a7QkxhvrFUPr2SWEKxbKf4c91BJyDKzSMqrAehM6nrXuhMqHg9udAJQFf653JMavnt6SYApX+W3f5XUco/r/110nXhcElaCAFPT0/k5+dXPl39X/VlRERENREQEAC9Xl+reR0uSSuKgvz8fKSnp8Pb29vezdGc3NxcBAcHc/1Ugeunelw/VeO6qd69vH44dncteHt733MfBJm4fqrH9VM9rp+qcd1Uj+vHHE8cIyIi0igmaSIiIo1yuCRtMBgwZ84cGAwGezdFk7h+qsf1Uz2un6px3VSP66dyihCC5y0TERFpkMPtSRMREd0tmKSJiIg0ikmaiIhIo5ikiYiINMrhkvQnn3yC0NBQuLq6omvXrti9e7e9m1TvYmNjERERAS8vL/j5+SEqKgonT540qyOEwFtvvYWgoCC4ubmhX79+OH78uJ1abF+xsbFQFAXTp09Xyxx9/Vy6dAnPPPMMGjVqBHd3dzzwwAM4dOiQOt1R109JSQneeOMNhIaGws3NDS1btsQ///lPmEwmtY4jrZtdu3ZhxIgRCAoKgqIoWL9+vdn0mqwLo9GIqVOnonHjxvDw8MBjjz2Gixcv1mMv7Ew4kNWrVwsXFxexdOlSkZaWJl544QXh4eEhfvvtN3s3rV4NGTJExMfHi2PHjonU1FTxyCOPiObNm4v8/Hy1zvz584WXl5dITEwUR48eFU8++aQIDAwUubm5dmx5/Ttw4IBo0aKF6Ny5s3jhhRfUckdeP3/88YcICQkRMTEx4scffxTnzp0T33//vTh9+rRax1HXzzvvvCMaNWokvv32W3Hu3Dmxdu1a4enpKT788EO1jiOtm40bN4rZs2eLxMREAUAkJSWZTa/Jupg4caJo2rSp2Lp1qzh8+LDo37+/6NKliygpKann3tiHQyXphx56SEycONGsrG3btmLmzJl2apE2XLlyRQAQycnJQgghTCaTCAgIEPPnz1fr3Lx5U/j4+IhPP/3UXs2sd3l5eaJ169Zi69atom/fvmqSdvT189prr4levXpVOd2R188jjzwixo8fb1b2l7/8RTzzzDNCCMdeNxWTdE3WRXZ2tnBxcRGrV69W61y6dEnodDqxefPmemu7PTnMz91FRUU4dOgQBg8ebFY+ePBg7Nu3z06t0oacnBwAgK+vLwDg3LlzyMzMNFtXBoMBffv2dah1NXnyZDzyyCMYOHCgWbmjr58NGzYgPDwcI0eOhJ+fH8LCwrB06VJ1uiOvn169emHbtm04deoUAODnn3/Gnj17MHz4cACOvW4qqsm6OHToEIqLi83qBAUFoWPHjg6zvhzmBhtXr15FaWkp/P39zcr9/f2RmZlpp1bZnxACM2bMQK9evdCxY0cAUNdHZevqt99+q/c22sPq1atx+PBh/PTTTxbTHH39nD17FnFxcZgxYwZef/11HDhwANOmTYPBYMDYsWMdev289tpryMnJQdu2beHk5ITS0lLMmzcPTz/9NAB+dsqrybrIzMyEXq9Hw4YNLeo4yve2wyTpMkrZzcj/JISwKHMkU6ZMwZEjR7Bnzx6LaY66rtLT0/HCCy9gy5Yt1d5ezlHXj8lkQnh4OP71r38BAMLCwnD8+HHExcVh7Nixaj1HXD9r1qzBl19+iZUrV6JDhw5ITU3F9OnTERQUhOjoaLWeI66bqtRmXTjS+nKYn7sbN24MJycni7++rly5YvGXnKOYOnUqNmzYgB07dqBZs2ZqeUBAAAA47Lo6dOgQrly5gq5du8LZ2RnOzs5ITk7GRx99BGdnZ3UdOOr6CQwMRPv27c3K2rVrhwsXLgBw7M/PK6+8gpkzZ+Kpp55Cp06dMGbMGLz44ouIjY0F4NjrpqKarIuAgAAUFRXh+vXrVda51zlMktbr9ejatSu2bt1qVr5161b06NHDTq2yDyEEpkyZgnXr1mH79u0IDQ01mx4aGoqAgACzdVVUVITk5GSHWFcDBgzA0aNHkZqaqj7Cw8MxevRopKamomXLlg69fnr27Glxyd6pU6cQEhICwLE/P4WFhdDpzL9WnZyc1EuwHHndVFSTddG1a1e4uLiY1cnIyMCxY8ccZ33Z7ZQ1Oyi7BGvZsmUiLS1NTJ8+XXh4eIjz58/bu2n1atKkScLHx0fs3LlTZGRkqI/CwkK1zvz584WPj49Yt26dOHr0qHj66afv2ctEaqL82d1COPb6OXDggHB2dhbz5s0Tv/76q1ixYoVwd3cXX375pVrHUddPdHS0aNq0qXoJ1rp160Tjxo3Fq6++qtZxpHWTl5cnUlJSREpKigAg3n//fZGSkqJe9lqTdTFx4kTRrFkz8f3334vDhw+Lhx9+mJdg3csWL14sQkJChF6vFw8++KB62ZEjAVDpIz4+Xq1jMpnEnDlzREBAgDAYDKJPnz7i6NGj9mu0nVVM0o6+fr755hvRsWNHYTAYRNu2bcWSJUvMpjvq+snNzRUvvPCCaN68uXB1dRUtW7YUs2fPFkajUa3jSOtmx44dlX7XREdHCyFqti5u3LghpkyZInx9fYWbm5t49NFHxYULF+zQG/vgrSqJiIg0ymGOSRMREd1tmKSJiIg0ikmaiIhIo5ikiYiINIpJmoiISKOYpImIiDSKSZqIiEijmKSJiIg0ikmaiIhIo5ikiYiINIpJmoiISKOYpImIiDTq/wPjuhwzqd9icgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -872,7 +1030,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZweZZnv/89dVc/e+5LOvidk74QkJCGAIjuogAu4scji8Ygzw+Gc3xwdhxH1dWSccRx0FI7LEWQcEJVxcBdcQQEhIWkCSUgCCdm6s3R672etun9/dPJI092Q7nT308v3Pa96jV11V9VVTSfpup77vi5jrbWIiIiIiIiIiIwhTqEDEBEREREREREZbEp4iIiIiIiIiMiYo4SHiIiIiIiIiIw5SniIiIiIiIiIyJijhIeIiIiIiIiIjDlKeIiIiIiIiIjImKOEh4iIiIiIiIiMOUp4iIiIiIiIiMiYo4SHiIiIiIiIiIw5SniIiIgUkDGG//qv/yr4NYbTnj17MMawefPmEXk9ERERGRuU8BARERlE119/PcaYHtuuXbt6HV9fX88ll1xyUte+4447WL58+SldYyyaNm0a9fX1LFmyBIDf//73GGNobm4ubGAiIiJSUF6hAxARERlrLr74Yu69995u+6qrq7t9nclkCIfDTJw48ZTvNxjXGM1c1x333wMRERHpSTM8REREBlkkEmHixIndtvPOO4+Pf/zj3HbbbVRVVXHBBRcAPZej7N+/n/e9731UVFSQSCRYtWoVf/7zn7nvvvv4zGc+Q11dXX7WyH333dfrNbZs2cLb3vY2YrEYlZWVfOQjH6G9vT1//Prrr+eKK67gi1/8IpMmTaKyspJbbrmFbDb7ps/2yU9+krVr1/bYv2zZMj796U/nv7733ntZuHAh0WiUBQsWcPfdd7/hdf/whz9wxhlnEIlEmDRpEp/4xCfI5XL540EQ8IUvfIG5c+cSiUSYPn06/+f//B+g+5KWPXv2cO655wJQXl6OMYbrr7+e+++/n8rKStLpdLf7vvvd7+baa6990+cWERGR0UczPERERIbJd77zHf77f//v/OlPf8Ja2+N4e3s7b3nLW5gyZQo//vGPmThxIs899xxBEHD11Vfzwgsv8Mtf/pJf//rXAJSWlva4RmdnJxdffDFr167l2Wef5fDhw9x00018/OMfzydIAH73u98xadIkfve737Fr1y6uvvpqli9fzs033/yGz/DBD36Qf/zHf+Tll19mzpw5ALz44ots2bKFH/7whwB885vf5NOf/jRf/epXWbFiBZs2beLmm28mkUhw3XXX9bjmgQMHuPTSS/OJie3bt3PzzTcTjUa54447gK5Eyze/+U3+9V//lbPOOov6+nq2b9/e41rTpk3j4Ycf5t3vfjcvvfQSJSUlxGIxwuEwf/3Xf82Pf/xj3vve9wJw9OhRfvrTn/LLX/7yDZ9ZRERERiclPERERAbZT3/6U4qKivJfn6ivMXfuXP7pn/6pz/MeeOABjhw5wrPPPktFRUX+nBOKiorwPO8Nl2/8x3/8B8lkkvvvv59EIgHAV7/6Vd7xjnfwhS98gZqaGqBr9sNXv/pVXNdlwYIFXHbZZfzmN79504THkiVLWLZsGQ888AC33357/p6rV69m/vz5AHzuc5/jX/7lX3jXu94FwKxZs9i6dStf//rXe0143H333UybNo2vfvWrGGNYsGABBw8e5H//7//NP/zDP9DR0cGXv/xlvvrVr+bPnzNnDmeddVaPa7mum//eTZgwgbKysvyxD3zgA9x77735hMd//Md/MHXqVN761re+4TOLiIgUUiqVIpPJDOjccDhMNBod5IhGDyU8REREBtm5557LPffck/86kUjw/ve/n1WrVr3heZs3b2bFihX5F/aB2LZtG7W1tflkB8D69esJgoCXXnopn/BYvHgxruvmx0yaNIktW7ac1D0++MEP8u1vf5vbb78day0PPvggt956KwBHjhxh37593Hjjjd2SJ7lcrtcZKSdiXrduHcaYbjG3t7ezf/9+GhoaSKfTnHfeeSf9fejNzTffzOrVqzlw4ABTpkzh3nvvzReZFRERGYlSqRSzZtbQcKh1QOdPnDiR3bt3j9ukhxIeIiIigyyRSHSbmfHa/W8kFoud8r2ttX2+wL92fygU6nEsCIKTuscHPvABPvGJT/Dcc8+RTCbZt28f73vf+wDy1/jmN7/JmjVrup332gTLm8V8YsmPMWZQvi8AK1asoLa2lvvvv5+LLrqILVu28JOf/GRQri0iIjIUMpkMDYdaeXXbZygp7l/SorUtxYyFnyaTySjhISIiIoW1bNkyvvWtb3Hs2LFeZ3mEw2F833/DayxatIjvfOc7dHR05BMsf/rTn3AcJ7/k5FRNnTqVc845J7985vzzz8/PHKmpqWHKlCm88sorfPCDHzyp6y1atIiHH364W+LjySefpLi4mClTplBdXU0sFuM3v/kNN91005teLxwOA/T6vbrpppv413/9Vw4cOMD555/PtGnTTvaxRURECqa4OEJxSaRf51h61gsbb9SlRUREZIR4//vfz8SJE7niiiv405/+xCuvvMLDDz/MU089BcDMmTPZvXs3mzdv5ujRoz06jkDXcpNoNMp1113HCy+8wO9+9zv+6q/+imuuuSaflBgMH/zgB/ne977HD37wAz70oQ91O3bHHXdw55138uUvf5kdO3awZcsW7r33Xr70pS/1eq2Pfexj7Nu3j7/6q79i+/btPPLII3z605/mtttuw3EcotEo//t//2/+9m//lvvvv5+XX36Zp59+mv/3//5fr9ebMWMGxhh++tOfcuTIkW4daj74wQ9y4MABvvnNb3LDDTcM2vdDRERERh4lPEREREaIcDjMo48+yoQJE7j00ktZunQp//iP/5hfCvLud7+biy++mHPPPZfq6moefPDBHteIx+P86le/4tixY6xevZr3vOc9nHfeeXz1q18d1Fjf+9730tjYSGdnJ1dccUW3YzfddBPf+ta3uO+++1i6dClvectbuO+++5g1a1av15oyZQo///nPeeaZZ6itreWjH/0oN954I3//93+fH3P77bfzP//n/+Qf/uEfWLhwIVdffTWHDx/u83qf+cxn+MQnPkFNTQ0f//jH88dKSkp497vfTVFRUY+4RUREZGwxtre+eCIiIiJj1AUXXMDChQv5yle+UuhQRERE3lBrayulpaU07r+TkpJ+1vBoTVE59ZO0tLRQUlIyRBGObKrhISIiIuPCsWPHePTRR/ntb3876DNeREREZORRwkNERETynnjiCS655JI+j7+2HsZoc/rpp9PU1MQXvvAFTjvttEKHIyIictLs8a2/54x3SniIiIhI3qpVq9i8eXOhwxgSe/bsKXQIIiIiMoyU8BAREZG8WCzG3LlzCx2GiIiIyClTwkNERERERERkBLPH/6+/54x3aksrIiIiIiIiImOOZnj0IggCDh48SHFxMcaYQocjIiIiIiIiI4y1lra2NiZPnozjDO1cgsBaAtu/GRv9HT8WKeHRi4MHDzJt2rRChyEiIiIiIiIj3L59+5g6dWqhw5BeKOHRi+LiYqDrB7ekpKTA0YiIjD3Nzc1s2rSJF154gS1btvDCCy+wfft2fN8H4Cc/+QnnnHMOAD/84Q/5p3/6J5YuXcrSpUtZsmQJS5cupaamppCPICIiIuNca2sr06ZNy78/DiW1pR0YJTx6cWIZS0lJiRIeIiKnIJfLsXPnTurq6li3bh0zZswA4IEHHuC///f/3mN8aWkptbW1FBUV5f/+veGGG7jhhhuGNW4RERGRk6UyCCOXEh4iIjIoOjo6eO6556irq2Pz5s3U1dXxwgsvkEqlAPjGN77BzTffDMCKFSuYM2cOtbW1LF++nNraWmpra5k+fbp+aRARERGRQaGEh4iI9EsQBOzZs4e6ujrmzJnDsmXLAHjqqae44IILeoyPx+MsW7as23TPNWvWsGvXrmGLWURERGQ0U1vagVHCQ0RE+pTJZPKzNU7M3Hj++edpa2sD4G//9m/zCY/a2lqmTZuWn61xYpszZw6u6xbyMURERERkHFLCQ0REsNZy8OBB6urqKCkp4ayzzgKgvr6eNWvW9BgfDodZvHhxt8Kh1dXV7N27d9hiFhERERkvVLR0YJTwEBEZZ4IgYMuWLd1mbtTV1dHY2AjAu971rnzCY/r06Zx22mnMmDGj26yN0047jVAoVMjHEBERERF5Q0p4iIiMYUeOHKGuro5sNssll1wCdCU81qxZQzqd7jbWdV0WLFjA7Nmz8/uMMWzfvn1YYxYRERERGQxKeIiIjBEvvfQSmzZt6tYlpb6+HoBly5blEx6e53H22WeTzWbzMzaWL1/OokWLiEajhXyEUc9ai7VJAIyJqeOMiIiIDIoAS9DPRSr9HT8WKeEhIjLKtLS0UFdXR0NDA1dddVV+/xVXXNHrbIy5c+eyePFirLX5F/DHHnts2OIdD6y1pLNbSKafJpPdBVhC3kzi0TOJhJYr8SEiIiJSAEp4iIiMYK+++irPPfdct3obe/bsASCRSPCe97wHx3EAWL9+PeXl5d1qbSxdupSioqICPsHYZ62lI/Vb2jp/hCWLa8oxGNLZ50lnX6Qo9naKYpco6SEiIiIDpqKlA6OEh4jICNDZ2cmWLVvYunUr119/ff7l+OMf/zg//elPe4w/0f61tbWVsrIyAL71rW8NZ8hyXM7fT3vyZzgmiufOzO93qSTnH6Ej+UsiofmEQ3MLF6SIiIjIOKSEh4jIMDt06BAbNmzo1iFlx44dWNuVh7/44ouZNGkSAGeccQYHDhzoNmujtraWioqKQj6CvEYqs5kgaCHsLehxzHOrSWe3kcpsUsJDREREBkwzPAZGCQ8RkSGSTqfZtm0bdXV1vOtd76K4uBiAf/zHf+Suu+7qMb6mpoba2lra2tryCY/bb7+d22+/fTjDln7K+QcxJtLnkhXHJMj6+4c5KhERERFRwkNEZBA0NTWxcePGbh1Stm3bRi6XA2D27NmcffbZAKxcuZLFixf3mLUxceLEQj6CDJAxUSy5Po9bm8GY2DBGJCIiIiKghIeISL/kcjl27NhBXV0dZ511FtOmTQPggQce4OMf/3iP8WVlZdTW1uaXqwB86EMf4kMf+tCwxSxvzNocQe5lbNCCMTGc0DyM6d6eN+cfI+MfxGAIe1NxndL8sUhoEZ3pP2JtGmMir7t2FkuOaGjpsDyLiIiIjE2B7dr6e854p4SHiEgfOjo68rM2TszcePHFF0mlUgB8+9vf5sMf/jAAK1asYO7cufnZGsuXL6e2tpZp06apO8cI5me3k03+hCD3KpADHBy3Bi96AW54HYHtoKXzF3SkN5ALmjGA51aSiKyhNH4RjokSCS8h4i0knX2RkDsNx+nqihMEnWT9VwmH5hMN1xbyMUVERETGJSU8RGTcC4KA3bt3U1dXx7x581i6tOvT+D/+8Y9cfPHFPcYnEgmWLl1KIpHI7zvzzDPZuXPnsMUsp87P7iLTcV/XzA53KsbEsDZL4DeQ6fgens3RnNlGR/pZPKeaqDcPsOSCozR3/hQ/aKGy6IM4JkZp0XW0djxIOrsd6x8ALMaEiYSXUJp4fz4JIiIiIjIQKlo6MEp4iMi4kk6n2bRpU7cOKVu2bKGtrQ2Av/u7v8snPJYvX55v/3pixkZtbS1z5szBcZxCPoacImstufTvsEETxp2fn4VjTAjjTSPI7aWj4yE6gywRdxaO85caHCG3BsfE6Ug/QyKymlh4IZ5bSXnxx8jmXiab2wuA500l7M3FGLcgzygiIiIy3inhISJjkrWW/fv3U1dXR3l5OevXrwdg//79rFu3rsf4SCTC4sWLmTBhQn5fTU0Ne/fuHbaYZfjY4Ch+9iWMU9PrkiPjTqQz+TusU9Ut2XGC6xST8Q+QzLxALLyw6xzjEA7NIxyad8rxBTZJNrMNP2jCmCjh0Gm4btUpX1dERERkPFHCQ0RGPd/3ef7557vN2qirq+PYsWMAXHXVVfmEx6xZs5g3bx6zZs3qNnPjtNNOw/P0V+K4YVNgs+BEej1sTJjAZjD0PTvDIYQftA56aOnMZto7/wvfPwjWAgGOU040ejaJ2GUYo59TERGR8UhLVPpPvzWJyKhy+PBh6urq8H0/X1/D933WrFlDNpvtNtZ1XRYsWMDMmTPz+xzHYceOHcMZsoxAxinBODFs0I5xe87gsLYT18TI2aDPa1iyuE75oMaVye6grf3fCWwnnjsLY0JYGxAER+ns/AkGl0T87YN6TxEREZGxSgkPERmxtm3bxubNm7t1SWloaAC6uqKcSHiEw2HOOussrLX5Ohu1tbUsWrSIaDT6RreQcco4pbih08mlH8Xa8m6zJqy1WP8A8fASMn4bftCO+7qio7mgGWOixCPLBi0may3J1OMEQTOet+A1dUUcXHcCloBk+gmi0fWDnmgRERGRkU1FSwdGCQ8RKbjm5maef/55Dh06xHvf+978/ne+853s2rWr21hjDHPnzmXRokVYa/Mvhb/97W+HNWYZ/bzouQT+KwS5HVhThXGKwKawwWGMU01R/IPkUs/Qlv4TblCK51YAkPOP4tsOSmPnE/Fmn/T9rPUJcrvws1uwQSvGKccNLcHx5mCMQ2CbyWa34TgTeq0r4jrV5HI7yWZ34kbOGLTvg4iIiMhYpYSHiAyr3bt389xzz3WrtfHqq68CUFJSwnve8578y95ZZ51FdXV1fsbG8uXLWbJkCUVFavEpp85xqwknbiSX+j1+9jlscBQI44bX4UXfiuvNoiI0G8+dSHv6KbL+QcDgudWURd9OcfQcjDm5bj3Wpsl2/oBc+s9ABgiBzZBL/R4vsp5Q/EqszWLJ4Zjef75PdHuxNtvrcRERERHpTgkPERkSHR0dbNmyhe3bt3P99dfn93/sYx/jl7/8ZY/x06dPZ/ny5bS1tVFSUgLAvffeO1zhyjjVlfR4Lza4CBu0gYlhnPJ80s0xUcoSF1McO4ecfwiAkDcJx/RvqVQ2+Ri51OMYdzLGKcnvt0EzufRvME4FbvQsHFNKELTgOMU9rhEEnWBCuG7lKTyxiIiIjEYBhoCeM0Df7JzxTgkPETll9fX1bNy4MV9no66ujl27dmFt18rBSy+9NN/udc2aNRw+fDjfHaW2tpZly5ZRXq6aBDJ0rM2CzYGJ9Doro6uIaUkvZ3ZxnTiuM2tg9w7a8DNPg1PW4x7GKcPaDvzMn/Ai64lG1tLe+UOsTWFek1SxNsAP9hHy5hHy5g4oDhEREZHxRgkPETlp6XSarVu3UldXx3vf+14SiQQAn//85/nqV7/aY3xNTQ3Lly+ntbU1n/C44447uOOOO4YzbBnHfP8g2fTTZLPPgc3iOFWEImsJhc/AmN5b0g62wD+ADRoxbu8JE+NUEvgHCYJ6YtG3kM29TDqzCccUY5xisGmCoBHXnUhR/F1qSysiIjIOqWjpwOi3JhHp1bFjx9iwYUO3Whvbt28nl8sBMH/+fM4880wAVq1axZIlS7p1SKmtraWmpqaQjyDjXC63i2T7dwiCeowpw5gwfu5Vcrmd5LI7iCU+2G0WxdA58StKX9NKTX6c4yQoKbqBVPpJUumnCIIWMCFisYuIRdbjeVOHIV4RERGRsUEJD5FxLpfL8dJLL1FXV8c555zD1KldL1Tf/e53+Zu/+Zse48vLy6mtrc0vVwG47rrruO6664YtZpE3Y22GVOcPCYLDuO5pf1nG4lRigw6ymafxvDmEo28d8lgcd1LX0pWgEeNO6BlrcAzjlOM4XQlCx0kQj11ALPpWAtuJMWEcExvyOEVERGTkstZgbf9qcvR3/FikhIfIONLe3p6vtXFie+GFF0in0wB85zvf4dprrwVgxYoVzJs3L98d5cSsjalTp/baMlNkJMnldhDkXsV1p/eo2WGcBCaIkck8SShy1pAvETFOGW54FbnUr7C2GPOa5IUNOsA240au6GqL+9rzTAjXlA5pbCIiIiJjmRIeImNQEAS88sor1NXVsWDBAhYvXgzA448/zmWXXdZjfFFREcuWLcvX5AA4++yz2bFjx7DFLDKYrH8Ui9/nkhXjlBL4jVjbjjFlQx5PKHoJ1j+Gn92ExQARIAU4uOH1hGLnDXkMIiIiIuONEh4io1w6nWbTpk3dOqRs2bKF9vZ2AG6//XY++9nPAlBbW5tv//raWhuzZ8/GcXp2rhAZtYwHBFhre5+RZHNgPAyh4QnHSRAuug4/uwo/sxkbNGGcCrzw6TihRRgzPHGIiIjI6BQc3/p7zninhIfIKGGtZf/+/dTV1VFZWcm6desAePXVV/P/+7UikQhLlizJd0cBmDJlCq+++uqwxSxSKK43F2NKsfYYxlR2O2atJbBHCYfPwjiJPq4w+IyJ4IVPxwufPmz3FBERERnPlPAQGYF83+9WZ+PE1tTUBMD73//+fJJjzpw5zJkzh7lz53artzF//nw8T3/EZXxy3YmEwmvIpB4FnONdWgzWZgn8fRhTSiiyvtBhioiIiJwUizm+LLZ/54x3ehsSKbBDhw5RV1eHtZaLLroI6OqcsmbNmnwL2BM8z2PBggXMnDkzv891XXbt2jWcIYuMCtH4OwGfbOYZguAQJ9q/uu4kIrF34XlzCxqfiIiIiAwtJTxEhtHWrVvzdTZObA0NDQCsWrUqn/CIRCKceeaZOI7Trd7GokWLiEQihXwEkVHDmCjR+PsIR87Bz+3A2gyOU4EXWoxx4oUOb1Sx1hIEDQT+ETAerjsTR99DERERGeGU8BAZAs3NzdTV1XHkyBHe85735Pe//e1vZ/fu3d3GGmOYN28eixYt6rb/D3/4w7DEKjKWGWNwvSm43pRChzJq+f5RUskfk81swdo2wMV1JxCOvIVI9FyMcQsdooiIyJinJS0Do4SHyCnavXs3zz33XLeZG3v37gWgrKyMd7/73fkuEWeddRaTJk3q1iFl6dKl3drBioiMFEHQTGf7/yOX24HjTsQxk4EcgX+IZOf3sTZJLP6OIY3BD1oJglaMieE6Fb133RERERHphRIeIiepo6ODLVu28NJLL3Hdddfl9/+3//bfeOyxx3qMnzFjBrW1tXR0dFBUVATA/fffP2zxioicqkz6GXK5Hce73pxonRvC9abi+0dIp39POLIa15046PfO+UfpTP2WZHoj1naCCRMJLSQRPZdwaM6g309ERGQkU1vagVHCQ6QX9fX1bNiwoVutjV27dmGtBbqWplRWdrW6XLt2LceOHcvP2Fi+fDnLli2jrKysgE8gInJqrA3IZP6MMYnXJDv+wnGq8HPbyWW3DXrCI+cfpbn9m2SyO3GdKlynGkuaZPopsrmdlBZ9mEhowaDeU0RERMYeJTxkXEulUmzdupW6ujquvvpq4vGuInyf+9znuOeee3qMP7EcpaWlJZ/w+OxnP8tnP/vZYY1bRMa3IGgnm60jm9mKtWlcbzrh8Ao8b9og3iWHDTowJtbr0a6lJaZr9sUg60z9jkx2J2FvPsac+FUljmPKyPq7aOt8hHDJ3NccExERGdusNVjbzxoe/Rw/Fuk3BRk3jh07lp+1caLexvbt2/F9H4BFixaxZs0aoKtjypIlS7p1SKmtrWXChAmFfAQREXz/IB3t3yGXexnwwHhks5tIp35PLH45kcg5g1TnIoTjlOL7B3s9am3XRFljigbhXn/hB22kMhtxnaoeCQ1jDJ47lWxuD5ncy0RCpw3qvUVERGRsUcJDxpxcLsdLL71EXV0db33rW5k8eTIA9913H//zf/7PHuMrKiqora0lCP6yyu2GG27ghhtuGLaYRUROhrUZOjoeIJfb1a2uRlfb2HqSnf+J69YQGoTlHsYYwpG1dHb8B9amMaZ7S+wgaMBxygmFlpzyvbpft4Ug6MB1qns97pgYlhxB0Dyo9xUREZGxRwkPGdXa2trYuHFjt1obL774Iul0GoDvfve7fPCDHwRgxYoVzJ8/v1utjdraWqZMmaKq/yIyKmSz248nO2Z1q6thjMF1J5PLvkQm/edBSXgAhMJnEMo8TzZbh3EqcZwysDn84DAGSyT2Lhy3clDudYJjYmDCWNJAvMdxa7MYnD6X2pwqG3Tg+68CAY4zAcfVzD4RESk8taUdmIInPO6++27++Z//mfr6ehYvXsxdd93F2Wef3evY//zP/+See+5h8+bNpNNpFi9ezB133MFFF12UH3Pffffx4Q9/uMe5yWSSaDQ6ZM8hQysIAl555RU2b97MokWLWLRoEQC///3veec739ljfHFxMcuWLcvX5AA499xzeemll4YtZhGRweb7B7pe+E3v/54Zp4xsdjvW5galvoXjJIgXfZhU8lGy2Q34uQMY4+C504lE30oofMYp36PnPSuIhBaRSj+FY8p6JKRzfj2uU0PYmzuo97U2Syb1W7LpPxIER4AAY0oIhZcRjr0Dxykf1PuJiIjI0CtowuOhhx7i1ltv5e6772b9+vV8/etf55JLLmHr1q1Mnz69x/jHH3+cCy64gM9//vOUlZVx77338o53vIM///nPrFixIj+upKSkx4utkh2jRzqd5rnnnus2a2PLli20t7cDcMcdd/DpT38agNraWmbOnNmtzkZtbS2zZs3CcZxCPoaISIEM7qc5jlNCPPEeguACAv8oGA/XnTJkBUONMSSibyWb20nW34XnTMVxYlibJefXY8lRFLsAx+k5+2OgrLWkkz8mm/oVmGJcdxbgYG0zmfTjBH4jsaKbMc7g1isRERE5WV1tafv3b7za0hY44fGlL32JG2+8kZtuugmAu+66i1/96lfcc8893HnnnT3G33XXXd2+/vznP88jjzzCT37yk24JD2MMEycObos8GXzWWvbu3UtdXR3V1dWsW7cOgFdeeYUzzzyzx/hoNMqSJUuorv7Luu7p06eze/fuYYtZRKSQuhINIaxN9TrLwwbNhCNnDUkywnFKcZzSQb9ub8KhOZQWfZi2zkfI5vZggwwGB9eZSFHsQmKR9YN6v8DfTzb9R4xTheP8ZYmOMRUYU0Qut5VsZiPh6FsG9b4iIiIytAqW8MhkMmzcuJFPfOIT3fZfeOGFPPnkkyd1jSAIaGtro6Kiotv+9vZ2ZsyYge/7LF++nM997nPdEiKvl06n8zUfAFpbW/vxJHIyfN/v1h3lxNbc3AzAhz70oXzCY968ecyePTtfb+NErY158+bheQVfhSUiUjCh0EI8by657HZcb06PoqXGxAlH1hQ4ysERCZ1GuOQ2MrmXCYIWjIkS9uYO6syOE/zsVqxtw3Gm9DhmTBhDlFzmWSU8RERERpmCvT0ePXoU3/epqanptr+mpoaGhoaTusa//Mu/0NHRwVVXXZXft2DBAu677z6WLl1Ka2srX/7yl1m/fj11dXXMmzev1+vceeedfOYznxn4w0g3DQ0N1NXVYYzhwgsvBLoSXKtXr+7WCQXA8zwWLlzIjBkzuu17+eWXhzVmEZHRwJgQicQHXtOW1gXjgU1hnDJi8Xfhed1btdqgFT+7DWs7MCaBG1qIcUoK8wD9ZIw3LK1nA9sBmD4LWBsTIwiasdaqyLWIiBSEipYOTME/Ln/9Lw4n+8vEgw8+yB133MEjjzzChAl/qaC+du1a1q5dm/96/fr1nH766fzbv/0bX/nKV3q91ic/+Uluu+22/Netra1Mmzatv48yLr344ovdZm1s3ryZw4cPA13/LU4kPGKxGOvXrycUCnWrtbFw4UIikcgb3UJERF7DdSdTVPxXZLPPk828iCWN604nHD4dz5uaH2etJZd+gmzqV8eLcBoMYJwqQtGL8CJnD+nL+2hKDjhOCVjbZ8zWduC6k0fN84iIiEiXgiU8qqqqcF23x2yOw4cP95j18XoPPfQQN954Iz/4wQ84//zz33Cs4zisXr2anTt39jkmEonopftNNDU1UVdXR2NjI+9+97vz+y+99FL27t3bbawxhvnz57Nw4cJu+x9//PFhiVVERrbAZklm9xPYFJ5bStSdpBfJfnKcIiKRM4lEetY7OsHP/JlM5/fBRHDceRjjYq2PDerJdP4AYyJ4g7z8xfePkEo/SzqzEWtTeN5UIuEziIRrh6zI6WBwQ4sxThk2OIJ5XRtaa1NYsoQiqwsUnYiICNjjW3/PGe8K9ttHOBxm5cqVPPbYY1x55ZX5/Y899hiXX355n+c9+OCD3HDDDTz44INcdtllb3ofay2bN29m6dKlgxL3ePDKK6/ku6ScmL2xb98+oCtR9a53vSv/cnL22WezZ8+ebrM2lixZQiKRKOQjiMgIZK2lJb2ZI52/J5nraq/qmjhFkXnUxC8iFupZP0EGxtoM2fTvAAfH/cv31RgX407Fz+0mm/4dbvj0fB2QU5XN7aG1/V783F6MKcGYMOnMZtKZzcQib6EocdWITXq47iTC0beRSf4EP5fEcasBFxs0EdgmvNAKvNDphQ5TRERE+qmgv3ncdtttXHPNNaxatYp169bxjW98g7179/LRj34U6FpqcuDAAe6//36gK9lx7bXX8uUvf5m1a9fmZ4fEYjFKS7sqx3/mM59h7dq1zJs3j9bWVr7yla+wefNmvva1rxXmIUewtrY2tmzZws6dO7nuuuvy+2+++WZ++9vf9hh/ov1rMpkkHu8qGvfd73532OIVkdGtObWB/W0/BHyi7kQcEyYXtNOc2kQ6d5gZpdcT9dRhazAE/j6C3AGMO6nX4447kSB3gMDfh+vNPuX7WZulveMhfP8AnrcQY7ragrvUEAStJNO/JxSaSfQNZqQUWjh6MY5T2tWGNncQCDBOKeHI24lEz8c4sUKHKCIi45jF9LstrWp4FDjhcfXVV9PY2MhnP/tZ6uvrWbJkCT//+c/zBSzr6+u7LZf4+te/Ti6X45ZbbuGWW27J77/uuuu47777AGhubuYjH/kIDQ0NlJaWsmLFCh5//HHOOOOMYX22kebgwYNs2LChW4eUXbt25Y9ffvnllJWVAV21N1pbW/PdUWpra1m2bFk+qSQi0l9+kORw568BiIdm5veH3BI8p4j27E4ak39kSvF7ChThGGMzWHIYwn0MCGHJgc0Myu0y2e1kc6/guTPzyY4THKcEPzhCMvUUkfDaHsdHCmMcQpH1eOHVBP6JhEc1jlPc63hrLTl/Pzl/PwAhdwaulmeJiIiMKMZaq6U9r9Pa2kppaSktLS2UlIyOSvYnpFIpXnzxRerq6vjABz5ANBoF4L/9t//GN77xjR7jJ02aRG1tLffccw8zZ84c5mhFZLxoSb/AnuZvEQ/NwOllCUXaPwrWMr/y/8NzigoQ4dgS+IdItv4zmCiOU9HzeHAMbJpYyd8eX75xajqTv6Gt40HCoQW9HveDY2AzVJR9us8Ewmji+8do63yYTOYFAtoBcEwxkfByiuPv6iqCKiIiY95wvDeeuMfGPf9MUUn/Zhu2tyZZOfP/G5XvtYNlZC6mlZPS2NjYbdbG5s2beemll/B9H4Da2lpWrlwJwKpVq3j66ae71dqora2luvrUf9EVEXkzftAJ2F6THQCuiZENmskFnUp4DALHrcELLyGb+iPWlHSrnWFtDus3EIqeMyjJDuiaHWHou8sJ1gccwB2U+xVSEHTS2n4f6ewLuO4UQqarM05gm0mm/oANOigtvhlj+ppdIyIi0n/WGqzt55KWfo4fi5TwGMW+/e1v87d/+7c99ldWVlJbW0sul8vvu/nmm7n55puHMzwRkTzPSWCMQ2AzOL28CPpBJ46J4DkqeDxYQtFLCfwG/OwOjFOGMXGs7cQGzbihuYSilwzavTxvDsYUYW0LxpR1O2atJQgaiUbX4zjxQbtnoaSzz5PObiXkzcGYv3R4c005xkRJZ+vIZLcSCS8vXJAiIiICKOExqp1++umcdtpp+dkaJ2puTJ48WWuIRWRESYTmEnUnksrVEw/N6HbMWp+M30h14jwlPAaR404gkvgIufST5LLPYoNOjFNEKPJWvMiZOG7PpS4D5bnTiESWk0w9gYebX7ZirY/v78c4xSO6YGl/pDPPd3W7MT3b2Tsmhk9AOvOCEh4iIjKoLKbfRUgLUbR03759XHPNNRw+fBjP87j99tt573vfO+xxnKCExyh23nnnsX379kKHISLyplwnwoTEhexv/T4dmVeIeDX5Li1p/zDx0AyqYusLHeaY47gVhONvJ2QvxNokxsSGZKmFMYai+Hux1ied2YTv74PjiXfXmUAifiXh0GmDft9CCIJ2oGey4y/CBLZjuMIREREZUTzP46677mL58uUcPnyY008/nUsvvZREojAfainhISIiw6IsugLHhDnS+Xs6s69ibQ7XiVERXceExHlEvAmFDnHMMiY85DUlHKeIkqIbyOZ2kc3uwJLFdSoJh5fhOmVDeu/h5Lk1ZLJbez1mrcXaNK6jn2WR8SqwPr7N4pnwiO1KJTKUJk2axKRJkwCYMGECFRUVHDt2TAkPEREZ+0oiiykOLyCVq8e3aUJOCRFPxZPHCmMcwqH5hEPzCx3KkIlGTieZ/hN+0ITrlHc7FgSNOCZBNLK8MMGJSMF05Bo50FFHQ2orfpAh5pUxOb6MybGleM4bzQoTOTkBhqCfS1T6Ox7g8ccf55//+Z/ZuHEj9fX1/OhHP+KKK67oNubuu+/mn//5n6mvr2fx4sXcddddnH322T2utWHDBoIgYNq0af2OY7Ao4SEiIsPKGJdYaOobjgn8I+Qyz+FnnwebwfFm4YVX4XjzVKNIusn4jXRktuMHnbhOgqLwAkKDWJ/k9ULeacSj59KZeowgaMZ1KgHwg6NAQCJ2GZ47c8juLzKaWWtJ5Q7QkX0Fi0/YraQodBruKE8ItGQO8nzTj2jLHiLiFOOaEK2Zeo6lX6UxvZslZe8g5EQLHabISeno6KC2tpYPf/jDvPvd7+5x/KGHHuLWW2/l7rvvZv369Xz961/nkksuYevWrUyfPj0/rrGxkWuvvZZvfetbwxl+D0p4iIjIiOJnd5Hu/Hds7iCYBBgXP/0qucwzhKKXEopeoKSHYG1AY+dvOZb8HbmgOb8/5JRTET+Pithbh+TnxBiHovi78NxJJNN/JOfXA4awN4dodD3R8Bn6+RTpRS7ooL7tEVrSz5OznRgMYIiFpjK56AqKwnMLHeKABNbnpZZHacsepiI8M7+MJUYZ2SBFfecWykJTmFU8Ngo3S+GcStHS1tbWbvsjkQiRSO+JxksuuYRLLum7k9uXvvQlbrzxRm666SYA7rrrLn71q19xzz33cOeddwKQTqe58sor+eQnP8mZZxb2Z18JDxERGTFs0Emm83tY/zDGO63b+ufAP0w2+TNcbxpuaGEBo5SRoDn1FEc6foJrEsS9uRjjYG1Axj/MkY5HcE2MstjaIbm3MS6x6FlEI2vxgyYAXKcCY9whuZ/IaGet5WDbIxxLPUnUnUTUmYIxhsBm6MzuY1/rg8wqu5moN7HQofZbU2YvTZn9lIQm9qjZEXKihJw4BzrrmJ5YhesMbS0lkb68fknJpz/9ae64445+XyeTybBx40Y+8YlPdNt/4YUX8uSTTwJdf96vv/563va2t3HNNdcMOObBooSHiIiMGH72BQJ/H8ad3eMXR8edQJB7iVzmGSU8BpG1Adbfjc3tAQKMMwETWtBr29WRIrBpmpKP45gQEa8mv98Yh4g3kWR2L03JxymJno4zhMVajfHwXNWgkbEpsD7J3FEsPlG3HM+JDfhaydxeWtJ1RN3JhNyS/H7HhEmEZtOe3UFT8lkmFb9jMEIfVslcM4HNEerj+xN1ikn5raSDduLO0C23k7HPYrB2YDM89u3bR0nJX/7s9TW7480cPXoU3/epqanptr+mpoaGhgYA/vSnP/HQQw+xbNky/uu//guAf//3f2fp0qUDuuepUsJDRERGjCBoACzGhHofYErxcy9jrdWygUFggxb8zu9js1uxNgkYjPEw7jSc+HtxvFmFDrFXqew+0rlDRL3JvR4Pu9Wkc/WkcweJhWYOb3Aio5y1liOpOuo7/0xHtgFLQMQtZkJ0BZMTZw4o8dGRfQXfdhJzetZvMsYQckppyTzPRHvpqJsp5Ziu1ylrg167svjkMMbNjxMphJKSkm4Jj1P1+t/BXvt72VlnnUUQBIN2r1OlXkkiIjKCOFjsGxwP0D9dg8PaHH7ngwSZDeBU4oQW4IROA3cqQe5Vgo7vYv0jhQ6zV5YcFh/Tx+c2xoSw+AQ2O8yR9RTYNKnsflLZfQRButDhiLypgx1PsrPlYdqz+4m4pcTcKnJBmj3tv2Jny8PkglS/rxnYLAanz0S1Y0IEtuvP9WhTHp5GxC0m6Tf3OGatJZlroiIyg4hTPPzBiQyyqqoqXNfNz+Y44fDhwz1mfYwUSjWKiMiI4bgzMISwNoUx3SvaW2uxtgUvtE6zOwaBze0kyG7FeDMwJp7fb0wEvDkEuR2YzCbc2IWDe18bkMntJpvbB1hC3hTC3px+faobcirxTBG5oKXXjiy5oAXXKSLsVnbbn8odoiO7B4tPxK0iEZo9ZJ+6WpujOfUkTcmnyPiHAUvIraIsspby+FlDutSm6/5prM1iTGzUfWIuXbJ+M22Zl8gF7bhOnOLwaYSHsAMRQDLXyP6OP+CaKHFvQn6/50QJByUcTb1IRWQBNfFV/bruibgDm+v1z1w2aKUoNA9DH7P7RrCYV8aU+HJebnscg0PULT1en8SnLXuIsBNnWnyl/t2SUzZcbWnfSDgcZuXKlTz22GNceeWV+f2PPfYYl19++aDea7Ao4SEiIiOGG1qAE5qPn3kRx5udryNhrU/g78WYCrzw6gJHOTYE2V1gs92SHScY44BJYLN1MIgJj5x/jOaOh0hlt2Jt16fEhjCR8GmUJa4m5J7cp0Nhr5riyFKakk/gOiXdXqACmyXjH6Yifm4+GeIHSeo7fk5TahO5oA0wOLjEwzOZUnQF8dC0Pu40MNYGHG7/CceSv8ExUcJOFWDI+sc41P4wmeAwE4veOySJiFzuIMn0n0hnNmFtBscpIxZZRzSyDsfp+d9aRh5rLceST3K489dk/EbAAJaQU0ZV/C1Ux8/tdenEYGhK7yAdtFAamt3jmOdEMXgcTtX1O+FRHF5I1JtIMrefuDej28t/LmgDG1AeWz1qkwJzS84hIMeBjjqOZfZ0daAxkHArmVdyLlXRnt9PkZGqvb2dXbt25b/evXs3mzdvpqKigunTp3PbbbdxzTXXsGrVKtatW8c3vvEN9u7dy0c/+tECRt03JTxERGTEMCZEJP5B0va7BLkdWHwsDuDjODWE4+/B9aa/6XXkZGThjT75MSGwg7cEI7Apmtr/nWTmeULeNNzj07uDoINU5nmaghSVJR/DdYpO6nqViYtI+4fozOzAdYpxTQzfduIH7STCC6iKdyVqrLUcaHuExtSfiLgTiIZqMMbgB0k6Mi+zt/U/mFV6IxFv8IqPJrO7aUr9kZBTTcgty+93nSnkgjaak09RHF5GUWTRoN0TIJvbTUvbt8n5B3CcCowJk/MP0drxAJnsdkqKrsdxEoN6Txl8zennOND+I1wTIRHqmv3U1YHoKA0dP8MxEariZw3JvTPHE4J9JVRCTpxU7lif9Sr64jkJJhW9k/2tD9GR3UnIKccYj2zQgrU+lbF1lEaWDdJTDD/XhFhQciHT4qfTmN6NbzNE3RKqInMJu0o0yuCwx7f+ntNfGzZs4Nxzz81/fdtttwFw3XXXcd9993H11VfT2NjIZz/7Werr61myZAk///nPmTFjxgDuNvSU8BARkRHFcauJFn8MP7sNP/cy2CyOOwk3vAzHKS90eGOG41ZjjcVav9eZBjZow0QGrxtOKvMiqexWwqE5OK/pAOM4CcJmLunsTlKZOhLR9Sd1vbBbyZSSG2hJPUtr+ln8oIOQW0lV4hJKI6vwjneCSOb20ZzeTNSd1K07hOvEjneH2ElTahMTiwZvJktb5nmCIEko3DM55znFpP0G2tLP9zvh4Qcp2jPb6MjuxpIj6k2mJLyEkFuGtTnaOn5ILqgn5C3Iv4y6TgWBTZHKbMRLzaYofsmgPKMMjcDmONr5BAaIepPy+7s6EE0gyGZpTP6R8uhqXGfwOyl5ThSwfRaG9m2aiFsyoBkmJZHFzCy7kabUs7SmX8TaLInQLMqjqymLrsDpq1j1KGGMoShUTVFInZtkdHvrW9+KtW+cKvnYxz7Gxz72sWGK6NQo4SEiIiOOMRG88HK88PJChzJmmdAScKrBP4B1p3V7ubFBE8aEcMIrB+1+qexWgG7JjnwsJgQmRDLz/EknPABCbilVifOpjJ9LYDM4JtwjedOe2XW8O8SUXu7r4DklNKc3UZO4YNCm02f9Y70+5wmuiZIJ+lcQNp07xIG279GRfYUTxXstPkfdCUwqehdRJ0Q29wqeM71nS2cTxTElpDJPEY+di/O6+jgycqRy9aRyB4m4E3o9HvGqSWb3k8y9SlF4/qDfvyw8l5CTIBO0EHnN7CToSsbkbCfVseUDvn48NIN4aAaTit6JtTkcEx2y5TkiIqCEh4iIyLhknHLc2BVdbWn9HWDKARdsM+BgIudhvMFbcmFtqs+uKnC8s4pNDujaxri4pvdWmQEZuqbov1F3iPQbdn3pL88pPn7f3gU2g+eUnvT1ApvhQNtDtGd2Eg/Nyhc8tdYnmdvHwbYfMDF2OtZm+6zT4TilBEEzQdCK4yrhMVJZmz0+66qPDkR4xzsQ5Ybk/glvEjWxlRzoeALfZom6FRgcMkEbSf8wpeHZVEdPfemJY8IwxIV7RcYai8H2swhpf8ePRUp4iIiIjFNO+HRwygjSz2CzW4EAE1qME16DCdUO6ievnjMJy9N9TpW3tpOQO3XQ7ndC6PgyqL6W7uSCdopCcwe1W0tReDFNyT/hBx24r6uZ4QcpLJbi8JKTvl57Zjud2ZeJh2Z26+5ijEvMm0Fndgcd2d249P2clizgDVpSR4ZG2K3AcxJkg1YiblWP47mgFa+XDkSDxRjDjOILcU2Uw8kNtGX3ABbPSTAhtoKZRRcSdtVeVURGD/2rJyIiMo453mwcbzbWZugqbxYekk4JsUgt7anfkgsOEXIndjuW849iTIxYZMWg37ckvJCIW0Uyd5CYN/V13SE6sNanPNq/jhNvJhE+jZLI6TSnnibsVhFyurrFZIMmMsERSiIrKAovPunrdWb3EuD3sRzI4DrFdPrNlDnl+MFRvNd1u7HW4geHiYbPUB2cES7kllEareVI5+8IOaXd6loENkfKb6AiuqbPJS+DwTUhZhSfx6T4Gtqz+wjwiblVxL2aUdtFRWQsCKwhsP1sS9vP8WORFs2JiIgIxoQxJjJkLzQhdyrFsUuxQZJMdic5v5Gcf4xMdheBbaE4eiFhb+4Q3LeESUWXYYxHR/ZlMv4xsn4rndm9JHP1VERXUzYIU/RfyxiPicXvpTJ+AZaAztwuOnO7sOSojL2VScXvx+lXwcmgq81lnxwsEWLRswmCJnz/SL7gnLVZcv4eHFNCPPoWvbCOAhPi51EcXkBH9mWS2QNk/CZSuYN0ZHeRCM2hJnHxsPx3DLtFVEQXUhVdQiI0UT87IqPY6tWrWbRoEV/72tcKHcqw0wwPERERGXLGGIpj5xHyqulIPUkmtxuwRMOLiEfWEQufPmQvVOXR0/GcYhqTT9GeeRnIEPUmUxFdTUVsdbdlIoPFdeJMLH4XlfG3ksodACwRbzLh3pYp+EdJ53aD9fHcGsLezG7fi4g3ETAENtfr0hs/aKU0uoxE7JKuuh7pP5LNbQcMGIPnTqIodgXh0GmvO6+TzswmOtIb8INmPKeKRGQV8UitCpsWUMgtY3rpdTSnNtCU3EAuaMdzSqiKnUt5bBVhV7N0RMajU6nh8eyzz1JSUvImo8cmJTxERERkWBhjiIVriYaWEdgOwOKYomH55Lg4PI+i0Fx820Fgc3hO0aDW7ehLyK0g5Fb0eiwIkrQkf0ZH6s/4tgUAx8SIhOZTnnh3fulPcXgRUXcSqdyrxLxZ3WqrpHOHcJ04ZZGVGBOiOHElseh6MtntWJvGdcoIhxb3KGaaC5o52nY/qcwLGMI4JkbSP0wys4V4ZgWVRdfg9lEAVYZeyCmmOn4uVbFzCGwaY8LD8vMqIjLW6G9OERERGVbGGFxTVJD7egW4b2+sDWjq/AHtqcfxnGoi7jy6ZnG005nZRBC0UV3yUVynDM8pYnLxeznQ9iAduR24JoHBJRe04TlFTEhcSjw0J39tz52A9yY1Hpo7fkYy8zwRb06+NkiIriRMR3oDIXci5YnLh/A7ICejqwOREk8iIgOlhIeIiIjIMMvk9hxPLEzGfU2LWtcUEzXzSOd20pHeSEnsPAAS4bnMKP0oLek62jMvEtgcZdFVlEaWEw/N7tcsmax/hM7MZkJOTY9CqI4Tw7PldKSfpST2NlxHHTlEREYCtaUdGCU8RERERIZZKrsdG3TiejN6HDPGwzFxOtMb8gkPgIhXzQTvfCYkzj+le2f9Q/hBCyFvfq/HXaecTG4/Of+IEh4iIjKqKeEhIiIiMswCm4I3mJVhTOR4nZPBZ3AxOEBArw37bHC8Toia+YmIjBQBhqCfMzb6O34sUsJDRERGHRu0QnYzNvMc2HZwJmDCKyG0FDMEHTdEBpvnlIG12HxyobsgaCcSnjUk9w570/DcKrL+EcLepB7Hs8ERQu5EQt7kIbm/iIjIcFHqXkRERhXrH8F2/D9s50OQ2w9BEnJbsR33Yzu/h7XpQoco8qai4aW4bgU5v6HHMT9ox2KJR1YPyb1dp4iiyHoC20rOb8JaC4C1lqx/FGvTFEfPHpJ2vSIiIsNJMzxERGTUsNZikz+G3C5w58Br2zQGHZD5M7jTIHpu4YIUOQkht5rS2KU0dTxMOrsLz60GXPygiSDoIBE9k1i4dsjuXxo/n8C205b6E9lcAwYHS4BriimNX0pRdP2Q3VtERAbAwvH8dL/OGe+U8BARkdHD3w+5l8CZ1D3ZAeAkwBZhM09D5EzM67pPiIw0RdG34DqltKeeIJ3bAwR4biWJ+Dsoip41pDMsjAlRnngPichqktltBEEbrlNKLLyEkDu5X11fRERERiolPEREZPQIDoFNgjOl9+OmDIKmrs2dOKyhifSXMYZ4ZAWxcC25oBHwcZ3yHq1ih/L+kdBMIqGZw3I/kaEUWJ+27H5yQZKQE6coNAXHuIUOS2TQqC3twCjhISIio8iJX14t9PqP+ImuEypRJaOHMQ4ht7rQYYiMWsfSO9jb9nvasvvxbQbXRCgJT2N60Vspj8wtdHgiUkBKeIiIyOjhzQCnFOwxMFU9jwdHITQHnF6OiYjImHMsvZPtzT8gF3SS8GpwTZScTdGceYXO5iMsKLuK8sicQoc57HJBlkPpPbRnm3GMQ2VkCuWhGi1XG8U0w2NglPAQEZFRwzgV2NAqSD8GhMEUgzFdVbyCw4DBhNf32uZTRESGjrUB2aAJrI/nlg7L0qzA+uxr/wPZoJPS0Iz8y3zIxCgNzaQls5v9HU9QFp41rv5dOJrez+am39KUaSAgACBkokyJz2N52blE3HiBI5Thtnr1alzX5ZZbbuGWW24pdDjDSgkPEREZVUzsEiwpyGyEoJ6upS22q35H7J0QWl7YAEVExhFrLe2ZLTQl/0Qy+yrgE3IrKYuuoSx6Jo4zdImP9uxB2jL7SXgTesxcMMYQD9XQknmVjlwDRaHJQxbHSNKabeTZxl/QlmuiPDQRzwlhrSUVdLC7vQ5rA86ovAxnHCWABJ599llKSkoKHUZBKOEhIiKjijERiF0F4TWQ24ENkhinFEKLMe6EQocnIjKuNKf+xKH2H2FtlrBbBbhk/UYa2n9IMruXSSXvH7KOQzmbwrcZPBPt9bhnIiRthlyQGpL7j0R7O7bSkj3KhMj0/KwWYwwxtwiD4UByJ8cyB6mKTC1wpNJfAYagn0tU+jt+LFLCQ0RERh1jHPBmgTdL/5SLiJwkay1Z/yDp7C4sOTynkmh44YCXn2T8Ro52/AIHj0hoen6/5xThBx20pjdQlF5EaXT1YD1CNyEngetEyAadhN2iHsdzQRLXRAg5iSG5/0hjrWV/cgdRN9HrEp6om6Ald4Qj6f1KeMi4oYSHiIiIiMgYFwRJmjp/REdqA75tx2DAOITdaVQUvYdoaH6/r9mReZGs30Q8NK/HMddJgO/QktpwygmPwObwbRbPRLq9yBd5EykNz+RYajshJ9FtWYu1lg7/MNXRpcS98TH7zxLgB1lc0/crnrGGwPrDGJUMFmsN1vazaGk/x49FBV+8dffddzNr1iyi0SgrV67kiSee6HPsf/7nf3LBBRdQXV1NSUkJ69at41e/+lWPcQ8//DCLFi0iEomwaNEifvSjHw3lI4iIiIiInDTfZkjlGsn4rVhrT/16QZpjqed5peX77Gi6j71tP6Mtsyd/bWstxzoepjX5OxyTIOqdRjR0GmF3Ohl/H0fb7ieTO9Dv+2b9FjCmz4KgnlNExj804GfsyB5hZ+ujPH3k33j68L+xofFb7O94hlyQBrpm+00veitRr5zmzCuk/VZ8myHtt9KceZm4W8W0xDnjpjOJY1xKwlWk/I5ejwfWB2OJu+OzloOMTwVNeDz00EPceuutfOpTn2LTpk2cffbZXHLJJezdu7fX8Y8//jgXXHABP//5z9m4cSPnnnsu73jHO9i0aVN+zFNPPcXVV1/NNddcQ11dHddccw1XXXUVf/7zn4frsURExjVrLR25dlqzLWSDbKHDEREZMXJBkoaOP7Dt2L+x9diXebHxX3ml5QFaM7sGfM2M38rO5u+ys/m7HEk+S3NmBwfaf8v2pm9xoP1RrA3I+PvoTG8k5E7Cc8vzCQDHRIi4c8n6DbSnnu73vR0TBWv7TGgENo1rEgNKOLRk9vF80wPsafs9uSCDYzzas4fY3vJjtjb/KF+XozQ8g4Vl72NCbCnZoJP2bAO5oJMJseUsLHsfJeFp/b73aDYjsRigR9LDWktT5hDFXhWTYuOvTa+MX8YORlp5gNasWcPpp5/OPffck9+3cOFCrrjiCu68886TusbixYu5+uqr+Yd/+AcArr76alpbW/nFL36RH3PxxRdTXl7Ogw8+eFLXbG1tpbS0lJaWlnFbzVZEZCAOJPexvXUL9akDBDYg4RUxr2ghC0oWEx7CSv0iIiOdH6R4pfUhmlJ1eE6CkFNCYLOk/WOEnCJmlLybiujSfl3TWsvLLd/jSPJZikIzcF/z92zabyLjNzOn9CrCtNDY/iBRb0GvyYes34AxEaaU/wPGhE76/snsHl5t/iohpwTPKX1dbD6d2Z3UFL+Xyvjb+vVcgc2xqfE7NGf2HG83+5fPaHNBirbsAeaXXsr0ovWvuZ8l6R8hGyQJOXFibtW4mdnxWr712dz0W15p3wQ4xNwiAhuQDFqJOUWsrLiIKfGeS5BkYIbjvfHEPX6x6xskimP9OrejLcklcz8yrt9rCzbDI5PJsHHjRi688MJu+y+88EKefPLJk7pGEAS0tbVRUVGR3/fUU0/1uOZFF1100tcUEZGBebl9B7859Ate6diFZ0LE3ATtuXaePvY4jx/5DZkgU+gQRUQKpjH1HE2p50l404h7kwk5RUTccopDs/FtmgPtvyAXdPbrmslcPc3pbcS8id2SHQARtxyDw5HkswQ2jcHpMwFgCGFtFmtz/bp/1JtBaXQVab+BjH8UawOsteSCdjqzu4iFZlMSOb1f1wRozrxKS2YfRd6kHstlPCeK58SpT27Gt3+ZRWiMIe5NoDQ8g7hXPS6THQCucVle/jZWV15GdXQaAT6OMcwpWsGZ1Vcq2SHjTsGKlh49ehTf96mpqem2v6amhoaGhpO6xr/8y7/Q0dHBVVddld/X0NDQ72um02nS6XT+69bW1pO6v4iIdEn6nWxoegrf+kyKTsnvj7kxMkGaVzp2MiU2jYUl/fv0UkTGJ2stydweWlPPkcy+gjEuifBiSiMrCI/CApTW+hxNbcA1UVynewvVrhf1ybRnX6Ul8xKV0RUnfd2O3EFytpOYM6nX42G3gs5sA0FkHmCwNtvrDA4/aCESmoPpo71rX4wx1CSuxDERWlIb6MzuAtO11KU4UsuEossJuWX9uiZA0m8iIIfn9B5PxCkm5beS8duJeeX9vv5Y5xqXmYnFTI8vJGczGBxCztC0BpbhYwHbz950BVvKMYIUvEvL67Ov1tqTysg++OCD3HHHHTzyyCNMmND9H77+XvPOO+/kM5/5TD+iFhGR19rfuZfWbDMTIj1/6Q47EUImxM727ZxWvBinj+J2IiJwvNZA8gmOdPwU33bgmgQQ0JndSUvqaSYVv59EuP8dRQrJt2kyfgteH+1RHeMBlqw/uB+6GcBiiYZOI+lNIu3vI+LO6vZ7sR+0Y8lRFF07oFkRjhOhpuhKymPnkMzuAXzC7gSi3vQ+i5m+GZeupIy1Qa/XCMjh4Bz/vklfHOMQ7mcSS2SsKdjfElVVVbiu22PmxeHDh3vM0Hi9hx56iBtvvJEf/OAHnH/++d2OTZw4sd/X/OQnP8ltt92W/7q1tZVp08ZXgSMRkVPR4bdjbdenSr2JujHas23kbI6w0adMIqOFtZZU7gCt6S2kcgdxnQhF4QUUhxfhOvFezwmCTnJ+PQCeOwnndeOszZLMbqMzvQXfthJyqoiHlxEJzcMYh2T2FY50/BSDS+I1rVK7Zn28QkPb95lR/jd4TvHQPfggc0wIx4Twg3Svx0+U1HP6UT8DIO5NxjNxskEb4V46b6SDJoq86cRCkyDxbhrb/p1UbjueU4khhB80Y8lSFFlLPLKy/w/2GmG3krBbeUrXOKE0PJ2IU0zSbybuVXQ71lWr4xgTY7WEnaJBuZ+IjF0FS3iEw2FWrlzJY489xpVXXpnf/9hjj3H55Zf3ed6DDz7IDTfcwIMPPshll13W4/i6det47LHH+B//43/k9z366KOceeaZfV4zEokQiaiYnojIQIVMCIvtc0ZdLsgScaN9JkREZOSx1tKYfIIjHb8kG7R2deQgR1PqGRKhuUwpfj8Rr/o14zO0J39HZ/pP+P5RAFy3knhkPYnYuTgmgh900Nj+AJ2ZTWB9jInQaVO0pR6nOHo25Yl30ZreiB909JjFYYwh5s2kM/sy7ekXKIut63Y8sGlS2d0ENoPnlBPxpo6YOg6OCVEeWcrBjl8TtVU9Zi1kgiZCThHF4bn9um7cm0RZZAFHkhtwnQiu6V601Noc1fFVGOMSDy/BLfko7emn6ExvwZImHJpBUXQticgZOCMoGR3zypkUX8Ge9scxvkPUKcUYQ2BztGUbCDtFTImvOqX/voHN0pZ5hUzQhINHUXg2EbfizU8sgIzfztHUixxLv4RvMxSFJlEVXUxJaMaI+RmXoRdYQ2D799+7v+PHooLOA7vtttu45pprWLVqFevWreMb3/gGe/fu5aMf/SjQNfPiwIED3H///UBXsuPaa6/ly1/+MmvXrs3P5IjFYpSWdlWG/pu/+RvOOeccvvCFL3D55ZfzyCOP8Otf/5o//vGPhXlIEZFxYFJsKjE3ToffRpHX/VPGwAZ0+h0sLFmmhIfIKNKe2c6hjp/iECIRmp9/sQpshvbsS9S3/5AZpR/BGBdrfZo7vk9n8vc4TjGeNxkA32+kteMH5IIjlCU+QHPnz+hI/5mIO7PbzI9c0Exr8jd4bjWd2Vf6nL1hjv8dks7V5/dZa2lNPUlz8vdk/HqszeGYBPHwfCoTlxHxpg7Vt6hfqmKraE6/SFt2d9fMDCeGtQFp/xiZoJlJiXOJ9bM+iTGG6cWXkQs6acm8BBgcE8a3SVwTY3LiXKpeUxMkEppFJDSL8ngSi49jYvnv6Ugzq/hcrA2oT26iKfsK5nivhYRXxZzi8ymPzBrwtdszu9nX/lM6s/uwNocFwk4JlbEzmFx0Qb9n2gyljuwhXmr+Ia3ZvbgmjGM8mtK7qO/cwPTEW5hW9BYlPUTeQEETHldffTWNjY189rOfpb6+niVLlvDzn/+cGTNmAFBfX8/evXvz47/+9a+Ty+W45ZZbuOWWW/L7r7vuOu677z4AzjzzTL73ve/x93//99x+++3MmTOHhx56iDVr1gzrs4mIjCfloQrmFy/g+ZZNBDagyCvBMQ5pP01j5giVkWrmFZ9W6DBF5CRZa2lOPUNgU8RC3Zf5OiZMzJ1Be2YnHdldFIVPI519iWTqSTxvMq7zl6Sn403BD0pIpp4k5M2mM70Bz5nQY5mL55QRBG20p/4EOFiCvoMzwGte0puTj9PY8TDGhIh407uWatg22tObyPpHmVRyE2HvjZdLD4eYV8Os0vexv+2ntGf3Evg5wBJ2SpmcOJ/JRee/6TV6E3ZLmVf2IZoz22lKbesqYupWUx5dQnFoVq8vw47Tv9aWheCaEPNKL2ZyfCVNmd34NkPELaEyMpdQH8upTkZnrp7drd8j7TcSdyfjOlGsDcgEx2jo+DWWgGnFbx/EJxm4wObY1fJjWrP7KA3PwnnNz30y18jejt+RCE2kMrqggFHKcLGYARQtVTLM2BOLBiVvOPopi4iMNbkgx3PNz7CzbRsdfjtY8ByPmugk1lScRVVk9HVWEBmv/CDNzmOfByDsVvU6piO7g0lFV1IVfxst7Q/SnvotkVDvic109iU8by7J7MtEvPm9F6IMOskGhwmHV9GUfIp46LQeL+uBzZDK7WVK6Y2URJaTC1rZ1/TPBDZN5PiskhOs9enM7qAifhHVRe8ayLdhSAQ2R3t2D2m/Ccd4FIVmEnHVaWS47Gv7MQ0dv6U4NLfHz2HaP0Zgsyyo+DjR1yzXKpRj6R28cOx+Et5EPKfn8vvm9B6qY0tYWPa+ETvLw1pLyj+S/3lPeFN6dCoazYbjvfHEPX6y81skivuX7Oto6+Qd824a1++1Km0sBdfW1M7Wp3aw7ekdJNtSVE+rZPH6BcxfORvXG5nTLEWkJ8/xOKPiTBYWL+FQuh7f+hR7JUyMTlZnFpExLhc0Ykzf9dCMieD7zSd1rUR4ER3ZXaT8V4m60/JLLgKbIZndTTw8j6LQQgCSmZfI+o3EQnN6uadLyK2gPb2ZivgluCNkVoNjPEr6WatDBodvMzSnXyDslPWadAs75bRld9GWeXlEJDw6socIrN9rsgMg4pbQmtlLYDPd6reMFKlcI/vbH6Ul8xLZoB2DS8ybwITYOmriawfcxWe8OpUZHqtXr8Z13R4rJcYDJTykoI4eaOSRr/2SfdsPEk1ECUU8tv15J9uf2cWK85Zw0fXn4oX0YyoymhSHSigOjc9PEUTGCseEiYdm0pLe3OsMDz9IYvCIHp9V4TrlWNt7BxIAa9NEwovwszn84BheL9fMBY14bjVFkSU4JkZD+8N05nZhcI8vcXGIh+cxqfj9OMdfAH2bBOizDoVjYvhBO4FN4TIyEh5SOIHNENhsnwVau2ZJGAIywxtYHwwGwxtNxrccX+M1TBGdvIzfwq6WB2nLvELMm0A0NIGAHKncUV5t+y98m2ZK0bmFDnPcePbZZzXDQ2S4BUHAo9/5PftfqmfGoqndZnN0tHSy8bHnmThzAisvqC1glCIiIuOPMYby6Bm0ZV4k7R8m7FS/pmhpjmRuL8XhBcRDXTMVouGldKaeIAjacV7XKjQIOjC4FEXPwjgVtCZ/jWMS3epI+EELge2gLPoOHBOlKLKYGd4U2jMvkMrtxyFELDSLRHhRt+nwrlN8vHtHttdCk37Qgesk+myhK+OLZ2KEnVKSucOE3bIexwObxRgIOaXDH1wvikKTcUyYXJDE62WGUjpooSZ2Oq4zcjrsnHAk+Rzt2VcoDs/GMV2vnC5hEqHJJHNHONT5BFWx2hHbGUfGDiU8pGD276jn1a37qZlZ3WPpSqI0TsvRVup+/yLLz12ipS0iIiLDrCi8iAnxSznS+SgduR24xLDksDZHIjSHycXvzb/IREILiUVW05l+EtdW4DqVAPhBI7ngGPHIOiKhhYS82fhBC52ZzeBbjIlgbRJjwhTHzqU4enb+/iG3jPLYWW8YYzx0GmG3hkzuINHQjG7HrM2RC5opi52D85rp/lm/gax/CINL2JuB20dHGBl7jHGpjK3i1daH8YNUt+SZtZbO3EGi7iRKXtcSuVBKwjMoi8ymMbWNkvB03OMzU7piPYxnYtTEVrzJVYaftT6NqU14pij/d8RrRd1K2jIv05LewYT42gJEODpZ27X195zxTgkPKZjGg8fIpLLEi3ufYlpSWcyx+ibamtopqx4ZmXYREZHxwhhDVfxcEuE5tKafJ5U7gGMiFIcXUhxZgveamRzGhChNvB/XKacz/QyZ3CsAuE4FxbHLKI5djDEhXBOiqvjDpDIv0pl5Hj9owXOriYeXEw3N73eLVNeJUxG/lMPt3yOZfZmwOwFjwvhBK1n/CPHwaZREzwQg5zfR0vljOjPPE9hWwMFzqkhEz6QkdkGfyxxkbKmIrqQts4tjqTo8EyfklhDYLGn/GCGnhKnFl/Y6m6IQHOMyt+SdBNanOfMy2K59XR1rSplVfCFl4Z71awotsFlyQWefdXOMccAYcseXpIkMJSU8pGAc1wHblaXurbJ04AcYx+kaJyIiIsPOGEM8NIP462ZP9MZx4pQk3kUi9jayuQMAhLwpuE5Z93EmTDyygnhkcD6ZLo6uwpgwzck/kMruwZLDNXHKYudRHj+fkFuOH7TT2H4fycyLhNwaQu4kwCcXHKWl8xGCoJ3yxFUjttOFDB7PiTGj5GqKQrNoTG0g47dgjEtVbDVVsbUUh2cNazx+kCEdtOEYl4hT2uNnMOZVsLj8gzSld9KUfhmfNAm3hsroIhKhkdn9zDFhQk4RKb+x1w5E1gaAxTOJ4Q9uFAswBP2s19Lf8WOREh5SMFPmTiRRFqe1sZ3Sqp7TSZsPtzBv1WyKy4t6OVtERERGItcpww2XDes9iyLLSISXkPHrsTaD55TjvaZGQ2fmOVLZrURCc14zk8Mj5E7EEKEj/RSJ6Boi3sxhjVsKw3Ni1CTeQnX8TLJBG44JERrmpU25IMWBzo3Ud24ifTzpUhaewZTEaioj3bv4eE6U6thSqmNLBz2OTJDkUPIlDqW2k/Y7SHiVTIotpDo6F6efM65OMMahKnY6e1of6bW+Tso/TNgppzQyMpYOydimhIcUTOXkChauncezv9iMF3ZJlHQVFAsCy9H9jXgRjxVvW6pPW0RERORNGeMQ8ab0eqwzvQFDpNdlK65TRi7bQCqzTQmPccYxoYIUzcwFaba1PMKhzufxnAQRt4TA5jic2kpTejenlV7GxPjQF+1P5lp4vunHHEm/jGs8XBOmOXuA+uQLTI0vZ1HZRbi9FAM+GVXRFTSnt9Gc3k7ErSJ8/BlT/hHAMr34AiK9FI4VGWxKeEjBGGN42wfOJpPKsu3pnRx69QiO4xD4AaXVxZz7/rcw7/TZhQ5TRERERjk/aO7WFea1jDFgHIKgY5ijkvHqUGoLh5JbKA5NwXtN4dSoW0pb9iAvt/2Gisgcwu7QzXK21rK99TccTu+iIjytW2Ij7Xewt3MjxaEJzCw6Y0DXD7nFzCl9Hwc7fsex1BY6svsxxiXuTWJi/Ewqo6cP1qOMGxaD7ecSlf6OH4uU8JCCiiWivPNjF3H6eUvZ8+J+0sk0pVUlzF85m/KaskKHJyIiImOA51STym6HXmboW2uBANcdeIH0TO4IydxewBJxJxLxpmiGqvTKWkt952Ycwt2SHSckvBpasq9yNL2TyfGh68DSljvMkdQuir3qHrM4Im6CVNDK/s7NTEusGPAsj7BbysySK5icOJe0fwxjPOLexF5bSIsMFSU8pOBc12XGomnMWDSt0KGIiIjIGJSIrCaZfYEgSPaY6ZELjuCYUmKhxf2+rh90cqTjZ7SmnyPnt4IB18QpCi+iuuidhN3KwXoEGSMCmyXlNxN2ei/YeaJuRtpvHdI42rNHyASdFHu9Fz6NuaV05JpI5looClWd0r3CbinhU0goShfN8BgYJTxEREREZEyLRZYTz6ykM/MMblCG65aD9ckGR8FmKY2/A8+d1OO8wGbIZHcT2CSuU0rYm9HVUhOw1qeh7Qe0pJ4m7E4gHpoLGHzbRkvqGXJBK1NLb8Lt48VWxidjXFwTJtPHEiprLViLN+Rtks3xzR7//z3jMBjNVJJRTwkPERERERnTHBOlsuhDhJKT6Mj8mWyuHoxD2J1MUfRsEpF13V7srLV0Zp6jpfNRMrn9QBZjokS82ZQlLiMamkdndhet6U1EvKl4zl9qLXimBCcUoyO7g7b085TF1hXgiWWkcoxLTXQJL7f9Gmur8wm0E9JBCyEnQXlkaOvYlYYnE3WLSPqtxL2yHsc7/SbKw1OJqbDoiHE8F9bvc8Y7JTxEREREZMxznDhliXdQHHsbOf8wxriE3EmYXuoJdGaeo7Htu1ibI+xNwRAhsB0ks9vItR2muvhmOjLbj7fA7VlY0jEhHEK0pjcr4SE9TIwv53BqK82ZPRSFJhJy4lgbkPSbSActTE+sJ9HHUpPBkvDKmRRbxCvtT+M5YcJOV7dEay2dfhNgmZY4fcCtaUVGCiU8RERERGTccJ0ErjOrz+OBTdPS+SuszREJ/WWca4qImvmkc9tpSf6GHHGM6ftXaWMi+EHboMYuY0Pcq2Bx+bvZ2forWjJ7ac81ABBxSphZdA6zit46LEtJ5pe8lUyQpCG5jVZ7CMe4BNYn7CSYV3wOk2P9r2sjMtIo4SEiIiIiclw6+wqZ3H7CXs9i6sYYPGciqex2wuE1WJvtqnXQy8tpYDsJu4uGI2QZhYpDk1hecQ0tmX0k/SYc41IWnk50GJeQhJwYteWXMy2+nCPpl8kGSWJuGTXR+RSHalS/Y8Tpf9HS3uqzjDdKeIiIiIiIHBfYJODjmEivxx0nhu83Ew/NoMUpJRscJexWdxuTC9oAh5Lo6UMfsIxajnEpj8yknJkFjaEqOpuq6NDWDBEpFOfNh4iIiIiIjA+uU4wxIYIg2evxIGjHMTFi3lwq4+fh2zaS2d3kgjZyQTup3D7SfgNlsXUUhRcOc/QiY0Ngc2T8dvwgXehQRgxrzYC28U4zPEREREREjot4swh7M0nnXiZi5r6ue4tPNjhCcfQthLwKKt3zCbnlNCefJJXbD1hC7gSqo2soi535hjU+RKSnbNDJkeRzHE4+R8ZvxXVCVESWUBNfRdyrKXR4o9bq1atxXZdbbrmFW265pdDhDKt+/S38zDPPsHLlSly3q1rv69csptNpHnnkEa666qrBjVJEREREZBgY41EWv4yjbfeRyu0g7E7EmChB0E42OETYm0Fp7LzjYw2l0VWURFaQ9Y9hCQi55TgmXOCnkMFiraUle4C2bFdh0eJQDaWhKT3aycqpywad7Gz+PsfSW/FMjJBTRBBkONDxe5rS25hXejXF4Z61deTNPfvss5SUlBQ6jILoV8Jj3bp11NfXM2FCV5uk0tJSNm/ezOzZXWu+mpubef/736+Eh4iIiIiMWrHwQqpLbqQ1+RtSmZ1YGjEmRnH0HEpiFxDyJnUbb4xL2Kvu42oyWiVzLWxv/SWNqZfJ2RQArolQFZnDaaUXEffKCxzh2NLQ8TTH0i9S7E3Hdf5SQydqK2nN7ubV9l+wqPzGcdsqNzi+9fec8a5fCQ9r7Rt+3dc+EREREZHRJBqaT8SbR85vILApXKcEz60sdFgyTHJBmhebH+FIeifF3kRCziSMMWT8DhpSL5K1KVZUvI+QEy10qGNCLkhxJLWJsFPcLdkBYIxDwptMW2YvbZk9lEbmFChKGY0GfWGh2heJiIiIyFhgjOkxm0PGhyPpnRxNv0xZaBqu85clSmE3QZkznWPp3RxJ7WByfFkBoxw7skE7Wb+NsFva63HPiRHksqSD5uENbASxA2hL2/82tmOPFp+JiIiIiIi8RmNqFwanW7LjBNeEMLgcTe8sQGRjk2M8jPEIbLbX49Z2Lc5wCA1nWDIG9HuGx9atW2lo6CraY61l+/bttLe3A3D06NHBjU5ERERERGSYZYIUzht02XGMR9ZPDWNEY1vYKaUkPIvG1POEndIeqwZSfiMRt4yS8MzCBDgCDKTNrNrSDiDhcd5553Wr0/H2t78d6Jry9/quLSIiIiIiIqNNUaiKQ6mtfb7f5GyKopAK1Q4WYwwT42tozbxCe24fCW8yjvGwNiDlN5EJWpledCFhd3x2GpGB61fCY/fu3UMVh4iIiIiIyIhQE13Ivo4NJP0m4l5Ft2PJXBMhE2VCbEGBohubyiJzmVP6Lva2/Yq27F7AYrGEnRKmFp3HlKK3FDpEGYX6lfCYMWPGUMUhIiIiIiIyIpSEJjOraD0vt/2e5nQ7Ua8UMKT8ZgBmF51DWWhaIUMckyqjiykNz6Y5vZNM0IZrwpSGZxP11CHJHt/6e85416+Ex7Fjx+js7GTq1Kn5fS+++CJf/OIX6ejo4IorruADH/jAoAcpIiIiIiIyXIwxzCo6i7hXyYHOzbRmDgBQGZnN5PhyJkYXaSn/EPGcGFUxdb+RwdGvhMctt9zCpEmT+NKXvgTA4cOHOfvss5k8eTJz5szh+uuvx/d9rrnmmiEJVkREREREZDgYY5gYW0RNdCGZoAOAsBPHGDW6lOGntrQD068/rU8//TTvfOc781/ff//9VFRUsHnzZh555BE+//nP87WvfW3QgxQRERERESkEYwwRt4iIW6Rkh8go068/sQ0NDcyaNSv/9W9/+1uuvPJKPK9rosg73/lOdu5UP2oREREREZGxqjPXSH3n8xzsrKMlc6BbF0+RkaRfS1pKSkpobm7OFy995plnuPHGG/PHjTGk0+nBjVBEREREREQKLhskebnttzR0vkgmaAPAM1EqInOYX3phj442MnisNVjbzyUt/Rw/FvVrhscZZ5zBV77yFYIg4Ic//CFtbW287W1vyx/fsWMH06apWrGMLJ1tSY4ePEZHS0ehQxERERERGZUC6/NSyy94te0pXBOiPDyL8vAsom4Jh5Iv8GLTf5Lx9fu2jCz9muHxuc99jvPPP5/vfve75HI5/u7v/o7y8vL88e9973u85S3qjywjw7GGJjY++jxbn95BujNNKBJi/uo5rL6wlgnTqwsdnoiIiIjIqNGc2cuh5IsUhyYSdhP5/WG3iHInSlNmD4dTW5maWF3AKMcutaUdmH4lPJYvX862bdt48sknmThxImvWrOl2/H3vex+LFi0a1ABFBuLowWP86Ms/Y/+OesonlFJSWUy6M8MzP9vEqy/s48q/uZRJs2oKHaaIiIiIyKhwLP0KOZvuluw4wTEerolwKKmEh4ws/Up4AFRXV3P55Zf3euyyyy475YBEBsNTP97AgR31zFwyHdftWrkVL45RWl3Cqy/u4/EfPMVV/9/l6p8uIiIiInISskEKB7fP464J59v3yuBTW9qB6VfC4/777z+pcddee+2AghEZDE2HW9ix8WUqJ1fkkx0nOI5hwvQq9ry4j0OvHmHizAkFilJEREREZPSIeWUE+Fhre/3QMBt0UhGZ1cuZIoXTr4TH9ddfT1FREZ7n9dl6yBijhIcUVHtTO6mONGXVpb0ej5fEOLzvKG3H2pXwEBERERE5CdWR+exx/kin30jCq+p2LON3gDHUxJYUKDqR3vWrS8vChQsJh8Nce+21/OEPf6CpqanHduzYsaGKVeSkhKNhvJBLJpXp9XgmlcULe4SjoWGOTERERERkdEqEqplVdDa5IEVzZi9pv42M30Fr9iDtucNMiZ1OdXR+ocMcs6wd2AawevVqFi1axNe+9rXCPkQB9Cvh8eKLL/Kzn/2MZDLJOeecw6pVq7jnnntobW0dcAB33303s2bNIhqNsnLlSp544ok+x9bX1/OBD3yA0047DcdxuPXWW3uMue+++zDG9NhSqdSAY5TRpXpaJVPnT6bxQFOvx48eOMaE6VUEQcBvHniCH33l5zz6nd+ze8ur+L4/zNGKiIiIiIwO04vWsbj8Ssojs8gEnaSDNuJuJQvKLuO0sktwTL9LRMowePbZZ9m6dSu33HJLoUMZdv3+iVyzZg1r1qzhrrvu4gc/+AH33nsv/+t//S+uuOIKvv3tbxOJRE76Wg899BC33nord999N+vXr+frX/86l1xyCVu3bmX69Ok9xqfTaaqrq/nUpz7Fv/7rv/Z53ZKSEl566aVu+6LR6Mk/pIxqjuOw5tLTqX/lEPt31DNhRhXhSIhsJsfR/Y1Ya/FCLg/90yOkOtKEwiFy2RwbfrWZJWct4KIPn0skdvI/xyIiIiIi44ExhomxJdREF5H0m7FYom4JrtHM6aGmoqUD068ZHq8Vi8W49tpr+cxnPsMZZ5zB9773PTo7O/t1jS996UvceOON3HTTTSxcuJC77rqLadOmcc899/Q6fubMmXz5y1/m2muvpbS09/oMcPwP4sSJ3TYZX+aumMVlH7mAqqkVNOw+xJ4X9nJwVz3FlcXMqZ3Bvu0HKSpNMHvpDKadNplZS6ZTPrGM5369hT/96JlChy8iIiIiMmIZ4xD3Kkh4lUp2yIg2oDlHBw4c4Dvf+Q733nsvHR0dfOhDH+Kee+6hvLz8pK+RyWTYuHEjn/jEJ7rtv/DCC3nyyScHElZee3s7M2bMwPd9li9fzuc+9zlWrFjR5/h0Ok06nc5/fSpLdGTkWLhmHnOWz2Tv1v10tHQSLYoyeU4ND37+P4nGI5RUFncbnyiJU1pdwpY/bmP1JSsoLi8qUOQiIiIiIiJyqvqV8Pj+97/Pvffeyx/+8Acuuugi/uVf/oXLLrsM1+27H3Nfjh49iu/71NTUdNtfU1NDQ0NDv693woIFC7jvvvtYunQpra2tfPnLX2b9+vXU1dUxb968Xs+58847+cxnPjPge8rIFY6EmLviL+2x6l85RGN9E5WTK3odXz6hlL3b99Ow+7ASHiIiIiIiMiJYa7C2n0ta+jl+LOpXwuN973sf06dP53/8j/9BTU0Ne/bs6bXS61//9V+f9DVf38O5r77OJ2vt2rWsXbs2//X69es5/fTT+bd/+ze+8pWv9HrOJz/5SW677bb8162trUybNm3AMcjIdaKdcp8/Y8Ycr2jce9tlERERERERGR36lfCYPn06xhgeeOCBPscYY04q4VFVVYXruj1mcxw+fLjHrI9T4TgOq1evZufOnX2OiUQi/Sq2KqNXxaRySqtLaDnSyoTpVT2OtxxtpbiiqNdjIiIiIiIihWCPb/09Z7zrV8Jjz549bzrmwIEDJ3WtcDjMypUreeyxx7jyyivz+x977DEuv/zy/oT1hqy1bN68maVLlw7aNWX0isYj1L5lMY/9++MUtSWJF8fyx9LJDE0Nzax9++mUVfddFFdERERERERGvkFrlNzQ0MDnP/95vvnNb5JMJk/qnNtuu41rrrmGVatWsW7dOr7xjW+wd+9ePvrRjwJdS00OHDjA/fffnz9n8+bNQFdh0iNHjrB582bC4TCLFi0C4DOf+Qxr165l3rx5tLa28pWvfIXNmzf3uvRGxqfVl6zgWH0TdY9vJfADovEImWSWwAYsXDefs9+zrtAhioiIiIiI5Kkt7cD0K+HR3NzMLbfcwqOPPkooFOITn/gEH//4x7njjjv44he/yOLFi/n2t7990te7+uqraWxs5LOf/Sz19fUsWbKEn//858yYMQOA+vp69u7d2+2c13Zb2bhxIw888AAzZszIzz5pbm7mIx/5CA0NDZSWlrJixQoef/xxzjjjjP48qoxh4UiIS246j/mr57L9zztpOtxCcXkRC86Yy7zTZxGOhgsdooiIiIiIiJwiY/tRnfFjH/sYP/nJT7j66qv55S9/ybZt27joootIpVJ8+tOf5i1vectQxjpsWltbKS0tpaWlhZKSkkKHIyIiIiIiIiPMcLw3nrjH/3vh+8SL4/06t7OtkxuXXDWu32v7NcPjZz/7Gffeey/nn38+H/vYx5g7dy7z58/nrrvuGqLwRERERERERMa3rk6S/T9nvHP6M/jgwYP5WhmzZ88mGo1y0003DUlgIiIiIiIiIiID1a8ZHkEQEAqF8l+7rksikRj0oERERERERESki4qWDky/Eh7WWq6//noikQgAqVSKj370oz2SHv/5n/85eBGKiIiIiIiIiPRTvxIe1113XbevP/ShDw1qMCIiIiIiIiIig6FfCY977713qOIQERERERERkV6oaOnA9KtoqYiIiIiIiIjIaNCvGR4iIiIiIiIiMtz6X7QUFS3VDA8RERERERERGXs0w0NERERERERkBLPHt/6eM94p4SEiIm8qsAH7O4+ws30/bdlOirwYc4unMC1eg2s0WVBERERERh4lPERE5A3lAp/fHNrIpqYdpPwMIccjZ3M8e2wby8rmcsHE1YQd/XMiIiIiIiOLfkMVEZE39Oyxbfy58UUqw6VMjlXl97fnkmw4to1iL8Y5E5YXLkARERGRMa6rLW3/ipCqLa2KloqIyBtI+Rk2Ne0k5kYpDsW7HSvyYhR5cZ5vfpnOXKpAEYqIiIiI9E4JDxER6dORdDNNmTbKw0W9Hi8PFdOUbedQ6tgwRyYiIiIyftgBbgCrV69m0aJFfO1rXxvusAtOS1pERKRP9vhcSNNHH3djDFirKuAiIiIiI9Szzz5LSUlJocMoCM3wEBGRPlVFSikJxWnJtvd6vCXbTnEoTlWkdJgjExERERF5Y0p4iIhIn+JelGVlc2jNdpL0092OpfwMzdl2lpTOoiSUKFCEIiIiImOftWZA23inJS0iIvKG1lYu5limjRdadgOWqBMmHWSx1rKkZDbrq5YVOkQRERERkR6U8BARkTcUccO8ffKZLCyZwbbWV2nJtlPiJVhQMoO5xVMJO/qnRERERGQovbYIaX/OGe/0W6qIiLypkOOxoGQGC0pmFDoUEREREZGTohoeIiIiIiIiIjLmaIaHiIiIiIiIyAhmMVj6V4S0v+PHIs3wEBEREREREZExRzM8REREREREREYwa7u2/p4z3mmGh4iIiIiIiIiMOZrhISIiIiIiIjKimeNbf88Z3zTDQ0RERERERETGHCU8RERERERERGTM0ZIWERERERERkRFMRUsHRjM8RERERERERGTM0QwPERERERERkRHMYrD9LELa3/FjkWZ4iIiIiIiIiMiYo4SHiIiIiIiIiIw5WtIiIiIiIiIiMoJZBlC0dEgiGV00w0NERERERERExhwlPERERERERERkzFHCQ0RERERERETGHNXwEBERERERERnB1JZ2YAo+w+Puu+9m1qxZRKNRVq5cyRNPPNHn2Pr6ej7wgQ9w2mmn4TgOt956a6/jHn74YRYtWkQkEmHRokX86Ec/GqLoRURERERERGQkKmjC46GHHuLWW2/lU5/6FJs2beLss8/mkksuYe/evb2OT6fTVFdX86lPfYra2tpexzz11FNcffXVXHPNNdTV1XHNNddw1VVX8ec//3koH0VERERERERERhBjbX+b2wyeNWvWcPrpp3PPPffk9y1cuJArrriCO++88w3Pfetb38ry5cu56667uu2/+uqraW1t5Re/+EV+38UXX0x5eTkPPvjgScXV2tpKaWkpLS0tlJSUnPwDiYiIiIiIyLgwHO+NJ+7xpY2PECtK9OvcZHsHt628fFy/1xZshkcmk2Hjxo1ceOGF3fZfeOGFPPnkkwO+7lNPPdXjmhdddNEpXVNERERERERERpeCFS09evQovu9TU1PTbX9NTQ0NDQ0Dvm5DQ0O/r5lOp0mn0/mvW1tbB3x/ERERERERkcGkoqUDU/CipcZ0/49gre2xb6iveeedd1JaWprfpk2bdkr3FxEREREREZHCKljCo6qqCtd1e8y8OHz4cI8ZGv0xceLEfl/zk5/8JC0tLflt3759A76/iIiIiIiIiBRewRIe4XCYlStX8thjj3Xb/9hjj3HmmWcO+Lrr1q3rcc1HH330Da8ZiUQoKSnptomIiIiIiIiMCHaA2zhXsBoeALfddhvXXHMNq1atYt26dXzjG99g7969fPSjHwW6Zl4cOHCA+++/P3/O5s2bAWhvb+fIkSNs3ryZcDjMokWLAPibv/kbzjnnHL7whS9w+eWX88gjj/DrX/+aP/7xj8P+fCIiIiIiIiJSGAVNeFx99dU0Njby2c9+lvr6epYsWcLPf/5zZsyYAUB9fT179+7tds6KFSvy/3vjxo088MADzJgxgz179gBw5pln8r3vfY+///u/5/bbb2fOnDk89NBDrFmzZtieS0RERERERGSwDGTCxonxq1evxnVdbrnlFm655ZZBjmxkM9ZaTXR5neHopywiIiIiIiKj13C8N564xxc3/JhYUaJf5ybbO/hfq945rt9rCzrDQ0RERERERETehDVdW3/PGecK3pZWRERERERERGSwKeEhIiIiIiIiImOOlrSIiIiIiIiIjGCnUrR0PNMMDxEREREREREZczTDQ0RERERERGQEs7Zr6+85451meIiIiIiIiIjImKOEh4iIiIiIiIiMOVrSIiIiIiIiIjKimeNbf88Z3zTDQ0RERERERETGHM3wEBERERERERnBVLR0YDTDQ0RERERERETGHCU8RERERERERGTMUcJDRERERERERMYcJTxEREREREREZMxR0VIRERERERGREc1g1Za23zTDQ0RERERERETGHM3wEBERERERERnJ7PGtv+eMc5rhISIiIiIiIiJjjhIeIiIiIiIiIjLmKOEhIiIiIiIiImOOEh4iIiIiIiIiMuaoaKmIiIiIiIjICGZt19bfc8Y7JTxERAbIWsuRY+2k0lmK4hEqyhKFDklERERERI5TwkNEZAB272/kjxtf5tX9jWRzPpFwiPmzJnD2qjnUVJUUOjwRERERGVPM8a2/54xvSniIiPTTy3uP8INfbKK1PUV1RRHRcIjOVIYNW/Zy8FAzV1+2UkkPEREREZECU9FSEZF+yPkBv31qB+2daWZNraQ4ESUUciktjjF7WhUHD7fyp+deKXSYIiIiIiLjnhIeIiL9sL++if0NzdRUlWBM92mCjmOoKk/w0iuHaG7tLFCEIiIiIjLm2AFu45wSHiIi/dCRzJDN+cQioV6Px6Jh0pkc7Z2ZYY5MREREREReSzU8RqHGw63s2lZPa3MHkViYWfNqmDKjEsdR/kpkqEUjIVzXIZ3JEQn3/Cs0nckSDrnEor0nRERERERE+msgEzY0wUMJj1HFWsszj7/Ek7/bRmtzEtd1CIKAp34XYvHy6Vxw+elE9JIlMqSmTy5nUlUJhxrbmDapvNuxE21qaxdOpaI0XqAIRUREREQEtKRlVNlWt4/f/WILxhhmza9hxtwJzJo/kdLyBM89/TKPP/pCoUMUGfNCnss5Z8wl5DnsPdhEOpPFWktnMsOeA41UlCVYf/rsHvU9RERERERkeGmGxyjh+wHPPb0Lay2VE7q3u0wURynLFPHipldZfdZ8yioSBYpSZHxYPG8Sxhie2LCLg4dayPkBkbDHvBkTeOvaeT1mfoiIiIiInBKtaRkQJTxGiZamDg4daKassqjX46XlCfa+fJiD+xqV8BAZYsYYFs+bxGmzJrC/oZlkOktxIsLkCWU4jmZ2iIiIiIiMBEp4jBKBbwkCi9vHy9SJ2fOBrzSeyHDxPJeZUysLHYaIiIiIjHnm+Nbfc8Y31fAYJUrK45RVJGht7uz1eEdbilg8TNXrlruIiIiIiIiIjEdKeIwS4bDHstWzSHZm6OxIdzuWy/ocaWhh1vyJ1EwpK0yAIiIiIiIiMjTsALdxTktaRpEVa+dwuL6ZLRv20AjEEmEy6RzpVJYZc2t422W16gwhIiIiIiIighIeo0o47HHJu1YxZ8Ektm7eS+ORNqprIixYNo2Fy6aRKI4WOkQR6QdrLQ2t7Ww7eJiWZIpEJMy8mipmVKj4qYiIiIjIqVLCY5TxQi6LaqezqHZ6oUMRkVMQBJbfbNvF73fspiWZwnUcgiAgFg6xeuZULl++kLCnv6JFRERERF1pB6rgNTzuvvtuZs2aRTQaZeXKlTzxxBNvOP4Pf/gDK1euJBqNMnv2bP7v//2/3Y7fd999GGN6bKlUaigfQ0SkXza8eoBfvLADz3E4raaKeRMqmV9TRWksyuM79/DrbS8XOkQRERERkVGtoAmPhx56iFtvvZVPfepTbNq0ibPPPptLLrmEvXv39jp+9+7dXHrppZx99tls2rSJv/u7v+Ov//qvefjhh7uNKykpob6+vtsWjWq5h4iMDDk/4Mldr+I6DtXFiXztHWMMpbEo5fEoz+7eT0tSiVoRERERQUVLB6igCY8vfelL3Hjjjdx0000sXLiQu+66i2nTpnHPPff0Ov7//t//y/Tp07nrrrtYuHAhN910EzfccANf/OIXu40zxjBx4sRum4jISHG4rZ36ljaqiuK9Hq9MxDnW0cm+Y83DG5iIiIiIyBhSsIRHJpNh48aNXHjhhd32X3jhhTz55JO9nvPUU0/1GH/RRRexYcMGstlsfl97ezszZsxg6tSpvP3tb2fTpk1vGEs6naa1tbXbJiIyVAJrsdbi9lGY1DEGC/iB0vIiIiIiIgNVsITH0aNH8X2fmpqabvtrampoaGjo9ZyGhoZex+dyOY4ePQrAggULuO+++/jxj3/Mgw8+SDQaZf369ezcubPPWO68805KS0vz27Rp007x6URE+laZiFMaj9LU2fuSlZZkiqJImJqSomGOTERERERGJjPAbXwreNHSE2vXT7DW9tj3ZuNfu3/t2rV86EMfora2lrPPPpvvf//7zJ8/n3/7t3/r85qf/OQnaWlpyW/79u0b6OOIiLypWDjEGTOn0ppM05nJdjuWyfkcau1g0eQJSniIiIiIyClbvXo1ixYt4mtf+1qhQxl2Bet5WFVVheu6PWZzHD58uMcsjhMmTpzY63jP86isrOz1HMdxWL169RvO8IhEIkQikX4+gYjIwJ09fxb1re1sevUAxhji4RDpXI50zmfBxGouW7rgDZO/IiIiIiIn49lnn6WkpKTQYRREwWZ4hMNhVq5cyWOPPdZt/2OPPcaZZ57Z6znr1q3rMf7RRx9l1apVhEKhXs+x1rJ582YmTZo0OIGLiAyCaMjjff8/e3ceXtdV3/v/vfZwRulosCx5kuXZseM4cWwTnIEkkDgDUKaWAG2A3kALmEJI+9wLN9CE3Ja0hdLQS0KbXLiU3mb4MU+GxBBCQkbHsTM6sR3PtmTLsuYz771+f8hRokhyLFnSsaTP63n281h7WPu7tS1p7+9Z67tWn8HVa1awdHotZbEIc2uq+cCblvPR886mKhkfUntHO9Ns3XuIl/YdpnOQoTIiIiIiIpNJyXp4AFx33XVcffXVrFq1ijVr1nD77bezd+9ePvGJTwA9Q00OHDjA9773PQA+8YlP8M1vfpPrrruOj3/84zz66KN8+9vf5q677upt88tf/jJvfvObWbhwIR0dHfzrv/4rW7ZsmZTdd0Tk1BbxPM5umMnZDTOH3UZXJsdvNm/nmZ2NdKSzGAOVZQlWLZzFRWfOJ+qX9Ne8iIiIiEjJlPRJ+KqrrqKlpYWbbrqJxsZGli1bxvr162loaACgsbGRvXv39u4/d+5c1q9fz+c+9zluvfVWZsyYwb/+67/yvve9r3eftrY2/uIv/oKmpiYqKipYsWIFDz74IG9605vG/PpEREZTrlDkBw89wzO7GqlJJZk3bQoWy9GONPdt2kZnOst7zj8D1yl5uSYRERERORn22DLUYyY5Y1+p+im9Ojo6qKiooL29fdKOdRKRU9+Wlw/wX/dvZuaUCmKRvvnrzkyOo51pPnb5m5g/o6ZEEYqIiIhMXGPx3vjKOb7y4K+JlSWHdGy2q5v/+ZbLJ/V7rT72ExEZRBiG7N92kBcefYkdm3eRTedKHVIfz+5qwjGmX7IDoDweJV8MeHHf4RJEJiIiIiJSehrcLSIygAM7GnngnkfY++IB8pk8juMwZWYVqy9fwcpLl+OcAsNEOtLZ49bo8F2Hzkx+DCMSERERETl1KOEhIvI6h/c285P//StaDrZSO7uGRHmcYqFIy4FW7vvu7wiDkHOuPHtMY+rM5TjY1Ym1lhnl5aSiMarLE+w53Drg/tZaCsWAymRsTOMUERERkVGgGh7DooSHiMjrPPWbZ2je18KcZbNxHAOA53vUzZnK4b1HePyXm1h2/mkkU4kTas9aS64Q4LoG33WHFEuuWGTDzh1sPHiAlnQagKp4nFUzZrKofiqbXz5IdzZPMhbpc1x7d5Z4NMKS2XVDOp+IiIiIyEShhIeIyGtkujK8uPFlKmsrepMdrzVlRhX7XjrI7uf2cfq5i4/bViEIeHpXI0++vJ/mji481+H0+mmsmj+LGdVvXDgqCEN+8MJz/GHvHipiMRoqKjEGjmYy/Gr7NlbPmMmZ86bz1I4DlMejVJXFsdbS0pkmmy9y4fJ5zK6tHO63QkRERERkXFPCQ0TkNbLpPMVcgWTFwFWwXa+nh0buDQqYFoKAHz/2HI/v2IdrHFKJKNlCwP3P7eDZPU28/7zlLJx+/NlTth1t4YkD+5mRSlEeifaur02WURaJsPlQIx9dfjbTqsrZtH0/Ta2dGANTK8p40+LZnHPabIzpn7QREREREZkMlPAQEXmNRHmMWFmMdGeGZEX/ISuFfBHjGJKVx58WbMuugzyxYx91FWWUxV6TrEgl2X24lZ9tfIFPX3HucYuOPnf4EIUw7JPs6I3Tj4CFF1sO82crVnDu0jkcbu/CMYbayrLjtisiIiIiMhmUfpoBEZFTSDQe5YwLltDR0kmxUOyzzVrLod3N1M6uYe6y+kHbCEPLky/vx3WcPskOAGMMs6ZUcLC1g5cONh83lvZslshxan5EXY/WbBaAeNSnobaK+qmVw052WGtpzXdxMH2Utnz3sNoQERERkVFgzfCWSU4fAYqIvM6Kt53Brmf3suvZvVTWVlBWkSCfK9LSeJREeZwL/2QNkdcVCX2tbKFIc3s3qcTAM6T4nou1lqNd6ePGURmLkQuCwc8TFKmOxU/sot7AwfRRHj7yIts7DpILi0Rdn8XlMzh36mlMj1eNyDlERERERMaSeniIyKjIdGc52tRKd8fxX+pPRanqct772bdz/nvOwXENRxpbSXemWbxqPu/97Ns57U0Lj3u85xpcx1AMwgG3W2ux1uI5x5+x5Yy6aURcl45c/3oh3fk8jjEsnzb9xC9sEPvTLdy15yE2HX2ZiONRG00RMS5PtOzg7j1/oDFz9KTPISIiIiIy1tTDQ0RGVFtzO5s2PMPzj7xErjuHH/VYvHoBK9eeSW398Yt0jpVMJs8LLx7kuecP0NmVpboyybLTZ3La4ulEIj2/FlNTyrn0wxdy7rtW0dnajR/1qZ5WeUJFQCOex9L6Oh58YSc15Yl+x3RkciSjEebWHb/nxIKqat48q54H9+yiOx+jOhHHYDiaSdOey7Jm1mxOm3Jy31NrLQ8ceo4juQ7mJ+t6Y426Pik/wc7uQ/z+0PNc1XC+CqCKiIiIyLiihIeIjJjWQ2386Bu/ZO/WA1ROTVFWlSSXzvP4Lzax69m9vOezVzJ9bt2Inc9aS1tnhjC0pMpi+N7xe0wAdHRk+MnPn2LHzsNEfJdo1Ofl1i627Whi6ZIZvPPtZxF/zXCVZEVy0Blbjmf1glk8u7eJPUdamVldge/2DGPpzOQ41N7FuYtmM6Pq+FPTuo7D+5aczpR4nMf27+NARwcAVfE472w4jbfNnY9/nBofr3U43cWhdBfGGGaXV5I6Vgi1KdvGzq5D1EYr+iU0HGOojabY0dVEc66D2ljFkL8PIiIiIiKlooSHyATTfqSDlza+zJ4X9hGGIfWLZrL4TQuYMn306zA8+vMn2bv1AHNOr++dvjWZSlBZW8Ge5/fxwD2P8IH/8e4T6inQ3ZXl0IFWrIUptSkqq19NOlhreWnXYTY+s5t9ja2EoaUileDs0+tZtWw20cjgv9oeePBFtu84xOz6avzXFPfMZgs8+9x+ptakuPjC007iu9Bj1pRK3n/ucn7+5Fb2Nrdh6RnGkohGWLNoNu9YtfTEeou4LmvnL+T82XNo7OzAAtPKyimLDF5D5LXachl+sfNFnmlpoiOfwwBTYgnWTJ/NJbMX0FXMkA3yTBskmZFwoxzNd9FVzFKLEh4iIiIiJWGPLUM9ZpJTwkNkAtnzwj5+eftvOLzvCJGojzGGrY9u58n7tnDZRy9m8eoFo3bujpZOXnxiB9XTq3qTHa9wHEPt7Br2bt1P067DTJ83eC+PfL7I479/kWc27qLtaDfWWspScZYsr+f8S08nWRZj0/P7WP/Ac+QLAdUVSVzX0Nae5hf3P8uBpjbefelyIgPMVHL0aBcvbWukZkpZn2QHQCzmk0rFeea5fZyzei6JRP+pYIfqtJm1zK6pYtvBZlq7M3iOw9y6KmZW9+9N8UYSvs/86ilDOqa7kOd7WzfzfMshahNJFlVOIbCWI9lufr5rK535HGtmzsB3PHJhkbjbP4mSCwv4jkfM8Yd0bhERERGRUlPCQ2SC6GztYv0dv+VoYytzTq/HcXpqEltrObijiV//3/uZMqOKmplDe2k+UR1Hu8h2Z6mdPXXA7YlUnMN7j9BxtGvQhEcYhvz2F1t48g/bKUvFmdkwBWMMHe1pHvv9S7S3prnonWdy/yMv4RiHOTMre49NxqNksnmefvEAC+dMZcXS/tPGNrd00dWdo2FK+YDnr0jFOXS4g6Ot3SOS8ABIRH3OmjtjRNoaqqebG3nh6GHmVVT3Tm/rGcO0RDlx1+fxpn2srJvJrEQ1e7qPMCfZ995Za2nOdTC/bBrT4pUluAIRERERkeHTLC0iE8S2J1/m0N4jzFo0ozfZAWCMYcaCabQ2tbP1se2jdv5IzMfzPQrZwoDbC/kiru8SiQ3eU+DAnhae2biLmroUNXUpXM/FcR0qq8uYOWcK254/wAMPbqW1I0PtAEmLeCyC5xqe3npgwPZdx2CMwdqB+/cFYYjjmD7fv/HsqcMHiThOb7LjtVKRKOligW2tR7igdikx12dvdzO5oOf+5YICezNHSLhRzq9dgmMmxvdERERERCYPPcGKTBD7tzfieQ6O2//H2hhDvCzG7uf3jdr5a2ZWM3PhdFoODjyF6ZH9R6mtn8LMhYNPo7rjxUbyuQJlqXi/bdGoj+sZtr3UiMHiOAMPCUnEoxxp7SII+08JO31aJVWVCY62dg94bGtrmqk15UytGbgHyHjTns8Q8wZOMBnTM3VuVyHPaalZvKf+zUyLV9OUbePlrkM0ZduYGZ/C+2avYWF5aXqoiIiIiIicDA1pEZER4TgO51x5No0vN3FgeyO1s2vwoz7FQsCRAy1YG3LO21cSiQ7ewyPdle1X/+O1IlGfjmyRMOJjrR2wDkY+X6SqMoEzwLZkMsqKMxv47QMvEI14lJfHent8tLalKRQCVp49B98/sZlPTnU18TIau7sG3GatJQgtldGe5NLpFfUsKp/O3u4jZII8CS/K7EQNnjMxvhciIiIi45qKlg6LeniITBD1i2ZQLIYEQf+eDdZaMl1Z5iybPaoxLFgxl7f/5VqqZ1RxcOchdj+/jwPbD5KsSHDZn7+V5RcuPe7x5RUJioVg0CEnuUyBhhnVJGIROrtz/bYHYUg6m2f54pmDFgVd8+YFvPmc+XR159i5q5nde46wc1czhULAhRcsZsWZDUO/8FPUytoZhFjSxf7DjFqyacojUU6fUtu7znc85pdPY1nlbOaV1SnZISIiIiJjZt68ebS0tPRb39bWxrx584bVpnp4iEwQi1bNp66hhv3bDlK/eEa/oqVV0ypZcs7ozdLyiiXnLGT+mQ3sfn4f3e1pYskYc06fRbys/zCV11tw2nQe//1LdLZnSFUm+mzLZvJYaznnzfOpaWnn0c27KBYDKit6enOkM3kam9uZNa2K5Yt7hmC0tXTRerQL13WYNquaSMTD910uv/QMli+r5+Wdh0mn85SXx1g4v46pU8uHPHvKqeyMmmmsqp3B4037qYjGqIrGCW1IczZNIQi4cs5iZiZTpQ5TRERERITdu3cTBEG/9blcjgMHBq7R90aU8BCZIMoqk1z58Uv45e0b2P38PvxIz7S0+Wye6umVXPbnbx21GVpeLxKLsGjl/CEfN72+mrPXzOfR371IpjtH5ZQyHMfQ3pqmqz3NspVzWHT6TBbYmUR8ly1bD7B7f08WOOJ7nDZvGpe/ZQkmsPzyBxvZ/twBuruzOI5DTW2Klect5Kw3zcVxHGbOqGLmjKqRvvRTStT1+ODis5iWTPFE0z6a0p0YDNOT5Zw/Yw5rps+eUAkeERERERl/fvazn/X++95776WioqL36yAI+O1vf8ucOXOG1baxg/Udn8Q6OjqoqKigvb2dVEqffsr40nG0k5ee2MGeF/ZjrWXWohmc9qYFVNVVljq0ExIUAzY/vpPNj71MS3Mn1lpSlQnOOLuBN71lMbF4pHffo+1p9je2EoQh1ZVJ6qdVke7K8uP/fISd25uYMjVFWUWcoBhwtLmTQiHg4iuWs+biJSW8wtLoLuQ5kunGMYZpyXJ8DVcREREROSlj8d74yjm+cv+9xMqSQzo229XN/3zrZaf8e+0rPdMHmk3R933mzJnDP//zP/OOd7xjyG2rh4fIBJOqLmf15StYffmKUocyLK7nsuq8hSxfNYcjhzoIQ0v11HISyWi/fasrElRX9B368vzmvezacYjZ82rxjhUffWVIS8vhDh5/8CWWLK+nckrZmFzPqSLpR0j6kTfeUUREREROPRO4aGl4bHbFuXPnsnHjRmpqakasbRUtFZFTUiTqM2P2FGbNqRkw2TGQMAx59qndxJPR3mTHa1XVlNPZlmbntqaRDldERERERE7Crl27RjTZAerhMaBXutF0dHSUOBIRGYp8rsDRllYwhkyme8B9coUMzYdb6OioHXC7iIiIiMiJeOV9cWyqRJhjy1CPGV9++9vf8tvf/pbDhw/39vx4xXe+850ht6eExwA6OzsBqK+vL3EkIjIqbi11ACIiIiIyUXR2dvYptCnD8+Uvf5mbbrqJVatWMX369BEprq+ExwBmzJjBvn37KC8v7RSVHR0d1NfXs2/fvlO6yIy8SvdsfNJ9G59038Yn3bfxR/dsfNJ9G59038YXay2dnZ3MmDFj1M9lADPEjiTjrX/Hv/3bv/Hd736Xq6++esTaVMJjAI7jMGvWrFKH0SuVSukX3jijezY+6b6NT7pv45Pu2/ijezY+6b6NT7pv44d6doycfD7PueeeO6JtqmipiIiIiIiIiJTUxz72Me68884RbVM9PERERERERESkpLLZLLfffju/+c1vWL58Ob7v99n+9a9/fchtKuFxCotGo9xwww1Eoyc2JaeUnu7Z+KT7Nj7pvo1Pum/jj+7Z+KT7Nj7pvslk9swzz3DWWWcB8Nxzz/XZNtzamsaOzRw6IiIiIiIiIjIEHR0dVFRUcPNv7yOWTA7p2Gx3N19421ra29snbU0Y1fAQERERERERkQlHQ1pEREREREREpKQuvvji4w5duf/++4fcphIeIiIiIiIiIqcye2wZ6jHjyCv1O15RKBTYsmULzz33HB/5yEeG1aYSHiIiIiIiIiJSUv/yL/8y4Pobb7yRrq6uYbWpGh5j6LbbbmPu3LnEYjFWrlzJQw89NOi+P/rRj7j00kuZOnUqqVSKNWvWcO+99w66/913340xhne/+92jEPnkNhr3ra2tjXXr1jF9+nRisRhLlixh/fr1o3kZk8po3LNbbrmFxYsXE4/Hqa+v53Of+xzZbHY0L2PSGcp9+8Mf/sB5553HlClTiMfjnHbaaQP+kfzhD3/I0qVLiUajLF26lB//+MejeQmT0kjftzvuuIMLLriAqqoqqqqquOSSS3jiiSdG+zImndH4eXuFnklGx2jcMz2PjL7RuG96JpHJ5s/+7M/4zne+M6xjlfAYI/fccw/XXnst119/PZs3b+aCCy7giiuuYO/evQPu/+CDD3LppZeyfv16Nm3axMUXX8w73/lONm/e3G/fPXv28Dd/8zdccMEFo30Zk85o3Ld8Ps+ll17K7t27+cEPfsBLL73EHXfcwcyZM8fqsia00bhn//Vf/8XnP/95brjhBrZu3cq3v/1t7rnnHr7whS+M1WVNeEO9b8lkkk9/+tM8+OCDbN26lS9+8Yt88Ytf5Pbbb+/d59FHH+Wqq67i6quv5umnn+bqq6/m/e9/P48//vhYXdaENxr37YEHHuCDH/wgv/vd73j00UeZPXs2a9eu5cCBA2N1WRPeaNy3V+iZZHSMxj3T88joG437pmcSmYweffRRYrHYsI7VtLRj5JxzzuHss8/mW9/6Vu+6JUuW8O53v5ubb775hNo4/fTTueqqq/jbv/3b3nVBEHDhhRfy53/+5zz00EO0tbXxk5/8ZKTDn7RG477927/9G1/96ld58cUX8X1/VOKezEbjnn36059m69at/Pa3v+3d56//+q954oknjvtJjZy4kbhv733ve0kmk/znf/4nAFdddRUdHR386le/6t3n8ssvp6qqirvuumtkL2CSGo379npBEFBVVcU3v/lNPvzhD49I3JPdaN03PZOMntG4Z3oeGX2jcd/0TDL59E5Lu2GY09JeOn6mpX3ve9/b52trLY2NjTz55JN86Utf4oYbbhhym+rhMQby+TybNm1i7dq1fdavXbuWRx555ITaCMOQzs5Oqqur+6y/6aabmDp1Ktdcc82IxSs9Ruu+/exnP2PNmjWsW7eOuro6li1bxle+8hWCIBjR+Cej0bpn559/Pps2bertVr9z507Wr1/P29/+9pELfhIbifu2efNmHnnkES688MLedY8++mi/Ni+77LITblOOb7Tu2+ul02kKhUK/v38yPKN53/RMMjpG657peWR0jdZ90zOJTGQVFRV9lurqai666CLWr18/rGQHqGjpmDhy5AhBEFBXV9dnfV1dHU1NTSfUxj//8z/T3d3N+9///t51Dz/8MN/+9rfZsmXLSIYrx4zWfdu5cyf3338/f/qnf8r69evZvn0769ato1gs9um9I0M3WvfsAx/4AM3NzZx//vlYaykWi3zyk5/k85///IjGP1mdzH2bNWsWzc3NFItFbrzxRj72sY/1bmtqajqp/wtyfKN1317v85//PDNnzuSSSy4Zkbgnu9G6b3omGT2jdc/0PDK6Ruu+6ZlEJrL/+3//74i3qYTHGHr9nMLW2uPOM/yKu+66ixtvvJGf/vSn1NbWAtDZ2cmf/dmfcccdd1BTUzMq8UqPkbxv0NODoLa2lttvvx3XdVm5ciUHDx7kq1/9qh4wRshI37MHHniAv//7v+e2227jnHPOYceOHXz2s59l+vTpfOlLXxrx+Cer4dy3hx56iK6uLh577DE+//nPs2DBAj74wQ+eVJsyNKNx317xT//0T9x111088MADwx67KwMbyfumZ5KxMdI/a3oeGRsjfd/0TCKTwaZNm9i6dSvGGJYuXcqKFSuG3ZYSHmOgpqYG13X7ZXMPHz7cL+v7evfccw/XXHMN3//+9/t8uvXyyy+ze/du3vnOd/auC8MQAM/zeOmll5g/f/4IXsXkMxr3DWD69On4vo/rur3rlixZQlNTE/l8nkgkMnIXMcmM1j370pe+xNVXX937CcsZZ5xBd3c3f/EXf8H111+P42h04Mk4mfs2d+5coOeeHDp0iBtvvLH3oXDatGnDalNOzGjdt1d87Wtf4ytf+Qq/+c1vWL58+cgGP4mNxn3TM8noGq2fNT2PjK7Rum96JpGJ7PDhw3zgAx/ggQceoLKyEmst7e3tXHzxxdx9991MnTp1yG3qJ2IMRCIRVq5cyYYNG/qs37BhA+eee+6gx91111189KMf5c477+w3Lu+0007j2WefZcuWLb3LH/3RH3HxxRezZcsW6uvrR+VaJpPRuG8A5513Hjt27Oh9GATYtm0b06dP18PFSRqte5ZOp/s9QLiui7UW1X0+ecO9b69nrSWXy/V+vWbNmn5t3nfffUNqUwY3WvcN4Ktf/Sr/63/9L37961+zatWqEYlXeozGfdMzyegarZ81PY+MrtG6b3ommbyMHd4ynvzVX/0VHR0dPP/88xw9epTW1laee+45Ojo6+MxnPjO8Rq2Mibvvvtv6vm+//e1v2xdeeMFee+21NplM2t27d1trrf385z9vr7766t7977zzTut5nr311lttY2Nj79LW1jboOT7ykY/Yd73rXaN9KZPKaNy3vXv32rKyMvvpT3/avvTSS/YXv/iFra2ttX/3d3835tc3EY3GPbvhhhtseXm5veuuu+zOnTvtfffdZ+fPn2/f//73j/n1TVRDvW/f/OY37c9+9jO7bds2u23bNvud73zHplIpe/311/fu8/DDD1vXde0//MM/2K1bt9p/+Id/sJ7n2ccee2zMr2+iGo379o//+I82EonYH/zgB31+Jjs7O8f8+iaq0bhvr6dnkpE1GvdMzyOjbzTum55JJp/29nYL2H+47z57y8MPD2n5h/vus4Btb28v9WWckFQqZZ944ol+6x9//HFbUVExrDaV8BhDt956q21oaLCRSMSeffbZ9ve//33vto985CP2wgsv7P36wgsvtEC/5SMf+cig7evhYnSMxn175JFH7DnnnGOj0aidN2+e/fu//3tbLBbH6IomvpG+Z4VCwd544412/vz5NhaL2fr6evupT33Ktra2jt1FTQJDuW//+q//ak8//XSbSCRsKpWyK1assLfddpsNgqBPm9///vft4sWLre/79rTTTrM//OEPx+pyJo2Rvm8NDQ0D/kzecMMNY3hVE99o/Ly9lp5JRt5o3DM9j4y+kb5veiaZfCZTwqOsrMxu3ry53/qnnnrKlpeXD6tNY636PomIiIiIiIicajo6OqioqOAf7ruPWDI5pGOz3d18fu1a2tvbSaVSoxThyHnXu95FW1sbd911FzNmzADgwIED/Omf/ilVVVX8+Mc/HnKbquEhIiIiIiIiIiX1zW9+k87OTubMmcP8+fNZsGABc+fOpbOzk//9v//3sNrULC0iIiIiIiIip7JXBnkO9ZhxpL6+nqeeeooNGzbw4osvYq1l6dKl/WZQHAr18BARERERERGRkrj//vtZunQpHR0dAFx66aX81V/9FZ/5zGdYvXo1p59+Og899NCw2lbCQ0RERERERERK4pZbbuHjH//4gHVGKioq+Mu//Eu+/vWvD6ttJTxEREREREREpCSefvppLr/88kG3r127lk2bNg2rbSU8RERERERERKQkDh06hO/7g273PI/m5uZhta2Eh4iIiIiIiMipzJrhLePAzJkzefbZZwfd/swzzzB9+vRhta2Eh4iIiIiIiIiUxJVXXsnf/u3fks1m+23LZDLccMMNvOMd7xhW25qWVkRERERERERK4otf/CI/+tGPWLRoEZ/+9KdZvHgxxhi2bt3KrbfeShAEXH/99cNqWwkPERERERERESmJuro6HnnkET75yU/yhS98AWstAMYYLrvsMm677Tbq6uqG1bYSHiIiIiIiIiJSMg0NDaxfv57W1lZ27NiBtZaFCxdSVVV1Uu0q4SEiIiIiIiJyCjO2ZxnqMeNNVVUVq1evHrH2VLRURERERERERCYcJTxEREREREREZMJRwkNEREREREREJhzV8BARERERERE5ldljy1CPmeSU8BhAGIYcPHiQ8vJyjDGlDkdEREREREROMdZaOjs7mTFjBo6jwROnIiU8BnDw4EHq6+tLHYaIiIiIiIic4vbt28esWbNKHYYMQAmPAZSXlwM9/3FTqVSJoxEREREREZFTTUdHB/X19b3vj3LqUcJjAK8MY0mlUkp4iIiIiIiIyKBUBuHUpYSHiIiIiIiIyKlMRUuHRZVVRERERERERGTCUcJDREREREREREbEe97zHqqqqvjjP/7jUoeihIeIiIiIiIjIqc4McSmVz3zmM3zve98rYQSvUsJDREREREREREbExRdffMrMXKOEh4iIiIiIiIjw4IMP8s53vpMZM2ZgjOEnP/lJv31uu+025s6dSywWY+XKlTz00ENjH+gJUsJDREREREREROju7ubMM8/km9/85oDb77nnHq699lquv/56Nm/ezAUXXMAVV1zB3r17xzjSE6NpaUVEREREREQmqI6Ojj5fR6NRotHogPteccUVXHHFFYO29fWvf51rrrmGj33sYwDccsst3HvvvXzrW9/i5ptvHrmgR4h6eIiIiIiIiIicyuwwF6C+vp6KioreZbiJiXw+z6ZNm1i7dm2f9WvXruWRRx4ZVpujTT08RERERERERCaoffv2kUqler8erHfHGzly5AhBEFBXV9dnfV1dHU1NTb1fX3bZZTz11FN0d3cza9YsfvzjH7N69erhBX+SlPAQERERERERmaBSqVSfhMfJMqbvpLfW2j7r7r333hE718nSkBYREREREREROa6amhpc1+3TmwPg8OHD/Xp9nCqU8BARERkh1uYpFPdTKO4jtNlShyMiIiITxUnU8BgpkUiElStXsmHDhj7rN2zYwLnnnjuyJxshGtIiIiJykqwtks79gXT2DxSDQ4DFc6eSiJ5PIvYWjPFLHaKIiIjIG+rq6mLHjh29X+/atYstW7ZQXV3N7Nmzue6667j66qtZtWoVa9as4fbbb2fv3r184hOfKGHUg1PCQ0RE5CRYG9KZ/jFd2Q04xPCcGsAQBC10dN9FMWgilfwAxrilDlVERETkuJ588kkuvvji3q+vu+46AD7ykY/w3e9+l6uuuoqWlhZuuukmGhsbWbZsGevXr6ehoaFUIR+XEh4iIiInoVB8me7s7/GcqbhOVe96x0kQhB2kc38gFjmLaOT0EkYpIiIi8sYuuugirD3+WJhPfepTfOpTnxqjiE6OaniIiIichGz+aazN9El2vMJ1UmCLZPJPlSAyERERkclNPTxEREROQhC2YMzg89kbEycIj4xhRCIiIjLRGNuzDPWYyU49PERERE6CY8rBFgbdbsnhmooxjEhEREREQAkPERGRkxKNnAHGJQy7+20LbQawRCNnjn1gIiIiIpOcEh4iIiInIeqfRiyykkKwh2LQjLUh1oYEQQuF4i6i/llEI8tKHaaIiIhMUqtXr2bp0qXceuutpQ5lzKmGh4iIyEkwxqci+ae4TopM7knywXYAXJMiEXsb5Yk/wjlOjQ8RERGR0bRx40ZSqVSpwygJJTxERESOw1pLIThIITgIGCJePb5b12cfx0mQSl5FInYJxWAfYPHcmXhubUliFhERkQnGHluGeswkp4SHiIhMejbswIadYGIYpxpjDADFoJW27p+Qzj9LaLsAcJwKktEVVCbehesk+7TjuVPw3CljHr+IiIiI9KeEh4iITFph0Ewx+wBB4SmszQA+rr8UL3YRxpnGka7/JJN/Bt+dgW9mAhCER+nI/I4g7GZq+Ucxxi/tRYiIiIjIgJTwEBGRSSkMmsl3f5uwuANMDcapAZsjyD9KWNxBwV9BJv88UW9+nxocnjsFY2Jk8pvJFNaQUEFSERERkVOSZmkREZFJqZj9HWFxB8ZdhOPWYkwC41Rh3MXY8Chd3T/C4AxYcNR1klhbJJt/vgSRi4iIiMiJUMJDREQmHRu2ExSeAjMVY/p2djTGYNyZBMFhsPlB2zD4BGHXaIcqIiIi8mrR0qEuk5wSHiIiMun0FCnNYJyyAbcbk8A1HtZ2Dny8tYTk8dya0QxTRERERE6CaniIiMjkY2JgfLA5MPF+m63NE3eryVmHIGzHdSr6bA/CFlxTRiKyfFTCC8M0+cJWwrANY6JE/MW47tRROZeIiIic+syxZajHTHZKeIiIyKRjnBpcfzFB/kkwFb3T0L7CBk3E/EWk3AV0Zv9AMWzDc6YAlmJwBGsCKuJXEPHmjHhsufwWutI/JggOgu3pj+o4lcRibyEZv1KzwoiIiIicICU8RERk0jHG4MXeSlh8GRvsAHcWxsSxtoANGoEQP34Z1ZFVRLx6OrOPUAwOAxDxGyiPnUcyek6/RMnJyhdeorPrPwltBs+dhzE+1oaE4RHS6Z9jcEgm3jmi5xQRERGZqJTwEBGRScn15hNJfpRC5ueExT1YCoCL49bhxS7FjbwZYwzl8QtJxtYQBC2AwXNr+hU6HQnWWjLZBwnDNjzvtN5kijEOrlsLWDLZh4jFzsd1qkb8/CIiInIKG04RUhUtLX3R0ttuu425c+cSi8VYuXIlDz300KD7NjY28qEPfYjFixfjOA7XXnvtgPu1tbWxbt06pk+fTiwWY8mSJaxfv36UrkBERMYr1z+NaPnniJb/FZHkx4iWfZJo6n/gRc/t03vDMRF8bzq+N21Ukh0AoW2jUHgRx60bsOeI49QQhkcpFLaPyvlFREREJpqS9vC45557uPbaa7nttts477zz+Pd//3euuOIKXnjhBWbPnt1v/1wux9SpU7n++uv5l3/5lwHbzOfzXHrppdTW1vKDH/yAWbNmsW/fPsrLy0f7ckREZBwyxsP1F4/6eazNExSeJ8hvwYatGKcGL3Imjr/02NCVApYiDoPNHOMea6cw6rGKiIjIxLF69Wpc12XdunWsW7eu1OGMqZImPL7+9a9zzTXX8LGPfQyAW265hXvvvZdvfetb3Hzzzf32nzNnDt/4xjcA+M53vjNgm9/5znc4evQojzzyCL7fU9itoaFhlK5ARETkjdkwTT79XwT5p46tiQHbCPKP4UbfRCTxARwnheNUEAbtOE7/JH0YpsH4uO6UMY1dRERExreNGzeSSqVKHUZJlGxISz6fZ9OmTaxdu7bP+rVr1/LII48Mu92f/exnrFmzhnXr1lFXV8eyZcv4yle+QhAEgx6Ty+Xo6Ojos4iIiIyUQvbXBPknMO5MHG8hjleP4y3CONMJco9QyNyPY2LEIm8mtB1Ym+1zvLUhQbgX35uH7y0o0VWIiIhIydhhLpNcyRIeR44cIQgC6urq+qyvq6ujqalp2O3u3LmTH/zgBwRBwPr16/niF7/IP//zP/P3f//3gx5z8803U1FR0bvU19cP+/wiIiKvZcM2gvwTYKZgTKLPNuMkwVQQ5B/Fht3EYxcSi5xNsbiLYnEvQdhKMWiiWHwR15lGWeK9o1ZDRERERGSiKXnR0tcXZrPWntQ0f2EYUltby+23387KlSv5wAc+wPXXX8+3vvWtQY/5whe+QHt7e++yb9++YZ9fRETktcKgERu2YZzqAbcbpxobthKGTThOkvKy/0ZZ8kO47lSwORzjE49fQUX5J/H9+WMcvYiIiMj4VbKPiWpqanBdt19vjsOHD/fr9TEU06dPx/d9XNftXbdkyRKamprI5/NEIpF+x0SjUaLR6LDPKSIicnzHS+T37W/qOAkS8bcRj12ItWkwERwTG93wRERERCagkvXwiEQirFy5kg0bNvRZv2HDBs4999xht3veeeexY8cOwjDsXbdt2zamT58+YLJDRERkNDnuzGO9OI4MuN2GLRh3Ko4zo896Y7yeQqZKdoiIiIgMS0mHtFx33XX8n//zf/jOd77D1q1b+dznPsfevXv5xCc+AfQMNfnwhz/c55gtW7awZcsWurq6aG5uZsuWLbzwwgu92z/5yU/S0tLCZz/7WbZt28Yvf/lLvvKVr0y66XdEROTUYJwUbuTNELZhw84+22zYDrYLL3IexomXKEIRERE51Rk7vGWyK2nls6uuuoqWlhZuuukmGhsbWbZsGevXr++dRraxsZG9e/f2OWbFihW9/960aRN33nknDQ0N7N69G4D6+nruu+8+Pve5z7F8+XJmzpzJZz/7Wf7H//gfY3ZdIiJy6giDoxSL24E8jlOF6y3GGH9MY/Djl2JtK0HuCWx4EPDB5sHE8KJvxYtdOKbxiIiIiEwGxlqrvM/rdHR0UFFRQXt7+6Sdr1hEZLyztkAu82vyuYewthUAg4fjzSYWfx+ev2iM4wkIi9sJ8s9ibTvGqcL1z8DxFmBMyWuIi4iIyBCNxXvjK+f42g83EE8mh3Rsprubv3nfpZP6vVZz24mIyISUy/yKXPYXOKYSx12EMQ7WZgmKe8h0f5dE2SdwvdljFo8xLq5/Gq5/2pidU0RERGQy00dKIiIy4YRBC/ncQzimCset6+1BYUwM111AGBwin3u4xFGKiIiIyGhSwkNERCacYvElrG3DODX9thljcJypFAtPY8N0CaITERERGSI7zGWSU8JDREQmHpsHzOC1MUwEawtYcmMaloiIiIiMHSU8RERkwjFOFWCwNj/gdht24DiVGFM2toGJiIiIyJhRwkNERCYcz1+M69YTBHt5/WRk1maxdOJHzxnz6WlFREREZOwo4SEiIhOOMTFiiXdjTDlB8CJhcIQw7CAI9hMEO/H8FUQi55U6TBEREZFRt3r1apYuXcqtt95a6lDGnKalFRGRCcnzl5Eo/0sKuYco5F8A24njVOJFLicaPR/jDG0uexEREZHxaOPGjaRSqVKHURJKeIiIyITlefPxvPlE4x1gCxinDGOipQ5r3LLWYowpdRgiIiIiJ0QJDxERmfAcZ3J+qjESrA0pFp4jn9tIEOwCIviRFUSiq3HdaaUOT0REZFIwgBniNLP6iEIJDxERERmEtSHZzE/JZTdgbRHjpMB2kc38hEL+cRLJj+D5C0sdpoiIiMiAlPAQERGRARUKW8hlN2CcSlynune9tSFh8WXS3XdTXvE3GBMflfMHYTu5/HOEtgNjYkS8xXjudA2rERERkROihIeIiIj0Y60ln3scbIDzmmQHgDEOjtdAUNxNIf88keiqET93JvcoXZmfUwybwQJYHCdFIno+5Yk/0pTCIiIi8oaU8BAREZEBFAmKe8CpHHCrMREgJAwPj/iZc4Vn6Oi+GzBE3IUY42KtJQhb6Mr8GmOilCfeMeLnFRERkYnFKXUAIiIiMnTWWsLgKEHQjLX5UTiDgzEuEBwvCkb6UcLakHT291hy+F79sRjAGIPn1uA6FWRyfyAI20f0vCIiIqc0O8xlklMPDxERkXGmUHiebPZBisUdPUNO3ClEo2uIRs/HmNiInMMYF89fTi57H9ap61c3Iwy7MCaG580bkfO9IgiPkC/uwnVqB9zuOlPJBzsoFHfiRlaM6LlFRERkYlEPDxERkXEkl3ucrs47KOQ3Y0wM41QQBM10d99Fd9f/w9rciJ0rEj0Hx6kmCHZh7as9PWyYJizuxfNPx/Xmj9j5AKwtgA0wg34m4wC2Zz8RERGR41APDxERkXEiDNvJZH6KJcTzF/Wud5xywjBNPv84fn4J0eh5I3I+z5tDIvlnZNLfJyhuf80WHz96Nonkh3qHnIwU16nCcSoIbDsOyX7bre3CEMd1p47oeUVERGTiUcJDRERknCgUniUIDuN5C/ttc5wEYeiTyz1OJHLuiE3d6kfOxPXmUig8Q1BsxnE8XG8BnrcQY0b+McJxEsSjb6Yz/SNCpxrnNUN0rA0oBPuJRc7CdxtG/Nw9dVH2EBR3AiGOU4vrn3asQKuIiIiMN0p4iIiIjBNh2IaBQXtVGFNOGBwGisDITdvqOCmi0fMhOmJNHlcydhGF4h6yhacwxHBMGdbmCG07vjeX8sR7MWZkR+WGYSe59PcpFp7Ght1gHAwOrjeHaOIqXG/uiJ5PRERkSIZThFRFS5XwEBERGS8MUSwWa+3APThsDuNUAiM7zGSsOU6SyrKPkskvJZN7jCBoxXVTJCOXEI+eg+fWjOj5rA3Ipe+ikHscx52F49VjjMHaLMXiLmz3fxAvW4ejYTQiIiLjihIeIiIi44Tnn3ast0MbxlT12WZtQGg7iEYuHfHeD6XgOAmSsYtIRC/EksPgj3i9kFcExR0U88/gurMxTlnvemNiuO4CguJLFPIbicavHJXzi4iIvBFzbBnqMZPd+H8iEhERmSRcdxaR6DkEQRNB0Iy1IQBh2E1Q3I7nNhCNnlPiKEeWMQbHxEYt2QH0FGS12T7JjlfP72Cccor5zaN2fhERERkd6uEhIiIyThhjSCTehyFCLv8YQXEbYMBE8P2lxBN/gjvCwz0mA2sL2OMUee2ZIjc7+FAiEREROSUp4SEiIjKOGBMlkfxjorGLKBZfBoo4zlQ8b/6o9oKYyJxjSSJrgwG/h6HtxHcXKtkhIiKlcxJFS1evXo3ruqxbt45169aNdGSnNCU8RERExiHXrVFvjhHi+WfgOLWEwX4cd3afxEYYtmNw8SKrSxihiIjI8G3cuJFUKlXqMEpCCQ8REZEJzNoCYXEn1qYxJoHjzcOYkZuydiJwnEqiifeS7b6LINiGY6rBuFjbBjbEj16E5y8vdZgiIiIyREp4iIiITFDF/DMUsr8iLO4FCoCP483Gj12JFzmj1OGdUvzIShxTQSH/CMXCVrBFXG8RfuTNeJFVGi4kIiIyDinhISIiMgEVC8+R6/4e1mZw3JkYE8PaLGFxL7nu74H5KJ5/+oie09qAQnE7hcJ2QpvDc6cQ8ZfjulNG9DyjxfUX4PoLsDYDNgSTUN0OERE5NZxEDY/JTAkPERGRCcbagELmPrBpHHd+70u7MTFw52GDHRQyG3C9JRgzMjPUh2Ennd13kss/jbVZwMEQ4jhTKUu+h1j0zSNynrFgTByU5xARERn3lPAQERGZYMJgH2FxN8aZ3q+HgjEGnOmExV2EwT5cr+Gkz2etpbP7HnK5x3Hd2ThO2bH1IUGwn87uu3GcKiL+4pM+l4iIiMiJGpmPdUREROTUYTNY8mBiA283sZ7tNjMipysGe8nnn8F1Z/YmOwCMcfC82diwi2zu4RE516nE2iLF4DDFoBlrg1KHIyIiIq+jHh4iIiITjDGpnmEZtgtMRf8dbDfGxDDOyExRV+ydBaZ+wO2OU0M+/yJhmMZxEiNyzlKytkg29xiZ3B8oBo2AwXfricXOJRY5Z8SGCYmIiMjJUcJDRERkgjHuDFxvEUHhKTDlfV7ArQ0Jw4N4/iqMM31EzmdtiMUOXuDTOGCLwPjvBWFtSFf6x6SzGwAf1+kpyJovvky+aztB/AjJ+DtU7FREREaUsT3LUI+Z7JTwEBERmWCMMfjxKwiDg4TBSxinDmMSWJvGBk043kz8+OUj9lLuunUY4xHaDI6J99sehq1EvIUYkxyR85VSofgS6ezvcJypuE5V73rHSREER0hnNhCNLMP35pYwShEREQHV8BAREZmQXG8O0bKP40fOBZvDBo1gc/ix84gmPzYixUpfEfEX43vzCYp7+tWyCMN2ICQWWzMhhnpkc09hbb5PsuMVjjOF0HaTzW0Z+8BERESkH/XwEBGRMReEGUKbw3USOCZS6nAmLNebjZP8KH7YgrXdGJPEcWtG/DzG+JQlP0Bn1/+lUHwJx5SB8bG2E3CJx95KNPKmET9vKRSDQxgzcB0SYwzGRAnCw2MclYiIiAyk5B+13HbbbcydO5dYLMbKlSt56KGHBt23sbGRD33oQyxevBjHcbj22muP2/bdd9+NMYZ3v/vdIxu0iIgMS6Z4kAOdP+Slo//EtqNfY/vRf+Fw928pht2lDm3CMsbguDW4XsOoJDte4XuzqShfR1ni/bjuNBwnSTSyioryv6Qs8ccY447aucdSzyw0uePskceZAEN3REREJoKSJjzuuecerr32Wq6//no2b97MBRdcwBVXXMHevXsH3D+XyzF16lSuv/56zjzzzOO2vWfPHv7mb/6GCy64YDRCFxGRIerO72J323doTj8ANsQ1CQphGwe7fsze9v+kGHaVOkQ5Sa5bQzJxOdWV/5MplTdRUf4XRCNnTZhkB0A0shxrA6ztn/QIbQZwiEaWjX1gIiIysVk7vGWSK2nC4+tf/zrXXHMNH/vYx1iyZAm33HIL9fX1fOtb3xpw/zlz5vCNb3yDD3/4w1RUDDDN3jFBEPCnf/qnfPnLX2bevHmjFb6IiJyg0BZp6v4F+eAIZf5Cot5UfDdF3JtJ0p9LR/55WtKPlDpMkTcU9ZcT9ZdSKL5MELZjrcVaSxC2UizuJOqfScRfWuowRUREhBImPPL5PJs2bWLt2rV91q9du5ZHHjm5h96bbrqJqVOncs0115xUOyIiMjLShZ10F3YT92b2K1zpmCi+k6I1t5EgzJYoQpET4zgJUmUfJRY9F2s7KAQvUghexNpu4rELSZVdjVFdGpFJJ7AFDmVe5PnWX7C55f9jW/v9tOUPYPUJu0hJlaxo6ZEjRwiCgLq6uj7r6+rqaGpqGna7Dz/8MN/+9rfZsmXLCR+Ty+XI5V7tmtrR0THs84uISH/5oA1ri7hO/ylLATwnRSFooxh24DqxMY5OZGhct5qKsmsoBvspBvsB8N0GXHf6iE31KyLjRy7o4rm2n9Oc3Y7F4uAS2OfY0/0Ec8vWML/8ggkxS5XIeFTyWVpe/2BgrR32w0JnZyd/9md/xh133EFNzYkXZrv55pv58pe/PKxziojIG3OMD4C1wYD1HEKbxxgXc2w/kRMR2jxd+RfozD1DMWjFd6spjy4nGVna+39utBhj8L16fK9+VM8jUgr5oJOW3Au05rYT2gJl/kxqYsso82eUOrRTjrWWF9s30JR5gUp/Jt6xpL21lkzQxsudD5LwqpmROKPEkYpMTiVLeNTU1OC6br/eHIcPH+7X6+NEvfzyy+zevZt3vvOdvevCMATA8zxeeukl5s+f3++4L3zhC1x33XW9X3d0dFBfrwcYEZGRkvTnE3GryQVHiHl9f8dba8kHzVTFVuE7laUJUMadIEzT2Hk3nbnNWMA1MdKFHbRnN5KKrmRa+VXqLSQyDF2Fg2xv/yGdhf04+DjG5WhuK03pJ5hTvpa6+Gr1ZHqNruJhmrPbKPNqe5Md0JMUTXhV5PNd7O/ezPT46erlISfF2J5lqMdMdiVLeEQiEVauXMmGDRt4z3ve07t+w4YNvOtd7xpWm6eddhrPPvtsn3Vf/OIX6ezs5Bvf+MagSYxoNEo0Gh3WOUVE5I35borq+Hk0df2SXNEQcWswxiG0eTLFg3hOBdXx8/QQLSesJb2B9uxG4t5sXCfRuz4I07RnHyPi1jC17O0ljFBk/AnCHDvaf0JX4QApfy7OsR55Pb0VDrOr89fEvRoqIpoU4BUdhSbyYZoyr3bA7XG3ks5CE9mgg7hXObbBiUhph7Rcd911XH311axatYo1a9Zw++23s3fvXj7xiU8APT0vDhw4wPe+973eY16pzdHV1UVzczNbtmwhEomwdOlSYrEYy5b1nQqusrISoN96EREZW1MTF4ENacn8ge7CDsAADnFvOtPK3k5ZpH8PPJGBFIMO2nObiLjVfZIdAK6TwHMqac9tpCrxFjynvERRiow/rfntdBb2UebX9yY74JXeCnW051/mcObpYSc88kEr7bktdGSfIyBPwptNZexMkv7CcZvwttb2/DkblMECFn3ULqWzevVqXNdl3bp1rFu3rtThjKmSJjyuuuoqWlpauOmmm2hsbGTZsmWsX7+ehoYGABobG9m7d2+fY1asWNH7702bNnHnnXfS0NDA7t27xzJ0EREZIsd41JWtpSq+mq78dkKbx3dTlPmLNPRAhiQXNFIMWol7cwbc7rvVZIv7yRcP4UWU8BA5Ud2FJiwh7iAzDflOOe35ncOquZcu7GVfx11kivtxTQLHuLQU9tCa3Uht4hJqk5eOy6RHuV+Lb+Lkw26iblm/7ZmgjcrITGJuqgTRifTYuHEjqdTk/D9Y8qKln/rUp/jUpz414Lbvfve7/dYNdWqngdoQEZHSibhVVMffVOow5DWszWGDA2ADjFuHcU71hyJDz6em9vgfrL7B1tEW2hzd+RfJFntmcom600lGlirBJ6es0Uo4BGGOA50/JFs8SJm/oE/x6nzQwuH0BuL+TFLR00fl/KMp5U+nJjafg+ln8Jwo7msKJmeDDiwhMxNn9ekxIyJjp+QJDxERESkNawPC3EPY3MOE4WEgxDiVGH8lbuwSjNP/08pTQdSbge9WUwhaiHrT+m0vBEeIuDVEvekliK5HrniQxs57yBR2Ym1wLPfiEvdmM638KuL+7FE5r7UBheIOcvkXsWRwnSlEI8vx3OEVhJfJJelNxzEugc336+VhrSUfdlATO2PIiZGuwkukC3tI+A39ZuqKuFPIB620Zp8clwkPYwynpdZSCDO0ZHdijINrfAo2h4fP3LI1zEgsL3WYMhHYY8tQj5nklPAQEZFTlg0zQAAmoer2I8xaS5BZj839Gohj3BmAA2ErNvtrgrAJN/lRjDn1eiN4ThkVsXNo7v45bpjsU6ejGLZTDLuoTlzar77HWAnCbg523EmmsJO4Pxfn2ItjT5HePTR2/hf1FZ/CdytG9LxhmKYzfTfZ3JNYmwVcIKA7cy9liSuJRy8el0MGZOxURhdQ7s+mI7+bcr8Bx/S8KlhrSRebiDhl1MbPHHK7ueIhIOz9WXg9360kXdhNaAujPqX0aIh7Fayofj/N2W0czmyjYNMkvRrq4kuojjTo75dICSnhISIip5ygsJ1i/lGCwlasDXHcafjRN+NGVmOM/nSNiOAgNvcgmGqMO+XV9W4t1klh889i/acx0XNG/NTWFikGhwHw3BrMIC9BxzMl8VaKYRvtmSfIFQ/imAihzeOYGNWJC6lOvKXP/oWgg/b8c3TmXiCwPcUSK2JnkPBmj3gSoDP/HJnibuL+/N4XRgDHREh480gXd9CVf4aq+AVDbrsYdpMt7sPakKhXS8St6d3Wlf4xmewf8Nx6nGNJIGstQdhEZ/cPcZwqYpEVgzUtgmsiLEi959i0tHsA51iPjxxRp5I5qctJRRqG0fIb/IzZEIz/xvudwnwnxozEcvXmEDnF6KlRREROKcX8JnLdd4HtADMFjE9Q3EFY3IZX3EMk8cdKeoyAsPgC1nYc69nRlzExrHEJC5twRjDhYW1AOvcoXdmHKQYHAfDcWpLR80jGzsMM4ZNdx0SZVvZ+UtGVdOWepxi24bmVlEWWkfDn9/lENVM4wN7Ou0gX9uKYCAaXzvxWWrKPMi1xGTWJC0Y06ZHOb8Pg9El2vMIYF4cIXbmtQ0p4hLZAS/r3tGYfJRccASyeU04qupzaxOUYMmTzm3Cdut5kR8/5DJ47nUJxO5nsg0T9M/VpsxxX0q/j9OqPcDT7Im35lwltkaQ3nZr46SQGmXr1jST82RjjE4Tpfj2vrLUUwjamxC8Y8GdGRORk6LeKiIicMsKwjXz6x2ALGHfxqy+hTjU2bKeYewjXX4QXObu0gU4ANuwA3MFf9E0CgpaRO5+1dKR/RkfmXozxcZ0aDFAIDtPafSeFoJHK5Pv7je8/HmNckpFFJCOLBt0ntHn2d/6AdGEfZf783vatteSCwzR2ryfmT6P8OG0MVWgLGAZPKhjjEpI/4fastRzq+iVHMvfjmjLiXgMGl0LYRkv6QfJBC1OjSwltO7572oBtOM5UCsXdhOFR3Nf0ChEZiO8kqUuspC6xckTaS/rzKfMX0ZF7loQ/F9eJAmBtSLZ4AM8ppyq+akTOJSLyWkp4iIjIKSMoPEcYHMbxFvZ7ETdOBTZspph7QgmPEdBTkDQcfHpJmwF35oidL1/cSWf2d7hONd5rhtBEnDKCsJ3u7EPEI8uJRUa2aGFn/iW6i7tJvq5YojGGmFdHZ347rZlNI5rwiHn1tOc2Dvi97RlikiHunfiwgGxxP63ZR4k4NfhuVe/6iFuN55TRld9KwvGPW5zO4GAJsapgN27kg6N05rdSDLtxTZzyyGKiw+xhUWrGuMxK/Qn7O0K6CtuwxQBwsRSIuDXMKPsjkv7cUocpckoztmcZ6jGTnRIeIiJyyrBhC8aYwT/lN+WEwf7BX9LlhDneUkKzAWwrmOo+26zNgS3gREbuE9dM/hmsTeMN8KLvOhUUgybS+c0jnvDIFBt76sAMUick4lTQVdiBtcGQepccT3l0Oa2ZB8gFB4i6M/v8X80HTXhOivLoiRd+7Mq/RDHsJur3T0D1DNGJ0F1sImniWNuFMeX99gvCVjx3Gq5TOaxrkrFjreVI+vc0p++nELbRMwVziO9UUBO/gNrkJSP2f3UsRdxq5lReQ2f+JbryO7C2SMyrIxU9nchr6wiJiIwgJTxEROQUEsHa8DjbCwO+zMkwuLMw0fOw2d/0zOjh1ABuzywtYTOOfybGH/psDIMJwiMYooNuNyZOcKyQ6ViygMEwksUSo14dtWXv5lDnD0kXtuE5PbOxFMMOXCdJbdm7hjQtbTHswuAMmuRzTZxiaIhGTiObfwrfLOxTDyUMO7E2Qzx27pDqpEhptGY30tj9c1yTIOkvwBinZ0rY4AhN3b/GMXGmJt/yxg2dghwToSJ6BhXRM0odiohMEkp4iIjIKcP1FvQUzAy7jg25eJW1ITbswI1eot4dI8AYgxt/J6FJEeYfxgb7wIYYpwIn9jbc2OWYEZzW1TFlWHucuhU2h+OkRux8r0h4s3pmmQizuE7/KXaLYTtT4ueNeCHPithqIu5U2rMb6c6/CEB57ExS0ZUkIwuH1JbnlgPBoD2bApsm7s+kLPleQttFvrANYxIYE8HabgASsQuJR8/rd2xoc+QKOwltGteUEfXnqyhwCYW2QEvmYQwuMa+ud70xhqg3lbBY4Gj2Yarjq3GdeAkjFREZH/QXTUREThmONx83cibF3GM4zASTwhiDtVlssBfHm4UXXV3qMCcMYzzc+NtwYudii/uAAOPWYZzqNzx2qGKRZXRnHyQM0zivS6SENoslJB4ZuR4lryiLLCTpz6Mzv42kPxfnWA8Hay3ZoBHXSVIVG5nCjK8X9+cQ9+dgbc8g6uEm6sojS2h2UhTClj7T0AIEYRZLkYrYSjy3joryT5LLbyKbewpru3DdxcQiq4lGlvdJZFhrSec3057+NfniPiAEPKJ+A5WJtxMf4aFFcmKyxUayxUai7tQBt0fdGjKFfWSK+ygbwbozIjIOWI5bq2nQYyY5JTxEROSUYYxDNPEBDC7FwjMQNhJiMLg43jwiiT/BGeRFQIbPmDjGH92Xp5h/GvHICtK5x3HdOtxjSZUwbKMYNhKLnEXMXzbi53WMz6zyP2Ffx910F3YCTs8sKTaH71Qxo+wdlEXmj/h5X+t4iQ5rLYVgH7niLrABnltHzF/UZ+hJ1J3OlPiFNKd/RWAzRJwajHEpBK0UwlYqYitIRZYDPfVQErG3koi99bgxpfNbaOn8T6wtEvFm45goYZghV9zNkc7/oKb8z4lHlozMN0BOmLXBcevJGDwsIaEtjnFkIiLjkxIeIiJySjFOGZHkR/GCvYTFXUCAcWpx/cWYQQpPyqnPGJ/Ksg/hOGWkc0+RL74EgGPKSUYvoCL5bpxR6qIf8+qYW/lxOvMv0JnbTkieuDuTitgyYt60UTnniQjCLlq7v08m/zRh2A3GAC4xbx5VZe8ncqzAqzGG2uSl+G6Ko5mHyRWbsFh8t4La+BXUJC4ecLjOYKwt0JG+D2sLRP15vesdJ07UzCdX3E5H5rfE/NM0fGyMvTLzTiFoJ+r1T+4WwnY8p4yophYWETkhSniIiMgpxxiD6zXgDmHqTjn1uU4ZVWUfojx+CfniXsDiu7Pw3Gmj/mLtOQmqYquoio3czDMnw9qA1q676co9SsSbie/OwhhDaLNkC9tp6fwPpqbW9U7ha4xLdfxcKmOryBYbsQRE3al4ztCL+OaKu8kH+/Dd6f22GWPw3WnkCi9TCBqJeDNO+lrlxPluBZWxFRxO/wbfVvSZXSi0BXLFQ1THzx2309OKiIw1JTxERERkTHluLZ47uV/YcsUdpPNbiHizcV9ToNcxMaL+ArKFbXTnnqQicVmf4xwTIeGfXCIwtFlCm8eYgXuFGBMjtM2ENnNS55HhmZp4K9liI535rTgmjuckCMIMRdtFWWQh08oue+NGREQEgJEtSS4iIiIibyhX2E5Itk+y4xXGuLhOGZn8U6NybteU45g44bEZXF4vDLtxnDjuKMyaI2/Md1PMrvgwM8v/hJhXhwUi3hRmlr+Phoo/J3Ks14+ITC7GDm+Z7NTDQ0RERGSMhTaPOc7nTsb4o9bDIuLNJuYvIJN/Dscs6jOcyNqQQthIefQ8fBUILhnPSVKTuIAp8fOxFDB4Iz51sojIZKCEh4iIiMgY89wpWCzWhgO+yAZhJ9HIwlE5tzEOlYm3UwgOkS2+iO/U9fb4KISHiXj1pBIaNnEqMMZgULFmGRprLUfzjexLv0RrvgnPeEyLz2dmfCEJb+h1f0TGMyU8RERERMZY3F+O79RQCPbju/V9elkEYTsGh2R09aidP+rPY2r5x+jI/I5M4QWCsAPHxCiPXUQq/jYiXv+CpiKnslzQztHcdophGt9JUhVdQNStKHVYY85ay/bOJ3m+4xFyQYaIEyO0AQcyO9gZ2cLqKVdSHSnd7FQiY00JDxEREZEx5rlVVCbfzdGue8gVth2bjcUlCFuxhJTHLiQeWT6qMUT9OdR4H6UYthDaNK4px3OrRvWcIiPN2pD93Y9woPsPZIM2jDFYa4l5VdQn38KMxJsn1fTKh3N7eK79D3gmQl3s1QLHoQ05kt/PU0fv48LaD+A76jkkk4MSHiIiIiIlkIyeg+tU0pV9hGzhJbA5ov58ktE1JKOrMcYd9Rh6pqGtGfXzyMRWCFrpzD1DV/55rC0S92dTHj2LmNcw6smGpsxT7Or8Nb4TpzIyF2McrA1JF5vZ2fErPCdGXXzFqMZwKtnT/QJFm6fqdb04HONQ7U/naL6JQ9ndzEosKlGEMmz22DLUYyY5JTxERERESiTmLybmLyYM01gCHJNUcUoZVdZaimEz1hbxnCocJ35S7WUKuznY8V9ki/txTQxjXLoLL9KaeZSpybdTFb/gpJMe1losIc7rkoBBmOdg9yM4xiPhvTrVtTEOSb+Ozvx+DnY/xtTYGThm4r/2hDakObeP2ACzPwF4jk9oQ9oLzcxCCQ+ZHCb+T76IiIjIKc5xEqUOQSY4ay2ZwnN0Zn5PrrALS4DrVFAWfRPl8YtwneSQ2wzCDE2d95APGkn6C3t7JVlryQeHaO7+OVFvOslhFuDNFFtpyjzL4eyzFMMcCa+GafHl1MZPxzU+XcUDdBebKfPqBjw+7tXQVWikq3CQVGT2sGIYbwwGe5yP9Y2xGCbPEJ8JRT08hkUfIYiIiIiITHDducc50vEdMoXncZ0yPGcKYdhNa/rHtHT+B0GYHnqb+a1kivuIeXP6DMEyxhD1phGEaTpym4YVb2ehiWda72RHx6/JFNsJbUBrficvtP2IF9t+RhDmCW0RawMc4w/YhmM8LAGhDYYVw3jjGIe62FyyYRfW9n/TLYR5HONRGRk4QSQyESnhISIiIiIyzhXCLo5mn6U58yTtue2Etti7LQg7aEv/ArDEvIW4TgWukyTizSDqzaM7v4Xu3BNDPmcuaATCQRMOnpMind824Mv38YQ2YHvHr+nIN1IVmUe5P42EN4UKfzZJr5bGzGYOZjYTdavwnSS5sGPAdvJBB76TJOZWDvHKxq+G5BKiToL2wuE+3/fAFjiaP0hNZFafYqYyOaxevZqlS5dy6623ljqUMachLSIiIiIiY8DakI78No5mnyZdPIhjolTFllEdXU5kmC/l1oY0pR/mUPphckELFovBo8yvp778clKR+WTyz1MMDhP1+g8tcUwMx8Tpzj5GeewtQ68h84a5jKEPn2jP76U9t4dyf3q/eHwngWdiNKY3MzOxkurYYprSG4k4ZX3qdIS2SDpoYWbiXGLe5Jl9qCY6ixVVb+OZtt9zOLcH1/hYQsBSG5vNyuq1uJOgnslEZBj6T9Mr+2/cuJFUKjXCEY0P+t8uIiIiIjLKrA050HUvTekHCW0B30kS2iKd+R20+E8yN3UVCX/mkNttSv+BvZ2/wHUSJP05OMYlCLN0FXbzcvs9LKy8miBsB8ygM/+4poxi2Ia1OYw58SKmMa8eY1xCm8Mx0dddr6Vo20lFVg25aGkmOEpAAX+QgqpRJ0UmaCUXdNJQdjGZ4hHa8ruIOmW4ToximKEQdlMVWcDs8ouGdO5TlbWWfNhBaItEnHLc40wr25A8nerIdA5kttOeb8Z1fGqjs5kWn0fEiQ56nMhEpISHiIiIiMgoa809S1P6ASJOZZ/eHNYGdBZ2safzJyyu+otBh4cMpBB00pR+GM9JEPdenYbUdWKU+fPoKGzncPoxaiJTsYRYawdMPoQ2i+uUY4ZwboBkZDFxfz7p/Dbi/rze2K215IL9eE4FFbGVQ2oTwPBq8dMB4yXAHEvgxNwqllZ9kEPpzRzOPk0hTBN1K6kvu4i6+FlE3fH/qXZrbgeN6cdpy+/G2pCom6I2voIZiTfhObEBjyn3qznNP2eMI5VRZW3PMtRjJjklPERERERERpG1liOZJ7HYfkNXjHFJevV0FfbSkX+ZyuhpJ9xuR2EnueAo5f6cftuMMcTcGtpyLzItfjauU0ExbMF3a14XW0Bg2ymPXoQZ4lAHx0SZXn4VjR13kinuwtKTrLA2j+/WUFf2HuIDxPZGKiL1RJwysmE78QGG+mSCo9TGTifqlAMQdSuYXX4Rs8rOJ7B5XBOZMNPQNmeeZXv7TymEaeJeNcbxyAXt7OxYT1dhH4sq3jdo0kNElPAQEZFxyNo8FF/EFl6AsBOcqZjIGeDOG3LXaRGR0RbYLOniQSJO5YDbXSeKLRbJFg/DEBIeQZgD7KBDVRwTpRC24zgVlMfOpz39K6CI50zFGJcg7CIf7CfqNVAWe/PQLwyIetOpr/wkXfkXSOe3YykQ9WZRHjmDiDd1WG0mvClMiy9nT9cfcHCJOGUYY7A2pKt4CM/EmJlY2e/3vWO8CZPoACiE3ezqvI+QAhWROb3XG3GSFMMszZnnqIwsYEZSPTlEBjNxfiOIiMikYMMubPpuKD57rKumDzyNzT8M0Qsg9vZBH/5FZPwZbFjDeGJwAHOseORx9hvidUbcCgwuQZjDHaA2QzHswneS+E4Z0cTbMfh05R4mV9yBxeKYGInIGVQl34vvDi85AeA6CSpiq6iIrRp2G683r/xtBLbAocyzdAeHe4ovWoh71cwrfytTYv0LsA5FMeymPbeVXNCKY3zKI/NIePWn1P+1o7ntZIIjpPyGfnF5TgzXRDiU2cz0xOqhF5sdI9Za0sWD5IKjGONR5s/Gd5KlDksmESU8RERkXLHZX0BhM7iz4bXF9cJWyP4WnKkQXVO6AEXkpFlrSRe20ZHdRLrwMgaXsugyUrFVxLwZpQ5vyFwnSiqygCOZJ4m5U/ptL4RduCZK0ps9pHZTkXkk/Zl0Fw5S9rqX4tAWyAft1JWtwT025KEy+XbK4+eTK+zEUsRzaoh4Dafky7LnRDmt4o+YmVhFa34ngS0QdVJMiS0idpJ1Odpyz7Ov8+dki4fomcfC4po4VbHl1Jf/EZ6TGJFrOFn5oAMsOIMk8X23jFzQRmDzeGb4w1pCG9BROETR5og55SS9KSOS+MkUD7Ov61d05HZQtGkMDlF3CrXxNzMtef6E6o0jpy79LxMRkXHDBocg/zQ4tX2THQBOFYQd2PyjEFk95LHoInJqsNbSkv4tR9K/IrQ5PFOOJeRI969pzz3J9LKrKIueXuowh6wmvoq23AukCweJe9N6kwzFMEO6eJDq2AqSfv2Q2nSMz6yyy9jZ/v/RWdhB1K3BNREKYTf5oI2K6CJqE32HqrhOBYnoihG7rtFkjCEVmUkqMvTZawbTVdjDno4fUAzTlPlzcYzXM6NM2MmRzGMYHBpSf3JK9PRwTQSLHbSXU2Dz+CZ+UomDQ5mX2NX1GG2Fg4S2iGdiTI3NY375+aT8umG3mwuOsqP9Lrrze4h704k7M7AE5IIj7Ov6JaHNMav8smG3PylZTmAa6AGOmeSGlM59/PHH+dWvftVn3fe+9z3mzp1LbW0tf/EXf0EulxvRAEVERHoFB8B2gakceLszBYJDEB4Z07BEZGiKwVE6sw/TkfkNXdnHCcLO3m3pwnaOpH+Na+Ik/YVEvWnEvBkk/EUEYSdNXT+kGHSUMPrhSUUWMLv8XThOlM7Cy3Tmd9KR30E2OER1bDkN5e8eVk+LyuhiFlZeTU1s1bFeHW24JsKssrUsqPgQkQkwS8lIOpJ5gnzQRtKb3ZsoMMbguylibh2tuWfIFBvHJJZCmKEp8wy7On/Pnq6Hac/vxdpXhz1VROYRccrIhW39jrU2JB+0MzV2xrATHk2ZrTzd+jOO5veScKuo9GcScWLsTz/LlqM/orPQPNxLoznzFF35PZRH5uO75RhjcIxH3JuG71RyKPMY2aL+VsvoG9JPx4033shFF13EFVdcAcCzzz7LNddcw0c/+lGWLFnCV7/6VWbMmMGNN944GrGKiIicAH2cITKSQpunO7+dfNCCMT5Jfx5Rb/BPfq0NCcM2LBbXqerzEm9tQHtmA52Z3xGErfQMJwDPraUycSXJ6JvpyD1FaDPEvb69HXpmHaknXXyZzvxzVMXP7d0WhBm688/SnX+OMMwQ8aZRFj2LmHdqFTKuia+kPDKXttwLZIvNOCZCeWQ+qcj8IU1H+3rlkTmU+Q3kw3ZCm8d3yvGc+BsfOMkEYZaO3ItEnKoB/1/4TopsoZmuwi4S/ugOnWrJ7WB7+6/oKh6Gnn4cx3pXnMaiircTcRIkvKnUJc5mX9eDWBsSc3t+nophhs7iQZLeDGoTw+utUwzzbO98iNAWqI68OpQq5qaIOmUcye9mT/dGllVeOeS2rQ1oyW7Gd1MD1tSKutV05nfQnt9OzKsZoAUZiOGV35hDO2ayG1LCY8uWLfyv//W/er++++67Oeecc7jjjjsAqK+v54YbblDCQ0RERoc7A0wSbBuYqv7b7VFwp/f09BCRk9adf5mmrp+QKe7DEoC1uE45lbFV1CXf0adQprUhmfxG0tmHKRT3A+B7s0jEziMe6Smq2JH5PW3dP8V1yol6izDGwdoihaCRlq57cEycTGEXnikfMB5jXLCQf80n8IWghUOd/490/kWM8TB4dOefpT3zMFWJt1GduOKUqlERdaupS5w/4u0aY4gOMIWrvMoSYAkHTS69kgSxBKMaR2ehka1tPyEfdlHh1/cOqymE3TSmNwNweuX7MMZhTvmlOLg0ZZ6ivbCLnhK4PlWRBcxLXUFimAmD1vxeOguHSHnT+m0zxiHpVnEo8xILy99C1C0bUtuhLfQU0jX9C+n2tG/AGAKbHVbsIkMxpIRHa2srdXWvZvR///vfc/nll/d+vXr1avbt2zdy0YmIiLyWUwf+GZB/uKeGx2uLtIXtYPOYyJsxJ/FJqYj0yBYb2d/5X+SDFuJePY6JHnspa+NI5ndAyPSyPz42XailM/1LujLrAXCPFebMF7aTL2ynGG8iGbuEzuzvcUwC3331JcsYj4hXT7a4g47M7zG4x3/hNBaOdeG3NqS56wd0518g7s/HMZHe3QpBC0fTvybi1lE+grOHyPjlmjgxdypdhT1EBkgOBTaHMT2FNUdTU3oLmWIrVZFXeyAZY4i4ZZQxjebsi3QUDlARqcc1PnNTlzE9eQ4d+T2EtkjMrSYVmT1oMdMTkQ8zWBviOZEBt/tOjHTQRj5MDznh4ZgIETdFpniYqNv/wwlrg2PnGDixKTKShpTurqurY9euXQDk83meeuop1qx5tRJ+Z2cnvq+HTBERGR3GGEz8neCfCcF+CF6GYC8Ut/X0+oheDJFzSh2myITQmn2cXHCIhDcf59gntT0vZVVEnVraspvIBgcBKBR30pXdgONUEPHn4zqVuE4lEX8+jlNJV/a3dOV+TzE8hO8OPBzGd+rIF3cT82YRhN1Y2394WmhzGFwS/jwAcsU9pPMvEvNm9Ul2APjuFMDQnn20T10EmbyMcZgSX4UloBB29dlmbUi6eICkN4vyyMlNeXs8oS3SnHuRqJsaZFhNkqLN0pbf22d9zK2kNn4m0xIrqYzOPalkR895YseGx+QH3F4Is7gmgj+MoVHGONTEziawGQLbv75jpniIqFtNRWTxkNue1Owwl0luSD08Lr/8cj7/+c/zj//4j/zkJz8hkUhwwQUX9G5/5plnmD9//ogHKSIi8grjpCD5USi8gC08C7YbnBqMfyZ4C06prusi41VoC3TknsE3A9c68JxKcsXDpPM7iHszyeS3YG033gDTqnruFHKFw+TyW48lHgZ+UTPGx1KkLLqY7sI2MsWdxL2G3hmXQpslU9xN0l9KMrIIgFzxACFZHDPwJ9C+U02+uJ8g7MRzK4b53ZCJpDq2gq7CHo5kniAXHMF3ygltgULYQcybxqzyd+GagXs9jARrQ0Ib4Az6c2AwmN5eEKOlOtJAuVdLV7GZytfNgmNtSHdwlDnJNxFzh9cLoyZ+Nm25l2jNPUfErSLipAgpkisewRiPmclLiAyzbZGhGNJT4d/93d/hui4XXnghd9xxB7fffjuRyKu/EL7zne+wdu3aIQVw2223MXfuXGKxGCtXruShhx4adN/GxkY+9KEPsXjxYhzH4dprr+23zx133MEFF1xAVVUVVVVVXHLJJTzxxBNDiklERE5txkQxkRU4yQ/jlH0SJ/EnGH+Rkh0iI8TaItYWBx0e1vNS5hBSAKAYNGJeP1V0n/3jWJvGMQlC2zngPkHYjuuUk/AXMr38Q0TcOtLFXXQXXqI7/xLZ4gGS/lKmpz7Y2+OkJ9jjXskbXapMMo7xmV3+buamPkB5ZAFg8JwkM5JrWVD5Ucojc0f9/GVeHXnbNeD20BYBQ9wboE7VCPKcCAtSF+AYj6P5fRTCDKENyAadtOT3kPKnMafsTSfRfoL5lVcxq+wyXBMhGzRTCDooj8xjfsUHmBpfPYJXIzK4IfXwmDp1Kg899BDt7e2UlZXhun0zk9///vcpKzvxMV733HMP1157LbfddhvnnXce//7v/84VV1zBCy+8wOzZ/T8hyOVyTJ06leuvv55/+Zd/GbDNBx54gA9+8IOce+65xGIx/umf/om1a9fy/PPPM3PmyM3hLSIiIjJROSZKxJ1CurCXiFvdb3toexIdvlN1bP8k9ti6gVhbwHdnYNwaunNPETPJPrM3hDZPMWihInElrpMiGUnRUPVZuvMvkCs2YYxL3GsgEVnUZ+hK1JuFY+IEthPP9J9+tRAeJeGfhnusVoC1IfniLgpBEwaXiD+nTz0RmRwc4zMlvpLq2NlYihjcMUuYG2OYljiTltwOckEn0df0crDW0lk4QJlXx5To6A2recW02BJMlcOursdozx8ksEV8J8aM+OksKL+Acr/2pNr3nTLqyy9nWvIC8kEbxnjE3an6cELG1JAnbd6zZw/33XcfxWKRt7zlLZx++um926qr+/9BPJ6vf/3rXHPNNXzsYx8D4JZbbuHee+/lW9/6FjfffHO//efMmcM3vvENoKc3yUD+67/+q8/Xd9xxBz/4wQ/47W9/y4c//OEhxSciIiIyGRnjUBl7E92FlymG3XhOsnebtZZccICYO53yyBIAYpEzSOceJbS5vr0v6Km7ASHx6HJcdybFoIVs8SVcU4VjYoS2m8B2Eo8soyLxtt7jPKeMitjxP2GOeg0kI0vpzG3E8aO957bWUgyPYDCk4udijEOh2Ehr+gdk89uw5ACLYypIRs+mMvFuHCcxMt88GTd6eiqNff3B2thS2pP7OND9BNngKBGnnJCAXNBO3KtmYcXleE7sjRs6ScYYpsVPoza2kPZCI8UwT8wto8ybOqLTOftOEv81v0NExtKQEh4PPvggV155Jel0uudgz+M//uM/+OAHPzjkE+fzeTZt2sTnP//5PuvXrl3LI488MuT2BpNOpykUCsdNxuRyOXK5VwvqdHR0jNj5RURERMajythKuvM7aMttpBBE8ZwKLAUKwVE8t4K6snfiHksSRCPLiPlLyeafwfNm4RybVja0nRSL+4lGziDqL8Nx4kxN/SVd2cdI5zYS2iyeW0VF9ArKYm/u7Ylxoowx1JS9j9BmSRe2Ym3Pp/ehzeA65VQnrqQschZB2EZL13fJFncScWfhOmVYawnCo3Rm7ye0OaaUfUSfPMuYcIzHwtRlVETqaUo/TVfxEJ6JMD3+FqYlzqLcH9teR45xqYrMGtNzDqanl8sejmafJxMcwTNJqmKLqYouHtXaKuPCcIqQalTf0BIeX/rSl7j44ov593//d+LxOF/4whf47//9vw8r4XHkyBGCIOgzzS30zATT1NQ05PYG8/nPf56ZM2dyySWXDLrPzTffzJe//OURO6eIiIjIeOeYCDNTV5HIzqUt8wT58CgGl+rE+VTF3kTCn/uafWNUln2E9u7vkys8T9H2zN5iTIJ49M1UJP8Y59hsD747larkO6lIXIa1eRwT6y1MOhy+W8X0io/TnX+edO4FApsm4k6jLLqcqNeAMYbu7CZyhZeJ+Qt7z2WMwXOnYEyEdO4pymIXEPMXnMR3TOTEOcZjWnw5dbEzCClicE565pXxLrQB+7p+Q2P3wxRtFtdEsbbA4cyTVEVPY0HF+1ToVIZsSH9dnn32WR588EFmzJgBwD//8z9zxx130NraSlXV8ArrvL67lLV2xLpQ/dM//RN33XUXDzzwALHY4N3CvvCFL3Ddddf1ft3R0UF9ff2IxCAiIiIyXjkmwpT4+VTH1lAMu3GM19ur4/Vct4qq8o9TCPZSLO4HwPNm4buzB3y2c0wERugTW8dEKY+eTXn07AG3p3ObcJzEgIkV1ymnEOwnV3hxWAmPXPEQHbnNdOdfAELi3nxSsRXE/TlDbksmH2MMbgmG1ZyKjmS2cKD7AaJOJWXuqz1OgjDH0dxz7OlMsKDiT0Z0uM14Yo4tQz1mshtSwqOtrY3a2leL1ySTSRKJBG1tbUNOeNTU1OC6br/eHIcPH+7X62M4vva1r/GVr3yF3/zmNyxfvvy4+0ajUaLR6HH3EREREZmsjHHx3f5FQfvvZ4h4DUS8hjGI6sSFtgtjjves5xyrNTI0XfmtNHXeQ754CNdJAg7pwk7aso9TV/YuKuNrhh2znDqyQTudhUMAlHl1xD1NcTzSQhtwKLMRg0vU7fte6TpR4m4dR3NbSRcPkRzjIT8yvg25/+ALL7zQJ0lhrWXr1q10dr46xdgbJRgAIpEIK1euZMOGDbznPe/pXb9hwwbe9a53DTWsPr761a/yd3/3d9x7772sWrXqpNoSEZGhs7Zn0Ohk/RRGRE4tvjuDdP5p/AFGDFgbgg3xnP4f3llbIFfcRRhmcJ0UEa+ht85HIWinqfP7FMJWEv7i3t931lryQSOHu35K1Juunh7jWCHM8HLnQzRlniUb9NT4i7rlTIsvY0H5hfjO4FMxy9DkgzbSxUNEB5gVCiDipMgWmkkXGydvwsPanmWox0xyQ054vO1tb+t9kH3FO97xDowxvcNRgiA4obauu+46rr76alatWsWaNWu4/fbb2bt3L5/4xCeAnqEmBw4c4Hvf+17vMVu2bAGgq6uL5uZmtmzZQiQSYenSpUDPMJYvfelL3HnnncyZM6c3OVNWVjakKXNFRGTo2gut7Ojaxu7ulymGeWqidcwvW8TsxFwcFQMUkRJJRleTyT9NEHb2K4xaDJpw3WpikTN611lrSeefoj29gXxxH1DAmBhRbx6VyXcQ8xfQlX+WfNBEwlvQJ7lrjCHiTidd3EZHbrMSHuNUYIu80PZLDqafJu5VURlpwACZoI3dXQ+TCzo4o+o9uEbDUUaCPYHqmvYE9xN5rSElPHbt2jWiJ7/qqqtoaWnhpptuorGxkWXLlrF+/XoaGnq6QTY2NrJ3794+x6xYsaL335s2beLOO++koaGB3bt3A3DbbbeRz+f54z/+4z7H3XDDDdx4440jGr+IiLzqUPYgv2/+Da35FuJuAte47OrewZ70Tk5Pncnq6nOV9BCRkohHlpOMnUdX9iGC8CiuU4UlpBgcwRifqsS78N2pvfun80/R0vn/sLZIxJuJIUpou8kUtlLsPMzU8o+TLe7H4GIGKDRpjME1ZWQKL4/lZcoIOprbyaHsC6QiM/r05Eh41fhOgkPZrUzPLqcufloJo5w4om4lCa+OrsIBIk7/D6kLYSe+kyTpzShBdDKeDSnh8UoiYiR96lOf4lOf+tSA27773e/2W/f63iWv90riQ0RExk4hzPPIkd/TUWhjRqy+99POCr+K7mIXz7VvoSZay/yyRSWOVEQmI2N8qpLvJ+LV0519hELQjMEhHllGWex84v6rw7FDm6c9fS/WFom+ZiYa15QRM4vIFV+kPfNbIPUGnzaHwOSedWM8a85uI7ThgMNWfCcG1tKcfVEJjxHiGI/a+Co6C3vIBW1E3crebUGYIx0coja+ioR38rUexzV1cBmy4c8BNoAf/ehH3HjjjTzzzDMj2ayIiJziDmT20ZJvpiZS269uR9Iro7PYwY6uF5mXXKi6HiJSEo6JUB67kLLouQRhO+DiOpX9fiflCi+TL+4n4vWfsc8Yg+dMI1t4kWT8cgwQ2gLO64Y1WGsJwm6SkaWjeEUymrJB13GHqzgmQjboHHS7DN3U+AoyxSM0pR8hGxzBNTFCCmAt1dGlzCm/Qs8QMmRDTnjccccd3Hffffi+z2c/+1nOOecc7r//fv76r/+al156iauvvno04hQRkVNYe6GN0Fo8Z+CHw6RbRkvuCEVbwB+haShFRIbDGB/PrRl0e2gzQIAzyKwujhMnCNqIe7OIeXPIFHYR9+f2Jj2sDcgEe4h4daSiZ43CFchYiHuVBNn8oNsDmyPhDW2WyokktEXSxaNYLHG3Es85+RkvHePSUL6WqtgijmZfIFM8gu8kqIqeRlV0Me4InEMmnyElPL72ta/xP//n/2T58uVs3bqVn/70p1x//fV8/etf56/+6q9Yt24dNTWD/wEREZGJyTHOcbt2hwS4xlMNDxE55blOOcb4hGEGZ4DhDGHYhWPiRNw6pqc+RGPHnWSLu7GAwWAJiLrTmVb+J0Qne/f7caw2tpj93U+SCzqJun0L3eaCrp4hGLHJN5zF2pDGzLMc6H6SzuIhsJaYV8mM+FnMSq466cSHMQ4VkXlUROaNUMQy2Q0p4fHtb3+bf/u3f+O//bf/xgMPPMBb3/pW7r//fnbs2EFlZeUohSgiIqe62ug0Ik6UTJAh7vZ9QbDW0l3s4vSKs3DNiI6kFBEZcVFvLhGvgVxxJ1HTdwYWa0MKYTPlsQvx3Co8qphduY6u/PNkCruwBMS8esoiy/DdihJehZys6kgDs5Ir2dP1KPmwm7hbCRgyQRv5sJvZyTdRHZ37Rs1MKNZadnf9gZc7f9dTA8etwhiHbNDOSx2/pqt4iCWV79TMNXJKGdKT5549e7jkkksAuOiii/B9n7//+79XskNEZJKbGq1jdmIOO7peZEqklpgbAyC0IUfyh0l6ZSwsm3yfhInI+GOMR2XiHRzp/C7Z4jYi7jSMiRGG3RTCJiJeA6n423r3d504FbFVVMRWlTBqGWnGOCxKXUrcqeRAZjPdxRbAEnermFd2AbPLVuMMMEPPRNZVPMyerkeIOEkS3pTe9b4TpxCmaUw/TU1sEdPiy0oY5QRmGXrRUhU5HVrCI5vNEovFer+ORCJMnTr1OEeInJjujjR7tx4gn82TmlLO7NNm4nqT64+IyHjmGIdzay7EYtmb3kVLPo8xDliojFTypurzqY1NK3WYIiInJB5ZwtTUNXRkfks2vx1LC8bEKY+9hVT8UiLe9FKHKGPANR5zytcwK7mS7mIzAEmvZkTqVYxHLdnt5IIuqqP9h5v4TgIwHMo8r4SHnFKG3Lf4//yf/0NZWc/cyMVike9+97v96nZ85jOfGZnoZMILgoCNv9rCxl9vpvVQO1iLG/GYuWAaF3/wfBqWzCp1iCJyguJugrfWXk5T9iCHsgcJbEC5n6I+PoeElyx1eCIiQxLzFxH1FlIMmghtFtdJ4blT3vhAmXA8J0JFZGapwyi5TNCOY9xBZ0rxnTjpYssYRzV5mGPLUI+Z7IaU8Jg9ezZ33HFH79fTpk3jP//zP/vsY4xRwkNO2BPrN/Ob//cg8bIY9Ytn4Hou2XSOvS8e4Ge3/po//ut3Mn2uCn6JjBeOcZgRn8WMuJKVIjL+GWPw1ZtDBOhJaIQEg24PbI6Io96ccmoZUsJj9+7doxSGTEZdbd088avNJMrjTJ316icmsUSUhiWz2PXsXp76zTO8/eOXljBKERERERGZEp3Hnq6HyQVdRN2yPtsCWyCwBeo0nGX0nEQNj9WrV+O6LuvWrWPdunUjHdkpbUjzA95///0sXbqUjo6Oftva29s5/fTTeeihh0YsOJnYdj+/j/bmDqqn95/D3BhDVV0l2zftpLsjXYLoRERERETkFZWR2UyLn0FX8RDp4lGsDbHWkgs6aMvvpTo6j9r4klKHKQPYuHEjL7zwwqRLdsAQEx633HILH//4x0mlUv22VVRU8Jd/+Zd8/etfH7HgZGLLZwsAuO7A/w0jMZ9Cvti7n4iIiIiIlIYxDosrrmBu2VuwWFrze2jN7yIfppkRP4vTK99DxEmUOkyRPoY0pOXpp5/mH//xHwfdvnbtWr72ta+ddFAyOZRXJXFcQz5bIBLrP193d0eaZCpBMhUvQXQiIiIiIvJanhNlUcVaZpedQ3v+AJaQpDeVMq920GKmMlI0L+1wDCnhcejQIXy//4tpb2OeR3Nz80kHJZNDw+n11DVM5dCeZmYtmt7nl2QhX6SrtZtzrjybSCxSwihFREREROS1Ym4FsXhFqcMQeUNDGtIyc+ZMnn322UG3P/PMM0yfrkrWcmIiUZ+LP3g+iVSMPc/vo/1IJ+nODM37W9i7dT/zz5rDiredUeowRURERERESssOc5nkhpTwuPLKK/nbv/1bstlsv22ZTIYbbriBd7zjHSMWnEx8C86ay/s+906WvWUJ+VyejpZOovEIF3/wPN7zmSspq0yWOkQREREREREZh4Y0pOWLX/wiP/rRj1i0aBGf/vSnWbx4McYYtm7dyq233koQBFx//fWjFatMULNPm0n94hl0Hu0inyuQrEgQT8ZKHZaIiIiIiIiMY0NKeNTV1fHII4/wyU9+ki984QtY29NHxhjDZZddxm233UZdXd2oBCoTmzGG1JTyUochIiIiIiJyyjG2ZxnqMZPdkBIeAA0NDaxfv57W1lZ27NiBtZaFCxdSVVU1GvGJiIiIiIiIiAzZkBMer6iqqmL16tUjGYuIiIiIiIiIyIgYUtFSEREREREREZHxQAkPEREREREREZlwhj2kRURERERERETGgLU9y1CPmeTUw0NEREREREREJhwlPERERERERERkwlHCQ0REREREREQmHNXwEBERERERETmV2WPLUI+Z5NTDQ0REREREREQmHCU8RERERERERGTC0ZAWERERERERkVOYsT3LUI+Z7NTDQ0REREREREQmHPXwEBERERERETmlqWrpcKiHh4iIiIiIiIhMOEp4iIiIiIiIiMiEoyEtIiIiIiIiIqcyjWgZFvXwEBEREREREZEJRwkPEREREREREZlwlPAQERERERERkQmn5AmP2267jblz5xKLxVi5ciUPPfTQoPs2NjbyoQ99iMWLF+M4Dtdee+2A+/3whz9k6dKlRKNRli5dyo9//ONRil5ERERERERklFk7vGWSK2nC45577uHaa6/l+uuvZ/PmzVxwwQVcccUV7N27d8D9c7kcU6dO5frrr+fMM88ccJ9HH32Uq666iquvvpqnn36aq6++mve///08/vjjo3kpIiIiIiIiInIKMdaWLu1zzjnncPbZZ/Otb32rd92SJUt497vfzc0333zcYy+66CLOOussbrnllj7rr7rqKjo6OvjVr37Vu+7yyy+nqqqKu+6664Ti6ujooKKigvb2dlKp1IlfkIiIiIiIiEwKY/He+Mo5/u0bvyAeTw7p2Eymm0989h2T+r22ZD088vk8mzZtYu3atX3Wr127lkceeWTY7T766KP92rzssstOqk0RERERERGRkrHDXCY5r1QnPnLkCEEQUFdX12d9XV0dTU1Nw263qalpyG3mcjlyuVzv1x0dHcM+v4iIiIiIiIiUXsmLlhpj+nxtre23brTbvPnmm6moqOhd6uvrT+r8IiIiIiIiIiPFDHOZ7EqW8KipqcF13X49Lw4fPtyvh8ZQTJs2bchtfuELX6C9vb132bdv37DPLyIiIiIiIiKlV7KERyQSYeXKlWzYsKHP+g0bNnDuuecOu901a9b0a/O+++47bpvRaJRUKtVnEREREREREZHxq2Q1PACuu+46rr76alatWsWaNWu4/fbb2bt3L5/4xCeAnp4XBw4c4Hvf+17vMVu2bAGgq6uL5uZmtmzZQiQSYenSpQB89rOf5S1veQv/+I//yLve9S5++tOf8pvf/IY//OEPY359UnrWWo4cOEq6I00sGaN2ds1JD5kSEREREREZU9b2LEM9ZpIracLjqquuoqWlhZtuuonGxkaWLVvG+vXraWhoAKCxsZG9e/f2OWbFihW9/960aRN33nknDQ0N7N69G4Bzzz2Xu+++my9+8Yt86UtfYv78+dxzzz2cc845Y3Zdcmo4+HITD/90I7uf3Usuk8ePesxeMotz/2gVDUtVp0VERERERGQiM9Yq7fN6YzGfsoyugy838aNbfknLwVZqZk0hXhYjl87RvL+F8uoy3v1XVzB32exShykiIiIiIuPUWLw3vnKOf/+XnxOPJ4d0bCbTzV9+7p2T+r225LO0iIw0ay2P/mwjRw4eZc6yesqrkni+S7IiQcPSWXS1dvOHHz1GEASlDlVERERERERGiRIeMuG0NLay69m9TJ05pV+9DmMMtbNr2L+9icadh0sUoYiIiIiIyBDYYS6TnBIeMuFkOjPkMnliZbEBt8eSUfKZPJnOzBhHJiIiIiIiImNFCQ+ZcOJlMSKxCNnu3IDbs+kckZhPfJCEiIiIiIiIiIx/JZ2lRWQ0TJlRTcPps9j62HbKKhN9hrVYa2ne18KsRdOx1vL77z9CR0sniVSCBWfNYdbiGbiuW8LoRUREREREXkfT0g6LEh4y4RhjOPePVtO06zC7n99H7eyaY7O05Gne10KsLEo0HuGum39MuiODF/EICgFPrH+KM96ylLUfvpBILFLqyxAREREREZGToISHTEizFs3g3X91JX/48ePse/EAzfta8GM+DafPpGJqBVt+9xxVUyuoa5ja2wOkuz3Nk/duIVmR4OKrzivxFYiIiIiIiMjJUMJDJqzZp83kA//j3Rza3Ux3R5p4WYzqGVX8vy9/n2g8SsXUvnNRJysSVExJ8czvX2D1ZWdRVjm0ea5FRERERERONatXr8Z1XdatW8e6detKHc6YUsJDJjTHcZg+r67368adhzhysJUp06sG3L+yroJ9L+6naddhFqyYO1ZhioiIiIiIjIqNGzeSSqXeeMcJSAkPmVSstdjQ9ilk+lrGGKyFMAzHODIREREREZFBqGjpsGhaWplUqqZVUlFTTseRzgG3d7R0Ul6VZGp9zRhHJiIiIiIiIiNJCQ+ZVOLJGMsvPJ3Oti4yXdk+2/LZPC0Hj7L4nIVU1VaUKEIREREREREZCRrSIpPOOVeu4MiBFp77w4tgIZaMks8WCIKA085ZyEV/sqbUIYqIiIiIiMhJUsJDJp1ILMI7/vJSTnvTQrY+to3WQ22UV5Wx5M2LWLRqHtF4tNQhioiIiIiIvMoeW4Z6zCSnhIdMSn7EZ8k5C1lyzsJShyIiIiIiIiKjQDU8RERERERERGTCUQ8PERE5IfmwyL70ITLFHDE3yuxELRHXL3VYIiIiIhOesRYzxGlmh7r/RKSEh4iIvKGXOvbyYPPTHMoeJbAhrnGojVZx3tQzWJqagzGm1CGKiIiIiPShhIeIiBzXjs79/Pzgw+SDAtNi1UQcn3xYpDnXyi8PPopjHJakGkodpoiIiIhIH6rhISIigwr+//buPDrqKs0b+LfqV3tVKltl3whrEsIahA5LIy4gKKjDeVVU2pmj3QdlWpaZ08KgDeoI3WO3wzgCbnh0WgXct04LdNPsm0DYAwkkkH3faknt9/0jTWmoBEhIJaTy/ZxT53TdunVzbz1d8ebhLsKLA7VnYPc4kKCNgkreuoVFJVcgQRsFl9eNg7Wn4fF6ermnRERERERtMeFBREQdqrY3oLylBiZVWLvbVqLUYaiw16PcXtcLvSMiIiIi6hi3tBARUYecXhdcwuNb2XE1lVwBt9cNh8fVwz0jIiIi6keEaH109j39HFd4EBFRhwwKLTSSCjaPvd3XbZ7WG1tClNoe7hkRERER0bUx4UFERB2KUBkxyJCAWmcTvMLb5jWvEKhxNGKAPhbR6vBe6iERERFRPyE6+SBuaSEioo7JZDJMMo1Atb0BRdYKRKiM0EgqODwu1DubEa0Jx5SoUbyWloiIiIhuOUx4EBHRNUVrwjE3aSoO1+XhvLkYjU4zlHIlxkWmYXxEOqI1XN1BREREFFhdWbbBZR5MeBAR0XWZ1GGYFZ+Nn7tGw+axQyupEaLU9Xa3iIiIiIg6xIQHERHdMINSCwMPKCUiIiKiPoAJDyIiIiIiIqJbGXe0dAlvaSEiIiIiIiKioMMVHkRERERERES3MiFaH519Tz/HFR5EREREREREFHSY8CAiIiIiIiKioMMtLURERERERES3NJ5a2hVc4UFEREREREREQYcrPIiIiIiIiIhuZVzg0SVc4UFEREREREREQYcrPIiIiIiIiIhuZQJduJY2ID3pU3p9hcf69euRmpoKjUaDrKws7Nmz55r1d+3ahaysLGg0GgwcOBBvvvmmX521a9di2LBh0Gq1SEpKwpIlS2C32wM1BCIiIiIiIiK6xfRqwmPLli1YvHgxVqxYgdzcXEyZMgUzZ85EcXFxu/WLioowa9YsTJkyBbm5ufiP//gPPPvss/j88899dT766CMsW7YMK1euRF5eHjZu3IgtW7Zg+fLlPTUsIiIiIiIiIuplvbql5bXXXsOTTz6Jp556CkDryoytW7diw4YNWLNmjV/9N998E8nJyVi7di0AID09HUeOHMEf/vAHzJ07FwBw4MABTJo0CY8++igAYMCAAZg3bx4OHz7cM4MiIiIiIiIiol7Xays8nE4njh49iunTp7cpnz59Ovbv39/uew4cOOBXf8aMGThy5AhcLhcAYPLkyTh69KgvwVFYWIicnBzce++9HfbF4XCgubm5zYOIiIiIiIiI+q5eW+FRW1sLj8eDmJiYNuUxMTGorKxs9z2VlZXt1ne73aitrUVcXBweeeQR1NTUYPLkyRBCwO124+mnn8ayZcs67MuaNWvw4osv3vygiIiIiIiIiLqbEF04tJSnlvb6oaUymazNcyGEX9n16v+0fOfOnXjllVewfv16HDt2DF988QW+++47vPzyyx22uXz5cjQ1NfkeJSUlXR0OEREREREREd0Cem2Fh8lkgiRJfqs5qqur/VZxXBEbG9tufYVCgcjISADACy+8gPnz5/vOBRkxYgSsVit+9atfYcWKFZDL/XM8arUaarW6O4ZFRERERERERLeAXlvhoVKpkJWVhe3bt7cp3759OyZOnNjue7Kzs/3qb9u2DePGjYNSqQQA2Gw2v6SGJEkQQvhWgxARERERERFRcOvVLS1Lly7Fu+++i/feew95eXlYsmQJiouLsWDBAgCtW01+8Ytf+OovWLAAly9fxtKlS5GXl4f33nsPGzduxL//+7/76syePRsbNmzA5s2bUVRUhO3bt+OFF17AnDlzIElSj4+RiIiIiIiIiHper15L+/DDD6Ourg4vvfQSKioqkJmZiZycHKSkpAAAKioqUFxc7KufmpqKnJwcLFmyBOvWrUN8fDxef/1135W0APD8889DJpPh+eefR1lZGaKiojB79my88sorPT4+IiIiIiIiopvGQ0u7RCa4z8NPc3MzQkND0dTUBKPR2NvdISIiIiIioltMT/zdeOVnvP3yJ9BqdJ16b4vdhl+98FC//ru2129pISIiIiIiIiLqbr26pYWIiIiIiIiIroNbWrqEKzyIiIiIiIiIKOgw4UFEREREREREQYcJDyIiIiIiIiIKOjzDg4iIiIiIiOhWxjM8uoQrPIiIiIiIiIgo6HCFBxFRF9U1WnHhcg3sDhcMOjWGDIiG0aDp7W4RERERERGY8CAi6jSP14tdhwpw6MQlNFsckMlay8NDdZg2YQiyMpMhu1JIRERERHSThBAQndyi0tn6wYgJDyKiTtp/tAh/O3AeRoMWA5MiIZPJ4PF6UVNnwZ93noFWo8LwIXG93U0iIiIion6NZ3gQEXWCze7EDycvQadRIzJM71vJIcnliI0ywu3x4tDxIni83l7uKREREREFDdHFRz/HFR5ERJ1QUtGAuiYbkuLC2n3dFKZHWVUTaustiDEZr9mWy+PBuYoanCitQI3ZCqNGg5FJsciMj4FWpQxA74mIiIiI+g8mPIiIOsHj8cIrBCR5+wvkFAoJHq8Xbs+1V3g43W58fvQMfrhUCq8Q0KmUKK1vwsmyCmTERWPe+FEwam/sAFS3x4vCijpUNZgBmQyJplCkRIdDLuc5IkRERETUfzHhQUTUCeFGHXRqJSw2B0L0/gkJs8UOvU6NsBDtNdvZW3AZ+wuLkRhmhF6t8pU73G6cKqtC6KnzeGT8qOv2p7LejK8OnMalynpfkkWtVGBIggkPTMxEmOHa/bjCK7wosdUhv7kMZrcdRqUWw0ISkKiL5AGsRERERL2uK3tUuKeFCQ8iok6IjTJiYLIJp/PLodOq2qz0cLrcaDS3YFr2UOh16g7bsLvcOFRUghC1qk2yAwDUCgViQgw4VVaFO8wWRIcYAABurxf1LTYIAURotVBKEsw2Oz7ZfQKXqxuQaAr1bYOx2p04WVQBt9eLX9yZBZVSASEE7B43ZJBBo2j7q9/ldeP78lwcrb8Iu9cFhUyCW3iwr+YcbosYjOlxo6GQS931ERIRERER9QgmPIiIOkEmk2H65DQ0NbegqKQWBr0GGpUCthYXWhxOpA2KwaSxA6/ZRp3FigZrC6JC9O2+HqbToKC6DpVNFkTqdfihvAz7S4pRYW4GAEQbDMhOTAbMXlyubkBqTAQU0o+JF71GhZTocOSX1uJcaQ1cei8OVZSgxNIEuUyGtPAo/CwuCUPCTACAfTXnsL/2HKLUoUhUtq4IEUKg2d2CvTV5MCp1mByd3h0fHxERERF1hRCtj86+p59jwoOIqJOiIkIwb844HD9bihPnyuBwumGK0GNMRhpGpSdAp2m7aqPJake91QalJEdsmBGQySCTAaKDZYZCALJ//I+cgvPYdvEiJLkMkVodIAPKzWZsPn0SqlpArZDaJDuuUCsV8Hg92HLuJJq1DggBhGk08AqB/RWXcbK2Av9vyAhkmqJxtP4iDAotjMoft7/IZDKEKnVocTtwpP4CxkUOhkbiQapERERE1Hcw4UFE1AXhRh2m/Wwofj5+MFwuD1RKhd8hoU1WO3acvoCTlytgtTshSXLEhxsxYWgyokMMqDZboItQ+bVdZ7UhTKeFVwHsvFyEMK2mNdnxDyEqNRrtduTWlWCAPrTDPlokJy5aGjEyLA7hmh+TGSaNDqWWZnxdeBaS0oMGpwUJ2sh224hQh6DS3ogqeyNS9FGd/ZiIiIiIqDvwCI8uYcKDiKgdbpcb+Ucu4vTec6gurYPOoEFG9jBkZA+FMTLEV0+SyyGp/VdYmFsc+GhPLvLLaxAZokNCRChcHg9K65pQdvAUhiRGobShCfVWG8J1Wt/BoBa7A/XWFtyVMQiXmxphdbqQGOKf1AjTaCBpJFQ1W5AeH+P3uhAClV4LlAplm2QH0Lp6I8FgRH5DLQoaaiEEIO/gYFLZP9oSXBJJRERERH0MEx5ERFdxOV3Y+v5OHN9xGgCgC9HC2mDF93k7cGpvHu5feA+ik0zXbOPIxVLkl9cgNToCSkXrgZ9KhYSUKBUqGppRVtOESYNScKS4DDVmK5SSBLfHC5VCQvagJMwYPhQfnjoOjULR4S0pUSYD6qzNqDfbEBGia/NaVYMFHpVAcmhIu++Vy2SQ5DI43UCIUotGpxWRav+6jS4bjEodTGrjdT83IiIiIqJbCRMeRNRvWawO2O1O6LQq6H5yq8rJXWdx7K8nEZUYCb3xx0SCx+PF5bMl2PbBTsxb/iAkqf2bS9weL44WlsKgUfuSHT8VHWpAUXU9ksNCMX5QEs6UVaPBZoNBrUJaXDQGRUVAksuhVyrh8no67L9CL8fQgdEwNzrQZLMjTKeBVwCN1hZoVAoMiYu65m95rwBClTqYQlKwq/oMDAoN1D85p8PucaLRacWdsSNhUPpfwUtEREREPYSHlnYJEx5E1O9UVTfj8JFC5OdXwuXyQK1RYnh6PMZlpSI0RIMTO89ApVa2SXYAgCTJEZcag5JzZSjNr0BKemK77TvdbljtTujU7R/yeeUqW6vDheSIMCRHhLVbb3h0DPaVFKPF5YJW2bYth9sNAHhgQia0TglHCkpRVtsEABgzOAHjhiTisrcRnxachkd4IcnabruxuV1QyOQYHBaJAaFhqHdacLa5FBJkUEtK2D1OCAGMDk/FlKiMa3+gRERERES3ICY8iKjPstmdKK1shNcrEBmmgync0Gb7h7m5BY31FigUEqJiQqFQSiivaMTnXx1BdXUzIsL1MBo1aGlxYc/e87h0uRbTpwxFfWVjm3M6fkpr0MDlcKGuvKHDhIdKoYBOpURziwNheq3f616vgBDoMCFyRZopCiNjYnGsohwxegPCNK2rLJocdlRYzBgVE4eRMTHQKJTIHBALu9MNyACNsnUbjMmux+HKElxsrEdKSBjUitZf+WanA6WWZoyJisfQcBOUcgn/L3kizjWX4UxTMZpcNoQqdRgRloJhxgSo5PxPBREREVHv4qmlXcFZLBHdkpoarKgsbYBXCJhijDBFG33JDLfHi/3HCnHk5GXUNdkghIBeq8Kw1BjcOWkYlJDh4M5zOHuiGFaLA5IkR3RcKLImDsbJgkrU1JqROiDKd6uKTqdGWJgOly7V4ofcy5DLZfB6vO32q/UAz9bVHh1RSHKMGZiA747kIcro9bs2ttZsRZheg6Fx1771RCVJmJc5EgaVCieqKlBQbwUA6FUqTExKwQPD0qFRtCZNZDIZtFclUCI0OsxPH4st+Sdx2dwIj9cLIQQ0CiVui0nAQ0NGQilv3XKjlpQYFT4Ao8IHXLNPRERERER9BRMeRBQQlkYrbM02qHVqhJpu/MBLh92FvdvP4HTuJZibWlpXQhjUGJIej2mzRsJg1OJvB85j16ECGHRqJMWFQZLL0Wyx48jpYlTXNEPX7MLlC1UIizQgJj4MbrcXleWN+PTDA7BKwMDBMX5XyEqSHBGRBlwqa0BMchQunypud5VHc50F+lAdEobGXXMc4wYl4kxxFQqr6hAdaoBRp4Hb40VNswVOtwezxqYh3OC/+uNqIWo1Hh0xCnekDkRpczMEBBJCjIgzhHR4mOlPJYeEYdHoSchvqEGlzQJJJkOKMRwDjOEd3sxCRERERBQMmPAgom5VW16PH/6Si3OHL8DR4oBSrcTg0QMwfuZYxA30fMlx9QAAGnBJREFUvz71pzweL7Z9fQy5By8iLMKApIFRkMlkMDe1IPdQISzNdkyeNQJHTl5GuFGH8NAfz9gIDdFCr1Xh5A9FUDU5MXJUMpSq1l9xShWQkByJggtVqCivx+Ah7fdDr1OhqtqOQeMHo+JCBaou1yAqyeRLjlibbKgrr8dts8bAFB9xzbGE6bV47Odj8P3xfJwvq0at2QpJLkd0qAGThqXgZ0NTOvOxItYQglhD+9tsrkclScg0xSKzS+8mIiIiol7HHS1dwoQHEXWb2rI6fLH2zyi7WImImHBExITD0eJA7o7TKM4rw4PPzkLi0PgO319SVIMzucWIiQ+DzvDjrSDGMB20OhUunq+AN1QFs82BQUn+f/xLkhz2WiucHgGl0v92lAiTAZ7iGtRUNyN5gP92EpfLA4VCjsGjU6FTStj1yX5cOl0MmVwG4RVQ69UYc2cm7pg3+YY+D5NRj8emjEZVkwUNlhYoJDmSIsOgUfFXLxERERFRoHHWTUTd5sC3R1F+oRKpmcmQ/+PcCo1eDWNkCC6fLcWuTw9g3vIHIZe3f/5FUX4lnE5Xm2THFUqVAgqlhKKLVZCr5e1u5/B6vIDHCyGTQQC4ukZYiBYapQJ1dRa/hIcQArV1ZgwaGIOoKCNi7hiBAZnJuHCsEM11Fqg0SqQMT0Li0LgO+98emUyG2LAQxIZ1bXUGERERERGvpe0aJjyIglB9ZQMqCqshhEB0UiSikkw3dN7DzWisaULB0YuIjI/wJTuukMlkiE42oeRcGSoKq5AwuP3zL2xWBxQK/5UZV6jUCjhdXgi1HF4h/M6gkEtyeGUyqGTtJ0RkMhkiQ7SAJEdFZSOiTCFQKCQ4nW5UVTdDq1HhZ+MH+rawhEeH4rZ7xnT2oyAiIiIiolsAEx5EQaTF0oIdm/fh3MECWBpbb/TQhWgxeGwq7nxsCowRgVtlYGm0wW5zwNjBAaVagwZVl2pgabR12EZouB5ulwdCiHYTFnabE4PSY1HicqKuwYqoCEOb150uD3SROqgtbrjdHr/kSWO9BYmxoci6IwMnz5aitKwBQgjI5TLERIfi9p+nYfCga58zQkRERETU01pvCuzcio3O1g9GTHj0UR63B/YWF5RqBVQ8D4AAuF1u5Lz7N5zcfRamuAgMGJ4EALA0WHHi76dha27B3CX3QaNTB+Tnq7UqKFQKOFucUF11PSoAuBwuKFQS1FpVh20MTovHoV3n0VhvRXhk22SGzeqATC7DbeMHY4DDgW1781Ba2YDIMD0kSY5msx2NZhvGThwMVFpRcrEGkTFGhIRq4XZ7UF9jgdPuxJTpmZgyNQ3jJwzE5ct1sNtd0OvVSEmO5HeJiIiIiCiIcHbfx9isDpw6cgknjxbBarZDqZKQlpmIUeMHwRRz41d/UvC5dKYE5w4VIH5gLLQ/OQMjJMIAtV6Ni8cvoeBoIUZMSQ/IzzclRCA5LRH5Ry5CH6rzW6FRU1KH6JQoJAyJ7bCNmIQw3DZlKPZuP4MWqwNhkQbI5TI0Ndhgszgw9mcDMSgtDkMVcuh1Khw6cRlVtc3wegUMejXuyB6GSVmD4LI5sWvbaVzMK0d9jRlySYbIKCPGTh+OrIlDAABajQppw659tSwREREREfVdTHj0IVaLHd9uPoSCM2XQ6NXQG9RwOtzYuyMPBXkVmDPvZ4hPuvZVmRS8Lh6/BI/L0ybZcYVKrYSkkHDuhwsBS3jIZDJMuHcsyi9UoPR8OaJToqDWquByuFBTWge5JEf27HFQqvxXf/y0jcl3ZSA0TIfcQxdRU9kMIQRCI/SYfFcGxmYPhuIft6+MyUjCiGEJqKkzw+P1Ityog/7K6hWtCnMemYC6ajMa6y2QFHLEJUZAc43VJUREREREty7eS9sVTHj0IUf3FSD/dBkSBpigUv8YunCTAcWFNdiZcxIPP/VzSNKN3yBBwcNmboGk7PgrrVQrYG3q+PyM7pCamYw5z9yD3Z8dQEVhFdxuLyRJhqjESEy8fzyGTxx23TbkcjlGjR+IzLEpqK+1wOsVCI/Ut7tNRiHJERcd2m47MpkMphgjVz4REREREfWg7777Dv/2b/8Gr9eL5557Dk899VSv9YUJjz7C3uLEmdxihIRp2yQ7gNY/EGPiw1ByqQblxXVISo3qoBUKZuExoXA5XB0f+Gl1wBQfHvB+DB6TigGZSSg5Xw5rkw0avRrJaQlQaTq3ukJSSIiKbT+ZQURERETUr/SRBR5utxtLly7F3//+dxiNRowdOxb/9E//hIiI3tmJwKUAfYS5uQUWcwv0Idp2X9fqWre3NDVYe7hndKsYmjUIOqMWjTXNfq9ZGq2QlBLSxg/pkb4olAqkZiYjc1IaBo9O7XSyg4iIiIiI+p7Dhw9j+PDhSEhIQEhICGbNmoWtW7f2Wn+Y8OgjlAoJkkKC2+Vp93WPxwuZDH7XcFL/ETcwBhPuHQtzvQVlBRWwNtlgM7egorAKtWX1GHvnCKSOTO7tbhIRERER0S1q9+7dmD17NuLj4yGTyfDVV1/51Vm/fj1SU1Oh0WiQlZWFPXv2+F4rLy9HQkKC73liYiLKysp6ouvt6vWEx7U+rPbs2rULWVlZ0Gg0GDhwIN58802/Oo2NjVi4cCHi4uKg0WiQnp6OnJycQA2hR4RG6JGUakJ9jbnd+5Qbas3/qMPtLP2VTCbDlLk/w+ynpyNuUAzMDRY015kRmRCBmU/dibt/MRWSxIQYEREREVHfIwDRyUcX9rRYrVaMGjUKb7zxRruvb9myBYsXL8aKFSuQm5uLKVOmYObMmSguLm7tZTt/q7a33b6n9OoZHlc+rPXr12PSpEl46623MHPmTJw9exbJyf7/El1UVIRZs2bhl7/8JT788EPs27cPzzzzDKKiojB37lwAgNPpxN13343o6Gh89tlnSExMRElJCUJCQnp6eN1KJpMha+IQlBTWoKKkHtHxYVAoJHi9Ao31FtgsDtw+cyT0If43dFD/IZfLMWrqcGROSkNDdRMgBEKjjNe8GYWIiIiIiG5tLY6WLr+nubntlne1Wg21Wt3ue2bOnImZM2d22OZrr72GJ5980ncQ6dq1a7F161Zs2LABa9asQUJCQpsVHaWlpZgwYUKn+95dZKK9FEwPmTBhAsaOHYsNGzb4ytLT0/HAAw9gzZo1fvWfe+45fPPNN8jLy/OVLViwACdOnMCBAwcAAG+++SZeffVVnDt3Dkpl1/7Ia25uRmhoKJqammA03lo3POSdLMGu70+htqoZgIAQQEioFlkTB2PitHRI3NJCREREREQUcD3xd6PdbkdqaioqKyu79H6DwQCLxdKmbOXKlVi1atV13yuTyfDll1/igQceANC6uECn0+HTTz/Fgw8+6Ku3aNEiHD9+HLt27YLb7UZ6ejp27tzpO7T04MGDiIyM7FL/b1avrfBwOp04evQoli1b1qZ8+vTp2L9/f7vvOXDgAKZPn96mbMaMGdi4cSNcLheUSiW++eYbZGdnY+HChfj6668RFRWFRx99FM8991xQLOdPH5mE1MExKMyvhLm5BWq1EgMGRyMs0tDbXSMiIiIiIqJupNFoUFRUBKfT2aX3t3eDY0erO66ntrYWHo8HMTExbcpjYmJ8CRmFQoE//vGPmDZtGrxeL37zm9/0WrID6MWEx418WFerrKxst77b7UZtbS3i4uJQWFiIHTt24LHHHkNOTg4KCgqwcOFCuN1u/Pa3v223XYfDAYfD4Xt+9ZKfW41Gp0LGaB4+SUREREREFOw0Gg00mlvn6IKrEyhXJ1XmzJmDOXPm9HS32tWrZ3gA1/+wbqT+T8u9Xi+io6Px9ttvQ5IkZGVloby8HK+++mqHCY81a9bgxRdf9Cu/1RMfRERERERE1Duu/L3Yi6dE9CiTyQRJkvwWKFRXV/stTLhV9FrCoysfVmxsbLv1FQqFb5lMXFwclEplm+0r6enpqKyshNPphEql8mt3+fLlWLp0qe95WVkZMjIykJSU1OXxERERERERUfAzm80IDQ3t7W4EnEqlQlZWFrZv397mDI/t27fj/vvv78WedazXEh5d+bCys7Px7bfftinbtm0bxo0b5zugdNKkSfj444/h9Xohl7feupufn4+4uLh2kx2A/ym1BoPBd7NLb16h09zcjKSkJJSUlNxyh6dS+xizvolx65sYt76Jcet7GLO+iXHrmxi3vkUIAbPZjPj4+N7uSrexWCy4cOGC73lRURGOHz+OiIgIJCcnY+nSpZg/fz7GjRuH7OxsvP322yguLsaCBQt6sdcd69UtLdf7sJYvX46ysjL83//9H4DWG1neeOMNLF26FL/85S9x4MABbNy4EZs2bfK1+fTTT+N///d/sWjRIvz6179GQUEBVq9ejWefffaG+yWXy5GYmNi9g70JRqORv/D6GMasb2Lc+ibGrW9i3PoexqxvYtz6Jsat7wi2lR1HjhzBtGnTfM+v7IR44okn8P777+Phhx9GXV0dXnrpJVRUVCAzMxM5OTlISUnprS5fU68mPK73YVVUVKC4uNhXPzU1FTk5OViyZAnWrVuH+Ph4vP7665g7d66vTlJSErZt24YlS5Zg5MiRSEhIwKJFi/Dcc8/1+PiIiIiIiIiI+orbb7/9umeSPPPMM3jmmWd6qEc3Ryb6ywkrfVBP3OtM3Ysx65sYt76JceubGLe+hzHrmxi3volxI+pe8t7uAHVMrVZj5cqVXb4nmXoeY9Y3MW59E+PWNzFufQ9j1jcxbn0T40bUvbjCg4iIiIiIiIiCDld4EBEREREREVHQYcKDiIiIiIiIiIIOEx5EREREREREFHSY8CAiIiIiIiKioMOERw9av349UlNTodFokJWVhT179nRY94svvsDdd9+NqKgoGI1GZGdnY+vWrR3W37x5M2QyGR544IEA9Lx/C0TcGhsbsXDhQsTFxUGj0SA9PR05OTmBHEa/EoiYrV27FsOGDYNWq0VSUhKWLFkCu90eyGH0O52J2969ezFp0iRERkZCq9UiLS0N//3f/+1X7/PPP0dGRgbUajUyMjLw5ZdfBnII/VJ3x+2dd97BlClTEB4ejvDwcNx11104fPhwoIfR7wTi+3YF5ySBEYiYcT4SeIGIG+ckRJ0gqEds3rxZKJVK8c4774izZ8+KRYsWCb1eLy5fvtxu/UWLFonf//734vDhwyI/P18sX75cKJVKcezYMb+6ly5dEgkJCWLKlCni/vvvD/BI+pdAxM3hcIhx48aJWbNmib1794pLly6JPXv2iOPHj/fUsIJaIGL24YcfCrVaLT766CNRVFQktm7dKuLi4sTixYt7alhBr7NxO3bsmPj444/F6dOnRVFRkfjTn/4kdDqdeOutt3x19u/fLyRJEqtXrxZ5eXli9erVQqFQiIMHD/bUsIJeIOL26KOPinXr1onc3FyRl5cn/uVf/kWEhoaK0tLSnhpW0AtE3K7gnCQwAhEzzkcCLxBx45yEqHOY8Ogh48ePFwsWLGhTlpaWJpYtW3bDbWRkZIgXX3yxTZnb7RaTJk0S7777rnjiiSc4uehmgYjbhg0bxMCBA4XT6ey2ftKPAhGzhQsXijvuuKNNnaVLl4rJkyffXGfJpzvi9uCDD4rHH3/c9/yhhx4S99xzT5s6M2bMEI888sjNdZZ8AhG3q7ndbhESEiI++OCDLveT2gpU3DgnCZxAxIzzkcALRNw4JyHqHG5p6QFOpxNHjx7F9OnT25RPnz4d+/fvv6E2vF4vzGYzIiIi2pS/9NJLiIqKwpNPPtlt/aVWgYrbN998g+zsbCxcuBAxMTHIzMzE6tWr4fF4urX//VGgYjZ58mQcPXrUt6y+sLAQOTk5uPfee7uv8/1Yd8QtNzcX+/fvx9SpU31lBw4c8GtzxowZN9wmXVug4nY1m80Gl8vl998/6ppAxo1zksAIVMw4HwmsQMWNcxKizlH0dgf6g9raWng8HsTExLQpj4mJQWVl5Q218cc//hFWqxUPPfSQr2zfvn3YuHEjjh8/3p3dpX8IVNwKCwuxY8cOPPbYY8jJyUFBQQEWLlwIt9uN3/72t906hv4mUDF75JFHUFNTg8mTJ0MIAbfbjaeffhrLli3r1v73VzcTt8TERNTU1MDtdmPVqlV46qmnfK9VVlbe1P8X6NoCFberLVu2DAkJCbjrrru6pd/9XaDixjlJ4AQqZpyPBFag4sY5CVHnMOHRg2QyWZvnQgi/svZs2rQJq1atwtdff43o6GgAgNlsxuOPP4533nkHJpMpIP2lVt0ZN6B1BUF0dDTefvttSJKErKwslJeX49VXX+UEo5t0d8x27tyJV155BevXr8eECRNw4cIFLFq0CHFxcXjhhRe6vf/9VVfitmfPHlgsFhw8eBDLli3D4MGDMW/evJtqkzonEHG74r/+67+wadMm7Ny5ExqNplv73d91Z9w4J+kZ3f1d43ykZ3R33DgnIeocJjx6gMlkgiRJftnc6upqv6zv1bZs2YInn3wSn376aZt/3bp48SIuXbqE2bNn+8q8Xi8AQKFQ4Pz58xg0aFA3jqL/CUTcACAuLg5KpRKSJPnK0tPTUVlZCafTCZVK1X2D6GcCFbMXXngB8+fP9/0Ly4gRI2C1WvGrX/0KK1asgFzO3YE342bilpqaCqA1JlVVVVi1apVvUhgbG9ulNunGBCpuV/zhD3/A6tWr8de//hUjR47s3s73Y4GIG+ckgRWo7xrnI4EVqLhxTkLUOfxG9ACVSoWsrCxs3769Tfn27dsxceLEDt+3adMm/PM//zM+/vhjv315aWlpOHXqFI4fP+57zJkzB9OmTcPx48eRlJQUkLH0J4GIGwBMmjQJFy5c8E0GASA/Px9xcXGcXNykQMXMZrP5TSAkSYJoPfi5ezrfj3U1blcTQsDhcPieZ2dn+7W5bdu2TrVJHQtU3ADg1Vdfxcsvv4zvv/8e48aN65b+UqtAxI1zksAK1HeN85HAClTcOCch6qSePSO1/7pyLdXGjRvF2bNnxeLFi4VerxeXLl0SQgixbNkyMX/+fF/9jz/+WCgUCrFu3TpRUVHhezQ2Nnb4M3gievcLRNyKi4uFwWAQ//qv/yrOnz8vvvvuOxEdHS3+8z//s8fHF4wCEbOVK1eKkJAQsWnTJlFYWCi2bdsmBg0aJB566KEeH1+w6mzc3njjDfHNN9+I/Px8kZ+fL9577z1hNBrFihUrfHX27dsnJEkSv/vd70ReXp743e9+x2tpu1kg4vb73/9eqFQq8dlnn7X5TprN5h4fX7AKRNyuxjlJ9wpEzDgfCbxAxI1zEqLOYcKjB61bt06kpKQIlUolxo4dK3bt2uV77YknnhBTp071PZ86daoA4Pd44oknOmyfk4vACETc9u/fLyZMmCDUarUYOHCgeOWVV4Tb7e6hEQW/7o6Zy+USq1atEoMGDRIajUYkJSWJZ555RjQ0NPTcoPqBzsTt9ddfF8OHDxc6nU4YjUYxZswYsX79euHxeNq0+emnn4phw4YJpVIp0tLSxOeff95Tw+k3ujtuKSkp7X4nV65c2YOjCn6B+L79FOck3S8QMeN8JPC6O26ckxB1jkwIrn0iIiIiIiIiouDCMzyIiIiIiIiIKOgw4UFEREREREREQYcJDyIiIiIiIiIKOkx4EBEREREREVHQYcKDiIiIiIiIiIIOEx5EREREREREFHSY8CAiIiIiIiKioMOEBxEREREREREFHSY8iIiIiIiIiCjoMOFBRETUzxw8eBB33nknTCYTZDJZm0djY2Nvd4+IiIioWzDhQURE1I+cOHECt99+O0aNGoXdu3fj+++/R0REBKZNm4YtW7YgLCyst7tIRERE1C2Y8CAiIupHnn32Wdx///147bXXkJGRgRkzZmDevHkwm82or6/H6NGjkZmZCbVajdGjR2P06NF46623OmyvsLAQ33777XV/7ldffYXFixd340iIiIiIrk3R2x0gIiKinlFVVYW9e/dix44dbcr1ej1kMhkWLFiABQsW4NixY/j1r3+Nffv2XbfNv/zlL7DZbJg9e/Y16508eRIjR468qf4TERERdQZXeBAREfUTR48ehdfrxahRo/zKx40b53t+5swZDB8+vE2dU6dOITs7G5mZmZg7dy6cTid27dqF559/Hu+88w7GjBmDlpYW/OlPf8KECRMwYsQIzJkzB06nEwATHkRERNTzmPAgIiLqJ7xeLwCgpaXFV3bq1Cns3r0bjz/+uK/s9OnTbRIedrsd8+bNwwcffIDTp0/DZDJh8+bNmDp1KjIzM/G3v/0Nubm50Gq1mDVrFg4dOoRTp07BZDJhz549ANpPohAREREFEhMeRERE/cSECROg1Wrxm9/8BufOncOf//xn3H///ViwYAEmTpzoq3fmzBlkZmb6nn/11Ve45557MHToUABAWloaampqAAClpaVISkoCAAgh8Pbbb+O2227DqFGj8OWXX0Kj0cBms0Eul0Or1fbgaImIiKi/Y8KDiIion4iKisInn3yCw4cPY+TIkXj22WexYMECrF27tk29q1d45OXlIT093ff8zJkzyMjIQGlpKRISEnzl77//Pi5cuIDdu3fjxIkTMBqNyMjI8GuPiIiIqCfw0FIiIqJ+5L777sN9993X4esWiwVWqxWxsbG+sri4OJw7dw4AcOzYMRw+fBhvvfUW9u/fj/j4eF+9M2fOYOLEidBqtfif//kfeL1ehIeH8/wOIiIi6hVc4UFEREQ+Z8+eRUZGRpuy+fPn4+zZsxgxYgQWL16MTz75BJIkITMzEwUFBRgxYgTOnTuH+fPn4+WXX8bUqVNRV1eHESNGAGg9J4QJDyIiIuppMiGE6O1OEBERERERERF1J67wICIiIiIiIqKgw4QHEREREREREQUdJjyIiIiIiIiIKOgw4UFEREREREREQYcJDyIiIiIiIiIKOkx4EBEREREREVHQYcKDiIiIiIiIiIIOEx5EREREREREFHSY8CAiIiIiIiKioMOEBxEREREREREFHSY8iIiIiIiIiCjoMOFBREREREREREHn/wPJoxY+L8H4EAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxcVZ3//9ddaq+uXpPu7AkJCVnIQhIgLAICwcAg4MZmgBFUvoB+kXF+gs4oqF/RGWVwhmWEGUFcEBUXVASjoOwQQgKBECBrZ+lO0t3pqu6uve75/dFJkaark+7QSXc67yePeqSr7rn3nHvTKep+6nM+xzLGGEREREREREREhhB7oAcgIiIiIiIiItLfFPAQERERERERkSFHAQ8RERERERERGXIU8BARERERERGRIUcBDxEREREREREZchTwEBEREREREZEhRwEPERERERERERlyFPAQERERERERkSFHAQ8RERERERERGXIU8BARERlAlmXx29/+dsCPcTBt2LABy7JYsWLFoDyeiIiIDA0KeIiIiPSjK664Asuyuj3WrFlTsn1DQwOLFi3q1bFvvvlmZs+e/b6OMRSNGTOGhoYGZsyYAcDf/vY3LMuitbV1YAcmIiIiA8od6AGIiIgMNR/60Ie47777urw2bNiwLs+z2Sx+v5+6urr33V9/HONQ5jjOYX8NREREpDtleIiIiPSzQCBAXV1dl8fpp5/Oddddxw033EBNTQ1nnnkm0H06yubNm7nooouoqqoiEokwb948XnzxRe6//35uueUWXn311WLWyP3331/yGCtXruSDH/wgoVCI6upqPvOZz9De3l7cfsUVV3D++efz3e9+lxEjRlBdXc21115LLpfb57nddNNNHH/88d1enzlzJl/72teKz++77z6mTp1KMBjkqKOO4q677trrcf/+979z7LHHEggEGDFiBDfeeCP5fL643fM8vvOd7zBp0iQCgQBjx47l//2//wd0ndKyYcMGTjvtNAAqKyuxLIsrrriCBx54gOrqajKZTJd+P/rRj3LZZZft87xFRETk0KMMDxERkYPkRz/6Ef/n//wfnn32WYwx3ba3t7dzyimnMGrUKB555BHq6up45ZVX8DyPCy+8kNdff53HHnuMv/zlLwCUl5d3O0YymeRDH/oQxx9/PEuXLmX79u1cddVVXHfddcUACcCTTz7JiBEjePLJJ1mzZg0XXnghs2fP5tOf/vRez+HSSy/l29/+NmvXrmXixIkAvPHGG6xcuZJf/epXANx777187Wtf44477mDOnDksX76cT3/600QiES6//PJux9yyZQtnn312MTCxevVqPv3pTxMMBrn55puBzkDLvffey3/8x39w0kkn0dDQwOrVq7sda8yYMTz88MN89KMf5a233iIWixEKhfD7/Xz+85/nkUce4eMf/zgATU1N/OEPf+Cxxx7b6zmLiIjIoUkBDxERkX72hz/8gWg0Wny+u77GpEmT+Ld/+7ce9/vZz37Gjh07WLp0KVVVVcV9dotGo7iuu9fpGz/96U9JpVI88MADRCIRAO644w7OPfdcvvOd71BbWwt0Zj/ccccdOI7DUUcdxTnnnMNf//rXfQY8ZsyYwcyZM/nZz37Gv/7rvxb7nD9/PpMnTwbgG9/4Bt/73vf4yEc+AsCECRNYtWoVP/jBD0oGPO666y7GjBnDHXfcgWVZHHXUUWzdupUvfelLfPWrX6Wjo4Pvf//73HHHHcX9J06cyEknndTtWI7jFK/d8OHDqaioKG675JJLuO+++4oBj5/+9KeMHj2aU089da/nLCIiMpDS6TTZbHa/9vX7/QSDwX4e0aFDAQ8REZF+dtppp3H33XcXn0ciES6++GLmzZu31/1WrFjBnDlzijfs++PNN99k1qxZxWAHwIknnojnebz11lvFgMf06dNxHKfYZsSIEaxcubJXfVx66aX88Ic/5F//9V8xxvDggw9y/fXXA7Bjxw42bdrElVde2SV4ks/nS2ak7B7zggULsCyry5jb29vZvHkzjY2NZDIZTj/99F5fh1I+/elPM3/+fLZs2cKoUaO47777ikVmRUREBqN0Os2E8bU0bkvs1/51dXWsX7/+sA16KOAhIiLSzyKRSJfMjD1f35tQKPS++zbG9HgDv+frPp+v2zbP83rVxyWXXMKNN97IK6+8QiqVYtOmTVx00UUAxWPce++9HHfccV322zPAsq8x757yY1lWv1wXgDlz5jBr1iweeOABzjrrLFauXMnvf//7fjm2iIjIgZDNZmnclmDjm7cQK+tb0CLRlmbc1K+RzWYV8BAREZGBNXPmTP7nf/6HlpaWklkefr+fQqGw12NMmzaNH/3oR3R0dBQDLM8++yy2bRennLxfo0eP5gMf+EBx+swZZ5xRzBypra1l1KhRrFu3jksvvbRXx5s2bRoPP/xwl8DHc889R1lZGaNGjWLYsGGEQiH++te/ctVVV+3zeH6/H6Dktbrqqqv4j//4D7Zs2cIZZ5zBmDFjenvaIiIiA6asLEBZLNCnfQzd64UdbrRKi4iIyCBx8cUXU1dXx/nnn8+zzz7LunXrePjhh3n++ecBGD9+POvXr2fFihU0NTV1W3EEOqebBINBLr/8cl5//XWefPJJPve5z7F48eJiUKI/XHrppfz85z/nl7/8JZ/85Ce7bLv55pu59dZb+f73v8/bb7/NypUrue+++7jttttKHuuaa65h06ZNfO5zn2P16tX87ne/42tf+xo33HADtm0TDAb50pe+xP/3//1/PPDAA6xdu5YXXniB//3f/y15vHHjxmFZFn/4wx/YsWNHlxVqLr30UrZs2cK9997Lpz71qX67HiIiIjL4KOAhIiIySPj9fv785z8zfPhwzj77bI4++mi+/e1vF6eCfPSjH+VDH/oQp512GsOGDePBBx/sdoxwOMzjjz9OS0sL8+fP52Mf+xinn346d9xxR7+O9eMf/zjNzc0kk0nOP//8Ltuuuuoq/ud//of777+fo48+mlNOOYX777+fCRMmlDzWqFGjePTRR3nppZeYNWsWV199NVdeeSX/8i//Umzzr//6r/zTP/0TX/3qV5k6dSoXXngh27dv7/F4t9xyCzfeeCO1tbVcd911xW2xWIyPfvSjRKPRbuMWERGRocUypdbFExERERmizjzzTKZOncp//ud/DvRQRERE9iqRSFBeXk7z5luJxfpYwyORpnr0TUyePBnHcbj22mu59tprD9BIByfV8BAREZHDQktLC3/+85954okn+j3jRUREZLBaunQpsVhsoIcxIBTwEBERkaKnn36aRYsW9bh9z3oYh5pjjjmGnTt38p3vfIcpU6YM9HBERER6zex69HWfw50CHiIiIlI0b948VqxYMdDDOCA2bNgw0EMQERGRg0gBDxERESkKhUJMmjRpoIchIiIi8r4p4CEiIiIiIiIyiJld//V1n8OdlqUVERERERERkSFHGR4leJ7H1q1bKSsrw7KsgR6OiIiIiIiIDDLGGNra2hg5ciS2fWBzCTxj8EzfMjb62n4oUsCjhK1btzJmzJiBHoaIiIiIiIgMcps2bWL06NEDPQwpQQGPEsrKyoDOX9zDdb1iERERERER6VkikWDMmDHF+8cDScvS7p9DIuBx11138e///u80NDQwffp0br/9dk4++eQe22cyGb7+9a/zk5/8hMbGRkaPHs1XvvIVPvWpT/Wqv93TWGKxmAIeIiIiIiIi0iOVQRi8Bn3A46GHHuL666/nrrvu4sQTT+QHP/gBixYtYtWqVYwdO7bkPp/4xCfYtm0b//u//8ukSZPYvn07+Xz+II9cRERERERERAbKoA943HbbbVx55ZVcddVVANx+++08/vjj3H333dx6663d2j/22GP8/e9/Z926dVRVVQEwfvz4gzlkERERERERkX6jZWn3z6BeljabzbJs2TIWLlzY5fWFCxfy3HPPldznkUceYd68efzbv/0bo0aNYvLkyXzxi18klUr12E8mkyGRSHR5iIiIiIiIiMiha1BneDQ1NVEoFKitre3yem1tLY2NjSX3WbduHc888wzBYJDf/OY3NDU1cc0119DS0sIPf/jDkvvceuut3HLLLf0+fhEREREREZH3S0VL98+gzvDY7b1FYIwxPRaG8TwPy7L46U9/yrHHHsvZZ5/Nbbfdxv33399jlsdNN91EPB4vPjZt2tTv5yAiIiIiIiIiB8+gzvCoqanBcZxu2Rzbt2/vlvWx24gRIxg1ahTl5eXF16ZOnYoxhs2bN3PkkUd22ycQCBAIBPp38CIiIiIiIiIyYAZ1hoff72fu3LksWbKky+tLlizhhBNOKLnPiSeeyNatW2lvby++9vbbb2PbNqNHjz6g4xU5lOXzBd5ev53Hn1rF7/+6kueWraOltWOghyUiIiIictjzMPv1ONwN6gwPgBtuuIHFixczb948FixYwD333EN9fT1XX3010DkdZcuWLTzwwAMAXHLJJXzjG9/gH//xH7nllltoamrin//5n/nUpz5FKBQayFMRGbTaOtI88pfXeGvddvIFD9u2KBQ8nn55DWeeNJVjpo8Z6CGKiIiIiIj0yaAPeFx44YU0Nzfz9a9/nYaGBmbMmMGjjz7KuHHjAGhoaKC+vr7YPhqNsmTJEj73uc8xb948qqur+cQnPsE3v/nNgToFkUHNGMMfn3idlW81MHpEBaGADwDPGLY3tfHok69THg0ycdywAR6piIiIiMjhSUVL949ljNF1eI9EIkF5eTnxeJxYLDbQwxE5oDY17OS+Xz1PeVmIaLh7LZv1m5qYNXU0H1s0p8diwSIiIiIih5uDcd+4u49Nm75BLBbs475pxoz518P6vnZQ1/AQkQNvS2Mr6UyOSMhfcntFLMz6Tc2kM/mDPDIREREREYF3Mzz6+jjcKeAhcpjzdi3z3FP2hmVZGGPwlAwmIiIiIiKHEAU8RA5zw6qiOLZNOpMruT3enqJuWIxw0HeQRyYiIiIiIrL/FPAQOcxNGFPD2JGVbNkWp+B5XbbF21JgYPa00arfISIiIiIyQDyzf4/D3aBfpUVEDizXsfmHDx7Nw48tZ/2mZkIBH67r0JHK4HMcTph7BDMmjxzoYYqIiIiIiPSJAh4iQt2wGIvPP5Y31jSy6p0GMpk8Rx0xnBlTRjFp3DBsW9kdIiIiIiIDRcvS7h8FPEQEgFhZiAVzJrBgzoSBHoqIiIiIiMj7phoeIiIiIiIiIjLkKMNDREREREREZJDTFJW+U4aHiIiIiIiIiAw5yvAQERERERERGcRUtHT/KMNDRERERERERIYcBTxEREREREREZMjRlBYRERERERGRQczDwsPq8z6HO2V4iIiIiIiIiMiQowwPERERERERkUFMRUv3jzI8RERERERERGTIUYaHiIiIiIiIyCBmjIUxfavJ0df2Q5EyPERERERERERkyFHAQ0RERERERESGHE1pERERERERERnEvF2Pvu5zuFOGh4iIiIiIiIgMOcrwEBERERERERnEDBaGPhYt7WP7oUgZHiIiIiIiIiIy5CjgISIiIiIiIiJDjqa0iIiIiIiIiAximtKyf5ThISIiIiIiIiJDjjI8RERERERERAYxLUu7f5ThISIiIiIiIiJDjjI8RERERERERAYxYyyM6WMNjz62H4qU4SEiIiIiIiIiQ44CHiIiIiIiIiIy5GhKi4iIiIiIiMggpmVp948yPERERERERERkyFGGh4iIiIiIiMgg1rksbd8yNrQsrTI8RERERERERGQIOiQCHnfddRcTJkwgGAwyd+5cnn766R7b/u1vf8OyrG6P1atXH8QRi4iIiIiIiMhAGvRTWh566CGuv/567rrrLk488UR+8IMfsGjRIlatWsXYsWN73O+tt94iFosVnw8bNuxgDFdERERERESkX6lo6f4Z9Bket912G1deeSVXXXUVU6dO5fbbb2fMmDHcfffde91v+PDh1NXVFR+O4xykEYuIiIiIiIjIQBvUAY9sNsuyZctYuHBhl9cXLlzIc889t9d958yZw4gRIzj99NN58sknD+QwRURERERERA4Ys5+Pw92gntLS1NREoVCgtra2y+u1tbU0NjaW3GfEiBHcc889zJ07l0wmw49//GNOP/10/va3v/GBD3yg5D6ZTIZMJlN8nkgk+u8kREREREREROSgG9QBj90sq+vcI2NMt9d2mzJlClOmTCk+X7BgAZs2beK73/1ujwGPW2+9lVtuuaX/BiwiIiIiIiLSTwxWn5elVQ2PQT6lpaamBsdxumVzbN++vVvWx94cf/zxvPPOOz1uv+mmm4jH48XHpk2b9nvMIiIiIiIiIjLwBnXAw+/3M3fuXJYsWdLl9SVLlnDCCSf0+jjLly9nxIgRPW4PBALEYrEuDxERERERERE5dA36KS033HADixcvZt68eSxYsIB77rmH+vp6rr76aqAzO2PLli088MADANx+++2MHz+e6dOnk81m+clPfsLDDz/Mww8/PJCnISIiIiIiIrJfjLEwpo9TWvrYfiga9AGPCy+8kObmZr7+9a/T0NDAjBkzePTRRxk3bhwADQ0N1NfXF9tns1m++MUvsmXLFkKhENOnT+ePf/wjZ5999kCdgoiIiIiIiIgcZJYxRqvVvEcikaC8vJx4PK7pLSIiIiIiItLNwbhv3N3H0vXfIxoL9Wnf9kSK+RP+6bC+rx3UNTxERERERERERPaHAh4iIiIiIiIiMuQM+hoeIiIiIiIiIoczDwuPvhUh7Wv7oUgZHiIiIiIiIiIy5CjDQ0RERERERGQQM1iYPmZs9LX9UKQMDxEREREREREZchTwEBERERERERnEDBbG9PExABkemzZt4tRTT2XatGnMnDmTX/7ylwd9DHvSlBYRERERERERed9c1+X2229n9uzZbN++nWOOOYazzz6bSCQyMOMZkF5FREREREREZEgZMWIEI0aMAGD48OFUVVXR0tIyYAEPTWkRERERERERGcR2L0vb10dfPfXUU5x77rmMHDkSy7L47W9/263NXXfdxYQJEwgGg8ydO5enn3665LFefvllPM9jzJgxfR5Hf1HAQ0RERERERETo6Ohg1qxZ3HHHHSW3P/TQQ1x//fV85StfYfny5Zx88sksWrSI+vr6Lu2am5u57LLLuOeeew7GsHukKS0iIiIiIiIig5jZ9ejrPgCJRKLL64FAgEAgUHKfRYsWsWjRoh6Pedttt3HllVdy1VVXAXD77bfz+OOPc/fdd3PrrbcCkMlkuOCCC7jppps44YQT+jjq/qUMDxEREREREZEhasyYMZSXlxcfuwMTfZXNZlm2bBkLFy7s8vrChQt57rnnADDGcMUVV/DBD36QxYsXv++xv1/K8BAREREREREZojZt2kQsFis+7ym7Y1+ampooFArU1tZ2eb22tpbGxkYAnn32WR566CFmzpxZrP/x4x//mKOPPnr/Bv8+KeAhIiIiIiIiMogZLEwfi5Dubh+LxboEPN4vy+o6DmNM8bWTTjoJz/P6ra/3S1NaRERERERERGSvampqcBynmM2x2/bt27tlfQwWCniIiIiIiIiIDGKesfbr0Z/8fj9z585lyZIlXV5fsmTJgBcn7YmmtIiIiIiIiIgI7e3trFmzpvh8/fr1rFixgqqqKsaOHcsNN9zA4sWLmTdvHgsWLOCee+6hvr6eq6++egBH3TMFPEREREREREQGsfdTw6MvXn75ZU477bTi8xtuuAGAyy+/nPvvv58LL7yQ5uZmvv71r9PQ0MCMGTN49NFHGTduXJ/7OhgU8BARERERERERTj31VIwxe21zzTXXcM011xykEb0/quEhIiIiIiIiIkOOMjxEREREREREBrGDNaVlqFGGh4iIiIiIiIgMOcrwEBERERERERnEPCy8PmZs9LX9UKQMDxEREREREZEhav78+UybNo0777xzoIdy0CnDQ0RERERERGSIWrp0KbFYbKCHMSAU8BAREREREREZzAzsY7XYkvsc7jSlRURERERERESGHGV4iIiIiIiIiAxiWpZ2/yjDQ0RERERERESGHGV4iIiIiIiIiAxiyvDYP8rwEBEREREREZEhRwEPERERERERERlyNKVFREREREREZBDzsPD6OEWlr+2HImV4iIiIiIiIiMiQowwPERERERERkUHMGAtj+li0tI/th6JDIsPjrrvuYsKECQSDQebOncvTTz/dq/2effZZXNdl9uzZB3aAIiIiIiIiIjKoDPqAx0MPPcT111/PV77yFZYvX87JJ5/MokWLqK+v3+t+8Xicyy67jNNPP/0gjVREREREREREBotBH/C47bbbuPLKK7nqqquYOnUqt99+O2PGjOHuu+/e636f/exnueSSS1iwYMFBGqmIiIiIiIhI/zP7+QCYP38+06ZN48477zzYwx5wgzrgkc1mWbZsGQsXLuzy+sKFC3nuued63O++++5j7dq1fO1rXzvQQxQREREREREZtJYuXcqqVau49tprB3ooB92gLlra1NREoVCgtra2y+u1tbU0NjaW3Oedd97hxhtv5Omnn8Z1e3d6mUyGTCZTfJ5IJPZ/0CIiIiIiIiL9qDNjo49FSw/MUA4pgzrDYzfL6voXa4zp9hpAoVDgkksu4ZZbbmHy5Mm9Pv6tt95KeXl58TFmzJj3PWYRERERERERGTiDOuBRU1OD4zjdsjm2b9/eLesDoK2tjZdffpnrrrsO13VxXZevf/3rvPrqq7iuyxNPPFGyn5tuuol4PF58bNq06YCcj4iIiIiIiIgcHIN6Sovf72fu3LksWbKECy64oPj6kiVLOO+887q1j8VirFy5sstrd911F0888QS/+tWvmDBhQsl+AoEAgUCgfwcvIiIiIiIi0g88Y+GZvk1p6Wv7oWhQBzwAbrjhBhYvXsy8efNYsGAB99xzD/X19Vx99dVAZ3bGli1beOCBB7BtmxkzZnTZf/jw4QSDwW6vi4iIiIiIiMjQNegDHhdeeCHNzc18/etfp6GhgRkzZvDoo48ybtw4ABoaGqivrx/gUYqIiIiIiIgcGAZrP4qWKsPDMsaoeOt7JBIJysvLicfjxGKxgR6OiIiIiIiIDDIH475xdx+/f+d/iJSF+7RvR1uSc4+86rC+rx30GR4iIiIiIiIihzNleOyfQb1Ki4iIiIiIiIjI/lDAQ0RERERERESGHE1pERERERERERnEjOl89HWfw50yPERERERERERkyFGGh4iIiIiIiMgg5mHh9bEIaV/bD0XK8BAREREREREZoubPn8+0adO48847B3ooB50yPERERERERESGqKVLlxKLxQZ6GANCAQ8RERERERGRQcxgYfo4RaWv7YciTWkRERERERERkSFHGR4iIiIiIiIig5gyPPaPMjxEREREREREZMhRhoeIiIiIiIjIIGZM56Ov+xzulOEhIiIiIiIiIkOOAh4iIiIiIiIiMuRoSouIiIiIiIgcVJ7nkUgkiMfjtLa2kslkOPbYY4vbX331VWbNmjWAIxxs+l60FBUtVcBDRERERERE9s/atWvZsWNHMXCx558+n4+bb7652Paiiy7i+eefp7W1lba2NsweRSaqq6tpamoqPn/55ZcV8JD3TQEPETksecawpS1BKpcj6vczIlqGZSkKLiIiIkNfLpcjHo8XgxOe5zF//vzi9v/6r/9i3bp1JYMY1dXVvPjii8W2H/vYx1ixYkXJfmpqaroEPLZt20Z9fX2XNoFAgPLycmpqarq8Pnny5Pd/okOIMRbG9HFZ2j62H4oU8BCRw85bzU38Zf1a1ra2kCnkCTouk6trWDhhEhMqKgd6eCIiIiK98uabb9LU1FQyMFFRUcGXv/zlYtuFCxfy+uuvE4/HSSaTXY4zadIk3nnnneLzH/7whz0GMRKJRJfnY8eOpbW1lYqKCsrLy4t/lgpi3H777WSz2eL28vJygsFgyX5OPvnkvlwKkZL6PeDx0ksvMXfuXBzHAcAY0+Vb00wmw+9+9zs+8YlP9HfXIiL7tLp5Bz96bTmt6TQjysoIuT6SuSzLG7eypS3Bp2Yew3gFPUREROQAMMaQTqe7BCdc12XevHnFNt/61rfYunVrlwyM3T9PnDiRv/71r8W2Z599Nhs2bCjZ15FHHtkl4LF9+3YaGhq6tIlGo5SXlzNixIgury9evJizzjqrS/Bi98+VlV0/J/3ud7/r9flrioocbP0e8FiwYAENDQ0MHz4cgPLyclasWMERRxwBQGtrKxdffLECHiJy0BU8j8fWvkM8k+HIqupiMDYWCFLmD/B2SzN/2bCWK2fN1fQWERER2asVK1awc+fOktkVo0aN4p/+6Z+KbefNm0d9fT2tra3kcrkux5k/fz4vvfRS8fk999zDxo0bS/bp9/u7PJ84cSI+n69bZkVFRQWjRo3q0va+++4DKG6PxWK4bunbwRtuuKH3F0IOCm/Xo6/7HO76PeCxZ+GZUs97ek1E5ECrT8TZEG9lZFn3eh2WZVEbibK6uYntyQ5qI9EBGqWIiIgcCJ7n0d7e3iUwEQ6HOeaYY4ptvvzlL9PS0lIyiDF//nx++9vfFtueeuqpxOPxkn3Nnz+/S8CjqamJHTt2FJ9bllUMTrw3u+Kzn/0sHR0d3aaIVFRUUFVV1aXtX/7yl16f/5w5c3rdVmSoGJAaHvrmVEQGQkcuSzqfI+z6Sm4P+3y0pJK0Z7PURg7y4ERERKRXPM/j5Zdf7haQ2P3zlClTuO6664DOL1onTpzIzp07SSQSeF7X77wXLlzI448/Xnx+11139RjEeO90kClTptDW1laydsXu7PbdfvOb3+C6brFNNBrFtu2S/dx00019viYy9Jn9WJa278vYDj0qWioih42wz0fAcUnl84R93YMeqXyOgOsSKbFNRERE9l8+nyeRSHQrqjl79mygs87fl7/85R6DGGeddRY//vGPi8c7/vjje8waX7hwYTHgYVlWMWNjN5/PVww8vDe74oYbbsAY0y2zolQBzj1XKtkXZVeIDIwDEvBYtWoVjY2NQGdUdfXq1bS3twN0WVtZRORgGherYHx5JWt2NjOxsqpLtpkxhsb2NubWjdJ0FhERkR5ks1mWLl1aMigRj8eZO3cuV111FQBtbW1MnTqVeDxevBfY0yc+8QkeeughAFzX5bbbbuux3+3btxd/tm2badOmYdt2MSCxZ3bF1KlTu+z7xBNPEA6Hi22DwWCPGedf/epX+3xNRA6G97Ms7fz583Ech2uvvZZrr732QAxv0DogAY/TTz+9S8T1H/7hH4DOCOt7V20RETlYHNvmrImTaHytjbU7WxgRLSPouiRzORra26gJRzh9whGH1HtUMr+DnZl1FEyWgBOjKnAkPjs80MMSEZFBJJPJdAtO1NXVcfTRRwMQj8f56le/2i27YvefF198MXfeeScAHR0dnHTSST329YlPfKIY8AiHw2zZsqXL9t2Bh/Lycurq6oqvO47DV77yFUKhUMnaFcOGDetynNdff73X579njQ6Rw9HSpUuJxWIDPYwB0e8Bj/Xr1/f3IUVE+s20muFcMfMY/rzuHdbHW8kW8gQdl6OH1XLWxCM5oqJq3wcZBAomx4a2v9KYfIWs1waWhWUg7A5nQtkZDAvNGOghiohIP9jzy8JUKsVLL73UY3bFqaeeyqWXXgrA5s2bmTt3LvF4nEwm0+24n/nMZ/jBD34AdNbE+M///M8ex9Dc3Fz8ORaLMXHixJKrgpSXl3dZdtRxHF555RVisVixnW8v00a/+c1v9u3iiIjsQ78HPMaNG9ffhxQR6VdTa4YxpbqGTYk4yVyOqN/P6LLYIZXZUd/+d+o7niJoV1Lh78xK8Uye9lwjb8cfwbVDVAYmDvQwRUQOa8YYOjo6ugUmxo8fX5x20dDQwDe+8Y2SAYx4PM4111zDt7/9bQAaGxs59dRTe+zPcZxiwCMcDneZBgIUAw8VFRVdalfEYjG+/OUvdwtelMqucByHNWvW9PoaqHaFSP8wux593edw1+8Bj5aWFpLJJKNHjy6+9sYbb/Dd736Xjo4Ozj//fC655JL+7lZEpE9sy2JcecVAD2O/pAutNCRfJmCXE3Iri6/blkuZbxTx7AYakkuLgRAREdk/e2ZXJBIJli5d2mNRzQ9/+MN85CMfATqnW5xyyinE43EKhUK3437pS18qBjFSqRR33313j2NobW0t/lxZWclRRx3VY2Bi3rx5xbYVFRWsWLGi2KasrAzHcUr24TgO/+///b8+Xx8RkcGu3wMe1157LSNGjCgWHdq+fTsnn3wyI0eOZOLEiVxxxRUUCgUWL17c312LiBwWEtl6Ml6CCt/4btssyyLoVrEzu56s10bAOTzna4qIeJ7XbVWQ1tZWjjrqKCZPngzA2rVr+c53vtNjdsVXv/pVbrzxRgDWrFnDGWec0WN/dXV1xYBHKBSipaWluM1xnC7Bidra2uK24cOH89WvfrXkqiDvza6oqKjgzTff7NX527bdZXqJiBzatCzt/un3gMcLL7zAfffdV3z+wAMPUFVVxYoVK3Bdl+9+97vceeedCniIiOyngskBYFl2ye225ZL3Ungm3+tjGmPwTAdgYVthZYaIyIAyxuB5XjEjobm5ea8rg1x66aUsWrQIgGeffZZFixbR1tZW8tjf/va3+dKXvgR0Zk/ce++9PY5jz6VMq6urmT59epcVQfYMYixYsKDYduzYsbzxxhvFNuFwz++r0WiUW265pW8XSEREeqXfAx6NjY1MmDCh+PyJJ57gggsuwHU7u/rwhz/Mrbfe2t/diogc0gqmM+XZsUqnG+8p6FRi4yPvpXDtULft2UJnZoff3vfyusZ4dGRXkEi/QCa/CYCQbyJlweMJ+6Yr8CEi+yWbzZbMmJg9ezZHHHEEAK+99hr/8R//0WX7nu3vuOMOPvvZzwKwYsWKYkCjlKOPPrq4PRQKdQl2BIPBLsGJPTMmxo0bxze+8Y0ep4jU1NR0advblUF8Ph/Tpk3r/QUTEZEDot8DHrFYjNbW1mLx0pdeeokrr7yyuN2yrJKVokVEDkdbU1tY076aLclNGGBEaCRHRqcwKjS2x2BDuX8s5f4x7Myup8I3rkumR97LkPM6GBv9AI7t32vfxhh2Jh9jZ+pPGAyuVQkY2jOv0JF9nerweVSET+vHsxWRQ4HneRhjitkVjY2NvPzyyz0uWXrNNddwyimnAPDHP/6Rj3/846RSqZLH/u///u9iEKOpqYn777+/x3HsmV1RW1vL7NmzS64KUlFRwcknn1xsO23aNN56663i9kAg0GMfNTU1/Mu//Euvr42IyEAxxsKYPk5p6WP7oajfAx7HHnss//mf/8m9997Lr3/9a9ra2vjgBz9Y3P72228zZsyY/u5WROSQ81bbKl5oeoa0lybidmZjvNO2mvUda5lfuYAZ5bPImwxZL4lrBQg4EaBzysoRZR/izdZfsjO7jqBTjm35yXnt5L0Mw0IzGBGev8/+0/m17EwtwbHK8TnVxdd9TjXZQiM7U38i5D+SgDt6L0cRkcHEGEM6nS4ZnDjhhBOKn8Gef/557rrrrpLTQxKJBA8++CAXXngh0DlF5GMf+1iPfZ5++unFgEcwGOwS7IhGo10CFFVV7y79PXnyZG699dYelzetrn73fWnGjBksX768V9cgGAwWa3SIiMjhrd8DHt/4xjc444wz+MlPfkI+n+fLX/4ylZXvriLw85//vPg/RRGRw9XObAsvNT8PFowMvRtQKPdVEM/t5OWWp0nm19OR30LOS+FYfmqDRzIuOo+Ybzgx/2hmVH2SxuQrNKVfp2DyhN3h1IXmUBuajWsH9zmG9sxyjEnhc8d22+aza0nl36Ij85oCHiIHUS6Xw7Ks4lTg+vp6li1b1mPtiptuuqm4MsdPfvITPvWpT5HL5Uoe+6GHHioGPLZu3cpPfvKTHsex58ogI0eOZP78+SWnfZSXl3PCCScU2y5YsIB169ZRXl5OLBYrnkcpo0ePLhYEFRGRvdOytPun3wMes2fP5s033+S5556jrq6O4447rsv2iy66SHMaReSwt6FjHR359i7Bjt0idoDN6ZdZHX+bkaEJBO0ycibD+vaXaMpsYE7VeVT4RxFxhzExdhYTyk6nYHI4lh+7hxogxniAwdpje7awBdsKl2xvWRY2frKFxs5vjPNrac8sJ5PbgGX5iARmEvHPxudUldxf5HDkeR7t7e0lAxNnnHFGcWWOJUuW8L//+78lgxjJZJLHH3+chQsXFtteddVVPfZ54YUXFgMewWCwGOywbZtYLNYtOLHb7Nmz+e53v9tjdsWeX1YtWLCAl156qVfXIBwOd6nlJiIiMpD6PeABMGzYMM4777yS284555w+H++uu+7i3//932loaGD69OncfvvtXeZq7umZZ57hS1/6EqtXryaZTDJu3Dg++9nP8oUvfKHP/YqIvB/GGLan46xt30bWyxPzhZgSG0nEDdKcbcK13ZJ1OpL5eiCJYQRRX2fBPD9hwk45zdl63kr8jWOrLy7W7rAtF9sq/XbekdtMc3oZrZnVGFMg6htLVWgOFf6p2FYQY0p/EwxgKGARoDX1F3Ym/4RnkthWFEOeZO5NEs6zDC9bTLDE8rgih5rdU0F8Pl8xK2HNmjUsX7682/SQ3T9/+9vfLn6J85//+Z9cf/31GFP6+7Q9gxgbN27koYce6nEse2ZXjB07lgULFpRcFaSiooJjjjmm2PZDH/oQ9fX1VFRUEI1G91p0eOLEifzTP/1Tr6+PiIgMLC1Lu3/6PeDxwAMP9KrdZZdd1qt2Dz30ENdffz133XUXJ554Ij/4wQ9YtGgRq1atYuzY7mnYkUiE6667jpkzZxKJRHjmmWf47Gc/SyQS4TOf+UyfzkVEZH/lvDx/bniVV1rW055PYWNjMAwLxDhjxEx8tg/PeN32K5gM6cI2wI9jd32LtiybmDuclswmWnMNVPpH7XUMOzNvsDHxMNlCKz47hoVDS+ZVdmbeYETkVKK+GbRnVmBMHus9ARPPdBaXduwgLck/4lghAu679ZeM8Ujn17Kj/UFGlX8BuxdTaEQOpHw+TyKRKJldce655xZrR/zmN7/hpz/9ackgRjab5cUXX+TYY48F4Le//S3//M//3GOf1113XTHgEQqFisEOn8/XLUARjb67atIJJ5zA7bff3mN2xZ6ZGGeeeSZnnnlmr65BNBrt0o+IiMjhrt8DHldccQXRaBTXdXv8lsOyrF4HPG677TauvPLKYjrn7bffzuOPP87dd99dcnnbOXPmMGfOnOLz8ePH8+tf/5qnn35aAQ8ROWieaHydZ3a8SZW/jNpgOZZlUTAejamdPLL5ZU6qHYnBkPfyuHsENjyToWCyGGNT7qvodly/EyaR3066kAB6DnhkCwk2tf2evJeizDep+E1vkBoyhZ00dPyNibGPE/JNIpV7h4AzFsfunN5S8NrJFDYR8R1N3tuJMVl87rgux7csm4A7jkx+I8ncKqKBY7qNQaS3jDG0t7cTDoeLK4O8/vrrvPbaayUDGPF4nP/+7/8ufvFxyy23cPPNN/d4/JdeeqkY8FizZg0PP/xwj233XBlk4sSJfOADHyhZt6KiooKpU6cW21500UWce+65lJeXEwwG95pdMW3aNE3vFREROQj6PeAxdepUtm3bxic/+Uk+9alPMXPmzP0+VjabZdmyZd0KWi1cuJDnnnuuV8dYvnw5zz33HN/85jf3exwiIn2xM9vOKy3rKPdFqPBHiq87ls3IUBUbOrazqT1DXXAkDenNDAvU4d+1hGze80gV0kTcGBW+ym7HLpgcFjautfclZ+PZN0nnt1PmO6LbjVfAqSRTaGFn9m1GRxfT1P4LUvl3yBSyWIBlBYkGjqE6/DG2Jr6PY8dK9mFbfgwe2UJDH6+QDDXpdLoYiHjvyiAXX3wxkUjnv4Mf//jH/OpXv+rWJpFI4Hkeb7/9NkceeSQADz74IN/61rd67HPbtm3FgEc4/G4tmnA43C1AEQy+m4F05plncuedd/YYxNgzQ+KCCy7gggsu6NU1KCsro6ysrPcXTUREpA+M6Xz0dZ/DXb8HPN544w1efPFFfvjDH/KBD3yASZMmceWVV3LppZcSi5X+0NyTpqYmCoVCscjXbrW1tTQ2Nu5139GjR7Njxw7y+Tw333zzXgt+ZTIZMplM8XkikejTOEVk6CkYj3VtO9jc0YrBUBcq58jYcHx26aKge9rY0UQin2R8ZHi3bZZlUeUvY1OyhdNqT+DV+Is0pLdQMAUAbGzK/aMoc8EtUZejPddMma+GSv/eV05J53cAVpcipXvy2VE6cpvwu7WMKL+GdG4tmcIWLCz87hiCbmfRQWvXVJyeWBjA3utYZHArFAokEgnKy8ux7c6/y2XLlvHGG2+UXNo0Ho/z0EMPFTMmPv/5z/Nf//VfPR7/lFNOKQYxVq9ezSOPPNJj2z2zK4466ig++MEPdglM7PnnuHHvZh1dffXV/OM//iPl5eX4fL69nu/s2bOZPXv2Pq+LiIiIHPoOSNHS4447juOOO47bb7+dX/7yl9x333188Ytf5Pzzz+eHP/whgUCgT8d777eTxpi9pooCPP3007S3t/PCCy9w4403MmnSJC6++OKSbW+99VZuueWWPo1JRIau5kw7v9rwCu8ktpP1CliAa9uMj1bz0XHHMDJcsdf9C96u4IVVOhDg2japgkfYLWPRiHPZmtpCU2YHAFX+agJWntdaH6E1t4WYW4tj+/BMgfZ8Ex55JkSPw7X3/j5q4e41UGEoYFudN4aW5RDyTybE5G7twv7pxFN/xdi13d53PZMGfARLLGsrB4cxho6OjpLTPlpbW/n0pz9dLMB555138uijj3Zr297eDsD27dsZNmwYAP/7v//L3Xff3WO/LS0txYDHnlkNe64KsvvPPZclPe+88xg3blzJmhUVFRWEQqFi28WLF7N48eJeXQdlV4iIyFCnoqX754AEPHYLhUJcdtlljB8/nq997Wv8/Oc/54477uh1wKOmpgbHcbplc2zfvr1b1sd77V4S7eijj2bbtm3cfPPNPQY8brrpJm644Ybi80QiUVynXkQOL+lCjofWv8zqeCOjw5WEXX/x9TWJHTy4bimfnnwSMX+ox2NUBaL4LJdUPkvI7T71JJFLUeELU+YL4VguY8LjGBPuWiMD6x94O/EU8VwD3q7/XYXdKo6KHseY8Ox9nkeZfzx20qXgpXHeU1DUGI+c105t+JR9Hycwn/bMMrKFTfid0cWVYTyTIZ3fQNg3jaCve6BEeieTyRCPxxk+/N1soGeffZbVq1f3WLviz3/+czGLYfHixfz0pz/t8fgf//jHqanpXOln1apVPProoz22jcfjxYDHzJkzOeuss7pN99j95+5jAnzpS1/in//5nykrKyvW3+jJscceWywIKiIiInKgHbCAx5YtW/jRj37EfffdR0dHB5/85Ce5++67u6zrvi9+v5+5c+eyZMmSLnNolyxZ0uOyt6UYY7pMWXmvQCDQ56wTERmaVscbeSexnfGRavzOu2+RQcfHEdEa1rY38XrrVk4YPrHHY4yNDGNcZBhr2hoZHx3WJdMjXciSzGc4rXYGfrvnt+C60BRqAhNozmwg43Xgs4NU+8fhd8I97rOnMv9Eyv2T2Zl5g4g7BtfuDNB4JkdHfjMht47q4Kx9Hifom0BN9BM0t/+aVP7tXZkjHhYWYd9RDC+7uJgpcrjZPRWk1JSPjo4O/s//+T/FtrfeeitPPvlkt7a7/9+UzWaLQYy77rqLn/3sZz32m0gkqK6uBihOFXVdt2TWhOe9uxLQJZdcwty5c3tcFcTvfzc4d/XVV3P11Vf36jr0dbqqiIiIyMHS7wGPX/ziF9x33338/e9/56yzzuJ73/se55xzzj6/9enJDTfcwOLFi5k3bx4LFizgnnvuob6+vvhB7KabbmLLli3F5XDvvPNOxo4dy1FHHQXAM888w3e/+10+97nP9c8JisiQ9nZ8GwbTJdixm2Pb+G1nnwEPx7JZNHIOv6h/jnXt2yjzhfDbLh35DFkvz6zKccyvnrTPsbi2n9rQ/mVP2JaP8bGPQZtNIvM2Xj5LZ00Pi5A7knFl5xN0h/XqWGWBuQTdcXRkV5LNb8WyfIR8RxL2T8W23s0eyRYSxDOryHo7sS0fUd9Eor5xxayQ3jDGkM5voD2zkpy3A8eKEvFPI+w/qltgxRgPQxYLX4+1SvbWTzKZpL29vUvG4F//+lfWrFlTMoiRyWRYsmRJse2HP/zhvWZM7DmdZOXKlV32fa89gxhz584lHo/3WLtiz2kf3/nOd/jud79LKBTa51TPE088kRNPPHHvF0ZEREQGJWMsjOnjlJY+th+K+j3gcdFFFzF27Fi+8IUvUFtby4YNG7jzzju7tfv85z/fq+NdeOGFNDc38/Wvf52GhgZmzJjBo48+WixW1tDQQH19fbG953ncdNNNrF+/Htd1mThxIt/+9rf57Gc/2z8nKCJDWsbL4+zlBt1n22QL+X0eZ2S4isUTTmF5yzpea60n5+UZGapkTtURzKoYR8A58FkRfqeCI8svpy23nvZcPZgCQXcYMf+UYsZHb/mcGipCp/W4vSW9nC3tj5LON+16xeBYISqCMxhbdgGuve/MFGMKNCf/xM7kkxRMEsvyY0ye1vQzRP2zqCu7CMeO4nlJ2tqfY/uOv9HSso22dkM6OZ5UciRtbZDL5bq859900028+OKL3aaIFAoFotEobW1txbbf+973+NOf/tTjGHO5XDETY3dmQzAYLLnaRyaTKQY8PvOZz7Bo0aJubSoqKrpNBbnhhhu6TLPcG9WtEBERkX2ZP38+juNw7bXXcu211w70cA4qy5j+Xaxm/Pjx+/yWybIs1q1b15/d9qvd1erj8bhSdUUOM3/d+ia/3fQqk8uGl3wvezuxjdPqpnDBuDm9PmbBeOS9An7b3ef746GoLbuGta0P4Jk8YXdEMdsi57WTyjcwLLSAcbGPA5AvbCaVXsHOnfVkMg7jxp6E33cUluXy84f/nTfe+QPJNpuONotEIkVbIk28tR3Xl+Nnv7qV4ZHzaOv4EWecfjMvL91ecjyRSKRYiBNg0aJFPPbYYyXbuq5LKpUqBia++c1vsmzZspK1K8rLyzn//POLbdvb2/H5fJoSKSIicpg6GPeNu/v44esPES7r3dTm3ZJtST4148LD+r623zM8NmzYsM82W7Zs6e9uRUT6xYzKUfx92zs0phKMCJd32daUbifiBphVtfclYd/LsWwcZ+gs3ZpMJrtM91i99Tc0NL1BviOG66vno5eeAHQuffvNLz/PW6seJtfxNRLxll2rgmQxBkaOjPDKa58k4J9DWfhC/u3bd7L85Y0l+4xE/LRnVhAC0pmllMdiwHaiZQFisSCxsiCxmKG8opphNbOLq3kZY7j+C9eyePGlVFZWdwtiRCKRLkGof/mXf+n1dYhGo+/nMoqIiIjIAXZAV2l5r8bGRr71rW9x7733kkqlDmbXIiK9UhuKcfboGTxS/yrvtG2n0tcZSY/nUri2w4dGTmNCtGYfRxm8crlcsR7FqFGjiq//4he/YOvWrd3qVuxeuePnP/95se3cuXNZvXp1yePXjawoBjwAVq/cxqsvbyrZNpMBxx5BOvMieZPj2BNrqRsZJVYepSwWIlYeIhYLUhYLEisPkS+0ksz8DdeK8aMf/yOBgNslkOR57XjeDipiNwAZ0umlZLLPM39+E5blx++fRzAwEcfZ+ypfIiIiIoONlqXdP/0e8GhtbeXaa68tLpt34403ct1113HzzTfz3e9+l+nTp/PDH/6wv7sVEek3xw87gupAhKVNG1mT2I7BMKtqNPNrxjOtfMSATktJJBIlgxKtra3EYjEWL15cbHvppZeybt26Lu13B5tnzJjBypUri22/+tWv8tZbb5Xs873LdJeXl2Pb9q5siRiBaIayWIjy8jKG1XZNl7zu/zubptaNjK30UVVuU1U1qTMjIxYkGOysheFQRzb7Ol/48lz87kgcu3vmhDGGVO41jJfB9o0kHO6+3K9tRyl4m3ZNm3mCbPZFsALYVhmeSZJMPUI2+wpl0U/huuN7d8FFRERE5JDV7wGPL3/5yzz11FNcfvnlPPbYY3zhC1/gscceI51O86c//YlTTjmlv7sUEel3R8ZqOTJWS9bLgwGf7byvQIcxhnQ6TWtrK57ndcmuuP/++9mxY0eX4MXuPydOnMh9991XbDt58mS2bdtWso+jjz66S8Bj2bJlPQYx8vmuhVcXLVrEnDlzSq4MUlPTNaPlySefJBgM7poyUuCtnf9NR66eqG9ct35OOG0i6bzNcKeDgDsKxy7v1sa2KrFowLFj5LyWkgGPghfHsSI4lh/IlTwnYwpgLLK5N8lll+I447D3KJZq7Dpy+bfpSP6KWNn1WNZBTXIUERERkYOs3z/t/fGPf+S+++7jjDPO4JprrmHSpElMnjyZ22+/vb+7EhE54Pz2u2+Tzc3NPWZX1NXVcdFFFxXbnnPOOWzbtq1L21yu80b95JNP5qmnniq2vemmm2hsbCzZf2tra5fnFRUV7Ny5s1sxzfLyciZN6rrU7fe+9z1yuVyXdhUVFcRisWLhzd3+4z/+o9fXZM9lUS3LoSY0n/bcOnJeGz773VVDjCnQkd9CmW8UPrZi7SWt0sKmzD+N1vRr5L047h6BEc9kyBYaiAUWELDayOZWYtsV3Y7heU1YdgWFfD2WFekS7Ogcq43rjCWXW0suvwa/76hen7OIiIjIQDKm89HXfQ53/R7w2Lp1K9OmTQPgiCOOIBgMctVVV/V3NyIiveZ5Hu3t7cTjcWzbLmZXGGO4++67SwYw4vE4c+fO5b/+67+Kxxk9ejTpdLpkHx/4wAe6BDyWLVtWMhPDsiw8z+vy2vnnn09HR0fJ7Iq6uroubV977TX8/u7TOUo555xzetXu/aoKzqEjt4mm1AtkCk24VhSPHHmvnbBvFKPLPk429SC5/BZsu3uFcGPasK0IFaEzwK6iNfUM2cI2bCuEMVkwHlH/LIZHL6BQ2Egut4Z8vh7HGYVlORhj8LxmPG8nweCp5LIvlwyIANh2mEIhh+c1ldwuIiIiIkNHvwc8PM/D5/MVnzuOQyQS6e9uROQwYoxh+/bt3bIrdv85YcIEPvrRjwKdUzVOP/30LtsTiUQxyPDhD3+Y3/3ud0Bn8OGGG24gk8mU7HfP9zJ4t3bFnhkTTjhEIBrhyKlT2ZlOURnszH64995796hz8W52RTQaxba7rthy99139/pa9DbYcTDZlo8xZedR5p9ES3oZqVwjrh2lNnwq1cE5BNxqkt6J5PI/7pyaskf2hjE58oXNBAPz8blHMNwdT9Q/g7bMq2QL23HtKFH/0UT8R+PYQVxnJmXRi+hIPkI+/zYGq7OElx0jHPoQoeAptOaWY0xP0152B5ucg3BlRERERPqHipbun34PeBhjuOKKKwgEAgCk02muvvrqbkGPX//61/3dtYgMQvl8nkQiQTwex+/3F7Mr0uk0P/jBD7plVez++YMf/CDf+c53AMhkMt0yHfb04Q9/uBjwcF2XF154gWw2262dz+fDvCe375JLLsGyrG7LlZaXl3epswGwefPm4lSQN1u287t1q9jU3opnDAb4t1f+zskjJ7Bw7JGce+65+33NDkW25VIVnEVVcFbxGu9Z8yQUOIF8YQup9FMUvAZsohgyGJPF75tGWfjju9o7RPxTifin9thXMLAAn28a2ewbeKYVywrid4/CcUYA4HOnkM2+hG1Xdau74nnNWHYFPvfI/r8IIiIiIjKo9HvA4/LLL+/y/JOf/GR/dyEiB1GhUKChoaHH2hUzZswo3ty3trZyzjnndGnT3t5ePNbll1/O/fffD3QGR6+//voe+x05cmTx52AwSDAYJBAIdAtKVFRUMG/evC77PvTQQ4RCoW5TRHYX2txTX1aN2h3sWJ9o4cerl5PIphkTrSDguHjGsCPVwR/Wv4kFLBo/pdfHHWpKFXe1LJey8CcI+GaQzi6jUGjEsqIE/bMJ+Odg233LBHTsckLBE0puCwY/QC73JoXCRhxnNJbl7pr20kLBayIcOhvHOXSXFhYRERGR3un3gMeeqwmIyMBKp9PFwEM0Gi0GEeLxOP/zP//TY+2Kj3zkI/zrv/4rANu3b++2LOmeLrvssmLAIxAI8Nxzz5VsFw6Hu9wIB4NBLr74YsrKykpmV4wdO7bL/h0dHd2mgvTk/PPP71W7/fXMlg20pJNMrqgpnpNtWdSGo4Dhqa3rWTBiLBWB0N4PdJixLIeA/2gC/qMPaD9+31FEI5eSTP2GfH4NAAaDbZURCp5JOPQPB7R/ERERkf6moqX7R2vyiQxiuVyOzZs3l1yuNB6Pc9xxx7Fw4UIANm3axMc+9jFaW1uL2/esTfH5z3+e73//+wAkk0m++MUv9tjvrFmzij+Xl5fjum7JzIry8nJOOumkYttgMMivf/3rbnUrysvLu9XDsCyLn/3sZ72+Fr0NdhxoiWyGVTu3UxOKlMxkqAlFWNPazDutzcyvHT0AIxSAQGAePt8UsrnX8bxWLMuPz52yq9Cp5rOKiIiIHA4U8BA5AIwxJJPJYuChsrKSESM66wts27aN+++/v2QAIx6P86lPfYovfOELALzzzjtMnz69x37+7//9v8WAh+M4vPTSSyXbxWKxLgGDiooKLr300pIBjIqKCsaPH19sGwqFyGazvbpJtCyLCy64YJ/tDmXZQp685xF6TwBnN8eysSyLbCF/kEcm72XbZQQDCwZ6GCIiIiL9oO9FS1HRUgU8RHqSyWSor6/vMTDxwQ9+kFNOOQWAN954g8WLF3dpUygUisf62te+xs033wxAc3MzN954Y4/9bty4sfhzRUVFsRZFqQyLBQvevZmrqanhkUce6da2rKwMx+m6IkUoFOInP/lJr66Dvg3vqswfoMwfIJHJUOYPdNuezudxLEvTWQ4RucJ2UtmVZPON2FaQoP9Igr6jsK3BtxqOiIiIiPSNAh4y5HieRyKRKAYe6urqqK2tBTqDCT/+8Y97XBnki1/8IldddRUAy5Yt48QTT+yxH9u2iwEPy7JYvnx5tzaO41BRUdEl4FBbW8vll1/eJaNizyDFEUccUWw7cuRIkslkr87b7/cfdiuDDISA43Jc7Rh+vfZ1MoUwAefdt1FjDJs74owrq2BypYpiDnbt6efZ2fFb8l4LFi5QIJH+CyHfdKqjl+I6lQM9RBER6SepfJaslyfs+vHZugWSQ4/Z9ejrPoc7/WuXQSmZTLJx48aSBTXj8Tjnnnsuxx9/PADPP/88n/3sZ4vbE4lEl2Pdfvvt/N//+38B2LJlS7EYZylbtmwp/lxRUVEsqFlq6seeK4OMHz+eP/3pT93avLdQJ0B1dXVxpRI5NJ04chxrWpt5rbmBMl9nxkemUKA53cGwUITzj5iGz3b2fSAZMKnsalrafwFYBN2jiv9OPZMmmV2B1eFjWNmnsSwbz9tJPvsqXmET4MPxTcJ1p2PZyuIRERnsGlNxXtyxjpWtm8l5BaJugLnV45lfM4EyX3CghyciB5gCHtKvstlsMSgRj8cZO3Ysw4YNA2D16tX8/Oc/LzlFpLW1lW9961tceOGFAPztb3/jnHPO6bGf4cOHFwMenuexcuXKbm0CgUC37IoxY8Zw1VVXlQxglJeXM3HixGLbadOmdQue9CQcDvOhD32oV23l0Bf1Bbh82jE8u3UjS7dtIpHN4No2p4w6gpNGjmdsWcVAD1H2oSP9PJ5JEvR1XT7YtoL4nbGksm+Qya/HNe2kk7/A87Zj4WDwsDJP4rgTCUQW4zgjBugMRERkXzZ1tPDT9S/QmGql0h8h5PhI5FL8fvMK3m5r5JIJxxPzKXgtMpQp4CHdJBIJNmzY0OPKIJdccgmzZ88G4PHHH+f6668vbk+lUl2O9aMf/YjLLrsMgLVr13LLLbf02O+2bduKP1dWVlJVVdVjdsXMmTOLbWfMmMGSJUu6tQkEutdXGDNmDPfee+/7uTwiQGfQ46xxkzlt9ETacxn8jkPU1/13TgYfz0uRyr2NY1eV3O7YUbKFzWQyy8jnl2G8DhxnMpbVWfjXmCyF3DtkOn5KqOxzWJb+3kVEBhvPeDy65TV2pBJMKqvF3pXJF/OHyHp53mxt4Nnt77Bo1Mx9HElkcOhclrZvtfW0LK0CHkOGMYZUKtUlMDF58mSqqjo/0C9fvpxf/epXPQYx/vu//5tFixYB8Pvf/55PfvKTPfY1ffr0YsAjn8+zevXqbm2i0SgVFRVdVgaZNGkSV199dY/ZFZMmTSq2XbBgAc3Nzb069/Lycs4444xetRXpb37HocoJD/QwpA/MrlmwFj1PO7IAL/8WlteC40zpMjXNsvzY7gQK+TXkc6vw+ecc+EGLiBxEmUKWeK4D27Ko9MdwrMGxNHxfbOxoYX17EyPC5cVgx25+26XCH2Z5Sz2n1E4h7CpwLTJUKeBxCPvFL37BV77ylWLQIpfLddn+29/+lvPOOw+AVatW8a1vfavHY+3YsaP4c3V1NcOHD+8xu2Lq1KnFtscffzxPPvlkl+2xWAzX7f6rNWXKFO6+++73e9oiIu+LbYXwu6NJ5VbhUt1tu2fSgIvtNWFZZSVXKrKsAIYChfxGBTxEZMjIFLIsa1nNa/G1JHIdWJZFXbCaYyonMy024ZBaua0120G2kO8xmBHzBWnOdBDPphTwkEOCipbuHwU8DmHZbJY1a9Z0ec22bWKxWLfsiunTp3Pdddd1Wxlk9597Zld86EMf6jK9ZG+qq6s59dRT++V8REQOBsuyiAYXkM6tJl9owXXendpiTIFsfgMB3xQcEhjTvo+jeQd2sCIiB0nWy/Now3OsbF1LxA1R6Y9SMIbNyW1sTm6nPZ/iuOrpxfZ5L8/G5GbqOzaTNVkqfRVMjI6nOlB6uuDB5rddsCDvFXBLFBLPeQVc28bv6HZIZCjTv/BD2JlnnskzzzzTJQMjGo2WjL7Pnj2b//qv/xqAUYqIDD5h/xxioc0kUn8hn9uObZVhyOGZFAF3PNXRC/EyT5HL/K3k/sbksbBwnJEHd+AiIgfIW4mNvBFfz4hQNUHn3YyHiBukKdPKc00rmRQdTXWgnPZ8B3/Z9nc2dmzCw+BgkzN5lreu5Ljqucwqnz7g2SDjozXUBKI0ZdqpC5V32WaMYUemjaMrRlPljwzQCEXkYFDA4xBWW1tLbW3tQA9DROSQY1k2FeFzCfom05F5mWx+M7YVJByYTdg/G9epJG/mk8u+hFdoxHbqivsa4+EV1mM7o3F9R+96zWC8Rrz8ZsBgu6Ox7BED/oFfRKS33oivw7HsLsGO3ar95azvaGBt+xaq/DGe2vEca9s3MCI4HL/tBzrfB3fmWnl2x4uU+8qYEBnX5RjGGLJeHseyS2Zc9LeIG+DEYUfy+y0r2J5OUBOIYls2Oa9AQ6qViBvghOGT9D4thwxjrP0oWqrfbwU8RETksGRZNiH/VEL+qSW3O+4k/KHzyKZ+TyG3GuwomALGdOC4owiEL8ayIxivjWzqN+Szr2JM265jR3F9R+MLX4BtVxzEsxIR6TtjDM3ZBKESwQ7onApoWRbt+STbMjtY31HPMH91Mdixu02Vv5LNqQbeiL/F+PBYLMsi5+VZ2bqR5TvX0Zxpw7UdpsZGM6fyCOpClQf0vE6qPZK8KfDs9jWsa2vaNU6oC5Zz1qgZTI7V7eMIInKoU8BDRESkBMuy8AdOxXXHkcsuo5Bfi4UPxzcDn/8YbGcYxmTJdPyEQnYZOCOw7V1TXEycXOZZPNNBMHollhUa2JMRkcNeppClPrmNdCFDyA0yNlzXWeeCzve7iBtkezpZcl9jDMYYAo6f7ekdZApZhvuDJdvG3CgNqW2kvQyu5fL7LUt5pWUtjmVT5guRLeR4avvrrIpv4iNjFjAhuv/ZyplClrZ8EsdyqPB1n9btWDanj5jG3OrxrGnbTrqQI+YLcmRZLSHX38NRe88zHhkvj2vZ+GzdVsmBpaKl+0f/MkVERHpgWRaOewSOe0TJ7YXcKgq5lVjuhK5BDasC2wri5V6nkHsD1z8P6Kz9USg0ADlsuwbbjh2Esxg8jMnTnn2LROZVcoVmXDtGWWAmZf5p2LZWSRA5EIwxvJFYx3NNr9GUacXDYGMxPFjFSTWzOCo2HoDpsQnUJ7eVLPLZnk8RcgKMj4xgR2YbFvQ4FcTCwmAwxuPV1g280rKW2mBFl5VQagIxNnbs4LGGZVw5cWEx8NJbqUKGZS1vsbJ1LYl8EseyGRUaxryqKUyKju42tgp/mHnV4/vUx95kCjlebV3Pip3rac2249ou08vHMKfyCIYHK/qtH5H+Mn/+fBzH4dprr+Xaa68d6OEcVAp4iIiI7KdCbiVQKJnBYVlBDBaF7Eoc31xy2ZfIpP9GobAZQwHbjuHzzScYOvOwCHx4Jktj28O0pl/E4HUGhEyGeGYZZYGZjCy7CNeODvQwRYac1W0b+VPDc2BgRLAGn+2S8/Jsz+zk0YZncS2HSWVjmFo+njcS69nY0cjwQAURN4TB0JprJ57r4NiqqYwM1uCZHK7tI13IlKz3kSi0My48Gr/tZ/nOdbi2023ZV8uyGBmuYmuqhbVtDUwtH9Pr88kUsvxhy3O8EV9P1A1R4YuS9wqsbd/MpuQ2zqo7jlmVk/Z9oP2UKeT4zeYXWNm6Ab/tI+oGyRZy/G1bZ9bKR8ecwNjIsAPWv8j+WLp0KbHY0P+sUYoCHiIiIvvJmA4Me0uL9uOZNrKZv5FM/hIA267Ftlw8r5VM+o94hc2Eo1dh271fKcAUmiD/OqbQAlYAyz0S3IlY1oEvBLi/WpJPszP9LAFnZJfARsFLk0i/gs8uZ0TZxwdwhCJDT94r8GLz63jGY1RoePF1n+0yKjSM+mQjL7a8wYToKKJumPNGfYAnti9jXfsWmrJxAGJuhJOHzeLEmllYlsWoUB2jQyNY31HPqFAdzh7vO4lcOxYWU2OTyXgFmjNtxNzSU/r8totnPHZm313+u2AK1Hc0UJ9sJOflqPSXMyk6hnJ/WbHNG/H1vJnYwKhQDQFn1/uvA2W+MI3pFv6+YwUTo6OI+g7MVMJlLWt5becGRoarCDnvvv9XB2Js7NjOYw2v8KkjzjgohVnl8GKwMPSxaGkf2w9FCniIiIjsJ8seDmZZj9sNKSBMOvUnLCvYZRlbx6nF2BXkcq+Ry75EIHjaPvszxkD2eUz6T+C1ADbgYQiAbyaEP4Y1CLMkCl6a1vQLOFa0WxaHYwfxO8NIZFZQHf4gfqcaz0uRzq0ik98IGPzOKIL+o3F6GRQyxpDJvUVHdhm5XSvwhPyzCAfm4Njle7TLkcq9RSq7Gs8kce0awoGZ+J1Rh8zKDdnCDtozr5HO12PhEvYfSdQ/A2cQ/h7IwdeYbmJbupkaf0XJ7TX+CramdrAjvZO6UDWV/jI+MuoUtmVaaMkksC2bkaEaYr53/+3Zls0pw08k05hla7oRFxfXdkl7aXyWn3mVszgyegQ5r4BjWeSNV7JvYwwGg7MrMNCeT/J4w3Osbd9E3hSwsSgYjwp/GacOn8f08kkYY3itdS0+23032LGH4YEKNia3saZ9M7Mrj3z/F/A98l6BFTvXEXL9XYIdndfFYmSois3JJtZ3bOPIMi1bLjIYKOAhIoeU9myWVxsaWdGwlfZMluHRKMeMHMH02lpc2x7o4clhxvXPIp95Cs9rxraru2wzXisWAbBDeF4Ljju52/6WFcCywmQzz+MPnLrvm+z8m5jUbwAXnCPB2vU773VA7iVMOgChiwbdzXq2sJ1soYWAU7o4oc+uJJlfSybfACZNS/tPyeTXgSnQ+eWUhd8ZQ1X0EgK+iXvtyxiPePIPJFJLMGSwrciuwMZKOjLPURW9Ar87koLXRlP7gySzr+KZPBYuhizx9BNUhBZSHjpz0F3H92rLLGd7+8PkCk1Ylh+DRzz9PEHfOOrKPknQHdVtH2PMoD8v6T8ZL0feFPDZvpLb/baPvFcga3LF1yzLoi5YTV2wuuQ+AFX+Cj488kOs7VjPuvaNZLwsNf5KjiybyKjQCGzLJuDYTImN5oXmt6jydy8omsgliThBxoWH4RmPvzS+wJtt6xgZHFacKuMZw45MC0saX6DMjVAXGkY810HYKV0w1d71ntiWL1189f1qz6dpzXVQ1kPWSsDxUTAerdmOA9K/HN6M6Xz0dZ/DnQIeInLIaE4m+cnyFbzV1ITfcQi6LpvjcZZv3crxY8bwsaNn4HeUQioHj+0cgRs4jXz6MQpeAtuuAcB4zUAWN3gGHkHAwrJKB+QsK4LnxYEs0HPhTmMMJvMcmAy475nvbkeAOsi+CoFTwRnRD2fXvzpvdXr65NX5uuelaEn9gUx+HX53ArbV+Q2qMXky+XU0t/+Y4bHP4zpVPfaTzC4nkX4cxy7Hdca/24PJk8mvYWfHzxlW9jlaOn5Le2Ypfmccjh3e1caQ93awM/kIrlNNNDD3/Z/4AZLObWJb2y/wTIaQb0rxZtKYPKn8Ora1/YzR5Z/DsYN4Jk9bZiWtmVfI5LdiWyHKA3MoD87Bv5drKYe+qBsmaPtJFlJE3XC37clCmqDjL7ltX8JuiKPLp3F0+bQe2xxTdQRvJjaxKdnEyFAVru1gjKEtn2JHJsGCmqOoDXZmmaxt30xtoLpLXRDbsqgNVrOxo4GV8XcYHa4l4Phoz6VK9mdM5zoW/h4CPO+Xz3ZwLJu8KZTc7hmDMeAO4umFIocbfR0qIocEYwy/W/Umb+7YwRGVlUyorGREWRmTqqsZHonwzMZ6nt24caCHKYcZy7Lwh/4Bf+QyHHccxrRiTCu2Owp/5JP4Q+fvqs3h7fog3p0xKSwrAnR+QPe8OPnMS+TSfyeffQXj7fqm0rRBYT3YPXzrapWDaYf8hn4/z/cr4Nbhd4eR85pLbs95Lbh2BZg4mfw6Au4RxWAHgGW5BNxJ5PKbSWaX99iPMYaOzPMY4+E6Xa+TZbn4nXFkcmtozzxHR2YFPruuGOzobGPhczrrHLSln8X0kIo/GLRllpH3Wgm4Y7p8c25ZLkF3Aqn8BpK5VXgmR0P7w2xKPEBbZiUFL0OmsIOG9l+zMX4vqfyWATwLOdCGByoZFxnJjkwr3nvegzzj0ZxtZWJ0NFX+A1PMcHS4hgtGH091oIz65A7WtTeyrmMbHfk0x9VMZuGI2ViWRUN6Bxkv22PmRswXYUPHVvKmwPTYBNrzKQol/n0m8p3ZHxMiByboG3GDTIzWsTPbXvI9PZ7roMwXYpyKlsoBYe3n4/CmDA8ROSRsSSR4c/sORpaV4XtPFkdZIEA4nebF+s2cMHYsAVdvbXLwWJaDL7AA1z9/V2aHwbJrsKzO30PXNw3LrsDzmnCcrh+CjcljTBu+wNkAZFNPks/8BeM17T46llOHP3gOjm9SZ25qD5kiFG96+36TbkwGY3JYVuiAFD61LT+VwRNoaP8luUIrPqeiuC3vtZMttDAschZ5rwGwsazu385alo1lh0hn3yAWOr1kP55Jks1vwrUrS4/DDmEKeVLZ1/FMOz6n9Bx7x64mk68n7+3E5/Sc1j+QOnJv4thlJaen2JYPjEcqV0/Oy9CSeo6AU4trv1v40ZgCyfxaGtp+zYSKawZ1wdv91VkjonO60uE6jceyLE4eNovmbCsbklup9MUIOn7ShQw7c22MCNWwoGbmAR3D5NgoxkSG8U7bVlqzHbiWw/jocEYEK4t/L54xWFg9/j3Zlk3BFPCMx4yKI3izbSP1yUZqA1WE3WCx+Gki38EJ1TMYFqg4YOczr2oS77Q1sDnVzIhgZTFrJZ5L0pJt5wPDplMVKNv3gUTkoNBdgYgcEhrb2+nIZRkVK/0hoioUoinZwc5UiroyfdCQg8+yXKwSNSocp5ZA4FTSqd9TMFlsZzjgYkwrXqEB151MIHAs+eyz5FK/AiuI5UzCshyMyWEKW8kkf0YgfHnnvvlNsEfhzSKvAyw/9FAno5RCYSuZ9HNkc8sxJotjV+IPLMDvPw7b7nuK+95Uhk4gW2hmZ/pZMtlt2FYAQxYLH5WhBdSEz2Rnx8+x9pJ8amFjyO11e+e3WXubtLzvgJCFtWvi8+Cd/Nz57fLeb+KNKbAz/QIWvi7BDugM1AWdMSRz6+nIrSXq715jZm/yXhvJ7Ft4JoVjRwj7pvS6qOyBliu00ZxewY70K+QLHficMmpCx1AdnI1vkIzxYKoNVvORUafx8s43eaetnniuHb/t4/iqGcytmkp1oMT7ST8LOX5mVozvcXt1oBzHssl6uZLTUdpyHYyPjCRg+wk6Ac4fdTJ/2fYy9R3b2JbZCUC5L8Ipw2dzYs3RBzTANT5ay/mjj+PPjcupT+4AwGCIOEFOqpnKB+sObABJRPpGAQ8ROSTY1rsVAEp9jPF2FeKzD9Nv8WRwC4bOxrJCZDN/p5DfABSwrDL8/hMIhj+MZQXJpZ8A/NjOu4UmLcuH5Y7Dy79DLvsUAf+xkF8HXgLsPVLQTQG8LeCbCs6EXo0pn19HR/t95AtbsO0qLCtAvtBAvuOn5HJvEolcsV9BD2NyGDws/N2mWtRGzyMWmElb9nWyhZ24dhllgWlEfEd2Tjlxx9KxayrJe2ueGGPwvCR+94ge+7asIEHfkXRkXsJ1arptL3jtWFaYsP9okrl38Ew7jtU9QJr3Wgi4Yzqn2QxSYf+R7Ew+AXRP3TcmD1j4nEqy6Ve6ZNTsydmV8ZIpbCdK7wIexhji6WdoSf6FbKHzZs/Cwu/WUhU+i1jg2AHNpsgUWlkb/znxzNu4dhjHCpHKb2ND4tfsTL/BxPKL8Dv7N32j4GXIeW3Ylg+fHTukskaGBStZNOIETh42m3QhS8gJEnFLTx8ZCOPCIxkZGsamZCNjwnXF4qPQGewAOLriyOI1Hx6s5KKxp7M11cTObBuO5TA6PKzLajIH0tTyMYyP1vJO21bi2SR+22FCtJZhgfJD6vdCDi0qWrp/FPAQkUPC2PIKyoNBdqZSVIe734Q1JZNMqKwsuU1koFmWQzB0Bv7ACRQK68EUsO1qbGcklmVRyL2JV2jEdsaV3t+uw8uvh9D5EDgZss9BfgdYESALJgXueKzQR4tTE7x8PYXsK3j5twCw3aNw/Mdgu2MwJk8y+TCFQiOue1QxuGDblRiTIpddRsadSCh0Vq/PMZNbR3vmBVLZNzDGI+AbRzRwHCH/rOLxLcsm7J9I2F96pZWwfxZtzl/JFurxO+O63DjkCw3YdoxI4Ji9XGeLSGABqexKsvkt+HZdXwDPpMnmNxEJzCMSOJFkbhXtmWUErEmdU0B29+PFMSZHNLigOC1pMIoF5pJILyWT34rfGbFH0VKPdG4DQd8YIv5pkHwC00OBxd0FHi16P50lkXmJ7e0PY1k+Qr4jsCy3syBsoYFtbb/AtgKUBWb3wxnuny3tfyGeeYsy/xFd/l4LJktrZjVbO55kfOy8Ph0z7yVpTL5IU/oVsoUEtuUS80+kLnw8MX/PAbjBKOqG96tA6YHm2g5n1B3PH7c+xcZkAyEngGs5JAtpHMthfvV0JpeN77KPbdmMDg9ndHj4gIx5X1krIjI4DN7/k4uI7KEmEmbuqFH8dc1a/I5DWaCzirsxhh0dSQxw4rhxOFqaVgYx2w5j29O7vW5MBosCuwuXdmP5wctjKGCHLgDfFEz2FShsBSuM5Z8NvtlYuzISCtml5JK/wng7sXZNZSik11LIPo8v/HE8K0w+tw7HGdstk6KzjkeUbOYFgsFTsayeV47ZrSOzjOb2n1Pw4rvqZ9gks6+Syr5OLLSQivA/9LhKzZ5cp4bKyMdo6fg5mdxqbDuGhUXeJHCsMiojH8Hvlg4K7Rb0TaUy8jFaO35HOvcmtuXHmEJnsCUwi8rIhdi2Q1XkYxS8JOncW4AP2/JTMEksXMpDp1EWOH6f4x1IId8RDI9ewI7235HKvYVthzHGw5gMAXcUtdEL8Tu1RHwTiWeWl1yNJe/FcawoYd/4XvXpmQw7U08CFgF3z0wkl6A7hlRuHTtTTxL1Hz0gNUHS+RZ2Zt4g6A7vEuwAcCw/AaealvRrjIicQqCHrJf3ynsp1sR/QUv6dXxOGX6nHM/kaEotJ55dw8TYx6gK9rxKifReXbCGj41ZyFuJDbzVtoGsl+WI6BimxiYwITKqS9aHyOHIYGH6WIS0r+2HIgU8ROSQcc6UySSzWV7ZupWtbW04lkXe84gFg/zDlCnMHVW6AKHIYGfZlWCFO1disbqn2xsv0RnYsCs7sw58M7F8peeJe4VGcsmHwWSx3aPe/ebfNpjCps5AiP8EII9lh3oYTwWe14rnJboVWn2vfGEnOzt+jTFZgu67y6P6GEa+0EwitYSgbxIhf+9uCsOBY3CdYXRkXiadex2MIeybTyQwn4CvdGZIl7FbFtHgSQR8k0hmXiVf2IZl+Qn6pxL0HYW9K4Djc2qojX2WZPZVOrIrKHjtRJwRRAJzCPmmHhJFPMuDCwi4Y2hLLyedX49l+Yj4pxL1z8LndBZurQotoD27mlR+M0FnZDHwlPfayRQaqQqdTMCp61V/6Vw9mXwDAbf0e63fqSWd20Qmv5Wgb0zJNgdSptBEzmunrIcAjt+J0ZHbTKbQ3OuAx47Uy7Rk3iDqG4tjvxv889vltOc3Ud/+GDH/BNwe/i1J35T7ohxbPYNjq2cM9FBEZIg4JAIed911F//+7/9OQ0MD06dP5/bbb+fkk08u2fbXv/41d999NytWrCCTyTB9+nRuvvlmzjqr92m5IjI4hXw+Lp09i+PHjmH1jiY6slmqQyFm1NUyoqz0agUihwLbGYvjTiafW45tRbtkQ3Su5LIDX2Ahdi9qShSyy8Frwdoj2AGdgQCcMZj8akx+A2BK1sro7DQHllNytZT3SmVfI1/YTmCPYMdurlNNPtdER2ZprwMeAH53DH53DHBBr/d5L59TR3l47zfyjh2hLHgCZcET9ruf9/JMDs+ksK1AMbhyIAXd0QSjo3vcHvUfxYiyj7Kt/Y905N/ZVfjVwyFIZfB46qLn9vq905DrXM2nh0wky/JjyOOR7WxvMuRzb5DPvoZnEtj2MHz+WTjulAMSULIsBwsbjwJOiWk6xhSwsLF6+fHXM3l2pF7BtUJdgh2dfVlE3JG05+qJZ9dQHTy6X85BBl7Wy9GSjWOMocpfTsDx73snERm0Bn3A46GHHuL666/nrrvu4sQTT+QHP/gBixYtYtWqVYwdO7Zb+6eeeoozzzyTb33rW1RUVHDfffdx7rnn8uKLLzJnzpwBOAMR6U+ObTO5pobJNd0LEoocqizLwh/6MJ63Ay+/GsuuxrKCGNMBXiuObwq+4Bm9OpYpbAArVPIm1rIsjBXEJo9lV+5aKrfr/PfO4qA78PuPw7L2vXpDrrCNzqVkS6eb21YZmXx9r8Z+KCt47cTTL5LIvES+kMC2/EQDs3ZlYZQqLHrwlkytDB5LxDeJtuwqcoWd2FaAiG8iYd+ELn9vnsnSnnmdRGY52UITrl1OLDCbssBMHDuMa1fg2BEKpg23xO9GwUvgWBF8dgWe106q4yfkc8sBsAiQZyXZzDP4AycTDH+0VwG1voi4owi5w0nnm4j4umehpAtNhNzakttKKXgpsl4Cnx0tud22XAyGbCHe5XVjDAWTAiwcK6hg/CEi7xVYvvNNVsbfpjWXwBio8Jcxo/xIjqmchs8e9LdNMsQZ9qNo6QEZyaFl0P/Lve2227jyyiu56qqrALj99tt5/PHHufvuu7n11lu7tb/99tu7PP/Wt77F7373O37/+98r4CEiIoOW7Y4mGP0sucyzFLKvYEwHlh3BDZyKGzwR267s5ZEc9r70qodtRwm4J5JO/ZECNrZd3RkMMTkKhU1YdoxA8ANdbtSMyeJ5bViWH7vLEqd+zF77y2PT/9+QGpPDmDzWILihzHttNCZ+THt2JbYdwbWieCZDS/LPdGRfp67sMkK7pllkC83E08tIpJdRMBn8TjXlwfmUB+Zg2wcuI8TvVFEdOqnH7QUvTWPbQyQyywBwrDCZfAPt2deJZqYyouyT+J0RRHxHkcgsxfFFu2RpGJMnV9hBRegD+JxqUh0/I59diuNOwLLene7heXGymb9iO8MJBD/Yr+fo2EGGh45nY9vvSOebCDi7f689MoVmPJOjNnxCt/oePbEtP5blUjDZktuN8QCDY/mLz3dmXqMptYxkfisAZf6J1ATnEfMfOeC/p9Izz3j8bftLvLzzDUK2nypfZ0Avnm/nie0v0ppNcEbdCTiqIyJyyBnUAY9sNsuyZcu48cYbu7y+cOFCnnvuuV4dw/M82traqKrqXqxrt0wmQyaTKT5PJBL7N2AREZH3wXbqCIQ/igmejSG9q4Bo35aOtH1T8HLLdhXq7JrWb0wBTA7HdxQ+/3GARyb9DIX8W3Qu+GzhOCMIhc/H5+tcptTzOshkniGbeQHPawXLxe+bQSB4Mq57BEH/JNrSPjwvhf2eOgbGeBRMB7F+XLUjk99IR/oFktnXMMbD544gGjieSOCYAVtVpTX1NO3Z1wj6JnSZxuIzw0jl1tDU8Qijy68lU2hkS+LHpPKbcK0ybMtPMreOjtzbdGRXM7Ls4gMa9NibltTfiWdeIOiMxdljOeLdWR9N9qOMiF1MdeRsst52krm38dlV2HaIgpek4O0k5JtEVfhMvMIOctlXsO3hXYIdALZdjvHi5DLP4g+c2KuiuH1RGz6evEmxLfksbbk1gIUxBr9TzpjoIoaF5vX6WI4doDowgy0dfyfoVHfLYsoUduK3Y8T8EzHGY0v74zQk/wZ01vgAQ3N6Oa2ZNxlbdi7DQsf234lKv9qc3MarrW9R7S/vsorNcKeKjnyKlfF3mFw2ngl7mT7WXwrGoznTTsF4VPjDhDSlRuR9GdQBj6amJgqFArW1tV1er62tpbGxsVfH+N73vkdHRwef+MQnemxz6623csstt7yvsYqIiPQXyw5hsX9FEB3fLAr2U5j8WnCPKAYBjMlj8muxnDHYvplYlp9w+CMEAieSz72FMRlsuwLXNx171w2v53XQ0XEfuexyLKsMy45hTJZM5mlyuVVEopcR8k0h6JtGMrsCP+Nw7EjnviZDNr8BvzOKSGBuv1yXZPZ1mtt/Sr7QhGtXYuGSzr1FOreaTH4dVZGPHfSgR8FL0ZZ5Gccu71azw7JsAu5oUrl1JHNraUouIZXbTMQ3qRiM8js1FLwk8cxSQr5xVIdPO6jj7zyHJIn0i7hWeZdgB3RmOfid4bRlXqM6fwYBdwQjY1cRTz1HW+YVCl4Hjh2iMnQu5cET8DlV5LLLMSaO7Uwu2Z9t1+AVduAVtuO4YzDGkCvUk86txvNSOHY5Qf8MfPsomFuKZTmMjp5BdXAm8czb5E0K1w5T4Z9C0O37VMjh4fnszLxJIreeiDsK1w52Lv1baCbnJRgdOZ2gW0088zaNyacI2BX49yiIGnCqSOYb2NL+GGW+CQTdvp+THHjvtG8kZ3Ill+yNuCGasq28077xgAY8jDGsbN3M803vsDW5k4LxKPeFOaZqPCcMP1KBD5H9NKgDHru9NwXQGNOrtMAHH3yQm2++md/97ncMH97zGt033XQTN9xwQ/F5IpFgzJiDX11cRETk/bLsCnyRT5Lr+Bkmv7bLknSWOxZf+BIs+936C45Ti+PUljoU2cxz5LLLd01LeDfTxNjVFPJrSSZ/TSz2/1EdvRSrwyGVXUW2kOns0XIIuOOpil6Ez3n/NXcKXgc723+F57UR3KMgq0sNBS9OW/opgr5JRAK9/wa/P+S9OPlCHLfEsq8Ajh0mk8/Rnl1FMruOkDuqW+aNY4dxvAit6RepDJ2IbR3cG5tsYQe5QisBt/TvgWtXksy/Q6bQiN8dht8ZxrDoeVSFz8IzKRw7/J5gz74+o+2eVW7hmSytHb+mI/MCBdOOhQUGHKeSWPBDlIVO26+pICF3OCG3589+vRV265hUfiEb2/5Ee64ez+QBg9+pYHTkTEZFTwWgJf0qnsl2CXYUx+LUkci9Q2tmFXXuKe97TNL/Erl2fHuZ6hSwfbTm2vb7+J7xaEzFSXtZom6QYYFYt9/r55vW8MfNyylgqPFHcSybeC7Fo1tXsDW1k0+MO46A0791b+TQomVp98+gDnjU1NTgOE63bI7t27d3y/p4r4ceeogrr7ySX/7yl5xxxt4LvQUCAQKBgUkhFRER6W+2OwF/2fV4udfxChs7X3PGYftmYO3KwNgXY3Jksi9gWdFu02osy8Jxx1Ao1JPLvYXfP5NhZZ8hk19LJrcB8PA5tQT90/ptpZJU9nVyhQYC7sRuNwqOXU7O20FH+sWDHvCwLR+W5eKZXIl1QXavDNJZ1NQjU8yAeS/XriBXaCVfiOPflQVgjCFvOsB4uHa025SK/mJhw65aF6U/G3uA1RmM2INjB3HoPuXKcUZjWRUYrwWrRLDL85qxneHYzjDiycdoS/0V16nF54wu1tzIF7bRmvw1jhM76H+n71XmH8e0qqtoy24g4+3ExkfMPwG/827gMFnYitvD361lWdi4pPLbD9aQpY8iboi8yfe4PefliTrdsz964+1EA09vX019cgc5r0DQ8XFkWR2nDJ/OyHBnbaaWTDtPNL6B33apDb37exVy/VQUQrzWuomjykcyv/qI/RqDyOFsUAc8/H4/c+fOZcmSJVxwwbtL0y1ZsoTzzjuvx/0efPBBPvWpT/Hggw9yzjnnHIyhioiIDCqWHcEJHIfDcfu1v/Ha8Ao7sexY6eNbATAentey67lD0DeZoK/0NIb3K+81YTA9TllxrHKy+S27Cpn278cbY/Ikc++Q2VWIMuiOIeSbiGU5uHYVId+RtGVewbXLuwVjsoUduE4VQXcsmBd7XArYmDydq904GGNIZFfTnH6Jjux6DIaQW0d1cD6VwTn9vqSr360l4NSSLWzDsbuvgJctNOHffQ69YDs1+PxzyWaWYHlhrD1rgnitGFL4AyfhmRQdmedxnEpc592ivJZl43NHkMmtpT39FGF//59zX9mWS3lgUo/bXStI2uR63G4wOHbf6vHIwTMxOpZXW98iVcgQcroGadOFDFgwqax3v/97Wh3fwq/qX6SjkGZ4oJyA7ZIsZFjesoGtqVYuHX8SdaEKVica2JntYGK0+xe6QcePa9m80ryhS8Aj5xV4O76dhlQcC4tR4XImxYbj2iqsKrKnQR3wALjhhhtYvHgx8+bNY8GCBdxzzz3U19dz9dVXA53TUbZs2cIDDzwAdAY7LrvsMr7//e9z/PHHF7NDQqEQ5eX7Xl5PREREACuAZfkw+1ihor+LTvY4HFz2tsCeMTlsOwL074f9TL6Rbe0PkcqtxZAHY7AsPxHfFIaXfRy/M4yK0Mmkcu+Qzm8k4I7CtnwY45HzmvBMG1WhDxMNTMdNPk7Oa8FfIush6zURC8zEtStpSj/Plrbf75oiUYmFRXtuHe25tSTzWxkV/Yd+zfawLT8VoRNpbPs52UIzPruqGLjJewnyppVhgXNwndLBr1KCoXMxJkE++wrG87DwdxbiJYg/cAa+wEmksivJe80E3NKBBNcZTjZfT76wHV+JpX0Hk4rADFozb+GZAvZ7gjMFL41l2cT8EwdodLIv48IjOarsCF6Pv0O5L0q5r3Mp4kSundZcG1PLJzIh0rf6HXmvwBPb3iBVyDI+PKz4bypmh4m6Ida2b+OZ7av52LjjaculsbGwe5i+FXEDtGQ7C5k6lk1DMs6vNixnXVszeVMAwGc5TIzV8PHxxzA8VFbyOHJoM2Y/lqXVurSDP+Bx4YUX0tzczNe//nUaGhqYMWMGjz76KOPGjQOgoaGB+vr6Yvsf/OAH5PN5rr32Wq699tri65dffjn333//wR6+iIjIIcm2I/j8M0mnn8C2a7plLnheE5ZdiesemIyO9wr4JmFbIQpeG47d9cO8MYaCaaUscGK/BgLyXhuNbT8hlVtLwB2Ls2sVmoKXpD37Gl5bllGxq4n4p1BbdglNHY+QyW/A7PqE6drlVIf/garw6ViWS3lwPs3JJVi4xWwQYwpkCg04VoiK4AlkCjtoaH8cy3KJ+t69wfI7FWQLcXakniHmn0wscFS/nSdARfB48oVWWlJ/J5l7C8tyMRSwrSCVoQ9QHdn79OD3suwIocgV5P3Hk8+9hvESWHYNPv9sHHcSlmXvsZxx6b8zCweDh6HwPs/uwKsMHE2TbyntufVE3NE4drA4JSmZ30plYAYx/5EDPUzpgWs7LKw7gagb4s3EOjalGgGLMjfMsdUzOaFmDj67b7dNGzua2JpsoTbYPfPLtixqAmW8ldhKa7aDoOPDw/RYpzBTyFMTLMPGoj2X4cF1L7O+rZmx0UqCu+p6pPI53mxt5OfrX+aqyScSdrvWAvKMR8bLYmMRcDSVXw4fgz7gAXDNNddwzTXXlNz23iDG3/72twM/IJEDoCPeweZ3GvEKHlV1FQwf2/0GQ0TkYAoETiKXe51Cfg2OOwbL6lyhwvN2YLxWgqFzcZzqgzMWdwJh/yzaM8/jZzS2VYZldRa9zBbq8Tl1RAL7N32nJ+2Z10jl1+6avvLuRybHDhP0HUEy9w4d2TeIBedSFphF2Hckydxb5L04thUg7JuMb4/rMzxyNsbkiKdfJpPbtus93nQWAY2cTVlgGtuSfyPntRL1db859jvlZAtN7Eyv6PeAh2U51ETOpiwwi7bs6+S9VhyrjGhgKiF3/H4FkizLj88/E59/ZsntPmc4thXGMwkcq3sWbt7biWtX4toH53fs/fA7MSaUX0h94re05TZg8p31IBwrSFVwDuPKzsPeS1FMGXgBx89ptccxt2o6OzI7MRiGB6qI7cr26KtkIUPOFIoBifcKOX6a8gk68hkmlQ0n4gaI51JU+LvWCsl7BTryGc6snIFlWazcuYX17c0cUVbTZfpKyPVxRFkNaxNNrGptYF7NuF3753m7fS1vJt5iZ7YV27IZGx7NtNhRjAzV7de5ycBQ0dL9c0gEPESGsnwuz3OPLGXFE6/TuiOB8QyhsiATZ47jtItPoqquct8HERE5AFx3HJHIFaSSvyZf2AimABgsu5Jg6MOEQh86aGOxLJuq6IWATTK7As9s6Sy2iYXfHU1V5OP43ZH92mdH9g0sfCVrgtiWH8tAMreaWLBz2V3HDlMWmNPj8WzLT130Y1QGF9CRewfPZHDtcqL+afh2FcDM5Hdg4fYY8HbsMKlCQz+cXXeWZRH0jSboO3BLb+7J54wm6JtKMrMU2xfpcp09L0nBJIgFzsS292+J5oMt7I5gcuWnacuuI1VoxMIm4o4h4htzwArOSv+L+aL7HeTYU3hX7Y1MIVdydZV0IYvfdgm7fip8EeZWHcHT21eT8wpUByKdU9nyabalExxRNpxZlZ01RFa1NuKznJK1Ony2g2VZvJ3YzryacRRMgaeanuP1+CpsyyHqRPDweD2+ivUdGzlt+MlMiqoQqgxtCniI9EI6mWHdqxtINLfjC7iMmzaamlHv/xsnYwxPPvgsz/9+KdGKKGOmjMK2Ldpbk6x8ejXx5nY+/k/nUlb5/v/HKyKyP3y+KbixfyKfe7uzQKkVwHUnHbTMjj05dpSasivI5jeQya/DmDyuM4yQb+oBuSn2TBprb9/KWy6eSffpmPsKKthWYK9TODyTw7GGRvFLy7KoiFxAwWslk1+DbYWwrCCe146hQMR/LGXBUwd6mH3SWdx0MuXse6pXwUuRzG/GmAIBdziBHpY2lkPT2EgNI0JVNKZ2MjbStW6PMYamTBvzqo+g0t/5Ge/sUTMJuz6WNq9jfccODJ1Bk5mVY1k0chbluzI/soXCXguTOpZFptCZYbS2fT1vxN+k0ldB2H03cyTmlrEts4Nnm15gZLCuyzboLNTalk/hs1zKfRFlHMshTQEPkX1455V1/PWnT7O9vqmz8I/xiFREmHnKNE698ET8gf1PUd22cQcrnnydytoKymveLQZXVhkhFA1Sv2ozq557i+POmdsPZyIisn86pybMGOhhAJ03yQHfBAK+CQe8r4A7ho7smyW3GWMwJoPf6d+skjL/kexIPUXBSxVrhrzbZwHPpKkIlJ4icijyOcMZFruajszLJDNLKXjtBHxTiASOJRyYg10iuGOMhyG/K/vm/d+IGVOgYLLYlg+7n1f4KcUzeXYkn6Up/TyZfBPg4dplVARnMiJ8RjHbRw5tPtvltNppPLzpRTZ27OhcpcVxSeazbMvEGRaMceKwo7q0P3PE0RxXM4lNHc3kjUdNIMrIUGWX3/PR0QpWxRtK1vswxpAp5Bm5a2nb1W3vdAZO3hPQsCyLYYFqtqYaWd9Rz/TyznF05FO83PImbyTWkcyncSybseE65lYdxfhI/77XyX4w7K12d8/7HOYU8BDZi81vb+X3//1n0u0ZRh05Ap/fxRhDvKmN5x95Gdu2OeOTH9jv469fWU9HPMnwsd0r9rs+h1A0yMqnV3Ps2ccoui4icpCVBWYRTz9LtrADvzOsy7ZsoRHXrqCsn4MPZf5JxPzTaM28StCpw7U7a5XkvSSp/BYivvFUBI7u1z4HmmOXEwudTix0eo9FGwGyhVZ2pl5mZ+YVCiaFzy6nKjiPiuAxuHa45D57k/M6aEq9QlNqGTmvDccKUB2cTU1oHkH3wGRbGGNoaH+Mbcm/4tgRwr7RWNhkvTg7kn8nk29iQvni/TofGXymV4zBsiye3v4mW5ItZL08QcfPtPLRfLB2BqPC3X/PYr4Q0yt6nlY2s3IUz21bx450e7fVWBpTCSr8IWZWjcIzHs2ZFiJO6d8lx3IAQ1u+DYCOfJpHtjzFO+2biLkRyn1R8l6eN9s2UJ9s5OwRJzIlNm7/L4bIAFHAQ2Qvlv91JYnmNibMGFv8AGZZFhXDYhjP8Nrf32DumTOprK3Yr+Nnkhks2+rxw10gHCDZnsLzPBzHKdlGREQOjKA7garQWTQn/0iqEMd1KjEY8oWd2FaQYdHzCbij+rVP2/Ixtuxj2JaPROZN0oXtWIBl+Yj5pzC67AJ8fVge9lDT0/8PM/kdbEz8hI7cOly7DNsKkM5vZVPbL0lk3mRs+cW4du+nf+YKbayNP0Rr5k0cO4xrR8ibJJvaH2Nn5g0mVlxC2K3tr9MqSucbaEo9j9+pwr/HFJaAU4XPjpLIvklr5jVqQsf3e98yMKaVj2Zy2Qi2pnaSLuSIukFGhCr2+4ussZFKzho1lUc3v8Gath2U+zozweLZFCHXxz+MOZoR4XKMMfhsl458cq/Hc3dlNb3W+g7vtG9iTKj23RVpnABRN8zWdBN/3/EK4yIjCDr+vRxNDiQleOwfBTxEepBsS7H21Q1U1pb+n1L5sBgbV22i/s0t+x3wiFREwBg8z2Db3ftIJlKMOWqEgh0iIgPAsiyqwmcQcGuJp18ind+ABcSC8ykPHkfY178rpezmc2KMj32SVH4zHflNYAxBt5aobwKWdfj9/8AYw9aOP9CRW0fUN+nda+BUU/AyxDOvsSM5khHRc3p9zMbkM+zMrCLqH49jvXsDF3SG0ZZbx+a2P3FkxeX9nl2ZyK4mb9oJ2iO6bbMtP7blpyX9igIeQ4xrO93qeOwvy7I4pe5IakMxXm6qZ23bDizg2GHjmV8zjiNjw4rtJkWP4PnmlzCmqtvvcjKfxG/7GRUaQc7LszK+hogT6rb8rmVZ1AYq2ZJuYkPHVo6KjQfAM4a3E9t5tXkL21JtRH0Bjq4cwYzKkYRcrUgkg4cCHiI9yGfzFPIFgpHSkWx7V2ZGLpvf7z4mzZlArKaM5q0tDBvdtQBgJpkhn8sx46Sp+318ERF5fyzLIhqYScR/NJ7JYFkWthU4KP2GfWMI+8Yc8L4Gu3R+K+2Ztwk6I7oFfBw7gM+pYGf6FYaFT8W1I/s8Xs7roCm9Ar9T2SXYAZ3L84bcOuLZtSTzW4n4+jeDJ+d1AD1ndjpWiJwX3+vUHhHLsphaUcfUijqyXgGLzhVa3mtK2ZG83baGLekGhgeG4bd9GGPoKCRpye5kWmwKtcHhdOTTdOTThN3SBZFd2wUM7fkUAHnP45H6lTyzbS05UyDk+MkW8ixv3sRRFbVccsQ8KgPdp9IkcinacikCjku1v0y/431lrM5HX/c5zCngIdKDcCxErLqMlsY4ZZXdP0BlUlls16Zi2P6nFlcOL+eE847lrz99is1vb6WqrhLHtUk0t9O2s53pJ05h2oJ9V3o/1LQmU6SyeaJBP2XBA3/jICLyflmWNWRWRznUZLxm8iZJ0C5dNNFnl5P+/9m77/g46gP//6+Z2b7SqkuukmXJ3RiMbbAxpgQwJRDKXWJSKAnchcQphLvv7+CAQJK7kEsBkhzkQi4JR3IBLgccSXACBkIwoRnjBhhjuclFsrpWWm2dmd8ftheEZLBsNUvvZx7ziHdmPp/5jBlLu+/9FLuBlN1yWIFHym4j43QSeN+8LAd5jBzibj1Ju6XfAw+vlQu4hww0bDdO0ByjD4Jy2Hy9BB0HFfjyWTrmI/yl4a80JBtxXAcHCFp+ZufNYEnxIkzDxGd68JoWaSfdaz2O6+ACPnN/z41Xm3byl/otFAdyyPO9O7lyys7wZms9j9du5Krqk7LPcXOyg782vs2bbbtI2Ck8pofJOaWcUjKNypz+Hzom8l4KPEQOweP1MOf0Wfzx58+S6EoSCL37wdx1Xeq272PClLFMmn10376ddP5ccvLDvPbUevbtaMC2HSKFOcw//wROOn8u/uDICQR2tbSx6p0dbKprJG3bBLwe5kwcw5IplZTkfvibVBERGX1MPBgYuNgYvbx13b9ii4lxmCusGIYHAwuHDL19VNx/ncOvry8ivml4zFxSTgv+9y3tbDtJXDdFYUArs0n/GRMo428mfIxd8T20p6OYmIwNllHsK8oGEn7Lx7TcCl5q3ki+N4L5vsCtNdVBxBNiUngsGcfh5YbteEyrW9gB4LM8jAtF2NRWz56udiaE82lOdvDQzr+yM9ZIkS+HkkAeSSfDG227qI018TflC5ka0QowMnAUeIh8gBPOnMXuzXt446+b8Qd95OSHSSfTtDd1UDy+gLOvOB2P9+j+GRmGwaxTpjH95Gpa6tqwMzZ5JRGC4ZH1TeKOplZ+/dJa9kU7KcnNITfgpyuV4s+btrGtoZWrFs+lJPfwJ5wTEZHRIeStwGcVk7KbCHjG9DietJsIeysJWKWHVV/QKiHsnUBHahteX8/fOwm7Cb9VRK63/1ekCFhjKAmeSn3sKWwngd8qwjAs0nYbKbuF/MCco1qFJ2U3k7ZbMA0vAc+EAQlt5NjjMT1Uhj/4eT4hfypbO3dT21XPmEAhAcuP7Tq0pqLE7ARnlJxIxBumMdFJQ7yDwl6GrADkegPUxzuoOxB4vNz0DjtjjUzOKcMyTAD8lpdcT4DaWCPP1G9kck4Zng/oqSL7Hc2kpQsWLMCyLJYvX87y5cv7uWXDm34KinwAf9DPhdctpWJWORv+8ibtTVE8Pg+LLzmJ48+YSWl5791hj4RlWT3m8RgpHMfljxs309QZY2pZcfYbhZDPS0EoSE1DM39+exufWNC/yzuKiMixz2OGKQqeQl3n70jaTfjM/d9Mu65Nwm4ATIqDiw97QlfDMCkLLaYzXUssvZegpwzTsHBdh6Tdgu3EGJ/7kQFZGtYwDMaGz8Fr5tIUf4mEvQ9cB68VoSx8NmXhj2CZ735rnnG6aE68QXNiI2mng4CniOLA8RT4Z2Aa704MmbKbaI49RUdqI7YTw8BDwDuBwuAZ5PrnaoiMfKiSQAEXjV/Ccw2vs7trHxnHxgXyfTl8pGgeJxXNBsAAMIwP/+BtGMQyCd5oq6XQl5MNO949bDAmWMDeeAs7Yo1U5/YMM6X/rF69mkhk5K7w9UEUeIh8CH/Qz/ylxzP3rNkku1J4fB58fs0+3Re1LW1sb2plbF6kx5suyzQpzgnzxp59LJ0VJz8UpKkzRkNHDNMwmFCQR45fS6CJiIxmJaHTcNw4zfGX6ExvYf/HLhefWcjY3I+S5z++T/UV+GcyKXIJezpX0pnevr8+18Fr5TE+51zGhBYPxG0A+ydGLQktpjC4gHhmL7g2fqukx3LDSbuNmvb/oT21BdPwYRl+4ol6WhJvUBw4gcmRy7BMP2m7lT3t/0VXuga/VYrXU4zrpkika9mb+TVj3CT5wUUDdj8ycowPlnJ5+VL2xBuIpmN4DQ8TQmWE3zOZaYE/xPhQHts6mol4e/ZGbkvFyfX6mRjKpzOdIGGnKeilJxXs7+mRcZ3sZKjywVx3/9bXMqOdAg+Rw2RZFqHc4IefKD1EE0mS6QzhQwQXOX4f9dEOdrdGeWrTFjbsqSea2L8aQlE4xMLKiZwxdTI+Lc8rIjIqmYaHsTkfpSCwgI7UZhw3gcfMIdc3A5+V3+f6DMOgJDiffN802lPvkHI68BgBIr6pBDyF/X8DvbAMHzneSb0ec12X2o4/0ZbcTMRX2a03R8bpojGxhpBnLONzzqAt/hLxdA1hb/W7Q1gMD0GzkkRmN01dT5Hjn43HzB2Eu5JjnWWYlIcO3dvCMkwWllaytaOJpkSMIn8o+2VWPJOiIdHBqaVVlAVziaa78JoWSSdNkJ7vAdOOjYFBwNQXWzJwFHiIyIALeDxYpkkqk8Hn6fljJ5nJYBgGf3xrMzub2yjJDVNVUoTjujR1xvjDxrfpTCS59IRZ6pYrIjKKBTylBDyHN1fH4fBauRQHh98koXG7gbbk2weG23TvVeoxQ3jNXBoTaygNnkg0uQaPmdfrfB1+ayxdmW3EUu+Qp8lQpZ/MK5pIcyLGn+ve4Z32BnyWh4xjY5omc4smclH5bAzDIM8XZmpkHKubt5LnDfV4D9eYaKfUH2FSTv8NERd5PwUeIjLgJhXnMzY/l/poJ+WF+d2Oua5LQzRGJOxnV2s7lcUF2VDENAzGRHIJeL28smM38yomUPG+8iIiIiNNPNNA2o0RNHv/pt1n5pGwm+jK1GE7XViHmG/k4LwmttM5YG2V0cc0DM4dP52Z+WW80VpHQ6KTsMfHjPwxTM0r7bZU7sLiqezobGBHrIGyQD4hj5+Uk6ExEcVxHZaUziBgqYfH4TEObH0tM7op8BCRAefzeDhz+mT+Z/VGdrW0MyaSg9djkUhnqGuPEgn68Xk9eDNWrz1A8gJ+9kU7eLu+UYGHiIiMeAYHJ3h06e0Di4sLmFhGANMMYDtxPGZez/NcG+CQgYjIkTIMg/KcQspzPngI2IRQEX9bvohn6jdSG2ukLt6KZZiUBfJYXDqDEwsqB6nFMlop8BCRQTGvYjyuC89sqqG2tR3HcfBYFhMK8jh39lR+98YmAodY4tcwDCzTpDOZGuRWi4iIDL4c7wR8Zj4Ju4Wgp7jH8aTdTMgzjpB3PBH/PBpjf8DnlvRYqSZp78NnFRH2TR+spov0MCmnlKurzmR3VzMd6Th+00t5uBi/pUUA+kKTlh4ZBR4iMigMw2BB5QSOmzCGbY3NdKXSRAIBKksK8FoWf92+k4Zo711uXdfFdhzygv5BbrWIiMjg81l5lARPZE/sGSzbj8/aP+Go67ok7WYcN0NZ6CRMw0N+cBGx1Ft0pbfgs8bgMSO4pEhmGsBwKApdqAlLZchZhklFWHN1yOBT4CEigyrg9TBzXFmP/XMnjOWNPfuIp9MEvd0T/5auOLl+PzPG9N9EdSIiIsPZhPBHyDhdNCXWEs/UYxgWjpvBZ0aYmHMOJYETAfBZRYyLXEVT7E90pt4ilWnEwIPfM47C0Onk+U8a4jsRERk6CjxEZFg4bvwYjp8wltd37SU/GKAgFMB2XZo6u0hlMiydOYVxefqGSkRERgfL9DM5ciklwRNpT9aQcWP4rDwKfNMJesZ0W/HC7yljXORKUvY+0k4rJj4C3omYhiaDlGOP67o0tnUS7Uzg93kYW5yHxzI/vKBILxR4iBwDUsk0NW/XseWNPcQ6ExQU5zLtuAlUVJViDcNfAKlMBtcFn8c67GVk/R4Pl8+fw5hIDq/V7mFvewemYVCam8Mpk8tZWDlRS9KKiMioYhgmEV8lEd+HT+xoGAZ+zxj89L6yi8ixoL65gz+v2cI7uxpIJNN4LIvxpXmcOmcysyaP0XtB6TMFHiLDXKwjwR/+51W2bNqLYYDP52HbO/WsX72NuSdXcdaFJ+DxWh9e0QBzXZfNext5rWYP2xtaAKgsLWR+9XimjSs5rF9QIZ+XC2ZP47QplTR1xvYvS5uXi88a+vsTERERkYHT2NrJQytfZ09jG6UFuZQW5JBK2+yqb+V/m9ZhO3M4fsr4oW7mEDJwtSxtnynwEBnmnvvTBt7euIvxk4rx+9+d26IzGmf1C1soKo0wf/GUIWzh/rDjr5t2sOL1t0lmMuSHgwCs3b6Ht3bVc97caSyZWXnYqXyO30eOX91wRUREREaLlzbuYHdDG9UTijDN/T2Yg36TirGF7Gpo49k1W5hWUUrAp9Vd5PANv77wIpLV3BBl8xt7KCqNdAs7AHIiQfwBD+tf3UY6nRmiFu63pyXKU+vfwef1UDWmmKLcMEW5YarGFOHzeli5YQt7mtsHrT2JVIYN2+p45vUtPLuuhnd2N5KxnUG7voiIiIgcvs54kje311OUF8qGHe81pjCXfS2dbN/bMgStGybcI9xGOfXwEBnGGurbiXUkKC7rfXWSvMIwLU0dtDXHKBmTN8ite9cbtfV0xFNUjy3qcawkEmZLXRMba+uZUJw/4G3Zua+V/3vxDfY0teM4+3/Kez0m1eOKuezU4yjIDQ14G0RERETk8MUTaZLpDPk5gV6Pez0WruvSlUgNcsvkWKfAQ+QY4LrQ62gQF4bD2Ly6lg78Xk+vQ1YMwyDo87K3JTrg7WiJdvHb59fT0NbJxJJ8vJ79c3/Ek2ne2rkPx3G5+twF2f0iIiIiMvSCAS9+r4d4Mk0o0HNYczpjYxhGr8dEPoiGtIgMY2PGF5ATCdDR1tXr8baWGMVluRQU5Qxyy7rzey1s59BDRjK2g8878Pnqhu17qWuOMqmssFuoEfR7KS8roGZvE1v2NA54O0RERETk8OUE/cyqHENzexdOL+8p61s6KCvMoXJc4RC0To5lCjxEhrGCohymz5lIS2MHiXj3LnzRti7SqQzHn1Q15Ku0TB1fgu04pG27x7G0bWM7DjPG9z4spz+9tXMfoYAP0+zZ08Tv9WA7LtvqRvHYTxEREZFhatFxk5hQms/WPc20dyawbYd4Ms3OuhYs0+Qj86ZowlLpMw1pERnmTj/3OOKxJG9v2I3juHi8FulUGn/Ax8IzpnP8gsqhbiIzJ5QyuayQrfXNTCjOJ3jgl1EilWZXUxuVZYXMnDjwgUcq42D1MtHVQaZpaPJSERERkWGopCCHy885kede38I7tY20RGN4LIuJYwpYcvxkZlaOGeomDinX3b/1tcxop8BDZJgLhf187PKFHDd/HzVv7aWrM0F+UQ5TZ41nwqTiw17qdUDb6PexbPHxPPrKG2ytbyZjO7iA1zKZNr6UyxbOJjQIy8yWl+Sxp7H31WAcx8V2XEoLhnb4j4iIiIj0bkxRLsvOnktjWyfRWBK/12JscR4eSwMT5Mgo8BA5Bni8FlNmjGPKjHFD3ZRDKsnL4ZqzTmLbvubsBKXjCiNMLisatF9Sx00ex+s1e2iJdlEYeXc1Ftd12dvcTnEkxIzyskFpi4iIiIj0nWEYlBbkUlqQO9RNGWYM+r5YwdB/MTrUFHiISL/xWCZTx5UwdVzJkFy/elwRZx5fzbPramiLxYmEAjiuSzQWJxIO8tGTZ1KQExyStomIiIiIyOBS4CEiI4ZhGHxkbjXjiiOsrdnLzn0teA2TJcdNZm71BMpL84e6iSIiIiIiMkgUeIjIiGIYBjPKy5hRXobtOBgYva7aIiIiIiJyzHAPbH0tM8op8BCREeuDVmwREREREZGRTYGHiIiIiIiIyDCmDh5H5pj4+vPee++lsrKSQCDAvHnzWLVq1SHPraur41Of+hTTpk3DNE2uv/76wWuoyBBra+5k1/ZG9u1tw3GcoW6OiIiIiIjIkBn2PTwefvhhrr/+eu69914WL17MT3/6U84//3zeeustysvLe5yfTCYpKSnh5ptv5q677hqCFosMvuaGKC/9eRNbNu0lEU/h8ViMLy9mwWlTh/VStiIiIiIiIgNl2PfwuPPOO7nmmmu49tprmTFjBnfffTcTJ07kJz/5Sa/nT5o0iR/+8IdceeWV5OXlDXJrRQZfS1MHj/33S6x5aSten4ey8QVE8sPs2LqP3z34Mm9v2DXUTRQRERERkaPhHuE2yg3rwCOVSrFmzRqWLl3abf/SpUt58cUX++06yWSSaDTabRM5Vrz+Yg17djZTUV1KXkEYr9dDKMfPxMoS0imbVU+/SSqZHupmioiIiIiIDKphHXg0NTVh2zZlZWXd9peVlVFfX99v17njjjvIy8vLbhMnTuy3ukUGUlcsyaaNu8gvCmNZPf85l47No7GunZ3bGoegdSIiIiIi0j+MI9xGt2EdeBxkGN3/Q7mu22Pf0bjppptob2/Pbrt2aQiAHBviXSmS8TTBoK/X416fB8dx6OpMDnLLREREREREhtawnrS0uLgYy7J69OZoaGjo0evjaPj9fvx+f7/VJzJYAkEvXp+HRCJNMNzzGc6kbQzDIBD0DkHrRERERESkX2hd2iMyrHt4+Hw+5s2bx8qVK7vtX7lyJaeccsoQtUpk+AjnBJh23Hjamjt7XYa2aV87RaURKqpK++2aruuSydi4rn6CioiIiIjI8DWse3gA3HDDDVxxxRXMnz+fRYsWcd9991FbW8t1110H7B+OsmfPHh544IFsmXXr1gHQ2dlJY2Mj69atw+fzMXPmzKG4BZEBNW/RFHZsaaB2awPFY/IJ5/hJpTI07YtiGgaLzpxB4BBDXvoimUzzxlt72LBxF21tXQQCXo6bNYHjZk8gLy/UD3ciIiIiIiLSf4Z94LFs2TKam5v55je/SV1dHbNnz2bFihVUVFQAUFdXR21tbbcyc+fOzf55zZo1/OY3v6GiooIdO3YMZtNFBkXJmDwu+dQiVq18g51bG2iqb8fjtSgbl89JS6Yxa275UV8jHk/xuz+s5a239+L1WIRCftrb4zz59Bu8uWkvl10yj5Li3H64GxEREREReT+NaDkyhqt+6T1Eo1Hy8vJob28nEokMdXNEDovruuzb20ZnNI7P72HsxEK83v7JNJ9/YTNPP/Mm48YVEPC/Ox+IbTvsqG1ixvRxfPITJ/frZMIiIiIiIsPZYHxuPHiNb7/wRwI54T6VTXTG+OdTzx/Vn2uHfQ8PETk8hmEwZnwBjC/o13qTyTTrN+wiJxzoFnYAWJbJmNI8duxsYm9dG+PH9e+1RUREREQEdfE4Qgo8jkHxWIJt63fS2dqJL+hj0uxyCkrzhrpZMkK1t8fp6EhQkN/7PB2hkI+GxigtrTEFHiIiIiIiMmwo8DjGvPXyOzz30F9p2tMC7B/GkFuYw7ylx3PqJSdheawhbqGMNJZlYpoGtt1zFRggu1qLZQ7rRZ9ERERERGSUUeBxDNm2YScrfvY06WSGCVPH4fFaOI5L2742nv+fF7E8JqdecvJQN1NGmIKCMOPHFbB9RyM5OYEex1tbu8jLCzFxQuEQtE5EREREZDQwDmx9LTO66SvZY4Truqx+ch1d0TjjqsrwePf35DBNg8KxBYQiIV5fuYFYe2yIWyojjWkazJ83CY/HZF9DO46zv0eH67q0t3cR7Ygz9/hycnN7hiEiIiIiIiJDRYHHMaKtMcqut/dQNLag15UwCscW0NYQpfbtvUPQOhnppk8by7lLj8Pr9bCjtontOxrZvqOReCLN4kVTOHXx1KFuooiIiIiISDca0nKMyKQy2Bkbj6/3/2SWZeK6LplUZpBbJqOBYRjMmzuJ6qoyamr20dmZwOf3MrmyhNKSXC1HKyIiIiIiw44Cj2NEbmEOOflhOttiBHuZRyHemcAX8JJXMrDrKzuOw+536mitb8PymIyfOk4rxIwieZEg806cNNTNEBERERER+VAKPI4RgZCf2adO59kHXyCvOIIv4M0ecxyHfTsamHzCJCZMHTtgbWiobWTlr56ndtNu0ok0LpBbEOa402Zy+scX4Qv4BuzaIiIiIiIio5Z7YOtrmVFOgccxZP65J7Cnpp53XttKKCdIKBIklUgTbY5SNqmUsz61BHOAlgZta2zn//79T9Rt3ceYylKCOQEcx6W9McqL/7eaVDLNBdecpaENIiIiIiIiw8iCBQuwLIvly5ezfPnyoW7OoFLgcQwJR0Jc+uXz2fCXt1j/l7fobIvhDXg49W8WcsIZsygeXzRg137jhbfZW1NPxayJWNb+UMU0DQrK8rC8Fm+s2sSJHzmOsZPLBqwNIiIiIiIi0jerV68mEhnYqQ+GKwUex5hgTpCTPzqP+eeeQCKWwBvw4fN7P7zgUXBdl7de3Ew4EsqGHe+VWxCmeU8z29+oVeAhIiIiIiIiw4ICj2OU5bEI54UH5VqO45DoSuIN9B6sGIaBYRikE+lBaY+IiIiIiMioojk8jsjATPggI4plWRSNKyTW3tXrccd2cN39K8mIiIiIiIiIDAcKPOSwzD51Oo7tEO9M9DjWuKuZ/LII1SdWDkHLRERERERERHrSkBY5LDMWTmXbhp1s+MtbBMMBcotysDMOrfva8Ad9nPGJxUQKc4e6mSIiIiIiIiKAAg85TD6/l4/+3dmMm1zG+ufepL2pA9MymTq/inlnz6HqhElD3UQRERERERGRLAUecth8AR8nf3QeJ54zh46WTiyPRaQoF8MwhrppIiIiIiIiI5dr7N/6WmaUU+Ahfeb1eSkcUzDUzRARERERERE5JE1aKiIiIiIiIiIjjgIPERERERERERlxFHiIiIiIiIiIyIijOTxEREREREREhjP3wNbXMqOceniIiIiIiIiIyIijwENERERERERERhwFHiIiIiIiIiIy4ijwEBEREREREZERR5OWioiIiIiIiAxnmrT0iKiHh4iIiIiIiIgMqcmTJ9Pc3Nxjf1tbG5MnTz6iOhV4iIiIiIiIiMiQ2rFjB7Zt99ifTCbZs2fPEdWpIS0io0Q6lWbbhloadzVhGAbjqsoonzEBy2MNddNERERERGSU+t3vfpf985NPPkleXl72tW3bPPPMM0yaNOmI6lbgITIK1G3fx59+/iy7t9Th2A64Lh6/l0mzJnLBtWdRUJY/1E0UEREREZFR6JJLLgHAMAyuuuqqbse8Xi+TJk3iBz/4wRHVrcBDZISLtnTw+588Rd22fYyvHosv4AUg0ZVky5pt/D5jc/k/XYIv4BviloqIiIiISK9G8KSljuMAUFlZyerVqykuLu63ujWHh8gIt/nVGvZurad8xoRs2AEQCPmZMG0cO9/cTc26HUPXQBERERERGfW2b9/er2EHqIdHr1x3fxQWjUaHuCUiR2/9i2/gWg6pTAIyPY/HU3HeWr2JCTPHDH7jRERERESOUQc/Lx78/DiwjANbX8scW5555hmeeeYZGhoasj0/DvrFL37R5/oUePSio6MDgIkTJw5xS0QGyePAV4a6ESIiIiIix56Ojo5uE23KkfnGN77BN7/5TebPn8/YsWMxjKMPbBR49GLcuHHs2rWL3NzcfvlLFolGo0ycOJFdu3YRiUSGujkyCuiZk8GmZ04Gm545GWx65uT9XNelo6ODcePGDfi1DMDoY0eSY+2T7H/8x39w//33c8UVV/RbnQo8emGaJhMmTBjqZsgIFIlE9AtSBpWeORlseuZksOmZk8GmZ07eSz07+k8qleKUU07p1zo1aamIiIiIiIiIDKlrr72W3/zmN/1ap3p4iIiIiIiIiMiQSiQS3HfffTz99NPMmTMHr9fb7fidd97Z5zoVeIgMAr/fz2233Ybf7x/qpsgooWdOBpueORlseuZksOmZExlYGzZs4IQTTgDgjTfe6HbsSOfWNNzBWUNHRERERERERPogGo2Sl5fHHc88RSAc7lPZRCzGTWctpb29fdTOO6M5PERERERERERkxNGQFhEREREREREZUmeeeeYHDl159tln+1ynAg8RERERERGR4cw9sPW1zDHk4PwdB6XTadatW8cbb7zBVVdddUR1KvAQERERERERkSF111139br/9ttvp7Oz84jq1BweIkfg3nvvpbKykkAgwLx581i1atUhz3300Uc555xzKCkpIRKJsGjRIp588ske57W1tbF8+XLGjh1LIBBgxowZrFixYiBvQ44hA/HM3X333UybNo1gMMjEiRP52te+RiKRGMjbkGNIX565F154gcWLF1NUVEQwGGT69Om9vml55JFHmDlzJn6/n5kzZ/LYY48N5C3IMaa/n7mf/exnLFmyhIKCAgoKCjj77LN59dVXB/o25BgyED/nDnrooYcwDINLLrlkAFouMrp85jOf4Re/+MURlVXgIdJHDz/8MNdffz0333wza9euZcmSJZx//vnU1tb2ev7zzz/POeecw4oVK1izZg1nnnkmF110EWvXrs2ek0qlOOecc9ixYwf/+7//y+bNm/nZz37G+PHjB+u2ZBgbiGfuv//7v7nxxhu57bbb2LRpEz//+c95+OGHuemmmwbrtmQY6+szFw6H+dKXvsTzzz/Ppk2buOWWW7jlllu47777sue89NJLLFu2jCuuuIL169dzxRVX8IlPfIJXXnllsG5LhrGBeOaee+45PvnJT/LnP/+Zl156ifLycpYuXcqePXsG67ZkGBuIZ+6gnTt38o//+I8sWbJkoG9DZFR46aWXCAQCR1RWy9KK9NHJJ5/MiSeeyE9+8pPsvhkzZnDJJZdwxx13HFYds2bNYtmyZXz9618H4D/+4z/43ve+x9tvv43X6x2QdsuxayCeuS996Uts2rSJZ555JnvOP/zDP/Dqq69+4DdcMjr0xzN32WWXEQ6H+dWvfgXAsmXLiEaj/PGPf8yec95551FQUMCDDz7Yvzcgx5yBeObez7ZtCgoK+Pd//3euvPLKfmm3HLsG6pmzbZvTTz+dz372s6xatYq2tjb+7//+r7+bL6NIdlnalUe4LO05x86ytJdddlm3167rUldXx2uvvcatt97Kbbfd1uc61cNDpA9SqRRr1qxh6dKl3fYvXbqUF1988bDqcByHjo4OCgsLs/t+97vfsWjRIpYvX05ZWRmzZ8/m29/+NrZt92v75dgzUM/cqaeeypo1a7Ldu7dt28aKFSv46Ec/2n+Nl2NSfzxza9eu5cUXX+T000/P7nvppZd61Hnuuecedp0ycg3UM/d+XV1dpNPpbj8LZXQayGfum9/8JiUlJVxzzTX91l6R0SIvL6/bVlhYyBlnnMGKFSuOKOwATVoq0idNTU3Ytk1ZWVm3/WVlZdTX1x9WHT/4wQ+IxWJ84hOfyO7btm0bzz77LJ/+9KdZsWIFW7ZsYfny5WQymew38jI6DdQzd/nll9PY2Mipp56K67pkMhm+8IUvcOONN/Zr++XYczTP3IQJE2hsbCSTyXD77bdz7bXXZo/V19cf1XMsI9dAPXPvd+ONNzJ+/HjOPvvsfmm3HLsG6pn761//ys9//nPWrVs3EM0WGfF++ctf9nudCjxEjsD714d2XfcD14w+6MEHH+T222/n8ccfp7S0NLvfcRxKS0u57777sCyLefPmsXfvXr73ve8p8BCg/5+55557jn/913/l3nvv5eSTT6ampoavfvWrjB07lltvvbXf2y/HniN55latWkVnZycvv/wyN954I9XV1Xzyk588qjpl9BiIZ+6g7373uzz44IM899xzRzwOXEae/nzmOjo6+MxnPsPPfvYziouLB7LZIiPemjVr2LRpE4ZhMHPmTObOnXvEdSnwEOmD4uJiLMvqkf43NDT0+Jbg/R5++GGuueYafvvb3/b4dmns2LF4vV4sy8rumzFjBvX19aRSKXw+X//dhBxTBuqZu/XWW7niiiuy30wdd9xxxGIx/v7v/56bb74Z09SIx9HqaJ65yspKYP/ztG/fPm6//fbsh88xY8YcUZ0y8g3UM3fQ97//fb797W/z9NNPM2fOnP5tvByTBuKZ27p1Kzt27OCiiy7Knus4DgAej4fNmzdTVVXVz3ciMrI0NDRw+eWX89xzz5Gfn4/rurS3t3PmmWfy0EMPUVJS0uc69Y5WpA98Ph/z5s1j5cqV3favXLmSU0455ZDlHnzwQa6++mp+85vf9DpHwuLFi6mpqcn+YgR45513GDt2rMKOUW6gnrmurq4eoYZlWbiui+ayHt2O9Jl7P9d1SSaT2deLFi3qUedTTz3VpzplZBqoZw7ge9/7Ht/61rf405/+xPz58/ulvXLsG4hnbvr06WzcuJF169Zlt4997GOceeaZrFu3jokTJ/brPcjoY7hHth1LvvzlLxONRnnzzTdpaWmhtbWVN954g2g0yle+8pUjqlM9PET66IYbbuCKK65g/vz5LFq0iPvuu4/a2lquu+46AG666Sb27NnDAw88AOz/4HnllVfywx/+kIULF2a/TQgGg+Tl5QHwhS98gR//+Md89atf5ctf/jJbtmzh29/+9hH/w5aRZSCeuYsuuog777yTuXPnZoe03HrrrXzsYx/r1tNIRqe+PnP33HMP5eXlTJ8+HYAXXniB73//+3z5y1/O1vnVr36V0047jX/7t3/j4osv5vHHH+fpp5/mhRdeGPwblGFnIJ657373u9x666385je/YdKkSdmfhTk5OeTk5AzyHcpw09/PXCAQYPbs2d2ukZ+fD9Bjv4j07k9/+hNPP/00M2bMyO6bOXMm99xzT49Jhg+XAg+RPlq2bBnNzc1885vfpK6ujtmzZ7NixQoqKioAqKur67aG+09/+lMymQzLly9n+fLl2f1XXXUV999/PwATJ07kqaee4mtf+xpz5sxh/PjxfPWrX+Wf/umfBvXeZHgaiGfulltuwTAMbrnlFvbs2UNJSQkXXXQR//qv/zqo9ybDU1+fOcdxuOmmm9i+fTsej4eqqiq+853v8PnPfz57zimnnMJDDz3ELbfcwq233kpVVRUPP/wwJ5988qDfnww/A/HM3XvvvaRSKf72b/+227Vuu+02br/99kG5Lxm+BuKZE5Gj4zgOXq+3x36v19utJ3xfGK76LouIiIiIiIgMO9FolLy8PL7z1FMEwuE+lU3EYty4dCnt7e1EIpEBamH/ufjii2lra+PBBx9k3LhxAOzZs4dPf/rTFBQU8Nhjj/W5Ts3hISIiIiIiIiJD6t///d/p6Ohg0qRJVFVVUV1dTWVlJR0dHfz4xz8+ojo1pEVERERERERkOHMPbH0tcwyZOHEir7/+OitXruTtt9/GdV1mzpzZY7XBvlAPDxEREREREREZEs8++ywzZ84kGo0CcM455/DlL3+Zr3zlKyxYsIBZs2axatWqI6pbgYeIiIiIiIiIDIm7776bv/u7v+t1npG8vDw+//nPc+eddx5R3Qo8RERERERERGRIrF+/nvPOO++Qx5cuXcqaNWuOqG4FHiIiIiIiIiIyJPbt29frcrQHeTweGhsbj6huBR4iIiIiIiIiw5lrHNl2DBg/fjwbN2485PENGzYwduzYI6pbgYeIiIiIiIiIDIkLLriAr3/96yQSiR7H4vE4t912GxdeeOER1a1laUVERERERERkSNxyyy08+uijTJ06lS996UtMmzYNwzDYtGkT99xzD7Ztc/PNNx9R3Qo8RERERERERGRIlJWV8eKLL/KFL3yBm266Cdd1ATAMg3PPPZd7772XsrKyI6pbgYeIiIiIiIiIDJmKigpWrFhBa2srNTU1uK7LlClTKCgoOKp6FXiIiIiIiIiIDGOGu3/ra5ljTUFBAQsWLOi3+jRpqYiIiIiIiIiMOAo8RERERERERGTEUeAhIiIiIiIiIiOO5vAQERERERERGc7cA1tfy4xyCjx64TgOe/fuJTc3F8Mwhro5IiIiIiIiMsy4rktHRwfjxo3DNDV4YjhS4NGLvXv3MnHixKFuhoiIiIiIiAxzu3btYsKECUPdDOmFAo9e5ObmAvsf3EgkMsStERERERlcXV1d7Nixg23btnXbdu3axWuvvYZlWQB87nOf45FHHulW1ufzUVlZyeTJk/nJT35CQUEBAO3t7YTDYTwevf0UkZEhGo0yceLE7OdHGX70G6cXB4exRCIRBR4iIiIyIkWjUbZu3UpNTQ2XXXZZNsS47rrr+OlPf3rIcu3t7UyaNAmAv/3bv6W6urrbdqiu3XpPJSIjlaZBGL4UeIiIiIiMcC+88ALPPvtsNuCoqamhoaEhe3znzp2Ul5cDUFRUBEB+fj5TpkyhqqqqW6AxZsyYbLnLL7+cyy+/fHBvRkRkNNKkpUdEgYeIiIjIMcp1XRoaGroFGTU1NWzZsoXHH3+ccePGAfDEE0/wne98p0f50tJSqqqq6OzszO772te+xg033JANPkRERI5VCjxEREREhjHHcairq6OmpoZ58+aRk5MDwF133cXXv/71bmHFe23ZsiUbeCxZsoSGhgaqqqqYMmUK1dXVVFVV9TrMpLi4eOBuRkREZBAp8BAREREZJjZv3txj6Mm2bduIx+MArFq1ilNPPRWAcDhMZ2cnhmFQXl7eY+jJ7Nmzs/VecMEFXHDBBUNyTyIi0j80U0jfKfAQERERGQSpVIqdO3d2G3pSU1PDt771LU488UQA/vznP/PFL36xR1nLsqisrKSrqyu777LLLuO0006jsrISv98/aPchIiJyrFDgISIiItJP4vE427ZtY+zYsRQWFgLwu9/9juuvv57a2lps2+5RZtmyZdnA4/jjj+fCCy/s1lOjqqqKiooKvF5vt3LFxcUafiIiIsPOpZdeynPPPcdZZ53F//7v/w5pWxR4iIiIiPRRQ0MDq1at6tFbY/fu3QD8+te/5tOf/jQAgUCA7du3AxAKhboFGdXV1SxevDhb76JFi/j9738/+DckIiLST77yla/wuc99jv/6r/8a6qYo8BARERF5v9bWVmpqarrNpfGZz3yGs88+G4A1a9bwt3/7t72WzcvLo6OjI/v65JNP5vnnn88u6WoYGoUtIiIj15lnnslzzz031M0AFHiIyPs4jovjOFiWqTflIjJiua5LY2MjlmVll19du3Yt1113HTU1NbS0tPQoU1VVlQ08pk2bxsKFC7sNPTm4FRYWdvv5mZeXx5IlSwbnxkREZGRyD2x9LdNHzz//PN/73vdYs2YNdXV1PPbYY1xyySXdzrn33nv53ve+R11dHbNmzeLuu+8etr/nFHiICACNLZ2s37SbN96pI5OxKSnK5YQZ45k1ZSwejzXUzRMROSJdXV289tprPYae1NTU0NHRwb/8y79w8803AxAMBnn11VezZceOHdstyDjrrLOyxyZPnsxLL7006PcjIiIykGKxGMcffzyf/exn+Zu/+Zsexx9++GGuv/567r33XhYvXsxPf/pTzj//fN566y3Ky8uHoMUfTIGHiLBzTwuPPrmOhuYOcsMBPB6TrbWNbNnRwI7dzXz0zNkKPURkWLJtm927d3cLMhYtWsRll10GwI4dOzj99NN7LWsYBk1NTdnXkydP5pFHHsnOrxEOhwflHkRERAZSNBrt9trv9x9yda/zzz+f888//5B13XnnnVxzzTVce+21ANx99908+eST/OQnP+GOO+7ov0b3EwUeIqNcOm3zx7+8SXNbjMnlxZgHumEX5Yfp7EqyemMtE8YWMG/28EtsRWR0SKfTdHV1kZeXB0B9fT3XXnstNTU1bN++nVQq1e38a665Jht4TJ48ORtgHJwk9OBWWVlJIBDIlvP5fNlyIiIiI8XEiRO7vb7tttu4/fbb+1xPKpVizZo13Hjjjd32L126lBdffPFomjhghjzw6Mv4nxdeeIF/+qd/4u2336arq4uKigo+//nP87Wvfa3beY888gi33norW7dupaqqin/913/l0ksvHYzbETnmbK1tYk99G+PL8rJhx0E5IT+t7V2se2s3c2dOxDQ1p4eIDAzbtnnnnXd6HXqyc+dOPve5z3HfffcBkJubyxNPPJEt6/P5mDx5cjbQeG+PjkAgwJYtWwb9fkRERPrVUczhsWvXLiKRSHb3oXp3fJimpiZs26asrKzb/rKyMurr67Ovzz33XF5//XVisRgTJkzgscceY8GCBUd0zaM1pIFHX8f/hMNhvvSlLzFnzhzC4TAvvPACn//85wmHw/z93/89AC+99BLLli3jW9/6FpdeeimPPfYYn/jEJ3jhhRc4+eSTB/sWRYa9lvYYjuPi8/b+4yCSE6CxpZN4Mk046Bvk1onISBKLxbKrnmzdupVx48Zll26Nx+PMnDnzkGVra2uzfw6Hw/zyl79kwoQJTJkyhQkTJmBZGnYnIiLSm0gk0i3wOFrvX9jAdd1u+5588sl+u9bRGtLAo6/jf+bOncvcuXOzrydNmsSjjz7KqlWrsoHH3XffzTnnnMNNN90EwE033cRf/vIX7r77bh588MFBuCuRY4tlmbi4PX5QHZSxHSzTwKPeHSJyGFKpFD7f/nDUtm3+7u/+LttTo66urtu5Z599djbwyMnJYerUqYTD4W7DTqqqqpgyZQpjx47tVvbqq68elPsRERGR/YqLi7Esq1tvDoCGhoYevT6GiyELPPpj/M/atWt58cUX+Zd/+ZfsvpdeeqnHEJdzzz2Xu++++5D1JJNJkslk9vX7J3URGcnKxxYQCvjoiCWJ5AS6HXNdl7ZonJOOr8Dv9w5RC0VkuGlqaup16ElNTQ3z5s3LfrNjWRZPPPEEDQ0N2bKFhYXZIOP9PS83b948qPchIiIih8/n8zFv3jxWrlzZbcqIlStXcvHFFw9hyw5tyAKPwx3/05sJEybQ2NhIJpPh9ttvz/YQgf0TmfW1zjvuuINvfOMbR3AXIse+MSURZk0dy6vrd2IaBuGQD8MwsG2HvQ3tRMJ+5s6c+OEViciI4bou9fX12aEnhmFw1VVXZY9Pnz6d5ubmXsu+f76M73znOwSDwWzIUVBQMKBtFxERkSPX2dlJTU1N9vX27dtZt24dhYWFlJeXc8MNN3DFFVcwf/58Fi1axH333UdtbS3XXXfdELb60IZ80tIPG//Tm1WrVtHZ2cnLL7/MjTfeSHV1NZ/85CePuM6bbrqJG264Ifs6Go32mMlWZKQyDIPzTpuF47i8uaWOfU1RDMPABUoKczjvtJlUjC8c6maKSD97/+/Gb33rW6xduzY7x0ZXV1f22JQpU7oFHlOmTMmGGO8denLw/9/rs5/97MDfjIiIyAhnuPu3vpbpq9dee40zzzwz+/rg5+SrrrqK+++/n2XLltHc3Mw3v/lN6urqmD17NitWrKCioqLvFxsEQxZ4HM34n8rKSgCOO+449u3bx+23354NPMaMGdPnOj9oHWKR0SAY8HLZuSdw8vGT2L67mUzGIT8SZGplKeGQ/m2IHKsymQw7d+7MDjc5GGbU1NTg8/lYt25d9tzf/e53vPbaa9nXpmlSUVFBdXU1M2bM6FbvCy+8oElCRURERqAzzjgD1/3gpOSLX/wiX/ziFwepRUdnyAKP/hr/47put/k3Fi1axMqVK7vN4/HUU09xyimn9E/DRUYowzCYMLaACWPV3VzkWJJMJtm+fTtbt26lqampW0+MU045hdWrV/dazuv1Ytt2NrhYvnw50Wg022Nj0qRJ2clH309hh4iIiBwLhnRIy4eN/7npppvYs2cPDzzwAAD33HMP5eXlTJ8+Hdj/DdP3v/99vvzlL2fr/OpXv8ppp53Gv/3bv3HxxRfz+OOP8/TTT/PCCy8M/g2KiIj0s1/96lf89a9/zfbUqK2tzX4T4/P5+MxnPpMNJCorK9m4cSOTJ09mypQpPYafmKaZrVernoiIiMhIM6SBx4eN/6mrq6O2tjZ7vuM43HTTTWzfvh2Px0NVVRXf+c53+PznP58955RTTuGhhx7illtu4dZbb6WqqoqHH364x0zwIiIiw0k0Gu0x7KSmpoY9e/bwzjvvZMOJxx9/nEceeaRb2ZycnGyYEYvFiEQiAPz85z8nFAp1CzZERERERgvD/bABOqNQNBolLy+P9vb27JtGERGRo+G6Li0tLWzdupWtW7dy+eWXZycNveqqq7K9GXuze/duxo8fD8BDDz3EW2+9RVVVFVVVVUyZMoXS0tIPnfBbRERE+tdgfG48eI3vPr6SYDjcp7LxWIz/7+JzRvXn2iFfpUVERGQk+vOf/8yzzz7brbdGW1tb9viZZ57JmDFjALITa5eWlnYbdnJwGEpJSUm23OWXXz6o9yEiIiJyrFLgISIi0geO47Bnz55eh5889dRTlJaWAvDEE0/wgx/8oEf58ePHU1VVRUdHRzbwuPHGG7nllltG7bcvIiIiMnAWLFiAZVksX76c5cuXD3VzBpUCDxERkffJZDLs2rWLmpoaTjnlFMIHupDecccdfOMb3+i2Oth71dTUZAOPM844g1gs1m2S0MmTJxMKhXqUKywsHLibERERkVFt9erVo/ZLFQUeIiIyqr355ps888wz3XpsbN++nXQ6DcDLL7+cnfg6EomQTCbxeDxMmjQpO/zk4DZjxoxsvRdeeCEXXnjhkNyTiIiIiCjwEBGRESwej7Nt27Zuw05qamr4wQ9+wJw5cwB45pln+OpXv9qjrN/vp6qqing8nt23bNkyzj//fMrLy/F49CtUREREBol7YOtrmVFO79ZEROSY1tHRwdatWykvL88ODfntb3/LDTfcwO7du3st8+abb2YDjxNPPJFLL700O0HowW38+PE9lnMtLi6muLh4YG9IRERERPqFAg8RETkm7N27l7/85S/ZXhoHh5/s27cP2L9c67JlywAIBoPZsCMvLy8bZhycS+OUU07J1nvqqady6qmnDv4NiYiIiBwm48DW1zKjnQIPEREZcq7r0tjY2GPoybXXXstHPvIRYP+EW5/61Kd6LV9SUkJXV1f29amnnsrLL79MdXU1hYWFGIZ+5YuIiIiMNgo8RERkUDiOQ11dHX6/Pzss5NVXX+Xzn/88W7dupaOjo0eZOXPmZAOP6dOns2TJkm7DTg722MjLy+tWLj8/PzvRqIiIiIiMTgo8RESkX3V2dvLKK6/06K2xdetW4vE43/3ud/l//+//AfuHnqxbtw4AwzAoLy/PhhhVVVWcffbZ2XqnTZvG888/PxS3JCIiIjK0NGnpEVHgISIifZJOp9mxY0e3IOP000/n0ksvBWDr1q3dgor3siyL1tbW7OspU6bw+9//nurqaiorK/H7/YNyDyIiIiIy8inwEBGRHhKJBPF4nIKCAgB2797NNddcQ01NDTt37sS27W7nJ5PJbOBRVVXFtGnTuq16crDXRkVFBV6vN1suEAhw4YUXDt6NiYiIiMioocBDRGSUymQyvPnmm91WPDm47d69my9+8Yv8+7//OwC5ubk89dRT2bLBYLDbXBqnn3569lhOTg5vv/32oN+PiIiIiMh7KfAQERnB2trauoUZkyZN4tOf/jQAHR0dnHDCCYcse3BZV9i/tOsDDzxARUUFU6ZMYcyYMVr5RERERGSwaA6PI6LAQ0TkGOa6LolEgmAwCEAqleJzn/tcNuBobm7udv7555+fDTwKCgqYOnUqBQUF3YaeHByKUlRU1K3sFVdcMTg3JSIiIiL9ZsGCBViWxfLly1m+fPlQN2dQKfAQERnmXNelrq6u2ySh7x1+smTJEv7whz8A4PP5eOKJJ2hra8uWHzNmTDbMWLhwYbe6N2/ePJi3IiIiIiKDbPXq1UQikaFuxpBQ4CEiMgw4jsPu3buzIYbP5+Pqq6/OHp8+fTodHR29lq2pqen2+q677iISiVBVVUVVVRU5OTkD2XQRERERkWFJgYeIyCBxXbfbvBc333wzGzZsoKamhu3bt5NMJrPHZs6cmQ08DMNg2rRptLS0ZFc7ee9WWVnZ7TrvDUpEREREREYrBR4iIv0omUyyffv2bkNODg5Dyc3N5fXXX8+e+8QTT7B+/frsa6/Xy+TJk6murmbWrFnd6n3llVcwTXPQ7kNEREREhg/D3b/1tcxop8BDRKSPYrEYW7duZevWrbS1tfHZz342e+ykk05iw4YNvZYLBoPdenl87WtfIx6PZ3tqTJw4Ecuyei2rsENEREREpG8UeIiIfIj//M//5MUXX8z21qirq8seC4fDXH311dkQo6qqim3btjFlypRuw08Orn7yXlddddWg3oeIiIiIyGiiwENERiXXdWlubu6x4klNTQ0NDQ3U1NRkQ4zf//73/O53v+tWvrCwMBtmxONxQqEQAL/+9a8JBoPd5uoQEREREZHBp8BDREYs13XZt29fdlLQz3zmM9kgYtmyZfz2t789ZNmmpiZKSkoAuPzyy5k/f3633hqFhYW9ljsYfIiIiIiIyNBS4CEiI8aTTz7Js88+222i0Fgslj1+wQUXUFRUBMD48eOz///+VU+qqqrIz8/PlvvkJz85qPchIiIiItKNe2Dra5lRToGHiAx7mUyG2traXlc+WbVqVba3xRNPPMGPf/zjbmVN06S8vJzq6mo6OjqygcfXv/51vv3tbxMMBgf9fkREREREZOAp8BCRYSGZTLJjxw5qamo488wzs0NDbrvtNr797W+TyWR6Lbd169Zs4HH22WcDdOutMWnSJHw+X49yBQUFA3QnIiIiIiIyHCjwEJFBt27dOp5++uluvTVqa2tx3f397tasWcOJJ54IQH5+PplMBr/f323Vk4NDT6ZNm5at92Mf+xgf+9jHhuSeRERERERkeFHgISL9KhqNsnXr1h6rn9xzzz3MmjULgGeeeYb/9//+X4+y4XA4u+rJQVdeeSUf//jHGTduHKZpDtp9iIiIiIjIsU2Bh4j0WUtLCzU1NVRXV2eHk/z617/mH/7hH2hoaOi1zKZNm7KBx4IFC1i2bBlTpkzp1mOjtLS0x3KuB+fcEBERERER6QsFHiJySLt27cquevLeHhutra0APPLII1x22WXA/t4ZB8OOkpISqqqqugUaixYtytZ72mmncdpppw3+DYmIiIiIyKihwENklHIch7179/YIM770pS9x+umnA/DKK69w9dVX91p+3LhxJBKJ7OszzjiD119/naqqKiKRyGDcgoiIiIjIqGAARh+XmT3Yb3rBggVYlsXy5ctZvnx5fzdtWFPgITKC2bZNbW0tubm5FBcXA/DCCy9w3XXXsXXr1m6BxUGLFi3KBh6zZs3irLPO6jZJaHV1NZMnTyYcDncrV1BQoJVPRERERESGmdWrV4/aLyQVeIiMAO3t7bz44ovdJgmtqalh+/btpNNp7rrrLq6//noAQqEQb775JgCWZVFZWdkt0PjIRz6SrXfGjBk8/fTTQ3FLIiIiIiIiR0WBh8gxIB6Ps23btmyQsXXrVpYuXcoll1wCwJYtW7jgggt6Levz+YhGo9nX06dP549//CNTpkyhvLwcr9c7GLcgIiIiIiIyqBR4iAwTHR0dpFKp7KokO3bs4LOf/Sw1NTXs3r27x/kejycbeFRVVTFnzpzskJP3Thg6fvx4LMvKlguFQpx33nmDck8iIiIiIiJDRYGHyCBKpVKsX7++2yShB7d9+/Zx/fXXc9dddwGQm5vLc889ly0biUS6hRlnnHFG9lhBQQHr168f5LsREREREZFB4R7Y+lpmlFPgIdKPXNelqampW5AxdepUPv3pTwPQ1tbGSSeddMjy9fX12T8XFhby3//930yePJnq6mqKioowDOOQZUVERERERORdCjxE+sh1XWKxGDk5OQB0dXVx9dVXZwOOjo6Obud/7GMfywYeJSUlTJ06lbKysuzwk/dOGJqfn58tZxgGn/rUpwbtvkREREREREYSBR4ivXBdl9ra2h7DTg5OGHruuefy2GOPARAMBlmxYgWxWCxbfuLEidkgY9GiRdn9hmGwefPmQb8fERERERGR0UaBh4xa6XSanTt3ZoOMcDjMZz/72ezxGTNmEI/Hey27bdu27J8Nw+Dee++loKCA6upqKisrCQQCA95+EREREREROTQFHjKi2bbdbYWSf/zHf+SNN96gpqaGHTt2YNt29tgJJ5yQDTwMw2DmzJl0dnb2GHYyZcoUKioqul3nyiuvHJwbEhERERGR0UeTlh4RBR5yzIvFYr2uelJTU0NZWRmrV6/OnvvHP/6Rt956K/s6GAxmg4w5c+Z0q3f16tWaJFREREREROQYpcBDjgltbW3ZUKOjo4Nrr702e2z+/Pm8/fbbvZZrb2/Hdd1scPFP//RPZDKZbI+NsWPHHjLUUNghIiIiIiLDgXFg62uZ0U6BhwxL99xzDy+99FJ2ktCmpqbssby8PK655ppsIFFdXU1jY2O2p8Z7h6BUV1d3q1dDT0REREREREaHIQ887r33Xr73ve9RV1fHrFmzuPvuu1myZEmv5z766KP85Cc/Yd26dSSTSWbNmsXtt9/Oueeemz3n/vvv7zbx5EHxeFwTSQ4x13Wpr6/vseJJTU0Nra2tbN26NXvuE088wR//+Mdu5cvKyrIhRiqVwu/3A/C///u/2T+LiIiIiIiIwBAHHg8//DDXX3899957L4sXL+anP/0p559/Pm+99Rbl5eU9zn/++ec555xz+Pa3v01+fj6//OUvueiii3jllVeYO3du9rxIJNJj6U+FHYPDcRx2795NTU0NtbW1XH311dljH/vYx/jDH/5wyLItLS0UFhYCcMUVV3D66adnA47JkyeTm5vbazmFHSIiIiIiMqJp0tIjMqSBx5133sk111yTnY/h7rvv5sknn+QnP/kJd9xxR4/z77777m6vv/3tb/P444/z+9//vlvgYRgGY8aMGdC2y36///3v+fOf/5ztsbFt2zaSyWT2+KWXXkpeXh4A5eXlmKZJRUVFt1VPDv45Eolky33yk58c9HsRERERERGRkWPIAo9UKsWaNWu48cYbu+1funQpL7744mHV4TgOHR0d2V4BB3V2dlJRUYFt25xwwgl861vf6haIvF8ymez2IT0ajfbhTkamZDLJ9u3buw07Obi9/vrr2d4WK1as4D/+4z+6lfV6vVRWVlJdXU1nZ2c28Pj2t7/NXXfdhc/nG/T7ERERERERGY0WLFiAZVksX76c5cuXD3VzBtWQBR5NTU3Ytk1ZWVm3/WVlZdTX1x9WHT/4wQ+IxWJ84hOfyO6bPn06999/P8cddxzRaJQf/vCHLF68mPXr1zNlypRe67njjjv4xje+ceQ3c4zq6urKhhnnnXcewWAQgBtvvJHvfve7uG7vfaC2bt3KCSecAMB5551HOBzu1lNj4sSJeDw9H62DwYeIiIiIiIgMjtWrV3frTT+aDPmkpe9f+vO9S4h+kAcffJDbb7+dxx9/nNLS0uz+hQsXsnDhwuzrxYsXc+KJJ/LjH/+YH/3oR73WddNNN3HDDTdkX0ejUSZOnNjXWxnWVq9ezdNPP92tp8bevXuzx9evX8+cOXMAKCoqwnVdcnJyeqx4Ul1d3S04uvjii7n44osH/X5ERERERERGDc3hcUSGLPAoLi7GsqwevTkaGhp69Pp4v4cffphrrrmG3/72t5x99tkfeK5pmixYsIAtW7Yc8hy/33/MTnzpui4tLS3dgoyDw1B++ctfMm3aNACeeeYZ/vmf/7lH+YKCAqqrq7sN6bnmmmu48sorKS0tPazwSURERERERGS4GbLAw+fzMW/ePFauXMmll16a3b9y5coP7DHw4IMP8rnPfY4HH3yQj370ox96Hdd1WbduHccdd1y/tHs4+fnPf84//uM/0tbW1uvxzZs3ZwOPk08+mSuvvLJbT42qqqoe858Ave4TEREREREROZYM6ZCWG264gSuuuIL58+ezaNEi7rvvPmpra7nuuuuA/UNN9uzZwwMPPADsDzuuvPJKfvjDH7Jw4cJs75BgMJidH+Ib3/gGCxcuZMqUKUSjUX70ox+xbt067rnnnqG5yQGUm5ubDTvGjx/fY9WTk046KXvumWeeyZlnnjlELRUREREREREZXEMaeCxbtozm5ma++c1vUldXx+zZs1mxYgUVFRUA1NXVUVtbmz3/pz/9KZlMpsfssldddRX3338/AG1tbfz93/899fX15OXlMXfuXJ5//vluH/5HinPOOYeNGzcyefJkQqHQUDdHREREREREZNgw3EMtxTGKRaNR8vLyaG9vH7Wz2YqIiIiIiMihDcbnxoPXuOvBlQRD4T6VjXfF+NonzxnVn2vNoW6AiIiIiIiIiEh/U+AhIiIiIiIiIiOOAg8RERERERERGXEUeIiIiIiIiIjIiDOkq7SIiIiIiIiIyIdw3f1bX8uMcurhISIiIiIiIiIjjgIPERERERERERlxFHiIiIiIiIiIyIijwENERERERERERhxNWioiIiIiIiIyjBnu/q2vZUY79fAQERERERERkRFHgYeIiIiIiIiIjDgKPERERERERERkxFHgISIiIiIiIjJCLViwgJkzZ3LPPfcMdVMGnSYtFRERERERERnO3ANbX8sAq1evJhKJ9HeLjgnq4SEiIiIiIiIiI44CDxEREREREREZcRR4iIiIiIiIiMiIo8BDREREREREREYcTVoqIiIiIiIiMowZ7v6tr2VGO/XwEBEREREREZERR4GHiIiIiIiIiIw4CjxEREREREREZMTRHB4iIiIiIiIiw5l7YOtrmVFOPTxEREREREREZMRR4CEiIiIiIiIiI44CDxEREREREREZcRR4iIiIiIiIiMiIo0lLRURERERERIYxw92/9bXMaKceHiIiIiIiIiIy4ijwEBEREREREZERR4GHiIiIiIiIiIw4CjxEREREREREZMTRpKUiIiIiIiIiw5l7YOtrmVFOPTxEREREREREZMRRDw8RERERERGR4Uw9PI6IeniIiIiIiIiIyIijwENERERERERERhwNaREREREREREZxowDW1/LjHbq4SEiIiIiIiIyQi1YsICZM2dyzz33DHVTBp16eIiIiIiIiIgMZ667f+trGWD16tVEIpEBaNTwpx4eIiIiIiIiIjLiKPAQERERERERkRFHgYeIiIiIiIiIjDhDHnjce++9VFZWEggEmDdvHqtWrTrkuY8++ijnnHMOJSUlRCIRFi1axJNPPtnjvEceeYSZM2fi9/uZOXMmjz322EDegoiIiIiIiIgMM0MaeDz88MNcf/313Hzzzaxdu5YlS5Zw/vnnU1tb2+v5zz//POeccw4rVqxgzZo1nHnmmVx00UWsXbs2e85LL73EsmXLuOKKK1i/fj1XXHEFn/jEJ3jllVcG67ZERERERERE+o97hNsoZ7ju4U/1+sorr9DS0sL555+f3ffAAw9w2223EYvFuOSSS/jxj3+M3+8/rPpOPvlkTjzxRH7yk59k982YMYNLLrmEO+6447DqmDVrFsuWLePrX/86AMuWLSMajfLHP/4xe855551HQUEBDz744GHVGY1GycvLo729fdTOZisiIiIiIiKHNhifGw9e48c/f5JgKNynsvGuGF++5txR/bm2Tz08br/9djZs2JB9vXHjRq655hrOPvtsbrzxRn7/+98fdlCRSqVYs2YNS5cu7bZ/6dKlvPjii4dVh+M4dHR0UFhYmN330ksv9ajz3HPP/cA6k8kk0Wi02yYiIiIiIiIyHBhHuI12fQo81q1bx1lnnZV9/dBDD3HyySfzs5/9jBtuuIEf/ehH/M///M9h1dXU1IRt25SVlXXbX1ZWRn19/WHV8YMf/IBYLMYnPvGJ7L76+vo+13nHHXeQl5eX3SZOnHhY1xcRERERERGR4cnTl5NbW1u7hQl/+ctfOO+887KvFyxYwK5du/rUAMPonju5rttjX28efPBBbr/9dh5//HFKS0uPqs6bbrqJG264Ifs6Go0q9BCRYS/tdNGU2ERT4i3SThchTwmlwdnk+6owDWuomyciIiIiMqT6FHiUlZWxfft2Jk6cSCqV4vXXX+cb3/hG9nhHRwder/ew6iouLsayrB49LxoaGnr00Hi/hx9+mGuuuYbf/va3nH322d2OjRkzps91+v3+w553RERkOIhnWni7/VHaktswDQ+W4aM9vZN98fWMD53E5Mi5mEaffsSLiIiIyHB1JJOQatLSvg1pOe+887jxxhtZtWoVN910E6FQiCVLlmSPb9iwgaqqqsOqy+fzMW/ePFauXNlt/8qVKznllFMOWe7BBx/k6quv5je/+Q0f/ehHexxftGhRjzqfeuqpD6xTRORY4rouWzv+SFtyKxHfRPJ85eR4x1Dgm0zAymd314vsi68b6maKiIiIiAypPn399y//8i9cdtllnH766eTk5HD//ffj8/myx3/xi1/0mDD0g9xwww1cccUVzJ8/n0WLFnHfffdRW1vLddddB+wfarJnzx4eeOABYH/YceWVV/LDH/6QhQsXZntyBINB8vLyAPjqV7/Kaaedxr/9279x8cUX8/jjj/P000/zwgsv9OVWRUSGrY70HlqTWwl7yrCM7r3q/FYuSbuduq41lAVPUC8PERERERm1+vROuKSkhFWrVtHe3k5OTg6W1X2M+G9/+1tycnIOu75ly5bR3NzMN7/5Terq6pg9ezYrVqygoqICgLq6Ompra7Pn//SnPyWTybB8+XKWL1+e3X/VVVdx//33A3DKKafw0EMPccstt3DrrbdSVVXFww8/zMknn9yXWxURGba6Mg1knDg5nrG9Hg9Y+XRlmkjaUYKewl7PEREREREZ6QzXdfs0smfnzp089dRTZDIZTjvtNGbNmjVQbRsyg7GesojIkaqPr2VT62/J91X2OiFz0u4g48SZV/wFAp6CIWihiIiIyMg3GJ8bD17j3//zSYKhcJ/KxrtifOnac0f159o+9fB4/vnnueCCC+jq6tpf2OPhv/7rv/jkJz85II0TEZGecj3j8ZphUk4Uv5XX43jCbiXfN7nXYyIiIiJyDNKkpUekT5OW3nrrrZx55pns3r2b5uZmPve5z/H//X//30C1TUREehHylFAcmEEs00jaiWf3u65LV6YZA4OxoXkYRp9+xIuIiIiIjCh96uGxceNGnn/+ecaNGwfAD37wA372s5/R2tpKQYG6TYuIDAbDMJicey62m6ApsQmHDCYeHDeN18xlUu5ZlARmD3UzRURERKSfGAe2vpYZ7foUeLS1tVFaWpp9HQ6HCYVCtLW1KfAQETlCKSdFa6oFgHxvPn4r8KFlfFaYGfmfoC21jZZkDWmni6BVRHFgOmHPmF7n9jiUZGYXnck1xNNbAJOgdxq5/nn4DjEpqoiIiIjIsaDP6xW+9dZb2eVgYX8X6k2bNtHR0ZHdN2fOnP5pnYjICGa7Gd5s38jmjreIpttxccn1RJiaO4PZeXPwmr4PLG8aHgr9Uyn0Tz3iNnQkVtMU+18yThuWkQO4xNPv0JF8iZKcywn7jjviukVERESkn7ju/q2vZUa5PgceZ511Fu9f2OXCCy/EMAxc18UwDGzb7rcGioiMRI7r8ErzX9nYvh6/GaDAt3/52I5MB6+0/JVouo2TixbRktxJyonhMf0U+ysJWLn91oZkZg9NsUdw3TRBz7RsrxDXdUlmdtDU+T/48sbhtYr67ZoiIiIiIoOlT4HH9u3bB6odIiKjSn2ijrejb5HvLSDkeXeJsUJfEQk7xKboX2lPvYZJGgAXl5CVR2XOyVTmnNQvE5J2JteScVq7hR2wf44Qv6eCeOYdYqkN5AfPPOpriYiIiIgMtj4FHhUVFQPVDhGRUaW2azspN0WJp7f11DtJZXbSkoxQnTsHy/DguA6xTDOb2p/BNDxMypl/1G1IZLZiGaFe5/swDBMTH8n0Dgge9aVERERE5GhphEqf9euahY8++qjm7xAROQydmU48hrfHftd16UrXYhouhhHEMvbn0qZhkustwWP62BFbTdpJHHUbDCxcnEMed3HAsI76OiIiIiIiQ6HPgcfPfvYzPv7xj/OpT32KV155BYBnn32WuXPn8pnPfIZFixb1eyNFREaakBUi46Z77LfdGCmnHdf14TV6Tloa9hTRmW6iNbXnsK/lui4ZJ07a6cR13w04Qr4ZOG6i2753y2RwsQl6qwFI2y20x5+jofMhmjofoTO5DsdNHnYbREREREQGW5+GtHz/+9/nn//5n5kzZw6bNm3i8ccf5+abb+bOO+/ky1/+MsuXL6e4uHig2ioiMmKUhybxVnQjCTtOwHp3zIiLg+NmAJN8X8/lvk0sXFxsN3VY14mmamiKryaaqsHFJegpozgwn6LACYR9J9BurSJhbydgTcI40JvDdTMkMtsIeMoJ+46jM/k6TbHHSNsN2V4hRuJZgp6plOZ+Gq+ln/siIiIiMvz0KfD4+c9/zn/8x3/wuc99jueee46PfOQjPPvss9TU1JCfnz9ATRQRGXnGBsdTnTOVtzveJMeTS44ngoFBLJMk6WTI9eYR8eb3KJdyuvAYfoJW3odeozn+Ojs7/o+M04XfKsDEpDO1jY5UDbH0bspzL6Q099M0dDxIPFODgcnBwaF+TzklOZ8ibbfQ2Pkwjpsk6JmanSzVcZN0pd+iseNBxuZ9AcPo86JfIiIiIiIDqk/vUHfu3MnZZ58NwBlnnIHX6+Vf//VfFXaIiPSRZVicUnw6YU8OWzrepiFRhwuEPTlMCs/FceoBh/eOPHRdh45MA2WB6eR5x35g/Um7lV2dK8B1iPiqsvt9Vj4pO0pj/EUivioKArMZn389Xak3SGR2YmAQ8FQS8s3GMsM0dv6WjNPWYyUX0/ATsCroSm8mnn6HkG9mP/8NiYiIiEiWS98nLdUkp30LPBKJBIFAIPva5/NRUlLS740SERkNfKaPBYWLmBWZQ3OqCYACXyEew2Vty//RmNhGwMrBawbJOCnidjsR3ximRU7vdWWV92pPbiJptxDxVvU45rMiJJ0mWhLrKAjMxmNGiAROIcIp3c5zXYeu1Jt4zPxer2eaQbDTJDI7FXiIiIiIyLDT5z7I//mf/0lOTg4AmUyG+++/v8e8HV/5ylf6p3UiIqNAyBMm9L7laecWXsqu2Hr2xDeSsuNYppcp4SVMDJ1AjrfoQ+tM2i0YGNkhKO/nMXLoytR9aD0uNh80v7WLAR+w0ouIiIiIHD3jwNbXMqNdnwKP8vJyfvazn2Vfjxkzhl/96lfdzjEMQ4GHiMhRCli5TImcyuTck0k7cTyGH4/pP+zypuHD/YB+jI6bxvqQ+gzDJOippiP5ClilvdSRwsDEZ4057HaJiIiIiAyWPgUeO3bsGKBmiIhIbyzDi2V5+1wu1zcZy/CRcbrwmKFux1zXJuN2Ueg//sPrCcynM7WWtN2I13p3CKPrOiQzO/F7JhLyzupz+0RERESkDzSHxxE5dD/lXjz77LPMnDmTaDTa41h7ezuzZs1i1apV/dY4ERE5MrneSvL9s4hldpO2O3Dd/b/xbCdBR3oHYe94CgLHfWg9Qe9MCkLn47gJutKbSWb2kMzUEs+8g88aQ0nOMkwz8KH1iIiIiMjQWLBgATNnzuSee+4Z6qYMuj718Lj77rv5u7/7OyKRSI9jeXl5fP7zn+fOO+9kyZIl/dZAERHpO8OwqIhcimFYtCU3EU/Xg2Fg4CHXN5ny3IvxW4WHUY9BQXApQU8lHak1JNM7MQwfYd9x5Pjn4rWKP7QOERERERk6q1ev7vUz/GjQp8Bj/fr1/Nu//dshjy9dupTvf//7R90oERE5el4zh8mRT9KV2UMsXYuLTcAqJdc3GdM4/GEyhmEQ9E0l6Js6gK0VERERkUPTmJYj0afAY9++fXi9h36T7PF4aGxsPOpGiYiMJK7rYrsOlmF+6HKy/c0wDMLeCYS9Ewb1uiIiIiIiQ61Pgcf48ePZuHEj1dXVvR7fsGEDY8eO7ZeGiYgc61pTnaxr2cGGtp2knDSFvlxOKKzkuPxyfGafVwUXERERkdFKHTyOSJ8mLb3gggv4+te/TiKR6HEsHo9z2223ceGFF/Zb40REjlV18VZ+tf15/lS3lvZ0F7brsiPWwCO1L/HYrldI2umhbqKIiIiIyIjWp68Yb7nlFh599FGmTp3Kl770JaZNm4ZhGGzatIl77rkH27a5+eabB6qtIiKDxnVddnW1sjvWCsCYYIRJOUWYxofnxLbr8Mc9a9kbb6EypwzrQJkify7xTJK1LduZECpiccn0Ab2HoeC6Li4ZDEwMwxrq5oiIiIjIKNanwKOsrIwXX3yRL3zhC9x0003ZZQ4Nw+Dcc8/l3nvvpaysbEAaKiIyWNpTcf6vdh2b2uuIZ1KAgd/yMCW3lEsqTqAkkPuB5WtjTeyINTA2UJANOw4KevwEPT7WtGzjpKJqvCNkaIvjpmlJrKc58RrJTCOm4aPAfxyFwXkEPX37veC4KbrSW7DtdkwzQNA7BY/5wX/nIiIiIiOZ4e7f+lpmtOvzO+2KigpWrFhBa2srNTU1uK7LlClTKCgoGIj2iYgMqpSd4X+2v8aGtt2MC+YzPpiPYRjEMkk2tu0hbqe5Zspiwl7/IetoSXWSdjOEPL2fE/GGaE/FiKbjFPmP/Q/yjpumNvoITYnXMDDxmrlknBh7Y0/RmtzApMjl5PgmHVZdsdRbNMZ+TzKzC9d1MDDwWEUUBM+gIHgGxmH0sBERERERgSMIPA4qKChgwYIF/dkWEZEhtzm6j7fa66kIFxGw3l2VKuzxU5lTzNaORja27WFhyeRD1mEdWInFcV3MXlZlsR0H0zDxjJAP783xNTTFXyXoGYvHDGf3B9xSOjM72NXxO6YVfuFDl8LtStdQF/0VthvD75mIafhx3Qwpu5HG2P8BJoWhMwb0XkRERERk5BgZ77ZFRI5A2rbpTKXIOE523+b2elzX7RZ2HOQ1LTymyZutez+w3omhYnI9QdpSsV6Pt6Q6mRQuIeINHd0NDAOua9OcWI1p+LqFHQCGYRKyxtOV2UVHqia733baSGd2krHrs0MjXdelLf48GaedgKcS0/AfqMOD3zMW0wjQlngO2+n971RERERE5P1GxuBxEZE+aIl38fKeXbxWt5d4Jk2Oz8eCsRM4efwE4nYaj9mzV8ZBPtND/ENWWCny53JCQSV/aXgTj2mS6wliGAaO67Av0U7A8jK/qBqjl94fx5qMEyORacZr5vV63DL9OLZN0m7GtpuIJVaSTL6O48YwDC8+zxRCwbMwzFK6Uu/gtUp7/XvxWaUkMjvoSteQ6z9+oG9LREREREYABR4iMqo0xDr5xYbX2dbaQp4/QNDrpTWR4H/ffpM3mxqoKA2RdGxc1+31g3dXJsWYYORDr3PWmOPIuDbrWrbTkGjHYH9dhf4czh4zh2mRcf1+b0PBMDwYholLptfjruuC6+I6Mdo67yOd3oJllmJZ43DdJMn0BlKZbQSDF+C4abxm73+3huHBdR1cNwWAbTeSTG/EcdoxDD8+7ww81qQRESKJiIiI9HDgPVWfy4xyCjxEZNRwXZc/1LzDttZWphQW4zH3j+orCAQpDdlsamok7C8jzxugMdlJ6ftWY2lNdeG3PBxfOOFDr+W3vFw0fj7zC6vY2rmPlJMh4g0yNXcceb5jfyjLQR4zRJ5vGo3xl/GZhT0Ch7TTjsfMwePsJp3egtczDcM48KvHCGAaETL2NhKJ57HMALbTgWX2/PuxnS4Mw4tl5BFPPEes6w/YTsv+sMV1MI0wAf9JhMMfxzQCg3HrIiIiIjLMKfAQkVGjPtbJW00NjM3JzYYdB3kti+JQiG3N7SypruK5hnfY1tFIgT+MiUFrqgsXl4+MnU5VbslhXc8wDMaFChkXKhyI2xk2ioMn0ZZ8i67MLoKecZiGB9d1STsdJOwGSoIn4dgbMM2id8OOAwzDwGNNIGPvJGjNIZraiMct7DbBqeu6pDJ7CPqqsWinI/ZbMHx4PdMPBB4urttOPPFnDCNITvhvB/uvQERERESGIQUeIjJqNMe76EylGJfT+1Kwef4Au6PtTMsZR3luIa82bmdnrAXXdamOlLCgeBJzCydijpDVVfpLjq+SisjfsrvzCWLpHbgG4Lp4zBAlwcWMDZ1Ee8crmEbvy5cbhh/Xdcj1TSFDmlhqMx4zD8vMwXVTpO1GfFYZRaELSSSewMXGa41/T3kDw8jHdVMkki8TDJyBZRWTyewhldqA4zZiEMLrm9G9h4mIiIiIjGh61ycio8b+VVYM0o6Dz7J6HE87Nh7TxO/xUB0Zz+z8cXRmkriuS47Xr6DjAxQEjiPXN5n25CZSThsmXnJ8VYQ843HdDgx8uG4cyOlR1nXTGIaB11PKOP9C2hKriCZfw3aiGHjJD55GfuBUPGaArswOLLP3HjamWUwm8w6p9Hbc1DriiRW4TivgAzLEE0/j880lJ/xpTLNnO0RERESGLffA1tcyo5wCDxEZNSry8hgTzmVfrJOJkZ6rijTEYlTk5TP2QA8QwzDI9Wo+iMPlMcMUBef32G8YEfy+OXQl/nxgWEv34Mi267HMMnyeqZhmmOLwhRQEz8J2OzENP54DE5lm7DpwHTB6hlUHrgQGZDKbSKZexjRCWJ6Z2XlFHCdGMvUyhuEnJ3yVJjgVERERGeH0daWIjBoBj5fTyieRtm3qOztwDsxcbTsOezqiGMAZ5ZN6zO8hRy8YOAOPNZZ05h0cpxNg/3CVzE5c0oSCSzHNcPZ8ywzis0qyYcf+fYVYViGO09rrNVy3A9wAmcx2cG0sa0y3UMM0w1jWOFKpddj23gG6UxEREREZLvSuXkRGlVMnVnDx1BmYhsGWlibeaW6iprWFgMfDx2fM5sQxI2O52OHG65lIXu61+H2zsZ0mUum3ydg78FhFRMKfIuhf8qF1GIafgH8xLp04TqzbMdfNkLF34/VW4DhtWFZxr3WYRj6u20HG3tkv9yUiIiIyGAz3yLbRTkNaRGRUMQ2DsyurmDd2HJuaGulKp8nx+ZhRXEKeX8NXBpLXU0l+7lfIZHZgO20Yhh+vt6pPy8gGAktIZ3aSTL2K41gYRg6um8BxY3i91YRCH6Wz42d8eJ7vHNW9iIiIiMjwp8BDREalgkCQUyaUH1UdHakkb7U00JqM47cspuaXMC6cq7khPoBhmHi9k/F++Km9Mo0AkZwrSaZmk0i+im3XY1qFhH0L8PvnYxo5WFYZtr0L0+w5T4vrdmIYQSxz7NHdiIiIiMig0qylR0KBh4jIEVjTsIffbX+Lhq7981E4LuR6fZw0ZiIXT56J39KP14FiGD4C/oUE/AtxXbdHwBTwL6Yz9iscp71b6OG6aWx7Fz7fiXg8lYPdbBEREREZZHpHLiLSR5tbG3nonfWkHZvJkSI8ponrurQl4zy7ayse0+SyqtlD3cxRobfeNH7/IjL2HpLJv2Db9RhGGJcUuEk8nmmEQ5/osVKMiIiIiIw8CjxERPrAdV1e2LuDznSSKXnF2Q/chmFQEAhhuy6v1O/itHGVFAfDH1KbDATD8BAOfRyfdybJ1GvYdh2GEcbvm4vPdyKmmTvUTRQRERHpG41oOSIKPERE+iCaSrKlrYniQLjX3gWFgRA17U1sbW9R4DGEDMPC55uDzzdnqJsiIiIiIkNEfXpFRPog4zrYrovHtHo9bhoGYJBx7MFtmIiIiIiIdDPkgce9995LZWUlgUCAefPmsWrVqkOeW1dXx6c+9SmmTZuGaZpcf/31Pc65//77MQyjx5ZIJAbwLkRktMj1+inwB2lPxXs93pVJ4zVN9e4QERERERliQxp4PPzww1x//fXcfPPNrF27liVLlnD++edTW1vb6/nJZJKSkhJuvvlmjj/++EPWG4lEqKur67YFAoGBug0RGUV8lsWiseV0pdN0ZdLdjjmuy+7OdiojhVTlFQ1RC0VERERkxHHdI9tGuSGdw+POO+/kmmuu4dprrwXg7rvv5sknn+QnP/kJd9xxR4/zJ02axA9/+EMAfvGLXxyyXsMwGDNmzMA0WkRGvUVjytne3sLqht34TA+5Pj8pO0NbKsGEnDwuq5qFxxzyDnQiIiIiIqPakL0jT6VSrFmzhqVLl3bbv3TpUl588cWjqruzs5OKigomTJjAhRdeyNq1az/w/GQySTQa7baJiBxKwOPlU9Pm8plpc6mI5OO6LmGvj4sqZ3Dd7JOpiBQMdRPlMLmuSyqzh67UBuKpTThO70OVREREROTYM2Q9PJqamrBtm7Kysm77y8rKqK+vP+J6p0+fzv33389xxx1HNBrlhz/8IYsXL2b9+vVMmTKl1zJ33HEH3/jGN474miIy+gQ8HhaPm8QpYytI2jYe01SvjmNMOlNPa9fvSaTewnFjgIXXKiM3cAa5wdMwDP33FBERkWFCy9IekSFflvb9yzq6rtvrUo+Ha+HChSxcuDD7evHixZx44on8+Mc/5kc/+lGvZW666SZuuOGG7OtoNMrEiROPuA0iMnoYhkHAM+Q/SqWPMnYzjR2/JJnZhtcai9eYAGRI2/to6fofHJLkh84d6maKiEg/aEt1URPdR9xOE/EFmZpbRtDjG+pmicggGLJ36cXFxViW1aM3R0NDQ49eH0fDNE0WLFjAli1bDnmO3+/H7/f32zVFRGR460y8RDKzlYBnKoZx8FehF59nAmm7no74s+T45+Ox3p189mgDeRERGVy26/Dn+k38taGGtlQXBvtXbxwTiLB0/GyOL9AXnHLsMA5sfS0z2g1Zf12fz8e8efNYuXJlt/0rV67klFNO6bfruK7LunXrGDt2bL/VKSIixy7XTRNLvoZl5L8n7HiXxyzFdlqJp9/GdV0y6beIx/6LruhtxNq/RaLr/7DtvUPQchER6YsX9m3hT3vewMWlKreE6kgp5eFCmlOdPLLzNd6JHvkwehE5NgxpP+wbbriBK664gvnz57No0SLuu+8+amtrue6664D9Q0327NnDAw88kC2zbt06YP/EpI2Njaxbtw6fz8fMmTMB+MY3vsHChQuZMmUK0WiUH/3oR6xbt4577rln0O9PRESGH8dN4bhxTKP35coPzt1h2zFSiSdJxVfgksQ0Irh0Yif+QCb1CoHwFXi8Mwez6SIicphimSR/bdxCyOOjNBDJ7veaFhNDhWzrbOSvDVuYklum3nsiI9iQBh7Lli2jubmZb37zm9TV1TF79mxWrFhBRUUFAHV1ddTW1nYrM3fu3Oyf16xZw29+8xsqKirYsWMHAG1tbfz93/899fX15OXlMXfuXJ5//nlOOumkQbsvEREZvkzDj2XmkLFbgcIex13X3n+e20Iq/iKGEcKyKt5zfByOs51k10OYuf+IaUZ61CEicizLODYdmS5MwyDiCR+TgcD2ziaak51MChf3OGYYBiX+XLZ3NtGSilHkzxmCFor0kevu3/paZpQb8pn2vvjFL/LFL36x12P3339/j33uh/xHu+uuu7jrrrv6o2kiIjICGYaHsP9kWmK/xXFTmEb3ievSdh0eqwQPUTIku4Ud+8sbmGY5tr0VO70R0794MJsvIjJg0k6GdW1bWN+6hbZ0JyYGE0IlzC2YRnXOhGMq+Eg7GVwXrEOsoOY1LTJph5SdGeSWichgGvLAQ0REZLDlBBYST71JPP0mHrMYy8zDddNk7H1gWOSFzsdNPo1p5PZa3jA84LrYdj3eQW67iMhAyDg2f6p/mXWt7+A3fUS8IRzXYUvHbnbE6jl7zAJOLJiWPT9hJ9jWuZNtsZ2knBRFvkKqcysZFxgzLIKRfF8Yn+WhK5Mk5Om5OEE0nSDH6yfPFxyC1onIYFHgISIio45lRiiOfJZo10piyTWk7T2Ahc9bRSR4OiHfiXQl/4KLfehKDABrkFosIjKwNnfUsqG1hlJ/ASHPu3Mc5XrDNCRaWdWwjsnhceT7cmlLtfPUvufYE6/DxMRjWOyM7eLN6NvMKzieBYVzMY0hWxsBgIpwIZU5xWxur2Nybinme0KYlJOhLdXFeeNn9xqGiMjIocBDRERGJY+ZT2HOx4mEzsG2WzEMD15rHIaxP8TweOeQTDze63K0rpvAwIPHUzUUTRcR6Xdvtm/DMOgWdhxU7M9nR1cdWzp3M69gGs81/pXdXXsYFxiDx3z340R7OsorLa9T4Mtnau7Q/nw0DZMLxs+hLdXFlo59FPrC+E0PnZkknZkEM/PHsbh0ypC2UaRP3ANbX8uMckMbvYqIiAwxj5mP31uJzzMxG3YAePzzMc0yHHsrrvvuGG/XTWBntmF5p2F5p/VWpYjIMcV1XRqTbYSs3levMg0DA4OOdIy6xD52d+2l1F/cLewAyPNGcHHZFH2nx7x7KSdDS7KDaLrrQ+fkO1wZx6Y91UksE++1zonhQq6qWszZY2biMS3idpp8X4iPTZjLpysXEvFqOIvISKceHiIiIr2wrLEEwp8h2fUwtr2Vg1+TGHjw+I4jEPoMxvsmPBURGY5c16Uu0cTWzj3EMwnC3iBV4QmUBQoxDAPDMAhZfhoz8Q+sw2d6aUq2kHYzBA4RjkSsHPYlGonbCUKeIHE7xWvNW1jXup1ougvLMJmcO4YFhVOozCk7ovtJ2WnWt9Wwvq3mwOSqJpNyxnBiwVQmhcd2O3dMMI+LJp7AOeNmkbIzBD0+vObRD0eMprt4J7qX9nQMn+mhMqeM8cGiYTF/iYi8S4GHiIjIIXi8M7By/5FMeiO2XY9heLA8lVieaRiGpisVkeEv49g81/ga61q30GUnsAwL27V52XqDEwunc1rJXCzDZEZeJbV1L2O7Dtb75t/ozMQJWD4mhcfSnGrkg/rJu4Cxf5IjEnaKR3e9yBttteR4AuR4g2Qcm/Wt29naUc8lE05mRt7EPt1PysnwRN1LbGjbSsD0kesNYbs2b7RtY1vnXi4Yu4iZeZN6lAtYXgJW//zcXt+6nZX162hJdoLh4roQtHwcl1/B+ePmEbAUhssA0LK0R0SBh4iIyAcwzBy8/kUfuBqL63RipzdiZ3YALqZnEh7vcRhm76u8iIgMlldb3uTl5jcp9EYo8+/v0eG6LtFMjBebNhDxhJhXOIOZkUm82b6N2q56yvyFhDwBXNelPR2jJRXlxMJpjAsWYxkuPsNH3I4TtHoOCenIdDI5XEHQCvBy82bebNvFxFAx/veEDXneELvjzTxVv47KnLI+BQRvtW9nY9s2xgQKCVrvTjga8YSpSzTz7L41VITHEO5lLpL+sLWjjj/sWY2DS2VOKaZh4rounZkErzZvwWN6uGj8ggG5toj0nQIPERGRo2BntpOK/TeOXYvrHujKbDxH2pqAP/QpLG/10DZQREatuJ1kfdsWwlaAiDec3W8YBnneHBJ2krWtmzkuv5qIN8zHxi/h6frV1HbV05BsBSDsCbKwaDanl+5feaUsUEJ5aALvdG5lXKAMr7k/yHBdl7Z0O5ZhMjNvGg4ua1u3EfT4uoUdB68/NlBAbVcTNR11zM6vAKAjHWNzxw62dNSSctKUBYqYFplERWhsNljY2LYNj2F1CzsO1lkWKKS2ax81nbs5Pr//f/a6rstrLTV02Ukm54zpdu1cbxDbddjYtoOFRdMoCUT6/foi0ncKPERERI6Q47STjP0a196NYVVjGvt/rbpuBtfeTrLr1wRyv4ppFgxxS0VkNNqXaKY1FWVcoLjX4/m+CE3JVhoSrUwIlVLiz2dZ+VnsiTfSnIxiGSbjQyUU+t798G4aJqeXnkLaTVPbtQcAyzBJOWnCVohFRQuYHK6gy04STcUJW70v++oxLcAlmu4CoCHRwhN7n6cu0YTf9OIxLPbGG3mjvYaTimZzavFcMq5DSyp6yN4blmFiQLbO/hbLJNje2UChr/fee3neENtj+9jV1ajAQ2SYUOAhIiJyhOz0BpzMLkzPlG4rvBiGB6wqHHszdmodZuDMIWzl8OK6Lkm7jozTgWUECXgmYBhaNE5kILiui4t7yH9jJgbOgXOy+wyTiaEyJoYOPaFoxJvLhePOZUeslp1du0nZSQp9BVTlVFLi3z9xp9f04DUt0q59yLY5rovX9JBxbFbWv0RdoomJoTHd5hCJpjt5pXkjpf5CpuZW4DU9dGUSh64TF18/TEraG9t1cHCwDjGH08EJS23XGZDrixypBQsWYFkWy5cvZ/ny5UPdnEGlwENEROQI2el3wPB0CzsO2v8Bw4+d3oQ3cCaO3UwqtYZ0eh2um8TjqcDrm4/HM2PUzOofT++ksespulI12G4C0/AR8lZQFDqLHN+MoW6eyIhT6M8jxxMimo5R0EuvhGgmRq431K0Hx+HymV6m5lYxNbfqEMc9zMybyPMNb1Doy8V838+51nSMiDfI5Jwx1HbVsTu+j7GB4h4Tpka8OUTTnbzRXsO03EnMzJvEcw1rKXbzMN93bkemi5AVoCLUfaWW/hL2BCjy5bIv0UZuL0vaxu0UHsOiyK/5m2QAHMWkpatXryYSGZ29jvSVioiIyBGz+aBfpQYmLjaZzHY6O35EvOth7MwuHLuFZGIVsY57ScT/gDsKZlGPp2vZHf0vOpLr8Zi5hDyT8JqFdKa2sCf6azqSbw11E0VGnDxvDtNzJ9GajpJy0t2OJe0U7elOZkYmE/b0/PDeH04srKI0UMCO2D4SdgoAx3VoSkZpS3Uyr7CaIn8uTck2HNfBf4jJS3O9OdQnmkg6KY7Lm0yZv4DarnfrdF2XtlQnzal2ZudVUhYYmGGEHtPihMLJJJ00XZlkt2OO61AXb6E8XEJ5qGRAri8ifaceHiIiIkfI8lSSSa3Gdd0evTRc18V1uzDNcuKxB7HtvQeWs303IHHsZpKJP+LxTMTrO6FP13bdDLhxMLwYxsCsRtBfXNeluetZkpl9hL1Ts39XHiOMZUwmntlOU9dT5Pim7h8OxMHu7p2Ai2nk9GnYi+u6JDPv0JVcS8rehUmQoH8OId8JWGakx7m204bjJrHMCJYZ6rf7FhkOTi05nrZ0lC0du/EYFgHLR8JJYrsOMyOTWVR83IBduyyQz99MXMSTdWvZ1dWE7Tq4uOR5Q3ykbA6nl84GwDSMD1jodv+/U+PA/4r8eVw8YQlP1b/Knq4mbNfGxSXHE2JR0WzOKJ07oL3mTiyYzJ6uZta2bsVIGuR4gqSdDJ2ZBOOChZw/bt6B+UlEZDhQ4CEiInKELO/xmOafce2dYFVk32S7rotr78Iwi8AMkcnsxPJM6vGh3bSKyKSbSSZfxuM9/rDepLtuHFKv4qZeBbsNDA+u9zgM30IMz4SBuM2jlrab6Extxm+V9bhHwzDwW2OJp2vpSu8g5K0ikd5IZ+JFkplt4Lp4PRPICZxCyDfvQ4MP13Vo71pBNPEUrpvANEK4bpp4eh0xz18pyrkKr2ccAIn0VqLxvxBPv43rpjHNHHL8C4gET8Nj5g/UX8eQODh3StpuxTgwlMg0Dn8pUDl2hT1BLh5/Bu907GRTdDvt6RhjvcXMjFQyLVKBz/ygRbePXnm4hM9OPoudsQba0jE8hkVFuJR837urxowJFOM3vXRlEoR6mZA0mu5kVl51tgfIuGAxV1ScS23XPlpTHViGxYRQCUX+vAG9FwDvgWVnJ+eMYX3rdpqS7QS9IRaXzGBO/iQKNZxFZFhR4CEiInKETKsUX+jjJLsexrHfxiAHAJdODKMAf/jjZOxGwMYwel+pwDQLsDM7gDTwwR9AXTeOG/tvSK8FIwRGLrgpSP4ZN/0mhD+N4Rl+y+DabheOm8RnFfV63DKDuHYK2+2iI/5n2roewyWNxywCwyCZ3kwyvZl0sI680EUfGAzFU2uJJv6IZUTweCqy+103QzJTQ0vsfyiNfIl4+h0aOx4g47TiNUswzVxst4PW2O9IpLdSGvnsMRF6JDN76UiuJ5HZgYGHsG86Ob45eKx3P/glMnU0xP5IZ2ozGacL0/Dg94yhOHg6+YGTR80cMqNZwPIxJ38Kc/KnDMn1PaZFVe6h59UYFyyhMjyBTR3bGGeUZIMN13VpTLbiP9D+97JMi8qccVQOaMt75zU9nFBQyQkFldiug4mhf0cy8NwDW1/LjHIKPERERI6CxzcX0yojk1yDndkEuJieaXh887A8E8nE//SB5V0cDLwc1rRayZf3hx1WORjvGXPvloC9FTf+OOR8GWOYfXNvGSFMw4/tdGH2MkbfduIY+HCdTqLxFZhmAK81KXvcYxWQsVuIJp4m4JtGwDut1+u4rktn8mVc18Hj6b4Mp2F48FkVJNNbSKTeorXrCRy3g4Dn3SE2FmEcs4h46k2i8RcoDF/Yf38JA6A98SqNnY+RcVoxjQAuDh3J1/F7VzE259MEvBUkM43sij5APL0Lv2csfms8LimSdgN7O/8HhwxFwVOH+lZklDMNk3PGLCRDhu2de7BdB8swsV2biDeH00rmUREeN9TN7NX7J1kVkeFFgYeIiMhRMq1x+ELjgIt6HLM8lWD4cJ0Yhhnudsx1XVynFV/gzOzcFYfiuun9w1iMcPewA8AwwJoAdi1kasA782hvqV95rWJyfNNpS7yKx8zr9k3owaEWQe8kXKcZx23Db03vUYfHKiSTbqQr+fohAw/H7SKVqcVj9j5hoWkGce00nak1JO1d+KwJPb6VNQ0vlllALLma/ODZmObwnB8lnt5BY+ejOGQIeqe9ZziVTTy9lfrOB5mY9xVaEy8RT+88MHfK/nkFDPwEPRNJZPbS1PUMef4T8Jg5Q3k7IuR6w1w6/ix2xvays6uOtJOh0JfHlNxyCo5gFRkREVDgISIiMqA8nmq83pmkU69jGZUYB8IK13Vw7F0YRgSfb2G3Mq4TxyWBYYTeHQrjdoLTBsYh3vgbAXAdcFr73EbHacd1U5hm7oBMgGoYBkWhM4lndtKV2YLfGoNlhLHdOEl7Hx4zh+LQUpKplzHwHbJruGmESNl7Dn0dTMDgg/vwujhODFwb8xD3apm52E47thvFZHgGHh3J18k4bd3CDgDDsAh4K0mmd9CRXEd7ci1es7DXpZP9VhldmW10pjaTH5jXp+u7rkvaacJxujDNMD6r+MMLDSLXtelM7ybjduE1w4Q9E/o08a0MDa/poTq3nOrc8qFuisiwY7guRh9Xdevr+SORAg8ROeY0d3XxTlMTiUyGvECA6cUlhHwDO+mayJEyDItQ6JN0uTaZzCZcNw1YgI1plhAM/Q0ebxUAjl1POvlX7NTruG4Swwzj8S7AE1i8f9iL4WH/XB+9cJ0DFzz8fwuZzHaSib+QSr8JbhrTzMXrW0ggsATT7N9vVIPeciZErqKpayWx1BaSbiOm4SPHN4Wi0Fnk+GaQSq/DxT5kHa6bwnp/75b3MIwAAU81sdRqPL18ALedTgwC+DzlxFJv4LqZXnvWOG4Sw/AcMhAZDmLpt7HMSK/hkGl4cXHoSm/DcZKY7+tZdNDBEMR2u/p07Xh6B63xZ4ml3t4flBkBwr6ZFITOIuAZ3/eb6Wdtyc3s7fwznZlaHCeFZfrJ8VYwLvwR8vzDb44bGT460jG2dO5kT7wB13WZECqjOqeciFc9oESOVQo8ROSYkXEcnq7ZyvPbd9CWiGMYBgZQlpPDhdOnMXfc8BzfK2JaRYRzv0Am/Tbp9BYgiWWNxeudg3lgIk8ns5tE7Oc4mf2ruxhGGNeJkY7/H3ZmE/7wNeCZAakXwSjcP4zlvZwWMCNgVR1Wm9LpTcQ678dxmjHMYgwzhON2EI8/gp15h3DONQMQelQwIXINSbuOjNOBZQQJvOeb96B3BrHEKhw30SNscN0Mrpsm+AHL9xqGQTiwiHh6I+nMXjzW2Gwg4LgJUpldhP3zyA2cRkfyVdJ2Az5P958bruuScRqJBJb0WMJ2ONn/0++DmYYP0wxiO114e7kXx80ABh7j8D/MxdPbqIveT8puxGeVYVpF2E4X7YkXSWR2MDbyOQJDuFpQe/IdtrY/TMaJEfSUYXmC2G6caGoL8cw+qvM/RcR3eP9G3s92kqSdTkzDi9fM1SSVI0xtVx1P1f+VxmQrHsPCAN5o30Kxv4ClY05hUnjowzwR6TsFHiJyzPjztm384e23yfMHmFJUhGkYpG2bPdEOHtqwkaDXy/SSkqFupkivDMOH1zcHr29Oj2Ou65KK/w7H3o3pmZ4NAAzycM1S7Mxm0omn8fkX4WbeAmcHmOP5/9u78/g6yvvQ/59nZs7MWbWvlmRbXrAtr2CDsdkJewIEkgvNQtPcpL2UtAmhv9uSV5qGm7RJc3Ob0PtKSBNuenObNgTSBEISSCALYGPA4AW877a8SNYunf2cmXl+f8gIy5KMJEuWJX/fr5d4oZk5zzwjPTo+853n+X5RNmgNuh10Jzg3oE6qhKJ1Bu21AAplVvQtj9E6Rzr1JL7fhWmdvCQihmGUkctvwcysIRx+77CvL++1kc5tJpXbBtrFCcwi7FyEc1KllN6fgyJoDR6cDNoNBO0GUrk3sc0aDNV7U+n5SXJeI8HABYQG+fn1ayPQQFHkA3Qnf0HW3dmbDBUXMAjZiymO/BGWWURB8Go6Uj8j5x4jYFaglIXvp8l5RwiY5RQErxj2tU+EcGA+Hfnn0FoPuPH2dR6UQTgwC6ViHE/+El+XYZwymyXrNeGY5UTtwXOinEprn/bkr8l5bYQC7yR7NUwHyygknd9DR+o5qmMfn5BggNYex5K/x/UTRAP1fX2wVJhoYBbx/H6OJV8kFqgf0fIW109xPPUarZmN5Lw4hjIptOdQGb6UAnsiaoSIsRbPJ3mu+WU6cj1MD1VhnBgfvvZpyrTyXPPL3FV3M0X2+Jec1VrTmUviaU1hIIRtyu2aEGdC/oKEEJNCPJtlzYFDRG2biug707MDpsmMokL2dnSw5sBB5pWVyVM3Men4XiOeuxvDqBlwI6aUhVLluPmNBEI3oMIfRqefBu8w4AO6N69H8HpU8EagN8Gpl12Dl12H9lsBhTLKMZ3VmM7luPnduF4jplU34O9FKRvDKCKfexUdes+wcnpk8ntoj/87Oe8YhgqjMEjndxLPvExx5P3EgsOrAmIoh5LIR1E4ZPLbyPvHQCkUNmF7CcWRuzGN099wKKWIBa8kaM0hlXuTvNeMoYIEA/MJ2g0YJ4I+haFrAUVP5gWy7v7enyMBgoFZFEduxwnMHFafJ0qBcxE9mdfIekdwTkq+qrVLJn+AYGAmEXshoUCGRG4nyfwebLMCy4jh6xw5rwWlApRHbsQ0wsM6Z9Y9Qiq/F9uqHmTcGNhmJcnczhMzZyrH/JrfTdI9RiJ/mJBVOUj/FCGrknjuAGm3mXBgeDMCXT/N3u4n6MhsxTKi2GYMX7u0pjfSldvD7IIPUhI8t5IEi5HbkzhEa6aT6eF3gh3QWz2mOlhBY+oYexIHubhk8bj1QWvNju5jvNa+l0OJdnx8iuwIK0rqWVk2G8eUpbtCjIYEPIQQk8L+jg7aUylmlQysvqCUojwSYW9HB+2pNGWR4X14F+Jcof1O0Ckw6gbdr4wCtHcM7XdiBBrAmgX5Xb2zOrDBmosye2c3ae3hpn+Kl3kBVBhlVvRu99pxU0+g/VY8oxq0N2QwQ6kYvt+D78cxzdMHPDw/QXviMfJ+C0FrXl/ARmtN3muiM/EktjkNJzBrWD8LyyymLPan5NyD5LxG0JqANQ3Hmj1o4s2hBKxpFA4xk6T3Gg2Kwu8hFlxJJr8XX2exjCKCgdnvWjHnXBAMzKAi+gFaEk+Syu86sQTIQ2uXYGA6VdE/wjRCmISoK/xjWlO/oyf7Fhn3KEpZhAOzKQtfScwe/g2cq+P4OoOpBs8JYhgR8m4Hro5j0xvw8LzjePkdaJ1GGQVYgYUYRtEY/AQG6Z+fwjtNnhdTBfF1K65OD7vN1vQGOrLbiAamYxpO33bbKCThHqYx8WsK7HosY+jcMuLcdzjVTMAw+wU73mYohW3YNCabRh3w6M6l2JdoJuPliVoh5saqCFn9S3S/3r6fXxzZSM73KHWimMqgK5fk6SMbOZLu4IN1l8hsj/Od1r1fI33NeU7+aoQQk0Le632SbRmDT0O2DYMe3yfvD53wUIhzlVIOGhNFHrAHHqBzoKy+JSlKBcFeOmhb2t2Dl30ZZVahjMJ3zmGF0X43XnYtOFf3Hqu9QYMIWmf7ne900rkt5N0jONacfrNTlFLY1jQy+Z0ks28MO+Dx9mudQD1OYPyXC5hGlIizbMza83UOz09iKOddZ04MthxlJAqCF+NYdSSyb5JxD50IZMwj6izGOilnh22WUhO7i/LwdeT9Lgxsglb1gN+9r/MkczvoyW4m77VhGYXEnKVE7UWYRhBThTCUfSLoMfDaenOv2JgqhNYu2fSvyGVfQutuwACtMcwynNAtBOzLx3w2XsCIYiqntzLLIHlJXD+NqRysIZK4Drwel9b0BiwV6hfsgBP5YqxqEvlGunN7KQ2O35N/cbYMPR57az+N/MbR1z5rW3bycusuuvKpE2dQlAcLuK5qMUuLe5f8deaSPN+0FUMZ1EdL+l4fsRxSbo7NHYeYF6tmeWn/98S0m6clE+/NZxYqwJGAiBADyF+FEGJSKA71rmNN5nJE7IE3hN3ZLDHHodA5d6sqCDEUw5qJYVajveMoa+AsD+0fxwjMRxlV79qWl38TyPcLdrxNGYVovxnl92CYpfh+C6ZZ3f9cWqP9VhznymElLc25R9Ew5KwIQ8XI5He/azuTnevH6U6voyf7Op4fR6kAUXspRaHVOCdVLsl7nXRnNtCd3YTvp7CtSgqDyylwlmKoQYJd78KxqnCsdx8XALZZgm2WDLrP97M0J35Cd+Z1wMdQIdL6EPHsJqLOYqpjHyZoTScYmE46f4CQ0T/xp9aavNtMxF6EbVaTzTxPNvMMhirGMOejlEJrD99vIpN8AqUiBOyLRny9pxO2qokF6unK7cAKzO4XUNFak3abKQ0tIWQOb7mN56fJ+T0EjMGTuvZWw4Gc1923zdcuifwB0u5xFAbhQC2RQZaOiXNLTaiS7T178bXGOOV3pbUm6+eoC1UP8eqhvdq6h183vUnYdKiPlGMoA9f3aM508dTh1wmaAeYVTGNXdxMduQSzoxUD2ghbNqYy2NhxqC/gkfNc1hzfy2tth+jIJAEoC0a5tHwml1XOJmAMfzacmGRkwsaISUFyIcSkMLO4iFmlJRzp6cE/ZXpe1nXpymS4uLZGytOKSUmpEIHgNUAW3zuG1r0zlbTO47uHQDkEnKuHlWhR+23A6QJ/Doo0jnM12k/geU0nnS+D5+7DMMtxglcOt/ec7slo76ezsf24obXG9TrIe8fxdXZM2x4N1++hqecHtCafxPW7MYwIGk1n+ncc7XmUdH4/AFm3mcbu/0Nz4knyXis+eZL5XRzr+Xea4k/g69yEXUNH+iW6MuuwzQrCgTkErRrCgVkErTri2c20Jn+FUhYloet7gyH5/fh+BugNDGTcfZhGAcXha9E6RT77EkpFMczyvpt9pUxMsxaNSy7zIvrtUsr0Lo1KZTeQyLxMOrd1VL9XpQxqotfimMXEc/vIeXF8nSfn9RDP7yVklTMtcs2wgw+GslHKwhvi99Lbf415IlCVdpvZ3fV9dnd+n0M9T3Kw5z/Z1fFd9nX/OzmvZ8TXI86eubHplNpFNGda0Sd9xtBa05RppcguYG7BjNO0J967wgAAPTFJREFUMFDazfFK226CRoCKYEHfchnLMKkNl5Lxc7zSuhtf+3Tn0xioQZfUQO9Mj7ZsD572cX2fnx3azM8b3yKey1AZilEZitGdS/GzQ5t5uvGtAZ+ThDifyQwPIcSkYBoGty2YT1c6za62NkpCIRzTIpHLksjlWVxVxZUzZ050N4UYNcu+DO3ncbO/RXt7TzzEUSizCjv4Xqx3qU7yNqUK4HQ3izqLUjGCwesByGZfwHP3nnixiWXNIBS+A8vqP3Xa81rw/U6UCmCadSjVG1x0AjNRaYWvcwNmKGit8XScmD3c4Mnpaa1J57eRyKwhk98H2sM0S4gFVxF1LsOYoDwKXek1JHNbCQZm9/sZBIxS0vl9tCafprbgUzQnniSTP0QkMKffchLPT9KVeZWgVUtp+Oqz3n/PT9OdeRVLxbBOmc1gqCABo5x49i1Kw9cRdRZTxUfoSD1Hxj2CdvMoFSAUmEVp+GYi9jzyuS34fivmECWSDaMSzzuE7zdjGFXEMy8Sz/wO12sFNAqDgFVHUfg2QiPIMQIQs+uZU/gRmlIv0pPdR9Zrx1QOpcFlVEeuIhqYPuy2TMOh1FnE0eQLBM3SAQHHrNeJbRRQYM8m7/VwoPsJEvmDhK1aLCPUG5jTCToyG9G4zC78KIaSoPy5qDAQ47rK1TzfvI6DqWMEjd6/46zOUxSIcV3lKkrsgbPmTudQspW2XJy6UOmg+8vsGIeSrbRnEwRNqzcF9RDL3HKeS4kTxUCxo6eZ9W2HqA4VEg28s9RqWriI7lyaV1sOsLSkljkFUrVu6tGMfIqHBL8k4CGEmDRmFBXxpxev4JXGw2xuaiLjuZSEw9w0r5aVdXVEB1nqIsRkoZSBHboWy1mOn9+F1imUUYBpzUcNs4oGgBFYgpd7tTdJ5CnJG7WfAmVg2EtRyiQUugnHWYWb340mi2EUY1kX9AUzoDfQkUn/ilxuC1onQVlYZh1O8Fps+2JCgQacQD2Z/D6C1py+pS1a++S8RiyjhIizYkx+Rsnsq3QknsDXGSyzvPfpu9dJe+IJMvmDlMU+eiJ559nj+Wl6sq9jGkUDAj5KGThWDen8AToza0nl9+FYNQNyZ5hGBMMP05VZT3Fo9aiWtpyJnNdC3uvEHmKpR8AoJuXuJes2YZtlxJylROwGMvmDeDqFaUQIWTNPWtaUp/dD9uDT6pWy0L4H2iWRXUtX6icogjjWrN7ywDpL3j1Ke/zfKCv4JMHA8Mrmvi1mzyQamEHaa8HzU1hGhOBJM01GoiK0go7sDuL5A4StGiwjiNY+Ga+DnN9FbeQ9BK1SWlLrSOQPEg3Mwjjx+1VKEVAxlGXRld1JT24vRc6CEfdBnB2zorXcPf0mdvUcpDHdBEBdqIoLCmaOONgBkNcevtaYQ8zaCBgWnvbJ+S6zY5WETZuefJpCu//7vad9kl6Wa4sbUErxVscxPN/rF+x4W6Ed4ngmztbOY30BD601jakj7Ens43imBVOZzIrUMzc2i2K7aMTXJcRkIwEPIcSkUhWLccfCBm6ZdwFZ1yUUCBAwZa2qmDoMoxDDuWT0rw8swAgsw8+tB6MCjBM5G/wOtN+KYV+CYb1zA2kYhdjOxYO25XntJBOPknf3YZpVGKoCdA7Xa8RN/huQx3EuozT6UdrjPyTr7gNlgFZo8gTMCkoi/wXbqh319bzN9bvoSv0SgGBgbt9204ji+ylS2ddJ2Q1Eg6vP+Fwj61c3nhfHGiI3hmmE0a5LOn+oN1AzRMLMgFFE3uvA9bqxrbP7ZFZhnFiVNNSTQN1b/fikpUuGChC25w56tGGUoVQYreO9M45O4ftdvZWHCBFP/w6Fg31SnhNDOdhWPVl3N/H0CzjWBSMOViilCI9BadxwoJq5hXdzKP4MifxhfFzQGtssoi5yAzXRqwHozG7BVE5fsONklhFCu64EPCaBIruAlWVLWMnwZtSdtq1AhKARIOVliVgDA7EJN03Ycii0w0RMh4tKZvBy6x5c7VNshzGUQdLN0pTuYnqkjGUlMwHoyCZPW6LWNiw6simgN9ixvmMDGzo3k/fzhK0wnvZ4uf1VdsR3cV3l1dSckpukJ59kT/wwPfkEAcNieqSK2lDFkMtthDjXScBDCDEpOZaFY8lbmBCnUsomEP4wrlGIl9sI3h5671aLMYPXYQXfixrmDIJsdi35/D6swAXvPL1XFpYxC9c9TDr9DIHAUmyrhorCvySd20omvweNh2NNJ2wvwTIHn849UuncNvJeK0Fr4E22YYRRXoBE5jUizqpxSRCptUve7wQgYJT0zdLozfMQwNc5TAYGM7R2UYBpBAGF1v6guVh686gYIyq9O1ZsqwLbrCTvtWIOUho577cTsEpxBkmoOxjDrMO05uPmNqBUuF9CW62zaL8TO3Qbeb+ZvNeMYw2sxqOUwjIryeR34/ptBMyJm54fs2fQUPKnxHMHyPpdGASI2TNxzKK+Y1yd6Tcz6lQKA+9EzhNxfqgJF1MfrWB7z1FmRex+AYO879KZS3JN5SKiJ4Iht9QswzEDbGg/yIFkK1pD0AywsKiGW6Yto+jEzI9CO0TWd4c8r+t7xOzeNg+mGnmjczMhM0hl8J2EqFprjqWbeLFlLR+ovQ3H7J0tsqVrLy+0bKArn0Cp3oqmthFgXmwGN1ZfSsh898pdYhzJipZRkbsFIYQQYopRRoRA+C4s51p87xgAhlmDGkHwQesMudx6DLN40AosplmN5+7Hze/Adi7GNCJEgyuJBleO2XWczPO7UKghAwKGESPvtQIuMHZ5ErT26M68SnfmVXJeMwCOVUNhcDUFzgoso5hwYC492Q1YRtGAYEvOa8UySykMXkpPdgt5vxN7kN9Dzm8j5izEMopPXG+WntxOkvlGwCNkTaPAaRiyYsiZMJRDcWg1TfEnyHsdWEZx33W4fpy830lZ+CYC5vCm9SulCIbfT1p34OV3o4wClAqh/QSaFJa9DDt4Len8LkAPGSgwcPDo7i2TPMEMZVHoDD6jBSBsTiOZOzzoPq01Go+QNbACh5i6DGVwQ/VSOnNJ9iWOUxSI4JgBUm6WuJvhgoJpXF4xv+94xwxwS80yVpXNpTHVjqs9yuwYdZGSfsGSRcXVvN52iLSbI2T1D14n3SymMlhU1DtrY1fPHlztUhjoP9NKKUVlsILmTAuHUoe5IDaHA8ljPNf8GhrNjHBV3zlTboa3uvdgGSbvrb5MKg6JSUcCHkIIIcQUpcwyTLNsVK/Vfgrtp1FDLMHoDYJofJ08gx4On6EcNP6QSf20zmKaRYzlRxutfVqTT9OZ/h0K68RsFU06f4B0fj95r43S8M0Uha4kld9Lxj2IY9VgKButPfJeG75OUhK6jnBgJoXOCtrSv0UpC0sVnCjV6pP1mjGUTXFwNUop0m4zh+M/IZE7gOadSiYhq4q62AeIDbGU5EwUBVeT9zrpTK8h57ahsNA6j6EcioKXURq+YUTtmWY14cifk8u9iptbj9ZpDKsa276UgH0JyohgGkUobHw/iTHIOPN0HFNFMAcpsXyuKQkuoT2zkZzXhX3SzA+AtHecgFlEkdMwMZ0TE2ZauJiP1l/BGx372NLVSMbLEwuEuLJiActLZxELDEy0XOxEKHYGf98FWFBUzdKSGja0NVLqRChxeqtCdWRTdGSTXFpRz9yCCnzt05Q5TsQcPAeUZVi91aRyXWitebNzN2kvy8xI/yUuYStIuS5iV88hLilpoCLYu3xPa82BRDtbOppoycSJBRwWFFWxoLAS25RbzHGhde/XSF9znpPRKIQQQogBlBFGGSG0TgEDbzi17p1SbaihP5iPpWBgHqaK4vldWGbxKX3x8PweCkLXj+nTx1R+N13pFwkYZVgn3cRaRgF5r53O9O+J2A2E7blUxT5Ea+qXZN3DvctTFFhGMWWhWykJXwtAeeRmfLJ0ZzaQ9ZtB9WbFCBjFlEduI2ovxPMzHO75CfH8XiKBmX0JTLX2SOUPcajnCeYU/RnBMc7zoZRJeeRWYs4S4tmtuH4HplFA1G4gHJg9qqU2hllCMHQLOngjkAOcfst5HKseJzCbTH4njprb73entYvrtVEYvhnTiI3BFY6vAnsuleEraE69SNbvwjGK0Pjk/C4M5VAbuXnQ35mvXTQ+BgF5cj5FlQcLuHnahVxbuYis7xIyAwSM0d+C2YbJXfXLKbRDbG4/wr54GwAlTpgbahq4ftp8LMNAa42hDFw99PIX6D0m7WVpTDVTbA/+txa1wrTlujmabqUiWIKvNc8e2c4LzXtIuTmCZoC877Gu5QCLiqv50KzlxALv5C3xtc/BZCvbuw7TlosTtRzmF9QyN1Z92nwkQowFCXgIIYQQYgClgtj2CjLpX6CNigE3vL7XhGFWYAXOThLGgFlLJLiSnvTv0bhYRm+ZUM9PkPOO4ARmEgkOnnx1tBLZN/F1tl+w422WUUI6v5tE9i1CgZlEnSWE7Xkkczvx/B6UcggHLiBw0mtNI0h19G6Kg6tI5nb3tR2zGwicSHrak91BIn+ASKC+XwlTpUzCgXoS+d10Zd6kKnrdmF5r7zkUocBMQoGZY9yuCQx8kq2USVH4dtoS7WTcnQSMcpQK4usEnt9BMDCPWPDaMe3LeFHKoDZ6I+FANW3pN0i5TSgUJc4yykIrKLAv6Hd8Mt9IR+Z1urM70PiErVpKgsspchYPmuNFTH6OGRizm/uIZXPnjGVcU3UBx1LdKNVblrbIfufvTCnFrMgM3ujcTHFg4HK7rJfFUhaVwQp8fHytCQwRdFNKoZTC170zzt5oa+T5YzspskPURd4JQGe8PJvbjxK2bD4yawVKKVzf47mmN3mtbTc538M2LfK+x8aOgywoqOGOupVEA2e3upY4v0jAQwghhBCDcpwrcPPbyLu7MM3qExU3cngnclmEgzdhjENOicEopSiO3IGhHBKZV8i6uwGFUjYhexElkTsJjHL5zlCy3nGMIUoC994A2OT91r5thnKIOUtP22ZvUGEGocCMQfcn8gd7n/gPktdCKYWpIvTkdlDF2Ac8JoITmEV57L8Rz7xEOvcWvt+FYUQoDN1GNHjlgNk8Oa+TeG73iYo3UWL2/CEr3wxHxu2gO7eTvJ/AVEEK7TmErOpRzbZQyqQ0eCElzlJcnUJhYKrQgLa6slto7PlP8n43AaMQpUy6s9vpye2gInQV06K3SNBDDEuxE6bYGbps+bzYXHbF93I820KFU96XlyPn5zieaWVWdOaJKi2KEqeQpnQbscDAv6eMl8NSJiV2AZ72eaXlAIYyKDll6U3QDFAVLmBrZxPN6R6qw4Vs6jzA2tYdlNixfiV3s16erd2NhCyHD9StlBlOwyJZS0dDAh5CCCGEGJRplhGJfpJ06lfk81vxdWtvlRazFif4Hmx79OVzR8NQDsWRO4gFryTr7kdrF8ssx7FmjcsNomVE0To35H6t3TFf0qO131smdghKGb2lUacQ26qjNPoRPP9WfJ3BVDEMo/+MEK09WlJ/oC21htyJBLYacMxyqiI3UhxcPqIbJq01x1Mvcyz5B3Je19tbsYwo5eFLqIveOGjQaTiUMgiowQOBea+Ho/Gn8XSGaGBOX58ds5Sc10VL+iWidj2FzsJRnVuIk1UEy7m24kpealvH0fQxQKHRWMqkPjqDayuuwDwxe29J4RwOp5pJumki1jt/f772ac62MyNczfRIFZ3ZFE3pHkqHCLQUBoK0pOMcSXVTHozyRvs+AobVL9gBvTNeyp1CdnYfobViARXBcz9Xj5icJOAhxDmg7VgH217eya7X9+HmXWrmVLPwsnnMXjpTIt5CiAllmlVEov8V3z+O73eiCGBaM05bgnO8WWbpmJW7PZ2ovYh4ZgO+zmKo/uUYPT+NUoqoPbaJKEOBanTaR2tv0LwZrp+kdIyX7pwrTKMAk4JB97WmXqYp+SssFSMamN0b+NEuGbeZI/H/xDSCFDqLhn2ujsybNMZ/hWkEidm97WmtyfldNCX+gKWC1IzDsqHu3HYyXivRwKwB/77bZhE5r52OzCYJeIgxMys6k8pgOQeSh+jMdWEqk+pQFXWhGqyTcoksKpxNc6aNTZ27ac91EzFD5LVLystSHSzlhqpLMJXZO19gOIkwtaYjl6A120OxPXhguCAQoi3bQ1O6UwIewyETPEZFAh5CTLCD2w7zy395jrajHUQKwximwZsvbGP7K7tY/f5LuPIDl0rQQwgxoZRSmGYVplk10V05qyL2YsL2AhK5LTjWNEzVezPu+t3kvCZizkWE7fnv0srIFNoLCZoVpNwjhK3p/d7/M+5xLBWhKLhsTM95rnP9FO3ptZgqRPCk0q6GsggHaknkDtCWWkuB3TCsmT5aexxPvQpAyKrs266UwjGL8XWelvTrVIQvHfMywFm37cS5Bk8CaxkxUu7hIasRCTEaESvCosLTB2ctw+T6qpXMiExjW/d+WrMdxIwwlxXUs6CgniK792+h2A5TGSrgSKqrX2LSt/XkM0Qtm2nhQnrTMr+74R4nxGhIwEOIYUj2pNi3+SDdbXFsx2LGwjoqZ5Sf8YeRdDLDr//v7+lq6aZ+8TsfbMtrS+lq6WbdU+uZNquSuRfNGovLEEIIMQKmEaIq9lFak0+SzG0n5x8HNKYRoyh4BeXR2/qqqIwV2yykNnYHh+P/SSK/B8uIAgrXT2CpCNXRm4lYg+f/mKpS+YNk/VbCQ1x30CojlT9E1mshaL17UC7ttZJ0j+JYg+d8ccxSEvkDJPKNFI9xKVnDCHC6R64aF0PZEuwQE8JUJgsKZrKgYOaQQTfLMFhVUc9jB96gM5vql0Mk67k0pXq4tGIm08KFeNqnwimkKdNJxBoYHOnOp4haQapCReN5WVOHZhRlacelJ5OKBDyEeBfbX93NH360hvamTgB8XxOOhVh4+Xyu+8gVOCHnXVoY2r5NB2g51EbtBQMTpBVVFNLV1sOWtTsk4CGEEBMkYBZRHfsTst5Rsu4xFOBYddhm1bjdlBY6C7DNP6Uzs5me3A609igJXkSxs4xIoP68uxn2df5EbpPBZ0UoAvh4+Do/rPa09gAfY8j2jJOOG1uRwEwMbFw/hXVKQlytfVw/QUXo6pO2aVLuMbpze3H9DLYZo8ieR9AauKTL85MkctvJe50YyiYcmINj1Zx340WMjdONm4vLp3M8HWfN8b20ZhInytK6aGBxyTRun74YpRSWMlleOosnD6+nK5ek6KSlLRkvT1u2h5Wlc2U5ixhXEvAQ4jQObT/Ms//nt+QzLnXzajAtE6018c4krz+7CdM0uOnjoy+Z136sE+1rrMDgf4qx4ihHdzfh+z6GIRnbhRBiIiilCFq1BK3as3bOkFVFKHoT07jprJ3zXGWbJZgqhKcTWCo2YL/rxwkY0X4lgE/HMUsIGDFyfjchY+BT57wfx1JhguOQJyYamE2Bs4Cu7JuErJq+CjO+zpHKHyFoVlF8YsmSr/M0xp+lJb2BvJ88kahV45hFTItcTXX4sr6b0nj2LVoST5M9UUEJfEwVoSC4nIrI+zEHuU4hRstUBrdOX0RDcSVvdhyjNRMnYjksKq6moaiK4Enldy8qmUVbpofX2vfQno3jmAHyngtKsbhoOjdUL5u4CxHnBQl4CDEErTUbf7eFZFeKGQvr+j5UKKUoKIniez7bXt7JihuXUTatZFTnMEwDfZq5Zr7rY4YC8nRGCCHEeStk1RK159KdfZNoINwv/4Wv8+T8DirC1xMwBgZDBmMZIcqCF3E48Rtso7BfMKA3EepxSkMXErKqx/xaDGUxPfYBFAY9uR2k3aP0ZjAwCAVqqYveQdAqB+BY8kWOJdcQtMoInyiVq7VP2mujMf4MthGlLLSMVH4/TfEf4/tpwlY9SllorXH9bjrTL6EwqYr9lzG/FnF+M5RibkEFcwsqTnucqQxunLaM+YW17Og+TFs2QcRymF9Qw9yCamyj/+2o1pqjrd3sOHic9u4kkaDN3Lpy5tSWYVmDz8oS4nQk4CHEEFLxNAe3HqaosmjQgENhWYyD2w5zZNexUQc8auZWE3ACZJJZgpH+S2O01sS7Eiy9ukECHkIIIc5bSimqozeT99pJ5PcSMIowlIOnU7h+nJi9gIrwVSNqsypyOSn3GB2ZrRiGjaXCeDqL66eI2fXURW8et397A2Yh9YV/TDJ/kGT+EBqPoFlBzJ6HafR+Fsh5cY6nX8c2C3BOmrmilEHYqiCeO8Tx1GuUBhfTlX4F1+8mbM3t93Cmd8aLT3dmA8WhK3CGkd9EiPFgKIP6aAX10dMHR3xf88LGvazZvI9EOocdMHFdj1e2HqShvoo7rlpCJDS2eZPE1CcBDyGG4OU9fM/DDg7+xqqUAgWeO/o1vjMaapm1eDq7Xt9HzZwqnHDvBx3P82nef5yiikIWXbFg1O0LIYQQU0HImsbMwo/TkVlPV2Yzns4SMIqoCL+HktAlw57d8TbLCDO78I8oct6iLb2RrN9B0CyjLHgRpcGl2Obg5XHHilIGUXsWUXvwHF2J/GGyXicFgZmD7g9aZSTdoyTyh0jmdhAwSoZIMFlMzt1DKr9fAh7inPfW3mP89vXdxMI2c0pL+8Z0Optn8+6jhJwAH7hm6QT3cgJpPYqkpZK1dMKTAjzyyCPU19cTDAZZvnw5a9asGfLYpqYmPvzhDzNv3jwMw+D+++8f9Lif/vSnNDQ04DgODQ0NPPnkk+PUezGVRQrDFJUXkuhMDLo/m8piWSZFFaNPtGRaJrf86XVccPFsjje2sX/LIQ5uPUzjjiMUlMV4759eR9XM00fDhRBCiPOBY5VTHX0v80r/O/NK/zsXlHyWysh7RhzseJtpBKkIX0JD6b0sK/sbFpV8murIFeMe7BgOjUdveYXBP6orTDR+b0JXPBSBwY9TClDoYSZ0FWKieL7P69sbUQpKCyP9AnghJ0BFcZRt+5tp6YxPYC/FZDShMzwef/xx7r//fh555BEuu+wyvvvd73LzzTezfft2pk+fPuD4bDZLeXk5n//85/nmN785aJuvvPIKd999N1/+8pe54447ePLJJ7nrrrtYu3YtK1euHO9LElOIaZksuXohzzz6W9KJDKHoSWt8fZ/mgy3Uza9hRsOZJbErLCvgrv/vNg5uO8zR3U24eY+S6iIuWD6LSGHk3RuYRBKZLG8ebmZj41Hi6Syl0TAXzahhSW0VzhCJW4UQQoiTGcoe83LAJ+cFORcEzTIsFSbvxwcNwOT8bmyjkLBVQ8AoI+seI2AOfADj6ywKE9scvASvEOeKrniaY+3dlBSEB91fGA3SdrSdo63dVBSPLsgpzk8TeofxjW98g0984hN88pOfBODhhx/mN7/5Dd/5znf46le/OuD4mTNn8s///M8A/Ou//uugbT788MNcf/31fO5znwPgc5/7HC+++CIPP/wwjz322DhdiZiqll69kCO7j7FlzQ4syyRSFMHNuvR0JqicUc71f3zVkBVWRsIKWMxZVs+cZfVj0OtzU2cyzX+8tpndzW0ELQsnYLHneBs7mlrZWlfN3ZcsIWwP/oRKCCGEOJ+ErSqKnAtoTW/CMsIY6p3PGq6fIe/1UB27jIAZpSi0kqb4j/H8JKbxzoMSrX0y7mFC1gzC9tyJuAwhhk2f+M+7pc6RFRpipCYs4JHL5diwYQMPPvhgv+033HAD69atG3W7r7zyCp/97Gf7bbvxxht5+OGHh3xNNpslm832fd/T0zPq84upxXYCvPfPrmfW4hm89dI2Opq7CMUclt+4hEWXLxh1stLzjdaaZ97aya6mVmaVlxAw33mSls7l2XToKNMKY9y4+IIJ7KUQQghxblBKMT16Ezmvm57cfkwjhKmCuH4SH5fS0FKqwqsBKAxeTCp/gJ7MayjPwjQK0DqP63fjWFVUxO4c8xkxQoy1omiI8qIozR09REPOgP3xVJZw0KayRGZ3iJGZsIBHW1sbnudRWVnZb3tlZSXNzc1DvOrdNTc3j7jNr371q/yP//E/Rn1OMbXZToClVy9kyVUN5HMupmVgmufW1NdzXUs8yfamFioLov2CHQAhO0BBKMgbh45y+QUziTg2PZkMLfEkhlJMKywgKMtdhBBCnGeCVikXFN1De+ZN2jKbyfsJCux6ykLLKHUW95XTNZRDdewuIoG5dGfWk/NaMYwQZaHVFAZX4IxDeV0hxpplGixfUMeTL7xFTzJDQeSdpeS5vEdze4IL59UwrWzic+xMGElaOioTfhdxakZprfUZlwEbaZuf+9zneOCBB/q+7+npoa6u7oz6IKYepRS2I0suRqOlJ0Eik6OqYPCofFE4xPGeOIc7utnd2sbGxmN0ZzIooCIWZVV9HZfNmYllTHieZSGEEOKssc0Y1ZHLqY5cjtY+Sg3+76ChHIpCl1IYXInWOZQyUWrCP+YLMSLL59fR0hHn1W2HaO1KEnIscnkPz9PMm1HOe1c3jFu5aDF1Tdg7YVlZGaZpDph50dLSMmCGxkhUVVWNuE3HcXCcgVOnhBBjwzQUSil8rTEH+YfK9/3eZS/bdrK/rZOSSJi64kJ8rWlLpPjZm9vpyWR53+L58g+dEEKI89JQwY7+xyiUks+0YnKyTINbLmtg3oxKtuw7RltXknDQpqG+kob6KkLy4FGMwoQ9LrVtm+XLl/P888/32/7888+zevXqUbe7atWqAW0+99xzZ9SmEOLM1JUUURIJ0ZZIDbq/LZHCNBUH2ruYUVpMeSxCwDRxLIuaogJKwmFe3t/I0S7JryOEEEIIMVWZhsEF08v5wDVL+W93rOaem1ewfH6dBDvgnSUtI/06z03oXLcHHniAe+65hxUrVrBq1Sq+973v0djYyL333gv0LjU5evQo//Zv/9b3ms2bNwOQSCRobW1l8+bN2LZNQ0MDAJ/5zGe48sor+drXvsbtt9/Oz3/+c37729+ydu3as359QohesaDDyll1PPPWLhzLpDAURCmFPjGDw9M+4YCNix40X0dxOEhrS5Idza3UFg8suyeEEEIIIYQQp5rQgMfdd99Ne3s7X/rSl2hqamLRokU888wzzJgxA4CmpiYaGxv7vebCCy/s+/8NGzbwox/9iBkzZnDw4EEAVq9ezY9//GP+9m//li984QvMnj2bxx9/nJUrV5616xJCDHTN/NkkcznW7z/C8Z4khgIfTVEoyC2L57H+8FF8NXgUWimFaSh6MtlB9wshhBBCCCHEqSY8m9F9993HfffdN+i+H/zgBwO26WFMy/ngBz/IBz/4wTPtmhBiDNmWyR0XLuTimbXsam4jncsTCzosmFZBZUGUve0dtMaTg75Wa43n+8SCUlZPCCGEEEIIMTwTHvAQQpw/lFLUlRRRV1I0YN+yumq2NR0n67o4Vv+3pq50hohts6Cq/Cz1VAghhBBCiHOIlKUdFanxKIQ4JyypqWLRtEoOtnXSlkji+T45z+NYdw/tiSSrZk2ntkjydwghhBBCCCGGR2Z4CDEJaK1pbe7mwJ7jZDN5orEgcxZMo6AoPNFd68fzfQ62dHKsswc0TCspYGZFMabx7rHVUCDAhy9eSlkkzOYjTRxo78RQirJohOvnz+HKufVSklYIIYQQQggxbBLwEOIcl8+7vPTrLWx+/QDJeObETb+msDjC5dct5MJLZ58TgYD2eJInX9vK3qZ2cq4H9ObtmFNVyvtXLqKsIPKubUQdhzsvXMQ182bTEk9iGoqaogJCASlFJoQQQgghzl9a62Hlszz1Nec7CXgIcY575Q87eeWFnRSVRimvKkQphe/7tB3v4fmnNxGOOMxfUjehfUzn8jz+8lvsPtZKbWkhYac3uWgqm2Pr4eNkXY+PX3sx4WHWUC8OhygOh0bdn8aWLt7af4xDLZ2YyuCC2jKWzJpGWeG7B12EEEIIIYQQU4Pk8BDiHJboSfPm6/uJFoQoLI70zeQwDIOK6iJ832fjK/vwfX9C+7n98HH2NrVTX1HSF+wACDs29RUl7GtuZ/uR42elL6/tbORff/0af3hzL8c7Exxp7+ZXr+3g+8++xt6jbWelD0IIIYQQQowpPcqv85wEPIQ4hx1tbKe7I0lRaXTQ/cWlMY4daaezLXGWe9bfrqOtGAoCljlgX8AyMQ2DXUdbxr0fjS2dPLt+B6CYM62MaaUF1JYVMqemjI54mqfWbSWezo57P4QQQgghhBATTwIeQpzDPM9HazCMwXN0mJaB72k8b2JneGTzHpY5MNjxNss0yOTcce/H5n3HSKRzVJXE+uU1UUoxvaKI5o44Ow6dnZkmQgghhBBCiIklAQ8hzmHFpVGCIZtkYvBZCfHuNLHC0IRXa6ksipLN5wdNjKS1Jp1zqSqOjXs/DjR3EAnZg+4zTQOlFE0dPePeDyGEEEIIIcaWrGkZDQl4CHEOq6opZubcClqbugbM4shm8iR60ixePpPgEDf5Z8viGVVEgg5t8dSAfe3xFNGgzeLp1ePeD0Op02aj1lpjDKNErhBCCCGEEGLykyotQpzDlFJce8tS4t0ZGve2EI462MEAqUQWN+/SsGw6K1bPnehuUltayHVL5vDrTbvYfzxLUSQIQFcyg2Uoblx2AXVlhePej3m1FRxs7kBrPaBUb971epe2lBeNez+EEEIIIYQYU1r3fo30Nec5CXgIcY4rrSjggx+7jG2bDrF14yEymRw1dSUsWjGThqXTcYLDK/U6npRSXLVwFuUFEV7fe4TGti601iyqq2TFnFoW1lUOCECMh6Wzq3lj92EOt3RRW17YN5vD9TwOHe9kZlUxF9SVj3s/hBBCCCGEEBNPAh5CTAIFRWFWXbOAS6+ej+f6mJZxVgIII6GUYuH0KhrqKkmfSFAasq2z2s/K4hh3XrGYn6/bxr6mdkzDOLHERTGzspgPXLGEkD3xASIhhBBCCCFGZDQpOWSChwQ8hJhMlFJYgaGroZwLlFKEnYkLKsyvq6DqvTG2Nx7nWFsPpqGYWVXC/LoKQhPYLyGEEEIIIcTZJQEPIcSUUxQNsbph5kR3QwghhBBCCDGBJOAhxBTgeT77dzez883DtLX2EI44zFtYy7zFNYTCzkR3TwghhBBCCHEmJGnpqEjAQ4hJzs17/PaXm9j06n48zycUtmk+2smerUfZsqGCW//oUopKIhPdTSGEEEIIIYQ4qyTgIcQk99YbB3hj7V5KK2JEC0J92928x4E9x/ndLzdz5z2rz7kkp0IIIYQQQojhkqylo2FMdAeEEKPn5j3efH0/tmP1C3YAWAGT8uoi9u9qpvlo55idM5PJ09GRIJHMjlmbQgghhBBCCDHWZIaHEJNYT3eKjtYEBcXhQfdHog5tzd20NndTXVtyZufqSfPGxoNs3XaEVCpHIGBywZxKViyvp7q66IzaFkIIIYQQQoixJjM8hJjEDKVAgfZPP13NMM5sOUt3T5qfPvkGf3hhB9msSywWxDAU6zcc4Imfrqexsf2M2hdCCCGEEEKchh7l13lOAh5CTGIFxWGqaorp6kgOuj/enSYSC57x7I71r+9n3/4WZkwvpbwsRiTsUFwUYdbMcjo7U/z+hR14nn9G5xBCCCGEEEKIsSQBDyEmMcMwWHbJLBTQ0RZHn1R6Kp3K0n68h/mLaymtKBj1OVKpLFu3HaW4KIJlmf32KaWorCzg8NEOjhztGPU5hBBCCCGEEKfxdlnakX6d5ySHhxCTXMOy6fR0pXjlDzs4sPs4AdvEcz2sgMmi5TO55pYlZ9R+PJElnc5RPESekFDQxs179MQzZ3QeIYQQQgghhBhLEvAQYpJTSnHp1fOZNa+aPTuO0tmWIBSymTWvihmzKzBPmZUxUnbAxLIM8jmPUHDgftf1UEphB87sPEIIIYQQQojBaa37zeYe7mvOdxLwmKSSPSmSXUnskE1hWQFKnVlSSjG5KaWonFZE5bSiMW+7qChM/cxytm47QiwWHDDW2toTlJZGmV5XOubnFkIIIYQQQojRkoDHJNPV2s3rz25m+6u7ySQyWLZF/ZLpXHzjMurm1Ux098QUpJTikovrOdTYxpGjHVRWFGLbFp7n096eIJfzuPbqWYRC9kR3VQghhBBCCCH6SMBjEulu6+Fn//wMh7YdpqiikKLKQvKZPFte3E7jjqPcft+N1C+eMe79SPak6GrpxrRMymtLz3jJhDj3zZhexu23XsTvX9hB0/FufM8HpSgpDnPVlfNYsbx+orsohBBCCCHEFDaaOrOypEUCHpPI689u4tC2w8xcWNcXZAhFgsRKohzeeZQ/PL6Ouvk1WIHx+bWm4mle/eUbbF27k0RXCtM0qJhRxvLrl7L4igWyrGaKmzunkpkzyjh4qI14PIPjWMycUUYk4kx014QQQgghhBDniF/+8pf81V/9Fb7v8zd/8zd88pOfnLC+SMBjkkjF02x/dTdF5YUDZlQopaicUU7TvmYO7zw6LrM8Mqksv/jOb9j+ym6KyguoqCvFc32a97fwi395jlRPmkvft3zMzyvOLYGAydw5lRPdDSGEEEIIIc4vk2SCh+u6PPDAA/zhD3+goKCAiy66iDvvvJOSkpKz3xkk4DFpJLtTpBMZisoLB93vhB3cvEeiKzUu59++bhc71++lbt407OA7uRpq5lbTdrSDdU+/zrxL5lBcMXj/xMQ7ureJHa/s5tCOIyhDMXvpTBpWzaO8VpKNCiGEEEIIIc7c+vXrWbhwITU1vfklb7nlFn7zm9/woQ99aEL6Y0zIWcWIOSEby7bIZXKD7nfzLoahsMchcaTWmi1rdmAH7X7BjreVVBcTb4+zd9OBMT+3GBub/7CVx776JGufWk9HUxdthzv4w2Nr+dFXfsaejfsnuntCCCGEEEKIc8BLL73ErbfeyrRp01BK8dRTTw045pFHHqG+vp5gMMjy5ctZs2ZN375jx471BTsAamtrOXr06Nno+qAk4DFJxEqizFoyg/amzkHrKbcd7aB0WgnTF4x9pRbf9+lu6yEUDQ663zAUSilS3eMzu0ScmaYDx/ndf6xB+5r6RdOpnFFOVX0F9YtnkOxK8ev/+3t62uMT3U0hhBBCCCHEkDToEX6NYk1LMplk6dKlfOtb3xp0/+OPP87999/P5z//eTZt2sQVV1zBzTffTGNjY28vB7lXnchcjxLwmCSUUlx804UUVxbSuPMomVQW6J3Z0XywBTfvcun7lhOKDB6UOBOGYRCOhcmeOOeptNb4viYoySvPSTte3U2iM0HF9LJ+bzZKKabNqaT9WCe7Xt87gT0UQgghhBBCnE46myadTY3wKw1AT09Pv69sdvD7OoCbb76Zv//7v+fOO+8cdP83vvENPvGJT/DJT36SBQsW8PDDD1NXV8d3vvMdAGpqavrN6Dhy5AjV1dVj+JMYGcnhMYnUzq3m9k/dzAuPv8yxvc24eQ9lKEqri7n0fcu58D2Lx+W8SikWXzGfZ7//e9y8O6AKTHdrD9GiMPVLxr8krhi5wzuPEYqGBo2sGoaBFbA4tv/4BPRMCCGEEEIIcTq2bVNVVcVnv3nfqF4fjUapq6vrt+2LX/wiDz300IjbyuVybNiwgQcffLDf9htuuIF169YBcMkll7B161aOHj1KQUEBzzzzDH/3d383qr6PBQl4TDIzF9Zxz9/9Fw7vOkaiM4Edspm+oJZgeHxnVyy8bD7bX93NoW1HKKspIVYSxfd8Opq6SPakuOyOSyT55TnKsAx8f+jpbNrXAyr/CCGEEEIIISZeMBjkwIED5HKD53J8N1rrAQ8+HWd0945tbW14nkdlZf+qjZWVlTQ3NwNgWRb/9E//xDXXXIPv+/z1X/81paUTd58oAY9JyLRMZi6se/cDx1C0KML7//IWXnj8ZfZtOkB7UyfKUJRUFnHpbcu59L3LJ3Rtlhja7CUz2bfpIL6vMYz+vyM376F9zfT5Y5/7RQghhBBCCHHmgsEgweDYpy4YrVPv+04Nqtx2223cdtttZ7tbg5KAxyDeTrTS09MzwT05t5hBxbV/fBlLr2ug83gXhmUwbVYloWiIZCo50d0TQ6hZWEmkIsTerfuZNruibzaHm3c5sqeZabMrqZxTKuNdCCGEEEKIEXj78/NgiTqnorKyMkzT7JvN8baWlpYBsz7OFRLwGEQ83lux4tS1TkJMVZ/+5p9NdBeEEEIIIYSYlOLxOIWFhRPdjXFn2zbLly/n+eef54477ujb/vzzz3P77bdPYM+GJgGPQUybNo3Dhw8Ti8VkmYYYEz09PdTV1XH48GEKCgomujviPCBjTpxtMubE2SZjTpxtMubEqbTWxONxpk2bNtFdGTOJRIK9e9+p4HjgwAE2b95MSUkJ06dP54EHHuCee+5hxYoVrFq1iu9973s0NjZy7733TmCvhyYBj0EYhkFtbe1Ed0NMQQUFBfIPpDirZMyJs03GnDjbZMyJs03GnDjZVJvZ8cYbb3DNNdf0ff/AAw8A8LGPfYwf/OAH3H333bS3t/OlL32JpqYmFi1axDPPPMOMGedmxU4JeAghhBBCCCGEEIKrr776XXOS3Hfffdx33+jK5J5txkR3QAghhBBCCCGEEGKsScBDiLPAcRy++MUvjrrmtRAjJWNOnG0y5sTZJmNOnG0y5oSYfJQ+X2roCCGEEEIIIYQQ4rwhMzyEEEIIIYQQQggx5UjAQwghhBBCCCGEEFOOBDyEEEIIIYQQQggx5UjAQwghhBBCCCGEEFOOBDyEGIVHHnmE+vp6gsEgy5cvZ82aNUMe+7Of/Yzrr7+e8vJyCgoKWLVqFb/5zW8GHNfV1cWnPvUpqqurCQaDLFiwgGeeeWY8L0NMIuMx5h5++GHmzZtHKBSirq6Oz372s2QymfG8DDGJjGTMrV27lssuu4zS0lJCoRDz58/nm9/85oDjfvrTn9LQ0IDjODQ0NPDkk0+O5yWISWasx9yjjz7KFVdcQXFxMcXFxVx33XWsX79+vC9DTCLj8T73th//+McopXj/+98/Dj0XQgybFkKMyI9//GMdCAT0o48+qrdv364/85nP6Egkog8dOjTo8Z/5zGf01772Nb1+/Xq9e/du/bnPfU4HAgG9cePGvmOy2axesWKFvuWWW/TatWv1wYMH9Zo1a/TmzZvP1mWJc9h4jLl///d/147j6P/4j//QBw4c0L/5zW90dXW1vv/++8/WZYlz2EjH3MaNG/WPfvQjvXXrVn3gwAH9wx/+UIfDYf3d736375h169Zp0zT1V77yFb1jxw79la98RVuWpV999dWzdVniHDYeY+7DH/6w/va3v603bdqkd+zYoT/+8Y/rwsJCfeTIkbN1WeIcNh5j7m0HDx7UNTU1+oorrtC33377OF+JEOJ0pCytECO0cuVKLrroIr7zne/0bVuwYAHvf//7+epXvzqsNhYuXMjdd9/N3/3d3wHwL//yL3z9619n586dBAKBcem3mLzGY8z9xV/8BTt27OB3v/td3zF/9Vd/xfr160/7hEucH8ZizN15551EIhF++MMfAnD33XfT09PDs88+23fMTTfdRHFxMY899tjYXoCYdMZjzJ3K8zyKi4v51re+xR//8R+PSb/F5DVeY87zPK666io+/vGPs2bNGrq6unjqqafGuvtCiGGSJS1CjEAul2PDhg3ccMMN/bbfcMMNrFu3blht+L5PPB6npKSkb9vTTz/NqlWr+NSnPkVlZSWLFi3iK1/5Cp7njWn/xeQzXmPu8ssvZ8OGDX3Tu/fv388zzzzDe9/73rHrvJiUxmLMbdq0iXXr1nHVVVf1bXvllVcGtHnjjTcOu00xdY3XmDtVKpUin8/3ey8U56fxHHNf+tKXKC8v5xOf+MSY9VcIMXrWRHdAiMmkra0Nz/OorKzst72yspLm5uZhtfFP//RPJJNJ7rrrrr5t+/fv5/e//z0f+chHeOaZZ9izZw+f+tSncF2374m8OD+N15j7oz/6I1pbW7n88svRWuO6Ln/+53/Ogw8+OKb9F5PPmYy52tpaWltbcV2Xhx56iE9+8pN9+5qbm89oHIupa7zG3KkefPBBampquO6668ak32LyGq8x9/LLL/P973+fzZs3j0e3hRCjIAEPIUZBKdXve631gG2Deeyxx3jooYf4+c9/TkVFRd923/epqKjge9/7HqZpsnz5co4dO8bXv/51CXgIYOzH3AsvvMA//MM/8Mgjj7By5Ur27t3LZz7zGaqrq/nCF74w5v0Xk89oxtyaNWtIJBK8+uqrPPjgg8yZM4cPfehDZ9SmOH+Mx5h72//8n/+Txx57jBdeeIFgMDim/RaT11iOuXg8zkc/+lEeffRRysrKxrPbQogRkICHECNQVlaGaZoDov8tLS0DnhKc6vHHH+cTn/gEP/nJTwY8XaquriYQCGCaZt+2BQsW0NzcTC6Xw7btsbsIMamM15j7whe+wD333NP3ZGrx4sUkk0n+7M/+jM9//vMYhqx4PF+dyZirr68HesfT8ePHeeihh/puPquqqkbVppj6xmvMve1//a//xVe+8hV++9vfsmTJkrHtvJiUxmPM7du3j4MHD3Lrrbf2Hev7PgCWZbFr1y5mz549xlcihHg38olWiBGwbZvly5fz/PPP99v+/PPPs3r16iFf99hjj/Enf/In/OhHPxo0R8Jll13G3r17+/5hBNi9ezfV1dUS7DjPjdeYS6VSA4IapmmitUZyWZ/fRjvmTqW1JpvN9n2/atWqAW0+99xzI2pTTE3jNeYAvv71r/PlL3+ZX//616xYsWJM+ismv/EYc/Pnz2fLli1s3ry57+u2227jmmuuYfPmzdTV1Y3pNQghhmkiSsMIMZm9Xcbs+9//vt6+fbu+//77dSQS0QcPHtRaa/3ggw/qe+65p+/4H/3oR9qyLP3tb39bNzU19X11dXX1HdPY2Kij0aj+i7/4C71r1y79y1/+UldUVOi///u/P+vXJ8494zHmvvjFL+pYLKYfe+wxvX//fv3cc8/p2bNn67vuuuusX58494x0zH3rW9/STz/9tN69e7fevXu3/td//VddUFCgP//5z/cd8/LLL2vTNPU//uM/6h07duh//Md/lLK0os94jLmvfe1r2rZt/Z//+Z/93gvj8fhZvz5x7hmPMXeqj33sY1KWVogJJgEPIUbh29/+tp4xY4a2bVtfdNFF+sUXX+zb97GPfUxfddVVfd9fddVVGhjw9bGPfaxfm+vWrdMrV67UjuPoWbNm6X/4h3/QruuepSsS57qxHnP5fF4/9NBDevbs2ToYDOq6ujp933336c7OzrN3UeKcNpIx97//9//WCxcu1OFwWBcUFOgLL7xQP/LII9rzvH5t/uQnP9Hz5s3TgUBAz58/X//0pz89W5cjJoGxHnMzZswY9L3wi1/84lm8KnEuG4/3uZNJwEOIiae0lrnLQgghhBBCCCGEmFokh4cQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEOeZV199lfe85z2UlZWhlOr31dXVNdHdE0IIIYQYExLwEEIIIc4jb775JldffTVLly7lpZde4te//jUlJSVcc801PP744xQVFU10F4UQQgghxoQEPIQQQojzyKc//Wluv/12vvGNb9DQ0MCNN97Ihz70IeLxOB0dHSxbtoxFixbhOA7Lli1j2bJlfPe73x2yvf379/OLX/ziXc/71FNPcf/994/hlQghhBBCnJ410R0QQgghxNlx/Phx1q5dy+9///t+2yORCEop7r33Xu699142btzIX/7lX/Lyyy+/a5vPPvssqVSKW2+99bTHvfXWWyxZsuSM+i+EEEIIMRIyw0MIIYQ4T2zYsAHf91m6dOmA7StWrOj7ftu2bSxcuLDfMVu2bGHVqlUsWrSID3zgA+RyOV588UX+9m//lkcffZQLL7yQdDrND3/4Q1auXMnixYu57bbbyOVygAQ8hBBCCHH2ScBDCCGEOE/4vg9AOp3u27ZlyxZeeuklPvrRj/Zt27p1a7+ARyaT4UMf+hD/7//9P7Zu3UpZWRk//vGPueqqq1i0aBG/+93v2LRpE6FQiFtuuYXXXnuNLVu2UFZWxpo1a4DBgyhCCCGEEONJAh5CCCHEeWLlypWEQiH++q//mp07d/KrX/2K22+/nXvvvZfVq1f3Hbdt2zYWLVrU9/1TTz3FTTfdxAUXXADA/PnzaW1tBeDIkSPU1dUBoLXme9/7HhdffDFLly7lySefJBgMkkqlMAyDUCh0Fq9WCCGEEOc7CXgIIYQQ54ny8nKeeOIJ1q9fz5IlS/j0pz/Nvffey8MPP9zvuFNneOzYsYMFCxb0fb9t2zYaGho4cuQINTU1fdt/8IMfsHfvXl566SXefPNNCgoKaGhoGNCeEEIIIcTZIElLhRBCiPPI+973Pt73vvcNuT+RSJBMJqmqqurbVl1dzc6dOwHYuHEj69ev57vf/S7r1q1j2rRpfcdt27aN1atXEwqF+Od//md836e4uFjydwghhBBiQsgMDyGEEEL02b59Ow0NDf223XPPPWzfvp3Fixdz//3388QTT2CaJosWLWLPnj0sXryYnTt3cs899/DlL3+Zq666ivb2dhYvXgz05gmRgIcQQgghzjaltdYT3QkhhBBCCCGEEEKIsSQzPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU87/D/2zlHgq+7aDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -882,7 +1040,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6ZElEQVR4nO3deVyU5f7/8dc9zLAvogIiIoIoCm4s7qkppJnlvqSelpNWtqdt+m3ROpV12qzfyU55Ws8JM9FSy9xw18pcU3FFFEUQQWRfZrl/fwyOImiMDgzL5/l43A+Za+655zPcMLy95rqvS1FVVUUIIYQQQoh6RmPvAoQQQgghhLgREmSFEEIIIUS9JEFWCCGEEELUSxJkhRBCCCFEvSRBVgghhBBC1EsSZIUQQgghRL0kQVYIIYQQQtRLEmSFEEIIIUS9JEFWCCGEEELUSxJkhRDiGhRF4ccff7T7MWrTyZMnURSFvXv31snjCSHElSTICiEajfvvvx9FUSptx48fr3L/9PR0hg4dWq1jz5kzh27dut3UMRqiwMBA0tPT6dSpEwAbN25EURQuXrxo38KEEA2C1t4FCCFEbbr99tv58ssvK7T5+PhUuF1WVoajoyMtWrS46eezxTHqMwcHh0b/PRBC1BzpkRVCNCpOTk60aNGiwhYbG8vjjz/OjBkzaN68ObfddhtQeVjAmTNnuPvuu2natClubm7ExMTw+++/89VXX/Hqq6+yb98+Sy/vV199VeUx9u/fz6BBg3BxcaFZs2Y89NBDFBQUWO6///77GTlyJO+++y7+/v40a9aMxx57DL1e/5evbdasWfTq1atSe5cuXZg9e7bl9pdffknHjh1xdnamQ4cOzJ8//7rH3bRpEz169MDJyQl/f39mzpyJwWCw3G8ymXj77bcJDQ3FycmJ1q1b88YbbwAVhxacPHmSgQMHAuDt7Y2iKNx///188803NGvWjNLS0grPO2bMGO69996/fN1CiMZLemSFEAL4+uuveeSRR9i2bRuqqla6v6CggAEDBhAQEMDy5ctp0aIFu3fvxmQyMWHCBA4cOMCqVatYt24dAF5eXpWOUVRUxO23306vXr34448/yMzMZOrUqTz++OOW4AuwYcMG/P392bBhA8ePH2fChAl069aNBx988LqvYfLkybz11lskJyfTtm1bAA4ePMj+/ftJSEgAYMGCBcyePZt//etfREZGsmfPHh588EHc3Ny47777Kh0zLS2NO+64wxI4Dx8+zIMPPoizszNz5swBzAF6wYIFfPDBB9xyyy2kp6dz+PDhSscKDAxkyZIljBkzhiNHjuDp6YmLiwuOjo48+eSTLF++nHHjxgGQlZXFTz/9xKpVq677moUQjZwqhBCNxH333ac6ODiobm5ulm3s2LHqgAED1G7dulXaH1B/+OEHVVVV9dNPP1U9PDzU7OzsKo89e/ZstWvXrtc9xmeffaZ6e3urBQUFlvt//vlnVaPRqBkZGZYag4KCVIPBYNln3Lhx6oQJE6r1Grt06aK+9tprltuzZs1Su3fvbrkdGBioxsfHV3jMP/7xD7V3796qqqpqSkqKCqh79uxRVVVV/+///k8NCwtTTSaTZf+PP/5YdXd3V41Go5qXl6c6OTmpCxYsqLKeq4+3YcMGFVBzcnIq7PfII4+oQ4cOtdyeN2+eGhISUuF5hRDiajK0QAjRqAwcOJC9e/dato8++giAmJiY6z5u7969REZG0rRp0xt+7kOHDtG1a1fc3NwsbX379sVkMnHkyBFLW0REBA4ODpbb/v7+ZGZmVus5Jk+ezLfffguAqqosXLiQyZMnA3D+/HlOnz7NlClTcHd3t2yvv/46ycnJ16y5d+/eKIpSoeaCggLOnDnDoUOHKC0tJTY2tvrfiCo8+OCDrFmzhrS0NMA8/OHSxXlCCHEtMrRACNGouLm5ERoaWmX79bi4uNz0c6uqes1gdmW7TqerdJ/JZKrWc0yaNImZM2eye/duiouLOX36NHfffTeA5RgLFiygZ8+eFR53ZXD+q5rV8qEXiqLY5PsCEBkZSdeuXfnmm28YMmQI+/fvZ8WKFTY5thCi4ZIeWSGEqIYuXbqwd+9eLly4UOX9jo6OGI3G6x4jPDycvXv3UlhYaGnbtm0bGo2G9u3b26TOVq1a0b9/f7799lu+/fZb4uLi8PPzA8DPz4+AgABOnDhBaGhohS04OPiaNW/fvr3CuOHt27fj4eFBQEAA7dq1w8XFhcTExGrV5+joCFDl92rq1Kl8+eWXfPHFF8TFxREYGGjtyxdCNDISZIUQohomTpxIixYtGDlyJNu2bePEiRMsWbKEX3/9FYA2bdqQkpLC3r17ycrKqnQFPpg/9nd2dua+++7jwIEDbNiwgSeeeIJ77rnHEjZtYfLkyXz33XcsXryYv/3tbxXumzNnDnPnzuXDDz/k6NGj7N+/ny+//JL333+/ymM9+uijnD59mieeeILDhw+zbNkyZs+ezYwZM9BoNDg7O/PCCy/w/PPP880335CcnMxvv/3G559/XuXxgoKCUBSFn376ifPnz1eYsWHy5MmkpaWxYMECHnjgAZt9P4QQDZcEWSGEqAZHR0fWrFmDr68vd9xxB507d+att96yfCQ/ZswYbr/9dgYOHIiPjw8LFy6sdAxXV1dWr17NhQsX6N69O2PHjiU2NpZ//etfNq113LhxZGdnU1RUxMiRIyvcN3XqVP7zn//w1Vdf0blzZwYMGMBXX311zR7ZgIAAVq5cyY4dO+jatSvTpk1jypQpvPTSS5Z9Xn75ZZ555hleeeUVOnbsyIQJE645pjcgIIBXX32VmTNn4ufnx+OPP265z9PTkzFjxuDu7l6pbiGEqIqiqlXMMyOEEELYwW233UbHjh0tF+EJIcT1SJAVQghhdxcuXGDNmjVMnjyZpKQkwsLC7F2SEKIekFkLhBCintiyZQtDhw695v1Xjjetb6KiosjJyeHtt9+WECuEqDbpkRVCiHqiuLjYMs9qVaqaVkwIIRoyCbJCCCGEEKJeklkLhBBCCCFEvSRBVgghhBBC1EuN7mIvk8nE2bNn8fDwkDW8hRBCCCHqGFVVyc/Pp2XLlmg01+9zbXRB9uzZs7LsoRBCCCFEHXf69GlatWp13X0aXZD18PAAzN8cT09PO1cjhBBCCCGulJeXR2BgoCWzXU+jC7KXhhN4enpKkBVCCCGEqKOqMwRULvYSQgghhBD1kgRZIYQQQghRL0mQFUIIIYQQ9ZIEWSGEEEIIUS9JkBVCCCGEEPWSBFkhhBBCCFEvSZAVQgghhBD1kgRZIYQQQghRLzW6BRGEEMJgMlGkN9q7DCGEqNOOHD7EN199RWFBAfM/+QRnrYO9S6pEgqwQotH5LS2HzKIye5chhBB1TklREdtXrSAxIZ7Du/8AwEGrpd/fn+CeXhFoNXXrw3wJskKIRqfMqNq7BCGEqFPOpiSz4qvP2PLTDxQXFgCgcXAg+tY4YsdMxN2rCUYTaOtWjpUgK4QQQgjR2OVknWfNov8C0KJ1G2LHTmTgyPF4+/rZubLrkyArhBBCCNFIqKrKwR2/kpgQTxMfX+57/hUAwmN6cud9D9F90GDCu/dCU8eGEFyLBFkhhBBCiAYu53wmG35YROKS78g4lQKAm6cXE596HkcnZxRF4e+z5ti3yBsgQVYIIYQQooHa/9tWVv7vC3ZuWIvJaJ6txdnVjX53jiJu3CR0jk52rvDmSJAVQgghhGig9m7bxI51qwAIi4whbuwket9+Fy5ubnauzDYkyAohhBBC1HNlpSXsWLeKxCULGf73R4jsdysAsWMmYtQbiB07kcDQ9vYtsgZIkBVCCCGEqKdSjx5mXUI8m5YtoSA3BwBXd09LkG3ZJoT7Z862Y4U1S4KsEEIIIUQ9YjQazRduLV7I0X27LO3NWvgzaPTdDBp9tx2rq10SZIUQQggh6hGNRsPPX/+H1GOHcdBqiRk4mLhxk+jadwAODnVvGdmaJEFWCCGEEKKOys+5wKYVS9m+chkvf/4dLm5uKIrC6IceJzszg1tHjKNJcx97l2k3EmSFEEIIIeoQk8nEgd+3sW5xPL+v/QWDvgyA7auWEztmIgD97hptzxLrDAmyQgghhBB1QH7OBVYv+i+JCQvJPJNqaQ/uGEHcuMn0uu0OO1ZXN93w+mNlZWWcOXOG1NTUCpu15s+fT3BwMM7OzkRHR7Nly5Zr7rtx40YURam0HT58+EZfhhBCCCFEnVBcWMh3H/6TzDOpuLp7MGTifbyzZBXv/rCW2yfdj5unl71LrHOs7pE9duwYDzzwANu3b6/QrqoqiqJgLF81ojoWLVrE008/zfz58+nbty+ffvopQ4cOJSkpidatW1/zcUeOHMHT09Ny28en8Y4NEUIIIUT9k34qhfVLviMvJ5tH/vEuAL6tArnr7w8T1L4jvYcMw8nF1c5V1n2KqqqqNQ/o27cvWq2WmTNn4u/vj6IoFe7v2rVrtY/Vs2dPoqKi+OSTTyxtHTt2ZOTIkcydO7fS/hs3bmTgwIHk5OTQpEkTa8q2yMvLw8vLi9zc3AphWAjReKw/mcXFUr29yxBCNDKlJcX8vvYX1i2O5+AOc4egRqPh3xv+oJmfv52r+2vD2vrhpL3hD/OrzZqsZnWP7N69e9m1axcdOnS44QLBPDRh165dzJw5s0L74MGDK/X2Xi0yMpKSkhLCw8N56aWXGDhw4E3VIoQQQghRU84kH2NV/FdsXrGUwrxcABRFoVu/gcSNnYSndzM7V1h/WR1kw8PDycrKuuknzsrKwmg04ufnV6Hdz8+PjIyMKh/j7+/PZ599RnR0NKWlpfz3v/8lNjaWjRs30r9//yofU1paSmlpqeV2Xl7eTdcuhBBCCFFdB//4lV++/RKA5i0DiB0zkYGjxuPTspWdK6v/rA6yb7/9Ns8//zxvvvkmnTt3RqfTVbjf2o/rrx6acGmsbVXCwsIICwuz3O7duzenT5/m3XffvWaQnTt3Lq+++qpVNQkhREPkUFTEiKhQAJbtPo7RVcbfCWFLqqpyZM9OEhPi6RjTi0GjJwBwy7CRJP3xGwNHjadz736NbtGCmmR1kI2LiwMgNja2Qru1F3s1b94cBweHSr2vmZmZlXppr6dXr17873//u+b9s2bNYsaMGZbbeXl5BAYGVvv4QgghhBDXk3shm03LEkhMiOdM8jEATh05ZAmybh6eTH9vvj1LbLCsDrIbNmywyRM7OjoSHR3N2rVrGTVqlKV97dq1jBgxotrH2bNnD/7+1x4g7eTkhJOT003VKoQQQghxtX3bN7P2+2/5I3EVBr35AlJHZ2f6Dh1O3LhJ1/2UWdiG1UF2wIABNnvyGTNmcM899xATE0Pv3r357LPPSE1NZdq0aYC5NzUtLY1vvvkGgHnz5tGmTRsiIiIoKyvjf//7H0uWLGHJkiU2q0kIIYQQojpW/vdzdm5YC0DbTl2JGzuJvsNG4OYhsyLVlhta2evixYt8/vnnHDp0CEVRCA8P54EHHsDLy7qJeidMmEB2djavvfYa6enpdOrUiZUrVxIUFARAenp6hUUWysrKePbZZ0lLS8PFxYWIiAh+/vln7rhDVroQQgghRM0w6PXs3LCWxCULefDlN/FtZR6iePukv+PTshWxYycS3LGTnatsnKyeR3bnzp0MGTIEFxcXevTogaqq7Ny5k+LiYtasWUNUVFRN1WoTMo+sEKKxziMrF3sJYZ20E8dJXLKQjT8uJjfbPGPTuEenc/eTz9m5MvtoEPPITp8+neHDh7NgwQK0WvPDDQYDU6dO5emnn2bz5s03VrUQQgghhJ3py0rZ9ssK1i3+lkM7f7e0N2nuw8BRExgwYqwdqxNXszrI7ty5s0KIBdBqtTz//PPExMTYtDghhBBCiNpk0Bv4z2v/R3FhARqNhsj+g4gdO5HoAXFor5pyVNif1UHW09OT1NTUSit7nT59Gg8PD5sVJoQQQghRkwrz89jy0w8c2vk7T7/7MYqi4OLmxvC/P4zGwYGBoyfUi6VjGzOrg+yECROYMmUK7777Ln369EFRFLZu3cpzzz3HxIkTa6JGIYQQQgibUFWVQ7t2kLg4nu2rV1BWUgLAnfc9SLsukQCMf/wZe5YorGB1kH333XdRFIV7770Xg8EAgE6n45FHHuGtt96yeYFCCCGEEDcr90I2G35YROLieM6ePGFpD2wXRty4yfgHBduxOnGjrA6yjo6OfPjhh8ydO5fk5GRUVSU0NBRXufpVCCGEEHXUiYN/8t93XgfA2dWVvneMIG7sJNp1jZJFC+qxG5pHFsDV1ZXOnTvbshYhhBCi1sh0ZA1XZtoZNiz9Dhd3D4b//WEAuvTpT/fYIcTcGkffoSNwcXe3c5XCFqoVZEePHs1XX32Fp6cno0ePvu6+S5cutUlhQgghhBDVpS8rY+f6NaxLiGfftk2oqkqT5j7c8bcH0Op0ODg4MPPjL+1dprCxagVZLy8vS7e7p6endMELIYQQok44c+IYiYvj2fjjYvJyLljaO/e+hbixk+xYmagN1QqyX355+X8wX331VU3VIoQQQghhlVXffsUv35pzSlPfFgwcPYFBY+6mRWCQnSsTtcHqMbKDBg1i6dKlNGnSpEJ7Xl4eI0eOZP369baqTQghhBACME+blXxgH+sWx3PryHF0iOoOQNy4SWSlpxE3bjKR/QbioL3hy39EPWT12d64cSNlZWWV2ktKStiyZYtNihJCCCGEACjIvcjmFUtJTIjn5OEkAMpKSyxBtk2HCGbO/8qOFQp7qnaQ/fPPPy1fJyUlkZGRYbltNBpZtWoVAQEBtq1OCCGEEI2Oqqoc3PEriQnx/Lr6Z/RlpQDoHJ3oNfgOYmXsqyhX7SDbrVs3FEVBURQGDRpU6X4XFxf+3//7fzYtTgghhBCNj6qqzH/pGc6dPgVA6/YduW3cJPrdNRqPJt52rk7UJdUOsikpKaiqSkhICDt27MDHx8dyn6OjI76+vjg4ONRIkUIIIYRomIwGA3u2bGDrzz/y2Jvvo3N0QqPRMOyeKZw+fpS4cZNo26mrzJgkqlTtIBsUZL76z2Qy1VgxQgghhGgczp1JZf2S71i/dBEXzqUD0H3QYPreMQKAYfdOtWd5op644Uv7kpKSSE1NrXTh1/Dhw2+6KCGEEEI0PPqyUnasW8W6hHj+3H75AnGPJt7cOnI8IRFd7FidqI+sDrInTpxg1KhR7N+/H0VRUFUVwNLlbzQabVuhEEIIIRqEc6dTeX/GI4A5N3Tp05+4cZPoPmgwOkcnO1cn6iOrg+xTTz1FcHAw69ats4yXzc7O5plnnuHdd9+tiRqFEEIIUc8UFxay7ZdlXMhIZ/zjzwDQqm07+t4xnJZt2jJo9N34tgq0c5WivrM6yP7666+sX78eHx8fNBoNGo2GW265hblz5/Lkk0+yZ8+emqhTCCGEEHWcqqoc+3MPiQnxbP15GSVFhWh1jtw++X48vZsBMOP9f9u5StGQWB1kjUYj7u7uADRv3pyzZ88SFhZGUFAQR44csXmBQgghhKg9DkVFjIgKBWDZ7uMYXV3/8jH5ORfYtGIpiYvjST122NLesk0IsWMn4qDV1Vi9onGzOsh26tSJP//8k5CQEHr27Mk///lPHB0d+eyzzwgJCamJGoUQQghRh2344Xu+/udrADg6OdPn9ruIHTeJjtE9ZNosUaOsDrIvvfQShYWFALz++uvceeed9OvXj2bNmrFo0SKbFyiEEEKIuiP7XDobfvieoPYd6D5oCAADRo5j+6oV3DpyHP3uHIWbp5edqxSNhdVBdsiQIZavQ0JCSEpK4sKFC3h7e8v/uoQQQogGyKDXs3tzIusWx7Nn83pMJhPhMb0sQdaraTPe+v5nO1cpGiOrg+zXX3/N2LFjcXNzs7Q1bdrUpkUJIYQQwv7SU0+y5ucf2fDj91w8n2lp7xjTk9ixE1FVVTqxhF1ZHWSfffZZHn30Ue666y7+9re/cfvtt6PV3vC6CkIIIYSoo+a//hL7d/4GgGfTZgwcNZ7YMRMJCAm1c2VCmFmdQNPT01m1ahULFy7k7rvvxsXFhXHjxvG3v/2NPn361ESNQgghhKhhJw8fJDFhIePufdDSNnjM3WhdXYkbO4noW+PQOTrasUIhKrM6yGq1Wu68807uvPNOioqK+OGHH4iPj2fgwIG0atWK5OTkmqhTCCGEEDZWVJDP1p9+ZF1CPMkH9gHQvGkz7i+/v9+QO+kzarzd6hPir9zUmABXV1eGDBlCTk4Op06d4tChQ7aqSwghhBA1QFVVjuzZSWJCPNt+WU5pcTEAWp2O7oOGENYlys4VClF9NxRkL/XEfvvtt6xbt47AwEAmTpzI4sWLbV2fEEIIIWyoKD+POfePR19WCkBASChxYycxYMRYvJo1x6GoyM4VClF9VgfZiRMnsmLFClxdXRk3bhwbN26UsbFCCCFEHWQymfhz+2YO/vEbk6fPBMDN04tbR47DoC8jbtwkwiK7y8wDot6yOsgqisKiRYsYMmSITWYrmD9/Pu+88w7p6elEREQwb948+vXr95eP27ZtGwMGDKBTp07s3bv3pusQQgghGoqs9DTWL13E+iXfcf7sGQBuuWMEQWEdAZj22j/tWZ4QNmNVEtXr9aSnp9OuXTubhNhFixbx9NNPM3/+fPr27cunn37K0KFDSUpKonXr1td8XG5uLvfeey+xsbGcO3fupusQQjQwhYXg7m7+uqAArpj3WoiGyqDXs2vjOtYlxLN3ywZMJhNg7oHtf9doXNzc7VyhELZnVRrV6XQcOHDAZh9BvP/++0yZMoWpU6cCMG/ePFavXs0nn3zC3Llzr/m4hx9+mEmTJuHg4MCPP/5ok1qEEEKI+mzXxnX884kpltsRPfoQN24SPW8bipOzix0rE6LmaKx9wL333svnn39+009cVlbGrl27GDx4cIX2wYMHs3379ms+7ssvvyQ5OZnZs2ffdA1CCCFEfVRaXMTGZQlsWr7E0hY1IJagsHBGPfg4/2/VVl77JoH+d42WECsaNKvHB5SVlfGf//yHtWvXEhMTU2GpWjD3slZHVlYWRqMRPz+/Cu1+fn5kZGRU+Zhjx44xc+ZMtmzZUu2hDaWlpZSWllpu5+XlVetxQgghRF1zImk/iQnxbF7xA0X5efi0bEW/O0eh0WjQOTry3o9r5cIt0ahYHWQPHDhAVJR5jrmjR49WuO9Gfnmufsy11m02Go1MmjSJV199lfbt21f7+HPnzuXVV1+1ui4hhBCiLijMy2XLzz+SuDieE0n7Le2+AYHEjp2IvqzU0usqIVY0NlYH2Q0bNtjkiZs3b46Dg0Ol3tfMzMxKvbQA+fn57Ny5kz179vD4448D5mlFVFVFq9WyZs0aBg0aVOlxs2bNYsaMGZbbeXl5BAYG2uQ1CCGEEDXtm3f+wbrF8QBodY70vO12YsdOonOvW9BorB4hKESDcsNTDxw/fpzk5GT69++Pi4vLNXtSr8XR0ZHo6GjWrl3LqFGjLO1r165lxIgRlfb39PRk//79Fdrmz5/P+vXrSUhIIDg4uMrncXJywsnJqdp1CSGEEPaSm53Fxh8X0+2WWy1TZQ0cNYEje3cRN3YS/YePxtO7mZ2rFKLusDrIZmdnM378eDZs2ICiKBw7doyQkBCmTp1KkyZNeO+996p9rBkzZnDPPfcQExND7969+eyzz0hNTWXatGmAuTc1LS2Nb775Bo1GQ6dOnSo83tfXF2dn50rtQgghRH1hNBr5c/tm1i2O54/1qzEaDJw7k8pDs82z94RFxvDB8vUybEDUupIihVNHtJxI0lFWojDsTXtXVJnVQXb69OnodDpSU1Pp2LGjpX3ChAlMnz7dqiA7YcIEsrOzee2110hPT6dTp06sXLmSoKAgANLT00lNTbW2RCGEEKLOy0w7w/olC9nwwyKy0s9a2tt1jaJDVHfLbQmwojYU5iucPKTjRJKOE0nm8Hr2hBaTyfzz5+5l4tM37FxkFawOsmvWrGH16tW0atWqQnu7du04deqU1QU8+uijPProo1Xe99VXX133sXPmzGHOnDlWP6cQQghhTyaTiZcmjyA7Ix0Ady9vBowYQ+yYiZYhBULUlLwchZSkS6HVvGWcqjoSevsYaRuhp1NXE6rRBXS1XOxfsDrIFhYW4urqWqk9KytLxqIKIYQQVTiTfIwtP//A+Edn4KDVotFouHXkeI7uM4997RF3O45OzvYuUzRAOZmaCoH1RJKWrLNVxz+flgbaRhiI6GIiKhp6RCt0aKPDTedUZz8ZsDrI9u/fn2+++YZ//OMfgPkjD5PJxDvvvMPAgQNtXqAQQghRH5UUFbF91QoSE+I5vPsPANp3iSL61jgAJj71fJ0NB6L+UVU4f9aBlPJhAZe2i+cdqtzfP8hAaISeTt1UoqKgV7SGkAAtLtq6G1qrYnWQfeedd7j11lvZuXMnZWVlPP/88xw8eJALFy6wbdu2mqhRCFEdhYXgXr6WekEBXLVYiRCi5qmqSvKBP0lMiGfLTz9QXFgAgMbBgehb4/BsennGgfoUFhorh6IiRkSFArBs93GMVXwibQ8mE2SkOlQcHnBQR0Fu5enYNBqVgLYG2kUY6NzVRHSUQs8YDYG+Oly09X/VN6uDbHh4OH/++SeffPIJDg4OFBYWMnr0aB577DH8/f1rokYhhBCiXkg9epgXxg213G7Rug2xYyYycNR4vH0rz5EuxF8xGiAtxdzLmpKk5cRBHSmHdBQXVg6tWp1KYDtzaO3STSUmGnpEOdDSW4eTto4NbrWRG5pHtkWLFrJalhBCiEZNVVUO7viVjNQU4sZNBqB1+w607xqNX2BrYsdOIqJHb1m0QFSbvgzOJGstPawpSTpSDpunvrqao5NKUAc9YZ3MobV7tEJMNwf8PHXoHBpmaK2K1UF21apVuLu7c8sttwDw8ccfs2DBAsLDw/n444/x9va2eZFCCCFEXZGTeY4NP35P4pLvyDiVgpOLC32GDsfV3QNFUXhj4TIJr+IvlZZA6lHdFaFVy6mjOgz6yqHV2dVEcEcDYZ0NdItU6RGtENVFSzM3LVqNox2qrzusDrLPPfccb7/9NgD79+9nxowZPPPMM6xfv54ZM2bw5Zdf2rxIIYQQwp6MBgN7t25k7eJv2bVxHSajEQAXN3duGTaS0uJiXN09ACTEikqKCxROHjEPC7g0pvVMshaTsXJodfM0ERKup2NnI90ioUeMQrcILU2cdTg08tBaFauDbEpKCuHh4QAsWbKEu+66izfffJPdu3dzxx132LxAIYQQwt5WfP0Z/33ndcvtsMgY4sZNps/td+FcRy4AEnVDQa5CyiFdhdCaftIBVa0cWj2bmudoDe9iIjJSpWeMhk5hWjydHNHIxYDVYnWQdXR0pKioCIB169Zx7733AtC0aVPy8vJsW50QQghRy8pKS9ixbhXevi2I6N4LgFvuGMGKLz+l352jiR07kcDQ9nauUtQFudnlc7QevDzlVeaZqqNVsxZG2obriehqIjISenVXCGujw8Opfk13VddYHWRvueUWZsyYQd++fdmxYweLFi0C4OjRo5VW+xJCCCHqi9Sjh1mXEM+mZUsoyM0hst9AS5Bt7h/AZ5t24+BQ9ZycomFTgaxzDhxPcarQ03rhXNU/D36B5oUFOnUxmudo7a4htJUO1zq8sEB9ZXWQ/de//sWjjz5KQkICn3zyCQEBAQD88ssv3H777TYvUAghhKgp+cAi4J17x3D0wD5Le7MW/rTvGoWqqpbgISG2cVBVOHfGgZSDOlL2OfMJv7CbKM4P9a20r6KotAw2Ehqhp3NXlaho6BmloY2/rt4tLFBfWR1kW7duzU8//VSp/YMPPrBJQUIIIURtGQFsADiwDwetlpiBg4kbN4mufQdIcG0EjEZIP2UOrZd6WVMO6SjMu/KCPXMnncZBJTDUQLtOBrp0NREdrdAzSkNAcx3ODWBhgfrqhuaRNRqN/PDDDxw6dAhFUejQoQMjR45Eq72hwwkhhBA1Lj/nAptWLOXWEWNx92oCwCTgDND7yefpP24S3j6Ve91Ew2DQw5kTWsv8rCeSdJw8rKWkqOqFBYLa62nfoYQRS54jkj34Ja/Cv1UTHBvRHK31gdXJ88CBAwwfPpxz584RFhYGmMfH+vj4sHz5cjp37mzzIoUQQogbYTKZOPD7NtYtjuf3tb9g0Jeh0Wi4428PAHA/MAVYfv9DdWb5UXHz9GVw6oiOE0laS2g9dUSHvqyKhQWcVYI76Gnf2UDXbirdYzTEdHHAx1OLrtgBlnxm3rG5EzjI1Gp1jdVBdurUqXTq1Ildu3ZZFj/Iycnh/vvv56GHHuLXX3+1eZFCCCGENbLPpbPhh+9JTFhI5plUS3tweCe8m1/udZXPEeu/kiKFU0cuzxqQkqQj9ZgWo6FyaHV1NxHcUU+HLka6dVPpHqMQ1UlLU1eZo7W+svp3eN++fezcubPCCl7e3t688cYbdO/e3abFCSGEENYqzM/jsdv6oC8rBcDV3YN+d40mbuxEQiK62Lk6cTMK8xVOHro0ntUcXs+e0GIyVQ6tHk1MhESYFxaIjIQe3RW6hGlp4iJztDYkVgfZsLAwzp07R0RERIX2zMxMQkNDbVaYEEIIUR3pp1LY/9s2Bk/4GwBuHp5E9h9I/sUc4sZOoveQYTi5yLCB+iYvR7EMC7i0ZZyqOrZ4+1y5sAD0jFEID9XiIQsLNHjVCrJXLnTw5ptv8uSTTzJnzhx69TLPr/fbb7/x2muvWZauFUIIIWpSaUkxv6/9hXWL4zm4YzsAXXrfQovWbQCY8f6/0TnKR8X1RU6mpkJgPZGkJets1RHFp6V5jtaILibzdFfR5oUF3GSO1kapWkG2SZMmFX44VFVl/PjxljZVVQG46667MJavPy2EEELY2snDB1m3OJ7NK5ZSmJcLgKIodOs3kNLiYst+EmLrJlWF82cdSEnSVgiuF89XPdWZf5CB0E56OnVVzQsLRGsICZA5WsVl1QqyGzZsqOk6hBBCiOvakbiKtx97wHK7ecsAYsdMZOCo8fi0lJUl6xqTCTJSHSoODziooyC38pX/Go1KyxAD7TsZ6NTVREyUQo9oDa39dLjIHK3iOqoVZAcMGFDTdQghhBAWqqpyZM9OigsLiex3KwBd+/THs2kzInr0IW7sRDr37ieLFtQRRgOkpWjLZw0on6v1kI7iwsqh1UGr0rqdgXYRBrp0U4mOhh5RDgQ01eGklTlahXVuaOaRixcv8vnnn1sWRAgPD+eBBx7Ay8vL1vUJIYRoRHIvZLNpWQKJCfGcST5GQEgo3W7ZhKIoOLm48umGP3B0crZ3mY2avgxOH9dapro6cVDHySM6ykoqf9Svc1Rp00FP+07mOVpjohW6Rzrg56lDJwsL1A+FheDubv66oADc3Oxbz1WsDrI7d+5kyJAhuLi40KNHD1RV5f333+eNN95gzZo1REVF1USdQgghGiiTycSf2zezLmEhfySuwqDXA+Do7Ez7rlGUFBXhUv7HU0Js7SotUThxTFchtKYe02LQVw6tzq4mgjsaCOtsuDxHa2ctzd21aGWOVlFDrA6y06dPZ/jw4SxYsMCyJK3BYGDq1Kk8/fTTbN682eZFCiGEaLg+f/1FVsV/bbndtlNX4sZOou+wEbh5eNqxssaluEAh5bCWk3u9WMpX7CaKpH7BmIyVQ6ubp4mQcPMcrd0ioUeMQtdwLd4usrCAqF031CN7ZYgF0Gq1PP/888TExNi0OCGEEA2LQa9n18Z1BIV1tEyV1SNuKFt++pH+d40mduxEgjt2sm+RjUD+RYWUQ5cvwEpJ0pF+ygFVvRRa7zP/YwTPplfO0arSM0ZDpzAtnjJHq6gDrA6ynp6epKam0qFDhwrtp0+fxsPDw2aFCSGEaDjOpiSTuGQhG374ntzsLIb//WHue2E2AJ173cKCzbtxcpar02vCxSyNObQe1FqCa2Za1X/+m/oZCQ0r4fbN7xLNLvx3fUVYuCceTjLdlaibrA6yEyZMYMqUKbz77rv06dMHRVHYunUrzz33HBMnTqyJGoUQQtRDpcVF/LpmJYmL40na+ZulvUlzHzybNrPc1mg0EmJtQFXhwjmNJaxemvLqwrmqZ3bwbWUgNMJARFcTUVHmntb2gTpcy1QUjznmncKcwPmGrgsXolZY/dP57rvvoigK9957LwaDAQCdTscjjzzCW2+9ZfMChRBC1D+qqjJjRBwZqScBc1iN7D+IuHGTiOofi1YnV6zfDFWFc2ccSDl4eSWsE0k68i5UDq2KouLfxkhohJ7OXVWioqFXjIbgFjqcq1pYoIoLuYSoq6wOso6Ojnz44YfMnTuX5ORkVFUlNDQUV1dZx1rUoDo+/YcQjV1hfh6/r/2FW0eOQ6PRoCgKMQNvY0fiamLHmhctaObnb+8y6yWjEdJPXRlazVtRfhULCziotGprXligc1cT0dEKPaM1tGquw1kWFhAN0A1/XuDq6krnzp1tWYsQQoh6RFVVDu3aQeLieLavXkFZSQk+LVvRuVdfAO5+8nnue2E2Gk3lwCWqZtDDmRNaywVYJ5J0nDyspaSo8vdQq1MJaq+nXScjXbuZLHO0+nvrcJQ5WkUjIQNfhBBCWOVi1nk2LltM4uJ4zp48YWkPbBeGQV9mue0in5xcV1kppB41Dwu4FFpPHdGhL6v80b6js0pwBz3tO5sXFugeoyGmiwM+nlp0Mt2VaMTsHmTnz5/PO++8Q3p6OhEREcybN49+/fpVue/WrVt54YUXOHz4MEVFRQQFBfHwww8zffr0Wq5aCCEap9PHj/LMyDiM5ddIOLu60veOEcSNnUS7rlFyZfs1lBQpnDx8xWpYSTpOH9diNFT+frm6mwjuqKdDZyPdIssXFuikpamrzNEqxNXsGmQXLVrE008/zfz58+nbty+ffvopQ4cOJSkpidatW1fa383Njccff5wuXbrg5ubG1q1befjhh3Fzc+Ohhx6ywysQQoiGLTPtDKePHyF6QCwArdq2w69Va9y8mhA3diJ9h47A5dL4dQFAYb7CyUNXXIR1UMfZFC0mU+XQ6tHEREiEeWGByPKFBbp00NLEReZoFaI67Bpk33//faZMmcLUqVMBmDdvHqtXr+aTTz5h7ty5lfaPjIwkMjLScrtNmzYsXbqULVu2SJAVQggb0ZeV8cf61axbHM+f2zfj6uFpmedVURTe+v5n3Dy97F1mnZCXo1h6WC9tGaeq/tPq7WNeWKBjFxNRkdAzRiE8VIuHLCwgxA27oSB79OhRNm7cSGZmJiaTqcJ9r7zySrWOUVZWxq5du5g5c2aF9sGDB7N9+/ZqHWPPnj1s376d119//Zr7lJaWUlpaarmdl5dXrWMLIURjcyb5GIkJ8Wz8cTF5ORcs7SERncnNzsY3oBVAow2xOZmaCoH1RJKWrLNV/xn1aWmgrWWOVugZrRDWRoebThYWEMKWrA6yCxYs4JFHHqF58+a0aNGiwi+koijVDrJZWVkYjUb8/PwqtPv5+ZGRkXHdx7Zq1Yrz589jMBiYM2eOpUe3KnPnzuXVV1+tVk1CCNFYrfzfF3z++kuW2019WzBw9AQGjbmbFoFBdqys9qkqnD/rQEr53KyXtovnq15YwD/IQGiEnk5dTURFK/SK1hASoMWlqjlahRA2ZXWQff3113njjTd44YUXbFLA1b/kqqr+5S/+li1bKCgo4LfffmPmzJmEhoZec1WxWbNmMWPGDMvtvLw8AgMDb75wIYSop1TgeNJ+FA8P2oSFA9Ct7wActFqiBsQSN3YSkf0G4qC1+/XANc6EQjJt2brajePJ7pZVsQpyq5ijVaMS0NZAu4jyOVqjFHrGaAj01eEic7QKYRdWv0vl5OQwbty4m37i5s2b4+DgUKn3NTMzs1Iv7dWCg4MB6Ny5M+fOnWPOnDnXDLJOTk44OTnddL1CCFHfFeTl8i/gP8C+v42i1+BhPPfRAgBaBrfl8y178fBuatcaa5LRAGkpl2YO0JKyvwn3cJF8PGFWxX21OpXAdubQ2qWbSkw09IhyoKW3DidtPZij1WiE0tKKW0lJ5baq2q8cgrd1K0REQMuWIPMBizrI6iA7btw41qxZw7Rp027qiR0dHYmOjmbt2rWMGjXK0r527VpGjBhR7eOoqlphDKwQQlRFVVWg8qdADZ2qqhzc8SuJCfH8uvon9OXtOkdHXNzcKnwK1pBCrL4MTh+/YrqrgzpOHtFRVnL1+XfBmWJad1Jo39VEl24q3aMVYro54OepQ1fdhQVMJigru3ZYtCZI/lV7dR5jNNrmG3n77eZ/HR0hOBhCQipvwcHg4WGb5xPCSlYH2dDQUF5++WV+++03OnfujO6q9bKffPLJah9rxowZ3HPPPcTExNC7d28+++wzUlNTLSF51qxZpKWl8c033wDw8ccf07p1azp06ACY55V99913eeKJJ6x9GUKIRkRVVQ4ePAhARESEnaupXW8/9nf+WL8GgN7AY0AU4DhwsPkPwP+Z5+FWLwX8q/61tHNFALz6vkqPubKCaxzvms9T1WOo8jGXHmc0QF6OAxezHMjJduDieQ25OQ6YTAoBKAQAtwAqClqtShMfE818VPx8jYSt+xofsqD/I2hUFQ6Vwt4bCJJ6PXWWooCTU9Wbs3PlNgcHWLrU/NiQEEhNNYf0I0fMW1V8fK4dclu1Mh9TiBpgdZD97LPPcHd3Z9OmTWzatKnCfYqiWBVkJ0yYQHZ2Nq+99hrp6el06tSJlStXEhRkvrAgPT2d1NRUy/4mk4lZs2aRkpKCVqulbdu2vPXWWzz88MPWvgwhRCNivKJ3ymirnqo6yGgwsGfLBiJ69LGsqtWzSxS3btnIoy4utMnLvbzz6p/sU6S9GYD08u1K8+fb9nkcHf86MN5I+408RqerEP7/UmHh5SD755/mY5w5AydOVL1lZ8P58+bt998rH0+ng6CgqoNuSAh4Nc5ZMIRtKOqlz9saiby8PLy8vMjNzcXT09Pe5YjqKiyES5OuFxSALH1ZmXyPLrvqe2FycSEpKQmA8PBwNqZe4GJpHe5Bs1LG6VOsX/IdG5Yu4kJmBo+9/h7jW7UmePG3tFzzMw7lvYUGZ2e0JSUAHHzyeVRdeV/GpT8D5f8olj8LV/x5uDQ0w7Kvev32Kx6vWA53jcdUeNzlffSlCrlZChezNORla7iYraEw94qZci4dHxUnZxNNmhlp2lzFz0fFz0+huZeCo4NiHjpRVd16PXz2mfn2jBnmnxlbhExHR+uCY11j7XtJbi6kpFQdck+e/Ove6qZNrx1yAwPBnhcdyvuqXb4H1mS1hn9JqhBCNED6slJ2rFvFuoR4/ty+BQBf4BUXFx59/038LmRb9r0Y3omUcZM5O+h2hg0wLypz/P6HMLq62qP0KuVml8/RevDylFeZZ6r+E9WshZG24XoiuhqJjFTo1V0hLFiHh6ODdWOgCwsvB9nXXmucIcUWvLygWzfzdjWjEdLSrt2be/48XLhg3nburPx4B4fr9+Z6e9f0qxN13A0F2TNnzrB8+XJSU1MpKyurcN/7779vk8KEEMKWXFwazvRIxQUFPDq4N3kXstEAtwPPNGvOwJwLOBQXQ3Exelc3Tt81mpPjJnOxUxcAHIqK7Fo3mDtCL5zTWKa5uhRaL5yregylX6B5YYFOXYzmhQW6a2jXSoerLCxQPzg4QOvW5u3WWyvfn59/uTf36l7dlBTz+ONLt6vSpMm1Q27r1uZhDaJBszrIJiYmMnz4cIKDgzly5AidOnXi5MmTqKpKVFRUTdQohBA3rbi42N4l3LDiwkIO7/6DyH63AuDi7k7PkHYMKitlCgo+BfmQnQXAha5RpIybxJmhIzDauYdRVeHcGQdSDl5eCetEko68C5VDq6KotAw2Ehqhp3NXlaho6BWtoU0LHc6ysEDD5eEBXbqYt6uZTJCefu3e3IwMuHgRdu82b1fTaMxh9tJFZ1cH3WbN6vcQEAHcQJCdNWsWzzzzDK+99hoeHh4sWbIEX19fJk+ezO2XpukQQog6xv3SGK96QlVVjv25h8SEeLb+vIyykmI+XfsrEYcP0ub7eEbu3oGmfInwMk8vUoeP4eS4yeSFdbRLvUYjpJ+6MrTqSDmkozCvioUFHFQCQw2062SgS1cT0dEKPaM1BDTT4SwLC4hLNBoICDBv/fpVvr+w0DwG91pBt6TEfP/Jk1Uf38Pj2r25QUHmMc+izrM6yB46dIiFCxeaH6zVUlxcjLu7O6+99hojRozgkUcesXmRQghxMxRFwd/f3/J1XZafc4FNK5aSuDie1GOHAQgGnvZqwoQxQ/G4eMGy7/mYXpwcP5m0wXdgcq69AGg0wJlkbYXhAScPaykpqhxatTqVoDA97TsZ6dLNREy0QvduDvh763Cs7hytQlTFzc28WENVU+qpqrnH9loh9+xZ87CGffvM29UUxTxtWNAVyzN//DH4+ZnH5V69ubhI766dWB1k3dzcLAsQtGzZkuTkZMu8jFlZWbatTgghbEBVVY4dOwaYZy2oq/Zt28Sb0+7DoC9DB0zU6pjh7U3M+UzIvQhASdNmpI4cx8mxkygICa3xmvRlkHr08gVYKUk6Th3RUVZa+Y+2k4uJNh0MhHUy0DVSpXuMhujODvh4atFpHGu8ViEsFAX8/c1b376V7y8uNvfUXmu2hcJCOH3avF3ywgvXfj5HR/N43apCrrf3te9r0sTcMywh+IZZHWR79erFtm3bCA8PZ9iwYTzzzDPs37+fpUuX0qtXr5qoUQghbpqmDi6vmX0undys84REmMcHhnaJpIMCTzVtzoSSYjyKCuF8JgDn+vTn5PjJnB00BNWxZkJhSZHCqSMVQ2vqMS1GQ+U/sq7uJoI76unQ2Ui3SPNqWFGdtTR11eEgoVXUdS4u0LGjebuaqppnUzhxAg4dggceMLePGWPuxc3JMY/Nzckxb0ajecGIzEzzZi0Hh6qD7vXC76Wvvbwa/dLBVgfZ999/n4KCAgDmzJlDQUEBixYtIjQ0lA8++MDmBQohhC1o7TkX5RUMej27NyeybnE8ezavJzi8M+/+bykBq38mePG33FNWBhfMn24V+/hxaszdnBw7kaJWrW1aR2G+huQDjhUuwjp7QovJVDm0ejQxERKhp2NnI5GR0CNGoUsHLU1cHNFIT5JoaBQFfH3NW+fOl4Ps119XnqJNVc1zq14KtVeH3L9qLyszB+HsbPN2I7V6eVkXfq9sqyPvizfD6lcQEhJi+drV1ZX5tl4NRQghasDVUwXWtvRTKaxf8h3rf1jExfJe1s7AC5kZDO0XiVN+HgCqRkNG/0GcHD+ZjP6xqDb4Q5OXo5CSpOPkPkfi+Y7dRHF8QHCV+3r7GGkboSe8i4nISOgZoxAeqsXDSUKrEJUoinlogIeHeYYEa6iqeYiDteH30lZcbD7GxYvmLSXF+vo9PP46/Nah+aarckPvkBcvXiQhIYHk5GSee+45mjZtyu7du/Hz8yMgIMDWNQohxE1RFIXg4GDL17Utft7bLPn3hwC4AY+7ufOEqyvtz2dC5jkAClu24tTYiZwaPYHiFi1v+LlyMjWWoQGXeluzzl75Vj/B8pVPS/McrRFdTERFQ89ohfZtdLjLHK1C1DxFMYdEV1fzzAzWKi2tOuheL/xeui8/33yM/HzzduVY4HrG6iD7559/EhcXh5eXFydPnuTBBx+kadOm/PDDD5w6dYpvvvmmJuoUQogbpigKbrU4p+rJwwfxauaDt48vAKGdutAdmNmiJcNysnEqLIDCAkxaLemDhpAybjKZffqZx8pVk6rC+bMOpCRpKwTXi+erPoZ/kIF2HUq4Y/U/iGYX/ge/J7idJy4yR6sQ9ZOTk3kWBT8/6x9rMFQMvNfrEc7Kgo0bbVu7DVkdZGfMmMH999/PP//5Tzw8PCztQ4cOZdKkSTYtTggh6ouigny2/vQj6xLiST6wj3GPTuee+x8icMVSBn7/LW8BZJwFoCAomJRxk0gdOZ7S5j5/eWyTCTJSHUi5sqf1oI6C3CrmaNWoBLQ1EBpRPkdrlELPGA2BvjpcShVw/6d5xyAn0NX/8XFCiBug1ULz5ubtrxQWQh2eh9vqd7E//viDTz/9tFJ7QEAAGRkZNilKCCFsSVVV8vLMY1A9PT1tetwje3aSmBDPtl+WU1q+elh/BwceWrWCW7/4BG1JCQBGRyfSBt/ByXGTyerR+5rT7RgNkJaiLZ81QMuJg+aFBYoLq56jNbCdgXYRBrp0U4mJhh5RDrT01uGkrWKO1lKbvXQhhKgTrA6yzs7Olj8IVzpy5Ag+Pn/dsyCEELVNVVVOl48Bs9U8sqqqMuvuuzi2z7w0ZjNgZtPmPKhAQHYWnDgOQG67ME6Om8zpu0ZT5t20wjH0ZRUXFkhJ0pFyWEdZSeWQ6+ikEtRBT1gnc2jtHq0Q080BP08dOllYQAjRSFkdZEeMGMFrr73G999/D5jHnqWmpjJz5kzGjBlj8wKFEMIWXG/yyluTycShXTsIj+mJoijmC8jadyTk0AGe9/Wjf0Y62vJpswzOzqQNHU7KuMlciIwBRaG0BFL/1F0RWrWcOqrDoK8cWp1dTQR3NBDW2UC3SJUe0QpRXbQ0c9OilTlahRDCwuog++6773LHHXfg6+tLcXExAwYMICMjg969e/PGG2/URI1CCHFTNBpNhakDrZGVnsb6pYtYv+Q7zp89w1vf/0wn/wCCli5i8fbNeJaVwRlzb+/F8E6kjJvMsYGjOZbWlBMHdJz43hxezyRrMRkrh1Y3TxMh4eaFBS7N0dotwoEmzrKwgBBC/BWrg6ynpydbt25l/fr17N69G5PJRFRUFHFxcTVRnxBC1DqDXs/ODWtZlxDP3i0bUFUVDTDSxZWhr/0fnQ4fRGMwAFDm6s6fPcawIvDvrL/QgxPf6Eh/zQFVrRxaPZteOUerSs8YDZ3CtHjKHK1CCHFDbviS1UGDBjFo0CBb1iKEEHZ39uQJXpo8ktxs8zCBVsDMgEAmFhbQ9GIOHNgHwH6vHnyumcp/ciZSuLHyFb3NWhhpG64noquRyEiFXt0VwoJ1eDjKdFdCCGErNxRkd+zYwcaNG8nMzMRkMlW47/3337dJYUIIYSsmk4kTJ04AVBpiUFpcRFpKMiHhnQHwCwzCWavjDrcgHnPxoFd2Eg5p5qEDF/Dmv9zDAh7kYG4nyzH8As0LC3TqYiQqCnp11xDaSoerLCwghBA1yuog++abb/LSSy8RFhaGn59fhTdpecMWQtRVJeXTYF1yImk/iQnxbFr+A1pde6a+tJKSPzKI3vpf9maqtFBPQaF5340MYAEPspTRNAvRERqh5/GuReWrYWlo00InCwsIIYQdWB1kP/zwQ7744gvuv//+Giin4brUc33paucr28B8Mcr19lVVFVVVG+++5W2qRoNqMoHJdNPHvbL9Rvf9q/Npzb7Xeh1W/Zxotag6nfn7A9fft76c+xvd18XFvG/5fW3atCE3N5/XX/+eT7/Yx9lTzYB7cWIuI3QbufO5iQwyJVqOm4kPy33u4deYe2nSO5Rh0QqvRkHLpirOWqdKNVyqz27n3prfI63WZr9H9X7fK35Ort73ymM0mPcI+Tmxfl9FQXV2vub76pXHqKmfk2vVVis5grrN6iCr0Wjo27dvTdTSoCUlJQHQoUMHtFrztz0rK4vMzEy8vb0JuGKd5UOHDqGqKu3bt8fR0XzVcnZ2NhkZGXh5eREYGGjZ98iRIxiNRkJDQ3F2dgYgJyeHs2fP4uHhQVBQkGXfY8eOodfrCQkJsUxFlJuby5kzZ3Bzc7OsRQ+QnJxMaWkpbdq0wb18RY/8/HxSU1NxdXWt8PFsSkoKxcXFBAUFWVZ7Kyws5OTJkzg7OxMaGmrZ9+TJkxQVFREYGIiXlxcARUVFpKSk4OjoSPv27S37pqamUlBQQEBAAN7l34eSdu1IPnUKrVZLhw4dLPueOXOGvLw8/P39adasGQBlZWUcO3YMjUZTYe7Qs2fPcvHiRfz8/CxzHxsMBo4cOQJAp06XPzLOyMjgwoUL+Pj44Fe+DKDJZOLQoUMAREREWPbNzMwkKyuL5s2b06JFi0rnvmPHjjiUL0F6/vx5zp8/T9OmTWnZsmWlfcPCwtDpzHODZmdnc+7cOZo0aUKrVq0s+x4+fBiTyUS7du1wcnIC4MLYsaS/+CKe58/T+oqV944ePYrBYKBt27a4lP/hvnjxImlpabi7u9OmTRvLvsePH6esrIzg4GDLsq55eXmcPn260rk/ceIEJSUlFX5OCgoKOHXqFC4uLrRt29ay76Vz37p1a8uiBJd+TpycnGjXrp1l31OnTlFYWEirVq1o0qQJAMXFxZw4cQKdTkdYWJhl39OnT5Ofn0/Lli1p2tQ8T2upXs/xHTtQL+Sx+1stuw4orFpVxJQpJYwe3Yljx+L441QWD7KA+zUTaKY3j4c1oXC83SCy7/47TSf2pJexhOG+vvj6ull+Tg4fPlzp5+TcuXNkZ2dX+DlRVdVyPsPDwy1/IC6d+2bNmuHv71/p3Nfoe0R5W86IEZw9daphvUd4ewPmnvfk5OTqvUcYDBzbsQNNXh5Xzi7coN8jLlwgPT0dT09PWrdubdm3wntEedvFYcNIO3WqYb5HlJZy/PhxHBwc6Nixo2XftLQ0cnNzadGiBc3LV73S+/tzdPVqlNTUCuczPT2dnJwcfH198fU1L0dtNBrr93tEVTmiOqt/2ZHVQXb69Ol8/PHHzJs3rwbKEUKIG3PqFCQkwO7dkHHWidffhBy8uf9hp/I9fNGWHaXJ8uXMTvyBUHaam02g9/Xl4qhR+MycSfvyP9hpaWnk5JRU+VxCCCHqBkW91HdcTSaTiWHDhnH06FHCw8Mt/yO8ZOnSpTYt0Nby8vLw8vIiNzfXpktV/hUZWnCT+xYVgbu7eWjBxYvg5iZDC67et7AQtUkT89CCc+fQXNEjW+fO503sW1gIBw5o2L3bHFr37zdx6JBKSYkGg0Epf5yKs7OKllyCIpyJDdjDfQULCP81AaeigkvfTBg2DHXqVNTbbwet1m4/J9d6zTZ/j7j0e6TVol64YJPfo3q9b0EBanlPmub8eSjvXWyw7xHV/f7Iz0nF91UPD/PQgmu8r155jHr/HlHVvsXFUN6bTkGB5fekJlmT1azukX3iiSfYsGEDAwcOpFmzZpYXLa7vyh+a67Vdq/3KH7BGva/JhKLRmENIfajXin2v1W7Vz4nBgGIwNJjvT24u7N1LeWhV2L1b4fBhlYqTpZj3dXQuQKfZhbFsG37qdgKK9zCBs0wp7oL3sj8te6tBQShTp8Lf/w4BAShAVe9i9e7cW1ObwdBgf4+s3re42P41yM9J3d5XVc0/J3b8PlyrvbZzRF1kdZD95ptvWLJkCcOGDauJeoQQjVRWFuzZg6WndfdulePHK76RulBECGl08Eqlm38qYU1Oozm5FqeMXQSUFNMKaMFVb2wH/8Sk1XJx0CAujB1PyN/vQ9He8BTaQggh6hCr382bNm1aYXC2EEJYKz39ysAKu3eZKDqdTSvOEEAaAaRxT/m/wU5nCNKeoYXhLG6lF80HyC3frkHVaFDKu20PPvk8J8dPprS5D15OWkIlxAohRINh9Tv6nDlzmD17Nl9++aXlqlYhhKiKqkLqsVIOrz9L6q9pZP+ZRknyGTzyz9KKMwwkjb+RRkvO4kRZ1QcpLd/KFQKFPr4Q0o4SvxbkejUhx9MLxw4RFPu1oNivBQYXN4b3MF+xfvz+hzDKe5UQQjRIVgfZjz76iOTkZPz8/GjTpk2li712795ts+KEEHWYqsLFi5CWBmlpmE6nkbP/DBcPplGWkoYuMw2vwjSC1PME/eXBzEqaNafErwXFvuZAmqZo2JF8jI1/7uFEaQlpQL5Gw7gJ9zD+8WeueRyHoiJbvEIhhBB1nNVBduTIkTVQhhCiTjEYICPDElI5c+by12lpqGlpqGfS0BRfDowaoFn5drVSxZELri0paOqPPrAFSltf9AH+lh7UEl9/in39UMvnOywuLOSlySM4eTjJcowWrdtw59iJDBw5Hm9fP6tejqKqtDLm4WBUMJmaXfMCCSGEEPWL1UF29uzZNi1g/vz5vPPOO6SnpxMREcG8efPo169flfsuXbqUTz75hL1791JaWkpERARz5sxhyJAhNq1JiAatoOCaAdXSdu4cV00NUMGVV/pfwJs0AjhDK9I1LSny8cfY2g9dmC9ukb54xvig+jaF61wBq6oqaSeO06qtecJzFzc3nFxc0Tk60WvwHcSOnUREj943FUBdVANYNdmgEEKIus6uVz0sWrSIp59+mvnz59O3b18+/fRThg4dSlJSUoUVRy7ZvHkzt912G2+++SZNmjThyy+/5K677uL3338nMjLSDq9AiDrq558hO7tyQE1Lg7y8ah3CqDhwXtuSk4YAzqiXLsEKsITWLGd/nDr60rKTjuBwPSHhelq1NdDkqneV62XHnPOZbPzxe9YlLCTrbBoLNu/C09vcp/vIP96lSXMfPJp43+A3oWINaQ4euOk09WZKGSGEEH/N6gURbKlnz55ERUXxySefWNo6duzIyJEjmTt3brWOERERwYQJE3jllVeqtb+9FkQQN6mwsNYnZK4XzpyBzZvN24YNcPRo9R7n7o6xZSvyPAJI1wSQXBzAvuxW7DrXktOmVqQRQCa+mDAvl+nmaSKkPKxeCq3+bYxXT6tYLUaDgb1bN7IuIZ6dG9ZiMhoBcHFz57n/9x+69ulv/UGv4lBUxIgo87Kny3Yft1zs5eWkJbaNz00fv96S36OK5PtRNfm+XCbfC7t8D2p0QQRbKSsrY9euXcycObNC++DBg9m+fXu1jmEymcjPz7esnSxEg6aqkJJiDq2bNpn/PXGi6n0jIyEwEAICoFUrCrwCOFoYwJ7MALadDGDbfk+OHVNR1cq9k55NjbSN0NM3vNgcWiP0+AYYrzcyoNoO797Be9Mf4cK5dEtbWGQMcWMn0WfocJxldgEhhBBWsFuQzcrKwmg04udX8aINPz8/MjIyqnWM9957j8LCQsaPH3/NfUpLSyktvTx3T141P1YVwu5UFQ4fvtzjummTeWjAlTQac2jt3x969oS77+Ycvux5ZTu7k5zZvRt2/aJy8mRVKVShWQtjxZ7WCD1NfU02Ca0AZaUlXMzKwjegFQD+QSHkXcjCo4k3t44cT+zYiQSGtrfNk12PquKiGtAZTKiqKsMLhBCigbD7zOBX/0Gp7h+ZhQsXMmfOHJYtW4Zv+VrZVZk7dy6vvvrqTdcpRI0zmWD//oo9rufPV9xHp4Pu3aF/f9R+/Tkb3JddxzzNiwp8Y2A3p0mjFYy68kHm3ye/QMNVwwMMeDW79gVdNyP16GHWJcSzadkSWrcL4x//WwqAV7PmvPp1Am07dUHn6FQjz10VBQg05oERVNVfgqwQQjQQ1QqyM2bMqPYB33///Wrt17x5cxwcHCr1vmZmZlbqpb3aokWLmDJlCosXLyYuLu66+86aNatC/Xl5eQQGBlarRiFqlMFgXtbqUo/rli3meVmv5OwMvXqh9utPevsB/K704o+Drubg+rnK+fNXBjIt0AoFEwFtDAR3MlpCa3BHPe5eNTscvriwkG2/LCNx8UKO7ttlac9MS6UwPw83D/M4pw5R3Wu0jmspxQEHmXVLCCEalGoF2T179lTrYNb0cjg6OhIdHc3atWsZNepy99HatWsZMWLENR+3cOFCHnjgARYuXMiwYcP+8nmcnJxwcqq9np9KZKC4uKS0FP7443KP6/bt5p+JK7m5ofbpS1bEAPZ69mddbnf++NOJ3R+p5OZe/fuloHFQadXWQNtwPW3bFXHvO6Poxl7WL91bq6tZ/fT1AhZ++E9KigoBcNBqiRk4mLhxk+jadwAODg61VktVVEXhlK4JXk5amUNWCCEakGoF2Q0bNtTIk8+YMYN77rmHmJgYevfuzWeffUZqairTpk0DzL2paWlpfPPNN4A5xN577718+OGH9OrVy9Kb6+LigpeXV43UKMQNKyqC3367PEzgt9+gpKTCLmqTJuR37ccRv/5sYgArzkSya7sDhWsrh1atTiWovXlIQHCEeYhA6/Z6nJzNezgUFdHvna218tLycy6g0WotvaxeTZtRUlSIf1AIceMmMmDEOLx9rj3kRwghhLAFu46RnTBhAtnZ2bz22mukp6fTqVMnVq5cSVCQeUHL9PR0UlNTLft/+umnGAwGHnvsMR577DFL+3333cdXX31V2+ULUVFeHmzbdrnHdedO0Osr7KL39uF08AB2uPRnxcX+LD3WiZJNlXsrHZ1VgjuUj2eNuDxHq86xtl5MZSaTiQO/b2Pd4nh+X/sLE596jpFTzb+HPQffwWt+Swjv3kvGnwohhKg1NxRk//jjDxYvXkxqaiplZWUV7lu6dKlVx3r00Ud59NFHq7zv6nC6ceNGq44tRI3KzoatWy/3uO7ZU2k1rIImAexvOoB1Zf1ZlN6fgzkdIKdi0HN1NxHc8VJoNV+Q1TLYgJ0/jbfIPpfOhh++JzFhIZlnLv/H8vj+fZavHZ2ciejR2x7lVYuiqrQ05qM1yRK1QghhFTc38yw6dZTVQfa7777j3nvvZfDgwaxdu5bBgwdz7NgxMjIyKox1FaLBycioOBXWgQOVdjnnHsI2hwH8lNePjeoAUi4Gw8XLwdWjiYmQ8DJCIi4vLOAXeGMLC9Q0VVV5b/o0fl/zM6bygO7q4Un/u0YRO2YiIRFd7FyhddxUPRjtXYUQQghbsjrIvvnmm3zwwQc89thjeHh48OGHHxIcHMzDDz+Mv79/TdQohH2kpl7ubd28ucpVs47rOrJO35/NmLe0glaW+7x9jESHl1qGBoSE62nub7s5WmtCVnoazf0DAPPFm1qtFpPJRHhML2LHTaL34Dtwcql/ixaoQLqDO65aWaJWCCEaEquDbHJysmW2ACcnJwoLC1EUhenTpzNo0CCZs1XUT6oKx49X7HE9darCLiYU/qQLmzFfmLWFfpzXmy9o8mlpICTCQP/wfHNPa0c93r41M0errZWVlvDbmpWsWxzPwR3b+WD5elq37wDA+MdmMO7R6QSEhNq5ypukKOQrTmh0WgmyQgjRgFgdZJs2bUp+fj4AAQEBHDhwgM6dO3Px4kWKiopsXqAQNcJkgkOHYPNm1E2bMG7YjDYzvcIuBhzYRbSlt3Urt3ARb/yDDIRE6Lk9XE9weDYhHfV4eNfd8UPXcvJIEomL49m8YikFuRcBcy9s0q7fLUG2ZXBbO1YohBBCXJ/VQbZfv36sXbuWzp07M378eJ566inWr1/P2rVriY2NrYkahbh5RiPs24dp02aKftmM7rfNOOVnA+ZVn7RAKY7soAebGMBm+vO70guvUBfLsIAZ4QaCO2bg6l7/QuuVMs+c5r3pD3N8/15LW/OWAcSOmcjAUePxadnq2g+ur1QVJ9WI1qjKErVCCNGAWB1k//Wvf1FSPhfmrFmz0Ol0bN26ldGjR/Pyyy/bvEAhbohej+H3XWT9sBlD4iaaHdqKS1keGqB8eQqKcGE7fdhMf7Y59ONsu2gCOmkJCdczKFzP38MKcXIptOersAlVVbl4PhNvX/OKed6+fmSmnUar09E99nbixk6kc+9+dl+0oCYpQJAxF4pBVVtIkBVCiAbihoYWXKLRaHj++ed5/vnnbVqUENYqyyvh1Pe/k/fTZlx3babN2e24mIpoccU+eXiwlVvY5tCPY8F9KYrqTOvOCiHheh5qZ0DnWP9D65VyL2SzaVkCiQnxlBYXM3/db2g0GnSOjjz74QJatW2HV9Nm9i6z1ujRoJH8KoQQDcoNzSNrMpk4fvw4mZmZlml5Lunfv79NChPiWoqL4cCOAjJ++BVly2ZaHt9ERMHvtKPinMbZNGWbQz+S/PuS3rU3Sp8OtOms0i3EQLQWoKTK49dnJiAR+OcLT7Bj4zoM5QsyOLm4cCb5GK3bhQEQ0b2X/Yq0A1VRSNF5yxK1QgjRwFgdZH/77TcmTZrEqVOnUK+aIFdRFIxGmahR2E5+PuzbB7u3O5DH/9GSs0T4xBLFLnQYKuybobRgb9NbONW+D7l9e+A6sC0tglXaa6A9APqqnqLB2LEpkaeAUwBrfwEgtHM3YsdMpO+wEZblZIUQQoiGwuogO23aNGJiYvj555/x9/eXsWbCZnJyzItj7d59edMfSWYy33Iv3xBKcoX9050CORrUl/NRvdDf3hPHHq1RNAo+gA9gnj204TLo9ZQUFeLu1QQAzybenAKaAH0m3EPsxHtp0yHCjhUKIYQQNcvqIHvs2DESEhIIDa3n80oKuzp37urQqpKSYv5PURNyGMdiFvBf+rHV8pgydGTiy4lnp1N4e3+KW5mvrtcATvZ4EXaSduI4iUsWsvHHxfQaPIyHZs8FIKxLJEuAocCaF2ZjdK1/CxfUFEVV8TfmozVpZIlaIUT11fHlWcUNBNmePXty/PhxCbKiWlQV0tIq9rLu3q2SllaxJ1+LgTtZxUMuXzO49CecTKUAmDQazve6hTNDhxP98rO0Io1dk0Y2upBWWlzEr6t/Zl1CPId2/m5p3//bVkwmExqNecWq0Xassa5zlyVqhRCiwbE6yD7xxBM888wzZGRk0LlzZ3Q6XYX7u3SpX+uvC9tRVUhJqRxaz5+/eviJgqKotGxjYGjA74wv+h99jiXglp8NxeY9ctt1IHXkWE7fOYoSP38cioqIfvnZWn9NdcH3/3qPFV8voCg/DzDPFhLZfxBx4yYR1T9WeherQQXOObjhIkvUCiFEg2J1kB0zZgwADzzwgKVNURTLJONysVfjYDTCsWOVQ2tubuXQqnFQCQw1WBYW6OaXwi1Hvifkl8V4bj1u2bOkuQ+nh40ideRYcjtEQCMNHIV5uTi7uuGgNf96GgwGivLz8G3Vmtix5kULmvn527nKekZRyFWcQZaoFUKIBsXqIJuSklITdYg6TK83r+Z6ZWjdu1elsLByaNXqVILC9OWh1byUa+v2elz1+QSs/pnA5Uvw2bEdpXzMkdHJmbNxt5M6YiyZffqjam9oRrh6T1VVDu3aQeLieLavXsGz8z4j+tY4AIbcfQ+devahU8++0vsqhBBCXMHq1BAUFFQTdYg6oqQEDhyoGFr//FOltLRyaHVyMdGmw+We1pAIPa3aGtCWjzZRDAZ8f91C4IsJtFz3C9qSy/O2nu/Rh9QRY0kbMgyDu0ftvcA65mLWeTYuW0zi4njOnjxhad+zZYMlyDZr0ZJmLVraq8SGQVVxxIiDEVmiVgghGpAb6v5KTk5m3rx5HDp0CEVR6NixI0899RRt27a1dX2iBhUWls/RekVoPXhQxWCoHFpd3U0EXxFYQ8IN+LcxUNWqpl6HDxK4LIHWP/2A8/lMS3t+cFtSR4wj9a7RFAe0qtkXV8eVFBXx0QtPsnPDGowG83y4zq6u9L1jBHFjJ9Gua5SdK2xYFKCNIRcMoKp+EmSFuB65Ul/UI1YH2dWrVzN8+HC6detG3759UVWV7du3ExERwYoVK7jttttqok5xk3JzK8/ReuSIislUObR6NDEREqGnbbie4AhzePVtZeR6n2o7n8sg8KcfCFy+hCZHkiztpU28OTNsJKkjx5HTqWujHfcKUJifZ1mUwMnFhcwzpzAaDLTrGkXc2In0HToCF3d3O1fZcBlQkIEZQgjRsFgdZGfOnMn06dN56623KrW/8MILEmTrgKwsc2jdtevyRVjJyVUFSIWmvkZCwvXm3tby0NqshalaedOhqIiWiato/eNifH/dglK+XLFR50jGwNtIHTmWjFsGojo62vYF1iP6sjL+WL+adYvjObp3Fws27cbF3R1FUXjgxddx8/AkKKyjvcts8FRF4YSuqSxRK4QQDYzVQfbQoUN8//33ldofeOAB5s2bZ4uahBXS0yvPHJCaWrmXFcA3wDyeNTii/N+Oerx9TNY9ocmEz47ttP4xgZZrfkZXVGi5KyuqO6eHj+XM0LvQl6821VidPn6UxISFbFq2mLycC5b2Azu2033QYADCY3raqzwhhBCiQbA6yPr4+LB3717atWtXoX3v3r34+vrarDBRkapCamrl0JqRUXVo9Q8yWHpYg8P1hHTU4+F942OePI4fpfWyBAJXLME1I93SXhAYxOnhY0gdPobCoOAbPn5DcSJpP//5x4sc2bPT0tbUtwUDR09g0Ji7aREoF0sKIYQQtmJ1kH3wwQd56KGHOHHiBH369EFRFLZu3crbb7/NM888UxM1NjomEyQnVw6tFy5UMUerRiWg7eWZA4LDDQR31OPqfvMD9Z2ys2j184+0XpaA98E/Le1lnl6cGTqc1BFjuBDZvVGPe1VVlZLCQsvYVk/vphzbtxuNgwPRA2KJHTuJqP6DLHPCCvtQVBU/YwE6VZaoFUKIhsTqv64vv/wyHh4evPfee8yaNQuAli1bMmfOHJ588kmbF9jQGQxw5EjF0Lpnj0p+ftVztAa2u2K6q3A9QWF6nFxsV4+mtAT/9WtovSwBvy0b0JQvcGHSasnoP4jUEePIuDUWk5Oz7Z60HirIvcjmFUtJTIjH28ePlxZ8C0Bz/wCeeudfhMf0oqlfCztXKa7kqZaBwd5VCCGEsCWrg6yiKEyfPp3p06eTn58PgIdH450H1BplZXDwaMXQum+fSnFx5dDq6KQS1EFfIbQGtjOgq4nrpkwmmu3+g9bLFhOw6iccy5dCBbjQuRupI8Zy5o4RlDVtVgNPXn+oqsrBHb+SmBDPr6t/Rl9WCkD6qRQKci/iXj4u+JZhI+1XpKiSCmRqXGWJWiGEaGBu6vNOCbB/7adfHFjGZ+wmiv1+ruj1V++h4Ox6aY7Wy72tASEGHGr402i3kydovTyB1suX4nYm1dJe5N+S1OFjSR0xhoKQdtc5QuOxecVSFv3rPTJOXV7ZLigsnLhxk+h/12hLiBV1lKJw0cEF1VGWqBVCiIakWlEpKiqKxMREvL29iYyMvO4fgt27d9usuIZgy3YN/+FB8w09uHuZQ2vbSxdhhetpEXT9OVptSXcxh1a/LKf1jwk027fL0q53cydtyDBSR4wjq3svaq2gOspoMGAyGdE5OgFQVlJMxqkUnF3d6HfnKOLGTaJtp64SioQQQgg7qlaQHTFiBE5OTpav5Y939Q0bYkT3wetEsZusnz6gWVvHWr82Sikro8XmRFovS8B/4zo05d3CqkbDub4DSB0xlvTYIRhdXGu3sDro3JlU1i/5jvVLFzHqwce4428PANB36AgUjYY+tw/Hxc3NzlUKq6kqWkxoTIosUSuEEA1ItYLs7NmzLV/PmTOnpmppkPrfYqI/LwOwrOU7GJVaWhxAVfHet5vWyxNo9fNynHJzLHdd7BhB6vCxnBk2khJfv9qppw7Tl5WyY90q1iXE8+f2LZb239f+YgmyLu7uxI6ZaK8SxU1SgBDDxfIlan0lyAohRANh9SjMkJAQ/vjjD5o1q3jhz8WLF4mKiuLEiRM2K05Yz/XMaQJXLKH1jwl4nLp8Lop9/Dg9fDSpw8eSJytJAeaLt7555x+sX7KIgvKgrygKXfr0J27cJMvCBaJhMHFplmUhhBANhdVB9uTJkxjLp2S6UmlpKWfOnLFJUcI62vw8Wq1aQeCyJfjs/M3SbnBx4extd5A6fAyZvfuBg4Mdq6wbykpLcCyfOkxRFDJST1KQm0OzFv4MGn03g0bfjW+rQDtXKWxNVRSO65rh5aSlcyMf/y2EEA1JtYPs8uXLLV+vXr0aLy8vy22j0UhiYiLBwbKyU21R9Hr8tm2i9bLF+K9fi0NpCWD+g32+V19SR4zjbNxQDOUT9TdmqqpybN9u1iXEs/2XFbz7wxpatG4DwJiHnyRu3GS63XIrDhL0hRBCiHql2kF25MiRgLkX67777qtwn06no02bNrz33ntWFzB//nzeeecd0tPTiYiIYN68efTr16/KfdPT03nmmWfYtWsXx44d48knn2TevHlWP2e9pao0SdpP62UJtPr5R5yzsyx35YW2J3XEWE7fNZriFi3tWGTdkZ9zgU0rlpK4OJ7UY4ct7b+t+ZmRUx8DILRzNztVJ4QQQoibVe0gazKZAAgODuaPP/6gefPmN/3kixYt4umnn2b+/Pn07duXTz/9lKFDh5KUlETr1q0r7V9aWoqPjw8vvvgiH3zwwU0/f33hknGWwBVLCVy+BK9jRyztJU2bcebOUaSOGMvF8M6NeqnYK+VknuPLt+bw+9pfMOjLAHB0cqbP7XcRO24SHaN72LlCUdsUVcXXWChL1AohRANj9RjZlJSUv96pmt5//32mTJnC1KlTAZg3bx6rV6/mk08+Ye7cuZX2b9OmDR9++CEAX3zxhc3qqIscCgsJWLuS1ssW4/PbNhRVBcDo6ER67GBSR4zjXN8BqDqdnSutG/RlZegczTNCuHp4sGfzegz6MoI7RhA3bjL97hyFm6fXXxxFNGReaqksUSuEEA1MtYLsRx99xEMPPYSzszMfffTRdfd98sknq/XEZWVl7Nq1i5kzZ1ZoHzx4MNu3b6/WMRocoxHf37bSelkCLdeuRFtcbLnrfEwvTo8YQ9qQO9FLIAPAoNeze3Mi6xbHcz7tDO8vT0RRFJxcXHn41bdp2SaEkIgu9i5T1AEqkKVxwVkrPbHiCm5uUN5JIISon6oVZD/44AMmT56Ms7PzdT/SVxSl2kE2KysLo9GIn1/FeUz9/PzIyMio1jGqo7S0lNLSUsvtvLw8mx3bVjyPHKL18gQCV/yAS+bl154fFELqSPO416JWlYdaNFbpqSdZ8/OPbPjxey6ez7S0nzp6iDZh4QDcMmyknaoTdZKicMHBFS9HrQwrEEKIBqRaQfbK4QS2HFoAVJqY3Nar7sydO5dXX33VZsezFafzmQT+9AOtlyfQ5NBBS3uplzdnhg0ndfhYcrpGybjXK2wFXgY2joyztHk2bcbAUeOJHTORgJBQu9UmhBBCiNpn9RhZW2nevDkODg6Vel8zMzMr9dLejFmzZjFjxgzL7by8PAID7TNPqENxMf7rV9N6+RL8tm5EKb+AzqTTkX5rHKkjxpLRPxbVsZZW/6oHDHo92vJxwMXARsz/+enWbyBxYycRfWucZWysENekqjigoqgmWaJWCCEakGoF2SuD4F95//33q7Wfo6Mj0dHRrF27llGjRlna165dy4gRI6r9fH/FyckJJycnmx3PauVhFWDI4F7oCgstt7O7RpM6cixpt99FmXdTe1RXJxUV5LP152WsW/wtEd17cd8L5iWSY4F3gCY/baJpW+l9FdWnAG0NOeVL1PpIkBVCiAaiWkF2z549FW7v2rULo9FIWFgYAEePHsXBwYHo6GirnnzGjBncc889xMTE0Lt3bz777DNSU1OZNm0aYO5NTUtL45tvvrE8Zu/evQAUFBRw/vx59u7di6OjI+Hh4VY9d6156CHLl7rCQgoDAkkdMYbU4WMpbBNix8LqFlVVObJnJ4kJ8Wz7ZTml5Re65WSe457nXsYB0ADPAsv8W1J5bTkhhBBCNDbVCrIbNmywfP3+++/j4eHB119/jbe3NwA5OTn8/e9/v+ZCBtcyYcIEsrOzee2110hPT6dTp06sXLmSoKAgwLwAQmpqaoXHREZGWr7etWsX8fHxBAUFcfLkSaueu9bcdht89x0AW/6zkPN9+oFcbFLBusXfsuLrBZw5ftTSFhASSty4yQwYMVYuzhE3TVUUjpYvUdtJfp6EEKLBsHqM7HvvvceaNWssIRbA29ub119/ncGDB/PMM89YdbxHH32URx99tMr7vvrqq0ptan2bKmXkSJgyBYALUd0lxGJeXENRFMvHu6ePH+XM8aM4ubjQd+hwYsdOIiwyRj7+FUIIIcR1WR1k8/LyOHfuHBERERXaMzMzyc/Pt1lhDYY9x+fWMVnpaaxfuoj1S77jsTc/oHOvvgAMnnAPAcGh3HLnSFzdPexcpRBCCCHqC6uD7KhRo/j73//Oe++9R69evQD47bffeO655xg9erTNCxT1m0GvZ+eGtaxLiGfvlg2WHvXNyxMsQTYgJFSmzhJCCCGE1awOsv/+97959tln+dvf/oZerzcfRKtlypQpvPPOOzYvUNRPpSXFLPp/77Lxx8XkZmdZ2iN69CFu3CR63jbUjtUJIYQQoiGwOsi6uroyf/583nnnHZKTk1FVldDQUNzc3GqiPlGPmEwmy4VZjk7O/JG4mtzsLJr4+DJw5HgGjbmbljJTgxBCCCFs5IYXRHBzc6NLF1nHXsCJpP0kJsSze/MG5v20ASdnFxRF4W/PvIiiUYjqH2tZ1EAIYUdublDfLpgVQojrsDrIFhYW8tZbb5GYmEhmZiamKyb8Bzhx4oTNihN1V2FeLlt++oHEhIWcSNpvad+1cR19br8LQIYPCCGEEKJGWR1kp06dyqZNm7jnnnvw9/eXKZIamfRTKSTMn8f21SsoKykBQKtzpOdtQ4kbN4lOPfvauUIhhBBCNBZWB9lffvmFn3/+mb59JbA0FleuTa+qKhuXLQYgsF2YedGCu0bjIUvsCiGEEKKWWR1kvb29adpUQktDZzQa2bdtE+sWx6NzdGT6e/MBaNkmhHuefZHw7r1p1yVSeuSFEEIIYTdWB9l//OMfvPLKK3z99de4urrWRE3CjjLPnGb90u9Yv/Q7sjPSAdDqdORfzMGjiXk1t5FTH7NniUIIIYQQwA0uUZucnIyfnx9t2rRBd9XV6Lt377ZZcaL27Nu2iWVf/Js/t2+2LFrg7uXNgBFjiB0z0RJihRBCCCHqCquD7MiRI2ugDGEPV459PZ18jH3bNgHQufctxI2dRI+423F0crZniUIIIYQQ12R1kJ09e3ZN1CFqSUlREdtXrSAxIZ7YMRMZNOZuAAbcNZq8C9kMGnM3LQKD7FylEEIIIcRfu+EFEXbt2sWhQ4dQFIXw8HAiIyNtWZewIVVVST7wJ4kJ8Wz56QeKCwsAUBTFEmQ9vJsy6ekX7FmmEEIIIYRVrA6ymZmZ3H333WzcuJEmTZqgqiq5ubkMHDiQ7777Dh8fn5qoU9wAVVVZvfBr1n7/P04eTrK0t2jdhtgxE7l15Dg7VieEEEIIcXOsDrJPPPEEeXl5HDx4kI4dOwKQlJTEfffdx5NPPsnChQttXqSovivHvSqKwo7E1Zw8nITO0Yleg+8gduwkInr0RqPR2LlSIYQQQoibY3WQXbVqFevWrbOEWIDw8HA+/vhjBg8ebNPiRPXlZJ5jw4/fs/HHxcz+chHN/PwBGPHANGJujaPfXaNl5gEhhBBCNChWB1mTyVRpyi0AnU6HyWSySVGieowGA3u2bGBdQjy7Nq7DZDQCsOnHBEY//AQAXfsOoGvfAfYsUwghhBCiRlgdZAcNGsRTTz3FwoULadmyJQBpaWlMnz6d2NhYmxcoKsu/mMNPXy9g/dJFXDiXbmnvENWd2LGT6HP7XXasTgghhBCidlgdZP/1r38xYsQI2rRpQ2BgIIqikJqaSufOnfnf//5XEzWKq2gcHFj+5b8pKynBo4k3t44cT+zYiQSGtrd3aUIIIYQQtcbqIBsYGMju3btZu3Ythw8fRlVVwsPDiYuLq4n6Gr3Uo4dJXLKQM8nHePk/8QC4eXgy8akXaO7fku6DBqNzdLJzlULULUZXV5YePmvvMoQQQtSwG55H9rbbbuO2226zZS2iXHFhIdt+WUbi4oUc3bfL0n7y8EHadIgAYPjfH7ZXeUIIIYQQdUK152Bav3494eHh5OXlVbovNzeXiIgItmzZYtPiGpvTx4/yycvPMrVfNz556VmO7tuFg1ZLz9vu4MXP/kdguw72LlEIIYQQos6odo/svHnzePDBB/H09Kx0n5eXFw8//DDvv/8+/fr1s2mBjUn6qROsW2wePtCyTQix4yZx64hxNGkui0yIvyYfpwshhGhsqh1k9+3bx9tvv33N+wcPHsy7775rk6IaOpPJxIHft5GYsJDW7TowZtqTAET1j2XIxPvoe8cIwmN6WhY2EEIIIYQQlVU7yJ47d67K+WMtB9JqOX/+vE2KaqiyMzNYt2oFiQkLyTyTCkCzFv6MfPAxHBwc0Op0PDR7rp2rFEIIIYSoH6odZAMCAti/fz+hoaFV3v/nn3/i7+9vs8Iakl+A+cDKO/pbFo1wdfeg312jiRs7EQcHB7vWJ4QQQghRH1U7yN5xxx288sorDB06FGdn5wr3FRcXM3v2bO68806bF9gQ/AD8BGAy0TGmJ3FjJ9F7yDCcXFztXJkQQgghRP1V7SD70ksvsXTpUtq3b8/jjz9OWFgYiqJw6NAhPv74Y4xGIy+++GJN1lpvTQOaAG2WrqFFeCc7VyOEEEII0TBUO8j6+fmxfft2HnnkEWbNmoWqqgAoisKQIUOYP38+fn5+NVZofRZVvi1rE4LR3sUIIYQQQjQQVi2IEBQUxMqVK8nJyeH48eOoqkq7du3w9vauqfqEEEIIIYSoUrUXRLiSt7c33bt3p0ePHjcdYufPn09wcDDOzs5ER0f/5aIKmzZtIjo6GmdnZ0JCQvj3v/99U88vhBBCCCHqpxsKsrayaNEinn76aV588UX27NlDv379GDp0KKmpqVXun5KSwh133EG/fv3Ys2cP//d//8eTTz7JkiVLarlyUdsuTfa/9PBZjK5ykZwQQgghQFEvDXa1g549exIVFcUnn3xiaevYsSMjR45k7tzK86m+8MILLF++nEOHDlnapk2bxr59+/j111+r9Zx5eXl4eXmRm5tb5SplNldYCO7uACzbfVxCmBB25OWkJbaNrJQnhBB1mTVZzW49smVlZezatYvBgwdXaB88eDDbt2+v8jG//vprpf2HDBnCzp070ev1VT6mtLSUvLy8CpsQQgghhKj/7BZks7KyMBqNlWY68PPzIyMjo8rHZGRkVLm/wWAgKyurysfMnTsXLy8vyxYYGGibFyCEEEIIIezKrmNkwTx915VUVa3U9lf7V9V+yaxZs8jNzbVsp0+fvsmKhRBCCCFEXWDV9Fu21Lx5cxwcHCr1vmZmZl5zPtoWLVpUub9Wq6VZs2ZVPsbJyQknJyfbFC2EEEIIIeoMu/XIOjo6Eh0dzdq1ayu0r127lj59+lT5mN69e1faf82aNcTExKDT6WqsViGEEEIIUffYdWjBjBkz+M9//sMXX3zBoUOHmD59OqmpqUybNg0wDwu49957LftPmzaNU6dOMWPGDA4dOsQXX3zB559/zrPPPmuvlyCEEEIIIezEbkMLACZMmEB2djavvfYa6enpdOrUiZUrVxIUFARAenp6hTllg4ODWblyJdOnT+fjjz+mZcuWfPTRR4wZM8ZeL0EIIYQQQtiJXeeRtQeZR1aIxkvmkRVCiLrPmqxm1x7ZRsHNjZ1nc0jNK7Z3JUI0ejrNtWdEEUIIUf9IkK0FXX09CWkiPbFC2JubzsHeJQghhLAhCbK1QOegoamLo73LEEIIIYRoUOy+IIIQQgghhBA3QoKsEEIIIYSolyTICiGEEEKIekmCrBBCCCGEqJckyAohhBBCiHpJgqwQQgghhKiXJMgKIYQQQoh6SYKsEEIIIYSolxrdggiqqgLmdXyFEEIIIUTdcimjXcps19Pogmx+fj4AgYGBdq5ECCGEEEJcS35+Pl5eXtfdR1GrE3cbEJPJxNmzZ/Hw8EBRlCr3ycvLIzAwkNOnT+Pp6VnLFQpryLmqP+Rc1Q9ynuoPOVf1h5wr66iqSn5+Pi1btkSjuf4o2EbXI6vRaGjVqlW19vX09JQfuHpCzlX9IeeqfpDzVH/Iuao/5FxV31/1xF4iF3sJIYQQQoh6SYKsEEIIIYSolyTIVsHJyYnZs2fj5ORk71LEX5BzVX/Iuaof5DzVH3Ku6g85VzWn0V3sJYQQQgghGgbpkRVCCCGEEPWSBFkhhBBCCFEvSZAVQgghhBD1UqMNsvPnzyc4OBhnZ2eio6PZsmXLdffftGkT0dHRODs7ExISwr///e9aqlRYc67S09OZNGkSYWFhaDQann766dortJGz5jwtXbqU2267DR8fHzw9PenduzerV6+uxWobN2vO1datW+nbty/NmjXDxcWFDh068MEHH9RitY2btX+rLtm2bRtarZZu3brVbIHCwppztXHjRhRFqbQdPny4FituINRG6LvvvlN1Op26YMECNSkpSX3qqadUNzc39dSpU1Xuf+LECdXV1VV96qmn1KSkJHXBggWqTqdTExISarnyxsfac5WSkqI++eST6tdff61269ZNfeqpp2q34EbK2vP01FNPqW+//ba6Y8cO9ejRo+qsWbNUnU6n7t69u5Yrb3ysPVe7d+9W4+Pj1QMHDqgpKSnqf//7X9XV1VX99NNPa7nyxsfac3XJxYsX1ZCQEHXw4MFq165da6fYRs7ac7VhwwYVUI8cOaKmp6dbNoPBUMuV13+NMsj26NFDnTZtWoW2Dh06qDNnzqxy/+eff17t0KFDhbaHH35Y7dWrV43VKMysPVdXGjBggATZWnIz5+mS8PBw9dVXX7V1aeIqtjhXo0aNUv/2t7/ZujRxlRs9VxMmTFBfeukldfbs2RJka4m15+pSkM3JyamF6hq2Rje0oKysjF27djF48OAK7YMHD2b79u1VPubXX3+ttP+QIUPYuXMner2+xmpt7G7kXInaZ4vzZDKZyM/Pp2nTpjVRoihni3O1Z88etm/fzoABA2qiRFHuRs/Vl19+SXJyMrNnz67pEkW5m/m9ioyMxN/fn9jYWDZs2FCTZTZYWnsXUNuysrIwGo34+flVaPfz8yMjI6PKx2RkZFS5v8FgICsrC39//xqrtzG7kXMlap8tztN7771HYWEh48ePr4kSRbmbOVetWrXi/PnzGAwG5syZw9SpU2uy1EbvRs7VsWPHmDlzJlu2bEGrbXR/3u3mRs6Vv78/n332GdHR0ZSWlvLf//6X2NhYNm7cSP/+/Wuj7Aaj0f6kK4pS4baqqpXa/mr/qtqF7Vl7roR93Oh5WrhwIXPmzGHZsmX4+vrWVHniCjdyrrZs2UJBQQG//fYbM2fOJDQ0lIkTJ9ZkmYLqnyuj0cikSZN49dVXad++fW2VJ65gze9VWFgYYWFhltu9e/fm9OnTvPvuuxJkrdTogmzz5s1xcHCo9L+kzMzMSv+buqRFixZV7q/VamnWrFmN1drY3ci5ErXvZs7TokWLmDJlCosXLyYuLq4myxTc3LkKDg4GoHPnzpw7d445c+ZIkK1B1p6r/Px8du7cyZ49e3j88ccB85AdVVXRarWsWbOGQYMG1UrtjY2t/lb16tWL//3vf7Yur8FrdGNkHR0diY6OZu3atRXa165dS58+fap8TO/evSvtv2bNGmJiYtDpdDVWa2N3I+dK1L4bPU8LFy7k/vvvJz4+nmHDhtV0mQLb/U6pqkppaamtyxNXsPZceXp6sn//fvbu3WvZpk2bRlhYGHv37qVnz561VXqjY6vfqz179shQxRtht8vM7OjSNBmff/65mpSUpD799NOqm5ubevLkSVVVVXXmzJnqPffcY9n/0vRb06dPV5OSktTPP/9cpt+qJdaeK1VV1T179qh79uxRo6Oj1UmTJql79uxRDx48aI/yGw1rz1N8fLyq1WrVjz/+uMLUMxcvXrTXS2g0rD1X//rXv9Tly5erR48eVY8ePap+8cUXqqenp/riiy/a6yU0Gjfy/nclmbWg9lh7rj744AP1hx9+UI8ePaoeOHBAnTlzpgqoS5YssddLqLcaZZBVVVX9+OOP1aCgINXR0VGNiopSN23aZLnvvvvuUwcMGFBh/40bN6qRkZGqo6Oj2qZNG/WTTz6p5YobL2vPFVBpCwoKqt2iGyFrztOAAQOqPE/33Xdf7RfeCFlzrj766CM1IiJCdXV1VT09PdXIyEh1/vz5qtFotEPljY+1739XkiBbu6w5V2+//bbatm1b1dnZWfX29lZvueUW9eeff7ZD1fWfoqrlVy0JIYQQQghRjzS6MbJCCCGEEKJhkCArhBBCCCHqJQmyQgghhBCiXpIgK4QQQggh6iUJskIIIYQQol6SICuEEEIIIeolCbJCCCGEEKJekiArhBBCCCHqJQmyQghRD8yZM4du3bpZbt9///2MHDnypo5pi2MIIYQ9SZAVQoibcP/996MoCoqioNPpCAkJ4dlnn6WwsLBGn/fDDz/kq6++qta+J0+eRFEU9u7de8PHEEKIukhr7wKEEKK+u/322/nyyy/R6/Vs2bKFqVOnUlhYyCeffFJhP71ej06ns8lzenl51YljCCGEPUmPrBBC3CQnJydatGhBYGAgkyZNYvLkyfz444+W4QBffPEFISEhODk5oaoqubm5PPTQQ/j6+uLp6cmgQYPYt29fhWO+9dZb+Pn54eHhwZQpUygpKalw/9XDAkwmE2+//TahoaE4OTnRunVr3njjDQCCg4MBiIyMRFEUbr311iqPUVpaypNPPomvry/Ozs7ccsst/PHHH5b7N27ciKIoJCYmEhMTg6urK3369OHIkSM2/G4KIUT1SZAVQggbc3FxQa/XA3D8+HG+//57lixZYvlof9iwYWRkZLBy5Up27dpFVFQUsbGxXLhwAYDvv/+e2bNn88Ybb7Bz5078/f2ZP3/+dZ9z1qxZvP3227z88sskJSURHx+Pn58fADt27ABg3bp1pKens3Tp0iqP8fzzz7NkyRK+/vprdu/eTWhoKEOGDLHUdcmLL77Ie++9x86dO9FqtTzwwAM3/L0SQoibogohhLhh9913nzpixAjL7d9//11t1qyZOn78eHX27NmqTqdTMzMzLfcnJiaqnp6eaklJSYXjtG3bVv30009VVVXV3r17q9OmTatwf8+ePdWuXbtW+bx5eXmqk5OTumDBgiprTElJUQF1z54916y9oKBA1el06rfffmu5v6ysTG3ZsqX6z3/+U1VVVd2wYYMKqOvWrbPs8/PPP6uAWlxcfO1vkhBC1BDpkRVCiJv0008/4e7ujrOzM71796Z///78v//3/wAICgrCx8fHsu+uXbsoKCigWbNmuLu7W7aUlBSSk5MBOHToEL17967wHFffvtKhQ4coLS0lNjb2hl9DcnIyer2evn37Wtp0Oh09evTg0KFDFfbt0qWL5Wt/f38AMjMzb/i5hRDiRsnFXkIIcZMGDhzIJ598gk6no2XLlhUu6HJzc6uwr8lkwt/fn40bN1Y6TpMmTW7o+V1cXG7ocVdSVRUARVEqtV/dduXru3SfyWS66RqEEMJa0iMrhBA3yc3NjdDQUIKCgv5yVoKoqCgyMjLQarWEhoZW2Jo3bw5Ax44d+e233yo87urbV2rXrh0uLi4kJiZWeb+joyMARqPxmscIDQ3F0dGRrVu3Wtr0ej07d+6kY8eO131NQghhL9IjK4QQtSguLo7evXszcuRI3n77bcLCwjh79iwrV65k5MiRxMTE8NRTT3HfffcRExPDLbfcwrfffsvBgwcJCQmp8pjOzs688MILPP/88zg6OtK3b1/Onz/PwYMHmTJlCr6+vri4uLBq1SpatWqFs7Nzpam33NzceOSRR3juuedo2rQprVu35p///CdFRUVMmTKlNr41QghhNQmyQghRixRFYeXKlbz44os88MADnD9/nhYtWtC/f3/LLAMTJkwgOTmZF154gZKSEsaMGcMjjzzC6tWrr3ncl19+Ga1WyyuvvMLZs2fx9/dn2rRpAGi1Wj766CNee+01XnnlFfr161fl0Ia33noLk8nEPffcQ35+PjExMaxevRpvb+8a+V4IIcTNUtRLA6OEEEIIIYSoR2SMrBBCCCGEqJckyAohhBBCiHpJgqwQQgghhKiXJMgKIYQQQoh6SYKsEEIIIYSolyTICiGEEEKIekmCrBBCCCGEqJckyAohhBBCiHpJgqwQQgghhKiXJMgKIYQQQoh6SYKsEEIIIYSolyTICiGEEEKIeun/A3YqQ8GdNsuqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4qElEQVR4nO3deVxUZfvH8c9hZlgFFBdERRZxA1xY3FJzwTTb1NRMbdfK9rSn0l+LZov5VGY9pU/5lLZpllq2mBsuuWaKSwpugOICIooiIDDL+f0xMICAMjg4DFzv12tewpkzZy44MHy95z7XraiqqiKEEEIIIYQDcbJ3AUIIIYQQQlhLQqwQQgghhHA4EmKFEEIIIYTDkRArhBBCCCEcjoRYIYQQQgjhcCTECiGEEEIIhyMhVgghhBBCOBwJsUIIIYQQwuFIiBVCCCGEEA5HQqwQQlRAURR+/vlnux/jRjp27BiKorBnz54aeTwhhCgiIVYIUWc89NBDKIpS5nb06NFy909NTWXw4MGVOva0adPo3LnzdR2jNvL39yc1NZXw8HAANmzYgKIoXLhwwb6FCSEcntbeBQghxI106623Mn/+/FLbGjduXOrzgoICnJ2dadq06XU/ny2O4cg0Gk2d/x4IIaqHjMQKIeoUFxcXmjZtWuoWExPD008/zaRJk2jUqBG33HILUHYqwMmTJ7n33nvx8fHBw8OD6Oho/vrrLxYsWMAbb7zB3r17LaO7CxYsKPcY//zzD/3798fNzY2GDRvy2GOPkZ2dbbn/oYceYujQobz//vv4+fnRsGFDnnrqKfR6/TW/tilTptC9e/cy2zt27MjUqVMtn8+fP5/27dvj6upKu3btmDNnzlWPu3HjRrp27YqLiwt+fn5MnjwZg8Fgud9kMjFz5kxCQkJwcXGhZcuWvP3220Dp6QTHjh2jX79+ADRo0ABFUXjooYf4+uuvadiwIfn5+aWed/jw4TzwwAPX/LqFEHWTjMQKIQTw1Vdf8cQTT7BlyxZUVS1zf3Z2Nn369KF58+b88ssvNG3alLi4OEwmE6NGjWL//v2sXLmStWvXAuDt7V3mGLm5udx66610796dv//+m/T0dMaPH8/TTz9tCb0A69evx8/Pj/Xr13P06FFGjRpF586defTRR6/6NYwdO5Z3332XxMREWrVqBcCBAwf4559/WLJkCQDz5s1j6tSpfPLJJ0RERLB7924effRRPDw8ePDBB8sc89SpU9x2222WsHnw4EEeffRRXF1dmTZtGmAOz/PmzePDDz+kV69epKamcvDgwTLH8vf3Z+nSpQwfPpxDhw7h5eWFm5sbzs7OPPvss/zyyy+MHDkSgIyMDH777TdWrlx51a9ZCFGHqUIIUUc8+OCDqkajUT08PCy3ESNGqH369FE7d+5cZn9A/emnn1RVVdXPPvtM9fT0VM+dO1fusadOnap26tTpqsf4/PPP1QYNGqjZ2dmW+3///XfVyclJTUtLs9QYEBCgGgwGyz4jR45UR40aVamvsWPHjur06dMtn0+ZMkXt0qWL5XN/f3914cKFpR7z5ptvqj169FBVVVWTk5NVQN29e7eqqqr6f//3f2rbtm1Vk8lk2f/TTz9V69WrpxqNRjUrK0t1cXFR582bV249Vx5v/fr1KqBmZmaW2u+JJ55QBw8ebPl89uzZanBwcKnnFUKIkmQ6gRCiTunXrx979uyx3D7++GMAoqOjr/q4PXv2EBERgY+PT5WfOyEhgU6dOuHh4WHZ1rNnT0wmE4cOHbJsCwsLQ6PRWD738/MjPT29Us8xduxYvvvuOwBUVWXRokWMHTsWgLNnz3LixAnGjRtHvXr1LLe33nqLxMTECmvu0aMHiqKUqjk7O5uTJ0+SkJBAfn4+MTExlf9GlOPRRx9l9erVnDp1CjBPeSi6EE8IIcoj0wmEEHWKh4cHISEh5W6/Gjc3t+t+blVVKwxlJbfrdLoy95lMpko9x5gxY5g8eTJxcXFcvnyZEydOcO+99wJYjjFv3jy6detW6nElQ/O1alYLp1soimKT7wtAREQEnTp14uuvv2bQoEH8888//PrrrzY5thCidpKRWCGEqISOHTuyZ88ezp8/X+79zs7OGI3Gqx4jNDSUPXv2kJOTY9m2ZcsWnJycaNOmjU3qbNGiBTfffDPfffcd3333HQMGDMDX1xcAX19fmjdvTlJSEiEhIaVuQUFBFda8devWUvOEt27diqenJ82bN6d169a4ubkRGxtbqfqcnZ0Byv1ejR8/nvnz5/Pll18yYMAA/P39rf3yhRB1iIRYIYSohNGjR9O0aVOGDh3Kli1bSEpKYunSpWzbtg2AwMBAkpOT2bNnDxkZGWWutAfzW/2urq48+OCD7N+/n/Xr1/PMM89w//33W4KmLYwdO5bvv/+eH3/8kfvuu6/UfdOmTWPGjBl89NFHHD58mH/++Yf58+cza9asco/15JNPcuLECZ555hkOHjzI8uXLmTp1KpMmTcLJyQlXV1defvllXnrpJb7++msSExPZvn07X3zxRbnHCwgIQFEUfvvtN86ePVuqM8PYsWM5deoU8+bN45FHHrHZ90MIUTtJiBVCiEpwdnZm9erVNGnShNtuu40OHTrw7rvvWt6GHz58OLfeeiv9+vWjcePGLFq0qMwx3N3dWbVqFefPn6dLly6MGDGCmJgYPvnkE5vWOnLkSM6dO0dubi5Dhw4tdd/48eP53//+x4IFC+jQoQN9+vRhwYIFFY7ENm/enBUrVrBjxw46derEhAkTGDduHK+++qpln9dee40XXniB119/nfbt2zNq1KgK5/A2b96cN954g8mTJ+Pr68vTTz9tuc/Ly4vhw4dTr169MnULIcSVFFUtp5eMEEIIYQe33HIL7du3t1xwJ4QQFZEQK4QQwu7Onz/P6tWrGTt2LPHx8bRt29beJQkhajjpTiCEEA5i06ZNDB48uML7S84vdTSRkZFkZmYyc+ZMCbBCiEqRkVghhHAQly9ftvRRLU95rcOEEKK2khArhBBCCCEcjnQnEEIIIYQQDkdCrBBCCCGEcDh17sIuk8nE6dOn8fT0lDW5hRBCCCFqGFVVuXTpEs2aNcPJqeLx1joXYk+fPi1LGQohhBBC1HAnTpygRYsWFd5f50Ksp6cnYP7GeHl52bkaIYQQQghRUlZWFv7+/pbMVpE6F2KLphB4eXlJiBVCCCGEqKGuNe1TLuwSQgghhBAOR0KsEEIIIYRwOBJihRBCCCGEw5EQK4QQQgghHI6EWCGEEEII4XAkxAohhBBCCIcjIVYIIYQQQjgcCbFCCCGEEMLh1LnFDoQQojJyCgwYVdXeZQghhN0cTIjnmwULyMnJYc7cubhqNfYuqRQJsUIIcYWM3AL+PHHO3mUIIcQNdzknhy1/LGfdkkUc2rMLAI1WS++Hn+H+7mFonWrOm/gSYoUQ4gp6k8neJQghxA2lL8jnf2++wubfl5OXmwOAk0ZDVN8BDBgxhnre9TGaQFtzMqyEWCGEEEKIuig/7zIurm4A6JxdSI7fT15uDn4BwcSMuJe+Q++hQeMmdq6yYhJihRBCCCHqCJPJxL6tf7J2ySL2btnIf9ftwMPTC4D7X3wVJ42W0OhuKIpi50qvTUKsEEIIIUQtd/b0SdYvW0zssu/JOH3Ksn33n+vodftQADp072Wn6qpGQqwQQgghRC11MvEI82dMZe+WjaiFHVc8vLy5+c67iRkxmqD24XausOokxAohhBBC1CIl57q61/Nk39Y/UVWVDt17ETP8XrreMthyvyOTECuEEEII4eAuZ2ezZeUvxP64CFcPd6Z+uRgAH9+mPPXOh7SL7ELTloH2LdLGJMQKIYQQQjggVVU5vGcXsUsXsWXFcvJycwHQ6nRkZZ7Dq0FDAPoOHWnPMquNhFghhBBCCAezdeWvLP7kA04ePWzZ1iwwmJgRo+kzZKQlwNZmEmKFEEIIIWo4k8mE0aBH5+wCQF5ODiePHsbZ1ZWbbr2LmBGjaR/V1SFaY9mKhFghhBBCiBqqZGusOx96nDseGA/ATYPvwqDX0/P2IZY+r3WNhFghhBBCiBpEX5DP3+tWE1u4IEFRa6ztq36zhFhXd3cG3nu/Pcu0OwmxQgghhBA1xLcfvEPskoVkZZ63bCvZGksUq3KILSgoID09HZPJVGp7y5Ytr7soIYQQQoi6oGRPV4DU48lkZZ7Hp0lT+t09iv53j6p1rbFsxcnaBxw5coTevXvj5uZGQEAAQUFBBAUFERgYSFBQkNUFzJkzh6CgIFxdXYmKimLTpk0V7rthwwYURSlzO3jwoNXPK4QQQghhD6qqcmj3Tj59ZRKP3NSR08mJlvuGPfo0//ffr/nvuh2Mef5lCbBXYfVI7EMPPYRWq+W3337Dz8/vuq6CW7x4Mc8//zxz5syhZ8+efPbZZwwePJj4+PirjugeOnQIL6/iScyNGzeucg1CCCGEEDfCxfPn2Lh8CbFLFnIy8Yhl+/bVK7j78WcACOnQyV7lORyrQ+yePXvYtWsX7dq1u+4nnzVrFuPGjWP8ePMk5dmzZ7Nq1Srmzp3LjBkzKnxckyZNqF+//nU/vxBCCCFEdctMP8MXb7/G3+tWYdDrAcq0xhLWszrEhoaGkpGRcd1PXFBQwK5du5g8eXKp7QMHDmTr1q1XfWxERAR5eXmEhoby6quv0q9fv+uuRwghhBDCVkrOdXX38mLftk0Y9HpahXdiwIgxdbo1lq1YHWJnzpzJSy+9xDvvvEOHDh3Q6XSl7i/5Nv/VZGRkYDQa8fX1LbXd19eXtLS0ch/j5+fH559/TlRUFPn5+XzzzTfExMSwYcMGbr755nIfk5+fT35+vuXzrKysStUnhBBCCGENfUE+O2JXEbtkEWdPn+TjFX+iKAourm48Mf09/AKDCGwXZu8yaw2rQ+yAAQMAiImJKbVdVVUURcFoNFp1vCvn1BYdpzxt27albdu2ls979OjBiRMneP/99ysMsTNmzOCNN96wqiYhhBBCiMpKOXyQ2KWL2Lh8CZcuZFq2Hzt4gKD24QD0uPUOe5VXa1kdYtevX2+TJ27UqBEajabMqGt6enqZ0dmr6d69O99++22F90+ZMoVJkyZZPs/KysLf39/6goUQQgghStj/11a+mzWDw3t3Wbb5+PrR/+5R9Lt7FE39A+xYXe1ndYjt06ePTZ7Y2dmZqKgo1qxZw7Bhwyzb16xZw5AhQyp9nN27d+Pn51fh/S4uLri4uFxXrUIIIYQQqqpSkJ9nmeuqqiqH9+5Co9US3e8WYkaMoXOvvmg0GjtXWjdUabGDCxcu8MUXX5CQkICiKISGhvLII4/g7e1t1XEmTZrE/fffT3R0ND169ODzzz8nJSWFCRMmAOZR1FOnTvH1118D5u4FgYGBhIWFUVBQwLfffsvSpUtZunRpVb4MIYQQQohrunj+HBt//pHYpYvo3KsvD08xT1MM69qD8a+9TY9Bd1C/kbT7vNGsDrE7d+5k0KBBuLm50bVrV1RVZdasWbz99tusXr2ayMjISh9r1KhRnDt3junTp5Oamkp4eDgrVqwgIMA8/J6amkpKSopl/4KCAv71r39x6tQp3NzcCAsL4/fff+e2226z9ssQQgghhKiQ0Whk39Y/WfvjQnauX21pjZWXm8ODL0/FyckJJycnBo992M6V1l2KqqqqNQ/o3bs3ISEhzJs3D63WnIENBgPjx48nKSmJP//8s1oKtZWsrCy8vb25ePFipTspCCEcUE4O1Ktn/jg7Gzw8Kv3Q1Ow8tp3KvPaOQoha6bev5vHrgs/ISD1t2RbSoTMxI8bQ6/YhuNfztGN19nN7K19ctFYv9mq1yma1Ko3ElgywAFqtlpdeeono6OiqVSuEEEIIYSf6gnw0Wh1OTuaAdi7tNBmpp6nnXZ+b7xpOzIjRBLYNtXOV4kpWh1gvLy9SUlLKrNh14sQJPD3r5v9MhBBCCOF4SrbGmvjBHDr1NF+8Pmj0g7QK70TXAbfi7OJq5ypFRawOsaNGjWLcuHG8//773HTTTSiKwubNm3nxxRcZPXp0ddQohBBCCGETl7Oz2fLHctYuWcSRvXGW7dtW/W4JsU1bBtK0ZaCdKhSVZXWIff/991EUhQceeACDwQCATqfjiSee4N1337V5gUIIIYQQ1ysvN5cv3n6VrX/8Ql5uLkCZ1ljCsVgdYp2dnfnoo4+YMWMGiYmJqKpKSEgI7u7u1VGfEEIIG9Lk5jIkMgSA5XFHMcprt6jFCvLzLNMBXNzcOLxnF3m5uTQLakXMiNH0HTJSWmM5sCr1iQVwd3enQ4cOtqxFCCGEEOK6lGyNFf/3Nv67bgcubu4oisJDk9/A1d2NdpFdK1ziXjiOSoXYu+++mwULFuDl5cXdd9991X2XLVtmk8KEEEIIISor/eQJ1i37nvU/LS7VGmvftk106T8IgIjefe1UnagOlQqx3t7elv+xeHl5yf9ehBBCCFEjHDsUz9czp7Nv2yaKWt/X827AzXfdLa2xarlKhdj58+dbPl6wYEF11SKEEEIIcU0l57q6urmzd6t5oaWON/UmZvhoaY1VR1g9J7Z///4sW7aM+vXrl9qelZXF0KFDWbduna1qE0IIIYQAIDf7EltW/ELskoXUb9yEyZ+aB9iatgzkibfep0P3Xvi2aGnnKsWNZHWI3bBhAwUFBWW25+XlsWnTJpsUJYQQQgihqiqHdv9N7JJFbPnjF/IvXwbA2dWV3OxLluVfB4wYY88yhZ1UOsTu27fP8nF8fDxpaWmWz41GIytXrqR58+a2rU4IIYQQddKmX5fx49zZnEo6atnWPDiEmOGj6TNkhCXAirqr0iG2c+fOKIqCoij079+/zP1ubm785z//sWlxQgghhKgbjEYjJqMRnbMzANlZFzmVdBQXNzd6Dr6LmBGjaRvRRS4uFxaVDrHJycmoqkpwcDA7duygcePi5sDOzs40adIEjUZTLUUKIYQQonY6czLF3Bpr2WJGPjmJW+4ZC0DvO4ah0erodfsQGXUV5ap0iA0ICADAZDJVWzFCCCHEjSQrmNlHQX4eO9auJHbpIvZtLb6eZtuq3ywhtp53fQaOus9eJQoHUOUVu+Lj40lJSSlzkdddd9113UUJIYQQovZRVZWvZk5n/U8/kH0x07K90003EzPC3BpLiMqyOsQmJSUxbNgw/vnnHxRFsTQWLpqjYjQabVuhEEIIIRxWyZ6uiqJwMukI2RczadjUj/5330v/u++lSQt/O1cpHJGTtQ947rnnCAoK4syZM7i7u3PgwAH+/PNPoqOj2bBhQzWUKIQQQghHoqoqB+N28On/TeSRmzqSkXrKct/IJ57n1XnfMTd2B/c++6IEWFFlVo/Ebtu2jXXr1tG4cWOcnJxwcnKiV69ezJgxg2effZbdu3dXR51CCCGEqOEunstgw88/Ert0UanWWNvX/MEdD4wHoG1EtL3KE7WM1SHWaDRSr149ABo1asTp06dp27YtAQEBHDp0yOYFCiGEEKJmO3v6JPNnTGPn+tUYDQaAMq2xhLA1q0NseHg4+/btIzg4mG7duvHvf/8bZ2dnPv/8c4KDg6ujRiGEEELUMCXnunp4ebNn83qMBgOtO0YQM2IMPW+7S1pjiWpldYh99dVXycnJAeCtt97ijjvuoHfv3jRs2JDFixfbvEAhhBBC1AwlW2NdupDJe0tXoSgK7vU8eeLN92nZuh0Bbdvbu0xRR1gdYgcNGmT5ODg4mPj4eM6fP0+DBg1kFQ0hhBCiFjp+KIG1Sxby5y/LSrXGSj2WRLOgVoB5cQIhbiSrQ+xXX33FiBEj8PDwsGzz8fGxaVFCCCGEsL+9Wzay6KN/c2Rf8UXb0hpL1BRWh9h//etfPPnkk9x5553cd9993HrrrWi1VV4zQQghhBA1hKqq6AvyLXNd9QUFHNm3G61OR3S/gQwYOYaON90sy8yLGsHqPrGpqaksXrwYjUbDvffei5+fH08++SRbt26tjvqEEEIIUc0uZJzl5y/m8OxtN/PjnNmW7RG9+zHulTf5fMMuXvx4HhG9+0mAFTWG1UOoWq2WO+64gzvuuIPc3Fx++uknFi5cSL9+/WjRogWJiYnVUacQQgghbMhoNLJn8wZilyxk5/o1ltZY21b+xpjnX0ZRFDRaLbfdP87OlQpRvuuaB+Du7s6gQYPIzMzk+PHjJCQk2KouIYQ1cnKgsH8z2dlQYs66EEJc6ef/fcrv33zJ+TOplm2tO0UyYMRoeg4eIhdqC4dQpRBbNAL73XffsXbtWvz9/Rk9ejQ//vijresTQgghxHUqyM9D5+xiCadnTp7g/JlUPOs3oM+QEcQMH03LNu3sXKUQ1rE6xI4ePZpff/0Vd3d3Ro4cyYYNG7jpppuqozYhhBBCXIdjh+KJ/XEhf/66jClzv6JdpHnlrNvvH0d4t5voGjMInbOLnasUomqsDrGKorB48WIGDRokXQmEEEKIGibnUhZbfl/O2iULSdy/17J926rfLCG2RavWtGjV2l4lCmETVnUn0Ov1pKam0rp1a5sF2Dlz5hAUFISrqytRUVFs2rSpUo/bsmULWq2Wzp0726QOIYQQwpHlXMriP5OfZ3zvznw27WUS9+9Fq9PRY9AdvDrvOx546XV7lyiETVmVRHU6Hfv377fZhO/Fixfz/PPPM2fOHHr27Mlnn33G4MGDiY+Pp2XLlhU+7uLFizzwwAPExMRw5swZm9QihBBCOJqC/DxLT1c3j3oc2LGVgrw8WrRqTcyIMfQZMgJvn4aVPp4mN5chkSEALI87itHdvVrqFsIWrO4T+8ADD/DFF1/Y5MlnzZrFuHHjGD9+PO3bt2f27Nn4+/szd+7cqz7u8ccfZ8yYMfTo0cMmdQghhBCOwmg0smtjLP9+ZhxP3XIT+oICAJycnBj36lu8vXA5s3/bwF0PP25VgBXC0Vg9J6CgoID//e9/rFmzhujo6FLLz4I5mFb2OLt27WLy5Mmltg8cOPCqCyfMnz+fxMREvv32W956661rPk9+fj75+fmWz7OysipVnxBCCFGTnDmZwrql37Nu2eJSrbHi/95Gp559AOjSf6C9yhPihrM6xO7fv5/IyEgADh8+XOo+a6YZZGRkYDQa8fX1LbXd19eXtLS0ch9z5MgRJk+ezKZNmyo9J3fGjBm88cYbla5LCCGEqEkS9+/jmw/e4p9tmy3bpDWWEFUIsevXr7dpAVcGX1VVyw3DRqORMWPG8MYbb9CmTZtKH3/KlClMmjTJ8nlWVhb+/v5VL1gIIYSoZiXnuuqcnfln22YURaHjTTcTM2K0tMYS1c5ogFNJWpLidSTF6zAZ4fYF9q6qtCq3GDh69CiJiYncfPPNuLm5VRg+K9KoUSM0Gk2ZUdf09PQyo7MAly5dYufOnezevZunn34aAJPJhKqqaLVaVq9eTf/+/cs8zsXFBRcX+UUXQghRs+VmX2Lzbz+zdslCmgUG8/z7nwLQsk07Hp06g8je/WnSQgZhhO3pCyDlcHFgTY7XcfyQjoL84lzn6m7C9KUdiyyH1SH23Llz3HPPPaxfvx5FUThy5AjBwcGMHz+e+vXr88EHH1TqOM7OzkRFRbFmzRqGDRtm2b5mzRqGDBlSZn8vLy/++eefUtvmzJnDunXrWLJkCUFBQdZ+KUIIIYRdqapKwq4dxC5ZxLZVv5J/+TIAp5MTyc+7jIurGwC3jn7QnmWKWiQvV+HYQa0lrCbF6zhxVIvRUHYg0tXdRHConrbhRiIjFZxUVztUXDGrQ+zEiRPR6XSkpKTQvn17y/ZRo0YxceLESodYgEmTJnH//fcTHR1Njx49+Pzzz0lJSWHChAmAeSrAqVOn+Prrr3FyciI8PLzU45s0aYKrq2uZ7UIIIURNt/6nH1j22cecPpZk2dYipA0xw0fTZ8gIS4AVoqqyLyokJxSH1aR4HaeTNahq2cBaz9tEqzA97ToY6RwBXaIUOodqqe/qjMbJNq1Vbc3qELt69WpWrVpFixYtSm1v3bo1x48ft+pYo0aN4ty5c0yfPp3U1FTCw8NZsWIFAQEBAKSmppKSkmJtiUIIIUSNYzQYzFPgdDoALp47y+ljSbi6u9PztiHEDB9Nm85RNuvFLuqWCxlOhaOrxdMC0k+WH/N8mhgJDtXTvqOJyAjoFq0QGqLF08UZJwf6+bM6xObk5OBeTvPjjIyMKs09ffLJJ3nyySfLvW/BggVXfey0adOYNm2a1c8phBBC3ChpJ46zbun3rF+2mAdefJXed94NQN+h91DPuz49Bw/BrV49O1cpHIWqQkaqU6n5q8nxOs6na8rdv0kLAyFhBkI7moiMhG5RCm0CdHjoXBz+P0xWh9ibb76Zr7/+mjfffBMwdxcwmUy899579OvXz+YFCiGEEI6mID+Pv9b8QeySRfyzvbg11paVv1pCbP1GjRkwcqy9ShQOwGSCtBRNqekAyfE6Ll0ou1aVoqg0CzISEqanQyeViEjoHu1EYFMdblrHD6zlsTrEvvfee/Tt25edO3dSUFDASy+9xIEDBzh//jxbtmypjhqFEEIIh2A0Glnw7jT+/GUp2RcvAObBnk49+xAzYrQsRiAqdGVLq6R4LccSdFzOKRtYNVoV/xADrcMNdOhkIjpKoVukhmYNtbhq685caqtDbGhoKPv27WPu3LloNBpycnK4++67eeqpp/Dz86uOGoUQQogaq2RPV41Gw7GEA2RfvECjZs2Jufte+g4bRZPmLa5xFFGXFORDymEdyQnaCltaFXF2UQlop6dNmIFOnVWioxS6RGho4qXDWaOzQ/U1R5X6xDZt2lRWwRJCCFFnqapK/M6/WLdkETvWreKTlZvxbtgIgHuffZGC/Hw63tQbjab8eYqi7rico3D8kJakAzqSE67e0srNw0RQez1tOxjp1Fmla5RCZEctDT20aJ2c7VB9zWZ1iF25ciX16tWjV69eAHz66afMmzeP0NBQPv30Uxo0aGDzIoUQQoiaIPNsOht+/oF1S78v1RprR+wqbrnHPL81rGsPe5Un7KyopVXJwFpRSyvP+iaCw/S072Ckc2foEq3QqX3NbmlV01gdYl988UVmzpwJwD///MOkSZN44YUXWLduHZMmTWL+/Pk2L1IIIYSwp7QTx/lq5hvsXL8Gk9EIYGmNNWDEGFp3irRzheJGK2pplRSvI+mAluSEa7S0CtMT1tFERAR0jXLMllY1jdUhNjk5mdDQUACWLl3KnXfeyTvvvENcXBy33XabzQsUAoCcHChqQZOdDR4e9q1HCFHr6Qvy0TmbW0d61PMkbuM6TEYjbTpFETNyND1vvUtaY9UBZVpaFY6yVtTSytffQKtQA2GdTERGqnSLdqK1f+1oaVXTWB1inZ2dyc3NBWDt2rU88MADAPj4+JCVlWXb6oQQQogbqCA/j79WryB26fcY9AW89d3PAHg28OGJN98jOKwjLVu3tW+RotqYTJB2XGOZCmAeZdWRfbH8llbNg809WMM7qkRFQbcoJwJqcUurmsbqENurVy8mTZpEz5492bFjB4sXLwbg8OHDZVbxEkIIIRzBHuDzmW+w8Y9fyMm6CJhbY2WknqKRX3MA+g4dab8Chc0ZDXAysbA7QMLVW1pp0ePf1kTrDibC63BLq5rG6hD7ySef8OSTT7JkyRLmzp1L8+bmX+4//viDW2+91eYFCiGEENVl5+YNvAnsAlj8DUCp1lhFAVY4tqKWVknxWvMKVwnXbmnVNtxA59A8hr5yC+HsR9mRgbOXpx2qFxWxOsS2bNmS3377rcz2Dz/80CYFCSGEENVFVVUM+gLLXNe83Bx2ATqgyy2DiRl1Px16SGssR1aypVXRlICTiVdvadWug5FOESpdohSiOmjx8dCZW1rlqPBKnHlnTdkRWmFfVeoTazQa+emnn0hISEBRFNq1a8fQoUPRaqt0OCGEEKJalWyN1XfoPQyf8CwA3foO4CNgDLBl5n8wurvbtU5hnUsXzC2tSi7Lmnqs4pZWrcL1tAs3mjsERCt0bKelvpt0CHBUVqfO/fv3c9ddd3HmzBnatjVPbj98+DCNGzfml19+oUOHDjYvUgghhLCW0WBg96b1rF2ykF0b1lpaY2354xdLiNU5u/CsPYsUlZZ51ql4/uoB87SA9FMVtLTyNdIqVE9oJxMRnaFbtEL7Vlq8XJzlgqtaxOoQO378eMLDw9m1a5dlYYPMzEweeughHnvsMbZt22bzIoUQQghrLJk7m1WLvuZ8epplW9vOUfQfYW6NJWouVYWzpzUkxxcvyZoUryPz7FVaWoUZCO9oJCISukc7ESItreoEq0Ps3r172blzZ6mVuRo0aMDbb79Nly5dbFqcEEIIURkle7oCpB5L5nx6Gl4NfOgzZCQxI0bjH9LGjhWK8phMkHqsdEur5Phrt7Tq0EklMhK6RjkRKC2t6iyrQ2zbtm05c+YMYWFhpbanp6cTEhJis8KEEEKIa0lO2M/aHxey6befeOOrHwlqHw7AnQ8/RnS/W4juPxCds6w5XxMY9HAySWsZWTV3CdCSl1tOSyudin+IgdZhBjp2Nvdg7RqpobmPFhdpaSUKVSrEllzE4J133uHZZ59l2rRpdO/eHYDt27czffp0y3K0QgghRHXJybrIpt9/JvbHhSTF/2PZvvWPXy0hNrBdGIHtwio6hKhmlpZWB8xBNSne3NJKX1BOSytXlcC2etqEmwNrlyiF6M4afL106DQ6O1QvHEWlQmz9+vVLDdOrqso999xj2aaqKgB33nknxsKJ80IIIYQtXco8z/x3p7Ft5W8U5OcBoNXp6DrgVgaMGEOHHr3tXGHddDlb4ViJllbJCTpOHNViMpYNrO71SrS06qwSfWVLKyGsUKkQu379+uquQwghhCij5FxXt3qe7N2ykYL8PPxbt2XAiDHcfNfdeDVoaOcq646illZFy7Emx+tIPV5+SyuvBkaCwwy072Ckc2dpaSVsr1Ihtk+fPtVdhxBCCAGYW2PF/bmO2CULOX74IJ+s2oJGo0Gr0/Ho6zPw8W1K644RciFPNTt/VsPRYy7FPVgPaDl7upItrbo40T5YIy2tRLWq0uoEFy5c4IsvvrAsdhAaGsojjzyCt7e3resTQghRR6QeT2bd0u9Z/9MPZJ49Y9l+ZO8u2kV2BaD7wNvsVV6tpapw9pSGpHgdx/a68jm/EUckaYP8yt2/ZEurqEhzYA1pocNdWlqJG8zqELtz504GDRqEm5sbXbt2RVVVZs2axdtvv83q1auJjIysjjqFEELUUof37OLbWTM4sGOrZZtXAx/6Dh1JzIgxtGjV2o7V1S5FLa2SSnUIuLKl1e0AODmpNAs2EBJqbmkVFVXY0spXh6u0tBI1gNUhduLEidx1113MmzfPssyswWBg/PjxPP/88/z55582L1IIIUTtUqqvq6JwYMdWFEWhc6++xIwYQ3S/W6Q11nUqamlVNHc1KV7HsYNXaWnV2kCbtnnc+dNkIthN06O/0dy/Pi5a6RAgaqYqjcSWDLAAWq2Wl156iejoaJsWJ4QQovYoao21bskigkI78MSb7wHQumME4155ky4xg2jcrIWdq3RM+XnmllbmsGpuaZVy+Ootrdp2MI+wlmpplecE9eaYd2ziAtqygVeImsLqEOvl5UVKSgrt2rUrtf3EiRN4enrarDAhhBCOT1VV4v/eTuzSRWxb9RsFeebWWOmnTvDo6++g1elQFIXb7h9n50odx+VsheSDpZdkPZl4jZZWHY107qwSHakQKS2tRC1hdYgdNWoU48aN4/333+emm25CURQ2b97Miy++yOjRo6ujRiGEEA5ozQ/fsfyLuaQeT7JsK9kaS6uTt6mv5VKmQlKCrtQqV5VpaRURodK1ixMd2khLK1F7WR1i33//fRRF4YEHHsBgMACg0+l44oknePfdd21eoBBCCMdgNBhAUdBoNACcSztN6vEkXN096HX7EGJGjJHWWFeRme5kueAqqXBaQEYFLa0aNjW3tGrf0URkBHTrotAuSCstrUSdYnWIdXZ25qOPPmLGjBkkJiaiqiohISG4u7tXR31CCCFquJKtsR6bNoOuMbcCEDNiNI2bt+CmW+/CzcPDzlXWHKoK6ac0peavJsfruJChKXf/pi0NtArTE9bBJC2thCihSn1iAdzd3enQoYMtaxFCCOEg8vMu89eaP1j748JSrbG2rPjFEmIbN2tBzPC6Pc3MaITU4xqSD+hKTQvIySp7wVRRS6vWYQbCO5mIilToFuVEQFMdrhpXCazCPnJyoF4988fZ2VCD/kNa5RArhBCi7tEXFLDg3Wls+u0ncrIuApRpjVVXGfRwMtHc0iqpsP/qNVtahRno0FklOgq6Rmpo1kAnLa2EqCS7h9g5c+bw3nvvkZqaSlhYGLNnz6Z3797l7rt582ZefvllDh48SG5uLgEBATz++ONMnDjxBlcthBB1R8merjpnZ47sjSMn6yKNm7Wg//B76TfsnjrXGquopZV5OVYdyfFajh/WYdCX39IqqJ2eNuEGOnZW6RLlRJfOTjT21KHTSGAVoqrsGmIXL17M888/z5w5c+jZsyefffYZgwcPJj4+npYtW5bZ38PDg6effpqOHTvi4eHB5s2befzxx/Hw8OCxxx6zw1cghBC1k6qqHNixjdili9j95zo+XbMND08vAMZOmgJAhx69cXKq/X1Ec7MVjhW1tCocZT2ZVHFLq+BQPW3DjXSOUOkSrRAZrqWBu7S0EsLW7BpiZ82axbhx4xg/fjwAs2fPZtWqVcydO5cZM2aU2T8iIoKIiAjL54GBgSxbtoxNmzZJiBVCCBvITD/D+p9+IHbZ96QdT7Zs37l+DX3uGg5Ap5597FVetcvKVCxLsRaNsqYeL/9PpZdPcYeAzp2lpZUQN1qVQuzhw4fZsGED6enpmEymUve9/vrrlTpGQUEBu3btYvLkyaW2Dxw4kK1bt1bwqNJ2797N1q1beeuttyrcJz8/n/z8fMvnWVlZlTq2EELUJaeSjvLN+2+xa2MsJqMRoLA11lAGjBxDSIfO9i3QxlTV3NLq2G539vEqcUSy5baWnE0r/+39opZWYZ1MRERAt2iFdkE6PF2kQ4AQ9mJ1iJ03bx5PPPEEjRo1omnTpqV+eRVFqXSIzcjIwGg04uvrW2q7r68vaWlpV31sixYtOHv2LAaDgWnTpllGcsszY8YM3njjjUrVJIQQdYm+IB+nwvaIrh4e7NqwFpPJRLvILsQMH02PW++sFa2xilpaFV9wpb2ipdWb5n8K//Q0DTDQKlRPeEcTkZHQvYsTrZpLSyshahqrQ+xbb73F22+/zcsvv2yTAq58QVBV9ZovEps2bSI7O5vt27czefJkQkJCKlwtbMqUKUyaNMnyeVZWFv7+/tdfuBBCOKD8vDy+Bb4ALjz/OK8t+AGAhr5+PD7937SL7EKL4NZ2rfF6lGppFV/cJaCillYtgvTcnLiYCHbT6PtX6NbLg5a+Oty0bnaoXghhDatDbGZmJiNHjrzuJ27UqBEajabMqGt6enqZ0dkrBQUFAdChQwfOnDnDtGnTKgyxLi4uuLi4XHe9QgjhyJIO7CN26SL+/GUZJsAJMP29jYtn0/Fu3ASAASPG2LVGa13Z0iop3tzSKv9y+S2tWrY20CbcQHgnlS5R0CVSQzPnAlzqP2De6Y43wcP1Bn8VQoiqsjrEjhw5ktWrVzNhwoTremJnZ2eioqJYs2YNw4YNs2xfs2YNQ4YMqfRxVFUtNedVCCHqNKMRt7NncDt9CvfUU2T8uY6MP9fROvM8MUBLoGGJfendGdXJCZNWh6rVYNLqMGm1qBotqk5r3q4xb1d1WkwaLapWW2p/8+cltmu0mHRaVK0Ok0Zj/ldnPqZ5Px0mbeF2y+NK7K8rrqHoefONWk6fduVkihspx1w4nuTG8eNu5Bl06DHfDGhxQYerixb/tipBHRU6RUB0lBNdOlXQ0irHcGPPjxDCZqwOsSEhIbz22mts376dDh06oNOVfkF49tlnK32sSZMmcf/99xMdHU2PHj34/PPPSUlJsQTkKVOmcOrUKb7++msAPv30U1q2bEm7du0Ac9/Y999/n2eeecbaL0MIIcowmUykpKSQbzShqK6oNXD+o/ZSFu6pp3FLNYdU99OnLB+7nT6F25lUnAovzKosxWRCU5APBdVU9I2WD+wrvC3SgFYLOp35duXHmhJLvd5xBzRqBA0alL35+JT+3Nsb6kB7MSFqMqtD7Oeff069evXYuHEjGzduLHWfoihWhdhRo0Zx7tw5pk+fTmpqKuHh4axYsYKAgAAAUlNTSUlJsexvMpmYMmUKycnJaLVaWrVqxbvvvsvjjz9u7ZchhBDlys7ONn+gvfFvKyt6Pa7pZ8zhtDCUXvmxLvvSNY9jcHIiv2kzLjdrzqXGvhy4mEnDnn0xhbQhv0FD+t9zGwC/b4xD1elwMhhQDPrCfw3FnxuNKPrC7cbC7frC7aX216OUeKyTQY9iNOKkL9xuNOCkL7HdoEfRm7cbcw3kZRrJu2iiIMtAQbYRU56RovFVLQbLx85OBlx1Bbhq9Lg4GXDGgMakh8K6UNWy3wyj0XyrzDt2GzZYcbIUc5AtL/CWF3olAAthc4qqlvdbX3tlZWXh7e3NxYsX8fLysnc5orJq8NrNNYJ8f8qqwvdEVVUuXLjAhTw9uy8azEHFVlQV3cULZUKpW9Foatpp3NLPoFzRtrA8+d4NuNysGTlNm3HcZOLvkylsTzrKMVUlBfDqGMnbP/xW7mM1ubkMiQwBYHncUYyF3QmqW1FLq6K5q0VdAjJOlz+W0sjPSHD74pZW3bsotA3U4emiqfjiX6MRDAbQ68238j6+cltWFgwebH78F19Abi6cPw+ZmRXfcnOv75tRUQC+WvC9UQFYXktKk++HXb4Hlc1qdl92VgghagpVVc3t+0wqCp5Y8z98p4J83NJSzeE07bQlnFqCauoptJUIP0adM5f9mpHr15zLfs3JbdbM/G/T5lxu1pzcps0weniw+D/vs+aH78g8e8by2HaRXRhW2BrLnsq0tIo3r3Z18Zym3P2bBhgICdUT1tFEZKRC9y5K1VpaaTTmmzUX8+bkFH88alTl/kDn58OFC8Wh9lqh98oArKrmx1+4AMnJ13iyK1wZgCsTfGUEWNRSVQqxJ0+e5JdffiElJYWCgtKTqGbNmmWTwoQQwh4sr2klXx1VFefM86VDaYm5qO6pp3A9m16p4+c1bMTlps3IbVYYUgtvl5uZ/81v2KjcoKEvKEDnXLxsacqRQ2SePYOXT0P6Dh1JzPDRtGh141tjGY2QekxrCarXamnVvJWB1mEGOnQyERmh0C3aiZa+Olw1ro7Tg9XFBXx9zTdrFQVga4KvLQNw/fpXD7olR+b37YMWLaBhQ3Bzs+07E0LYgNUhNjY2lrvuuougoCAOHTpEeHg4x44dQ1VVIiMjq6NGIYSoXpcvw4kTKMePE5iQgP54CvWOnSx82/807mmn0eTnXfMwRhdXcv1KB1TzaGrhx039MLla13806cA+1i5ZxObff+bdxb/RLKgVAMMefYredwwjqu+AUuG2OukLCltaxetItqKlVcfOJqKjFKIjNDTz0eFyZYeAuuR6A7A1obdkUL58uXBOR+HnlXHTTaXrbtiw+Objc+3PfXzMF9AJUU2sDrFTpkzhhRdeYPr06Xh6erJ06VKaNGnC2LFjufXWW6ujRiGEuD5paZCRASkp5tuJE8Ufp6TA2bMAKEDhzC8alHOYy419LSOmuX7mt/kto6nNmlPQwMcmo1XZFy+w6befiF2ykOSEA5btW1f+yognngcgpEPnal0KNj8Pjh/SWQJrcryW44d1GPRlvz4XNxOB7cyBtXNnlehoJ6I7amjspUXnJCHGZlxcoGlT881alQ3AZ8/CihXmxzRpYg7CBoP58adPm2/W8PKqfOgt+tjbW0Z9RaVYHWITEhJYtGiR+cFaLZcvX6ZevXpMnz6dIUOG8MQTT9i8SCGEqLTUVFi3DlavLt4WEnLtx3l4oLZsSU7DhhT4+ZHmF0husxaWgJrn2xSTc/UunHIh4yxfzXyD7atXUFA48qvVOdPtlsHEjBhNh+69quV5c7MVkhOK564mx+s4maTFZCwbJNw9TQSH6mkXbqRTBHSNhogwLT7uOjRON2ZEWFRBZQNwyYt4kpLM0wuys+HcOfPt/Pnij6/2+YUL5pHfrCzzzZqpDxqNeWqDtSO/N+giRVFzWB1iPTw8LIsLNGvWjMTERMLCwgDIyMiwbXVCCHEt58/Dxo0QG2sOrwkJZfdxcoJmzaBly4pv9esDYMzKIitPz8HMghsyGlRyrqu7pydxf66jID+Plm3aM2DEaG6+8248G/jY7PmyMp1YwwDiiOTXl31JOuxK6vHy/xR4+RhpFaYntKOJTp1VundxokMbLV6uzjjJSFndoCjg6Wm+BQZW/nFGY/GUhopCb3n35eSYH5uRYb5Zw9XVutBb9K9WrnF3VFafue7du7NlyxZCQ0O5/fbbeeGFF/jnn39YtmwZ3bt3r44ahRCiWE4ObNpkDqzr1kFcXOn+oIoCERFw880we7Z527lzlpB6NarJxIkTJ8yH0fpY1Z3AGga9nrg/Y4ldsoi0E8eZ/et6FEXB2cWVx6bOwNc/gFbhna7rQidVhfPpTpa5q0UjrBmpGmCNeac1xfs38jPSKlRPaCcTkRHQLbqopZWVHQKEAPNoaqNG5ps18vKKw21lR33PnTNPecjLg1OnzDdreHtXHHKLRqUBDhyAVq3M98nvRI1gdYidNWuWpRn4tGnTyM7OZvHixYSEhPDhhx/avEAhRB1XUADbt5sDa2ws/PWXucdnSe3bQ//+5lvfvuY/Mjk5xSHWiotL3N3dKTCawLpFryrl9LEkYpcuYsPPP3KhRDeD5IT9BId2AKDnbZVfdruIqsKZkxqSD+hISrh2S6sQjhBJHA1fGEhEdxe6RysEN9fhrpXAKuzM1dX8rkmzZpV/jKrCpUvWhd6iKQ8AFy+ab9ea8tCtm/lfZ2fw8zPXWNG/zZpJ2L0BrA6xwcHBlo/d3d2ZM2eOTQsSQtRxRiPs3l0cWjdvLttcvmVLiIkx3/r1s+4P3jVotVoMGG0aYhN2/cXCD2cSv3O7ZZt3w0b0HTqS/sPvpUVw5VtjFbW0SorXknTA3M7qai2tWrQyEBJmoENnE1ERCt3a59GmTRvzDm9kg4fMIxQOTlHMF5B5eVVtysPVQu+ZM/DTT+b9fXzM2woK4Phx8+1qisLutQJvw4YSdquoShNBLly4wJIlS0hMTOTFF1/Ex8eHuLg4fH19ad68ua1rFELUZqpqnsdaFFo3bCgeISnSpEnxSGv//hAcXG0v+llZWeYPtFW/iEtVVQz6AnSFF4IZ9Abid27HycmJzr37MWDEGKL6DkB7jRHiki2tkg6YpwMcO1RxS6uANnpahxktLa26FLa0ci7Z0iqnTi3SKETFKjPloeSFbikp5vmzaWnmC0hPny7+t+THqanm+byVDbs63bWDrp+fOezKYhWlWB1i9+3bx4ABA/D29ubYsWM8+uij+Pj48NNPP3H8+HG+/vrr6qhTCFGbHDtWfCHWunXmPwoleXmZpwX0728ebQ0LuyEjFYqi4OfnR1a+HjXr2su/Xin74gX+/HUZ65YuIrRLDx75v+kAhHXtwcNT3qDHoNtp2LT8UeP8y4UtrRIKe7Ae0JFyRHvVllbtOhjp2Ml0RUsr6RAgRLVxcYGAAPPtagoKzK9rV4bbKwNvRoZ5elRRu7+r0enM3SUqmr5QcmS3joRdq0PspEmTeOihh/j3v/+Np6enZfvgwYMZM2aMTYsTQtQSaWmwfn3xaOuVc89cXaFXr+LQGhlplyuGVVUlMzMTvdGEQr1KXdhlMpk4sGMbsUsWsn31CvQF5u4tF8+d48GXp6LRaHBycuKOBx+1PCbnksKxhKLVrcwjracStZhMFbe0at/B3NKqS5S0tBKixnN2Lu58cjVFYffKoHtl4D171hx2T5ww365Gq63cNIZG5a8O6Eis/ivx999/89lnn5XZ3rx5c9KuHE0RQtRNFy6Ubnt14EDp+7Va6NrVHFj794cePaxb774a5eUVrsxViVfHlQsX8Mv8zzhzovjtwpZt2nPLyDH0vvNuNBoNF887lVmSNa2CllbeDY0Eh5pbWkVEqHSLdiKsjRZvaWklRO1kTdg9c6b8oFsy8J49a+7UUNmwW9HIbsl/a3D/XatDrKura/GcsRIOHTpE48aNbVKUEMLB5ObCli3FoXXXLjCVeDteUaBz5+I5rb17m/tO1jDF0wkMqFllr+wy6PU4FY6sApw5cZwzJ47j5lGPXrcPo0v/hzCZOpEc78yn/2cOrOaWVmU1amagVaiB0I6FLa26FLa0cpYOAUKIKzg7g7+/+XY1RWH3WiO76enmsHvypPl2NSXfFVNr1px6q0PskCFDmD59Oj/88ANgftFPSUlh8uTJDB8+3OYFCiFqoIIC2LGjeHrAtm1l2161bVs8PaBvX/M8rRpOURQaNmxIQXYeXCpeX75ka6xn3/2Ijjf14cwJDY2bTySyzyMYCsL5a60La34oP7D6BRgICdcT3kklIgJpaSWEqB6VDbt6/bVHdkuG3SI17PXK6hD7/vvvc9ttt9GkSRMuX75Mnz59SEtLo0ePHrz99tvVUaMQwt5MJtizpzi0btpkvmq3JH//4ukB/fpBixZ2KdVW8i/nsm31Ctb+8D0JuzKBSOAlPp7cgYI8X3IvOQFNSj3GSaPSIthA63AD4Z1MREUqdI9yokUTHW5aN3t8GUIIUZZOZ36NvtbrtF5vvoahbdsbU5eVrA6xXl5ebN68mXXr1hEXF4fJZCIyMpIBAwZUR321hqnwrVVFUSwjL6YSb7c6lZhcXd6+qqqiFg7j18l9C7epTk6oJhOYTNd93JLbq7rvtc6nNftW9HVUat+i749Wa5vvj6qiHD6Msn49xMaibtiAcv48pTRqhNqvH2q/figDBqCEhICiFB/XBufouvY1mcDNDafLlyt9XL1eYe/ec3yxYDMLv83AaIhCr38YKFq1RyU/27yvpaVVuJGISCNRkRDVSUszH2ecNboy5/7KGirzdVTba4RWi6rTmc8R2O64jrjvVX5OSh7D4V8jKvv9UdXi15Oi748tjuvI+yoKqqtrhb8vJY9RXT8nFdVW7TlCo8GpBrdOrfLlv/3796d///62rKVWi4+PB6Bdu3ZoC+eXZGRkkJ6eToMGDUr1101ISEBVVdq0aYNz4Zrq586dIy0tDW9vb/xLvE1w6NAhjEYjISEhuLq6ApCZmcnp06fx9PQkoEQbkCNHjqDX6wkODsa9cKL2xYsXOXnyJB4eHgQFBVn2TUxMJD8/n8DAQOoV9si7dOkSKSkpuLu7l1r0Ijk5mcuXLxMQEGDpWJGTk8OxY8dwdXUlJCTEsu+xY8fIzc3F398fb29vAHJzc0lOTsbZ2bm4CTuQkpJCdnY2zZs3p0Hh9yGvdWsSjx9Hq9XSrl07y74nT54kKysLPz8/Gha+bV1QUMCRI0dwcnIiNDTUsu/p06e5cOECvr6+lnncBoOBQ4cOARAeHm7ZNy0tjfPnz9O4cWN8fX0B8y98QkICAGFhYZZ909PTycjIoFGjRjRt2rTMuW/fvj0ajfnt5rNnz3L27Fl8fHxoVqJRf9G+bdu2RVfYQ/TcuXOcOXOG+vXr06LE/5oPHjyIyWSidevWFF0SdX7ECFKPH8fLy4uWJS4UOHz4MAaDgVatWuHmZh4RvHDhAqdOnaJevXoEBgaa27vExpL988+4bd+OLr14RSkFMHp4kNetGx533GEecQ0PJzEpiby8PAL9/KhX+OKXnZ3N8ePHcXNzo1WrVmXOfcuWLfHy8gKKf05cXFxo3bq44f/x48fJycmhRYsW1C9cLvby5cskJSWh0+loW2JU4MSJE1y6dIlmzZrh4+MDQH5+PkePH0ezciXt+/Sx7Hvq1CkuXrxI06ZNcXdvxL59cOCAnm7dDpOfr9CvXzu2bk3jmSdDaOEXzbBhF/j441y+/saNoFAjEV0K+L+njwHQ0L8NjTzNLa1SU1M5d+4cbqbGOGvMPyeqqlrOZ2hoqOWPQ9G5b9iwIX5+fmXO/Q15jRgyhNPTpuF59iwBJeYmO/RrRIMGgPnCvMTExMq/Rhw/jtPatYT27GnZt1a+RhReOHn+/HlSU1Mrfo1o1oyi9wwuZGdz6tix4teIQkePHqWgoICgoCA8PDwAc3/lEydOlDn3SUWvESV+TmrMa8TRo2g0Gtq3b2/Zt+RrRKPC/rF6Pz8Or1qFkpJS6nympqaSmZlJkyZNaNLE/K6M0Wjk4MGDQOmfkzNnznDu3LlSPyc1+jWiZI6wdungG6hKIXbHjh1s2LCB9PT0Uv8LAPOytEKImk85exavlStpEBdnnt+amAiAV+H9qosLSs+eEBNDdteuHGvUCHcvr1J/oBzFxYuwZ6d5Kq+fH8ycCbNmqZhMCs2awapV5sV7CgoUEhJccXY24NfiIgAPTzDw9iwjPu46VJMThX+f8POW9lZCCGFPilo0tlxJ77zzDq+++ipt27bF19e31NtkiqKwbt06mxdpS1lZWXh7e3Px4kXL//RuBJlOcJ375uZCvXrm6QQXLoCHh0wnKO/7o9Winj9f/vfn4kWUTZtQihYY+OcfStFooGvX4ikCPXuiFI7aOszPiaJw9izExans25nPnrd/5a/LESRiHulzdjah0ZinDRgMCpCGosTh6rqX2x/oSv+RHRjWzZum9Vxq71uFOTmo9eubpxOcOYNTiZHYmng+q33f7Gzw9TVPJ8jOBg+P2vkaUdnvT24uSuHPhHrpEmrhiLzDnE9b75uTg+rpaZ5OUMHvS8lj1IrXiCv3vXy5eNWywt+R6lbZrGb1SOxHH33El19+yUMPPXQ99dU5JX9grratou0lf7jq9L4mE4qTU5kGzTW2Xiv2rWi7VT8nBkPx9+fyZdi6FWJjcVq3DnbuNA83ltSpU3EHgd69wcsLBbiy4prw/blyX1WFU6cgLs6JuDjYvdscXk+eLPoKXIGRlv0bNM5DVXdy8dxqVHUXEId7vRx63T6UmBFjaBXeHkUxUvQUDnfuranNYEAxGGrl75HV+xb9rjhAvRVtt+nPSYn7LN8fWxzXkfdVVZTLl+36+1LR9hudI2oaq0Osk5MTPUvMHRJC1DAzZ8LmzeYAm59f+r7WrYs7CPTtCw7S21lVISkJ4uKKb7t3q5w9WyZuA9As0EBwm8sMXv0WXdlF6rp5XDKk8dTA3gC0j+5GzPDJ9Bh0B641uJG3EEKIilkdYidOnMinn37K7Nmzq6GcWign54YPw4s64uxZ+Osvc4/WLVuKt7/5ZvHHzZsXh9b+/a/dO7AGMBrh0KHSgXXPHpWLF8sGVieNSotWBlqF6gkM1RMcqscvIIu9W34jdvG3/M3f/B+wvL4JD/dAHpv2LuFdb6J5cEh5T42iqmSePkGOxonAwMAKRzmEEELYn9Uh9l//+he33347rVq1IjQ01HJ1ZJFly5bZrDghRCG9Hvbuhe3bi2+FF2KVMXQoDBpkDq2tW5d6e7Cmyc83r0hrngpgvu3dq3L5ctnAqtWpBLQ1B9XgUANBoXpattHj4mqev5W4fx+xSxex+befyM2+BEAicLHEUQbd+8A1azLk52G45l5CCCHszeoQ+8wzz7B+/Xr69etHw4YNHWLOhBAO59Sp0oF1507Iyyu7X2godO8OERHwzDPmbd9+WyNH/HNyYN8+Ssxfhf37VfT6soHV1d1EYDsDwaF6gkL1BIfpaRFsQKsre9ytK39l6X8/4tjBeMs2X/8ABtw5nJlzZuFtRY0q4NXEj/quOnltE0KIGs7qEPv111+zdOlSbr/99uqoR4i6Jy/PnOi2bzdPDdi+vfy1rBs0MAfWHj3M/3bpAoX9EcnJKQ6xNcCFC+YFvornr8LBg+aWVqUp1PM2EdReXxxYQ/U0DTCiKX8FV0wmEyajEW3hu0AXz2Vw7GA8OmcXug+8jZgRownrehO6vDyaz7Gy5Z+i4OJRDy8Pl2vvK4QQwq6sDrE+Pj6lmhMLIaygqnDsWHFY3b7dnPb0+tL7aTTQsaM5rBbdaujUgPT00tMBdu9WSUwsr06F+o2MBIfpC0OreaS1cXNjpb6sc2mnWf/TD8Qu/Z67H3uGW+4ZC0DvO4ahmkz0vvNuPOs3sO0XJ4QQosayOsROmzaNqVOnMn/+fMuKLkKICmRnw99/l54aUGIlLAtf3+IR1u7dITq6xk0JUFXzAHHJwBoXp3LqVPkdAho3MxAcVjgloHCktUETU9kDX4VBr2fXhrXELlnE7k3rLP0Mt6xYbgmx9bzrc9v946776wNAVSm4nEu2qsfDw0OmFAghRA1mdYj9+OOPSUxMxNfXl8DAwDIXdsXFxdmsOCEciskEhw+Xnhawf795e0k6HURGFgfWHj2gZcsaNcpqMhW3tCoOrSoZGVdpaRWqJyiscFpAOz2eDaxaR6UUVVX5btYM1i37novnMizbQ6O7EzNiND0GVc90JgW4mHaKi5ReBlIIIUTNY3WIHTp0aDWUIYQDysw0t7gqGmH96y/zZNArtWxZepS1c2coXJ+6JjAYSre02r3bPCUgK+vqLa2KLrgKbGvArV7VA2sRfUEBusI1vhVF4djBA1w8l4F3w0b0G3YP/e++t8LWWLak0TmjdZLwKoQQNZ3VIXbq1Kk2LWDOnDm89957pKamEhYWxuzZs+ndu3e5+y5btoy5c+eyZ88e8vPzCQsLY9q0aQwaNMimNQlRhsFg7gVVclrAwYNl93NzM19wVRRYu3WDZs1ufL0VKGppVTKwVtTSSudsbmllmb8apse/tbmlla2UbI219Y9f+ODnNTTyaw7A8AnPcsuo+4jqM8ByEVd1UxUFnxYB+MqFXUIIUeNZHWJtafHixTz//PPMmTOHnj178tlnnzF48GDi4+Np2bJlmf3//PNPbrnlFt555x3q16/P/PnzufPOO/nrr7+IiIiww1cgaq0zZ4pHWbdtM89rzckpu1/r1qWnBYSHm6cL1AAlW1oV3Q4cqLilVVB785SAwPZXb2llC5cuZLLp12XELl1UqjXW1j9+5a5HJgDQPqpb9Ty5EEKIWsGuIXbWrFmMGzeO8ePHAzB79mxWrVrF3LlzmTFjRpn9r1wl7J133mH58uX8+uuvEmJF1RUUmBcSKNkxIDm57H5eXuaR1aLQ2rUrNGp04+stx4ULsIc+xBFJ3DgX4vbBoUNXaWkVqrdMCQhqr8cv0HjlsuDV4tyZVL557y22r16BvsC8JO6VrbGEEEKIyrBbiC0oKGDXrl1Mnjy51PaBAweydevWSh3DZDJx6dIlfHx8qqNEUVudOFF6WsCuXeb32UtSFAgLK93iql07KmxeegOlp5e94CopyQPYYN5hcdGeCvUbGwtXuCrqw2qgcbPKtbSylZJzXd09PPl73Sr0BfkEtgslZsQYet8xrMa0xlJUlQupJ8nVOBEQECDLzgohRA1mtxCbkZGB0WjE19e31HZfX1/S0tIqdYwPPviAnJwc7rnnngr3yc/PJ79EQMnKyqpawcIxXb5sDqklQ+upU2X3a9iwdGDt2tU88mpHRS2tSs5fvVpLqwCOEUkcbk/2IbCTQnB761ta2UrJ1lgXMtKZueQPFEXBrV49Hp36Lv6t2hAc1qFGXv2vz7uM/tq7CSGEsDO7TicAyvwRU1W1Un/YFi1axLRp01i+fDlNmjSpcL8ZM2bwxhtvXHedwgGoqrkvVMkWV3v3mi/KKkmjgU6dSq9+1aqVXVtclWxpVTKwltfSSlFU/AKNtArVE1g4whoSmMV9/YIBWD7+KEY79XA+lXSU2KWL2PDzj6VaY51KPkqL4NYA9B0ywi61VYYKeDb2xdtFlp0VQoiarlIhdtKkSZU+4KxZlVvmsVGjRmg0mjKjrunp6WVGZ6+0ePFixo0bx48//siAAQOuuu+UKVNK1Z+VlYW/v3+lahQ13KVLsGNH6VHWjIyy+/n5lW5xFRUFdlyo48qWVnFxsGdPxS2t/EMMJaYDlN/SSpNrnxHXIv9s38Li/7xHwq4dlm31GzWm77B7iLn7XpoFOcgqf4qCaz0v6kt3AiGEqPEqFWJ3795dqYNZM3Lh7OxMVFQUa9asYdiwYZbta9asYciQIRU+btGiRTzyyCMsWrSI22+/dsNzFxcXXFzkD1Kt8vTT5ikC+/ebR19LcnY2h9SSUwP8/e02ynplS6u4ONi37+otrYrCanCogZZt9DjXwB9fVVUx6PWWua75l3NJ2LUDJycnIm7uz4CRY4i8OeaGtcYSQghR91QqxK5fv75annzSpEncf//9REdH06NHDz7//HNSUlKYMMHcYmfKlCmcOnWKr7/+GjAH2AceeICPPvqI7t27W0Zx3dzc8Pb2rpYahZ2pqnm0tWRnigULij8ODCzd4qpTJ7DTf1pycsyzF0ouy1qZllZBhaOszauxpZWtXLqQyZ+/LCV26fdE9R3A2InmCzMjevfjwZdep+ftQ2jo62fnKq+DqqLPzyNXMeLm5iZTCoQQogaz65zYUaNGce7cOaZPn05qairh4eGsWLGCgIAAAFJTU0lJSbHs/9lnn2EwGHjqqad46qmnLNsffPBBFpQMNsLxXb4MixfDp5/Czp2l73vhBejd29zuqmlTu5R34UJxWC3692otrYLD9AS3Lw6sTQNuTEsrWzCZTOz/awtrf1zIjrUrLa2x8nJzGPP8yyiKgkartfR3dWQKcOH0CS4gy84KIURNV6UQ+/fff/Pjjz+SkpJCQUFBqfuWLVtm1bGefPJJnnzyyXLvuzKYbtiwwapjCwd07Bj897/wv//BuXPmbS4uMHw4LFxo/vyNN8DD44aVVNTSquQFV0lJ5YUbhQaFLa2CLKH1xre0sqXfvprH7998QfrJ4v9MBrUPs7TGqo0hz0mrRVMLvy4hhKhtrA6x33//PQ888AADBw5kzZo1DBw4kCNHjpCWllZqbqsQlWYywdq15lHXX38tnufasiU88QSMG2e+EKsoxFYTa1taNWleOB0grPDf9noaNLbvBVbXy6DXo9FqLeH09LEk0k+m4O7pRe87hjFgxGiCwzraucrqoyoKDVsEybKzQghRxMOj7PUnNYTVIfadd97hww8/5KmnnsLT05OPPvqIoKAgHn/8cfz8HHgunLjxLl6Er74yh9fDh4u3DxhgvnjrjjuKFxcob8nX63BlSytzaL12S6ugUPOSrIHt9HjWr5m/1FVxMukIsUsWsXH5El76zxe0i+wCwOCxD9OmcxQ9Bt6Gi5v9OjoIIYQQV7I6xCYmJlq6Ari4uJCTk4OiKEycOJH+/ftLT1Zxbfv3m4PrN98Uh1NPT3joIXjySfPKWDZUXkur3btVLl0qG1g1WnNLq6D2hatchekJaGvAzaP2BNYiebm5bF35K7FLFnIw7m/L9s2//2wJsf4hbfAPaWOvEoUQQogKWR1ifXx8uHTpEgDNmzdn//79dOjQgQsXLpCbm2vzAkUtodfD8uXwySewcWPx9tBQ86jrffeZg+x1ys83Z+SSHQL27lXJyyu/pVVgO3NYDWxfs1ta2dLl7Gy++vd0Nv/+M5dzsgFw0miILGyNFdG7v50rtB9FVbl45jR5Gif8/f1l2VkhhKjBrA6xvXv3Zs2aNXTo0IF77rmH5557jnXr1rFmzRpiYmKqo0bhyNLSYN4888Vap0+bt2k0MHSoObz26VPlHq5FLa1KdgjYv1/FYKigpVVh79Wi+auO0NLKVgx6vaVnq4u7O3u3bORyTjZNWwYSM3w0fYeOxMfXPp0eapqC3BwKrr2bEEIIO7M6xH7yySfk5eUB5j6uOp2OzZs3c/fdd/Paa6/ZvEDhgFTVvOzrJ5/AkiXmUViAJk3gscfg8cehRQurDnnhAuymL3FEsnucC3H74OBBFVW9SkurolWu2jtWSytbMZlM/LN9M7FLFnFo9998smorOmdnnJyceGjKNNzreRHWtYeMNpagAvUaNsHLRVsrOy8IIURtUqXpBEWcnJx46aWXeOmll2xalHBQubmwaJE5vO7ZU7y9Rw/zqOvw4ZVaiODMmdLTAXbvVklK8gAKF91YXLSngk8TI0HtC1taFYbWRn4mh21pZQsZZ1KJXfkrsUsWkX7qhGX7/r+2ENG7HwDdBgy2V3k1m6Lg5uWNj3QnEEKIGq9KfWJNJhNHjx4lPT0dk6l0S6Gbb77ZJoUJB5KYCHPnwpdfQmameZurK4wZA089BZGR5T5MVeHEidKBNS5O5fTp8ltaBZFEBLtxe7IvgZ2VWtHSypb2AK8AK2/vY/m9rCutsYQQQtQ9VofY7du3M2bMGI4fP456Rd8wRVEwGo02K07UYCYTrFplHnX944/iHnJBQebero88Ag0blto9MbH0/NW4OJVz58pvadUsyFg8HSBUT0hgFmP7tgJg+fijGN2l3ROUnuuqAVYAmEyEdelB/xGjpTWWtVQVQ0E+eRoVFxcXmVIgRF1Xg3ukiiqE2AkTJhAdHc3vv/+On5+fvMjXNZmZMH8+zJljTqVFbr3VPOo6eDAGVcPBgxD3e8mlWa/e0qoorAaHlt/SSpMrI65FSrbGatLcn+fe+wSADsDHgPbntfi2C7VrjY5KATJPpZCJLDsrhBA1ndUh9siRIyxZsoSQkJDqqEfUVHv3mkddv/sOLl82b/P2xvDAwxzs9yTbMlqbQ+tbFbe0cnZRCWirLxVY/Vsban1LK1tQVZWj/+whdsmiUq2xjh08QP7lXIrGWp8BlrcMRN4PqTrFSYOTZFchhKjxrA6x3bp14+jRoxJi64KCAli2zLwwwebNls0ZzTrwe+DTzM0ay6657hj+UzawunmYzBdcFba0Cg41t7TSVGkWdt226ddlLJv3KSmHEyzbSrbGcnFzN19UJ66bqig0CgiWZWeFEMIBWB0pnnnmGV544QXS0tLo0KEDOl3pRpsdO8rFIw7v9Gkuz/4Mpy8+x+V8GgB6tCzjbj7haTaf7gUlLr7yrG+yrG5lDq56mrasey2tbMVkMqGaTGi05l/Pc2dSSTmcgLOLK90H3U7M8NGEdukurbGEEELUaVaH2OHDhwPwyCOPWLYpioKqqnJhl4M6cwbidqlk/LSJVn98QpdTP+GGAYBUmvIZj/M5j5FKM3yaGIkOzSeoxJSAut7SylYyUk+x/qcfWLf0e8Y8/zK977wbgL5D78HV3YPedwzDw8vbzlUKIYQQNYPVITY5Obk66hA3QFFLq+L+q3Bw5yX6py3kKT5lMP9Y9t1EL77xeYKEyNtpGa4wLsxAUPsz1G8kF1jZkr6ggJ3r1xC7dBF7Nq23dPzY9PvPlhBbv1Fjbh3zkB2rrDsUVSUrPY0CrRPNmzeX0W4hhKjBrA6xAQEB1VGHsLGSLa1KLhpQ1NKqNYd5kjl8wwLqcxGAPCc3toffw8ERD+M+qC23eqvcisy1rA4mk4lv3n+LDT//SNb5c5btYV1vImbEaLoPvM2O1dVt+TmXyAeaN29u71KEuPGkpZRwIFW6zCYxMZHZs2eTkJCAoii0b9+e5557jlatWtm6PlEJBgPmllYlAuuePWVbWjlhYojT70x0+5Q+Oast2y+1CCT5voc4Puwe9N71aQKYF+AUtlSyp6uTkxNH9+0h6/w56jduQv9ho+g//F78AoLsXGXdpgIePo3wdJZlZ4UQoqazOsSuWrWKu+66i86dO9OzZ09UVWXr1q2EhYXx66+/csstt1RHnaJQXh7s3196lat9+67S0qqdnk6t0hiTPZ9+e76kfnoK5Jivwk67OYak+x7mTM8+yFVY1UNVVY7s203skkVsX72Cj1dsxLthIwDuefoF8nJziLy5v+UiLmFnioK7dwMaSXcCIYSo8az+yzl58mQmTpzIu+++W2b7yy+/LCHWhrKzze1ZS65ydeCAisFQcUur4LDitlZhuXG0Xjwf/9+Xo8nPA6DAuz7Hht9L0ugHyfWXqSHVJSvzHH/+sozYJYtIOXLQsn37mhUMuvcBADp072mv8oQQQgiHZ3WITUhI4Icffiiz/ZFHHmH27Nm2qKlOyswsubqV+d9Dh1RUtWxg9axvIjis9KIBvv7mllZOBfk0X/U7wa/Op+HeXZZHXQgNJ3Hsw5y8bQhGWYa02qSfOsm3H7zFX2tWYtAXAODs4kqPW++wtMYSNZiqYtTrKShQ0Ol0MqVACCFqMKtDbOPGjdmzZw+tW7cutX3Pnj00adLEZoXVZmfOlL3gKjm5vD+WCj6+RstiAUWBtWHTsi2t3FJPEbT4WwJ/+BbXwguFTDodJwfdQdLYhznfOQrpg1U9Ss51dXN3twTYoNBwBowYI62xHIgCnD95jPPIsrNCCFHTWR1iH330UR577DGSkpK46aabUBSFzZs3M3PmTF544YXqqNGhnTqt8DdDiCOSuBEuxO1VSU0tO7oK4OtvKBFYDQS111+9pZWq0uivrbT6bj5+61bhVNij97KvH0n33s+xkWPJb9S4mr6yuq1ka6y83Bze+vYnADwb+PDo1HcIbh9OcJgs/OGQFAWJrkIIUfNZHWJfe+01PD09+eCDD5gyZQoAzZo1Y9q0aTz77LM2L9DRvTVTx3/52fzJSvM/Tk4qzYIMBIcaLKOrQe31eHhVriOANjublr8sIXjhAryOHrZsP9v1JhLHPkxq/4GoV6ykJmzjZOIRYpcsZMPyJaVaY6WfOkmT5i0AGDBijL3KE9dJVRQaB4bIsrNCCOEArA6xiqIwceJEJk6cyKVLlwDw9PS0eWG1RbcuJrZ/sZtI4tC+fBeBnRUC2hpwdbe+hVW9pCO0+m4BLX/+EV1ONgAGd3dShowkafSDZLVpZ+vyRaE9mzfw45wPORj3t2Vbg8a+9Bt2D/2H32sJsEIIIYS4Ma6rr4+E12t76D4DD02IBGD5qKMY3a27qEoxGGi6YQ2tvptPk22bLdsvBQaTOPZhUoaOxODpZdOahbk1ltFgsMx1zcm6yMG4v3HSaIjqE0PMiDHSGksIIYSwo0r9BY6MjCQ2NpYGDRoQERFx1Ysd4uLibFZcXeZ8/hyBPy4k+PuvcE89DYDq5ERqv1tIGvMQ6T16S2/XalCyNVav24cyfIJ5ikzXAbdy/4uv0ufO4TRo4mvnKkV1UVSVS2fPYLigwc/PT5adrQtkhSohHFalQuyQIUNwcXGxfCxX7FafBvt2E/zdfFqs+AVNYYum/PoNODZyLEn3PsBledva5kwmE/9s28TaJQvZsXaVpTXWpt9/soRYnbMLQ8c9ac8yxQ2Sl51FHuDn52fvUoQQQlxFpULs1KlTLR9Pmzatumqps5zy82ix4heCFy7A5589lu2Z4Z0Ke7vehcnF1X4F1mI/fzGHld8t4Ozpk5ZtwaEdiBk5ht63D7VfYcIuVMC9QUPq6TT2LkUIIcQ1WD2hLzg4mL///puGDRuW2n7hwgUiIyNJSkqyWXG1ndupkwR//xWBPy7E5UImAEadMydvu4uksQ+T2THCzhXWPiV7ugKcOHyIs6dP4u7pxc133k3MiNEEh3awY4XCrhQFj/o+NJHuBEIIUeNZHWKPHTuGsbAfaUn5+fmcPHmynEeIUlSVJlv/JHjhAvzWr0ExmfvA5vo1I+neBzk2cgwFPg2vcRBhrRNHDxO7ZBEbl//I619+T1D7cADueOhROvXqQ7dbBuPi6mbnKoUQQghRWZUOsb/88ovl41WrVuHtXbwCkdFoJDY2lqCgIKsLmDNnDu+99x6pqamEhYUxe/ZsevfuXe6+qampvPDCC+zatYsjR47w7LPPOtRSt8GLviJwyUI8kxMt29J79CJx7MOk9b0FVa50t6nLOTlsXfkLsT8u5NCe4iV4N//+syXEBrUPt3wsBKqKyWjAYNCg0Whk/r8QQtRglU5NQ4cOBcx9Yh988MFS9+l0OgIDA/nggw+sevLFixfz/PPPM2fOHHr27Mlnn33G4MGDiY+Pp2XLlmX2z8/Pp3Hjxrzyyit8+OGHVj2X3cTHWz7s8N6bAOg96pEydCRJYx7iUqvWFT1SVFH2xQt88/5bbP59OXm5OQDm1lh9BzBgxBgievezc4WiplKAcynJnEOWnRVCiJqu0iHWVPi2d1BQEH///TeNGjW67iefNWsW48aNY/z48QDMnj2bVatWMXfuXGbMmFFm/8DAQD766CMAvvzyy+t+/huixEjxpaBWJN4/jpS7RmCoV89+NdVCJee6urp7sHP9GvJyc/ALCCZmxL30HXoPDRo3sXOVQtQA0lJKCFFLWP3+dXJysk2euKCggF27djF58uRS2wcOHMjWrVtt8hw1wuOPw8KFAKxbshKjh4edC6o9TCYT+7b+ydoli0hO2M/HK/5Eo9Gg1el45JU3qd+oCaHR3WQ0TVSaqig0Dmoty84KIYQDqFSI/fjjj3nsscdwdXXl448/vuq+zz77bKWeOCMjA6PRiK9v6cbxvr6+pKWlVeoYlZGfn09+fr7l86ysLJsdu1Kiooo/ljBlE2dTT7P2j+WsW7a4VGusg3F/E9alOwA9B99lr/KEEEIIcQNUKsR++OGHjB07FldX16vORVUUpdIhtuRjSlJV1aYjZzNmzOCNN96w2fGE/ewEXgNW3dEHtfDtUA8vb3rfMUxaYwkhhBB1TKVCbMkpBLaaTtCoUSM0Gk2ZUdf09PQyo7PXY8qUKUyaNMnyeVZWFv7+/jY7vqheJee6moCVAKpKeLeexIwYLa2xhBBCiDrKbj2dnJ2diYqKYs2aNQwbNsyyfc2aNQwZMsRmz+Pi4mJZMlc4hpKtsfxbt+OJN98DoAvwAeC+PJYmbdvbtUYhhBBC2FelQmzJkcxrmTVrVqX3nTRpEvfffz/R0dH06NGDzz//nJSUFCZMmACYR1FPnTrF119/bXnMnj17AMjOzubs2bPs2bMHZ2dnQkNDK/28ouZRVZUje+OIXbqoVGusU8mJjH/tbTSY2x9NApb7B1B2uQ0hhBBC1CWVCrG7d+8u9fmuXbswGo20bdsWgMOHD6PRaIgqeRFTJYwaNYpz584xffp0UlNTCQ8PZ8WKFQQEBADmxQ1SUlJKPSYiongp1l27drFw4UICAgI4duyYVc8tao4NP//Iz1/M4cSRQ5ZtJVtj6ZydwWCwY4VCCCGEqGkqFWLXr19v+XjWrFl4enry1Vdf0aBBAwAyMzN5+OGHK1xp62qefPJJnnzyyXLvW7BgQZltqvQ3dHgmkwlVVdFoNACkpRzjxJFDOLu60mPQHcSMGCOtsYQQQghxVVbPif3ggw9YvXq1JcACNGjQgLfeeouBAwfywgsv2LRAUXucPX2S9csWE7vse8a98iZdY24FIGbEaOo3bkLv24fi4eV9jaMIIYQQQlQhxGZlZXHmzBnCwsJKbU9PT+fSpUs2K0zUDvqCfP5et5rYJYvYu2WjZSR9028/WUJs42YtuHX0g1c7jBBCCCFEKVaH2GHDhvHwww/zwQcf0L27ubH89u3befHFF7n77rttXqBwTAa9nm8/eIeNy38kK/O8ZXt4t54MGDGarrcMtmN1QgghhHB0VofY//73v/zrX//ivvvuQ6/Xmw+i1TJu3Djee+89mxcoHEfJnq5anY74v7eRlXkenyZN6TvsHmKG30vTloH2LVIIIYQQtYLVIdbd3Z05c+bw3nvvkZiYiKqqhISE4OHhUR31iRquqDXW2iUL+Xvdaj5ZtQUPTy8ARj8/GaNBT0Tvfmi0dmtJLIQQQohaqMrJwsPDg44dO9qyFuFAsjLPsXH5UtYuWcjJo4ct2/+OXUXfoSMBiOjd107VCSGEEKK2szrE5uTk8O677xIbG0t6ejomk6nU/UlJSTYrTtQ8aSnH+HbWDP6OXYmhcDqJs6srN916FzEjRtM+qqudKxRCCCFEXWB1iB0/fjwbN27k/vvvx8/PT3p51gEl57o6u7jy1+rfMZlMtArvRMyI0fS6fahlCoEQQgghxI1gdYj9448/+P333+nZs2d11CNqCH1BPjtiVxG7ZBGKovDa/xYC4OPblEdfn0GbzpEEtgu7xlGEEEIIIaqH1SG2QYMG+Pj4VEctogZIOXyQ2KWL2Lh8CZcuZALg5OTEhYyz1G/UGICB995vzxKFEEIIIawPsW+++Savv/46X331Fe7u7tVRk7CDXRvWsmTuRxzeu8uyzadJU/rdPYr+d4+yBFghhBBCiJqgSsvOJiYm4uvrS2BgILrCuZJF4uLibFacqD6qqmIyGi2try6ey+Dw3l1otFqi+g4gZvhoaY0lhBBCiBrL6oQydOjQaihD3CglW2PdMnIsdzz4KAA9br2TrAvn6XPXCBo0bmLnKoUQQgghrs7qEDt16tTqqENUI6PRyL6tm4hdspC/162ytMba9NtPlhDr5uHB0HFP2rNMIWzK6O7OsoOn7V2GEEKIalLl94p37dpFQkICiqIQGhpKRESELesSNrL0vx+zevHXZKQW/zEv2RpLCCGEEMIRWR1i09PTuffee9mwYQP169dHVVUuXrxIv379+P7772ncWC4AsiejwVBqHmtS/D9kpJ6mnnd9br7zbmJGjJbWWEIIIYRweE7WPuCZZ54hKyuLAwcOcP78eTIzM9m/fz9ZWVk8++yz1VGjqISUwweZP2Mq43t35nRyomX7kHFP8Pz7nzLvzzjGvfqWBFghhBBC1ApWj8SuXLmStWvX0r59e8u20NBQPv30UwYOHGjT4sTVXc7OZssfy1m7ZBFH9hZ3hdj8+8/c8/QLALTpFEmbTpH2KlEIIYQQolpYHWJNJlOZtloAOp0Ok8lkk6LE1V08f45vP3ibrX/8Ql5uLgAarZbofrcQM2IMnXv1tW+BQgghhBDVzOoQ279/f5577jkWLVpEs2bNADh16hQTJ04kJibG5gUKs5JzXd08PNixdiV5ubk0CwwmZuQY+g4ZKQsSCCGEEKLOsDrEfvLJJwwZMoTAwED8/f1RFIWUlBQ6dOjAt99+Wx011lnm1lh/ErtkESeTjvDhL+tQFAVnF1fGvfoWjZs1p11kVxRFsXepws6knZQQQoi6xuoQ6+/vT1xcHGvWrOHgwYOoqkpoaCgDBgyojvrqpPSTJ1i37HvW/7S4VGusxP17CenQGYCb77zbTtUJIYQQQthflfvE3nLLLdxyyy22rKXOO7R7J4v/8z77tm1CVVUAc2usu4abW2O1DbVzhUIIIYQQNUOlW2ytW7eO0NBQsrKyytx38eJFwsLC2LRpk02LqwuMBoPl44L8fPZu/RNVVenQoxcTP5hjbo31ypsSYIUQQgghSqj0SOzs2bN59NFH8fLyKnOft7c3jz/+OLNmzaJ37942LbA2upydzeYVy4lduog2nSJ55P+mAxDWtQf3/+sVug+6g6b+AXauUgghhBCi5qp0iN27dy8zZ86s8P6BAwfy/vvv26So2kgFDu6NY/WvS9m68ldLa6yzp0/y4MtT0Wg0ODk5MXT8U/YtVAghhBDCAVQ6xJ45c6bc/rCWA2m1nD171iZF1Tb/Az4ADj58j2VbydZYGo3GbrUJIYQQQjiiSofY5s2b888//xASElLu/fv27cPPz89mhdUmBwtvzq6u3HTrXQwYOVpaYwkhhBBCXIdKh9jbbruN119/ncGDB+Pq6lrqvsuXLzN16lTuuOMOmxdYGzwOtAY8V23D1dfX3uUIIYQQQji8SofYV199lWXLltGmTRuefvpp2rZti6IoJCQk8Omnn2I0GnnllVeqs1aH1brwttzTE6O9ixFCCCGEqAUq3WLL19eXrVu3Eh4ezpQpUxg2bBhDhw7l//7v/wgPD2fLli34VmGUcc6cOQQFBeHq6kpUVNQ123Rt3LiRqKgoXF1dCQ4O5r///a/VzykcT9GKVMsOnsbo7m7vcoQQQghhZ1YtdhAQEMCKFSvIzMzk6NGjqKpK69atadCgQZWefPHixTz//PPMmTOHnj178tlnnzF48GDi4+Np2bJlmf2Tk5O57bbbePTRR/n222/ZsmULTz75JI0bN2b48OFVqkEIIYQQQjgeRS1aGsoOunXrRmRkJHPnzrVsa9++PUOHDmXGjBll9n/55Zf55ZdfSEhIsGybMGECe/fuZdu2bZV6zqysLLy9vbl48WK5PW9tLicH6tUDYHncURlFFKKG69nCB18PF3uXIYQQdVZls1qlpxPYWkFBAbt27WLgwIGltg8cOJCtW7eW+5ht27aV2X/QoEHs3LkTvV5fbbUKIYQQQoiaxarpBLaUkZGB0WgsM4/W19eXtLS0ch+TlpZW7v4Gg4GMjIxyW3zl5+eTn59v+by8ZXOFEEIIIYRjsdtIbJEre6WqqnrV/qnl7V/e9iIzZszA29vbcvP397/OioUQQgghhL3ZLcQ2atQIjUZTZtQ1PT29wi4HTZs2LXd/rVZLw4YNy33MlClTuHjxouV24sQJ23wBQgghhBDCbuwWYp2dnYmKimLNmjWltq9Zs4abbrqp3Mf06NGjzP6rV68mOjq6wiVxXVxc8PLyKnUTQgghhBCOza7TCSZNmsT//vc/vvzySxISEpg4cSIpKSlMmDABMI+iPvDAA5b9J0yYwPHjx5k0aRIJCQl8+eWXfPHFF/zrX/+y15cghBBCCCHswG4XdgGMGjWKc+fOMX36dFJTUwkPD2fFihUEBAQAkJqaSkpKimX/oKAgVqxYwcSJE/n0009p1qwZH3/8sfSIFUIIIYSoY+zaJ9YepE+sEOJqpE+sEELYV43vEyuEEEIIIURVSYgVQgghhBAOx65zYusEDw92ns4kJeuyvSsRQlSC1qniPtVCCCFqDgmxN0CnJl4E15e5sELUdE6KgreLvCwKIYQjkFfrG0CnccLHzdneZQghhBBC1BoyJ1YIIYQQQjgcCbFCCCGEEMLhSIgVQgghhBAOR0KsEEIIIYRwOBJihRBCCCGEw5EQK4QQQgghHI6EWCGEEEII4XAkxAohhBBCCIdT5xY7UFUVgKysLDtXIoQQQgghrlSU0YoyW0XqXIi9dOkSAP7+/nauRAghhBBCVOTSpUt4e3tXeL+iXivm1jImk4nTp0/j6emJoigV7peVlYW/vz8nTpzAy8vrBlYorCHnyTHIeXIMcp4cg5wnxyDnqepUVeXSpUs0a9YMJ6eKZ77WuZFYJycnWrRoUen9vby85IfPAch5cgxynhyDnCfHIOfJMch5qpqrjcAWkQu7hBBCCCGEw5EQK4QQQgghHI6E2Aq4uLgwdepUXFxc7F2KuAo5T45BzpNjkPPkGOQ8OQY5T9Wvzl3YJYQQQgghHJ+MxAohhBBCCIcjIVYIIYQQQjgcCbFCCCGEEMLh1NkQO2fOHIKCgnB1dSUqKopNmzZddf+NGzcSFRWFq6srwcHB/Pe//71BlQprzlVqaipjxoyhbdu2ODk58fzzz9+4Qus4a87TsmXLuOWWW2jcuDFeXl706NGDVatW3cBq6y5rztPmzZvp2bMnDRs2xM3NjXbt2vHhhx/ewGrrLmv/RhXZsmULWq2Wzp07V2+BArDuPG3YsAFFUcrcDh48eAMrrmXUOuj7779XdTqdOm/ePDU+Pl597rnnVA8PD/X48ePl7p+UlKS6u7urzz33nBofH6/OmzdP1el06pIlS25w5XWPtecqOTlZffbZZ9WvvvpK7dy5s/rcc8/d2ILrKGvP03PPPafOnDlT3bFjh3r48GF1ypQpqk6nU+Pi4m5w5XWLtecpLi5OXbhwobp//341OTlZ/eabb1R3d3f1s88+u8GV1y3WnqciFy5cUIODg9WBAweqnTp1ujHF1mHWnqf169ergHro0CE1NTXVcjMYDDe48tqjTobYrl27qhMmTCi1rV27durkyZPL3f+ll15S27VrV2rb448/rnbv3r3aahRm1p6rkvr06SMh9ga5nvNUJDQ0VH3jjTdsXZoowRbnadiwYep9991n69JECVU9T6NGjVJfffVVderUqRJibwBrz1NRiM3MzLwB1dUNdW46QUFBAbt27WLgwIGltg8cOJCtW7eW+5ht27aV2X/QoEHs3LkTvV5fbbXWdVU5V+LGs8V5MplMXLp0CR8fn+ooUWCb87R79262bt1Knz59qqNEQdXP0/z580lMTGTq1KnVXaLg+n6fIiIi8PPzIyYmhvXr11dnmbWe1t4F3GgZGRkYjUZ8fX1Lbff19SUtLa3cx6SlpZW7v8FgICMjAz8/v2qrty6ryrkSN54tztMHH3xATk4O99xzT3WUKLi+89SiRQvOnj2LwWBg2rRpjB8/vjpLrdOqcp6OHDnC5MmT2bRpE1ptnfuzbhdVOU9+fn58/vnnREVFkZ+fzzfffENMTAwbNmzg5ptvvhFl1zp19qddUZRSn6uqWmbbtfYvb7uwPWvPlbCPqp6nRYsWMW3aNJYvX06TJk2qqzxRqCrnadOmTWRnZ7N9+3YmT55MSEgIo0ePrs4y67zKniej0ciYMWN44403aNOmzY0qTxSy5vepbdu2tG3b1vJ5jx49OHHiBO+//76E2CqqcyG2UaNGaDSaMv9TSk9PL/M/qiJNmzYtd3+tVkvDhg2rrda6rirnStx413OeFi9ezLhx4/jxxx8ZMGBAdZZZ513PeQoKCgKgQ4cOnDlzhmnTpkmIrSbWnqdLly6xc+dOdu/ezdNPPw2Yp+eoqopWq2X16tX079//htRel9jq71P37t359ttvbV1enVHn5sQ6OzsTFRXFmjVrSm1fs2YNN910U7mP6dGjR5n9V69eTXR0NDqdrtpqreuqcq7EjVfV87Ro0SIeeughFi5cyO23317dZdZ5tvp9UlWV/Px8W5cnCll7nry8vPjnn3/Ys2eP5TZhwgTatm3Lnj176Nat240qvU6x1e/T7t27ZUri9bDbJWV2VNQW44svvlDj4+PV559/XvXw8FCPHTumqqqqTp48Wb3//vst+xe12Jo4caIaHx+vfvHFF9Ji6wax9lypqqru3r1b3b17txoVFaWOGTNG3b17t3rgwAF7lF9nWHueFi5cqGq1WvXTTz8t1WrmwoUL9voS6gRrz9Mnn3yi/vLLL+rhw4fVw4cPq19++aXq5eWlvvLKK/b6EuqEqrzulSTdCW4Ma8/Thx9+qP7000/q4cOH1f3796uTJ09WAXXp0qX2+hIcXp0Msaqqqp9++qkaEBCgOjs7q5GRkerGjRst9z344INqnz59Su2/YcMGNSIiQnV2dlYDAwPVuXPn3uCK6y5rzxVQ5hYQEHBji66DrDlPffr0Kfc8Pfjggze+8DrGmvP08ccfq2FhYaq7u7vq5eWlRkREqHPmzFGNRqMdKq9brH3dK0lC7I1jzXmaOXOm2qpVK9XV1VVt0KCB2qtXL/X333+3Q9W1h6KqhVcoCSGEEEII4SDq3JxYIYQQQgjh+CTECiGEEEIIhyMhVgghhBBCOBwJsUIIIYQQwuFIiBVCCCGEEA5HQqwQQgghhHA4EmKFEEIIIYTDkRArhBBCCCEcjoRYIYRwANOmTaNz586Wzx966CGGDh16Xce0xTGEEMJeJMQKIcR1eOihh1AUBUVR0Ol0BAcH869//YucnJxqfd6PPvqIBQsWVGrfY8eOoSgKe/bsqfIxhBCiptHauwAhhHB0t956K/Pnz0ev17Np0ybGjx9PTk4Oc+fOLbWfXq9Hp9PZ5Dm9vb1rxDGEEMJeZCRWCCGuk4uLC02bNsXf358xY8YwduxYfv75Z8sUgC+//JLg4GBcXFxQVZWLFy/y2GOP0aRJE7y8vOjfvz979+4tdcx3330XX19fPD09GTduHHl5eaXuv3IqgMlkYubMmYSEhODi4kLLli15++23AQgKCgIgIiICRVHo27dvucfIz8/n2WefpUmTJri6utKrVy/+/vtvy/0bNmxAURRiY2OJjo7G3d2dm266iUOHDtnwuymEEJUjIVYIIWzMzc0NvV4PwNGjR/nhhx9YunSp5e3822+/nbS0NFasWMGuXbuIjIwkJiaG8+fPA/DDDz8wdepU3n77bXbu3Imfnx9z5sy56nNOmTKFmTNn8tprrxEfH8/ChQvx9fUFYMeOHQCsXbuW1NRUli1bVu4xXnrpJZYuXcpXX31FXFwcISEhDBo0yFJXkVdeeYUPPviAnTt3otVqeeSRR6r8vRJCiCpThRBCVNmDDz6oDhkyxPL5X3/9pTZs2FC955571KlTp6o6nU5NT0+33B8bG6t6eXmpeXl5pY7TqlUr9bPPPlNVVVV79OihTpgwodT93bp1Uzt16lTu82ZlZakuLi7qvHnzyq0xOTlZBdTdu3dXWHt2draq0+nU7777znJ/QUGB2qxZM/Xf//63qqqqun79ehVQ165da9nn999/VwH18uXLFX+ThBCiGshIrBBCXKfffvuNevXq4erqSo8ePbj55pv5z3/+A0BAQACNGze27Ltr1y6ys7Np2LAh9erVs9ySk5NJTEwEICEhgR49epR6jis/LykhIYH8/HxiYmKq/DUkJiai1+vp2bOnZZtOp6Nr164kJCSU2rdjx46Wj/38/ABIT0+v8nMLIURVyIVdQghxnfr168fcuXPR6XQ0a9as1MVbHh4epfY1mUz4+fmxYcOGMsepX79+lZ7fzc2tSo8rSVVVABRFKbP9ym0lv76i+0wm03XXIIQQ1pCRWCGEuE4eHh6EhIQQEBBwze4DkZGRpKWlodVqCQkJKXVr1KgRAO3bt2f79u2lHnfl5yW1bt0aNzc3YmNjy73f2dkZAKPRWOExQkJCcHZ2ZvPmzZZter2enTt30r59+6t+TUIIYQ8yEiuEEDfQgAED6NGjB0OHDmXmzJm0bduW06dPs2LFCoYOHUp0dDTPPfccDz74INHR0fTq1YvvvvuOAwcOEBwcXO4xXV1defnll3nppZdwdnamZ8+enD17lgMHDjBu3DiaNGmCm5sbK1eupEWLFri6upZpr+Xh4cETTzzBiy++iI+PDy1btuTf//43ubm5jBs37kZ8a4QQwioSYoUQ4gZSFIUVK1bwyiuv8Mgjj3D27FmaNm3KzTffbOkmMGrUKBITE3n55ZfJy8tj+PDhPPHEE6xatarC47722mtotVpef/11Tp8+jZ+fHxMmTABAq9Xy8ccfM336dF5//XV69+5d7nSGd999F5PJxP3338+lS5eIjo5m1apVNGjQoFq+F0IIcT0UtWgilBBCCCGEEA5C5sQKIYQQQgiHIyFWCCGEEEI4HAmxQgghhBDC4UiIFUIIIYQQDkdCrBBCCCGEcDgSYoUQQgghhMORECuEEEIIIRyOhFghhBBCCOFwJMQKIYQQQgiHIyFWCCGEEEI4HAmxQgghhBDC4UiIFUIIIYQQDuf/AT2F0AkkrgitAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -892,7 +1050,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACiZElEQVR4nOzdeVxUVf8H8M+wCwpuKC6I6KOCGypu6INmGmqrpYm75pJklkqbZOWSZZYpaS65or9HcUkre/JRsHJfSgOzwDTF3IYQUhAXUDi/P44zwzADzMDAnRk+79frvu6de+/c+52ROd7vPeeeoxJCCBARERERERFRmTgoHQARERERERGRPWCCTURERERERGQBTLCJiIiIiIiILIAJNhEREREREZEFMMEmIiIiIiIisgAm2EREREREREQWwASbiIiIiIiIyAKYYBMRERERERFZgJPSAVij/Px8XLt2DdWqVYNKpVI6HCKqIEII3Lp1C/Xr14eDA+8/arBMJKqcWCYaxzKRqHIytUxkgm3EtWvX4Ovrq3QYRKSQy5cvo2HDhkqHYTVYJhJVbiwT9bFMJKrcSioTmWAbUa1aNQDyy/P09FQ4GiKqKFlZWfD19dWWASSxTCSqnFgmGscykahyMrVMZIJthKa5j6enJwtOokqITf70sUwkqtxYJupjmUhUuZVUJvKBGiIiIiIiIiILYIJNREREREREZAFMsImIiIiIiIgsQPFnsJctW4ZPPvkEarUarVq1QnR0NEJDQ43uu2/fPvTq1ctgfXJyMgICArSvt2/fjnfffRfnz59H06ZN8cEHH+DZZ5+1eOx5eXm4f/++xY9LVBIXFxcOmUJEREREZGUUTbC3bNmCqVOnYtmyZejevTu++OIL9O/fH0lJSWjUqFGR7/vjjz/0OpXw9vbWLh89ehTh4eF4//338eyzz+Krr77C4MGDcejQIXTp0sUicQshkJqaips3b1rkeETmcnBwgL+/P1xcXJQOhYiIiIiIHlIJIYRSJ+/SpQs6dOiA5cuXa9cFBgZiwIABmDdvnsH+mhrsGzduoHr16kaPGR4ejqysLPzvf//TruvXrx9q1KiB2NhYk+LKysqCl5cXMjMzjfYOqVarcfPmTdSpUwfu7u7sXZMqVH5+Pq5duwZnZ2c0atSIf38WVNJvv7Li90JUOfG3bxy/F6LKydTfvmI12Lm5uTh58iSmT5+utz4sLAxHjhwp9r3t27fHvXv30LJlS7zzzjt6zcaPHj2KadOm6e3ft29fREdHF3m8nJwc5OTkaF9nZWUVuW9eXp42ua5Vq1axcRKVF29vb1y7dg0PHjyAs7Oz0uEQEREREREU7OQsPT0deXl5qFu3rt76unXrIjU11eh76tWrh5UrV2L79u3YsWMHWrRogd69e+PAgQPafVJTU806JgDMmzcPXl5e2snX17fIfTXPXLu7u5f4GYnKi6ZpeF5ensKREBERERGRhuKdnBVu3iqEKLLJa4sWLdCiRQvt65CQEFy+fBkLFixAjx49SnVMAIiKikJkZKT2dVZWVrFJtrFzEFUk/v2ZKCkJ+PZbwM8PGDJE6WiIrJ8Q8nfz8ceAvz8wYgRQsyZw/Tpw967c3qoVoGk5U7AsunkTqFYNcHRUJHQiIsVdugRkZQH37gGHDgHHjgGJicDcuUBYGMBHCioFxRLs2rVrw9HR0aBmOS0tzaAGujhdu3bFf/7zH+1rHx8fs4/p6uoKV1dXk89JRDYiMRGYPh3o3ZsJNlU+OTkyAT5/HmjaVK5zdpYXgB4ewNatwLZtwL59clu/fsDu3frHmD3bcvFs2wY884wuOScismW5uYBaDYSHA8ePF7/v88/rln18gD/+MJ5snzsnr1t++kkm6a+8AkydysTcxijWRNzFxQXBwcGIj4/XWx8fH49u3bqZfJyEhATUq1dP+zokJMTgmHFxcWYdkySVSoWvv/5a8WNUpIsXL0KlUiExMdEqj0dEhHv3gJ9/BpYvlzXN27YBO3YA77wD/PvfQPfugLc34OYGuLoCLVvKuasr4OAANG4st7/8si65BgyTa0t7/nnAxUUm/QMGAG3byotIIiJrIgTw++9AdjaQkgIcPgw0aybLLpVKlqMqFVCliixPS0quC0tNBby8gNGjdcecORNo3lxOO3YAV64A6elyvZeX3GfdOuPHu3OnzB+ZLEvRJuKRkZEYOXIkOnbsiJCQEKxcuRKXLl1CREQEANl0++rVq9iwYQMAIDo6Go0bN0arVq2Qm5uL//znP9i+fTu2b9+uPeaUKVPQo0cPzJ8/H8888wy++eYb7N27F4cOHVLkM1qTMWPGYP369Qbrz507h3/9618G69VqNWrUqGHSsWfNmoWvv/7aIJE05xj2yNfXF2q1GrVr1wZgWk/4RFTJ3bsHJCTImpGYGNnk+vRpWRMNyIu7/HzLnGvoUHlB5+kpj9mkiUzS69SR23NyZBLcurW82HRyki1DsrJkAn/sGJCcLC9Co6KAiROBJ54A/voLKK7D0m++kfOCw2dOmACsXFn0ezIy5PfSp4+8oHRzk98FEVFZfPcd8Prr8gbgr7+WvL9mAKbC5bCnJ7BnD9CunXxkplYtuY+LC/DggWwR9MEHuv0f5jcAgDlzSj7v2LHAwoXApk1y2ctL/v8QFye3r1kDNGggb7I6OckykpQhFLZ06VLh5+cnXFxcRIcOHcT+/fu120aPHi169uypfT1//nzRtGlT4ebmJmrUqCH+/e9/i++++87gmNu2bRMtWrQQzs7OIiAgQGzfvt2smDIzMwUAkZmZabDt7t27IikpSdy9e9esY1qD0aNHi379+gm1Wq03PXjwQG+/nJwcs489c+ZMERQUZKFIlZOSkiIAiISEhHI5/o8//igAiBs3bpTpOLb8d1ihNm4UAhCid2+Tdi/ut28JS5cuFY0bNxaurq6iQ4cO4sCBA0Xuu337dtGnTx9Ru3ZtUa1aNdG1a1exe/dug/2+/PJLERgYKFxcXERgYKDYsWNHmc5rTHl/L5Xa6dNCLF0qRHi4EJ07C9GggRCOjvLvtrjJ01OIhg3lctWqct6rlxCPPirE228L8eOPQpw6JcTvvwuRkSFEaqoQarUQ588LkZkpxA8/CJGfX7GfNStLiM8/F6JKlZI/X2mmdu2ESE+v2M9k5/jbN47fi53Yvl2IwEDzyhk3Nzl/4gkhDh2SZev9++ad99Ch4s/x229C/P233PfmTSFatix9ufjZZ5b/3ioxU3/7iifY1sieE+xnnnnGYH3Pnj3Fyy+/LKZNmyZq1aolevToIYQQAoD46quvtPtdvnxZhIeHixo1agh3d3cRHBwsjh07JtatWycA6E3r1q0zeoxff/1V9OrVS7i5uYmaNWuKCRMmiFu3bhnE+MknnwgfHx9Rs2ZNMWnSJJGbm1vi55s+fbro0qWLwfo2bdqI9957T/t67dq1IiAgQLi6uooWLVqIpUuXarcZS7D37dsnOnXqJFxcXISPj4946623xP0ChWleXp746KOPRNOmTYWLi4vw9fUVc+fONTieZrngNHr0aLF+/XpRs2ZNce/ePb24n3vuOTFy5Eijn9WW/w4rlBUl2Js3bxbOzs5i1apVIikpSUyZMkV4eHiIv/76y+j+U6ZMEfPnzxc//fSTOHv2rIiKihLOzs7il19+0e5z5MgR4ejoKD788EORnJwsPvzwQ+Hk5CSOHTtW6vMaw4tJC3rwQIiLF4VYv16INm2KviiqWVOI+vWF6NRJiClThNi2Tf49b9ggxNmzFZ8cl4e7d8sn0QZ0F6dUJvztG8fvxYatWiVEkyZCeHsblhstWgjRo4cQX34pxOXLQpw5I8SdO/LGpKXL3Dt3ZHKuqdS6elWIxMTi93dyKn2Z2LSpZeOvpJhgl4HZCXZ+vhDZ2cpMZvzgi0uwq1atKt544w1x5swZkZycLITQT45v3bolmjRpIkJDQ8XBgwfFuXPnxJYtW8SRI0fEnTt3xGuvvSZatWqlrRW/c+eOwTFu374t6tevL5577jlx+vRp8f333wt/f38xevRovRg9PT1FRESESE5OFt9++61wd3cXK1euLPHznT59WgAQf/75p3bdb7/9JgCIP/74QwghxMqVK0W9evXE9u3bxYULF8T27dtFzZo1RUxMjBDCMMG+cuWKcHd3F5MmTRLJycniq6++ErVr1xYzZ87UnuPNN98UNWrUEDExMeLPP/8UBw8eFKtWrTI43oMHD8T27du18ajVanHz5k1x584d4eXlJbZu3ao95vXr14WLi4v44YcfjH5WJtgmsqIEu3PnziIiIkJvXUBAgJg+fbrJx2jZsqWYPXu29vXgwYNFv3799Pbp27evGDJkiEXPy4vJMjp/XoiZM2XCbKz2tn17IV57TYgdO4T46Sd5oWUPCbS5Fiwo/gLxhReEWLFCV8Pv4FD8/p98ovQnsnls1WMcy0Qbk5cnxPjxxsuJTp2E+OMP2ylz798X4uOPhfjiCyHu3RMiPl6Xh+zZI8RLLwkxYEDR5aIQslb8n3+EeOQRIY4flzc7eVPSJEywy8DsBDs7u/zuwpc0ZWeb/LlGjx4tHB0dhYeHh3YaNGiQ6Nmzp2jXrp3B/gWT4y+++EJUq1ZNZGRkGD12UU3ECx5j5cqVokaNGiK7QMzfffedcHBwEKmpqdoY/fz89JqtP//88yI8PNykz9i2bVsxZ84c7euoqCjRqVMn7WtfX1+xadMmvfe8//77IiQkRAhhmGC//fbbokWLFiK/QMG7dOlSUbVqVZGXlyeysrKEq6urNqEurPDximoi/tJLL4n+/ftrX0dHR4smTZronbcgJtgmspIEOycnRzg6Ohpc6L366qvaFiMlycvLE76+vmLJkiXadb6+vmLhwoV6+y1cuFA0atTIYucVgheTpZKXJ8Ty5UJ07Gi87K5RQ4gZM2QNBhmXl2fe/itWGP+ud++2nYtnK8NWPcaxTLQhO3YIUbu2fpnw7LNCLFokREqK0tGVv7Vrzcsrfv5Z6Yitmqm/ffYOUsn06tULiYmJ2mnx4sUAgI4dOxb7vsTERLRv3x41a9Ys9bmTk5MRFBQEDw8P7bru3bsjPz8ff/zxh3Zdq1at4FhgHNV69eohLS3NpHMMHz4cGzduBAAIIRAbG4vhw4cDAK5fv47Lly9j3LhxqFq1qnaaO3cuzms6DzISc0hIiN640927d0d2djauXLmC5ORk5OTkoHfv3qZ/EUZMmDABcXFxuHr1KgBg3bp1GDNmDMe7thPp6enIy8szGC6wbt26BsMKFuXTTz/F7du3MXjwYO261NTUYo9Z2vPm5OQgKytLbyITZWXJjmbatgVeegk4cUKuDw0FFi0Cdu6UY0r/848cF9WMYSkrHXM7MJs4UV4iFu7UtF8/Xa+/6emWi4/KZOHChRg3bhzGjx+PwMBAREdHw9fXF8uXLze6f3R0NN5880106tQJzZo1w4cffohmzZrh22+/1dvnscceQ1RUFAICAhAVFYXevXsjOjq61OclG5ObC8TGAq1ayd/8c8/p/+5/+EH20j11quwB3N698AJw/77p+3fqpOvZfMkSIC+v/GKzY4r2Im433N1l76pKndsMHh4eRnsML5j0GlOlShWzzmOMEKLIhLHgeudCY6SqVCrkm9hj7rBhwzB9+nT88ssvuHv3Li5fvowhD8c/1hxj1apV6FKw51pAL6EvKWYhhDYuS3wvANC+fXsEBQVhw4YN6Nu3L06fPq130UD2wdjfkik3UWJjYzFr1ix88803qKPp3dmMY5p73nnz5mG2Jcc/rgzS0oDFi+UFScEbEl26ABs36sahpvLXvbu8KOzSRXeDQ8PbW25j7+OKys3NxcmTJzF9+nS99WFhYThSXO/zBeTn5+PWrVt6N/6PHj2KadOm6e3Xt29fbYJtifOSFbpwAdi1S45q8LCSRU9IiEy6/fwqPjZr4OQkezN/5BHgwAHd+qVL5c2HY8eA//3P8H2vviqnkyeBDh0qLFx7wATbElQqoIQE1da1bdsWq1evxj///GO0FtvFxQV5JdzlatmyJdavX4/bt29rE/rDhw/DwcEBzZs3t0icDRs2RI8ePbBx40bcvXsXffr00dbe1a1bFw0aNMCFCxe0tdoladmyJbZv366XkBw5cgTVqlVDgwYN4O3tjSpVquD777/H+PHjSzyei4sLABj9rsaPH49Fixbh6tWr6NOnD3x9fU392GTlateuDUdHR4Na47S0NIPa5cK2bNmCcePGYdu2bejTp4/eNh8fn2KPWdrzRkVFITIyUvs6KyuLf49FuX9fjmUaG6tb17QpMG4cEBEBVOJhChXl4CDHCk9LAz76SLYe0KhTR45D68RLIKXYYquenJwc7Wu26rEC9+4B69fLcaL//ttwe8+ewIgRQLVqwODB8lq9MlOpgP37i99n507gmWcM1wcHyxvH1aqVT2x2iLdwySRDhw6Fj48PBgwYgMOHD+PChQvYvn07jh49CgBo3LgxUlJSkJiYiPT0dL3/iDSGDx8ONzc3jB49Gr/99ht+/PFHvPLKKxg5cmSJSYY5hg8fjs2bN2Pbtm0YMWKE3rZZs2Zh3rx5+Oyzz3D27FmcPn0a69atw8KFC40ea9KkSbh8+TJeeeUVnDlzBt988w1mzpyJyMhIODg4wM3NDW+99RbefPNNbNiwAefPn8exY8ewZs0ao8fz8/ODSqXCf//7X1y/fh3ZBVo+DB8+HFevXsWqVaswduxYi30fpDwXFxcEBwcjPj5eb318fDy6detW5PtiY2MxZswYbNq0CU888YTB9pCQEINjxsXFaY9Z2vO6urrC09NTbyIjjhwBOnfWJdetW8umh2fPyjGhmVwrr04dOW6sEPIiG5DjaTs7y4vzhy2SSBllbdWzZcuWCmvV4+XlpZ14w1FB584BY8bI33ZEhGFy3bMncOsWsG8fMH48EB7O5NpUTz+texr78mX9bZ6ewLVrysRlg5hgk0lcXFwQFxeHOnXq4PHHH0ebNm3w0UcfaZtWDxw4EP369UOvXr3g7e2N2IK1OQ+5u7tjz549+Oeff9CpUycMGjQIvXv3xueff27RWJ9//nlkZGTgzp07GDBggN628ePHY/Xq1YiJiUGbNm3Qs2dPxMTEwN/f3+ixGjRogF27duGnn35CUFAQIiIiMG7cOLzzzjvafd5991289tpreO+99xAYGIjw8PAinxlv0KABZs+ejenTp6Nu3bqYPHmydpunpycGDhyIqlWrGsRNti8yMhKrV6/G2rVrkZycjGnTpuHSpUuIiIgAIGuNR40apd0/NjYWo0aNwqeffoquXbsiNTUVqampyMzM1O4zZcoUxMXFYf78+Thz5gzmz5+PvXv3YurUqSafl0rhn3+AN94AevQAEhNlsrZ4sVx+9lk2P7ZWmzbpvx4zRv5b3b6tSDiVmSVa9WzdurVCW/VkZmZqp8uFkw8qX0IAX34pE+XmzeXNsVu3dNtffx148EDut28fULWqYqHajYYN5ffZr59uXYMGwG+/KReTLSnPntZslb2Og03Wr0+fPuKVV14pcT/+HZroP/+xil7ENZYuXSr8/PyEi4uL6NChg9i/f7922+jRo0XPnj21r3v27CkAGEwFh7UTQoht27aJFi1aCGdnZxEQECC2b99u1nlNwR5zC9i7V7/H1aFDhUhLUzoqMtW9e0IEBxsfuoYMlPfQhS+99JLeusDAwGKHENy0aZNwc3PTjk5S2ODBg/VG5BBCiH79+hkMXWjueQtjmVhB7t8XYu5cOW51wd9rUJAcksrckQaodObN0//+L1xQOiLFcJiuMmCCTRUtIyNDxMbGCgcHB3HmzJkS9+ffoYk0CXafPibtzosm4/i9CCHUaiEGDtS/yNi5k8M/2aqsLP1/yy+/VDoiq1QRw3StWbNGJCUlialTpwoPDw9x8eJFIYQQ06dPFyNHjtTuv2nTJuHk5CSWLl0q1Gq1drp586Z2n8OHDwtHR0fx0UcfieTkZPHRRx8VOUxXUec1BcvEcpaWJsRHHwnh7294M+zHH5WOrnKaOVP/36GS/t9n6m+fPXyQzTh48CD69+9f5PZspXpyt4AOHTrgxo0bmD9/Plq0aKF0OESkkZ0NLFgAFOxV/cUXgY8/Bry8lIuLyqZaNXmZqHk2c9Ag2csun9WsMOHh4cjIyMCcOXOgVqvRunVr7Nq1C34Pe3pWq9W4dOmSdv8vvvgCDx48wMsvv4yXX35Zu3706NGIiYkBAHTr1g2bN2/GO++8g3fffRdNmzbFli1b9EYOKem8pKD8fOCTT4B33pFNvjUmTQKmTQOMjIJDFWTWLPkM9qpV8rWDg+yBvFYtRcOyVioh2MNHYVlZWfDy8kJmZqZB5z737t1DSkoK/P394ebmplCEldPdu3e140QbY2z4MXvFv0MTbdwoexHt0wco1NGXMcX99iuzSvu9/O9/wCuvAOfPy9f16wNffy3HCSX7sGeP7hnDNWsAdjCpp9L+9kvA78XCUlKAmBjgP/+RQ25pLFsGjBzJZ6qtSeGbkD/8APTqpUwsCjD1t88abLIZVapUqVRJNBEp5PRp2WnZ6tXyta+vHOpp6FDWcNqbvn3lkGpr1sj5I48ATZooHRWR/RJC1oSuXStvglepIjuI1HBwAObPB6ZMkR1IknUp2PIHkMNUFmhpQhIT7FJixT8piX9/ROUgN1c2g5s3T7fupZeADz8EqldXKioqb2+9JRNsQI5h/vPPQMeOysZEZA/S0oArV4Bdu4Dff5frNm8uev+xY+UIDQEBFRMflU5uLvD448DevXI4rwcPACemlAXx2zCT88O7aXfu3EGVKlUUjoYqq9zcXADQDpNGRGWQny+fK5szRzfOZ+vWsha7EjV9q7SaNZM1acOHy9edOgGZmXLcVyIyza+/yqbeZ88Cx48D27cXv3/jxvKxm5EjgWeeAerVq5AwyQKcnYEdO3Rl5MiRgJHheSszJthmcnR0RPXq1bXjHLu7u0PFJoNUgfLz83H9+nW4u7vDiXcMicrmt9+AyZOB/fvl63r1ZCc7w4axOXhlMmyYbK2QlSVf79ghx8kmIp30dGDdOjkm9U8/yXWtWwNqNZCRYfw9derImmwAaNMGaNcO+PRTwNu7QkKmclKtmrw5ee6cbJWwahWflS+AV+el4OPjAwDaJJuoojk4OKBRo0a8uUNUWikpQFgY8Oef8rWHB/DBB8DEiQA7DqycMjOBmTNlS4YZM5hgU+WVnw98/z2wZYu8+fjnn0D79vKG5P37+vv+9pv+68cfl83Cg4PlIzeNGlVY2FTB9u0DGjSQy5qRGQgAE+xSUalUqFevHurUqYP7hQsaogrg4uICBwcHpcMgsj1CyM51Xn8duHlTrhs0SHZi1rSpoqGRFXj+eZlgp6bK6eENdSK7de+eLP/u3QO++Qa4e1fWVN++rb9fQoKct28PtGgB/PUX8NxzsplwVhbw7LMsQyub+vVlp3T5+fJ1fr58TUywy8LR0ZHPwBIR2YqrV4Hx44Hdu3XrDh4E/v1v5WIi69K6tZzn58vHBVgjQ/YqKQno2hW4dcv4dk9PWftcpYrsJXroUGDgQKB7dz4+Qzr37gEuLnLZ0ZFl5kO8zUBERPYtOxt4910gMFAm166uchiY3Fwm12Ro4kTdMjvuIXshhJwOHgRCQoBWrQyT6yZN5HjUP/8M/P23HLLwp59ka45Fi2R5yeSaCio8lNrffysTh5VhDTYREdmvnTuBadOACxfk606dgPXrZbJNZMxnnwFffCGXhw2TNXdEtiYvDzh/XibI//d/QFyc8f02bQIGD5a1j0Slce6c7PAMkI/VsBabNdhEVAnwjnvlc+oU0KWLHP7lwgWgYUNg2zbg6FEm11Q8V1fg6691r2/cUCwUIrNlZ8sOG52c5LPSI0fqJ9dVq8qycelSmQgNHcrkmsrmX/8CnnhC9zo1VblYrAQTbCKyXz/8IOe8m1p5/Pkn8MILQIcOsubGwQF4800gOVl2ZsYLSTLFM8/olt9+W7k4iEry99/ysQaVSk7VqgHvvKPb7u8PDBkiE6CNG2Xyc+wYMGmScjGT/fnmG93yBx8oF4eVYIJNRPZr7Vo537tX2Tio/KWkAOPGAQEB8hnC/HzZ8crx4/J5a47PSeYaOVLOV6zQ9ZJLZA2ysoDJk2VC7eMDrFxpuM+gQcCdO7IFT2ws8N//ykcePDwqPl6yf46Osld5APj8c/n8fiXGBJuIiGzXlStAZKRMrNeulc8d9u8va2hycoCOHZWOkGzVRx/pltnygaxBaqrsU8LfXzbxLuyll4BffpHl4LZtsgdwoooyb55uuW1b5eKwAuzkjIiIbM+338oE6MgR3breveUYxt26KRcX2Y/69ZWOgEg6dAiYOhU4eVK37l//Apo3B2bNkp03EimteXP912vWyJZllZDiNdjLli2Dv78/3NzcEBwcjIMHD5r0vsOHD8PJyQnt2rXTWx8TEwOVSmUw3bt3rxyiJyIiPXfvyqa1Z89a/thCyGG2+vQBnn5al1x36iSf/4qPZ3JNlnXmjG752DHl4qDK6dQpORZ1aKguuW7bVvYKnpQEfPcdk2uyLpmZuuXx42VrikpI0QR7y5YtmDp1KmbMmIGEhASEhoaif//+uHTpUrHvy8zMxKhRo9C7d2+j2z09PaFWq/UmNze38vgIRGSt2POvMt54A/jPf+QF4fHjljnmgwdAdLQcBqR/f+D77+X6Pn2A/fvleZ5+mr3Fk+W1aKFbDglRLg6qXPbtk4l1u3bA5ctyXbVqsnn4zz8DI0YYjj9MZA08PeUz2BrvvadcLApSNMFeuHAhxo0bh/HjxyMwMBDR0dHw9fXF8uXLi33fxIkTMWzYMIQU8Z+dSqWCj4+P3kRElYxarXQEldN778mLwrQ0oGtXIDwc+PVX848jhEzU69WTF5LTpskxXd3c5HJKiqyx7tGDiTWVrxUrdMul+VsmMoUQwMGDwLPPAr166RJrZ2fg8GHZsdnChbLzRiJr9vLLuuUPP1QuDgUplmDn5ubi5MmTCAsL01sfFhaGIwWfqStk3bp1OH/+PGbOnFnkPtnZ2fDz80PDhg3x5JNPIiEhwWJxE5GNcHVVOoLKqU4d4McfgX795OutW4GgIODxx4HBg4GvvgLWrZPDaR08KHu5TUqS4w7v3SuT50cflZ3zjBypG0/Tw0MOv/Xnn/Iis3FjpT4hVTYTJ+qWg4KUi4Ns0/nzsnflmzeNb8/NlT1816kjbxhqxmB3cZGtdXJz+egL2Z6CPdsX9bdvxxTr5Cw9PR15eXmoW7eu3vq6desitYgBys+dO4fp06fj4MGDcHIyHnpAQABiYmLQpk0bZGVl4bPPPkP37t1x6tQpNGvWzOh7cnJykJOTo32dlZVVyk9FRFaDd/mVU7068L//AYsWyR6+AfkakD3bmsPLS3ZcNnYsh9oi5ezcKR9DAORzhatXKxsP2QYh5HBZiYnyGf4ePYCGDWXSnZIiW/rcvCn7rtB44QXg1VdlSyAiWzVhAvDii3L5u++A4cOVjaeCKd7JmapQ0z4hhME6AMjLy8OwYcMwe/ZsNC/cS10BXbt2xYgRIxAUFITQ0FBs3boVzZs3x5IlS4p8z7x58+Dl5aWdfH19S/+BiMg6XLumdAQ0bZq8wPz5Z9lUvCiFnyWsWxeYNAlIT5cXn6++yuSalPXkk7rlNWuUi4Nsi0oFxMTIMk2tBrZsAT79VNZSnzol1929K7c/+6wcO3jtWibXZF/ef1/pCCqcYjXYtWvXhqOjo0FtdVpamkGtNgDcunULJ06cQEJCAiZPngwAyM/PhxACTk5OiIuLw6OPPmrwPgcHB3Tq1Annzp0rMpaoqChEampZIGuwmWQT2bh165SOgDQ6dgQ2b5aThhBAfr68EVKrFuDuLpuLu7srFydRUVQqWQPZtat8nZEh/26JShIUJGusDx2SnTJmZwO+vvLvx99ftrbq1Imtrsj+LF4sb5D/8Ye8WV69utIRVRjFEmwXFxcEBwcjPj4ezz77rHZ9fHw8nnnmGYP9PT09cfr0ab11y5Ytww8//IAvv/wS/v7+Rs8jhEBiYiLatGlTZCyurq5w5fOaRPZFCKUjoOKoVICjo7zQ1GByTdasSxeZEKWkyGdmR49WOiKyFR4eQN++ciKqLMaNkwk2AAQE6PpUqQQUbSIeGRmJ1atXY+3atUhOTsa0adNw6dIlREREAJA1y6NGjZKBOjigdevWelOdOnXg5uaG1q1bw8PDAwAwe/Zs7NmzBxcuXEBiYiLGjRuHxMRE7TGJqJLIz1c6AgPLli2Dv78/3NzcEBwcjIMHDxa5r1qtxrBhw9CiRQs4ODhg6tSpBvs88sgjUKlUBtMTTzyh3WfWrFkG2zmyAlEpVasm52PG8CYeEVFxCt40//vvSjW6i6IJdnh4OKKjozFnzhy0a9cOBw4cwK5du+Dn5wdAXmCWNCZ2YTdv3sSLL76IwMBAhIWF4erVqzhw4AA6d+5cHh+BiKyVlV38btmyBVOnTsWMGTOQkJCA0NBQ9O/fv8gyLicnB97e3pgxYwaCiui5eMeOHVCr1drpt99+g6OjI55//nm9/Vq1aqW3X+HWQERkooIjmHz0kXJxEBHZAk0HpwBw9KhycVQwlRBWdhVqBbKysuDl5YXMzEx4enoqHQ4RlcbYsfrPYZtQ1JXnb79Lly7o0KEDli9frl0XGBiIAQMGYN68ecW+95FHHkG7du0QHR1d7H7R0dF47733oFarta16Zs2aha+//hqJiYmljp1lIlEBBTtizc+363HY+ds3jt8LkRlcXID794G33wY++EDpaMrE1N++4r2IExGVi4YNlY5AKzc3FydPnkRYWJje+rCwMBw5csRi51mzZg2GDBmiTa41zp07h/r168Pf3x9DhgzBhQsXLHZOokrn++91y2fPKhcHEZEtWLRIzj/80Cof3ysPTLCJyD4V0axaCenp6cjLyzMYIaFu3boGIymU1k8//YTffvsN48eP11vfpUsXbNiwAXv27MGqVauQmpqKbt26ISMjo8hj5eTkICsrS28ioocefRR45BG5HBenaCi2jv1SEFUCvXvrllNSlIujAjHBJiL7lJendAQGVIWakgohDNaV1po1a9C6dWuD/ib69++PgQMHok2bNujTpw++++47AMD69euLPNa8efPg5eWlnThsIVEh/fvLeXy8snHYMPZLQVRJBAQADg9TzsOHlY2lgjDBJiL7ZEUJdu3ateHo6GhQW52WlmZQq10ad+7cwebNmw1qr43x8PBAmzZtcO7cuSL3iYqKQmZmpna6fPlymWMksiuPPSbnP/4I5OYqG4uNWrhwIcaNG4fx48cjMDAQ0dHR8PX11eunoqDGjRvjs88+w6hRo+Dl5WV0n5o1a8LHx0c7xcfHw93d3SDBdnJy0tvP29vb4p+PiAoYO1bOR4+uFM3EmWATkX2yogTbxcUFwcHBiC9U2xUfH49u3bqV+fhbt25FTk4ORowYUeK+OTk5SE5ORr169Yrcx9XVFZ6ennoTERUQFAR4ewPZ2cCxY0pHY3NsrV8KPjZDVEatW+uWd+9WLo4KwgSbiOyTld0hjYyMxOrVq7F27VokJydj2rRpuHTpEiIiIgDIWuNRo0bpvScxMRGJiYnIzs7G9evXkZiYiKSkJINjr1mzBgMGDECtWrUMtr3++uvYv38/UlJScPz4cQwaNAhZWVkYPXp0+XxQosrAwUFXi83nsM1ma/1S8LEZojJ69VXd8muvKRdHBXFSOgAionJhRTXYABAeHo6MjAzMmTMHarUarVu3xq5du+Dn5wdAduBT+NnD9u3ba5dPnjyJTZs2wc/PDxcvXtSuP3v2LA4dOoS4Ii7yr1y5gqFDhyI9PR3e3t7o2rUrjh07pj0vEZXSo48CmzbJYWdmzQKceEllLqX6pdBo06YNQkJC0LRpU6xfvx6RkZFGjxUVFaW3LSsri0k2kTlUKuCNN4BPPgHOnJGVIA72W8/L/w2IyD5ZWYINAJMmTcKkSZOMbouJiTFYJ0wYu7t58+bF7rd582aT4yMiMxRI1DB5MrBihXKx2JiK6pdizpw5Je5rSr8Urq6ucHV1LXNcRJXam2/KBBuQNyj37VM0nPJkv7cOiKhys8IEm4jsSP36umULPjdcGdhavxREZAG1a+uWz59XLo4KwASbiOyTlT2DTUR26Kuv5Pz0acCEFiekw34piCohTaeQOTl2XWayiTgR2acimmITEVlMaKhuOTERKNBvAhWP/VIQVULt2gFubsD168Aff8gxsu2QSpjykF8lk5WVBS8vL2RmZnJ4GiJbVbijHBOKOv72jeP3QlSMWrWAf/4B2rYFTp1SOhqL4m/fOH4vRGXQtStw/DiwZQsweLDS0ZjF1N8+m4gTkf1h83AiqiiapsW//sqyh4ioJK1ayfmvvyobRzligk1E9icnR+kIiKiyKNhTdXKycnEQEdmCjh3lfOdOZeMoR0ywicj+MMEmoopStSrQvbtctrMm4kREFtepk5yfPg3cu6dsLOWECTYR2R8O0UVEFaltWzlngk1EVLygIN2yj49ycZQjJthEZH8ePFA6AiKqTDQXjImJioZBRGT1nJ11y5mZysVRjphgE5H9YYJNRBWpdWs5j4sD7t9XNhYiImt36JBuOTdXuTjKCRNsIrI/TLCJqCIVHP968WLl4iAisgXduumW339fuTjKCRNsIrI/fAabiCqSu7tuecEC5eIgIrIFKpVuee5c5eIoJ0ywicj+sAabiCram2/KeWqqsnEQEdmCRx/VLWdnKxdHOWCCTUT2hwk2EVW0l17SLWdlKRcHEZEt2LZNt7x6tXJxlAMm2ERkf9hEnIgqWuPGuuXTpxULg4jIJtSsqVvesEG5OMoBE2wisj+swSYiJTz+uJwfP65sHEREtqBqVTlPSFA2Dgtjgk1E9ocJNhEpwdFRzl97Tdk4iIhswaJFuuX0dOXisDAm2ERkf5hgE5ES+vbVLQuhXBxERLZg9GjdclyccnFYmOIJ9rJly+Dv7w83NzcEBwfj4MGDJr3v8OHDcHJyQrt27Qy2bd++HS1btoSrqytatmyJr776ysJRE5FV4zPYRKSEceN0w8+kpSkbCxGRtXN21i1/+qlycViYogn2li1bMHXqVMyYMQMJCQkIDQ1F//79cenSpWLfl5mZiVGjRqF3794G244ePYrw8HCMHDkSp06dwsiRIzF48GAc5/NQRJUHa7CJSAlubrqa6xMnlI2FiMgWdOgg59euKRuHBSmaYC9cuBDjxo3D+PHjERgYiOjoaPj6+mL58uXFvm/ixIkYNmwYQkJCDLZFR0fjscceQ1RUFAICAhAVFYXevXsjOjq6nD4FEVkdJthEpLSVK5WOgIjI+o0fL+epqUBOjrKxWIhiCXZubi5OnjyJsLAwvfVhYWE4cuRIke9bt24dzp8/j5kzZxrdfvToUYNj9u3bt9hj5uTkICsrS28iIhvGBJuIlPLyy3Lu5qZsHEREtqBLF93y9OnKxWFBiiXY6enpyMvLQ926dfXW161bF6mpqUbfc+7cOUyfPh0bN26Ek5OT0X1SU1PNOiYAzJs3D15eXtrJ19fXzE9DRFaFz2ATkVI0Q3VxLGwiopJpmogDgJeXcnFYkOKdnKk0nYE8JIQwWAcAeXl5GDZsGGbPno3mzZtb5JgaUVFRyMzM1E6XL1824xMQkdVhDTYRKSUoSM7/+AO4e1fZWIiIbMGbb8r5hg3KxmEhiiXYtWvXhqOjo0HNclpamkENNADcunULJ06cwOTJk+Hk5AQnJyfMmTMHp06dgpOTE3744QcAgI+Pj8nH1HB1dYWnp6feREQ2zEoTbHNGTVCr1Rg2bBhatGgBBwcHTJ061WCfmJgYqFQqg+nevXulPi8RlVH9+oC3N5CfD5w6pXQ0RETWT62W85QUZeOwEMUSbBcXFwQHByM+Pl5vfXx8PLp162awv6enJ06fPo3ExETtFBERgRYtWiAxMRFdHrbfDwkJMThmXFyc0WMSkZ2ywibi5o6akJOTA29vb8yYMQNBmhoxIzw9PaFWq/UmtwLPfpZ2tAYiKiWVCujcWS7//LOysRAR2YJp03TLhSoJbJGiTcQjIyOxevVqrF27FsnJyZg2bRouXbqEiIgIALLp9qhRo2SgDg5o3bq13lSnTh24ubmhdevW8PDwAABMmTIFcXFxmD9/Ps6cOYP58+dj7969Rmt/iMhO3b+vdAQGzB01oXHjxvjss88watQoeBXzTJJKpYKPj4/eVJbzEpEFtG8v56zBJiIqWbt2QLVqcvn8eUVDsQRFE+zw8HBER0djzpw5aNeuHQ4cOIBdu3bBz88PgGwiaW4tS7du3bB582asW7cObdu2RUxMDLZs2aKt4SaiSsDK7n6WdtQEU2RnZ8PPzw8NGzbEk08+iYSEhAo5LxEVo21bOV+zRtk4iIhsgUql67+iwHWMrVK8k7NJkybh4sWLyMnJwcmTJ9GjRw/ttpiYGOzbt6/I986aNQuJiYkG6wcNGoQzZ84gNzcXycnJeO6558ohciKyWlaWYJdm1ARTBAQEICYmBjt37kRsbCzc3NzQvXt3nDt3rkzn5dCFRGXUqpVu+c4d5eIgIrIVHTvK+bZtysZhAYon2EREFmdlCbaGuSMclKRr164YMWIEgoKCEBoaiq1bt6J58+ZYsmRJmc7LoQuJyqhlS93yr78qF4eVY8ePRKTVpo2c79xptZ3VmooJNhHZHytLsM0dNaG0HBwc0KlTJ20NdmnPy6ELiSxA03fCxx8rG4eVYsePRKSnd2/d8v79ysVhAUywicj+WFmCbe6oCaUlhEBiYiLq1atXpvNy6EIiC/D3l/OHw4iSPnb8SER6HvbBBQD480/l4rAAJthEZH/Wr1c6AgPmjJqgoRmSMDs7G9evX0diYiKSkpK022fPno09e/bgwoULSExMxLhx47RDGJp6XiIqJ2+9JecBAcrGYYXY8SMRGVW/vpzPmaNsHGXkpHQAREQWZ4VNmsPDw5GRkYE5c+ZArVajdevWJY6a0F4z1A+AkydPYtOmTfDz88PFixcBADdv3sSLL76I1NRUeHl5oX379jhw4AA6a8bgNeG8RFROmjWT8+PHlY3DCpV3x49t2rRBVlYWPvvsM3Tv3h2nTp1Cs2bNytTxY05OjvY1O34kKifPPQd8/jlw7ZrSkZQJE2wiogoyadIkTJo0yei2mJgYg3VCiGKPt2jRIixatKhM5yWictKkiW75yhWgYUPlYrFS5dHxY9euXbWvu3fvjg4dOmDJkiVYvHhxqc87b948zJ49u9RxEZGJnnpKJtgFR2KwQWwiTkRERGRpNWrolu1gXFdLYsePRGRUo0ZybuO/MSbYREREROWhZk05HzJE2TisDDt+JCKjNAl2VhZw44aysZQBm4gTERERlYcJE4D584E7d5SOxOpERkZi5MiR6NixI0JCQrBy5UqDjh+vXr2KDRs2aN+TmJgIAHodP7q4uKDlw3HHZ8+eja5du6JZs2bIysrC4sWLkZiYiKVLl5p8XiJSkLu7bvnMGSAkRLlYyoAJNhHZHwcHID9f6SiIqLIbN04m2ACQkwO4uiobjxVhx49EVKzXXgNstHd/lSipF51KKCsrC15eXsjMzGQzICJbVK8eULhHWBOKOv72jeP3QlRKeXmA08O6jLFjgTVrlI3HTPztG8fvhagcFexw0MrSVFN/+3wGm4jsz927SkdARAQ4OuqW165VLg4iIlvx7ru6ZbVauTjKgAk2EdkfTYLtxKdgiEhhH3+sW7ay2hgiIqtTcEi8999XLo4yYIJNRPYlLw/IzZXLVaooGwsR0bhxuuW0NOXiICKyBQWbiJ84oVwcZcAEm4jsy5kzumUm2ESktJo1gSZN5HJysrKxEBHZkp9/VjqCUmGCTUT2pWCPk0ywicgaBAbK+cGDysZBRGQL3ntP6QjKhAk2EdmXgs9dO7CIIyIrkJ4u5zZ+0UhEVCFefFHOHR2BBw+UjaUUePVJRPaleXOlIyAi0jd8uG75xg3l4iAisgX16gHOzrJfnWvXlI7GbEywici+3Lsn561b63eUQUSklNGjdcsLFigXBxGRLXBwAO7fl8vHjysbSykwwSYi+6JJsN3clI2DiEjD01O3HBurXBxERLZm8GClIzAbE2wisi9MsInIGr3xhpy3b69sHEREVK6YYBORfSmYYLOJOBFZi+7d5fzSJWXjICKyBatWKR1BqTHBJiL7whpsIrJGmrGwL1xQNg4iIltQcCSYvDzl4igFJthEZF+YYBORNfL3l/N//gEyM5WNhYjI2hUcfcHVVbk4SoEJNhHZFybYRGSNqlYFvL3lckqKsrEQEVm7gkl1Xh4ghHKxmEnxBHvZsmXw9/eHm5sbgoODcfDgwSL3PXToELp3745atWqhSpUqCAgIwKJFi/T2iYmJgUqlMpjuaS66ici+3bkj5+7ufAabiKyLppn4+fPKxkFEZGv++1+lIzCZk5In37JlC6ZOnYply5ahe/fu+OKLL9C/f38kJSWhUaNGBvt7eHhg8uTJaNu2LTw8PHDo0CFMnDgRHh4eePHFF7X7eXp64o8//tB7rxtrs4gqh9u35dzDQ9k4iIgKa9pUjula6BqFiIiMuHYNqF9fLl+/rmwsZlC0BnvhwoUYN24cxo8fj8DAQERHR8PX1xfLly83un/79u0xdOhQtGrVCo0bN8aIESPQt29fg1pvlUoFHx8fvYmIKomCNdhERNakaVM5v3xZ2TiIiGxBvXq65XHjlIvDTIol2Lm5uTh58iTCwsL01oeFheHIkSMmHSMhIQFHjhxBz5499dZnZ2fDz88PDRs2xJNPPomEhIRij5OTk4OsrCy9iYhslOb36+5uU8/rEFEl4Osr5xyqi4jIbimWYKenpyMvLw9169bVW1+3bl2kpqYW+96GDRvC1dUVHTt2xMsvv4zx48drtwUEBCAmJgY7d+5EbGws3Nzc0L17d5w7d67I482bNw9eXl7ayVfzHyAR2Z716+Vc01SciMhaaK4vWINNRGSa6Gjdso1c2yneyZmqUCdEQgiDdYUdPHgQJ06cwIoVKxAdHY3Y2Fjttq5du2LEiBEICgpCaGgotm7diubNm2PJkiVFHi8qKgqZmZna6TL/4yOyfcV0mKgUczp1VKvVGDZsGFq0aAEHBwdMnTrVYJ9Vq1YhNDQUNWrUQI0aNdCnTx/89NNPevvMmjXLoNNHPjZDpBAm2ERE5pk0SbdctapycZhBsQS7du3acHR0NKitTktLM6jVLszf3x9t2rTBhAkTMG3aNMyaNavIfR0cHNCpU6dia7BdXV3h6empNxGRjfPysqpexDWdOs6YMQMJCQkIDQ1F//79camIpqI5OTnw9vbGjBkzEBQUZHSfffv2YejQofjxxx9x9OhRNGrUCGFhYbh69arefq1atYJardZOp0+ftvjnIyITaBLsmzeBW7cUDYWIyCY4O+u/PnZMmTjMoFiC7eLiguDgYMTHx+utj4+PR7du3Uw+jhACOTk5xW5PTExEvYIPyRORfbp7V7dsZb2Im9upY+PGjfHZZ59h1KhR8PLyMrrPxo0bMWnSJLRr1w4BAQFYtWoV8vPz8f333+vt5+TkpNfpo7dmLF4iqlgFb+B/+61ycRAR2ZKAAN1ySIhycZhI0SbikZGRWL16NdauXYvk5GRMmzYNly5dQkREBADZdHvUqFHa/ZcuXYpvv/0W586dw7lz57Bu3TosWLAAI0aM0O4ze/Zs7NmzBxcuXEBiYiLGjRuHxMRE7TGJyI7duKFbbtVKuTgKsUSnjqa4c+cO7t+/j5o1a+qtP3fuHOrXrw9/f38MGTIEFy5csNg5iaiUUlKUjoCIyDYkJ+u/1owYY6UUHQc7PDwcGRkZmDNnDtRqNVq3bo1du3bBz88PgHwGsWDzyfz8fERFRSElJQVOTk5o2rQpPvroI0ycOFG7z82bN/Hiiy8iNTUVXl5eaN++PQ4cOIDOnTtX+Ocjogp28aJuuUYNxcIorCydOppj+vTpaNCgAfr06aNd16VLF2zYsAHNmzfH33//jblz56Jbt274/fffUatWLaPHycnJ0WsZxJEViCxo9GjZGWN+vtKREBHZjpAQ4OhRuezhYdUjxSiaYAPApEmTMKngw+sFxMTE6L1+5ZVX8MorrxR7vEWLFmHRokWWCo+IbEnBO5pjxwKffaZcLEaUplNHU3388ceIjY3Fvn374Obmpl3fv39/7XKbNm0QEhKCpk2bYv369YiMjDR6rHnz5mH27NkWiYuICvH3l3N2dEZEZLoPPgAefVT3+uxZoHlzmWhbUZ87gJlNxH/66Sfk5eVpX4tCdw5ycnKwdetWy0RGRFRabdrIcbCtRFk6dTTFggUL8OGHHyIuLg5t27Ytdl8PDw+0adOm2I4fObICUTlq1EjOORY2EZHpevXSf/3tt8C77wKNGwMWbA1oCWYl2CEhIcjIyNC+9vLy0nuW7+bNmxg6dKjloiMiMoemWbOrq7JxFGKpTh2N+eSTT/D+++9j9+7d6NixY4n75+TkIDk5udiOHzmyAlE54lBdWhy6kIjMUrBy9/XXgblz5c3Kzz9XLiYjzEqwC9dYF35d1Doiogpx7Zqcnz8v51bUZMjcTh0BIDExEYmJicjOzsb169eRmJiIpKQk7faPP/4Y77zzDtauXYvGjRsjNTUVqampyM7O1u7z+uuvY//+/UhJScHx48cxaNAgZGVlYfTo0RXzwYlIX8Ea7Ep8zcShC4nIYo4cAQqNoKIoYQaVSiX+/vtv7euqVauK8+fPa1+npqYKBwcHcw5plTIzMwUAkZmZqXQoRGQOebkqJyGEaNZM/3UJyvu3v3TpUuHn5ydcXFxEhw4dxP79+7XbRo8eLXr27Km3PwCDyc/PT7vdz8/P6D4zZ87U7hMeHi7q1asnnJ2dRf369cVzzz0nfv/9d7PiZplIZEF37ujKpRs3lI6mWOX52+/cubOIiIjQWxcQECCmT59e4nt79uwppkyZUuJ+Dx48ENWqVRPr16/Xrps5c6YICgoyN1w9LBOJFBQdrX+9V3Das6dcT23qb1/xTs6IiCoLczp1BEpuEXSxYK/pRdi8ebMpoRFRRalSBahVC8jIkM3Eq1dXOqIKpxm6cPr06XrrK3roQldXV3Tp0gUffvghmjRpUuRxOLICkRV59VXAyCMiAIC+fa2iZZDZ42AnJSXh119/xa+//gohBM6cOaN9/fvvv5dHjEREpnnuOTnXXExZQSFLRGRA05+NZsiZSsYahi7cs2cPVq1ahdTUVHTr1k2vj6HC5s2bBy8vL+3kq3mOnogqnkoFfPWV0lEUy+wa7N69e+vVqjz55JMA5PAzwoJDzhARma1OHTkvYTg/IiKr8O23wIsvKh2FYmxl6MKoqCi9bVlZWUyyiZT0+ONFb7OCYbvMSrBTUlLKKw4iorK7dUvOq1VTNg4iouK8/jqwYAFQo4bSkSiiooYu3Lt3r0WGLnR1dYWrlY1OQVSpubjIlkD37gENGuhvS0sDTC1H1q4F/vgD+OgjiyblZiXYfn5+Je6TmJho0n5ERBZXOMFmixoiskZdusj52bPKxqGQgkMXPvvss9r18fHxeOaZZ8p07E8++QRz587Fnj17zBq6MDQ0tEznJaIKpnkcMD9fzh0ePvkcEWF6E/Jx4+T8qaeAf//bYqFZpJOzzMxMbNy4EatXr8apU6eQl5dnicMSEZmHNdhEZAsCAuT8+HGraM6ohMjISIwcORIdO3ZESEgIVq5caTB04dWrV7FhwwbtexITEwFAb+hCFxcXtGzZEoBsFv7uu+9i06ZN2qELAaBq1aqoWrUqADl04VNPPYVGjRohLS0Nc+fO5dCFRLascPn59dfmH+PGDYuEolGmBPuHH37A2rVrsWPHDvj5+WHgwIFYs2aNpWIjIjIPE2wisgXNmumWk5OBhwliZRIeHo6MjAzMmTMHarUarVu3xq5du7StINVqtcGY2O3bt9cunzx5Eps2bYKfn592RIVly5YhNzcXgwYN0nvfzJkzMWvWLADAlStXMHToUKSnp8Pb2xtdu3bFsWPH2PqSyF5obmAqyOwE+8qVK4iJicHatWtx+/ZtDB48GPfv38f27du1dxCJiBTBBJuIbEHB53mvXKmUCTbAoQuJyILefhv48EOghH4XKoJZw3Q9/vjjaNmyJZKSkrBkyRJcu3YNS5YsKa/YiIjMwwSbiGxF165yfvKksnEQEdkDTcugrVuVjQNmJthxcXEYP348Zs+ejSeeeAKOjo7lFRcRkfmuXZNzJthEZO1++03OWVFBRFR2SUlKR6BlVoJ98OBB3Lp1Cx07dkSXLl3w+eef4/r16+UVGxGR6dLSdMtMsInI2mmaRterp2wcRET2IDBQt5yRoVwcMDPBDgkJwapVq6BWqzFx4kRs3rwZDRo0QH5+PuLj43FL0zyTiKiiFew1ksN0EZG169VLzh88UDYOIiJ7MGyYblnhZuJmJdga7u7uGDt2LA4dOoTTp0/jtddew0cffYQ6derg6aeftnSMREQl0zQPBwB3d+XiICIyha+vnBfqKZuIiEqhYOeRNWooFwdKmWAX1KJFC3z88ce4cuUKNm/eDBVrjIhICdnZumWWQ0Rk7TQJ9s2bug4aiYio7IYOVfT0Zg3TNXbs2BL3qVWrVqmDISIqtU8/NVxXwpAuRESK8fTULcfHA889p1wsRESVmYUrZsxKsGNiYuDn54f27dsXORYha7CJiIiIzHD8OBNsIiJLevAAcDIx1bVwhYxZCXZERAQ2b96MCxcuYOzYsRgxYgRq1qxp0YCIiEpl5Ejg//4PeOklpSMhIjJN167AsWNATAwwf77S0RAR2baICGDFCrl865Ziz2Kb9Qz2smXLoFar8dZbb+Hbb7+Fr68vBg8ejD179hRZo01EVCHy8+W8aVPdOraoISJr5uMj5wWHGSQiotJZsEC3fPmy6e+z8PWi2Z2cubq6YujQoYiPj0dSUhJatWqFSZMmwc/PD9kFOxkiIqpId+7IuYeHsnEQEZkqIkLOAwKUjYOIyB4UvAZ8+23FwihTL+IqlQoqlQpCCORrao+IiJRw+7acM8EmIlvRqJGcnznDThmJiOyE2Ql2Tk4OYmNj8dhjj6FFixY4ffo0Pv/8c1y6dAlVq1YtjxiJiEoWFyfnvNlHRLaicWPdsjnNGYmIyLjateU8LEyxEMxKsCdNmoR69eph/vz5ePLJJ3HlyhVs27YNjz/+OBwcSlcZvmzZMvj7+8PNzQ3BwcE4ePBgkfseOnQI3bt3R61atVClShUEBARg0aJFBvtt374dLVu2hKurK1q2bImvvvqqVLERkQ3i752IbEWVKrrlb75RLg4iInvxxBNyfveuYiGY1Yv4ihUr0KhRI/j7+2P//v3Yv3+/0f127Nhh0vG2bNmCqVOnYtmyZejevTu++OIL9O/fH0lJSWikaTZVgIeHByZPnoy2bdvCw8MDhw4dwsSJE+Hh4YEXX3wRAHD06FGEh4fj/fffx7PPPouvvvoKgwcPxqFDh9ClSxdzPi4R2aLx45WOgIjIfNHRwCuvKB0FEZFt09y4tJUEe9SoURYd53rhwoUYN24cxj+8II6OjsaePXuwfPlyzJs3z2D/9u3bo3379trXjRs3xo4dO3Dw4EFtgh0dHY3HHnsMUVFRAICoqCjs378f0dHRiI2NtVjsRGRFCj67GBysXBxEROYKCgJOnQIuXFA6EiIi2+fqKudXryoWglkJdkxMjMVOnJubi5MnT2L69Ol668PCwnDkyBGTjpGQkIAjR45g7ty52nVHjx7FtGnT9Pbr27cvoqOjyxwzEVmpgiMYeHnpljlMFxFZu65dZYJNRERlt26dnK9eDaxapUgIZepFvCzS09ORl5eHunXr6q2vW7cuUlNTi31vw4YN4erqio4dO+Lll1/W1oADQGpqqtnHzMnJQVZWlt5ERDZE85t1dNR/ptHKmNPnhFqtxrBhw9CiRQs4ODhg6tSpRvczpc8Jc85LRBVsyhSlIyAish+5uea/R+lxsC2tcJNzIUSJzdAPHjyIEydOYMWKFUabfpt7zHnz5sHLy0s7+fr6mvkpiEhRmZly7uVltbXWmj4nZsyYgYSEBISGhqJ///64dOmS0f1zcnLg7e2NGTNmICgoyOg+mj4nRo4ciVOnTmHkyJEYPHgwjh8/XurzElEFq19ft3znjnJxEBHZg5Ur5bxBA9PfY+FhEhVLsGvXrg1HR0eDmuW0tDSDGujC/P390aZNG0yYMAHTpk3DrFmztNt8fHzMPmZUVBQyMzO102UOlUFkWzQ12J6eysZRjIJ9TgQGBiI6Ohq+vr5Yvny50f0bN26Mzz77DKNGjYJXwWbvBRTscyIgIABRUVHo3bu33iMx5p6XiCpYwXLru++Ui4OIyB5oEusirp0qgmIJtouLC4KDgxEfH6+3Pj4+Ht26dTP5OEII5OTkaF+HhIQYHDMuLq7YY7q6usLT01NvIiIbcuCAnF+8qL/ewnckS0vT50RYoTEZzelzwpijR48aHLNv377aY5bXeYnIggq2urHSFjhERDbDw0POk5JMf4+Fy16zOjmztMjISIwcORIdO3ZESEgIVq5ciUuXLiEiIgKArFm+evUqNmzYAABYunQpGjVqhICAAAByXOwFCxbglQLDWkyZMgU9evTA/Pnz8cwzz+Cbb77B3r17cejQoYr/gERUMd56S+kIilWWPieKU1KfE6U9b05Ojt6NS/ZLQVTOnnwS+O9/gRs3lI6EiMi25efrltPSgDp1Sn6PPSXY4eHhyMjIwJw5c6BWq9G6dWvs2rULfn5+AGQnPwWfE8zPz0dUVBRSUlLg5OSEpk2b4qOPPsLEiRO1+3Tr1g2bN2/GO++8g3fffRdNmzbFli1bOAY2UWVkZbVBpelzwhLHLE2/FLNnzy5TXERkBm9vOU9LUzYOIiJbV7BSISvLtATbwhRNsAFg0qRJmDRpktFthYcFe+WVV/Rqq4syaNAgDBo0yBLhEZEtaNoUOH8eaN9e6UiMKkufE8Upqc+J0p43KioKkZGR2tdZWVns/JGoPN2/L+crVwIzZigbCxGRLWvSRLfcrJkijwsq3os4EVGZ+fvL+WuvKRtHESzV50RhJfU5Udrzsl8Kogr2119yzt79iYgqnr0N00VEVGY20It4ZGQkVq9ejbVr1yI5ORnTpk0z6HNi1KhReu9JTExEYmIisrOzcf36dSQmJiKpQKcdU6ZMQVxcHObPn48zZ85g/vz52Lt3r96Y2SWdl4isgOY36+OjaBgVbdmyZfD394ebmxuCg4Nx8ODBIvdVq9UYNmwYWrRoAQcHB71yrqDt27ejZcuWcHV1RcuWLfHVV1+V6bxEVAkwwSYiKuTWLTmvVk3ZOIoRHh6O6OhozJkzB+3atcOBAweK7XMCANq3b4/27dvj5MmT2LRpE9q3b4/HH39cu13T58S6devQtm1bxMTEGPQ5UdJ5icgKaB7BcFL8yb0Ks2XLFkydOhUzZsxAQkICQkND0b9/f4NyUCMnJwfe3t6YMWMGgoKCjO5z9OhRhIeHY+TIkTh16hRGjhyJwYMH4/jx46U+LxHZoLVr5bx7d0VOrxLCSsaxsSJZWVnw8vJCZmYmm0YS2YKGDYGrV4GTJ4EOHXTrAwKAP/6QyyYUdfztG8fvhaicpaTI5warVAHu3FE6Gq3y/O136dIFHTp0wPLly7XrAgMDMWDAAMybN6/Y9z7yyCNo164doqOj9daHh4cjKysL//vf/7Tr+vXrhxo1aiA2NrbM59VgmUhk5b79Fnj6aaBTJ+Cnn4reT1NzvXs30LdviYc19bfPGmwisn02UINNRFSkWrXk/O5dq0qwy0tubi5OnjyJsLAwvfVhYWE4cuRIqY979OhRg2P27dtXe8zyOi8RWRl3dzm/e9e0/e1pmC4iojLLz9cl2IXvJlrZMF1EREZVqwY4O8vexDMydBeHdio9PR15eXkGoxnUrVvXYNQDc6SmphZ7zNKeNycnBzk5OdrXWZp+P4jIOlWpIucKJdiswSYi23b7tq75N5vqEZEtUql0tdgZGcrGUoFUhS5qhRAG68rjmOaed968efDy8tJOHLaQyMppEmy1uuh9yvEpaSbYRGTbNLXXjo6Am5uysRARlVbt2nKenq5sHBWgdu3acHR0NKg1TktLM6hdNoePj0+xxyzteaOiopCZmamdLl++XOoYiagCaBLsO3eAa9eM71MwwWYNNhFRAQWH6GKTcCKyVTVqyHklqMF2cXFBcHAw4uPj9dbHx8ejW7dupT5uSEiIwTHj4uK0xyzteV1dXeHp6ak3EZEVK/iYzTffGN+nHBNsPoNNRLatuA7OOEgCEdkKTU+327cD4eHKxlIBIiMjMXLkSHTs2BEhISFYuXIlLl26hIiICACy1vjq1avYsGGD9j2JiYkAgOzsbFy/fh2JiYlwcXFBy5YtAQBTpkxBjx49MH/+fDzzzDP45ptvsHfvXhw6dMjk8xKRHXB21i17eRnfhwk2EVERCtZgExHZqqZNgaQk4MYNpSOpEOHh4cjIyMCcOXOgVqvRunVr7Nq1C35+fgAAtVptMDZ1+/bttcsnT57Epk2b4Ofnh4sXLwIAunXrhs2bN+Odd97Bu+++i6ZNm2LLli3o0qWLyeclIjtQp45uuWrVCj89E2wism2aBNtYDTabjBORrZg0CZg8uejaFjs0adIkTJo0yei2mJgYg3XChFZJgwYNwqBBg0p9XiKyA46OQPfuwOHDQIERAPSwkzMioiIUNUQXEZEt8faW87Q0ZeMgIrIHhw/L+ddfG9/OTs6IiIrAJuJEZA80vYgfPMj+I4iILGXTJuPrWYNNRFSE4jo5IyKyFdWr65Zv3lQqCiKiyoE12ERERdBciFai5xaJyA516KBbvnJFuTiIiOzBo48Wv50JNhFREdLT5Vzz/CIRka378kulIyAism1Dh8r5U08Z384Em4ioCJoEW/P8IhGRrWvYUOkIiIhsW5Uqcn73rvHtfAabiKgIxSXYHKaLiGxJeLicF3VBSEREpnFzk/Pbt41vZw02EVERNAl2rVrKxkFEVFaa0RA0oyMQEVHpaBLro0eNb2eCTURUhMxMOWcnZ0Rk6/74Q84/+kjZOIiIbF1qavHbmWATERWBw3QRkb0oqUkjERGZZtCg4rfzGWwiIiMePADu3JHLxhLsciw8iYgsbuRIpSMgIrIPVavqlvPzi9+XNdhERA/t3atb1jy7SERkq8y5ICQioqK5u+uWjx833M4abCIiI1xdjS9rsBdxIrIlTzyhWz58WLk4iIhsnWaYLgA4dcpwOxNsIiIjrl6V85o1lY2DiMgSnJ11y6+9plwcRES2ztFRt9yggeF2e+7kbNmyZfD394ebmxuCg4Nx8ODBIvfdsWMHHnvsMXh7e8PT0xMhISHYs2eP3j4xMTFQqVQG071798r7oxBRRdM8r/jPP8rGQURkaT//rHQERET24d13DdfZa4K9ZcsWTJ06FTNmzEBCQgJCQ0PRv39/XLp0yej+Bw4cwGOPPYZdu3bh5MmT6NWrF5566ikkJCTo7efp6Qm1Wq03uWl65iQiIiKyViNGyHm7doqGQURkN0pqIm5PCfbChQsxbtw4jB8/HoGBgYiOjoavry+WL19udP/o6Gi8+eab6NSpE5o1a4YPP/wQzZo1w7fffqu3n0qlgo+Pj95ERHbokUfkfMMGRcMwlTktdgBg//79CA4OhpubG5o0aYIVK1bobX/kkUeMtth5osBznLNmzTLYzjKRyIr16SPndesqGwcRkb1o3NhwnT0+g52bm4uTJ08iLCxMb31YWBiOHDli0jHy8/Nx69Yt1Cz0/GV2djb8/PzQsGFDPPnkkwY13IXl5OQgKytLbyIiG7Bvn5zbwIWouS12UlJS8PjjjyM0NBQJCQl4++238eqrr2L79u3afXbs2KHXUue3336Do6Mjnn/+eb1jtWrVSm+/06dPl+tnJaIy0FzT3LihbBxERPbi4kXDdfZYg52eno68vDzULXRhXLduXaSmppp0jE8//RS3b9/G4MGDtesCAgIQExODnTt3IjY2Fm5ubujevTvOnTtX5HHmzZsHLy8v7eTr61u6D0VEyijYkYWVMrfFzooVK9CoUSNER0cjMDAQ48ePx9ixY7FgwQLtPjVr1tRrqRMfHw93d3eDBNvJyUlvP29v73L9rERUBpoEm31LEBGVTatWRW+zxxpsDVWhOwZCCIN1xsTGxmLWrFnYsmUL6tSpo13ftWtXjBgxAkFBQQgNDcXWrVvRvHlzLFmypMhjRUVFITMzUztdvny59B+IiCrGgwe65bZtje9jJcN0labFztGjRw3279u3L06cOIH79+8bfc+aNWswZMgQeHh46K0/d+4c6tevD39/fwwZMgQXLlwow6chonJVo4ac//mnsnEQEdm6yZOL3lYwwbZwsu1k0aOZoXbt2nB0dDSorU5LSzOo1S5sy5YtGDduHLZt24Y+mmeViuDg4IBOnToVW4Pt6uoKV2Nj6BKR9Sr4KEf16oqFYYrStNhJTU01uv+DBw+Qnp6OevXq6W376aef8Ntvv2HNmjV667t06YINGzagefPm+PvvvzF37lx069YNv//+O2rVqmX03Dk5OcjJydG+5mMzRBWoYB8JGRlAEb9TIiIqwa5dRW+zxxpsFxcXBAcHIz4+Xm99fHw8unXrVuT7YmNjMWbMGGzatEmvI5+iCCGQmJhocDFKRDbu5k3dcsGxY62YuS12jO1vbD0ga69bt26Nzp07663v378/Bg4ciDZt2qBPnz747rvvAADr168v8rx8bIZIQQX7lTl2TLk4iIhs3cSJRW+zxwQbACIjI7F69WqsXbsWycnJmDZtGi5duoSIiAgAsun2qFGjtPvHxsZi1KhR+PTTT9G1a1ekpqYiNTUVmZmZ2n1mz56NPXv24MKFC0hMTMS4ceOQmJioPSYR2YmkJKUjMFlpWuz4+PgY3d/Jycmg5vnOnTvYvHkzxo8fX2IsHh4eaNOmTbGtevjYDJGVSExUOgIiItulaRHUoEHx+1k42VY0wQ4PD0d0dDTmzJmDdu3a4cCBA9i1axf8/PwAAGq1Wq+H3S+++AIPHjzAyy+/jHr16mmnKVOmaPe5efMmXnzxRQQGBiIsLAxXr17FgQMHDGp1iMjG3b2rdAQmK02LnZCQEIP94+Li0LFjRzgXqrHfunUrcnJyMEIzfm4xcnJykJycXGyrHldXV3h6eupNRKSAd95ROgIiItul6ZPm6lXDbeVYg63YM9gakyZNwqRJk4xui4mJ0Xu9TzMkTzEWLVqERYsWWSAyIrJq6ely/uyzysZhosjISIwcORIdO3ZESEgIVq5cadBi5+rVq9jwcEzviIgIfP7554iMjMSECRNw9OhRrFmzBrGxsQbHXrNmDQYMGGD0merXX38dTz31FBo1aoS0tDTMnTsXWVlZGD16dPl+YCIqPX9/ICVF6SiIiOxHZibg5aV7bc8JNhFRqWgSbBvpACg8PBwZGRmYM2cO1Go1WrduXWyLHX9/f+zatQvTpk3D0qVLUb9+fSxevBgDBw7UO+7Zs2dx6NAhxMXFGT3vlStXMHToUKSnp8Pb2xtdu3bFsWPHtOclIiu0cKG8eWgj5RsRkVVq3Fi3XHgEFnt9BpuIqNQyMuTchi5AJ02ahIsXLyInJwcnT55Ejx49tNtiYmIMWun07NkTv/zyC3JycpCSkmK0L4nmzZtDCIHHHnvM6Dk3b96Ma9euITc3F1evXsX27dvRsmVLi34uIrIwzditBXrzt0fLli2Dv78/3NzcEBwcjIMHDxa7//79+xEcHAw3Nzc0adIEK1as0Nv+yCOPQKVSGUwFO8WdNWuWwXafgj23E5H9KDhKVMHhXYFyHaaLCTYR2abr1+Xc21vZOIiILE3TR0J2NnDrlrKxlJMtW7Zg6tSpmDFjBhISEhAaGor+/fvrteQpKCUlBY8//jhCQ0ORkJCAt99+G6+++iq2b9+u3WfHjh1Qq9Xa6bfffoOjoyOef/55vWO1atVKb7/Tp0+X62clIoWoVLqRZopLsC2MTcSJyDZpmojXrq1sHERElla1qm55716b6WvCHAsXLsS4ceO0ox9ER0djz549WL58OebNm2ew/4oVK9CoUSNER0cDAAIDA3HixAksWLBA++hMzYJDnEG24HF3dzdIsJ2cnFhrTVRZODvL5uFsIk5EVAJNgs0abCKyZ5s2KR2BxeXm5uLkyZMICwvTWx8WFoYjR44Yfc/Ro0cN9u/bty9OnDiB+4UvnB9as2YNhgwZAg9NT8IPnTt3DvXr14e/vz+GDBmCCxcuFBtvTk4OsrKy9CYishFOD+uTK7AGmwk2EdkmTRNx1mATkT378kulI7C49PR05OXloW7dunrr69ati9TUVKPvSU1NNbr/gwcPkK654VrATz/9hN9++01bQ67RpUsXbNiwAXv27MGqVauQmpqKbt26IUPTr4cR8+bNg5eXl3by9fU19aMSkdI0TcSLq8HmM9hERGATcSKyb08/rXQE5U6lUum9FkIYrCtpf2PrAVl73bp1a3Tu3Flvff/+/TFw4EC0adMGffr0wXfffQcAWL9+fZHnjYqKQmZmpna6fPly8R+MiKwHa7CJiExw5w5w965cLq6JeDEXakREVm3RIjl3cyvXC0El1K5dG46Ojga11WlpaQa11Bo+Pj5G93dyckKtQqNJ3LlzB5s3bzaovTbGw8MDbdq0wblz54rcx9XVFZ6ennoTEdkIU2qwLYwJNhHZHk3zcBcX/c6AiIjshSbRvHdPV+bZCRcXFwQHByM+Pl5vfXx8PLp162b0PSEhIQb7x8XFoWPHjnDWXEA/tHXrVuTk5GDEiBElxpKTk4Pk5GTU0/TcTkT2paga7ILYRJyIKj1NhzS1a7OWmojsU8GOuVavVi6OchIZGYnVq1dj7dq1SE5OxrRp03Dp0iVEREQAkM2yR40apd0/IiICf/31FyIjI5GcnIy1a9dizZo1eP311w2OvWbNGgwYMMCgZhsAXn/9dezfvx8pKSk4fvw4Bg0ahKysLIwePbr8PiwRKUeBGmwO00VEtkdTm5Ofr2wcREQV4dtvgbffVjoKiwoPD0dGRgbmzJkDtVqN1q1bY9euXfDz8wMAqNVqvTGx/f39sWvXLkybNg1Lly5F/fr1sXjxYu0QXRpnz57FoUOHEBcXZ/S8V65cwdChQ5Geng5vb2907doVx44d056XiOyMAs9gM8EmItuj6WCmVy9l4yAiKk+PPALs2wccO6Z0JOVi0qRJmDRpktFtMTExBut69uyJX375pdhjNm/eXNv5mTGbN282K0YisnF8BpuIyASaWg0OlUJE9uzRR+XcifUhRESlYkoNNp/BJqJKT1OD3aiRsnEQEZWnsDA5d3RUNg4iIlvFGmwiIhNoEmzWYBORPatZU85zcpSNg4jIVuXlyTnHwSYiKsaJE3LOGmwismeaBBsA7t5VLg4iIluluWb89lv99UywiYgeSk/XLTdsqFwcRETlrWCCvW6dcnEQEdm6GjX0X/MZbCKihy5e1C3Xrq1YGERE5U6l0i2//LJycRAR2aqhQ+W8cKtH1mATET2kSbBDQhQNg4iownGIKSIi87i5yfm9e/rrmWATET2UkiLn/v7KxkFEVBG+/FK3rKmJISIi01SpIueF+7FgE3EioocuXJDzxo1L3rdg80oiIlukuTjU+OcfZeIgIrJFt27J+W+/VdgpmWBTxRAC+OMPYP9+4McfgZ9/Bi5dAjIyZPf5N27outHPyQGuXwdu31Y2ZrJOK1bIuabJDxGRPevbF5gwQff6nXeUi4WIyNZs3CjnO3bory/HJuJO5XZkqlzu3weuXQPOnQN+/RU4eVI+K5ubK5Notdrw2YfCHBwAJyf5Ho1atYD27YE6deQPwc1NNg12dQW8vGSHBY6O8tgtWgDNmsnjkP175BGlIyAiKn+OjsDKlcCqVfL18uXAsmXKxkREZCteeglYuhTo1El/fX5+uZ2SCTaZTwjg7FngwAE5HTsG/Plnye9zdgaaNJHNdjMzZdJdUH6+fnINyOR8717TY6tRAwgOBnx85FS7NjBuHHubthc3buiWAwOVi4OIqKI9/zywbZtcnj8feOutkt+TkqK7EU1EVBm1aCHnTZror9e0nAUsXpvNBJtKlpUF/PKLnH78USbUBcci1nBwAP71L6BVK5nktmgBuLgA1asD9eoBvr76zXrv35d/0DduAB4eci4E4OkJVKsmm4gnJ8tnJtLTZa31jRuyafnNm0B2tlyflycT83Pn5PbCCfn06bLW+9lngaAgWfPp68vnc21RUpJuuVYt5eIgIqposbG6BHv6dODFFw3HdS0oMBA4cwZ4/HHgu+8qJkYiImvj4iLnOTn66wsm2BameIK9bNkyfPLJJ1Cr1WjVqhWio6MRGhpqdN8dO3Zg+fLlSExMRE5ODlq1aoVZs2ahb9++evtt374d7777Ls6fP4+mTZvigw8+wLPPPlsRH8f2CSHveP/yC3D4sExWf//d8M6OqyvQtSvQowfQrRvQvDng52feXXJnZzmvW1fOq1bV3+7pCXTpIidT5OQAR4/KC4p//gEuXwa2b5fPc6ekAAsX6vatUkX2xtq/v/wMdeqYHjcp58oVOQ8ONu0GScOGFdqpBRFRuXF0BCIidP1QfPGFTLSNycuT/xcCwK5dFRMfEZE1cnWV88KtZMsxwVb0YdUtW7Zg6tSpmDFjBhISEhAaGor+/fvj0qVLRvc/cOAAHnvsMezatQsnT55Er1698NRTTyEhIUG7z9GjRxEeHo6RI0fi1KlTGDlyJAYPHozjx49X1MeyPRkZsgOAoUNlzW7TprIpWnS0TE6EkMnzE08ACxYAR47IGuR9+4A5c4B+/WSzC6WboLm6ytrpiAjg7bflc2ppafIGwZIlspOYf/1L7nv3LrB2rfyc9eoBjz4KDBokP48miSPrM2uWnJvawdmqVcCTTwLx8eUWkjmWLVsGf39/uLm5ITg4GAcPHix2//379yM4OBhubm5o0qQJVmgurB+KiYmBSqUymO4V6u/A3PMSkZUq+Ox1VBSQmGh8Pz5CQ0QkafKTuDj99eWYYEMoqHPnziIiIkJvXUBAgJg+fbrJx2jZsqWYPXu29vXgwYNFv3799Pbp27evGDJkiMnHzMzMFABEZmamye+xOXfvCvHll0I895wQzs5CyDRaTi4uQrRoIcSYMUJs2SJEaqrS0VrW7dtCbN0qRMeO+p9bM7m6CvHqq0JcuKB0pFRYwX+nclCev/3NmzcLZ2dnsWrVKpGUlCSmTJkiPDw8xF9//WV0/wsXLgh3d3cxZcoUkZSUJFatWiWcnZ3Fl19+qd1n3bp1wtPTU6jVar2pLOc1plKUiUS2om9f/bLwxg3DfQr/v1ZK/O0bx++FyIaMH2+8LPzxR936H34w6VCm/vYVq8HOzc3FyZMnERYWprc+LCwMR44cMekY+fn5uHXrFmrWrKldd/ToUYNj9u3b1+Rj2r3z54E335Q11YMGyS7r798H2rYFXn1VPmN944ZsWrZuHTB4sK4Jt71wd5c11z//LH9Whw/Lms4335TbcnKAxYtlrXzfvrrviKzHa68pHYHZFi5ciHHjxmH8+PEIDAxEdHQ0fH19sXz5cqP7r1ixAo0aNUJ0dDQCAwMxfvx4jB07FgsWLNDbT6VSwcfHR28qy3mJyMotWqT/ulkz/dcc4pKISGfIEOPry7GTM8US7PT0dOTl5aFuoeStbt26SE1NNekYn376KW7fvo3Bgwdr16Wmppp9zJycHGRlZelNdiUvD9i5Uz5v/K9/AZ98IjsHa9AAeOMN2cTs1Cngs89kE2t3d6UjrljdugHjx8teWbOz5XPnvXrJbXFxwMCB8rt67DHgvfeAzZuBhIRyHT+PjCj47MwbbygXRymU5oZiUTcLT5w4gfsFbvhkZ2fDz88PDRs2xJNPPqn3yIwlbmQSkZUJDAT+8x/d6/R04NYt3euICMP38P8rIqqsqlc3vt4eE2wNVaGOioQQBuuMiY2NxaxZs7BlyxbUKdRBlbnHnDdvHry8vLSTr6+vGZ/AimVkANOmybvbzzwD7N4t1/ftC3z9tRyn+uOPZc/aJKlUQO/ewA8/yKHHoqLkcF/Xr8vE+/335bPqHToA9evLZ7337wcePFA6cvt38aKcu7nZXKd0pbmhWNTNwgcPHiD9YS/+AQEBiImJwc6dOxEbGws3Nzd0794d586dK/V5gUpw05HI1g0frt9xZ3S0brlg8q1Rns8aEhFZswYNdMsFK2sKlosWHhNbsQS7du3acHR0NLjIS0tLM7gYLGzLli0YN24ctm7dij59+uht8/HxMfuYUVFRyMzM1E6XL18289NYmStX5PiYjRvL/3RTUoCaNWWt359/ykT7mWcAJ8U7kbduTZsCH34ohwXbv1/W/A8dKof8cnMDUlOBefNkrX+jRkBkJBPt8nTsmJx36GCzQ6yZe/PP2P4F13ft2hUjRoxAUFAQQkNDsXXrVjRv3hxLliwp03nt9qYjkT2ZNEm3/N57QPfu+h06tm6tWw4NlSNrEBFVNgUeJcaFC7ple6zBdnFxQXBwMOIL9e4bHx+Pbt26Ffm+2NhYjBkzBps2bcITTzxhsD0kJMTgmHFxccUe09XVFZ6ennqTTTpzBpg4UT47/PHHsrmzp6d8nvjSJbmuaVOlo7Q9zs5yKK/XXwc2bZI/zhs3gDVr5HPsNWsCarV8Lq5zZ1n7TZZ3+rScBwcrG0cplOaGYlE3C52cnFCriDHAHRwc0KlTJ20NdmlvZNrdTUcie+TqKh9x0jhyBCj4OEjBx0COHZOjaRARVTaaYYEBWVmmYY812AAQGRmJ1atXY+3atUhOTsa0adNw6dIlRDx8figqKgqjRo3S7h8bG4tRo0bh008/RdeuXZGamorU1FRkZmZq95kyZQri4uIwf/58nDlzBvPnz8fevXsxderUiv54FSM/H9izRw6hFRgIrFwpO+QKDZXPXd+8CbzyCuDhoXSk9sXNDRg7Fti2TbYQePdduT4hQTYxb9oU+PRTZWO0N5rxrFu1UjaOUijNDcWibhZ27NgRzgX/syhACIHExETUq1ev1OcF7OimI5G9GzvW+HpnZ8PhDFetKv94iIisTcEWe3//rVsuxxpsRYfpEkKIpUuXCj8/P+Hi4iI6dOgg9u/fr902evRo0bNnT+3rnj17CgAG0+jRo/WOuW3bNtGiRQvh7OwsAgICxPbt282KySaGX0hNFWLePCGaNNF1Me/gIMRTTwlx4IDS0VVOarUQkycL4eio+zfp2VOIQ4eUjsz25efrvtODB8vtNBUxTNeaNWtEUlKSmDp1qvDw8BAXL14UQggxffp0MXLkSO3+mmG6pk2bJpKSksSaNWsMhumaNWuW2L17tzh//rxISEgQL7zwgnBychLHjx83+bymsIkykagy+ucfIYKCDIflOnNGv9ws5XBd/O0bx++FyMZoysAFC3Trtm6V61q3FiI316TDmPrbVzzBtkZWXXCeOCHEoEFCODnp/li8vOS4zWfPKh0dCSHEH3/I8cULXtQMGiREcrLSkdmuuXOLH/PVQsr7t2/ODUUhhNi3b59o3769cHFxEY0bNxbLly/X2z516lTRqFEj4eLiIry9vUVYWJg4cuSIWec1hVWXiUQk/fWXvEbIy9OtY4JdLvi9ENmYF16QZeC8ebp1mzfLdY88YvJhTP3tq4Tg2A2FZWVlwcvLC5mZmdbRNDI/Xw4XNX8+sG+fbn2XLvKZ6/Dwyje0li346y/Z6/iaNfrrN22S/2YOinfibzsaNgSuXpXL5VhkWd1v30rweyGyUcOHy/9zNMwsP/nbN47fC5GNiYgAvvgCmD1bdgoJyLJx+HD5aOfevSYdxtTfPq/wrdn163Js6sBAOYb1vn2y5+8RI+S41ceOAS+8wOTaWvn5AatXy3+rfv1064cNAxwdgfXrlYvN1miG5Zo3T9k4iIhsyaJF+q8L9qBrBZYtWwZ/f3+4ubkhODgYBw8eLHb//fv3Izg4GG5ubmjSpAlWrFihtz0mJgYqlcpgunfvXpnOS0Q2ztVVznNydOvu35fzcqi4YYJtjc6fl8NvNGwITJ0KnD0rewOfOlX+5/h//we0bat0lGSqtm2BXbvk3bE2bXTrx4yRY2m/8gpw965i4dmES5fkPDRU2TiIiGxJnTpyaEMNKxpJZMuWLZg6dSpmzJiBhIQEhIaGon///rikKe8LSUlJweOPP47Q0FAkJCTg7bffxquvvort27fr7efp6Qm1Wq03uRXo8M3c8xKRHdAk2Ddu6Na9/bacl8PoP2wiboRiTX+OHJE9T3/1le5uSmAg8PLLwOjRQNWqFRcLlZ+zZ2VyffSobp2/vxxO7YknbHaM53KTlgZohpS6fbtcW2yw2Z9x/F6IbFhsrGw5pWHGZV95/va7dOmCDh06YPny5dp1gYGBGDBgAOYZaa301ltvYefOnUhOTtaui4iIwKlTp3D04f+nMTExmDp1Km7evGmx8xrDMpHIxrRoIa+/AV0ZWPB628RykU3EbYEQcuzq5cvl2L7duwM7dsj1mibhv/8uE2wm1/ajeXN5M+XkSaBdO7kuJQV46in57/z774qGZ1WE0CXX1arxcQgiInMVHBvbSuTm5uLkyZMIKxRbWFgYjhQcv7uAo0ePGuzft29fnDhxAvc1TT0BZGdnw8/PDw0bNsSTTz6JhISEMp2XiOyAJrmuIEywy+rMGaBPH2DQIPms0/HjspatOElJwOTJQIMGsoZ60iTgl18AFxdg3DiZYO3aBfTsydpMe9ahgxw3OysLeOMNue7OHaB1a3mDZeVK4MEDZWNU2k8/6ZZv3VIuDiIiW+XkpHQEBtLT05GXl4e6mhuoD9WtWxepqalG35Oammp0/wcPHiA9PR0AEBAQgJiYGOzcuROxsbFwc3ND9+7dce7cuVKfFwBycnKQlZWlNxGRDdH0R+HiUiGns75S19bk5wPffy+XCz4HVLUq4OMjJwcHoFYt2e7/l19kQqXh6gp07gw8+aRsBl6o0KdKoFo14OOPZYd1kyfLZ0F275bTxImyk7TK+sz9pEm65ehoxcIgIrJZjo5KR1AkVaFKBCGEwbqS9i+4vmvXrujatat2e/fu3dGhQwcsWbIEixcvLvV5582bh9mzZ5fwaYjIajVvLucF+0IqR0ywy6pRI9np2F9/yV69jxwB/vkHyM4G/vxTToU5OgJPPw2MGgU89hjg4VHxcZP1CQyUHaF9/z3w7bfymWwACAqSfysDBsipMrVqyMuT8/79gSlTlI2FiMgWFa7BvnABaNJEmVgeql27NhwdHQ1qjdPS0gxqlzV8fHyM7u/k5IRatWoZfY+DgwM6deqkrcEuzXkBICoqCpGRkdrXWVlZ8PX1LfoDEpF10dRcG+tUuGFDi5+OCXZZVa0qh83SEEI2Zf37byA1VU737sla62rV5H9qLVsCNWsqFzNZL5VKPnKgeezg1VeBxERgwwY5AbKWe/Fi+0+0s7Nl7T0ga/iJiMh8hWuwv/9e8QTbxcUFwcHBiI+Px7PPPqtdHx8fj2eeecboe0JCQvDtt9/qrYuLi0PHjh3h7Oxs9D1CCCQmJqLNw1qr0pwXAFxdXeGq6YWYiGzPnTtynpSkW9eqlXwstxyuMZlgW5pKJYfU8vQEmjVTOhqyZaGh8hnt1auBDz+UHaEBwOefAzt3ysS7Rg1FQyxX8+frllu2VC4OMokQAg8ePECeptUBUQVxdHSEk5NTsU18K7XCCfaiRcCECcrEUkBkZCRGjhyJjh07IiQkBCtXrsSlS5cQEREBQNYaX716FRse3lyOiIjA559/jsjISEyYMAFHjx7FmjVrEBsbqz3m7Nmz0bVrVzRr1gxZWVlYvHgxEhMTsXTpUpPPayksE0kpLBONKFxz/eBBuXYqzASbyNqNHy+ns2flMAOAHBe6Zk1g82YgPFzZ+MrL7t26ZQf2x2jNcnNzoVarcUdzh5iogrm7u6NevXpwqaAObGxK4fIzOFiZOAoJDw9HRkYG5syZA7VajdatW2PXrl3w8/MDAKjVar2xqf39/bFr1y5MmzYNS5cuRf369bF48WIMHDhQu8/Nmzfx4osvIjU1FV5eXmjfvj0OHDiAzp07m3xeS2CZSEpjmVhISIj+64wM3fIvvwBDh1r0dBwH2wiOb0hWbdcu+Sy2ZliSZ56Rw7vZUxKamys7AARk0/iRIyvktPztG1fc95Kfn49z587B0dER3t7ecHFx4V1zqjBCCOTm5uL69evIy8tDs2bN4GBPZaGl3LihezQtJkZ2qmoClonGsUwka8UysQh//y07ngZkB9WzZ8sJAGbNAmbONOkwppaJrMEmsjWPPw6cPy872AOAb76RTcWPHrWfptT79+uW+/VTLg4qUW5uLvLz8+Hr6wt3jlNOCqhSpQqcnZ3x119/ITc3F25ubkqHZH1q1JBlacGWQVQuWCaS0lgmGlHwOzh/Xr8vrLfftvjpeEuDyBb5+soO9TTPKWdlyc4aBg6UHevZutdek/OnngK8vZWNhUzCO+SkJP79mUDzHbHhYoXg3yQpiX9/hVSpoltOTgaaNpXLTk5AEZ0klgW/fSJb9uabsvMzzbifO3YA9eoBX3+taFhlcv8+cPq0XB4wQNFQiIjshqaZcn6+snEQEVW0gs+i//UXcPu2XC78bLaFMMEmsnWNGwOHD8vabE2v4s8+C0yapBtH2pYsWqRbtnCnE0RloVKp8HUZb15Z4hgV6eLFi1CpVEhMTLTK45EZWINNFsYy0fqORyZ45RUgLU0ul9OwyUywieyBg4Oszf77b2DiRLlu+XLZ9OXmTUVDM9tbb8m5u7t+kx4iCxszZgxUKpXB9OeffxrdX61Wo3///iYde9asWWjXrl2ZjmGPfH19tT03A8C+ffugUqlw09bKKVukSbBZg01FYJlY8VgmKuSVV+T8m2/K5fBMsInsibOzTKzffVe3rkYN4IkndL2OW7OC/6HY0B1tsl39+vWDWq3Wm/z9/fX2yc3NBQD4+PjAVdO7fSlZ4hi2zNHRET4+PnByYh+rFY5NxMkELBMrFstE+8QEm8jeqFTAnDnAypW6dbt2AVWrAtevKxeXKV58Uc6dnIA+fZSNhSoFV1dX+Pj46E29e/fG5MmTERkZidq1a+Oxxx4DYNiU8cqVKxgyZAhq1qwJDw8PdOzYEcePH0dMTAxmz56NU6dOaWuAYmJijB7j9OnTePTRR1GlShXUqlULL774IrKzs7Xbx4wZgwEDBmDBggWoV68eatWqhZdffhn3TbhhFhUVha6a/hkKaNu2LWYWGJJk3bp1CAwMhJubGwICArBs2bJij7t//3507twZrq6uqFevHqZPn44HDx5ot+fn52P+/Pn417/+BVdXVzRq1AgffPABAP3mkBcvXkSvXr0AADVq1IBKpcKYMWOwYcMG1KpVCzk5OXrnHThwIEaNGlXi56YisIk4mYBlIsvESmXLlnI5LG+XENmrCROAjh2BLl1k7XVuLlCnjhzea9Ei2YGYNfUy+euvwLZtcnnUKF1tC9keIYA7dyr+vO7uFvu7Wb9+PV566SUcPnwYwkhCkp2djZ49e6JBgwbYuXMnfHx88MsvvyA/Px/h4eH47bffsHv3buzduxcA4OXlZXCMO3fuoF+/fujatSt+/vlnpKWlYfz48Zg8ebL24hMAfvzxR9SrVw8//vgj/vzzT4SHh6Ndu3aYMGFCsZ9h+PDh+Oijj3D+/Hk0fdhj6u+//47Tp0/jyy+/BACsWrUKM2fOxOeff4727dsjISEBEyZMgIeHB0YbGSv56tWrePzxx7UXfWfOnMGECRPg5uaGWbNmAZAXsatWrcKiRYvw73//G2q1GmfOnDE4lq+vL7Zv346BAwfijz/+gKenJ6pUqQIXFxe8+uqr2LlzJ55//nkAQHp6Ov773/9iN4eZKj1Nef/SS7Kfjrp1lY2nslCqPARYJhbCMrGS++gjYPp0/XUFOz+zJEEGMjMzBQCRmZmpdChElrF3rxDyv3ndVLu2EK+9JsRffykdnVQwtqwsRULgb9+44r6Xu3fviqSkJHH37l3dyuxsw7+3ipiys836XKNHjxaOjo7Cw8NDOw0aNEj07NlTtGvXzmB/AOKrr74SQgjxxRdfiGrVqomMjAyjx545c6YICgoq9hgrV64UNWrUENkF4v7uu++Eg4ODSE1N1cbo5+cnHjx4oN3n+eefF+Hh4SZ9xrZt24o5c+ZoX0dFRYlOnTppX/v6+opNmzbpvef9998XISEhQgghUlJSBACRkJAghBDi7bffFi1atBD5+fna/ZcuXSqqVq0q8vLyRFZWlnB1dRWrVq0yGk/h4/34448CgLhx44befi+99JLo37+/9nV0dLRo0qSJ3nkLMvp3SPqef173WxkyxKS3sEw0zqwyUanykGWiUSwTK7HZsw1/I1eumHUIU8tEK6q+IqJy07s3oFYDffvq1qWnA59+Cvj5AV5ewPbtysVXcJgEX1+gWjXlYqFKpVevXkhMTNROixcvBgB07Nix2PclJiaiffv2qFmGHkiTk5MRFBQEDw8P7bru3bsjPz8ff/zxh3Zdq1at4OjoqH1dr149pGl6QC3B8OHDsXHjRgCAEAKxsbEYPnw4AOD69eu4fPkyxo0bh6pVq2qnuXPn4vz580XGHBISAlWBWrHu3bsjOzsbV65cQXJyMnJyctC7d2/TvwgjJkyYgLi4OFy9ehWAbLKp6YCJSqlgi6WLFxULg6wby0SWiXYrNNRwXe3a5XIqNhEnqix8fABNU6JLl4ClS4GPP5avs7KAQYPk8sSJsqO0iiq0P/gAOHZMLjdrBhT4T5RslLs7UOCZuQo9r5k8PDzwr3/9y+j64lSxQA/3QogiL44Krnd2djbYlm9iR1XDhg3D9OnT8csvv+Du3bu4fPkyhgwZAgDaY6xatQpdunTRe1/Bi9eSYhYPm4uqVCqLfC8A0L59ewQFBWHDhg3o27cvTp8+jW+//dYix660Cg4DVIrfCpWSUuWh5txmYpnIMtFuNWpkuK6cOthjgk1UGTVqJMfNnjcP2LFD1mRrktwvvpDT778DLVuWbxz79gHvvKN7feoUn722ByoVUMLFmK1r27YtVq9ejX/++cdojY2LiwvyShiHvmXLlli/fj1u376tvXg9fPgwHBwc0Lx5c4vE2bBhQ/To0QMbN27E3bt30adPH9R9+Oxt3bp10aBBA1y4cEFbg1OSli1bYvv27XoXlUeOHEG1atXQoEEDeHt7o0qVKvj+++8xfvz4Eo/n8vD5N2Pf1fjx47Fo0SJcvXoVffr0ga+vr6kfm4wpePPS01O5OCqbSlAeAiwTWSbagCJukpQHNhEnqswcHGTN9dGjQFyc/rZWreSFgUolh/8ysfmVSYSQCf7D3jIBAKmpHPeabMbQoUPh4+ODAQMG4PDhw7hw4QK2b9+Oo0ePAgAaN26MlJQUJCYmIj093aD3V0A2VXRzc8Po0aPx22+/4ccff8Qrr7yCkSNHai/4LGH48OHYvHkztm3bhhEjRuhtmzVrFubNm4fPPvsMZ8+exenTp7Fu3TosXLjQ6LEmTZqEy5cv45VXXsGZM2fwzTffYObMmYiMjISDgwPc3Nzw1ltv4c0338SGDRtw/vx5HDt2DGvWrDF6PD8/P6hUKvz3v//F9evX9XoLHj58OK5evYpVq1Zh7NixFvs+CPIRISILYpnIMtHqFU6wBw4st1MxwSYi6bHHZOJbONEGgAcPZI+zbdro94ZamuFeTp2SiX3BnhzPnq0UPdouW7YM/v7+cHNzQ3BwMA4ePFjs/vv370dwcDDc3NzQpEkTrFixQm/7qlWrEBoaiho1aqBGjRro06cPfvrpJ719Zs2apR0WRTP5+PhY/LNVNi4uLoiLi0OdOnXw+OOPo02bNvjoo4+0zQgHDhyIfv36oVevXvD29kZsbKzBMdzd3bFnzx78888/6NSpEwYNGoTevXvj888/t2iszz//PDIyMnDnzh0MGDBAb9v48eOxevVqxMTEoE2bNujZsydiYmIMxr3VaNCgAXbt2oWffvoJQUFBiIiIwLhx4/BOgZYo7777Ll577TW89957CAwMRHh4eJHPRzZo0ACzZ8/G9OnTUbduXUyePFm7zdPTEwMHDkTVqlUN4qYyqldP6QjIzrBMZJlo9Qon2H5+5Xcu87tgs6ylS5eKxo0bC1dXV9GhQwdx4MCBIve9du2aGDp0qGjevLlQqVRiypQpBvusW7dOADCYzOlFj71mUqX34IEQH38sxLBhxnsmrVHDcN3SpUJ8+23Rx1y/3vixrl6tuM9VgvL87W/evFk4OzuLVatWiaSkJDFlyhTh4eEh/iqiF/cLFy4Id3d3MWXKFJGUlCRWrVolnJ2dxZdffqndZ9iwYWLp0qUiISFBJCcnixdeeEF4eXmJKwV6xZw5c6Zo1aqVUKvV2iktLc2s2M3uRZzIQvr06SNeeeWVEvfj36EJevfWL3tNwOsh41gmklJYJpbB7dv6ZeCoUWYfwiZ6Ed+yZQumTp2KGTNmICEhAaGhoejfvz8uXbpkdP+cnBx4e3tjxowZCAoKKvK4np6eUKvVepObm1t5fQwi++PoCLzxBrBxoyyG8vKAPn1022/cMHzPyy8DTz0lm5R/8IFseq5pYq5SAYXHjwwMlLXh9euX72exEgsXLsS4ceMwfvx4BAYGIjo6Gr6+vli+fLnR/VesWIFGjRohOjoagYGBGD9+PMaOHYsFCxZo99m4cSMmTZqEdu3aISAgAKtWrUJ+fj6+//57vWM5OTnBx8dHO3l7e5frZyUqq3/++QebN2/GDz/8gJdfflnpcOzD//6nW65aVbk4iMhsLBMtoHCnf0OHltupFE2wzb3gbNy4MT777DOMGjXK6AD1GpomkAUnIioDBwcgPh4o4pkhA++8U/SwX8uXy4Q9KanSPHOdm5uLkydPIiwsTG99WFgYjhw5YvQ9R48eNdi/b9++OHHiBO7fv2/0PXfu3MH9+/cNOpg5d+4c6tevD39/fwwZMgQXLlwow6cha3Hw4EG9oWQKT7asQ4cOmDhxIubPn48WLVooHY59KNTzMpG9YZlIZinYD5CFKdaLuOaCc3rB5zBR/AWnqbKzs+Hn54e8vDy0a9cO77//Ptq3b1/k/jk5OXqdLWRlZZXp/ER2a+xYORWWnw/s3w8sWwZ8+aXx9778MrBkSaXsJTw9PR15eXkGnbTUrVsXqampRt+TmppqdP8HDx4gPT0d9Yw8Qzl9+nQ0aNAAfQq0NujSpQs2bNiA5s2b4++//8bcuXPRrVs3/P7776hVq5bRc7NMtA0dO3ZEYsGhl+zIRY7TXD6iouToEQ/HNiayJywTqUT/+Q8wYoSsvS6nIboABRPs0lxwmiIgIEDbMUFWVhY+++wzdO/eHadOnUKzZs2MvmfevHmYPXt2qc9JVOk5OMg7gZq7gTdvAm5uciItY2NlFjXmZ1H7G1sPAB9//DFiY2Oxb98+vUdi+vfvr11u06YNQkJC0LRpU6xfvx6RkZFGz8sy0TZUqVLF6Hi1REX64ANg6lSgTh2lIyGyOJaJVKLhw+Ujj+VcBirei7i5F5wl6dq1K0aMGIGgoCCEhoZi69ataN68OZYsWVLke6KiopCZmamdLl++XOrzExGA6tWZXBdQu3ZtODo6Gtw8TEtLK3LoER8fH6P7Ozk5GdQ8L1iwAB9++CHi4uLQtm3bYmPx8PBAmzZtcO7cuSL3YZlIZKdUKibXRFS51a1b7q0pFUuwS3PBWRoODg7o1KlTsReTrq6u8PT01JuIiCzFxcUFwcHBiI+P11sfHx+Pbt26GX1PSEiIwf5xcXHo2LEjnAs8S/nJJ5/g/fffx+7du9GxY8cSY8nJyUFycrLRJuYapSkTRWmGbCOyEP79kbXh3yQpiX9/ylIswS7NBWdpCCGQmJhY7MUkEVF5i4yMxOrVq7F27VokJydj2rRpuHTpEiIiIgDIWuNRo0Zp94+IiMBff/2FyMhIJCcnY+3atVizZg1ef/117T4ff/wx3nnnHaxduxaNGzdGamoqUlNTkZ2drd3n9ddfx/79+5GSkoLjx49j0KBByMrKwujCvbqXkibZv1NwfHSiCqb5+3NmR16kMJaJZA1YJipLsWewAXnBOXLkSHTs2BEhISFYuXKlwQXn1atXsWHDBu17NJ0XZGdn4/r160hMTISLiwtatmwJAJg9eza6du2KZs2aISsrC4sXL0ZiYiKWLl1a4Z+PiEgjPDwcGRkZmDNnDtRqNVq3bo1du3bBz88PAKBWq/WGKPT398euXbswbdo0LF26FPXr18fixYsxcOBA7T7Lli1Dbm4uBg0apHeumTNnYtasWQCAK1euYOjQoUhPT4e3tze6du2KY8eOac9bVo6OjqhevTrS0tIAAO7u7mV6zIfIHEII3LlzB2lpaahevTocHR2VDokqOZaJpCSWidZBJRRuQ7Bs2TJ8/PHH2gvORYsWoUePHgCAMWPG4OLFi9i3b592f2OFlJ+fn7Z3vWnTpmHHjh1ITU2Fl5cX2rdvj1mzZiEkJMTkmLKysuDl5YXMzEw2FyeqRPjbN66k70UIgdTUVNy8ebPigyMCUL16dfj4+DCRsTCWicaxTCRrxzKxfJhaJiqeYFsj/odCVDnxt2+cqd9LXl5ekWN0E5UXZ2dn1tKUE5aJxrFMJGvGMrH8mPrbV7SJOBER2Q9HR0f+p05E9BDLRKLKSfFhuoiIiIiIiIjsARNsIiIiIiIiIgtggk1ERERERERkAXwG2whNv29ZWVkKR0JEFUnzm2ffj/pYJhJVTiwTjWOZSFQ5mVomMsE24tatWwAAX19fhSMhIiXcunULXl5eSodhNVgmElVuLBP1sUwkqtxKKhM5TJcR+fn5uHbtGqpVq2bS+HFZWVnw9fXF5cuXbWoYC1uNG7Dd2Bl3xTMndiEEbt26hfr168PBgU/QaLBMtG62Gjdgu7FXlrhZJhpnTploq38rgO3GbqtxA7Ybe2WJ29QykTXYRjg4OKBhw4Zmv8/T09Om/qg0bDVuwHZjZ9wVz9TYWUtjiGWibbDVuAHbjb0yxM0y0VBpykRb/VsBbDd2W40bsN3YK0PcppSJvB1JREREREREZAFMsImIiIiIiIgsgAm2Bbi6umLmzJlwdXVVOhSz2GrcgO3Gzrgrni3Hbqts9Ttn3BXPVmNn3GQqW/7ObTV2W40bsN3YGbc+dnJGREREREREZAGswSYiIiIiIiKyACbYRERERERERBbABJuIiIiIiIjIAphgm2jZsmXw9/eHm5sbgoODcfDgwWL3379/P4KDg+Hm5oYmTZpgxYoVFRSpPnPi3rFjBx577DF4e3vD09MTISEh2LNnTwVGq2Pu961x+PBhODk5oV27duUbYDHMjT0nJwczZsyAn58fXF1d0bRpU6xdu7aCotUxN+6NGzciKCgI7u7uqFevHl544QVkZGRUULTSgQMH8NRTT6F+/fpQqVT4+uuvS3yPtfw2bZmtlocAy0QlsEysOCwTlcEyseLZaploq+UhwDLRLIJKtHnzZuHs7CxWrVolkpKSxJQpU4SHh4f466+/jO5/4cIF4e7uLqZMmSKSkpLEqlWrhLOzs/jyyy+tOu4pU6aI+fPni59++kmcPXtWREVFCWdnZ/HLL79YddwaN2/eFE2aNBFhYWEiKCioYoItpDSxP/3006JLly4iPj5epKSkiOPHj4vDhw9XYNTmx33w4EHh4OAgPvvsM3HhwgVx8OBB0apVKzFgwIAKjXvXrl1ixowZYvv27QKA+Oqrr4rd31p+m7bMVstDIVgmKoFlIstEe8cykWWiqWy1PBSCZaK5v08m2Cbo3LmziIiI0FsXEBAgpk+fbnT/N998UwQEBOitmzhxoujatWu5xWiMuXEb07JlSzF79mxLh1as0sYdHh4u3nnnHTFz5kzFLibNjf1///uf8PLyEhkZGRURXpHMjfuTTz4RTZo00Vu3ePFi0bBhw3KLsSSmFJzW8tu0ZbZaHgrBMlEJLBNZJto7loksE01lq+WhECwTzf19sol4CXJzc3Hy5EmEhYXprQ8LC8ORI0eMvufo0aMG+/ft2xcnTpzA/fv3yy3WgkoTd2H5+fm4desWatasWR4hGlXauNetW4fz589j5syZ5R1ikUoT+86dO9GxY0d8/PHHaNCgAZo3b47XX38dd+/erYiQAZQu7m7duuHKlSvYtWsXhBD4+++/8eWXX+KJJ56oiJBLzRp+m7bMVstDgGWiElgmsky0dywTWSaaylbLQ4BlYml+n06WDszepKenIy8vD3Xr1tVbX7duXaSmphp9T2pqqtH9Hzx4gPT0dNSrV6/c4tUoTdyFffrpp7h9+zYGDx5cHiEaVZq4z507h+nTp+PgwYNwclLuT7o0sV+4cAGHDh2Cm5sbvvrqK6Snp2PSpEn4559/KuwZm9LE3a1bN2zcuBHh4eG4d+8eHjx4gKeffhpLliypiJBLzRp+m7bMVstDgGWiElgmsky0dywTWSaaylbLQ4BlYml+n6zBNpFKpdJ7LYQwWFfS/sbWlzdz49aIjY3FrFmzsGXLFtSpU6e8wiuSqXHn5eVh2LBhmD17Npo3b15R4RXLnO88Pz8fKpUKGzduROfOnfH4449j4cKFiImJqfA7lObEnZSUhFdffRXvvfceTp48id27dyMlJQUREREVEWqZWMtv05bZanlYVCwsE8sXy0TrZk2/T1vFMpFloqlstTwEWCaa8/tkDXYJateuDUdHR4M7NGlpaQZ3ODR8fHyM7u/k5IRatWqVW6wFlSZujS1btmDcuHHYtm0b+vTpU55hGjA37lu3buHEiRNISEjA5MmTAcgCSQgBJycnxMXF4dFHH7XK2AGgXr16aNCgAby8vLTrAgMDIYTAlStX0KxZs3KNGShd3PPmzUP37t3xxhtvAADatm0LDw8PhIaGYu7cuVZb62ENv01bZqvlIcAykWWi6Vgmskw0FctElonlFTdgHeUhwDKxNL9P1mCXwMXFBcHBwYiPj9dbHx8fj27duhl9T0hIiMH+cXFx6NixI5ydncst1oJKEzcg70iOGTMGmzZtUuQ5CXPj9vT0xOnTp5GYmKidIiIi0KJFCyQmJqJLly4VFXqpvvPu3bvj2rVryM7O1q47e/YsHBwc0LBhw3KNV6M0cd+5cwcODvrFh6OjIwDdnT5rZA2/TVtmq+UhwDKRZaLpWCayTDQVy0SWieUVN2Ad5SHAMrFUv0+zukSrpDRd069Zs0YkJSWJqVOnCg8PD3Hx4kUhhBDTp08XI0eO1O6v6eJ92rRpIikpSaxZs0bRYbpMjXvTpk3CyclJLF26VKjVau108+ZNq467MCV7zDU39lu3bomGDRuKQYMGid9//13s379fNGvWTIwfP96q4163bp1wcnISy5YtE+fPnxeHDh0SHTt2FJ07d67QuG/duiUSEhJEQkKCACAWLlwoEhIStMNGWOtv05bZanlYmthZJpYdy0SWifaOZSLLRFPZanlYmtgre5nIBNtES5cuFX5+fsLFxUV06NBB7N+/X7tt9OjRomfPnnr779u3T7Rv3164uLiIxo0bi+XLl1dwxJI5cffs2VMAMJhGjx5t1XEXpuTFpBDmx56cnCz69OkjqlSpIho2bCgiIyPFnTt3Kjhq8+NevHixaNmypahSpYqoV6+eGD58uLhy5UqFxvzjjz8W+zdrzb9NW2ar5aEQLBOVwDKx4rBMVAbLxNFWHXdhSpaJtloeCsEy0RwqIay4np6IiIiIiIjIRvAZbCIiIiIiIiILYIJNREREREREZAFMsImIiIiIiIgsgAk2ERERERERkQUwwSYiIiIiIiKyACbYRERERERERBbABJuIiIiIiIjIAphgExEREREREVkAE2wbJoTAiy++iJo1a0KlUiExMRGPPPIIpk6dWuz7GjdujOjo6AqJkfSpVCp8/fXXAICLFy9q/93KauTIkfjwww/Nek9MTAyqV69e5nOXpzFjxmDAgAEm7ZuWlgZvb29cvXq1fIMiq8Jy0PZYUzlYkn379kGlUuHmzZsWPa4lmPJ3rnH69Gk0bNgQt2/fLt+gyC6wXLU9tlSumqvgZ7OZaz1BFqdWq8XkyZOFv7+/cHFxEQ0bNhRPPvmk2Lt3r0XPs2vXLuHs7CwOHz4s1Gq1uH//vsjIyBBZWVnFvs/Pz08sWrTIorGQvpkzZ4qgoCCD9Wq1Wty7d08IIURKSooAIBISEsp0rlOnTokaNWoY/XffuHGjcHBwEBMnTjTYtm7dOuHl5VWmc5f3MW/evClu3Lhh8v7Tpk0T48aNs9j5qfRYDpLS5WDPnj0FAIPJWHlYlJycHKFWq0V+fn6J+/74448CgFllVlmY8nde0LPPPivef//9coyIyhvLVVKqXNUcs7hp5syZRR6rLDEBEF999ZX2tS1c6zlVcD5v9y5evIju3bujevXq+Pjjj9G2bVvcv38fe/bswcsvv4wzZ85Y7Fznz59HvXr10K1bN+26mjVrWuz49ig3NxcuLi6Knd/Hx8fix/z888/x/PPPo1q1agbb1q5dizfffBPLly/HwoUL4e7ubvHzl4e8vDyoVCp4eXmZ9b4XXngBnTt3xieffIIaNWqUU3RUEpaD1q0ylYMTJkzAnDlz9NaZUw66uLiUS7yWYO7f+QsvvICIiAhERUXB0dGxnKKi8sJy1brZe7nq7u4OtVqt3bZgwQLs3r0be/fu1a6rWrWqxWMwxiau9ZTO8O1N//79RYMGDUR2drbBtoJ3tf/66y/x9NNPCw8PD1GtWjXx/PPPi9TUVO12zR2qDRs2CD8/P+Hp6SnCw8O1dw9Hjx6td9fIz89PCCHv2E+ZMkV7nL///ls8+eSTws3NTTRu3Fj85z//MbjDePPmTTFhwgTh7e0tqlWrJnr16iUSExNNjkUIIfLy8sRHH30kmjZtKlxcXISvr6+YO3eudvuVK1fE4MGDRfXq1UXNmjXF008/LVJSUor8HjU1Af/9739F27Zthaurq+jcubP49ddf9fY7fPiwCA0NFW5ubqJhw4bilVde0fvu/fz8xPvvvy9Gjx4tPD09xahRo4QQQhw6dEj06NFDVKlSRVSvXl2EhYWJf/75RwghRH5+vpg/f77w9/cXbm5uom3btmLbtm0Gse3du1cEBweLKlWqiJCQEHHmzBkhhKzFRaG7euvWrRNC6N+FM3Y37/fffxf9+/cXHh4eok6dOmLEiBHi+vXrRX5PeXl5onr16uK///2vwbaUlBRRpUoVcfPmTdGlSxexfv16ve3Gapt37twpOnToIFxdXYW/v7+YNWuWuH//vnb7p59+Klq3bi3c3d1Fw4YNxUsvvSRu3bql973AyN3Mf/75R4wcOVJUr15dVKlSRfTr10+cPXvWIJZvv/1WBAYGCkdHR3HhwgUxevRo8cwzz+h93uL+zoQQonHjxmLNmjVFfmdU/lgOshy0hnKw8N9BYZpzx8bGipCQEOHq6ipatmwpfvzxR4PPqfm7vXjxonjyySdF9erVhbu7u2jZsqX47rvvjNbujB492qzvcvfu3aJdu3bCzc1N9OrVS/z9999i165dIiAgQFSrVk0MGTJE3L59u8jPd+/ePfHGG2+Ihg0bChcXF/Gvf/1LrF69Wrs9JydHuLq6iu+//77I74SsF8tVlqvWUK5qFK5Jz8vLE7NnzxYNGjQQLi4uIigoSPzvf//Tbi8cd8+ePYUQQvz000+iT58+olatWsLT01P06NFDnDx5Uu9cBT+bhrVf6zHBtqCMjAyhUqnEhx9+WOx++fn5on379uLf//63OHHihDh27Jjo0KGD9o9NCPmHW7VqVfHcc8+J06dPiwMHDggfHx/x9ttvCyFkoTVnzhzRsGFDoVarRVpamhDCsADs37+/aN26tThy5Ig4ceKE6Natm6hSpYq2AMzPzxfdu3cXTz31lPj555/F2bNnxWuvvSZq1aolMjIyTIpFCCHefPNNUaNGDRETEyP+/PNPcfDgQbFq1SohhBC3b98WzZo1E2PHjhW//vqrSEpKEsOGDRMtWrQQOTk5Rr8jTSETGBgo4uLixK+//iqefPJJ0bhxY5GbmyuEEOLXX38VVatWFYsWLRJnz54Vhw8fFu3btxdjxozRHkdTYH/yySfi3Llz4ty5cyIhIUG4urqKl156SSQmJorffvtNLFmyRFvQvP322yIgIEDs3r1bnD9/Xqxbt064urqKffv26cXWpUsXsW/fPvH777+L0NBQ0a1bNyGEEHfu3BGvvfaaaNWqlVCr1UKtVos7d+4IIYovAK9duyZq164toqKiRHJysvjll1/EY489Jnr16lXk31JCQoIAoPefp8a7774rBg0aJIQQYsmSJaJHjx562wsn2Lt37xaenp4iJiZGnD9/XsTFxf1/e/ceFGX1xgH8i7Isi4kON0NcMLksYDJlCl6moSZgS0s00xkizQFMlESYEms0xzQ1//BSjWU5WsLkhfJS5CQUCIok6OLqKMulFcTyBkIwuIAu+/z+YPadfdkLaPtTyOczw4z7XvY953Dm63uWfc+h0aNH05o1a4Rjtm7dSgUFBXT58mXKz88nhUJBixcvJqLum7dt27aRq6urUG/j4HvGjBkUEhJCJ06cILVaTUqlkgICAoTf5bfffksSiYSmTJlCp06dosrKSmprazMbYNvqZ0Zz584V9QH2cHEOcg4S9Y8c7OsAe9SoUfTjjz9SRUUFJSUl0dChQ6mxsVFUT+MAZvr06RQdHU0XLlwgrVZLOTk5VFRURHq9ng4ePEgAqKqqiq5fv07//PPPfbXlpEmTqLi4mMrLyykgIIAiIyMpJiaGysvL6cSJE+Tu7k6ffvqp1frNnTuX5HI5HTp0iLRaLf3++++0f/9+UZ3Dw8NFmc4GBs5VzlWi/pGrpv3IdIC9ZcsWcnV1pX379lFlZSVlZGSQRCIR/phSVlYmfHhw/fp1oQ/k5+dTVlYWVVRUUEVFBSUmJtKIESNEH7JYGmD393s9HmDbUWlpKQGgQ4cO2TwuLy+PBg8eTPX19cK2S5cuEQAqKysjou6O6+LiIupgy5cvp4iICOH11q1bhU8WjUwDsKqqigDQ6dOnhf0ajYYACAGYn59Prq6uwnMbRv7+/vT111/3qSytra0klUrNBjpGu3btIoVCIXqGrbOzk2QyGeXm5lo8xxgypjcHt2/fJplMRgcOHCAionnz5tE777wjOu/kyZM0aNAgam9vJ6LuAJw5c6bomLi4OJo6darF67a1tZGzszOVlJSIticmJlJcXJyobKbPPB09epQACNe19oyMrQD86KOPKCYmRnT81atXhRs2Sw4fPkyDBw82ez6wq6uL5HI5HTlyhIiIGhoaSCKRUE1NjXBMzwH2888/b/afd1ZWFnl7e1u8NhFRdnY2ubu7W31PIqLq6moCQKdOnRK2NTY2kkwmo+zsbOE8AKJPtolINMDurZ8Zpaen0wsvvGDzGPb/wznIOdhfcjAyMpIkEgkNGTJE9PPdd9+Jrm06aL137x6NGjWKNm3aJKqncYA9btw4qwNUS89gP2hbbty4kQCQVqsVti1atIiUSqWofj37+W+//WaxbEazZs3q1zelzDLOVc7V/pKrRj3LMXLkSFq/fr3omIkTJ9KSJUsslskavV5PQ4cOpZycHIt1M+rv93r8DLYdERGA7tnubNFoNJDL5ZDL5cK20NBQDB8+HBqNBhMnTgTQPRuj6fNk3t7euHXrVp/Lo9Fo4OjoiAkTJgjbgoODRTNHq1QqtLW1wd3dXXRue3s7tFqt8NpWWTQaDTo7O/HSSy9ZLIdKpcKff/5p9mxcR0eH6BqWTJ48Wfi3m5sbFAoFNBqN6H2///574RgigsFgQG1tLUJCQgBAVH8AUKvVmDNnjsXrVVRUoKOjA9HR0aLtd+/exbPPPivaFhYWJvzb29sbQPfshr6+vjbrZI1KpcLx48ctPsOi1WoRFBRktr29vR1SqdSsz+Xl5eHOnTt45ZVXAAAeHh6IiYnB7t27rc4GqVKpcObMGaxfv17Y1tXVhY6ODuh0Ori4uOD48ePYsGEDKioq0NraCr1ej46ODty5cwdDhgyx+L7GfhgRESFsc3d3F/0uge5nHU3b1NL72OpnRjKZDDqdzuYx7P+Hc5BzsL/kIADEx8dj5cqVom1eXl6i16bta+wrptlkKjU1FYsXL0ZeXh6ioqIwe/Zsm7n1oG05YsQIuLi4YMyYMaJtZWVlFq+jVqsxePBgREZGWi0LwPk4UHGucq72p1ztqbW1FdeuXcPUqVNF26dOnYrz58/bPPfWrVtYvXo1CgoKcPPmTXR1dUGn06G+vt7mef09y3iAbUeBgYFwcHCARqOxubQQEVnssD23SyQS0X4HBwcYDIY+l6cvgWwwGODt7Y3CwkKzfaZBaassMpnMZjkMBgOee+45UVAZeXp62jzXEmN9DAYDFi1ahNTUVLNjTEOo58DPVnmNdTp69Ch8fHxE+6RSqei1aZuYlulBGQwGvPbaa9i0aZPZPmPA9uTh4QGdTmc2ucbu3bvR1NQkmszHYDDg3LlzWLduncUJbgwGAz7++GO8/vrrZvucnZ1x5coVTJs2DcnJyVi3bh3c3NxQXFyMxMRE3Lt3z2q9jP3Q0nbTvimTyWz21d76mVFTU9MD9StmH5yD1q/BOdg7e+YgAAwbNgwBAQH3XQ5r/SUpKQlKpRJHjx5FXl4eNm7ciM2bN2Pp0qUWj/83bXk/ff9+8tHf379Px7L+g3PV+jU4V3tn71y1pmd/sNYfTS1YsAANDQ3Ytm0b/Pz8IJVKMXnyZNy9e9fmef39Xo/XwbYjNzc3KJVKbN++3eJak8Z1NENDQ1FfX4+rV68K+yoqKtDS0iJ8KmYPISEh0Ov1OHv2rLCtqqpKtJ7n+PHjcePGDTg6OiIgIED04+Hh0afrBAYGQiaTIT8/3+L+8ePHo6amBl5eXmbX6G2W6NOnTwv/bm5uRnV1NYKDg4X3vXTpktl7BgQE2AyDsLAwq2UNDQ2FVCpFfX292XuafiLcGycnJ3R1dfX5eNP6jB492uza1v46/MwzzwDo7j9Gt2/fxk8//YT9+/dDrVaLftra2vDrr79avX5VVZXF9hw0aBDOnj0LvV6PzZs3Y9KkSQgKCsK1a9d6rXdoaCj0ej1KS0tFZayurr6v/t5bPzO6ePGi2afB7OHhHOQcNHqUOXg/TNtXr9dDpVIJ7WuJXC5HcnIyDh06hPfeew87d+4EAKG9Tetsr7bszbhx42AwGFBUVGTzOM7HgYlzlXPVqD/mqqurK0aOHIni4mLR9pKSEqHfWcpHADh58iRSU1Mxbdo0jB07FlKpFI2Njb1es79nGQ+w7ezLL79EV1cXwsPDcfDgQdTU1ECj0eDzzz8Xvo4SFRWFsLAwxMfHo7y8HGVlZZg/fz4iIyPNvm7ybygUCrz88stYuHAhSktLoVKpkJSUJPqELSoqCpMnT8bMmTORm5uLuro6lJSUYNWqVaLgtMXZ2RkrVqxARkYGMjMzodVqcfr0aezatQtA91f0PDw8EBsbi5MnT6K2thZFRUVYtmwZ/vrrL5vvvXbtWuTn5+PixYtYsGABPDw8hE9vV6xYgT/++AMpKSlQq9WoqanBzz//bPUvCUYffvghzpw5gyVLluDChQuorKzEV199hcbGRgwdOhTvv/8+0tPTsWfPHmi1Wpw7dw7bt2/Hnj17+tQeQPdXnmpra6FWq9HY2IjOzs5ez0lJSUFTUxPi4uJQVlaGy5cvIy8vDwkJCVbD1NPTE+PHjxeFWlZWFtzd3TFnzhw8/fTTwk9YWBheffVV4ffS0+rVq5GZmYk1a9bg0qVL0Gg0OHDgAFatWgUA8Pf3h16vxxdffIHLly8jKysLO3bsMKt3W1sb8vPz0djYCJ1Oh8DAQMTGxmLhwoUoLi7G+fPn8dZbb8HHxwexsbF9bdJe+xkA6HQ6qFQqxMTE9Pl9mf1xDnIOAo82B410Oh1u3Lgh+mlubhYds337dhw+fBiVlZVISUlBc3MzEhISLF4rLS0Nubm5qK2tRXl5OQoKCoQbSD8/Pzg4OOCXX35BQ0MD2tra7NaWvRk9ejTefvttJCQk4MiRI6itrUVhYSGys7OFY+rq6vD3338jKirKbtdlDw/nKucq0D9y1ZLly5dj06ZNOHDgAKqqqvDBBx9ArVZj2bJlALofzZHJZDh27Bhu3ryJlpYWAEBAQACysrKg0WhQWlqK+Pj4Xr+5MCDu9R72Q9+Pg2vXrlFKSgr5+fmRk5MT+fj40IwZM0RLf/R1GQVTPSed6G0SCqLuheenT59OUqmUfH19haUQTJdRaG1tpaVLl9LIkSNJIpGQXC6n+Ph4YZKMvpSlq6uLPvnkE/Lz8yOJREK+vr6iCbOuX79O8+fPJw8PD5JKpTRmzBhauHAhtbS0WGxD40QPOTk5NHbsWHJycqKJEyeaTYJVVlZG0dHR9MQTT9CQIUMoLCxMNMlCz7oaFRYW0pQpU0gqldLw4cNJqVQKE9MYDAb67LPPSKFQkEQiIU9PT1IqlVRUVCQqm+lENsbZFo1LQ3R0dNDs2bNp+PDh97WMQnV1Nc2aNUtYzio4OJjS0tKsTjJBRLRjxw6aNGmS8HrcuHHCpBI9HTx4kBwdHenGjRsWJyQ7duyYMBOoq6srhYeH0zfffCPs37JlC3l7e5NMJiOlUkmZmZlmbZGcnEzu7u4Wl+kaNmyYcK6lZbp6srRMl61+tnfvXlIoFFbbij08nIOcg48yB4m6+wF6LA0DQJgozHjtvXv3UkREBDk5OVFISIhoGaue9Xz33XfJ39+fpFIpeXp60rx584QZx4mI1q5dS08++SQ5ODiIlum637a0lIk9+2DPft7e3k7p6enk7e0tLNO1e/duYf+GDRtEk6SxgYdzlXP1Ueeqka1luiQSidkyXUREO3fuJLlcToMGDRJmti8vL6cJEyaQVCqlwMBA+uGHH8za1rRuRAPjXs+ByMoDkow9QoWFhXjxxRfR3NwselaHmevo6IBCocD+/ftFk3Y8jsLDw5GWloY333zzUReFsX+Nc7DvHiQH6+rq8NRTT+HcuXPC1yH/qzo7OxEYGIh9+/aZTUTE2OOEc7Xv+uv95UC41+OviDM2wDk7OyMzM7NPz6z8l926dQtvvPEG4uLiHnVRGGMPGeegbVeuXMHKlSt5cM0Y67P+mKsD5V6PZxFn7D+gt6VZHgdeXl7IyMh41MVgjD0inIPWBQUFWVyKhzHGbOlvuTpQ7vX4K+KMMcYYY4wxxpgd8FfEGWOMMcYYY4wxO+ABNmOMMcYYY4wxZgc8wGaMMcYYY4wxxuyAB9iMMcYYY4wxxpgd8ACbMcYYY4wxxhizAx5gM8YYY4wxxhhjdsADbMYYY4wxxhhjzA54gM0YY4wxxhhjjNkBD7AZY4wxxhhjjDE7+B+o5XS11+oq+gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQXUlEQVR4nO3deVhUZfsH8O+wLwpuCIiIuOOu4IL+zHxVzKWy15TczaVMW8zKJDPXslUxU8sVLbfKJUtfFc19TYRywSXF3EDEBUQUBJ7fH0+zwYAMzMyZge/nus41Z86cOeeecXg893k2lRBCgIiIiIiIiIhKxE7pAIiIiIiIiIhKAybYRERERERERCbABJuIiIiIiIjIBJhgExEREREREZkAE2wiIiIiIiIiE2CCTURERERERGQCTLCJiIiIiIiITIAJNhEREREREZEJOCgdgKXl5ubixo0bKF++PFQqldLhEJEChBC4f/8+qlWrBjs73mdUY/lIRCwfDWP5SERFLR/LXIJ948YN+Pv7Kx0GEVmBq1evonr16kqHYTVYPhKRGstHfSwfiUjtSeVjmUuwy5cvD0B+MR4eHgpHQ0RKSEtLg7+/v6Y8IInlIxGxfDSM5SMRFbV8LHMJtrpZj4eHBwtIojKOzfz0sXwkIjWWj/pYPhKR2pPKR3auISIiIiIiIjIBJthEREREREREJsAEm4iIiIiIiMgEylwf7KLKycnB48ePlQ6DyiBHR0fY29srHQYREREZidePpAReO1oXJth5CCGQlJSEe/fuKR0KlWEVKlSAj48PB5khIiKyAbx+JKXx2tF6MMHOQ104Vq1aFW5ubvyRkkUJIZCRkYHk5GQAgK+vr8IRERER0ZPw+pGUwmtH68MEW0dOTo6mcKxcubLS4VAZ5erqCgBITk5G1apV2eSHiIjIivH6kZTGa0frwkHOdKj7zLi5uSkcCZV16t8g+3ERERFZN14/kjXgtaP1YIJtAJv1kNL4GzTSo0fADz8A/zaPItIQQrt+7x6wYQOwZg2QlQXk5ACXLwPbtgGnTwP//AM8eJD//Q8fyv2JiArB/7tJSaXi93f7NrBiBXDuHLBqFZCdrXRExcIm4kRk+z78EPjqK6BOHeDCBaWjISWcOgWcOAEcPw4sWQI0bQocPVr84/XpAyQkyGMCgEoF1KsH1KgBLF4MuLkBf/0F1K0rtxEREZHxHjwAypUz/NqgQcCWLUCPHpaNqYRYg11GqVQqbNq0SfFjWNLly5ehUqkQFxdnlcejEti4UT7+/beycZBl5ObK2uctW4ABAwAfH6BJE2DoUGDePFnjbExy/W/fNT3r12uTa0DWZJ87B0RHAzVrAlWrAl26AAEBMvlWL5Mns7abiEotXj9a3/FsmhAFJ9dqPXsCqalASoplYjIB1mCXEsOGDcOKFSvybb9w4QLq1KmTb3tiYiIqVqxYpGNPnToVmzZtylcQGHOM0sjf3x+JiYmoUqUKAGDPnj3o1KkT7t69iwoVKigbXFmj2wyYSp9Hj4BffwUOHZLNuS9fBh4/lkm2rnLlgOefB5KSgEaNZC123bqyyVlaGpCYCIwfL++WHz0qE+JOnQAnJ5m0Z2cDhw8DixYBGRlASAjQrh3g4SGT6+++A44cKTyBnjlTJvmtWwNPPw1ERMjzEBFZIV4/Wh6vH3UMG1a0/XS/l4QEeaPbijHBLkWeeeYZLF++XG+bl5eX3vOsrCw4OTnBx8enxOczxTFsmb29fZn/DqwGE2zbJ4TsA717t0yAY2OBixeBO3dky4SHD/O/x80NGDxYJsmdOwP/Xqw8kZMT8Mwz+tvs7OT2jh3lkldwsKwtB2SCn5oK1K4NXL0q/7PPzAQ2bwaiouRr0dFymTQJaNtWJtvVqwP16wNPPSXPRURkBXj9aFll9vrxiy+ACRMKfv3TT4GJE+UN8Nat5XWBnYHG1oGBcsydPL9Ra8Im4qWIs7MzfHx89JbOnTvj9ddfx/jx41GlShV07doVQP7mOdeuXcNLL72ESpUqwd3dHSEhITh69CiioqIwbdo0/Pnnn1CpVFCpVIiKijJ4jJMnT+I///kPXF1dUblyZbzyyitIT0/XvD5s2DD07t0bX375JXx9fVG5cmWMHTu2SKMdRkREoG3btvm2N23aFFOmTNE8X758OYKCguDi4oIGDRpgwYIFhR537969aN26NZydneHr64uJEyciW2dAhdzcXHz22WeoU6cOnJ2dUaNGDXz88ccA9Jv4XL58GZ06dQIAVKxYESqVCsOGDcPKlStRuXJlZGZm6p23T58+GDJkyBM/N1Gp9fgxcPIkMGcO0K0b4Okp/9McPhx44w1g2TJg7165z8OHgK+vbAI+bRpw8CBw5YpMZL/9FggPL3pybQo1awLNmska86Ag2TfshReA5ctl7fns2UCLFtr9jxyRFw6vvw507So/yxdf8MYQEVkFXj/y+tFsEhK0XagKS64PHQLef1/+v9i6tdxWWOuvqlVNG6eJsQb7SYSQTQWV4OZmkqaFK1aswGuvvYaDBw9CGLigS09PR8eOHeHn54fNmzfDx8cHJ06cQG5uLsLDw3Hq1Cls27YNO3fuBAB4enrmO0ZGRgaeeeYZtG3bFn/88QeSk5MxcuRIvP7665oCFQB2794NX19f7N69G3///TfCw8PRvHlzjBo1qtDPMHDgQHz66ae4ePEiateuDQA4ffo0Tp48iZ9//hkAsHjxYkyZMgXffPMNWrRogdjYWIwaNQru7u4YOnRovmNev34dPXr00BRkZ8+exahRo+Di4oKpU6cCkAXz4sWLMWfOHPzf//0fEhMTcfbs2XzH8vf3x/r169GnTx+cO3cOHh4ecHV1hZOTE958801s3rwZffv2BQCkpKTgt99+w7Zt2wr9zGQEJiq24e5dYOFCYN8+ueStlXZwAOztgcaNZa1vs2ayDGzTRm6zhabW3t7A22/LZdcu4L33ABcX2fRc7c4deaHx+edAxYqyL/cHH8gabiKyfaXg2hHg9SOvH4tJCPkbFAKoVevJ+zdvDoSGGn4tLU120wKAs2eBBg20r8XHy5vc1kiUMampqQKASE1Nzffaw4cPxZkzZ8TDhw+1G9PThZA/Ecsv6elF/lxDhw4V9vb2wt3dXbO8+OKLomPHjqJ58+b59gcgNm7cKIQQ4rvvvhPly5cXt2/fNnjsKVOmiGbNmhV6jEWLFomKFSuKdJ2Yt2zZIuzs7ERSUpImxoCAAJGdna3Zp2/fviI8PLxIn7Fp06Zi+vTpmucRERGiVatWmuf+/v5i9erVeu+ZMWOGCA0NFUIIkZCQIACI2NhYIYQQH3zwgahfv77Izc3V7D9//nxRrlw5kZOTI9LS0oSzs7NYvHixwXjyHm/37t0CgLh7967efq+99pro3r275nlkZKSoVauW3nnzMvhbpIIFBGj/boqgsHKgLDPb93LypBAjRwrh4qJfxjk6ChEWJsTs2UL8+acQWVmmPa81Uf+9p6YKYWdXcLk/ebIQOTnKxkplGstHw4y6frSRa0cheP0oROm5flT82jE3V4iHD4Vwcyv493nihBB79wqRlCTEtm3a/xuL6ocf9I9nYUUtH9lEvBTp1KkT4uLiNMvXX38NAAgJCSn0fXFxcWjRogUqVapU7HPHx8ejWbNmcHd312xr3749cnNzce7cOc22Ro0awd7eXvPc19cXyUWcu3jgwIFYtWoVAEAIgTVr1mDgwIEAgFu3buHq1asYMWIEypUrp1lmzpyJixcvFhhzaGio3ryB7du3R3p6Oq5du4b4+HhkZmaic+fORf8iDBg1ahR27NiB69evA5DNkIYNG1Y65iu0FqzBtk6nT8sm0U2ayKmzHj2Sg499+aWcTuvhQ2D7dlnb27Qp4OiodMTmo/579/CQg7PduQNs2iRrm3TNmCFr8Rcs4JRzRGQRvH7k9WOJ5ebKVliurvlbb9SqpU2JW7SQ45B4e8vuYcZ+loEDgbFjtc8/+qjksZsBm4g/iZsboNMPxOLnNoK7u7vBER91Cy1DXA1NUWMkIUSBf/C62x3zXECrVCrk5uYW6RwDBgzAxIkTceLECTx8+BBXr17FSy+9BACaYyxevBht2rTRe59ugfykmMW/iZpKpTLJ9wIALVq0QLNmzbBy5Up069YNJ0+exK+//mqSY9O/mGBblzt3gLlzZb/jrCw5SMl//wuMGydH5bbGiwNLq1hRjnj+4IF8vn+/vOhQU19AuLsD338P3LwJdO8u+29zgDQi62ZD144Arx8BXj8WW79+wE8/Fb7P8eOmPefkycD8+XJ9xgxg+nTTHt8EmGA/iUolL3BKsaZNm2LJkiW4c+eOwbuQTk5OyMk7HU4eDRs2xIoVK/DgwQNNgXzw4EHY2dmhXr16JomzevXqeOqpp7Bq1So8fPgQXbp0gbe3NwDA29sbfn5+uHTpkuau5JM0bNgQ69ev1ysoDx06hPLly8PPzw9eXl5wdXXFrl27MHLkyCcez+nfi15D39XIkSMxZ84cXL9+HV26dIG/v39RPzaR7cjNBb7+GpgyRfabAoBeveS0VVY+pYbiOnSQN4qWLZO11zExcvuDB/LmRF7168s+a88+K/uu9+pleLRVIrK8MnDtCPD6sUxfPxY0wjcgZ8+YMsV8rdK8vWXf6/h4+fzqVcBavpd/8X9jQv/+/eHj44PevXvj4MGDuHTpEtavX4/D/w7KU7NmTSQkJCAuLg4pKSn5RjQEZPMbFxcXDB06FKdOncLu3bvxxhtvYPDgwZpCzBQGDhyItWvX4qeffsKgQYP0Xps6dSpmzZqFuXPn4vz58zh58iSWL1+O2bNnGzzWmDFjcPXqVbzxxhs4e/YsfvnlF0yZMgXjx4+HnZ0dXFxc8P7772PChAlYuXIlLl68iCNHjmDp0qUGjxcQEACVSoXffvsNt27d0hsBc+DAgbh+/ToWL16M4cOHm+z7oH+xBlt5sbEy4Xv7bZlcN2kC/PijnLqKyXXRDR8u7/bn5MimbwVdwJw7J6cE69NH1oTb22tHalWpgHfekYPKERGZCa8fy+j1Y26u4f+bpk6V12MzZ5q/y9eZM9r1GjXMe65iYIJNcHJywo4dO1C1alX06NEDTZo0waeffqppGtOnTx8888wz6NSpE7y8vLBmzZp8x3Bzc8P27dtx584dtGrVCi+++CI6d+6Mb775xqSx9u3bF7dv30ZGRgZ69+6t99rIkSOxZMkSREVFoUmTJujYsSOioqIQGBho8Fh+fn7YunUrjh07hmbNmmH06NEYMWIEPvzwQ80+kydPxjvvvIOPPvoIQUFBCA8PL7DPj5+fH6ZNm4aJEyfC29sbr7/+uuY1Dw8P9OnTB+XKlcsXN5FNu3lTTp/VsiVw7BhQvrycOisuDujbl83Bi8vOTk5JlpMjm9lnZ8s+7EUZkRWQU4VVqiS//xdekKOyN28OXLtm1rCJqOzg9WMZvX6sUEH/+d27MrHWmfbMInx9tet//23Zcz+BSoiyVfWTlpYGT09PpKamwkM97Pu/Hj16hISEBAQGBsLFxUWhCKm06tq1K4KCgjSDhxSGv0UjVa8O/DsISFFqswsrB8oyo76Xe/dkE62kJO228HCZ2FWrZtY4SUd2NnDgALBlixw8rihiY2ULgwL6F1LZxvLRMF4/klKKev1okd/hq68CixZpn6enK9cdIjtbv6b89m15Y9mMilo+sgabyMzu3LmDtWvX4vfff8dY3ZEPyXTK1n1C6xAfr02uGzYEduwA1q5lcm1pDg7A008DX3yhPxlKbi7wxx+yFvzzz/Xf06KFfJ9KBSxdCty/r0joRERUMKu7fjx6VJtc+/nJ/2uUHGvAwUG/qfq/85pbAw5yRlZh//796N69e4Gvpys1GqcJtGzZEnfv3sVnn32G+vXrKx0OkWnUqwd8/DGQmAhERrI21NqoVEBIiFwA4L335KirOk0PAQAjR8oFAN59V47GaqIRcImIzI3XjxaSt7vXvn3KxJHX3buAp6dc//134JVXlI3nX0ywySqEhIQgLi5O6TDM4vLly0qHQGR6lSsDH3ygdBRkjLFjgZdfBlJSZP/4Y8f0X//yS7n07w+sWsX+80Rk9Xj9aGbVqskb6brWrCn6eCDm5uEhbxx/8w2wbh3w1Veydl1hijcRX7BggaavQHBwMPbv31/o/qtWrUKzZs3g5uYGX19fvPzyy7h9+7aFoiVzcXV1RZ06dQpciIjIBNzc5IirR4/K5n2ZmXLE8f/7P+0+a9bIZnfqEckTEpSLl4ioELx+NBMhZOumvMn1hg3Av3OIW43QUO169erKxaFD0QR73bp1GDduHCZNmoTY2Fh06NAB3bt3x5UrVwzuf+DAAQwZMgQjRozA6dOn8dNPP+GPP/4o0hxzxihj476RFeJv0Ej8voiKx8lJ1lrv3y8HiDGkVi2ZaKvnHCUig/h/NynJpL+/Z56RY3SozZ0rr7VeeMF05zCV/v2VjiAfRRPs2bNnY8SIERg5ciSCgoIQGRkJf39/LFy40OD+R44cQc2aNfHmm28iMDAQ//d//4dXX30Vx48fN0k8jv+ORJeRkWGS4xEVl/o36GjueQRLCyu7qDGmZU5iYiIGDBiA+vXrw87ODuPGjcu3z9NPPw2VSpVv6dmzp2afqVOn5nvdx8fHHB+PSqtKleTf0l9/AZMnA1Wq6L/esCEwZgxQwFQzRGUVrx/JGpjs2nHPHjlwqdqVK8Cbb5bsmOakUgE7d2qfP3qkXCz/UqwPdlZWFmJiYjBx4kS97WFhYTh06JDB97Rr1w6TJk3C1q1b0b17dyQnJ+Pnn3/Wu8gsCXt7e1SoUEEzT52bmxtU7INGFiSEQEZGBpKTk1GhQgXNXJJkO9QtcxYsWID27dvju+++Q/fu3XHmzBnUqFEj3/6ZmZnw8vLCpEmTMGfOHIPH3LBhA7KysjTPb9++jWbNmqFv3756+zVq1Ag7df6T4e+HiqVJE7lMny4T7unTgalT5WsLF8oFANLS5LznRGUcrx9JSSa/dtS9tliyBPD3L9nxLOE//9Gur1sHDB2qXCxQMMFOSUlBTk4OvL299bZ7e3sjSXdeVR3t2rXDqlWrEB4ejkePHiE7OxvPPfcc5s2bV+B5MjMzkZmZqXmelpZWaFzqGp+CJoMnsoQKFSqw9tEYVlSDrdsyBwAiIyOxfft2LFy4ELNmzcq3f82aNTF37lwAwLJlywwes1KeeR3Xrl0LNze3fAm2g4MDfzdkWioVMGWK7Kc9bZr+XNseHsDbb8ttdooP6UKkKF4/ktJKfO14967+PNJ79gAdO5Y4LovQvaEVGVl2E2y1vHf4hBAF3vU7c+YM3nzzTXz00Ufo1q0bEhMT8d5772H06NFYqttPQMesWbMwbdo0o+Lx9fVF1apV8fjx46J/ECITcXR0ZM2jjSpOy5ziWLp0KV566SW455l/8sKFC6hWrRqcnZ3Rpk0bfPLJJ6hVyEifxt6ApDKsXDk51/bMmbJG+5NP5PY5c+QgaBs2cNRxKtN4/UhKKvG1oxBAq1ba5y+/bDvJdV5WMKq8Ygl2lSpVYG9vn6+2Ojk5OV+tttqsWbPQvn17vPfeewCApk2bwt3dHR06dMDMmTPh6+ub7z0REREYP3685nlaWhr8i9DUwd7enkkOka2wkhrs4rTMMdaxY8dw6tSpfDcV27Rpg5UrV6JevXq4efMmZs6ciXbt2uH06dOoXLmywWMZewOSCM7Ocv7zd94BRo8GfvoJ2LRJ1mC7uMiB0tzclI6SSDG8fiSbFBUFXLwo1wMCgAJa1Fm1998HPvtMrt+8CRSQT1qCYm26nJycEBwcjOjoaL3t0dHRaNeuncH3ZGRkwC5PMzR1IVbQyHnOzs7w8PDQW4iolLGSBFvNmJY5xlq6dCkaN26M1q1b623v3r07+vTpgyZNmqBLly7YsmULAGDFihUFHisiIgKpqama5erVqyaJkcqASpWAH3+UF2Vqjx4B7u5ymi8iIrINV64Aw4fL9c8/B6xh/u3ieOst7brCUzgr2mlq/PjxWLJkCZYtW4b4+Hi8/fbbuHLlCkaPHg1AXvwNGTJEs/+zzz6LDRs2YOHChbh06RIOHjyIN998E61bt0a1atWU+hhERACK1zLHGBkZGVi7dm2RpiZ0d3dHkyZNcOHChQL34Q1IKrGhQ4G83R8GDAAGDgTYTJaIyLplZckaazXdJNXW6LZk1hkYVgmKJtjh4eGIjIzE9OnT0bx5c+zbtw9bt25FwL//0ImJiXpzYg8bNgyzZ8/GN998g8aNG6Nv376oX78+NmzYoNRHICJrYCU12MVpmWOMH3/8EZmZmRg0aNAT983MzER8fLzBrjNEJhUaKv8GExO121avlnNs9+kDZGcrFxsRERm2dq3s9qO2caMst0uDAqZ8thTFh/0cM2YMLl++jMzMTMTExOCpp57SvBYVFYU9e/bo7f/GG2/g9OnTyMjIwI0bN/DDDz/Az8/PwlETERlmbMscAIiLi0NcXBzS09Nx69YtxMXF4cyZM/mOvXTpUvTu3dtgn+p3330Xe/fuRUJCAo4ePYoXX3wRaWlpGKrwSJpUhvj4AHfuAG3aaLdt2AA4OgJnzyoXF9mcBQsWIDAwEC4uLggODsb+/fsL3HfDhg3o2rUrvLy84OHhgdDQUGzfvl1vn6ioKKhUqnzLIyuYL5dIEUuXAv37a59XqgT07q1YOCa3aJGip1d8FHEiohKzkhpsQLbMuX37NqZPn47ExEQ0bty40JY5ANCiRQvNekxMDFavXo2AgABc1ukHdf78eRw4cAA7duwweN5r166hf//+SElJgZeXF9q2bYsjR45ozktkERUrAkeOAFu3As8+C+Tmyu1BQfLx3j3A01Ox8Mj6rVu3DuPGjcOCBQvQvn17fPfdd+jevTvOnDmDGjVq5Nt/37596Nq1Kz755BNUqFABy5cvx7PPPoujR4/qla0eHh44d+6c3ntdXFzM/nmIrM6hQ4BuV7NXXgG++065eEohlShodLBSKi0tDZ6enkhNTWV/Q6LSonJlWXMGFCnZZjlgGL8XMrmvv87fp+/UKaBRI2XioSdSuhxo06YNWrZsiYU6TTyDgoLQu3dvzJo1q0jHaNSoEcLDw/HRRx8BkDXY48aNw71794odl9LfC5FJPHggp11UO3cOqFdPuXhMbckSYNQouZ6RAbi6mvTwRS0HFG8iTkRERKXUm28CKSn6tdaNG8s5swsZ4Z7KpqysLMTExCAsLExve1hYGA7lHUyvALm5ubh//z4qVaqktz09PR0BAQGoXr06evXqhdjYWJPFTWQzdMdwSUgoXck1IAfYVJs8WbEwmGATERGR+VSuLJuG5x10ZtgwYMwYJSIiK5WSkoKcnJx8sy54e3vnm52hIF999RUePHiAfv36abY1aNAAUVFR2Lx5M9asWQMXFxe0b9++0FkWMjMzkZaWprcQ2bTDh4FNm+R6ZCRQs6aCwZiJbo21gnN5M8EmIiIi8xs9WjZP7NNHu23hQtkX8M8/lYuLrI5KpdJ7LoTIt82QNWvWYOrUqVi3bh2qVq2q2d62bVsMGjQIzZo1Q4cOHfDjjz+iXr16mDdvXoHHmjVrFjw9PTWLv79/8T8QkdI2bQJ0ZzOx5em4iuruXcVOzQSbiGxf2RpKgsh2ubkBP/8s/2bVU8gtXQo0bw706gXk5CgaHimrSpUqsLe3z1dbnZycnK9WO69169ZhxIgR+PHHH9GlS5dC97Wzs0OrVq0KrcGOiIhAamqqZrl69WrRPwiRNZk/H3jhBe3zbduUi8USPvlE6QiYYBNRKcAEm8j27Nql/3zLFsDBAWBT3DLLyckJwcHBiI6O1tseHR2Ndrq1b3msWbMGw4YNw+rVq9GzZ88nnkcIgbi4OPiqb/IY4OzsDA8PD72FyObs3g28/rr+tm7dlInFUsLD5aOrq2LXh5ymi4iIiCwvKEhe/CQnA7q1k56ecpuXl3KxkWLGjx+PwYMHIyQkBKGhoVi0aBGuXLmC0aNHA5A1y9evX8fKlSsByOR6yJAhmDt3Ltq2baup/XZ1dYXnv4PrTZs2DW3btkXdunWRlpaGr7/+GnFxcZg/f74yH5LIEm7cAP7zH+3zsjKDg/r/k4cP5SCbCvxfwgSbiGwfa7CJbFfVqvJvWLePbdWqQNu2clAeKlPCw8Nx+/ZtTJ8+HYmJiWjcuDG2bt2KgIAAAEBiYiKuXLmi2f+7775DdnY2xo4di7Fjx2q2Dx06FFFRUQCAe/fu4ZVXXkFSUhI8PT3RokUL7Nu3D61bt7boZyOyGCHkTUy1a9cAPz/l4rEkd3ft+sWLiiTYnAebiGyfp6e2WSnnwS42fi+kuFmzgA8+0N+WlgaUL69MPGUQywHD+L2QTRk7FliwQK7/8QcQEqJsPJbm7i7nwf7vf4H16012WM6DTURERLYlIgI4f15/m4cH4O8PPH6sTExERLbk/Hltct2vX9lLrgGZXAPAhg2KnJ4JNhHZvrLVEIeodKtbV/5N6w5Wde2abObHUcaJiAp2/z5Qv772+b/dJMqcGjW06wr8v8EEm4iIiKzPb7/p1z6kpspRxtPTlYuJiMhapabKFj9qixbJkbTLIt1ZKv7+2+KnZ4JNRLaPNdhEpdMLL8i/7z59tNvKlwf++Ue5mIiIrE12NlChgva5uzswapRi4SiuTh3t+v37Fj89E2wisn1MsIlKtzVr9EeCrVlTjjr+00+KhUREZDUcHbXr77zDlj4A0Ly5fLx1y+KnZoJNRLaPCTZR6eboKOfGVg/co9avH9CxozIxEREpLTtbf4rDHj2AL79ULh5ror4pm5xs8VMzwSYi28cEm6hseO01YN8+/W379gFLligTDxGRUpKT9WuunZ3l2BUkVa0qH1mDTURUDEywicqODh3klF26c5uOGgXMnq1cTEREliQEMHCg/rYHD/Rrs8s61mATEZVAbq7SERCRJTk4AP/9L7Bpk3bbO+9wGi8iKv1+/BGwswN27pTPv/pKJtz29srGZW1Yg01EVAJMsInKpuefB27f1j53cABGjlQuHiIic8nKkjXU4eHabZMmAePHKxeTNVPXYDPBJiIqBibYRGVXpUrAu+9qny9dKi9Cs7OVi4mIyJSEAFxc9Ld98AEwc6Yy8dgCNhEnIioB9sEmKttmzcq/zdGRg58Rke27fFk2Cde91nn4EPj4Y8VCsgnqJuJ//AHcu2fRUzPBJiLbxwSbqGxzcJDlQGam/vZRo4CbN5WJiYiopFJSgMBA7fMhQwzXZlN+6hpsAFi1yqKnZoJNREREpYOTkxzobMgQ7TYfH+1gQEREtkIIIDhY+3zMGGDFCuXisTXqGmwAiI+36KmZYBMREVHpYWcnL0KPHtVu69oVWLxYuZiIiIzVrx9w5Ypc/+ILYP58ZeOxNeXLa9crVLDoqZlgExERUenTujUwerT2+SuvKBcLEZExqlUDfv5Zrn/8sf5AjlQ0KhUwaJBc37rVoqdWPMFesGABAgMD4eLiguDgYOzfv7/AfYcNGwaVSpVvadSokQUjJiIiIpuwcCHw66/a5wcOKBcLEdGTpKfLxDAxUbstIkK5eGzdjz/Kx9hYi55W0QR73bp1GDduHCZNmoTY2Fh06NAB3bt3xxV1c4g85s6di8TERM1y9epVVKpUCX379rVw5EREBTPmxmFiYiIGDBiA+vXrw87ODuPGjcu3T1RUlMGbi48ePSr2eYnKjF69AFdXud6hg7KxEBEV5Phx/WbNdevKaUhVKuVisnUKTWOmaII9e/ZsjBgxAiNHjkRQUBAiIyPh7++PhQsXGtzf09MTPj4+muX48eO4e/cuXn75ZQtHTkRkmLE3DjMzM+Hl5YVJkyahWbNmBR7Xw8ND7wZjYmIiXHRGETX2vERlSkyMdn3cOM6RTUTWQwhgzhygVSvttrZtgXPnmFyXVGiofKxTx6KnVSzBzsrKQkxMDMLCwvS2h4WF4dChQ0U6xtKlS9GlSxcEBASYI0QiIqMZe+OwZs2amDt3LoYMGQJPT88Cj6tSqfRuMPr4+JTovERlSlCQdn3uXDlHNhGR0nJzgWHDgPHjtdt++w04fJjJtSlUqiQf//7boqdVLMFOSUlBTk4OvL299bZ7e3sjKSnpie9PTEzE//73P4wcObLQ/TIzM5GWlqa3EBGZgyluHBYkPT0dAQEBqF69Onr16oVYnf5ExT0vy0cqU6ZN03++ZIkycRARAbLm+sUXgZUrtdtu3gR69lQuptJGt8n9P/9Y7LSKD3KmynN3RgiRb5shUVFRqFChAnr37l3ofrNmzYKnp6dm8ff3L0m4REQFKumNw4I0aNAAUVFR2Lx5M9asWQMXFxe0b98eFy5cKNF5WT5SmfLRR3KObLVRo4Ddu5WLh4jKtq5dgY0b5frAgbI2W3fuZiq56tW16xbsGqRYgl2lShXY29vnu/hLTk7Od5GYlxACy5Ytw+DBg+Hk5FTovhEREUhNTdUsV69eLXHsRESFKe6Nw4K0bdsWgwYNQrNmzdChQwf8+OOPqFevHubNm1ei87J8pDLHzg44c0b7/D//ARISlIuHiMqmbduAXbvk+qJFwA8/sEm4OahU2psWGRkWO61iCbaTkxOCg4MRHR2ttz06Ohrt2rUr9L179+7F33//jREjRjzxPM7OzvDw8NBbiIjMoSQ3Do1hZ2eHVq1aaWqwi3telo9UJgUFAfPna583b65YKERUxiQkyKSve3f5XKUCntDdlUpIPYvEw4cWO6WiTcTHjx+PJUuWYNmyZYiPj8fbb7+NK1euYPTo0QBk7cqQIUPyvW/p0qVo06YNGjdubOmQiYgKVJIbh8YQQiAuLg6+vr4WPS9RqTFmjGyeCQBpacDjx8rGQ0Sl32+/AbVqaZ83bqyd95rMx81NPj54YLFTOljsTAaEh4fj9u3bmD59OhITE9G4cWNs3bpVMyp4YmJivilmUlNTsX79esydO1eJkImICjV+/HgMHjwYISEhCA0NxaJFi/LdOLx+/TpW6gxqEhcXB0AOZHbr1i3ExcXByckJDRs2BABMmzYNbdu2Rd26dZGWloavv/4acXFxmK9TC/ek8xJRHps3a2s2PvwQ+OwzZeMhotLrhx+AwYO1z+vWBXbs0CZ/ZD7qgc7u37fYKRVNsAFgzJgxGDNmjMHXoqKi8m3z9PREhgXb0BMRGaM4Nw5btGihWY+JicHq1asREBCAy5cvAwDu3buHV155BUlJSfD09ESLFi2wb98+tG7dusjnJaI8dOaRx7JlTLCJyPQePwYmT9YvX65dA/z8lIuprFFPy2jBmVJUQghhsbNZgbS0NHh6eiI1NZX9DYlKC93mVUUo0lgOGMbvhcqcvLVKZeuSyCCWA4bxeyGjxMUBOjfPAQDDhwOLF8vBFsly1NeIQUH6g1wWQ1HLAf4LExERUdmUd6rPmTMVCYOISoHHj4Fx42RClze5Xr8eWLqUybWSLHhjjP/KREREVDaVKwecPKl9Pnkya7GJyHgxMYCTE2BojKi//gL++1/Lx0RS587y8ehRi52SCTYRERGVXY0bA4cOaZ//9ZdysRCRbbl7V9ZYh4Tob/f0lINqCQE0aaJMbCSp5xu3ICbYREREVLaFhmrXn35asTCIyEZkZMgRwCtV0t9++rRMqu/dky1kSHlhYRY/JRNsIiIiol695OO9e0Cekf6JiAAAWVmyxtrdHXj4ULu9WjVZY/3v9JpkRb74wuKnZIJNRERE9Ouv2nVOb0dEeS1YkL9WumVLIDMTuH6dNdbWytdXu56dbZFTMsEmotKDo3MSUUl89JF2fc8excIgIity756stR47Vo4UrnbnjnZwM7Jenp7a9fXrLXJKXo0SUenh6Kh0BERky6ZO1a536qRYGERkJRYtAipW1D4PCQGuXZP9rHW3k/XSvQFy+7ZFTskEm4hKDybYRFQSKpV+kr10qWKhEJFCHjwAOnaU5cGrr2q3v/wy8McfgJ+fcrFRyVio+w8TbCIqPZhgE1FJjRunXR85UrEwiMhCbt2S81erVHIpVw7Yt09/n7//BpYtUyY+KjlXV/kYF2eR0zHBJqLSg/2giKikPD2BFSu0z3XnyCai0mXUKKBqVf0ba2qBgcCRI7I5eO3aFg+NTEg94vuHH1rkdEywici2JSdr11mDTUSmMGSIdr19e+XiICLzSEwEmjYFlizJ/9qWLUBuLnDpEtCmjeVjI5vHBJuIbFtSknY9N1e5OIiodHn5Ze16erpycRCR6aSkyGbg1aoBJ0/KbeXLA48eyZpqIYAePeQ+VHr07i0fdfvUmxETbCKybbpJ9Y0bysVBRKXLggXa9fLllYuDiEzjyhXAy0v7PCBAdgdJSwOcnZWLi8yvUSP5aKGuhEywici25eRo11u1Ui4OIipdXFy0A+MAbCFDZMumTNEfQfr994Fz5/S7g1Dp5eIiHx89ssjpmGATkW3Tvei1Y5FGRCaUkqJdnz5duTiIqHgSE2Vzb92/30OHgE8/Za11WWIowRYCmDfPLANZ8mqUiGybbg02EZEpublp16dNY3lDZCtOnABat5Z9rdWqVpXjKYSGKhcXKcNQgr15M/Dmm2YZyJIJNhHZNt0LXiGUi4OISqft27Xr0dHKxUFETxYdDdSrBwQHA3/8od3+1ltyUFR3d+ViI+UYSrDPnjXb6ZhgE5Fty87WrjPBJiJTCwvTrnfvrlwcRGTYw4dARIRsCh4WBly4ILe7ugJjxwKZmUBkJEcGL8sKaiJuJkywici2sQabiMxtxgztOpuXElmPkydl0+9PP9Vuq1gRWL0ayMgAvvnGYiNHkxXjIGdEREbQrcEmIjKHCRO060eOKBcHEUnHjwONGwNNm2rnqa9ZEzh9GrhzB+jfX9HwyMqwBpuIyAi6NdicRoeIzMHJCTh1SvucfbHNasGCBQgMDISLiwuCg4Oxf//+AvfdsGEDunbtCi8vL3h4eCA0NBTbdfvN/2v9+vVo2LAhnJ2d0bBhQ2zcuNGcH4HM4dYtYOFCwM9PTst5+rTc3qCBnOM6IQFo2FDZGMk6sQabiMgIbCJORJbQqJF2XbdfNpnUunXrMG7cOEyaNAmxsbHo0KEDunfvjitXrhjcf9++fejatSu2bt2KmJgYdOrUCc8++yxiY2M1+xw+fBjh4eEYPHgw/vzzTwwePBj9+vXD0aNHLfWxqDiuXZMJtUoll6pVgTFjgBs3tPv07w+cOQP4+ysXJ1k/V1f5yBpsIqIi0J37ulIl5eIgotLvpZe061evKhdHKTZ79myMGDECI0eORFBQECIjI+Hv74+FCxca3D8yMhITJkxAq1atULduXXzyySeoW7cufv31V719unbtioiICDRo0AARERHo3LkzIiMjLfSpqMhiY+UNrJAQmTSPGaP/uq8v8MEHwP37stXa6tUcvIyejDXYRERG0P2P1dNTuTiIqPRbvVq73ratcnGUUllZWYiJiUFYnhYCYWFhOHToUJGOkZubi/v376OSzg3Xw4cP5ztmt27dinxMMrPLl4GPP5ZJdcuWsgtGTIx8LSBANgkfPRo4dkzWXn/8MVCuHBNrKrqy1gfbmH42AJCZmYlJkyYhICAAzs7OqF27NpYtW2ahaInI6ljhIGfGlGuJiYkYMGAA6tevDzs7O4wbNy7fPosXL0aHDh1QsWJFVKxYEV26dMGxY8f09pk6dSpUKpXe4uPjY+qPRlS2qVTAs8/Kdd1mqmQSKSkpyMnJgbe3t952b29vJCUlFekYX331FR48eIB+/fpptiUlJRl9zMzMTKSlpektZAJCyIECFy3SNv0ODAQ+/FCbVAPArFnApUsy+VY3FW/VSrGwycapE+xbtyzSnVDRBNvYfjYA0K9fP+zatQtLly7FuXPnsGbNGjRo0MCCURORVbGyBNvYci0zMxNeXl6YNGkSmjVrZnCfPXv2oH///ti9ezcOHz6MGjVqICwsDNevX9fbr1GjRkhMTNQsJ0+eNPnnIyrzFi3SrrOZuFmo8tRMCiHybTNkzZo1mDp1KtatW4eqVauW6JizZs2Cp6enZvFnH9+SiYsD/vMf2a0rNBR49dX8+4weDfz+u0yAJk6UiTeRKTg6ate3bZOPZky0Hcx25CLQ7WcDyD4y27dvx8KFCzFr1qx8+2/btg179+7FpUuXNE1/atasacmQicjaWFmCbWy5VrNmTcydOxcACmyNs2rVKr3nixcvxs8//4xdu3ZhyJAhmu0ODg6stSYyN92/sREjgB07lIullKlSpQrs7e3z1SwnJyfnq4HOa926dRgxYgR++ukndOnSRe81Hx8fo48ZERGB8ePHa56npaUxyTbWzZvA/v3Apk3AmjX6M30EBQHNmskm4X36yGSaTb7JXHTH6+nRw+y12IrVYBenn83mzZsREhKCzz//HH5+fqhXrx7effddPHz4sMDzsIkPUSlnRQm2KfoPFkVGRgYeP36s18cQAC5cuIBq1aohMDAQL730Ei5dulTocVg+EhVTuXLykdN1mZSTkxOCg4MRned7jY6ORrt27Qp835o1azBs2DCsXr0aPXv2zPd6aGhovmPu2LGj0GM6OzvDw8NDb6EiuHJFjk/g6wtUqwb07QusWqVNrlu3lrXZZ87IpPu994BatZhck3lVr55/W2mswS5OP5tLly7hwIEDcHFxwcaNG5GSkoIxY8bgzp07Bdb8zJo1C9OmTTN5/ERkJQoYWVYJpug/WBQTJ06En5+fXi1NmzZtsHLlStSrVw83b97EzJkz0a5dO5w+fRqVK1c2eByWj0TFdOmSnDIIkHPvsimryYwfPx6DBw9GSEgIQkNDsWjRIly5cgWjR48GIGuWr1+/jpUrVwKQyfWQIUMwd+5ctG3bVlPWurq6wvPfgS/feustPPXUU/jss8/w/PPP45dffsHOnTtx4MABZT5kaSOErKX++GP9ftSAnJe6eXPZ/LtDByWiI7I4xQc5M6ZPTG5uLlQqFVatWoXWrVujR48emD17NqKiogqsxY6IiEBqaqpmucr+UkSlyxMGRlRCcfsPFsXnn3+ONWvWYMOGDXBRD9oBoHv37ujTpw+aNGmCLl26YMuWLQCAFStWFHgslo9ExeTlpV2vVUu5OEqh8PBwREZGYvr06WjevDn27duHrVu3IiAgAIAcGFJ3TIvvvvsO2dnZGDt2LHx9fTXLW2+9pdmnXbt2WLt2LZYvX46mTZsiKioK69atQ5s2bSz++UoNIYBff5V9qUNCgP/+Vz+5fuMN4O+/gdOnZQ02k2sqQxSrwS5OPxtfX1/4+flp7kgCQFBQEIQQuHbtGurWrZvvPc7OznB2djZt8EREBpSk/2BRfPnll/jkk0+wc+dONG3atNB93d3d0aRJE1y4cKHAfVg+EpVAWJi2//WNG7I5LJnEmDFjMCbv/Mf/ioqK0nu+Z8+eIh3zxRdfxIsvvljCyAhJScCkScAPPwBZWdrtbm5A3brA7NlyMDMiazN5MjBjhkVOpVgNdnH62bRv3x43btxAenq6Ztv58+dhZ2eH6oba1hMRWVBx+w8WxRdffIEZM2Zg27ZtCAkJeeL+mZmZiI+Ph6+vb4nOS0QFUI9ECwAGptcjKlXOnwfefBOoVw9Ytkw/uX7tNeDCBe1I4UTW6I8/9J+Xxj7YgPH9bAYMGIAZM2bg5ZdfxrRp05CSkoL33nsPw4cPh6urq5IfhYgIgPHlGgDExcUBANLT03Hr1i3ExcXByckJDRs2BCCbhU+ePBmrV69GzZo1NTXk5cqVQ7l/B1t699138eyzz6JGjRpITk7GzJkzkZaWhqFDh1rw0xOVISqVnPrl8WOr7KpCVCIZGcAvv8hWGlu2yPmD1Zo1k4OTPfsswMHfyFZYMFdUNMEODw/H7du3MX36dCQmJqJx48aF9rMpV64coqOj8cYbbyAkJASVK1dGv379MHPmTKU+AhEprUkTwIrmeza2XAOAFi1aaNZjYmKwevVqBAQE4PLlywCABQsWICsrK1/zxilTpmDq1KkAgGvXrqF///5ISUmBl5cX2rZtiyNHjmjOS0Rm8McfcgCnBw+AnBzA3l7piIiKLydHzkO9bBmwdm3+13v1AgYPltNq8bdOtmbIEGDjRrn+6JFZa7BVQph5IjArk5aWBk9PT6SmpnLKBaLSoF492TQNAF54Adiw4YlvYTlgGL8XIiPl5AAVKgDp6cCffwJPGBvBFrAcMKzUfi9CALt2AVOmAPHxwN272td8fYHevYEaNeQgZvXqKRYmUYnl5mpvDF27BixZAvxbSVHUZLuo5YCiNdhERCWWmal0BERUVtnbA23ayARl6VJg7lylIyIqun/+AV5/Hfjtt/yvvfkm8OWXshsEUWlgpzP02MWLZq3BVnyaLiKiEmGCTURKqlRJPn79tbJxFGTzZlkLmZKidCRkLQ4eBPr2lfO3q5PrypWB+fO1TWfnzmVyTaWXmftjswabiGwbE2wiUtIrrwA//STXb93SnyPbGjz/vHysUkU2iaSy6/BhYNAg4NIl7banngK+/RYIClIuLiJLqVdPjohv5j7YrMEmItvGBJuIlNSli3ZdPYCONbp5U+kISAk5OcB33wF16gDt2mmT6yFDgAMHgD17mFxT2eHiIh8fPTLraViDTUS2Swgm2ERkPV59VdZoE5mCEHLgsYsX5bzTzs5AYiJw/77c1q8f4OkJpKUB2dlyULLAQG0SceQIMHy4PIZaWBjw6aeAzuwVRGWGboJdWufBJiIqkexsOSokEZGS+vcH1qyR66mpMukhMpYQwIkTQEwMsHevnDIrKang/RcsKNpxnZxk0/Dp0wE/P9PESmSLWINNRPQErL0mImsQGalNsNesAUaPVjQcg1QqpSMgQ+7eBXbuBHbvBn78Ebh9W/91FxegcWNZS+3kBPj4AFeuAFWrAsnJciRwV1egYkWZjD98qP/+vn2BhQvlIGZEZZ06wc7MZA02EZFBTLCJyBpUrSqngMnNBV57TQ6k85//KB0VWauUFDkw3qZNsqZa9/8yV1c59VuHDvI3FBoqm4YXhRAyQb92TR7z8WPg//7PLB+ByCap/5ZYg01EVAAm2ERkLT79FJgwQa537ixrE729lY2JrIcQwL59csCx9etln2q1oCA5WF5YmPztFHcKIZVKjhZfpYppYiYqbe7elY979sjxCsyEo4gTke1igk1E1uK99/Sfz5mjTBwFYRNxZWRlAUuXAo0aAU8/LbsQZGXJQcY+/hj46y/g9Gk5j3qvXmafn5eoTDtwQD6uWmXW07AGm4hsFxNsIrImWVmynywAfPYZMHWqts8flS1CyD7VH3ygnRqrXDlgwAA50nxwsLLxEZV1nAebiMgAJthEZE0cHYGZM7XPjx9XLhZSTlIS8NxzwEsvyeTa2xv44gvg+nXZRJzJNVGpxgSbiGyXmQepICIy2vvva9dXrFAujrzYRNxyIiKA336TrRmmTpVzVr/7LuDhoXRkRGXbK69o162lBvvYsWPIycnRPBd5AsvMzMSPP/5omsiIiJ5Etwa7enVOQ0JEynNw0CbZv/yibCykjC++ALp1k/NZT5kCuLsrHRERAUC/fvKxcWOznsaoBDs0NBS3debn8/T0xCV1vxIA9+7dQ//+/U0XHRFRYdQJdtOmwNWrwOLFysZDRAQAvXvLx1u32NKmLKpSBdi2zewX8URkJPU0XWaeB9uoBDtvjXXe5wVtIyIyC3WCXdQ5QomILKFNG+16VJRiYehhE3EiKuvUg1DqTpNnBibvg61iAU5ElvL33/Lxjz+UjYOISJfutdBrrykXBxERaVljDTYRkVX5+GOlIyAiMmzyZO06W/cRESlPXYNt5llojE6wz5w5g7/++gt//fUXhBA4e/as5vnp06fNESMRkWGjRsnHSpWUjYOIKK+JE7XrKSnKxUFERJK6Bjsry6w3Ph2MfUPnzp31+ln36tULgGwaLoRgE3Eishx1QakeFZKIyFq4uWnXq1ZlLTYRkdJ0m4ibkVEJdkJCgrniICIy3oMH8rFcOWXjICJ6EiE40BgRkZLUTcSzs4HcXLOdxqgEOyAg4In7xMXFFWk/IqISS0+Xj5xjlIis0YULQN26cr13b86LTUSkJHt77frx42Y7jUkGOUtNTcWCBQvQsmVLBAcHm+KQRERPlpEhH5lgE5E1qlVLu755s3JxAKw9JyKqUEG7fuuW2U5TogT7999/x6BBg+Dr64t58+ahR48eOG7GuwFERHrUCbZuX0ciImthZwe8/LL2eU6OcrEQEZV1djqpb/Xq5juNsW+4du0aZs6ciVq1aqF///6oWLEiHj9+jPXr12PmzJlo0aKFOeIkIsqPCTYRWbvFi7XrO3YoFwcREQH+/vIxK8tspzAqwe7RowcaNmyIM2fOYN68ebhx4wbmzZtXogAWLFiAwMBAuLi4IDg4GPv37y9w3z179kClUuVbzp49W6IYiMhGqQc5s7IE25hyLTExEQMGDED9+vVhZ2eHcePGGdxv/fr1aNiwIZydndGwYUNs3LixROclIgvR7fM3bJhiYbCJOBERAEdH+WgtCfaOHTswcuRITJs2DT179oS97n8axbBu3TqMGzcOkyZNQmxsLDp06IDu3bvjypUrhb7v3LlzSExM1Cx11QOIEFHZYoU12MaWa5mZmfDy8sKkSZPQrFkzg/scPnwY4eHhGDx4MP78808MHjwY/fr1w9GjR4t9XiKyIB8f+ZicrGwcRERlnXokcWtJsPfv34/79+8jJCQEbdq0wTfffINbJeggPnv2bIwYMQIjR45EUFAQIiMj4e/vj4ULFxb6vqpVq8LHx0ezlDTRJyIbZYWDnBlbrtWsWRNz587FkCFD4OnpaXCfyMhIdO3aFREREWjQoAEiIiLQuXNnREZGFvu8RGRBun+H2dnKxUFEVNZZWw12aGgoFi9ejMTERLz66qtYu3Yt/Pz8kJubi+joaNy/f7/Ix8rKykJMTAzCwsL0toeFheHQoUOFvrdFixbw9fVF586dsXv3bmM+AhGVJlbWRLwk5VphDh8+nO+Y3bp10xyzuOfNzMxEWlqa3kJEZtC1q3b9mWeUiYFNxImIrK8GW83NzQ3Dhw/HgQMHcPLkSbzzzjv49NNPUbVqVTz33HNFOkZKSgpycnLg7e2tt93b2xtJSUkG3+Pr64tFixZh/fr12LBhA+rXr4/OnTtj3759BZ6HF5BEpZi6+bOVJNjFKdeKIikpqdBjFve8s2bNgqenp2bxVw/8QUSmpdvKZtcu5eIgIirrrDXB1lW/fn18/vnnuHbtGtauXQuVkXdI8+4vhCjwGPXr18eoUaPQsmVLhIaGYsGCBejZsye+/PLLAo/PC0iiUurxY+2UNw4OysaShzHlmimPaex5IyIikJqaqlmuXr1aohiJqBArVmjXhVAuDiKisswCTcSNuiodPnz4E/epXLlykY5VpUoV2Nvb56tdSU5OzlcLU5i2bdvihx9+KPD1iIgIjB8/XvM8LS2NSTZRaXDnjnb98WPl4tBhqnItLx8fn0KPWdzzOjs7w9nZudhxEZERnn9eu756NTBwoGXPzybiRETaGuzMTLOdwqga7KioKOzevRv37t3D3bt3DS737t0r0rGcnJwQHByM6Ohove3R0dFo165dkWOKjY2Fr69vga87OzvDw8NDbyGiUiA3V7ter55ycegwVbmWV2hoaL5j7tixQ3NMc52XiExIdxDDQYOUi4OIqCxT12CbMcE2qgZ79OjRWLt2LS5duoThw4dj0KBBqFSpUrFPPn78eAwePBghISEIDQ3FokWLcOXKFYwePRqArH2+fv06Vq5cCUCOpFuzZk00atQIWVlZ+OGHH7B+/XqsX7++2DEQkY16+FC77uqqXBx5GFuuAUBcXBwAID09Hbdu3UJcXBycnJzQsGFDAMBbb72Fp556Cp999hmef/55/PLLL9i5cycOHDhQ5PMSkRVwc9POfkBERJanrsF+9MhspzAqwV6wYAHmzJmDDRs2YNmyZYiIiEDPnj0xYsQIhIWFGd3HMDw8HLdv38b06dORmJiIxo0bY+vWrQgICAAAJCYm6s3hmpWVhXfffRfXr1+Hq6srGjVqhC1btqBHjx5GnZeISgH1RWrVqsrGkYex5RogZ0ZQi4mJwerVqxEQEIDLly8DANq1a4e1a9fiww8/xOTJk1G7dm2sW7cObdq0KfJ5icgKHDwIqP/es7OtbvwIIqJSzwI12Cohij/Sxj///IOoqCisXLkSjx8/xpkzZ1CuXDlTxmdyaWlp8PT0RGpqKpuLE9myY8eANm2AgADg30S0qFgOGMbvhcjMcnMBe3u5fukSEBho/nOqKz/69gV+/PGJu7McMIzfC1EpMXCgHAdDVxHT4aKWAyUaRVylUkGlUkEIgVzd/pBEROamrsG2kim6iIieyE7nsmvTJsXCICIqs9RNxM3I6AQ7MzMTa9asQdeuXVG/fn2cPHkS33zzDa5cuWL1tddEVIowwSYiW6YzwwkREVlIWprZT2FU558xY8Zg7dq1qFGjBl5++WWsXbu2yNNyERGZFBNsIrJFHTsCe/fK9XPngPr1lY2HiKgsSUw0+ymMSrC//fZb1KhRA4GBgdi7dy/2qv+DyGPDhg0mCY6IqEBMsInIFkVHa5soRkQAvGYiIrIcIwflLg6jEuwhQ4YYPVI4EZFZMMEmIlvk6Ah4eQG3bgEbN8rBdXhtRURkGXYlGoKsSIxKsKOioswUBhGRkZhgE5Gt+uYbIDxcru/aBXTpYv5zMoknIpKzOZiZ+VN4IiJzYIJNRLbqxRe169u3KxcHEVFZc+iQ2U/BBJuIbJM6wXZ1VTYOIiJj2dnJZuIAsGyZsrEQEZFJMcEmItuknmbBw0PZOIiIiuOVV+Sjv79lzscm4kREFsEEm4hsU2qqfGSCTUS2qFUr+ejiomwcRERlSQGzYJkSE2wisk3qGmxPT2XjICIqjqpV5ePRo0BOjrKxWJkFCxYgMDAQLi4uCA4Oxv79+wvcNzExEQMGDED9+vVhZ2eHcePG5dsnKioKKpUq3/Lo0SMzfgoiskpNm5r9FEywicg2qWuwmWATkS2qXVu7/sYb5j+fjTQRX7duHcaNG4dJkyYhNjYWHTp0QPfu3XHlyhWD+2dmZsLLywuTJk1Cs2bNCjyuh4cHEhMT9RYXth4gKnssUBYywSYi26Ru4sMm4kRki9Q12ACwcKFycViZ2bNnY8SIERg5ciSCgoIQGRkJf39/LCzgO6pZsybmzp2LIUOGwLOQG64qlQo+Pj56CxGVQUywiYgMSE/XrguhXBxERCUREaFdz8pSLg4rkZWVhZiYGISFheltDwsLw6ESTq2Tnp6OgIAAVK9eHb169UJsbGyh+2dmZiItLU1vISIqCibYRGR77t/XrtuxGCMiG1WnjnZdN9k2BxtoIp6SkoKcnBx4e3vrbff29kZSUlKxj9ugQQNERUVh8+bNWLNmDVxcXNC+fXtcuHChwPfMmjULnp6emsXfUqO9E5F5sQabiMgA3RpsCwxWQURkFr17a9dnz1YsDGujynMBLITIt80Ybdu2xaBBg9CsWTN06NABP/74I+rVq4d58+YV+J6IiAikpqZqlqtXrxb7/ERkRZhgExEZoJtgV6umXBxERCVRqRIwY4b2uXrwxjKqSpUqsLe3z1dbnZycnK9WuyTs7OzQqlWrQmuwnZ2d4eHhobcQUSnABJuIyIAHD+Rj3brKxkFEVFIffqhdP3VKuTisgJOTE4KDgxEdHa23PTo6Gu3atTPZeYQQiIuLg6+vr8mOSUQ2wgIJtoPZz0BEZGrqGuxy5ZSNg4jIFBo3lsn12rVA+/ZKR6Oo8ePHY/DgwQgJCUFoaCgWLVqEK1euYPTo0QBk0+3r169j5cqVmvfExcUBkAOZ3bp1C3FxcXByckLDhg0BANOmTUPbtm1Rt25dpKWl4euvv0ZcXBzmz59v8c9HRApjgk1EZIC6BtvdXdk4iIhMITdXPt67p2gY1iA8PBy3b9/G9OnTkZiYiMaNG2Pr1q0ICAgAACQmJuabE7tFixaa9ZiYGKxevRoBAQG4fPkyAODevXt45ZVXkJSUBE9PT7Ro0QL79u1D69atLfa5iMhKWGD2GZUQZWuOm7S0NHh6eiI1NZX9aYhs1WuvAd9+K9eLUYSxHDCM3wuRQt59F/jqK7lu6ssydW1N//7A6tVP3J3lgGH8XohKifR0oHx5/W1FLHeLWg6wDzYR2Z7ly5WOgIjIdGrV0q6bq97DBqbpIiIyO1dXs5+CCTYR2Z5eveTjwIHKxkFEZArdumnX//nHPOdggk1EBNjbm/0UTLCJyPasXy8f9+5VNg4iIlOoXVu7fu2aec5hx0s+IiJLYGlLRLZLt1klEVFp8MMP5jkua7CJiCyCCTYR2a6lS5WOwKAFCxYgMDAQLi4uCA4Oxv79+wvdf+/evQgODoaLiwtq1aqFb9UDuP3r6aefhkqlyrf07NlTs8/UqVPzve7j42OWz0dEZvTdd+Y5LhNsIiKLUDzBNvZCVO3gwYNwcHBA8+bNzRsgEVmX7GztesWKysVRgHXr1mHcuHGYNGkSYmNj0aFDB3Tv3j3ftDJqCQkJ6NGjBzp06IDY2Fh88MEHePPNN7Fe3QwewIYNG5CYmKhZTp06BXt7e/Tt21fvWI0aNdLb7+TJk2b9rERkQuHh2nXdcs5UmGATEVmEogm2sReiaqmpqRgyZAg6d+5soUiJyGrozhPr6alYGAWZPXs2RowYgZEjRyIoKAiRkZHw9/fHwoULDe7/7bffokaNGoiMjERQUBBGjhyJ4cOH48svv9TsU6lSJfj4+GiW6OhouLm55UuwHRwc9Pbz8vIy62clIhPSbRp+65bpj88Em4hIMnMOqWiCbeyFqNqrr76KAQMGIDQ01EKREpHVUCfY5csDDg6KhpJXVlYWYmJiEBYWprc9LCwMhw4dMview4cP59u/W7duOH78OB4/fmzwPUuXLsVLL70Ed3d3ve0XLlxAtWrVEBgYiJdeegmXLl0qNN7MzEykpaXpLUSkEAcHoGpVuZ6cbPrjM8EmIpJ27TLr4RVLsItzIQoAy5cvx8WLFzFlypQinYcXkESlzN278tEKm4enpKQgJycH3t7eetu9vb2RlJRk8D1JSUkG98/OzkZKSkq+/Y8dO4ZTp05h5MiRetvbtGmDlStXYvv27Vi8eDGSkpLQrl073L59u8B4Z82aBU9PT83i7+9f1I9KROagTqzbtTP9sZlgExFZhGIJdnEuRC9cuICJEydi1apVcChizRUvIIlKmcuX5aMF5jEsLlWeC1khRL5tT9rf0HZA1l43btwYrVu31tvevXt39OnTB02aNEGXLl2wZcsWAMCKFSsKPG9ERARSU1M1y9WrVwv/YERkGRkZwHPPAQ8fmu6YTLCJiCxC8UHOinohmpOTgwEDBmDatGmoV69ekY/PC0iiUmbQIPmYkKBsHAZUqVIF9vb2+W4SJicn57uZqObj42NwfwcHB1SuXFlve0ZGBtauXZuv9toQd3d3NGnSBBcuXChwH2dnZ3h4eOgtRKSgefO067/+CjRsaLpjM8EmIpLMPIaPYgm2sRei9+/fx/Hjx/H666/DwcEBDg4OmD59Ov788084ODjg999/N3geXkASlTJZWUpHUCAnJycEBwcjOjpab3t0dDTaFdDkMzQ0NN/+O3bsQEhICBwdHfW2//jjj8jMzMQg9U2GQmRmZiI+Ph6+vr5GfgoiUszYsfrP1S12TIEJNhGR1LKlWQ+vWIJt7IWoh4cHTp48ibi4OM0yevRo1K9fH3FxcWjTpo2lQicia+DmpnQEBo0fPx5LlizBsmXLEB8fj7fffhtXrlzB6NGjAchWNUOGDNHsP3r0aPzzzz8YP3484uPjsWzZMixduhTvvvtuvmMvXboUvXv3zlezDQDvvvsu9u7di4SEBBw9ehQvvvgi0tLSMHToUPN9WCIyLZVK3kT089Nu05lRoMTHJiIis5eHig7BO378eAwePBghISEIDQ3FokWL8l2IXr9+HStXroSdnR0aN26s9/6qVavCxcUl33YiKgNeeEHpCAwKDw/H7du3MX36dCQmJqJx48bYunUrAgICAACJiYl6UxEGBgZi69atePvttzF//nxUq1YNX3/9Nfr06aN33PPnz+PAgQPYsWOHwfNeu3YN/fv3R0pKCry8vNC2bVscOXJEc14ishGOjsDVq4Ddv3Ug770HGLjhZjQm2ERE0r9j3QAAzHCdpGiCbeyFKBGVcdnZ2vVZs5SL4wnGjBmDMWPGGHwtKioq37aOHTvixIkThR6zXr16msHPDFm7dq1RMRKRFTNHMswEm4hImjcPMGMFrUoUdsVWCqWlpcHT0xOpqansj01ka65eBWrUkOvZ2cUeSZzlgGH8XoisyJ49QKdOcv3hQ8DFpXjHUSfWY8YA8+c/cXeWA4bxeyEqZY4eBdq2letFTIeLWg4oPoo4EVGR/fyzdt2Kp+kiIiox3an4Jk4s+fFYg01EpHX3rnZdt4WkCTDBJiLbUaWK0hEQEVmG7kCO27aV/HhMsImItHQT7Jwckx6aCTYR2Y6jR+VjYKCycRARWULnzvKxZ8+SH4sJNhGRYSYuH5lgE5HtuHRJPj56pGwcRESWEBQkH2fPLnIfwQIxwSYisggm2ERkO65fl4+vvaZsHERElqB7M/H770t2LCbYRERaZhznmwk2EdmOv/6SjxcuKBsHEZElTJlieL04mGATERnGJuJEVOa99JLSERARmV/16oCrq1y/fLlkx2KCTURkmIlrs5lgE5FtyMrSrrdpo1wcRESWNG2adj03t/jHYYJNRGQRTLCJyDYkJ8tHR0egYkVlYyEispRRo7Tr7doV/zhMsImILIIJNhHZhsRE+ejtDdix6CKiMqJCBe26eqrC4mC5SURkGJuIE1GZpJ6iy89P2TiIiCytfv2SH4M12EREWufPm+3QTLCJyDaoC0L1vLBERGXFyJElPwYTbCIiLfXUr2bABJuIbMPff8vHunWVjYOIyNL699eu37xZvGMwwSYi0mrRQrvOJuJEVCZdvSofAwKUjYOIyNKqVdOud+tWvGMwwSYi0nJwMNuhmWATkW1QJ9j+/srGQURkabrJ8Z9/lvwYRERkNkywicj6CQFcuybXmWATUVnk5qZdf/TI+PczwSYi0tJtFs4m4kRU5qSkaC8odZtKEhGVFTt3atddXY1/PxNsIiKLYIJNRNZP3Tzc2xtwdlY2FiIiJYSG6j9fu1aZOIiIqFBMsInI+rH/NRERMGWKdr1/f+OaNbIGm4hIi03EiahMY4JNRARMnapfDsbHF/29TLCJiCyCCTYRWT8m2ERE0sWL2vWzZ4v+Pjte8hERWQJLWyKyfkywiYgkR0ftep8+RX8fa7CJiAxjE3EiKnOYYBMRlQwTbCIii2CCTUTWj3NgExFpzZ4tH595pujvYYJNRGQRTLCJyLrl5gLXr8t1G0mwFyxYgMDAQLi4uCA4OBj79+8vdP+9e/ciODgYLi4uqFWrFr799lu916OioqBSqfItj9RzgxfzvERko6pVk4/37xf9PUywiYi0SvMo4sZcEB44cADt27dH5cqV4erqigYNGmDOnDkWjJaILO7mTeDxY7nu66tsLEWwbt06jBs3DpMmTUJsbCw6dOiA7t2748qVKwb3T0hIQI8ePdChQwfExsbigw8+wJtvvon169fr7efh4YHExES9xcXFpdjnJSIbpi4TDx4s+nuYYBMRWYSiCbaxF4Tu7u54/fXXsW/fPsTHx+PDDz/Ehx9+iEWLFlk4ciKymPff1647OCgXRxHNnj0bI0aMwMiRIxEUFITIyEj4+/tj4cKFBvf/9ttvUaNGDURGRiIoKAgjR47E8OHD8eWXX+rtp1Kp4OPjo7eU5LxEZMPc3bXr2dmyJvtJNTBMsImILELRBNvYC8IWLVqgf//+aNSoEWrWrIlBgwahW7dubAZJVJp5eCgdQZFlZWUhJiYGYWFhetvDwsJw6NAhg+85fPhwvv27deuG48eP47G6lgpAeno6AgICUL16dfTq1QuxsbElOi8R2TDdv3VHR1lO5rkplw8TbCIirdLYRNwUF4SxsbE4dOgQOnbsaI4QicgaqKekefddZeMogpSUFOTk5MDb21tvu7e3N5KSkgy+JykpyeD+2dnZSElJAQA0aNAAUVFR2Lx5M9asWQMXFxe0b98eFy5cKPZ5ASAzMxNpaWl6CxHZADe3/NsmTCj8PUywiYgsQrH2lsW9IASA6tWr49atW8jOzsbUqVMxcuTIAvfNzMxEZmam5jkvIIlszM6d8rFGDWXjMIIqz4WsECLftiftr7u9bdu2aNu2reb19u3bo2XLlpg3bx6+/vrrYp931qxZmDZt2hM+DRFZnaImy7q1MnaKD7tDRFQmKF7aGntBCAD79+/H8ePH8e233yIyMhJr1qwpcN9Zs2bB09NTs/jbyCjERPSvU6fko5eXsnEUQZUqVWBvb5/vJmFycnK+m4lqPj4+Bvd3cHBA5cqVDb7Hzs4OrVq10tRgF+e8ABAREYHU1FTNclU93zgRWb9ffsm/TT2loVpOjnZd3RqIiIhKZxPx4l4QAkBgYCCaNGmCUaNG4e2338bUqVML3JcXkEQ2THcKmpAQ5eIoIicnJwQHByM6Olpve3R0NNq1a2fwPaGhofn237FjB0JCQuBYwAWxEAJxcXHw/XdU9eKcFwCcnZ3h4eGhtxCRjXjuOSAmRr82O+/MKjrjONjCIJFERKWBYgl2cS8I8xJC6DUBz4sXkEQ2THc8hjp1lIvDCOPHj8eSJUuwbNkyxMfH4+2338aVK1cwevRoAPKm35AhQzT7jx49Gv/88w/Gjx+P+Ph4LFu2DEuXLsW7On3Op02bhu3bt+PSpUuIi4vDiBEjEBcXpzlmUc5LRKVQy5b6tdR5ZhdAdrZ2nQk2EZFFKNpE3NgL0fnz5+PXX3/FhQsXcOHCBSxfvhxffvklBg0apNRHICJzOndO6QiMFh4ejsjISEyfPh3NmzfHvn37sHXrVgQEBAAAEhMT9aYiDAwMxNatW7Fnzx40b94cM2bMwNdff40+ffpo9rl37x5eeeUVBAUFISwsDNevX8e+ffvQunXrIp+XiEoplQoYMECu502idRNse3vLxVRCCxYsQGBgIFxcXBAcHFzobDGJiYkYMGAA6tevDzs7O4wbN87gfuvXr0fDhg3h7OyMhg0bYuPGjWaKnohsghmbiCt6OzM8PBy3b9/G9OnTkZiYiMaNGxd6IZqbm4uIiAgkJCTAwcEBtWvXxqeffopXX31VqY9AROakTrB158K2AWPGjMGYMWMMvhYVFZVvW8eOHXHixIkCjzdnzhzMydv008jzElEplpsrH8ePB95+W7vdBhPsdevWYdy4cViwYAHat2+P7777Dt27d8eZM2dQw8Bgl5mZmfDy8sKkSZMKLCcPHz6M8PBwzJgxAy+88AI2btyIfv364cCBA2jTpo25PxIRlTEqIUycslu5tLQ0eHp6IjU1lc3Fiaxdx47Avn3A998DJmypwnLAMH4vRDZKtx/2vXuAp6dc37QJeOEFub58OTBs2BMPpXQ50KZNG7Rs2RILFy7UbAsKCkLv3r0xa9asQt/79NNPo3nz5oiMjNTbHh4ejrS0NPzvf//TbHvmmWdQsWLFQgfK1aX090JEJrZ1K9Czp1zXLTcLUdRyQPFRxImIDBJCO4J4o0bKxkJEZM10p9urUAF48ECuJyQoEk5xZWVlISYmBmFhYXrbw8LCcEh3TA4jHT58ON8xu3XrVugxMzMzkZaWprcQUSnSubN2vbSMIk5EVKikJODOHTl3a4MGSkdDRGS9Jk40/NzGys6UlBTk5OTkm03G29s736wzxkhKSjL6mJzmlaiUe8K00CXBBJuIrJO69rpOHcDVVdlYiIismZOT/vNvvpGP5cpZPhYTUOW58BVC5Ntm7mNymleiUs6MCTbnbCAi63TypHxk83AiouK5fFnpCIxSpUoV2Nvb56tZTk5OzlcDbQwfHx+jj+ns7AxnZ+din5OIbAibiBNRmRAXJx9btFA0DCIim6A7E0G1avJRZ6pTW+Dk5ITg4GBER0frbY+Ojka7du2KfdzQ0NB8x9yxY0eJjklEVBDWYBORdTp9Wj42aaJsHEREtqBFC9k0/PXXgRs3gEuXlI6oWMaPH4/BgwcjJCQEoaGhWLRoEa5cuYLRo0cDkE23r1+/jpUrV2reE/fvDdn09HTcunULcXFxcHJyQsOGDQEAb731Fp566il89tlneP755/HLL79g586dOHDggMU/HxFZCTYRJ6IyJTcXOHtWrv97gURERE9w7552ff9+xcIoifDwcNy+fRvTp09HYmIiGjdujK1btyIgIAAAkJiYiCtXrui9p4VOS6eYmBisXr0aAQEBuPxvE/l27dph7dq1+PDDDzF58mTUrl0b69at4xzYRCSZuIk4E2wisj6//gpkZMj1WrWUjYWIyFa88ALw4YdyXT1QpA0aM2YMxowZY/C1qKiofNtEES6OX3zxRbz44oslDY2I6InYB5uIrE/v3tp1B94HJCIqEt0WP19+qVwcRETWjtN0EVGZoVsTsWSJcnEQERERUenHUcSJqFT7+2/t+qBBysVBRERERGQkJthEZF02bZKP7dsDnIOUiIiIiGwIE2wisi4TJshHd3dl4yAiskXvvad0BERE1k+3DzabiBNRqXXjhnY9PFy5OIiIbNWnnyodARFRmcYEm4isx9692vWXX1YuDiIiW2Vnpz+WBRERWRQTbCKyHvv2ycdx48w6fQIRUalWu3b+bSZuAklEZNPYRJyIyoTFi+XjU08pGwcRka2LjJS12e3bKx0JEVGZwgSbiKxDQgKQkyPXO3RQNhYiIlv31luyTK1QQelIiIjKFCbYRGQdGjXSrlepolwcRERERFS6sYk4EZVqGRnAw4dyvU8fZWMhIiIiIiomJthEpLz//U+7vm6dcnEQEREREZUAE2wiUt7KlfJxwgTA3l7ZWIiIiIio7DBxE3EHkx6NiMhYaWnaGuyhQ5WNhZ5ICIHs7GzkqAekI7IgR0dH2PMmHBERWTEm2FQyubnArVtAUpLsQ5uZCTx4IJf0dPmo7l/76JF2vUIFwNERcHMDKlYEnJwAV1fg8WPA3V0OcmVnB5QrB3h6yqVSJbktI0O+j/Mklw7R0fLfvW5doGFDpaOhQmRlZSExMREZGRlKh0JllEqlQvXq1VGuXDmlQyEiIjKICTYVTAjgxg3gwgW5/P03kJwst928Kddv3QKysy0Tj0oFODjIZKx8ecDLS25zcQGqVZPbAgKAqlWB2rWBBg2A6tVlMs9k3Hp9/718fP55ZeMwoQULFuCLL75AYmIiGjVqhMjISHQoZOqxvXv3Yvz48Th9+jSqVauGCRMmYPTo0ZrXFy9ejJUrV+LUqVMAgODgYHzyySdo3bq1Zp+pU6di2rRpesf19vZGUlKSST5Tbm4uEhISYG9vj2rVqsHJyQkq/l2RBQkhcOvWLVy7dg1169ZlTTYREZWMSiXzHTYRJ5MSAkhJkQn0+fPaZPr8eZlQP3jw5GOoVDLZdXeXNdHlysl1d3e57uoqa5xdXOS6iwtw965MlB89kuuZmXLdyQm4f1/GJIRcv3dP1loLId8DyO3372tjOH264PicnGTCXbs20KwZ0Ly5fAwMlAk7KefMGeCXX+T6sGGKhmIq69atw7hx47BgwQK0b98e3333Hbp3744zZ86gRo0a+fZPSEhAjx49MGrUKPzwww84ePAgxowZAy8vL/T5d0T1PXv2oH///mjXrh1cXFzw+eefIywsDKdPn4afn5/mWI0aNcLOnTs1z02ZgGRlZSE3Nxf+/v5wc3Mz2XGJjOHl5YXLly/j8ePHTLCJiMgqKZ5dGFPTs2HDBixcuBBxcXHIzMxEo0aNMHXqVHTr1s3CUdug+/dlMvPPP8DZs8C5c9pEOjW14PfZ28tEtG5duVStKmuFvb3lunpxcjJv/I8fA3fuyES8QgXg+nWZmAMy+b52Tfbl/ecfWbN+4YL8jPfuAVlZQHy8XH77TXtMJyegXj1Z012nDtC0KRAcDNSqxcTbUv7v/7TruvNg27DZs2djxIgRGDlyJAAgMjIS27dvx8KFCzFr1qx8+3/77beoUaMGIiMjAQBBQUE4fvw4vvzyS02CvWrVKr33LF68GD///DN27dqFIUOGaLY7ODjAx8fHTJ9MsrPj2JikHLaaICIia6doFmFsTc++ffvQtWtXfPLJJ6hQoQKWL1+OZ599FkePHkWLFi0U+ARW6u5d4Ngx4OBBICZG1u7+80/h76lRQ5tE16unfQwMlH2lleboKJN6NQ+PJ79HCJmQ37gBXLwoE+4//wROnJA3Gx49Ak6dkkvec9WpIz9/lSpA48ZyadNGNkMn07h0SXuT5IMPlI3FRLKyshATE4OJEyfqbQ8LC8OhQ4cMvufw4cMICwvT29atWzcsXboUjx8/hqOBv7+MjAw8fvwYlSpV0tt+4cIFVKtWDc7OzmjTpg0++eQT1KpVq4SfioiIiKgUKo1NxI2t6VHX8Kh98skn+OWXX/Drr7+WzQQ7N1cmjmfPAkePysTxzz9lQmmIr6+2qXRQkDaJrl1bNt0ubdT9s2vVkkvXrtrXcnPlTQd1zfaZM8DJkzLZfvhQu12XnZ1MtLt1A1q0kEvNmvIcZLwZM+Rjt27Axx8rG4uJpKSkICcnB966N4NQeF/opKQkg/tnZ2cjJSUFvr6++d4zceJE+Pn5oUuXLpptbdq0wcqVK1GvXj3cvHkTM2fORLt27XD69GlUrlzZ4LkzMzORmZmpeZ6Wllbkz1qaqVQqbNy4Eb1791b0GJZ0+fJlBAYGIjY2Fs2bN7e64xEREdkKxRLs4tT05JWbm4v79+/nq8XRVWouIHNyZLPn48dlTeyxY3K5d8/w/rVqAe3by1rXpk1l89tCvqcyx85O1s4HBgI9emi35+bK5uZnz8rv+8YN+X3/8Qdw5Qrw119y0VW3rvyemzSR6/7+ct3Z2bKfyZacPasd3CzPwFylQd5mrEKIQpu2Gtrf0HYA+Pzzz7FmzRrs2bMHLjo3d7p3765Zb9KkCUJDQ1G7dm2sWLEC48ePN3jeWbNm5RsYrTQaNmwYVqxYkW/7hQsXUKdOnXzbExMTUbFixSIde+rUqdi0aRPi4uKKfYzSyN/fH4mJiahSpQoAOY5Ap06dcPfuXVSoUEHZ4IiIiMxIsQS7ODU9eX311Vd48OAB+vXrV+A+NncBmZ0t+xefOwccOSJrUc+dk32lDQ045uIimzO3bg2EhMgBvBo2lNNakfHs7GRz+Ro1gDzNdnHjBrBzJ7B/PxAbK5PEBw+0A8PpcnUF/vMf4JlngO7d5Q0P9h2UhAAGDJA3jXr1kjcnSokqVarA3t4+XxmWnJycr6xT8/HxMbi/g4NDvprnL7/8Ep988gl27tyJpk2bFhqLu7s7mjRpggt5f5s6IiIi9JLvtLQ0+Pv7F3pcW/XMM89g+fLletu8vLz0nmdlZcHJyckk/djN3Rfe2tnb25f574CIiKyc+trcxE3EFR+txtiaHrU1a9Zg6tSpWLduHapWrVrgfhEREUhNTdUsV69eLXHMJvHokawJXbcOmDIF6NdP1nq6u8tmx926ye1r18pk7sEDORJ3aCgwciSwYIHsX52WJps2L10KvPaafJ3JtXlUqwYMGQIsXixbEty/L2u1f/tN1sL26iVvdJQvL5uZb9kCvPGGvAHi5iZryt94A/j22yf3iS/NJk+Wv2kAmD9f2VhMzMnJCcHBwYiOjtbbHh0djXbt2hl8T2hoaL79d+zYgZCQEL3+11988QVmzJiBbdu2ISQk5ImxZGZmIj4+3mATczVnZ2d4eHjoLaWVs7MzfHx89JbOnTvj9ddfx/jx41GlShV0/bcbiUqlwqZNmzTvvXbtGl566SVUqlQJ7u7uCAkJwdGjRxEVFYVp06bhzz//hEqlgkqlQlRUlMFjnDx5Ev/5z3/g6uqKypUr45VXXkF6errm9WHDhqF379748ssv4evri8qVK2Ps2LF4rJ45oRARERFo27Ztvu1NmzbFlClTNM+XL1+OoKAguLi4oEGDBliwYEGhx927dy9at24NZ2dn+Pr6YuLEicjWmZYxNzcXn332GerUqQNnZ2fUqFEDH//b3ePy5ctQqVSIi4vD5cuX0alTJwBAxYoVoVKpMGzYMKxcuRKVK1fWa2UGAH369NEbvI+IiMiWKFaDXZyaHrV169ZhxIgR+Omnn/T6IBri7OwMZyWb6qalafvz6vb3TUiQzZENcXKSNaht2sjppOrXl0udOnJUb7IOKpVsDu7vD/Tsqd0uhLzp8b//Ab/+KpvyP3okn+tq1Ej2C3/qKZmY60y3VGrt26ftb/3qq/J3XsqMHz8egwcPRkhICEJDQ7Fo0SJcuXJFM691REQErl+/jpUrVwIARo8ejW+++Qbjx4/HqFGjcPjwYSxduhRr1qzRHPPzzz/H5MmTsXr1atSsWVNTbpYrVw7lypUDALz77rt49tlnUaNGDSQnJ2PmzJlIS0vD0KFDzfdhhZCj+Fuam5vJWoSsWLECr732Gg4ePKhpmq8rPT0dHTt2hJ+fHzZv3gwfHx+cOHECubm5CA8Px6lTp7Bt2zbN9GieBm5wZmRk4JlnnkHbtm3xxx9/IDk5GSNHjsTrr7+uScgBYPfu3fD19cXu3bvx999/Izw8HM2bN8eoUaMK/QwDBw7Ep59+iosXL6J27doAgNOnT+PkyZP4+eefAciR56dMmYJvvvkGLVq0QGxsLEaNGgV3d3eDv5Hr16+jR48emkT47NmzGDVqFFxcXDB16lQA8re8ePFizJkzB//3f/+HxMREnD17Nt+x/P39sX79evTp0wfnzp2Dh4cHXF1d4eTkhDfffBObN29G3759AcjWbb/99hu2bdtW6GemYjBxDQ0RERVAKKh169bitdde09sWFBQkJk6cWOB7Vq9eLVxcXMTGjRuLdc7U1FQBQKSmphbr/YW6elWItWuFmDBBiJ49hahRQz0uneGlQgUhQkOFGD5ciC+/FGLLFiEuXRIiJ8f0sZFyMjOFiIsTYs4c+dvo0MHw76FlSyHef1+I//1PiHv3lI7a9G7f1n7WF18UIjdXsVDMWg4IIebPny8CAgKEk5OTaNmypdi7d6/mtaFDh4qOHTvq7b9nzx7RokUL4eTkJGrWrCkWLlyo93pAQIAAkG+ZMmWKZp/w8HDh6+srHB0dRbVq1cR///tfcfr0aaPiLux7efjwoThz5ox4+PChdmN6euFlnLmW9HSjPtfQoUOFvb29cHd31ywvvvii6Nixo2jevHm+/QFo/o/57rvvRPny5cXt27cNHnvKlCmiWbNmhR5j0aJFomLFiiJdJ+4tW7YIOzs7kZSUpIkxICBAZGdna/bp27evCA8PL9JnbNq0qZg+fbrmeUREhGjVqpXmub+/v1i9erXee2bMmCFCQ0OFEEIkJCQIACI2NlYIIcQHH3wg6tevL3J1/k7nz58vypUrJ3JyckRaWppwdnYWixcvNhhP3uPt3r1bABB3797V2++1114T3bt31zyPjIwUtWrV0juvLoO/Qypcr17y72bJkiLtbu7y0VbxeyEqhdTXFX/8UaTdi1oOKDqKuLE1PWvWrMGQIUMwd+5ctG3bVlOL4+rqarDWwKwePZK1lMeOAYcOAQcOyObChvj4yH7RQUHapWFDOe0U++WWfk5OsiVCs2babcnJwO+/A3v3yj7d8fFyFPgTJ4DPPpP7tGkDjBol32frg6YJAYwYoX0eGVmqf/tjxozBmDFjDL6mW2Op1rFjR5w4caLA412+fPmJ51y7dm1RwyuTOnXqhIULF2qeu7u7o3///k9sbh8XF4cWLVoUOpjmk8THx6NZs2Zwd3fXbGvfvj1yc3Nx7tw5TautRo0awV6nlZKvry9OnjxZpHMMHDgQy5Ytw+TJkyGEwJo1azBu3DgAwK1bt3D16lWMGDFCrzY8Ozu7wP874+PjERoaqtdlq3379khPT8e1a9eQlJSEzMxMdO7cucjfgyGjRo1Cq1atcP36dfj5+WH58uUYNmwY57s2JTP1MSQiKjXu3zfp4RRNsMPDw3H79m1Mnz4diYmJaNy4MbZu3YqAgAAAchTWKzpJ63fffYfs7GyMHTsWY8eO1WwfOnSowYtWkxFCDjR26JB29O6TJ+WAZLrs7WUy1KaNdu7kJk2AMjySLBWgalXgpZfkAgC3bsk+2/v2Abt3A5cvy6nXjh6Vr3t6Ar17y99Wv35AAdMuWa133wU2bZJ/I8eOlY3m8GWBmxug04/Youc1kru7u8ERw3WTXkNcTTCFoShkbBHd7XnnPFepVMgtqCtRHgMGDMDEiRNx4sQJPHz4EFevXsVL/5Yv6mMsXrwYbfIMKmhfQLcjQzELndHtTfG9AECLFi3QrFkzrFy5Et26dcPJkyfx66+/muTYlAcTbCIiw0x8U1fRBBswrqZnz5495g9IV0aGTIAOHgTu3Mn/euXKsu9smzbA//2ffPy3PySRUby8gGHD5ALIEcuXLJG13CdPyt/fihVyeecd+Xvr2lUuTZvK0c+tkRCytnr2bPn8q6+Ali0VDYlMSKWSAzOWYk2bNsWSJUtw584dg7XYTk5OyMnJKfQYDRs2xIoVK/DgwQNNQn/w4EHY2dmhXr16JomzevXqeOqpp7Bq1So8fPgQXbp00dSMe3t7w8/PD5cuXcLAgQOLdLyGDRti/fr1eon2oUOHUL58efj5+cHLywuurq7YtWsXRo4c+cTjOTk5AYDB72rkyJGYM2cOrl+/ji5dupTakewVwxpsIqLCmTjBttKrcivh5gb8+adMblxc5GBU770H/PyzHAX61i1g61Y52nfnzkyuyXSqVQM++gjYs0f+zn7/HfjwQ9lC4uFDIDoamDABaNFCdkHo108m3tu3A3lG5FWMEDIm9TRQL7wAvPWWsjERGal///7w8fFB7969cfDgQVy6dAnr16/H4cOHAQA1a9ZEQkIC4uLikJKSkm9EbEA233ZxccHQoUNx6tQp7N69G2+88QYGDx78xEE9jTFw4ECsXbsWP/30EwYNGqT32tSpUzFr1izMnTsX58+fx8mTJ7F8+XLMVt/8ymPMmDG4evUq3njjDZw9exa//PILpkyZgvHjx8POzg4uLi54//33MWHCBKxcuRIXL17EkSNHsHTpUoPHCwgIgEqlwm+//YZbt27pjaA+cOBAXL9+HYsXL8bw4cNN9n3Qv5hgExFZFBPsJ1m4UDbTTU2V/WU//xzo00eOfsw+YmQJdnZAp07AjBlyequ//pK1wj17ytrDW7eAn36StcTPPCNbVjz3HDBvnrwBpMTUdImJMqGeM0c+//xzYP16y8dBVEJOTk7YsWMHqlatih49eqBJkyb49NNPNU2r+/Tpg2eeeQadOnWCl5eX3ujvam5ubti+fTvu3LmDVq1a4cUXX0Tnzp3xzTffmDTWvn374vbt28jIyEDv3r31Xhs5ciSWLFmCqKgoNGnSBB07dkRUVBQCAwMNHsvPzw9bt27FsWPH0KxZM4wePRojRozAhx9+qNln8uTJeOedd/DRRx8hKCgI4eHhSE5OLvB406ZNw8SJE+Ht7Y3XX39d85qHhwf69OmDcuXK5YubTIAJNhFR4Uyc06mEKFslblpaGjw9PZGamlqq53ylMiIrCzhyRN4EOnUK2LEDyDP1HQCgdm3g6afldG9+frLWOyQEMNXfgBAygV69Wta2p6ZqX5s7F3jzTdOcx0RYDhhW2Pfy6NEjJCQkIDAwEC4uLgpFSKVV165dERQUhK+//rrQ/fg7LIb//hfYuFFWGPw7iGxhWD4axu+FqBRSJ9b79gEdOjxx96KWA4r3wSaiEnBykl0XnnpKPs/Nld0a/vc/OXZAfLzsznDxolzyathQHqNSJSA4WD7v1EkORubrK+dsd3KSNeXu7jKhr1QJuHZNjlGQkwNs2wZ88ol+Ug3IZH7KFKB/f/N/D0Rkk+7cuYMdO3bg999/N3mNPv2LNdhERBbFBJuoNLGzk/2yW7TQbktLk1OB7dkDXL8um4wfPy6nmjtzRrvf77+X/PwBAUBEhBwc0NJT5xGVUvv370f37t0LfD1diZHcTaRly5a4e/cuPvvsM9SvX1/pcEonJthERIUrbaOIE5GZeXjI/to9e2q3CSGT7n/+kdPN3bgB/P23TLxPnSr6sR0dgY4d5ZzukyfLWmsiMqmQkBDExcUpHYZZFGWOdzIRJthERPo8PGRFVLNmJj0sE2yiskil0jYrzystDXB2Bs6fB+rUkSPoA3I0fScn+Vi5snZ6Jg72R2RWrq6uBufwJiqSL7+UN0D9/JSOhIjIuty8Kbs/li9v0sMywSYifepBG5o00d9eubJ8NHEhREREZlSzptIREBFZJxcXbUWSCXGaLiIiKrIyNvEEWRn+/oiIyNoxwSYioidydHQEAGRkZCgcCZVlWVlZAKCZh5yIiMjasIk4ERE9kb29PSpUqIDk5GQAgJubG1Tsf08WlJubi1u3bsHNzQ0ODrx8ISIi68T/oYiIqEh8fHwAQJNkE1manZ0datSowZs7RERktZhgExFRkahUKvj6+qJq1ap4/Pix0uFQGeTk5AQ7O/ZuIyIi68UEm4iIjGJvb88+sEREREQG8DYwERERERERkQkwwSYiIiIiIiIyASbYRERERERERCZQ5vpgCyEAAGlpaQpHQkRKUf/9q8sDklg+EhHLR8NYPhJRUcvHMpdg379/HwDg7++vcCREpLT79+/D09NT6TCsBstHIlJj+aiP5SMRqT2pfFSJMnaLMjc3Fzdu3ED58uWLNI9mWloa/P39cfXqVXh4eFggQtNh7Mpg7MowJnYhBO7fv49q1apxyh8dLB9tA2O3PFuNGzA+dpaPhrF8tH62GjfA2JVirvKxzNVg29nZoXr16ka/z8PDw+Z+NGqMXRmMXRlFjZ01M/mxfLQtjN3ybDVuwLjYWT7mx/LRdthq3ABjV4qpy0femiQiIiIiIiIyASbYRERERERERCbABPsJnJ2dMWXKFDg7OysditEYuzIYuzJsOXZbZcvfOWNXhq3GbqtxA7Yduy2z5e/dVmO31bgBxq4Uc8Ve5gY5IyIiIiIiIjIH1mATERERERERmQATbCIiIiIiIiITYIJNREREREREZAJMsAEsWLAAgYGBcHFxQXBwMPbv31/o/nv37kVwcDBcXFxQq1YtfPvttxaKND9jYt+wYQO6du0KLy8veHh4IDQ0FNu3b7dgtPqM/d7VDh48CAcHBzRv3ty8ARbC2NgzMzMxadIkBAQEwNnZGbVr18ayZcssFK0+Y2NftWoVmjVrBjc3N/j6+uLll1/G7du3LRSttG/fPjz77LOoVq0aVCoVNm3a9MT3WNPfqS1j+Wh5LBtZNhqD5aMyWDYqg+Ujy0djKFY+ijJu7dq1wtHRUSxevFicOXNGvPXWW8Ld3V38888/Bve/dOmScHNzE2+99ZY4c+aMWLx4sXB0dBQ///yzhSM3Pva33npLfPbZZ+LYsWPi/PnzIiIiQjg6OooTJ05YOHLjY1e7d++eqFWrlggLCxPNmjWzTLB5FCf25557TrRp00ZER0eLhIQEcfToUXHw4EELRi0ZG/v+/fuFnZ2dmDt3rrh06ZLYv3+/aNSokejdu7dF4966dauYNGmSWL9+vQAgNm7cWOj+1vR3astYPlq+fGTZyLLRWCwfLY9lI68djcXysWyVj2U+wW7durUYPXq03rYGDRqIiRMnGtx/woQJokGDBnrbXn31VdG2bVuzxVgQY2M3pGHDhmLatGmmDu2Jiht7eHi4+PDDD8WUKVMUKySNjf1///uf8PT0FLdv37ZEeIUyNvYvvvhC1KpVS2/b119/LapXr262GJ+kKAWkNf2d2jKWj5YvH1k2KqM0lI1CsHy0FJaNvHY0FsvHslU+lukm4llZWYiJiUFYWJje9rCwMBw6dMjgew4fPpxv/27duuH48eN4/Pix2WLNqzix55Wbm4v79++jUqVK5gixQMWNffny5bh48SKmTJli7hALVJzYN2/ejJCQEHz++efw8/NDvXr18O677+Lhw4eWCFmjOLG3a9cO165dw9atWyGEwM2bN/Hzzz+jZ8+elgi52Kzl79SWsXy0fPnIspFloyVYy9+prWLZyGtHY7F8LHvlo4OpA7MlKSkpyMnJgbe3t952b29vJCUlGXxPUlKSwf2zs7ORkpICX19fs8Wrqzix5/XVV1/hwYMH6NevnzlCLFBxYr9w4QImTpyI/fv3w8FBuZ9tcWK/dOkSDhw4ABcXF2zcuBEpKSkYM2YM7ty5Y9G+NMWJvV27dli1ahXCw8Px6NEjZGdn47nnnsO8efMsEXKxWcvfqS1j+Wj58pFlI8tGS7CWv1NbxbKR147GYvlY9srHMl2DraZSqfSeCyHybXvS/oa2W4KxsautWbMGU6dOxbp161C1alVzhVeoosaek5ODAQMGYNq0aahXr56lwiuUMd97bm4uVCoVVq1ahdatW6NHjx6YPXs2oqKiLH4nEjAu9jNnzuDNN9/ERx99hJiYGGzbtg0JCQkYPXq0JUItEWv6O7VlLB8tXz6ybGTZaG7W9Hdqq1g28trRWCwfy075WKZrsKtUqQJ7e/t8d2CSk5Pz3b1Q8/HxMbi/g4MDKleubLZY8ypO7Grr1q3DiBEj8NNPP6FLly7mDNMgY2O/f/8+jh8/jtjYWLz++usAZMEjhICDgwN27NiB//znP1YZOwD4+vrCz88Pnp6emm1BQUEQQuDatWuoW7euWWNWK07ss2bNQvv27fHee+8BAJo2bQp3d3d06NABM2fOtNqaDmv5O7VlLB8tXz6ybGTZaAnW8ndqq1g28trR3LEDLB+VYqq/1TJdg+3k5ITg4GBER0frbY+Ojka7du0Mvic0NDTf/jt27EBISAgcHR3NFmtexYkdkHcfhw0bhtWrVyvWF8LY2D08PHDy5EnExcVpltGjR6N+/fqIi4tDmzZtLBV6sb739u3b48aNG0hPT9dsO3/+POzs7FC9enWzxqurOLFnZGTAzk6/mLC3twegvaNnjazl79SWsXy0fPnIspFloyVYy9+prWLZyGtHY7F8LIPlo1FDopVC6qHnly5dKs6cOSPGjRsn3N3dxeXLl4UQQkycOFEMHjxYs796+Pa3335bnDlzRixdulTxqRaKGvvq1auFg4ODmD9/vkhMTNQs9+7ds/rY81JyJEhjY79//76oXr26ePHFF8Xp06fF3r17Rd26dcXIkSOtPvbly5cLBwcHsWDBAnHx4kVx4MABERISIlq3bm3RuO/fvy9iY2NFbGysACBmz54tYmNjNVNEWPPfqS1j+Wj58pFlI8tGY7F8tDyWjbx2NBbLx7JVPpb5BFsIIebPny8CAgKEk5OTaNmypdi7d6/mtaFDh4qOHTvq7b9nzx7RokUL4eTkJGrWrCkWLlxo4Yi1jIm9Y8eOAkC+ZejQoZYPXBj/vetSspAUwvjY4+PjRZcuXYSrq6uoXr26GD9+vMjIyLBw1JKxsX/99deiYcOGwtXVVfj6+oqBAweKa9euWTTm3bt3F/rbtfa/U1vG8nGoVcedF8vG4rPFslEIlo9KYdk41PKBC5aPLB+No1T5qBLCyuvqiYiIiIiIiGxAme6DTURERERERGQqTLCJiIiIiIiITIAJNhEREREREZEJMMEmIiIiIiIiMgEm2EREREREREQmwASbiIiIiIiIyASYYBMRERERERGZABNsIiIiIiIiIhNggm3lhBB45ZVXUKlSJahUKsTFxeHpp5/GuHHjCn1fzZo1ERkZaZEYSZ9KpcKmTZsAAJcvX9b8u5XU4MGD8cknnxj1nqioKFSoUKHE5zanYcOGoXfv3kXaNzk5GV5eXrh+/bp5gyKrxTLR9lhTmfgke/bsgUqlwr1790x6XFMoyu9c7eTJk6hevToePHhg3qCo1GEZa3tsqYw1lu5ns6lrQEHFkpiYKF5//XURGBgonJycRPXq1UWvXr3Ezp07TXqerVu3CkdHR3Hw4EGRmJgoHj9+LG7fvi3S0tIKfV9AQICYM2eOSWMhfVOmTBHNmjXLtz0xMVE8evRICCFEQkKCACBiY2NLdK4///xTVKxY0eC/+6pVq4SdnZ149dVX8722fPly4enpWaJzm/uY9+7dE3fv3i3y/m+//bYYMWKEyc5PpsEykZQuEzt27CgA5FsMlY0FyczMFImJiSI3N/eJ++7evVsAMKr8Komi/M51vfDCC2LGjBlmjIgsiWUsKVXGqo9Z2DJlypQCj1WSmACIjRs3ap7byjWgg4Xz+VLh8uXLaN++PSpUqIDPP/8cTZs2xePHj7F9+3aMHTsWZ8+eNdm5Ll68CF9fX7Rr106zrVKlSiY7fmmUlZUFJycnxc7v4+Nj8mN+88036Nu3L8qXL5/vtWXLlmHChAlYuHAhZs+eDTc3N5Of3xxycnKgUqng6elp1PtefvlltG7dGl988QUqVqxopujIGCwTrVtZKhNHjRqF6dOn620zpkx0cnIyS7ymYOzv/OWXX8bo0aMREREBe3t7M0VFlsAy1rqV9jLWzc0NiYmJmte+/PJLbNu2DTt37tRsK1eunMljMMRmrgGVzvBtUffu3YWfn59IT0/P95runex//vlHPPfcc8Ld3V2UL19e9O3bVyQlJWleV9+JWrlypQgICBAeHh4iPDxcc5dw6NCheneHAgIChBDyLv1bb72lOc7NmzdFr169hIuLi6hZs6b44Ycf8t1JvHfvnhg1apTw8vIS5cuXF506dRJxcXFFjkUIIXJycsSnn34qateuLZycnIS/v7+YOXOm5vVr166Jfv36iQoVKohKlSqJ5557TiQkJBT4Parv/v/222+iadOmwtnZWbRu3Vr89ddfevsdPHhQdOjQQbi4uIjq1auLN954Q++7DwgIEDNmzBBDhw4VHh4eYsiQIUIIIQ4cOCCeeuop4erqKipUqCDCwsLEnTt3hBBC5Obmis8++0wEBgYKFxcX0bRpU/HTTz/li23nzp0iODhYuLq6itDQUHH27FkhhKzFRZ67d8uXLxdC6N9tM3TX7vTp06J79+7C3d1dVK1aVQwaNEjcunWrwO8pJydHVKhQQfz222/5XktISBCurq7i3r17ok2bNmLFihV6rxuqbd68ebNo2bKlcHZ2FoGBgWLq1Kni8ePHmte/+uor0bhxY+Hm5iaqV68uXnvtNXH//n297wUG7lreuXNHDB48WFSoUEG4urqKZ555Rpw/fz5fLL/++qsICgoS9vb24tKlS2Lo0KHi+eef1/u8hf3OhBCiZs2aYunSpQV+Z2RZLBNZJlpDmZj3d5CX+txr1qwRoaGhwtnZWTRs2FDs3r073+dU/24vX74sevXqJSpUqCDc3NxEw4YNxZYtWwzW6AwdOtSo73Lbtm2iefPmwsXFRXTq1EncvHlTbN26VTRo0ECUL19evPTSS+LBgwcFfr5Hjx6J9957T1SvXl04OTmJOnXqiCVLlmhez8zMFM7OzmLXrl0FfidkG1jGsoy1hjJWLW9Nek5Ojpg2bZrw8/MTTk5OolmzZuJ///uf5vW8cXfs2FEIIcSxY8dEly5dROXKlYWHh4d46qmnRExMjN65dD+bmi1cAzLBNtLt27eFSqUSn3zySaH75ebmihYtWoj/+7//E8ePHxdHjhwRLVu21PyohJA/0HLlyon//ve/4uTJk2Lfvn3Cx8dHfPDBB0IIWThNnz5dVK9eXSQmJork5GQhRP6Crnv37qJx48bi0KFD4vjx46Jdu3bC1dVVU9Dl5uaK9u3bi2effVb88ccf4vz58+Kdd94RlStXFrdv3y5SLEIIMWHCBFGxYkURFRUl/v77b7F//36xePFiIYQQDx48EHXr1hXDhw8Xf/31lzhz5owYMGCAqF+/vsjMzDT4HakLk6CgILFjxw7x119/iV69eomaNWuKrKwsIYQQf/31lyhXrpyYM2eOOH/+vDh48KBo0aKFGDZsmOY46oL5iy++EBcuXBAXLlwQsbGxwtnZWbz22msiLi5OnDp1SsybN09ToHzwwQeiQYMGYtu2beLixYti+fLlwtnZWezZs0cvtjZt2og9e/aI06dPiw4dOoh27doJIYTIyMgQ77zzjmjUqJFITEwUiYmJIiMjQwhReEF348YNUaVKFRERESHi4+PFiRMnRNeuXUWnTp0K/C3FxsYKAHr/SapNnjxZvPjii0IIIebNmyeeeuopvdfzJtjbtm0THh4eIioqSly8eFHs2LFD1KxZU0ydOlWzz5w5c8Tvv/8uLl26JHbt2iXq168vXnvtNSGEvGCLjIwUHh4ems+tTr6fe+45ERQUJPbt2yfi4uJEt27dRJ06dTT/lsuXLxeOjo6iXbt24uDBg+Ls2bMiPT09X4Jd2O9MrV+/fnq/AVIOy0SWiUJYR5lY1AS7evXq4ueffxZnzpwRI0eOFOXLlxcpKSl6n1OdtPTs2VN07dpV/PXXX+LixYvi119/FXv37hXZ2dli/fr1AoA4d+6cSExMFPfu3TPqu2zbtq04cOCAOHHihKhTp47o2LGjCAsLEydOnBD79u0TlStXFp9++mmBn69fv37C399fbNiwQVy8eFHs3LlTrF27Vu8zt27dWq98J9vDMpZlrBDWUcbq/o50E+zZs2cLDw8PsWbNGnH27FkxYcIE4ejoqKlkOXbsmObmQWJiouY3sGvXLvH999+LM2fOiDNnzogRI0YIb29vvZsshhJsW7gGZIJtpKNHjwoAYsOGDYXut2PHDmFvby+uXLmi2Xb69GkBQBw7dkwIIX+gbm5uej+k9957T7Rp00bzfM6cOZo7iGq6Bd25c+cEAHHkyBHN6/Hx8QKApqDbtWuX8PDw0PTPUKtdu7b47rvvihRLWlqacHZ2zpfoqC1dulTUr19fr99aZmamcHV1Fdu3bzf4HnVhontBcPv2beHq6irWrVsnhBBi8ODB4pVXXtF73/79+4WdnZ14+PChEEIWdL1799bbp3///qJ9+/YGz5ueni5cXFzEoUOH9LaPGDFC9O/fXy823b5NW7ZsEQA05y2oL0xhBd3kyZNFWFiY3v5Xr17VXKQZsnHjRmFvb5+vT2BOTo7w9/cXmzZtEkIIcevWLeHo6CguXLig2Sdvgt2hQ4d8/0l///33wtfX1+C5hRDixx9/FJUrVy7wmEIIcf78eQFAHDx4ULMtJSVFuLq6ih9//FHzPgB6d7CFEHoJ9pN+Z2pvv/22ePrppwvdhyyDZSLLRGspEzt27CgcHR2Fu7u73hIVFaV3bt2k9fHjx6J69eris88+0/uc6gS7SZMmBSaohvpgF/e7nDVrlgAgLl68qNn26quvim7duul9vry/8+joaIOxqb3wwgtWfyFKhWMZyzLWWspYtbxxVKtWTXz88cd6+7Rq1UqMGTPGYEwFyc7OFuXLlxe//vqrwc+mZgvXgOyDbSQhBAA5ql1h4uPj4e/vD39/f822hg0bokKFCoiPj0erVq0AyFEXdfuQ+fr6Ijk5ucjxxMfHw8HBASEhIZptDRo00Bs5OiYmBunp6ahcubLeex8+fIiLFy9qnhcWS3x8PDIzM9G5c2eDccTExODvv//O1x/u0aNHeucwJDQ0VLNeqVIl1K9fH/Hx8XrHXbVqlWYfIQRyc3ORkJCAoKAgAND7/AAQFxeHvn37GjzfmTNn8OjRI3Tt2lVve1ZWFlq0aKG3rWnTppp1X19fAHIUwxo1ahT6mQoSExOD3bt3G+yrcvHiRdSrVy/f9ocPH8LZ2Tnfb27Hjh148OABunfvDgCoUqUKwsLCsGzZsgJHfYyJicEff/yBjz/+WLMtJycHjx49QkZGBtzc3LB792588sknOHPmDNLS0pCdnY1Hjx7hwYMHcHd3N3hc9e+wTZs2mm2VK1fW+7cEZP9G3e/U0HEK+52pubq6IiMjo9B9yDJYJrJMtJYyEQAGDhyISZMm6W2rWrWq3nPd71f9W9Etp3S9+eabeO2117Bjxw506dIFffr0KbQMK+536e3tDTc3N9SqVUtv27FjxwyeJy4uDvb29ujYsWOBsQAsK0sDlrEsY62pjM0rLS0NN27cQPv27fW2t2/fHn/++Weh701OTsZHH32E33//HTdv3kROTg4yMjJw5cqVQt9nC+UaE2wj1a1bFyqVCvHx8YVOLSSEMPjDzLvd0dFR73WVSoXc3Nwix1OUgjc3Nxe+vr7Ys2dPvtd0C8TCYnF1dS00jtzcXAQHB+sVSGpeXl6FvtcQ9efJzc3Fq6++ijfffDPfPrqFTd7Er7B41Z9py5Yt8PPz03vN2dlZ77nud6IbU3Hl5ubi2WefxWeffZbvNXVBmleVKlWQkZGRbxCNZcuW4c6dO3oD+OTm5iI2NhYzZswwOKhNbm4upk2bhv/+97/5XnNxccE///yDHj16YPTo0ZgxYwYqVaqEAwcOYMSIEXj8+HGBn0v9OzS0Xfe36erqWuhv9Um/M7U7d+4U63dFpscyseBzsEx8MlOWiQDg6emJOnXqGB1HQb+XkSNHolu3btiyZQt27NiBWbNm4auvvsIbb7xhcP+SfJfG/PaNKStr165dpH3JOrGMLfgcLGOfzNRlbEHy/h4K+j3qGjZsGG7duoXIyEgEBATA2dkZoaGhyMrKKvR9tnANyHmwjVSpUiV069YN8+fPNzi/pHruzIYNG+LKlSu4evWq5rUzZ84gNTVVc/fLFIKCgpCdnY3jx49rtp07d05vDs+WLVsiKSkJDg4OqFOnjt5SpUqVIp2nbt26cHV1xa5duwy+3rJlS1y4cAFVq1bNd44njRJ95MgRzfrdu3dx/vx5NGjQQHPc06dP5ztmnTp1Cv2jb9q0aYGxNmzYEM7Ozrhy5Uq+Y+re+X0SJycn5OTkFHl/3c9Ts2bNfOcuqHa4efPmAOTvR+327dv45ZdfsHbtWsTFxekt6enp+N///lfg+c+dO2fw+7Szs8Px48eRnZ2Nr776Cm3btkW9evVw48aNJ37uhg0bIjs7G0ePHtWL8fz580b93p/0O1M7depUvru+pAyWiSwT1ZQsE42h+/1mZ2cjJiZG8/0a4u/vj9GjR2PDhg145513sHjxYgDQfN+6n9lU3+WTNGnSBLm5udi7d2+h+7GstH0sY1nGqlljGevh4YFq1arhwIEDetsPHTqk+d0ZKisBYP/+/XjzzTfRo0cPNGrUCM7OzkhJSXniOW2hXGOCXQwLFixATk4OWrdujfXr1+PChQuIj4/H119/rWl20qVLFzRt2hQDBw7EiRMncOzYMQwZMgQdO3bM16ykJOrXr49nnnkGo0aNwtGjRxETE4ORI0fq3Unr0qULQkND0bt3b2zfvh2XL1/GoUOH8OGHH+oVkIVxcXHB+++/jwkTJmDlypW4ePEijhw5gqVLlwKQzfKqVKmC559/Hvv370dCQgL27t2Lt956C9euXSv02NOnT8euXbtw6tQpDBs2DFWqVNHcpX3//fdx+PBhjB07FnFxcbhw4QI2b95cYO2BWkREBP744w+MGTMGf/31F86ePYuFCxciJSUF5cuXx7vvvou3334bK1aswMWLFxEbG4v58+djxYoVRfo+ANm0KSEhAXFxcUhJSUFmZuYT3zN27FjcuXMH/fv3x7Fjx3Dp0iXs2LEDw4cPL7DQ9PLyQsuWLfUKr++//x6VK1dG37590bhxY83StGlT9OrVS/PvktdHH32ElStXYurUqTh9+jTi4+Oxbt06fPjhhwCA2rVrIzs7G/PmzcOlS5fw/fff49tvv833udPT07Fr1y6kpKQgIyMDdevWxfPPP49Ro0bhwIED+PPPPzFo0CD4+fnh+eefL+pX+sTfGQBkZGQgJiYGYWFhRT4umRfLRJaJgLJlolpGRgaSkpL0lrt37+rtM3/+fGzcuBFnz57F2LFjcffuXQwfPtzgucaNG4ft27cjISEBJ06cwO+//665aAwICIBKpcJvv/2GW7duIT093WTf5ZPUrFkTQ4cOxfDhw7Fp0yYkJCRgz549+PHHHzX7XL58GdevX0eXLl1Mdl5SBstYlrGAdZSxhrz33nv47LPPsG7dOpw7dw4TJ05EXFwc3nrrLQCym46rqyu2bduGmzdvIjU1FQBQp04dfP/994iPj8fRo0cxcODAJ7ZcsJlrQEt3+i4tbty4IcaOHSsCAgKEk5OT8PPzE88995zedB9FnS5BV97BJZ402IQQcoL5nj17CmdnZ1GjRg3NlAe60yWkpaWJN954Q1SrVk04OjoKf39/MXDgQM1gGEWJJScnR8ycOVMEBAQIR0dHUaNGDb0BsxITE8WQIUNElSpVhLOzs6hVq5YYNWqUSE1NNfgdqgd0+PXXX0WjRo2Ek5OTaNWqVb5BsI4dOya6du0qypUrJ9zd3UXTpk31BlPI+1nV9uzZI9q1ayecnZ1FhQoVRLdu3TSD0eTm5oq5c+eK+vXrC0dHR+Hl5SW6desm9u7dqxeb7uA16lEV1VNAPHr0SPTp00dUqFDBqOkSzp8/L1544QXNdFYNGjQQ48aNK3AwCSGE+Pbbb0Xbtm01z5s0aaIZPCKv9evXCwcHB5GUlGRwQLJt27ZpRvz08PAQrVu3FosWLdK8Pnv2bOHr6ytcXV1Ft27dxMqVK/N9F6NHjxaVK1c2OE2Xp6en5r2GpunKy9A0XYX9zlavXi3q169f4HdFymCZyDJRyTJRCPk7QJ7pYABoBgpTn3v16tWiTZs2wsnJSQQFBelNY5X3c77++uuidu3awtnZWXh5eYnBgwdrRhwXQojp06cLHx8foVKp9KbpMva7NFQ+5v0N5v2dP3z4ULz99tvC19dXM03XsmXLNK9/8skneoOkkW1jGcsyVukyVq2wabocHR3zTdMlhBCLFy8W/v7+ws7OTjOy/YkTJ0RISIhwdnYWdevWFT/99FO+71b3swlhO9eAKiEK6DxJZGZ79uxBp06dcPfuXb0+OZTfo0ePUL9+faxdu1ZvcI6yqHXr1hg3bhwGDBigdChEJsUyseiKUyZevnwZgYGBiI2N1TSBLK0yMzNRt25drFmzJt/gQ0RlFcvYorPW605buQZkE3EiG+Di4oKVK1cWqW9KaZacnIwXX3wR/fv3VzoUIlIQy8TC/fPPP5g0aRKTayIqFmssY23pGpCjiBPZiCdNx1IWVK1aFRMmTFA6DCKyAiwTC1avXj2D0+8QERWVtZWxtnQNyCbiRERERERERCbAJuJEREREREREJsAEm4iIiIiIiMgEmGATERERERERmQATbCIiIiIiIiITYIJNREREREREZAJMsImIiIiIiIhMgAk2ERERERERkQkwwSYiIiIiIiIyASbYRERERERERCbw/8c8yZFnUENDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -910,7 +1068,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAFUCAYAAADS2eS8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSeklEQVR4nOzdeVxN+f8H8NdtjxbLKGUrY2cQhex7Qsa+jpQ1KktjjJixjDENQ2QfpMZOKjL2GSq7CU0MYw2h7Cqh9fz+mJ/7ddxKXd3OvbfX8/E4j8eczzmfe1/3zu3jvu9ZPjJBEAQQERERERERkUroSB2AiIiIiIiISJux8CYiIiIiIiJSIRbeRERERERERCrEwpuIiIiIiIhIhVh4ExEREREREakQC28iIiIiIiIiFWLhTURERERERKRCLLyJiIiIiIiIVIiFNxEREREREZEKsfAmIiIiIiIiUiEW3p8gOjoaLi4usLa2hkwmw+7du7Xq+YiI3scxj4hKCo53RFTUWHh/grS0NDRq1AgrVqzQyucjInofxzwiKik43hFRUdOTOoAmc3Z2hrOzc57bMzIy8N1332HLli14+fIlGjRogAULFqB9+/YqeT4iIlXimEdEJQXHOyIqaiy8Vcjd3R137tzB9u3bYW1tjfDwcHTr1g2XLl1CzZo1pY5HRFSkOOYRUUnB8Y6ICounmqvIrVu3sG3bNoSEhKBNmzb4/PPPMXXqVLRu3RpBQUFSxyMiKlIc84iopOB4R0TKYOGtIhcuXIAgCKhVqxZMTEzkS1RUFG7dugUAuHPnDmQyWb6Ll5eXxK+EiOjjOOYRUUnB8Y6IlMFTzVUkJycHurq6OH/+PHR1dUXbTExMAACVKlXC1atX832csmXLqiwjEVFR4ZhHRCUFxzsiUgYLbxWxs7NDdnY2Hj9+jDZt2uS6j76+PurUqVPMyYiIih7HPCIqKTjeEZEyWHh/glevXuHmzZvy9fj4eMTGxqJcuXKoVasWhg0bBldXVyxevBh2dnZ4+vQpjh49ii+++ALdu3cv0uerWrVqkbwmIqK8cMwjopKC4x0RFTmBlHbs2DEBgMIyYsQIQRAEISMjQ5g1a5ZgY2Mj6OvrCxUrVhT69OkjxMXFqeT5iIhUiWMeEZUUHO+IqKjJBEEQiqPAJyIiIiIiIiqJeFdzIiIiIiIiIhVi4U1ERERERESkQry5mhJycnLw8OFDmJqaQiaTSR2HiNScIAhITU2FtbU1dHSU+71z9erVWL16Ne7cuQMAqF+/PmbNmgVnZ+c8+0RFRcHHxwf//PMPrK2tMW3aNHh4eBTqeTneEVFhFcWYJxWOeURUGIUa7yS9wlxDJSQk5HoDDC5cuHDJb0lISFB63ImIiBD27dsnXLt2Tbh27ZowY8YMQV9fX7h8+XKu+9++fVsoVaqUMGnSJOHKlSvCunXrBH19fWHXrl0c77hw4VIsy6eMeVLhmKcdS/Xq1YXs7GzR/9vJkydLnouL9i4FGe94czUlJCcno0yZMvjvTH3+GkqkDs52aQmjKlVRrl1HPNzyG1CAoa35kVPFkAz4b0zOwcuXL2Fubl5kj1quXDn88ssvGDVqlMK2b7/9FhEREbh69aq8zcPDA3///TdOnz5d4OfgeCedqwPqK9Wvbsg/RZyEqLBUM+YVB4552iEgYAkmTvSWrycnJ6NKFRukpqZKmKrg9jXL+2y2/PQ4d6CIk9DHFXy846nmSvjfqUcycFAmUg9lLC1h47cYBhaWMKlUGQ8DfgGysz/Sq3j/fovqtMXs7GyEhIQgLS0Njo6Oue5z+vRpdO3aVdTm5OSEwMBAZGZmQl9fv0DPxfFOOqb6ukr25P8nUg+aeKo2xzzNV6ZMGYwc6S5qW7cuEKmpr6Ap/09L6xXs32hFmvH6tFFBxjsW3kSk8czNzVH1h59hYGEJACjTqSv0ypRBwk9zILx9K3G6onPp0iU4Ojri7du3MDExQXh4OOrVq5frvklJSbC0tBS1WVpaIisrC0+fPoWVlVWu/dLT05Geni5fT0lJKboXQEREpGJjxoyCiYmJfD0rKwvLl6+UMBHRfzTrjhdERB8wNDTE7t2hMLL9XNSua2L239k/WqR27dqIjY3FmTNnMH78eIwYMQJXrlzJc/8Pf319d2VRfr/K+vn5wdzcXL5UqVKlaMITERGpmJ6eHiZO9BK17doVinv37kmUiOh/WHgTkcbS0dHBpk3BaN++nag9/UEC7s3xhZCuPUe7AcDAwAA1atSAvb09/Pz80KhRIwQEBOS6b8WKFZGUlCRqe/z4MfT09FC+fPk8n8PX1xfJycnyJSEhoUhfAxERkaoMHDgAlStXFrX5++f+7yRRceOp5kSksQIClmDAgP6itsznz3Dv+2+RnZIsUariIwiC6LTw9zk6OmLv3r2itsOHD8Pe3j7f67sNDQ1haGhYpDmJiIiKg4/PZNH68eMn8Ndff0kThugDPOJNRBpp+vRp8PKaIGrLfp2GhNm+yHyUlEcvzTVjxgwcP34cd+7cwaVLlzBz5kxERkZi2LBhAP47Uu3q6irf38PDA3fv3oWPjw+uXr2KDRs2IDAwEFOnTpXqJRAREalM27Zt0LRpE1Gbv/9SacIQ5YJHvIlI47i5jYCf33xRm5CZifs/zsLb2zclSqVajx49wvDhw5GYmAhzc3M0bNgQBw8eRJcuXQAAiYmJomvYbG1tsX//fkyZMgUrV66EtbU1li1bhn79+kn1EoiIiFTmw6Pdt27dQkTE3tx3JpIAC28i0ijduztj3bo1Cu0P/H9G2t8XJUhUPAIDA/PdHhwcrNDWrl07XLhwQUWJiIiI1EPNmjXh4tJT1LZ06XLk5ORIlIhIEU81JyKN0axZM4SEbIeenvg3w0mTfJASfUyiVERERCSlyZMnQkfnf2XNixcvEBQULF0golyw8CYijVCrVi3s27cHpUqVErUvWPALli1bLlEqIiIikpqxsTGys7Pl67/+ug5paWkSJiJSxMKbiNSerq4udu/ehc8++0zUvnHjZvj6zpQoFREREamDkSNH4/PPa8PffymePXuGFStWSR2JSIFMEARB6hCaJiUlBebm5gB0AcikjkNUIrRu3QoREeEoW7YsAODgwUNwcemNrKwsAECWEFzox9STuRVhwvwIALKRnJwMMzOzYnrOosHxTvO8nV+60H2MZvLIEBUljnkkHQMDA2RkZEgdg0qMgo93POJNRBrhxImTaNOmA+7fv4+//opB//6D5EU3EREREQAW3aS2eFdzItIY//zzD1q2bIu3b9/y2i0iIiIi0hgsvIlIoyQkJEgdgYiIiIioUHiqORGpnVq1akkdgYiIiNRY165dYGBgIHUMogJj4U1EasXVdTiuXImDl5en1FGIiIhIDdWpUweHDu3H3bu3MHOmL8qXLy91JKKPYuFNRGqjWzcnBAauha6uLpYvX4qffvpR6khERESkZqZMmQQAqFixIn788QfExsZAR4dlDak3fkKJSC04ODhg164d0NP7360nfH2/hZNTVwlTERERkTr57LPP4Or6lajtt982IScnR6JERAXDwpuIJFezZk3s27cHpUuL5x/+5ZfFOHTosESpiIiISN2MHz8ORkZG8vWMjAysXLlawkREBaPRhbefnx8cHBxgamoKCwsL9O7dG9euXftov/T0dMycORPVqlWDoaEhPv/8c2zYsKEYEhPRhywtLXHo0D5UqFBB1L5581Z8+62vRKmIiIhI3RgaGsLTc7yobevW7UhMTJQoEVHBaXThHRUVBU9PT5w5cwZHjhxBVlYWunbt+tH5fQcOHIg///wTgYGBuHbtGrZt24Y6deoUU2oiesfU1BQHDvwOW1tbUfuhQ4cxcuRoCIIgUTIiIpISD65QboYOHQJLS0tR25IlARKlISocjZ7H++DBg6L1oKAgWFhY4Pz582jbtm2efaKionD79m2UK1cOAGBjY6PqqET0AQMDA4SFhcDOrrGoPSbmPPr3H4TMzExpghERkeTeHVxxcHBAVlYWZs6cia5du+LKlSsKlyW9b+DAgXj06BECAwNRo0YNPH78GFlZWcWYnFTJx2eSaP2PP/5EXFycRGmICkejC+8PJScnA4C8oM5NREQE7O3tsXDhQmzatAmlS5dGr169MG/ePBgbGxdXVKISTSaT4bffNqBz506i9ps3b6JHj1549eqVRMmIiEgd8OAKfahr1y5o0KCBqM3ff6k0YYiUoDWFtyAI8PHxQevWrRX+KN93+/ZtnDhxAkZGRggPD8fTp08xYcIEPH/+PM9TkdLT05Geni5fT0lJKfL8RCWJv/8iDB48SNT26NEjODn1wOPHj5V6TD2ZWxEkI9J8RjPzv9yKSBPx4Ar5+EwWrV+9ehUHDx6SJgyRErSm8Pby8kJcXBxOnDiR7345OTmQyWTYsmULzM3NAQD+/v7o378/Vq5cmevA7Ofnh7lz56okN1FJM3WqDyZPnihqe/XqFbp374Xbt29LlIqIiNQVD65Q/fr1FaYX9fcP4L1gSKNo9M3V3vH29kZERASOHTuGypUr57uvlZUVKlWqJC+6AaBu3boQBAH379/PtY+vry+Sk5PlS0JCQpHmJyopvvpqGH75ZYGoLTMzE337DsCFCxckSkVEROrs3cGVbdu25bvf+wdXmjVrhu7du8Pf3x/BwcF48+ZNrn38/Pxgbm4uX6pUqaKKl0CfaMoU8bXdT548webNWyRKQ6QcjS68BUGAl5cXwsLCcPToUYU7I+emVatWePjwoega0uvXr0NHRyfPot3Q0BBmZmaihYgKz8TEBDk5OaI2d/fROHLkD4kSERGROuPBFbKwsMBXXw0Vta1atQZv376VKBGRcjS68Pb09MTmzZuxdetWmJqaIikpCUlJSaJfNX19feHq6ipfHzp0KMqXLw93d3dcuXIF0dHR+OabbzBy5Ehe/0OkYmvW/IqBA4fIT+ubOnUatmzZKnEqIiJSNzy4Qu9MmOABQ0ND+Xp6ejpWrVojYSIi5Wh04b169WokJyejffv2sLKyki87duyQ75OYmIh79+7J101MTHDkyBG8fPkS9vb2GDZsGFxcXLBs2TIpXgJRiRMaGoauXZ3xww8/YvHiJVLHISIiNcSDK/ROmzatReubN29V+kasRFKSCbwrQaGlpKT8/2lMugBkUschIrUnAMhGcnKyxh1N4XhHRIX36WOeTJb7eBMUFAQ3NzcAgJubG+7cuYPIyEj59n///Rfe3t44efIkypcvj4EDB+LHH38scOHNMU89denSGT4+k9GtmxPq12+EK1euSB2J6P8VfLxj4a0EDspEVDgsvImoJOGYR6pRrVo13L17V+oYRO8p+Hin0aeaE5F60tfXR0jIdrRr11bqKERERKQlWHSTJmPhTURFSiaTITg4EP3798OhQ/vRv38/qSMREREREUmKhTcRFalfflmAoUOHAPjvbrE7dmzFqFEjJU5FRERERCQdFt5EVGR8fCbj66+niNpev36Nv/+OkygRERERaZpq1apJHYGoyLHwJqIiMXToECxe/IuoLTMzE/37D0JMTIxEqYiIiEiTWFlZ4fr1Kzh+PBJ9+vSGjg7LFdIOelIHICLN16VLZwQHByq0jxw5BocOHZYgUcH8XH2sUv2m315bxElICi6mHkr125u6poiTEBHRO15eE2BgYIDWrVuhdetWuHz5Mho1aoqcnBypoxF9Ev6ERESfpEmTJggN3Ql9fX1R+7Rp07F58xaJUhEREZGmKVWqFDw8xD+KnzhxikU3aQUW3kSktOrVq2P//giYmpqK2pcsCcAvvyyWKBURERFpohEjXFGuXDlR29KlyyRKQ1S0WHgTkVIqVKiAQ4f2wdLSUtS+ffsOfP31NxKlIiIiIk0kk8kwZcpEUdvevb/j2rVrEiUiKlosvImo0EqXLo39+/eiRo0aovY//zyKESNGQhAEiZIRERGRJnJx6YmaNWuK2vz9l0oThkgFWHgTUaHo6+sjNHQn7O2bitpjY/9Gnz79kZGRIVEyIiIi0lQ+PpNF6xcvxiIyMkqaMEQqwMKbiApl+PCv4OTUVdQWHx8PZ+eeSE1NlSgVERERaaqmTZuiXbu2ojYe7SZtw8KbiAplw4YgzJ/vJ19/8uQJnJx6ICkpScJURESkLiZMGC91BNIwU6ZMEq0/ePAAO3bslCgNkWqw8CaiQvvuu1nw9p6MlJQU9OjxJW7cuCF1JCIikpiRkRGCgzdg5crlUkchDVK5cmUMHNhf1LZ8+UpkZmZKlIhINfSkDkBEmmnFipXYvn0Hnj59KnUUIiKSmI2NDUJDd6JJEzupo5CG8fb2hL6+vnw9LS0Na9eulzARkWrwiDcRKY1FNxERdenSGTExZ1h0U6GZmJhg7NjRoragoN/w4sULiRIRqQ4LbyLKU8OGDVGlShWpYxARkZqaPn0aDh7ch/Lly0sdhTSQu7sbypQpI1/PycnB0qXLpAtEpEI81ZyIcmVra4tDh/YhKysL3br1xD///CN1JCIiUhOmpqYIDg5E3759FLb9+++/EiQiTeTuPkK0vmdPBG7duiVRGiLVkgmCIEgdQtOkpKTA3NwcgC4AmdRxiIpchQoVcPJkFGrWrAkAePnyJXr16oPjx09InExTCQCykZycDDMzM6nDFArHOyL6UJ06dRAeHoI6deoobAsLC4eb20ikpr7kmEcfZWpqipEj3TF5sjdsbGzQpk17nDhxUupYRIVQ8O94PNWciERKly6Nffsi5EU3AJQpUwa+vt9KmIqIiNRF3bp1FIru7OxsTJ8+A/36DURqauonP4efnx8cHBxgamoKCwsL9O7dG9euXcu3T2RkJGQymcLCI/DqKzU1FQEBy1CjRh04O/dk0U1ajYU3Ecnp6elh164dcHCwF7X//XccBg8eJlEqIiJSJ+Hhu+Hnt0C+/uzZM3Tr1gMLFvxSZM8RFRUFT09PnDlzBkeOHEFWVha6du2KtLS0j/a9du0aEhMT5cv7PySTesrOzsbBg4ekjkGkUhpdeCvza+j7Tp48CT09PTRu3Fh1IYk0SGDgOnTr5iRqu3PnDpydeyIlJUWiVATw6A8RqZfvvpuFI0f+wIULF9G0aXP88cefRfr4Bw8ehJubG+rXr49GjRohKCgI9+7dw/nz5z/a18LCAhUrVpQvurq6RZqNiEgZGl14f8qvocnJyXB1dUWnTp2KISmR+vPzmw9X169EbU+fPoWTUw8kJiZKlIre4dEfIlInOTk5GDhwCFq1aou7d++q/PmSk5MBAOXKlfvovnZ2drCyskKnTp1w7NixfPdNT09HSkqKaCEiUgWturnakydPYGFhgaioKLRt2zbffQcPHoyaNWtCV1cXu3fvRmxsbIGfhzfeIG0zcaI3AgL8RW2vX79Gx45dcfbsWYlSaZOiv7laQca7yMhIdOjQAS9evBBN11IYHO+ISi5X1+FIT0/Hjh07C9mzaMc8QRDw5Zdf4sWLFzh+/Hie+127dg3R0dFo2rQp0tPTsWnTJqxZswaRkZF5jpNz5szB3Llzc9nCMU9VDAwMkJGRIXUMoiJSQm+uVtBfQ4OCgnDr1i3Mnj27OGIRqbWBAwdgyZJForasrCwMGDCYRbca49EfIlIVfX19rFy5HL/9tgEbNqzDF198IWkeLy8vxMXFYdu2bfnuV7t2bYwZMwZNmjSBo6MjVq1ahR49emDRokV59vH19UVycrJ8SUhIKOr49B5TU1PcvXsLa9asyvWu+ETaTGsKb0EQ4OPjg9atW6NBgwZ57nfjxg1Mnz4dW7ZsgZ5ewaYx5xdR0lYdOrTHxo1B0NERDwVjxnhg//4DkmSijyvoeGdlZYW1a9ciNDQUYWFhqF27Njp16oTo6Og8+/j5+cHc3Fy+VKlSRRUvgYjUlJWVFSIj/8SECR4AgFKlSiEsbKfSZ818Km9vb0RERODYsWOoXLlyofu3aNECN27cyHO7oaEhzMzMRAupzqhRI1GxYkWMGzcGV69ewp49YQrfQYi0VcEqTw3w7tfQEyfynmc4OzsbQ4cOxdy5c1GrVq0CP7afn18epyERaa5GjRph9+5QGBoaitpnzPgOwcG/SZSKCqIg4x3w39Gf2rVry9cdHR2RkJCARYsW5Xnapa+vL3x8fOTrKSkpLL6JSojWrVshJGQ7KlasKGqvUaMG+vfvh/XrA4stiyAI8Pb2Rnh4OCIjI2Fra6vU41y8eBFWVlZFnI6Uoauri0mTvERtGRkZyMnJkSgRUfHSisL73a+h0dHR+f4ampqaipiYGFy8eBFeXv/94efk5EAQBOjp6eHw4cPo2LGjQj9+ESVtU7VqVRw4sFfhl/0VK1aJpogh9VPQ8S4vLVq0wObNm/PcbmhoqPBjDBFpPy8vT/j7/wJ9fX1R+5s3bzB27Hhs3rylWPN4enpi69at2LNnD0xNTZGUlAQAMDc3h7GxMYD/vp89ePAAGzduBAAsXboUNjY2qF+/PjIyMrB582aEhoYiNDS0WLNT7vr27QMbGxtRm79/gDRhiCSg0YV3YX8NNTMzw6VLl0Rtq1atwtGjR7Fr1648+/OLKGmbZ8+e4e+/40RHAUJCdmHSpCkSpqL88OgPEamCsbExfv11NYYPH6aw7fbt2+jbdyD+/vvvYs+1evVqAED79u1F7UFBQXBzcwMAJCYm4t69e/JtGRkZmDp1Kh48eABjY2PUr18f+/btQ/fu3YsrNuXj66/F3zHOnDmL06dPS5SGqPhpdOFd2F9DdXR0FK6HtLCwgJGRUb7XSRJpm7S0NLi49EZg4Dq4un6FyMgoDB/uxtO91BiP/hBRUbO1tUVYWAgaN26ksO3gwUMYOnQ4Xrx4IUGy/35s/Jjg4GDR+rRp0zBt2jQVJaJP4ejoiObNm4na/P2XShOGSCIaXXgr82soEf0nKysLI0a448KFiwgO/g3p6elSR6J88OgPERUlJ6eu2Lp1U64zI/z440+YPXsuf4ylIuPjM0m0fufOHYSFhUuUhkgaWjWPd3HhvLZEVDhFP493ceF4R6RdZDIZfH2/xbx5cxXuJp2SkoLhw90QEbH3E5+FYx79j62tLW7cuApdXV15m4/PN1iyZKl0oYiKTMHHO40+4k1EBaOrq4vs7GypYxRIZEsXpfq1P/WpXxSJSq4sIVipfm8eHip0H9NK+c/FTKq1bdtmDBo0UKH9ypUr6NNnAK5fvy5BKtJmkyZ5i4rulJSUYr1DPpG64MR5RFrOy8sTx479gbJly0odhYiIJHb0aKRCW0jILjRv3opFNxU5c3NzjBrlLmpbty4QqampEiUikg4LbyItNmBAfwQE+KNNm9Y4fvyYUtNPERGR9li7dh3Wr98AAMjOzsY333yLgQOH4NWrVxInI200ZswomJiYyNezsrKwbNkKCRMRSYenmhNpqfbt22HTpmD5NXz169fHqVPRaNCgMVJSUiROR0REUvHymghrayv4+y/Fn38elToOaSk9PT1MnOglatu1K5Q3PaYSi4U3kRZq2LAhdu8OVZh//tdf17HoJiIqAQwMDJCRkZHrtvT0dPTo0auYE1FJM2BAf1SpUkXU5u8fIFEaIunxVHMiLVOtWjUcOLD3/+/K+j+rVq3B/Pl+EqUiIqLi0rRpU/z772V06dJZ6ihUgk2ZIp5C7MSJk/jrr78kSkMkPRbeRFqkfPnyOHjwd1hbW4vaQ0PD4O09KY9eRESkLdzd3XDiRCRsbW2xffsW2NjYSB2JSig3t1FYty4Qb9++BQD4+y+VNhCRxFh4E2mJUqVK4fff96BOnTqi9ujo4xg2zBU5OTkSJSMiIlUzMDDA6tUrsWHDOhgZGQEAypUrh7CwEBgbG0ucjkqiK1euYOxYD1StWh1ff/0N9uyJkDoSkaR4jTeRFtDV1cWOHVvRokVzUfulS5fRq1cfpKenS5SMiIhUzdraGrt27YCjYwuFbSkpKShVqhTevHkjQTIi4MmTJzzaTQQe8SbSCr/+uho9e/YQtd27dw/Ozj2RnJwsUSoiIlK1tm3b4MKFc7kW3UuWBKBzZyc8e/ZMgmRERPQ+Ft5EGu6HH+Zg1Ch3Udvz58/RrVtPPHjwQJJMRESkepMmTcSffx6GpaWlqP3169cYOnQ4fHymIisrS6J0RET0Pp5qTqTBxo/3wPffzxS1vXnzBi4ufXD16lWJUhERkSqVKlUKa9euwbBhQxS23bp1C336DMClS5ckSEZERHlR+oi3m5sboqOjizILERWCoaEhJk3yErVlZ2dj8OBhOHXqlESpiIhIlapXr47Tp0/kWnTv338A9vYtWHSTJPT19XHiRBQmTZoIExMTqeMQqR2ZIAiCMh379euHffv2oUqVKnB3d8eIESNQqVKlos6nllJSUv5/jmRdADKp41AJZmFhgX37ImBv3xQAMGaMB9avD5Q4leaYUWW8Uv1+SlhdyB4CgGwkJyfDzMxMqeeUCsc7Kmrp/vpK9TP0ySziJJrH2bkbtmzZiLJlyypsmzt3HubOnQclv9YVMY55JdHw4V9h48YgAEBycjLWrl0PX9+ZyM7OljhZyZElBBe6j3BgmlLPpd/9sVL9tE/Bxzulj3iHhobiwYMH8PLyQkhICGxsbODs7Ixdu3YhM5P/OBIVh8ePH6NDh844dOgwZs2aw6KbiEhL2djYICIiXKHoTk5OhotLb8yZ84OaFN1UUvn4TJb/t7m5ORwc7Fl0E73nk26uVr58eUyaNAkXL17EuXPnUKNGDQwfPhzW1taYMmUKbty4UVQ5iSgPr169Qo8evTBv3nypoxARkYrcuXMHc+b8IGq7fPky7O1b4Pff90mUiug/HTq0R+PGjURtnEKMSKxI7mqemJiIw4cP4/Dhw9DV1UX37t3xzz//oF69eliyZElRPAUR5YO/KBMRab+ffvoZe/ZEAAB27NiJFi1a4+bNmxKnUg0/Pz84ODjA1NQUFhYW6N27N65du1bg/idPnoSenh4aN26supAk9/7RbgC4ceMGfxAi+oDShXdmZiZCQ0PRs2dPVKtWDSEhIZgyZQoSExPx22+/4fDhw9i0aRN++OGHjz8YEeXL2NgYPj6ToaPDGQCJiEoqQRDg6uqOsWPHY/DgYUhLS5M6kspERUXB09MTZ86cwZEjR5CVlYWuXbsW6DUnJyfD1dUVnTp1KoakVKdOHfTs2UPUtmTJMl76QPQBpacTs7KyQk5ODoYMGYJz587l+ouik5MTypQp8wnxiEhXVxfbt29Br14uaNWqJYYOHY709HSpYxERkQro6urCwcEBZ86cyXV7SkoK1q1bX8ypit/BgwdF60FBQbCwsMD58+fRtm3bfPuOGzcOQ4cOha6uLnbv3q3ClAQAkydPFK0/e/YMv/22UaI0ROpL6cNnS5YswcOHD7Fy5co8T+MpW7Ys4uPjlX0KIgKwevVK9OrlAgDo27cPDh8+wB+0iIi0UIUKFXDkyEFERv6BZs2aSR1HrSQnJwMAypUrl+9+QUFBuHXrFmbPnl2gx01PT0dKSopooYL77LPP4Or6lahtzZq1eP36tUSJiNSX0oX3sWPHcr17eVpaGkaOHPlJoYjoP3PmzMKYMaNEbV980QAVK1aUKBEREamCg4MDzp8/iw4d2sPQ0BChoTtgYWEhdSy1IAgCfHx80Lp1azRo0CDP/W7cuIHp06djy5Yt0NMr2Emdfn5+MDc3ly9VqlQpqtglgofHWBgbG8vXMzIysHJlYafcJCoZlC68f/vtN7x580ah/c2bN9i4kaeXEH2qcePGYvbs70Vtb968gYtLH/z7778SpSIioqI2atRIHD9+TFT0Va5cWT4ncknn5eWFuLg4bNu2Lc99srOzMXToUMydOxe1atUq8GP7+voiOTlZviQkJBRF5BLB0NAQXl4TRG3btu1AYmKiRImI1Fuhr/FOSUmBIAgQBAGpqakwMjKSb8vOzsb+/fv5Cy3RJ+rd+0usXLlM1JadnY0hQ77CyZMnJUpFRERFycDAAMuXB2Ds2NEK2+7fv49Zs+ZKkEq9eHt7IyIiAtHR0ahcuXKe+6WmpiImJgYXL16El5cXACAnJweCIEBPTw+HDx9Gx44dFfoZGhrC0NBQZfm12ZAhg2FpaSlq4xRiRHkr9BHvMmXKoFy5cpDJZKhVqxbKli0rXz777DOMHDkSnp6eqsiqQJmpJsLCwtClSxdUqFABZmZmcHR0xKFDh4olL1FBtG7dCtu2bYaurq6o3dNzonwaGSIi0myVK1dGdPSxXIvuyMgoNG3aHOfOnZMgmXoQBAFeXl4ICwvD0aNHYWtrm+/+ZmZmuHTpEmJjY+WLh4cHateujdjYWDRv3ryYkpccH04h9scffyIuLk6aMEQaoNBHvI8dOwZBENCxY0eEhoaKbnJhYGCAatWqwdraukhD5uXdVBMODg7IysrCzJkz0bVrV1y5cgWlS5fOtU90dDS6dOmCn376CWXKlEFQUBBcXFxw9uxZ2NnZFUtuorzUr18fERHhojNJAGDu3Hn49de1EqUiIqKi1L59O+zYsTXXMwQXL16Cb7/1RXZ2tgTJ1Ienpye2bt2KPXv2wNTUFElJSQAAc3Nz+TXFvr6+ePDgATZu3AgdHR2F678tLCxgZGSU73XhpJwuXTrjiy/E7yuPdhPlr9CFd7t27QAA8fHxqFq1KmQyWaH6JycnIzw8HMePH8edO3fw+vVrVKhQAXZ2dnByckLLli0L/FjKTDWxdOlS0fpPP/2EPXv2YO/evSy8SVKVK1fGwYO/o2zZsqL2tWvXY86cHyRKRURERWnKlMlYuNBP4eZfaWlpGD16HLZv3yFRMvWyevV/N+hq3769qD0oKAhubm4AgMTERNy7d6+YkxGgeLT76tWrOHiQZ5AS5adQhXdcXBwaNGgAHR0dJCcn49KlS3nu27BhQ9F6YmIiZs2ahS1btqBixYpo1qwZGjduDGNjYzx//hzHjh3DokWLUK1aNcyePRuDBg0q9Isp6FQT78vJyUFqamq+fdLT00XzJnOqCSpqZcuWxaFD+xSuX9uzJwITJnhJlEr7/ZTAO68SFTdDH8UZUQoidXqFQvcx/fmJUs+VPKVSofuYL3mQ7/bSpUtj/fpfMXiw4vebmzdvok+fAbh8+XKhn1dbCYLw0X2Cg4Pz3T5nzhzMmTOnaAKRyLp1gTAzM0PLlo4AgCVLlhXo/1lJdLVHq0L3qbtPufv56MnclOpHxaNQhXfjxo2RlJQECwsLNG7cGDKZLNc/MplMpnCKVKNGjeDq6opz587lecrPmzdvsHv3bvj7+yMhIQFTp04tcLaCTjXxocWLFyMtLQ0DBw7Mcx8/Pz/MncsbnJBqGBkZISIiHPXq1RO1nzx5CkOGfFXiTzckItJ0NWrUQFhYiMKpuQDw++/78NVXI+QHD4g0QVhYOMLCwtGiRQuMHTsamzZtljoSkdorVOEdHx+PChUqyP+7MP755x9537wYGxtjyJAhGDJkCJ48Kdyv1O+mmjhx4kSB+2zbtg1z5szBnj178r0Tu6+vL3x8fOTrKSkpnOeRisy6db+idWvxr6FXrlyBi0vvXKfsIyIizeLgYK9QdOfk5GDOnB/w448/8UghaawzZ87gzJkzUscg0giFKryrVauW638XxMeK7k/Zv6BTTbxvx44dGDVqFEJCQtC5c+d89+VUE6RKAQHL0bVrZ/mPP/fv30e3bj3x4sULiZMREVFR2LZtO5o3b4ZJk7wBAC9fvsSwYa7Yv/+AxMmIiKi4FHo6sXf8/PywYcMGhfYNGzZgwYIFufaZMGECXr16JV/ftGmTaP3ly5fo3r17gTMUdqqJd7Zt2wY3Nzds3boVPXr0KPDzEalCTEwMWrVqh9u3b+Ply5fo1q0nEhISpI5FRERFaOrUaYiOPo64uEuwt2/BopuIqIRRuvD+9ddfUadOHYX2+vXrY82aNXn2ef36tXzd09MTjx8/lq+np6cXak5tT09PbN68GVu3bpVPNZGUlCQ6PdfX1xeurq7y9W3btsHV1RWLFy9GixYt5H14bRVJ6ebNm2jZsi2cnHrgn3/+kToOEREVsaysLPTrNxCOjq1x69YtqeMQEVExU7rwTkpKgpWVlUJ7hQoVkJiYmGufD69h+tRrmlavXo3k5GS0b98eVlZW8mXHjv9NxfHhVBO//vorsrKy4OnpKeozadKkT8pC9KkePXqEc+fOSR2DiIiUNHjwIHz5Za88tz99+lR0AIJIU8hkMqxZswqdO3eSOgqRxir0PN7vVKlSBSdPnlQ4vfvkyZOwtrb+5GAFocxUE5GRkaoJQ1QA5cuXx7Nnz6SOQURERUlHD4sX/wIfn8lISUlBs2Ytce3aNalTERWZbt2cMG7cGIwbNwZxcZfg778UmzZtRk5OjtTRiDSG0ke8R48ejcmTJyMoKAh3797F3bt3sWHDBkyZMgVjxowpyoxEWqFevXq4fv0KfH2/lToKEREVEZnJZyjlsRk+PpMBAGZmZggPD4GJiYm0wYiK0LvPNwA0bPgFpk6dwqKbqJCUPuI9bdo0PH/+HBMmTEBGRgaA/+Yj/vbbb+Hr65tnv1mzZqFUqVIAgIyMDMyfPx/m5uYAwNOvSGtVqlQJBw/+jnLlyuGnn36EtbU1Jk3iP1pERJpMt2pjGLuthk4Z8aV3devWxeDBg7B+faBEyYiKTsOGDRVOMff3D5AoDZHmUrrwlslkWLBgAb7//ntcvXoVxsbGqFmzZr7TbrVt21Z06lXLli1x+/ZthX2ItEmZMmVw8ODvornfvbwm4O7du1i0yF/CZEREpCz9FkNg1HcOZHri7z3p6enw9JyIwEDFmV+INNGUKeL7ID169Ahbt26TKA2R5lK68H7HxMQEVlZWkMlkH53rmtdXU0ljZGSEPXvC0KBBA1H76dNnsHLlaolSERGR0vQMYdR3LgxaDFbYlJCQgL59ByImJkaCYERFr2LFihg6VPxZX7lyNdLT0yVKRKS5lL7GOycnBz/88APMzc1RrVo1VK1aFWXKlMG8efMKffpsVlaWaD5vIm2go6ODLVs2om3bNqL2f//9Fz17fima9o6IiNSfrIw1SnvtzLXoPnr0GJo2bc6im7SKl9cEGBgYyNffvHmD1at/lTARkeZS+oj3zJkzERgYiJ9//hmtWrWCIAg4efIk5syZg7dv32L+/PkKffbv349nz55h+PDh8rb58+dj3rx5yMrKQseOHbFjxw6ULVtW2VhEamPlyuXo27ePqO3hw4dwcuqB58+fS5SKSDtVKN200H2epJ1XQRJSFdOfnxTbc5kveaDQ1qFDe+zYsRWmFSoobPvll8Xod3YPzrS2BWCrsD0/n4dzGklST6VKlYKHx1hR28aNm/H06VOJEmmmuvtOSh2B1ITSR7x/++03rF+/HuPHj0fDhg3RqFEjTJgwAevWrVOYwuudRYsWISUlRb5+6tQpzJo1C99//z127tyJhIQEzJs3T9lIRGrju+9mKPxj9fLlS3Tr1lM0rzwREam/r7+egiNHDqLCB0X3q1evMHDgEEybNh3IyZYoHZFquLoOR/ny5UVtS5cukygNkeZT+oj38+fPUadOHYX2OnXq5Hk07/Lly1i8eLF8fdeuXejSpQtmzpwJ4L/rYSdNmgR/f95wijTXqFEjMW/eXFFbeno6vvyyLy5duiRRKiIiUsaWLRsxdOgQhfbr16+jT58BuHLligSpiFRLJpNhypSJorZ9+/bj33//lSgRkeZT+oh3o0aNsGLFCoX2FStWoFGjRrn2SU1NFf1yduLECXTs2FG+Xr9+fTx8+FDZSESSc3HpiV9/XSVqy8nJwbBhroiOPi5RKiIiUtZffylekrBnTwQcHBxZdJPW6tGjO2rVqiVq8/dfKk0YIi2h9BHvhQsXokePHvjjjz/g6OgImUyGU6dOISEhAfv378+1j7W1Na5evYqqVavi1atX+Pvvv7FkyRL59mfPnsnn+CbSNI6OjtixYyt0dXVF7RMnTkFoaJhEqYiI6FMsXRqAZs3sMWTIYOTk5GDWrDn46aefIQiC1NGIVMbHZ7JoPTb2bxw9ekyaMERaQukj3u3atfv/06z64OXLl3j+/Dn69u2La9euoU2bNrn26d+/PyZPnoxNmzZhzJgxqFixIlq0aCHfHhMTg9q1aysbiUgyderUwe+/74axsbGoff58P6xcuSqPXkREpAlGjx6HyMgo9OjRC/Pn+7HoJq1mZ2eHDh3ai9p4tJvo0yldeAP/HcGeP38+QkNDERYWhh9//BHW1tZ57j979mzY29tj4sSJiI2NxebNm0VHB7dt2wYXF5dPiUQkiS++aAAzMzNRW1DQb/juu1kSJSJt4+fnBwcHB5iamsLCwgK9e/fGtWvXPtovKioKTZs2hZGREapXr441a9YUQ1oizfPh2Urve/36NTp06IyDBw8VY6KSTZkx78SJE2jVqhXKly8PY2Nj1KlTR3RmJRXMh0e7Hz58iO3bd0gThkiLFOpU87i4uALv27BhQ4W2UqVKYdOmTXn2OXaMp7CQZgoJ2YXU1FTs2rUDpUuXxr59+zF2rIfUsUiLREVFwdPTEw4ODsjKysLMmTPRtWtXXLlyBaVLl861T3x8PLp3744xY8Zg8+bNOHnyJCZMmIAKFSqgX79+xfwKiNRXw4YNsXPnVowdO57341ATyox5pUuXhpeXFxo2bIjSpUvjxIkTGDduHEqXLo2xY8fm2ocU/fPPP3j06BEsLS0BACtWrEJmZqbEqYg0n0woxPlSOjo6kMlkHz3FSiaTITtbe6fVSElJgbm5OQBdADKp45AacXBwwPffz8DgwcPw+vVrqeOQ2hAAZCM5OVnhzAhlPXnyBBYWFoiKikLbtm1z3efbb79FREQErl69Km/z8PDA33//jdOnTxfoeTRlvOM83qSsYcOGYu3a1ShVqhQePXqEpk2b48EDxXm8P+ZWn2ZKPb92zuMtzZiXm759+6J06dL5Hvh5n6aMeapmaGiIoUOHwMNjLJyde+Y5YxERFXy8K9QR7/j4+E9JJbqDeX6OHj36Sc9DJJW//voLvXr1kToGlQDJyckAgHLlyuW5z+nTp9G1a1dRm5OTEwIDA5GZmQl9fX2FPunp6UhPT5evp6SkFFFiIvWip6eHRYsWYtIkb3mbpaUldu3agXbtOiIjI0PCdPShgox5H7p48SJOnTqFH3/8Mc99OOblLj09HUFBwQgKCpY6CpHWKFThXa1atU96ssjISFSrVg09evTI9QsfERF9nCAI8PHxQevWrdGgQYM890tKSpKfKviOpaUlsrKy8PTpU1hZWSn08fPzw9y5cxXaibSJpaUldu7chrZtFW8GKwgCzMzM8PTpUwmSUW4KOua9U7lyZTx58gRZWVmYM2cORo8enee+HPOIqLgoPZ0YAGzatAlr1qxBfHw8Tp8+jWrVqmHp0qWwtbXFl19+qbD/zz//jODgYISEhGDYsGEYOXJkgQZQInUydaoP/vnnCg4cOCh1FCqhvLy8EBcXhxMnTnx0X5lMfKrku0uFPmx/x9fXFz4+PvL1lJQUVKlS5RPSEqmXFi1aIDR0R643g121ag2mTPmaR7vVTGHGPAA4fvw4Xr16hTNnzmD69OmoUaMGhgwZkuu+HPOIqLgofVfz1atXw8fHB927d8fLly/l13SXKVMGS5cuzbXPtGnTcOXKFezevRupqalo1aoVmjVrhjVr1vDUHtII7u5u+OWXBYiICMeIEa5Sx6ESyNvbGxERETh27BgqV66c774VK1ZEUlKSqO3x48fQ09ND+fLlc+1jaGgIMzMz0UKkLTw8xiEq6k+Fovvt27dwdx8NT09vFt1qpjBj3ju2trb44osvMGbMGEyZMgVz5szJc1+OeURUXJQ+4r18+XKsW7cOvXv3xs8//yxvt7e3x9SpU/Pt6+joCEdHRwQEBCAkJAQrV67E1KlT8fDhQw54pLZ69OiOtWtXA/jv2sDg4EBYWlpg4cJFEifTLj/YKHc3+Fl3tHuaLEEQ4O3tjfDwcERGRsLW1vajfRwdHbF3715R2+HDh2Fvb691l/vwRmmUHyMjI6xatQLu7iMUtt29exd9+w7EhQsXPuk5lL1J2rn2XT++0weaRR5W6rk0iTJjXl6P8/413JQ7b28v7N69BwkJCVJHIdJaSh/xjo+Ph52dnUK7oaEh0tLSCvQYFy5cQFRUFK5evYoGDRpo3RdB0h4tWrTAzp3boKcn/q3q9es3EiWiksbT0xObN2/G1q1bYWpqiqSkJCQlJeHNm/99Bn19feHq+r8zMTw8PHD37l34+Pjg6tWr2LBhAwIDAz/64yiRNqlWrRpOnIjKtej+448/0bRp808uuqnoKTPmrVy5Env37sWNGzdw48YNBAUFYdGiRfjqq6+keAkao1mzZli2bAlu376OrVs3wd7eXupIRFpJ6SPetra2iI2NVbjh2oEDB1CvXr08+z18+BDBwcEIDg5GSkoKvvrqK5w9ezbfPkRSql27Nn7/fTdKlSolavfzW4AVK1ZKlIpKmtWr/zvbon379qL2oKAguLm5AQASExNx7949+TZbW1vs378fU6ZMwcqVK2FtbY1ly5ZxDm8qMTp37oRt2zbjs88+U9j2888L8d13s7R6+lNNpsyYl5OTA19fX8THx0NPTw+ff/45fv75Z4wbN664YmskH59JAP47m2/IkMFo3boVbG1r8m+DqIgpXXh/88038PT0xNu3byEIAs6dO4dt27bBz88P69evz7VP9+7dcezYMXTt2hW//PILevTooXAEkUidWFlZ4dChfQrXw/722ybMmPGdRKmoJHp3U7T8BAcHK7S1a9eOR/OoRKpevToOHPhd4XtGamoq3N1HIzQ0TKJkVBDKjHne3t7w9vbOfWfKVbVq1dC/v/jH2GXLVrDoJlIBpU81d3d3x+zZszFt2jS8fv0aQ4cOxZo1axAQEIDBgwfn2ufgwYMoV64c7t27h7lz56JZs2Zo0qSJwlJQfn5+cHBwgKmpKSwsLNC7d29cu3bto/2ioqLQtGlTGBkZoXr16lizRruvDSXlmJub4+DBfQpndezffwCjR4+VKBURERXE7du3sWDBL6K2a9euoXnzViy6if6ft7cndHV15euvXr3CunWBEiYi0l6fdLh5zJgxGDNmDJ4+fYqcnBxYWFjku//s2bM/5ekUREVFwdPTEw4ODsjKysLMmTPRtWtXXLlyBaVLl861T3x8PLp3744xY8Zg8+bNOHnyJCZMmIAKFSrw9EuSMzQ0xO7doWjY8AtR+7lzf2HAgMHIysqSKBkRERXUrFlzYG/fFE5OXbF79x6MGDGSs6gQ/T9TU1OMGTNK1BYYGITk5GSJEhFpN6UL77lz5+Krr77C559/nuu1U7kp6sL74EHxPMpBQUGwsLDA+fPn0bZt21z7rFmzBlWrVpVPeVa3bl3ExMRg0aJFLLwJAKCjo4NNm4LRvn07Ufv169fRo0cvvH79WqJkRERUGDk5ORg6dDi++moYli9fUaDTl4lKitGjR4lmE8rJyUFAwHIJExFpN6VPNQ8NDUWtWrXQokULrFixAk+ePPnkMG/fvsWiRcpPzfTuF7py5crluc/p06fRtat46g4nJyfExMQgMzMz1z7p6elISUkRLaS9AgKWYMCA/qK2xMREODn1wNOnTyVKRUREudHR0cl1lpV3nj9/jmXLlrPoJnqPrq4uJk3yErWFh+9GfHy8RImItJ/ShXdcXBzi4uLQsWNH+Pv7o1KlSujevTu2bt2a7xHBp0+fYt++fTh8+LD8xg2ZmZkICAiAjY2NaE7wwhAEAT4+PmjdujUaNGiQ535JSUmwtLQUtVlaWiIrKyvPosrPzw/m5ubypUqVKkplJPU3ffo0eHlNELWlpKTA2dkFd+7ckSYUERHlqly5cjhw4HecOBGJRo0aSR2HSGP07dtH4R42ixcvlSYMUQmhdOENAPXr18dPP/2E27dv49ixY7C1tcXkyZNRsWLFXPc/deoUatasCRcXFzg7O6Nly5a4cuUK6tevj+XLl+O7774TTQtRGF5eXoiLi8O2bds+uq9MJhOtv/sV/MP2d3x9fZGcnCxfEhISlMpI6q158+bw85svasvIyEDv3v3w999/S5SKiIhy07hxY8TEnEHXrl1QqlQphIXtRNmyZaWORaQRvv56imj9zJmzOH36tERpiEqGTyq831e6dGkYGxvDwMAgz1O2v//+ezg5OSEuLg6TJk3CX3/9hZ49e+K7777DjRs34OXlpTBXckF4e3sjIiICx44dQ+XKlfPdt2LFikhKShK1PX78GHp6egpTRr1jaGgIMzMz0ULa5+zZs/D1nSlqGz7cDceORUoTiIiIcjV8+Fc4dSoatra28rbq1asjOJh3Yyb6GEdHRzRv3kzU5u+/VJowRCXIJxXe8fHxmD9/PurVqwd7e3tcuHABc+bMUShs3/n777/x/fffo0GDBvjxxx8hk8mwYMECuLq65nm0OT+CIMDLywthYWE4evSo6B/gvDg6OuLIkSOitsOHD8Pe3h76+vqFzkDa5eefF8LNbRSysrIwaZIPdu4MkToSERH9P319fSxfHoCNG4NgbGws2paYmIiFCxdLlIxIc3z99WTR+p07dxAWFi5NGKISROm7mjs6OuLcuXP44osv4O7ujqFDh6JSpUr59nn+/DkqVKgAAChVqhRKlSqV7w1RPsbT0xNbt27Fnj17YGpqKi/4zc3N5f8g+/r64sGDB9i4cSMAwMPDAytWrICPjw/GjBmD06dPIzAwsECnqFPJ8NtvG3HmzNkCzQlPRETFw8rKCiEh29GqVUuFbSdPnsKAAYORmJgoQTIizVG9enX06dNb1BYQsEJ+3yUiUh2lC+8OHTpg/fr1qF+/foH7yGQypKamwsjICIIgQCaT4fXr1wp3CS/oqdyrV68GALRv317UHhQUBDc3NwD//QL+/nXjtra22L9/P6ZMmYKVK1fC2toay5Yt41RiJMKiWzqz7qwptucaZzHh4zvl4tfHq4o4CRHlp1WrVggJ2QYrKyuFbStWrIKPz9Q8L3NTd80iD0sdgUqQiRO9oKPzvxNeU1JSEBi4QcJERCWH0oX3Tz/9VKD9zMzMEBsbi+rVq0MQBNSqVUu+TRAE0RHvd8V4QX91K8jUIMHBwQpt7dq1w4ULFwr0HKSdzMzMUKFCBdy6dUvqKERElI8JE8Zj6dLFCpeDvXnzBh4enti4cZNEyYg0T+nSpZGVlQU9vf9KgHXrApGamipxKqKSQenCu6DeL46PHTum6qcj+igDAwPs3h2KBg3qo3v3XoiJiZE6EhERfcDIyAhr1qzCiBHDFbbFx8ejb9+BiI2NLf5gRBpszJhxmDdvPiZO9IK7+wgsW7ZC6khEJYbKC+/3tWvXrjifjkiBTCbDpk3B6NChPQAgMvIP9Os3EIcO8VQ/IiJ1YWNjg7CwENjZNVbYdujQYQwdOhzPnz8v/mBEWuDevXuYOnUaZsz4DhkZGVLHISoximw6sY9JS0tT6f5EBbF0qT8GDhwgXy9dujTWrVsDQ0NDCVMREdH7OnRon2vRPX++H7p3d2HRTVQEWHQTFa9iK7xr1KiBn376CQ8fPsxzH0EQcOTIETg7O2PZsmXFFY1KiGnTpmLiRC9RW2pqKnr16ov09HSJUhER0YeCgoKxbt3/5uROSUlBnz798d13s5CTkyNhMiIiIuWo/FTzd/NzR0ZG4rvvvsPcuXPRuHFj2Nvbw9raGkZGRnjx4gWuXLmC06dPQ19fH76+vhg7dqyqo1EJ4uo6HAsW+InaMjIy0KdPf14jSESkhry9J6FRo4YwNTVBnz4DONsEERFptGK7uVrt2rUREhKC+/fvIyQkBNHR0Th16hTevHmDzz77DHZ2dli3bh26d+8umuaA6FN16+aEwMC1Cu2uru7488+jEiQiIqKPSU9Px5df9sWrV6/w6tUrqeMQaazOnTshOvo4Ty0nkpjKC+8DBw6gUqVK8vXKlStjypQpmDJliqqfmggODg7YtWuHfNqMdyZP/ho7duyUKBUREQFA37598OrVKxw+fCTX7UlJScWciEi71KhRA4cO7cfjx4+xcuVqrF79K549eyZ1LKISSelDy9nZ2QgMDMTQoUPRuXNndOzYUbS807p1a964iiRRs2ZN7Nu3B6VLlxa1L1y4CAEBvIcAEZFUdHR04Oc3H6GhO7Ft22bY2tpKHYnUjJ+fHxwcHGBqagoLCwv07t37o5cbhIWFoUuXLqhQoQLMzMzg6OiIQ4cOFVNi9TRpkjd0dHRQsWJFzJs3F3FxF6Crqyt1LKISSenCe9KkSZg0aRKys7PRoEEDNGrUSLQQScnS0hKHDu1DhQoVRO2bNm3B9OkzJEpFRETly5fHwYP7MH36NABAuXLlEBYWAmNjY4mTkTqJioqCp6cnzpw5gyNHjiArKwtdu3bNd9ab6OhodOnSBfv378f58+fRoUMHuLi44OLFi8WYXH2ULVsW7u4jRG2bN29Fdna2RImISjaZ8O4i7EL67LPPsHHjRnTv3r2oM6m9lJQUmJubA9AFIJM6Dn3A1NQUUVFHFaaiOXToMFxceiMzM1OaYKR2xllMUKrfr49XFbKHACAbycnJMDMzU+o5pcLxjopSkyZNEBa2E9WqVVPYNnr0OAQGbpAgFRW9oh/znjx5AgsLC0RFRaFt27YF7le/fn0MGjQIs2bNKtD+2jTmTZ8+DX5+8+XrmZmZsLWtiQcPHkiYikjbFHy8U/oabwMDA9SoUUPZ7kQqYWBggLCwEIWiOybmPPr3H8Sim4hIIiNGuGLNmpUwMjIStWdmZmLSJB8W3ZSv5ORkAP+dIVFQOTk5SE1NzbdPenq6aErRlJQU5UOqEX19fXh7e4radu7cxaKbSEJKF95ff/01AgICsGLFCvmUYURSk8lk8n+c37l58yZ69OjFu+KSgsIfuSaiwtLX18fSpf6YMMFDYdvDhw/Rv/9gnD59WoJkpCkEQYCPjw9at26NBg0aFLjf4sWLkZaWhoEDB+a5j5+fH+bOnVsUMdXKoEEDYW1tLWpbsiRAojSkzn6urtwUzoY6hT9pesrNdUo9l7ZQuvA+ceIEjh07hgMHDqB+/frQ19cXbQ8LCxOtx8XFFfixGzZsqGwsKuHS09MxcOAQLF8egAkTPPDo0SM4OfXA48ePpY5GRFTiWFtbIyRkO1q2dFTYdvz4CQwYMBiPHj2SIBlpEi8vL8TFxeHEiRMF7rNt2zbMmTMHe/bsgYWFRZ77+fr6wsfHR76ekpKCKlWqfFJedfD11+LZg6KionH+/HmJ0hAR8AmFd5kyZdCnT58C79+4cWPIZDLkdUn5u20ymYw3faBPkpOTA09Pb9y9exd//HEUt2/fljoSEVGJ07p1K4SEbEfFihUVtgUELMfUqdOQlZUlQTLSJN7e3oiIiEB0dDQqV65coD47duzAqFGjEBISgs6dO+e7r6GhodbNvtOhQ3s0biy+0bG//1IpohDRe5QuvIOCggq1f3x8vLJPRaSUhQsXSR2BiKhE8vb2wuLFCxXOhnv9+jXGjh2PLVu2SpSMNIUgCPD29kZ4eDgiIyMLPOXctm3bMHLkSGzbtg09evRQcUr15OMzWbR+48YN7N37uzRhiEhO6cL7nSdPnuDatWuQyWSoVauWwvRN7+R2B1MiIiLSLsHBGzBixHCF9tu3b6Nv34H4+++/JUhFmsbT0xNbt27Fnj17YGpqiqSkJACAubm5fOo5X19fPHjwABs3bgTwX9Ht6uqKgIAAtGjRQt7H2Nj4/+9Urv1q166Nnj3FPzgsWbIszzNOiaj4KF14p6WlwdvbGxs3bkROTg4AQFdXF66urli+fDlKlSol2j8iIqLAj92rVy9lY1EJ0rRpUyxatACDBg3lNdxERGri+vXrCm0HDx7C0KHD8eLFCwkSkSZavXo1AKB9+/ai9qCgILi5uQEAEhMTce/ePfm2X3/9FVlZWfD09ISn5//u6D1ixAgEBwerOrJamDx5omj9+fPn+O23jRKlIaL3KV14+/j4ICoqCnv37kWrVq0A/HfDtYkTJ+Lrr7+WD5jv9O7du0CPy2u8qSA+//xz7N8fAQsLC5w6FQ0npx64deuW1LGIiEo8P78FcHCwR+/eXwIA5s2bjzlzfpD/SE9UEAU5QvthMR0ZGamaMBris88+UzjbZM2atXj9+rVEiYjofTrKdgwNDUVgYCCcnZ1hZmYGMzMzdO/eHevWrcOuXbsU9s/JySnQwqKbPsbS0hKHDu2T36X0888/x6lT0ahZs6bEyYiISBAEjBgxEufO/YUvv+yLWbPmsOgmKgYeHmPlp+EDQEZGBlas4LSZROpC6SPer1+/hqWlpUK7hYUFf1kjlTExMcH+/Xvx+eefi9r//jsOd+7ckSYUEVEJlN9MJSkpKWjevGUxJyIq2dq2bSNa37ZtBxITEyVKQ0QfUrrwdnR0xOzZs7Fx40YYGRkBAN68eYO5c+fC0VFxvs5ly5Zh7NixMDIywrJly/J97IkTJ+a7nUomfX19hIWFoEkTO1H7+fMX0LfvAGRmZkqUjIioZKlXrx62b9+C0aPH4dy5c1LHISIAXbs6o3PnTvDxmQxn525YsiRA6khE9B6ZoORtDi9fvoxu3brh7du3aNSoEWQyGWJjY2FkZIRDhw6hfv36ov1tbW0RExOD8uXL5zslhEwmU/t5l1NSUv7/7pi6AGRSxykRZDIZNm36DcOGDRG137p1Cy1btuXN1UjNCQCykZycDDMzM6nDFArHO/pQ//79EBS0HiYmJrh//z6aNm3OMZg+wDFPajY2NjwTkArk5+pjlepnqFP4EnLKzXVKPZd6K/h4p/Q13g0aNMCNGzfg5+eHxo0bo2HDhvj5559x48YNhaIb+G8e7/Lly8v/O6+lMEV3dHQ0XFxcYG1tDZlMht27d3+0z5YtW9CoUSOUKlUKVlZWcHd3x7Nnzwr8nCSNhQt/Vii6Hz9+jG7devILHxFRMdDV1cXChT8jJGQ7TExMAACVK1fGjh1boaf3ybOTElERYtFNpH4+6V9KY2NjjBkzptD94uLi0LBhw1y37d69u8B3QE9LS0OjRo3g7u6Ofv36fXT/EydOwNXVFUuWLIGLiwsePHgADw8PjB49GuHh4YV5CVSMfHwmY+pUH1Hbq1ev0KPHl7h586ZEqYiISo7PPvsM27dvQadOHRW2mZiYoEyZMnj69KkEyYiIiDRDoQrviIgIODs7Q19f/6Pzcuc3F7eTkxNOnjyJ6tWri9pDQ0Ph6uqKtLS0AuVxdnaGs7NzgfYFgDNnzsDGxkZ+DbmtrS3GjRuHhQsXFvgxqHgNHToEixf/ImrLzMxEv34DERMTI1EqUqUpVhOU6rcksfB3bh1gPl6p5wpJXv3xnYi0hL29PUJDd6Bq1aoK2zZsCMaECV5IT0+XIFnJdaFTJ6X6NfnzzyJOQkSabvrttVJH+Kjbfe0L3ad6mPrVCYUqvHv37o2kpCRYWFjke1T6Y3Nxjx8/Hp06dcKpU6dgZWUFANixYwdGjhypMCdjUWrZsiVmzpyJ/fv3w9nZGY8fP8auXbvQo0ePfPulp6eLvlSkpKSoLCP9T5cunREcHKjQPnLkGBw+fESCREREJcvIke5YtWo5DA0NRe0ZGRnw9p6MtWu18Xo9Is1RrVo13L17V+oYRFQAhbrGOycnRz538qfMxT1r1iz06tULnTt3xvPnz7F161a4u7tj48aNGDBggPKv5iNatmyJLVu2YNCgQTAwMEDFihVRpkwZLF++PN9+fn5+MDc3ly9VqlRRWUb6T5MmTRAauhP6+vqi9m+++RabN2+RKBURUclgYGCANWtWITBwrULR/eDBA7Rt25FFN5HELCws8O+/l3HiRBT69u0DHR2lb91ERMVA6b/QjRs35npqWUZGBjZu3PjR/gEBAWjSpAlatGiBMWPGYNu2bQW6TvtTXLlyBRMnTsSsWbNw/vx5HDx4EPHx8fDw8Mi3n6+vL5KTk+VLQkKCSnMSsHChH0xNTUVtS5YEYNEif4kSERGVDJUqVUJ09DGMG6d4D5eoqGg0adIMZ8+elSAZEb1v/PhxMDIyQqtWLREauhOXL8fyRodEakzpv053d3d069ZNfgT8ndTUVLi7u8PV1VXUnts14b1790ZUVBSGDBkCmUwm3ye/68M/hZ+fH1q1aoVvvvkGANCwYUOULl0abdq0wY8//ig/7f1DhoaGCr/4k2oNGDAYe/aEoU2b1gCA7dt34Ouvv5E4FRGRdmvXri127NgKS0tLhW1LlgRg2rTpyMrKkiAZEb3PyMgInp7i+5ScOnWGf59EakzpwlsQBMhkivMb3r9////nPxTL75rwDRs2YMOGDQA+fn34p3j9+rXCL4G6uroA/ns9pD5evHiBrl2dsXXrJpiammLEiJH8f0REpEI1a9bEH38cUvh38vXr1xg9ehy2bdsuUTIi+tBXXw1DhQoVRG1LlgRIlIaICqLQhbednR1kMhlkMhk6deok+gc6Ozsb8fHx6Natm0K/nJycT0uai1evXommk4qPj0dsbCzKlSuHqlWrwtfXFw8ePJCf+u7i4oIxY8Zg9erVcHJyQmJiIiZPnoxmzZrB2tq6yPPRp3n79i369x8EY2NjZGRkSB2HiEir3bhxAytWrMLkyRPlbbdu3UKfPgNw6dIlCZMR0ftkMhmmTJkoajt06DD++ecfiRIRUUEUuvB+d+Q6NjYWTk5OMDExkW8zMDCAjY2Nyq/VficmJgYdOnSQr/v4/DfX84gRIxAcHIzExETcu3dPvt3NzQ2pqalYsWIFvv76a5QpUwYdO3bEggULiiUvFV5OTk6Bp5cjIqJP880336JJEzu0bdsG+/cfwLBhrnj58qXUsYjoPU5OXVGvXj1Rm7//UmnCEFGBFbrwnj17NgDAxsYGgwcPLtS1z2fPnsXz589Fc29v3LgRs2fPRlpaGnr37o3lyxWnLclL+/bt8z39OLepyby9veHt7V3gzKR6Awb0R3j4bl6XREQksaysLAwcOAQjRgzHL78s5iU+RGrIx2eyaP3y5cucZpVIAyh9V/N69eohNjZWof3s2bOIicl9wvI5c+YgLi5Ovn7p0iWMGjUKnTt3xvTp07F37174+fkpG4k00OTJk7Bz5zbs3bsbpUuXljoOkVqLjo6Gi4sLrK2tIZPJsHv37nz3j4yMlF8a9P7y77//Fk9gUksymQx169bNc/ujR4+wcOEiFt1Eaqhhw4bo0qWzqM3fn9d2E2kCpQtvT0/PXKfVevDgATw9PXPtExsbi06dOsnXt2/fjubNm2PdunXw8fHBsmXLsHPnTmUjkYYZPHgQlixZBADo1s0Jx479oXCjECL6n7S0NDRq1AgrVqwoVL9r164hMTFRvtSsWVNFCUndmZubY8+eMJw9exK1a9eWOg4RFdKUKZNE648ePcLWrdskSkNEhaH0Xc2vXLmCJk2aKLTb2dnhypUrufZ58eKFaIqSqKgo0Y3YHBwcOEd2CdGpU0f89tsGUZuDgz3at2+HkJBdEqUiUm/Ozs6iS3UKysLCAmXKlCn6QKRR6tevj/DwEPkPL+HhIWjevBVSU1MlTkZEBVGxYkUMHTpY1LZy5Wqkp6dLlIiICkPpI96GhoZ49OiRQntiYqLCVCTvWFpaIj4+HgCQkZGBCxcuwNHRUb49NTUV+vr6ykYiDdG4cWOEh++CgYGBqH369BksuolUwM7ODlZWVujUqROOHTsmdRySwMCBA3D27EnR2Q5169bF+vW/SpiKKG9+fn5wcHCAqakpLCws0Lt3b1y7di3fPomJiRg6dChq164NHR0dTJ48uXjCFhNPz/Gi705v377F6tX8GybSFEof8e7SpQt8fX2xZ88e+bzdL1++xIwZM9ClS5dc+3Tr1g3Tp0/HggULsHv3bpQqVQpt2rSRb4+Li8Pnn3+ubCTSALa2tjhwYC9MTU1F7cuWrcCCBb9IlIrUyZLEVcX2XCHJq4vtuaRgZWWFtWvXomnTpkhPT8emTZvQqVMnREZGom3btrn2SU9PFx09SUlJKa64pAK6urr4+eefMHWqj8K2x48f80u7hmry559K9bvd177Qfap4PSl0n5S0HJR3iS90v/dFRUXB09MTDg4OyMrKwsyZM9G1a1dcuXIlz3vCpKeno0KFCpg5cyaWLFnySc+vboyNjTF+/DhR28aNm/H06VOJEhEVn+phud8/LD8XO3dU6rns/jiqVL+CULrwXrx4Mdq2bYtq1arBzs4OwH/XcFtaWmLTpk259vnxxx/Rt29ftGvXDiYmJvjtt99Ev9xt2LABXbt2VTYSqbkKFSrg0KF9qFixoqh9584QTJnytUSpiLRX7dq1RdfxOjo6IiEhAYsWLcqz8Pbz88PcuXOLKyKpUIUKFbBjx1Z06NBeYdu5c3+hX7+BuH//fnHHIiqQgwcPitaDgoJgYWGB8+fP5zl+2djYICDgvxuNbdiwIdd9NNWIEa4oX768qG3JEt5UjUiTKF14V6pUCXFxcdiyZQv+/vtvGBsbw93dHUOGDMnzdPEKFSrg+PHjSE5OhomJCXR1dUXbQ0JCRPOCk/YoXbo0fv99j8JNnY4di4SrqztycnIkSkZUsrRo0QKbN2/Oc7uvry98fP53dDQlJQVVqlQpjmhUhBwcHBAauiPX/3fr1gXC23sSrwsljZKcnAwAKFeuXJE+rqac5ePuPkK0vm/ffs5QQaRhlC68gf+KqbFjxxa637tT0z9U1IMpqQc9PT3s2rUDzZo5iNr//jsOvXv345c/omJ08eJFWFlZ5bnd0NAQhoaGxZiIitro0aOwYkWAwv/H9PR0eHlNwvr1gRIlI1KOIAjw8fFB69at0aBBgyJ9bE05y6dTp64YNWokJk/2ho2NDfz9l0odiYgKqVCFd0REBJydnaGvr4+IiIh89+3Vq9cnBSPtERi4Dt26OYna7ty5A2fnnmr7yzKROnr16hVu3rwpX4+Pj0dsbCzKlSuHqlWrwtfXFw8ePMDGjRsBAEuXLoWNjQ3q16+PjIwMbN68GaGhoQgNDZXqJZAKGRgYYMWKZRgzZpTCtoSEBPTrNwh//fWXBMmIPo2Xlxfi4uJw4sSJIn9sTTnL59WrVwgIWIYVK1bCyakrjh7ljTKJNE2hCu/evXsjKSlJfnfJvMhkMmRnZ39qNtICfn7z4er6lajt6dOncHLqgcTERIlSEWmmmJgYdOjQQb7+7sviiBEjEBwcjMTERNy7d0++PSMjA1OnTsWDBw9gbGyM+vXrY9++fejevXuxZyfVqly5MkJDdyqcWQT8d0nPoEFD8eRJ4W+SRSQ1b29vREREIDo6GpUrVy7yx9e0s3yys7Oxf/8BqWMQkRIKVXi/fx0ur8mljxk/3gPTp08TtaWlpaFHjy9x/fp1iVIRaa727dtDEIQ8twcHB4vWp02bhmnTpuW+M2kVF5eeuRbdixb5Y/r0GfwxnDSOIAjw9vZGeHg4IiMjYWtrK3UkIqJPotQ83pmZmejQoQOLJ8rX8eMnRHfMzcrKwsCBQ3Du3DkJUxERaZ/Vq9dgy5Zt8vW0tDQMGjQU33zzLYtu0kienp7YvHkztm7dClNTUyQlJSEpKQlv3ryR7+Pr6wtXV1dRv9jYWMTGxuLVq1d48uQJYmNjceXKleKOT0SkQKmbq+nr6+Py5cuQyWRFnYe0yOXLl9GyZVscPPg76tWrhzFjPHh6FBGRiowd64EGDeqjVClj9OkzAP/884/UkYiUtnr1agD/nenzvqCgILi5uQGAwuU1AORT3ALA+fPnsXXrVlSrVg137txRZVyVMDAwQEZGhtQxiKiIKH1Xc1dXVwQGBuLnn38uyjykZRISEtC6dXv06NEdmzdvkToOEZHWev36NVxceiMlJUU+9RKRpsrvspp3Pry8pqD9NEHp0qVx/foV/P77fixdugxXr16VOhIRfSKlC++MjAysX78eR44cgb29PUqXLi3a7u/v/8nhSDu8ePGCRTcRURHo0aM7UlNTER19PNftCQkJxZyIiFTBzW0ErK2tMXbsaIwdOxr79u1H7979kJWVJXU0IlJSoQvv27dvw8bGBpcvX0aTJk0AQOFab56CXvIYGhpyPm4iIhWRyWSYPft7zJ79PR4/fowmTZrhwYMHUsciIhXQ0dHB5Mneorbs7GwW3UQartCFd82aNZGYmIhjx/6bP3DQoEFYtmwZLC0tizwcaYZSpUrh6NEj+PPPo5g583up4xARaZUyZcpg8+bf0KPHf9PAWVhYIDR0J9q27cDrP4m0UK9eLqhRo4aobfHiJRKlIaKiUujC+8NrZw4cOIC0tLQiC0SaRU9PDzt3bkPz5s3QvHkzWFtbY8yYcfxVlgAANUx6FLrPzVf7VJCENEWF0k2V6vck7XwRJ1EPX3zxBcLDQ/D555+L2ps3b4avvhqGDRuCJEpGmqh6WEzhO4Up80zacZ21VHx8JovWz5+/kOflJUSUO7s/jkodQYFS04m9T1tuYkHKWbfuV/lRGABwc3PFypXLJUxERKQdhgwZjDNnTigU3VlZWZg8+WsW3URayMHBAW3atBa1+fsvlSYMERWpQh/xlslkCtdw85rukmn+/HlwcxPPn/ns2TP+A0FE9An09PSwcOHPmDJlksK2R48eYeDAITz6RaSlpkyZKFq/f/8+QkJ2SZSGiIqSUqeau7m5wdDQEADw9u1beHh4KNzVPCxMqXOTSEN4eXlixozporbXr1+jZ8/euHbtmkSpiIg0m4WFBXbu3IZ27doqbDtz5iz69x/Em6oRaakqVapgwID+orbly1ciMzNTokREVJQKXXiPGDFCtP7VV18VWRjSDP3790NAgHi6uKysLAwcOARnzpyRKBURkWZr3rw5QkN3oFKlSgrb1qxZi0mTpvBmakRabOJEL+jp/e+r+atXr7B27XoJExFRUSp04R0UpD7XlEVHR+OXX37B+fPnkZiYiPDwcPTu3TvfPunp6fjhhx+wefNmJCUloXLlypg5cyZGjhxZPKE1XLt2bbF582/Q0RHfHmDcuAnYt2+/RKmIiDTb2LFjsHz5UhgYGIja3759iwkTvBEUFCxNMCIqFqamphgzZpSobcOGYLx8+VKaQERU5ApdeKuTtLQ0NGrUCO7u7ujXr1+B+gwcOBCPHj1CYGAgatSogcePH/MO3AXUsGFD7NkTJr/M4J3vvpvFm/wQESlp3bpfMXq04o+/9+7dQ9++A3H+vHbesZ2I/mfkSHeYm5vL13NychAQwJvVEmkTjS68nZ2d4ezsXOD9Dx48iKioKNy+fRvlypUDANjY2KgonXapVq0aDhzYK/pHAQBWrlyN+fP9JEpFRKT5Hj16pND2559HMXjwMDx9+lSCRERUnHR1dTFpkpeobffuPbh9+7ZEiYhIFT55OjFNEhERAXt7eyxcuBCVKlVCrVq1MHXqVLx58ybffunp6UhJSREtJUn58uVx8ODvsLa2FrWHhoZh4sTJ0oQiItISs2bNwaFDh+XrCxcugpNTdxbdRCVEnz69YWtrK2rz9w+QKA0RqYpGH/EurNu3b+PEiRMwMjJCeHg4nj59igkTJuD58+fYsGFDnv38/Pwwd+7cYkyqPkqVKoXff9+DOnXqiNqjoqIxbJgrcnJyJEpGRKQdcnJyMHTocBw79gfmzZuPXbtCpY5ERMXow6kDz549h5MnT0qUhohUpUQd8c7JyYFMJsOWLVvQrFkzdO/eHf7+/ggODs73qLevry+Sk5PlS0JCQjGmllbTpk1gZ9dY1Hbp0mV8+WVfpKenSxOKiEjLPH/+HHZ29iy6iUqg0aPHYe3a9Xj79i0AwN9/qbSBiEglSlThbWVlhUqVKomuU65bty4EQcD9+/fz7GdoaAgzMzPRUlIcP34CTk7dkZycDOC/m/04O/eUrxMR0cfVqlULf/11Bo0aNcpzH55BRFQyXb16FePGjUfVqtUxbdp0hIaGSR2JiFSgRBXerVq1wsOHD/Hq1St52/Xr16Gjo4PKlStLmEy9RUVFo02bDrh06TKcnHrgwYMHUkciItIYX37ZC3/9dRr29k0RFrYTZcuWlToSEamhJ0+e4JdfFiM7O1vqKESkAjJBEASpQyjr1atXuHnzJgDAzs4O/v7+6NChA8qVK4eqVavC19cXDx48wMaNG+X7161bFy1atMDcuXPx9OlTjB49Gu3atcO6desK/LwpKSn/f9RcF4BMBa9MPclkMmjwx4U0xJemHkr125O6poiTFCUBQDaSk5M17oyZTxnvzIxrF/753lwrdB91paOjg7lzZ+O772aI2g8ePIQePXrxCDdpsZI55hGR5utpMq5Q+2cKGTiUtq5A451GH/GOiYmBnZ0d7OzsAAA+Pj6ws7PDrFmzAACJiYm4d++efH8TExMcOXIEL1++hL29PYYNGwYXFxcsW7ZMkvyahkU3EVHBlC1bFvv2RSgU3QBQsWJF+ZSWREREVDJodOHdvn17CIKgsAQHBwMAgoODERkZKepTp04dHDlyBK9fv0ZCQgIWL14MY2Pj4g+vhtq2bYO+fftIHYOISKM1atQIMTFn0K2bk8K2zZu3omXLNpwqjOgj/Pz84ODgAFNTU1hYWKB37964du3jZ8RERUWhadOmMDIyQvXq1bFmjTqfDUVEJYlGF95UdBo0aIA9e8IQErIdEyaMlzoOEZFGGjZsKE6fPo7q1auL2jMzM+HtPRnDh4/IdxYNIvpPVFQUPD09cebMGRw5cgRZWVno2rUr0tLS8uwTHx+P7t27o02bNrh48SJmzJiBiRMnIjRUvWYL0NPTQ1TUUUyaNBEmJiZSxyGiYlKi5vGm3FWtWhUHD/6OMmXKAABWrlwGK6uK+P772dIGIyLSEHp6eli8+BdMnOilsC0pKQkDBgzGiROcl5eooA4ePChaDwoKgoWFBc6fP4+2bdvm2mfNmjWoWrUqli5dCuC/mWtiYmKwaNEi9OvXT9WRC6x//35o27YN2rZtg7lzZ2Ht2vWYMeM7ZGVlSR2NiFSIR7xLuHLlyuHgwd9RqVIlUXv9+vWgo8OPBxHRx1SsWBFHjx7Jteg+deo0mjRpxqKb6BO9m8Y0v/sjnD59Gl27dhW1OTk5ISYmBpmZmSrNVxg+PpPl/21ubo6WLR1ZdBOVAKysSjBjY2Ps3bsbdevWFbUfP34CQ4cO5x13iYg+wtHREefPn0WbNq0Vtq1cuRrt23dCYmKiBMmItIcgCPDx8UHr1q3RoEGDPPdLSkqCpaWlqM3S0hJZWVl53lchPT0dKSkpokWVWrduBQcHe1Hb4sVLVPqcRKQeeKp5CaWrq4sdO7aiZUtHUfvly5fRq1cfvH37VqJkRESaoXbt2oiM/AMGBgai9rdv38LDwxO//bZRomRE2sXLywtxcXE4ceLER/eVycRTgL2bkeXD9nf8/Pwwd+7cTw9ZQF9/PUW0fvv2bezZE1Fsz09E0uER7xJqzZpVcHHpKWpLSEiAs7MLXr58KU0oIiINcu3aNQQHi4vru3fvolWrdiy6iYqIt7c3IiIicOzYMVSuXDnffStWrIikpCRR2+PHj6Gnp4fy5cvn2sfX1xfJycnyJSEhociyf6hGjRro1ctF1LZ06XKeYUhUQrDwLoHmzp2N0aNHitpevHiBbt164v79+xKlIiLSPN7ek3D27DkAwJEjf6Bp0+a4cOGCxKmINJ8gCPDy8kJYWBiOHj0KW1vbj/ZxdHTEkSNHRG2HDx+Gvb099PX1c+1jaGgIMzMz0aIqkyZ5i+6f8/LlSwQFBavs+YhIvbDwLmE8PMZh1qzvRG1v3ryBi0sfXLlyRaJURESaKSMjA/37D8KsWXPQrVsPPHv2TOpIRFrB09MTmzdvxtatW2FqaoqkpCQkJSWJpuPz9fWFq6urfN3DwwN3796Fj48Prl69ig0bNiAwMBBTp06V4iWIlC1bFu7uI0Rta9eux6tXryRKRETFjYV3CdKnT2+sXLlM1JadnY2hQ4fj5EnecZeIKC8fzsv9vvv372PevPk8XZSoCK1evRrJyclo3749rKys5MuOHTvk+yQmJuLevXvydVtbW+zfvx+RkZFo3Lgx5s2bh2XLlqnFVGLjxo1B6dKl5euZmZlYtmyFhImIqLjx5molRJs2rbF16yaFKcImTPDG7t17JEpFRKTeTExMEBwciI4dO8DevgVu374tdSSiEuHdTdHyExwcrNDWrl07tbvcQ19fH97enqK2nTt34cGDBxIlIiIpsPAuASwsLBAREQ4jIyNR+5w5P2Dt2nUSpSLK3Z7UNVJHoCKS8uaa1BE+Se3atREeHiKfcjEsLASOjq1Fp7oSEX3MoEEDYW1tLWpbsiRAojRERWPR52MK3WfqLfWvO/KaASHP/VHw/XmqeQnw+PFjfP/9HNFpkGvXrsfcufMkTEVEpL569/4S586dkhfdANCoUUOsWbNKwlREpIl8fCaL1qOionH+/HlpwhCRZFh4lxArVqzE4MHDkJ6ejj17IjBhgpfUkYiI1I6Ojg7mz5+H8PBdCnc3fv78ObZs2SpRMiLSRO3bt4OdXWNR2+LFS6QJQ0SS4qnmJUhIyC7cu5eAuLg4ZGdnSx2HiEitlCtXDtu2bUbXrl0Utl28GIu+fQfgzp07xR+MiDTW119PEa3fuHEDv/++T6I0RCQlHvEuYc6ePcvrE4mIPmBnZ4fz58/mWnRv3LgZrVq1ZdFNRIW2YUMwTp48JV9fsmRZgW4cR0Tah4W3FqpcubLUEYiINMbw4V/h5Mko2NjYiNozMzPh5TUJI0a48wdLIlJKePhutG7dDi1atEZw8Eb89ttGqSMRkURYeGuZ2bO/x6VLF9GmTWupoxARqTV9fX0sXx6AjRuDYGxsLNqWmJiI9u07Y+VK3kyNiD7d2bNn4e4+Cq9fv5Y6ChFJhIW3Fhk7dgzmzJmFMmXK4PDhA+jTp7fUkYiI1JKVlRWOHfsDXl4TFLadOHESTZo0w6lTp3LpSURERFR4LLy1xJdf9sKqVcvl60ZGRtixYyuqVasmYSoiIvU0aNBAtGrVUqF9+fKV6NixC5KSkiRIRURERNqKhbcWaNWqFbZt2wxdXV1Ru7f3ZNy9e1eiVERE6mvp0gCEhYXL19+8eQNXV3dMnDgZmZmZEiYjIiIibcTCW8PVq1cPe/eGK1yf+MMPP+LXX9dKlIqISP25uY3Cv//+i/j4eLRs2RabNm2WOhIRaYFVq1agS5fOUscgIjXDwluDVa5cGQcP/o6yZcuK2tev34DZs+dKlIqISDOkpqaiZ8/esLdvgdjYWKnjEJEW6Ny5E8aPH4fDhw8gLu4i3NxGKJyRSEQlk0YX3tHR0XBxcYG1tTVkMhl2795d4L4nT56Enp4eGjdurLJ8qlSmTBkcPPg7qlSpImqPiNgLDw/FmwUREZVEXbt2QfPmzfPcfuvWLTx//rwYExGRNvPxmSz/7y++aIBvv52KnJwc6QIRkdrQkzrAp0hLS0OjRo3g7u6Ofv36FbhfcnIyXF1d0alTJzx69EiFCVXDyMgIERHhqF+/vqj91KnTGDx4GLKzsyVKRiTWwti10H3OvOEcp3mJjo7GL7/8gvPnzyMxMRHh4eHo3bt3vn2ioqLg4+ODf/75B9bW1pg2bRo8PDyKJ7CEZDIZpk+fhh9//AGJiYlo0qQZHj9+LHUsItJi9erVg7NzN1HbkiXLIAiCRImIVGfqrXWF7vODjXLfP2bdWaNUP2XsTS3scxX871ujj3g7Ozvjxx9/RN++fQvVb9y4cRg6dCgcHR1VlEx1dHV1sXXrJoV5uq9evQoXl9548+aNRMmISNXe/di4YsWKAu0fHx+P7t27o02bNrh48SJmzJiBiRMnIjQ0VMVJpWVqaorQ0J346acfoaOjg0qVKmHnzm3Q09Po35qJSM1NmTJJtP706VNs3LhJojREpG5K3LeQoKAg3Lp1C5s3b8aPP/5YoD7p6elIT0+Xr6ekpKgq3ketXLlcYX7uBw8eoFu3njxdkkjLOTs7w9nZucD7r1mzBlWrVsXSpUsBAHXr1kVMTAwWLVpUqLOENEndunURHh6C2rVri9rbtWuL4cO/QlBQsDTBiEirWVhY4KuvhoraVq1ag7dv30qUiIjUjUYf8S6sGzduYPr06diyZUuhjnz4+fnB3Nxcvnx4XXVx+f77mRg3boyo7eXLl+jWrSfu3bsnSSYiUl+nT59G165dRW1OTk6IiYnJc8qs9PR0pKSkiBZN0bdvH5w9e1Kh6M7Ozsa33/qy6CYilRk/fhyMjIzk6+np6Vi1qvhOjyUi9VdiCu/s7GwMHToUc+fORa1atQrV19fXF8nJyfIlISFBRSnzV6NGDdH627dv8eWXfXH58mVJ8hCRektKSoKlpaWozdLSEllZWXj69GmufdTlh8bC0NXVxc8//4TQ0J0wNTUVbXv27Bm6deuBhQsXSZSOiLSdkZERJkwQX7u6Zcs2jbyPEBGpTokpvFNTUxETEwMvLy/o6elBT08PP/zwA/7++2/o6enh6NGjefY1NDSEmZmZaJGCm9tILFjwCwAgJycHw4a5Ijr6uCRZiEgzyGQy0fq7m/x82P6OuvzQWFDly5fHwYP78O233yhsO3/+Apo2bY4//vhTgmRE9CmUmblm5cqVqFu3LoyNjVG7dm1s3Fg8N+scNmwoLCwsRG1LlgQUy3MTkeYoMdd4m5mZ4dKlS6K2VatW4ejRo9i1axdsbW0lSlZwgiBg+vQZSExMQkZGBsLCwqWORERqrGLFikhKShK1PX78GHp6eihfvnyufQwNDWFoaFgc8T5ZkyZNEBa2E9WqVVPYFhT0GyZM8OL1lUQaqrAz16xevRq+vr5Yt24dHBwccO7cOYwZMwZly5aFi4uLynLKZDL4+Ihvqnbo0GGejUhECjS68H716hVu3rwpX4+Pj0dsbCzKlSuHqlWrwtfXFw8ePMDGjRuho6ODBg0aiPpbWFjAyMhIoV3dBQQskzoCEWkAR0dH7N27V9R2+PBh2NvbQ19fX6JURcPNbQRWr14huqYSADIyMjBpkg/WrPlVomREVBQKezPJTZs2Ydy4cRg0aBAAoHr16jhz5gwWLFig0sLbyakr6tWrJ2rz91+qsucjIs2l0aeax8TEwM7ODnZ2dgAAHx8f2NnZYdasWQCAxMRE3nSMiLTGq1evEBsbi9jYWAD/+7Hx3Tjn6+sLV9f/zZ3u4eGBu3fvwsfHB1evXsWGDRsQGBiIqVOnShG/SMhkMqxatQJBQesViu6HDx+iffvOLLqJSqD09HSFMcHY2Bjnzp3L82aSRcHHZ7Jo/Z9//sHhw0dU9nxEpLk0uvBu3749BEFQWIKDgwEAwcHBiIyMzLP/nDlz5F9g1UmZMmWwY8dWVK5cWeooRKRGCvtjo62tLfbv34/IyEg0btwY8+bNw7JlyzR6KjFBEHI9fTw6+jiaNGmG06dPS5CKiKTm5OSE9evX4/z58xAEATExMdiwYQMyMzPzvJkk8GkzOXzxxRfo0qWzqM3fn9d2E1HuNPpUc21kaGiIPXvC0LZtGzg6tkC3bj1x5coVqWMRkRp492NjXt796Pi+du3a4cKFCypMVfymTZuOJk3s0K5dWwBAQMByTJ06DVlZWRInIyKpfP/990hKSkKLFi0gCAIsLS3h5uaGhQsXQldXN89+fn5+mDt3rlLPOWWK+NruR48eYcuWrUo9FhFpP40+4q1tdHR0sGXLRrRt2wYAUKVKFZw4EYnmzZtLnIyISH1kZWVh4MAhuH79OoYNc8XkyT4suolKOGNjY2zYsAGvX7/GnTt3cO/ePdjY2MDU1BSfffZZnv0+ZSaHf//9VzRl2MqVq5Genv5Jr4OItBePeKuRZcuWol+/vqK2N2/eKNyVmIiopHv8+DHq12/EgpuIRPT19eWX6m3fvh09e/aEjk7ex5k+ZSaHhQsXISBgOYYMGYwJEzywejXvL0FEeeMRbzUxY8Z0eHqOF7UlJyejW7eeuHv3rkSpiIikYWtri+joY6hbt26e+7DoJtJehb2Z5PXr17F582bcuHED586dw+DBg3H58mX89NNPKs2Znp6O4ODf0KyZY77XkhMR8Yi3Ghg50h3z588TtaWnp+PLL/sqzD1OpEnOvNkodQSV6FJqTKH2zxIycOxNoIrSFA9zo9qQyfK+TjI3L99cVeq5unVzwtatm1C2bFmEh4egWbOWhbrhERFpvpiYGHTo0EG+7uPjAwAYMWIEgoODFW4mmZ2djcWLF+PatWvQ19dHhw4dcOrUKdjY2BR3dCLKw6w7a6SOICkW3hLr2bMH1q5dLWrLycnBV1+NQFRUtESpiIiKn0wmw4wZ0/HDD3Pkp4bWrl0bwcGB6NdvYL43liMi7VLYm0nWrVsXFy9eVHEqIiLlsfCWUIsWLbBjx1aFu21OmuSDXbtCJUpFRFT8zMzMsHFjEL78spfCtlq1aqJ8+fI8jZOIiIg0Fq/xlkjt2rXx+++7UapUKVH7Tz/9jBUrVkqUioio+NWrVw9//XU616J7584QNG/eikU3EakFT88JqFq1qtQxiEgDsfCWgJWVFQ4e/B3ly5cXtQcHb8TMmd9LlIqIqPj1798PZ8+eRK1atUTt2dnZmDp1GgYNGoq0tDSJ0hER/Y+dnR1WrAjArVvXsH37Fjg4OEgdiYg0CAvvYmZubo6DB/cp3Oxj//4DGDNmnDShiIiKma6uLhYu/BkhIdthYmIi2vbkyRN06dINixcvkSgdEZGiKVMmAQD09PQwaNBA7NkTCn19fYlTEZGm4DXexezHH39Aw4ZfiNrOnfsLAwYM5tQ4RFQifPbZZ9ixYys6duygsO2vv2LQr99AJCQkSJCMiCh31tbWGDx4oKhtxYpVyMzMlCgREWkaHvEuZr6+M3H48BH5+vXr19GjRy+8fv1awlRERMXD3t4e58+fzbXoDgwMQps27Vl0E5Ha8fb2FB3dfv36NdasWSthIiLSNCy8i9mrV6/Qs+eX2Lx5KxITE+Hk1IM3DSKiEqFu3bo4cSJS4cZEGRkZGDt2PEaPHov09HSJ0hER5a506dIYN26MqC04eCOeP38uUSIi0kQsvCWQmZkJV1c3NGvWEnfu3JE6DhFRsbh69SpCQsRTJd6/fx9t23bEunXrJUpFRJQ/N7cRKFu2rKht6dJlEqUhIk3FwlsigiDg/v37UscgIipWY8d6IDb2bwBAVFQ0mjZtjrNnz0qciogodzo6Opg82VvUFhGxFzdu3JAoERFpKhbeKuTg4ABDQ0OpYxARqY03b96gb98B+Omnn9G5sxMeP34sdSQiojy5uPREjRo1RG3+/kulCUNEGo2Ft4o0a9YMkZF/4PDhAzA3N5c6DhFRsapUyTLPbfHx8Zg583vO5EBEas/HZ7Jo/cKFi4iKipYmDBFpNE4npgK1atXCvn17UKpUKbRt2wbHj0fC2bknHjx4IHU0IioCP9gX7q7baVmZOHZKRWGKSfLbawBkH92vVKlSWL/+V3Tq1BFNmzbnJTVEpLHs7e3Rtm0bUdvixUskSkOk+X6w8VCq36w7a4o4Sd46lxpdqP2zhAxEvtlQoH15xLuIWVlZ4dChffjss8/kbV980QCTJ0+UMBURkep9/vnnOHPmJIYMGQwLCwuEhu7k5TZEpLF8fCaJ1u/fv4+QkF0SpSEiTcfCuwiZmZlh//69sLGxEbUfOHAQvr4zpQlFRFQMund3RkzMGXzxRQN5W7NmDli2bKl0oYiIlFSlShUMGNBf1LZ8+UpkZmZKlIiINB0L7yJiYGCA3btD0bhxI1H7uXN/YcCAwbyWkYi0kkwmw6xZ32HfvgiUKVNGtO3ly5eIiNgrTTAiok/g7e0FPb3/XZH56tUrrF3LaQ+JSHm8xrsIyGQybNoUjA4d2ovab9y4gR49eiEtLU2KWEREKmVubo5Nm4Lh4tJTYdulS5fRt+8A3Lx5U4JkRESfxszMFFlZWfLie8OGYLx8+VLaUESk0TT6iHd0dDRcXFxgbW0NmUyG3bt357t/WFgYunTpggoVKsDMzAyOjo44dOjQJ+dYutQfAwcOELUlJSXByakHnj59+smPT0Skbho0aICYmDO5Ft3bt++Ao2NrFt1EpLE8PCbg889rY9Eif7x48QIBAculjkREGk6jC++0tDQ0atQIK1asKND+0dHR6NKlC/bv34/z58+jQ4cOcHFxwcWLF5XOMG3aVEyc6CVqS0lJgbOzC+Lj45V+XCIidTVo0ECcOXNCYW7brKws+Ph8gyFDvuKZPkSk8e7du4dvvvkWVlZVcPv2banjEJGG0+jC29nZGT/++CP69u1boP2XLl2KadOmwcHBATVr1sRPP/2EmjVrYu9e5a5BdHUdjgUL/ERtGRkZ6Nt3AGJjY5V6TCIidaWrq4tFixZi+/YtKF26tGjb48eP0aVLNyxZslSacESkVQp7ViMAbNmyBY0aNUKpUqVgZWUFd3d3PHv27JOzpKenf/JjEBFpdOH9qXJycpCamopy5crlu196ejpSUlJES7du3RAYuE5hX1dXd/z551FVRSYikkSFChVw5MhBfP31FIVt5879haZNmyMyMkqCZESkjQp7VuOJEyfg6uqKUaNG4Z9//kFISAj++usvjB5duDl5iYhUpUTfXG3x4sVIS0vDwIED893Pz88Pc+fOFbW9evVKdLdLAJg8+Wvs2LGzyHMSEUnN3d1N4QaSALBuXSC8vSfxiBARFSlnZ2c4OzsXeP8zZ87AxsYGEydOBADY2tpi3LhxWLhwoaoiEhEVSok94r1t2zbMmTMHO3bsgIWFRb77+vr6Ijk5Wb4kJCTg0aNHon0WLlyEgIBlqoxMRCSZRYsW48CBg/L19PR0jBnjgbFjPVh0E5HkWrZsifv372P//v0QBAGPHj3Crl270KNHD6mjEREBKKGF944dOzBq1Cjs3LkTnTt3/uj+hoaGMDMzEy0tW7bEhQsXAACbNm3B9OkzVB2biEgyOTk5GDbMFbdv30ZCQgLatOmA9esDpY5FRATgv8J7y5YtGDRoEAwMDFCxYkWUKVMGy5fnfzfy3C4n/P777/HZZ58VU3IiKilK3Knm27Ztw8iRI7Ft2zalfwV990tq+/Yd8c0332DevB8hCDlFnJSI1FVaVmYh988C8N/YoWn+l1nAixfP0aNHLzx79gxPnjyRNBcRqbP/xo3iHPOuXLmCiRMnYtasWXByckJiYiK++eYbeHh4IDAw7x8Jc7ucUBAEeHl5oXLlasjMLNx4T0R5e5uToWTP4htLsoTCZXy3f0HGO5mgid8E/9+rV6/k88Ta2dnB398fHTp0QLly5VC1alX4+vriwYMH2LhxI4D/im5XV1cEBASI7oRubGwMc3PzAj/v/fv3UaVKlaJ9MUSk9RISElC5cmWpYxQKxzsiUlZRjXkymQzh4eHo3bt3nvsMHz4cb9++RUhIiLztxIkTaNOmDR4+fAgrK6tc+6Wnp4sul3nw4AHq1av3yZmJqGQpyHin0Ue8Y2Ji0KFDB/m6j48PAGDEiBEIDg5GYmIi7t27J9/+66+/IisrC56envD09JS3v9u/oKytrZGQkABTU1PIZLJPfyHFKCUlBVWqVEFCQgLMzMykjqPW+F4VDN+njxMEAampqbC2tpY6SqFp4njHz2Tu+L7kje9N3pR5b6QY816/fq1w01tdXV15nrwYGhrC0NBQvm5iYlIsYx4/c3wPAL4HgOa/B4UZ7zS68G7fvn2+g+mHxXRkZGSRPK+Ojo7GHbX60Ltr1enj+F4VDN+n/BXmrBp1osnjHT+TueP7kje+N3kr7HvzqWPe+2c1AkB8fDxiY2PzPKvRxcUFY8aMwerVq+Wnmk+ePBnNmjUr1A8AxT3m8TPH9wDgewBo9ntQ0PFOowtvIiIiItI+hT2r0c3NDampqVixYgW+/vprlClTBh07dsSCBQuKPTsRUW5YeBMRERGRWinsWY0A4O3tDW9vbxWmIiJSXomcTqwkMzQ0xOzZs0XXM1Hu+F4VDN8nUjf8TOaO70ve+N7kje+NavB95XsA8D0AStZ7oNF3NSciIiIiIiJSdzziTURERERERKRCLLyJiIiIiIiIVIiFNxEREREREZEKsfDWMtHR0XBxcYG1tTVkMhl2796d7/6RkZGQyWQKy7///ls8gSXi5+cHBwcHmJqawsLCAr1798a1a9c+2i8qKgpNmzaFkZERqlevjjVr1hRDWuko8z6V1M8UFY/CjnFAyfm75fifO473eeMYrxr8zPGzBQCrV69Gw4YN5fNTOzo64sCBA/n20abPAFD490DbPgMfYuGtZdLS0tCoUSOsWLGiUP2uXbuGxMRE+VKzZk0VJVQPUVFR8PT0xJkzZ3DkyBFkZWWha9euSEtLy7NPfHw8unfvjjZt2uDixYuYMWMGJk6ciNDQ0GJMXryUeZ/eKWmfKSoehR3jStLfLcf/3HG8zxvHeNXgZ46fLQCoXLkyfv75Z8TExCAmJgYdO3bEl19+iX/++SfX/bXtMwAU/j14R1s+AwoE0loAhPDw8Hz3OXbsmABAePHiRbFkUlePHz8WAAhRUVF57jNt2jShTp06orZx48YJLVq0UHU8tVGQ94mfKSouBRnjSurfLcf/vHG8zxvHeNXgZ46frXfKli0rrF+/Ptdt2v4ZeCe/90DbPwM84k0AADs7O1hZWaFTp044duyY1HGKXXJyMgCgXLlyee5z+vRpdO3aVdTm5OSEmJgYZGZmqjSfuijI+/ROSf9MkXrg3+3HlbS/VY73eeMYrxr8zPGzlZ2dje3btyMtLQ2Ojo657qPtn4GCvAfvaONnAOCp5iWelZUV1q5di9DQUISFhaF27dro1KkToqOjpY5WbARBgI+PD1q3bo0GDRrkuV9SUhIsLS1FbZaWlsjKysLTp09VHVNyBX2f+JkidVLS/27zUxL/Vjne541jvGrwM1eyP1uXLl2CiYkJDA0N4eHhgfDwcNSrVy/XfbX1M1CY90AbPwPv05M6AEmrdu3aqF27tnzd0dERCQkJWLRoEdq2bSthsuLj5eWFuLg4nDhx4qP7ymQy0bogCLm2a6OCvk/8TJG6Kcl/t/kpiX+rHO/zxjFeNfiZK9mfrdq1ayM2NhYvX75EaGgoRowYgaioqDwLT238DBTmPdDGz8D7eMSbFLRo0QI3btyQOkax8Pb2RkREBI4dO4bKlSvnu2/FihWRlJQkanv8+DH09PRQvnx5VcaUXGHep9yUpM8UqZeS/HerDG3+W+V4nzeO8arBzxw/WwYGBqhRowbs7e3h5+eHRo0aISAgINd9tfUzUJj3IDea/hl4HwtvUnDx4kVYWVlJHUOlBEGAl5cXwsLCcPToUdja2n60j6OjI44cOSJqO3z4MOzt7aGvr6+qqJJS5n3KTUn4TJF6Kol/t59CG/9WOd7njWO8avAzx89WXgRBQHp6eq7btO0zkJf83oPcaNVnoJhv5kYqlpqaKly8eFG4ePGiAEDw9/cXLl68KNy9e1cQBEGYPn26MHz4cPn+S5YsEcLDw4Xr168Lly9fFqZPny4AEEJDQ6V6CcVi/Pjxgrm5uRAZGSkkJibKl9evX8v3+fC9un37tlCqVClhypQpwpUrV4TAwEBBX19f2LVrlxQvoVgo8z6V1M8UFY/CjnEl6e+W43/uON7njWO8avAzx8+WIAiCr6+vEB0dLcTHxwtxcXHCjBkzBB0dHeHw4cOCIGj/Z0AQCv8eaNtn4EMsvLXMu9vwf7iMGDFCEARBGDFihNCuXTv5/gsWLBA+//xzwcjISChbtqzQunVrYd++fdKEL0a5vUcAhKCgIPk+H75XgiAIkZGRgp2dnWBgYCDY2NgIq1evLt7gxUyZ96mkfqaoeBR2jBOEkvN3y/E/dxzv88YxXjX4meNnSxAEYeTIkUK1atUEAwMDoUKFCkKnTp3kBacgaP9nQBAK/x5o22fgQzJB+P+r9omIiIiIiIioyPEabyIiIiIiIiIVYuFNREREREREpEIsvImIiIiIiIhUiIU3ERERERERkQqx8CYiIiIiIiJSIRbeRERERERERCrEwpuIiIiIiIhIhVh4ExEREREREakQC2+i/zdnzhw0btz4o/t9//33GDt2bKEeOzIyEjKZDC9fvlQuXDEo6OsHgPT0dFStWhXnz59XbahPEB0dDRcXF1hbW0Mmk2H37t1a9XxEylDlOPcxd+7cgUwmQ2xsbJE+blFwc3ND7969C7Tv48ePUaFCBTx48EC1oQqB4x2R6kg5bhaWjY0Nli5dCkAzvqspS1PHPBbepBKPHz/GuHHjULVqVRgaGqJixYpwcnLC6dOnpY72SR49eoSAgADMmDFDYdupU6egq6uLbt26FUuWoi7mp06dij///LNA+xoaGmLq1Kn49ttvi+S5VSEtLQ2NGjXCihUrtPL5SHolaZxzc3ODTCZTWAoz3lWpUgWJiYlo0KDBR/ct7iI9ICAAwcHBBdrXwsICw4cPx+zZs1UbqhA43pGmKCnjZm7j5fuLm5tbvo9XFMWkJnxXU5amjnl6RZSHSKRfv37IzMzEb7/9hurVq+PRo0f4888/8fz580963MzMTOjr6xdRysILDAyEo6MjbGxsFLZt2LAB3t7eWL9+Pe7du4eqVasWf0AlCIKA7OxsmJiYwMTEpMD9hg0bhm+++QZXr15F3bp1VZhQOc7OznB2ds5ze0ZGBr777jts2bIFL1++RIMGDbBgwQK0b99eJc9H2qekjXPdunVDUFCQqM3Q0LDAj6urq4uKFSsWRcQiZ25uXqj93d3d0axZM/zyyy8oW7asilIVHMc70hQlZdxMTEyUb9uxYwdmzZqFa9euyduMjY2LJZe6f1dTlqaOeTziTUXu5cuXOHHiBBYsWIAOHTqgWrVqaNasGXx9fdGjRw/5fjKZDKtXr4azszOMjY1ha2uLkJAQ+fZ3Rzx27tyJ9u3bw8jICJs3bwYABAUFoW7dujAyMkKdOnWwatUqUYZvv/0WtWrVQqlSpVC9enV8//33yMzMFO3z888/w9LSEqamphg1ahTevn370de2fft29OrVS6E9LS0NO3fuxPjx49GzZ88CHTk5deoU2rZtC2NjY1SpUgUTJ05EWlqafPvmzZthb28PU1NTVKxYEUOHDsXjx4/l702HDh0AAGXLlhX9epqeno6JEyfCwsICRkZGaN26Nf766y/54747Un7o0CHY29vD0NAQx48fz/VUqg0bNqB+/fowNDSElZUVvLy85NvKly+Pli1bYtu2bR99rerI3d0dJ0+exPbt2xEXF4cBAwagW7duuHHjhtTRSAOUxHHu3dGp95f3i86CvtZ3R7FfvHiBYcOGoUKFCjA2NkbNmjXlhb2trS0AwM7ODjKZTPRlKb/35f33s02bNjA2NoaDgwOuX7+Ov/76C/b29jAxMUG3bt3w5MkTeb8PTzXPycnBggULUKNGDRgaGqJq1aqYP3++fPsXX3yBihUrIjw8/KPvpzrgeEfqoCSNm++Pk+bm5pDJZKK2rVu34vPPP4eBgQFq166NTZs2yfu+K9779OkDmUwmX7916xa+/PJLWFpawsTEBA4ODvjjjz/yzaXp39WUpbZjnkBUxDIzMwUTExNh8uTJwtu3b/PcD4BQvnx5Yd26dcK1a9eE7777TtDV1RWuXLkiCIIgxMfHCwAEGxsbITQ0VLh9+7bw4MEDYe3atYKVlZW8LTQ0VChXrpwQHBwsf+x58+YJJ0+eFOLj44WIiAjB0tJSWLBggXz7jh07BAMDA2HdunXCv//+K8ycOVMwNTUVGjVqlGfe58+fCzKZTDhz5ozCtsDAQMHe3l4QBEHYu3evYGNjI+Tk5Mi3Hzt2TAAgvHjxQhAEQYiLixNMTEyEJUuWCNevXxdOnjwp2NnZCW5ubqLH3L9/v3Dr1i3h9OnTQosWLQRnZ2dBEAQhKytLCA0NFQAI165dExITE4WXL18KgiAIEydOFKytrYX9+/cL//zzjzBixAihbNmywrNnz0RZGjZsKBw+fFi4efOm8PTpU2H27Nmi179q1SrByMhIWLp0qXDt2jXh3LlzwpIlS0Sve9q0aUL79u3zfM/UBQAhPDxcvn7z5k1BJpMJDx48EO3XqVMnwdfXt8ifj7RPSRvnRowYIXz55Zf5vicFfa0XL14UBEEQPD09hcaNGwt//fWXEB8fLxw5ckSIiIgQBEEQzp07JwAQ/vjjDyExMVE+fn3sfXn3HHXq1BEOHjwoXLlyRWjRooXQpEkToX379sKJEyeECxcuCDVq1BA8PDzyfH3Tpk0TypYtKwQHBws3b94Ujh8/Lqxbt070egcOHCgas9UFxztSVyVt3HwnKChIMDc3l6+HhYUJ+vr6wsqVK4Vr164JixcvFnR1dYWjR48KgiAIjx8/FgAIQUFBQmJiovD48WNBEAQhNjZWWLNmjRAXFydcv35dmDlzpmBkZCTcvXtX/tjVqlXT2O9qytKkMY+FN6nErl27hLJlywpGRkZCy5YtBV9fX+Hvv/8W7QNA9MVHEAShefPmwvjx4wVB+N/AunTpUtE+VapUEbZu3SpqmzdvnuDo6JhnnoULFwpNmzaVrzs6Oub63PkNrBcvXhQACPfu3VPY1rJlS3nOzMxM4bPPPhOOHDki3/5h4T18+HBh7Nixosc4fvy4oKOjI7x58ybX53/3RTQ1NTXXxxQEQXj16pWgr68vbNmyRd6WkZEhWFtbCwsXLhT12717t+jxPyy8ra2thZkzZ+b5fgiCIAQEBAg2Njb57qMOPhwkd+7cKQAQSpcuLVr09PSEgQMHCoLwv89ffounp2eBno+0U0ka50aMGCHo6uoq/M388MMPhX6t7wpvFxcXwd3dPdccH+77zsfel3f91q9fL9++bds2AYDw559/ytv8/PyE2rVri17fu8I7JSVFMDQ0VCi0PzRlyhS1/DLL8Y7UWUkaN9/5sPBu2bKlMGbMGNE+AwYMELp37y5fL+jfVb169YTly5fL13MrvDXlu5qyNGnM4zXepBL9+vVDjx49cPz4cZw+fRoHDx7EwoULsX79etENJRwdHUX9HB0dFW6mY29vL//vJ0+eICEhAaNGjcKYMWPk7VlZWaJr9Hbt2oWlS5fi5s2bePXqFbKysmBmZibffvXqVXh4eCg897Fjx/J8TW/evAEAGBkZidqvXbuGc+fOISwsDACgp6eHQYMGYcOGDejcuXOuj3X+/HncvHkTW7ZskbcJgoCcnBzEx8ejbt26uHjxIubMmYPY2Fg8f/4cOTk5AIB79+6hXr16uT7urVu3kJmZiVatWsnb9PX10axZM1y9elW07/vv64ceP36Mhw8folOnTnnuA/x3jdLr16/z3Ucd5eTkQFdXF+fPn4eurq5o27vr3CtVqqTwnn1IHa7tJOmUpHEOADp06IDVq1eL2sqVK6fw+B97re+MHz8e/fr1w4ULF9C1a1f07t0bLVu2zDNbQd8XAGjYsKH8vy0tLQH8d3r4+23vLt350NWrV5Genq414x/HO1InJW3czM3Vq1cV7n7eqlUrBAQE5NsvLS0Nc+fOxe+//46HDx8iKysLb968wb179/LtpyljVVFR5zGPhTepjJGREbp06YIuXbpg1qxZGD16NGbPnl2gOzm+r3Tp0vL/fld8rlu3Ds2bNxft9+6P68yZMxg8eDDmzp0LJycnmJubY/v27Vj8f+3dW0hUXxsG8HfEPdMurbQRLdGRGk9dlEpIESYSWoFRhhEVpHQTHUwjjLCSKI0CpYyiUAwz0+jCE3SCIOgIlnhAo8w0JTBM7CY7Oj3/Cz83zmge+pwcm+cHc+Hee2avtWQe1nJc7+Tm/l/9MRqNIjKwL9HLy0s7XlhYKP39/eLr66sdAyCKosinT59GfOP++vVLdu3aJfv37x92zt/fX/r6+iQuLk7i4uKkpKREvLy8pLOzU9asWSM/fvz4bRsH/hA3fAwBjDqutsZb9KO3t9dqLKaL8PBwsVgs0t3dLVFRUSNeoyiKhISE/OWW0XTjLDk32Eaz2Tzh17Tt66B169ZJR0eH3Lp1S+7fvy+rV6+WvXv3Sk5OzojXj2dcBg0tsjR4f9tjg69n61/LP+YdORpnys3fGc88zVZ6errcu3dPcnJyxGw2i6qqkpiYOOq8UGT6ZNVkceTMY3E1+msWL15sVTxMZCAEbX8e7Y3g7e0tvr6+0tbWJmaz2eoxWIznyZMnYjKZ5MiRI7Js2TIJDAyUjo4Oq9cJDQ0d8d6jWbRokcyePVtevnypHevv75fi4mLJzc2V+vp67dHQ0CAmk8nqE+2hIiIipLm5eVgfzGaz6PV6efXqlfT09Mjp06clKipKQkJChn06o9frRUTEYrFoxwaf//jxY+3Yz58/5cWLFxOqZunu7i4BAQFjfr1YU1OThIeHj/t1/6bPnz9rvw8Rkfb2dqmvr5fOzk4JCgqS7du3y44dO6S8vFza29vl+fPncubMGbl9+/ak34+cx7+YcxMx0b56eXlJcnKylJSUyLlz5yQ/P19ERs638YzLZAgMDBRVVadV/jHvaDpzttwMDQ21mqeJDBTcHTpPUxTFKv9ERB49eiTJycmSkJCgFXh89+7dmPdzpKyaLNM28/7oH9SJRtHT04OYmBhcu3YNDQ0NaGtrw82bN+Ht7Y2dO3dq14kIjEYjCgsL8fr1a2RmZsLFxQXNzc0Afr/Hr6CgAKqqakW/GhsbceXKFeTm5gIAKisr4erqirKyMrS2tiIvLw+enp5W+2tu3LgBg8Fgde+ximcAwKZNm3Dw4EHt54qKCuj1eq2w2VAZGRkICwsDMHw/dkNDA1RVxZ49e1BXV4eWlhZUVVVh3759AAYKa+j1eqSnp+Pt27eoqqpCUFCQ1Xi8f/8eOp0ORUVF6O7u1vZ+p6amYsGCBbhz545VcbXe3t4R2zLIdo93UVERZsyYgby8PLS0tKC2thbnz5+3eo7JZEJxcfGoYzZVBvtp+0hKSgIwsPc9MzMTAQEBUBQFPj4+SEhIQGNjo13uR/8WZ8o5YGAP9Nq1a9HV1WX1+Pjx4x/39dixY6isrMSbN2/Q1NSE+Ph4REZGAhiolaGqKrKysvDhwwctY8cal5HGc6TMs91zaVtc7fjx4/Dw8MDVq1fR2tqKZ8+eWe0b7+vrg6qqePjw4ahj+bcw72g6cLbcHGSbNxUVFVAUBZcuXUJLS4tWXO3BgwfaNYGBgdi9eze6urq0+dvGjRsRFhaGuro61NfXY/369XB3d0dqaqr2vJH2eDvyXO1PTdfM48KbJt23b99w+PBhREREYM6cOZg5cyaCg4Nx9OhRfPnyRbtORHDx4kXExsbCYDDAZDKhrKxMO/+7YAWA69evIywsDHq9Hh4eHli1ahXKy8u18+np6Zg3bx7c3NywZcsWnD171ir0ACA7OxtGoxFubm5ISkrCoUOHxgzWu3fvwtfXFxaLBQAQHx9vVQxjqNraWogIamtrR5z41dTUIDY2Fm5ubpg1axaWLFmC7Oxs7XxpaSkCAgJgMBiwYsUKVFdXDxuPEydOwMfHBzqdTnvzf/36FSkpKTAajTAYDFi5ciVqamq054x34Q0Aly9fRnBwMBRFwfz585GSkqKde/r0KebOnWv1OyVyFs6Uc8DAwnSkScfQAmUT7evJkycRGhoKVVXh6emJDRs2oK2tTbu+oKAAfn5+cHFxQXR09LjGZbIW3haLBVlZWTCZTFAUBf7+/jh16pR2vrS01KrvRDQ2Z8vNQbZ5Awx8c8zChQuhKAqCgoKGLYyrq6thNpvh6uoKk8mk9TsmJgaqqsLPzw8XLlxAdHT0qAtvztUciw7436ZQor9Mp9NJRUWF1XenOjoAsnz5cklLS5OtW7dOdXOm1ObNmyU8PFwyMjKmuilEDsuZcm469vVPRUZGSlpammzbtm2qm0L0z5mOWeKo80PO1RwL93gTTYBOp5P8/Hzp7++f6qZMqe/fv8vSpUvlwIEDU90UIppkzLnRdXd3S2JiokNNroloajlibnKu5nj4iTdNmen4F00ioolwppxzpr4Skf0wS+hfxYU3ERERERERkR3xX82JiIiIiIiI7IgLbyIiIiIiIiI74sKbiIiIiIiIyI648CYiIiIiIiKyIy68iYiIiIiIiOyIC28iIiIiIiIiO+LCm4iIiIiIiMiOuPAmIiIiIiIisiMuvImIiIiIiIjs6D9RLjz6mpIEqwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQmElEQVR4nOzdd1QU198G8GfpqIASRcGKvRAVwYK9xILGxK7RiGBXwEJs2LFhFys2itijApqfxmgiRewiiC1W7Nii0lTqvH/kdeO4gMsKzC48n3P2JPudubsP63LZuzNzr0wQBAFERERERERElOe0pA5AREREREREVFhx0E1ERERERESUTzjoJiIiIiIiIsonHHQTERERERER5RMOuomIiIiIiIjyCQfdRERERERERPmEg24iIiIiIiKifMJBNxEREREREVE+4aCbiIiIiIiIKJ9w0E1ERERERESUTzjo/grh4eHo3r07LCwsIJPJEBwcXKiej4joU+zziKioYH9HRHmJg+6vkJycjAYNGmDdunWF8vmIiD7FPo+Iigr2d0SUl3SkDqDJ7O3tYW9vn+321NRUzJw5Ezt37sTbt29hZWWFJUuWoG3btvnyfERE+Yl9HhEVFezviCgvcdCdj5ycnHD//n3s2bMHFhYWCAoKQpcuXXDlyhXUqFFD6nhERHmKfR4RFRXs74goN3h6eT65e/cudu/ejX379qFVq1aoVq0aJk2ahJYtW8LPz0/qeEREeYp9HhEVFezviCi3OOjOJ5cuXYIgCKhZsyZKlCghv4WFheHu3bsAgPv370Mmk+V4c3FxkfgnISL6MvZ5RFRUsL8jotzi6eX5JDMzE9ra2oiMjIS2trZoW4kSJQAA5cuXx40bN3J8nFKlSuVbRiKivMI+j4iKCvZ3RJRbHHTnE2tra2RkZODFixdo1apVlvvo6uqidu3aBZyMiCjvsc8joqKC/R0R5RYH3V8hKSkJd+7ckd+PjY1FdHQ0TE1NUbNmTQwaNAgODg5YsWIFrK2t8erVK5w4cQLffvstunbtmqfPV6lSpTz5mYiIssM+j4iKCvZ3RJSnBFJZSEiIAEDhNmTIEEEQBCE1NVWYPXu2UKVKFUFXV1coV66c0LNnTyEmJiZfno+IKD+xzyOiooL9HRHlJZkgCEJBDO6JiIiIiIiIihrOXk5ERERERESUTzjoJiIiIiIiIsonnEhNBZmZmXj69CmMjIwgk8mkjkNEak4QBCQmJsLCwgJaWpr1XSf7OyLKLU3t89jfEVFuKdvfcdCtgqdPn6JixYpSxyDSONra2jh8+DA6d+4sqvv6+mLYsGESpSo4jx49QoUKFaSOkSvs74hIVZrW57G/IyJVfam/46BbBUZGRv//f1oA+E0okbIWLVqsMOA+e/Ycxo51BaANAHgd763SY5uajPnaePlIAJD5Sd+hOdjfESnnta+hSu1Mh77P4yTqQDP7PPZ3pImaN2+O06dPAwAO2nyf6/Y/Rv4vryMVMcr1dxx0q+C/U45kYKdMpJz+/fthypRJolpcXBx69+6HlJRUfPxdMjYupuIzqP/voiaersj+jkg5xsVU/f0ovL9Xmtbnsb8jTTN8+DBs2bIR/v4BmDDBDcV1dFV4FL7X88KX+jvNudCGiDRaTMwV3Lp1S34/NTUVvXv3x9OnTyVMRURE6sjT0xONGzeGkZERzMzM0KNHD9y8efOL7Xbu3IkGDRqgWLFiMDc3h5OTE/75558CSExUsCpXroyVK5cBABwdHXDlShRK2VhJnIqyw0E3ERWIGzduoEmT5jh8+AgAwNl5HM6cOSNxKiIiUkdhYWFwdnbG2bNncfz4caSnp6NTp05ITk7Otk1ERAQcHBwwbNgwXLt2Dfv27cOFCxcwfPjwAkxOlP9kMhl8fDaLTmmuWLEiZLo8iVld8V+GiApMfHw8fvihJ77/vhsOHfpN6jhERKSmjh49Krrv5+cHMzMzREZGonXr1lm2OXv2LKpUqYJx48YBACwtLTFq1CgsXbo03/MSFaQxY0ajQ4f2otqWLT6oejZamkD0RTzSTUQFKjMzkwNuIiLKlfj4eACAqalptvs0b94cjx8/xpEjRyAIAp4/f479+/ejW7duBRWTKN9VrVoVS5d6imoPHjzAL79MligRKYODbiIiIiJSW4IgwM3NDS1btoSVVfbXrDZv3hw7d+5E//79oaenh3LlyqFkyZJYu3ZtlvunpKQgISFBdCNSZzKZDH5+W1G8eHFRfdiwkUhMTJQoFSmDg24iynO2trZYtmwJtLW1pY5SaKgyqVBoaChkMpnC7e+//y6g1EREX8/FxQUxMTHYvXt3jvtdv34d48aNw+zZsxEZGYmjR48iNjYWo0ePznJ/T09PmJiYyG9co5vU3bhxrmjdupWotmHDRvz11wmJEpGyZIIgCFKH0DQJCQkwMTHBv+sKc5p9ok/9e83dOVSoUAF//XUC/fsPzNXMsemCv0rPqyNzVKldwRAAZCA+Ph7GxsYqPUKXLl0wYMAANG7cGOnp6ZgxYwauXLmC69evK3zj/VFoaCjatWuHmzdvip63TJkySn8hwv6OSDnpe1Rbp1tnQGFdp/vr+ryPXF1dERwcjPDwcFhaWua47+DBg/Hhwwfs27dPXouIiECrVq3w9OlTmJubi/ZPSUlBSkqK/H5CQsL/D7zZ35H6qVmzJqKjL8LQ8L++5t69e6hfv5F8gsE/m/bI9eN+dy44jxIWVcr1d5xIjYjyjK6uLvbv34sKFSoAADp0aI+LF8+iTZsOePjwocTpNJsqkwp9ZGZmhpIlS+ZjOiKivCUIAlxdXREUFITQ0NAvDrgB4N27d9DREX+0/fgFY1bHmPT19aGvr583gYnykZaWFvz9fUQDbgBwchqe44z+pD54ejkR5Rkvr5Vo1aqlqBYbe59rcecDZSYV+sja2hrm5ubo0KEDQkJCctyX1zgSkTpwdnbGjh07sGvXLhgZGeHZs2d49uwZ3r//78wAd3d3ODg4yO93794dgYGB8Pb2xr1793Dq1CmMGzcOTZo0gYWFhRQ/BlGe+OWXibCzayaqeXmtQXj4SYkSUW5x0E1EeWL48GEYO1Z83dyDBw/Qr99PSE9PlyhV4aTspELm5ubYvHkzDhw4gMDAQNSqVQsdOnRAeHh4tm14jSMRqQNvb2/Ex8ejbdu2MDc3l9/27t0r3ycuLk50FpWjoyNWrlyJdevWwcrKCn379kWtWrUQGBgoxY9AlCfq1KmD+fM9RLVbt25h+vSZEiUiVfCabhXwGkciMTs7O4SG/gk9PT157d27d2jRog2io6OlC6Y28u76RuDfI0CHDx9GRESE/FR+ZXXv3h0ymQyHDh3KcrumXuP4IdIm121Szevmuo3W+9e5bgMAJaodznUbVec3SLu6NddttP9R8WwUndxfpSZLUm2GXVlqypd3+ozOD6r9exWkpAe9ct2mRGV1H0TmbZ9XUPj5jtSNtrY2zpyJQOPGtvJaZmYmWrZsizNnzkiYjP6jXH/HI91E9FXMzc1x4MBe0YAbAIYPH8UBdz5wdXXFoUOHEBISkusBNwA0a9YMt2/fzna7vr4+jI2NRTciIiIqeBUrVoSpaSlRbcWKVRxwayAOuolIZXp6eggM3KcwI+yyZSuwe/ceiVIVToIgwMXFBYGBgThx4oRSkwplJSoqSuHfi4iIiNTP/fv3Ub9+I6xbtwEAcOPGDcyaNUfiVKQKzl5ORCrbsGEdmjVrKqodO3Yc7u4zJEpUeDk7O2PXrl04ePCgfFIhADAxMZHPZuru7o4nT54gICAAAODl5YUqVaqgXr16SE1NxY4dO3DgwAEcOHBAsp+DiIiIlPfu3Tu4uo5HYGAQEhISRZeAkebgoJuIVDJmzGgMG+Ykqt29excDBgxCRkaGRKkKL29vbwBA27ZtRXU/Pz84OjoCUJxUKDU1FZMmTcKTJ09gaGiIevXq4fDhw+jatWtBxSYiIqI8EBISKnUE+gocdBNRrrVq1RKrV68U1ZKTk9GjRx+8efNGolSFmzJzXvr7+4vuT5kyBVOmTMmnRERERESkDF7TTUS5UqFCBezfvxe6urqi+pAhQ3H16lWJUhERERFpNh0dHchknDm/MOKgm4hypXTp0khLSxPVFi70xIED6r6EDREREZH6mjdvLk6cOK7yZKmkvjR60O3p6YnGjRvDyMgIZmZm6NGjB27evPnFdikpKZgxYwYqV64MfX19VKtWDb6+vgWQmEjzRUdHw9a2GU6f/ne5isOHj2D27LnShiIiIiLSYE2aNMGUKZPQtm0bxMRcwqhRI6WORHlIowfdYWFhcHZ2xtmzZ3H8+HGkp6ejU6dOSE5OzrFdv3798Ndff8HHxwc3b97E7t27Ubt27QJKTaT5nj17hnbtvsO8eQswaJADMjMzpY5EREREpJEMDAzg778V2traAIASJUpgzZpVqF69usTJKK9o9ERqR48eFd338/ODmZkZIiMj0bp162zbhIWF4d69ezA1NQUAVKlSJb+jEhU6qampmDPHQ+oYRERERBpt/nwP1KlTR1Tz8JiPO3fuSJSI8ppGH+n+XHx8PADIB9NZOXToEGxtbbF06VKUL18eNWvWxKRJk/D+/fuCiklERERERITmzZvDzW2CqHbhwkUsWbJMmkCULzT6SPenBEGAm5sbWrZsCSsrq2z3u3fvHiIiImBgYICgoCC8evUKY8eOxevXr7O9rjslJUW0EH1CQkKe5ydSR8WKFcPPPw/C5s1bpI5CREREVKgUK1YM/v5boaX133HQlJQUDBkyFBkZGRImo7xWaAbdLi4uiImJQURERI77ZWZmQiaTYefOnTAxMQEArFy5En369MH69ethaGio0MbT0xMeHjyNlooeH5/NGDCgPzp27ABHx2FfnC8hLyS5l1apXQnPV3mchKSQ5qOtUjtdm0gVWqnSpuDoyByljkAFoETl3K/8kC74q/RcfE8RqZdFixagRo0aotqsWXNw48YNlR7vbs8muW5TLei8Ss9FuVMoTi93dXXFoUOHEBISggoVKuS4r7m5OcqXLy8fcANAnTp1IAgCHj9+nGUbd3d3xMfHy2+PHj3K0/xE6mjy5F8wYEB/AECfPr1x5kwEqlatKnEqIiIiIs3XunUrjB/vKqqdOXMWK1askigR5SeNHnQLggAXFxcEBgbixIkTSq1p16JFCzx9+hRJSUny2q1bt6ClpZXtgF1fXx/GxsaiG1Fh1rlzJyxevEhUq1ixgnxWTSIiIiJSTfHixeHnt1VUe//+PRwdh3FFmEJKowfdzs7O2LFjB3bt2gUjIyM8e/YMz549E02K5u7uDgcHB/n9gQMH4ptvvoGTkxOuX7+O8PBwTJ48GUOHDs3y1HKioqZatWrYvXuH6PqizMxMDBw4GLdv35YwGREREZHmW7p0scLZg9Onz8KtW7ckSkT5TaMH3d7e3oiPj0fbtm1hbm4uv+3du1e+T1xcHB4+fCi/X6JECRw/fhxv376Fra0tBg0ahO7du2PNmjVS/AhEaqVEiRIIDt6PUqVKieozZszC778fzaYVERERESmjQ4f2GDt2tKgWHn4Sq1dzLFKYafREaoIgfHEff39/hVrt2rVx/PjxfEhEpLlkMhm2bfNVmP1/3779WLx4qUSpiIiIiAoHIyMj+PqKV4RJTk6Gk9NwpcY1pLk0+kg3EeWd6dOnoVevnqJaTMwVODkNlygRERERUeExduxoVKpUSVSbMsUd9+7dkygRFRQOuokI3bp1xbx5c0W1169fo0eP3gWyTBgRERFRYbds2Qr88stkfPjwAQBw4kQIvL03SpyKCgIH3URFXK1atbBzZ4Bo4rSMjAz07z8QsbGxEiYjIiIiKjwyMzOxcqUXGja0xZ9//oWhQ0fwtPIiQqOv6Sair2NsbIzg4P2idesBYMqUafjzz78kSkVERERUeN28eRMdO3aROgYVIB7pJiqiZDIZduzYhtq1a4vqO3fuxsqVXtKEIiIiIiIqZDjoJiqiqlevjhYtmotqly5FYcSIURIlIiIiIiIqfDjoJiqibt++jcaN7XDlylUAwMuXL9GzZx+8f/9e4mREREREmm/RogVo1qyZ1DFIDcgEXr2fawkJCf9/Daw2AJnUcYi+SvHixbF16yZs3LgZYWHhUscppAQAGYiPj4exsbHUYXLla/q7+Inlc/18Jque5LoNEakbzezz+PmO8lLv3r2wf/9eZGRkYPnylZgzxwMpKSlSx6I8p1x/x4nUiIq45ORk/PTTz1LHICIiIioUypQpA2/vdQAAbW1tTJ06GS1aNEerVm2lDUaS4enlREREREREeWTDhrUoU6aMqLZx42aJ0pA64KCbqIho3Lix1BGIiIiICrUBA/qjT5/eolpQUDB27twlUSJSBxx0ExUB/fr1xfnzp7Fx4wbo6upKHYeIiIio0ClXrhzWr18jqr169QqjRztLlIjUBQfdRIVc/fr14ee3FQAwatQIhIT8iXLlykmcioiIiKhw2bRpA0xNTUW1sWNd8eLFC4kSkbrgoJuoEPvmm28QHLwfxYoVk9datGgOe/suEqYiIiIiKlwGD/4ZP/zQXVTbu/dX7Nu3X6JEpE446CYqpLS1tbF37y5YWlqK6ps3b4Wfn780oYiIiIgKmfLly2PNmlWi2vPnz+HsPE6iRKRuOOgmKqSWLl2MDh3ai2qnT5+Bq+t4iRIREREpx9PTE40bN4aRkRHMzMzQo0cP3Lx584vtUlJSMGPGDFSuXBn6+vqoVq0afH19CyAxFWVbtmxEyZIlRbXRo53xzz//SBOI1A7X6SYqhH7+eRDc3CaIak+fPkXv3v2QmpoqTSgiIiIlhYWFwdnZGY0bN0Z6ejpmzJiBTp064fr16yhevHi27fr164fnz5/Dx8cH1atXx4sXL5Cenl6AyamoGTZsqMJlezt27EJw8EGJEpE64qCbqJCxsbHBli0bRbWUlBT06tUPz549kygVERGR8o4ePSq67+fnBzMzM0RGRqJ169bZtgkLC8O9e/fkk1lVqVIlv6NSEVapUiWsXLlMVHv69CnGjZsgTSBSWzy9nKgQMTMzQ1DQPhgYGIjqY8a44Ny5cxKlIiIi+jrx8fEAoDAz9KcOHToEW1tbLF26FOXLl0fNmjUxadIkvH//vqBiUhHj47MZxsbGotqIEaPx5s0biRKRuuKRbqJCQkdHB/v27UHFihVF9XXrNnDiNCIi0liCIMDNzQ0tW7aElZVVtvvdu3cPERERMDAwQFBQEF69eoWxY8fi9evXWV7XnZKSgpSUFPn9hISEfMlPhdeGDRtRv/63MDMzAwD4+vrjyJHfJU5F6kgmCIIgdQhNk5CQABMTEwDaAGRSxyECAKxduxouLmNFtbCwcHz3XWfJrmdL89HOdRvdYRn5kERqAoAMxMfHK3wjru7Y3xFR7uVtn+fs7IzDhw8jIiICFSpUyHa/Tp064eTJk3j27Nn/91tAYGAg+vTpg+TkZBgaGor2nzt3Ljw8PLJ4JPZ3pLzSpUtj/fo1sLNrBiurhvzypshRrr/j6eVEhYCTk6PCgPvRo0fo23cAJ5AhIiKN5erqikOHDiEkJCTHATcAmJubo3z58vIBNwDUqVMHgiDg8ePHCvu7u7sjPj5efnv06FGe56fC79WrV+jffyBsbJpywE3Z4qCbSMMZGRlhxYqlotr79+/Ro0cfvHz5UqJUREREqhMEAS4uLggMDMSJEydgaWn5xTYtWrTA06dPkZSUJK/dunULWlpaWQ7Y9fX1YWxsLLoRqYqfuSgnHHQTabjExES0a9cR9+/fl9dGjhyDS5cuSReKiIjoKzg7O2PHjh3YtWsXjIyM8OzZMzx79kw0KZq7uzscHBzk9wcOHIhvvvkGTk5OuH79OsLDwzF58mQMHTpU4dRyIqKCxEE3USFw+fJl2No2w4kTIVi50gs7duyUOhIREZHKvL29ER8fj7Zt28Lc3Fx+27t3r3yfuLg4PHz4UH6/RIkSOH78ON6+fQtbW1sMGjQI3bt3x5o1a6T4EaiQ0dLSQufOnaSOQRpKoydS8/T0RGBgIP7++28YGhqiefPmWLJkCWrVqqVU+1OnTqFNmzawsrJCdHS00s/LiYVIXWlr/ztxWUaGekxGxonUPuJEakRUlGhmn8f+jnLi5jYBK1Ysw6+/7oOz8zi8evVK6kikForARGphYWFwdnbG2bNncfz4caSnp6NTp05ITk7+Ytv4+Hg4ODigQ4cOBZCUqGBkZGSozYCbiIiIqDCoVasWFi6cDwDo168vrl27zKPelCsavU730aNHRff9/PxgZmaGyMhItG7dOse2o0aNwsCBA6GtrY3g4OB8TEmUt0xMTBAfHy91DCIiIqJCT1tbG9u2+cLAwEBeK126tFIH+Yg+0ugj3Z/7OBAxNTXNcT8/Pz/cvXsXc+bMUepxU1JSkJCQILoRSaF8+fK4ceMK5s/3gEzGU9+IiIiI8tOkSW5o2rSJqObltQYREackSkSaqNAMugVBgJubG1q2bAkrK6ts97t9+zamTZuGnTt3QkdHuQP9np6eMDExkd8qVqyYV7GJlKavr4/AwH0wNzfHzJnTcehQkGgtUiIiIiLKO/Xq1YOHh/gg3c2bNzFjxiyJEpGmKjSDbhcXF8TExGD37t3Z7pORkYGBAwfCw8MDNWvWVPqx3d3dER8fL789evQoLyIT5crGjRvQpElj+f3vv+8GT8+FEiaiguTp6YnGjRvDyMgIZmZm6NGjB27evPnFdmFhYbCxsYGBgQGqVq2KjRs3FkBaIiIizaajo4Nt23yhr68vr2VkZGDIkGH48OGDhMlIExWKQberqysOHTqEkJAQVKhQIdv9EhMTcfHiRbi4uEBHRwc6OjqYN28eLl++DB0dHZw4cSLLdvr6+jA2NhbdiAqSi4szHB0dRLXbt29j+vSZEiWigqbKxJGxsbHo2rUrWrVqhaioKEyfPh3jxo3DgQMHCjA5ERGR5nF3nwobm0ai2rJlK3Du3DmJEpEm0+glwwRBgKurK4KCghAaGooaNWrkuH9mZiauX78uqm3YsAEnTpzA/v37YWlpieLFi3/xebmkBBWkNm1a488//xBdDpGYmIhmzVoqvJ/VDZcM+yjvl895+fIlzMzMEBYWlu3EkVOnTsWhQ4dw48YNeW306NG4fPkyzpw5o9TzsL8jotzjkmGk2Ro0aIALF85AV1dXXrt27RpsbJoiJSVFwmSkfpTr7zR69nJnZ2fs2rULBw8ehJGREZ49ewbg39mdDQ0NAfx7aviTJ08QEBAALS0theu9zczMYGBgkON14ERSqVSpEvbt26Mw/4CDg5PaD7gpfykzceSZM2fQqZN4SZPOnTvDx8cHaWlpog8TREREBOjq6mLbNl/R38j09HQMGTKMA25SmUYPur29vQEAbdu2FdX9/Pzg6OgIAIiLi8PDhw8LOBnR1zM0NERQ0H6UKVNGVPfwmI/g4IMSpcqdwnnUWnrKThz57NkzlC1bVlQrW7Ys0tPT8erVK5ibmyu0SUlJEX2o4GoNRIXHh0ibXLcRfv/y3BGfS/ggoOwCLm1JmmnWrBlo0KC+qObpuQSRkZESJaLCQKMH3cqcGe/v75/j9rlz52Lu3Ll5E4goD23ZsgmNGlmLaocO/QYPj/kSJSJ18XHiyIiIiC/u+/nSch/7zeyWnPP09ISHh8fXhyQiItIwtra2cHefKqpdvhyD+fM5cS19nUIxkRpRYePmNgGDBv0kqv39998YPNhRqS+bqPBSduJIAChXrpz8spuPXrx4AR0dHXzzzTdZtuFqDUREVBTp6+vD33+r6JK+tLQ0DBkyFGlpaRImo8JAo490ExVGHTt+h6VLF4tq8fHx+PHH3jzVtwj7fOJIS0vLL7axs7PDb7/9JqodO3YMtra22V7Pra+vL1oehYiIqCgoV66cQm3+/IW4fPmyBGmosOGRbiI1UrVqVezZsxPa2v/N+p2ZmYlBgxxw69YtCZOR1JydnbFjxw7s2rVLPnHks2fP8P79e/k+7u7ucHD4b2m50aNH48GDB3Bzc8ONGzfg6+sLHx8fTJo0SYofgYiISG09ePAANjZNsXjxUmRkZCAy8hI8PZdIHYsKCR7pJlITMpkM+/btUZiNevbsuTh8+IhEqUhdqDJxpKWlJY4cOYKJEydi/fr1sLCwwJo1a9C7d++Cik1ERKQxUlJS4O4+AwcP/oaEhASkp6dLHYkKCY1ep1sqXMeR8kvr1q2wf/9e+YzlBw4Eom/fAbyOW+Np5pq1APs7osKkoGcv17Q+j/0dEeVeEVinm6iwCQ8/CRubpggOPgA9PV04Og7jgJuIiIiISINx0E2kZh49eoQWLVrjm2++QVJSktRxiIiIckXHvD6Ak1LHIMqRgYEB0tLSkJGRIXUUKgI4kRqRGvrw4QOePHkidQwiIiLlybSh3eIXlBr1l9RJiL5o2bIlOHUqHLVr15Y6ChUBHHQTERER0VeRmVaH3pCj0G07EzLtrJckJFIX7du3g4vLWDRt2gRRURfwyy8ToaXFYRHlH767iCTwcaby8ePHSR2FiIjoK8ig3XgU9IaHQ6u8rdRhiL7IyMgIvr5b5PcNDAwwb95cVKpUSbJMVPipPOh2dHREeHh4XmYhKjJmzZqBPn16w8trBfz9fWFgYCB1JCIiotwxrgjdQcHQ7bQYMl1DqdMQKWXZsiWoXLmyqDZt2gzcv39fmkBUJKg8kVpiYiI6deqEihUrwsnJCUOGDEH58uXzMhtRofTDD93h4TFHfn/IkMEwMyuDrl27S5iKKGcnWrZHCZ3cnTLaJPRYPqUhIlUY2ETm2WM5Og7B6tUrYZDFEjk3b+Z+mTGigtCpU0eMGjVCVAsJCcW6deslSkRFhcpHug8cOIAnT57AxcUF+/btQ5UqVWBvb4/9+/cjLS0tLzMSFRp16tTBjh3bRLX09HQsX75SokRERETKK1u2LA4eDISf39Ys16RdvXotrK15mjmpHxMTE/j4bBbVkpKSMHToCC7PSvnuq67p/uabbzB+/HhERUXh/PnzqF69OgYPHgwLCwtMnDgRt2/fzqucRBrPxMQEBw8egJGRkag+adJUnDgRIlEqIiIi5fTu3QtXr0bjhx8Uz8x68OAB2rfviAkT3PD+/XsJ0hHlbNWqFahQoYKoNmnSVJ5WTgUiTyZSi4uLw7Fjx3Ds2DFoa2uja9euuHbtGurWrYtVq1blxVMQaTQtLS3s2rUdNWrUENUDAnZg9eo1EqUiIiL6spIlS2L79m3Yv38vSpcurbDdz28b6tdvhJCQ0IIPR6SEbt26wslpiKh2/Pif2LRpczYtiPKWyoPutLQ0HDhwAN9//z0qV66Mffv2YeLEiYiLi8O2bdtw7NgxbN++HfPmzcvLvEQaaf58D3Ttai+qXbwYiVGjxkiUiIiISDmDBg3Ezz8PVKg/f/4cP/zQE0OHDkdCQoIEyYi+rFSpUti82VtUi4+Px7BhIyVKREWRyhOpmZubIzMzEz/99BPOnz+Phg0bKuzTuXNnlCxZ8iviEWm+vn37YPr0aaLaixcv0LNnH3z48EGiVERERMrx9t6Ifv36oHXrVvLa/v0HMGaMC169eiVhMqIvW7PGCxYWFqLaxImT8OjRI4kSUVGk8qB71apV6Nu3b45LHZUqVQqxsbGqPgWRxvv222/h57dVVEtLS0OfPv3x+PFjiVIREREpLzMzE46OwxATcwlpaWlwcRmPXbt2Sx2L6It69PhR4SyNw4ePwM/PX5pAVGSpfHp5SEhIlrOUJycnY+jQoV8ViqgwMDU1RXDwfhQvXlxUHz/eDSdPRkiUioiIKGsymSzbbbGxsejX7yd8+601B9ykEUqXLo1NmzaIam/evMHIkby0jwqeyoPubdu2ZTk75fv37xEQEPBVoYg0nba2Nvbs2YmqVauK6lu3+sLbe6NEqYiIiLLWoEEDXLp0Ac2aNct2n99/P4onT54UYCoi1Q0fPhRmZmai2rhxE/H06VOJElFRlutBd0JCAuLj4yEIAhITE5GQkCC/vXnzBkeOHFF4gxMVNYsXL0LHjt+JamfOnIWzs6tEiYiIiBRpa2tj+vRpOH/+NBo2bICAAF8UK1ZM6lhEX23x4qUYNWoskpKSAADBwQexY8dOiVNRUZXrQXfJkiVhamoKmUyGmjVrolSpUvJb6dKlMXToUDg7O+dHViKNcerUaSQmJsrvP336FL1790NqaqqEqYiIiP5Ts2ZNRESEYeHC+dDT0wMA1KhRA0uWeEqcjChvbN68Bd9+a40DBwIxejTHJySdXE+kFhISAkEQ0L59exw4cACmpqbybXp6eqhcubLCDIFERU1w8EE0a9YSwcH7UalSJfTq1Q9xcXFSxyIiIoJMJoOLizMWL16Y5VHt5s3tYGBgwBU2qFC4f/8++vTpL3UMKuJyPehu06YNgH8n1KhUqVKOk25kJT4+HkFBQTh58iTu37+Pd+/eoUyZMrC2tkbnzp3RvHnz3EYiUkvXr19HkybN0axZU5w7d07qOERERKhYsSL8/LaiQ4f2CtsyMjLg6bkE8+YtyHKy3ILk6emJwMBA/P333zA0NETz5s2xZMkS1KpVS6n2p06dQps2bWBlZYXo6Oj8DUtE9AUyQRAEZXeOiYmBlZUVtLS0EBMTk+O+9evXF92Pi4vD7NmzsXPnTpQrVw5NmjRB+fLlYWhoiNevX+Pq1auIjIxE5cqVMWfOHPTv/+VvpFTpkAMDA+Ht7Y3o6GikpKSgXr16mDt3Ljp37qzci4B/r2s3MTEBoA0gd186EFFRJADIQHx8PIyNjaUOkyvs74gKjyFDHLB69cr//50Wu3nzJhwchuL8+fN58Exf3+d16dIFAwYMQOPGjZGeno4ZM2bgypUruH79usKqIJ+Lj49Ho0aNUL16dTx//lzpQTf7OyLKPeX6u1wNurW0tPDs2TOYmZlBS0sLMpkMWTWXyWTIyMgQ1czMzODg4ABHR0dYWVll+fjv379HcHAwvLy80LdvX0yaNCnHPKp0yBMmTICFhQXatWuHkiVLws/PD8uXL8e5c+dgbW2t1OvATpmIcoeDbiKSjpmZGTZv9saPP/6Q5fY1a9Zh2rTpWa5Ko5q87/NevnwJMzMzhIWFoXXr1jnuO2DAANSoUQPa2toIDg7moLuI8PZej3379uPEiRCpo1CRkg+D7gcPHshPKX/w4EGO+1auXFl0/+XLlyhTpoyyT5Xr/T+2UbZD/lS9evXQv39/zJ49W6n92SnTpwYP/hkZGRlct5RywEE3EUmjV6+e2LhxfZafqR4+fAgnp+H5MEjJ+z7vzp07qFGjBq5cuZLtwRsA8PPzw4YNG3DmzBksWLCAg+4iwtFxCPz8tgIA1q/3xtSp7khOTpY4FRUNyvV3ubqm+9OB9OeD6i/J7QA6t/sD/55OBEA0uduXZGZmIjExMVdtiD5q0qQJtmzZCH19fTRqZI2pU90VzvIgIiKSwqpVKzBhwrgst/n5bcOECW5ISEgo4FS5JwgC3Nzc0LJlyxwH3Ldv38a0adNw8uRJ6Oh8+SNuSkoKUlJS5Pc14bUgRRUqVICX1wr5fWfnMWjQoD5atWorXSiiz+R6ybCPPD094evrq1D39fXFkiVLsmwzdux/a+UBwPbt20X33759i65du6qUR9kO+XMrVqxAcnIy+vXrl+0+KSkpovXI2SkTAJQtWxaBgb9CX18fAPDLLxNx9Ohh6OrqSpyMiIgICAsLV6g9f/4cP/7YC0OHDteYzzMuLi6IiYnB7t3Zn1GWkZGBgQMHwsPDAzVr1lTqcT09PWFiYiK/VaxYMa8iUwHaunWTwjwFS5culygNUdZUHnRv2rQJtWvXVqjXq1cPGzduzLbNu3fv5PednZ3x4sUL+f2UlBT88ccfKuVRpkP+3O7duzF37lzs3bsXZmZm2e7HTpk+p6uriwMHfkX58uVF9atXr0k+4ysRERHw7/KVAQE75PcPHAiElVVDHDr0m4SpcsfV1RWHDh1CSEgIKlSokO1+iYmJuHjxIlxcXKCjowMdHR3MmzcPly9fho6ODk6cOKHQxt3dHfHx8fLbo0eP8vNHoXwwYsRwdO7cSVTbtm07fvvtfxIlIsparpcM++jZs2cwNzdXqJcpUybb9Yg/v3w8F5eT5+hjhxweHp5jh/ypvXv3YtiwYdi3bx++++67HPd1d3eHm5ub/H5CQgIH3kXcmjVeaNFCvLzdiRMhmDx5qkSJiIiIFI0bNwENGzbA0qXLsXPnLqnjKE0QBLi6uiIoKAihoaGwtLTMcX9jY2NcuXJFVNuwYQNOnDiB/fv3Z9leX19ffrYaaZ7KlStjxYqlotqTJ08wfvxEiRIRZU/lQXfFihVx6tQphU7s1KlTsLCw+Opgyshth/zR7t27MXToUOzevRvdunX74v7slOlTI0eOwOjRI0W1+/fvo3//gUhPT5coFRERFUV6enro06d3tpN5xsfHo2FDmzw70FFQnJ2dsWvXLhw8eBBGRkZ49uwZAMDExASGhoYA/j0o8uTJEwQEBEBLS0vh8kIzMzMYGBjk6rJD0gwymQy+vltgZGQkqg8bNlI+xxOROlF50D18+HBMmDABaWlpaN++PQDgr7/+wpQpU/DLL7/kWcCc5LZDBv4dcDs4OGD16tVo1qyZvI2hoWGW61YSfap58+ZYu9ZLVHv37h169uyLV69eSROKiIiKpAYNGiAgwA/163+LjIwM7N37a5b7adqAGwC8vb0BAG3bthXV/fz84OjoCACIi4vDw4cPCzgZqYOxY8egfft2otqWLT74449jEiUiylmulgz7lCAImDZtGtasWYPU1FQAgIGBAaZOnZrt0ltaWloYOXIkihUrBgBYv349fv75Z/lg9927d9iyZYvSsz/LZFkv5/Bph+zo6Ij79+8jNDQUwL+dd1hYmEKbIUOGwN/fX6nn5ZISRZOFhQUiI8+hXLlyovpPP/2MPXv2SpSKNAOXDCOivKOtrY2pUydjzpxZ0NPTAwC8fv0aVlYNs73Er2BpZp/H/k4zVKtWDZcvR6J48eLy2oMHD/Dtt9ZITEyUMBkVTfmwTndWkpKScOPGDRgaGqJGjRo5nobdtm3bbAfKnwoJUe9F7dkpFz36+voICzuBpk2biOpLly7H1KnuEqUizaGZH0AB9ndE6qZGjRoICPBDs2ZNFbYFBx9Ez559JEj1Oc3s89jfqT8tLS2Ehv6FVq1aiurffdcZf/2lOFkeUf7Lh3W6s1KiRAmYm5tDJpN98brnj0ebiTSNt/d6hQH3H38cg7v7DIkSERFRUSKTyeDsPBZLliySnzH4qejoy5g1a27BByMqQOPGuSoMuDds2MgBN6k9lZcMy8zMxLx582BiYoLKlSujUqVKKFmyJObPn4/MzMxcPVZ6erpovW4ideLsPBZOTkNEtTt37uCnn37O9XudiIgotypWrIjjx49i7VovhQF3RkYGFi70RJMmdrh69apECYnyX82aNbFo0XxR7d69e5gyZZpEiYiUp/KR7hkzZsDHxweLFy9GixYtIAgCTp06hblz5+LDhw9YuHChQpsjR47gn3/+weDBg+W1hQsXYv78+UhPT0f79u2xd+9elCpVStVYRHmqTZvW8PJaIaolJSWhR48+ePPmjUSpiIioqHBwGIw1a1ZlOdnrrVu34OAwFOfOnZMgGVHB8vf3kU+U/JGT03AkJydLlKhweDWqqkrtSm+6l8dJ8la94r1Vanct+UAeJ/mXyke6t23bhq1bt2LMmDGoX78+GjRogLFjx2LLli3ZTki2fPlyJCQkyO+fPn0as2fPxqxZs/Drr7/i0aNHmD9/fpZtiaRQvnx5hYn9HByccO3aNYkSERFRUVCmTBkEBe3Htm2+WQ6416xZh4YNbTngpiJj7tx5ePz4sfz+6tVrER5+UsJERMpTedD9+vVr1K5dW6Feu3ZtvH79Oss2V69eRfPmzeX39+/fj44dO2LGjBno1asXVqxYgd9++03VSER5bteu3Wjb9js8ffoUADB//kIEBQVLG4qIiAq1nj174Nq1y+jR40eFbQ8fPkSHDp0wfvxEvH//XoJ0RNI4duw4rKwaws9vG27dusV5dUijqDzobtCgAdatW6dQX7duHRo0aJBlm8TERHzzzTfy+xEREfI1vgGgXr168sENkbo4e/YsbG2bYdGixZgzx0PqOEREVIjp6Ohg/vy5KFOmjMI2f/8AfPutNU6cUO9VXojyS3x8PIYOHY7Gje34pRNpFJWv6V66dCm6deuGP//8E3Z2dpDJZDh9+jQePXqEI0eOZNnGwsICN27cQKVKlZCUlITLly9j1apV8u3//PNPljNyEkktLi4OM2bMkjoGEREVcunp6XBwGIqzZyOgq6sLAHjx4gVGjhyDgwcPSZyOSD18erkqkSZQ+Uh3mzZtcOvWLfTs2RNv377F69ev0atXL9y8eROtWrXKsk2fPn0wYcIEbN++HSNGjEC5cuXQrFkz+faLFy+iVq1aqkYiIiIi0niXLl3C/Pn/TkgbGBgEK6uGHHATEWmwr1qn28LCIstZyrMzZ84cPH36FOPGjUO5cuWwY8cOaGtry7fv3r0b3bt3/5pIRCqztLREzZo18Mcfx6SOQkRERYCOjg7S09Oz3ObpuQSXL8fg0CHOdUNFj66uLnr0+BH79u2XOgpRnsjVoDsmJkbpfevXr69QK1asGLZv355tm5AQXqNE0ihWrBiCgw/Ayqoepk+fiSVLlkkdiYiICik9PT3MnTsbbdq0RuvW7RRWyQD+Pc2cA24qqmbMcMecObNw5IgDRowYzTmfSOPlatDdsGFDyGQyCIKQ434ymSzLPyBE6srPbyvq1/8WALB48SI0amQNJ6fhePfuncTJiIioMKlfvz4CAvzQoMG/ByemTZuChQs9JU5FpD4aNWqEGTPcAQBdu9rj2rXLGDzYEf/732GJkxGpLleD7tjY2K96sk9nKs/JiRMnvup5iHJj6tTJ6Nevr6hWr15daGmpPOUBERGRiLa2NiZP/gUeHnOgp6cnr8+ZMwuHD/+O6Oho6cIRqQk9PT1s2+YDHZ3/hijFixfHkyc80k2aLVeD7sqVK3/Vk4WGhqJy5cro1q2bfEZOIil16dIZixYtENXevHmDH3/sjaSkJIlSERFRYVK9enUEBPjBzq6ZwjZBENCwYQMOuokAzJ07G1ZWVqLawoWeiIqKkigRUd74qonUtm/fjo0bNyI2NhZnzpxB5cqV4eXlBUtLS/z4448K+y9evBj+/v7Yt28fBg0ahKFDhyr8YhEVlOrVq2P37h2iI9qZmZn46aefcffuXQmTERFRYSCTyTB27BgsXeqZ5ZKoly/HwMHBKVdz5hAVVk2aNMGUKZNEtaioaF5+QYWCyufPent7w83NDV27dsXbt2/l13CXLFkSXl5eWbaZMmUKrl+/juDgYCQmJqJFixZo0qQJNm7cyPX2qECVKFECBw8eQMmSJUV1d/cZnL2c1FZ4eDi6d+8OCwsLyGQyBAcH57h/aGgoZDKZwu3vv/8umMBERViFChXwxx9HsG7daoUBd0ZGBhYtWowmTew44CYCYGBgAH//raJVjVJTU+Hg4JTtDP9EmkTlI91r167Fli1b0KNHDyxevFhet7W1xaRJk3JoCdjZ2cHOzg6rV6/Gvn37sH79ekyaNAlPnz6FsbGxqpGIlCKTyRAQ4Ie6deuK6nv3/oqlS5dLlKpwutj+u1y3iX9XXKXn6nD2oErtNElycjIaNGgAJycn9O7dW+l2N2/eFPWtZcqUyY94RPT/Bg/+GWvWrFL4YhcAbt++DQeHoTh79mzBByNSU/Pne6BOnTqi2ty583D16lWJEhUdpTfdkzpCvkiTpUodQUTlQXdsbCysra0V6vr6+khOTlbqMS5duoSwsDDcuHEDVlZWvM6bCsTMmdPRs2cPUe3y5RgMHTpCmkBESrK3t4e9vX2u25mZmWX54Z+I8laZMmWwadMGhb8xH61dux7Tpk3nyhhEn2jevDnc3CaIahcuXOSBECpUVD693NLSMstJP37//XeFI4ifevr0KRYtWoSaNWuiT58+MDU1xblz53D27FkYGhqqGodIKd27f4958+aKav/88w969OjND0FUaFlbW8Pc3BwdOnRASEiI1HGICqUqVarg6tXoLAfcjx49wnffdca4cRP4t4boE8WKFYO//1bR/DofPnzAkCFDufwwFSoqH+mePHkynJ2d8eHDBwiCgPPnz2P37t3w9PTE1q1bs2zTtWtXhISEoFOnTli2bBm6desmWhKAKD/VqlULO3ZsE9UyMjLQr99PuH//vjShiPKRubk5Nm/eDBsbG6SkpGD79u3o0KEDQkND0bp16yzbpKSkICUlRX6f820QKef+/fuIiopG586dRPVt27Zj/PiJiI+PlygZkfpatGgBatSoIarNmjUHN27ckCgRUf6QCYIgqNp4y5YtWLBgAR49egQAKF++PObOnYthw4Zlub+WlhbMzc1hZmYGmUyW7eNeunRJ1UgFIiEhASYmJgC0AWT/c5D6MDY2xvnzp1GrVi1RfeLESfDyWi1RqsKP13R/JADIQHx8fJ7NWyGTyRAUFIQePXrkql337t0hk8lw6NChLLfPnTsXHh4eWWxhf0f0JeXLl8fVq9EoWbIkXrx4gVGjxiI4WJ37pvyS931eQeDnu4LVpk1rhIb+JaqdPn0GrVq1RWZmpkSpqLCoWaK7Su1uJf2WyxbK9XdfdZh5xIgRGDFiBF69eoXMzEyYmZnluP+cOXO+5umIVPbddx0Uvkndvn0nB9xU5DRr1gw7duzIdru7uzvc3Nzk9xMSElCxYsWCiEak8Z48eQIXl/Ho1asHRo92xsuXL6WORKSWihcvDj8/8Zmx79+/h6PjMA64qVBSedDt4eGBn3/+GdWqVUPp0qWVasNBN0klMDAI3br9gF27tqNUqVKIjLyEkSNHSx2LqMBFRUXB3Nw82+36+vrQ19cvwEREmqVZs2bQ1tbGqVOnsty+c+cu7Ny5q4BTEWmW0qVL4/XrN7C0tJTX3N1n4vbt2xKmIso/Kk+kduDAAdSsWRPNmjXDunXr8uTb3A8fPmD5cs5USPnj6NE/0KRJc4SEhKJnzz748OGD1JGIciUpKQnR0dHySSxjY2MRHR2Nhw8fAvj3KLWDg4N8fy8vLwQHB+P27du4du0a3N3dceDAAbi4uEgRn0ij6enpYeHC+YiICMXOnds06rRpInXz4MEDNGvWArNnz0VaWhrCw09izZq1UsciyjcqD7pjYmIQExOD9u3bY+XKlShfvjy6du2KXbt25Tgz56tXr3D48GEcO3ZMPithWloaVq9ejSpVqojW/CbKa3fu3EH79h3l8xAQaZKLFy/C2tpavlyjm5sbrK2tMXv2bABAXFycfAAOAKmpqZg0aRLq16+PVq1aISIiAocPH0avXr0kyU+kqb799lucP38G06dPg7a2NipXrgwvr5VSxyLSaOnp6Zg/fyEaN7aDo+MwfMU0U0Rq76smUvvUqVOnsGvXLuzbtw8fPnzIcsbb06dPo1u3boiPj4dMJoOtrS38/PzQo0cPZGZmYsKECRg6dCiKFSuWF5HyDSfaIFIOJ1L7SDMnFQLY31HRpq2tjcmTf4GHxxzo6ekpbO/QoRNOnOAyfIo0s89jf0dUeKjbRGoqH+n+XPHixWFoaAg9PT2kpaVluc+sWbPQuXNnxMTEYPz48bhw4QK+//57zJz57zUcLi4uuRpwe3p6onHjxjAyMoKZmRl69OiBmzdvfrFdWFgYbGxsYGBggKpVq2Ljxo1KPyepP21tbXz77bdSxyAiIg1WvXp1hIeHwNNzocKAOzU1FdOnz0RYWLhE6YiISJN81aA7NjYWCxcuRN26dWFra4tLly5h7ty5ePbsWZb7X758GbNmzYKVlRUWLFgAmUyGJUuWwMHBIcclxLITFhYGZ2dnnD17FsePH0d6ejo6deqE5OTkHDN37doVrVq1QlRUFKZPn45x48bhwIEDuX5+Uk+LFi3AxYtnMWzYUKmjEBGRhpHJZBg7dgyioy+ieXM7he0xMVfQuLEdPD2XyC+TI6KclShRIsuzRYiKCpVnL7ezs8P58+fx7bffwsnJCQMHDkT58uVzbPP69WuUKVMGAFCsWDEUK1ZMfm2iKo4ePSq67+fnBzMzM0RGRqJ169ZZttm4cSMqVaoELy8vAECdOnVw8eJFLF++HL1791Y5C6mHAQP6Y8qUSQCArVs3oVEja0yY4Jbt2RdEREQfVahQAb6+W9Cxo+KlMRkZGVi6dDnmzp2H1NRUCdIRaa7169eiYcMGGDJkqHwyUKKiROVBd7t27bB161bUq1dP6TYymQyJiYkwMDCAIAiQyWR49+6dwvXfql7/Ex8fDwAwNTXNdp8zZ86gU6dOolrnzp3h4+ODtLQ06OrqKrRJSUlBSkqK/H5W16uT9Bo2bAgfn82i2vDhQ7Fliw87eInYnvhT6ghEREoZPPhnrFmzCiVLllTYdvv2bQwZMgxnzpwp+GBEGu6HH7rDweFnAMD586exYMEiLFq0GOnp6RIno8Is99dm5y+VTy9ftGiRUgNuY2Nj3Lt3DwAgCAJq1qyJUqVKwdTUFElJSbC2tkapUqVQqlQplCxZEqVKlVIpjyAIcHNzQ8uWLWFlZZXtfs+ePUPZsmVFtbJlyyI9PR2vXr3Kso2npydMTEzkt4oVK6qUkfJP6dKlERy8X2FOAGfncRxwExFRtsqUKYPAwH0ICPDLcsC9bt0GNGxoywE3kQpMTU2xadMG+X1dXV24uU2AmZmZhKmICp7KR7qV9enk6CEh+TfDp4uLC2JiYhAREfHFfT+/fvxjxuyuK3d3d4ebm5v8fkJCAgfeakRHRwd79+5C5cqVRXVv703YutVHolRERKQJGjZsgJ49eyjUHz9+DCen4fjzz78KPhRRIbFu3WqUK1dOVBs/3g1Pnz6VKBGRNPJ90P2pNm3a5Mvjurq64tChQwgPD0eFChVy3LdcuXIKE729ePECOjo6+Oabb7Jso6+vD319/TzLS3lr2bIlaN++nagWEXEK48dPlCgRERFpiuPH/4S39yaMGTNKXgsI2IFx4ybIL1sjotzr3bsXfvppgKj222//w7ZtARIlIpJOni0Z9iU5zSiu6v6CIMDFxQWBgYE4ceIELC0tv9jGzs4Ox48fF9WOHTsGW1vbLK/nJvXm4DAYEyaME9UeP36MPn36c/I0IiJSyuTJU3H37l28fPkSvXr1xZAhThxwS0yVZWEDAwPRsWNHlClTBsbGxrCzs8Mff/xRQInpU2XKlIG39zpR7fXr1xg5coxEiYikVWCD7urVq2PRokU5nk4iCAKOHz8Oe3t7rFmz5ouP6ezsjB07dmDXrl0wMjLCs2fP8OzZM7x//16+j7u7OxwcHOT3R48ejQcPHsDNzQ03btyAr68vfHx8MGnSpK/7AanA2draiq4TAoAPHz6gV69+eP78uUSpiIhIHRkYGGS7LTk5GT179oWVVUMEBQUXXCjKlirLwoaHh6Njx444cuQIIiMj0a5dO3Tv3h1RUVEFmJwAYMOGtfIViz5ycRmf7bLCRIWdTPj0out8YGxsjOjoaKSlpWHmzJk4dOgQGjZsCFtbW1hYWMDAwABv3rzB9evXcebMGejq6sLd3R0jR46EtrZ2zuGzuQbbz88Pjo6OAABHR0fcv38foaGh8u1hYWGYOHEirl27BgsLC0ydOhWjR49W+mdKSEiAiYkJAG0AuV9fnL7ev0vDnVO4nMDJaTj8/bdJlIooOwKADMTHx6u8OoNU2N9RYdCsWTMEBPhiyZLl8PHxlTpOEZD3fd7Lly9hZmaGsLCwbJeFzUq9evXQv39/zJ49+4v7sr/LGwMG9Mfu3TtEtcDAIPTu3U+iRET5Sbn+rsAmUqtVqxb27duHx48fY9++fQgPD8fp06fx/v17lC5dGtbW1tiyZQu6du0KLS3lDsAr832Bv7+/Qq1Nmza4dOlSrn4OUh+6urrYv3+vwoB7zZp1HHATEZGcnp4e5syZhalTJ0NbWxurVi3HX3+dwP3796WORrmkzLKwn8vMzERiYmKu2tDXKVeuHNavF5+t+vLlS4we7SxRIiL1kO+D7t9//x3ly5eX369QoQImTpyIiRM5yRWpxstrJVq1aimqhYaG4ZdfJkuUiIiI1M23336L7dv90aBBfXnNyMgIfn5b0b59R6W+uCf1oOyysJ9bsWIFkpOT0a9f1kdYU1JSkJKSIr+fkJDw1VmLuk2bNih8yTF2rCtevnwpUSIi9aDyoDsjIwP+/v7466+/8OLFC2RmZoq2nzhxAgDQsmXLrJoTqaRJkyYYO1Z8KcCDBw/Qt+8ApKenS5SKiIjUhba2NiZP/gUeHnOgp6ensN3AwACmpqb4559/JEhHqsjNsrAf7d69G3PnzsXBgwezXRPa09MTHh4eeRWzyBs8+Gf88EN3UW3Pnr3Yv/+ARImI1IfK13S7uLjA398f3bp1g7m5ucL11atWrcqTgOqI1/xIa+DAn7B16yYYGhri/fv3aNGiDSdJITXHa7qJCkL16tWxbZsvmje3U9iWmpqKuXPnYenS5cjIyJAgXVGSd32eq6srgoODER4ertQqNQCwd+9eODk5Yd++fejWrVu2+2V1pLtixYpgf5d75cuXx9Wr0ShZsqS89vz5c9Sr14BfcFEhl8/XdO/Zswe//vorunbtqupDEKlk167duHHjbwQF7cP06bM44CYiKuJkMhnGjBmNpUs9Ubx4cYXtMTFXMHiwI2JiYiRIR6oQBAGurq4ICgpCaGio0gPu3bt3Y+jQodi9e3eOA24A0NfXh76+fl7ELfIGDx4kGnADwMiRYzjgJvp/Kg+69fT0UL169bzMQqS0qKgo1K1bH+/evZM6ChERSahChQrw9d2Cjh2/U9iWkZGBpUuXY+7ceUhNTZUgHanK2dkZu3btwsGDB+XLwgKAiYkJDA0NAfy7LOyTJ08QEBAA4N8Bt4ODA1avXo1mzZrJ2xgaGv7/GTuUXxYvXoqHDx9h3brVKFWqFLZv34lDh36TOhaR2lD59PIVK1bg3r17WLduXbZLdxVWPN2SiHKHp5cT5Yeffx6EtWu9FI6wAcCdO3fg4DAUZ86cKfhgRd7X93mqLAvbtm1bhIWFKbQZMmRIlqvZfI793dczNzfHokULMHHiL3j79q3UcUgJ7+ep9jtqOLtwTjxYqUS7XO2fKaTjcXJI/p1eHhERgZCQEPz++++oV68edHV1RdsDAwNF93NzSlf9+vW/vBMVCSVKlEBSUpLUMYiISM0sWDAPM2a4Z7lt/XpvTJkyjWdDaTBVloX9OPgm6cTFxcHJaZjUMYjUjsqD7pIlS6Jnz55K79+wYUPIZLJsO9GP22QyGSc4IQBAy5YtcPBgIIYNG4ng4INSxyEiIjWya9ce/PLLRBgYGMhrjx8/xtChI3D8+J8SJiMiIhJTedDt5+eXq/1jY2NVfSoqgipUqID9+/fC1NQUQUH74eExHx4e87muKhERAQCuX7+OmTNnY/nypQCA7dt3Yty4CTyllYiI1I7Kg+6PXr58iZs3b0Imk6FmzZooU6ZMlvtVrlz5a5+KiggDAwMEBe1H2bJl5bU5c2bh3r1YBARslzAZERGpk1WrVsPOrhl27tyNoKBgqeMQFQkymQy7dm3Hzp278b//HZY6DpFGUHnQnZycDFdXVwQEBCAzMxMAoK2tDQcHB6xduxbFihUT7X/o0CGlH/uHH35QNRYVAhs3boCtrY2oduTI79ixY6dEiYiISAqGhoaYMGEcVqxYleXs45mZmejTp78EyYiKLhcXZwwY0B8DBvSHv38AJkxwQ3x8vNSxiNSayoNuNzc3hIWF4bfffkOLFi0A/Du52rhx4/DLL7/A29tbtH+PHj2Uelxe0120jRvniiFDBotqt2/fxqBBDvIvd4iIqPBr2rQptm3zQa1atWBkZITp02dKHYmoyKtRowYWL14ov+/o6IBq1aqidevczfhMVNRoqdrwwIED8PHxgb29PYyNjWFsbIyuXbtiy5Yt2L9/v8L+mZmZSt044C662rVrixUrlopqiYmJ+PHH3rxGj4ioiNDV1cWCBfNw6lQYatWqBQCYMmUS7OzsJE5GVLRpaWnBz2+rwtmss2fPlSYQkQZRedD97t070TW3H5mZmXGJDsq1ypUr49dfd0NHR3zyxeDBjrhx44ZEqYiIqCB9++23OH/+DGbMcIe2tra8rq2tDW/vdRImI6KJE8ejRYvmotratesRGqq4NjoRial8ermdnR3mzJmDgIAA+XId79+/h4eHR5bfRq9ZswYjR46EgYEB1qxZk+Njjxs3TtVYpIEMDQ0RHHwApUuXFtXnzp2HgweVnwuAiIg0k5aWFiZNcsP8+R7Q09NT2H7u3Hk4ODhJkIyIAKB27dpYsGCeqHbnzh1MmzZdokREmkXlQffq1avRpUsXVKhQAQ0aNIBMJkN0dDQMDAzwxx9/KOy/atUqDBo0CAYGBli1alW2jyuTyTjoLmJ8fDajYcMGotrBg4cwb94CiRIREVFBqVatGrZt81U4ggYAaWlpmDt3HpYsWcbLz4gkoq2tjW3bfOUH2YB/Lxt1chrOs1uJlKTyoNvKygq3b9/Gjh078Pfff0MQBAwYMACDBg2CoaGhwv6frtPNNbvpo0mT3PDTTwNEtRs3bmDwYEeuyU1EVMiNGTMay5YtRvHixRW2XblyFQ4OToiOji74YEQkN3nyL2jSpLGo5uW1BhERpyRKRKR5vmqdbkNDQ4wYMSLX7WJiYlC/fv0stwUHBys90zlptk6dOmLx4kWiWnx8PH78sTcSExMlSkVERPmtfPny8PHZjM6dOylsy8zMxLJlKzB79twslwkjooJjZWUFD485otrNmzcxY8YsiRIRaaZcDboPHToEe3t76OrqfnHd7ZzW2u7cuTNOnTqFqlWriuoHDhyAg4MDkpOTcxOLNFDZsmWxZ89O0UQ5mZmZGDhwMG7fvi1hMiIiyk+DBg3EunWrUbJkSYVtd+7cwZAhw3D69OmCD0ZEIjo6Oti2zVc0z0JGRgaGDBmGDx8+SJiM8pLh7ASV2qUL/rlu82v9P1V6roFXdqjUThVpSMnV/plIV2q/XA26e/TogWfPnsHMzCzHo9FfWmt7zJgx6NChA06fPg1zc3MAwN69ezF06FD4+/vnJhJpqOfPn2POnHlYuXKZfMbymTNn48iR3yVORkRE+alXrx5ZDrg3bNiIKVOm8Yt3IjUxffo0NGpkLaotW7YC586dkygRkebK1aA7MzMzy//PrdmzZ+Off/7Bd999h5MnT+Lo0aMYPnw4tm/fjt69e6v8uKRZ1q5dhytXruDXX3cjNDQMnp5LpI5ERET5bPRoZ7Rs2QJmZmYAgCdPnmDo0BE4duy4xMmI6KOGDRti5kzxzOTXrl3D3LnzsmlBRDlReZ3ugIAApKQoHn5PTU1FQEDAF9uvXr0ajRo1QrNmzTBixAjs3r2bA+4iKDQ0DLa2zeDkNFzqKEREVABevnyJUaPGAgB27NgFK6uGHHATqRGZTAZf3y3Q1dWV19LT0zFkyLAsP/sT0ZfJBBWniNbW1kZcXJz8m+qP/vnnH5iZmSmcXp7VNeBpaWmYOHEiOnXqJLoGPKfrwdVBQkICTExMAGgDkEkdh4jUngAgA/Hx8TA2NpY6TK6wvyNVmZiYID4+PtvtjRs3xoULFwowERUczezz2N/9p2XLFvDz24rq1asDAObPX4jZs+dKG4rUSmG9ptu8hOLylTnJFNLxPPn0F/s7lWcvFwQBMplih/T48eP/77DEcroG3NfXF76+vgC+fD04ERERqS9DQ0MsXrwIffr0Qv36jfDPP/9kuR8H3ETqKyLiFBo0sMHixYvQqlVLzJ+/UOpIRBot16eXW1tbo1GjRpDJZOjQoQMaNWokvzVo0ACtWrXCd999p9AuMzNTqVtuBtzh4eHo3r07LCwsIJPJEBwc/MU2O3fuRIMGDVCsWDGYm5vDyckp2w8ElDeMjY0RHh6Ctm3bSB2FiIjyUZMmTRAVdQHjxrnAwsICGzaslToSEano3bt3GDduAuzsWiItLU3qOEQaLddHuj8esY6Ojkbnzp1RokQJ+TY9PT1UqVKlwK7NTk5ORoMGDeDk5KTUc0ZERMDBwQGrVq1C9+7d8eTJE4wePRrDhw9HUFBQASQuemQyGbZv90erVi1x/PhRuLlNxtq166SORUREeUhXVxezZ8+Eu/tU0VKQ/fr1RVDQQezZs1fCdET0Nbg8GNHXy/Wge86cOQCAKlWqYMCAAdDX11e67blz5/D69WvY29vLawEBAZgzZw6Sk5PRo0cPrF27VunHtLe3Fz3Wl5w9exZVqlTBuHHjAACWlpYYNWoUli5dqvRjUO7MmTMLP/zQHcC/6z2uWbMKxsZGWLjQU+JkRESUF6ysrBAQ4Adr64YK296/f4/ixYsXfCgiIiI1ovLs5XXr1kV0dLRC/dy5c7h48WKWbebOnYuYmBj5/StXrmDYsGH47rvvMG3aNPz222/w9My/wVjz5s3x+PFjHDlyBIIg4Pnz59i/fz+6deuWb89ZlPXo8SPmzJklqr18+RLbt++UKBEREeUVLS0tTJkyCRcvns1ywH3u3Hk0bGgLHx/fgg9HREozNDTE0KFOWc7VRER5Q+VBt7OzMx49eqRQf/LkCZydnbNsEx0djQ4dOsjv79mzB02bNsWWLVvg5uaGNWvW4Ndff1U10hc1b94cO3fuRP/+/aGnp4dy5cqhZMmSWLs252vOUlJSkJCQILpRzurWrYuAAD9RLT09Hf36/YSHDx9KlIqIiPJCtWrVEB4egiVLPBXOTktLS8OMGbPQokVr3Lp1S6KERKSshQvnw8dnM0JC/oSlpaXUcYgKJZUH3devX0ejRo0U6tbW1rh+/XqWbd68eYOyZcvK74eFhaFLly7y+40bN85yIJ9Xrl+/jnHjxmH27NmIjIzE0aNHERsbi9GjR+fYztPTEyYmJvJbxYoV8y1jYVCyZEkEB++HkZGRqO7mNhmhoWESpSIiorwwZsxoXL4ciRYtFJdVuXLlKpo0aY5FixZzJRIiDdCqVUuMH+8KAGjTpjViYi6hR48fJU5FVPioPOjW19fH8+fPFepxcXHQ0cn6UvGyZcsiNjYWAJCamopLly7Bzs5Ovj0xMRG6urqqRvoiT09PtGjRApMnT0b9+vXRuXNnbNiwAb6+voiLi8u2nbu7O+Lj4+W3/PxiQNNpaWlh167tqFGjhqju7x/ACdSIiDRY+fLlcfToYWzYsFbhOu3MzEwsWbIMtrZNs7z0jIjUT/HixeHntxVaWv8NB7S1tXHjxt8SpiIqnFRep7tjx45wd3fHwYMH5etyv337FtOnT0fHjh2zbNOlSxdMmzYNS5YsQXBwMIoVK4ZWrVrJt8fExKBatWqqRvqid+/eKXwh8HGWVUEQsm2nr6+fqwnjirIFC+bB3r6LqHb+/AWMHj1WokRUVCy0HJXrNjNiN+VDEqLCp2TJkrh8ORLffPONwrY7d+5gyJBhOH36tATJiEhVixcvUvjcPWPGbNy8eVOiRCSFqO/aq9ROR+aYt0HURFxSbv+WZT+G/JTKR7pXrFiBR48eoXLlymjXrh3atWsHS0tLPHv2DCtWrMiyzYIFC6CtrY02bdpgy5Yt2LJlC/T09OTbfX190alTJ6UzJCUlITo6Wv6temxsLKKjo+XXDLu7u8PBwUG+f/fu3REYGAhvb2/cu3cPp06dwrhx49CkSRNYWFio8CrQp/r27QN396mi2vPnz9GrV1+kpKRIlIqIiL7W27dv4ee3TaG+YcNGNGxoywE3kYZp374dXFzEB0QiIk5h9eo1EiUiKtxUHnSXL18eMTExWLp0KerWrQsbGxusXr0aV65cyfaa5zJlyuDkyZN48+YN3rx5g549e4q279u3T74kmTIuXrwIa2trWFtbAwDc3NxgbW2N2bNnA/j3VPdPJ+1ydHTEypUrsW7dOlhZWaFv376oVasWAgMDc/vj02fq168PP7+tolpaWhp69+6PJ0+eSJSKqHAJDw9H9+7dYWFhAZlMhuDg4C+2CQsLg42NDQwMDFC1alVs3Lgx/4NSoTRz5mxcu3YNwL+Tpnbu3BXOzq5ITk6WOBkR5YaRkRF8fbeIau/evYOj4zBkZmZKlIqocFP59HLg32tBRo4cmet2H09H/5ypqWmuHqdt27Y5nhbu7++vUHN1dYWrq2uunodyZmpqiuDg/QrX+Lm6TsCpU6ckSkVU+CQnJ6NBgwZwcnJC7969v7h/bGwsunbtihEjRmDHjh04deoUxo4dizJlyijVnuhTKSkpGDzYCePHu2LCBDe8fftW6khEpILly5eicuXKotrUqdNx9+5diRIRFX65GnQfOnQI9vb20NXVxaFDh3Lc94cffviqYKQZtLW1sXfvLoUlJjZv3opNmzZLlIqocLK3t4e9vb3S+2/cuBGVKlWCl5cXAKBOnTq4ePEili9fzkE3Zaldu7aoWLEiAgK2Z7k9KioKjo5DCzQTEeWdTp06YuTI4aJaSEgo1q/fIFEioqIhV4PuHj164NmzZzAzM0OPHj2y3U8mk3GpkCIiMzMTp0+fwXff/bf++unTZ+DqOl7CVEQEAGfOnFGYJ6Nz587w8fFBWlpalqtFpKSkiOZgSEhIyPecJD1DQ0N4ei7E+PGueP/+Pc6dO8/JlIgKGRMTE/j4iA+IJCYmYujQETmeOUpEXy9X13RnZmbCzMxM/v/Z3TjgLjoEQcCcOR7o1asvkpKS8PTpU/Tu3Q+pqalSRyMq8p49e4ayZcuKamXLlkV6ejpevXqVZRtPT0+YmJjIb9nN0UGFR5MmTRAVdUG+Vq+hoSG2bfOVr+5BRIXDqlUrUKFCBVFt0qSpuH//vjSBiIoQlSZSS0tLQ7t27XDr1q28zkMaKigoGM2atcSPP/bGs2fPpI5DRP9PJpOJ7n88mvF5/SN3d3fEx8fLb48ePcr3jCQNXV1dzJ/vgdOnw1GrVi3RtqZNm+DnnwdJlIyI8lq3bl3h5DREVDt27Dg2b96STQsiyksqTaSmq6uLq1evZvuhjYqmj7PaEpF6KFeunMKXYC9evICOjk6W6y0DgL6+PvT19QsiHknIysoKAQF+sLZuqLDt/fv3mDp1erbXdRORZilVqhS2bBGvXBEfH49hw3I/GTIRqUblJcMcHBzg4+OTl1mIiCgP2dnZ4fjx46LasWPHYGtrm+X13FT4aWlpYfLkX3Dx4tksB9znz1+AtXVjrF27jtd4kqQ8PT3RuHFjGBkZyecSUmaeAS6TqKh48eK4c0c8M/nEiZPw+PFjiRIRFT0qLxmWmpqKrVu34vjx47C1tVVYLmrlypVfHY7Uz8yZ0/G//x1BdHS01FGIipykpCTcuXNHfj82NhbR0dEwNTVFpUqV4O7ujidPniAgIAAAMHr0aKxbtw5ubm4YMWIEzpw5Ax8fH+zevVuqH4EkVLVqVWzb5ouWLVsobEtLS4OHx3wsXryU87KQWggLC4OzszMaN26M9PR0zJgxA506dcL169cVPnN+xGUSs/b48WO0bdsB48ePw8KF83DiRAj8/PyljkVUpMiEXH6Vfe/ePVSpUgUdOnTIdh+ZTIYTJ058dTh1lZCQ8P9rjWsDKDqn2Ds5OcLXdwvevXuH4cNHYffuPVJHIpJbaDkq121mxG7KhyRZEQBkID4+HsbGxio/SmhoKNq1a6dQHzJkCPz9/eHo6Ij79+8jNDRUvi0sLAwTJ07EtWvXYGFhgalTp2L06NFKP2dR7e8Km1GjRmL58iUoUaKEwrarV6/CwWEooqKiJEhGhVPe9HmfevnyJczMzBAWFobWrVtnuc/UqVNx6NAh3LhxQ14bPXo0Ll++jDNnznzxOYpCf1ezZk0kJiYiLi5O6iikJqK+a69SO+s/C+9YL3eU6+9yfaS7Ro0aiIuLQ0hICACgf//+WLNmjcIMuVS4NGnSBN7e6wAAxYoVw65d21GvXl3MnDlb4mRERUfbtm1zPOXX399fodamTRtcunQpH1OROjM3N4ev7xZ06dJZYVtmZiZWrFiFWbPmiJaJI1JH8fHxAABTU9Ns98ntMolFcYlEToJMJI1cD7o//8D3+++/Izk5Oc8CkfopV64cAgN/VZhc6e+/uYZrUbG4qmqTrUy7t/nLO+WR2KSCW97ItFj9XO0vCBl48/5yPqUhyl6xYsXQqlVLhfrdu3fh6DgMERGnJEhFlDuCIMDNzQ0tW7aElZVVtvt9aZlEc3Nz0TZPT094eHjkS2YiTVGQR6zDmn+vWrunFb6802dm31ev+RxUnkjtI060Urjp6enhwIFfUb58eVF95Uov7NixU6JURESkjLt372LSpKmimrf3JjRoYMMBN2kMFxcXxMTEKDUfRW6WSSysSySWKlUKhoaGUscgok/ketAtk8kUOi4uHVZ4rVnjhebN7US1v/46gSlTpkmUiIiIcmPjxk34449jePLkCbp06YaxY114hhppDFdXVxw6dAghISGoUCHno125XSZRX18fxsbGolth4OOzGdHRF2FnZ/flnYmoQKh0ermjo6P8VOMPHz5g9OjRCjNJBgYG5k1CkszIkSMwatQIUS02Nhb9+w/k7LZERGrEyMgI6enpeP/+fZbbhwwZipSUFLx9+7ZggxGpSBAEuLq6IigoCKGhobC0tPxiGzs7O/z222+iWlFbJnHgwJ/Qs2cPAMDJkyFYsWIVZs+ey3kbiCSW6yPdQ4YMgZmZGUxMTGBiYoKff/4ZFhYW8vsfb6TZWrRogbVrvUS1d+/eoUePPvjnn3+kCUVERAratm2DK1ei4Om5MNt9nj9/zgE3aRRnZ2fs2LEDu3btgpGREZ49e4Znz56Jvlhyd3eHg4OD/P7o0aPx4MEDuLm54caNG/D19YWPjw8mTZokxY9Q4MzNzbFu3Wr5fW1tbTg6OsDIyEjCVEQEqHCk28/PLz9ykBopX7489u/fAz09PVHdyWk4YmJiJEpFRESfMjQ0hKfnQowf7woAGD/eFYcO/YYTJ0IkTkb09by9vQH8u2rDp/z8/ODo6AgAiIuLw8OHD+XbLC0tceTIEUycOBHr16+HhYUF1qxZU2TW6N682RulSpUS1UaPdsarV68kSkREH+V60E2Fm76+PgID96FcuXKi+uLFS/Hrr/skSkVERJ9q3LgxAgJ8Ubt2bVHdz28rvv3WukgsfUSFmzIT9XKZxP84Og7B9993E9V27tyNoKBgaQIRkchXz15OhcvGjRvQpEljUe3o0T8wY8YsiRIREdFHurq6mDdvLk6fDlcYcAPA3bv3FOZYIaLCrUKFCvDyWiGqxcXFwdV1vESJiOhzPNJNci4uznB0dBDV7ty5g59++hmZmZkSpSIiIgCoV68eAgL80KiRtcK29+/fY9q0GVi7dh2X8iQqYrZu3aQwn9LIkWPw5s0biRIR0ed4pJvkatSoLrqflJSEH3/szcl3iIgkpKWlhUmT3BAZeS7LAff58xdgbd0Ya9as5YCbqIgZMWI4OnfuJKr5+wfgf/87LFEiIsoKB90kN378RIwYMRqpqakAAAcHJ1y/fl3iVERERVfVqlURGvoXli1bIl+q86O0tDTMmjUHzZu3ws2bNyVKSERSqVy5MlasWCqqPX78GBMmuEmUiIiyw9PLSWTrVh9cu3YddnZNOfkGEZGERo0aieXLl6BEiRIK265du4bBg50QFRUlQTIikppMJoOv7xaF5cCGDx+F+Ph4iVIRUXY46CYFZ86cwZkzZ6SOQURUZP3yy0QsX75UoZ6ZmYkVK1Zh1qw5SElJkSAZEamDsWPHoH37dqLa5s1b8ccfxyRKREQ5kQm8ACzXEhIS/n/CCm0AMqnjEOW770uMUqnd/5I25XGSvFW7+I8qtfs7+WAuWwgAMhAfHw9jY2OVnlMq7O+kUbJkSVy5EoUKFSrIa/fu3cOQIUMREXFKwmREytDMPk9T+rtq1arh8uVI0UoFDx48wLffWiMxMVHCZEQ522n1s0rtBl3dkcdJ8pJy/R2v6S6iWrVqierVq395RyIiKnBv377FsGEj5fc3bdqCBg1sOOAmIvTu3VNhacChQ0dwwE2kxjjoLoIsLS0RHHwA58+fVpjxkoiI1MOxY8fh4TEf9vbfY/TosUhKSpI6EhGpgaVLl6Nnzz54/vw5AGD9em+cOBEicSoiyolGD7rDw8PRvXt3WFhYQCaTITg4+IttUlJSMGPGDFSuXBn6+vqoVq0afH198z+smihevDiCgw/A1NQUpUqVwpEjv2HKlElSxyIiKnKMjIywevUqlCtXLtt95s6dh6NH/yjAVESkCYKDD8LKqiHWrFmHqVPdpY5DRF+g0ROpJScno0GDBnByckLv3r2VatOvXz88f/4cPj4+qF69Ol68eIH09PR8Tqo+/Py2on79b+X3tbS00KRJY8hkMq7vSkRUQNq0aQ1/fx9UqVIFVataonv3HlJHIiIN8+rVK4wfP1HqGESkBI0edNvb28Pe3l7p/Y8ePYqwsDDcu3cPpqamAIAqVarkUzr1M23aFPTt20dUu3r1Khwdh3HATURUAAwMDLBo0QJMnDheXvv++24YNmwofHyKzllXRERERYlGn16eW4cOHYKtrS2WLl2K8uXLo2bNmpg0aRLev38vdbR8Z2/fBQsXzhfV3rx5gx49+vA6QSKiAmBra4tLl86LBtwfeXjMhp6engSpiIiIKL8VqUH3vXv3EBERgatXryIoKAheXl7Yv38/nJ2dc2yXkpKChIQE0U2T1KhRA7t2bYeW1n//3BkZGRgwYBDu3r0rYTIiosJPR0cHHh5zcObMSdSpU0dhe2hoGFq0aIPU1FQJ0hGROtPR0cHRo4cxYEB/qaMQ0VcoUoPuzMxMyGQy7Ny5E02aNEHXrl2xcuVK+Pv753i029PTEyYmJvJbxYoVCzD11zEyMkJw8H6ULFlSVHd3n4Fjx45LE4qIqIioW7cuzp49hdmzZ0JHR3xF1/v37zFhwi9o374jHjx4IFFCIlJnU6dORufOnbB79w7s27cHZcqUkToSEamgSA26zc3NUb58eZiYmMhrderUgSAIePz4cbbt3N3dER8fL789evSoIOJ+NZlMhoAAP9StW1dU37NnL5YtWyFRKiKiwk9LSwu//DIRkZHnYGPTSGH7hQsX0ahRE6xevYZzahBRlurXr4/Zs2fK7/fp0xv79u2RMBERqapIDbpbtGiBp0+fiq5hvnXrFrS0tFChQoVs2+nr68PY2Fh00wSzZs1Ajx4/imrR0ZcxbNhIiRIRERV+lpaWCAn5E8uXL4WBgYFoW1paGmbPnovmzVvh77//lighEak7XV1dbNvmK5rrISMjA5MnT5MwFRGpSqMH3UlJSYiOjkZ0dDQAIDY2FtHR0Xj48CGAf49QOzg4yPcfOHAgvvnmGzg5OeH69esIDw/H5MmTMXToUBgaGkrxI+SbH3/8AR4ec0S1V69eoUeP3nj37p1EqYiICrehQ50QE3MJrVu3Uth27do1NGvWEvPnLyxSS1USUe7NnDkdDRs2ENUWL16KCxcuSJSIiL6GRg+6L168CGtra1hbWwMA3NzcYG1tjdmzZwMA4uLi5ANwAChRogSOHz+Ot2/fwtbWFoMGDUL37t2xZs0aSfLnlzp16mD7dn9RLT09Hf37D+R1g0RE+ahSpYooUaKEqJaZmYlly1bAxqYpLl26JFEyItIUjRo1wvTp4iPaMTFXMG/eAokSEdHXkgm8mCzXEhIS/v+6cG0AMqnjKFi2bAkmTXIT1SZM+AWrVxeuLxeIvpZrubEqtdufFJ2r/TOFdDxPPo34+HiNuTzlI3Xv79SNjo4Ozp49Jb+O+969exgyZCgiIk5JnIyoIAkAMjSuz1OH/k5PTw+RkedgZWUlr6WlpaFp0xaIioqSJBMR5US5/k6jj3RT1iZPngp39xnIzMwEAAQE7OCAm4ioAKSnp8PBwQkfPnzApk1b0KCBDQfcRKS0uXNniwbcALBwoScH3EQaTufLu5AmWrx4KS5fjoGb2wSMGjVG6jhERIVKlSpVcP/+/Sy3Xb9+HTVr1tWYlS6ISD00bdoUU6ZMEtWioqKxcKGnRImIKK/wSHch9vvvR9GxYxd8+PBB6ihERIWCkZERtmzZhJs3r6F+/frZ7scBNxHlhoGBAfz9t0JbW1teS01NhYODEydeJCoEOOgmIiJSQuvWrXD5ciSGDx8KPT09bN/uL1rOh4hIVQsWzEPt2rVFtblz5+Hq1asSJSKivMRBt4YrVaoUypUrJ3UMIqJCy8DAACtWLENIyJ+wtLSU1+vX/xZz586WMBkRFQYtWrTAxInjRbXz5y9g6dLlEiUiorzGQbcG09bWxp49OxEZeQ5NmzaVOg4RUaFjY2ODyMhzcHObAC0t8Z/MxMRE3L59R6JkRFQYaGlpYcsWb1H/8uHDBzg6DkNGRoaEyYgoL3HQrcE8PReiU6eOsLCwQFjYXxg61EnqSEREhYKOjg7mzJmFs2cjULduXYXtoaFhqF+/Efz8/As+HBEVGpmZmfj5Z0fRaeSzZs3BjRs3JExFRHmNg24N9dNPAzB58i/y+/r6+liwwEOj1sMkIlJHderUwZkzEZg7dzZ0dMSLfHz48AETJ05C+/Yds529nIgoNy5dugQbm6bw9FyC8PCTWLnSS+pIRJTHuGSYBrK2toaPz2ZRLTU1Fb169UNCQoJEqYiINJuWlhYmTBiHhQvnw8DAQGH7hQsX4eDghL///luCdERUmKWmpmL69JnQ1tZGZmam1HGIKI9x0K1hSpcujaCgfTA0NBTVx451xdmzZyVKRUSk2SwtLeHv74PWrVspbEtLS8OCBYuwaNFiLt1DRPmK13ETFU4cdGsQHR0d/PrrblSuXFlU37BhI3x8fCVKRUSk2XR1dREW9hcqVqyosO3atWtwcBiKS5cuSZCMiIiICgNe061Bli9finbt2opqJ09GYMIENyniEBEVCmlpaZgxQ7z0V2ZmJpYvXwkbm6YccBNRnjE2Nsb48eOgra0tdRQiKkAyQRAEqUNomoSEBJiYmADQBiArkOccMsQB/v4+otrjx49hY9MUL168KJAMROqsfbHhuW5z4t3WfEiSFQFABuLj4zVuskMp+jupBAbuQ8+ePRAbG4shQ4bi5MkIqSMRaSjN7PMKor/bsmUThg8finPnzsPRcRjniCBSgleN3H/Gm3BbvT7j8Ui3BmjcuDE2blwvqn348AE9e/blgJuIKI+MGjUWK1d6oX79RhxwE0ksPDwc3bt3h4WFBWQyGYKDg7/YZufOnWjQoAGKFSsGc3NzODk54Z9//sn/sEqyt++C4cOHAgCaNm2CqKgL6N27l8SpiKggcNCt5sqWLYvAwF8VZtIdOXIMLl68KFEqIiLNY2/fBYsWLch2+8uXL/HLL5ORlJRUgKmIKCvJyclo0KAB1q1bp9T+ERERcHBwwLBhw3Dt2jXs27cPFy5cwPDhuT9Clh9KliyJLVs2imppaWm4cIGf5YiKAk6kpsZ0dXWxf/9eVKhQQVT38lqD7dt3SJSKiEizlChRAitXLseIEcMAAKdOncbhw0ckTkVEObG3t4e9vb3S+589exZVqlTBuHHjAPy7IsGoUaOwdOnS/IqYK6tXr0L58uVFNTe3yXj48KFEiYioIPFItxobM2Y0WrZsIar99dcJTJo0RaJERCS1DRs2wNLSEgYGBrCxscHJkyez3Tc0NBQymUzhVpSuIWzduhViYi7JB9wAsHXrJnzzzTcSpiKivNa8eXM8fvwYR44cgSAIeP78Ofbv349u3bpl2yYlJQUJCQmiW3744YfucHD4WVQ7evQPbN3qk00LIipsOOhWY+vXb8CKFavk9+/fv4/+/QdyDUeiImrv3r2YMGECZsyYgaioKLRq1Qr29vZfPFJy8+ZNxMXFyW81atQooMTSMTAwwIoVyxAS8icsLS1F28qVK4dhw5wkSkZE+aF58+bYuXMn+vfvDz09PZQrVw4lS5bE2rVrs23j6ekJExMT+S2rZQO/lqmpKTZt2iCqvX37FsOHj8rz5yIi9cVBtxrLyMjApElT8PPPQ/DPP/+gZ8++ajUhCBEVrJUrV2LYsGEYPnw46tSpAy8vL1SsWBHe3t45tjMzM0O5cuXkt8K+VI2NjQ0iI8/BzW0CtLTEf+YSExMxYsRoLF26XKJ0RJQfrl+/jnHjxmH27NmIjIzE0aNHERsbi9GjR2fbxt3dHfHx8fLbo0eP8jzXunWrUa5cOVFtwoRf8OTJkzx/LiJSXxx0a4CdO3ehSpXqiI6OljoKEUkkNTUVkZGR6NSpk6jeqVMnnD59Ose21tbWMDc3R4cOHRASEpKfMSWlo6ODuXNn4+zZCNStW1dhe1hYOOrXb8RTOokKIU9PT7Ro0QKTJ09G/fr10blzZ2zYsAG+vr6Ii4vLso2+vj6MjY1Ft7zUu3cv/PTTAFHtt9/+h23bAvL0eYhI/XEiNQ3B2XSJirZXr14hIyMDZcuWFdXLli2LZ8+eZdnG3Nwcmzdvho2NDVJSUrB9+3Z06NABoaGhaN26dZZtUlJSkJKSIr+fX9c45rW6desiIMAPNjaNFLZ9+PAB06fPgpfXagiCIEE6Ispv7969g46O+GPtx7N6pPi9L1OmDLy9xTOvv379GiNHjinwLEQkPQ661UixYsXw7t07qWMQkRqTyWSi+4IgKNQ+qlWrFmrVqiW/b2dnh0ePHmH58uXZDro9PT3h4eGRd4HzmZaWFiZMGIeFC+crLK0IAJGRlzB4sCNu3LghQToiUlVSUhLu3Lkjvx8bG4vo6GiYmpqiUqVKcHd3x5MnTxAQ8O9R4+7du2PEiBHw9vZG586dERcXhwkTJqBJkyawsLAo8Pze3utQpkwZUc3FZXy2X5ISUeHG08vVhLPzWERFXUCdOnWkjkJEaqh06dLQ1tZW+MD24sULhaPfOWnWrBlu376d7faCuMYxr5ibmyMk5E+sWLFMYcCdnp6OuXPnoVmzFhxwE2mgixcvwtraGtbW1gAANzc3WFtbY/bs2QCAuLg40SSSjo6OWLlyJdatWwcrKyv07dsXtWrVQmBgYIFnHzCgP3r37iWqHTgQiN279xR4FiJSDzzSrQZat26FVauWQ1dXF+fOncLgwY44ePCQ1LGISI3o6enBxsYGx48fR8+ePeX148eP48cff1T6caKiomBubp7tdn19fejr639V1oKSmJiIChXKK9SvX78OB4ehiIyMlCAVEeWFtm3b5nhauL+/v0LN1dUVrq6u+Zjqy8qVK4f169eIai9fvsSYMS4SJSIidcAj3RKrWLEi9u3bA11dXQCAkZERAgP3iU4JJSIC/j3Ss3XrVvj6+uLGjRuYOHEiHj58KJ+d193dHQ4ODvL9vby8EBwcjNu3b+PatWtwd3fHgQMH4OJSOD78JSUlYciQocjMzAQAZGZmYuVKL9jYNOWAm4gkIZPJcOHCRVFt7FhXvHz5UqJERKQONHrQHR4eju7du8PCwgIymQzBwcFKtz116hR0dHTQsGHDfMv3JQYGBggK2g8zMzNRfdGixbh586ZEqYhIXfXv3x9eXl6YN28eGjZsiPDwcBw5cgSVK1cGoHi6ZWpqKiZNmoT69eujVatWiIiIwOHDh9GrV6/snkLjREScwooVqxAbG4t27b7DL79MxocPH6SORURFVFxcHLp06YaRI8cgMTERe/bsxf79B6SORUQSkwkaPJXr77//jlOnTqFRo0bo3bs3goKC0KNHjy+2i4+PR6NGjVC9enU8f/4810txJSQkwMTEBIA2gKwnMFJGQIA/Bg8eJKr973+H8eOPveRHbohI/bQydMrV/ulCKs582Ib4+Pg8X5Imv+VVf/c1TE1NYWBggKdPn2a5XV9fH7q6ulzlgUhtCAAyNK7Py+v+rnLlykhKSsI///zz1Y9FRAWjWokuudo/U0hDbPIfX+zvNPqabnt7e9jb2+e63ahRozBw4EBoa2vn6uh4XpowYbzCgPvmzZv4+echHHATEf0/e/su8PHZjL//vokOHTpleY3n58ucERGpgwcPHkgdgYjUhEafXq4KPz8/3L17F3PmzFG6TUpKChISEkS3r9GhQ3ssX75EVEtISECPHn0QHx//VY9NRFQYlChRAps3b8SRI7/B3Nwc7dq1hatr4bgWnYiIiIqWIjXovn37NqZNm4adO3dCR0f5g/yenp4wMTGR3ypWrKhyhipVqmDv3l3Q1tYW1X/+eQj+/vtvlR+XiKiwaNWqJWJiLmHEiGGi+uLFCznJJBGplXLlysHIyEjqGESk5orMoDsjIwMDBw6Eh4cHatasmau2ebVubbFixRAcfADffPONqD579lz89tv/VHpMIqLCQl9fH8uXL0Vo6F+wtLRU2B4SEvrVZxoREeUVmUyG7dv9cfVqNDp0aC91HCJSYxp9TXduJCYm4uLFi4iKipIvl5OZmQlBEKCjo4Njx46hffusO8y8WrfW13cLGjSoL6oFBQVjwYJFX/3YRESazMbGBgEBvqhbt67CtsTERLi5TcbWrT4SJCMiytqoUSPx3XcdAAB//vkHNmzYiClTpiE5OVniZESkborMkW5jY2NcuXIF0dHR8tvo0aNRq1YtREdHo2nTpvn6/FOmTEL//v1EtWvXrsHBwSnLiYGIiIoCHR0dzJkzC2fPRmQ54A4LC0f9+o044CYitWJpaYllyxaLat9/31Xh8kEiIkDDj3QnJSXhzp078vuxsbGIjo6GqakpKlWqBHd3dzx58gQBAQHQ0tKClZWVqL2ZmRkMDAwU6nmtdetW8PRcKKq9ffsWPXr04RI3RFRk1alTBwEBfrC1tVHY9uHDB0yfPgteXqv5xSQRqRWZTAY/v60oUaKEqD5s2EheAkNEWdLoI90XL16EtbU1rK2tAQBubm6wtrbG7NmzAQBxcXF4+PChlBEBAOfPX8DOnbvl9zMzM/HTTz+LvjAgIioqZDIZJk6cgEuXzmc54I6MvIRGjZpg1SovDriJSO24urqgTZvWopq39yb8+edfEiUiInUnE/iJJtcSEhJgYmICQBuATOl248ePw/LlSzBz5mwsWbIs3/IRUf5qZeiUq/3ThVSc+bAN8fHxMDY2zqdU+UPV/i4ngwYNxI4d2xTq6enpWLBgERYu9ER6enqePBcRSUEAkKFxfZ4y/V2NGjUQHX0RxYoVk9diY2NRv34jnr1IVAhUK9ElV/tnCmmITf7ji/2dRh/p1jSrV6+BjU1TDriJqEjbvXsPIiJOiWrXr19Hs2Yt4eExnwNuIlJLWlpa8PPbKhpwA4CT03AOuIkoRxx0F7CYmBipIxARSSozMxOOjsOQnJyMzMxMrFzpBRubpoiMjJQ6GhFRtiZOHI8WLZqLamvWrENYWLhEiYhIU2j0RGpERKSZ7t69ixEjRuPp06f8wEpEaq927dpYsGCeqHb79m24u8+QKBERaRIOuvNYrVq1sGHDWjg6DsOjR4+kjkNE+eDke79ctih6U2eYmppizRovrFmzDufPn89yn9279xRwKiKi3NPW1sa2bb4wMDCQ1zIzM+HkNALv3r2TMBkR5bW7SUdz2UK5z3g8vTwPGRsb4+DBA2jfvh0uXjyL1q1bSR2JiKjA2dt3wdWr0Rg06CcEBPjC0NBQ6khERCqbPPkXNGnSWFRbtWo1Tp06lU0LIiIxDrrziEwmw86dAahVqxaAf9cA//PPP9Cx43cSJyMiKhglSpTApk3eOHLkN5ibmwP49+yfxYsXSZyMiEg1VlZW8PCYI6r9/fffmDlztkSJiEgTcdCdRzw85uD777uJajExV3DyZIREiYiICk6rVi1x+XIkRo4crrBt0KCfYGpqKkEqIqKv06VLJ+jp6cnvZ2RkwNFxOD58+CBhKiLSNBx054FevXpi1izxRBovXrxAz5592CkTUaGmr6+P5cuXIjT0L1StWlVh+++/H8W331rj9evXEqQjIvo6y5evRKdO9vJ5epYtW4Fz585JnIqINA0nUvtK9erVw7ZtvqJaeno6+vYdwInUiKhQs7GxQUCAL+rWrauwLSkpCW5uk7Fly1YJkhER5Z3jx/+ElVVDTJ78C+bPXyh1HCLSQDzS/RVKlSqFgwcPoESJEqL6hAm/IDz8pESpiIjyl46ODubMmYWzZyOyHHCHh59E/fqNOOAmokIjISEBs2bNQWpqqtRRiEgD8Ui3irS0tLB7905Uq1ZNVPf19cf69RskSkVElL/q1KmDgAA/2NraKGxLSUnBjBmzsGrVamRmZkqQjoiIiEj9cNCtokWLFqFz506i2rlz5zF2rItEiYiI8tfw4cOwdq2XaK3ajyIjL8HBwQnXr1+XIBkRERGR+uLp5SqaOnWq6P6zZ8/Qq1dfpKSkSJSIiCh/vX79WmHAnZ6eDg+P+WjWrAUH3ESk8c6cOYNhw4ZKHYOIChkOuvNAamoqevfuj6dPn0odhYgo3wQGBmHHjl3y+zdu3ICdXSvMnTsP6enpEiYjIsobzZo1w9atm3HkyG8oX7681HGIqJDgoDsPuLiMx+nTp6WOQUSU71xdx+Phw4dYudILjRo1wcWLF6WORESU5+ztuyisTkNEpCpe060CQRDk/79p02Zs2bJFwjREpP7+7TM+7Ts0xX+Z//3v27dvUK9efSQlJUkXiojUnGb2eZ/mTUlJwfjxE/HxZyEiyppy/R0H3SpITExEyZIlpY5BRBomMTERJiYmUsfIlcTExP//v/9mI09KipcmDBFpFE3r8/j5johU9aX+TiZo2teQaiAzMxNPnz6FkZERZDJZgT9/QkICKlasiEePHsHY2LjAn1/d8fXJHl+bnOXX6yMIAhITE2FhYQEtLc26qkfq/k4VfJ9/Hb5+X4evn+b2eZrY330J34/K4eukHL5OipTt73ikWwVaWlqoUKGC1DFgbGzMN3wO+Ppkj69NzvLj9dGkoz2fUpf+ThV8n38dvn5fp6i/fprY52lyf/clRf39qCy+Tsrh6ySmTH+nOV8/EhEREREREWkYDrqJiIiIiIiI8gkH3RpIX18fc+bMgb6+vtRR1BJfn+zxtckZX5/Cgf+OX4ev39fh60fqhO9H5fB1Ug5fJ9VxIjUiIiIiIiKifMIj3URERERERET5hINuIiIiIiIionzCQTcRERERERFRPuGgWw2Fh4eje/fusLCwgEwmQ3BwcI77h4aGQiaTKdz+/vvvgglcgDw9PdG4cWMYGRnBzMwMPXr0wM2bN7/YLiwsDDY2NjAwMEDVqlWxcePGAkhbsFR5bYrSe8fb2xv169eXry1pZ2eH33//Pcc2ReF9o6k2bNgAS0tLGBgYwMbGBidPnsx236L0PldGbv/GAPxd+Ih/n0md8DORcvj5SDn8nJS/OOhWQ8nJyWjQoAHWrVuXq3Y3b95EXFyc/FajRo18SiidsLAwODs74+zZszh+/DjS09PRqVMnJCcnZ9smNjYWXbt2RatWrRAVFYXp06dj3LhxOHDgQAEmz3+qvDYfFYX3ToUKFbB48WJcvHgRFy9eRPv27fHjjz/i2rVrWe5fVN43mmjv3r2YMGECZsyYgaioKLRq1Qr29vZ4+PBhju2KwvtcGbn9G8Pfhf/w7zOpE34mUg4/HymHn5PymUBqDYAQFBSU4z4hISECAOHNmzcFkkmdvHjxQgAghIWFZbvPlClThNq1a4tqo0aNEpo1a5bf8SSlzGtTlN87giAIpUqVErZu3ZrltqL6vtEETZo0EUaPHi2q1a5dW5g2bVqW+xf193lOlPkbw9+FrPHvM6kbfiZSDj8fKY+fk/IOj3QXItbW1jA3N0eHDh0QEhIidZwCER8fDwAwNTXNdp8zZ86gU6dOolrnzp1x8eJFpKWl5Ws+KSnz2nxU1N47GRkZ2LNnD5KTk2FnZ5flPkX1faPuUlNTERkZqfBv06lTJ5w+fTrHtkXtfZ5X+Lvw9fjeo4LAz0TK4eejL+PnpLzHQXchYG5ujs2bN+PAgQMIDAxErVq10KFDB4SHh0sdLV8JggA3Nze0bNkSVlZW2e737NkzlC1bVlQrW7Ys0tPT8erVq/yOKQllX5ui9t65cuUKSpQoAX19fYwePRpBQUGoW7dulvsWxfeNJnj16hUyMjKy/Ld59uxZlm2K2vs8r/F3QXV871FB4Wci5fDzUc74OSn/6EgdgL5erVq1UKtWLfl9Ozs7PHr0CMuXL0fr1q0lTJa/XFxcEBMTg4iIiC/uK5PJRPcFQciyXlgo+9oUtfdOrVq1EB0djbdv3+LAgQMYMmQIwsLCsv2DUtTeN5okq3+b7P5ditr7PD/wd0E1fO9RQeFnIuXw81HO+Dkp//BIdyHVrFkz3L59W+oY+cbV1RWHDh1CSEgIKlSokOO+5cqVUzgC9uLFC+jo6OCbb77Jz5iSyM1rk5XC/N7R09ND9erVYWtrC09PTzRo0ACrV6/Oct+i9r7RFKVLl4a2tnaW/zaff+Oek8L8Ps9r/F3IW3zvUV7jZyLl8PPRl/FzUv7hoLuQioqKgrm5udQx8pwgCHBxcUFgYCBOnDgBS0vLL7axs7PD8ePHRbVjx47B1tYWurq6+RW1wKny2mSlsL53siIIAlJSUrLcVlTeN5pGT08PNjY2Cv82x48fR/PmzZV+nKL0Pv9a/F3IW3zvUV7hZyLl8POR6vg5KQ8V/Nxt9CWJiYlCVFSUEBUVJQAQVq5cKURFRQkPHjwQBEEQpk2bJgwePFi+/6pVq4SgoCDh1q1bwtWrV4Vp06YJAIQDBw5I9SPkmzFjxggmJiZCaGioEBcXJ7+9e/dOvs/nr8+9e/eEYsWKCRMnThSuX78u+Pj4CLq6usL+/ful+BHyjSqvTVF677i7uwvh4eFCbGysEBMTI0yfPl3Q0tISjh07JghC0X3faKI9e/YIurq6go+Pj3D9+nVhwoQJQvHixYX79+8LglC03+fKyO3fGP4u/Id/n0md8DORcvj5SDn8nJS/OOhWQx+XKfj8NmTIEEEQBGHIkCFCmzZt5PsvWbJEqFatmmBgYCCUKlVKaNmypXD48GFpwuezrF4XAIKfn598n89fH0EQhNDQUMHa2lrQ09MTqlSpInh7exds8AKgymtTlN47Q4cOFSpXrizo6ekJZcqUETp06CD/QyIIRfd9o6nWr18v//ds1KiRaOmXovw+V0Zu/8YIAn8XPuLfZ1In/EykHH4+Ug4/J+UvmSD8/xXvRERERERERJSneE03ERERERERUT7hoJuIiIiIiIgon3DQTURERERERJRPOOgmIiIiIiIiyiccdBMRERERERHlEw66iYiIiIiIiPIJB91ERERERERE+YSDbiIiIiIiIqJ8wkE30f+bO3cuGjZs+MX9Zs2ahZEjR+bqsUNDQyGTyfD27VvVwhUAZX9+AEhJSUGlSpUQGRmZv6G+Qnh4OLp37w4LCwvIZDIEBwcXqucjUkV+9nNfcv/+fchkMkRHR+fp4+YFR0dH9OjRQ6l9X7x4gTJlyuDJkyf5GyoX2N8R5R8p+83cqlKlCry8vABoxmc1VWlin8dBN+WLFy9eYNSoUahUqRL09fVRrlw5dO7cGWfOnJE62ld5/vw5Vq9ejenTpytsO336NLS1tdGlS5cCyZLXA/lJkybhr7/+UmpffX19TJo0CVOnTs2T584PycnJaNCgAdatW1con4+kV5T6OUdHR8hkMoVbbvq7ihUrIi4uDlZWVl/ct6AH6KtXr4a/v79S+5qZmWHw4MGYM2dO/obKBfZ3pCmKSr+ZVX/56c3R0THHx8uLgaQmfFZTlSb2eTp5mIdIrnfv3khLS8O2bdtQtWpVPH/+HH/99Rdev379VY+blpYGXV3dPEqZez4+PrCzs0OVKlUUtvn6+sLV1RVbt27Fw4cPUalSpYIPqAJBEJCRkYESJUqgRIkSSrcbNGgQJk+ejBs3bqBOnTr5mFA19vb2sLe3z3Z7amoqZs6ciZ07d+Lt27ewsrLCkiVL0LZt23x5Pip8ilo/16VLF/j5+Ylq+vr6Sj+utrY2ypUrlxcR85yJiUmu9ndyckKTJk2wbNkylCpVKp9SKY/9HWmKotJvxsXFybft3bsXs2fPxs2bN+U1Q0PDAsml7p/VVKWJfR6PdFOee/v2LSIiIrBkyRK0a9cOlStXRpMmTeDu7o5u3brJ95PJZPD29oa9vT0MDQ1haWmJffv2ybd/PNLx66+/om3btjAwMMCOHTsAAH5+fqhTpw4MDAxQu3ZtbNiwQZRh6tSpqFmzJooVK4aqVati1qxZSEtLE+2zePFilC1bFkZGRhg2bBg+fPjwxZ9tz549+OGHHxTqycnJ+PXXXzFmzBh8//33Sh0xOX36NFq3bg1DQ0NUrFgR48aNQ3Jysnz7jh07YGtrCyMjI5QrVw4DBw7Eixcv5K9Nu3btAAClSpUSfWuakpKCcePGwczMDAYGBmjZsiUuXLggf9yPR8j/+OMP2NraQl9fHydPnszy9ClfX1/Uq1cP+vr6MDc3h4uLi3zbN998g+bNm2P37t1f/FnVkZOTE06dOoU9e/YgJiYGffv2RZcuXXD79m2po5EGKIr93MejUp/ePh1wKvuzfjx6/ebNGwwaNAhlypSBoaEhatSoIR/UW1paAgCsra0hk8lEH5Ryel0+fT1btWoFQ0NDNG7cGLdu3cKFCxdga2uLEiVKoEuXLnj58qW83eenl2dmZmLJkiWoXr069PX1UalSJSxcuFC+/dtvv0W5cuUQFBT0xddTHbC/I3VQlPrNT/tJExMTyGQyUW3Xrl2oVq0a9PT0UKtWLWzfvl3e9uPAvWfPnpDJZPL7d+/exY8//oiyZcuiRIkSaNy4Mf78888cc2n6ZzVVqWWfJxDlsbS0NKFEiRLChAkThA8fPmS7HwDhm2++EbZs2SLcvHlTmDlzpqCtrS1cv35dEARBiI2NFQAIVapUEQ4cOCDcu3dPePLkibB582bB3NxcXjtw4IBgamoq+Pv7yx97/vz5wqlTp4TY2Fjh0KFDQtmyZYUlS5bIt+/du1fQ09MTtmzZIvz999/CjBkzBCMjI6FBgwbZ5n39+rUgk8mEs2fPKmzz8fERbG1tBUEQhN9++02oUqWKkJmZKd8eEhIiABDevHkjCIIgxMTECCVKlBBWrVol3Lp1Szh16pRgbW0tODo6ih7zyJEjwt27d4UzZ84IzZo1E+zt7QVBEIT09HThwIEDAgDh5s2bQlxcnPD27VtBEARh3LhxgoWFhXDkyBHh2rVrwpAhQ4RSpUoJ//zzjyhL/fr1hWPHjgl37twRXr16JcyZM0f082/YsEEwMDAQvLy8hJs3bwrnz58XVq1aJfq5p0yZIrRt2zbb10xdABCCgoLk9+/cuSPIZDLhyZMnov06dOgguLu75/nzUeFT1Pq5IUOGCD/++GOOr4myP2tUVJQgCILg7OwsNGzYULhw4YIQGxsrHD9+XDh06JAgCIJw/vx5AYDw559/CnFxcfL+60uvy8fnqF27tnD06FHh+vXrQrNmzYRGjRoJbdu2FSIiIoRLly4J1atXF0aPHp3tzzdlyhShVKlSgr+/v3Dnzh3h5MmTwpYtW0Q/b79+/UR9trpgf0fqqqj1mx/5+fkJJiYm8vuBgYGCrq6usH79euHmzZvCihUrBG1tbeHEiROCIAjCixcvBACCn5+fEBcXJ7x48UIQBEGIjo4WNm7cKMTExAi3bt0SZsyYIRgYGAgPHjyQP3blypU19rOaqjSlz+Ogm/LF/v37hVKlSgkGBgZC8+bNBXd3d+Hy5cuifQCIPvQIgiA0bdpUGDNmjCAI/3WqXl5eon0qVqwo7Nq1S1SbP3++YGdnl22epUuXCjY2NvL7dnZ2WT53Tp1qVFSUAEB4+PChwrbmzZvLc6alpQmlS5cWjh8/Lt/++aB78ODBwsiRI0WPcfLkSUFLS0t4//59ls//8UNoYmJilo8pCIKQlJQk6OrqCjt37pTXUlNTBQsLC2Hp0qWidsHBwaLH/3zQbWFhIcyYMSPb10MQBGH16tVClSpVctxHHXzeQf76668CAKF48eKim46OjtCvXz9BEP57/+V0c3Z2Vur5qHAqSv3ckCFDBG1tbYXfmXnz5uX6Z/046O7evbvg5OSUZY7P9/3oS6/Lx3Zbt26Vb9+9e7cAQPjrr7/kNU9PT6FWrVqin+/joDshIUHQ19dXGGR/buLEiWr5QZb9HamzotRvfvT5oLt58+bCiBEjRPv07dtX6Nq1q/y+sr9XdevWFdauXSu/n9WgW1M+q6lKU/o8XtNN+aJ3797o1q0bTp48iTNnzuDo0aNYunQptm7dKpo8ws7OTtTOzs5OYeIcW1tb+f+/fPkSjx49wrBhwzBixAh5PT09XXRN3v79++Hl5YU7d+4gKSkJ6enpMDY2lm+/ceMGRo8erfDcISEh2f5M79+/BwAYGBiI6jdv3sT58+cRGBgIANDR0UH//v3h6+uL7777LsvHioyMxJ07d7Bz5055TRAEZGZmIjY2FnXq1EFUVBTmzp2L6OhovH79GpmZmQCAhw8fom7dulk+7t27d5GWloYWLVrIa7q6umjSpAlu3Lgh2vfT1/VzL168wNOnT9GhQ4ds9wH+vSbp3bt3Oe6jjjIzM6GtrY3IyEhoa2uLtn28rr18+fIKr9nn1OFaTpJOUernAKBdu3bw9vYW1UxNTRUe/0s/60djxoxB7969cenSJXTq1Ak9evRA8+bNs82m7OsCAPXr15f/f9myZQH8e0r4p7WPl+t87saNG0hJSSk0/R/7O1InRa3fzMqNGzcUZjlv0aIFVq9enWO75ORkeHh44H//+x+ePn2K9PR0vH//Hg8fPsyxnab0VXlFXfs8Drop3xgYGKBjx47o2LEjZs+ejeHDh2POnDlKzdj4qeLFi8v//+PAc8uWLWjatKlov4+/WGfPnsWAAQPg4eGBzp07w8TEBHv27MGKFSu+6ucpXbo0gH+vQyxTpoy87uPjg/T0dJQvX15eEwQBurq6ePPmTZa/tJmZmRg1ahTGjRunsK1SpUpITk5Gp06d0KlTJ+zYsQNlypTBw4cP0blzZ6Smpmab8d8v4BRfQ0EQcnxdP6fsBB+vX78WvRaawtraGhkZGXjx4gVatWqV5T66urqoXbt2AScjTVNU+rmPGatXr57rx/z8Z/3I3t4eDx48wOHDh/Hnn3+iQ4cOcHZ2xvLly7PcX5nX5aNPJ1T6+Pyf1z4+3ucKW//H/o7UTVHqN7OjzOe0z02ePBl//PEHli9fjurVq8PQ0BB9+vTJ8XMhoDl9VV5R1z6PE6lRgalbt65oojDg3w7w8/s5/RKULVsW5cuXx71791C9enXR7ePEO6dOnULlypUxY8YM2NraokaNGnjw4IHocerUqZPlc+ekWrVqMDY2xvXr1+W19PR0BAQEYMWKFYiOjpbfLl++jMqVK4uOZH+qUaNGuHbtmsLPUL16dejp6eHvv//Gq1evsHjxYrRq1Qq1/6+9uwtp6o3jAP474tk8NSltkRW2ETnzpmYXUgiJF0IXRhlGVJDiXZFohBFiEqVBF5GGUiiFlS/RhVMvrLugosAcvmAXLdOQwNDoqld0fP8X+3vw6HIuXNvc9wO7cOccz/M8wy/Pz+15tnPnondlTCaTiIh4vV79ubnrX758qT83MzMj/f39Qe1amZiYKHa7PeBXiI2MjEhmZuayf++/9O3bN/31EBEZHx+XwcFBmZiYEIfDISdPnpRTp05JZ2enjI+Py5s3b+T69evS29u74vej2LEacy4YwfZ148aNUlxcLK2trVJXVydNTU0i4j/fljMuKyEtLU00TYuq/GPeUTSLtdzMyMgwzNNEfJvrzp+nqapqyD8RkRcvXkhxcbEUFBTomzl+/Pgx4P0iKatWSlRmXtAfSCcK4MuXL8jNzcXDhw8xNDSEsbExPH78GJs2bUJJSYl+nojAarXi7t27ePfuHaqrqxEXF4e3b98C+POavubmZmiapm/wNTw8jHv37uHGjRsAgK6uLsTHx6OjowOjo6Oor69HcnKyYT3No0ePYDabDfcOtFEGABw5cgTnz5/Xf3a5XDCZTPomZvNVVlbC6XQCWLz+emhoCJqm4cyZMxgYGIDH40F3dzfOnj0LwLeJhslkQkVFBT58+IDu7m44HA7DeHz69AmKoqClpQVTU1P6Wu+ysjJs2bIFT548MWyk9vXrV79tmbNwTXdLSwsSEhJQX18Pj8cDt9uNW7duGa6x2Wx48ODBkmMWLnP9XPgoKioC4FvrXl1dDbvdDlVVkZKSgoKCAgwPD4fkfrS6xFLOAb41zwcOHMDk5KThMT09/dd9vXTpErq6uvD+/XuMjIwgPz8fWVlZAHx7Y2iahpqaGnz+/FnP2EDj4m88/WXewjWWCzdSu3z5MpKSknD//n2Mjo7i9evXhnXi379/h6ZpeP78+ZJj+a8w7ygaxFpuzlmYNy6XC6qq4vbt2/B4PPpGas+ePdPPSUtLw+nTpzE5OanP3w4fPgyn04mBgQEMDg7i4MGDSExMRFlZmX6dvzXdkTxX+1vRmHksumnF/fr1CxcvXsSePXuwbt06rFmzBunp6aiqqsKPHz/080QEjY2NyMvLg9lshs1mQ0dHh378T6EKAG1tbXA6nTCZTEhKSsL+/fvR2dmpH6+oqMCGDRtgsVhw7Ngx3Lx50xB4AFBbWwur1QqLxYKioiJcuHAhYKg+ffoUW7duhdfrBQDk5+cbNr6Yz+12Q0Tgdrv9Tvr6+vqQl5cHi8WCtWvXYteuXaitrdWPt7e3w263w2w2Y9++fejp6Vk0HleuXEFKSgoURdH/8H/+/InS0lJYrVaYzWZkZ2ejr69Pv2a5RTcA3LlzB+np6VBVFZs3b0Zpaal+7NWrV1i/fr3hNSWKFbGUc4CvKPU34Zi/GVmwfb169SoyMjKgaRqSk5Nx6NAhjI2N6ec3NzcjNTUVcXFxyMnJWda4rFTR7fV6UVNTA5vNBlVVsW3bNly7dk0/3t7ebug7EQUWa7k5Z2HeAL5viNm+fTtUVYXD4VhUFPf09GDHjh2Ij4+HzWbT+52bmwtN05CamoqGhgbk5OQsWXRzrhY5FOD/RaBE/5iiKOJyuQzfjRrpAMjevXulvLxcjh8/Hu7mhNXRo0clMzNTKisrw90UoogVSzkXjX39W1lZWVJeXi4nTpwId1OIVp1ozJJInR9yrhY5uKabKAiKokhTU5PMzs6Guylh9fv3b9m9e7ecO3cu3E0hohXGnFva1NSUFBYWRtTEmojCKxJzk3O1yMJ3uilsovE/mUREwYilnIulvhJR6DBLaDVi0U1EREREREQUIvx4OREREREREVGIsOgmIiIiIiIiChEW3UREREREREQhwqKbiIiIiIiIKERYdBMRERERERGFCItuIiIiIiIiohBh0U1EREREREQUIiy6iYiIiIiIiEKERTcRERERERFRiPwHw4OjOa3Bz9oAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -920,7 +1078,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDFklEQVR4nO3deVxWZeL///ctwg2iMq6Aioi54i5oopGZCmrZapq5kVofwo2YpiRzL80ZFzSTtFHJyQUbM8tMJTPTtDQEx9zaNMxgyBXRRIHz+8Nv92/uAL1R8Obo6/l4nMfDc53rXNd1uGzm7cVZLIZhGAIAAABMpJyzBwAAAAAUFyEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWABxksVj0wQcfOL2NW+nYsWOyWCxKTU0tk+0BuHMRYgHcsSIiImSxWApsP/zwQ6H109PT1bNnT4fanjRpklq3bn1TbdyO/Pz8lJ6erubNm0uSPv/8c1ksFp09e9a5AwNgOuWdPQAAcKYePXpo6dKldmU1atSw2798+bLc3Nzk4+Nz0/2VRBtm5uLicsf/DACUDFZiAdzRrFarfHx87LauXbtq5MiRiomJUfXq1dW9e3dJBW8F+OWXX/Tkk0+qatWq8vT0VHBwsL7++mslJCRo8uTJ2rdvn211NyEhodA29u/fr/vvv18eHh6qVq2ann32WWVnZ9uOR0RE6JFHHtHMmTPl6+uratWqacSIEbpy5cp1ry02NlYdOnQoUN6yZUtNnDjRtr906VI1bdpU7u7uatKkiRYsWHDNdrdt26b27dvLarXK19dXY8eOVW5uru14fn6+ZsyYoQYNGshqtapu3bp67bXXJNnfTnDs2DF16dJFklSlShVZLBZFRERo2bJlqlatmnJycuz6ffzxxzV48ODrXjeAOwMrsQBQiHfeeUfPPfecvvzySxmGUeB4dna2OnfurNq1a+vDDz+Uj4+P9u7dq/z8fPXr10/ffvutNm7cqE8//VSS5OXlVaCNixcvqkePHurQoYP27NmjzMxMDR8+XCNHjrSFXknaunWrfH19tXXrVv3www/q16+fWrdurWeeeeaa1zBgwAC9/vrr+vHHH3XXXXdJkg4cOKD9+/fr3//+tyTp7bff1sSJEzV//ny1adNGKSkpeuaZZ+Tp6akhQ4YUaPPEiRPq1auXLWwePnxYzzzzjNzd3TVp0iRJV8Pz22+/rTlz5uiee+5Renq6Dh8+XKAtPz8/rVmzRo8//riOHDmiypUry8PDQ25ubho9erQ+/PBDPfHEE5KkkydPav369dq4ceM1rxnAHcQAgDvUkCFDDBcXF8PT09O29enTx+jcubPRunXrAvUlGWvXrjUMwzAWLlxoVKpUyTh16lShbU+cONFo1arVNdtYtGiRUaVKFSM7O9t2/OOPPzbKlStnZGRk2Mbo7+9v5Obm2uo88cQTRr9+/Ry6xpYtWxpTpkyx7cfGxhrt2rWz7fv5+RkrVqywO2fq1KlGSEiIYRiGcfToUUOSkZKSYhiGYbz88stG48aNjfz8fFv9N99806hYsaKRl5dnZGVlGVar1Xj77bcLHc+f29u6dashyThz5oxdveeee87o2bOnbT8uLs6oX7++Xb8A7mzcTgDgjtalSxelpqbatnnz5kmSgoODr3leamqq2rRpo6pVq95w34cOHVKrVq3k6elpK+vUqZPy8/N15MgRW1mzZs3k4uJi2/f19VVmZqZDfQwYMEDLly+XJBmGoZUrV2rAgAGSpN9++03Hjx/XsGHDVLFiRdv26quv6scffyxyzCEhIbJYLHZjzs7O1i+//KJDhw4pJydHXbt2dfwHUYhnnnlGmzdv1okTJyRdveXhjwfxAEDidgIAdzhPT081aNCg0PJr8fDwuOm+DcMoMpT9b7mrq2uBY/n5+Q718dRTT2ns2LHau3evfv/9dx0/flxPPvmkJNnaePvtt3X33Xfbnfe/ofl6Yzb+3+0WFoulRH4uktSmTRu1atVKy5YtU3h4uPbv36+PPvqoRNoGcHtgJRYAbkDLli2Vmpqq06dPF3rczc1NeXl512wjMDBQqampunDhgq3syy+/VLly5dSoUaMSGWedOnV07733avny5Vq+fLm6desmb29vSZK3t7dq166tn376SQ0aNLDbAgICihzzzp077e4T3rlzpypVqqTatWurYcOG8vDw0JYtWxwan5ubmyQV+rMaPny4li5dqiVLlqhbt27y8/Mr7uUDuI0RYgHgBvTv318+Pj565JFH9OWXX+qnn37SmjVrtGvXLklSvXr1dPToUaWmpurkyZMFnrSXrv6q393dXUOGDNG3336rrVu3atSoURo0aJAtaJaEAQMGaNWqVXrvvfc0cOBAu2OTJk3S9OnTNXfuXH333Xfav3+/li5dqtmzZxfaVlRUlI4fP65Ro0bp8OHDWrdunSZOnKiYmBiVK1dO7u7ueumll/Tiiy9q2bJl+vHHH/XVV19p8eLFhbbn7+8vi8Wi9evX67fffrN7M8OAAQN04sQJvf322xo6dGiJ/TwA3B4IsQBwA9zc3LR582bVrFlTvXr1UosWLfT666/bfg3/+OOPq0ePHurSpYtq1KihlStXFmijQoUK2rRpk06fPq127dqpT58+6tq1q+bPn1+iY33iiSd06tQpXbx4UY888ojdseHDh+uf//ynEhIS1KJFC3Xu3FkJCQlFrsTWrl1bGzZs0O7du9WqVStFRkZq2LBheuWVV2x1xo8fr7/+9a+aMGGCmjZtqn79+hV5D2/t2rU1efJkjR07Vt7e3ho5cqTtWOXKlfX444+rYsWKBcYNABbDKOTdMQAAlAHdu3dX06ZNbQ/cAcAfCLEAgDLn9OnT2rx5swYMGKCDBw+qcePGzh4SgDKGtxMAgElt375dPXv2LPL4/95fajZt27bVmTNnNGPGDAIsgEKxEgsAJvX777/b3qNamMJeHQYAtwtCLAAAAEyHtxMAAADAdAixAAAAMB0e7CpEfn6+fv31V1WqVInvdAMAANxChmHo/PnzqlWrlsqVK3q9lRBbiF9//ZXPGwIAADjR8ePHVadOnSKPE2ILUalSJUlXf3iVK1d28mgAAADuHFlZWfLz87PlsaIQYgvxxy0ElStXJsQCAAA4wfVu6eTBLgAAAJgOIRYAAACmQ4gFAACA6XBPLAAAMIW8vDxduXLF2cPATXJ1dZWLi8tNt0OIBQAAZZphGMrIyNDZs2edPRSUkL/85S/y8fG5qffxE2IBAECZ9keArVmzpipUqMCHiEzMMAxdvHhRmZmZkiRfX98bbosQCwAAyqy8vDxbgK1WrZqzh4MS4OHhIUnKzMxUzZo1b/jWAh7sAgAAZdYf98BWqFDBySNBSfpjPm/mHmdCLAAAKPO4heD2UhLzSYgFAACA6XBPLAAAQBl07NgxBQQEKCUlRa1bty72+Re/T3WoXoWGxW87IiJCZ8+e1QcffFDsc0sKIRYAAJhSziG3W9qftenlYtWPiIjQO++8U6A8PDxcGzduvO75fn5+Sk9PV/Xq1a9b92YDb3HNnTtXhmGUej/XQogFAAAoJT169NDSpUvtyqxWq0Pnuri4yMfHpzSGddO8vLycPQTuiQUAACgtVqtVPj4+dluVKlUkXX24KT4+Xj179pSHh4cCAgL03nvv2c49duyYLBaLUlNTJUlnzpzRgAEDVKNGDXl4eKhhw4a2gBwQECBJatOmjSwWi+677z5bO8vWrFPbHo+pavO71Sb8US1avtp27OdffpXFYtHq1asVGhoqDw8PtWvXTt9995327Nmj4OBgVaxYUT169NBvv/1mOy8iIkKPPPKIbT8/P18zZsxQgwYNZLVaVbduXb322msl/eO0w0osAACAk4wfP16vv/665s6dq3/961/q37+/mjdvrqZNmxZa9+DBg/rkk09UvXp1/fDDD/r9998lSbt371b79u316aefqlmzZnJzc5NOpWlp4vt69Y14zR4/Vq0Cm2jfwcMaOX6qKni4a+BjD9nanjhxouLi4lS3bl0NHTpU/fv3V+XKlTV37lxVqFBBffv21YQJExQfH1/odcTGxurtt9/WnDlzdM899yg9PV2HDx8unR/a/0OIBQAAKCXr169XxYoV7cpeeukljR8/XpL0xBNPaPjw4ZKkqVOnKikpSW+88YYWLFhQoK20tDS1adNGwcHBkqR69erZjtWoUUOSVK1aNdstCBdPpen1BW9r+tgYPRze9eo5frV1+MeftCRxjV2IfeGFFxQeHi5JGjNmjPr3768tW7aoU6dOkqRhw4YpISGh0Gs8f/685s6dq/nz52vIkCGSpLvuukv33HOP4z+oG0CIBQAAKCVdunQpsHpZtWpV259DQkLsjoWEhNhuH/iz5557To8//rj27t2rsLAwPfLII+rYsWORff92+rR+Sc9Q1MtTNPKVqbby3Nw8Va5kH6xbtmxp+7O3t7ckqUWLFnZlf3wq9s8OHTqknJwcde3atcixlAZCLAAAQCnx9PRUgwYNinVOUR8C6Nmzp37++Wd9/PHH+vTTT9W1a1eNGDFCM2fOLLR+fv7VtwfMf3W82rVqbnfMpZz9p15dXV0L9P/nsvz8/EL7+eMzsrcaD3YBAAA4yVdffVVgv0mTJkXWr1GjhiIiIvTuu+8qLi5OixYtkqSr98BKysvLs9X1rl5Ntbxr6tjxX3SXf127rZ5f7RK7hoYNG8rDw0NbtmwpsTYdwUosAABAKcnJyVFGRoZdWfny5W3vfn3vvfcUHByse+65R8uXL9fu3bu1ePHiQtuaMGGCgoKC1KxZM+Xk5Gj9+vW2B8Bq1qwpDw8Pbdy4UXXq1JG7u7tcJY0b9X964dV/qFLFigq7t5NyLl/W3m8P6uy5LI0eOqhErtHd3V0vvfSSXnzxRbm5ualTp0767bffdODAAQ0bNqxE+igMIRYAAKCUbNy4Ub6+vnZljRs3tj25P3nyZK1atUpRUVHy8fHR8uXLFRgYWGhbbm5uio2N1bFjx+Th4aHQ0FCtWrVK0tVgPG/ePE2ZMkUTJkxQaGioNrwdp4i+j8nDw0Nx/3xHr/w9Tp4VPNSsUQONGDKgRK9z/PjxKl++vCZMmKBff/1Vvr6+ioyMLNE+/sxiOPtzC2VQVlaWvLy8dO7cOVWuXNnZwwEA4I516dIlHT16VAEBAXJ3d3f2cEqUxWLR2rVr7d63WpJK87OzN+ta8+poDuOeWAAAAJgOIRYAAACmwz2xAAAATsAdnTeHlVgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAcILPP/9cFotFZ8+edfZQijRp0iS1bt3a2cMolNPfE7tgwQL94x//UHp6upo1a6a4uDiFhoYWWvf9999XfHy8UlNTlZOTo2bNmmnSpEkKDw+31UlISNDTTz9d4Nzff//9tvtcHQAAd7KUXtVuaX9tNpy6ofN27typ0NBQde/eXRs3bizhUdn7/PPP1aVLF505c0ZuJdDeCy+8oFGjRpVASyXPqSuxiYmJio6O1rhx45SSkqLQ0FD17NlTaWlphdb/4osv1L17d23YsEHJycnq0qWLevfurZSUFLt6lStXVnp6ut1GgAUAAM6wZMkSjRo1Sjt27Cgy45Q1hmEoNzdXFStWVLVqt/YfC45yaoidPXu2hg0bpuHDh6tp06aKi4uTn5+f4uPjC60fFxenF198Ue3atVPDhg01bdo0NWzYUB999JFdPYvFIh8fH7sNAADgVrtw4YJWr16t5557Tg8++KASEhKuWX/nzp2699575eHhIT8/P40ePVoXLlywHX/33XcVHBysSpUqycfHR0899ZQyMzMlSceOHVOXLl0kSVWqVJFnozZ69qUJkqScy5f1wtQZ8u9wv6o2v1vdnnxayf85YGv3j1sbNm3apODgYFmtVm3fvr3Q2wmWLFmiZs2ayWq1ytfXVyNHjiyBn1TxOS3EXr58WcnJyQoLC7MrDwsL086dOx1qIz8/X+fPn1fVqlXtyrOzs+Xv7686derowQcfLLBSCwAAcCskJiaqcePGaty4sQYOHKilS5cW+bnZ/fv3Kzw8XI899pj+85//KDExUTt27LALiZcvX9bUqVO1b98+ffDBBzp69KgiIiIkSX5+flqzZo0k6ciRI/rxyyT945W/SZLG/T1OH2zaokUzpujLD1aovr+fHh4WpdNnz9mN4cUXX9T06dN16NAhtWzZssAY4+PjNWLECD377LPav3+/PvzwQzVo0KAkflTF5rR7Yk+ePKm8vDx5e3vblXt7eysjI8OhNmbNmqULFy6ob9++trImTZooISFBLVq0UFZWlubOnatOnTpp3759atiwYaHt5OTkKCcnx7aflZV1A1cEAABgb/HixRo4cKAkqUePHsrOztaWLVvUrVu3AnX/8Y9/6KmnnlJ0dLQkqWHDhpo3b546d+6s+Ph4ubu7a+jQobb69evX17x589S+fXtlZ2erYsWKtoW9mjVrys1yUZJ04eLv+ufK97Tw9SkK73yPJOnNV8eraZev9M6/P9C4dp1tbU6ZMkXdu3cv8npeffVV/fWvf9WYMWNsZe3atbvBn87NcfqDXRaLxW7fMIwCZYVZuXKlJk2apHXr1qlmzZq28g4dOqhDhw62/U6dOqlt27Z64403NG/evELbmj59uiZPnnyDVwAAgGNyDjn2qI216eVSHgluhSNHjmj37t16//33JUnly5dXv379tGTJkkJDbHJysn744QctX77cVmYYhvLz83X06FE1bdpUKSkpmjRpklJTU3X69Gnl5+dLktLS0hQYGFjoOH5KO64rV3IV0raVrczV1VXBLZvryI9H7eoGBwcXeT2ZmZn69ddf1bVrV8d/CKXIaSG2evXqcnFxKbDqmpmZWWB19s8SExM1bNgwvffee4X+Jfhf5cqVU7t27fT9998XWSc2NlYxMTG2/aysLPn5+TlwFQAAsyJQorQtXrxYubm5ql27tq3MMAy5urrqzJkzBern5+fr//7v/zR69OgCx+rWrasLFy4oLCxMYWFhevfdd1WjRg2lpaUpPDxcly8X/ff0j9sXCl84tK/r6elZZDseHh5FHnMGp4VYNzc3BQUFKSkpSY8++qitPCkpSQ8//HCR561cuVJDhw7VypUr9cADD1y3H8MwlJqaqhYtWhRZx2q1ymq1Fu8CAAC4A7m2iLl+JUlX9s8u5ZGUbbm5uVq2bJlmzZpV4Pmfxx9/XMuXL1fz5s3tytu2basDBw4UeY/p/v37dfLkSb3++uu2xbZvvvnGro6b29V/nOXl5dnK7vKvKzdXV+1MTlW/Wr6SpCtXrmjvtwc1ImKAw9dUqVIl1atXT1u2bLE9QOZMTr2dICYmRoMGDVJwcLBCQkK0aNEipaWlKTIyUtLVFdITJ05o2bJlkq4G2MGDB2vu3Lnq0KGDbRXXw8NDXl5ekqTJkyerQ4cOatiwobKysjRv3jylpqbqzTffdM5FAoDJOLJCWdKrk6yKlh5+ts6xfv16nTlzRsOGDbNllD/06dNHixcv1pw5c+zKX3rpJXXo0EEjRozQM888I09PTx06dEhJSUl64403VLduXbm5uemNN95QZGSkvv32W02dOtWuDX9/f1ksFq1fv173NfGTh9VdFT0raPhTT2jcjDmq4lVZfrV8NOftd/T7pUsa0ueRYl3XpEmTFBkZqZo1a6pnz546f/68vvzyS6e8S9apIbZfv346deqUpkyZovT0dDVv3lwbNmyQv7+/JCk9Pd3ufWoLFy5Ubm6uRowYoREjRtjKhwwZYntlxdmzZ/Xss88qIyNDXl5eatOmjb744gu1b9/+ll4bAMDxVbvs1ebu09F+b4c+4ZjFixerW7duBQKsdHUldtq0adq7d69decuWLbVt2zaNGzdOoaGhMgxDd911l/r16ydJqlGjhhISEvTyyy9r3rx5atu2rWbOnKmHHnrI1kbt2rU1efJkjR07Vv/973/11CMPatGMKZr6wmgZ+fl65m+v6PyFi2rbPFDrFi9QFa/KxbquIUOG6NKlS5ozZ45eeOEFVa9eXX369LmBn9DNsxhFvefhDpaVlSUvLy+dO3dOlSsXb3IBoCSV1VVRR/t0PFDOd6ieI/06o09H+71T+pRK7naCS5cu6ejRowoICODDRcV08ftUh+pVaNi6VMdRmGvNq6M5zOlvJwBwZ3Dk85A3+knHW+F2+JWss1YogZv186+ndTHXXSp37dgS1IyHsu8khFjgDmT2QOkoR7+rfjtcKwDcaQixAEzH0VVRqVKpjuNmsCoKADeHEAs4ESuFtx9H51QaUqrjAIDbHSEWwE25HVZFAQDmQ4gFcMfjNUUAYD6EWOD/uR1+tc+q6J2JWxhQFjnj9XC4sxBiAZQZPOwEAHBUOWcPAAAAACguVmKBUuLYr/b5tT4AoOTUq1dP0dHRio6OdvZQSh0hFmXS7XB/qtnxq31cC/fhoizo8OScW9pfcT6la7FYrnl8yJAhSkhIuOb5a9eu1SOPPOJwn3caQiwAAIADkg8cL1BW1Kdu09PTbX9OTEzUhAkTdOTIEVuZh4dHyQ/wDkOIBYrJGSuUrIoCgLn4+PjY/uzl5SWLxWJXFh8fr5kzZ+r48eMKCAjQK6+8okGDBkm6ekuAJD366KOSJH9/fx07dkw//vijYmJi9NVXX+nChQtq2rSppk+frm7dut26CytDCLG4I3B/KgCgrFi7dq3GjBmjuLg4devWTevXr9fTTz+tOnXqqEuXLtqzZ49q1qyppUuXqkePHnJxcZEkZWdnq1evXnr11Vfl7u6ud955R71799aRI0dUt25dJ1/VrUeIhamxQgkAMJuZM2cqIiJCUVFRkmRbXZ05c6a6dOmiGjVqSJL+8pe/2K3etmrVSq1atbLtv/rqq1q7dq0+/PBDjRw58tZeRBlAiMV1OfoAR/vj13+Aozg3xQMAcNvIz9PF71MlSYcOfKshD4Xb9iWpXaN6il/x72s2ceHCBU2ePFnr16/Xr7/+qtzcXP3+++9KS0srxYGXXYRYAIBpOPaPat6IgLLvz28vMAzjum80+Nvf/qZNmzZp5syZatCggTw8PNSnTx9dvnxnfvmMEHsbcvRX7M5YFeWzqACAO13juwK0KzlVAx7tbSv7OmWfmjZtatt3dXVVXl6e3Xnbt29XRESE7YGv7OxsHTt27JaMuSwixJoMqxAAAJhb9LAhGhT9olo3a6L7Qtprw2dfaN3mz/Tpp5/a6tSrV09btmxRp06dZLVaVaVKFTVo0EDvv/++evfuLYvFovHjxys/P9+JV+JcfHYWAADgFurdvYv+Me5vivvnMgU/0EdLEtforemTdN9999nqzJo1S0lJSfLz81ObNm0kSXPmzFGVKlXUsWNH9e7dW+Hh4Wrbtq2TrsL5WIm9g/GrfQCAmX216nm7/aI+PHAjCvuwwY2KiIhQ306t7cqeeaqvnnmqb5Hn9O7dW71797Yrq1evnj777DO7shEjRtjt30m3FxBiywgCJQAAgOMIsQAAXIOjrxnkeQTg1uKeWAAAAJgOIRYAAACmQ4gFAACA6RBiAQBAmWYYkmQ4exgoQSXxflse7AIAAGWWm5ubTp27qMoVz8m9QiXJ4lJk3UuXLpVcx/m5DlVztM+cvOuH8HIlOX4H+yyNfq/FMAxdvnxZv/32m8qVKyc3N0ffzlQQIRYAAJRZ5cqV04txn+v/Hm+loKa+Kl++6F8iHy1fcmHst8zTDtVztM/Lmb9dt46b4e5QW45ypM/S6NcRFSpUUN26dVWu3I3fFECIBQCgjOG1XvZ+O/u7XlvylbwqWlWpgpvKlbMUWu/bD8eWWJ+9xyQ6VM/RPg9O73/dOgGLvnKoLUc50mdp9Hs9Li4uKl++vCyWwufRUYRYAABQ5hmGdPZ8js6ezymyjrt7ya0o/pye5VA9R/u0nLz+F8BKcvyO9lka/d4qhFgAAHBbcOTrl9aml2/BSHAr8HYCAAAAmI7TQ+yCBQsUEBAgd3d3BQUFafv27UXWff/999W9e3fVqFFDlStXVkhIiDZt2lSg3po1axQYGCir1arAwECtXbu2NC8BAAAAt5hTbydITExUdHS0FixYoE6dOmnhwoXq2bOnDh48qLp16xao/8UXX6h79+6aNm2a/vKXv2jp0qXq3bu3vv76a7Vp00aStGvXLvXr109Tp07Vo48+qrVr16pv377asWOH7r777lt9iQAAoAwpyw/NubaIcajelf2zS3kk5uDUEDt79mwNGzZMw4cPlyTFxcVp06ZNio+P1/Tp0wvUj4uLs9ufNm2a1q1bp48++sgWYuPi4tS9e3fFxsZKkmJjY7Vt2zbFxcVp5cqVpXtBAACYVFkOd0BhnBZiL1++rOTkZI0da/9qirCwMO3cudOhNvLz83X+/HlVrVrVVrZr1y49//zzdvXCw8MLBOD/lZOTo5yc//9px6wsx55IBAAAN47gjJvhtHtiT548qby8PHl7e9uVe3t7KyMjw6E2Zs2apQsXLqhv3762soyMjGK3OX36dHl5edk2Pz+/YlwJAAAAbjWnP9j15xfdGobh0MtvV65cqUmTJikxMVE1a9a8qTZjY2N17tw523b8uGPvVQMAAIBzOO12gurVq8vFxaXACmlmZmaBldQ/S0xM1LBhw/Tee++pW7dudsd8fHyK3abVapXVai3mFQAAAMBZnLYS6+bmpqCgICUlJdmVJyUlqWPHjkWet3LlSkVERGjFihV64IEHChwPCQkp0ObmzZuv2SYAAADMxalvJ4iJidGgQYMUHByskJAQLVq0SGlpaYqMjJR09df8J06c0LJlyyRdDbCDBw/W3Llz1aFDB9uKq4eHh7y8vCRJY8aM0b333qsZM2bo4Ycf1rp16/Tpp59qx44dzrlIAAAAlDin3hPbr18/xcXFacqUKWrdurW++OILbdiwQf7+/pKk9PR0paWl2eovXLhQubm5GjFihHx9fW3bmDFjbHU6duyoVatWaenSpWrZsqUSEhKUmJjIO2IBAABuI05diZWkqKgoRUVFFXosISHBbv/zzz93qM0+ffqoT58+NzkyAAAAlFVOfzsBAAAAUFyEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACm4/T3xAIAAMB5XFvEXLfOlf2zb8FIioeVWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RQrxO7evVt5eXm2fcMw7I7n5ORo9erVJTMyAAAAoAjFCrEhISE6deqUbd/Ly0s//fSTbf/s2bPq379/yY0OAAAAKESxQuyfV17/vF9UGQAAAFCSSvyeWIvFUtJNAgAAAHZ4sAsAAACmU764Jxw8eFAZGRmSrt46cPjwYWVnZ0uSTp48WbKjAwAAAApR7BDbtWtXu/teH3zwQUlXbyMwDIPbCQAAAFDqihVijx49WlrjAAAAABxWrBDr7+9fWuMAAAAAHFasB7tOnz6tX375xa7swIEDevrpp9W3b1+tWLGi2ANYsGCBAgIC5O7urqCgIG3fvr3Iuunp6XrqqafUuHFjlStXTtHR0QXqJCQkyGKxFNguXbpU7LEBAACgbCpWiB0xYoRmz55t28/MzFRoaKj27NmjnJwcRURE6F//+pfD7SUmJio6Olrjxo1TSkqKQkND1bNnT6WlpRVaPycnRzVq1NC4cePUqlWrItutXLmy0tPT7TZ3d3fHLxQAAABlWrFC7FdffaWHHnrItr9s2TJVrVpVqampWrdunaZNm6Y333zT4fZmz56tYcOGafjw4WratKni4uLk5+en+Pj4QuvXq1dPc+fO1eDBg+Xl5VVkuxaLRT4+PnYbAAAAbh/FCrEZGRkKCAiw7X/22Wd69NFHVb781VtrH3roIX3//fcOtXX58mUlJycrLCzMrjwsLEw7d+4szrAKyM7Olr+/v+rUqaMHH3xQKSkpN9UeAAAAypZihdjKlSvr7Nmztv3du3erQ4cOtn2LxaKcnByH2jp58qTy8vLk7e1tV+7t7W17D+2NaNKkiRISEvThhx9q5cqVcnd3V6dOna4ZrnNycpSVlWW3AQAAoOwqVoht37695s2bp/z8fP373//W+fPndf/999uOf/fdd/Lz8yvWAP78Xtmbfddshw4dNHDgQLVq1UqhoaFavXq1GjVqpDfeeKPIc6ZPny4vLy/bVtxrAAAAwK1VrBA7depUrVu3Th4eHurXr59efPFFValSxXZ81apV6ty5s0NtVa9eXS4uLgVWXTMzMwuszt6McuXKqV27dtdciY2NjdW5c+ds2/Hjx0usfwAAAJS8Yr0ntnXr1jp06JB27twpHx8f3X333XbHn3zySQUGBjrUlpubm4KCgpSUlKRHH33UVp6UlKSHH364OMO6JsMwlJqaqhYtWhRZx2q1ymq1llifAAAAKF3F/uxsjRo1igyZDzzwQLHaiomJ0aBBgxQcHKyQkBAtWrRIaWlpioyMlHR1hfTEiRNatmyZ7ZzU1FRJVx/e+u2335Samio3NzdbeJ48ebI6dOighg0bKisrS/PmzVNqamqx3poAAACAsq1YIfZ/w+S1DB482KF6/fr106lTpzRlyhSlp6erefPm2rBhg+3LYOnp6QXeGdumTRvbn5OTk7VixQr5+/vr2LFjkqSzZ8/q2WefVUZGhry8vNSmTRt98cUXat++vUNjAgAAQNlXrBAbERGhihUrqnz58jIMo9A6FovF4RArSVFRUYqKiir0WEJCQoGyovr9w5w5czRnzhyH+wcAAID5FCvENm3aVP/97381cOBADR06VC1btiytcQEAAABFKtbbCQ4cOKCPP/5Yv//+u+69914FBwcrPj6e96oCAADglipWiJWku+++WwsXLlR6erpGjx6t1atXy9fXVwMGDHD4QwcAAADAzSh2iP2Dh4eHBg8erMmTJ6t9+/ZatWqVLl68WJJjAwAAAApV7FdsSdKJEyf0zjvvaOnSpbpw4YIGDhyo+Ph4uw8fAAAA3O5yDrk5WLNSqY7jTlSsELt69WotXbpU27ZtU3h4uGbNmqUHHnhALi4upTU+AAAAoIBihdgnn3xSdevW1fPPPy9vb28dO3as0I8IjB49usQGCAAAAPxZsUJs3bp1ZbFYtGLFiiLrWCwWQiwAAABKVbFC7B9fxbqWEydO3OhYAAAAAIfc8NsJ/iwjI0OjR49WgwYNSqpJAAAAoFDFCrFnz57VgAEDVKNGDdWqVUvz5s1Tfn6+JkyYoPr162vXrl1asmRJaY0VAAAAkFTM2wlefvllffHFFxoyZIg2btyo559/Xhs3btSlS5f0ySefqHPnzqU1TgAAAMCmWCH2448/1tKlS9WtWzdFRUWpQYMGatSokeLi4kppeAAAAEBBxbqd4Ndff1VgYKAkqX79+nJ3d9fw4cNLZWAAAABAUYoVYvPz8+Xq6mrbd3FxkaenZ4kPCgAAALiWYt1OYBiGIiIiZLVaJUmXLl1SZGRkgSD7/vvvl9wIAQAAgD8pVogdMmSI3f7AgQNLdDAAAACAI4oVYpcuXVpa4wAAAAAcVmIfOwAAAABuFUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANNxeohdsGCBAgIC5O7urqCgIG3fvr3Iuunp6XrqqafUuHFjlStXTtHR0YXWW7NmjQIDA2W1WhUYGKi1a9eW0ugBAADgDE4NsYmJiYqOjta4ceOUkpKi0NBQ9ezZU2lpaYXWz8nJUY0aNTRu3Di1atWq0Dq7du1Sv379NGjQIO3bt0+DBg1S37599fXXX5fmpQAAAOAWcmqInT17toYNG6bhw4eradOmiouLk5+fn+Lj4wutX69ePc2dO1eDBw+Wl5dXoXXi4uLUvXt3xcbGqkmTJoqNjVXXrl0VFxdXilcCAACAW8lpIfby5ctKTk5WWFiYXXlYWJh27tx5w+3u2rWrQJvh4eE31SYAAADKlvLO6vjkyZPKy8uTt7e3Xbm3t7cyMjJuuN2MjIxit5mTk6OcnBzbflZW1g33DwAAgNLn9Ae7LBaL3b5hGAXKSrvN6dOny8vLy7b5+fndVP8AAAAoXU4LsdWrV5eLi0uBFdLMzMwCK6nF4ePjU+w2Y2Njde7cOdt2/PjxG+4fAAAApc9pIdbNzU1BQUFKSkqyK09KSlLHjh1vuN2QkJACbW7evPmabVqtVlWuXNluAwAAQNnltHtiJSkmJkaDBg1ScHCwQkJCtGjRIqWlpSkyMlLS1RXSEydOaNmyZbZzUlNTJUnZ2dn67bfflJqaKjc3NwUGBkqSxowZo3vvvVczZszQww8/rHXr1unTTz/Vjh07bvn1AQAAoHQ4NcT269dPp06d0pQpU5Senq7mzZtrw4YN8vf3l3T14wZ/fmdsmzZtbH9OTk7WihUr5O/vr2PHjkmSOnbsqFWrVumVV17R+PHjdddddykxMVF33333LbsuAAAAlC6nhlhJioqKUlRUVKHHEhISCpQZhnHdNvv06aM+ffrc7NAAAABQRjn97QQAAABAcRFiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDpO/+wsAAAAHJdzyM3BmpVKdRzOxkosAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANNxeohdsGCBAgIC5O7urqCgIG3fvv2a9bdt26agoCC5u7urfv36euutt+yOJyQkyGKxFNguXbpUmpcBAACAW8ipITYxMVHR0dEaN26cUlJSFBoaqp49eyotLa3Q+kePHlWvXr0UGhqqlJQUvfzyyxo9erTWrFljV69y5cpKT0+329zd3W/FJQEAAOAWKO/MzmfPnq1hw4Zp+PDhkqS4uDht2rRJ8fHxmj59eoH6b731lurWrau4uDhJUtOmTfXNN99o5syZevzxx231LBaLfHx8bsk1AAAA4NZz2krs5cuXlZycrLCwMLvysLAw7dy5s9Bzdu3aVaB+eHi4vvnmG125csVWlp2dLX9/f9WpU0cPPvigUlJSrjmWnJwcZWVl2W0AAAAou5wWYk+ePKm8vDx5e3vblXt7eysjI6PQczIyMgqtn5ubq5MnT0qSmjRpooSEBH344YdauXKl3N3d1alTJ33//fdFjmX69Ony8vKybX5+fjd5dQAAAChNTn+wy2Kx2O0bhlGg7Hr1/7e8Q4cOGjhwoFq1aqXQ0FCtXr1ajRo10htvvFFkm7GxsTp37pxtO378+I1eDgAAAG4Bp90TW716dbm4uBRYdc3MzCyw2voHHx+fQuuXL19e1apVK/SccuXKqV27dtdcibVarbJarcW8AgAAADiL01Zi3dzcFBQUpKSkJLvypKQkdezYsdBzQkJCCtTfvHmzgoOD5erqWug5hmEoNTVVvr6+JTNwAAAAOJ1TbyeIiYnRP//5Ty1ZskSHDh3S888/r7S0NEVGRkq6+mv+wYMH2+pHRkbq559/VkxMjA4dOqQlS5Zo8eLFeuGFF2x1Jk+erE2bNumnn35Samqqhg0bptTUVFubAAAAMD+nvmKrX79+OnXqlKZMmaL09HQ1b95cGzZskL+/vyQpPT3d7p2xAQEB2rBhg55//nm9+eabqlWrlubNm2f3eq2zZ8/q2WefVUZGhry8vNSmTRt98cUXat++/S2/PgAAAJQOp4ZYSYqKilJUVFShxxISEgqUde7cWXv37i2yvTlz5mjOnDklNTwAAACUQU5/OwEAAABQXIRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpOD3ELliwQAEBAXJ3d1dQUJC2b99+zfrbtm1TUFCQ3N3dVb9+fb311lsF6qxZs0aBgYGyWq0KDAzU2rVrS2v4AAAAcAKnhtjExERFR0dr3LhxSklJUWhoqHr27Km0tLRC6x89elS9evVSaGioUlJS9PLLL2v06NFas2aNrc6uXbvUr18/DRo0SPv27dOgQYPUt29fff3117fqsgAAAFDKnBpiZ8+erWHDhmn48OFq2rSp4uLi5Ofnp/j4+ELrv/XWW6pbt67i4uLUtGlTDR8+XEOHDtXMmTNtdeLi4tS9e3fFxsaqSZMmio2NVdeuXRUXF3eLrgoAAAClzWkh9vLly0pOTlZYWJhdeVhYmHbu3FnoObt27SpQPzw8XN98842uXLlyzTpFtQkAAADzKe+sjk+ePKm8vDx5e3vblXt7eysjI6PQczIyMgqtn5ubq5MnT8rX17fIOkW1KUk5OTnKycmx7Z87d06SlJWVVaxruhk52YZD9bKvXL+ekZdz3TqSlFWCfTrarzP6dLTfO6VPR/u9U/p0tF/+7jq/T0f75e+R8/t0tN87pU9H+y3Tf3dvYSb6oy/DuM74DSc5ceKEIcnYuXOnXfmrr75qNG7cuNBzGjZsaEybNs2ubMeOHYYkIz093TAMw3B1dTVWrFhhV+fdd981rFZrkWOZOHGiIYmNjY2NjY2Nja2MbMePH79mlnTaSmz16tXl4uJSYIU0MzOzwErqH3x8fAqtX758eVWrVu2adYpqU5JiY2MVExNj28/Pz9fp06dVrVo1WSwWZWVlyc/PT8ePH1flypWLdZ0oe5jP2w9zevthTm8vzOftpzTn1DAMnT9/XrVq1bpmPaeFWDc3NwUFBSkpKUmPPvqorTwpKUkPP/xwoeeEhIToo48+sivbvHmzgoOD5erqaquTlJSk559/3q5Ox44dixyL1WqV1Wq1K/vLX/5SoF7lypX5j+82wnzefpjT2w9zenthPm8/pTWnXl5e163jtBArSTExMRo0aJCCg4MVEhKiRYsWKS0tTZGRkZKurpCeOHFCy5YtkyRFRkZq/vz5iomJ0TPPPKNdu3Zp8eLFWrlypa3NMWPG6N5779WMGTP08MMPa926dfr000+1Y8cOp1wjAAAASp5TQ2y/fv106tQpTZkyRenp6WrevLk2bNggf39/SVJ6errdO2MDAgK0YcMGPf/883rzzTdVq1YtzZs3T48//ritTseOHbVq1Sq98sorGj9+vO666y4lJibq7rvvvuXXBwAAgNLh1BArSVFRUYqKiir0WEJCQoGyzp07a+/evddss0+fPurTp09JDE/S1dsNJk6cWOCWA5gT83n7YU5vP8zp7YX5vP2UhTm1GMb13l8AAAAAlC1O/WIXAAAAcCMIsQAAADAdQiwAAABMhxB7HQsWLFBAQIDc3d0VFBSk7du3O3tIcMD06dPVrl07VapUSTVr1tQjjzyiI0eO2NUxDEOTJk1SrVq15OHhofvuu08HDhxw0ohRXNOnT5fFYlF0dLStjDk1nxMnTmjgwIGqVq2aKlSooNatWys5Odl2nDk1l9zcXL3yyisKCAiQh4eH6tevrylTpig/P99Whzktu7744gv17t1btWrVksVi0QcffGB33JG5y8nJ0ahRo1S9enV5enrqoYce0i+//FIq4yXEXkNiYqKio6M1btw4paSkKDQ0VD179rR77RfKpm3btmnEiBH66quvlJSUpNzcXIWFhenChQu2On//+981e/ZszZ8/X3v27JGPj4+6d++u8+fPO3HkcMSePXu0aNEitWzZ0q6cOTWXM2fOqFOnTnJ1ddUnn3yigwcPatasWXYfm2FOzWXGjBl66623NH/+fB06dEh///vf9Y9//ENvvPGGrQ5zWnZduHBBrVq10vz58ws97sjcRUdHa+3atVq1apV27Nih7OxsPfjgg8rLyyv5AV/zo7R3uPbt2xuRkZF2ZU2aNDHGjh3rpBHhRmVmZhqSjG3bthmGYRj5+fmGj4+P8frrr9vqXLp0yfDy8jLeeustZw0TDjh//rzRsGFDIykpyejcubMxZswYwzCYUzN66aWXjHvuuafI48yp+TzwwAPG0KFD7coee+wxY+DAgYZhMKdmIslYu3atbd+RuTt79qzh6upqrFq1ylbnxIkTRrly5YyNGzeW+BhZiS3C5cuXlZycrLCwMLvysLAw7dy500mjwo06d+6cJKlq1aqSpKNHjyojI8Nufq1Wqzp37sz8lnEjRozQAw88oG7dutmVM6fm8+GHHyo4OFhPPPGEatasqTZt2ujtt9+2HWdOzeeee+7Rli1b9N1330mS9u3bpx07dqhXr16SmFMzc2TukpOTdeXKFbs6tWrVUvPmzUtlfp3+sYOy6uTJk8rLy5O3t7ddube3tzIyMpw0KtwIwzAUExOje+65R82bN5ck2xwWNr8///zzLR8jHLNq1Srt3btXe/bsKXCMOTWfn376SfHx8YqJidHLL7+s3bt3a/To0bJarRo8eDBzakIvvfSSzp07pyZNmsjFxUV5eXl67bXX1L9/f0n8d2pmjsxdRkaG3NzcVKVKlQJ1SiM7EWKvw2Kx2O0bhlGgDGXbyJEj9Z///Ec7duwocIz5NY/jx49rzJgx2rx5s9zd3Yusx5yaR35+voKDgzVt2jRJUps2bXTgwAHFx8dr8ODBtnrMqXkkJibq3Xff1YoVK9SsWTOlpqYqOjpatWrV0pAhQ2z1mFPzupG5K6355XaCIlSvXl0uLi4F/uWQmZlZ4F8hKLtGjRqlDz/8UFu3blWdOnVs5T4+PpLE/JpIcnKyMjMzFRQUpPLly6t8+fLatm2b5s2bp/Lly9vmjTk1D19fXwUGBtqVNW3a1PbwLP+dms/f/vY3jR07Vk8++aRatGihQYMG6fnnn9f06dMlMadm5sjc+fj46PLlyzpz5kyRdUoSIbYIbm5uCgoKUlJSkl15UlKSOnbs6KRRwVGGYWjkyJF6//339dlnnykgIMDueEBAgHx8fOzm9/Lly9q2bRvzW0Z17dpV+/fvV2pqqm0LDg7WgAEDlJqaqvr16zOnJtOpU6cCr7777rvv5O/vL4n/Ts3o4sWLKlfOPlq4uLjYXrHFnJqXI3MXFBQkV1dXuzrp6en69ttvS2d+S/xRsdvIqlWrDFdXV2Px4sXGwYMHjejoaMPT09M4duyYs4eG63juuecMLy8v4/PPPzfS09Nt28WLF211Xn/9dcPLy8t4//33jf379xv9+/c3fH19jaysLCeOHMXxv28nMAzm1Gx2795tlC9f3njttdeM77//3li+fLlRoUIF491337XVYU7NZciQIUbt2rWN9evXG0ePHjXef/99o3r16saLL75oq8Ocll3nz583UlJSjJSUFEOSMXv2bCMlJcX4+eefDcNwbO4iIyONOnXqGJ9++qmxd+9e4/777zdatWpl5Obmlvh4CbHX8eabbxr+/v6Gm5ub0bZtW9srmlC2SSp0W7p0qa1Ofn6+MXHiRMPHx8ewWq3Gvffea+zfv995g0ax/TnEMqfm89FHHxnNmzc3rFar0aRJE2PRokV2x5lTc8nKyjLGjBlj1K1b13B3dzfq169vjBs3zsjJybHVYU7Lrq1btxb6/51DhgwxDMOxufv999+NkSNHGlWrVjU8PDyMBx980EhLSyuV8VoMwzBKfn0XAAAAKD3cEwsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAt9Dnn38ui8Wis2fPOnsotwWLxaIPPvjA2cMA4ASEWAB3hIiICFkslgLbDz/8UGp93nfffYqOjrYr69ixo9LT0+Xl5VVq/QLAnaC8swcAALdKjx49tHTpUruyGjVqFKh3+fJlubm5lcoY3Nzc5OPjUyptX0tpXhMAOAMrsQDuGFarVT4+Pnabi4uL7rvvPo0cOVIxMTGqXr26unfvLkmaPXu2WrRoIU9PT/n5+SkqKkrZ2dl2bX755Zfq3LmzKlSooCpVqig8PFxnzpxRRESEtm3bprlz59pWfY8dO1bo7QRr1qxRs2bNZLVaVa9ePc2aNcuuj3r16mnatGkaOnSoKlWqpLp162rRokXXvNairungwYPq1auXKlasKG9vbw0aNEgnT560O2/UqFGKjo5WlSpV5O3trUWLFunChQt6+umnValSJd1111365JNP7Prbtm2b2rdvL6vVKl9fX40dO1a5ubmSpIULF6p27drKz8+3O+ehhx7SkCFDbPsfffSRgoKC5O7urvr162vy5Mm2NiTp+++/17333it3d3cFBgYqKSnpmj8DALc3QiwASHrnnXdUvnx5ffnll1q4cKEkqVy5cpo3b56+/fZbvfPOO/rss8/04osv2s5JTU1V165d1axZM+3atUs7duxQ7969lZeXp7lz5yokJETPPPOM0tPTlZ6eLj8/vwL9Jicnq2/fvnryySe1f/9+TZo0SePHj1dCQoJdvVmzZik4OFgpKSmKiorSc889p8OHDxfrmtLT09W5c2e1bt1a33zzjTZu3Kj//ve/6tu3b4Hzqlevrt27d2vUqFF67rnn9MQTT6hjx47au3evwsPDNWjQIF28eFGSdOLECfXq1Uvt2rXTvn37FB8fr8WLF+vVV1+VJD3xxBM6efKktm7dauvjzJkz2rRpkwYMGCBJ2rRpkwYOHKjRo0fr4MGDWrhwoRISEvTaa69JkvLz8/XYY4/JxcVFX331ld566y299NJLjkwtgNuVAQB3gCFDhhguLi6Gp6enbevTp49hGIbRuXNno3Xr1tdtY/Xq1Ua1atVs+/379zc6depUZP3OnTsbY8aMsSvbunWrIck4c+aMYRiG8dRTTxndu3e3q/O3v/3NCAwMtO37+/sbAwcOtO3n5+cbNWvWNOLj46/Z95+vafz48UZYWJhd2fHjxw1JxpEjR2zn3XPPPbbjubm5hqenpzFo0CBbWXp6uiHJ2LVrl2EYhvHyyy8bjRs3NvLz82113nzzTaNixYpGXl6eYRiG8dBDDxlDhw61HV+4cKHh4+Nj5ObmGoZhGKGhoca0adPsxvavf/3L8PX1NQzDMDZt2mS4uLgYx48ftx3/5JNPDEnG2rVri/w5ALh9cU8sgDtGly5dFB8fb9v39PS0/Tk4OLhA/a1bt2ratGk6ePCgsrKylJubq0uXLunChQvy9PRUamqqnnjiiZsa06FDh/Twww/blXXq1ElxcXHKy8uTi4uLJKlly5a24xaLRT4+PsrMzLxm23++puTkZG3dulUVK1YsUPfHH39Uo0aNCvTl4uKiatWqqUWLFrYyb29vSbL1f+jQIYWEhMhisdhdQ3Z2tn755RfVrVtXAwYM0LPPPqsFCxbIarVq+fLlevLJJ23Xl5ycrD179thWXiUpLy9Ply5d0sWLF3Xo0CHVrVtXderUsR0PCQm55vUDuL0RYgHcMTw9PdWgQYMij/2vn3/+Wb169VJkZKSmTp2qqlWraseOHRo2bJiuXLkiSfLw8LjpMRmGYRf+/ij7M1dXV7t9i8VS4B7TP/vzNeXn56t3796aMWNGgbq+vr7X7Ot/y/4Y7x/9X+sa/ijv3bu38vPz9fHHH6tdu3bavn27Zs+ebTe2yZMn67HHHiswNnd390J/Jn/uE8CdhRALAIX45ptvlJubq1mzZqlcuauPD6xevdquTsuWLbVlyxZNnjy50Dbc3NyUl5d3zX4CAwO1Y8cOu7KdO3eqUaNGtlXKktK2bVutWbNG9erVU/nyJfc//4GBgVqzZo1dmN25c6cqVaqk2rVrS7oa+B977DEtX75cP/zwgxo1aqSgoCC7sR05cqTIf2QEBgYqLS1Nv/76q2rVqiVJ2rVrV4ldAwDz4cEuACjEXXfdpdzcXL3xxhv66aef9K9//UtvvfWWXZ3Y2Fjt2bNHUVFR+s9//qPDhw8rPj7e9rR/vXr19PXXX+vYsWM6efJkoSunf/3rX7VlyxZNnTpV3333nd555x3Nnz9fL7zwQolf04gRI3T69Gn1799fu3fv1k8//aTNmzdr6NCh1w3b1xIVFaXjx49r1KhROnz4sNatW6eJEycqJibG9g8ASRowYIA+/vhjLVmyRAMHDrRrY8KECVq2bJkmTZqkAwcO6NChQ0pMTNQrr7wiSerWrZsaN26swYMHa9++fdq+fbvGjRt3w2MGYH6EWAAoROvWrTV79mzNmDFDzZs31/LlyzV9+nS7Oo0aNdLmzZu1b98+tW/fXiEhIVq3bp1tlfOFF16Qi4uLAgMDVaNGDaWlpRXop23btlq9erVWrVql5s2ba8KECZoyZYoiIiJK/Jpq1aqlL7/8Unl5eQoPD1fz5s01ZswYeXl52YXN4qpdu7Y2bNig3bt3q1WrVoqMjNSwYcNsAfQP999/v6pWraojR47oqaeesjsWHh6u9evXKykpSe3atVOHDh00e/Zs+fv7S7r6poi1a9cqJydH7du31/Dhw+3unwVw57EYhd1oBAAAAJRhrMQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADT+f8Ax2vXXi7MHq8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHj0lEQVR4nO3de1zO9+M//sfV4bquRA2lK1RymEoOKXQQM9SyGZtDTtFbseSUtpmYQ2ziPVI55PCmZnPIPhgzQ8yhFkPK24gdsCxX7+SUmFK9vn/4ef12uSpFdfWqx/12e91uXs/X83q+ns+eOzw8e16vl0wQBAFERERERBKip+sOEBERERFVFkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBFRBclkMnz77bc6b6MmXb9+HTKZDOnp6bWyPSKqvxhiiaje8vf3h0wm0zp+//33Uuur1Wr4+PhUqO0FCxagS5cur9RGXWRlZQW1Wg1HR0cAwLFjxyCTyXDv3j3ddoyIJMdA1x0gItKlt956C3FxcRpl5ubmGueFhYWQy+VQqVSvfL+qaEPK9PX16/3PgIiqBldiiaheUygUUKlUGkffvn0xZcoUhIaGwszMDP379wegvRXgr7/+wogRI9CkSRMYGxvDxcUFP//8M+Lj4xEeHo7z58+Lq7vx8fGltnHhwgW8+eabMDIyQtOmTTFx4kTk5+eL1/39/TF48GAsW7YMlpaWaNq0KSZPnownT568cGxhYWFwdXXVKu/UqRPmz58vnsfFxcHe3h5KpRJ2dnZYs2ZNue0eP34c3bt3h0KhgKWlJWbNmoWioiLxeklJCZYuXYq2bdtCoVDA2toan3/+OQDN7QTXr19Hnz59AACNGzeGTCaDv78/Nm/ejKZNm6KgoEDjvkOGDMHYsWNfOG4iqh+4EktEVIovv/wSkyZNwk8//QRBELSu5+fno3fv3mjRogX27t0LlUqFc+fOoaSkBL6+vvjll19w4MABHD58GABgamqq1cajR4/w1ltvwdXVFWfOnEFOTg4CAwMxZcoUMfQCwNGjR2FpaYmjR4/i999/h6+vL7p06YIJEyaUO4bRo0djyZIl+OOPP9CmTRsAwMWLF3HhwgX83//9HwBgw4YNmD9/PlatWgUnJyekpaVhwoQJMDY2xrhx47TazMrKwoABA8SwefnyZUyYMAFKpRILFiwA8DQ8b9iwAStWrEDPnj2hVqtx+fJlrbasrKywc+dODBkyBFeuXIGJiQmMjIwgl8sxbdo07N27F8OGDQMA5ObmYt++fThw4EC5YyaiekQgIqqnxo0bJ+jr6wvGxsbiMXToUKF3795Cly5dtOoDEHbv3i0IgiCsW7dOaNSokXD79u1S254/f77QuXPncttYv3690LhxYyE/P1+8/v333wt6enpCdna22EcbGxuhqKhIrDNs2DDB19e3QmPs1KmTsHDhQvE8LCxM6Natm3huZWUlbN26VeMzixYtEtzc3ARBEIRr164JAIS0tDRBEARh9uzZQvv27YWSkhKx/urVq4WGDRsKxcXFQl5enqBQKIQNGzaU2p/n2zt69KgAQLh7965GvUmTJgk+Pj7ieVRUlNC6dWuN+xJR/cbtBERUr/Xp0wfp6eniERMTAwBwcXEp93Pp6elwcnJCkyZNXvreGRkZ6Ny5M4yNjcUyDw8PlJSU4MqVK2JZhw4doK+vL55bWloiJyenQvcYPXo0tmzZAgAQBAHbtm3D6NGjAQC3bt3CjRs3EBAQgIYNG4rHZ599hj/++KPMPru5uUEmk2n0OT8/H3/99RcyMjJQUFCAvn37VvwHUYoJEybg0KFDyMrKAvB0y8OzL+IREQHcTkBE9ZyxsTHatm1banl5jIyMXvnegiCUGcr+WW5oaKh1raSkpEL3GDVqFGbNmoVz587h77//xo0bNzBixAgAENvYsGEDevToofG5f4bmF/VZ+P+2W8hksir5uQCAk5MTOnfujM2bN8Pb2xsXLlzAd999VyVtE1HdwJVYIqKX0KlTJ6Snp+POnTulXpfL5SguLi63DQcHB6Snp+Phw4di2U8//QQ9PT28/vrrVdLPli1bolevXtiyZQu2bNmCfv36wcLCAgBgYWGBFi1a4OrVq2jbtq3GYWtrW2afU1JSNPYJp6SkoFGjRmjRogXatWsHIyMjHDlypEL9k8vlAFDqzyowMBBxcXHYtGkT+vXrBysrq8oOn4jqMIZYIqKXMHLkSKhUKgwePBg//fQTrl69ip07d+LkyZMAgFatWuHatWtIT09Hbm6u1jftgae/6lcqlRg3bhx++eUXHD16FFOnToWfn58YNKvC6NGjsX37dnzzzTcYM2aMxrUFCxYgIiIC0dHR+PXXX3HhwgXExcUhMjKy1LaCg4Nx48YNTJ06FZcvX8aePXswf/58hIaGQk9PD0qlEp988glmzpyJzZs3448//sCpU6ewcePGUtuzsbGBTCbDvn37cOvWLY0nM4wePRpZWVnYsGEDxo8fX2U/DyKqGxhiiYheglwux6FDh9CsWTMMGDAAHTt2xJIlS8Rfww8ZMgRvvfUW+vTpA3Nzc2zbtk2rjQYNGuDgwYO4c+cOunXrhqFDh6Jv375YtWpVlfZ12LBhuH37Nh49eoTBgwdrXAsMDMR//vMfxMfHo2PHjujduzfi4+PLXIlt0aIF9u/fj9OnT6Nz584ICgpCQEAAPv30U7HO3Llz8eGHH2LevHmwt7eHr69vmXt4W7RogfDwcMyaNQsWFhaYMmWKeM3ExARDhgxBw4YNtfpNRCQThFKeHUNERFQL9O/fH/b29uIX7oiInmGIJSKiWufOnTs4dOgQRo8ejUuXLqF9+/a67hIR1TJ8OgERkUQlJSXBx8enzOv/3F8qNV27dsXdu3exdOlSBlgiKhVXYomIJOrvv/8Wn6NamtIeHUZEVFcwxBIRERGR5Oj86QRr1qyBra0tlEolnJ2dkZSUVGbd5ORkeHh4oGnTpjAyMoKdnR1WrFihUSc+Ph4ymUzrePz4cXUPhYiIiIhqiE73xCYkJCAkJARr1qyBh4cH1q1bBx8fH1y6dAnW1tZa9Y2NjTFlyhR06tQJxsbGSE5OxgcffABjY2NMnDhRrGdiYqLxykYAUCqV1T4eIiIiIqoZOt1O0KNHD3Tt2hWxsbFimb29PQYPHoyIiIgKtfH+++/D2NgYX331FYCnK7EhISG4d+/eS/erpKQEN2/eRKNGjfiebiIiIqIaJAgCHjx4gObNm0NPr+xNAzpbiS0sLERqaipmzZqlUe7l5YWUlJQKtZGWloaUlBR89tlnGuX5+fmwsbFBcXExunTpgkWLFsHJyanCfbt58yZfb0hERESkQzdu3EDLli3LvK6zEJubm4vi4mKtVytaWFggOzu73M+2bNkSt27dQlFRERYsWIDAwEDxmp2dnfjmmby8PERHR8PDwwPnz59Hu3btSm2voKBA45WQzxanb9y4ARMTk5cdIhERERFVUl5eHqysrNCoUaNy6+n8ObHP/7peEIQX/go/KSkJ+fn5OHXqFGbNmoW2bdti5MiRAABXV1e4urqKdT08PNC1a1esXLmyzDe+REREIDw8XKvcxMSEIZaIiIhIB16UB3UWYs3MzKCvr6+16pqTk6O1Ovu8Z+/07tixI/73v/9hwYIFYoh9np6eHrp164bffvutzPbCwsIQGhoqnj/7GwARERER1U46e8SWXC6Hs7MzEhMTNcoTExPh7u5e4XYEQdDYClDa9fT0dFhaWpZZR6FQiKuuXH0lIiIiqv10up0gNDQUfn5+cHFxgZubG9avX4/MzEwEBQUBeLpCmpWVhc2bNwMAVq9eDWtra9jZ2QF4+tzYZcuWYerUqWKb4eHhcHV1Rbt27ZCXl4eYmBikp6dj9erVNT9AIiIiIqoWOg2xvr6+uH37NhYuXAi1Wg1HR0fs378fNjY2AAC1Wo3MzEyxfklJCcLCwnDt2jUYGBigTZs2WLJkCT744AOxzr179zBx4kRkZ2fD1NQUTk5OOHHiBLp3717l/S8uLsaTJ0+qvF2qWYaGhtDX19d1N4iIiKgS+NrZUuTl5cHU1BT3798vdWuBIAjIzs5+pWfRUu3y2muvQaVS8bnAREREOvaiHPaMzp9OIEXPAmyzZs3QoEEDBh8JEwQBjx49Qk5ODgCUu3eaiIiIag+G2EoqLi4WA2zTpk113R2qAkZGRgCePhmjWbNm3FpAREQkATp7OoFUPdsD26BBAx33hKrSs/nkHmciIiJpYIh9SdxCULdwPomIiKSFIZaIiIiIJId7YqnCrl+/DltbW6SlpaFLly667o4Gf39/3Lt3D99++62uu0JERFQrpA2o2Hd3nPbfruaeVA+G2CpUkCGv0fsp7AsrVd/f3x9ffvmlVrm3tzcOHDjwws9bWVlBrVbDzMzshXVrOvBGR0eDT4sjIiKqPxhi65m33noLcXFxGmUKhaJCn9XX14dKpaqObr0yU1NTXXeBiIiIahD3xNYzCoUCKpVK42jcuDGAp19uio2NhY+PD4yMjGBra4tvvvlG/Oz169chk8mQnp4OALh79y5Gjx4Nc3NzGBkZoV27dmJAtrW1BQA4OTlBJpPhjTfeENuJi4uDvb09lEol7OzssGbNGq177NixA56enjAyMkK3bt3w66+/4syZM3BxcUHDhg3x1ltv4datW+Ln/P39MXjwYPG8pKQES5cuRdu2baFQKGBtbY3PP/+8qn+cREREpCNciSUNc+fOxZIlSxAdHY2vvvoKI0eOhKOjI+zt7Uute+nSJfzwww8wMzPD77//jr///hsAcPr0aXTv3h2HDx9Ghw4dIJc/3WqxYcMGzJ8/H6tWrYKTkxPS0tIwYcIEGBsbY9y4cWLb8+fPR1RUFKytrTF+/HiMHDkSJiYmiI6ORoMGDTB8+HDMmzcPsbGxpY4jLCwMGzZswIoVK9CzZ0+o1Wpcvny5Gn5iREREpAsMsfXMvn370LBhQ42yTz75BHPnzgUADBs2DIGBgQCARYsWITExEStXrtRYLX0mMzMTTk5OcHFxAQC0atVKvGZubg4AaNq0qcYWhEWLFmH58uV4//33ATxdsb106RLWrVunEWI/+ugjeHt7AwCmT5+OkSNH4siRI/Dw8AAABAQEID4+vtQxPnjwANHR0Vi1apXYZps2bdCzZ8+K/ZCIiIio1mOIrWf69OmjtXrZpEkT8c9ubm4a19zc3MTtA8+bNGkShgwZgnPnzsHLywuDBw+Gu7t7mfe+desWbty4gYCAAEyYMEEsLyoq0trT2qlTJ/HPFhYWAICOHTtqlD17VezzMjIyUFBQgL59+5bZFyIiIpI2hth6xtjYGG3btq3UZ8p6EYCPjw/+/PNPfP/99zh8+DD69u2LyZMnY9myZaXWLykpAfB0S0GPHj00rj3/qldDQ0Ot+z9f9qy95z17jSwRERHVXfxiF2k4deqU1rmdnV2Z9c3NzeHv74+vv/4aUVFRWL9+PQCIe2CLi4vFuhYWFmjRogWuXr2Ktm3bahzPvghWFdq1awcjIyMcOXKkytokIiKi2oUrsfVMQUEBsrOzNcoMDAzEZ79+8803cHFxQc+ePbFlyxacPn0aGzduLLWtefPmwdnZGR06dEBBQQH27dsnfgGsWbNmMDIywoEDB9CyZUsolUqYmppiwYIFmDZtGkxMTODj44OCggKcPXsWd+/eRWhoaJWMUalU4pNPPsHMmTMhl8vh4eGBW7du4eLFiwgICKiSexAREZFuMcTWMwcOHIClpaVGWfv27cVv7oeHh2P79u0IDg6GSqXCli1b4ODgUGpbcrkcYWFhuH79OoyMjODp6Ynt27cDeBqMY2JisHDhQsybNw+enp44duwYAgMD0aBBA3zxxReYOXMmjI2N0bFjR4SEhFTpOOfOnQsDAwPMmzcPN2/ehKWlJYKCgqr0HkRERKQ7MoGvOdKSl5cHU1NT3L9/HyYmJhrXHj9+jGvXrsHW1hZKpVJHPaweMpkMu3fv1njean1Rl+eViIjqJ6m+dra8HPZP3BNLRERERJLDEEtEREREksM9sSTizhIiIiKSCq7EEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5Og8xK5Zs0Z8S5KzszOSkpLKrJucnAwPDw80bdoURkZGsLOzw4oVK7Tq7dy5Ew4ODlAoFHBwcMDu3burcwh1xrFjxyCTyXDv3j1dd6VMCxYsQJcuXXTdDSIiItIxnT4nNiEhASEhIVizZg08PDywbt06+Pj44NKlS7C2ttaqb2xsjClTpqBTp04wNjZGcnIyPvjgAxgbG2PixIkAgJMnT8LX1xeLFi3Ce++9h927d2P48OFITk5Gjx49qnU8FX29W1V52dfEpaSkwNPTE/3798eBAwequFeajh07hj59+uDu3bt47bXXXrm9jz76CFOnTn31jhEREZGk6XQlNjIyEgEBAQgMDIS9vT2ioqJgZWWF2NjYUus7OTlh5MiR6NChA1q1aoUxY8bA29tbY/U2KioK/fv3R1hYGOzs7BAWFoa+ffsiKiqqhkZV+23atAlTp05FcnIyMjMzdd2dChEEAUVFRWjYsCGaNq3ZvywQERFR7aOzEFtYWIjU1FR4eXlplHt5eSElJaVCbaSlpSElJQW9e/cWy06ePKnVpre3d7ltFhQUIC8vT+Ooqx4+fIgdO3Zg0qRJeOeddxAfH19u/ZSUFPTq1QtGRkawsrLCtGnT8PDhQ/H6119/DRcXFzRq1AgqlQqjRo1CTk4OAOD69evo06cPAKBx48aQyWTw9/cH8PRnPm3aNDRr1gxKpRI9e/bEmTNnxHafbW04ePAgXFxcoFAokJSUVOp2gk2bNqFDhw5QKBSwtLTElClTXv0HRURERLWazkJsbm4uiouLYWFhoVFuYWGB7Ozscj/bsmVLKBQKuLi4YPLkyQgMDBSvZWdnV7rNiIgImJqaioeVldVLjEgaEhIS0L59e7Rv3x5jxoxBXFxcma+bvXDhAry9vfH+++/jv//9LxISEpCcnKwREgsLC7Fo0SKcP38e3377La5duyYGVSsrK+zcuRMAcOXKFajVakRHRwMAZs6ciZ07d+LLL7/EuXPn0LZtW3h7e+POnTsafZg5cyYiIiKQkZGBTp06afUxNjYWkydPxsSJE3HhwgXs3bsXbdu2rYofFREREdViOt0TCwAymUzjXBAErbLnJSUlIT8/H6dOncKsWbPQtm1bjBw58qXbDAsLQ2hoqHiel5dXZ4Psxo0bMWbMGADAW2+9hfz8fBw5cgT9+vXTqvvFF19g1KhRCAkJAQC0a9cOMTEx6N27N2JjY6FUKjF+/HixfuvWrRETE4Pu3bsjPz8fDRs2RJMmTQAAzZo1E/fEPnz4ELGxsYiPj4ePjw8AYMOGDUhMTMTGjRvx8ccfi20uXLgQ/fv3L3M8n332GT788ENMnz5dLOvWrdvL/XCIiIh0yLBj6IsrAXhyIbKaeyINOguxZmZm0NfX11ohzcnJ0VpJfZ6trS0AoGPHjvjf//6HBQsWiCFWpVJVuk2FQgGFQvEyw5CUK1eu4PTp09i1axcAwMDAAL6+vti0aVOpITY1NRW///47tmzZIpYJgoCSkhJcu3YN9vb2SEtLw4IFC5Ceno47d+6gpKQEAJCZmQkHB4dS+/HHH3/gyZMn8PDwEMsMDQ3RvXt3ZGRkaNR1cXEpczw5OTm4efMm+vbtW/EfAhEREdUJOguxcrkczs7OSExMxHvvvSeWJyYmYtCgQRVuRxAEFBQUiOdubm5ITEzEjBkzxLJDhw7B3d29ajouYRs3bkRRURFatGghlgmCAENDQ9y9e1erfklJCT744ANMmzZN65q1tTUePnwILy8veHl54euvv4a5uTkyMzPh7e2NwsLCMvvxbPtCRVbMjY2Ny2zHyMiozGtERERUt+l0O0FoaCj8/Pzg4uICNzc3rF+/HpmZmQgKCgLw9Nf8WVlZ2Lx5MwBg9erVsLa2hp2dHYCnz41dtmyZxiOXpk+fjl69emHp0qUYNGgQ9uzZg8OHDyM5ObnmB1iLFBUVYfPmzVi+fLnWF9+GDBmCLVu2wNHRUaO8a9euuHjxYpl7TC9cuIDc3FwsWbJE3H5x9uxZjTpyuRwAUFxcLJa1bdsWcrkcycnJGDVqFADgyZMnOHv2rLh1oSIaNWqEVq1a4ciRI+IXyIiIiKoCf7Vf++k0xPr6+uL27dtYuHAh1Go1HB0dsX//ftjY2AAA1Gq1xiOgSkpKEBYWhmvXrsHAwABt2rTBkiVL8MEHH4h13N3dsX37dnz66aeYO3cu2rRpg4SEhGp/Rmxtt2/fPty9excBAQEwNTXVuDZ06FBs3LhR68URn3zyCVxdXTF58mRMmDABxsbGyMjIQGJiIlauXAlra2vI5XKsXLkSQUFB+OWXX7Bo0SKNNmxsbCCTybBv3z4MGDAARkZGaNiwISZNmoSPP/4YTZo0gbW1Nf7973/j0aNHCAgIqNS4FixYgKCgIDRr1gw+Pj548OABfvrpJz5LloiIqI7T+Re7goODERwcXOq15x//NHXq1AqFk6FDh2Lo0KFV0b06Y+PGjejXr59WgAWersQuXrwY586d0yjv1KkTjh8/jjlz5sDT0xOCIKBNmzbw9fUFAJibmyM+Ph6zZ89GTEwMunbtimXLluHdd98V22jRogXCw8Mxa9Ys/Otf/8LYsWMRHx+PJUuWoKSkBH5+fnjw4AFcXFxw8OBBNG7cuFLjGjduHB4/fowVK1bgo48+gpmZGeeeiKiO4aoolUYmlPV8pXosLy8PpqamuH//PkxMTDSuPX78GNeuXRNflUt1A+eViKj20kWIrQv3rOibRF/2DaDVpbwc9k86X4klIiIiIt2pSHiujavcOn3tLBERERHRy2CIJSIiIiLJ4XYCIiIiqjB+yYpqC67EEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxFK1atWqFaKionTdDSIiIqpj+IitKlTRx45Ulco8vkQmk5V7fdy4cYiPjy/387t378bgwYMrfE8iIqpeUn3TElFVYIitJ9RqtfjnhIQEzJs3D1euXBHLjIyMdNEtIiIiopfC7QT1hEqlEg9TU1PIZDKNsq1bt6JNmzaQy+Vo3749vvrqK/GzrVq1AgC89957kMlk4vkff/yBQYMGwcLCAg0bNkS3bt1w+PBhHYyOiIiI6huGWMLu3bsxffp0fPjhh/jll1/wwQcf4F//+heOHj0KADhz5gwAIC4uDmq1WjzPz8/HgAEDcPjwYaSlpcHb2xsDBw5EZmamzsZCRERE9QO3ExCWLVsGf39/BAcHAwBCQ0Nx6tQpLFu2DH369IG5uTkA4LXXXoNKpRI/17lzZ3Tu3Fk8/+yzz7B7927s3bsXU6ZMqdlBEBERUb3CEEvIyMjAxIkTNco8PDwQHR1d7ucePnyI8PBw7Nu3Dzdv3kRRURH+/vtvrsQSUb3EL1kR1SyGWAKg/fQCQRBe+ESDjz/+GAcPHsSyZcvQtm1bGBkZYejQoSgsLKzOrhIRERFxTywB9vb2SE5O1ihLSUmBvb29eG5oaIji4mKNOklJSfD398d7772Hjh07QqVS4fr16zXRZSIiIqrnuBJL+PjjjzF8+HB07doVffv2xXfffYddu3ZpPGmgVatWOHLkCDw8PKBQKNC4cWO0bdsWu3btwsCBAyGTyTB37lyUlJTocCRERERUX3AlljB48GBER0fjiy++QIcOHbBu3TrExcXhjTfeEOssX74ciYmJsLKygpOTEwBgxYoVaNy4Mdzd3TFw4EB4e3uja9euOhoFERER1Sdcia1CUtmw7+/vD39/f42ySZMmYdKkSWV+ZuDAgRg4cKBGWatWrfDjjz9qlE2ePFnjnNsLiKimVfTtiVL5bzYRlY4rsUREREQkOVyJJSIiIqpmaQOaVqDWuGrvR13ClVgiIiIikhydh9g1a9bA1tYWSqUSzs7OSEpKKrPurl270L9/f5ibm8PExARubm44ePCgRp34+HjIZDKt4/Hjx9U9FCIiIiKqITrdTpCQkICQkBCsWbMGHh4eWLduHXx8fHDp0iVYW1tr1T9x4gT69++PxYsX47XXXkNcXBwGDhyIn3/+WfzGPACYmJjgypUrGp9VKpXVPh4iItLEL1kRUXXRaYiNjIxEQEAAAgMDAQBRUVE4ePAgYmNjERERoVU/KipK43zx4sXYs2cPvvvuO40QK5PJoFKpqrXvfB5q3cL5JCIikhadhdjCwkKkpqZi1qxZGuVeXl5ISUmpUBslJSV48OABmjRpolGen58PGxsbFBcXo0uXLli0aJFGyH0Vcrkcenp6uHnzJszNzSGXy1/4elaqvQRBQGFhIW7dugU9PT3I5XJdd4mo2nBVlIjqEp2F2NzcXBQXF8PCwkKj3MLCAtnZ2RVqY/ny5Xj48CGGDx8ultnZ2SE+Ph4dO3ZEXl4eoqOj4eHhgfPnz6Ndu3altlNQUICCggLxPC8vr8x76unpwdbWFmq1Gjdv3qxQP6n2a9CgAaytraGnp/Nt4kRERFQBOn/E1vOrmIIgVGhlc9u2bViwYAH27NmDZs2aieWurq5wdXUVzz08PNC1a1esXLkSMTExpbYVERGB8PDwCvdZLpfD2toaRUVFKC4urvDnqHbS19eHgYEBV9SrWUUeL+O0/3aN37M67ktERNVPZyHWzMwM+vr6WquuOTk5Wquzz0tISEBAQAC++eYb9OvXr9y6enp66NatG3777bcy64SFhSE09P//NVteXh6srKzKbVcmk8HQ0BCGhobl1iOqjXQRKOuLigbn7jcq9jxI/mqfiKh0OvvdqVwuh7OzMxITEzXKExMT4e7uXubntm3bBn9/f2zduhVvv/32C+8jCALS09NhaWlZZh2FQgETExONg4iIiIhqL51uJwgNDYWfnx9cXFzg5uaG9evXIzMzE0FBQQCerpBmZWVh8+bNAJ4G2LFjxyI6Ohqurq7iKq6RkRFMTU0BAOHh4XB1dUW7du2Ql5eHmJgYpKenY/Xq1boZJBFRNavo6i/fBkREdYlOQ6yvry9u376NhQsXQq1Ww9HREfv374eNjQ0AQK1WIzMzU6y/bt06FBUVYfLkyZg8ebJYPm7cOMTHxwMA7t27h4kTJyI7OxumpqZwcnLCiRMn0L179xodG1FFcM9m7VCRb+3z1/pERLWLzr/YFRwcjODg4FKvPQumzxw7duyF7a1YsQIrVqyogp4RERERUW2l8xBLVFtwVVT3+BxT6eAWBiLSNT4Uk4iIiIgkhyuxRFQqrooSEVFtxpVYIiIiIpIcrsRSrcT9qZq4Kkr0VMX+28B9uET1AVdiiYiIiEhyuBJLL8RVUU1cFSUiItI9hliqUQUZ8grWbKSD+0r/nkRERPUFQ2w9pqtAWZUquiqav6OaO1JL1IU5Japt+ExcotqJIVZiKvIfU139Wr8igbK+hEkiIqqd+JeSuoMhtpaoyhU0rk5STeLqLxER6QKfTkBEREREksOVWCKSHK7+EhERQywRUQUwOFNN4r5NohfjdgIiIiIikhyuxBIR1WJ83jDVZVxxplfBEEtERBoYnOsnBkqSGm4nICIiIiLJYYglIiIiIsnhdgIiItI5Pv2BiCqLK7FEREREJDlciSUionqJq79E0saVWCIiIiKSHIZYIiIiIpIchlgiIiIikhzuiSUiIqoh3IdLVHV0vhK7Zs0a2NraQqlUwtnZGUlJSWXW3bVrF/r37w9zc3OYmJjAzc0NBw8e1Kq3c+dOODg4QKFQwMHBAbt3767OIRARERFRDdNpiE1ISEBISAjmzJmDtLQ0eHp6wsfHB5mZmaXWP3HiBPr374/9+/cjNTUVffr0wcCBA5GWlibWOXnyJHx9feHn54fz58/Dz88Pw4cPx88//1xTwyIiIiKiaqbTEBsZGYmAgAAEBgbC3t4eUVFRsLKyQmxsbKn1o6KiMHPmTHTr1g3t2rXD4sWL0a5dO3z33Xcadfr374+wsDDY2dkhLCwMffv2RVRUVA2NioiIiIiqm85CbGFhIVJTU+Hl5aVR7uXlhZSUlAq1UVJSggcPHqBJkyZi2cmTJ7Xa9Pb2LrfNgoIC5OXlaRxEREREVHvp7Itdubm5KC4uhoWFhUa5hYUFsrOzK9TG8uXL8fDhQwwfPlwsy87OrnSbERERCA8Pr0TviYiIpIFfJqO6Sudf7JLJZBrngiBolZVm27ZtWLBgARISEtCsWbNXajMsLAz3798Xjxs3blRiBERERERU0yoVYk+fPo3i4mLxXBAEjesFBQXYsWNHhdoyMzODvr6+1gppTk6O1krq8xISEhAQEIAdO3agX79+GtdUKlWl21QoFDAxMdE4iIiIiKj2qlSIdXNzw+3bt8VzU1NTXL16VTy/d+8eRo4cWaG25HI5nJ2dkZiYqFGemJgId3f3Mj+3bds2+Pv7Y+vWrXj77bdL7ePzbR46dKjcNomIiIhIWiq1J/b5ldfnz8sqK0toaCj8/Pzg4uICNzc3rF+/HpmZmQgKCgLw9Nf8WVlZ2Lx5M4CnAXbs2LGIjo6Gq6uruOJqZGQEU1NTAMD06dPRq1cvLF26FIMGDcKePXtw+PBhJCcnV2aoRERERFSLVfme2IrsZ33G19cXUVFRWLhwIbp06YITJ05g//79sLGxAQCo1WqNZ8auW7cORUVFmDx5MiwtLcVj+vTpYh13d3ds374dcXFx6NSpE+Lj45GQkIAePXpU3SCJiIiISKd0/trZ4OBgBAcHl3otPj5e4/zYsWMVanPo0KEYOnToK/aMiIiIiGqrSofYS5cuib/GFwQBly9fRn5+PoCnj80iIiIiIqpulQ6xffv21dj3+s477wB4uo2goo/HIiIiIiJ6FZUKsdeuXauufhARERERVVilQuyzL1wREREREelSpULsnTt38OjRI7Rs2VIsu3jxIpYtW4aHDx9i8ODBGDVqVJV3koiIiKSlYq+75atu6eVV6hFbkydPRmRkpHiek5MDT09PnDlzBgUFBfD398dXX31V5Z0kIiIiIvqnSoXYU6dO4d133xXPN2/ejCZNmiA9PR179uzB4sWLsXr16irvJBERERHRP1UqxGZnZ8PW1lY8//HHH/Hee+/BwODproR3330Xv/32W9X2kIiIiIjoOZUKsSYmJrh37554fvr0abi6uornMpkMBQUFVdY5IiIiIqLSVCrEdu/eHTExMSgpKcH//d//4cGDB3jzzTfF67/++iusrKyqvJNERERERP9UqacTLFq0CP369cPXX3+NoqIizJ49G40bNxavb9++Hb17967yThIRERER/VOlQmyXLl2QkZGBlJQUqFQq9OjRQ+P6iBEj4ODgUKUdJCIiIiJ6XqVfO2tubo5BgwaVeu3tt99+5Q4REREREb1IpULs5s2bK1Rv7NixL9UZIiIiIqKKqFSI9ff3R8OGDWFgYABBEEqtI5PJGGKJiIiIqFpVKsTa29vjf//7H8aMGYPx48ejU6dO1dUvIiIiIqIyVeoRWxcvXsT333+Pv//+G7169YKLiwtiY2ORl5dXXf0jIiIiItJSqRALAD169MC6deugVqsxbdo07NixA5aWlhg9ejRfdEBERERENaLSTyd4xsjICGPHjkWrVq0wf/58bN++HatWrYJCoajK/hERERFVSEGGvAK1GlV7P6hmVHolFgCysrKwePFitGvXDiNGjEC3bt1w8eJFjRcfEBERERFVl0qtxO7YsQNxcXE4fvw4vL29sXz5crz99tvQ19evrv4REREREWmpVIgdMWIErK2tMWPGDFhYWOD69etYvXq1Vr1p06ZVWQeJiIiIiJ5XqRBrbW0NmUyGrVu3lllHJpMxxBIRERFRtapUiL1+/foL62RlZb1sX4iIiIiIKuSlvthVmuzsbEybNg1t27atqiaJiIiIiEpVqRB77949jB49Gubm5mjevDliYmJQUlKCefPmoXXr1jh58iQ2bdpUqQ6sWbMGtra2UCqVcHZ2RlJSUpl11Wo1Ro0ahfbt20NPTw8hISFadeLj4yGTybSOx48fV6pfRERERFR7VSrEzp49GydOnMC4cePQpEkTzJgxA++88w6Sk5Pxww8/4MyZMxg5cmSF20tISEBISAjmzJmDtLQ0eHp6wsfHB5mZmaXWLygogLm5OebMmYPOnTuX2a6JiQnUarXGoVQqKzNUIiIiIqrFKhViv//+e8TFxWHZsmXYu3cvBEHA66+/jh9//BG9e/eu9M0jIyMREBCAwMBA2NvbIyoqClZWVoiNjS21fqtWrRAdHY2xY8fC1NS0zHZlMhlUKpXGQURERER1R6VC7M2bN+Hg4AAAaN26NZRKJQIDA1/qxoWFhUhNTYWXl5dGuZeXF1JSUl6qzWfy8/NhY2ODli1b4p133kFaWtortUdEREREtUulQmxJSQkMDQ3Fc319fRgbG7/UjXNzc1FcXAwLCwuNcgsLC2RnZ79UmwBgZ2eH+Ph47N27F9u2bYNSqYSHhwd+++23Mj9TUFCAvLw8jYOIiIiIaq9KPWJLEAT4+/tDoVAAAB4/foygoCCtILtr164KtymTybTu8XxZZbi6usLV1VU89/DwQNeuXbFy5UrExMSU+pmIiAiEh4e/9D2JiIiIqGZVKsSOGzdO43zMmDEvfWMzMzPo6+trrbrm5ORorc6+Cj09PXTr1q3cldiwsDCEhoaK53l5ebCysqqyPhARERFR1apUiI2Li6uyG8vlcjg7OyMxMRHvvfeeWJ6YmIhBgwZV2X0EQUB6ejo6duxYZh2FQiGuLhMRERFR7VepEFvVQkND4efnBxcXF7i5uWH9+vXIzMxEUFAQgKcrpFlZWdi8ebP4mfT0dABPv7x169YtpKenQy6Xi184Cw8Ph6urK9q1a4e8vDzExMQgPT0dq1evrvHxEREREVH10GmI9fX1xe3bt7Fw4UKo1Wo4Ojpi//79sLGxAfD05QbPPzPWyclJ/HNqaiq2bt0KGxsb8ZW49+7dw8SJE5GdnQ1TU1M4OTnhxIkT6N69e42Ni4iIiIiql05DLAAEBwcjODi41Gvx8fFaZYIglNveihUrsGLFiqroGhERERHVUpV6xBYRERERUW3AEEtEREREksMQS0RERESSwxBLRERERJKj8y92EREREUlVQYa8gjUbVWs/6iOuxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeToPMSuWbMGtra2UCqVcHZ2RlJSUpl11Wo1Ro0ahfbt20NPTw8hISGl1tu5cyccHBygUCjg4OCA3bt3V1PviYiIiEgXdBpiExISEBISgjlz5iAtLQ2enp7w8fFBZmZmqfULCgpgbm6OOXPmoHPnzqXWOXnyJHx9feHn54fz58/Dz88Pw4cPx88//1ydQyEiIiKiGqTTEBsZGYmAgAAEBgbC3t4eUVFRsLKyQmxsbKn1W7VqhejoaIwdOxampqal1omKikL//v0RFhYGOzs7hIWFoW/fvoiKiqrGkRARERFRTdJZiC0sLERqaiq8vLw0yr28vJCSkvLS7Z48eVKrTW9v71dqk4iIiIhqFwNd3Tg3NxfFxcWwsLDQKLewsEB2dvZLt5udnV3pNgsKClBQUCCe5+XlvfT9iYiIiKj66fyLXTKZTONcEAStsupuMyIiAqampuJhZWX1SvcnIiIiouqls5VYMzMz6Ovra62Q5uTkaK2kVoZKpap0m2FhYQgNDRXP8/LyGGSJiIioVirIkFewZqNq7Yeu6WwlVi6Xw9nZGYmJiRrliYmJcHd3f+l23dzctNo8dOhQuW0qFAqYmJhoHERERERUe+lsJRYAQkND4efnBxcXF7i5uWH9+vXIzMxEUFAQgKcrpFlZWdi8ebP4mfT0dABAfn4+bt26hfT0dMjlcjg4OAAApk+fjl69emHp0qUYNGgQ9uzZg8OHDyM5ObnGx0dERERE1UOnIdbX1xe3b9/GwoULoVar4ejoiP3798PGxgbA05cbPP/MWCcnJ/HPqamp2Lp1K2xsbHD9+nUAgLu7O7Zv345PP/0Uc+fORZs2bZCQkIAePXrU2LiIiIiIqHrpNMQCQHBwMIKDg0u9Fh8fr1UmCMIL2xw6dCiGDh36ql0jIiIiolpK508nICIiIiKqLIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIcnYfYNWvWwNbWFkqlEs7OzkhKSiq3/vHjx+Hs7AylUonWrVtj7dq1Gtfj4+Mhk8m0jsePH1fnMIiIiIioBuk0xCYkJCAkJARz5sxBWloaPD094ePjg8zMzFLrX7t2DQMGDICnpyfS0tIwe/ZsTJs2DTt37tSoZ2JiArVarXEolcqaGBIRERER1QADXd48MjISAQEBCAwMBABERUXh4MGDiI2NRUREhFb9tWvXwtraGlFRUQAAe3t7nD17FsuWLcOQIUPEejKZDCqVqkbGQEREREQ1T2crsYWFhUhNTYWXl5dGuZeXF1JSUkr9zMmTJ7Xqe3t74+zZs3jy5IlYlp+fDxsbG7Rs2RLvvPMO0tLSyu1LQUEB8vLyNA4iIiIiqr10FmJzc3NRXFwMCwsLjXILCwtkZ2eX+pns7OxS6xcVFSE3NxcAYGdnh/j4eOzduxfbtm2DUqmEh4cHfvvttzL7EhERAVNTU/GwsrJ6xdERERERUXXS+Re7ZDKZxrkgCFplL6r/z3JXV1eMGTMGnTt3hqenJ3bs2IHXX38dK1euLLPNsLAw3L9/Xzxu3LjxssMhIiIiohqgsz2xZmZm0NfX11p1zcnJ0VptfUalUpVa38DAAE2bNi31M3p6eujWrVu5K7EKhQIKhaKSIyAiIiIiXdHZSqxcLoezszMSExM1yhMTE+Hu7l7qZ9zc3LTqHzp0CC4uLjA0NCz1M4IgID09HZaWllXTcSIiIiLSOZ1uJwgNDcV//vMfbNq0CRkZGZgxYwYyMzMRFBQE4Omv+ceOHSvWDwoKwp9//onQ0FBkZGRg06ZN2LhxIz766COxTnh4OA4ePIirV68iPT0dAQEBSE9PF9skIiIiIunT6SO2fH19cfv2bSxcuBBqtRqOjo7Yv38/bGxsAABqtVrjmbG2trbYv38/ZsyYgdWrV6N58+aIiYnReLzWvXv3MHHiRGRnZ8PU1BROTk44ceIEunfvXuPjIyIiIqLqodMQCwDBwcEIDg4u9Vp8fLxWWe/evXHu3Lky21uxYgVWrFhRVd0jIiIiolpI508nICIiIiKqLIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHJ2H2DVr1sDW1hZKpRLOzs5ISkoqt/7x48fh7OwMpVKJ1q1bY+3atVp1du7cCQcHBygUCjg4OGD37t3V1X0iIiIi0gGdhtiEhASEhIRgzpw5SEtLg6enJ3x8fJCZmVlq/WvXrmHAgAHw9PREWloaZs+ejWnTpmHnzp1inZMnT8LX1xd+fn44f/48/Pz8MHz4cPz88881NSwiIiIiqmY6DbGRkZEICAhAYGAg7O3tERUVBSsrK8TGxpZaf+3atbC2tkZUVBTs7e0RGBiI8ePHY9myZWKdqKgo9O/fH2FhYbCzs0NYWBj69u2LqKioGhoVEREREVU3nYXYwsJCpKamwsvLS6Pcy8sLKSkppX7m5MmTWvW9vb1x9uxZPHnypNw6ZbVJRERERNJjoKsb5+bmori4GBYWFhrlFhYWyM7OLvUz2dnZpdYvKipCbm4uLC0ty6xTVpsAUFBQgIKCAvH8/v37AIC8vLxKjelVFOQLFaqX/+TF9YTighfWAYC8KrxnRe+ri3tW9L715Z4VvW99uWdF78t/dnV/z4rel/8c6f6eFb1vfblnRe9bq//ZrcFM9OxegvCC/gs6kpWVJQAQUlJSNMo/++wzoX379qV+pl27dsLixYs1ypKTkwUAglqtFgRBEAwNDYWtW7dq1Pn6668FhUJRZl/mz58vAODBgwcPHjx48OBRS44bN26UmyV1thJrZmYGfX19rRXSnJwcrZXUZ1QqVan1DQwM0LRp03LrlNUmAISFhSE0NFQ8LykpwZ07d9C0aVPIZDLk5eXBysoKN27cgImJSaXGSbUP57Pu4ZzWPZzTuoXzWfdU55wKgoAHDx6gefPm5dbTWYiVy+VwdnZGYmIi3nvvPbE8MTERgwYNKvUzbm5u+O677zTKDh06BBcXFxgaGop1EhMTMWPGDI067u7uZfZFoVBAoVBolL322mta9UxMTPgvXx3C+ax7OKd1D+e0buF81j3VNaempqYvrKOzEAsAoaGh8PPzg4uLC9zc3LB+/XpkZmYiKCgIwNMV0qysLGzevBkAEBQUhFWrViE0NBQTJkzAyZMnsXHjRmzbtk1sc/r06ejVqxeWLl2KQYMGYc+ePTh8+DCSk5N1MkYiIiIiqno6DbG+vr64ffs2Fi5cCLVaDUdHR+zfvx82NjYAALVarfHMWFtbW+zfvx8zZszA6tWr0bx5c8TExGDIkCFiHXd3d2zfvh2ffvop5s6dizZt2iAhIQE9evSo8fERERERUfXQaYgFgODgYAQHB5d6LT4+Xqusd+/eOHfuXLltDh06FEOHDq2K7gF4ut1g/vz5WlsOSJo4n3UP57Tu4ZzWLZzPuqc2zKlMEF70/AIiIiIiotpFp2/sIiIiIiJ6GQyxRERERCQ5DLFEREREJDkMsS+wZs0a2NraQqlUwtnZGUlJSbruElVAREQEunXrhkaNGqFZs2YYPHgwrly5olFHEAQsWLAAzZs3h5GREd544w1cvHhRRz2myoqIiIBMJkNISIhYxjmVnqysLIwZMwZNmzZFgwYN0KVLF6SmporXOafSUlRUhE8//RS2trYwMjJC69atsXDhQpSUlIh1OKe114kTJzBw4EA0b94cMpkM3377rcb1isxdQUEBpk6dCjMzMxgbG+Pdd9/FX3/9VS39ZYgtR0JCAkJCQjBnzhykpaXB09MTPj4+Go/9otrp+PHjmDx5Mk6dOoXExEQUFRXBy8sLDx8+FOv8+9//RmRkJFatWoUzZ85ApVKhf//+ePDggQ57ThVx5swZrF+/Hp06ddIo55xKy927d+Hh4QFDQ0P88MMPuHTpEpYvX67xshnOqbQsXboUa9euxapVq5CRkYF///vf+OKLL7By5UqxDue09nr48CE6d+6MVatWlXq9InMXEhKC3bt3Y/v27UhOTkZ+fj7eeecdFBcXV32Hy30pbT3XvXt3ISgoSKPMzs5OmDVrlo56RC8rJydHACAcP35cEARBKCkpEVQqlbBkyRKxzuPHjwVTU1Nh7dq1uuomVcCDBw+Edu3aCYmJiULv3r2F6dOnC4LAOZWiTz75ROjZs2eZ1zmn0vP2228L48eP1yh7//33hTFjxgiCwDmVEgDC7t27xfOKzN29e/cEQ0NDYfv27WKdrKwsQU9PTzhw4ECV95ErsWUoLCxEamoqvLy8NMq9vLyQkpKio17Ry7p//z4AoEmTJgCAa9euITs7W2N+FQoFevfuzfmt5SZPnoy3334b/fr10yjnnErP3r174eLigmHDhqFZs2ZwcnLChg0bxOucU+np2bMnjhw5gl9//RUAcP78eSQnJ2PAgAEAOKdSVpG5S01NxZMnTzTqNG/eHI6OjtUyvzp/2UFtlZubi+LiYlhYWGiUW1hYIDs7W0e9opchCAJCQ0PRs2dPODo6AoA4h6XN759//lnjfaSK2b59O86dO4czZ85oXeOcSs/Vq1cRGxuL0NBQzJ49G6dPn8a0adOgUCgwduxYzqkEffLJJ7h//z7s7Oygr6+P4uJifP755xg5ciQA/nsqZRWZu+zsbMjlcjRu3FirTnVkJ4bYF5DJZBrngiBolVHtNmXKFPz3v/9FcnKy1jXOr3TcuHED06dPx6FDh6BUKsusxzmVjpKSEri4uGDx4sUAACcnJ1y8eBGxsbEYO3asWI9zKh0JCQn4+uuvsXXrVnTo0AHp6ekICQlB8+bNMW7cOLEe51S6Xmbuqmt+uZ2gDGZmZtDX19f6m0NOTo7W30Ko9po6dSr27t2Lo0ePomXLlmK5SqUCAM6vhKSmpiInJwfOzs4wMDCAgYEBjh8/jpiYGBgYGIjzxjmVDktLSzg4OGiU2dvbi1+e5b+n0vPxxx9j1qxZGDFiBDp27Ag/Pz/MmDEDERERADinUlaRuVOpVCgsLMTdu3fLrFOVGGLLIJfL4ezsjMTERI3yxMREuLu766hXVFGCIGDKlCnYtWsXfvzxR9ja2mpct7W1hUql0pjfwsJCHD9+nPNbS/Xt2xcXLlxAenq6eLi4uGD06NFIT09H69atOacS4+HhofXou19//RU2NjYA+O+pFD169Ah6eprRQl9fX3zEFudUuioyd87OzjA0NNSoo1ar8csvv1TP/Fb5V8XqkO3btwuGhobCxo0bhUuXLgkhISGCsbGxcP36dV13jV5g0qRJgqmpqXDs2DFBrVaLx6NHj8Q6S5YsEUxNTYVdu3YJFy5cEEaOHClYWloKeXl5Ouw5VcY/n04gCJxTqTl9+rRgYGAgfP7558Jvv/0mbNmyRWjQoIHw9ddfi3U4p9Iybtw4oUWLFsK+ffuEa9euCbt27RLMzMyEmTNninU4p7XXgwcPhLS0NCEtLU0AIERGRgppaWnCn3/+KQhCxeYuKChIaNmypXD48GHh3Llzwptvvil07txZKCoqqvL+MsS+wOrVqwUbGxtBLpcLXbt2FR/RRLUbgFKPuLg4sU5JSYkwf/58QaVSCQqFQujVq5dw4cIF3XWaKu35EMs5lZ7vvvtOcHR0FBQKhWBnZyesX79e4zrnVFry8vKE6dOnC9bW1oJSqRRat24tzJkzRygoKBDrcE5rr6NHj5b6/85x48YJglCxufv777+FKVOmCE2aNBGMjIyEd955R8jMzKyW/soEQRCqfn2XiIiIiKj6cE8sEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBFRDTp27BhkMhnu3bun667UCTKZDN9++62uu0FEOsAQS0T1gr+/P2Qymdbx+++/V9s933jjDYSEhGiUubu7Q61Ww9TUtNruS0RUHxjougNERDXlrbfeQlxcnEaZubm5Vr3CwkLI5fJq6YNcLodKpaqWtstTnWMiItIFrsQSUb2hUCigUqk0Dn19fbzxxhuYMmUKQkNDYWZmhv79+wMAIiMj0bFjRxgbG8PKygrBwcHIz8/XaPOnn35C79690aBBAzRu3Bje3t64e/cu/P39cfz4cURHR4urvtevXy91O8HOnTvRoUMHKBQKtGrVCsuXL9e4R6tWrbB48WKMHz8ejRo1grW1NdavX1/uWMsa06VLlzBgwAA0bNgQFhYW8PPzQ25ursbnpk6dipCQEDRu3BgWFhZYv349Hj58iH/9619o1KgR2rRpgx9++EHjfsePH0f37t2hUChgaWmJWbNmoaioCACwbt06tGjRAiUlJRqfeffddzFu3Djx/LvvvoOzszOUSiVat26N8PBwsQ0A+O2339CrVy8olUo4ODggMTGx3J8BEdVtDLFERAC+/PJLGBgY4KeffsK6desAAHp6eoiJicEvv/yCL7/8Ej/++CNmzpwpfiY9PR19+/ZFhw4dcPLkSSQnJ2PgwIEoLi5GdHQ03NzcMGHCBKjVaqjValhZWWndNzU1FcOHD8eIESNw4cIFLFiwAHPnzkV8fLxGveXLl8PFxQVpaWkIDg7GpEmTcPny5UqNSa1Wo3fv3ujSpQvOnj2LAwcO4H//+x+GDx+u9TkzMzOcPn0aU6dOxaRJkzBs2DC4u7vj3Llz8Pb2hp+fHx49egQAyMrKwoABA9CtWzecP38esbGx2LhxIz777DMAwLBhw5Cbm4ujR4+K97h79y4OHjyI0aNHAwAOHjyIMWPGYNq0abh06RLWrVuH+Ph4fP755wCAkpISvP/++9DX18epU6ewdu1afPLJJxWZWiKqqwQionpg3Lhxgr6+vmBsbCweQ4cOFQRBEHr37i106dLlhW3s2LFDaNq0qXg+cuRIwcPDo8z6vXv3FqZPn65RdvToUQGAcPfuXUEQBGHUqFFC//79Nep8/PHHgoODg3huY2MjjBkzRjwvKSkRmjVrJsTGxpZ77+fHNHfuXMHLy0uj7MaNGwIA4cqVK+LnevbsKV4vKioSjI2NBT8/P7FMrVYLAISTJ08KgiAIs2fPFtq3by+UlJSIdVavXi00bNhQKC4uFgRBEN59911h/Pjx4vV169YJKpVKKCoqEgRBEDw9PYXFixdr9O2rr74SLC0tBUEQhIMHDwr6+vrCjRs3xOs//PCDAEDYvXt3mT8HIqq7uCeWiOqNPn36IDY2Vjw3NjYW/+zi4qJV/+jRo1i8eDEuXbqEvLw8FBUV4fHjx3j48CGMjY2Rnp6OYcOGvVKfMjIyMGjQII0yDw8PREVFobi4GPr6+gCATp06iddlMhlUKhVycnLKbfv5MaWmpuLo0aNo2LChVt0//vgDr7/+uta99PX10bRpU3Ts2FEss7CwAADx/hkZGXBzc4NMJtMYQ35+Pv766y9YW1tj9OjRmDhxItasWQOFQoEtW7ZgxIgR4vhSU1Nx5swZceUVAIqLi/H48WM8evQIGRkZsLa2RsuWLcXrbm5u5Y6fiOo2hlgiqjeMjY3Rtm3bMq/9059//okBAwYgKCgIixYtQpMmTZCcnIyAgAA8efIEAGBkZPTKfRIEQSP8PSt7nqGhoca5TCbT2mP6vOfHVFJSgoEDB2Lp0qVadS0tLcu91z/LnvX32f3LG8Oz8oEDB6KkpATff/89unXrhqSkJERGRmr0LTw8HO+//75W35RKZak/k+fvSUT1C0MsEVEpzp49i6KiIixfvhx6ek+/PrBjxw6NOp06dcKRI0cQHh5eahtyuRzFxcXl3sfBwQHJyckaZSkpKXj99dfFVcqq0rVrV+zcuROtWrWCgUHV/effwcEBO3fu1AizKSkpaNSoEVq0aAHgaeB///33sWXLFvz+++94/fXX4ezsrNG3K1eulPmXDAcHB2RmZuLmzZto3rw5AODkyZNVNgYikh5+sYuIqBRt2rRBUVERVq5ciatXr+Krr77C2rVrNeqEhYXhzJkzCA4Oxn//+19cvnwZsbGx4rf9W7VqhZ9//hnXr19Hbm5uqSunH374IY4cOYJFixbh119/xZdffolVq1bho48+qvIxTZ48GXfu3MHIkSNx+vRpXL16FYcOHcL48eNfGLbLExwcjBs3bmDq1Km4fPky9uzZg/nz5yM0NFT8CwAAjB49Gt9//z02bdqEMWPGaLQxb948bN68GQsWLMDFixeRkZGBhIQEfPrppwCAfv36oX379hg7dizOnz+PpKQkzJkz56X7TETSxxBLRFSKLl26IDIyEkuXLoWjoyO2bNmCiIgIjTqvv/46Dh06hPPnz6N79+5wc3PDnj17xFXOjz76CPr6+nBwcIC5uTkyMzO17tO1a1fs2LED27dvh6OjI+bNm4eFCxfC39+/ysfUvHlz/PTTTyguLoa3tzccHR0xffp0mJqaaoTNymrRogX279+P06dPo3PnzggKCkJAQIAYQJ9588030aRJE1y5cgWjRo3SuObt7Y19+/YhMTER3bp1g6urKyIjI2FjYwPg6ZMidu/ejYKCAnTv3h2BgYEa+2eJqP6RCaVtNCIiIiIiqsW4EktEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLz/wDXsIDoN8uPlgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -930,7 +1088,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8BElEQVR4nO3de1iUdfo/8PczJxhQxgPIIRARUVARETCB1bbNQ1qtuevqVqtmmrnYprIdZM3Nw5a1laJ+Bc1Mck1jXW3t4Ka46zHNksA0jz/FWHVYwBQUcWBmPr8/cB4YZlAGZzi+X9fFdTk3n3mezz0z3M79HCUhhAARERERERER3RNFU0+AiIiIiIiIqDVgg01ERERERETkBGywiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInICNthERERERERETsAGm4iIiIiIiMgJ2GATEREREREROQEbbCIiIiIiIiInYINNzcaePXsgSRKuXbvW1FOp0/z589G/f/+mngYRES5cuABJkpCbm9vUU7Hx9NNP4/HHH2/qaRARNbpu3bohNTW1qadBTYgNNjW6gwcPQqlU4uGHH3b5upzdtL/44ov497//7ZRlEVHb9vTTT0OSJJuf+tbGoKAg6PV69O3b965jG7sZX7ZsGTIyMhplXURE9tirrzV/nn766bs+/5///GejzJVaF1VTT4Dang8++AB/+MMf8P777yM/Px9du3Zt6indlRACJpMJ7dq1Q7t27Zp6OkTUSjz88MNYt26dVczNza1ez1UqlfDz83PFtO6ZTqdr6ikQURun1+vlf2dmZuLPf/4zTp8+Lce0Wm1TTIvaAO7BpkZVVlaGv//97/j973+PRx999K57OA4ePIghQ4ZAq9UiKCgIL7zwAsrKyuTfb9iwAbGxsWjfvj38/Pzw5JNPorCwEEDVHpsHH3wQANCxY0errZUGgwEvvPACunTpAnd3d/zsZz/Dt99+Ky/Xsud7x44diI2NhZubG/bv32/3EPEPPvgAffr0gZubG/z9/fH888/f+wtFRG2Cm5sb/Pz8rH46duwIoGrvSXp6OkaOHAmtVouQkBBs3rxZfm7tvdJXr17FU089BR8fH2i1WoSFhcnNe0hICAAgOjoakiTh5z//ubycdevWISIiAu7u7ggPD0daWprNOv7+979j8ODB0Gq1iIuLw5kzZ/Dtt98iNjYW7dq1w8MPP4yioiL5ebUPETebzXjrrbfQo0cPuLm5oWvXrnj99ded/XISEclq1lWdTgdJkqxiGzduRGhoKDQaDXr16oW//e1v8nO7desGABgzZgwkSZIfnzt3DqNHj4avry/atWuHuLg47Nq1qwmyo+aMDTY1qszMTPTq1Qu9evXC7373O6xbtw5CCLtjjx07hhEjRuBXv/oVvv/+e2RmZuLAgQNWDWxFRQUWLVqEo0eP4p///Cfy8vLkJjooKAhbtmwBAJw+fRp6vR7Lli0DALz88svYsmULPvzwQ3z33Xfo0aMHRowYgZ9++slqDi+//DIWL16MkydPol+/fjZzTE9Px4wZMzBt2jQcO3YMn376KXr06OGMl4qICPPmzcOvf/1rHD16FL/73e/wxBNP4OTJk3WOPXHiBP71r3/h5MmTSE9Ph7e3NwDgm2++AQDs2rULer0eW7duBQCsWbMGc+fOxeuvv46TJ0/ijTfewLx58/Dhhx9aLfu1117Dq6++iu+++w4qlQpPPPEEXn75ZSxbtgz79+/HuXPn8Oc//7nOPFJSUvDWW2/Jc9y4cSN8fX2d8RIRETnsk08+wcyZM/HHP/4Rx48fx3PPPYfJkydj9+7dACDvdFm3bh30er38+MaNGxg1ahR27dqFnJwcjBgxAo899hjy8/ObLBdqhgRRI0pISBCpqalCCCEqKyuFt7e3yMrKEkIIsXv3bgFAXL16VQghxIQJE8S0adOsnr9//36hUChEeXm53eV/8803AoC4fv263WUKIcSNGzeEWq0WH330kRyrqKgQAQEB4q9//avV8/75z39aLf+1114TUVFR8uOAgAAxd+5cx18IImrzJk2aJJRKpfD09LT6WbhwoRBCCABi+vTpVs+5//77xe9//3shhBB5eXkCgMjJyRFCCPHYY4+JyZMn211X7bEWQUFBYuPGjVaxRYsWifj4eKvnvf/++/LvN23aJACIf//733Js8eLFolevXla5jR49WgghRGlpqXBzcxNr1qyp5ytDRORc69atEzqdTn6ckJAgnn32Wasxv/nNb8SoUaPkxwDEJ598ctdl9+7dW6xYsUJ+HBwcLJYuXXqvU6YWjOdgU6M5ffo0vvnmG3nPiUqlwvjx4/HBBx9g6NChNuOzs7Px//7f/8NHH30kx4QQMJvNyMvLQ0REBHJycjB//nzk5ubip59+gtlsBgDk5+ejd+/edudx7tw5VFZWIjExUY6p1WoMHDjQZs9QbGxsnfkUFhbi8uXLeOihh+r/IhAR1fDggw8iPT3dKtapUyf53/Hx8Va/i4+Pr/NCZb///e/x61//Gt999x2GDx+Oxx9/HAkJCXWuu6ioCP/9738xZcoUPPvss3LcaDTanENd8wgey57nyMhIq5jl9JzaTp48CYPBwFpJRM3GyZMnMW3aNKtYYmKifKRjXcrKyrBgwQJ8/vnnuHz5MoxGI8rLy7kHm6ywwaZGs3btWhiNRtx3331yTAgBtVqNq1ev2ow3m8147rnn8MILL9j8rmvXrigrK8Pw4cMxfPhwbNiwAT4+PsjPz8eIESNQUVFR5zzE7UPSJUmyideOeXp61rkcXhyDiO6Vp6enw6eV1K5TFiNHjsSPP/6IL774Art27cJDDz2EGTNm4J133rE73rJBcs2aNbj//vutfqdUKq0eq9Vqm/XXjlmWVxtrJRE1R/X5HljbSy+9hB07duCdd95Bjx49oNVqMXbs2Dt+76S2h+dgU6MwGo1Yv3493n33XeTm5so/R48eRXBwsNVeaosBAwbghx9+QI8ePWx+NBoNTp06heLiYrz55psYPHgwwsPDbfagaDQaAIDJZJJjlucfOHBAjlVWVuLIkSOIiIiod07t27dHt27deNsuInKZr7/+2uZxeHh4neN9fHzw9NNPY8OGDUhNTcV7770HwH4t9PX1xX333Yfz58/b1FjLRdGcISwsDFqtlrWSiJqNiIgIq++BQNWFdWt+D1Sr1VY1EwD279+Pp59+GmPGjEFkZCT8/Pxw4cKFxpgytSDcg02N4vPPP8fVq1cxZcoUm0MPx44di7Vr12Lp0qVW8VdeeQWDBg3CjBkz8Oyzz8LT0xMnT55EVlYWVqxYga5du0Kj0WDFihWYPn06jh8/jkWLFlktIzg4GJIk4fPPP8eoUaOg1WrRrl07/P73v8dLL72ETp06oWvXrvjrX/+KmzdvYsqUKQ7lNX/+fEyfPh1dunTByJEjcf36dXz11Vf4wx/+0LAXiojaFIPBgIKCAquYSqWSL062efNmxMbG4mc/+xk++ugjfPPNN1i7dq3dZf35z39GTEwM+vTpA4PBgM8//1z+stilSxdotVp8+eWXCAwMhLu7O3Q6HebPn48XXngBXl5eGDlyJAwGA44cOYKrV68iOTnZKTm6u7vjlVdewcsvvwyNRoPExEQUFRXhhx9+cLjmEhE5w0svvYRx48ZhwIABeOihh/DZZ59h69atVlcEt+xESUxMhJubGzp27IgePXpg69ateOyxxyBJEubNm1fn0TvUdnEPNjWKtWvXYujQoXbvjfrrX/8aubm5+O6776zi/fr1w969e3H27FkMHjwY0dHRmDdvHvz9/QFU7anJyMjA5s2b0bt3b7z55ps2h0Led999WLBgAebMmQNfX1/5CuRvvvkmfv3rX2PChAkYMGAA/t//+3/YsWOHfHuc+po0aRJSU1ORlpaGPn364NFHH8XZs2cdWgYRtV1ffvkl/P39rX5+9rOfyb9fsGABPv74Y/Tr1w8ffvghPvroozqvL6HRaJCSkoJ+/fphyJAhUCqV+PjjjwFUNe3Lly/H6tWrERAQgNGjRwMApk6divfffx8ZGRmIjIzEAw88gIyMDKfuwQaqrnD+xz/+EX/+858RERGB8ePH13nONhGRqz3++ONYtmwZ3n77bfTp0werV6/GunXrrG5h+O677yIrKwtBQUGIjo4GACxduhQdO3ZEQkICHnvsMYwYMQIDBgxooiyouZKEqOMeSURERNRkJEnCJ598YnU/aSIiImreuAebiIiIiIiIyAnYYBMRERERERE5AS9yRkRE1AzxDC4iIqKWh3uwiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInKCVnMOttlsxuXLl9G+fXtIktTU0yGiZkoIgevXryMgIAAKRdvYxsj6SET11dZqJOsjEdVXfetjq2mwL1++jKCgoKaeBhG1EP/9738RGBjY1NNoFKyPROSotlIjWR+JyFF3q4+tpsFu3749gKqEvby8mng2RNRclZaWIigoSK4ZbQHrIxHVl6trZFpaGt5++23o9Xr06dMHqampGDx4sN2xW7duRXp6OnJzc2EwGNCnTx/Mnz8fI0aMkMdkZGRg8uTJNs8tLy+Hu7v7XefD+khE9VXf+thqGmzLYT1eXl4skER0V23pUEDWRyJylCtqZGZmJmbNmoW0tDQkJiZi9erVGDlyJE6cOIGuXbvajN+3bx+GDRuGN954Ax06dMC6devw2GOP4fDhw4iOjpbHeXl54fTp01bPrU9zDbA+EpHj7lYfW02DTURERETN15IlSzBlyhRMnToVAJCamoodO3YgPT0dixcvthmfmppq9fiNN97Atm3b8Nlnn1k12JIkwc/Pz6VzJyKqLzbYRERERORSFRUVyM7Oxpw5c6ziw4cPx8GDB+u1DLPZjOvXr6NTp05W8Rs3biA4OBgmkwn9+/fHokWLrBrwmgwGAwwGg/y4tLQUAGA0GmE0GgEACoUCCoUCZrMZZrNZHmuJm0wmCCHuGlcqlZAkSV5uzTgAmEymesVVKhWEEFZxSZKgVCpt5lhXnDkxJ+Z07znVXndd2GBTq2YymVBZWdnU06AmoFQqoVKp2tSh4ESOYH1s29RqtfwFtDEUFxfDZDLB19fXKu7r64uCgoJ6LePdd99FWVkZxo0bJ8fCw8ORkZGByMhIlJaWYtmyZUhMTMTRo0cRFhZms4zFixdjwYIFNvGcnBx4enoCAHx8fBAaGoq8vDwUFRXJYwIDAxEYGIgzZ86gpKREjnfv3h1dunTB8ePHUV5ebjW3Dh06ICcnx+rLfL9+/aDRaHDkyBGrOcTGxqKiogLff/+9HFMqlYiLi0NJSQlOnTolx7VaLaKiolBcXIzz58/LcZ1Oh4iICFy+fBkXL16U48zJ8Zx69+4NpVKJY8eOWeXUt29fVFZWWp2WoFQq5c9gzbm7u7sjPDwcV65cwX//+1853r59e4SGhqKgoMDq89+pUyd07doV+fn5+Omnn+S4n58f/Pz8cO7cOVy/fl2OBwUFoXPnzjh16hRu3bpllauXlxeOHTtmlVOvXr2gVqtx/Phx5lSPnGp/9srKylAfkqi5aaAFKy0thU6nQ0lJCc+hIQBVW7QvXryIVvIRpwbw8PCAv78/NBqNHGuLtaIt5kx3xvpIkiQhMDAQ7dq1s4q7ql5cvnwZ9913Hw4ePIj4+Hg5/vrrr+Nvf/ubVaNlz6ZNmzB16lRs27YNQ4cOrXOc2WzGgAEDMGTIECxfvtzm9/b2YAcFBeHKlStyvq1pj1vtOTKnu+dUWVmJgoICubmrXSctG+4didurta6MN2SOzKl6nZIkISAgAO3atbP67JWWlqJz5853rY/cg02tkslkwsWLF+Hh4QEfHx/uxWxjhBCoqKhAUVER8vLyEBYW1ibu50pUH6yPJIRAUVERLl68iLCwsEbZk+3t7Q2lUmmzt7qwsNBmr3ZtmZmZmDJlCjZv3nzH5hqoaqLi4uJw9uxZu793c3ODm5ubTVylUkGlsv5abGnIaqvr9aorXnu5DYlLkmQ3XtccHY0zp6o5ms1m5OfnQ6lUIiAgABqNhjWyjbHUR71eLx8FY/mM1fX5ro0NNrVKlZWVEELAx8cHWq22qadDTUCr1UKtVuPHH39ERUVFva8oS9TasT4SUHV47YULF1BZWdkoDbZGo0FMTAyysrIwZswYOZ6VlYXRo0fX+bxNmzbhmWeewaZNm/DII4/cdT1CCOTm5iIyMtIp86a2paKiAmazGUFBQfDw8Gjq6VATudf6yAabWjVudWzbuNeaqG6sj21bU7z/ycnJmDBhAmJjYxEfH4/33nsP+fn5mD59OgAgJSUFly5dwvr16wFUNdcTJ07EsmXLMGjQIHnvt1arhU6nAwAsWLAAgwYNQlhYGEpLS7F8+XLk5uZi5cqVjZ4ftR78/tC23Wt9ZINNbcKiRYug1+tdsmx/f3/MmzfPJcsmInI1V9ZHgDWSqo0fPx5XrlzBwoULodfr0bdvX2zfvh3BwcEAAL1ej/z8fHn86tWrYTQaMWPGDMyYMUOOT5o0CRkZGQCAa9euYdq0aSgoKIBOp0N0dDT27duHgQMHNmpu1HrxOyQ5qkENdlpaGt5++23o9Xr06dMHqampGDx4sN2xW7duRXp6OnJzc2EwGNCnTx/Mnz8fI0aMkMdkZGRg8uTJNs8tLy/nYZ3kFHq9Hl8cPgEPnbdTl3uzpBiP3F+/sd26dYO7u7v8mR40aBBWrVplNWbq1KmYNGlSnX9PALBnzx5UVFRg+PDhAKouHPPUU09h9+7dDUvCyS5cuIDY2FgUFxc36Pm185k/fz7+9Kc/WV2ojIicx1X1EWCNtKet18ikpCQkJSXZ/Z2labbYs2fPXZe3dOlSLF261AkzI7KP3yEbT2upjw432JmZmZg1axbS0tKQmJiI1atXY+TIkThx4gS6du1qM37fvn0YNmwY3njjDXTo0AHr1q3DY489hsOHD1vdo9DLy8vqMuoAWk1z7eq9A7Vxa5h9HjpvJEx8xanLPLj+LYfG/+Mf/0Dfvn3t/s5kMuH999+/6zL27NmDGzduyMUxICCg2RRGZ6idz4IFC/Diiy+2mC+PrQFrVtvjivoIsEa6Amtk28J63DzwO2TL0Fzqo8MN9pIlSzBlyhRMnToVAJCamoodO3YgPT0dixcvthmfmppq9fiNN97Atm3b8Nlnn1k12JIkwc/Pz9HptAiu3DtQmyNbw6hpZWRk4OOPP0aXLl1w4sQJrFixAikpKXjxxRfx6KOPoqSkBH/84x9x+PBhKBQKxMTE4IUXXsCqVatgNpuxa9cu/OpXv8LEiROttvZ9+eWX+NOf/gSj0YiOHTsiPT0dvXv3xp49ezBr1iwkJCTgq6++gtFoxIcffojY2Fi788vPz0dsbCwuXrwoF6ZJkybJ8/j222/xyiuvoLS0FGazGXPnzsWvf/1rm+XUNR8AWLduHZYtWwYhBNRqNf7xj38AgJyP5by8hIQEKBQKfPrpp4iLi0NeXp588ZEnnngCQ4YMwe9//3vnvkFtGGsWNQeskayRxHpM9rE+Nu/66FCDXVFRgezsbMyZM8cqPnz4cBw8eLBeyzCbzbh+/To6depkFb9x4waCg4NhMpnQv39/LFq0yKoBr83efQwBwGg0yvexay73/FMoFNB19kXcky8CEFCietkCEsyQIEFAUY+4GRLEHeLffPQ2FAqFzWvQ1u5jaDQaIYSw+ql6Xe9OqmNcXXHA9l56lnxrx8eOHSsfmTFx4kQcOHAA3333HcLCwqzuyyeEwKxZs+Dp6YmjR49CkiQUFRXBx8cHzz33HG7cuIF33nkHQNXhNJbnFRYW4ne/+x3+85//IDIyEh999BHGjRuH48ePQwiBH374AWvWrMHKlSuxatUqzJ07F19++aXduQcFBaF///7Ytm0bxo4dixs3buCzzz7Du+++i6tXr+K5557D559/Dn9/f1y5cgUxMTFISEiofq1v3+agrvns3r0br7/+Ovbt2wd/f3/cvHkTQNUtWyzPT09Px+rVq/HVV1/J92odOnQoPvroIzz77LPQ6/XYtWsX3nvvPat7F9acQ83Pp9lstvnMk32u2qNZm6Nb8Kl1q1kjJ02ahAMHDiAnJ0e+VUpNs2bNQrt27XD06FEoFAq5Rk6fPt1ujQQg18jdu3fb1CQA+OGHH/D+++8jLS1NrpE7duywO9euXbuif//++PTTT61q5JIlS3Dt2jU899xz+OKLL+Dv74/i4mLExMQgMTHRahl3ms+ePXvw+uuvY//+/XZrJACsWrUKq1evxsGDB61q5MaNGzF16lQUFBRg165dWLNmTQPfEWoOWI8JYH1sSfXRoQa7uLgYJpPJ5n6Fvr6+Nvc1rMu7776LsrIyjBs3To6Fh4cjIyMDkZGRKC0txbJly5CYmIijR4/a/dAAwOLFi7FgwQKbeE5ODjw9PQFUXWI9NDQUeXl5KCoqkscEBgYiMDAQZ86cQUlJiRzv3r07unTpguPHj6O8vNxqfh06dEBOTo5VI9mvXz9oNBocOXLEag6xsbGoqKjA999/DwCIioqCb/BNXACgU1ail/t1eWy5WYlj5R3grTIgxK1MjpeY1Dh9ywsB6nLcp6meS5HRDXmGdujmVgYfVfUGhksVWlyq9MCDcZGIDPGT5+SqnICqhjYuLg4lJSU4deqUHNdqtYiKikJxcTHOnz8vx3U6HSIiInD58mVcvHhRjrvqfXJ3d8fNmzflLWdmYYbJVN1cKZUqQAiYzDU3GkhQKZUQQsBcIy6hauOAENYbASyNXGVlJSoqKuS4SqWCu7s7DAaD3NAJIbBp0yZER0ejvLwcH374IeLj4xEQEACj0Qi1Wg2z2Yxbt26hrKwMn332Gb755hsoFAqUlZXBw8MDZWVl8i12AKCsrAw3b96EEAJlZWU4fPgwoqKi0L17d5SVleHxxx/H888/D71eD7PZjLCwMERERKCsrAzR0dF49913YTQarTZWKZVKaLVaVFZW4oknnsDatWsxcuRIbNy4Eb/4xS/Qrl07fPHFFzh//jwefvhhSJIESZJgNptx9OhRBAUFQQgBo9GIw4cPIzIy0u58tm3bht/+9rfw8vJCWVkZtFotFAqFVT4WZrNZfvzss89i5syZePbZZ7Fq1Sr85je/gSRJKCsrg0KhgIeHh5yTwWBARUUFLly4gD59+uDy5cs2p6IQUfNR8xDIjIwM/OxnP6vze8Dnn3+O7Oxs+Wq/Pj4+d13+4cOH0b9/f/kWTk899RRmzJghH4Lbq1cveY9MfHy8/CW0LpMnT0ZGRgbGjh2Lv//97/jFL36Bzp07Y/v27Th//jxGjhwpjxVC4PTp0/IFve42ny+++AITJ06Ev78/ANT7lkEzZ87Ec889h6lTp2L16tV48skn5S+XRNRysT62nPrYoIuc1b50uRCiXpcz37RpE+bPn49t27ahS5cucnzQoEEYNGiQ/DgxMREDBgzAihUrsHz5crvLSklJQXJysvy4tLQUQUFBiI6OhpeXF4DqS+yHhIRYvWGWeM+ePW32jAJA3759bfaMArDZo26J1z48wtKgWOIbNmzAvjNFiHsyASUmNbLLOspjBapet2KjG34yamzilyu1KKisPhfdfDt+weCJfIOHTXz3t8dgLv2ffNE4V+VUk06ns4pbPgve3t5WRypY4gEBAVanA7jifbp16xby8/Ph4eEhj1dIiqqmuiZJso3BsrfdXlwBpVJhNQ4A1Go11Gq1zXg3Nze4ubnJYy03qHd3d4ebmxt0Op28QciSm7u7Ozw9PeU9/oB14VCr1XJD7OnpCQ8PD0iSBE9PTwghoFAorJZpWbel+bT8ztPTE0ajESqVSp5XTWq1Gr/97W/x8ssv4/r169iwYQNSUlLknPr164e9e/fKy7e8FxcuXJBzFUJApVLZnY9KpYJarbb5Xc18ar4ulscPPPAAPDw8sHfvXqxduxb//ve/bZZhyUmpVEKj0cifq4CAAN7XkqgFcfYXn7q+r1hiNa/9olQq73rEy5gxY/DCCy+goKAA69atQ0pKiryefv36Yd++fTbPqbnH6G7zaYiBAwfC3d0de/fuxZo1a/Cf//ynwcsiouaL9dFxjVUfHWqwvb29oVQqbfZWFxYW2uzVri0zMxNTpkzB5s2bMXTo0DuOVSgUiIuLw9mzZ+scU7Nxqcles2A5pLi2um4cXlfcXhNSn7jZbEal0bI3VIIJth8M4aS40VS1h7X2nJydU001G8ea6nrdHY035H1SqVTynlXLz82SYhxy8uFPN0uKAXSp84+9dtzy2DKnusZIkoRf/vKXeOedd7Bs2TKrw3t0Oh0uX75s83xJkpCQkICpU6fi1KlTiIiIwMcff4zAwED4+fnJRxnYe15dc9dqtfjNb36D+fPn4/z58xgxYgQkSUJiYiLOnj2L3bt34xe/+AUA4OjRo+jdu7fVcuPj4zFlyhS78/nlL3+JZ555Bs899xz8/Pzkw3tqz6t9+/YoLS1F+/bt5bnNnDkTv/vd79CnTx/06tWrztfd8lpaPisKhaLOzzZRW3azpNglh4daaqQr/PKXv8Tbb79tUyO9vLxw6dIlu8+x1KSTJ0/WWSMd4e7ujt/85jd47bXX5BoJVJ3zd/bsWfznP/+Ra2Rubq587mB95vPYY4/hmWeewbRp06xqZG3t27dHSUmJ1ZftmjWyZ8+eDudFRNZcUSNZH1tvfXTom6ZGo0FMTAyysrIwZswYOZ6VlYXRo0fX+bxNmzbhmWeewaZNm/DII4/cdT1CCOTm5sqHBBDdK39/fxdduKOLfHiKsy1duhSzZ89G3759odFoEBcXhzVr1mDMmDH429/+hv79+8sXqLDw8fHB3/72Nzz11FMwmUzo0KED/v73v9/TPCZPnoyBAwfilVdekRvVjh074rPPPsNLL72E2bNno7KyEl27dsU///lPq+feaT5DhgzBq6++iuHDh0OSJGg0GvkCFTX98Y9/xC9+8QtotVrs3LkTXbp0wdixY/H73/8ezz///D3lRkSurI8AayRrJFFLx++QDddW66Mk7F2d6Q4yMzMxYcIErFq1CvHx8XjvvfewZs0a/PDDDwgODkZKSgouXbqE9evXA6hqridOnIhly5bhV7/6lbwcrVYLnU4HoOoS6oMGDUJYWBhKS0uxfPly/O1vf8NXX32FgQMH1mtepaWl0Ol0KCkpkQ8Rby6SkpKw+1Rho12g4sHwLkhLS3P5upqzW7duIS8vDyEhIa3mdm9U7ZtvvsHvfvc7nDp1yu5RDxb2PgfNuVa4iqM5s2a1bqyPrV99amRdn4O2ViObe76sx42L9bH1a4z66PCxkuPHj8eVK1ewcOFC6PV69O3bF9u3b5fPcdTr9cjPz5fHr169GkajETNmzMCMGTPk+KRJk5CRkQEAuHbtGqZNm4aCggLodDpER0dj37599W6uiajtmDp1Knbu3In333//js01EVFbxBpJRGRfY9XHBp2MmJSUhKSkJLu/szTNFnv27Lnr8pYuXYqlS5c2ZCpEdI9yc3Px9NNP28QnTZqE2bNnN/6E7uL9999v6ikQURvCGklEZB/ro3282g9RG9e/f3/k5uY29TSIiJol1kgiIvtYH+3jsUPUqjl4iQFqZfj+E9WNfx9tG99/orrx76Ntu9f3nw02tUqWKxVWVFQ08UyoKVlu22DvHuVEbRXrIwHV739dt7wkaoss3xfquu0TtQ33Wh95iDi1SiqVCh4eHigqKoJareaFXtoYIQRu3ryJwsJCdOjQoVG/QKalpeHtt9+GXq9Hnz59kJqaisGDB9sde+DAAbzyyis4deoUbt68ieDgYDz33HM25y1t2bIF8+bNw7lz5xAaGorXX3/d6laJRI5gfSSz2YyioiJ4eHhApeJXQSILpVKJDh06oLCwEADg4eEBSZKaeFbUmJxRH1lVqVWSJAn+/v7Iy8vDjz/+2NTToSbSoUMH+Pn5Ndr6MjMzMWvWLKSlpSExMRGrV6/GyJEjceLECXTt2tVmvKenJ55//nn069cPnp6eOHDgAJ577jl4enpi2rRpAIBDhw5h/PjxWLRoEcaMGYNPPvkE48aNw4EDB3D//S67eTG1YqyPBAAKhQJdu3Zl80BUi+V7g6XJprbnXusjG2xqtTQaDcLCwngYZBulVqsb/dDHJUuWYMqUKZg6dSoAIDU1FTt27EB6ejoWL15sMz46OhrR0dHy427dumHr1q3Yv3+/3GCnpqZi2LBhSElJAQCkpKRg7969SE1NxaZNmxohK2qNWB9Jo9Hw6AUiOywbIbt06YLKysqmng41gXutj2ywqVVTKBRWN4gncpWKigpkZ2djzpw5VvHhw4fj4MGD9VpGTk4ODh48iL/85S9y7NChQzaHjI8YMQKpqal1LsdgMMBgMMiPS0tLAQBGoxFGoxFA1d+GQqGA2WyG2WyWx1r+Q1EpFVCiOm6GBAEJCghIqL74hwkSAMlqbHUcUELcMa5WKeV1CiFgMpnksZIkQalU2syxrvidclIoFDCZTFYXLqkrrlQqIUmS/FrVjAOwmuOd4iqVqtnn5Obm1upyao3vkytysvzUjtdeN1FbpVQqeY0CahA22ERETlBcXAyTyQRfX1+ruK+vLwoKCu743MDAQBQVFcFoNGL+/PnyHnAAKCgocHiZixcvxoIFC2ziOTk58PT0BAD4+PggNDQUeXl5KCoqspoLADwYF4k+nlfleJ7BE0VGd/TRlkCrqP7SfvpWe5SYNOjvec2qmT52U4cKoUBMjWUAQHZZR2gkMyI9SgAA3UcOQUePqv+KSkpKcOrUKXmsVqtFVFQUiouLcf78eTmu0+kQERGBy5cv4+LFi3L8TjkFBgbizJkzKCkpkePdu3dHly5dcPz4cZSXl8vx8PBwdOjQATk5OVYNSr9+/aDRaHDkyBGrnGJjY1FRUYHvv/9ejimVSsTFxTEn5tTiciorKwMRETUcG2wiIieqfb6OEOKu5/Ds378fN27cwNdff405c+agR48eeOKJJxq8zJSUFCQnJ8uPS0tLERQUhOjoaHh5eQGo3lMdEhKC4OBgeawlvvvbY7jVc7gcN9/e8/xDuc7OHmwgt6yD1Rws8eyyjjbxcqGU41//ax+G9PQBUPVFPzY21iZvb29vdOrUySYeEBBgdY793XLq2bOnzV5EAOjbt6/NXkQAVofv14zXnKMlrtVqbeLMiTm1xJwsR7wQEVHDsMEmInICb29vKJVKmz3LhYWFNnugawsJCQEAREZG4n//+x/mz58vN9h+fn4OL9PNzU0+9LcmlUplc0VMy6GqtRlNZpjs3MnRfPuQ8Nrsja2K298QYIlXGk3yIbWSJNm9Ymddc3Q0XtehfnXF67p6qCNx5sScgJaVE68qTkR0b3h1CyIiJ9BoNIiJiUFWVpZVPCsrCwkJCfVejhDC6vzp+Ph4m2Xu3LnToWUSERERUePgZkoiIidJTk7GhAkTEBsbi/j4eLz33nvIz8/H9OnTAVQdun3p0iWsX78eALBy5Up07doV4eHhAKrui/3OO+/gD3/4g7zMmTNnYsiQIXjrrbcwevRobNu2Dbt27cKBAwcaP0EiIiIiuiM22ERETjJ+/HhcuXIFCxcuhF6vR9++fbF9+3b5nEy9Xo/8/Hx5vNlsRkpKCvLy8qBSqRAaGoo333wTzz33nDwmISEBH3/8MV599VXMmzcPoaGhyMzM5D2wiYiIiJohNthERE6UlJSEpKQku7/LyMiwevyHP/zBam91XcaOHYuxY8c6Y3pERERE5EI8B5uIiIiIiIjICdhgExERERERETkBG2wiIiIiIiIiJ2CDTUREREREROQEbLCJiIiIiIiInIANNhEREREREZETsMEmIiIiIiIicgI22EREREREREROwAabiIiIiIiIyAnYYBMRERERERE5ARtsIiIiIiIiIidgg01ERERERETkBGywiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInICNthERERE1CjS0tIQEhICd3d3xMTEYP/+/XWO3bp1K4YNGwYfHx94eXkhPj4eO3bssBm3ZcsW9O7dG25ubujduzc++eQTV6ZARHRHbLCJiIiIyOUyMzMxa9YszJ07Fzk5ORg8eDBGjhyJ/Px8u+P37duHYcOGYfv27cjOzsaDDz6Ixx57DDk5OfKYQ4cOYfz48ZgwYQKOHj2KCRMmYNy4cTh8+HBjpUVEZIUNNhERERG53JIlSzBlyhRMnToVERERSE1NRVBQENLT0+2OT01Nxcsvv4y4uDiEhYXhjTfeQFhYGD777DOrMcOGDUNKSgrCw8ORkpKChx56CKmpqY2UFRGRNTbYRERERORSFRUVyM7OxvDhw63iw4cPx8GDB+u1DLPZjOvXr6NTp05y7NChQzbLHDFiRL2XSUTkbKqmngARERERtW7FxcUwmUzw9fW1ivv6+qKgoKBey3j33XdRVlaGcePGybGCggKHlmkwGGAwGOTHpaWlAACj0Qij0QgAUCgUUCgUMJvNMJvN8lhL3GQyQQhx17hSqYQkSfJya8YBwGQy3TWuUFj2hQkoUb1sAQlmSJAgoKhH3AwJ4g5xBQTUKiUUCgWMRqNLcwIAlUoFIYRVXJIkKJVKm9e9rnhzep+YU9vIqfa668IGm4iIiIgahSRJVo+FEDYxezZt2oT58+dj27Zt6NKlS4OXuXjxYixYsMAmnpOTA09PTwCAj48PQkNDkZeXh6KiInlMYGAgAgMDcebMGZSUlMjx7t27o0uXLjh+/DjKy8vleHh4ODp06ICcnByrL/P9+vWDRqPBkSNHrOYQGxuLiooKfP/993IsMjIS/z5RAJ2yEr3cr8vxcrMSx8o7wFtlQIhbmRwvMalx+pYXAtTluE9TPZcioxvyDO3Qza0MPqrqDQyXKrS4VOmBMPfrCB05BJ3bVc3LlTkplUrExcWhpKQEp06dkuNarRZRUVEoLi7G+fPn5bhOp0NERAQuX76MixcvyvHm9D4xp7aRU1lZGeqDDTYRERERuZS3tzeUSqXNnuXCwkKbPdC1ZWZmYsqUKdi8eTOGDh1q9Ts/Pz+HlpmSkoLk5GT5cWlpKYKCghAdHQ0vLy8A1XuNQ0JCEBwcLI+1xHv27Gmzxw0A+vbta7PHDQCio6Ot5mCJx8bG2sS1Wq1VfMOGDQCqGufsso5yXKBqA0Kx0Q0/GTU28cuVWhRUustx8+34BYMn8g0eNvGzt9rj8L/2YUhPH0yePNmlOVnodDqruGWjiLe3t9VpAJZ4QEAA/Pz85Hh936c333wTBQUFEEJACFHjqIDbr8HtPZb1ja9fv95ufN26dfI858yZ49Kcasdbw/vUEnKyHPFyN2ywiYiIiMilNBoNYmJikJWVhTFjxsjxrKwsjB49us7nbdq0Cc888ww2bdqERx55xOb38fHxyMrKwuzZs+XYzp07kZCQYHd5bm5ucHNzs4mrVCqoVNZfiy2HqtZm+UJf33jt5ToSrz5cVYIJtnvlhZPiZkioNJpgNput1u+KnCwkSbIbr+t1dzRumfvly5fxxeET8NB5252bM90sKcYj99vm6+yc6htvSe9TfeNNmVNd67BZZ71G1ZKWloa3334ber0effr0QWpqKgYPHmx37NatW5Geno7c3FwYDAb06dMH8+fPx4gRI6zGbdmyBfPmzcO5c+cQGhqK119/3aoAExEREVHLlZycjAkTJiA2Nhbx8fF47733kJ+fj+nTpwOo2rt86dIleQ/hpk2bMHHiRCxbtgyDBg2S91RrtVrodDoAwMyZMzFkyBC89dZbGD16NLZt24Zdu3bhwIEDTZMkNUseOm8kTHzF5es5uP4tl6+Dmj+HryLOexgSERERkaPGjx+P1NRULFy4EP3798e+ffuwfft2+bBRvV5v9X1y9erVMBqNmDFjBvz9/eWfmTNnymMSEhLw8ccfY926dejXrx8yMjKQmZmJ+++/v9HzIyICGrAHu+Y9DIGq+w/u2LED6enpWLx4sc342vchfOONN7Bt2zZ89tln8jH0Ne9hCFRtwdy7dy9SU1OxadMmR6dIRERERM1QUlISkpKS7P4uIyPD6vGePXvqtcyxY8di7Nix9zgzIiLncGgPNu9hSERERERERGSfQw12c7mHIVB1H8PS0lKrH6D6PoZGo1G+MITlvmW14yaTqV5xyxXsasYscSHEXeMKhQJqleVEfQElzPKP5V6EUj3j0l3iKqVCvoehK3Oqeb/I2nHLpfNrv+51xZvL+8Sc2k5OrpSWloaQkBC4u7sjJiYG+/fvr3Ps1q1bMWzYMPj4+MDLywvx8fHYsWOH1ZiMjAxIkmTzc+vWLZfmQURERESOa9BFzpr6HoZAy7qPYVRUFHyDb+IC4PL7GD4YF4nIED95Ts35XnIWzeV9Yk5tI6fTp0/DVSzXqEhLS0NiYiJWr16NkSNH4sSJE+jatavNeMs1Kt544w106NAB69atw2OPPYbDhw9b3YbCy8vLZt7u7u61F0dERERETUwSNW8wdhcVFRXw8PDA5s2bra7wPXPmTOTm5mLv3r11PjczMxOTJ0/G5s2bbW6z0LVrV8yePdvqFgtLly5FamoqfvzxR7vLMxgMMBiqG0zLfQyvXLlidR9DhUIBs9lc4zYH1XGTyWRz3zV7caVSCUmSbPZ8WS4fX7NJsBefNWsW9p0pQtyTL6JqD3b1sgUkmCFBgpD3Wt8pXrWvuu74Nx+9jQd6dZHPfXdVThYqlQpCCKu4JElQKpU2r3td8ebyPjGntpHTtWvX0LlzZ5SUlMi1wlnuv/9+DBgwAOnp6XIsIiICjz/+uN1rVNjTp08fjB8/Hn/+858BVO3BnjVrFq5du9bgeZWWlkKn09U756SkJOw+VdhoV1x9MLwL0tLSXL4uIro7R+tFS9fc823Mevzpwqfh6yFhyJAhLl8XAPj7+2PevHkuXw//TyNnqW+9cGgPdnO5hyHQsu5jaDabUWm0NAGuvY+h0WS2uYch0DzvJVffeEu6P15948yp6XKq7z0MHWW5RsWcOXOs4vd6jQoAuHHjBoKDg2EymdC/f38sWrTIag93bfY2QAKwOrz+ThtMgKrTTZSojls24ikg5FNSANyuQ5LV2Oo4rDYo2ourVUp5ndwIxJyYU9Pn5OrTaKj5Mhpu4ZJCh92nCl2+Lsv9oolaI4e/afIehkREtlx1jYrw8HBkZGQgMjISpaWlWLZsGRITE3H06FGEhYXZXc69nkIDAA/GRaKP51U5nmfwRJHRHX20JdAqqr+0n77VHiUmDfp7XrNqpo/d1KFCKBBTYxkAkF3WERrJjEiPqtMJuo8cgo4eVf8V8TQG5sScmj6nsrIyUNulbqfj/aKJ7pHDDfb48eNx5coVLFy4EHq9Hn379q33PQxnzJghxydNmiTfjsFyD8NXX30V8+bNQ2hoKO9hSEQtkrOvUTFo0CAMGjRIfpyYmIgBAwZgxYoVWL58ud1lpaSkIDk5WX5sOYUmOjra6hQaAAgJCZHrd8347m+P4VbP6rs7mG/vef6hXGdnDzaQW9bBag6WeHZZR5t4uVDK8a//tQ9DevoAqPqiHxsbK4+1vG7e3t5We/Ut8YCAAPj5+dnMva6cevbsabMXEQD69u1rsxcRgM1RApZ4zTla4lqt1ibOnJhTS8zJcsQLERE1TIOOleQ9DImIrHl7e0OpVNrsrS4sLLTZq11bZmYmpkyZgs2bN2Po0KF3HKtQKBAXF4ezZ8/WOcYZp9AYTWaY7Nxownz7kPDa7I2titvfuGCJVxpN8uGqPI2BOQHMqa45OhpvaE6uOo2GiKitcOg2XUREZF/Na1TUlJWVdcfrSWzatAlPP/00Nm7caPcaFbUJIZCbmwt/f/97njMRERERORc3UxIROYkrrlGxYMECDBo0CGFhYSgtLcXy5cuRm5uLlStXNk2SRERERFQnNthERE7iimtUXLt2DdOmTUNBQQF0Oh2io6Oxb98+DBw4sFFzIyIiIqK7Y4NNROREzr5GxdKlS7F06VInzIyIiIiIXI3nYBMRERERERE5ARtsIiIiIiIiIidgg01ERERERETkBGywiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInICNthERERERERETsAGm4iIiIiIiMgJ2GATEREREREROQEbbCIiIiIiIiInYINNRERERERE5ARssImIiIiIiIicgA02ERERERERkROwwSYiIiIiIiJyAjbYRERERERERE7ABpuIiIiIiIjICdhgExERERERETmBqqknQFQfixYtgl6vb7T1+fv7Y968eY22PiIiIiIiavnYYFOLoNfr8cXhE/DQebt8XTdLivHI/S5fDRERERERtTJssKnF8NB5I2HiKy5fz8H1b7l8HURERERE1PrwHGwiIiIiIiIiJ2CDTUREREREROQEPES8lSm+cBL7Ck8hKSmpUdbHi4ERERERERFVYYPdyhgNt3BJocPuU4UuXxcvBkZERERERFSNDXYrpG6n48XAiIiIiIiIGhkbbCIiIiIiajSNeUrjvn37cM3N3+XrIbJgg01ERERERI2mMU9pvPi/q9De5+Py9RBZsMEmInKitLQ0vP3229Dr9ejTpw9SU1MxePBgu2O3bt2K9PR05ObmwmAwoE+fPpg/fz5GjBhhNW7Lli2YN28ezp07h9DQULz++usYM2ZMY6RDRETkEo11SuPWub91+TqIauJtuoiInCQzMxOzZs3C3LlzkZOTg8GDB2PkyJHIz8+3O37fvn0YNmwYtm/fjuzsbDz44IN47LHHkJOTI485dOgQxo8fjwkTJuDo0aOYMGECxo0bh8OHDzdWWkRETpOWloaQkBC4u7sjJiYG+/fvr3OsXq/Hk08+iV69ekGhUGDWrFk2YzIyMiBJks3PrVu3XJgFEVHd2GATETnJkiVLMGXKFEydOhURERFITU1FUFAQ0tPT7Y5PTU3Fyy+/jLi4OISFheGNN95AWFgYPvvsM6sxw4YNQ0pKCsLDw5GSkoKHHnoIqampjZQVEZFzOLoR0mAwwMfHB3PnzkVUVFSdy/Xy8oJer7f6cXd3d1UaRER3xEPEiYicoKKiAtnZ2ZgzZ45VfPjw4Th48GC9lmE2m3H9+nV06tRJjh06dAizZ8+2GjdixIg7NtgGgwEGg0F+XFpaCgAwGo0wGo0AAIVCAYVCAbPZDLPZLI9VKKq2u6qUCihRHTdDgoAEBQQkCDluggRAshpbHQeUNcbai6tVSnmdQgiYTCZ5rCRJUCqVNnOsK36nnBQKBUwmE4QQd40rlUpIkiS/VjXjAKzmeKe4SqViTsypxeVUe93OVHMjJFC1AXHHjh1IT0/H4sWLbcZ369YNy5YtAwB88MEHdS5XkiT4+fm5ZtJERA5ig01E5ATFxcUwmUzw9fW1ivv6+qKgoKBey3j33XdRVlaGcePGybGCggKHl7l48WIsWLDAJp6TkwNPT08AgI+PD0JDQ5GXl4eioiJ5TGBgIADgwbhI9PG8KsfzDJ4oMrqjj7YEWkX1l/bTt9qjxKRBf89rVs30sZs6VAgFYmosAwCyyzpCI5kR6VECAOg+cgg6elT9V1RSUoJTp07JY7VaLaKiolBcXIzz58/LcZ1Oh4iICFy+fBkXL16U43fKKTAwEGfOnEFJSYkc7969O7p06YLjx4+jvLxcjoeHh6NDhw7IycmxalD69esHjUaDI0eOWOUUGxuLiooKfP/993JMqVQiLi6OOTGnFpdTWVkZXMEZGyHrcuPGDQQHB8NkMqF///5YtGgRoqOj7Y691w2Qjb3BxLIBEhBWNVZAghkSJAgo6hG3bCStK66AgEathlqtghJml21UrUmSrJfjipykGnlJEC7NyQQFJEmCQqGQ3/O2vLGuNeZU3w2QbLCJiJxIkiSrx0IIm5g9mzZtwvz587Ft2zZ06dLlnpaZkpKC5ORk+XFpaSmCgoIQHR0NLy8vANVf2kJCQhAcHCyPtcR3f3sMt3oOl+Pm218ofijX2fliAuSWdbCagyWeXdbRJl4ulHL863/tw5CeVVd31el0iI2Ntcnb29vbaq++JR4QEGC11+puOfXs2dPmP3EA6Nu3r81/4gBsvqBb4jXnaIlrtVqbOHNiTi0xJ0vD6WzO2AhpT3h4ODIyMhAZGYnS0lIsW7YMiYmJOHr0KMLCwmzG3+sGyMbeYBIZGYl/nyiATlmJXu7X5Xi5WYlj5R3grTIgxK16o0iJSY3Tt7wQoC7HfZrquRQZ3ZBnaIdubmXwUVVvYLhUocWlSg+EuV9H0tSJkDRa+HpeddlGVaDq/4HNAIL8vK3GuyInnbIS993O66bK4NKcsss6wd+7I6KiouT3ti1vrGuNOdV3AyQbbCIiJ/D29oZSqbT5olhYWGjzhbK2zMxMTJkyBZs3b8bQoUOtfufn5+fwMt3c3ODm5mYTV6lUUKmsy75lS3FtRpMZJjuX6TDf3tJfm72xVXH7GwIs8UqjSd5aLEmSzfzuNEdH45Ympb5xe3NxNM6cmBPQsnKqax3O0tCNkHUZNGgQBg0aJD9OTEzEgAEDsGLFCixfvtxmvDM2QDbmBpMNGzYAqGoya26wFLdraLHRDT8ZNTbxy5VaFFRWn4du2Uh6weCJfIOHTfzsrfb49P31UPsEYdSMBJdtVK3pvwXFLs9JgsC223k9PCPR5Tnpi6/i6NGjmDx5MoC2vbGuNeZU3w2QDbrIGa8ASURkTaPRICYmBllZWVbxrKwsJCQk1Pm8TZs24emnn8bGjRvxyCOP2Pw+Pj7eZpk7d+684zKJiJqbe9kI6QiFQoG4uDicPXvW7u/d3Nzg5eVl9QNUb4BUqVTyF3zLBofacaVSWa+45ct5zZglbtkAcrd49eGqEkxQyD+WJlLUMy7uEjdDQkVlJSoqjTbxmuMtG1hrxqrjkgPx29fdcHFOJijkvBorJ7PZLL9/luav9meprnhz+uxZNrbVjrf1nOrD4QabV4AkIrIvOTkZ77//Pj744AOcPHkSs2fPRn5+PqZPnw6gas/JxIkT5fGbNm3CxIkT8e6772LQoEEoKChAQUGB1aFSM2fOxM6dO/HWW2/h1KlTeOutt7Br1y67GyuJiJqrhm6EdJQQArm5ufD393faMomIHOHwcUC8AiQRkX3jx4/HlStXsHDhQuj1evTt2xfbt2+XD4nS6/VWGyNXr14No9GIGTNmYMaMGXJ80qRJyMjIAAAkJCTg448/xquvvop58+YhNDQUmZmZuP/++xs1NyKie5WcnIwJEyYgNjYW8fHxeO+992w2Ql66dAnr16+Xn5Obmwug6kJmRUVFyM3NhUajQe/evQEACxYswKBBgxAWFobS0lIsX74cubm5WLlyZaPnR0QEONhgN5crQAIt6yqQCoUCapXlPCvXXgVSrVJBc/sKkDXjrrhioiWnxri6oOU1bKwrWwKwer/b8hUTW1tOrrwFDQAkJSUhKSnJ7u8sTbPFnj176rXMsWPHYuzYsfc4MyKipuXoRkjA+nzL7OxsbNy4EcHBwbhw4QIA4Nq1a5g2bRoKCgqg0+kQHR2Nffv2YeDAgY2WFxFRTQ412M3lCpBAy7oKZFRUFHyDb+IC4PKrQD768FB0C+0B39tXPHTlVSCDhiVAn3e6Ua4uGBUVhcDQCnRshCtb7gfQvn17q/e1LV8xsbXldPr0aRARUdNwZCMkAKsNtPYsXboUS5cudcbUiIicokGXimzqK0ACLesqkBs2bMC+M0WIezLB5VeB/PzLXdB0OYNRMxKs4q64YuLXWQfxsx6dG+XqgitXrsS+M0UY9GRso1zZ8vr167xiYivNycPDA0REREREruBQg91crgAJOOc2NI112wyz2YxKo2VPnWT3tjXCSfFKoxG4fQXImpx9a52qdVXl1Bi3N7G8hjXn64qcauItW1pnTq6+BQ0RERERtV0OXUWcV4AkIiIiIiIiss/hXTm8AiQRERERERGRLYcbbF4BkoiIiIiIiMhWg05G5BUgiYiIiIiIiKw5dA42EREREREREdnHBpuIiIiIiIjICdhgExERERERETkBG2wiIiIiIiIiJ2CDTUREREREROQEbLCJiIiIiIiInIANNhEREREREZETsMEmIiIiIiIicgI22EREREREREROwAabiIiIiIiIyAnYYBMRERERERE5ARtsIiIiIiIiIidgg01ERERERETkBGywiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInICNthERERERERETsAGm4iIiIiIiMgJ2GATEREREREROQEbbCIiIiIiIiInYINNROREaWlpCAkJgbu7O2JiYrB///46x+r1ejz55JPo1asXFAoFZs2aZTMmIyMDkiTZ/Ny6dcuFWRARERFRQ6iaegLUchVfOIl9haeQlJTk8nXt27cP19z8Xb4eonuRmZmJWbNmIS0tDYmJiVi9ejVGjhyJEydOoGvXrjbjDQYDfHx8MHfuXCxdurTO5Xp5eeH06dNWMXd3d6fPn4iIiIjuDRtsajCj4RYuKXTYfarQ5eu6+L+r0N7n4/L1EN2LJUuWYMqUKZg6dSoAIDU1FTt27EB6ejoWL15sM75bt25YtmwZAOCDDz6oc7mSJMHPz881kyYiIiIip2GDTfdE3U6HhImvuHw9W+f+1uXrILoXFRUVyM7Oxpw5c6ziw4cPx8GDB+9p2Tdu3EBwcDBMJhP69++PRYsWITo6+p6WSURERETOxwabiMgJiouLYTKZ4OvraxX39fVFQUFBg5cbHh6OjIwMREZGorS0FMuWLUNiYiKOHj2KsLAwu88xGAwwGAzy49LSUgCA0WiE0WgEACgUCigUCpjNZpjNZnmsQlF1aQ6VUgElquNmSBCQoICABCHHTZAASFZjq+OAssZYe3G1SimvUwgBk8kkj5UkCUql0maOdcXvlJNCoYDJZIIQ4q5xpVIJSZLk16pmHIDVHO8UV6lUzIk5tbicaq+biIgcwwabiMiJJEmyeiyEsIk5YtCgQRg0aJD8ODExEQMGDMCKFSuwfPlyu89ZvHgxFixYYBPPycmBp6cnAMDHxwehoaHIy8tDUVGRPCYwMBAA8GBcJPp4XpXjeQZPFBnd0UdbAq2i+kv76VvtUWLSoL/nNatm+thNHSqEAjE1lgEA2WUdoZHMiPQoAQB0HzkEHT2q/isqKSnBqVOn5LFarRZRUVEoLi7G+fPn5bhOp0NERAQuX76MixcvyvE75RQYGIgzZ86gpKREjnfv3h1dunTB8ePHUV5eLsfDw8PRoUMH5OTkWDUo/fr1g0ajwZEjR6xyio2NRUVFBb7//ns5plQqERcXx5yYU4vLqaysDERE1HBssImInMDb2xtKpdJmb3VhYaHNXu17oVAoEBcXh7Nnz9Y5JiUlBcnJyfLj0tJSBAUFITo6Gl5eXvJyACAkJATBwcFWyweA3d8ew62ew+W4+fae5x/KdXb2YAO5ZR2s5mCJZ5d1tImXC6Uc//pf+zCkZ9X1FXQ6HWJjY+Wxlg0T3t7e6NSpk008ICDA6tz0u+XUs2dPm72IANC3b1+bvYgAbA7Dt8RrztES12q1NnHmxJxaYk6WI16IiKhh2GATETmBRqNBTEwMsrKyMGbMGDmelZWF0aNHO209Qgjk5uYiMjKyzjFubm5wc3OziatUKqhU1mXfcqhqbUaTGSY7d3I03z4kvDZ7Y6vi9vfeW+KVRpN8uKokSTbzu9McHY1bmpT6xu3NxdE4c2JOQMvKqa51EBFR/bCKEhE5SXJyMiZMmIDY2FjEx8fjvffeQ35+PqZPnw6gas/ypUuXsH79evk5ubm5AKouZFZUVITc3FxoNBr07t0bALBgwQIMGjQIYWFhKC0txfLly5Gbm4uVK1c2en5EREREdGdssImInGT8+PG4cuUKFi5cCL1ej759+2L79u3yIaN6vR75+flWz6l5KGh2djY2btyI4OBgXLhwAQBw7do1TJs2DQUFBdDpdIiOjsa+ffswcODARsuLiIiIiOqHDTYRkRMlJSUhKSnJ7u8yMjJsYjXPv7Rn6dKlWLp0qTOmRkREREQuZv+kOSIiIiIiIiJyCBtsIiIiIiIiIidgg01EREREjSItLQ0hISFwd3dHTEwM9u/fX+dYvV6PJ598Er169YJCocCsWbPsjtuyZQt69+4NNzc39O7dG5988omLZk9EdHdssImIiIjI5TIzMzFr1izMnTsXOTk5GDx4MEaOHGlz8UcLg8EAHx8fzJ07F1FRUXbHHDp0COPHj8eECRNw9OhRTJgwAePGjcPhw4ddmQoRUZ3YYBMRERGRyy1ZsgRTpkzB1KlTERERgdTUVAQFBSE9Pd3u+G7dumHZsmWYOHEidDqd3TGpqakYNmwYUlJSEB4ejpSUFDz00ENITU11YSZERHVjg01ERERELlVRUYHs7GwMHz7cKj58+HAcPHiwwcs9dOiQzTJHjBhxT8skIroXDWqwef4MEREREdVXcXExTCYTfH19reK+vr4oKCho8HILCgocWqbBYEBpaanVDwAYjUb5x2w2AwDMZrPduMlkqlfcchvGmjFLXAhRr7hCYfmqLqCEWf5RoGrZUj3j0l3iCgho1Gpo1CqbeM3xuB2vGauOCwfigCRJLs9JCbOcV2PlpFAo5PfPZDLZ/SzVFW9Onz2j0Vj1yasVb+s51YfD98G2nD+TlpaGxMRErF69GiNHjsSJEyfQtWtXm/E1z5+p616ulvNnFi1ahDFjxuCTTz7BuHHjcODAAdx///2OTpGIiIiImiFJkqweCyFsYq5c5uLFi7FgwQKbeE5ODjw9PQEAPj4+CA0NRV5eHoqKiuQxgYGBCAwMxJkzZ1BSUiLHu3fvji5duuD48eMoLy+X4+Hh4ejQoQNycnLkL+oA0K9fP2g0Ghw5csRqDrGxsaioqMD3338vxyIjI/HvEwXQKSvRy/26HC83K3GsvAO8VQaEuJXJ8RKTGqdveSFAXY77NNVzKTK6Ic/QDt3cyuCjMsjxSxVaXKr0QJj7dSRNnQhJo4Wv51XkGTxRZHRHH20JtIrquZ++1R4lJg36e16D8nZjCgDHbupQIRSI8bxqlVN2WUdoJDMiPapfLxMkbAYQ5OdtNd4VOemUlbjvdl43VQaX5pRd1gn+3h0RFRUlv7darRZRUVEoLi7G+fPn5fE6nQ4RERG4fPkyLl68KMeb02dPqVQiLi4OJSUlOHXqlBxvyzmVlZWhPhxusGuePwNUnfuyY8cOpKenY/HixTbjLefPAMAHH3xgd5k1z58BgJSUFOzduxepqanYtGmTo1MkIqIWovjCSewrPIWkpKRGWZ+/vz/mzZvXKOsiomre3t5QKpU2e5YLCwtt9kA7ws/Pz6FlpqSkIDk5WX5cWlqKoKAgREdHw8vLCwDkvcYhISEIDg6Wx1riPXv2lPem1Yz37dvXKq5UKgEA0dHRVnOwxGNjY23iWq3WKr5hwwYAVU1mdllHOS5QtQGh2OiGn4wam/jlSi0KKt3luPl2/ILBE/kGD5v42Vvt8en766H2CcKoGQly/IdynbznF6hqJAEgt6yD1dwt8ZpztMTLhdImDgD/LSh2eU4SBLbdzuvhGYkuz0lffBVHjx7F5MmTAVRv/PH29kanTp3kcZZ4QEAA/Pz85Hhz+uxZ6HQ6q3hbzslyxMvdONRgW86fmTNnjlXcGefPzJ492yo2YsQIXqCCiKiVMxpu4ZJCh92nCl2+rpslxXiEB0URNQmNRoOYmBhkZWVhzJgxcjwrKwujR49u8HLj4+ORlZVl9T1y586dSEhIsDvezc0Nbm5uNnGVSgWVyvprsUKhqHGIdjXLF/r6xmsv15G45XBZQJIbvpqEk+JmSKiorISoNMJU4wzSqmbVdrypjrNM7S27rrgQwu5ynJkTauRladRdnZPZbK73Z8nReGN+9iwkSbIbb4s51bUOm3XWa9RtzeX8GaDq0HODofpwkNrn0ADVL4bZbK5RoKrjJpPJZouJvbhSqYQkSTbH3Vve+JqHKdiLKxQKqFWWD4mwOvxEQIIZEiQI+RyTO8WrziypO65WqeTzZ2rGFRB2ttZJ8jjrOKzmWFdco1bffuTanCznBalv5+XKnGqq+X5LkgSlUmnzWaor3lw+exYqlarqP7Ia8baaU33Pn6HGo26nQ8LEV1y+noPr33L5OoiobsnJyZgwYQJiY2MRHx+P9957D/n5+Zg+fTqAqr3Lly5dwvr16+Xn5ObmAgBu3LiBoqIi5ObmQqPRoHfv3gCAmTNnYsiQIXjrrbcwevRobNu2Dbt27cKBAwcaPT8iIqABh4gDTX/+DNCyzqGJioqCb/BNXABcfg7Now8PRbfQHvC9fb6IK8+h8Zn4BNZ8uqfVnRe0H0D79u2t3te2fL5Ja8vp9OnTICKixjd+/HhcuXIFCxcuhF6vR9++fbF9+3b5sFG9Xm9zT+yah4NmZ2dj48aNCA4OxoULFwAACQkJ+Pjjj/Hqq69i3rx5CA0NRWZmJq/hQ02Cpz0R4GCD3VzOnwFa1jk0GzZswL4zRYh7MsHl59B8/uUuaLqcwagZCVZxV5xvsm39JqCDf6s8L+j69es836SV5uTh4QEiImoaSUlJdTYfGRkZNrGa/3/UZezYsRg7duy9To3onvG0JwIcbLCby/kzwL2fQ7No0SLo9foGz9kR+/btwxU3/9uPXHsOTaXRCNQ6fwZwzfkmFZWVUANojecFAfbP2WiL55vUN95Scqrv+TNEREREjuJpT+TwN83Wcv6MXq/HF4dPwEPn7bJ1WFz831Vo7/Nx+XqIiIiIiIio6TjcYLem82c8dN6NsoVp69zfunwdRERERERE1LQadKwkz58hIiIiIiIismb/ZFUiIiIiIiIicggbbCIiIiIiIiInYINNRERERERE5ARssImIiIiIiIicgA02ERERERERkROwwSYiIiIiIiJyAjbYRERERERERE7ABpuIiIiIiIjICdhgExERERERETkBG2wiIiIiIiIiJ1A19QSImpviCyexr/AUkpKSGmV9/v7+mDdvXqOsi1wvLS0Nb7/9NvR6Pfr06YPU1FQMHjzY7li9Xo8//vGPyM7OxtmzZ/HCCy8gNTXVZtyWLVswb948nDt3DqGhoXj99dcxZswYF2dCRERERI5ig01Ui9FwC5cUOuw+Vejydd0sKcYj97t8NdRIMjMzMWvWLKSlpSExMRGrV6/GyJEjceLECXTt2tVmvMFggI+PD+bOnYulS5faXeahQ4cwfvx4LFq0CGPGjMEnn3yCcePG4cCBA7j/fn54HMGNZ0RERORqbLCJ7FC30yFh4isuX8/B9W+5fB3UeJYsWYIpU6Zg6tSpAIDU1FTs2LED6enpWLx4sc34bt26YdmyZQCADz74wO4yU1NTMWzYMKSkpAAAUlJSsHfvXqSmpmLTpk0uyqR14sYzIiIicjU22ERETlBRUYHs7GzMmTPHKj58+HAcPHiwwcs9dOgQZs+ebRUbMWKE3UPJ6e648YyIiIhciQ02EZETFBcXw2QywdfX1yru6+uLgoKCBi+3oKDA4WUaDAYYDAb5cWlpKQDAaDTCaDQCABQKBRQKBcxmM8xmszxWoai69qVKqYAS1XEzJAhIUEBAgpDjJkgAJKux1XFAWWOsvbhGrYZabfmvSFiNF5BghgQJAop6xC1zrCuuVqmgUavkuboqJwBQq5RVcxUCJpNJjkuSBKVSafO61xW/0/ukUChgMpkghLhrXKlUQpIk+f2vGQdgNcc7xVUqFXNq5TnVXjcRETmGDTYRkRNJkmT1WAhhE3P1MhcvXowFCxbYxHNycuDp6QkA8PHxQWhoKPLy8lBUVCSPCQwMBAA8GBeJPp5X5XiewRNFRnf00ZZAq6j+0n76VnuUmDTo73nNqsE8dlOHCqFATI1lAEB2WUdoJDMiPUoAAPdNnQijpMZlADplJXq5X5fHlpuVOFbeAd4qA0LcyuR4iUmN07e8EKAux32acjleZHRDnqEdurmVwUdVvYHhUoUWlyo98OjDQ9EttAd8b8/JVTkBQNCwBOjzTqOkpASnTp2S41qtFlFRUSguLsb58+fluE6nQ0REBC5fvoyLFy/K8Tu9T4GBgThz5gxKSqrX2717d3Tp0gXHjx9HeXn1axMeHo4OHTogJyfHqunq168fNBoNjhw5YpVTbGwsKioq8P3338sxpVKJuLg45tTKcyorKwMRETUcG2wiIifw9vaGUqm02bNcWFhoswfaEX5+fg4vMyUlBcnJyfLj0tJSBAUFITo6Gl5eXgCq91SHhIQgODhYHmuJ7/72GG71HC7Hzbf30v5QrrOztxfILetgNQdLPLuso028XCjl+Lb310PtE4QRM36OEpPaary4vYxioxt+Mmps4pcrtSiodLeZ4wWDJ/INHjbxz7/cBU2XMxg1I8GlOQHA11kH8bMenaHT6RAbGyvHLRtGvL290alTJ5t4QEAA/Pz85Pjd3qeePXva7BkFgL59+9rsGQWA6Ohoq7lb4jXnaIlrtVqbOADm1MpzshzxQkREDcMGm4jICTQaDWJiYpCVlWV1C62srCyMHj26wcuNj49HVlaW1XnYO3fuREJCQp3PcXNzg5ubm01cpVJBpbIu+5ZDVWszmswwwTZuvn34dG32xlbF7e9pt8QrKishKi2HpEp2xwsnxSuNRqDSaDNXZ+dUta6qvY+SJNm85kDdr7ujcUvjVd+4vbk4GmdOrTunutZBRET1wypKROQkycnJmDBhAmJjYxEfH4/33nsP+fn5mD59OoCqPcuXLl3C+vXr5efk5uYCAG7cuIGioiLk5uZCo9Ggd+/eAICZM2diyJAheOuttzB69Ghs27YNu3btwoEDBxo9PyIiIiK6MzbYREROMn78eFy5cgULFy6EXq9H3759sX37dvmQUb1ej/z8fKvn1DwUNDs7Gxs3bkRwcDAuXLgAAEhISMDHH3+MV199FfPmzUNoaCgyMzN5D+xmjvfcJiIiapvYYBMROVFSUlKdTVVGRoZNrOb5l3UZO3Ysxo4de69To0bUmPfc1p/KRmAnT+j1epevC2AzT0REdCdssImIiFygse65vXXub3HplqZRmvmbJcV4hAdPEBER1YkNNhERUQvXWM38wfVvuXwdRERELZn9S6QSERERERERkUPYYBMRERERERE5ARtsIiIiIiIiIidgg01ERERERETkBLzIGREREdUL7+9NRER0Z2ywiYiIqF4a8/7evCUYERG1RGywiYiIqN54SzAiIqK68RxsIiIiIiIiIidgg01ERERERETkBGywiYiIiIiIiJyADTYRERERERGRE7DBJiIiIiIiInICXkWciIiIqJEsWrQIer2+0dbHe4kTETUuNthEREREjUSv1+OLwyfgofN2+bqa473E09LS8Pbbb0Ov16NPnz5ITU3F4MGD6xy/d+9eJCcn44cffkBAQABefvllTJ8+Xf59RkYGJk+ebPO88vJyuLu7uyQHIqI7YYNNRERE1Ig8dN5t8l7imZmZmDVrFtLS0pCYmIjVq1dj5MiROHHiBLp27WozPi8vD6NGjcKzzz6LDRs24KuvvkJSUhJ8fHzw61//Wh7n5eWF06dPWz2XzTURNZUGnYOdlpaGkJAQuLu7IyYmBvv377/j+L179yImJgbu7u7o3r07Vq1aZfX7jIwMSJJk83Pr1q2GTI+IiIiImpklS5ZgypQpmDp1KiIiIpCamoqgoCCkp6fbHb9q1Sp07doVqampiIiIwNSpU/HMM8/gnXfesRonSRL8/PysfoiImorDe7C59ZHIeYovnMS+wlNISkpqlPXxXDwiImoKFRUVyM7Oxpw5c6ziw4cPx8GDB+0+59ChQxg+fLhVbMSIEVi7di0qKyuhVqsBADdu3EBwcDBMJhP69++PRYsWITo62u4yDQYDDAaD/Li0tBQAYDQaYTQaAQAKhQIKhQJmsxlms1kea4mbTCYIIe4aVyqVkCRJXm7NOACYTKa7xhUKy74wASWqly0gwQwJEgQU9YibIUHcIa6AgEathlqtghJmq7hUY7wJEgAJSlS/LtVxWM3xTnGgasNIzeW4IiepRl4ShEtzMkEBSZKguf0aujInAFCrqj5fAFzy2QMAlUoFIYRVXJIkKJVKm7+PuuLN6e/pXnOqve66ONxg19z6CACpqanYsWMH0tPTsXjxYpvxNbc+AkBERASOHDmCd955x6rBtmx9JGpLjIZbuKTQYfepQpevqzmei0dERG1DcXExTCYTfH19reK+vr4oKCiw+5yCggK7441GI4qLi+Hv74/w8HBkZGQgMjISpaWlWLZsGRITE3H06FGEhYXZLHPx4sVYsGCBTTwnJweenp4AAB8fH4SGhiIvLw9FRUXymMDAQAQGBuLMmTMoKSmR4927d0eXLl1w/PhxlJeXy/Hw8HB06NABOTk5Vl/m+/XrB41GgyNHjljNITY2FhUVFfj+++/lWGRkJP59ogA6ZSV6uV+X4+VmJY6Vd4C3yoAQtzI5XmJS4/QtLwSoy3GfpnouRUY35BnaoZtbGXxU1RsYLlVocanSA2Hu15E0dSIkjRa+nleRZ/BEkdEdfbQl0Cqq5376VnuUmDTo73nNqsE8dlOHCqFAjOdVq5yyyzpCI5kR6VH9epkgYTOAID9vq/GuyEmnrMR9t/O6qTK4NKfssk7oGhiAX/1qFHxvP8dVOQFA95FDUPZT1d+OKz57SqUScXFxKCkpwalTp+S4VqtFVFQUiouLcf78eTmu0+kQERGBy5cv4+LFi3K8Of093WtOZWVlqA+HGuzmsvURuPctkACgUiqstla5amudZctZFddugVSrVFZbzly5BVKjVt9+xK2q97RVtWNnJE582eVbVQ/97a9QKBTy30db3QJZ362PRETkfJY9bhZCCJvY3cbXjA8aNAiDBg2Sf5+YmIgBAwZgxYoVWL58uc3yUlJSkJycLD8uLS1FUFAQoqOj4eXlBaD6e2JISAiCg4PlsZZ4z549bf6/A4C+ffva/H8HwOb7rCUeGxtrE9dqtVbxDRs2AKhqyLLLOla/Drf/vy82uuEno8YmfrlSi4LK6iNBzbfjFwyeyDd42MTP3mqPT99fD7VPEEbNSJDjP5Tr7HwvAXLLOljN3RKvOUdLvFwobeIA8N+CYpfnJEFg2+28Hp6R6PKc8i9exnubt2PUjASX5gQAX/9rHwaHVV0s0RWfPQudTmcVt/zteXt7o1OnTjbxgIAAq52mzenv6V5zsvSbd+NQg91ctj4C974FEgAejItEnxpbpVy1te6+qRNhlNS4DLh8C+SjDw9Ft9Ae8pYzV26B9Jn4BNZ8uodbVVvIVlV/746IioqSt/C11S2QtU9FISIi1/P29oZSqbT5vlhYWGjzPdHCz8/P7niVSoXOnTvbfY5CoUBcXBzOnj1r9/dubm5wc3OziatUKqhU1l+LLRuKa7N8oa9vvPZyHYlXbyyW5IavJuGkuBkSKiorISqNMNW4RJP59ob+2mqOsY7b31hidy5C2F2OM3NCjbwsTa2rc6qo9Ro2ZO53ywkA9P/vOPZelprsNMO6/j4cjTfm35OFJEl243ebe13rsFlnvUbZmVRNjb31EXDOFsjd3x7DrZ7Ve9ddtbXOsuVsxIyfu3wL5Odf7oKmyxl5y5krt0BuW78J6ODPraoNzKmxt6rqi6/i6NGj8u1M2uoWSA8PDxBR88drVLQuGo0GMTExyMrKwpgxY+R4VlYWRo8ebfc58fHx+Oyzz6xiO3fuRGxsrHwEZG1CCOTm5iIyMtJ5kydqhniaYfPlUIPdXLY+As7ZAmk0me1urXL2li3LlrMqrt0CWWk0Ana2nLlia11FZSWq/nvjVtWWslXVbDbX+++jtW6BrO/WRyJqWvzy2PokJydjwoQJiI2NRXx8PN577z3k5+fL97VOSUnBpUuXsH79egDA9OnT8X//939ITk7Gs88+i0OHDmHt2rXYtGmTvMwFCxZg0KBBCAsLQ2lpKZYvX47c3FysXLmySXIkakzqdro2ecu/5s6hb5rc+khERESNhV8eW5fx48fjypUrWLhwIfR6Pfr27Yvt27fLR0Xp9Xrk5+fL40NCQrB9+3bMnj0bK1euREBAAJYvX251kdxr165h2rRpKCgogE6nQ3R0NPbt24eBAwc2en5EREADDhHn1kciIiIiaoikpKQ6D/vPyMiwiT3wwAP47rvv6lze0qVLsXTpUmdNj4jonjncYHPrIxEREREREZEt+yd23kVSUhIuXLgAg8GA7OxsDBkyRP5dRkYG9uzZYzXesvXRYDAgLy9P3tttsXTpUvz4448wGAwoLCzEjh07EB8f35CpERE1qbS0NISEhMDd3R0xMTHYv3//Hcfv3bsXMTExcHd3R/fu3bFq1Sqr32dkZECSJJufW7duuTINIiIiImqABjXYRERkKzMzE7NmzcLcuXORk5ODwYMHY+TIkVZH9dSUl5eHUaNGYfDgwcjJycGf/vQnvPDCC9iyZYvVOC8vL+j1eqsfd3d3u8skIiIioqbDy+kSETnJkiVLMGXKFEydOhUAkJqaih07diA9PR2LFy+2Gb9q1Sp07doVqampAICIiAgcOXIE77zzjtVpNJIkWd0yjYiIiIiaJ+7BJiJygoqKCmRnZ2P48OFW8eHDh+PgwYN2n3Po0CGb8SNGjMCRI0dQWVkpx27cuIHg4GAEBgbi0UcfRU5OjvMTICIiIqJ7xj3YREROUFxcDJPJBF9fX6u4r68vCgoK7D6noKDA7nij0Yji4mL4+/sjPDwcGRkZiIyMRGlpKZYtW4bExEQcPXoUYWFhdpdrMBhgMBjkx6WlpQAAo9EIo9EIoPpe4WazGWazWR5ruX+4SqmAEtVxMyQISFBAQIKQ46bb926vObY6DihrjLUX16jVUKst/xUJq/ECEsyQIEFAUY+4ZY51xdUqFTRqlTxXV+VkyUs0Qk4KCPk1VMLs0pwsJMl6Oa7ISaqRlwTh0pxMUECSJCgUCvnvQ5IkKJVKm7+PuuJ3+ntSKBQwmUwQQlTHpKq5uDInQECtUsp51Tcny2tAREQNwwabiMiJpNtfnC2EEDaxu42vGR80aBAGDRok/z4xMREDBgzAihUrsHz5crvLXLx4MRYsWGATz8nJgaenJwDAx8cHoaGhyMvLQ1FRkTwmMDAQAPBgXCT6eF6V43kGTxQZ3dFHWwKtwiTHT99qjxKTBv09r1l9yT92U4cKoUBMjWUAQHZZR2gkMyI9SgAA902dCKOkxmUAOmUlerlfl8eWm5U4Vt4B3ioDQtzK5HiJSY3Tt7wQoC7HfZpyOV5kdEOeoR26uZXBR1W9geFShRaXKj3w6MND0S20B3xvz8lVOQGAz8QnsObTPS7PKcz9OpKmToSk0cLX86pLczJBwmYAQX7eVuNdkZNOWYn7bud1U2VwaU7ZZZ3g790RUVFROHLkCABAq9UiKioKxcXFOH/+vDxep9MhIiICly9fxsWLF+X4nf6eAgMDcebMGZSUVK03KioK+Te+BwCX5qRTVuLJkUPQuZ0GR44cqXdOZWVlICKihmODTUTkBN7e3lAqlTZ7qwsLC232Ulv4+fnZHa9SqdC5c2e7z1EoFIiLi8PZs2frnEtKSgqSk5Plx6WlpQgKCkJ0dDS8vLzk5QBVt1K03GaxZnz3t8dwq2f14evm23vKfijX2dnjBuSWdbCagyWeXdbRJl4ulHJ82/vrofYJwogZP0eJSW01XtxeRrHRDT8ZNTbxy5VaFFRWX+zNMscLBk/kGzxs4p9/uQuaLmcwakaCS3MCgG3rNwEd/F2e09lb7fHp7ddw1IwEl+Zk8d+CYpfnJEHIn42HZyS6PCd98VUcPXoUkydPBlC9gcvb2xudOnWSx1niAQEBVtdFuNvfU8+ePeWNZxs2bMC5//4PPi7OqcSkxq5/7cOQnj6YPHlyvXOyHPFCREQNwwabiMgJNBoNYmJikJWVhTFjxsjxrKwsjB492u5z4uPj8dlnn1nFdu7cidjYWKjVarvPEUIgNzcXkZGRdc7Fzc0Nbm5uNnGVSgWVyrrsWw5hrc1oMt8+zNSa+fYhrLXZG1sVt7/33hKvqKyEqLQckirZHS+cFK80GoFKo81cnZ0TUJVX1Tvo2pzMkOTXsOZ8XZGTPBch7C7HmTmhRl6WRt3VOZnN5nr/fTgaVyqV8r/NZjPMt5ttV+YESKg0mmzyutvca78GRETkGFZRojai+MJJ7Cs8haSkpEZZn7+/P+bNm9co62oukpOTMWHCBMTGxiI+Ph7vvfce8vPzMX36dABVe5YvXbqE9evXAwCmT5+O//u//0NycjKeffZZHDp0CGvXrsWmTZvkZS5YsACDBg1CWFgYSktLsXz5cuTm5mLlypVNkiNRa9SY9XHfvn245ubv8vUQEVHTYINN1EYYDbdwSaHD7lOFLl/XzZJiPHK/y1fT7IwfPx5XrlzBwoULodfr0bdvX2zfvl0+ZFSv11vdEzskJATbt2/H7NmzsXLlSgQEBGD58uVWt+i6du0apk2bhoKCAuh0OkRHR2Pfvn0YOHBgo+dH1Fo1Zn28+L+r0N7n4/L1kOssWrQIer2+UdbFDTJELQ8bbKI2RN1Oh4SJr7h8PQfXv+XydTRXSUlJde4Fy8jIsIk98MAD+O677+pc3tKlS7F06VJnTY+I6tBY9XHr3N+6fB3kWnq9Hl8cPgEPnbfL18UNMkQtDxtsIiIiIiIHeOi8uUGGiOyyfxUNIiIiIiIiInII92ATERERERGRXbxQrmPYYBMREREREZFdvFCuY9hgExERERERUZ14odz64znYRERERERERE7ABpuIiIiIiIjICXiIOBE5HS+GQURERERtERtsInI6XgyDiIiIiNoiNthE5BK8GAYRERERtTU8B5uIiIiIiIjICdhgExERERERETkBG2wiIiIiIiIiJ2CDTUREREREROQEbLCJiIiIiIiInIANNhEREREREZETsMEmIiIiIiIicgI22EREREREREROwAabiIiIiIiIyAlUTT0BIiIiIiIiouILJ7Gv8BSSkpIaZX3+/v6YN2+eU5fJBpuIiIiIiIianNFwC5cUOuw+Vejydd0sKcYj9zt/uWywiYiIiIiIqFlQt9MhYeIrLl/PwfVvuWS5PAebiIiIiIiIyAnYYBMRERERERE5ARtsIiIiIiIiIidgg01ERERERETkBGywiYiIiIiIiJygQQ12WloaQkJC4O7ujpiYGOzfv/+O4/fu3YuYmBi4u7uje/fuWLVqlc2YLVu2oHfv3nBzc0Pv3r3xySefNGRqRERNivWRiKhurJFE1No53GBnZmZi1qxZmDt3LnJycjB48GCMHDkS+fn5dsfn5eVh1KhRGDx4MHJycvCnP/0JL7zwArZs2SKPOXToEMaPH48JEybg6NGjmDBhAsaNG4fDhw83PDMiokbG+khEVDfWSCJqCxxusJcsWYIpU6Zg6tSpiIiIQGpqKoKCgpCenm53/KpVq9C1a1ekpqYiIiICU6dOxTPPPIN33nlHHpOamophw4YhJSUF4eHhSElJwUMPPYTU1NQGJ0ZE1NhYH4mI6sYaSURtgUMNdkVFBbKzszF8+HCr+PDhw3Hw4EG7zzl06JDN+BEjRuDIkSOorKy845i6lklE1NywPhIR1Y01kojaCpUjg4uLi2EymeDr62sV9/X1RUFBgd3nFBQU2B1vNBpRXFwMf3//OsfUtUwAMBgMMBgM8uOSkhIAwE8//QSj0QgAUCgUUCgUMJvNMJvN8liFQoGKigrcKinC1+sXy3GTyQyzEFApFZAkSY4bTWYIIaBWKa3mYDSaIACbeKXRBAmA6nZcMldC3CzF/g/+AkmSoFJWb9cQQsBoMkMhSVDaiyskKBXVcbNZwGQ2Q6lQQKGonqPJbIbZLABjBcTNUjkvV+Vkyaui9CccWPe6S3NSKRXya/j1+sUuzQkAKm/dBK5ftfpsuCQnSZLz+mrd667NyWiC0VAOVY3PhqtyAqo+G8brV7H/g7+4NCdJklBZdg1GYyf89NNPkCQJSqXS5m++ZvzatWtyns7E+sj6yPrI+tjS66PZbEZpaamcqzM1lxp5r/VRoVDAaDTCUFrMWtLAnADWkpZWS2p+NlyZEwCYKm5BlP6EQx++4dKcVEoFDKU/wWjshKtXrzq1PjrUYNdcWU1CCJvY3cbXjju6zMWLF2PBggU28ZCQkLon3pQK/ovis981zroKLzbeuvBflOR93ziraszX8KcCXDt/tHHW1Yh53biib9TPxtVGeg3XZO/FmjVrHHrO9evXodPpnD4X1scGYH28d6yP94z10VprrZEtrj4CYC1xAtaSe9eYn43iy432mXfFd0iHGmxvb28olUqbrYKFhYU2Ww8t/Pz87I5XqVTo3LnzHcfUtUwASElJQXJysvzYbDbjp59+QufOne9YqC1KS0sRFBSE//73v/Dy8rrr+OaopefQ0ucPtPwcWvr8AcdzEELg+vXrCAgIcOo8WB+bl5aeQ0ufP8AcmoOGzL+118h7rY9A2/xcNDctPYeWPn+gbeZQ3/roUIOt0WgQExODrKwsjBkzRo5nZWVh9OjRdp8THx+Pzz77zCq2c+dOxMbGQq1Wy2OysrIwe/ZsqzEJCQl1zsXNzQ1ubm5WsQ4dOjiSDgDAy8urxX4oLFp6Di19/kDLz6Glzx9wLAdX7JVhfWyeWnoOLX3+AHNoDhydf2uukc6qj0Db+1w0Ry09h5Y+f6Dt5VCv+igc9PHHHwu1Wi3Wrl0rTpw4IWbNmiU8PT3FhQsXhBBCzJkzR0yYMEEef/78eeHh4SFmz54tTpw4IdauXSvUarX4xz/+IY/56quvhFKpFG+++aY4efKkePPNN4VKpRJff/21o9Ort5KSEgFAlJSUuGwdrtbSc2jp8xei5efQ0ucvRPPKgfWx+WjpObT0+QvBHJqD5jZ/1sjmoaXPX4iWn0NLn78QzOFOHG6whRBi5cqVIjg4WGg0GjFgwACxd+9e+XeTJk0SDzzwgNX4PXv2iOjoaKHRaES3bt1Eenq6zTI3b94sevXqJdRqtQgPDxdbtmxpyNTqjR+KptfS5y9Ey8+hpc9fiOaXA+tj89DSc2jp8xeCOTQHzXH+rJFNr6XPX4iWn0NLn78QzOFOGtRgtwa3bt0Sr732mrh161ZTT6XBWnoOLX3+QrT8HFr6/IVoHTk0N63hNW3pObT0+QvBHJqDlj7/5qqlv64tff5CtPwcWvr8hWAOdyIJ4eT7MBARERERERG1QYq7DyEiIiIiIiKiu2GDTUREREREROQEbLCJiIiIiIiInKBVN9hpaWkICQmBu7s7YmJisH///juO37t3L2JiYuDu7o7u3btj1apVjTRT+xyZ/9atWzFs2DD4+PjAy8sL8fHx2LFjRyPO1j5H3wOLr776CiqVCv3793ftBOvB0RwMBgPmzp2L4OBguLm5ITQ0FB988EEjzdaWo/P/6KOPEBUVBQ8PD/j7+2Py5Mm4cuVKI83W1r59+/DYY48hICAAkiThn//8512f09z+lpujll4fgZZfI1kfm74+Ai27RrI+ugbrY9PXR6Dl10jWxzZcH516ybRmxHKvxTVr1ogTJ06ImTNnCk9PT/Hjjz/aHW+51+LMmTPFiRMnxJo1a2zutdiYHJ3/zJkzxVtvvSW++eYbcebMGZGSkiLUarX47rvvGnnm1RzNweLatWuie/fuYvjw4SIqKqpxJluHhuTwy1/+Utx///0iKytL5OXlicOHD4uvvvqqEWddzdH579+/XygUCrFs2TJx/vx5sX//ftGnTx/x+OOPN/LMq23fvl3MnTtXbNmyRQAQn3zyyR3HN7e/5eaopddHIVp+jWR9bPr6KETLr5Gsj87H+tj09VGIll8jWR/bdn1stQ32wIEDxfTp061i4eHhYs6cOXbHv/zyyyI8PNwq9txzz4lBgwa5bI534uj87endu7dYsGCBs6dWbw3NYfz48eLVV18Vr732WpN/gXQ0h3/9619Cp9OJK1euNMb07srR+b/99tuie/fuVrHly5eLwMBAl83REfUpkM3tb7k5aun1UYiWXyNZH5uH1lQjWR+dg/WxCr9D3hvWxypttT62ykPEKyoqkJ2djeHDh1vFhw8fjoMHD9p9zqFDh2zGjxgxAkeOHEFlZaXL5mpPQ+Zfm9lsxvXr19GpUydXTPGuGprDunXrcO7cObz22muunuJdNSSHTz/9FLGxsfjrX/+K++67Dz179sSLL76I8vLyxpiylYbMPyEhARcvXsT27dshhMD//vc//OMf/8AjjzzSGFN2iub0t9wctfT6CLT8Gsn62PT1EWibNbK5/S03N6yPVfgd8t6wPrI+qpw5seaiuLgYJpMJvr6+VnFfX18UFBTYfU5BQYHd8UajEcXFxfD393fZfGtryPxre/fdd1FWVoZx48a5Yop31ZAczp49izlz5mD//v1QqZr+o9mQHM6fP48DBw7A3d0dn3zyCYqLi5GUlISffvqp0c+jacj8ExIS8NFHH2H8+PG4desWjEYjfvnLX2LFihWNMWWnaE5/y81RS6+PQMuvkayPTV8fgbZZI5vb33Jzw/pYhd8h7w3rI+tjq9yDbSFJktVjIYRN7G7j7cUbi6Pzt9i0aRPmz5+PzMxMdOnSxVXTq5f65mAymfDkk09iwYIF6NmzZ2NNr14ceR/MZjMkScJHH32EgQMHYtSoUViyZAkyMjKabCukI/M/ceIEXnjhBfz5z39GdnY2vvzyS+Tl5WH69OmNMVWnaW5/y81RS6+P9tbd0mok62PT10eg7dXI5vi33NywPjZ9fQRafo1kfWy79bHpN4O7gLe3N5RKpc0WlsLCQpstExZ+fn52x6tUKnTu3Nllc7WnIfO3yMzMxJQpU7B582YMHTrUldO8I0dzuH79Oo4cOYKcnBw8//zzAKqKjRACKpUKO3fuxC9+8YtGmbtFQ94Hf39/3HfffdDpdHIsIiICQghcvHgRYWFhLp1zTQ2Z/+LFi5GYmIiXXnoJANCvXz94enpi8ODB+Mtf/tIi9m40p7/l5qil10eg5ddI1semr49A26yRze1vublhfWz6+gi0/BrJ+sj62Cr3YGs0GsTExCArK8sqnpWVhYSEBLvPiY+Ptxm/c+dOxMbGQq1Wu2yu9jRk/kDVVsenn34aGzdubPLzHRzNwcvLC8eOHUNubq78M336dPTq1Qu5ubm4//77G2vqsoa8D4mJibh8+TJu3Lghx86cOQOFQoHAwECXzre2hsz/5s2bUCisy4JSqQRQvRWvuWtOf8vNUUuvj0DLr5Gsj01fH4G2WSOb299yc8P62PT1EWj5NZL1sVqbrY8OXxathbBcWn7t2rXixIkTYtasWcLT01NcuHBBCCHEnDlzxIQJE+Txlkuzz549W5w4cUKsXbu2Wdymq77z37hxo1CpVGLlypVCr9fLP9euXWuS+QvheA61NfUVIIVwPIfr16+LwMBAMXbsWPHDDz+IvXv3irCwMDF16tQWMf9169YJlUol0tLSxLlz58SBAwdEbGysGDhwYJPMX4iq1zQnJ0fk5OQIAGLJkiUiJydHvk1Ec/9bbo5aen0UouXXSNbHpq+PQrT8Gsn66Hysj01fH4Vo+TWS9bFt18dW22ALIcTKlStFcHCw0Gg0YsCAAWLv3r3y7yZNmiQeeOABq/F79uwR0dHRQqPRiG7duon09PRGnrE1R+b/wAMPCAA2P5MmTWr8idfg6HtQU1MXRwtHczh58qQYOnSo0Gq1IjAwUCQnJ4ubN2828qyrOTr/5cuXi969ewutViv8/f3FU089JS5evNjIs662e/fuO362W8LfcnPU0uujEC2/RrI+Nn19FKJl10jWR9dgfWz6+ihEy6+RrI9ttz5KQrSAffZEREREREREzVyrPAebiIiIiIiIqLGxwSYiIiIiIiJyAjbYRERERERERE7ABpuIiIiIiIjICdhgExERERERETkBG2wiIiIiIiIiJ2CDTUREREREROQEbLCJiIiIiIiInIANNhEREREREZETsMEmugc///nPMWvWLPlxt27dkJqa2mTzISJqLlgfiYjsY31s3dhgk0OefvppSJIESZKgVqvRvXt3vPjiiygrKwMAXLhwAZIkITc3F/Pnz5fH1vVz4cKFOtf14YcfYuDAgfD09ET79u0xZMgQfP75542UqbU9e/ZAkiRcu3bNKr5161YsWrSoSeZERM0L6+M1qzjrIxFZsD5es4qzPrZubLDJYQ8//DD0ej3Onz+Pv/zlL0hLS8OLL75oM+7FF1+EXq+XfwIDA7Fw4UKrWFBQkN11vPjii3juuecwbtw4HD16FN988w0GDx6M0aNH4//+7/9cnWK9derUCe3bt2/qaRBRM8H6WI31kYhqYn2sxvrYygkiB0yaNEmMHj3aKjZ16lTh5+cnhBAiLy9PABA5OTk2zw0ODhZLly696zoOHTokAIjly5fb/C45OVmo1WqRn58vhBDitddeE1FRUVZjli5dKoKDg+XH33zzjRg6dKjo3Lmz8PLyEkOGDBHZ2dlWzwEg1qxZIx5//HGh1WpFjx49xLZt26xyqvkzadIkIYQQDzzwgJg5c2adOV67dk08++yzwsfHR7Rv3148+OCDIjc3V/59bm6u+PnPfy7atWsn2rdvLwYMGCC+/fbbu75GRNT8sD6yPhKRfayPrI9tCfdg0z3TarWorKx02vI2bdqEdu3a4bnnnrP53R//+EdUVlZiy5Yt9V7e9evXMWnSJOzfvx9ff/01wsLCMGrUKFy/ft1q3IIFCzBu3Dh8//33GDVqFJ566in89NNPCAoKktd3+vRp6PV6LFu27K7rFULgkUceQUFBAbZv347s7GwMGDAADz30EH766ScAwFNPPYXAwEB8++23yM7Oxpw5c6BWq+udGxE1b6yP9rE+EhHro32sjy2fqqknQC3bN998g40bN+Khhx5y2jLPnDmD0NBQaDQam98FBARAp9PhzJkz9V7eL37xC6vHq1evRseOHbF37148+uijcvzpp5/GE088AQB44403sGLFCnzzzTd4+OGH0alTJwBAly5d0KFDh3qtd/fu3Th27BgKCwvh5uYGAHjnnXfwz3/+E//4xz8wbdo05Ofn46WXXkJ4eDgAICwsrN55EVHzxvpYN9ZHoraN9bFurI8tH/dgk8M+//xztGvXDu7u7oiPj8eQIUOwYsWKRlu/EMJu8axLYWEhpk+fjp49e0Kn00Gn0+HGjRvIz8+3GtevXz/535YLYxQWFjZ4ntnZ2bhx4wY6d+6Mdu3ayT95eXk4d+4cACA5ORlTp07F0KFD8eabb8pxImqZWB/rh/WRqO1hfawf1seWj3uwyWEPPvgg0tPToVarERAQ4PRDUsLCwnDgwAFUVFTYFMLLly+jtLQUPXv2BAAoFAoIIazG1D7c6Omnn0ZRURFSU1MRHBwMNzc3xMfHo6Kiwmpc7TwkSYLZbG5wHmazGf7+/tizZ4/N7yxbMefPn48nn3wSX3zxBf71r3/htddew8cff4wxY8Y0eL1E1HRYH+uH9ZGo7WF9rB/Wx5aPe7DJYZ6enujRoweCg4Ndcr7HE088gRs3bmD16tU2v3vnnXfg7u6O8ePHAwB8fHxQUFBgVSRzc3OtnrN//3688MILGDVqFPr06QM3NzcUFxc7NCdLoTaZTPV+zoABA1BQUACVSoUePXpY/Xh7e8vjevbsidmzZ2Pnzp341a9+hXXr1jk0NyJqPlgf64f1kajtYX2sH9bHlo8NNjU78fHxmDlzJl566SW8++67OHfuHE6dOoVXX30Vy5cvx5o1a9C5c2cAwM9//nMUFRXhr3/9K86dO4eVK1fiX//6l9XyevTogb/97W84efIkDh8+jKeeegpardahOQUHB0OSJHz++ecoKirCjRs37vqcoUOHIj4+Ho8//jh27NiBCxcu4ODBg3j11Vdx5MgRlJeX4/nnn8eePXvw448/4quvvsK3336LiIgIh+ZGRG0H6yPrIxHZx/rI+thcsMGmZik1NRVpaWnYtGkT+vbti4iICLz99tv4z3/+g9/97nfyuIiICKSlpWHlypWIiorCN998Y3NPxQ8++ABXr15FdHQ0JkyYgBdeeAFdunRxaD733XcfFixYgDlz5sDX1xfPP//8XZ8jSRK2b9+OIUOG4JlnnkHPnj3x29/+FhcuXICvry+USiWuXLmCiRMnomfPnhg3bhxGjhyJBQsWODQ3ImpbWB+JiOxjfaTmQBK1T0AgaoYuXLiABx54APHx8fjoo4+gVCqbekpERM0C6yMRkX2sj9QUuAebWoRu3bphz549CA8PtzlHhoioLWN9JCKyj/WRmgL3YBMRERERERE5AfdgExERERERETkBG2wiIiIiIiIiJ2CDTUREREREROQEbLCJiIiIiIiInIANNhEREREREZETsMEmIiIiIiIicgI22EREREREREROwAabiIiIiIiIyAnYYBMRERERERE5wf8HSjgMluWqyQoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgIUlEQVR4nO3deXhU5fn/8c8s2SEBJIRgQtglyGqCEihYFUGwFql+oaKAFlREK0tdoEgFaUVbl6AVRFQoVZC6b1iMrUgUN2KCC5s/CaVAUhKWBAIkmZnz+yPMkGEmkAkzk0zyfl1Xrovceeac555kbs59VpNhGIYAAAAAAMA5Mdf3BAAAAAAAaAxosAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLDRYKxfv14mk0mHDx+u76nUaN68eerbt299TwMAtGvXLplMJuXl5dX3VDzcfPPNuvbaa+t7GgAQdB06dFBmZmZ9TwP1iAYbQbdx40ZZLBZdddVVAV+Xv5v2e+65R//617/8siwATdvNN98sk8nk8VXb2picnKyCggL17NnzrGOD3YwvWrRIK1asCMq6AMAbb/W1+tfNN9981te/9dZbQZkrGhdrfU8ATc+LL76o3/72t3r++ee1e/dutW/fvr6ndFaGYchut6tZs2Zq1qxZfU8HQCNx1VVXafny5W6xiIiIWr3WYrGobdu2gZjWOYuLi6vvKQBo4goKClz/XrNmjf7whz9o+/btrlhUVFR9TAtNAEewEVRlZWX6xz/+oTvuuEO/+MUvznqEY+PGjRoyZIiioqKUnJysu+++W2VlZa6fv/TSS0pPT1fz5s3Vtm1bjRs3Tvv375dUdcTmsssukyS1bNnSbW9leXm57r77brVp00aRkZH62c9+pq+//tq1XOeR73Xr1ik9PV0RERHKzs72eor4iy++qAsvvFARERFKTEzUXXfdde5vFIAmISIiQm3btnX7atmypaSqoydLlizRiBEjFBUVpY4dO+rVV191vfb0o9KHDh3SjTfeqPj4eEVFRalr166u5r1jx46SpH79+slkMunnP/+5aznLly9XamqqIiMj1b17dy1evNhjHf/4xz80ePBgRUVFqX///tqxY4e+/vprpaenq1mzZrrqqqtUVFTket3pp4g7HA49+uij6tKliyIiItS+fXv96U9/8vfbCQAu1etqXFycTCaTW2zVqlXq3LmzwsPDdcEFF+jvf/+767UdOnSQJI0ePVomk8n1/U8//aRRo0YpISFBzZo1U//+/fXRRx/VQ3ZoyGiwEVRr1qzRBRdcoAsuuEA33XSTli9fLsMwvI797rvvNHz4cP3qV7/St99+qzVr1ujTTz91a2ArKiq0YMECbd68WW+99Zby8/NdTXRycrJef/11SdL27dtVUFCgRYsWSZLuu+8+vf766/rb3/6mb775Rl26dNHw4cN18OBBtzncd999WrhwobZu3arevXt7zHHJkiW68847ddttt+m7777TO++8oy5duvjjrQIAzZ07V9ddd502b96sm266STfccIO2bt1a49gtW7bogw8+0NatW7VkyRK1bt1akvTVV19Jkj766CMVFBTojTfekCQtW7ZMc+bM0Z/+9Cdt3bpVDz/8sObOnau//e1vbst+8MEH9cADD+ibb76R1WrVDTfcoPvuu0+LFi1Sdna2fvrpJ/3hD3+oMY/Zs2fr0Ucfdc1x1apVSkhI8MdbBAA+e/PNNzVt2jT97ne/0/fff6/bb79dt9xyiz7++GNJch10Wb58uQoKClzfHz16VCNHjtRHH32k3NxcDR8+XNdcc412795db7mgATKAIBo4cKCRmZlpGIZhVFZWGq1btzaysrIMwzCMjz/+2JBkHDp0yDAMwxg/frxx2223ub0+OzvbMJvNxvHjx70u/6uvvjIkGUeOHPG6TMMwjKNHjxphYWHGyy+/7IpVVFQY7dq1M/785z+7ve6tt95yW/6DDz5o9OnTx/V9u3btjDlz5vj+RgBo8iZOnGhYLBYjJibG7euhhx4yDMMwJBlTpkxxe80ll1xi3HHHHYZhGEZ+fr4hycjNzTUMwzCuueYa45ZbbvG6rtPHOiUnJxurVq1yiy1YsMDIyMhwe93zzz/v+vnq1asNSca//vUvV2zhwoXGBRdc4JbbqFGjDMMwjNLSUiMiIsJYtmxZLd8ZAPCv5cuXG3Fxca7vBw4caNx6661uY/7v//7PGDlypOt7Scabb7551mX36NHDePrpp13fp6SkGE8++eS5ThkhjGuwETTbt2/XV1995TpyYrVaNXbsWL344osaOnSox/icnBz9v//3//Tyyy+7YoZhyOFwKD8/X6mpqcrNzdW8efOUl5engwcPyuFwSJJ2796tHj16eJ3HTz/9pMrKSg0aNMgVCwsL08UXX+xxZCg9Pb3GfPbv3699+/bpiiuuqP2bAADVXHbZZVqyZIlbrFWrVq5/Z2RkuP0sIyOjxhuV3XHHHbruuuv0zTffaNiwYbr22ms1cODAGtddVFSk//73v5o0aZJuvfVWV9xms3lcQ139DB7nkedevXq5xZyX55xu69atKi8vp1YCaDC2bt2q2267zS02aNAg15mONSkrK9P8+fP13nvvad++fbLZbDp+/DhHsOGGBhtB88ILL8hms+n88893xQzDUFhYmA4dOuQx3uFw6Pbbb9fdd9/t8bP27durrKxMw4YN07Bhw/TSSy8pPj5eu3fv1vDhw1VRUVHjPIyTp6SbTCaP+OmxmJiYGpfDzTEAnKuYmBifLys5vU45jRgxQv/5z3/0/vvv66OPPtIVV1yhO++8U4899pjX8c4dksuWLdMll1zi9jOLxeL2fVhYmMf6T485l3c6aiWAhqg224Gnu/fee7Vu3To99thj6tKli6KionT99defcbsTTQ/XYCMobDabVq5cqccff1x5eXmur82bNyslJcXtKLXTRRddpB9++EFdunTx+AoPD9e2bdtUXFysRx55RIMHD1b37t09jqCEh4dLkux2uyvmfP2nn37qilVWVmrTpk1KTU2tdU7NmzdXhw4deGwXgID54osvPL7v3r17jePj4+N1880366WXXlJmZqaee+45Sd5rYUJCgs4//3zt3LnTo8Y6b4rmD127dlVUVBS1EkCDkZqa6rYdKFXdWLf6dmBYWJhbzZSk7Oxs3XzzzRo9erR69eqltm3bateuXcGYMkIIR7ARFO+9954OHTqkSZMmeZx6eP311+uFF17Qk08+6Ra///77NWDAAN1555269dZbFRMTo61btyorK0tPP/202rdvr/DwcD399NOaMmWKvv/+ey1YsMBtGSkpKTKZTHrvvfc0cuRIRUVFqVmzZrrjjjt07733qlWrVmrfvr3+/Oc/69ixY5o0aZJPec2bN09TpkxRmzZtNGLECB05ckSfffaZfvvb39btjQLQpJSXl6uwsNAtZrVaXTcne/XVV5Wenq6f/exnevnll/XVV1/phRde8LqsP/zhD0pLS9OFF16o8vJyvffee66NxTZt2igqKkr//Oc/lZSUpMjISMXFxWnevHm6++67FRsbqxEjRqi8vFybNm3SoUOHNHPmTL/kGBkZqfvvv1/33XefwsPDNWjQIBUVFemHH37wueYCgD/ce++9GjNmjC666CJdccUVevfdd/XGG2+43RHceRBl0KBBioiIUMuWLdWlSxe98cYbuuaaa2QymTR37twaz95B08URbATFCy+8oKFDh3p9Nup1112nvLw8ffPNN27x3r1765NPPtGPP/6owYMHq1+/fpo7d64SExMlVR2pWbFihV599VX16NFDjzzyiMepkOeff77mz5+vWbNmKSEhwXUH8kceeUTXXXedxo8fr4suukj/7//9P61bt871eJzamjhxojIzM7V48WJdeOGF+sUvfqEff/zRp2UAaLr++c9/KjEx0e3rZz/7mevn8+fP1yuvvKLevXvrb3/7m15++eUa7y8RHh6u2bNnq3fv3hoyZIgsFoteeeUVSVVN+1NPPaWlS5eqXbt2GjVqlCRp8uTJev7557VixQr16tVLl156qVasWOHXI9hS1R3Of/e73+kPf/iDUlNTNXbs2Bqv2QaAQLv22mu1aNEi/eUvf9GFF16opUuXavny5W6PMHz88ceVlZWl5ORk9evXT5L05JNPqmXLlho4cKCuueYaDR8+XBdddFE9ZYGGymQYNTwjCQAA1BuTyaQ333zT7XnSAACgYeMINgAAAAAAfkCDDQAAAACAH3CTMwAAGiCu4AIAIPRwBBsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8INGcw22w+HQvn371Lx5c5lMpvqeDoAGyjAMHTlyRO3atZPZ3DT2MVIfAdRWU6uR1EcAtVXb+thoGux9+/YpOTm5vqcBIET897//VVJSUn1PIyiojwB81VRqJPURgK/OVh8bTYPdvHlzSVUJx8bG1vNsADRUpaWlSk5OdtWMpoD6CKC2mlqNpD4CqK3a1sdG02A7T+uJjY2lQAI4q6Z0KiD1EYCvmkqNpD4C8NXZ6mPjv7gGAAAAAIAgoMEGAAAAAMAPGs0p4oA3drtdlZWV9T0N1AOLxSKr1dpkTnMEfEV9bNrCwsJksVjqexpAg2QYhmw2m+x2e31PBfXgXOsjDTYaraNHj2rPnj0yDKO+p4J6Eh0drcTERIWHh9f3VIAGhfoIk8mkpKQkNWvWrL6nAjQoFRUVKigo0LFjx+p7Kqgn51ofabDRKNntdu3Zs0fR0dGKj4/nKGYTYxiGKioqVFRUpPz8fHXt2rVJPM8VqA3qIwzDUFFRkfbs2aOuXbtyJBs4yeFwKD8/XxaLRe3atVN4eDg1sonxR32kwUajVFlZKcMwFB8fr6ioqPqeDupBVFSUwsLC9J///EcVFRWKjIys7ykBDQL1EZIUHx+vXbt2qbKykgYbOKmiokIOh0PJycmKjo6u7+mgnpxrfeSQDho19jo2bRy1BmpGfWza+P0DNWP7oWk71/rIEWw0CQsWLFBBQUFAlp2YmKi5c+cGZNkAEGiBrI8SNRJAaGMbEr6iwUaTUFBQoPe/3KLouNZ+Xe6xkmJdfUntxnbo0EGRkZGuU5UHDBigZ5991m3M5MmTNXHiRA0ePLjG5axfv14VFRUaNmyYJGnfvn268cYb9fHHH9ctCT/btWuX0tPTVVxcXKfXn57PvHnz9Pvf/54blQEBEqj6KFEjvaFGAqGFbcjgaSz1kQY7CAJ9dOB07A3zLjqutQZOuN+vy9y48lGfxr/22mvq2bOn15/Z7XY9//zzZ13G+vXrdfToUVdxbNeuXYMpjP5wej7z58/XPffcw8ZjEFGzmp5A1EeJGhkI1MimhXrcMLANGRoaSn2kwQ6CQB4dOJ0ve8NQv1asWKFXXnlFbdq00ZYtW/T0009r9uzZuueee/SLX/xCJSUl+t3vfqcvv/xSZrNZaWlpuvvuu/Xss8/K4XDoo48+0q9+9StNmDDBbW/fP//5T/3+97+XzWZTy5YttWTJEvXo0UPr16/X9OnTNXDgQH322Wey2Wz629/+pvT0dK/z2717t9LT07Vnzx5XYZo4caJrHl9//bXuv/9+lZaWyuFwaM6cObruuus8llPTfCRp+fLlWrRokQzDUFhYmF577TVJcuUzZcoUSdLAgQNlNpv1zjvvqH///srPz3fdfOSGG27QkCFDdMcdd/j3F9SEUbPQEFAjqZGgHsM76mPDro802EESqKMDp/N1bxiC6/rrr3ed3jNx4kR9+umnys3NVdeuXT3GTp8+Xc2aNdPmzZtlNptVVFSk+Ph4TZkyRUePHtVjjz0mqep0Gqf9+/frpptu0scff6xevXrp5Zdf1pgxY/T9999Lkn744Qc9//zzWrx4sZ599lnNmTNH69at8zrX9u3bq2/fvnrnnXd0/fXX6+jRo3r33Xf1xBNP6PDhw7r99tv1/vvvKzExUcXFxUpLS9OgQYPclnGm+axfv15/+tOflJ2drcTERNfzJvfv3+96/bPPPqulS5dq48aNrmcRDh06VKtWrdLkyZNVWFiojz76SMuWLavjbwQ1oWahPlAjqZHwRD2GRH0MpfrILfKAIHrttdeUl5envLw8tWzZUj/72c+8FkZJeu+993Tvvfe67mQZHx9/1uV/+eWX6tu3r3r16iVJuvHGG7Vnzx7X6WUXXHCBa29jRkaGfvrppzMu75ZbbtGKFSskSf/4xz90+eWX67zzztPGjRu1c+dOjRgxQn379tXQoUNlGIa2b99e6/m8//77mjBhghITEyVJ0dHRtXokxrRp0/TMM89IkpYuXapx48a5CieA0EaNpEYC8I76GDr1kSPYQD3y94faMAyvjxZwxqo/C9pischms51xeaNHj9bdd9+twsJCLV++XLNnz3atp3fv3tqwYYPHa6rvDT3bfOri4osvVmRkpD755BMtW7ZM//73v+u8LAANGzXSd9RIoGmgPvouWPWRBhtNxrGSYr+f/nSspFhSG78u0+mXv/yl/vKXv2jRokVup/fExsZq7969Xl+TkZGhSZMmaevWrUpNTdUrr7yipKQktW3bVtu2bfN5DpGRkfq///s/Pfjgg9q5c6eGDx8uqep6lh9//FH//ve/dfnll0uS8vLyXNfF1GY+11xzjX7zm9/otttuU9u2bV2n95yuefPmKikpcfuPZNq0abrpppt04YUXqlu3bj7nBcBdIOqjc7nUSGokEOrYhqQ++oIGG01CYmJigG7c0cZ1eoq/Pfnkk5oxY4Z69uyp8PBw9e/fX8uWLdPo0aP197//XX379nXdoMIpPj5ef//733XjjTfKbrerRYsW+sc//nFO87jlllt08cUX6/7775fFYpEktWzZUu+++67uvfdezZgxQ5WVlWrfvr3eeustt9eeaT5DhgzRAw88oGHDhslkMik8PNx1g4rqfve73+nyyy9XVFSUPvzwQ7Vp00bXX3+97rjjDt11113nlBuAQNZHiRpJjQRCHduQdddU66PJMAwjYEsPotLSUsXFxamkpESxsbH1PR03U6dO1cfb9gftBhWXdW+jxYsXB3xdDdmJEyeUn5+vjh07up3Sgsbhq6++0k033aRt27a5ri/yxtvfQUOuFYHia87UrMaN+tj41aZG1vR30NRqZEPPl3ocXNTHxi8Y9ZEj2ABCyuTJk/Xhhx/q+eefP2NzDQBNETUSALwLVn2kwQaauLy8PN18880e8YkTJ2rGjBnBn9BZPP/88/U9BQBNCDUSALyjPnpHgw00cX379lVeXl59TwMAGiRqJAB4R330jnOH0Kg1klsMoI74/QM14/PRtPH7B2rG56NpO9ffPw02GiXnnQorKirqeSaoT87HNoSFhdXzTICGg/oI6dTv3/n3AODU9kJNj31C03Cu9ZFTxNEoWa1WRUdHq6ioSGFhYdzopYkxDEPHjh3T/v371aJFCzYggWqoj3A4HCoqKlJ0dLSsVjYFASeLxaIWLVpo//79kqTo6GiZTKZ6nhWCyR/1kaqKRslkMikxMVH5+fn6z3/+U9/TQT1p0aKF2rZtW9/TABoU6iMkyWw2q3379jQPwGmc2w3OJhtNz7nWRxpsNFrh4eHq2rUrp0E2UWFhYRy5BmpAfUR4eDhnLwBeOHdCtmnTRpWVlfU9HdSDc62PNNho1Mxms9sD4gEAVaiPAFAzi8XCjnrUCbsuASDIFi9erI4dOyoyMlJpaWnKzs6u1es+++wzWa1W9e3bN7ATBAAAQJ3QYANAEK1Zs0bTp0/XnDlzlJubq8GDB2vEiBHavXv3GV9XUlKiCRMm6IorrgjSTAEAAOArGmwACKInnnhCkyZN0uTJk5WamqrMzEwlJydryZIlZ3zd7bffrnHjxikjIyNIMwUAAICvaLABIEgqKiqUk5OjYcOGucWHDRumjRs31vi65cuX66efftKDDz4Y6CkCAADgHHCTMwAIkuLiYtntdiUkJLjFExISVFhY6PU1P/74o2bNmqXs7OxaP4+xvLxc5eXlru9LS0slSTabTTabTVLVDa7MZrMcDoccDodrrPOumVaLWRadijtkkiGTzDJkkuGK22WSZHIbeyouWaqN9RYPs1pc6zQMQ3a73TXWZDLJYrF4zLGm+JlyMpvNstvtMgzjrHGLxSKTyeR6r6rHJbnN8Uxxq9VKTuQUcjmdvm4AgG9osAEgyE5/rqJhGF6ftWi32zVu3DjNnz9f3bp1q/XyFy5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDuTUX3XaQgrLS1VXFycSkpKFBsbW9/TcTN16lR9vG2/Bk64P+Dr2rjyUV3WvY0WL14c8HUBoag+a0VFRYWio6P16quvavTo0a74tGnTlJeXp08++cRt/OHDh9WyZUu3x4Q4HA4ZhiGLxaIPP/xQl19+ucd6vB3BTk5O1oEDB1w5n+mI21133aXsH4uVcePvTq03QEewv1j1hIZ0i9df//pXjiKSEzk1gJxKS0t13nnnNcjtqUBoyNuPEtuQQENS23rBEWwACJLw8HClpaUpKyvLrcHOysrSqFGjPMbHxsbqu+++c4stXrxY//73v/Xaa6+pY8eOXtcTERGhiIgIj7jVavU4zdy5oX86m90hu5fbdDhONtSn8za2Ku45tnq80mZ3beybTCavp8HXNEdf4zU9z7SmeE2n5PsSJydykkIrp9peigIA8I4qCgBBNHPmTI0fP17p6enKyMjQc889p927d2vKlCmSpNmzZ2vv3r1auXKlzGazevbs6fb6Nm3aKDIy0iMOAACA+keDDQBBNHbsWB04cEAPPfSQCgoK1LNnT61du1YpKSmSpIKCgrM+ExsAAAANEw02AATZ1KlTNXXqVK8/W7FixRlfO2/ePM2bN8//kwIAAMA54znYAAAAAAD4AQ02AAAAAAB+QIMNAACAoFi8eLE6duyoyMhIpaWlKTs7u8axb7zxhq688krFx8crNjZWGRkZWrdunce4119/XT169FBERIR69OihN998M5ApAMAZ0WADAAAg4NasWaPp06drzpw5ys3N1eDBgzVixIgab+y4YcMGXXnllVq7dq1ycnJ02WWX6ZprrlFubq5rzOeff66xY8dq/Pjx2rx5s8aPH68xY8boyy+/DFZaAOCGBhsAAAAB98QTT2jSpEmaPHmyUlNTlZmZqeTkZC1ZssTr+MzMTN13333q37+/unbtqocfflhdu3bVu+++6zbmyiuv1OzZs9W9e3fNnj1bV1xxhTIzM4OUFQC4q1ODzek9AAAAqK2Kigrl5ORo2LBhbvFhw4Zp48aNtVqGw+HQkSNH1KpVK1fs888/91jm8OHDa71MAPA3nx/T5Ty9Z/HixRo0aJCWLl2qESNGaMuWLWrfvr3HeOfpPQ8//LBatGih5cuX65prrtGXX36pfv36STp1es+CBQs0evRovfnmmxozZow+/fRTXXLJJeeeJQAAAOpNcXGx7Ha7EhIS3OIJCQkqLCys1TIef/xxlZWVacyYMa5YYWGhT8ssLy9XeXm56/vS0lJJks1mk81mkySZzWaZzWY5HA45HA7XWGfcbrfLMIyzxi0Wi0wmk2u51eOSZLfbzxo3m53HwgxZdGrZhkxyyCSTDJlrEXfIJOMMcbMMhVktMpvNstlsAc1JkqxWqwzDcIubTCZZLBaP972meG1/T4888ogKCwtlGIYMw6j2np58D06+1l/xdu3aadasWQHN6WzxUPw9hUJOp6+7Jj432NVP75GqTs1Zt26dlixZooULF3qMP/0UnYcfflhvv/223n33XVeDXf30HkmaPXu2PvnkE2VmZmr16tW+ThEAAAANkMlkcvveMAyPmDerV6/WvHnz9Pbbb6tNmzZ1XubChQs1f/58j3hubq5iYmIkSfHx8ercubPy8/NVVFTkGpOUlKSkpCTt2LFDJSUlrninTp3Upk0bff/99zp+/Lgr3r17d7Vo0UK5ubluG/O9e/dWeHi4Nm3a5DaH9PR0VVRU6Ntvv3XFevXqpX9tKVScpVIXRB5xxY87LPrueAu1tparY0SZK15iD9P2E7FqF3Zc54efmkuRLUL55c3UIaJM8dZTOxj2VkRpb2W0ukYeUecRQ3Res6p5BTIni8Wi/v37q6SkRNu2bXPFo6Ki1KdPHxUXF2vnzp2ueFxcnFJTU7Vv3z7t2bPHFa/t7ykhIUGmiBh9+cNO/bi7QKMuu1gtmsW4xmd9sVn7ig5q3IjBCrOeao3eWv+ljh0v17gRQ9xyWvXBBkVHRejan586CFhps2nVB9lqFWVWv379XO9DoHJyaky/p1DIqaysTLXhU4PtPL3HuVfGyR+n98yYMcNt3PDhw894/Uwo7YE0m80Ks1pO/jSweyCtFrNr72Mgc3JizxY5hVpOtd37CADwn9atW8tisXgcWd6/f7/HEejTrVmzRpMmTdKrr76qoUOHuv2sbdu2Pi1z9uzZmjlzpuv70tJSJScnq1+/foqNjZV06shkx44dlZKS4hrrjHfr1s3j/ztJ6tmzp8f/d5JcB5ROj6enp3vEo6Ki3OIvvfSSpKrGOaespStuqGoHQrEtQgdt4R7xfZVRKqyMdMUdJ+O7ymO0uzzaI/7jieb68oMNGtItXrfccktAc3KKi4tzizt3irRu3dqtT3DG27Vrp7Zt27ritf09vfTSS9qwo0gXj/ud4mXSARk6WG0busOI/uogk/6rU9sNknTh6P6SpJ3VxkpS/3He4wMnDNTnf/+zNm/erFtuuSWgOZ0ebwy/p1DIydlvno1PDXZDOb1HCq09kH369FFCyjHtkgK+B/Ky/r3Uq2Nb15wa8l4gp4byeyKnppHT9u3bBQAIrvDwcKWlpSkrK0ujR492xbOysjRq1KgaX7d69Wr95je/0erVq3X11Vd7/DwjI0NZWVluB2o+/PBDDRw40OvyIiIiFBER4RG3Wq2yWt03i507ik/n3KCvbfz05foSP7Wz2CS7PI/KG36KO2RSpc0uh8Phtv5A5ORkMpm8xmt6332NO+fucDhUabO7dj5U7VTwfA/sNdyaytv7VVPcMAyP97Auc28If3tOwfo91TZenznVtA6PddZqlJdJVRfs03uk0NoD6dxz1n/cwIDvgfz46+/kKP2fa89ZQ94L5NRQfk/k1DRyio6OFgAg+GbOnKnx48crPT1dGRkZeu6557R7925NmTJFUtW23d69e7Vy5UpJVduNEyZM0KJFizRgwADXgZeoqCjFxcVJkqZNm6YhQ4bo0Ucf1ahRo/T222/ro48+0qefflo/SQJo8nxqsBvK6T1SaO2BdO45qxLYPZA2u8PrnrOGuBeotvFQ2rNV2zg51V9Otd37CADwr7Fjx+rAgQN66KGHVFBQoJ49e2rt2rWunbYFBQVuz8ReunSpbDab7rzzTt15552u+MSJE7VixQpJ0sCBA/XKK6/ogQce0Ny5c9W5c2etWbOGm+QCqDc+bWk2lNN7AAAAEHqmTp2qqVOnev2Zs2l2Wr9+fa2Wef311+v6668/x5kBgH/4fCiH03sAAAAAAPDk/Wr+Mxg7dqwyMzP10EMPqW/fvtqwYUOtT+9JTEx0fU2bNs01xnl6z/Lly9W7d2+tWLGC03sAAAAAACGlThcjcnoPAAAAAADufD6CDQAAAAAAPNFgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPhBnZ6DDQTbggULVFBQELT1JSYmau7cuUFbHwAAAIDQR4ONkFBQUKD3v9yi6LjWAV/XsZJiXX1JwFcDAAAAoJGhwUbIiI5rrYET7g/4ejaufDTg6wAAAADQ+HANNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAEGSLFy9Wx44dFRkZqbS0NGVnZ9c49tNPP9WgQYN03nnnKSoqSt27d9eTTz4ZxNkCAACgtqz1PQEAaErWrFmj6dOna/HixRo0aJCWLl2qESNGaMuWLWrfvr3H+JiYGN11113q3bu3YmJi9Omnn+r2229XTEyMbrvttnrIAAAAADWhwQaAIHriiSc0adIkTZ48WZKUmZmpdevWacmSJVq4cKHH+H79+qlfv36u7zt06KA33nhD2dnZNNgAAL8p3rVVG/Zv09SpU4OyvsTERM2dOzco6wKCiQYbAIKkoqJCOTk5mjVrllt82LBh2rhxY62WkZubq40bN+qPf/xjIKYIAGiibOUntNccp4+37Q/4uo6VFOvqSwK+GqBe0GADQJAUFxfLbrcrISHBLZ6QkKDCwsIzvjYpKUlFRUWy2WyaN2+e6wi4N+Xl5SovL3d9X1paKkmy2Wyy2WySJLPZLLPZLIfDIYfD4RprNlfdmsNqMcuiU3GHTDJkklmGTDJccbtMkkxuY0/FJUu1sd7iYVaLa52GYchut7vGmkwmWSwWjznWFD9TTmazWXa7XYZhnDVusVhkMplc71X1uCS3OZ4pbrVayYmcQi6n09eNpiWsWZwGTrg/4OvZuPLRgK8DqC802AAQZCaTye17wzA8YqfLzs7W0aNH9cUXX2jWrFnq0qWLbrjhBq9jFy5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDsabAAIktatW8tisXgcrd6/f7/HUe3TdezYUZLUq1cv/e9//9O8efNqbLBnz56tmTNnur4vLS1VcnKy+vXrp9jYWEmnjlR37NhRKSkprrHO+Mdff6cT3Ya54o6TR55/OB7n5Qi2lFfWwm0OznhOWUuP+HHD4op/8cEGDekWL6lqQz89Pd011rnToXXr1mrVqpVHvF27dmrbtq3H3GvKqVu3bh5HESWpZ8+eHkcRJbld+149Xn2OznhUVJRHnJzIKRRzcp7xAgCoGxpsAAiS8PBwpaWlKSsrS6NHj3bFs7KyNGrUqFovxzAMt1PATxcREaGIiAiPuNVqldXqXvadp6qezmZ3yO7lSY6Ok6eEn87b2Kq49yPzznilze46XdVkMnnM70xz9DXubFJqG/c2F1/j5EROUmjlVNM6AAC1QxUFgCCaOXOmxo8fr/T0dGVkZOi5557T7t27NWXKFElVR5/37t2rlStXSpKeeeYZtW/fXt27d5dU9Vzsxx57TL/97W/rLQcAAAB4R4MNAEE0duxYHThwQA899JAKCgrUs2dPrV271nVaaUFBgXbv3u0a73A4NHv2bOXn58tqtapz58565JFHdPvtt9dXCgAAAKiB93P6AAABM3XqVO3atUvl5eXKycnRkCFDXD9bsWKF1q9f7/r+t7/9rb7//nuVlZWppKRE33zzje644w6vp3gCQEO3ePFidezYUZGRkUpLS1N2dnaNYwsKCjRu3DhdcMEFMpvNmj59useYFStWyGQyeXydOHEigFkAQM3YQgMAAEDArVmzRtOnT9ecOXOUm5urwYMHa8SIEW5n7VRXXl6u+Ph4zZkzR3369KlxubGxsSooKHD7ioyMDFQaAHBGdWqw2fsIAAAAXzzxxBOaNGmSJk+erNTUVGVmZio5OVlLlizxOr5Dhw5atGiRJkyYoLi4uBqXazKZ1LZtW7cvAKgvPl+D7dz7uHjxYg0aNEhLly7ViBEjtGXLFrVv395jfPW9j08++WSNy42NjdX27dvdYux9BAAACH0VFRXKycnRrFmz3OLDhg3Txo0bz2nZR48eVUpKiux2u/r27asFCxZ4POrMqby83O0pDM7HktlsNtlsNkmn7qjucDhcTzmoHrfb7R6PXfMWt1gsMplMruVWj0tye9Z5TfFTlwMZslR7RKIhkxwyySRD5lrEHTLJOEPcLEPhYWEKC7PKIodb3PPRjCZZdOp9ORWX2xzPFHeq/t6YTCZZLBaP972meG1/T2azWWFWi0wyApqTXWaZTCaZzWZXXoHK6Wxxf/ztSVVPKDAMwy3elHM6fd018bnBrr73UZIyMzO1bt06LVmyRAsXLvQY79z7KEkvvvhijct17n0EAABA41JcXCy73a6EhAS3eEJCggoLC+u83O7du2vFihXq1auXSktLtWjRIg0aNEibN29W165dPcYvXLhQ8+fP94jn5uYqJiZGkhQfH6/OnTsrPz9fRUVFrjFJSUlKSkrSjh07VFJS4op36tRJbdq00ffff6/jx4+7za1FixbKzc1125jv3bu3wsPDtWnTJrc5pKenq6KiQt9++60r1qtXL/1rS6HiLJW6IPKIK37cYdF3x1uotbVcHSPKXPESe5i2n4hVu7DjOj/81FyKbBHKL2+mDhFliree2sGwtyJKeyuj1TXyiKZOniBTeJQSYg4pvzxGRbZIXRhVoijzqblvP9FcJfZw9Y057NZgfncsThWGWWkxh9xyyilrqXCTQ72iT71fdpmULal58+Zu70FUVJT69Omj4uJi7dy50xWPi4tTamqq9u3bpz179rjitf099enTR0mdK3TYWh7QnHLKWimxdUv16dPHlVegcnIK5N+exWJR//79VVJSom3btgX89xQKOZWVlak2fGqwG8reRym09kA695xVCeweyMN7ftTnh37SXXfdVbUcw3DtvavO+X6cazwhIUEPPPBAwPdsOd/DxrZX9WzxhrC3rrHlVNu9jwAA/zOZTG7fG4bhEfPFgAEDNGDAANf3gwYN0kUXXaSnn35aTz31lMf42bNna+bMma7vS0tLlZycrH79+ik2NlbSqW2djh07up7wUD3erVs3j//vJKlnz54e/99J8tiedcbT09M94lFRUW7xl156SVJV45xT1tIVN05uwxTbInTQFu4R31cZpcLKU2eCOk7Gd5XHaHd5tEf8xxPN9c7zKxUWn6yRdw50xX84HudlW0vKK2vhNndnvPocnfHjhsUjLklHjhxxy9X5d9C6dWu1atXKI96uXTu3g3G1/T299NJL2rCjSBeP6x/wnAqKD2nz5s265ZZbAprT6fFA/O05xcXFBeX3FAo5OfvNs/GpwW4oex+l0NoD2adPHyWkHNMuKeB7IEdc9jOlpKQoIqrqPdi4eZt+3F2gUZddrBbNYlzjs77YrH1FBzVuxGCFWU/9Gby1/ksdO16ucSNO3dVYklZ9sEHRURG69ueXuGInjh9TwZ78oOzZcu59bNnI9qo6NeS9dY0tp9MvRQEABF7r1q1lsVg8thf379/vsV15Lsxms/r3768ff/zR688jIiIUERHhEbdarbJa3TeLnTuKT+fcoK9t/PTl+hI/tbPY5Gr4qjP8FHfIpIrKShmVNtmr3aLJcfLgxensNdzGyduyzxT39h7U9L77Gnf+PhwOhyptdtfOh0DmZBiGHA5Hrf+W6ppTbePn8rfnZDKZgvJ7qm28PnOqaR0e66zVKC+Tqi7Yex+l0NoD6dxz1n/cwIDvgXzvnx8pvE17jbzzj5KkNj/vr3iZdECGDlZrOjuM6K8OMum/px3tvXB01d69nacd1e0/zjP+xQdP6GddzgvKnq1nnnlGG3YUacC49Ea1V/X0eEPcW9fYcoqOjhYAILjCw8OVlpamrKwsjR492hXPysrSqFGj/LYewzCUl5enXr16+W2ZAOALnxrshrL3UQqtPZDOPWdVArsHstJmk07b+ygFZm+dM6dg7NlyvoeNba9qbePsgfRfTrXd+wgA8K+ZM2dq/PjxSk9PV0ZGhp577jnt3r1bU6ZMkVR18GTv3r1auXKl6zV5eXmSqi4lLCoqUl5ensLDw9WjRw9J0vz58zVgwAB17dpVpaWleuqpp5SXl6dnnnkm6PkBgORjg83eRwAAANTF2LFjdeDAAT300EMqKChQz549tXbtWtdZUQUFBR7PxK5+tlNOTo5WrVqllJQU7dq1S5J0+PBh3XbbbSosLFRcXJz69eunDRs26OKLLw5aXgBQnc+Hctj7CAAAgLqYOnWqpk6d6vVnK1as8IhVv8TImyeffPKMj4EFgGDzucFm7yMAAAAAAJ7qdDEiex8BAAAAAHDn/W5QAAAAAADAJzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB9Y63sCAAAAAJqO4l1btWH/Nk2dOjXg69qwYYMORyQGfD2AEw02AAAAgKCxlZ/QXnOcPt62P+Dr2vO/Q4o6Pz7g6wGcaLABAAAABFVYszgNnHB/wNfzxpxfB3wdQHVcgw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5gre8JIHQV79qqDfu3aerUqQFf14YNG3Q4IjHg6wEAAACAuqLBRp3Zyk9orzlOH2/bH/B17fnfIUWdHx/w9QAAAABAXdFg45yENYvTwAn3B3w9b8z5dcDXAQAAAADngmuwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQaAIFu8eLE6duyoyMhIpaWlKTs7u8axb7zxhq688krFx8crNjZWGRkZWrduXRBnCwAAgNqiwQaAIFqzZo2mT5+uOXPmKDc3V4MHD9aIESO0e/dur+M3bNigK6+8UmvXrlVOTo4uu+wyXXPNNcrNzQ3yzAEAAHA2NNgAEERPPPGEJk2apMmTJys1NVWZmZlKTk7WkiVLvI7PzMzUfffdp/79+6tr1656+OGH1bVrV7377rtBnjkAAADOhgYbAIKkoqJCOTk5GjZsmFt82LBh2rhxY62W4XA4dOTIEbVq1SoQUwQAAMA5sNb3BACgqSguLpbdbldCQoJbPCEhQYWFhbVaxuOPP66ysjKNGTOmxjHl5eUqLy93fV9aWipJstlsstlskiSz2Syz2SyHwyGHw+EaazZX7Xe1Wsyy6FTcIZMMmWSWIZMMV9wukyST29hTcclSbay3eJjV4lqnYRiy2+2usSaTSRaLxWOONcXPlJPZbJbdbpdhGGeNWywWmUwm13tVPS7JbY5nilutVnIip5DL6fR1AwB8Q4MNAEFmMpncvjcMwyPmzerVqzVv3jy9/fbbatOmTY3jFi5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDsabAAIktatW8tisXgcrd6/f7/HUe3TrVmzRpMmTdKrr76qoUOHnnHs7NmzNXPmTNf3paWlSk5OVr9+/RQbGyvp1JHqjh07KiUlxTXWGf/46+90otupU9kdJ488/3A8zssRbCmvrIXbHJzxnLKWHvHjhsUV/+KDDRrSLV5S1YZ+enq6a6xzp0Pr1q3dTol3xtu1a6e2bdt6zL2mnLp16+ZxFFGSevbs6XEUUZL69evnNndnvPocnfGoqCiPODmRUyjm5DzjBQBQN1yDDQBBEh4errS0NGVlZbnFs7KyNHDgwBpft3r1at18881atWqVrr766rOuJyIiQrGxsW5fUtVpo84v5wa+2Wz2GrfZHbLL7PoyTjbMDpnc4joZrx47FTedNV5ps7tOVzWZTG5zcTYVp8+xpvjZcrJYLLWKOxuO6jFn/PQ5nilOTuQUqjkFki+PKSwoKNC4ceN0wQUXyGw2a/r06V7Hvf766+rRo4ciIiLUo0cPvfnmmwGaPQCcXZ0abIojANTNzJkz9fzzz+vFF1/U1q1bNWPGDO3evVtTpkyRVHX0ecKECa7xq1ev1oQJE/T4449rwIABKiwsVGFhodvppgAQCnx9TGF5ebni4+M1Z84c9enTx+uYzz//XGPHjtX48eO1efNmjR8/XmPGjNGXX34ZyFQAoEY+N9gURwCou7FjxyozM1MPPfSQ+vbtqw0bNmjt2rWu00oLCgrc6unSpUtls9l05513KjEx0fU1bdq0+koBAOrE18cUdujQQYsWLdKECRMUFxfndUxmZqauvPJKzZ49W927d9fs2bN1xRVXKDMzM4CZAEDNfD4PqHpxlKoK27p167RkyRItXLjQY7yzOErSiy++6HWZ1YujVHUE55NPPlFmZqZWr17t6xQBoEGbOnWqpk6d6vVnK1ascPt+/fr1gZ8QAASY8zGFs2bNcov78phCbz7//HPNmDHDLTZ8+PAaG+xzfcpCsO8K77ycQDLcbiRpyCSHTDLJkLkWceeTIGqKm2UoPCxMYWFWWeQI2JMjqjOZ3JcTiJxM1fIyyQhoTnaZZTKZZDabXb/zpvxEgsaYU22fsuBTg91QiqMUWgXSbDYrzGo5+dPAFsgwq1XhJ4tj9Xggikl4WNjJ7xpf0Zfk9vtuysWkseXEI2gAIPj88ZhCbwoLC31a5rk+ZSHYd4Xv1auX/rWlUHGWSl0QecQVP+6w6LvjLdTaWq6OEafu/F5iD9P2E7FqF3Zc54efmkuRLUL55c3UIaJM8dZT2897K6K0tzJaXSOPaOrkCTKFRykh5lDAnhwhVW1/vSopuW1rt/GByCnOUqnzT+Z1zFoe0JxyylopsXVL9enTx/W7bcpPJGiMOdX2KQs+NdgNpThKoVUg+/Tpo4SUY9olBbxA/uKqoerQuYsSThaDQBbI+Ak3aNk76xtd0c+W1Lx5c7ffa1MuJo0tp+3btwsAUD/q+phCfy3TH09ZCOZd4V966SVJVdtQ1Z/K4LzxZLEtQgdt4R7xfZVRKqyMdMWdT4LYVR6j3eXRHvEfTzTXO8+vVFh8skbeOTBgT46o7r+FxQHPySRDb5/M66o7BwU8p4LiQ9q8ebNuueUWSU37iQSNMafaPmWhTreKrO/iKIVWgXzppZe0YUeR+o8bGPAC+d4/P1J4mx0aeedAt3ggisnbK1dLLRIbZdE/cuQIxaSR5hQdHS0AQHCdy2MKz6Rt27Y+LTMiIkIREREecW93UHeeiXU65/9XtY3XdGf22sRPnY1lcm3PVGf4Ke6QSRWVlTIqbSef+HAqLi/j7TXcxsnbsmuKG4bhdTn+zEnV8qr+NIxA5uRwOGr9t+RrPJh/e07OJxLUdo6NOafaPmXBpwa7oRRHKbQKpMPhUKXNeaQusAWy0maTTiuOUmCKSUVlpcIkNcaiL3n/vTbFYlLbeKjkFOhH0AAAPFV/TOHo0aNd8aysLI0aNarOy83IyFBWVpbbpYYffvjhGR99CACB5NNdxOv6DNezcRbH6iiOAAAAjYevjymUpLy8POXl5eno0aMqKipSXl6etmzZ4vr5tGnT9OGHH+rRRx/Vtm3b9Oijj+qjjz6q8bGwABBoPh/KmTlzpsaPH6/09HRlZGToueee8yiOe/fu1cqVK12vycvLkyS34hgeHq4ePXpIqiqOQ4YM0aOPPqpRo0bp7bff1kcffaRPP/3UDykCAACgvo0dO1YHDhzQQw89pIKCAvXs2fOMjymU3C8nysnJ0apVq5SSkqJdu3ZJkgYOHKhXXnlFDzzwgObOnavOnTtrzZo1uuSSS4KWFwBU53ODTXEEAABAXfjymEJJbvfwqMn111+v66+//lynBgB+UaeLESmOAAAAAAC48+kabAAAAAAA4B0NNgAAAAAAfkCDDQAAAACAHzTZB8IuWLBABQUFQVnXhg0bdDgiMSjrAgAADVcwtz8kKTExUXPnzg3a+oCmrHjXVm3Yv63Ge1X5G5/vhqnJNtgFBQV6/8stio5rHfB17fnfIUWdHx/w9QAAgIYtmNsfx0qKdTUPZAGCxlZ+QnvNcfp42/6Ar4vPd8PVZBtsSYqOa62BE+4P+HremPPrgK8DAACEhmBtf2xc+WjA1wHAXVizOD7fTRzXYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+0KSfgw14U7xrqzbs36apU6cGZX2JiYmaO3duUNYFAAAAIHBosIHT2MpPaK85Th9v2x/wdR0rKdbVlwR8NQAAAACCgAYb8CKsWZwGTrg/4OvZuPLRgK8DAAAAQHBwDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4AfW+p4AAAAAECoWLFiggoKCoKxrw4YNOhyRGJR1AfAPGmwAAACglgoKCvT+l1sUHdc64Ova879Dijo/PuDrAeA/NNgAAACAD6LjWmvghPsDvp435vw64OtAaCretVUb9m/T1KlTg7K+xMREzZ07NyjrCnU02EA9ojgCAADAV7byE9prjtPH2/YHfF3HSop19SUBX02jQYMN1COKIwAAAOoirFlcUM6k2Ljy0YCvozGhwQbqGcURAAAAaBx4TBcABNnixYvVsWNHRUZGKi0tTdnZ2TWOLSgo0Lhx43TBBRfIbDZr+vTpwZsoAAAAfEKDDQBBtGbNGk2fPl1z5sxRbm6uBg8erBEjRmj37t1ex5eXlys+Pl5z5sxRnz59gjxbAAAA+IIGGwCC6IknntCkSZM0efJkpaamKjMzU8nJyVqyZInX8R06dNCiRYs0YcIExcXFBXm2AAAA8AUNNgAESUVFhXJycjRs2DC3+LBhw7Rx48Z6mhUABI8vl8hI0ieffKK0tDRFRkaqU6dOevbZZ91+vmLFCplMJo+vEydOBDINAKhRnRpsiiMA+K64uFh2u10JCQlu8YSEBBUWFvptPeXl5SotLXX7kiSbzeb6cjgckiSHw+E1brWYZZHD9WWSIUkyy3CL62S8euxU3DhrPMxqkdlc9V+RYRhuc7Hb7V7nWFP8bDnZ7fZaxQ3D8Hi/nPHT53imODmRk7e5m81mmU2mgHyeTsUlyXB9vnzNKVB8vUQmPz9fI0eO1ODBg5Wbm6vf//73uvvuu/X666+7jYuNjVVBQYHbV2RkZMDyAIAz8fku4s7iuHjxYg0aNEhLly7ViBEjtGXLFrVv395jvLM43nrrrXrppZf02WefaerUqYqPj9d1113nGhcbG6vt27e7vZbiCKAxMp3cuHYyDMMjdi4WLlyo+fPne8Rzc3MVExMjSYqPj1fnzp2Vn5+voqIi15ikpCRJ0mX9e+nCmEOueH55jIpskbowqkRRZrsrvv1Ec5XYw9U35rAsJ5sDSfruWJwqDLPSqi1DknLKWirc5FCv6BJJUqcRQ9Qyuuq/opKSEm3bts01NioqSn369FFxcbF27tzpisfFxSk1NVX79u3Tnj17XPEz5ZSUlKQdO3aopKTEFe/UqZPatGmj77//XsePH3fFu3fvrhYtWig3N9fVfEhS7969FR4erk2bNrnllJ6eroqKCn377beumMViUf/+/cmJnDxy6tOnj3YfrZqDvz9PkmSXSTllrRRnqdS4EUN0XrOq96K2OZWVlSlQql8iI0mZmZlat26dlixZooULF3qMf/bZZ9W+fXtlZmZKklJTU7Vp0yY99thjbtuQJpNJbdu2Ddi8AcAXPjfYFEcAqJvWrVvLYrF4HK3ev3+/x1HtczF79mzNnDnT9X1paamSk5PVr18/xcbGSpLrqHHHjh2VkpLiGuuMf/z1dzrR7dSp7A5V7QD44Xic62i2VLUxL0l5ZS3c5uCM55S19IgfNyyu+BcfbNCQbvGSqjb009PTXWOdOx1at26tVq1aecTbtWvn9v/G2XLq1q2b66hn9XjPnj3d4haLRZLUr18/t7k749Xn6IxHRUV5xMmJnLzl9NJLL+mn//5P8fL/56m6EnuYPjr5+brllltqnZPzjBd/c14iM2vWLLf4mS6R+fzzzz0uqRk+fLheeOEFVVZWKiwsTJJ09OhRpaSkyG63q2/fvlqwYIHH3wUABItPDTbFEQDqLjw8XGlpacrKytLo0aNd8aysLI0aNcpv64mIiFBERIRH3Gq1ymp1L/tms9nVBFRnsztk93IVUVWj7Xm03dvYqrj3I/POeKXN7jqN1mQyeczvTHP0Ne5svGob9zYXX+PkRE6S+9wdDoccJ5ttf3+e3Jlcn6/quZ1t7jW9b+eqLpfIFBYWeh1vs9lUXFysxMREde/eXStWrFCvXr1UWlqqRYsWadCgQdq8ebO6du3qsczy8nKVl5e7vj/9Ehrp1HvhcDhc9al63Gw2K8xqcZ2OX3URjUlmGV52mJiqnbZfPS63sxRqioeHhZ38znCLGzLJIZNMMmSuRdw5x5riZhkKDwtTWJhVFjkCmpOTyeS+nEDkZKqWl0lGQHOyyyyTyaTwk+9hIHOSqv42TOZTl5sEKqfTLzcxmUyyWCwen4+a4mf7PNntdo+dqt7iFotFJpPJ4zIWZ32tfibTmeJWq1WGYbjFa5tTbS+h8amKNpTiKJ17gZROXWPoFKhi4vxgVwlsgQyzWt0+2BR9in5VvKroO4ujK8cmWCADeX1hbcycOVPjx49Xenq6MjIy9Nxzz2n37t2aMmWKpKqjz3v37tXKlStdr8nLy5NUtSOyqKhIeXl5Cg8PV48ePeojBQCoM18vkfE2vnp8wIABGjBggOvngwYN0kUXXaSnn35aTz31lMfyzvUSmqSkJHXq1ElJnVPV8uQp+4G6hEaS4ifcoGXvrFecpVIXRB5xxY87LPrueAu1tparY8Sp0/pL7GHafiJW7cKO6/zwU5dUFNkilF/eTB0iyhRvPbX9vLciSnsro9U18oimTp4gU3iUEmIOBTQnu0x6VVJy29Zu4wORU5ylUuefzOuYtTygOeWUtVL7pHb61a9GKuHkawKVkySdP3mCPs6tury2IV5u4tSYLguq7SU0ddpNWd/FUQqtawzPnzxBNlOY9kkBL5C/uGqoOnTu4vpgU/Qp+s4Cmdi6pfr06eMqQE21QJ5+r4dgGzt2rA4cOKCHHnpIBQUF6tmzp9auXes6rbSgoMDjhj/Vz+bJycnRqlWrlJKSol27dgVz6gBQZ3W5RKZt27Zex1utVp133nleX2M2m9W/f3/9+OOPXn/uj0todu7cqQ07ijRgXNVlBYG6hEaS3l65WmqRqBJ7mFvcOLmMYluEDtrCPeL7KqNUWHnqXkbOOe4qj9Hu8miP+I8nmuud51cqLD5ZI+8cGNCcnP5bWBzwnEwy9PbJvK66c1DAc9q9Z5+ee3WtRt45MKA5SdLbz6+UqVU7dQ5wTnW93MSpMV0WVNtLaHxqsBtKcZRC6xpD5wd7+J0/D3iBfO+fHym8zQ7XB5uiT9F3Kig+pM2bN+uWW26R1HSvm4yOjlZ9mzp1qqZOner1ZytWrPCIVX//ACAU1eUSmYyMDL377rtusQ8//FDp6emuSwxPZxiG8vLy1KtXL68/98clNA6HQ5U2u8ep/IE45b+islJVmZq8jjf8FHfIpIrKShmVNrf5BvIyBsMwvC7HnzmpWl7ObbZA51Rx2ntYl7mfLSfp5N+Go+FeblLbeChdFlTbS2h8arAbSnGUQusaQ+cHu0pgC2SlzSZ5+WBT9Cn6hmF4FEep6RXIQF1fCAA4M18vkZkyZYr++te/aubMmbr11lv1+eef64UXXtDq1atdy5w/f74GDBigrl27qrS0VE899ZTy8vL0zDPP1EuOAODzlibFEQAAAL7y9RKZjh07au3atZoxY4aeeeYZtWvXTk899ZTbU2gOHz6s2267TYWFhYqLi1O/fv20YcMGXXzxxUHPDwCkOjTYFEcAgL8U79qqDfu31XjKvL8lJiZq7ty5QVkXAE++XiJz6aWX6ptvvqlxeU8++aSefPJJf00PAM5Znc6VpDgCAPzBVn5Ce81x+njb/oCv61hJsa6+JOCrAQAATRgXIwIA6lVYszgNnHB/wNezceWjAV8HAABo2miwgSaCU3EBAACAwKLBBpoITsUFAAAAAosGG2hCOBUXAAAAvuAsSN/QYAMAAAAAvOIsSN/QYAMAAAAAasRZkLVnru8JAAAAAADQGNBgAwAAAADgB5wiDsDvuBkGAAAAmiIabAB+x80wAAAA0BTRYAMICG6GAQAAgKaGa7ABAAAAAPADjmADAJoE7g0AAAACjQYbANAkBPPeAAXbcpTUKkYFBQUBX5dEMw8AQENBgw0AaDKCdW+AN+b8WntPhHOjPwAAmhgabAAAAoAb/QEA0PTQYAMAEMK4tvzcLViwIGin82/YsEGHIxKDsi4AQPDRYAMAEMIa63Png930FlRGqc35KQFf157/HVLU+fEBXw8AoH7QYAMAEOIa4+noBQUFev/LLYqOax3wdTmb3mBdnw8AaLxosAEAQIMUHdeaphcAEFJosAEAQK0E83pvrlUGgKanMdxXhAYbAADUSjCv9+ZaZQBoehrDfUVosAEAQK0F81niAICmJ9TvK2IOyFIBAAAAAGhiaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8IM6NdiLFy9Wx44dFRkZqbS0NGVnZ59x/CeffKK0tDRFRkaqU6dOevbZZz3GvP766+rRo4ciIiLUo0cPvfnmm3WZGgA0eIGooQAQCtiGBNDY+dxgr1mzRtOnT9ecOXOUm5urwYMHa8SIEdq9e7fX8fn5+Ro5cqQGDx6s3Nxc/f73v9fdd9+t119/3TXm888/19ixYzV+/Hht3rxZ48eP15gxY/Tll1/WPTMAaIACUUMBIBSwDQmgKfC5wX7iiSc0adIkTZ48WampqcrMzFRycrKWLFnidfyzzz6r9u3bKzMzU6mpqZo8ebJ+85vf6LHHHnONyczM1JVXXqnZs2ere/fumj17tq644gplZmbWOTEAaIgCUUMBIBSwDQmgKfCpwa6oqFBOTo6GDRvmFh82bJg2btzo9TWff/65x/jhw4dr06ZNqqysPOOYmpYJAKEoUDUUABo6tiEBNBVWXwYXFxfLbrcrISHBLZ6QkKDCwkKvryksLPQ63mazqbi4WImJiTWOqWmZklReXq7y8nLX9yUlJZKkgwcPymazSZLMZrPMZrMcDoccDodrrNlsVkVFhU6UFOmLlQtdcbvdIYdhyGoxy2QyueI2u0OGYSjManGbg81mlyF5xCttdpkkWU/GTY5KGcdKlf3iH2UymWS1nNqvYRiGbHaHzCaTLN7iZpMs5lNxh8OQ3eGQxWyW2XxqjnaHQw6HIdkqZBwrdeUVqJyceVWUHtSny/8U0JysFrPrPfxi5cKA5iRJlSeOSUcOuf1tBCQnk8mV12fL/xTYnGx22cqPy1rtbyNQOUlVfxu2I4eU/eIfA5qTyWRSZdlh2WytdPDgQZlMJlksFo/PfPX44cOHXXkGW6Bq6Omoj9RH6iP1sS710eFwqLS01JWrPzWUbchzrY9ms1k2m03lpcXUkjrmJFFLQq2WVP/bCGROkmSvOCGj9KA+/9vDAc3JajGrvPSgbLZWOnTokF/ro08NdvWVVWcYhkfsbONPj/u6zIULF2r+/Pke8Y4dO9Y88fpU+F8V//hNcNa1f0/w1qX/qiT/2+CsKpjv4cFCHd65OTjrCmJeRw8UBPVv41CQ3sNlOZ9o2bJlPr3myJEjiouLC9CMziwQNbQ66uMZUB/PHfXRDxp2fZQCVyPrexsy5OqjJGqJH1BLzl0w/zaK9wXtbz4Q25A+NditW7eWxWLx2Cu4f/9+j72HTm3btvU63mq16rzzzjvjmJqWKUmzZ8/WzJkzXd87HA4dPHhQ55133hkLtVNpaamSk5P13//+V7GxsWcd3xCFeg6hPn8p9HMI9flLvudgGIaOHDmidu3aBWF27gJVQ09HfQz9HEJ9/hI5NAR1mX+gamRD2YY81/ooNc2/i4Ym1HMI9flLTTOH2tZHnxrs8PBwpaWlKSsrS6NHj3bFs7KyNGrUKK+vycjI0LvvvusW+/DDD5Wenq6wsDDXmKysLM2YMcNtzMCBA2ucS0REhCIiItxiLVq08CUdSVJsbGzI/lE4hXoOoT5/KfRzCPX5S77lUF9HrgNVQ09HfTwl1HMI9flL5NAQ+Dr/QNTIhrIN6a/6KDW9v4uGKNRzCPX5S00vh1rVR8NHr7zyihEWFma88MILxpYtW4zp06cbMTExxq5duwzDMIxZs2YZ48ePd43fuXOnER0dbcyYMcPYsmWL8cILLxhhYWHGa6+95hrz2WefGRaLxXjkkUeMrVu3Go888ohhtVqNL774wtfp1VpJSYkhySgpKQnYOgIt1HMI9fkbRujnEOrzN4zQyyEQNdTfQu099SbUcwj1+RsGOTQEDW3+bEM2DKE+f8MI/RxCff6GQQ5n4vM12GPHjtWBAwf00EMPqaCgQD179tTatWuVkpIiSSooKHB7nmHHjh21du1azZgxQ88884zatWunp556Stddd51rzMCBA/XKK6/ogQce0Ny5c9W5c2etWbNGl1xyia/TA4AGLRA1FABCAduQAJoEv7brIeTEiRPGgw8+aJw4caK+p1JnoZ5DqM/fMEI/h1Cfv2E0jhwamsbwnoZ6DqE+f8Mgh4Yg1OffUIX6+xrq8zeM0M8h1OdvGORwJibDqIdn1QAAAAAA0MiYzz4EAAAAAACcDQ02AAAAAAB+QIMNAAAAAIAfNOoGe/HixerYsaMiIyOVlpam7OzsM47/5JNPlJaWpsjISHXq1EnPPvtskGbqnS/zf+ONN3TllVcqPj5esbGxysjI0Lp164I4W+98/R04ffbZZ7Jarerbt29gJ1gLvuZQXl6uOXPmKCUlRREREercubNefPHFIM3Wk6/zf/nll9WnTx9FR0crMTFRt9xyiw4cOBCk2XrasGGDrrnmGrVr104mk0lvvfXWWV/T0D7LDVGo10cp9Gsk9bH+66MU2jWS+hgY1Mf6r49S6NdI6mMTro9+vWVaA+J81uKyZcuMLVu2GNOmTTNiYmKM//znP17HO5+1OG3aNGPLli3GsmXLAv6s2TPxdf7Tpk0zHn30UeOrr74yduzYYcyePdsICwszvvnmmyDP/BRfc3A6fPiw0alTJ2PYsGFGnz59gjPZGtQlh1/+8pfGJZdcYmRlZRn5+fnGl19+aXz22WdBnPUpvs4/OzvbMJvNxqJFi4ydO3ca2dnZxoUXXmhce+21QZ75KWvXrjXmzJljvP7664Yk48033zzj+Ib2WW6IQr0+Gkbo10jqY/3XR8MI/RpJffQ/6mP910fDCP0aSX1s2vWx0TbYF198sTFlyhS3WPfu3Y1Zs2Z5HX/fffcZ3bt3d4vdfvvtxoABAwI2xzPxdf7e9OjRw5g/f76/p1Zrdc1h7NixxgMPPGA8+OCD9b4B6WsOH3zwgREXF2ccOHAgGNM7K1/n/5e//MXo1KmTW+ypp54ykpKSAjZHX9SmQDa0z3JDFOr10TBCv0ZSHxuGxlQjqY/+QX2swjbkuaE+Vmmq9bFRniJeUVGhnJwcDRs2zC0+bNgwbdy40etrPv/8c4/xw4cP16ZNm1RZWRmwuXpTl/mfzuFw6MiRI2rVqlUgpnhWdc1h+fLl+umnn/Tggw8GeopnVZcc3nnnHaWnp+vPf/6zzj//fHXr1k333HOPjh8/Howpu6nL/AcOHKg9e/Zo7dq1MgxD//vf//Taa6/p6quvDsaU/aIhfZYbolCvj1Lo10jqY/3XR6lp1siG9lluaKiPVdiGPDfUR+qj1Z8TayiKi4tlt9uVkJDgFk9ISFBhYaHX1xQWFnodb7PZVFxcrMTExIDN93R1mf/pHn/8cZWVlWnMmDGBmOJZ1SWHH3/8UbNmzVJ2dras1vr/06xLDjt37tSnn36qyMhIvfnmmyouLtbUqVN18ODBoF9HU5f5Dxw4UC+//LLGjh2rEydOyGaz6Ze//KWefvrpYEzZLxrSZ7khCvX6KIV+jaQ+1n99lJpmjWxon+WGhvpYhW3Ic0N9pD42yiPYTiaTye17wzA8Ymcb7y0eLL7O32n16tWaN2+e1qxZozZt2gRqerVS2xzsdrvGjRun+fPnq1u3bsGaXq348ntwOBwymUx6+eWXdfHFF2vkyJF64okntGLFinrbC+nL/Lds2aK7775bf/jDH5STk6N//vOfys/P15QpU4IxVb9paJ/lhijU66O3dYdajaQ+1n99lJpejWyIn+WGhvpY//VRCv0aSX1suvWx/neDB0Dr1q1lsVg89rDs37/fY8+EU9u2bb2Ot1qtOu+88wI2V2/qMn+nNWvWaNKkSXr11Vc1dOjQQE7zjHzN4ciRI9q0aZNyc3N11113SaoqNoZhyGq16sMPP9Tll18elLk71eX3kJiYqPPPP19xcXGuWGpqqgzD0J49e9S1a9eAzrm6usx/4cKFGjRokO69915JUu/evRUTE6PBgwfrj3/8Y0gc3WhIn+WGKNTroxT6NZL6WP/1UWqaNbKhfZYbGupj/ddHKfRrJPWR+tgoj2CHh4crLS1NWVlZbvGsrCwNHDjQ62syMjI8xn/44YdKT09XWFhYwObqTV3mL1Xtdbz55pu1atWqer/ewdccYmNj9d133ykvL8/1NWXKFF1wwQXKy8vTJZdcEqypu9Tl9zBo0CDt27dPR48edcV27Nghs9mspKSkgM73dHWZ/7Fjx2Q2u5cFi8Ui6dRevIauIX2WG6JQr49S6NdI6mP910epadbIhvZZbmioj/VfH6XQr5HUx1OabH30+bZoIcJ5a/kXXnjB2LJlizF9+nQjJibG2LVrl2EYhjFr1ixj/PjxrvHOW7PPmDHD2LJli/HCCy80iMd01Xb+q1atMqxWq/HMM88YBQUFrq/Dhw/Xy/wNw/ccTlffd4A0DN9zOHLkiJGUlGRcf/31xg8//GB88sknRteuXY3JkyeHxPyXL19uWK1WY/HixcZPP/1kfPrpp0Z6erpx8cUX18v8DaPqPc3NzTVyc3MNScYTTzxh5Obmuh4T0dA/yw1RqNdHwwj9Gkl9rP/6aBihXyOpj/5Hfaz/+mgYoV8jqY9Nuz422gbbMAzjmWeeMVJSUozw8HDjoosuMj755BPXzyZOnGhceumlbuPXr19v9OvXzwgPDzc6dOhgLFmyJMgzdufL/C+99FJDksfXxIkTgz/xanz9HVRX38XRydcctm7dagwdOtSIiooykpKSjJkzZxrHjh0L8qxP8XX+Tz31lNGjRw8jKirKSExMNG688UZjz549QZ71KR9//PEZ/7ZD4bPcEIV6fTSM0K+R1Mf6r4+GEdo1kvoYGNTH+q+PhhH6NZL62HTro8kwQuCYPQAAAAAADVyjvAYbAAAAAIBgo8EGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBs7Bz3/+c02fPt31fYcOHZSZmVlv8wGAhoL6CADeUR8bNxps+OTmm2+WyWSSyWRSWFiYOnXqpHvuuUdlZWWSpF27dslkMikvL0/z5s1zja3pa9euXTWu629/+5suvvhixcTEqHnz5hoyZIjee++9IGXqbv369TKZTDp8+LBb/I033tCCBQvqZU4AGhbq42G3OPURgBP18bBbnPrYuNFgw2dXXXWVCgoKtHPnTv3xj3/U4sWLdc8993iMu+eee1RQUOD6SkpK0kMPPeQWS05O9rqOe+65R7fffrvGjBmjzZs366uvvtLgwYM1atQo/fWvfw10irXWqlUrNW/evL6nAaCBoD6eQn0EUB318RTqYyNnAD6YOHGiMWrUKLfY5MmTjbZt2xqGYRj5+fmGJCM3N9fjtSkpKcaTTz551nV8/vnnhiTjqaee8vjZzJkzjbCwMGP37t2GYRjGgw8+aPTp08dtzJNPPmmkpKS4vv/qq6+MoUOHGuedd54RGxtrDBkyxMjJyXF7jSRj2bJlxrXXXmtERUUZXbp0Md5++223nKp/TZw40TAMw7j00kuNadOm1Zjj4cOHjVtvvdWIj483mjdvblx22WVGXl6e6+d5eXnGz3/+c6NZs2ZG8+bNjYsuusj4+uuvz/oeAWh4qI/URwDeUR+pj00JR7BxzqKiolRZWem35a1evVrNmjXT7bff7vGz3/3ud6qsrNTrr79e6+UdOXJEEydOVHZ2tr744gt17dpVI0eO1JEjR9zGzZ8/X2PGjNG3336rkSNH6sYbb9TBgweVnJzsWt/27dtVUFCgRYsWnXW9hmHo6quvVmFhodauXaucnBxddNFFuuKKK3Tw4EFJ0o033qikpCR9/fXXysnJ0axZsxQWFlbr3AA0bNRH76iPAKiP3lEfQ5+1vieA0PbVV19p1apVuuKKK/y2zB07dqhz584KDw/3+Fm7du0UFxenHTt21Hp5l19+udv3S5cuVcuWLfXJJ5/oF7/4hSt+880364YbbpAkPfzww3r66af11Vdf6aqrrlKrVq0kSW3atFGLFi1qtd6PP/5Y3333nfbv36+IiAhJ0mOPPaa33npLr732mm677Tbt3r1b9957r7p37y5J6tq1a63zAtCwUR9rRn0EmjbqY82oj6GPI9jw2XvvvadmzZopMjJSGRkZGjJkiJ5++umgrd8wDK/Fsyb79+/XlClT1K1bN8XFxSkuLk5Hjx7V7t273cb17t3b9W/njTH2799f53nm5OTo6NGjOu+889SsWTPXV35+vn766SdJ0syZMzV58mQNHTpUjzzyiCsOIDRRH2uH+gg0PdTH2qE+hj6OYMNnl112mZYsWaKwsDC1a9fO76ekdO3aVZ9++qkqKio8CuG+fftUWlqqbt26SZLMZrMMw3Abc/rpRjfffLOKioqUmZmplJQURUREKCMjQxUVFW7jTs/DZDLJ4XDUOQ+Hw6HExEStX7/e42fOvZjz5s3TuHHj9P777+uDDz7Qgw8+qFdeeUWjR4+u83oB1B/qY+1QH4Gmh/pYO9TH0McRbPgsJiZGXbp0UUpKSkCu97jhhht09OhRLV261ONnjz32mCIjIzV27FhJUnx8vAoLC92KZF5enttrsrOzdffdd2vkyJG68MILFRERoeLiYp/m5CzUdru91q+56KKLVFhYKKvVqi5durh9tW7d2jWuW7dumjFjhj788EP96le/0vLly32aG4CGg/pYO9RHoOmhPtYO9TH00WCjwcnIyNC0adN077336vHHH9dPP/2kbdu26YEHHtBTTz2lZcuW6bzzzpMk/fznP1dRUZH+/Oc/66efftIzzzyjDz74wG15Xbp00d///ndt3bpVX375pW688UZFRUX5NKeUlBSZTCa99957Kioq0tGjR8/6mqFDhyojI0PXXnut1q1bp127dmnjxo164IEHtGnTJh0/flx33XWX1q9fr//85z/67LPP9PXXXys1NdWnuQFoOqiP1EcA3lEfqY8NBQ02GqTMzEwtXrxYq1evVs+ePZWamqq//OUv+ve//62bbrrJNS41NVWLFy/WM888oz59+uirr77yeKbiiy++qEOHDqlfv34aP3687r77brVp08an+Zx//vmaP3++Zs2apYSEBN11111nfY3JZNLatWs1ZMgQ/eY3v1G3bt3061//Wrt27VJCQoIsFosOHDigCRMmqFu3bhozZoxGjBih+fPn+zQ3AE0L9REAvKM+oiEwGadfgAA0QLt27dKll16qjIwMvfzyy7JYLPU9JQBoEKiPAOAd9RH1gSPYCAkdOnTQ+vXr1b17d49rZACgKaM+AoB31EfUB45gAwAAAADgBxzBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA/+P4sOvQJi1wWsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -943,6 +1101,35 @@ "compute_results(test_data, output_cols, np.mean(ensemble_mu, axis=0), np.sqrt(aleatoric), np.sqrt(epistemic))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Use Monte Carlo dropout with the Gaussian model to compute aleatoric and epistemic uncertainties" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "monte_carlo_steps = 10\n", + "\n", + "ensemble_mu, ensemble_var = model.predict_monte_carlo(x_test, y_test, monte_carlo_steps, scaler = y_scaler)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "ensemble_epistemic = np.var(ensemble_mu, axis=0)\n", + "ensemble_aleatoric = np.mean(ensemble_var, axis=0)\n", + "ensemble_mean = np.mean(ensemble_mu, axis=0)" + ] + }, { "cell_type": "code", "execution_count": null, From f251c236430832e02ed65fd29deabab7a91082b0 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 14 Sep 2023 09:44:42 -0600 Subject: [PATCH 03/11] Refactor of regression model classes complete. Revamp of config files --- applications/train_evidential_SL.py | 169 +-- applications/train_gaussian_SL.py | 163 +-- applications/train_mlp_SL.py | 181 ++- config/deterministic_classifier.yml | 196 ++++ ...lp_SL.yml => deterministic_regression.yml} | 0 config/evidential_classifier.yml | 196 ++++ ...ntial_SL.yml => evidential_regression.yml} | 0 ...l_gaussian_SL.yml => gauss_regression.yml} | 0 config/hyper_classifier_ptype.yml | 109 -- config/hyper_evidential_SL.yml | 92 -- config/hyper_evidential_ptype.yml | 115 -- config/hyper_gaussian_SL.yml | 74 -- config/hyper_mlp_SL.yml | 69 -- config/model_classifier_ptype.yml | 392 ------- config/model_classifier_ptype_unweighted.yml | 386 ------- config/model_evidential_ptype.yml | 392 ------- config/model_evidential_ptype_unweighted.yml | 387 ------- config/pbs.yml | 13 - config/regression.yml | 23 - evml/keras/models.py | 1026 +++++++++-------- ...model_refactor.py => models_deprecated.py} | 1020 ++++++++-------- evml/regression_metrics.py | 120 ++ notebooks/regression_example.ipynb | 2 +- 23 files changed, 1865 insertions(+), 3260 deletions(-) create mode 100644 config/deterministic_classifier.yml rename config/{model_mlp_SL.yml => deterministic_regression.yml} (100%) create mode 100644 config/evidential_classifier.yml rename config/{model_evidential_SL.yml => evidential_regression.yml} (100%) rename config/{model_gaussian_SL.yml => gauss_regression.yml} (100%) delete mode 100644 config/hyper_classifier_ptype.yml delete mode 100644 config/hyper_evidential_SL.yml delete mode 100644 config/hyper_evidential_ptype.yml delete mode 100644 config/hyper_gaussian_SL.yml delete mode 100644 config/hyper_mlp_SL.yml delete mode 100644 config/model_classifier_ptype.yml delete mode 100644 config/model_classifier_ptype_unweighted.yml delete mode 100644 config/model_evidential_ptype.yml delete mode 100644 config/model_evidential_ptype_unweighted.yml delete mode 100644 config/pbs.yml delete mode 100644 config/regression.yml rename evml/keras/{model_refactor.py => models_deprecated.py} (65%) create mode 100644 evml/regression_metrics.py diff --git a/applications/train_evidential_SL.py b/applications/train_evidential_SL.py index 3b6a62d..311507b 100644 --- a/applications/train_evidential_SL.py +++ b/applications/train_evidential_SL.py @@ -5,7 +5,6 @@ from echo.src.base_objective import BaseObjective import copy import yaml -import shutil import sys import os import gc @@ -19,15 +18,15 @@ from tensorflow.keras import backend as K from evml.pit import pit_deviation_skill_score, pit_deviation -from evml.keras.model_refactor import EvidentialRegressorDNN +from evml.keras.models import EvidentialRegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results from evml.preprocessing import load_preprocessing from evml.keras.seed import seed_everything +from evml.regression_metrics import regression_metrics from evml.pbs import launch_pbs_jobs from bridgescaler import save_scaler -from sklearn.metrics import r2_score, mean_squared_error warnings.filterwarnings("ignore") @@ -74,15 +73,15 @@ def trainer(conf, trial=False): model_params["save_path"] = save_loc if trial is False: # Dont create directories if ECHO is running - os.makedirs(os.path.join(save_loc, f"models"), exist_ok=True) - os.makedirs(os.path.join(save_loc, f"scalers"), exist_ok=True) + os.makedirs(os.path.join(save_loc, "models"), exist_ok=True) + os.makedirs(os.path.join(save_loc, "scalers"), exist_ok=True) os.makedirs(os.path.join(save_loc, "evaluate"), exist_ok=True) os.makedirs(os.path.join(save_loc, "metrics"), exist_ok=True) - conf["model"]["save_path"] = os.path.join(save_loc, f"models") + conf["model"]["save_path"] = os.path.join(save_loc, "models") - if not os.path.isfile(os.path.join(save_loc, f"models", "model.yml")): + if not os.path.isfile(os.path.join(save_loc, "models", "model.yml")): with open( - os.path.join(save_loc, f"models", "model.yml"), "w" + os.path.join(save_loc, "models", "model.yml"), "w" ) as fid: yaml.dump(conf, fid) @@ -120,10 +119,9 @@ def trainer(conf, trial=False): ensemble_epi = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) best_model = None - best_split = None best_model_score = 1e10 if direction == "min" else -1e10 - pitd_dict = defaultdict(list) - + results_dict = defaultdict(list) + for data_seed in tqdm.tqdm(range(n_splits)): # select indices from the split, data splits train_index, valid_index = splits[data_seed] @@ -160,40 +158,31 @@ def trainer(conf, trial=False): x_train, y_train, validation_data=(x_valid, y_valid), - callbacks=get_callbacks(conf, path_extend=f"models"), + callbacks=get_callbacks(conf, path_extend="models"), ) history = model.model.history + + #################### + # + # VALIDATE THE MODEL + # + #################### - # Get the value of the metric - if "pit" in training_metric: - _pitd = [] - mu, ale, epi = model.predict_uncertainty(x_valid) - for i, col in enumerate(output_cols): - _pitd.append( - pit_deviation_skill_score( - y_valid[:, i], - np.stack([mu[:, i], np.sqrt(ale[:, i] + epi[:, i])], -1), - pred_type="gaussian", - ) - ) - optimization_metric = np.mean(_pitd) - elif "R2" in training_metric: - mu, ale, epi = model.predict_uncertainty(x_valid) - rmse = (y_valid - mu) ** 2 - spread = ale + epi - optimization_metric = r2_score(rmse, spread) - elif direction == "min": - optimization_metric = min(history.history[training_metric]) - elif direction == "max": - optimization_metric = max(history.history[training_metric]) + # Compute metrics on validation set + mu, ale, epi = model.predict_uncertainty(x_valid) + total = np.sqrt(ale + epi) + val_metrics = regression_metrics(y_scaler.inverse_transform(y_valid), mu, total) + for k, v in val_metrics.items(): + results_dict[k].append(v) + optimization_metric = val_metrics[training_metric] # If ECHO is running this script, n_splits has been set to 1, return the metric here if trial is not False: - return { - training_metric: optimization_metric, - "val_mae": min(history.history["val_mae"]), - } - + for metric in ["val_r2", "val_rmse_ss", "val_crps_ss"]: + if val_metrics[metric] < 0.0: # ECHO maxing out negative numbers? Not sure why ... + val_metrics[metric] = 0.0 + return val_metrics + # Write to the logger logger.info( f"Finished split {data_seed} with metric {training_metric} = {optimization_metric}" @@ -229,67 +218,89 @@ def trainer(conf, trial=False): with open(fn, "wb") as fid: pickle.dump(scaler, fid) - # Save if its the best model + # Symlink if its the best model c1 = (direction == "min") and (optimization_metric < best_model_score) c2 = (direction == "max") and (optimization_metric > best_model_score) if c1 | c2: best_model = model best_model_score = optimization_metric - best_split = data_seed - model.model_name = "best.h5" - model.save_model() - for scaler_name, scaler in zip( - ["input", "output"], [x_scaler, y_scaler] - ): - fn = os.path.join( + + # Break the current symlink + if os.path.isfile(os.path.join(save_loc, "models", "best.h5")): + os.remove(os.path.join(save_loc, "models", "best.h5")) + os.remove(os.path.join(save_loc, "models", "best_training_var.txt")) + + ensemble_name = f"model_split{data_seed}" + os.symlink( + os.path.join(save_loc, "models", f"{ensemble_name}.h5"), + os.path.join(save_loc, "models", "best.h5"), + ) + os.symlink( + os.path.join(save_loc, "models", f"{ensemble_name}_training_var.txt"), + os.path.join(save_loc, "models", "best_training_var.txt"), + ) + #Save scalers + for scaler_name in ["input", "output"]: + if os.path.isfile(os.path.join(save_loc, "scalers", f"best_{scaler_name}.json")): + os.remove(os.path.join(save_loc, "scalers", f"best_{scaler_name}.json")) + fn1 = os.path.join( + save_loc, "scalers", f"{scaler_name}_split{data_seed}.json" + ) + fn2 = os.path.join( save_loc, "scalers", f"best_{scaler_name}.json" ) - try: - save_scaler(scaler, fn) - except TypeError: - with open(fn, "wb") as fid: - pickle.dump(scaler, fid) + os.symlink(fn1, fn2) + + ################ + # + # TEST THE MODEL + # + ################ # evaluate on the test holdout split mu, aleatoric, epistemic = model.predict_uncertainty(x_test, scaler=y_scaler) - + total = np.sqrt(aleatoric + epistemic) ensemble_mu[data_seed] = mu ensemble_ale[data_seed] = aleatoric ensemble_epi[data_seed] = epistemic + test_metrics = regression_metrics(y_scaler.inverse_transform(y_test), mu, total, split="test") + for k, v in test_metrics.items(): + results_dict[k].append(v) - for i, col in enumerate(output_cols): - pitd_dict[col].append( - pit_deviation_skill_score( - test_data[output_cols].values[:, i], - np.stack( - [mu[:, i], np.sqrt(aleatoric[:, i] + epistemic[:, i])], -1 - ), - pred_type="gaussian", - ) - ) - - # check if this is the best model del model tf.keras.backend.clear_session() gc.collect() - - # Compute uncertainties - mu = ensemble_mu[best_split] - epistemic = ensemble_epi[best_split] - aleatoric = ensemble_ale[best_split] - - # add to df and save - _test_data[[f"{x}_pred" for x in output_cols]] = mu - _test_data[[f"{x}_ale" for x in output_cols]] = aleatoric - _test_data[[f"{x}_epi" for x in output_cols]] = epistemic - - _test_data.to_csv(os.path.join(save_loc, "evaluate/test.csv")) + + # Use the best model and predict on the three splits + X = [x_train, x_valid, x_test] + Y = [y_train, y_valid, y_test] + splits = ["train", "val", "test"] + dfs = [train_data, valid_data, test_data] + + best_metrics = {} + for (x, y, split, df) in zip(X, Y, splits, dfs): + result = best_model.predict_uncertainty(x, scaler=y_scaler) + mu, aleatoric, epistemic = result + total = np.sqrt(aleatoric + epistemic) + for k, v in regression_metrics(y_scaler.inverse_transform(y), mu, total, split=split).items(): + best_metrics[k] = v + df[[f"{x}_pred" for x in output_cols]] = mu + df[[f"{x}_ale" for x in output_cols]] = aleatoric + df[[f"{x}_epi" for x in output_cols]] = epistemic + df.to_csv(os.path.join(save_loc, "evaluate", f"{split}.csv")) + + # Save the test ensemble as numpy array np.save(os.path.join(save_loc, "evaluate/test_mu.npy"), ensemble_mu) np.save(os.path.join(save_loc, "evaluate/test_aleatoric.npy"), ensemble_ale) np.save(os.path.join(save_loc, "evaluate/test_epistemic.npy"), ensemble_epi) - # Save PITD - pd.DataFrame.from_dict(pitd_dict).to_csv(os.path.join(save_loc, "evaluate/pitd.csv")) + # Save metrics + pd.DataFrame.from_dict(results_dict).to_csv( + os.path.join(save_loc, "evaluate/ensemble_metrics.csv")) + pd.DataFrame.from_dict({ + "metric": list(best_metrics.keys()), + "value": list(best_metrics.values()) + }).to_csv(os.path.join(save_loc, "evaluate/best_metrics.csv")) # make some figures compute_results( diff --git a/applications/train_gaussian_SL.py b/applications/train_gaussian_SL.py index 4a26930..c93bb55 100644 --- a/applications/train_gaussian_SL.py +++ b/applications/train_gaussian_SL.py @@ -19,13 +19,14 @@ from keras import backend as K from evml.pit import pit_deviation_skill_score, pit_deviation -from evml.keras.model_refactor import GaussianRegressorDNN +from evml.keras.models import GaussianRegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results from evml.preprocessing import load_preprocessing from evml.keras.seed import seed_everything from evml.pbs import launch_pbs_jobs +from evml.regression_metrics import regression_metrics import traceback @@ -138,7 +139,8 @@ def trainer(conf, trial=False, mode="single"): best_model = None best_data_split = None best_model_score = 1e10 if direction == "min" else -1e10 - + results_dict = defaultdict(list) + for model_seed in range(n_models): # Make N train-valid splits using day as grouping variable @@ -205,32 +207,27 @@ def trainer(conf, trial=False, mode="single"): callbacks=get_callbacks(conf, path_extend=f"{mode}/models"), ) history = model.model.history + + #################### + # + # VALIDATE THE MODEL + # + #################### - # Get the value of the metric - if "pit" in training_metric: - pitd = [] - mu, var = model.predict_uncertainty(x_valid, y_scaler) - #mu, var = model.calc_uncertainties(y_pred, y_scaler) - for i, col in enumerate(output_cols): - pitd.append( - pit_deviation( - y_valid[:, i], - np.stack([mu[:, i], np.sqrt(var[:, i])], -1), - pred_type="gaussian", - ) - ) - optimization_metric = np.mean(pitd) - elif direction == "min": - optimization_metric = min(history.history[training_metric]) - elif direction == "max": - optimization_metric = max(history.history[training_metric]) + # Compute metrics on validation set + mu, ale = model.predict_uncertainty(x_valid) + total = np.sqrt(ale) + val_metrics = regression_metrics(y_scaler.inverse_transform(y_valid), mu, total) + for k, v in val_metrics.items(): + results_dict[k].append(v) + optimization_metric = val_metrics[training_metric] # If ECHO is running this script, n_splits has been set to 1, return the metric here if trial is not False and conf["ensemble"]["monte_carlo_passes"] == 0: - return { - training_metric: optimization_metric, - "val_mae": min(history.history["val_mae"]), - } + for metric in ["val_r2", "val_rmse_ss", "val_crps_ss"]: + if val_metrics[metric] < 0.0: # ECHO maxing out negative numbers? Not sure why ... + val_metrics[metric] = 0.0 + return val_metrics # Write to the logger logger.info( @@ -260,7 +257,7 @@ def trainer(conf, trial=False, mode="single"): ["input", "output"], [x_scaler, y_scaler] ): fn = os.path.join( - save_loc, f"{mode}/scalers", f"{scaler_name}.json" + save_loc, f"{mode}/scalers", f"{scaler_name}_seed{model_seed}_split{data_seed}.json" ) try: save_scaler(scaler, fn) @@ -274,49 +271,49 @@ def trainer(conf, trial=False, mode="single"): if c1 | c2: best_model = model best_model_score = optimization_metric - best_data_split = data_seed - model.model_name = "best.h5" - model.save_model() - # ensemble_name = f"model_seed{model_seed}_split{data_seed}" - # os.symlink( - # os.path.join(save_loc, mode, "models", f"{ensemble_name}.h5"), - # os.path.join(save_loc, mode, "models", "best.h5"), - # ) - # os.symlink( - # os.path.join(save_loc, mode, "models", f"{ensemble_name}_training_var.txt"), - # os.path.join(save_loc, mode, "models", "best_training_var.txt"), - # ) - # Save scalers - # for scaler_name in ["input", "output"]: - # fn1 = os.path.join( - # save_loc, f"{mode}/scalers", f"{scaler_name}.json" - # ) - # fn2 = os.path.join( - # save_loc, f"{mode}/scalers", f"best_{scaler_name}.json" - # ) - # os.symlink(fn1, fn2) - for scaler_name, scaler in zip( - ["input", "output"], [x_scaler, y_scaler] - ): - fn = os.path.join( + + # Break the current symlink + if os.path.isfile(os.path.join(save_loc, mode, "models", "best.h5")): + os.remove(os.path.join(save_loc, mode, "models", "best.h5")) + os.remove(os.path.join(save_loc, mode, "models", "best_training_var.txt")) + + ensemble_name = f"model_seed{model_seed}_split{data_seed}" + os.symlink( + os.path.join(save_loc, mode, "models", f"{ensemble_name}.h5"), + os.path.join(save_loc, mode, "models", "best.h5"), + ) + os.symlink( + os.path.join(save_loc, mode, "models", f"{ensemble_name}_training_var.txt"), + os.path.join(save_loc, mode, "models", "best_training_var.txt"), + ) + #Save scalers + for scaler_name in ["input", "output"]: + if os.path.isfile(os.path.join(save_loc, f"{mode}/scalers", f"best_{scaler_name}.json")): + os.remove(os.path.join(save_loc, f"{mode}/scalers", f"best_{scaler_name}.json")) + fn1 = os.path.join( + save_loc, f"{mode}/scalers", f"{scaler_name}_seed{model_seed}_split{data_seed}.json" + ) + fn2 = os.path.join( save_loc, f"{mode}/scalers", f"best_{scaler_name}.json" ) - try: - save_scaler(scaler, fn) - except TypeError: - with open(fn, "wb") as fid: - pickle.dump(scaler, fid) - - + os.symlink(fn1, fn2) + if trial is not False: continue + + ################ + # + # TEST THE MODEL + # + ################ # Evaluate on the test holdout split - for split, x_split, df in zip( - ["test"], [x_test], [test_data] - ): - + for split, x_split, df in zip(["test"], [x_test], [test_data]): mu, var = model.predict_uncertainty(x_split, y_scaler) + total = np.sqrt(var) + test_metrics = regression_metrics(y_scaler.inverse_transform(y_test), mu, total, split="test") + for k,v in test_metrics.items(): + results_dict[k].append(v) if mode == "seed": ensemble_mu[model_seed] = mu @@ -338,6 +335,10 @@ def trainer(conf, trial=False, mode="single"): del model tf.keras.backend.clear_session() gc.collect() + + # Save metrics + pd.DataFrame.from_dict(results_dict).to_csv( + os.path.join(save_loc, f"{mode}/evaluate/ensemble_metrics.csv")) # Evaluation and calculation of uncertainties if mode != "single" and trial is False: @@ -351,6 +352,17 @@ def trainer(conf, trial=False, mode="single"): _test_data[[f"{x}_pred" for x in output_cols]] = ensemble_mean _test_data[[f"{x}_ale" for x in output_cols]] = ensemble_aleatoric _test_data[[f"{x}_epi" for x in output_cols]] = ensemble_epistemic + + # Compute metrics on the test split for the ensemble + best_metrics = {} + total = np.sqrt(ensemble_aleatoric + ensemble_epistemic) + for k, v in regression_metrics(y_scaler.inverse_transform(y_test), ensemble_mean, total, split="test").items(): + best_metrics[k] = v + + pd.DataFrame.from_dict({ + "metric": list(best_metrics.keys()), + "value": list(best_metrics.values()) + }).to_csv(os.path.join(save_loc, f"{mode}/evaluate/best_metrics.csv")) # save _test_data.to_csv(os.path.join(save_loc, f"{mode}/evaluate/test.csv")) @@ -385,7 +397,7 @@ def trainer(conf, trial=False, mode="single"): x, y, forward_passes=monte_carlo_passes, - y_scaler=y_scaler, + scaler=y_scaler, ) # Calculating mean across multiple MCD forward passes @@ -396,21 +408,17 @@ def trainer(conf, trial=False, mode="single"): # Calculating variance across multiple MCD forward passes mc_epistemic = np.var(dropout_mu, axis=0) # shape (n_samples, n_classes) - # Compute PITD - pitd_dict = defaultdict(list) - for i, col in enumerate(output_cols): - pitd_dict[col].append( - pit_deviation( - y[:, i], - np.stack( - [mu[:, i], np.sqrt(mc_aleatoric[:, i] + mc_epistemic[:, i])], -1 - ), - pred_type="gaussian", - ) - ) + # Compute metrics on the test split for the ensemble + best_metrics = {} + total = np.sqrt(mc_aleatoric + mc_epistemic) + for k, v in regression_metrics(y_scaler.inverse_transform(y), mc_mu, total, split="test").items(): + best_metrics[k] = v + pd.DataFrame.from_dict({ + "metric": list(best_metrics.keys()), + "value": list(best_metrics.values()) + }).to_csv(os.path.join(save_loc, f"{mode}/evaluate/best_metrics.csv")) if trial is not False: - optimization_metric = np.mean([x[0] for x in pitd_dict.values()]) return { training_metric: optimization_metric, "val_mae": min(history.history["val_mae"]), @@ -427,10 +435,7 @@ def trainer(conf, trial=False, mode="single"): dropout_aleatoric, ) _test_data.to_csv(os.path.join(save_loc, "monte_carlo/evaluate/test.csv")) - pd.DataFrame.from_dict(pitd_dict).to_csv( - os.path.join(save_loc, "monte_carlo/evaluate/pit.csv") - ) - + # Make some figures compute_results( _test_data, diff --git a/applications/train_mlp_SL.py b/applications/train_mlp_SL.py index d88a9cc..e8470b4 100644 --- a/applications/train_mlp_SL.py +++ b/applications/train_mlp_SL.py @@ -5,6 +5,7 @@ import sys import os import gc +import pickle import optuna import warnings import numpy as np @@ -13,13 +14,16 @@ from argparse import ArgumentParser from keras import backend as K -from evml.keras.model_refactor import BaseRegressor as RegressorDNN +from evml.keras.models import BaseRegressor as RegressorDNN from evml.keras.callbacks import get_callbacks from evml.splitting import load_splitter from evml.regression_uq import compute_results from evml.preprocessing import load_preprocessing from evml.keras.seed import seed_everything from evml.pbs import launch_pbs_jobs +from bridgescaler import save_scaler +from collections import defaultdict +from evml.regression_metrics import regression_metrics warnings.filterwarnings("ignore") @@ -82,6 +86,7 @@ def trainer(conf, trial=False, mode="single"): os.makedirs(os.path.join(save_loc, f"{mode}/models"), exist_ok=True) os.makedirs(os.path.join(save_loc, f"{mode}/metrics"), exist_ok=True) os.makedirs(os.path.join(save_loc, f"{mode}/evaluate"), exist_ok=True) + os.makedirs(os.path.join(save_loc, f"{mode}/scalers"), exist_ok=True) # Update where the best model will be saved # conf["save_loc"] = os.path.join(save_loc, f"{mode}", "models") conf["model"]["save_path"] = os.path.join(save_loc, f"{mode}", "models") @@ -110,14 +115,20 @@ def trainer(conf, trial=False, mode="single"): # Save arrays for ensembles if n_models > 1: ensemble_mu = np.zeros((n_models, _test_data.shape[0], len(output_cols))) - ensemble_sigma = np.zeros((n_models, _test_data.shape[0], len(output_cols))) + ensemble_var = np.zeros((n_models, _test_data.shape[0], len(output_cols))) else: ensemble_mu = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) - ensemble_sigma = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) + ensemble_var = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) best_model = None # best_data_split = None best_model_score = 1e10 + + results_dict = defaultdict(list) + ensemble_dict = defaultdict(list) + + # Train ensemble of deep models + _ensemble_pred_deep = np.zeros((n_models, _test_data.shape[0], len(output_cols))) for model_seed in range(n_models): @@ -130,7 +141,7 @@ def trainer(conf, trial=False, mode="single"): ) splits = list(gsp.split(_train_data, groups=_train_data[split_col])) - # Train ensemble of parametric models + # Train ensemble of CV-split models _ensemble_pred = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) if n_models > 1: @@ -139,7 +150,7 @@ def trainer(conf, trial=False, mode="single"): _model = RegressorDNN(**model_params) # build the model here so the weights are initialized (and can be copied below) _model.build_neural_network( - _train_data[input_cols].values, _train_data[output_cols].values + _train_data[input_cols].shape[-1], _train_data[output_cols].shape[-1] ) # Create ensemble from n_splits number of data splits @@ -187,47 +198,91 @@ def trainer(conf, trial=False, mode="single"): callbacks=get_callbacks(conf, path_extend=f"{mode}/models"), ) history = model.model.history + + # predict/evaluate on the validation set + mu = model.predict(x_valid, y_scaler) + val_metrics = regression_metrics(y_scaler.inverse_transform(y_valid), mu) + for k, v in val_metrics.items(): + results_dict[k].append(v) + + # predict on the test holdout split + if n_splits == 1: # If we are only creating a deep ensemble with no CV splits + _ensemble_pred_deep[model_seed] = model.predict(x_test, y_scaler) + else: + _ensemble_pred[data_seed] = model.predict(x_test, y_scaler) # If ECHO is running this script, n_splits has been set to 1, return the metric here if trial is not False: - return { - x: min(y) - for x, y in history.history.items() - if x not in trial.params - } + return val_metrics # Save model weights model.model_name = f"model_seed{model_seed}_split{data_seed}.h5" model.save_model() + # Save scalers + for scaler_name, scaler in zip( + ["input", "output"], [x_scaler, y_scaler] + ): + fn = os.path.join( + save_loc, f"{mode}/scalers", f"{scaler_name}_seed{model_seed}_split{data_seed}.json" + ) + try: + save_scaler(scaler, fn) + except TypeError: + with open(fn, "wb") as fid: + pickle.dump(scaler, fid) + # Save if its the best model if min(history.history[training_metric]) < best_model_score: best_model = model - best_data_split = data_seed + # Break the current symlink + if os.path.isfile(os.path.join(save_loc, mode, "models", "best.h5")): + os.remove(os.path.join(save_loc, mode, "models", "best.h5")) + os.remove(os.path.join(save_loc, mode, "models", "best_training_var.txt")) + + ensemble_name = f"model_seed{model_seed}_split{data_seed}" + os.symlink( + os.path.join(save_loc, mode, "models", f"{ensemble_name}.h5"), + os.path.join(save_loc, mode, "models", "best.h5"), + ) os.symlink( - os.path.join(save_loc, "models", f"model_seed{model_seed}_split{data_seed}.h5"), - os.path.join(save_loc, "models", "best.h5"), + os.path.join(save_loc, mode, "models", f"{ensemble_name}_training_var.txt"), + os.path.join(save_loc, mode, "models", "best_training_var.txt"), ) - #model.model_name = "best.h5" - #model.save_model() + #Save scalers + for scaler_name in ["input", "output"]: + if os.path.isfile(os.path.join(save_loc, f"{mode}/scalers", f"best_{scaler_name}.json")): + os.remove(os.path.join(save_loc, f"{mode}/scalers", f"best_{scaler_name}.json")) + fn1 = os.path.join( + save_loc, f"{mode}/scalers", f"{scaler_name}_seed{model_seed}_split{data_seed}.json" + ) + fn2 = os.path.join( + save_loc, f"{mode}/scalers", f"best_{scaler_name}.json" + ) + os.symlink(fn1, fn2) # evaluate on the test holdout split - _ensemble_pred[data_seed] = y_scaler.inverse_transform( - model.predict(x_test) - ) - if mode == "data" and monte_carlo_passes > 0: # elif monte_carlo_passes > 0: # mode = seed or single # Create ensemble from MC dropout dropout_mu = model.predict_monte_carlo( - x_test, y_test, forward_passes=monte_carlo_passes, y_scaler=y_scaler + x_test, y_test, forward_passes=monte_carlo_passes, scaler=y_scaler ) # Calculating mean across multiple MCD forward passes # shape (n_samples, n_classes) ensemble_mu[data_seed] = np.mean(dropout_mu, axis=0) # Calculating variance across multiple MCD forward passes # shape (n_samples, n_classes) - ensemble_sigma[data_seed] = np.var(dropout_mu, axis=0) + ensemble_var[data_seed] = np.var(dropout_mu, axis=0) + # Compute metrics + test_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + ensemble_mu[data_seed], + total=np.sqrt(ensemble_var[data_seed])) + for k, v in test_metrics.items(): + ensemble_dict[k].append(v) + if k in results_dict: + results_dict[k].append(v) del model tf.keras.backend.clear_session() @@ -236,47 +291,99 @@ def trainer(conf, trial=False, mode="single"): if mode == "ensemble": # Compute uncertainties for the data ensemble ensemble_mu[model_seed] = np.mean(_ensemble_pred, 0) - ensemble_sigma[model_seed] = np.var(_ensemble_pred, 0) + ensemble_var[model_seed] = np.var(_ensemble_pred, 0) + # Compute metrics on the validation and test splits + test_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + ensemble_mu[model_seed], + total=np.sqrt(ensemble_var[model_seed])) + for k, v in test_metrics.items(): + ensemble_dict[k].append(v) + #if k in results_dict: + # results_dict[k].append(v) elif mode == "seed" and monte_carlo_passes > 0: # elif monte_carlo_passes > 0: # mode = seed or single # Create ensemble from MC dropout dropout_mu = best_model.predict_monte_carlo( - x_test, y_test, forward_passes=monte_carlo_passes, y_scaler=y_scaler + x_test, y_test, forward_passes=monte_carlo_passes, scaler=y_scaler ) # Calculating mean across multiple MCD forward passes ensemble_mu[model_seed] = np.mean( dropout_mu, axis=0 ) # shape (n_samples, n_classes) # Calculating variance across multiple MCD forward passes - ensemble_sigma[model_seed] = np.var( + ensemble_var[model_seed] = np.var( dropout_mu, axis=0 ) # shape (n_samples, n_classes) + # Compute metrics on the validation and test splits + test_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + ensemble_mu[model_seed], + total=np.sqrt(ensemble_var[model_seed])) + for k, v in test_metrics.items(): + ensemble_dict[k].append(v) + #if k in results_dict: + # results_dict[k].append(v) elif mode == "single": # mode = seed or single - ensemble_mu[model_seed] = _ensemble_pred[0] - - # If we have not created an ensemble, we are finished. + ensemble_mu[model_seed] = best_model.predict(x_test, y_scaler) + # Compute metrics on validation set + test_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + ensemble_mu[model_seed]) + for k, v in test_metrics.items(): + results_dict[k].append(v) + if monte_carlo_passes > 0: + pass # Add this + + # Save dictionary containing all model training metrics + pd.DataFrame.from_dict(results_dict).to_csv( + os.path.join(save_loc, f"{mode}/evaluate/model_metrics.csv")) + # If we have not created an ensemble, we are finished. if mode == "single": _test_data[[f"{x}_pred" for x in output_cols]] = ensemble_mu[0] _test_data.to_csv(os.path.join(save_loc, f"{mode}/evaluate", "test.csv")) return 1.0 # We only created ensemble over model or seed but not both and no MC dropout - if mode in ["model", "seed"] and (monte_carlo_passes == 0): - _test_data[[f"{x}_ensemble_pred" for x in output_cols]] = np.mean( - _ensemble_pred, 0 - ) - _test_data[[f"{x}_ensemble_var" for x in output_cols]] = np.var( - _ensemble_pred, 0 - ) - _test_data.to_csv(os.path.join(save_loc, f"{mode}/evaluate", "test.csv")) - return 1.0 + if mode in ["model", "seed"]: + if n_splits == 1: + mu = np.mean(_ensemble_pred_deep, 0) + var = np.var(_ensemble_pred_deep, 0) + else: + mu = np.mean(_ensemble_pred, 0) + var = np.var(_ensemble_pred, 0) + # Save the ensemble metrics + ensemble_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + mu, + total=np.sqrt(var)) + ensemble_metrics = {k: [v] for k,v in ensemble_metrics.items()} + pd.DataFrame.from_dict(ensemble_metrics).to_csv( + os.path.join(save_loc, f"{mode}/evaluate/ensemble_metrics.csv")) + if monte_carlo_passes > 0: + pd.DataFrame.from_dict(ensemble_dict).to_csv( + os.path.join(save_loc, f"{mode}/evaluate/mc_ensemble_metrics.csv")) + else: + _test_data[[f"{x}_ensemble_pred" for x in output_cols]] = mu + _test_data[[f"{x}_ensemble_var" for x in output_cols]] = var + _test_data.to_csv(os.path.join(save_loc, f"{mode}/evaluate", "test.csv")) + return 1.0 # Compute aleatoric and epistemic uncertainties using law of total uncertainty ensemble_mean = np.mean(ensemble_mu, 0) - ensemble_aleatoric = np.mean(ensemble_sigma, 0) + ensemble_aleatoric = np.mean(ensemble_var, 0) ensemble_epistemic = np.var(ensemble_mu, 0) + total = np.sqrt(ensemble_aleatoric+ensemble_epistemic) + lotv_metrics = regression_metrics( + y_scaler.inverse_transform(y_test), + ensemble_mean, + total=total) + # Save metrics + lotv_metrics = {k: [v] for k,v in lotv_metrics.items()} + pd.DataFrame.from_dict(lotv_metrics).to_csv( + os.path.join(save_loc, f"{mode}/evaluate/lotv_metrics.csv")) # add to df and save _test_data[[f"{x}_ensemble_pred" for x in output_cols]] = ensemble_mean diff --git a/config/deterministic_classifier.yml b/config/deterministic_classifier.yml new file mode 100644 index 0000000..5cdb127 --- /dev/null +++ b/config/deterministic_classifier.yml @@ -0,0 +1,196 @@ +TEMP_C: +- TEMP_C_0_m +- TEMP_C_250_m +- TEMP_C_500_m +- TEMP_C_750_m +- TEMP_C_1000_m +- TEMP_C_1250_m +- TEMP_C_1500_m +- TEMP_C_1750_m +- TEMP_C_2000_m +- TEMP_C_2250_m +- TEMP_C_2500_m +- TEMP_C_2750_m +- TEMP_C_3000_m +- TEMP_C_3250_m +- TEMP_C_3500_m +- TEMP_C_3750_m +- TEMP_C_4000_m +- TEMP_C_4250_m +- TEMP_C_4500_m +- TEMP_C_4750_m +- TEMP_C_5000_m +T_DEWPOINT_C: +- T_DEWPOINT_C_0_m +- T_DEWPOINT_C_250_m +- T_DEWPOINT_C_500_m +- T_DEWPOINT_C_750_m +- T_DEWPOINT_C_1000_m +- T_DEWPOINT_C_1250_m +- T_DEWPOINT_C_1500_m +- T_DEWPOINT_C_1750_m +- T_DEWPOINT_C_2000_m +- T_DEWPOINT_C_2250_m +- T_DEWPOINT_C_2500_m +- T_DEWPOINT_C_2750_m +- T_DEWPOINT_C_3000_m +- T_DEWPOINT_C_3250_m +- T_DEWPOINT_C_3500_m +- T_DEWPOINT_C_3750_m +- T_DEWPOINT_C_4000_m +- T_DEWPOINT_C_4250_m +- T_DEWPOINT_C_4500_m +- T_DEWPOINT_C_4750_m +- T_DEWPOINT_C_5000_m +UGRD_m/s: +- UGRD_m/s_0_m +- UGRD_m/s_250_m +- UGRD_m/s_500_m +- UGRD_m/s_750_m +- UGRD_m/s_1000_m +- UGRD_m/s_1250_m +- UGRD_m/s_1500_m +- UGRD_m/s_1750_m +- UGRD_m/s_2000_m +- UGRD_m/s_2250_m +- UGRD_m/s_2500_m +- UGRD_m/s_2750_m +- UGRD_m/s_3000_m +- UGRD_m/s_3250_m +- UGRD_m/s_3500_m +- UGRD_m/s_3750_m +- UGRD_m/s_4000_m +- UGRD_m/s_4250_m +- UGRD_m/s_4500_m +- UGRD_m/s_4750_m +- UGRD_m/s_5000_m +VGRD_m/s: +- VGRD_m/s_0_m +- VGRD_m/s_250_m +- VGRD_m/s_500_m +- VGRD_m/s_750_m +- VGRD_m/s_1000_m +- VGRD_m/s_1250_m +- VGRD_m/s_1500_m +- VGRD_m/s_1750_m +- VGRD_m/s_2000_m +- VGRD_m/s_2250_m +- VGRD_m/s_2500_m +- VGRD_m/s_2750_m +- VGRD_m/s_3000_m +- VGRD_m/s_3250_m +- VGRD_m/s_3500_m +- VGRD_m/s_3750_m +- VGRD_m/s_4000_m +- VGRD_m/s_4250_m +- VGRD_m/s_4500_m +- VGRD_m/s_4750_m +- VGRD_m/s_5000_m +asos_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/ +callbacks: + CSVLogger: + append: 1 + filename: training_log.csv + separator: ',' + EarlyStopping: + mode: max + monitor: val_ave_acc + patience: 9 + restore_best_weights: 1 + verbose: 0 + ReduceLROnPlateau: + factor: 0.1 + min_lr: 1.0e-15 + mode: max + monitor: val_ave_acc + patience: 3 + verbose: 0 +case_studies: + dec_ice_storm: + - '2016-12-15' + - '2016-12-16' + - '2016-12-17' + - '2016-12-18' + - '2016-12-19' + - '2016-12-20' + ne_noreaster: + - '2017-03-11' + - '2017-03-12' + - '2017-03-13' + - '2017-03-14' + - '2017-03-15' + - '2017-03-16' + - '2017-03-17' + new_york: + - '2022-02-03' + - '2022-02-04' + texas: + - '2021-02-10' + - '2021-02-11' + - '2021-02-12' + - '2021-02-13' + - '2021-02-14' + - '2021-02-15' + - '2021-02-16' + - '2021-02-17' + - '2021-02-18' + - '2021-02-19' +data_path: "../data/ptype_sample.parquet" +direction: max +ensemble: + mc_steps: 100 + n_splits: 10 +metric: val_ave_acc +model: + activation: leaky + annealing_coeff: 50 + balanced_classes: 1 + batch_size: 100 + dropout_alpha: 0.31256692323263807 + epochs: 200 + hidden_layers: 4 + hidden_neurons: 6024 + loss: categorical_crossentropy + loss_weights: + - 21.465788717561477 + - 83.31367732936326 + - 136.50944842077058 + - 152.62042204485107 + lr: 0.0004035503144482269 + optimizer: adam + output_activation: softmax + use_dropout: 1 + verbose: 0 +mping_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/ +pbs: + account: NAML0001 + env_setup: "source ~/.bashrc \nmodule unload cuda cudnn \nconda activate evidential\n\ + CUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"\ + ))\nexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib\n\ + export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX" + gpu_type: v100 + mem: 128GB + name: ptype-mlp + ncpus: 8 + ngpus: 1 + queue: casper + select: 1 + walltime: 43200 +ptypes: +- ra_percent +- sn_percent +- pl_percent +- fzra_percent +qc: '3.0' +save_loc: /glade/scratch/schreck/repos/evidential/results/ptype/weighted/production/classifier +scale_groups: +- TEMP_C +- T_DEWPOINT_C +- UGRD_m/s +- VGRD_m/s +scaler_type: quantile +seed: 1000 +test_cutoff: '2020-07-01' +train_size1: 0.9 +train_size2: 0.0 +verbose: 0 \ No newline at end of file diff --git a/config/model_mlp_SL.yml b/config/deterministic_regression.yml similarity index 100% rename from config/model_mlp_SL.yml rename to config/deterministic_regression.yml diff --git a/config/evidential_classifier.yml b/config/evidential_classifier.yml new file mode 100644 index 0000000..eb155d4 --- /dev/null +++ b/config/evidential_classifier.yml @@ -0,0 +1,196 @@ +TEMP_C: +- TEMP_C_0_m +- TEMP_C_250_m +- TEMP_C_500_m +- TEMP_C_750_m +- TEMP_C_1000_m +- TEMP_C_1250_m +- TEMP_C_1500_m +- TEMP_C_1750_m +- TEMP_C_2000_m +- TEMP_C_2250_m +- TEMP_C_2500_m +- TEMP_C_2750_m +- TEMP_C_3000_m +- TEMP_C_3250_m +- TEMP_C_3500_m +- TEMP_C_3750_m +- TEMP_C_4000_m +- TEMP_C_4250_m +- TEMP_C_4500_m +- TEMP_C_4750_m +- TEMP_C_5000_m +T_DEWPOINT_C: +- T_DEWPOINT_C_0_m +- T_DEWPOINT_C_250_m +- T_DEWPOINT_C_500_m +- T_DEWPOINT_C_750_m +- T_DEWPOINT_C_1000_m +- T_DEWPOINT_C_1250_m +- T_DEWPOINT_C_1500_m +- T_DEWPOINT_C_1750_m +- T_DEWPOINT_C_2000_m +- T_DEWPOINT_C_2250_m +- T_DEWPOINT_C_2500_m +- T_DEWPOINT_C_2750_m +- T_DEWPOINT_C_3000_m +- T_DEWPOINT_C_3250_m +- T_DEWPOINT_C_3500_m +- T_DEWPOINT_C_3750_m +- T_DEWPOINT_C_4000_m +- T_DEWPOINT_C_4250_m +- T_DEWPOINT_C_4500_m +- T_DEWPOINT_C_4750_m +- T_DEWPOINT_C_5000_m +UGRD_m/s: +- UGRD_m/s_0_m +- UGRD_m/s_250_m +- UGRD_m/s_500_m +- UGRD_m/s_750_m +- UGRD_m/s_1000_m +- UGRD_m/s_1250_m +- UGRD_m/s_1500_m +- UGRD_m/s_1750_m +- UGRD_m/s_2000_m +- UGRD_m/s_2250_m +- UGRD_m/s_2500_m +- UGRD_m/s_2750_m +- UGRD_m/s_3000_m +- UGRD_m/s_3250_m +- UGRD_m/s_3500_m +- UGRD_m/s_3750_m +- UGRD_m/s_4000_m +- UGRD_m/s_4250_m +- UGRD_m/s_4500_m +- UGRD_m/s_4750_m +- UGRD_m/s_5000_m +VGRD_m/s: +- VGRD_m/s_0_m +- VGRD_m/s_250_m +- VGRD_m/s_500_m +- VGRD_m/s_750_m +- VGRD_m/s_1000_m +- VGRD_m/s_1250_m +- VGRD_m/s_1500_m +- VGRD_m/s_1750_m +- VGRD_m/s_2000_m +- VGRD_m/s_2250_m +- VGRD_m/s_2500_m +- VGRD_m/s_2750_m +- VGRD_m/s_3000_m +- VGRD_m/s_3250_m +- VGRD_m/s_3500_m +- VGRD_m/s_3750_m +- VGRD_m/s_4000_m +- VGRD_m/s_4250_m +- VGRD_m/s_4500_m +- VGRD_m/s_4750_m +- VGRD_m/s_5000_m +asos_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/ +callbacks: + CSVLogger: + append: 0 + filename: training_log.csv + separator: ',' + EarlyStopping: + mode: max + monitor: val_ave_acc + patience: 9 + restore_best_weights: 1 + verbose: 0 + ReduceLROnPlateau: + factor: 0.1 + min_lr: 1.0e-15 + mode: max + monitor: val_ave_acc + patience: 3 + verbose: 0 +case_studies: + dec_ice_storm: + - '2016-12-15' + - '2016-12-16' + - '2016-12-17' + - '2016-12-18' + - '2016-12-19' + - '2016-12-20' + ne_noreaster: + - '2017-03-11' + - '2017-03-12' + - '2017-03-13' + - '2017-03-14' + - '2017-03-15' + - '2017-03-16' + - '2017-03-17' + new_york: + - '2022-02-03' + - '2022-02-04' + texas: + - '2021-02-10' + - '2021-02-11' + - '2021-02-12' + - '2021-02-13' + - '2021-02-14' + - '2021-02-15' + - '2021-02-16' + - '2021-02-17' + - '2021-02-18' + - '2021-02-19' +data_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/ptype_qc/mPING_interpolated_QC2.parquet +direction: max +ensemble: + mc_steps: 0 + n_splits: 10 +metric: val_ave_acc +model: + activation: leaky + annealing_coeff: 34.593686950910275 + balanced_classes: 1 + batch_size: 100 + dropout_alpha: 0.20146936081973893 + epochs: 1000 + hidden_layers: 2 + hidden_neurons: 6461 + loss: dirichlet + loss_weights: + - 58.64242174310205 + - 94.59680461256323 + - 124.5896569779261 + - 227.38800030539545 + lr: 0.0027750619126744817 + optimizer: adam + output_activation: linear + use_dropout: 1 + verbose: 0 +mping_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/ +ptypes: +- ra_percent +- sn_percent +- pl_percent +- fzra_percent +qc: '3.0' +save_loc: /glade/scratch/schreck/repos/evidential/results/ptype/weighted/production/evidential +scale_groups: +- TEMP_C +- T_DEWPOINT_C +- UGRD_m/s +- VGRD_m/s +scaler_type: robust +seed: 1000 +test_cutoff: '2020-07-01' +train_size1: 0.9 +train_size2: 0.0 +verbose: 0 +pbs: + account: NAML0001 + env_setup: "source ~/.bashrc \nmodule unload cuda cudnn \nconda activate evidential\n\ + CUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"\ + ))\nexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib\n\ + export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX" + gpu_type: v100 + mem: 128GB + name: ptype-ev + ncpus: 8 + ngpus: 1 + queue: casper + select: 1 + walltime: 43200 \ No newline at end of file diff --git a/config/model_evidential_SL.yml b/config/evidential_regression.yml similarity index 100% rename from config/model_evidential_SL.yml rename to config/evidential_regression.yml diff --git a/config/model_gaussian_SL.yml b/config/gauss_regression.yml similarity index 100% rename from config/model_gaussian_SL.yml rename to config/gauss_regression.yml diff --git a/config/hyper_classifier_ptype.yml b/config/hyper_classifier_ptype.yml deleted file mode 100644 index 8410670..0000000 --- a/config/hyper_classifier_ptype.yml +++ /dev/null @@ -1,109 +0,0 @@ -log: True -save_path: "/glade/scratch/schreck/repos/evidential/results/ptype/weighted/classifier_noweight" - -pbs: - jobs: 10 - bash: [ - "source ~/.bashrc", - "module unload cuda cudnn", - "conda activate evidential", - 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))', - 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib', - 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX' - ] - batch: - N: "mlp-cl-now" - l: ["select=1:ncpus=8:ngpus=1:mem=128GB", "walltime=12:00:00", "gpu_type=v100"] - A: "NAML0001" - q: "casper" - o: "out" - e: "out" - -optuna: - study_name: "classifier" - storage: "echo.db" - storage_type: "sqlite" - objective: "/glade/work/schreck/repos/evidential/main/applications/train_classifier_ptype.py" - metric: "val_ave_acc" - direction: "maximize" - n_trials: 1000 - gpu: True - sampler: - type: "TPESampler" - n_startup_trials: 150 - parameters: - model:hidden_layers: - type: "int" - settings: - name: "hidden_layers" - low: 1 - high: 5 - model:hidden_neurons: - type: "int" - settings: - name: "hidden_neurons" - low: 50 - high: 10000 - model:dropout_alpha: - type: "float" - settings: - name: "dropout_alpha" - low: 0.0 - high: 0.5 - model:lr: - type: "loguniform" - settings: - name: "lr" - low: 0.0000001 - high: 0.01 - model:activation: - type: "categorical" - settings: - name: "activation" - choices: ["relu", "leaky", "elu", "selu"] - model:batch_size: - type: "int" - settings: - name: "batch_size" - low: 64 - high: 50000 - # model:l2_weight: - # type: "loguniform" - # settings: - # name: "l2_weight" - # low: 0.0000000001 - # high: 0.01 - qc: - type: "categorical" - settings: - name: "qc" - choices: ["3.0", "4.0", "5.0", "6.0", "7.0", "8.0", "9.0", "10.0"] - scaler_type: - type: "categorical" - settings: - name: "scaler_type" - choices: ["standard", "robust", "normalize", "symmetric", "quantile", "quantile-uniform"] - # rain_weight: - # type: "float" - # settings: - # name: "rain_weight" - # low: 0.001 - # high: 100 - # snow_weight: - # type: "float" - # settings: - # name: "snow_weight" - # low: 0.001 - # high: 100 - # sleet_weight: - # type: "float" - # settings: - # name: "sleet_weight" - # low: 0.001 - # high: 1000 - # frz_rain_weight: - # type: "float" - # settings: - # name: "frz_rain_weight" - # low: 0.001 - # high: 1000 \ No newline at end of file diff --git a/config/hyper_evidential_SL.yml b/config/hyper_evidential_SL.yml deleted file mode 100644 index 8c9d176..0000000 --- a/config/hyper_evidential_SL.yml +++ /dev/null @@ -1,92 +0,0 @@ -log: True -save_path: "/glade/work/schreck/repos/evidential/main/results/production/surface_layer/evidential_uniform/echo" - -pbs: - jobs: 10 - bash: [ - "source ~/.bashrc", - "module unload cuda cudnn", - "conda activate evidential", - 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))', - 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib', - 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX' - ] - batch: - N: "ev-sl" - l: ["select=1:ncpus=8:ngpus=1:mem=128GB", "walltime=12:00:00", "gpu_type=v100"] - A: "NAML0001" - q: "casper" - o: "out" - e: "out" - -optuna: - storage: "study.db" - study_name: "evidential" - storage_type: "sqlite" - objective: "/glade/work/schreck/repos/evidential/main/applications/train_evidential_SL.py" - direction: "minimize" - metric: "val_mae" - n_trials: 1000 - gpu: True - sampler: - type: "TPESampler" - n_startup_trials: 100 - parameters: - model:lr: - type: "loguniform" - settings: - name: "lr" - low: 1.0e-06 - high: 1.0e-02 - model:l1_weight: - type: "loguniform" - settings: - name: "l1_weight" - low: 1.0e-12 - high: 1.0e-02 - model:l2_weight: - type: "loguniform" - settings: - name: "l2_weight" - low: 1.0e-12 - high: 1.0e-02 - model:dropout_alpha: - type: "float" - settings: - name: "dropout_alpha" - low: 0.0 - high: 0.5 - model:hidden_layers: - type: "int" - settings: - name: "hidden_layers" - low: 1 - high: 10 - model:hidden_neurons: - type: "int" - settings: - name: "hidden_neurons" - low: 1 - high: 10000 - model:evidential_coef: - type: "float" - settings: - name: "evidential_coef" - low: 0.0 - high: 100.0 - model:batch_size: - type: "int" - settings: - name: "batch_size" - low: 10 - high: 20000 - data:scaler_x:type: - type: "categorical" - settings: - name: "scaler_x" - choices: ["standard", "normalize", "symmetric", "quantile", "robust", "quantile-uniform"] - data:scaler_y:type: - type: "categorical" - settings: - name: "scaler_y" - choices: ["normalize", "quantile-uniform"] diff --git a/config/hyper_evidential_ptype.yml b/config/hyper_evidential_ptype.yml deleted file mode 100644 index a562339..0000000 --- a/config/hyper_evidential_ptype.yml +++ /dev/null @@ -1,115 +0,0 @@ -log: True -save_path: "/glade/scratch/schreck/repos/evidential/results/ptype/weighted/evidential" - -pbs: - jobs: 10 - bash: [ - "source ~/.bashrc", - "module unload cuda cudnn", - "conda activate evidential", - 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))', - 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib', - 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX' - ] - batch: - N: "mlp-ev" - l: ["select=1:ncpus=8:ngpus=1:mem=128GB", "walltime=12:00:00", "gpu_type=v100"] - A: "NAML0001" - q: "casper" - o: "out" - e: "out" - -optuna: - study_name: "evidential" - storage: "echo.db" - storage_type: "sqlite" - objective: "/glade/work/schreck/repos/evidential/main/applications/train_classifier_ptype.py" - metric: "val_ave_acc" - direction: "maximize" - n_trials: 1000 - gpu: True - sampler: - type: "TPESampler" - n_startup_trials: 150 - parameters: - model:hidden_layers: - type: "int" - settings: - name: "hidden_layers" - low: 1 - high: 5 - model:hidden_neurons: - type: "int" - settings: - name: "hidden_neurons" - low: 50 - high: 10000 - model:annealing_coeff: - type: "float" - settings: - name: "annealing_coeff" - low: 1.0 - high: 100.0 - model:dropout_alpha: - type: "float" - settings: - name: "dropout_alpha" - low: 0.0 - high: 0.5 - model:lr: - type: "loguniform" - settings: - name: "lr" - low: 0.0000001 - high: 0.01 - model:activation: - type: "categorical" - settings: - name: "activation" - choices: ["relu", "leaky", "elu", "selu"] - model:batch_size: - type: "int" - settings: - name: "batch_size" - low: 64 - high: 50000 - # model:l2_weight: - # type: "loguniform" - # settings: - # name: "l2_weight" - # low: 0.0000000001 - # high: 0.01 - qc: - type: "categorical" - settings: - name: "qc" - choices: ["3.0", "4.0", "5.0", "6.0", "7.0", "8.0", "9.0", "10.0"] - scaler_type: - type: "categorical" - settings: - name: "scaler_type" - choices: ["standard", "robust", "normalize", "symmetric", "quantile", "quantile-uniform"] - rain_weight: - type: "float" - settings: - name: "rain_weight" - low: 0.001 - high: 100 - snow_weight: - type: "float" - settings: - name: "snow_weight" - low: 0.001 - high: 100 - sleet_weight: - type: "float" - settings: - name: "sleet_weight" - low: 0.001 - high: 1000 - frz_rain_weight: - type: "float" - settings: - name: "frz_rain_weight" - low: 0.001 - high: 1000 \ No newline at end of file diff --git a/config/hyper_gaussian_SL.yml b/config/hyper_gaussian_SL.yml deleted file mode 100644 index 38969ea..0000000 --- a/config/hyper_gaussian_SL.yml +++ /dev/null @@ -1,74 +0,0 @@ -log: True -save_path: "/glade/work/schreck/repos/evidential/main/results/0413_sl/gaussian" - -pbs: - jobs: 15 - bash: [ - "source ~/.bashrc", - "module unload cuda cudnn", - "conda activate evidential", - 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))', - 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib', - 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX' - ] - batch: - N: "gauss-sl" - l: ["select=1:ncpus=8:ngpus=1:mem=128GB", "walltime=12:00:00", "gpu_type=v100"] - A: "NAML0001" - q: "casper" - o: "out" - e: "out" - -optuna: - storage: "study.db" - study_name: "gaussian" - storage_type: "sqlite" - objective: "/glade/work/schreck/repos/evidential/main/applications/train_gaussian_SL.py" - direction: "maximize" - metric: "val_pitd" - n_trials: 1000 - gpu: True - sampler: - type: "TPESampler" - n_startup_trials: 100 - parameters: - model:lr: - type: "loguniform" - settings: - name: "lr" - low: 1.0e-06 - high: 1.0e-02 - model:l2_weight: - type: "loguniform" - settings: - name: "l2_weight" - low: 1.0e-12 - high: 1.0e-02 - model:hidden_layers: - type: "int" - settings: - name: "hidden_layers" - low: 1 - high: 10 - model:hidden_neurons: - type: "int" - settings: - name: "hidden_neurons" - low: 1 - high: 10000 - model:batch_size: - type: "int" - settings: - name: "batch_size" - low: 10 - high: 10000 - data:scaler_x:type: - type: "categorical" - settings: - name: "scaler_x" - choices: ["standard", "normalize", "symmetric", "quantile", "robust"] - # data:scaler_y:type: - # type: "categorical" - # settings: - # name: "scaler_y" - # choices: ["standard", "normalize", "symmetric", "quantile", "robust"] diff --git a/config/hyper_mlp_SL.yml b/config/hyper_mlp_SL.yml deleted file mode 100644 index 177524f..0000000 --- a/config/hyper_mlp_SL.yml +++ /dev/null @@ -1,69 +0,0 @@ -log: True -save_path: "/glade/work/schreck/repos/evidential/main/results/0413_sl/mlp/echo" - -pbs: - jobs: 15 - bash: [ - "source ~/.bashrc", - "module unload cuda cudnn", - "conda activate evidential", - 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))', - 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib', - 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX' - ] - batch: - N: "mlp-sl" - l: ["select=1:ncpus=8:ngpus=1:mem=128GB", "walltime=12:00:00", "gpu_type=v100"] - A: "NAML0001" - q: "casper" - o: "out" - e: "out" - -optuna: - storage: "study.db" - study_name: "mlp" - storage_type: "sqlite" - objective: "/glade/work/schreck/repos/evidential/main/applications/train_mlp_SL.py" - direction: "minimize" - metric: "val_mae" - n_trials: 1000 - gpu: True - sampler: - type: "TPESampler" - n_startup_trials: 100 - parameters: - model:lr: - type: "loguniform" - settings: - name: "lr" - low: 1.0e-06 - high: 1.0e-02 - model:l2_weight: - type: "loguniform" - settings: - name: "l2_weight" - low: 1.0e-12 - high: 1.0e-02 - model:hidden_layers: - type: "int" - settings: - name: "hidden_layers" - low: 1 - high: 10 - model:hidden_neurons: - type: "int" - settings: - name: "hidden_neurons" - low: 1 - high: 10000 - model:batch_size: - type: "int" - settings: - name: "batch_size" - low: 10 - high: 10000 - data:scaler_x:type: - type: "categorical" - settings: - name: "scaler_x" - choices: ["standard", "normalize", "symmetric", "quantile", "robust"] \ No newline at end of file diff --git a/config/model_classifier_ptype.yml b/config/model_classifier_ptype.yml deleted file mode 100644 index 12f5ebb..0000000 --- a/config/model_classifier_ptype.yml +++ /dev/null @@ -1,392 +0,0 @@ -seed: 1000 -verbose: 0 -save_loc: "/glade/p/cisl/aiml/ai2es/winter_ptypes/models/classifier_weighted" -asos_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/' -mping_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/' -data_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/ptype_qc/mPING_interpolated_QC2.parquet' -train_size1: 0.9 # When used with cutoff 2020-07-01 gives about 60/40 train/test split -train_size2: 0.0 -qc: 3.0 # 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 -test_cutoff: "2020-07-01" -ptypes: ['ra_percent', 'sn_percent', 'pl_percent', 'fzra_percent'] -metric: "val_ave_acc" -direction: "max" - -ensemble: - n_splits: 20 - mc_steps: 100 - -model: - activation: leaky - balanced_classes: 1 - batch_size: 3097 - dropout_alpha: 0.31256692323263807 - epochs: 200 - hidden_layers: 3 - hidden_neurons: 200 - loss: categorical_crossentropy - loss_weights: - - 21.465788717561477 - - 83.31367732936326 - - 136.50944842077058 - - 152.62042204485107 - lr: 0.0004035503144482269 - optimizer: adam - output_activation: softmax - use_dropout: 1 - verbose: 0 - -scaler_type: "quantile" # standard, robust, minmax, quantile, quantile-uniform -scale_groups: ["TEMP_C", "T_DEWPOINT_C", "UGRD_m/s", "VGRD_m/s"] -TEMP_C: [ - 'TEMP_C_0_m', - 'TEMP_C_250_m', - 'TEMP_C_500_m', - 'TEMP_C_750_m', - 'TEMP_C_1000_m', - 'TEMP_C_1250_m', - 'TEMP_C_1500_m', - 'TEMP_C_1750_m', - 'TEMP_C_2000_m', - 'TEMP_C_2250_m', - 'TEMP_C_2500_m', - 'TEMP_C_2750_m', - 'TEMP_C_3000_m', - 'TEMP_C_3250_m', - 'TEMP_C_3500_m', - 'TEMP_C_3750_m', - 'TEMP_C_4000_m', - 'TEMP_C_4250_m', - 'TEMP_C_4500_m', - 'TEMP_C_4750_m', - 'TEMP_C_5000_m', - # 'TEMP_C_5250_m', - # 'TEMP_C_5500_m', - # 'TEMP_C_5750_m', - # 'TEMP_C_6000_m', - # 'TEMP_C_6250_m', - # 'TEMP_C_6500_m', - # 'TEMP_C_6750_m', - # 'TEMP_C_7000_m', - # 'TEMP_C_7250_m', - # 'TEMP_C_7500_m', - # 'TEMP_C_7750_m', - # 'TEMP_C_8000_m', - # 'TEMP_C_8250_m', - # 'TEMP_C_8500_m', - # 'TEMP_C_8750_m', - # 'TEMP_C_9000_m', - # 'TEMP_C_9250_m', - # 'TEMP_C_9500_m', - # 'TEMP_C_9750_m', - # 'TEMP_C_10000_m', - # 'TEMP_C_10250_m', - # 'TEMP_C_10500_m', - # 'TEMP_C_10750_m', - # 'TEMP_C_11000_m', - # 'TEMP_C_11250_m', - # 'TEMP_C_11500_m', - # 'TEMP_C_11750_m', - # 'TEMP_C_12000_m', - # 'TEMP_C_12250_m', - # 'TEMP_C_12500_m', - # 'TEMP_C_12750_m', - # 'TEMP_C_13000_m', - # 'TEMP_C_13250_m', - # 'TEMP_C_13500_m', - # 'TEMP_C_13750_m', - # 'TEMP_C_14000_m', - # 'TEMP_C_14250_m', - # 'TEMP_C_14500_m', - # 'TEMP_C_14750_m', - # 'TEMP_C_15000_m', - # 'TEMP_C_15250_m', - # 'TEMP_C_15500_m', - # 'TEMP_C_15750_m', - # 'TEMP_C_16000_m', - # 'TEMP_C_16250_m', - # 'TEMP_C_16500_m' -] - -T_DEWPOINT_C: [ - 'T_DEWPOINT_C_0_m', - 'T_DEWPOINT_C_250_m', - 'T_DEWPOINT_C_500_m', - 'T_DEWPOINT_C_750_m', - 'T_DEWPOINT_C_1000_m', - 'T_DEWPOINT_C_1250_m', - 'T_DEWPOINT_C_1500_m', - 'T_DEWPOINT_C_1750_m', - 'T_DEWPOINT_C_2000_m', - 'T_DEWPOINT_C_2250_m', - 'T_DEWPOINT_C_2500_m', - 'T_DEWPOINT_C_2750_m', - 'T_DEWPOINT_C_3000_m', - 'T_DEWPOINT_C_3250_m', - 'T_DEWPOINT_C_3500_m', - 'T_DEWPOINT_C_3750_m', - 'T_DEWPOINT_C_4000_m', - 'T_DEWPOINT_C_4250_m', - 'T_DEWPOINT_C_4500_m', - 'T_DEWPOINT_C_4750_m', - 'T_DEWPOINT_C_5000_m', - # 'T_DEWPOINT_C_5250_m', - # 'T_DEWPOINT_C_5500_m', - # 'T_DEWPOINT_C_5750_m', - # 'T_DEWPOINT_C_6000_m', - # 'T_DEWPOINT_C_6250_m', - # 'T_DEWPOINT_C_6500_m', - # 'T_DEWPOINT_C_6750_m', - # 'T_DEWPOINT_C_7000_m', - # 'T_DEWPOINT_C_7250_m', - # 'T_DEWPOINT_C_7500_m', - # 'T_DEWPOINT_C_7750_m', - # 'T_DEWPOINT_C_8000_m', - # 'T_DEWPOINT_C_8250_m', - # 'T_DEWPOINT_C_8500_m', - # 'T_DEWPOINT_C_8750_m', - # 'T_DEWPOINT_C_9000_m', - # 'T_DEWPOINT_C_9250_m', - # 'T_DEWPOINT_C_9500_m', - # 'T_DEWPOINT_C_9750_m', - # 'T_DEWPOINT_C_10000_m', - # 'T_DEWPOINT_C_10250_m', - # 'T_DEWPOINT_C_10500_m', - # 'T_DEWPOINT_C_10750_m', - # 'T_DEWPOINT_C_11000_m', - # 'T_DEWPOINT_C_11250_m', - # 'T_DEWPOINT_C_11500_m', - # 'T_DEWPOINT_C_11750_m', - # 'T_DEWPOINT_C_12000_m', - # 'T_DEWPOINT_C_12250_m', - # 'T_DEWPOINT_C_12500_m', - # 'T_DEWPOINT_C_12750_m', - # 'T_DEWPOINT_C_13000_m', - # 'T_DEWPOINT_C_13250_m', - # 'T_DEWPOINT_C_13500_m', - # 'T_DEWPOINT_C_13750_m', - # 'T_DEWPOINT_C_14000_m', - # 'T_DEWPOINT_C_14250_m', - # 'T_DEWPOINT_C_14500_m', - # 'T_DEWPOINT_C_14750_m', - # 'T_DEWPOINT_C_15000_m', - # 'T_DEWPOINT_C_15250_m', - # 'T_DEWPOINT_C_15500_m', - # 'T_DEWPOINT_C_15750_m', - # 'T_DEWPOINT_C_16000_m', - # 'T_DEWPOINT_C_16250_m', - # 'T_DEWPOINT_C_16500_m' -] - -UGRD_m/s: [ - 'UGRD_m/s_0_m', - 'UGRD_m/s_250_m', - 'UGRD_m/s_500_m', - 'UGRD_m/s_750_m', - 'UGRD_m/s_1000_m', - 'UGRD_m/s_1250_m', - 'UGRD_m/s_1500_m', - 'UGRD_m/s_1750_m', - 'UGRD_m/s_2000_m', - 'UGRD_m/s_2250_m', - 'UGRD_m/s_2500_m', - 'UGRD_m/s_2750_m', - 'UGRD_m/s_3000_m', - 'UGRD_m/s_3250_m', - 'UGRD_m/s_3500_m', - 'UGRD_m/s_3750_m', - 'UGRD_m/s_4000_m', - 'UGRD_m/s_4250_m', - 'UGRD_m/s_4500_m', - 'UGRD_m/s_4750_m', - 'UGRD_m/s_5000_m', - # 'UGRD_m/s_5250_m', - # 'UGRD_m/s_5500_m', - # 'UGRD_m/s_5750_m', - # 'UGRD_m/s_6000_m', - # 'UGRD_m/s_6250_m', - # 'UGRD_m/s_6500_m', - # 'UGRD_m/s_6750_m', - # 'UGRD_m/s_7000_m', - # 'UGRD_m/s_7250_m', - # 'UGRD_m/s_7500_m', - # 'UGRD_m/s_7750_m', - # 'UGRD_m/s_8000_m', - # 'UGRD_m/s_8250_m', - # 'UGRD_m/s_8500_m', - # 'UGRD_m/s_8750_m', - # 'UGRD_m/s_9000_m', - # 'UGRD_m/s_9250_m', - # 'UGRD_m/s_9500_m', - # 'UGRD_m/s_9750_m', - # 'UGRD_m/s_10000_m', - # 'UGRD_m/s_10250_m', - # 'UGRD_m/s_10500_m', - # 'UGRD_m/s_10750_m', - # 'UGRD_m/s_11000_m', - # 'UGRD_m/s_11250_m', - # 'UGRD_m/s_11500_m', - # 'UGRD_m/s_11750_m', - # 'UGRD_m/s_12000_m', - # 'UGRD_m/s_12250_m', - # 'UGRD_m/s_12500_m', - # 'UGRD_m/s_12750_m', - # 'UGRD_m/s_13000_m', - # 'UGRD_m/s_13250_m', - # 'UGRD_m/s_13500_m', - # 'UGRD_m/s_13750_m', - # 'UGRD_m/s_14000_m', - # 'UGRD_m/s_14250_m', - # 'UGRD_m/s_14500_m', - # 'UGRD_m/s_14750_m', - # 'UGRD_m/s_15000_m', - # 'UGRD_m/s_15250_m', - # 'UGRD_m/s_15500_m', - # 'UGRD_m/s_15750_m', - # 'UGRD_m/s_16000_m', - # 'UGRD_m/s_16250_m', - # 'UGRD_m/s_16500_m' - ] - -VGRD_m/s: [ - 'VGRD_m/s_0_m', - 'VGRD_m/s_250_m', - 'VGRD_m/s_500_m', - 'VGRD_m/s_750_m', - 'VGRD_m/s_1000_m', - 'VGRD_m/s_1250_m', - 'VGRD_m/s_1500_m', - 'VGRD_m/s_1750_m', - 'VGRD_m/s_2000_m', - 'VGRD_m/s_2250_m', - 'VGRD_m/s_2500_m', - 'VGRD_m/s_2750_m', - 'VGRD_m/s_3000_m', - 'VGRD_m/s_3250_m', - 'VGRD_m/s_3500_m', - 'VGRD_m/s_3750_m', - 'VGRD_m/s_4000_m', - 'VGRD_m/s_4250_m', - 'VGRD_m/s_4500_m', - 'VGRD_m/s_4750_m', - 'VGRD_m/s_5000_m', - # 'VGRD_m/s_5250_m', - # 'VGRD_m/s_5500_m', - # 'VGRD_m/s_5750_m', - # 'VGRD_m/s_6000_m', - # 'VGRD_m/s_6250_m', - # 'VGRD_m/s_6500_m', - # 'VGRD_m/s_6750_m', - # 'VGRD_m/s_7000_m', - # 'VGRD_m/s_7250_m', - # 'VGRD_m/s_7500_m', - # 'VGRD_m/s_7750_m', - # 'VGRD_m/s_8000_m', - # 'VGRD_m/s_8250_m', - # 'VGRD_m/s_8500_m', - # 'VGRD_m/s_8750_m', - # 'VGRD_m/s_9000_m', - # 'VGRD_m/s_9250_m', - # 'VGRD_m/s_9500_m', - # 'VGRD_m/s_9750_m', - # 'VGRD_m/s_10000_m', - # 'VGRD_m/s_10250_m', - # 'VGRD_m/s_10500_m', - # 'VGRD_m/s_10750_m', - # 'VGRD_m/s_11000_m', - # 'VGRD_m/s_11250_m', - # 'VGRD_m/s_11500_m', - # 'VGRD_m/s_11750_m', - # 'VGRD_m/s_12000_m', - # 'VGRD_m/s_12250_m', - # 'VGRD_m/s_12500_m', - # 'VGRD_m/s_12750_m', - # 'VGRD_m/s_13000_m', - # 'VGRD_m/s_13250_m', - # 'VGRD_m/s_13500_m', - # 'VGRD_m/s_13750_m', - # 'VGRD_m/s_14000_m', - # 'VGRD_m/s_14250_m', - # 'VGRD_m/s_14500_m', - # 'VGRD_m/s_14750_m', - # 'VGRD_m/s_15000_m', - # 'VGRD_m/s_15250_m', - # 'VGRD_m/s_15500_m', - # 'VGRD_m/s_15750_m', - # 'VGRD_m/s_16000_m', - # 'VGRD_m/s_16250_m', - # 'VGRD_m/s_16500_m' - ] - -callbacks: - EarlyStopping: - monitor: "val_ave_acc" - patience: 9 - mode: "max" - verbose: 0 - restore_best_weights: 1 - ReduceLROnPlateau: - monitor: "val_ave_acc" - factor: 0.1 - patience: 3 - min_lr: 0.000000000000001 - mode: "max" - verbose: 0 - CSVLogger: - filename: "training_log.csv" - separator: "," - append: 1 # all ensembles will write to the same log -# ModelCheckpoint: -# filepath: "best" -# monitor: "val_f1" -# #save_weights: 1 -# save_best_only: 1 -# mode: "max" -# verbose: 0 - -case_studies: - texas: [ - '2021-02-10', - '2021-02-11', - '2021-02-12', - '2021-02-13', - '2021-02-14', - '2021-02-15', - '2021-02-16', - '2021-02-17', - '2021-02-18', - '2021-02-19' - ] - new_york: ['2022-02-03', '2022-02-04'] - ne_noreaster: [ - '2017-03-11', - '2017-03-12', - '2017-03-13', - '2017-03-14', - '2017-03-15', - '2017-03-16', - '2017-03-17' - ] - dec_ice_storm: [ - '2016-12-15', - '2016-12-16', - '2016-12-17', - '2016-12-18', - '2016-12-19', - '2016-12-20' - ] - -pbs: - name: ptype-mlp - select: 1 - ncpus: 8 - ngpus: 1 - mem: 128GB - walltime: 12:00:00 - gpu_type: v100 - account: NAML0001 - queue: casper - env_setup: | - source ~/.bashrc - conda activate evidential - \ No newline at end of file diff --git a/config/model_classifier_ptype_unweighted.yml b/config/model_classifier_ptype_unweighted.yml deleted file mode 100644 index cb14573..0000000 --- a/config/model_classifier_ptype_unweighted.yml +++ /dev/null @@ -1,386 +0,0 @@ -seed: 1000 -verbose: 0 -save_loc: "/glade/p/cisl/aiml/ai2es/winter_ptypes/models/classifier_unweighted" -asos_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/' -mping_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/' -data_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/ptype_qc/mPING_interpolated_QC2.parquet' -train_size1: 0.9 # When used with cutoff 2020-07-01 gives about 60/40 train/test split -train_size2: 0.0 -qc: 3.0 # 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 -test_cutoff: "2020-07-01" -ptypes: ['ra_percent', 'sn_percent', 'pl_percent', 'fzra_percent'] -metric: "val_ave_acc" -direction: "max" - -ensemble: - n_splits: 20 - mc_steps: 100 - -model: - activation: leaky - balanced_classes: 0 - batch_size: 3097 - dropout_alpha: 0.31256692323263807 - epochs: 200 - hidden_layers: 3 - hidden_neurons: 200 - loss: categorical_crossentropy - lr: 0.0004035503144482269 - optimizer: adam - output_activation: softmax - use_dropout: 1 - verbose: 0 - -scaler_type: "standard" # standard, robust, minmax, quantile, quantile-uniform -scale_groups: ["TEMP_C", "T_DEWPOINT_C", "UGRD_m/s", "VGRD_m/s"] -TEMP_C: [ - 'TEMP_C_0_m', - 'TEMP_C_250_m', - 'TEMP_C_500_m', - 'TEMP_C_750_m', - 'TEMP_C_1000_m', - 'TEMP_C_1250_m', - 'TEMP_C_1500_m', - 'TEMP_C_1750_m', - 'TEMP_C_2000_m', - 'TEMP_C_2250_m', - 'TEMP_C_2500_m', - 'TEMP_C_2750_m', - 'TEMP_C_3000_m', - 'TEMP_C_3250_m', - 'TEMP_C_3500_m', - 'TEMP_C_3750_m', - 'TEMP_C_4000_m', - 'TEMP_C_4250_m', - 'TEMP_C_4500_m', - 'TEMP_C_4750_m', - 'TEMP_C_5000_m', - # 'TEMP_C_5250_m', - # 'TEMP_C_5500_m', - # 'TEMP_C_5750_m', - # 'TEMP_C_6000_m', - # 'TEMP_C_6250_m', - # 'TEMP_C_6500_m', - # 'TEMP_C_6750_m', - # 'TEMP_C_7000_m', - # 'TEMP_C_7250_m', - # 'TEMP_C_7500_m', - # 'TEMP_C_7750_m', - # 'TEMP_C_8000_m', - # 'TEMP_C_8250_m', - # 'TEMP_C_8500_m', - # 'TEMP_C_8750_m', - # 'TEMP_C_9000_m', - # 'TEMP_C_9250_m', - # 'TEMP_C_9500_m', - # 'TEMP_C_9750_m', - # 'TEMP_C_10000_m', - # 'TEMP_C_10250_m', - # 'TEMP_C_10500_m', - # 'TEMP_C_10750_m', - # 'TEMP_C_11000_m', - # 'TEMP_C_11250_m', - # 'TEMP_C_11500_m', - # 'TEMP_C_11750_m', - # 'TEMP_C_12000_m', - # 'TEMP_C_12250_m', - # 'TEMP_C_12500_m', - # 'TEMP_C_12750_m', - # 'TEMP_C_13000_m', - # 'TEMP_C_13250_m', - # 'TEMP_C_13500_m', - # 'TEMP_C_13750_m', - # 'TEMP_C_14000_m', - # 'TEMP_C_14250_m', - # 'TEMP_C_14500_m', - # 'TEMP_C_14750_m', - # 'TEMP_C_15000_m', - # 'TEMP_C_15250_m', - # 'TEMP_C_15500_m', - # 'TEMP_C_15750_m', - # 'TEMP_C_16000_m', - # 'TEMP_C_16250_m', - # 'TEMP_C_16500_m' -] - -T_DEWPOINT_C: [ - 'T_DEWPOINT_C_0_m', - 'T_DEWPOINT_C_250_m', - 'T_DEWPOINT_C_500_m', - 'T_DEWPOINT_C_750_m', - 'T_DEWPOINT_C_1000_m', - 'T_DEWPOINT_C_1250_m', - 'T_DEWPOINT_C_1500_m', - 'T_DEWPOINT_C_1750_m', - 'T_DEWPOINT_C_2000_m', - 'T_DEWPOINT_C_2250_m', - 'T_DEWPOINT_C_2500_m', - 'T_DEWPOINT_C_2750_m', - 'T_DEWPOINT_C_3000_m', - 'T_DEWPOINT_C_3250_m', - 'T_DEWPOINT_C_3500_m', - 'T_DEWPOINT_C_3750_m', - 'T_DEWPOINT_C_4000_m', - 'T_DEWPOINT_C_4250_m', - 'T_DEWPOINT_C_4500_m', - 'T_DEWPOINT_C_4750_m', - 'T_DEWPOINT_C_5000_m', - # 'T_DEWPOINT_C_5250_m', - # 'T_DEWPOINT_C_5500_m', - # 'T_DEWPOINT_C_5750_m', - # 'T_DEWPOINT_C_6000_m', - # 'T_DEWPOINT_C_6250_m', - # 'T_DEWPOINT_C_6500_m', - # 'T_DEWPOINT_C_6750_m', - # 'T_DEWPOINT_C_7000_m', - # 'T_DEWPOINT_C_7250_m', - # 'T_DEWPOINT_C_7500_m', - # 'T_DEWPOINT_C_7750_m', - # 'T_DEWPOINT_C_8000_m', - # 'T_DEWPOINT_C_8250_m', - # 'T_DEWPOINT_C_8500_m', - # 'T_DEWPOINT_C_8750_m', - # 'T_DEWPOINT_C_9000_m', - # 'T_DEWPOINT_C_9250_m', - # 'T_DEWPOINT_C_9500_m', - # 'T_DEWPOINT_C_9750_m', - # 'T_DEWPOINT_C_10000_m', - # 'T_DEWPOINT_C_10250_m', - # 'T_DEWPOINT_C_10500_m', - # 'T_DEWPOINT_C_10750_m', - # 'T_DEWPOINT_C_11000_m', - # 'T_DEWPOINT_C_11250_m', - # 'T_DEWPOINT_C_11500_m', - # 'T_DEWPOINT_C_11750_m', - # 'T_DEWPOINT_C_12000_m', - # 'T_DEWPOINT_C_12250_m', - # 'T_DEWPOINT_C_12500_m', - # 'T_DEWPOINT_C_12750_m', - # 'T_DEWPOINT_C_13000_m', - # 'T_DEWPOINT_C_13250_m', - # 'T_DEWPOINT_C_13500_m', - # 'T_DEWPOINT_C_13750_m', - # 'T_DEWPOINT_C_14000_m', - # 'T_DEWPOINT_C_14250_m', - # 'T_DEWPOINT_C_14500_m', - # 'T_DEWPOINT_C_14750_m', - # 'T_DEWPOINT_C_15000_m', - # 'T_DEWPOINT_C_15250_m', - # 'T_DEWPOINT_C_15500_m', - # 'T_DEWPOINT_C_15750_m', - # 'T_DEWPOINT_C_16000_m', - # 'T_DEWPOINT_C_16250_m', - # 'T_DEWPOINT_C_16500_m' -] - -UGRD_m/s: [ - 'UGRD_m/s_0_m', - 'UGRD_m/s_250_m', - 'UGRD_m/s_500_m', - 'UGRD_m/s_750_m', - 'UGRD_m/s_1000_m', - 'UGRD_m/s_1250_m', - 'UGRD_m/s_1500_m', - 'UGRD_m/s_1750_m', - 'UGRD_m/s_2000_m', - 'UGRD_m/s_2250_m', - 'UGRD_m/s_2500_m', - 'UGRD_m/s_2750_m', - 'UGRD_m/s_3000_m', - 'UGRD_m/s_3250_m', - 'UGRD_m/s_3500_m', - 'UGRD_m/s_3750_m', - 'UGRD_m/s_4000_m', - 'UGRD_m/s_4250_m', - 'UGRD_m/s_4500_m', - 'UGRD_m/s_4750_m', - 'UGRD_m/s_5000_m', - # 'UGRD_m/s_5250_m', - # 'UGRD_m/s_5500_m', - # 'UGRD_m/s_5750_m', - # 'UGRD_m/s_6000_m', - # 'UGRD_m/s_6250_m', - # 'UGRD_m/s_6500_m', - # 'UGRD_m/s_6750_m', - # 'UGRD_m/s_7000_m', - # 'UGRD_m/s_7250_m', - # 'UGRD_m/s_7500_m', - # 'UGRD_m/s_7750_m', - # 'UGRD_m/s_8000_m', - # 'UGRD_m/s_8250_m', - # 'UGRD_m/s_8500_m', - # 'UGRD_m/s_8750_m', - # 'UGRD_m/s_9000_m', - # 'UGRD_m/s_9250_m', - # 'UGRD_m/s_9500_m', - # 'UGRD_m/s_9750_m', - # 'UGRD_m/s_10000_m', - # 'UGRD_m/s_10250_m', - # 'UGRD_m/s_10500_m', - # 'UGRD_m/s_10750_m', - # 'UGRD_m/s_11000_m', - # 'UGRD_m/s_11250_m', - # 'UGRD_m/s_11500_m', - # 'UGRD_m/s_11750_m', - # 'UGRD_m/s_12000_m', - # 'UGRD_m/s_12250_m', - # 'UGRD_m/s_12500_m', - # 'UGRD_m/s_12750_m', - # 'UGRD_m/s_13000_m', - # 'UGRD_m/s_13250_m', - # 'UGRD_m/s_13500_m', - # 'UGRD_m/s_13750_m', - # 'UGRD_m/s_14000_m', - # 'UGRD_m/s_14250_m', - # 'UGRD_m/s_14500_m', - # 'UGRD_m/s_14750_m', - # 'UGRD_m/s_15000_m', - # 'UGRD_m/s_15250_m', - # 'UGRD_m/s_15500_m', - # 'UGRD_m/s_15750_m', - # 'UGRD_m/s_16000_m', - # 'UGRD_m/s_16250_m', - # 'UGRD_m/s_16500_m' - ] - -VGRD_m/s: [ - 'VGRD_m/s_0_m', - 'VGRD_m/s_250_m', - 'VGRD_m/s_500_m', - 'VGRD_m/s_750_m', - 'VGRD_m/s_1000_m', - 'VGRD_m/s_1250_m', - 'VGRD_m/s_1500_m', - 'VGRD_m/s_1750_m', - 'VGRD_m/s_2000_m', - 'VGRD_m/s_2250_m', - 'VGRD_m/s_2500_m', - 'VGRD_m/s_2750_m', - 'VGRD_m/s_3000_m', - 'VGRD_m/s_3250_m', - 'VGRD_m/s_3500_m', - 'VGRD_m/s_3750_m', - 'VGRD_m/s_4000_m', - 'VGRD_m/s_4250_m', - 'VGRD_m/s_4500_m', - 'VGRD_m/s_4750_m', - 'VGRD_m/s_5000_m', - # 'VGRD_m/s_5250_m', - # 'VGRD_m/s_5500_m', - # 'VGRD_m/s_5750_m', - # 'VGRD_m/s_6000_m', - # 'VGRD_m/s_6250_m', - # 'VGRD_m/s_6500_m', - # 'VGRD_m/s_6750_m', - # 'VGRD_m/s_7000_m', - # 'VGRD_m/s_7250_m', - # 'VGRD_m/s_7500_m', - # 'VGRD_m/s_7750_m', - # 'VGRD_m/s_8000_m', - # 'VGRD_m/s_8250_m', - # 'VGRD_m/s_8500_m', - # 'VGRD_m/s_8750_m', - # 'VGRD_m/s_9000_m', - # 'VGRD_m/s_9250_m', - # 'VGRD_m/s_9500_m', - # 'VGRD_m/s_9750_m', - # 'VGRD_m/s_10000_m', - # 'VGRD_m/s_10250_m', - # 'VGRD_m/s_10500_m', - # 'VGRD_m/s_10750_m', - # 'VGRD_m/s_11000_m', - # 'VGRD_m/s_11250_m', - # 'VGRD_m/s_11500_m', - # 'VGRD_m/s_11750_m', - # 'VGRD_m/s_12000_m', - # 'VGRD_m/s_12250_m', - # 'VGRD_m/s_12500_m', - # 'VGRD_m/s_12750_m', - # 'VGRD_m/s_13000_m', - # 'VGRD_m/s_13250_m', - # 'VGRD_m/s_13500_m', - # 'VGRD_m/s_13750_m', - # 'VGRD_m/s_14000_m', - # 'VGRD_m/s_14250_m', - # 'VGRD_m/s_14500_m', - # 'VGRD_m/s_14750_m', - # 'VGRD_m/s_15000_m', - # 'VGRD_m/s_15250_m', - # 'VGRD_m/s_15500_m', - # 'VGRD_m/s_15750_m', - # 'VGRD_m/s_16000_m', - # 'VGRD_m/s_16250_m', - # 'VGRD_m/s_16500_m' - ] - -callbacks: - EarlyStopping: - monitor: "val_ave_acc" - patience: 9 - mode: "max" - verbose: 0 - restore_best_weights: 1 - ReduceLROnPlateau: - monitor: "val_ave_acc" - factor: 0.1 - patience: 3 - min_lr: 0.000000000000001 - mode: "max" - verbose: 0 - CSVLogger: - filename: "training_log.csv" - separator: "," - append: 1 # all ensembles will write to the same log -# ModelCheckpoint: -# filepath: "best" -# monitor: "val_f1" -# #save_weights: 1 -# save_best_only: 1 -# mode: "max" -# verbose: 0 - -case_studies: - texas: [ - '2021-02-10', - '2021-02-11', - '2021-02-12', - '2021-02-13', - '2021-02-14', - '2021-02-15', - '2021-02-16', - '2021-02-17', - '2021-02-18', - '2021-02-19' - ] - new_york: ['2022-02-03', '2022-02-04'] - ne_noreaster: [ - '2017-03-11', - '2017-03-12', - '2017-03-13', - '2017-03-14', - '2017-03-15', - '2017-03-16', - '2017-03-17' - ] - dec_ice_storm: [ - '2016-12-15', - '2016-12-16', - '2016-12-17', - '2016-12-18', - '2016-12-19', - '2016-12-20' - ] - -pbs: - name: ptype-mlp-unw - select: 1 - ncpus: 8 - ngpus: 1 - mem: 128GB - walltime: 12:00:00 - gpu_type: v100 - account: NAML0001 - queue: casper - env_setup: | - source ~/.bashrc - conda activate evidential \ No newline at end of file diff --git a/config/model_evidential_ptype.yml b/config/model_evidential_ptype.yml deleted file mode 100644 index ed95c31..0000000 --- a/config/model_evidential_ptype.yml +++ /dev/null @@ -1,392 +0,0 @@ -seed: 1000 -verbose: 0 -save_loc: "/glade/p/cisl/aiml/ai2es/winter_ptypes/models/evidential_weighted" -asos_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/' -mping_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/' -data_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/ptype_qc/mPING_interpolated_QC2.parquet' -train_size1: 0.9 # When used with cutoff 2020-07-01 gives about 60/40 train/test split -train_size2: 0.0 -qc: 3.0 # 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 -test_cutoff: "2020-07-01" -ptypes: ['ra_percent', 'sn_percent', 'pl_percent', 'fzra_percent'] -metric: "val_ave_acc" -direction: "max" - -ensemble: - n_splits: 20 - mc_steps: 0 - -model: - activation: leaky - annealing_coeff: 34.593686950910275 - balanced_classes: 1 - batch_size: 3097 - dropout_alpha: 0.31256692323263807 - epochs: 200 - hidden_layers: 3 - hidden_neurons: 200 - loss: dirichlet - loss_weights: - - 21.465788717561477 - - 83.31367732936326 - - 136.50944842077058 - - 152.62042204485107 - lr: 0.0004035503144482269 - optimizer: adam - output_activation: linear - use_dropout: 1 - verbose: 0 - -scaler_type: "robust" # standard, robust, minmax, quantile, quantile-uniform -scale_groups: ["TEMP_C", "T_DEWPOINT_C", "UGRD_m/s", "VGRD_m/s"] -TEMP_C: [ - 'TEMP_C_0_m', - 'TEMP_C_250_m', - 'TEMP_C_500_m', - 'TEMP_C_750_m', - 'TEMP_C_1000_m', - 'TEMP_C_1250_m', - 'TEMP_C_1500_m', - 'TEMP_C_1750_m', - 'TEMP_C_2000_m', - 'TEMP_C_2250_m', - 'TEMP_C_2500_m', - 'TEMP_C_2750_m', - 'TEMP_C_3000_m', - 'TEMP_C_3250_m', - 'TEMP_C_3500_m', - 'TEMP_C_3750_m', - 'TEMP_C_4000_m', - 'TEMP_C_4250_m', - 'TEMP_C_4500_m', - 'TEMP_C_4750_m', - 'TEMP_C_5000_m', - # 'TEMP_C_5250_m', - # 'TEMP_C_5500_m', - # 'TEMP_C_5750_m', - # 'TEMP_C_6000_m', - # 'TEMP_C_6250_m', - # 'TEMP_C_6500_m', - # 'TEMP_C_6750_m', - # 'TEMP_C_7000_m', - # 'TEMP_C_7250_m', - # 'TEMP_C_7500_m', - # 'TEMP_C_7750_m', - # 'TEMP_C_8000_m', - # 'TEMP_C_8250_m', - # 'TEMP_C_8500_m', - # 'TEMP_C_8750_m', - # 'TEMP_C_9000_m', - # 'TEMP_C_9250_m', - # 'TEMP_C_9500_m', - # 'TEMP_C_9750_m', - # 'TEMP_C_10000_m', - # 'TEMP_C_10250_m', - # 'TEMP_C_10500_m', - # 'TEMP_C_10750_m', - # 'TEMP_C_11000_m', - # 'TEMP_C_11250_m', - # 'TEMP_C_11500_m', - # 'TEMP_C_11750_m', - # 'TEMP_C_12000_m', - # 'TEMP_C_12250_m', - # 'TEMP_C_12500_m', - # 'TEMP_C_12750_m', - # 'TEMP_C_13000_m', - # 'TEMP_C_13250_m', - # 'TEMP_C_13500_m', - # 'TEMP_C_13750_m', - # 'TEMP_C_14000_m', - # 'TEMP_C_14250_m', - # 'TEMP_C_14500_m', - # 'TEMP_C_14750_m', - # 'TEMP_C_15000_m', - # 'TEMP_C_15250_m', - # 'TEMP_C_15500_m', - # 'TEMP_C_15750_m', - # 'TEMP_C_16000_m', - # 'TEMP_C_16250_m', - # 'TEMP_C_16500_m' -] - -T_DEWPOINT_C: [ - 'T_DEWPOINT_C_0_m', - 'T_DEWPOINT_C_250_m', - 'T_DEWPOINT_C_500_m', - 'T_DEWPOINT_C_750_m', - 'T_DEWPOINT_C_1000_m', - 'T_DEWPOINT_C_1250_m', - 'T_DEWPOINT_C_1500_m', - 'T_DEWPOINT_C_1750_m', - 'T_DEWPOINT_C_2000_m', - 'T_DEWPOINT_C_2250_m', - 'T_DEWPOINT_C_2500_m', - 'T_DEWPOINT_C_2750_m', - 'T_DEWPOINT_C_3000_m', - 'T_DEWPOINT_C_3250_m', - 'T_DEWPOINT_C_3500_m', - 'T_DEWPOINT_C_3750_m', - 'T_DEWPOINT_C_4000_m', - 'T_DEWPOINT_C_4250_m', - 'T_DEWPOINT_C_4500_m', - 'T_DEWPOINT_C_4750_m', - 'T_DEWPOINT_C_5000_m', - # 'T_DEWPOINT_C_5250_m', - # 'T_DEWPOINT_C_5500_m', - # 'T_DEWPOINT_C_5750_m', - # 'T_DEWPOINT_C_6000_m', - # 'T_DEWPOINT_C_6250_m', - # 'T_DEWPOINT_C_6500_m', - # 'T_DEWPOINT_C_6750_m', - # 'T_DEWPOINT_C_7000_m', - # 'T_DEWPOINT_C_7250_m', - # 'T_DEWPOINT_C_7500_m', - # 'T_DEWPOINT_C_7750_m', - # 'T_DEWPOINT_C_8000_m', - # 'T_DEWPOINT_C_8250_m', - # 'T_DEWPOINT_C_8500_m', - # 'T_DEWPOINT_C_8750_m', - # 'T_DEWPOINT_C_9000_m', - # 'T_DEWPOINT_C_9250_m', - # 'T_DEWPOINT_C_9500_m', - # 'T_DEWPOINT_C_9750_m', - # 'T_DEWPOINT_C_10000_m', - # 'T_DEWPOINT_C_10250_m', - # 'T_DEWPOINT_C_10500_m', - # 'T_DEWPOINT_C_10750_m', - # 'T_DEWPOINT_C_11000_m', - # 'T_DEWPOINT_C_11250_m', - # 'T_DEWPOINT_C_11500_m', - # 'T_DEWPOINT_C_11750_m', - # 'T_DEWPOINT_C_12000_m', - # 'T_DEWPOINT_C_12250_m', - # 'T_DEWPOINT_C_12500_m', - # 'T_DEWPOINT_C_12750_m', - # 'T_DEWPOINT_C_13000_m', - # 'T_DEWPOINT_C_13250_m', - # 'T_DEWPOINT_C_13500_m', - # 'T_DEWPOINT_C_13750_m', - # 'T_DEWPOINT_C_14000_m', - # 'T_DEWPOINT_C_14250_m', - # 'T_DEWPOINT_C_14500_m', - # 'T_DEWPOINT_C_14750_m', - # 'T_DEWPOINT_C_15000_m', - # 'T_DEWPOINT_C_15250_m', - # 'T_DEWPOINT_C_15500_m', - # 'T_DEWPOINT_C_15750_m', - # 'T_DEWPOINT_C_16000_m', - # 'T_DEWPOINT_C_16250_m', - # 'T_DEWPOINT_C_16500_m' -] - -UGRD_m/s: [ - 'UGRD_m/s_0_m', - 'UGRD_m/s_250_m', - 'UGRD_m/s_500_m', - 'UGRD_m/s_750_m', - 'UGRD_m/s_1000_m', - 'UGRD_m/s_1250_m', - 'UGRD_m/s_1500_m', - 'UGRD_m/s_1750_m', - 'UGRD_m/s_2000_m', - 'UGRD_m/s_2250_m', - 'UGRD_m/s_2500_m', - 'UGRD_m/s_2750_m', - 'UGRD_m/s_3000_m', - 'UGRD_m/s_3250_m', - 'UGRD_m/s_3500_m', - 'UGRD_m/s_3750_m', - 'UGRD_m/s_4000_m', - 'UGRD_m/s_4250_m', - 'UGRD_m/s_4500_m', - 'UGRD_m/s_4750_m', - 'UGRD_m/s_5000_m', - # 'UGRD_m/s_5250_m', - # 'UGRD_m/s_5500_m', - # 'UGRD_m/s_5750_m', - # 'UGRD_m/s_6000_m', - # 'UGRD_m/s_6250_m', - # 'UGRD_m/s_6500_m', - # 'UGRD_m/s_6750_m', - # 'UGRD_m/s_7000_m', - # 'UGRD_m/s_7250_m', - # 'UGRD_m/s_7500_m', - # 'UGRD_m/s_7750_m', - # 'UGRD_m/s_8000_m', - # 'UGRD_m/s_8250_m', - # 'UGRD_m/s_8500_m', - # 'UGRD_m/s_8750_m', - # 'UGRD_m/s_9000_m', - # 'UGRD_m/s_9250_m', - # 'UGRD_m/s_9500_m', - # 'UGRD_m/s_9750_m', - # 'UGRD_m/s_10000_m', - # 'UGRD_m/s_10250_m', - # 'UGRD_m/s_10500_m', - # 'UGRD_m/s_10750_m', - # 'UGRD_m/s_11000_m', - # 'UGRD_m/s_11250_m', - # 'UGRD_m/s_11500_m', - # 'UGRD_m/s_11750_m', - # 'UGRD_m/s_12000_m', - # 'UGRD_m/s_12250_m', - # 'UGRD_m/s_12500_m', - # 'UGRD_m/s_12750_m', - # 'UGRD_m/s_13000_m', - # 'UGRD_m/s_13250_m', - # 'UGRD_m/s_13500_m', - # 'UGRD_m/s_13750_m', - # 'UGRD_m/s_14000_m', - # 'UGRD_m/s_14250_m', - # 'UGRD_m/s_14500_m', - # 'UGRD_m/s_14750_m', - # 'UGRD_m/s_15000_m', - # 'UGRD_m/s_15250_m', - # 'UGRD_m/s_15500_m', - # 'UGRD_m/s_15750_m', - # 'UGRD_m/s_16000_m', - # 'UGRD_m/s_16250_m', - # 'UGRD_m/s_16500_m' - ] - -VGRD_m/s: [ - 'VGRD_m/s_0_m', - 'VGRD_m/s_250_m', - 'VGRD_m/s_500_m', - 'VGRD_m/s_750_m', - 'VGRD_m/s_1000_m', - 'VGRD_m/s_1250_m', - 'VGRD_m/s_1500_m', - 'VGRD_m/s_1750_m', - 'VGRD_m/s_2000_m', - 'VGRD_m/s_2250_m', - 'VGRD_m/s_2500_m', - 'VGRD_m/s_2750_m', - 'VGRD_m/s_3000_m', - 'VGRD_m/s_3250_m', - 'VGRD_m/s_3500_m', - 'VGRD_m/s_3750_m', - 'VGRD_m/s_4000_m', - 'VGRD_m/s_4250_m', - 'VGRD_m/s_4500_m', - 'VGRD_m/s_4750_m', - 'VGRD_m/s_5000_m', - # 'VGRD_m/s_5250_m', - # 'VGRD_m/s_5500_m', - # 'VGRD_m/s_5750_m', - # 'VGRD_m/s_6000_m', - # 'VGRD_m/s_6250_m', - # 'VGRD_m/s_6500_m', - # 'VGRD_m/s_6750_m', - # 'VGRD_m/s_7000_m', - # 'VGRD_m/s_7250_m', - # 'VGRD_m/s_7500_m', - # 'VGRD_m/s_7750_m', - # 'VGRD_m/s_8000_m', - # 'VGRD_m/s_8250_m', - # 'VGRD_m/s_8500_m', - # 'VGRD_m/s_8750_m', - # 'VGRD_m/s_9000_m', - # 'VGRD_m/s_9250_m', - # 'VGRD_m/s_9500_m', - # 'VGRD_m/s_9750_m', - # 'VGRD_m/s_10000_m', - # 'VGRD_m/s_10250_m', - # 'VGRD_m/s_10500_m', - # 'VGRD_m/s_10750_m', - # 'VGRD_m/s_11000_m', - # 'VGRD_m/s_11250_m', - # 'VGRD_m/s_11500_m', - # 'VGRD_m/s_11750_m', - # 'VGRD_m/s_12000_m', - # 'VGRD_m/s_12250_m', - # 'VGRD_m/s_12500_m', - # 'VGRD_m/s_12750_m', - # 'VGRD_m/s_13000_m', - # 'VGRD_m/s_13250_m', - # 'VGRD_m/s_13500_m', - # 'VGRD_m/s_13750_m', - # 'VGRD_m/s_14000_m', - # 'VGRD_m/s_14250_m', - # 'VGRD_m/s_14500_m', - # 'VGRD_m/s_14750_m', - # 'VGRD_m/s_15000_m', - # 'VGRD_m/s_15250_m', - # 'VGRD_m/s_15500_m', - # 'VGRD_m/s_15750_m', - # 'VGRD_m/s_16000_m', - # 'VGRD_m/s_16250_m', - # 'VGRD_m/s_16500_m' - ] - -callbacks: - EarlyStopping: - monitor: "val_ave_acc" - patience: 9 - mode: "max" - verbose: 0 - restore_best_weights: 1 - ReduceLROnPlateau: - monitor: "val_ave_acc" - factor: 0.1 - patience: 3 - min_lr: 0.000000000000001 - mode: "max" - verbose: 0 - CSVLogger: - filename: "training_log.csv" - separator: "," - append: 1 # all ensembles will write to the same log -# ModelCheckpoint: -# filepath: "best" -# monitor: "val_f1" -# #save_weights: 1 -# save_best_only: 1 -# mode: "max" -# verbose: 0 - -case_studies: - texas: [ - '2021-02-10', - '2021-02-11', - '2021-02-12', - '2021-02-13', - '2021-02-14', - '2021-02-15', - '2021-02-16', - '2021-02-17', - '2021-02-18', - '2021-02-19' - ] - new_york: ['2022-02-03', '2022-02-04'] - ne_noreaster: [ - '2017-03-11', - '2017-03-12', - '2017-03-13', - '2017-03-14', - '2017-03-15', - '2017-03-16', - '2017-03-17' - ] - dec_ice_storm: [ - '2016-12-15', - '2016-12-16', - '2016-12-17', - '2016-12-18', - '2016-12-19', - '2016-12-20' - ] - -pbs: - name: ptype-ev - select: 1 - ncpus: 8 - ngpus: 1 - mem: 128GB - walltime: 12:00:00 - gpu_type: v100 - account: NAML0001 - queue: casper - env_setup: | - source ~/.bashrc - conda activate evidential \ No newline at end of file diff --git a/config/model_evidential_ptype_unweighted.yml b/config/model_evidential_ptype_unweighted.yml deleted file mode 100644 index ebd1639..0000000 --- a/config/model_evidential_ptype_unweighted.yml +++ /dev/null @@ -1,387 +0,0 @@ -seed: 1000 -verbose: 0 -save_loc: "/glade/p/cisl/aiml/ai2es/winter_ptypes/models/evidential_unweighted" -asos_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/ASOS_mixture/' -mping_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/' -data_path: '/glade/p/cisl/aiml/ai2es/winter_ptypes/ptype_qc/mPING_interpolated_QC2.parquet' -train_size1: 0.9 # When used with cutoff 2020-07-01 gives about 60/40 train/test split -train_size2: 0.0 -qc: 3.0 # 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 -test_cutoff: "2020-07-01" -ptypes: ['ra_percent', 'sn_percent', 'pl_percent', 'fzra_percent'] -metric: "val_ave_acc" -direction: "max" - -ensemble: - n_splits: 20 - mc_steps: 0 - -model: - activation: leaky - annealing_coeff: 34.593686950910275 - balanced_classes: 0 - batch_size: 3097 - dropout_alpha: 0.31256692323263807 - epochs: 200 - hidden_layers: 3 - hidden_neurons: 200 - loss: dirichlet - lr: 0.0004035503144482269 - optimizer: adam - output_activation: linear - use_dropout: 1 - verbose: 0 - -scaler_type: "quantile-uniform" # standard, robust, minmax, quantile, quantile-uniform -scale_groups: ["TEMP_C", "T_DEWPOINT_C", "UGRD_m/s", "VGRD_m/s"] -TEMP_C: [ - 'TEMP_C_0_m', - 'TEMP_C_250_m', - 'TEMP_C_500_m', - 'TEMP_C_750_m', - 'TEMP_C_1000_m', - 'TEMP_C_1250_m', - 'TEMP_C_1500_m', - 'TEMP_C_1750_m', - 'TEMP_C_2000_m', - 'TEMP_C_2250_m', - 'TEMP_C_2500_m', - 'TEMP_C_2750_m', - 'TEMP_C_3000_m', - 'TEMP_C_3250_m', - 'TEMP_C_3500_m', - 'TEMP_C_3750_m', - 'TEMP_C_4000_m', - 'TEMP_C_4250_m', - 'TEMP_C_4500_m', - 'TEMP_C_4750_m', - 'TEMP_C_5000_m', - # 'TEMP_C_5250_m', - # 'TEMP_C_5500_m', - # 'TEMP_C_5750_m', - # 'TEMP_C_6000_m', - # 'TEMP_C_6250_m', - # 'TEMP_C_6500_m', - # 'TEMP_C_6750_m', - # 'TEMP_C_7000_m', - # 'TEMP_C_7250_m', - # 'TEMP_C_7500_m', - # 'TEMP_C_7750_m', - # 'TEMP_C_8000_m', - # 'TEMP_C_8250_m', - # 'TEMP_C_8500_m', - # 'TEMP_C_8750_m', - # 'TEMP_C_9000_m', - # 'TEMP_C_9250_m', - # 'TEMP_C_9500_m', - # 'TEMP_C_9750_m', - # 'TEMP_C_10000_m', - # 'TEMP_C_10250_m', - # 'TEMP_C_10500_m', - # 'TEMP_C_10750_m', - # 'TEMP_C_11000_m', - # 'TEMP_C_11250_m', - # 'TEMP_C_11500_m', - # 'TEMP_C_11750_m', - # 'TEMP_C_12000_m', - # 'TEMP_C_12250_m', - # 'TEMP_C_12500_m', - # 'TEMP_C_12750_m', - # 'TEMP_C_13000_m', - # 'TEMP_C_13250_m', - # 'TEMP_C_13500_m', - # 'TEMP_C_13750_m', - # 'TEMP_C_14000_m', - # 'TEMP_C_14250_m', - # 'TEMP_C_14500_m', - # 'TEMP_C_14750_m', - # 'TEMP_C_15000_m', - # 'TEMP_C_15250_m', - # 'TEMP_C_15500_m', - # 'TEMP_C_15750_m', - # 'TEMP_C_16000_m', - # 'TEMP_C_16250_m', - # 'TEMP_C_16500_m' -] - -T_DEWPOINT_C: [ - 'T_DEWPOINT_C_0_m', - 'T_DEWPOINT_C_250_m', - 'T_DEWPOINT_C_500_m', - 'T_DEWPOINT_C_750_m', - 'T_DEWPOINT_C_1000_m', - 'T_DEWPOINT_C_1250_m', - 'T_DEWPOINT_C_1500_m', - 'T_DEWPOINT_C_1750_m', - 'T_DEWPOINT_C_2000_m', - 'T_DEWPOINT_C_2250_m', - 'T_DEWPOINT_C_2500_m', - 'T_DEWPOINT_C_2750_m', - 'T_DEWPOINT_C_3000_m', - 'T_DEWPOINT_C_3250_m', - 'T_DEWPOINT_C_3500_m', - 'T_DEWPOINT_C_3750_m', - 'T_DEWPOINT_C_4000_m', - 'T_DEWPOINT_C_4250_m', - 'T_DEWPOINT_C_4500_m', - 'T_DEWPOINT_C_4750_m', - 'T_DEWPOINT_C_5000_m', - # 'T_DEWPOINT_C_5250_m', - # 'T_DEWPOINT_C_5500_m', - # 'T_DEWPOINT_C_5750_m', - # 'T_DEWPOINT_C_6000_m', - # 'T_DEWPOINT_C_6250_m', - # 'T_DEWPOINT_C_6500_m', - # 'T_DEWPOINT_C_6750_m', - # 'T_DEWPOINT_C_7000_m', - # 'T_DEWPOINT_C_7250_m', - # 'T_DEWPOINT_C_7500_m', - # 'T_DEWPOINT_C_7750_m', - # 'T_DEWPOINT_C_8000_m', - # 'T_DEWPOINT_C_8250_m', - # 'T_DEWPOINT_C_8500_m', - # 'T_DEWPOINT_C_8750_m', - # 'T_DEWPOINT_C_9000_m', - # 'T_DEWPOINT_C_9250_m', - # 'T_DEWPOINT_C_9500_m', - # 'T_DEWPOINT_C_9750_m', - # 'T_DEWPOINT_C_10000_m', - # 'T_DEWPOINT_C_10250_m', - # 'T_DEWPOINT_C_10500_m', - # 'T_DEWPOINT_C_10750_m', - # 'T_DEWPOINT_C_11000_m', - # 'T_DEWPOINT_C_11250_m', - # 'T_DEWPOINT_C_11500_m', - # 'T_DEWPOINT_C_11750_m', - # 'T_DEWPOINT_C_12000_m', - # 'T_DEWPOINT_C_12250_m', - # 'T_DEWPOINT_C_12500_m', - # 'T_DEWPOINT_C_12750_m', - # 'T_DEWPOINT_C_13000_m', - # 'T_DEWPOINT_C_13250_m', - # 'T_DEWPOINT_C_13500_m', - # 'T_DEWPOINT_C_13750_m', - # 'T_DEWPOINT_C_14000_m', - # 'T_DEWPOINT_C_14250_m', - # 'T_DEWPOINT_C_14500_m', - # 'T_DEWPOINT_C_14750_m', - # 'T_DEWPOINT_C_15000_m', - # 'T_DEWPOINT_C_15250_m', - # 'T_DEWPOINT_C_15500_m', - # 'T_DEWPOINT_C_15750_m', - # 'T_DEWPOINT_C_16000_m', - # 'T_DEWPOINT_C_16250_m', - # 'T_DEWPOINT_C_16500_m' -] - -UGRD_m/s: [ - 'UGRD_m/s_0_m', - 'UGRD_m/s_250_m', - 'UGRD_m/s_500_m', - 'UGRD_m/s_750_m', - 'UGRD_m/s_1000_m', - 'UGRD_m/s_1250_m', - 'UGRD_m/s_1500_m', - 'UGRD_m/s_1750_m', - 'UGRD_m/s_2000_m', - 'UGRD_m/s_2250_m', - 'UGRD_m/s_2500_m', - 'UGRD_m/s_2750_m', - 'UGRD_m/s_3000_m', - 'UGRD_m/s_3250_m', - 'UGRD_m/s_3500_m', - 'UGRD_m/s_3750_m', - 'UGRD_m/s_4000_m', - 'UGRD_m/s_4250_m', - 'UGRD_m/s_4500_m', - 'UGRD_m/s_4750_m', - 'UGRD_m/s_5000_m', - # 'UGRD_m/s_5250_m', - # 'UGRD_m/s_5500_m', - # 'UGRD_m/s_5750_m', - # 'UGRD_m/s_6000_m', - # 'UGRD_m/s_6250_m', - # 'UGRD_m/s_6500_m', - # 'UGRD_m/s_6750_m', - # 'UGRD_m/s_7000_m', - # 'UGRD_m/s_7250_m', - # 'UGRD_m/s_7500_m', - # 'UGRD_m/s_7750_m', - # 'UGRD_m/s_8000_m', - # 'UGRD_m/s_8250_m', - # 'UGRD_m/s_8500_m', - # 'UGRD_m/s_8750_m', - # 'UGRD_m/s_9000_m', - # 'UGRD_m/s_9250_m', - # 'UGRD_m/s_9500_m', - # 'UGRD_m/s_9750_m', - # 'UGRD_m/s_10000_m', - # 'UGRD_m/s_10250_m', - # 'UGRD_m/s_10500_m', - # 'UGRD_m/s_10750_m', - # 'UGRD_m/s_11000_m', - # 'UGRD_m/s_11250_m', - # 'UGRD_m/s_11500_m', - # 'UGRD_m/s_11750_m', - # 'UGRD_m/s_12000_m', - # 'UGRD_m/s_12250_m', - # 'UGRD_m/s_12500_m', - # 'UGRD_m/s_12750_m', - # 'UGRD_m/s_13000_m', - # 'UGRD_m/s_13250_m', - # 'UGRD_m/s_13500_m', - # 'UGRD_m/s_13750_m', - # 'UGRD_m/s_14000_m', - # 'UGRD_m/s_14250_m', - # 'UGRD_m/s_14500_m', - # 'UGRD_m/s_14750_m', - # 'UGRD_m/s_15000_m', - # 'UGRD_m/s_15250_m', - # 'UGRD_m/s_15500_m', - # 'UGRD_m/s_15750_m', - # 'UGRD_m/s_16000_m', - # 'UGRD_m/s_16250_m', - # 'UGRD_m/s_16500_m' - ] - -VGRD_m/s: [ - 'VGRD_m/s_0_m', - 'VGRD_m/s_250_m', - 'VGRD_m/s_500_m', - 'VGRD_m/s_750_m', - 'VGRD_m/s_1000_m', - 'VGRD_m/s_1250_m', - 'VGRD_m/s_1500_m', - 'VGRD_m/s_1750_m', - 'VGRD_m/s_2000_m', - 'VGRD_m/s_2250_m', - 'VGRD_m/s_2500_m', - 'VGRD_m/s_2750_m', - 'VGRD_m/s_3000_m', - 'VGRD_m/s_3250_m', - 'VGRD_m/s_3500_m', - 'VGRD_m/s_3750_m', - 'VGRD_m/s_4000_m', - 'VGRD_m/s_4250_m', - 'VGRD_m/s_4500_m', - 'VGRD_m/s_4750_m', - 'VGRD_m/s_5000_m', - # 'VGRD_m/s_5250_m', - # 'VGRD_m/s_5500_m', - # 'VGRD_m/s_5750_m', - # 'VGRD_m/s_6000_m', - # 'VGRD_m/s_6250_m', - # 'VGRD_m/s_6500_m', - # 'VGRD_m/s_6750_m', - # 'VGRD_m/s_7000_m', - # 'VGRD_m/s_7250_m', - # 'VGRD_m/s_7500_m', - # 'VGRD_m/s_7750_m', - # 'VGRD_m/s_8000_m', - # 'VGRD_m/s_8250_m', - # 'VGRD_m/s_8500_m', - # 'VGRD_m/s_8750_m', - # 'VGRD_m/s_9000_m', - # 'VGRD_m/s_9250_m', - # 'VGRD_m/s_9500_m', - # 'VGRD_m/s_9750_m', - # 'VGRD_m/s_10000_m', - # 'VGRD_m/s_10250_m', - # 'VGRD_m/s_10500_m', - # 'VGRD_m/s_10750_m', - # 'VGRD_m/s_11000_m', - # 'VGRD_m/s_11250_m', - # 'VGRD_m/s_11500_m', - # 'VGRD_m/s_11750_m', - # 'VGRD_m/s_12000_m', - # 'VGRD_m/s_12250_m', - # 'VGRD_m/s_12500_m', - # 'VGRD_m/s_12750_m', - # 'VGRD_m/s_13000_m', - # 'VGRD_m/s_13250_m', - # 'VGRD_m/s_13500_m', - # 'VGRD_m/s_13750_m', - # 'VGRD_m/s_14000_m', - # 'VGRD_m/s_14250_m', - # 'VGRD_m/s_14500_m', - # 'VGRD_m/s_14750_m', - # 'VGRD_m/s_15000_m', - # 'VGRD_m/s_15250_m', - # 'VGRD_m/s_15500_m', - # 'VGRD_m/s_15750_m', - # 'VGRD_m/s_16000_m', - # 'VGRD_m/s_16250_m', - # 'VGRD_m/s_16500_m' - ] - -callbacks: - EarlyStopping: - monitor: "val_ave_acc" - patience: 9 - mode: "max" - verbose: 0 - restore_best_weights: 1 - ReduceLROnPlateau: - monitor: "val_ave_acc" - factor: 0.1 - patience: 3 - min_lr: 0.000000000000001 - mode: "max" - verbose: 0 - CSVLogger: - filename: "training_log.csv" - separator: "," - append: 1 # all ensembles will write to the same log -# ModelCheckpoint: -# filepath: "best" -# monitor: "val_f1" -# #save_weights: 1 -# save_best_only: 1 -# mode: "max" -# verbose: 0 - -case_studies: - texas: [ - '2021-02-10', - '2021-02-11', - '2021-02-12', - '2021-02-13', - '2021-02-14', - '2021-02-15', - '2021-02-16', - '2021-02-17', - '2021-02-18', - '2021-02-19' - ] - new_york: ['2022-02-03', '2022-02-04'] - ne_noreaster: [ - '2017-03-11', - '2017-03-12', - '2017-03-13', - '2017-03-14', - '2017-03-15', - '2017-03-16', - '2017-03-17' - ] - dec_ice_storm: [ - '2016-12-15', - '2016-12-16', - '2016-12-17', - '2016-12-18', - '2016-12-19', - '2016-12-20' - ] - -pbs: - name: ptype-ev-unw - select: 1 - ncpus: 8 - ngpus: 1 - mem: 128GB - walltime: 12:00:00 - gpu_type: v100 - account: NAML0001 - queue: casper - env_setup: | - source ~/.bashrc - conda activate evidential \ No newline at end of file diff --git a/config/pbs.yml b/config/pbs.yml deleted file mode 100644 index 0f86c27..0000000 --- a/config/pbs.yml +++ /dev/null @@ -1,13 +0,0 @@ -pbs: - name: ev-trainer - select: 1 - ncpus: 8 - ngpus: 1 - mem: 128GB - walltime: 24:00:00 - gpu_type: v100 - account: NAML0001 - queue: casper - env_setup: | - source ~/.bashrc - ncar_pylib /glade/work/$USER/py37 \ No newline at end of file diff --git a/config/regression.yml b/config/regression.yml deleted file mode 100644 index f1f737d..0000000 --- a/config/regression.yml +++ /dev/null @@ -1,23 +0,0 @@ -model: - hidden_layers: 2 - hidden_neurons: 128 - activation: "relu" - optimizer: "adam" - sgd_momentum: 0.9 - adam_beta_1: 0.9 - adam_beta_2: 0.999 - evidential_coef: 0.05 - uncertainties: True - lr: 0.001 - kernel_reg: 'l2' - l1_weight: 0.01 - l2_weight: 0.01 - batch_size: 1000 - use_noise: False - noise_sd: 0.01 - use_dropout: False - dropout_alpha: 0.1 - epochs: 500 - verbose: 0 - save_path: '.' - model_name: 'model.h5' \ No newline at end of file diff --git a/evml/keras/models.py b/evml/keras/models.py index c4e7a92..a730d76 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -18,17 +18,13 @@ import logging -logger = logging.getLogger(__name__) - - -class RegressorDNN(object): +class BaseRegressor(object): """ - A Dense Neural Network Model that can support arbitrary numbers of hidden layers. + A base class for regression models. Attributes: hidden_layers: Number of hidden layers hidden_neurons: Number of neurons in each hidden layer activation: Type of activation function - evidential_coef: Evidential regularization coefficient optimizer: Name of optimizer or optimizer object. loss: Name of loss function or loss object use_noise: Whether additive Gaussian noise layers are included in the network @@ -66,8 +62,8 @@ def __init__( save_path=".", model_name="model.h5", metrics=None, + eps=1e-7 ): - self.hidden_layers = hidden_layers self.hidden_neurons = hidden_neurons self.activation = activation @@ -96,15 +92,16 @@ def __init__( self.training_std = None self.training_var = None self.metrics = metrics + self.eps = eps - def build_neural_network(self, inputs, outputs): + def build_neural_network(self, inputs, outputs, last_layer="Dense"): """ Create Keras neural network model and compile it. + Args: - inputs (int): Number of input predictor variables - outputs (int): Number of output predictor variables + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. """ - nn_input = Input(shape=(inputs,), name="input") nn_model = nn_input @@ -135,8 +132,52 @@ def build_neural_network(self, inputs, outputs): nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( nn_model ) - nn_model = Dense(outputs, name="dense_last")(nn_model) + + if last_layer == "Dense": + nn_model = Dense(outputs, name="dense_last")(nn_model) + elif last_layer == "DenseNormal": + nn_model = DenseNormal(outputs, name="DenseNormal", eps=self.eps)(nn_model) + elif last_layer == "DenseNormalGamma": + nn_model = DenseNormalGamma(outputs, name="DenseNormalGamma", eps=self.eps)( + nn_model + ) + else: + raise ValueError("Invalid last_layer type. Use 'Dense', 'DenseNormal', or 'DenseNormalGamma'.") + self.model = Model(nn_input, nn_model) + + if self.optimizer == "adam": + self.optimizer_obj = Adam(learning_rate=self.lr) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + + if self.metrics == "mae": + metrics = self.mae + elif self.metrics == "mse": + metrics = self.mse + else: + metrics = None + + self.model.compile( + optimizer=self.optimizer_obj, + loss=self.loss, + loss_weights=self.loss_weights, + metrics=metrics, + run_eagerly=False, + ) + + def build_from_sequential(self, model, optimizer="adam", loss="mse", metrics=None): + """ + Build the neural network model using a Keras Sequential model. + + Args: + model (tf.keras.Sequential): Keras Sequential model to use. + optimizer (str or tf.keras.optimizers.Optimizer): Optimizer for the model. + loss (str or tf.keras.losses.Loss): Loss function for the model. + metrics (list of str or tf.keras.metrics.Metric): Metrics for the model. + """ + self.model = model + if self.optimizer == "adam": self.optimizer_obj = Adam(learning_rate=self.lr) elif self.optimizer == "sgd": @@ -150,6 +191,7 @@ def build_neural_network(self, inputs, outputs): run_eagerly=False, ) + def fit( self, x, @@ -158,33 +200,64 @@ def fit( callbacks=None, initial_epoch=0, steps_per_epoch=None, - workers=1, + workers=0, use_multiprocessing=False, + shuffle=True, + **kwargs, ): - - self.model.fit( - x=x, - y=y, - validation_data=validation_data, - callbacks=callbacks, + """ + Fit the regression model. + Args: + x: Input data + y: Target data + validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch + callbacks: List of callbacks to apply during training + initial_epoch: Epoch at which to start training (useful for resuming a previous training run) + steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. + workers: Number of workers to use for data loading + use_multiprocessing: If True, use ProcessPoolExecutor to load data, which is faster but can cause issues with certain GPU setups. If False, use a ThreadPoolExecutor. + **kwargs: Additional arguments to be passed to the `fit` method + """ + + if self.model is None: + raise ValueError("Model has not been built. Call build_neural_network first.") + if self.verbose: + self.model.summary() + self.training_var = [np.var(y[:, i]) for i in range(y.shape[-1])] + self.history = self.model.fit( + x, + y, batch_size=self.batch_size, epochs=self.epochs, verbose=self.verbose, + callbacks=callbacks, + validation_data=validation_data, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, workers=workers, use_multiprocessing=use_multiprocessing, - shuffle=True, + shuffle=shuffle, + **kwargs, ) - return - def save_model(self): + """ + Save the trained model to a file. + """ + if not os.path.exists(self.save_path): + os.makedirs(self.save_path) + model_path = os.path.join(self.save_path, self.model_name) tf.keras.models.save_model( - self.model, os.path.join(self.save_path, self.model_name), save_format="h5" + self.model, model_path, save_format="h5" ) - return - + logging.info(f"Saved model to {model_path}") + + # Save the training variances + np.savetxt( + os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), + np.array(self.training_var), + ) + @classmethod def load_model(cls, conf): # Check if weights file exists @@ -194,8 +267,8 @@ def load_model(cls, conf): f"No saved model exists at {weights}. You must train a model first. Exiting." ) - logger.info( - f"Loading a RegressorDNN with pre-trained weights from path {weights}" + logging.info( + f"Loading a DNN with pre-trained weights from path {weights}" ) model_class = cls(**conf["model"]) model_class.build_neural_network( @@ -203,84 +276,230 @@ def load_model(cls, conf): ) model_class.model.load_weights(weights) return model_class + + def mae(self, y_true, y_pred): + num_splits = y_pred.shape[-1] + if num_splits == 4: + mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) + elif num_splits == 2: + mu, _ = tf.split(y_pred, num_splits, axis=-1) + else: + mu = y_pred # Assuming num_splits is 1 + return tf.keras.metrics.mean_absolute_error(y_true, mu) + + def mse(self, y_true, y_pred): + num_splits = y_pred.shape[-1] + if num_splits == 4: + mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) + elif num_splits == 2: + mu, _ = tf.split(y_pred, num_splits, axis=-1) + else: + mu = y_pred # Assuming num_splits is 1 + + return tf.keras.metrics.mean_squared_error(y_true, mu) + + def predict(self, x, scaler=None, batch_size=None): + """ + Predict target values for input data. - def predict(self, x, scaler=None, batch_size=None, y_scaler=None): + Args: + x (numpy.ndarray): Input data. + scaler (optional): Scaler object for preprocessing input data (default: None). + batch_size (optional): Batch size for prediction (default: None). + y_scaler (optional): Scaler object for post-processing predicted target values (default: None). + + Returns: + numpy.ndarray: Predicted target values. + """ _batch_size = self.batch_size if batch_size is None else batch_size y_out = self.model.predict(x, batch_size=_batch_size) - if y_scaler: - if y_out.shape[-1] == 1: + if scaler: + if len(y_out.shape) == 1: y_out = np.expand_dims(y_out, 1) - y_out = y_scaler.inverse_transform(y_out) + y_out = scaler.inverse_transform(y_out) return y_out - - def predict_monte_carlo( - self, x_test, y_test, forward_passes, y_scaler=None, batch_size=None - ): - _batch_size = self.batch_size if batch_size is None else batch_size - n_samples = x_test.shape[0] - pred_size = y_test.shape[1] - dropout_mu = np.zeros((forward_passes, n_samples, pred_size)) - - for i in range(forward_passes): - output = [ - self.model(x_test[i : i + _batch_size], training=True) - for i in range(0, x_test.shape[0], _batch_size) - ] - output = np.concatenate(output, axis=0) - if y_scaler: - if output.shape[-1] == 1: - output = np.expand_dims(output, 1) - output = y_scaler.inverse_transform(output) - dropout_mu[i] = output - return dropout_mu - def predict_ensemble(self, x, weight_locations, y_scaler=None, batch_size=None): + def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, num_outputs=1): num_models = len(weight_locations) # Initialize output_shape based on the first model's prediction if num_models > 0: first_model = self.model first_model.load_weights(weight_locations[0]) - first_prediction = self.predict(x, batch_size=batch_size, y_scaler = y_scaler) - output_shape = first_prediction.shape[1:] - predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) - predictions[0] = first_prediction + if num_outputs == 1: + mu = self.predict(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 2: + mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 3: + mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + if num_outputs >= 2: + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale[0] = ale + if num_outputs == 3: + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi[0] = epi else: output_shape = () # Default shape if no models - predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + if num_outputs >= 2: + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + if num_outputs == 3: + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) # Predict for the remaining models for i, weight_location in enumerate(weight_locations[1:]): model_instance = self.model model_instance.load_weights(weight_location) - y_prob = self.predict(x, batch_size=batch_size, y_scaler=y_scaler) - predictions[i + 1] = y_prob - - return predictions + + if num_outputs == 1: + mu = self.predict(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 2: + mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + elif num_outputs == 3: + mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) + + ensemble_mu[i + 1] = mu + if num_outputs >= 2: + ensemble_ale[i + 1] = ale + if num_outputs == 3: + ensemble_epi[i + 1] = epi + + if num_outputs == 1: + return ensemble_mu + elif num_outputs == 2: + return ensemble_mu, ensemble_ale + return ensemble_mu, ensemble_ale, ensemble_epi + def predict_monte_carlo(self, x_test, y_test, forward_passes, scaler=None, batch_size=None, num_outputs=1): + """ + Perform Monte Carlo dropout predictions for the model. + + Args: + x_test (numpy.ndarray): Input data for prediction. + y_test (numpy.ndarray): True target values corresponding to the input data. + forward_passes (int): Number of Monte Carlo forward passes to perform. + y_scaler (optional): Scaler object for post-processing predicted target values (default: None). + batch_size (optional): Batch size for prediction (default: None). + num_outputs (int): Number of output arrays to return (1, 2, or 3). + + Returns: + tuple: Tuple of arrays containing predicted target values and specified uncertainties. + """ + + n_samples = x_test.shape[0] + pred_size = y_test.shape[1] + _batch_size = self.batch_size if batch_size is None else batch_size + + output_arrs = [np.zeros((forward_passes, n_samples, pred_size)) for _ in range(num_outputs)] + + for i in range(forward_passes): + output = [self.model(x_test[i:i+_batch_size], training=True) + for i in range(0, x_test.shape[0], _batch_size)] + output = np.concatenate(output, axis=0) + + if scaler: + output = scaler.inverse_transform(output) + + if num_outputs == 1: + output_arrs[0][i] = output + else: + output = self.calc_uncertainties(output, scaler) + for j in range(num_outputs): + output_arrs[j][i] = output[j] + + if num_outputs == 1: + return output_arrs[0] + + return tuple(output_arrs) + + def calc_uncertainties(self, output, scaler=None): + raise NotImplementedError + + def predict_uncertainty(self, x, scaler=None, batch_size=None): + raise NotImplementedError + + +class RegressorDNN(BaseRegressor): + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + optimizer="adam", + loss="mse", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + ): + super().__init__( + hidden_layers=hidden_layers, + hidden_neurons=hidden_neurons, + activation=activation, + optimizer=optimizer, + loss=loss, + loss_weights=loss_weights, + use_noise=use_noise, + noise_sd=noise_sd, + lr=lr, + use_dropout=use_dropout, + dropout_alpha=dropout_alpha, + batch_size=batch_size, + epochs=epochs, + kernel_reg=kernel_reg, + l1_weight=l1_weight, + l2_weight=l2_weight, + sgd_momentum=sgd_momentum, + adam_beta_1=adam_beta_1, + adam_beta_2=adam_beta_2, + verbose=verbose, + save_path=save_path, + model_name=model_name, + metrics=metrics, + ) + -class EvidentialRegressorDNN(object): +class GaussianRegressorDNN(BaseRegressor): """ - A Dense Neural Network Model that can support arbitrary numbers of hidden layers. + A Dense Neural Network Model that can support arbitrary numbers of hidden layers + and provides evidential uncertainty estimation. + Inherits from BaseRegressor. + Attributes: - hidden_layers: Number of hidden layers - hidden_neurons: Number of neurons in each hidden layer - activation: Type of activation function - loss: either evidentialReg (original) or evidentialFix (meinert and lavin) - coupling_coef: coupling factor for virtual counts in evidentialFix - evidential_coef: Evidential regularization coefficient + hidden_layers: Number of hidden layers. + hidden_neurons: Number of neurons in each hidden layer. + activation: Type of activation function. optimizer: Name of optimizer or optimizer object. - loss: Name of loss function or loss object - use_noise: Whether additive Gaussian noise layers are included in the network - noise_sd: The standard deviation of the Gaussian noise layers - use_dropout: Whether Dropout layers are added to the network - dropout_alpha: proportion of neurons randomly set to 0. - batch_size: Number of examples per batch - epochs: Number of epochs to train - verbose: Level of detail to provide during training - model: Keras Model object - eps: Smallest value of any NN output + loss: Name of loss function or loss object. + use_noise: Whether additive Gaussian noise layers are included in the network. + noise_sd: The standard deviation of the Gaussian noise layers. + use_dropout: Whether Dropout layers are added to the network. + dropout_alpha: Proportion of neurons randomly set to 0. + batch_size: Number of examples per batch. + epochs: Number of epochs to train. + verbose: Level of detail to provide during training. + model: Keras Model object. + evidential_coef: Evidential regularization coefficient. + metrics: Optional list of metrics to monitor during training. """ def __init__( @@ -288,14 +507,11 @@ def __init__( hidden_layers=1, hidden_neurons=4, activation="relu", - loss="evidentialReg", - coupling_coef=1.0, # right now we have alpha = ... v.. so alpha will be coupled in new loss - evidential_coef=0.05, + loss="", optimizer="adam", loss_weights=None, use_noise=False, noise_sd=0.01, - uncertainties=True, lr=0.001, use_dropout=False, dropout_alpha=0.1, @@ -311,160 +527,245 @@ def __init__( save_path=".", model_name="model.h5", metrics=None, - eps=1e-7, # smallest eps for stable performance with float32s + eps=1e-7 ): - self.hidden_layers = hidden_layers - self.hidden_neurons = hidden_neurons - self.activation = activation - self.optimizer = optimizer - self.optimizer_obj = None - self.sgd_momentum = sgd_momentum - self.adam_beta_1 = adam_beta_1 - self.adam_beta_2 = adam_beta_2 - self.coupling_coef = coupling_coef - self.evidential_coef = evidential_coef - if ( - loss == "evidentialReg" - ): # retains backwards compatibility since default without loss arg is original loss - self.loss = EvidentialRegressionLoss(coeff=self.evidential_coef) - elif ( - loss == "evidentialFix" - ): # by default we do not regularize this loss as per meinert and lavin - self.loss = EvidentialRegressionCoupledLoss( - coeff=self.evidential_coef, r=self.coupling_coef - ) - else: - raise ValueError("loss needs to be one of evidentialReg or evidentialFix") - - logger.info(f"Using loss: {loss}") + """ + Initialize the EvidentialRegressorDNN. - self.uncertainties = uncertainties - self.loss_weights = loss_weights - self.lr = lr - self.kernel_reg = kernel_reg - self.l1_weight = l1_weight - self.l2_weight = l2_weight - self.batch_size = batch_size - self.use_noise = use_noise - self.noise_sd = noise_sd - self.use_dropout = use_dropout - self.dropout_alpha = dropout_alpha - self.epochs = epochs - self.verbose = verbose - self.save_path = save_path - self.model_name = model_name - self.model = None - self.optimizer_obj = None - self.training_std = None - self.training_var = None - self.metrics = metrics + Args: + coupling_coef: Coupling coeffient for loss fix + evidential_coef: Evidential regularization coefficient. + """ + super().__init__( # Call the constructor of the base class + hidden_layers, + hidden_neurons, + activation, + optimizer, + loss, + loss_weights, + use_noise, + noise_sd, + lr, + use_dropout, + dropout_alpha, + batch_size, + epochs, + kernel_reg, + l1_weight, + l2_weight, + sgd_momentum, + adam_beta_1, + adam_beta_2, + verbose, + save_path, + model_name, + metrics, + ) self.eps = eps - + self.loss = GaussianNLL + def build_neural_network(self, inputs, outputs): """ Create Keras neural network model and compile it. + Args: - inputs (int): Number of input predictor variables - outputs (int): Number of output predictor variables + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. """ - - nn_input = Input(shape=(inputs,), name="input") - nn_model = nn_input - - if self.activation == "leaky": - self.activation = LeakyReLU() - - if self.kernel_reg == "l1": - self.kernel_reg = L1(self.l1_weight) - elif self.kernel_reg == "l2": - self.kernel_reg = L2(self.l2_weight) - elif self.kernel_reg == "l1_l2": - self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) + super().build_neural_network(inputs, outputs, last_layer="DenseNormal") + + @classmethod + def load_model(cls, conf): + n_models = conf["ensemble"]["n_models"] + n_splits = conf["ensemble"]["n_splits"] + if n_splits > 1 and n_models == 1: + mode = "data" + elif n_splits == 1 and n_models > 1: + mode = "seed" + elif n_splits == 1 and n_models == 1: + mode = "single" else: - self.kernel_reg = None - - for h in range(self.hidden_layers): - nn_model = Dense( - self.hidden_neurons, - activation=self.activation, - kernel_regularizer=L2(self.l2_weight), - name=f"dense_{h:02d}", - )(nn_model) - if self.use_dropout: - nn_model = Dropout(self.dropout_alpha, name=f"dropout_h_{h:02d}")( - nn_model - ) - if self.use_noise: - nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( - nn_model - ) - nn_model = DenseNormalGamma(outputs, name="DenseNormalGamma", eps=self.eps)( - nn_model + raise ValueError( + "For the Gaussian model, only one of n_models or n_splits can be > 1 while the other must be 1" + ) + save_loc = conf["save_loc"] + # Check if weights file exists + weights = os.path.join(save_loc, f"{mode}/models", "best.h5") + if not os.path.isfile(weights): + raise ValueError( + f"No saved model exists at {weights}. You must train a model first. Exiting." + ) + if conf["model"]["verbose"]: + logging.info( + f"Loading a Gaussian DNN with pre-trained weights from path {weights}" + ) + model_class = cls(**conf["model"]) + model_class.build_neural_network( + len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) ) - self.model = Model(nn_input, nn_model) - if self.optimizer == "adam": - self.optimizer_obj = Adam( - learning_rate=self.lr - ) # , beta_1=self.adam_beta_1, beta_2=self.adam_beta_2) - elif self.optimizer == "sgd": - self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) - if self.metrics == "mae": - metrics = self.mae - elif self.metrics == "mse": - metrics = self.mse - else: - metrics = None - self.model.compile( - optimizer=self.optimizer_obj, - loss=self.loss, - loss_weights=self.loss_weights, - metrics=metrics, - run_eagerly=False, + model_class.model.load_weights(weights) + + # Load the variances + model_class.training_var = np.loadtxt( + os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) ) - # self.training_var = [np.var(outputs[:, i]) for i in range(outputs)] + if not isinstance(model_class.training_var, list): + model_class.training_var = [model_class.training_var] - def fit( - self, - x, - y, - validation_data=None, - callbacks=None, - initial_epoch=0, - steps_per_epoch=None, - workers=1, - use_multiprocessing=False, + return model_class + + def calc_uncertainties(self, preds, y_scaler=False): + mu, aleatoric = np.split(preds, 2, axis=-1) + if len(mu.shape) == 1: + mu = np.expand_dims(mu, axis=0) + aleatoric = np.expand_dims(aleatoric, axis=0) + if y_scaler: + mu = y_scaler.inverse_transform(mu) + for i in range(aleatoric.shape[-1]): + aleatoric[:, i] *= self.training_var[i] + return mu, aleatoric + + def predict_uncertainty(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties(y_out, scaler) + return y_out + + def predict_dist_params(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + preds = self.model.predict(x, batch_size=_batch_size) + mu, var = np.split(preds, 2, axis=-1) + if mu.shape[-1] == 1: + mu = np.expand_dims(mu, 1) + if scaler is not None: + mu = scaler.inverse_transform(mu) + + return mu, var + + def predict_ensemble( + self, x_test, y_test, scaler=None, batch_size=None ): - # self.build_neural_network(x.shape[-1], y.shape[-1]) - self.training_var = [np.var(y[:, i]) for i in range(y.shape[-1])] - history = self.model.fit( - x=x, - y=y, - validation_data=validation_data, - callbacks=callbacks, - batch_size=self.batch_size, - epochs=self.epochs, - verbose=self.verbose, - initial_epoch=initial_epoch, - steps_per_epoch=steps_per_epoch, - workers=workers, - use_multiprocessing=use_multiprocessing, - shuffle=True, - ) + return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=2) + + def predict_monte_carlo( + self, x_test, y_test, forward_passes, scaler=None, batch_size=None + ): + return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=2) - return history + +class EvidentialRegressorDNN(BaseRegressor): + """ + A Dense Neural Network Model that can support arbitrary numbers of hidden layers + and provides evidential uncertainty estimation. + Inherits from BaseRegressor. - def save_model(self): - # Save the model weights - tf.keras.models.save_model( - self.model, os.path.join(self.save_path, self.model_name), save_format="h5" - ) - # Save the training variances - np.savetxt( - os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), - np.array(self.training_var), + Attributes: + hidden_layers: Number of hidden layers. + hidden_neurons: Number of neurons in each hidden layer. + activation: Type of activation function. + optimizer: Name of optimizer or optimizer object. + loss: Name of loss function or loss object. + use_noise: Whether additive Gaussian noise layers are included in the network. + noise_sd: The standard deviation of the Gaussian noise layers. + use_dropout: Whether Dropout layers are added to the network. + dropout_alpha: Proportion of neurons randomly set to 0. + batch_size: Number of examples per batch. + epochs: Number of epochs to train. + verbose: Level of detail to provide during training. + model: Keras Model object. + evidential_coef: Evidential regularization coefficient. + metrics: Optional list of metrics to monitor during training. + """ + def __init__( + self, + hidden_layers=1, + hidden_neurons=4, + activation="relu", + loss="evidentialReg", + coupling_coef=1.0, # right now we have alpha = ... v.. so alpha will be coupled in new loss + evidential_coef=0.05, + optimizer="adam", + loss_weights=None, + use_noise=False, + noise_sd=0.01, + lr=0.001, + use_dropout=False, + dropout_alpha=0.1, + batch_size=128, + epochs=2, + kernel_reg="l2", + l1_weight=0.01, + l2_weight=0.01, + sgd_momentum=0.9, + adam_beta_1=0.9, + adam_beta_2=0.999, + verbose=0, + save_path=".", + model_name="model.h5", + metrics=None, + eps=1e-7 + ): + """ + Initialize the EvidentialRegressorDNN. + + Args: + coupling_coef: Coupling coeffient for loss fix + evidential_coef: Evidential regularization coefficient. + """ + super().__init__( # Call the constructor of the base class + hidden_layers, + hidden_neurons, + activation, + optimizer, + loss, + loss_weights, + use_noise, + noise_sd, + lr, + use_dropout, + dropout_alpha, + batch_size, + epochs, + kernel_reg, + l1_weight, + l2_weight, + sgd_momentum, + adam_beta_1, + adam_beta_2, + verbose, + save_path, + model_name, + metrics, ) - return + self.coupling_coef = coupling_coef + self.evidential_coef = evidential_coef + self.eps = eps + + if ( + loss == "evidentialReg" + ): # retains backwards compatibility since default without loss arg is original loss + self.loss = EvidentialRegressionLoss(coeff=self.evidential_coef) + elif ( + loss == "evidentialFix" + ): # by default we do not regularize this loss as per meinert and lavin + self.loss = EvidentialRegressionCoupledLoss( + coeff=self.evidential_coef, r=self.coupling_coef + ) + else: + raise ValueError("loss needs to be one of evidentialReg or evidentialFix") + + logging.info(f"Using loss: {loss}") + def build_neural_network(self, inputs, outputs): + """ + Create Keras neural network model and compile it. + + Args: + inputs (int): Number of input predictor variables. + outputs (int): Number of output predictor variables. + """ + super().build_neural_network(inputs, outputs, last_layer="DenseNormalGamma") + @classmethod def load_model(cls, conf): # Check if weights file exists @@ -474,7 +775,7 @@ def load_model(cls, conf): f"No saved model exists at {weights}. You must train a model first. Exiting." ) - logger.info( + logging.info( f"Loading an evidential DNN with pre-trained weights from path {weights}" ) model_class = cls(**conf["model"]) @@ -493,26 +794,7 @@ def load_model(cls, conf): return model_class - def predict(self, x, scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - y_out = self.model.predict(x, batch_size=_batch_size) - if self.uncertainties: - y_out_final = self.calc_uncertainties( - y_out, scaler - ) # todo calc uncertainty for coupled params - else: - y_out_final = y_out - return y_out_final - - def mae(self, y_true, y_pred): - mu, _, _, _ = tf.split(y_pred, 4, axis=-1) - return tf.keras.metrics.mean_absolute_error(y_true, mu) - - def mse(self, y_true, y_pred): - mu, _, _, _ = tf.split(y_pred, 4, axis=-1) - return tf.keras.metrics.mean_squared_error(y_true, mu) - - def calc_uncertainties(self, preds, y_scaler): + def calc_uncertainties(self, preds, y_scaler=None): mu, v, alpha, beta = np.split(preds, 4, axis=-1) if isinstance(self.loss, EvidentialRegressionCoupledLoss): @@ -535,7 +817,15 @@ def calc_uncertainties(self, preds, y_scaler): epistemic[:, i] *= self.training_var[i] return mu, aleatoric, epistemic - + + def predict_uncertainty(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties( + y_out, scaler + ) # todo calc uncertainty for coupled params + return y_out + def predict_dist_params(self, x, y_scaler=None, batch_size=None): _batch_size = self.batch_size if batch_size is None else batch_size preds = self.model.predict(x, batch_size=_batch_size) @@ -552,249 +842,18 @@ def predict_dist_params(self, x, y_scaler=None, batch_size=None): return mu, v, alpha, beta - def predict_ensemble(self, x, weight_locations, scaler=None, batch_size=None): - num_models = len(weight_locations) - - # Initialize output_shape based on the first model's prediction - if num_models > 0: - first_model = self.model - first_model.load_weights(weight_locations[0]) - mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) - output_shape = mu.shape[1:] - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_mu[0] = mu - ensemble_ale[0] = ale - ensemble_epi[0] = epi - else: - output_shape = () # Default shape if no models - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) - - # Predict for the remaining models - for i, weight_location in enumerate(weight_locations[1:]): - model_instance = self.model - model_instance.load_weights(weight_location) - mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) - ensemble_mu[i + 1] = mu - ensemble_ale[i + 1] = ale - ensemble_epi[i + 1] = epi - - return ensemble_mu, ensemble_ale, ensemble_epi - - -class GaussianRegressorDNN(EvidentialRegressorDNN): - def build_neural_network(self, inputs, outputs): - """ - Create Keras neural network model and compile it. - Args: - inputs (int): Number of input predictor variables - outputs (int): Number of output predictor variables - """ - self.loss = GaussianNLL - - nn_input = Input(shape=(inputs,), name="input") - nn_model = nn_input - - if self.activation == "leaky": - self.activation = LeakyReLU() - - if self.kernel_reg == "l1": - self.kernel_reg = L1(self.l1_weight) - elif self.kernel_reg == "l2": - self.kernel_reg = L2(self.l2_weight) - elif self.kernel_reg == "l1_l2": - self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) - else: - self.kernel_reg = None - - for h in range(self.hidden_layers): - nn_model = Dense( - self.hidden_neurons, - activation=self.activation, - kernel_regularizer=L2(self.l2_weight), - name=f"dense_{h:02d}", - )(nn_model) - if self.use_dropout: - nn_model = Dropout(self.dropout_alpha, name=f"dropout_h_{h:02d}")( - nn_model - ) - if self.use_noise: - nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( - nn_model - ) - nn_model = DenseNormal(outputs, eps=self.eps)(nn_model) - self.model = Model(nn_input, nn_model) - if self.optimizer == "adam": - self.optimizer_obj = Adam( - learning_rate=self.lr, beta_1=self.adam_beta_1, beta_2=self.adam_beta_2 - ) - elif self.optimizer == "sgd": - self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) - if self.metrics == "mae": - metrics = self.mae - elif self.metrics == "mse": - metrics = self.mse - else: - metrics = None - self.model.compile( - optimizer=self.optimizer_obj, - loss=self.loss, - loss_weights=self.loss_weights, - metrics=metrics, - run_eagerly=False, - ) - # self.training_var = [np.var(outputs[:, i]) for i in range(outputs.shape[1])] - - def mae(self, y_true, y_pred): - mu, aleatoric = tf.split(y_pred, 2, axis=-1) - return tf.keras.metrics.mean_absolute_error(y_true, mu) - - def mse(self, y_true, y_pred): - mu, aleatoric = tf.split(y_pred, 2, axis=-1) - return tf.keras.metrics.mean_squared_error(y_true, mu) - - def calc_uncertainties(self, preds, y_scaler=False): - mu, aleatoric = np.split(preds, 2, axis=-1) - if len(mu.shape) == 1: - mu = np.expand_dims(mu) - aleatoric = np.expand_dims(aleatoric) - if y_scaler: - mu = y_scaler.inverse_transform(mu) - for i in range(aleatoric.shape[-1]): - aleatoric[:, i] *= self.training_var[i] - return mu, aleatoric - - @classmethod - def load_model(cls, conf): - n_models = conf["ensemble"]["n_models"] - n_splits = conf["ensemble"]["n_splits"] - monte_carlo_passes = conf["ensemble"]["monte_carlo_passes"] - if n_splits > 1 and n_models == 1: - mode = "data" - elif n_splits == 1 and n_models > 1: - mode = "seed" - elif n_splits == 1 and n_models == 1: - mode = "single" - else: - raise ValueError( - "For the Gaussian model, only one of n_models or n_splits can be > 1 while the other must be 1" - ) - save_loc = conf["save_loc"] - # Check if weights file exists - weights = os.path.join(save_loc, f"{mode}/models", "best.h5") - if not os.path.isfile(weights): - raise ValueError( - f"No saved model exists at {weights}. You must train a model first. Exiting." - ) - if conf["model"]["verbose"]: - logger.info( - f"Loading a parametric DNN with pre-trained weights from path {weights}" - ) - model_class = cls(**conf["model"]) - model_class.build_neural_network( - len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) - ) - model_class.model.load_weights(weights) - - # Load the variances - model_class.training_var = np.loadtxt( - os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) - ) - if not isinstance(model_class.training_var, list): - model_class.training_var = [model_class.training_var] - - return model_class + def predict_ensemble( + self, x_test, y_test, scaler=None, batch_size=None + ): + return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=3) - def predict(self, x, scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - y_out = self.model.predict(x, batch_size=_batch_size) - y_out = self.calc_uncertainties(y_out, scaler) - return y_out - def predict_monte_carlo( - self, x_test, y_test, forward_passes, y_scaler=None, batch_size=None + self, x_test, y_test, forward_passes, scaler=None, batch_size=None ): - """Function to get the monte-carlo samples and uncertainty estimates - through multiple forward passes - - Parameters - ---------- - data_loader : object - data loader object from the data loader module - forward_passes : int - number of monte-carlo samples/forward passes - model : object - keras model - n_classes : int - number of classes in the dataset - y_scaler : sklearn Scaler - perform inverse scaler on predicted - """ - n_samples = x_test.shape[0] - pred_size = y_test.shape[1] - _batch_size = self.batch_size if batch_size is None else batch_size - dropout_mu = np.zeros((forward_passes, n_samples, pred_size)) - dropout_aleatoric = np.zeros((forward_passes, n_samples, pred_size)) - - for i in range(forward_passes): - # output = self.model(x_test, training=True) - output = [ - self.model(x_test[i : i + _batch_size], training=True) - for i in range(0, x_test.shape[0], _batch_size) - ] - mu, aleatoric = self.calc_uncertainties( - np.concatenate(output, axis=0), y_scaler - ) - dropout_mu[i] = mu - dropout_aleatoric[i] = aleatoric - - return dropout_mu, dropout_aleatoric + return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=3) - def predict_dist_params(self, x, y_scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - preds = self.model.predict(x, batch_size=_batch_size) - mu, var = np.split(preds, 2, axis=-1) - if mu.shape[-1] == 1: - mu = np.expand_dims(mu, 1) - if y_scaler is not None: - mu = y_scaler.inverse_transform(mu) - - return mu, var - def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None): - num_models = len(weight_locations) - - # Initialize output_shape based on the first model's prediction - if num_models > 0: - first_model = self.model - first_model.load_weights(weight_locations[0]) - mu, var = self.predict(x, batch_size=batch_size, scaler=scaler) - output_shape = mu.shape[1:] - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_mu[0] = mu - ensemble_var[0] = var - else: - output_shape = () # Default shape if no models - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) - - # Predict for the remaining models - for i, weight_location in enumerate(weight_locations[1:]): - model_instance = self.model - model_instance.load_weights(weight_location) - mu, var = self.predict(x, scaler=scaler, batch_size=batch_size) - ensemble_mu[i + 1] = mu - ensemble_var[i + 1] = var - - return ensemble_mu, ensemble_var - - class CategoricalDNN(object): - """ A Dense Neural Network Model that can support arbitrary numbers of hidden layers. Attributes: @@ -820,7 +879,6 @@ class CategoricalDNN(object): verbose: Level of detail to provide during training (0 = None, 1 = Minimal, 2 = All) classifier: (boolean) If training on classes """ - def __init__( self, hidden_layers=1, @@ -1026,7 +1084,7 @@ def load_model(cls, conf): "No saved model exists. You must train a model first. Exiting." ) - logger.info( + logging.info( f"Loading a CategoricalDNN with pre-trained weights from path {weights}" ) @@ -1077,7 +1135,7 @@ def predict_monte_carlo(self, x, mc_forward_passes=10, batch_size=None): ) # shape (n_samples,) # Calculating mutual information across multiple MCD forward passes mutual_info = entropy - np.mean( - np.sum(-y_prob * np.log(y_prob + epsilon), axis=-1), axis=0 + np.sum(-np.array(y_prob) * np.log(y_prob + epsilon), axis=-1), axis=0 ) # shape (n_samples,) return pred_probs, aleatoric, epistemic, entropy, mutual_info @@ -1131,4 +1189,4 @@ def locate_best_model(filepath, metric="val_ave_acc", direction="max"): scores["metric"].append(func(f[metric])) best_c = scores["metric"].index(func(scores["metric"])) - return scores["best_ensemble"][best_c] + return scores["best_ensemble"][best_c] \ No newline at end of file diff --git a/evml/keras/model_refactor.py b/evml/keras/models_deprecated.py similarity index 65% rename from evml/keras/model_refactor.py rename to evml/keras/models_deprecated.py index 1983e2b..55a7ba6 100644 --- a/evml/keras/model_refactor.py +++ b/evml/keras/models_deprecated.py @@ -1,5 +1,8 @@ import os +import sys +import glob import numpy as np +import pandas as pd import tensorflow as tf from tensorflow.keras import Input, Model from tensorflow.keras.regularizers import L1, L2, L1L2 @@ -8,16 +11,24 @@ from evml.keras.layers import DenseNormalGamma, DenseNormal from evml.keras.losses import EvidentialRegressionLoss, EvidentialRegressionCoupledLoss, GaussianNLL from evml.keras.losses import DirichletEvidentialLoss +from evml.keras.callbacks import ReportEpoch +from imblearn.under_sampling import RandomUnderSampler +from imblearn.tensorflow import balanced_batch_generator +from collections import defaultdict import logging -class BaseRegressor(object): +logger = logging.getLogger(__name__) + + +class RegressorDNN(object): """ - A base class for regression models. + A Dense Neural Network Model that can support arbitrary numbers of hidden layers. Attributes: hidden_layers: Number of hidden layers hidden_neurons: Number of neurons in each hidden layer activation: Type of activation function + evidential_coef: Evidential regularization coefficient optimizer: Name of optimizer or optimizer object. loss: Name of loss function or loss object use_noise: Whether additive Gaussian noise layers are included in the network @@ -55,8 +66,8 @@ def __init__( save_path=".", model_name="model.h5", metrics=None, - eps = 1e-7 ): + self.hidden_layers = hidden_layers self.hidden_neurons = hidden_neurons self.activation = activation @@ -85,16 +96,15 @@ def __init__( self.training_std = None self.training_var = None self.metrics = metrics - self.eps = eps - def build_neural_network(self, inputs, outputs, last_layer = "Dense"): + def build_neural_network(self, inputs, outputs): """ Create Keras neural network model and compile it. - Args: - inputs (int): Number of input predictor variables. - outputs (int): Number of output predictor variables. + inputs (int): Number of input predictor variables + outputs (int): Number of output predictor variables """ + nn_input = Input(shape=(inputs,), name="input") nn_model = nn_input @@ -125,46 +135,8 @@ def build_neural_network(self, inputs, outputs, last_layer = "Dense"): nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( nn_model ) - - if last_layer == "Dense": - nn_model = Dense(outputs, name="dense_last")(nn_model) - elif last_layer == "DenseNormal": - nn_model = DenseNormal(outputs, name="DenseNormal", eps=self.eps)(nn_model) - elif last_layer == "DenseNormalGamma": - nn_model = DenseNormalGamma(outputs, name="DenseNormalGamma", eps=self.eps)( - nn_model - ) - else: - raise ValueError("Invalid last_layer type. Use 'Dense', 'DenseNormal', or 'DenseNormalGamma'.") - + nn_model = Dense(outputs, name="dense_last")(nn_model) self.model = Model(nn_input, nn_model) - - if self.optimizer == "adam": - self.optimizer_obj = Adam(learning_rate=self.lr) - elif self.optimizer == "sgd": - self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) - - self.model.compile( - optimizer=self.optimizer_obj, - loss=self.loss, - loss_weights=self.loss_weights, - metrics=self.metrics, - run_eagerly=False, - ) - - - def build_from_sequential(self, model, optimizer="adam", loss="mse", metrics=None): - """ - Build the neural network model using a Keras Sequential model. - - Args: - model (tf.keras.Sequential): Keras Sequential model to use. - optimizer (str or tf.keras.optimizers.Optimizer): Optimizer for the model. - loss (str or tf.keras.losses.Loss): Loss function for the model. - metrics (list of str or tf.keras.metrics.Metric): Metrics for the model. - """ - self.model = model - if self.optimizer == "adam": self.optimizer_obj = Adam(learning_rate=self.lr) elif self.optimizer == "sgd": @@ -178,7 +150,6 @@ def build_from_sequential(self, model, optimizer="adam", loss="mse", metrics=Non run_eagerly=False, ) - def fit( self, x, @@ -187,64 +158,33 @@ def fit( callbacks=None, initial_epoch=0, steps_per_epoch=None, - workers=0, + workers=1, use_multiprocessing=False, - shuffle=True, - **kwargs, ): - """ - Fit the regression model. - Args: - x: Input data - y: Target data - validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch - callbacks: List of callbacks to apply during training - initial_epoch: Epoch at which to start training (useful for resuming a previous training run) - steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. - workers: Number of workers to use for data loading - use_multiprocessing: If True, use ProcessPoolExecutor to load data, which is faster but can cause issues with certain GPU setups. If False, use a ThreadPoolExecutor. - **kwargs: Additional arguments to be passed to the `fit` method - """ - - if self.model is None: - raise ValueError("Model has not been built. Call build_neural_network first.") - if self.verbose: - self.model.summary() - self.training_var = [np.var(y[:, i]) for i in range(y.shape[-1])] - self.history = self.model.fit( - x, - y, + + self.model.fit( + x=x, + y=y, + validation_data=validation_data, + callbacks=callbacks, batch_size=self.batch_size, epochs=self.epochs, verbose=self.verbose, - callbacks=callbacks, - validation_data=validation_data, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, workers=workers, use_multiprocessing=use_multiprocessing, - shuffle=shuffle, - **kwargs, + shuffle=True, ) + return + def save_model(self): - """ - Save the trained model to a file. - """ - if not os.path.exists(self.save_path): - os.makedirs(self.save_path) - model_path = os.path.join(self.save_path, self.model_name) tf.keras.models.save_model( - self.model, model_path, save_format="h5" - ) - logging.info(f"Saved model to {model_path}") - - # Save the training variances - np.savetxt( - os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), - np.array(self.training_var), + self.model, os.path.join(self.save_path, self.model_name), save_format="h5" ) - + return + @classmethod def load_model(cls, conf): # Check if weights file exists @@ -254,8 +194,8 @@ def load_model(cls, conf): f"No saved model exists at {weights}. You must train a model first. Exiting." ) - logging.info( - f"Loading a DNN with pre-trained weights from path {weights}" + logger.info( + f"Loading a RegressorDNN with pre-trained weights from path {weights}" ) model_class = cls(**conf["model"]) model_class.build_neural_network( @@ -263,227 +203,84 @@ def load_model(cls, conf): ) model_class.model.load_weights(weights) return model_class - - def mae(self, y_true, y_pred): - num_splits = y_pred.shape[-1] - - if num_splits == 4: - mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) - elif num_splits == 2: - mu, _ = tf.split(y_pred, num_splits, axis=-1) - else: - mu = y_pred # Assuming num_splits is 1 - - return tf.keras.metrics.mean_absolute_error(y_true, mu) - - def mse(self, y_true, y_pred): - num_splits = y_pred.shape[-1] - - if num_splits == 4: - mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) - elif num_splits == 2: - mu, _ = tf.split(y_pred, num_splits, axis=-1) - else: - mu = y_pred # Assuming num_splits is 1 - - return tf.keras.metrics.mean_squared_error(y_true, mu) - - def predict(self, x, scaler=None, batch_size=None): - """ - Predict target values for input data. - Args: - x (numpy.ndarray): Input data. - scaler (optional): Scaler object for preprocessing input data (default: None). - batch_size (optional): Batch size for prediction (default: None). - y_scaler (optional): Scaler object for post-processing predicted target values (default: None). - - Returns: - numpy.ndarray: Predicted target values. - """ + def predict(self, x, scaler=None, batch_size=None, y_scaler=None): _batch_size = self.batch_size if batch_size is None else batch_size y_out = self.model.predict(x, batch_size=_batch_size) - if scaler: - if len(y_out.shape) == 1: + if y_scaler: + if y_out.shape[-1] == 1: y_out = np.expand_dims(y_out, 1) - y_out = scaler.inverse_transform(y_out) + y_out = y_scaler.inverse_transform(y_out) return y_out + + def predict_monte_carlo( + self, x_test, y_test, forward_passes, y_scaler=None, batch_size=None + ): + _batch_size = self.batch_size if batch_size is None else batch_size + n_samples = x_test.shape[0] + pred_size = y_test.shape[1] + dropout_mu = np.zeros((forward_passes, n_samples, pred_size)) + + for i in range(forward_passes): + output = [ + self.model(x_test[i : i + _batch_size], training=True) + for i in range(0, x_test.shape[0], _batch_size) + ] + output = np.concatenate(output, axis=0) + if y_scaler: + if output.shape[-1] == 1: + output = np.expand_dims(output, 1) + output = y_scaler.inverse_transform(output) + dropout_mu[i] = output + return dropout_mu - def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, num_outputs = 1): + def predict_ensemble(self, x, weight_locations, y_scaler=None, batch_size=None): num_models = len(weight_locations) # Initialize output_shape based on the first model's prediction if num_models > 0: first_model = self.model first_model.load_weights(weight_locations[0]) - if num_outputs == 1: - mu = self.predict(x, batch_size=batch_size, scaler=scaler) - elif num_outputs == 2: - mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) - elif num_outputs == 3: - mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) - - output_shape = mu.shape[1:] - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_mu[0] = mu - if num_outputs >= 2: - ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_ale[0] = ale - if num_outputs == 3: - ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) - ensemble_epi[0] = epi + first_prediction = self.predict(x, batch_size=batch_size, y_scaler = y_scaler) + output_shape = first_prediction.shape[1:] + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) + predictions[0] = first_prediction else: output_shape = () # Default shape if no models - ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) - if num_outputs >= 2: - ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) - if num_outputs == 3: - ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + predictions = np.empty((num_models,) + (x.shape[0],) + output_shape) # Predict for the remaining models for i, weight_location in enumerate(weight_locations[1:]): model_instance = self.model model_instance.load_weights(weight_location) - - if num_outputs == 1: - mu = self.predict(x, batch_size=batch_size, scaler=scaler) - elif num_outputs == 2: - mu, ale = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) - elif num_outputs == 3: - mu, ale, epi = self.predict_uncertainty(x, batch_size=batch_size, scaler=scaler) - - ensemble_mu[i + 1] = mu - if num_outputs >= 2: - ensemble_ale[i + 1] = ale - if num_outputs == 3: - ensemble_epi[i + 1] = epi - - if num_outputs == 1: - return ensemble_mu - elif num_outputs == 2: - return ensemble_mu, ensemble_ale + y_prob = self.predict(x, batch_size=batch_size, y_scaler=y_scaler) + predictions[i + 1] = y_prob + + return predictions - return ensemble_mu, ensemble_ale, epistemic_epi - def predict_monte_carlo(self, x_test, y_test, forward_passes, scaler=None, batch_size=None, num_outputs=1): - """ - Perform Monte Carlo dropout predictions for the model. - - Args: - x_test (numpy.ndarray): Input data for prediction. - y_test (numpy.ndarray): True target values corresponding to the input data. - forward_passes (int): Number of Monte Carlo forward passes to perform. - y_scaler (optional): Scaler object for post-processing predicted target values (default: None). - batch_size (optional): Batch size for prediction (default: None). - num_outputs (int): Number of output arrays to return (1, 2, or 3). - - Returns: - tuple: Tuple of arrays containing predicted target values and specified uncertainties. - """ - - n_samples = x_test.shape[0] - pred_size = y_test.shape[1] - _batch_size = self.batch_size if batch_size is None else batch_size - - output_arrs = [np.zeros((forward_passes, n_samples, pred_size)) for _ in range(num_outputs)] - - for i in range(forward_passes): - output = [self.model(x_test[i:i+_batch_size], training=True) - for i in range(0, x_test.shape[0], _batch_size)] - output = np.concatenate(output, axis=0) - - if scaler: - output = scaler.inverse_transform(output) - - if num_outputs == 1: - output_arrs[0][i] = output - else: - output = self.calc_uncertainties(output, scaler) - for j in range(num_outputs): - output_arrs[j][i] = output[j] - - return tuple(output_arrs) - - def calc_uncertainties(self, output, scaler): - raise NotImplementedError - - -class RegressorDNN(BaseRegressor): - def __init__( - self, - hidden_layers=1, - hidden_neurons=4, - activation="relu", - optimizer="adam", - loss="mse", - loss_weights=None, - use_noise=False, - noise_sd=0.01, - lr=0.001, - use_dropout=False, - dropout_alpha=0.1, - batch_size=128, - epochs=2, - kernel_reg="l2", - l1_weight=0.01, - l2_weight=0.01, - sgd_momentum=0.9, - adam_beta_1=0.9, - adam_beta_2=0.999, - verbose=0, - save_path=".", - model_name="model.h5", - metrics=None, - ): - super().__init__( - hidden_layers=hidden_layers, - hidden_neurons=hidden_neurons, - activation=activation, - optimizer=optimizer, - loss=loss, - loss_weights=loss_weights, - use_noise=use_noise, - noise_sd=noise_sd, - lr=lr, - use_dropout=use_dropout, - dropout_alpha=dropout_alpha, - batch_size=batch_size, - epochs=epochs, - kernel_reg=kernel_reg, - l1_weight=l1_weight, - l2_weight=l2_weight, - sgd_momentum=sgd_momentum, - adam_beta_1=adam_beta_1, - adam_beta_2=adam_beta_2, - verbose=verbose, - save_path=save_path, - model_name=model_name, - metrics=metrics, - ) - -class GaussianRegressorDNN(BaseRegressor): +class EvidentialRegressorDNN(object): """ - A Dense Neural Network Model that can support arbitrary numbers of hidden layers - and provides evidential uncertainty estimation. - Inherits from BaseRegressor. - + A Dense Neural Network Model that can support arbitrary numbers of hidden layers. Attributes: - hidden_layers: Number of hidden layers. - hidden_neurons: Number of neurons in each hidden layer. - activation: Type of activation function. + hidden_layers: Number of hidden layers + hidden_neurons: Number of neurons in each hidden layer + activation: Type of activation function + loss: either evidentialReg (original) or evidentialFix (meinert and lavin) + coupling_coef: coupling factor for virtual counts in evidentialFix + evidential_coef: Evidential regularization coefficient optimizer: Name of optimizer or optimizer object. - loss: Name of loss function or loss object. - use_noise: Whether additive Gaussian noise layers are included in the network. - noise_sd: The standard deviation of the Gaussian noise layers. - use_dropout: Whether Dropout layers are added to the network. - dropout_alpha: Proportion of neurons randomly set to 0. - batch_size: Number of examples per batch. - epochs: Number of epochs to train. - verbose: Level of detail to provide during training. - model: Keras Model object. - evidential_coef: Evidential regularization coefficient. - metrics: Optional list of metrics to monitor during training. + loss: Name of loss function or loss object + use_noise: Whether additive Gaussian noise layers are included in the network + noise_sd: The standard deviation of the Gaussian noise layers + use_dropout: Whether Dropout layers are added to the network + dropout_alpha: proportion of neurons randomly set to 0. + batch_size: Number of examples per batch + epochs: Number of epochs to train + verbose: Level of detail to provide during training + model: Keras Model object + eps: Smallest value of any NN output """ def __init__( @@ -491,11 +288,14 @@ def __init__( hidden_layers=1, hidden_neurons=4, activation="relu", - loss="", + loss="evidentialReg", + coupling_coef=1.0, # right now we have alpha = ... v.. so alpha will be coupled in new loss + evidential_coef=0.05, optimizer="adam", loss_weights=None, use_noise=False, noise_sd=0.01, + uncertainties=True, lr=0.001, use_dropout=False, dropout_alpha=0.1, @@ -511,243 +311,164 @@ def __init__( save_path=".", model_name="model.h5", metrics=None, - eps=1e-7 + eps=1e-7, # smallest eps for stable performance with float32s ): - """ - Initialize the EvidentialRegressorDNN. + self.hidden_layers = hidden_layers + self.hidden_neurons = hidden_neurons + self.activation = activation + self.optimizer = optimizer + self.optimizer_obj = None + self.sgd_momentum = sgd_momentum + self.adam_beta_1 = adam_beta_1 + self.adam_beta_2 = adam_beta_2 + self.coupling_coef = coupling_coef + self.evidential_coef = evidential_coef + if ( + loss == "evidentialReg" + ): # retains backwards compatibility since default without loss arg is original loss + self.loss = EvidentialRegressionLoss(coeff=self.evidential_coef) + elif ( + loss == "evidentialFix" + ): # by default we do not regularize this loss as per meinert and lavin + self.loss = EvidentialRegressionCoupledLoss( + coeff=self.evidential_coef, r=self.coupling_coef + ) + else: + raise ValueError("loss needs to be one of evidentialReg or evidentialFix") + + logger.info(f"Using loss: {loss}") - Args: - coupling_coef: Coupling coeffient for loss fix - evidential_coef: Evidential regularization coefficient. - """ - super().__init__( # Call the constructor of the base class - hidden_layers, - hidden_neurons, - activation, - optimizer, - loss, - loss_weights, - use_noise, - noise_sd, - lr, - use_dropout, - dropout_alpha, - batch_size, - epochs, - kernel_reg, - l1_weight, - l2_weight, - sgd_momentum, - adam_beta_1, - adam_beta_2, - verbose, - save_path, - model_name, - metrics, - ) + self.uncertainties = uncertainties + self.loss_weights = loss_weights + self.lr = lr + self.kernel_reg = kernel_reg + self.l1_weight = l1_weight + self.l2_weight = l2_weight + self.batch_size = batch_size + self.use_noise = use_noise + self.noise_sd = noise_sd + self.use_dropout = use_dropout + self.dropout_alpha = dropout_alpha + self.epochs = epochs + self.verbose = verbose + self.save_path = save_path + self.model_name = model_name + self.model = None + self.optimizer_obj = None + self.training_std = None + self.training_var = None + self.metrics = metrics self.eps = eps - self.loss = GaussianNLL - + def build_neural_network(self, inputs, outputs): """ Create Keras neural network model and compile it. - Args: - inputs (int): Number of input predictor variables. - outputs (int): Number of output predictor variables. + inputs (int): Number of input predictor variables + outputs (int): Number of output predictor variables """ - super().build_neural_network(inputs, outputs, last_layer = "DenseNormal") - - @classmethod - def load_model(cls, conf): - n_models = conf["ensemble"]["n_models"] - n_splits = conf["ensemble"]["n_splits"] - if n_splits > 1 and n_models == 1: - mode = "data" - elif n_splits == 1 and n_models > 1: - mode = "seed" - elif n_splits == 1 and n_models == 1: - mode = "single" - else: - raise ValueError( - "For the Gaussian model, only one of n_models or n_splits can be > 1 while the other must be 1" - ) - save_loc = conf["save_loc"] - # Check if weights file exists - weights = os.path.join(save_loc, f"{mode}/models", "best.h5") - if not os.path.isfile(weights): - raise ValueError( - f"No saved model exists at {weights}. You must train a model first. Exiting." - ) - if conf["model"]["verbose"]: - logging.info( - f"Loading a Gaussian DNN with pre-trained weights from path {weights}" - ) - model_class = cls(**conf["model"]) - model_class.build_neural_network( - len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) - ) - model_class.model.load_weights(weights) - # Load the variances - model_class.training_var = np.loadtxt( - os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) - ) - if not isinstance(model_class.training_var, list): - model_class.training_var = [model_class.training_var] + nn_input = Input(shape=(inputs,), name="input") + nn_model = nn_input - return model_class - - def calc_uncertainties(self, preds, y_scaler=False): - mu, aleatoric = np.split(preds, 2, axis=-1) - if len(mu.shape) == 1: - mu = np.expand_dims(mu) - aleatoric = np.expand_dims(aleatoric) - if y_scaler: - mu = y_scaler.inverse_transform(mu) - for i in range(aleatoric.shape[-1]): - aleatoric[:, i] *= self.training_var[i] - return mu, aleatoric - - def predict_uncertainty(self, x, scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - y_out = self.model.predict(x, batch_size=_batch_size) - y_out = self.calc_uncertainties(y_out, scaler) - return y_out - - def predict_dist_params(self, x, scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - preds = self.model.predict(x, batch_size=_batch_size) - mu, var = np.split(preds, 2, axis=-1) - if mu.shape[-1] == 1: - mu = np.expand_dims(mu, 1) - if scaler is not None: - mu = scaler.inverse_transform(mu) + if self.activation == "leaky": + self.activation = LeakyReLU() - return mu, var - - def predict_ensemble( - self, x_test, y_test, scaler=None, batch_size=None - ): - return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=2) - - def predict_monte_carlo( - self, x_test, y_test, forward_passes, scaler=None, batch_size=None - ): - return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=2) + if self.kernel_reg == "l1": + self.kernel_reg = L1(self.l1_weight) + elif self.kernel_reg == "l2": + self.kernel_reg = L2(self.l2_weight) + elif self.kernel_reg == "l1_l2": + self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) + else: + self.kernel_reg = None - -class EvidentialRegressorDNN(BaseRegressor): - """ - A Dense Neural Network Model that can support arbitrary numbers of hidden layers - and provides evidential uncertainty estimation. - Inherits from BaseRegressor. + for h in range(self.hidden_layers): + nn_model = Dense( + self.hidden_neurons, + activation=self.activation, + kernel_regularizer=L2(self.l2_weight), + name=f"dense_{h:02d}", + )(nn_model) + if self.use_dropout: + nn_model = Dropout(self.dropout_alpha, name=f"dropout_h_{h:02d}")( + nn_model + ) + if self.use_noise: + nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( + nn_model + ) + nn_model = DenseNormalGamma(outputs, name="DenseNormalGamma", eps=self.eps)( + nn_model + ) + self.model = Model(nn_input, nn_model) + if self.optimizer == "adam": + self.optimizer_obj = Adam( + learning_rate=self.lr + ) # , beta_1=self.adam_beta_1, beta_2=self.adam_beta_2) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + if self.metrics == "mae": + metrics = self.mae + elif self.metrics == "mse": + metrics = self.mse + else: + metrics = None + self.model.compile( + optimizer=self.optimizer_obj, + loss=self.loss, + loss_weights=self.loss_weights, + metrics=metrics, + run_eagerly=False, + ) + # self.training_var = [np.var(outputs[:, i]) for i in range(outputs)] - Attributes: - hidden_layers: Number of hidden layers. - hidden_neurons: Number of neurons in each hidden layer. - activation: Type of activation function. - optimizer: Name of optimizer or optimizer object. - loss: Name of loss function or loss object. - use_noise: Whether additive Gaussian noise layers are included in the network. - noise_sd: The standard deviation of the Gaussian noise layers. - use_dropout: Whether Dropout layers are added to the network. - dropout_alpha: Proportion of neurons randomly set to 0. - batch_size: Number of examples per batch. - epochs: Number of epochs to train. - verbose: Level of detail to provide during training. - model: Keras Model object. - evidential_coef: Evidential regularization coefficient. - metrics: Optional list of metrics to monitor during training. - """ - def __init__( + def fit( self, - hidden_layers=1, - hidden_neurons=4, - activation="relu", - loss="evidentialReg", - coupling_coef=1.0, # right now we have alpha = ... v.. so alpha will be coupled in new loss - evidential_coef=0.05, - optimizer="adam", - loss_weights=None, - use_noise=False, - noise_sd=0.01, - lr=0.001, - use_dropout=False, - dropout_alpha=0.1, - batch_size=128, - epochs=2, - kernel_reg="l2", - l1_weight=0.01, - l2_weight=0.01, - sgd_momentum=0.9, - adam_beta_1=0.9, - adam_beta_2=0.999, - verbose=0, - save_path=".", - model_name="model.h5", - metrics=None, - eps=1e-7 + x, + y, + validation_data=None, + callbacks=None, + initial_epoch=0, + steps_per_epoch=None, + workers=1, + use_multiprocessing=False, ): - """ - Initialize the EvidentialRegressorDNN. - - Args: - coupling_coef: Coupling coeffient for loss fix - evidential_coef: Evidential regularization coefficient. - """ - super().__init__( # Call the constructor of the base class - hidden_layers, - hidden_neurons, - activation, - optimizer, - loss, - loss_weights, - use_noise, - noise_sd, - lr, - use_dropout, - dropout_alpha, - batch_size, - epochs, - kernel_reg, - l1_weight, - l2_weight, - sgd_momentum, - adam_beta_1, - adam_beta_2, - verbose, - save_path, - model_name, - metrics, - ) - self.coupling_coef = coupling_coef - self.evidential_coef = evidential_coef - self.eps = eps + # self.build_neural_network(x.shape[-1], y.shape[-1]) + self.training_var = [np.var(y[:, i]) for i in range(y.shape[-1])] - if ( - loss == "evidentialReg" - ): # retains backwards compatibility since default without loss arg is original loss - self.loss = EvidentialRegressionLoss(coeff=self.evidential_coef) - elif ( - loss == "evidentialFix" - ): # by default we do not regularize this loss as per meinert and lavin - self.loss = EvidentialRegressionCoupledLoss( - coeff=self.evidential_coef, r=self.coupling_coef - ) - else: - raise ValueError("loss needs to be one of evidentialReg or evidentialFix") + if self.verbose: + self.model.summary() + + history = self.model.fit( + x=x, + y=y, + validation_data=validation_data, + callbacks=callbacks, + batch_size=self.batch_size, + epochs=self.epochs, + verbose=self.verbose, + initial_epoch=initial_epoch, + steps_per_epoch=steps_per_epoch, + workers=workers, + use_multiprocessing=use_multiprocessing, + shuffle=True, + ) - def build_neural_network(self, inputs, outputs): - """ - Create Keras neural network model and compile it. + return history + + def save_model(self): + # Save the model weights + tf.keras.models.save_model( + self.model, os.path.join(self.save_path, self.model_name), save_format="h5" + ) + # Save the training variances + np.savetxt( + os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), + np.array(self.training_var), + ) + return - Args: - inputs (int): Number of input predictor variables. - outputs (int): Number of output predictor variables. - """ - super().build_neural_network(inputs, outputs, last_layer = "DenseNormalGamma") - @classmethod def load_model(cls, conf): # Check if weights file exists @@ -757,7 +478,7 @@ def load_model(cls, conf): f"No saved model exists at {weights}. You must train a model first. Exiting." ) - logging.info( + logger.info( f"Loading an evidential DNN with pre-trained weights from path {weights}" ) model_class = cls(**conf["model"]) @@ -775,7 +496,26 @@ def load_model(cls, conf): model_class.training_var = np.array([model_class.training_var]) return model_class - + + def predict(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + if self.uncertainties: + y_out_final = self.calc_uncertainties( + y_out, scaler + ) # todo calc uncertainty for coupled params + else: + y_out_final = y_out + return y_out_final + + def mae(self, y_true, y_pred): + mu, _, _, _ = tf.split(y_pred, 4, axis=-1) + return tf.keras.metrics.mean_absolute_error(y_true, mu) + + def mse(self, y_true, y_pred): + mu, _, _, _ = tf.split(y_pred, 4, axis=-1) + return tf.keras.metrics.mean_squared_error(y_true, mu) + def calc_uncertainties(self, preds, y_scaler): mu, v, alpha, beta = np.split(preds, 4, axis=-1) @@ -799,15 +539,7 @@ def calc_uncertainties(self, preds, y_scaler): epistemic[:, i] *= self.training_var[i] return mu, aleatoric, epistemic - - def predict_uncertainty(self, x, scaler=None, batch_size=None): - _batch_size = self.batch_size if batch_size is None else batch_size - y_out = self.model.predict(x, batch_size=_batch_size) - y_out = self.calc_uncertainties( - y_out, scaler - ) # todo calc uncertainty for coupled params - return y_out - + def predict_dist_params(self, x, y_scaler=None, batch_size=None): _batch_size = self.batch_size if batch_size is None else batch_size preds = self.model.predict(x, batch_size=_batch_size) @@ -824,18 +556,249 @@ def predict_dist_params(self, x, y_scaler=None, batch_size=None): return mu, v, alpha, beta - def predict_ensemble( - self, x_test, y_test, scaler=None, batch_size=None - ): - return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=3) + def predict_ensemble(self, x, weight_locations, scaler=None, batch_size=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + ensemble_ale[0] = ale + ensemble_epi[0] = epi + else: + output_shape = () # Default shape if no models + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_ale = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + mu, ale, epi = self.predict(x, batch_size=batch_size, scaler=scaler) + ensemble_mu[i + 1] = mu + ensemble_ale[i + 1] = ale + ensemble_epi[i + 1] = epi + + return ensemble_mu, ensemble_ale, ensemble_epi + + +class GaussianRegressorDNN(EvidentialRegressorDNN): + def build_neural_network(self, inputs, outputs): + """ + Create Keras neural network model and compile it. + Args: + inputs (int): Number of input predictor variables + outputs (int): Number of output predictor variables + """ + self.loss = GaussianNLL + + nn_input = Input(shape=(inputs,), name="input") + nn_model = nn_input + + if self.activation == "leaky": + self.activation = LeakyReLU() + + if self.kernel_reg == "l1": + self.kernel_reg = L1(self.l1_weight) + elif self.kernel_reg == "l2": + self.kernel_reg = L2(self.l2_weight) + elif self.kernel_reg == "l1_l2": + self.kernel_reg = L1L2(self.l1_weight, self.l2_weight) + else: + self.kernel_reg = None + + for h in range(self.hidden_layers): + nn_model = Dense( + self.hidden_neurons, + activation=self.activation, + kernel_regularizer=L2(self.l2_weight), + name=f"dense_{h:02d}", + )(nn_model) + if self.use_dropout: + nn_model = Dropout(self.dropout_alpha, name=f"dropout_h_{h:02d}")( + nn_model + ) + if self.use_noise: + nn_model = GaussianNoise(self.noise_sd, name=f"ganoise_h_{h:02d}")( + nn_model + ) + nn_model = DenseNormal(outputs, name="DenseNormal", eps=self.eps)(nn_model) + self.model = Model(nn_input, nn_model) + if self.optimizer == "adam": + self.optimizer_obj = Adam( + learning_rate=self.lr, beta_1=self.adam_beta_1, beta_2=self.adam_beta_2 + ) + elif self.optimizer == "sgd": + self.optimizer_obj = SGD(learning_rate=self.lr, momentum=self.sgd_momentum) + if self.metrics == "mae": + metrics = self.mae + elif self.metrics == "mse": + metrics = self.mse + else: + metrics = None + self.model.compile( + optimizer=self.optimizer_obj, + loss=self.loss, + loss_weights=self.loss_weights, + metrics=metrics, + run_eagerly=False, + ) + # self.training_var = [np.var(outputs[:, i]) for i in range(outputs.shape[1])] + + def mae(self, y_true, y_pred): + mu, aleatoric = tf.split(y_pred, 2, axis=-1) + return tf.keras.metrics.mean_absolute_error(y_true, mu) + + def mse(self, y_true, y_pred): + mu, aleatoric = tf.split(y_pred, 2, axis=-1) + return tf.keras.metrics.mean_squared_error(y_true, mu) + + def calc_uncertainties(self, preds, y_scaler=False): + mu, aleatoric = np.split(preds, 2, axis=-1) + if len(mu.shape) == 1: + mu = np.expand_dims(mu) + aleatoric = np.expand_dims(aleatoric) + if y_scaler: + mu = y_scaler.inverse_transform(mu) + for i in range(aleatoric.shape[-1]): + aleatoric[:, i] *= self.training_var[i] + return mu, aleatoric + @classmethod + def load_model(cls, conf): + n_models = conf["ensemble"]["n_models"] + n_splits = conf["ensemble"]["n_splits"] + monte_carlo_passes = conf["ensemble"]["monte_carlo_passes"] + if n_splits > 1 and n_models == 1: + mode = "data" + elif n_splits == 1 and n_models > 1: + mode = "seed" + elif n_splits == 1 and n_models == 1: + mode = "single" + else: + raise ValueError( + "For the Gaussian model, only one of n_models or n_splits can be > 1 while the other must be 1" + ) + save_loc = conf["save_loc"] + # Check if weights file exists + weights = os.path.join(save_loc, f"{mode}/models", "best.h5") + if not os.path.isfile(weights): + raise ValueError( + f"No saved model exists at {weights}. You must train a model first. Exiting." + ) + if conf["model"]["verbose"]: + logger.info( + f"Loading a parametric DNN with pre-trained weights from path {weights}" + ) + model_class = cls(**conf["model"]) + model_class.build_neural_network( + len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) + ) + model_class.model.load_weights(weights) + + # Load the variances + model_class.training_var = np.loadtxt( + os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) + ) + if not isinstance(model_class.training_var, list): + model_class.training_var = [model_class.training_var] + + return model_class + + def predict(self, x, scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + y_out = self.model.predict(x, batch_size=_batch_size) + y_out = self.calc_uncertainties(y_out, scaler) + return y_out + def predict_monte_carlo( - self, x_test, y_test, forward_passes, scaler=None, batch_size=None + self, x_test, y_test, forward_passes, y_scaler=None, batch_size=None ): - return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=3) + """Function to get the monte-carlo samples and uncertainty estimates + through multiple forward passes + + Parameters + ---------- + data_loader : object + data loader object from the data loader module + forward_passes : int + number of monte-carlo samples/forward passes + model : object + keras model + n_classes : int + number of classes in the dataset + y_scaler : sklearn Scaler + perform inverse scaler on predicted + """ + n_samples = x_test.shape[0] + pred_size = y_test.shape[1] + _batch_size = self.batch_size if batch_size is None else batch_size + dropout_mu = np.zeros((forward_passes, n_samples, pred_size)) + dropout_aleatoric = np.zeros((forward_passes, n_samples, pred_size)) + + for i in range(forward_passes): + # output = self.model(x_test, training=True) + output = [ + self.model(x_test[i : i + _batch_size], training=True) + for i in range(0, x_test.shape[0], _batch_size) + ] + mu, aleatoric = self.calc_uncertainties( + np.concatenate(output, axis=0), y_scaler + ) + dropout_mu[i] = mu + dropout_aleatoric[i] = aleatoric + + return dropout_mu, dropout_aleatoric + def predict_dist_params(self, x, y_scaler=None, batch_size=None): + _batch_size = self.batch_size if batch_size is None else batch_size + preds = self.model.predict(x, batch_size=_batch_size) + mu, var = np.split(preds, 2, axis=-1) + if mu.shape[-1] == 1: + mu = np.expand_dims(mu, 1) + if y_scaler is not None: + mu = y_scaler.inverse_transform(mu) + + return mu, var + def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None): + num_models = len(weight_locations) + + # Initialize output_shape based on the first model's prediction + if num_models > 0: + first_model = self.model + first_model.load_weights(weight_locations[0]) + mu, var = self.predict(x, batch_size=batch_size, scaler=scaler) + output_shape = mu.shape[1:] + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_mu[0] = mu + ensemble_var[0] = var + else: + output_shape = () # Default shape if no models + ensemble_mu = np.empty((num_models,) + (x.shape[0],) + output_shape) + ensemble_var = np.empty((num_models,) + (x.shape[0],) + output_shape) + + # Predict for the remaining models + for i, weight_location in enumerate(weight_locations[1:]): + model_instance = self.model + model_instance.load_weights(weight_location) + mu, var = self.predict(x, scaler=scaler, batch_size=batch_size) + ensemble_mu[i + 1] = mu + ensemble_var[i + 1] = var + + return ensemble_mu, ensemble_var + + class CategoricalDNN(object): + """ A Dense Neural Network Model that can support arbitrary numbers of hidden layers. Attributes: @@ -861,6 +824,7 @@ class CategoricalDNN(object): verbose: Level of detail to provide during training (0 = None, 1 = Minimal, 2 = All) classifier: (boolean) If training on classes """ + def __init__( self, hidden_layers=1, @@ -1171,4 +1135,4 @@ def locate_best_model(filepath, metric="val_ave_acc", direction="max"): scores["metric"].append(func(f[metric])) best_c = scores["metric"].index(func(scores["metric"])) - return scores["best_ensemble"][best_c] \ No newline at end of file + return scores["best_ensemble"][best_c] diff --git a/evml/regression_metrics.py b/evml/regression_metrics.py new file mode 100644 index 0000000..4263dac --- /dev/null +++ b/evml/regression_metrics.py @@ -0,0 +1,120 @@ +from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score +import numpy as np +import pandas as pd +import properscoring as ps +from evml.pit import pit_deviation_skill_score + + + +def regression_metrics(y_true, y_pred, total=None, split = "val"): + """ + Compute common regression metrics for continuous data. + + Parameters: + y_true (array-like): True target values. + y_pred (array-like): Predicted target values. + + Returns: + dict: A dictionary containing common regression metrics. + """ + metrics = {} + + # Calculate Mean Squared Error (MSE) + mse = mean_squared_error(y_true, y_pred) + metrics[f'{split}_mse'] = mse + + # Calculate Root Mean Squared Error (RMSE) + rmse = np.sqrt(mse) + metrics[f'{split}_rmse'] = rmse + + # Calculate Mean Absolute Error (MAE) + mae = mean_absolute_error(y_true, y_pred) + metrics[f'{split}_mae'] = mae + + # Calculate R-squared (R2) score + r2 = r2_score(y_true, y_pred) + metrics[f'{split}_r2'] = r2 + + # Calculate Mean Absolute Percentage Error (MAPE) + mape = np.mean(np.abs((y_true - y_pred) / np.maximum(y_true, 1e-8))) * 100 + metrics[f'{split}_mape'] = mape + + if total is not None: + + # Add PIT skill-score + pitd = [] + for i, col in enumerate(range(y_true.shape[1])): + pitd.append( + pit_deviation_skill_score( + y_true[:, i], + np.stack([y_pred[:, i], total[:, i]], -1), + pred_type="gaussian", + ) + ) + metrics[f"{split}_pitd"] = np.mean(pitd) + metrics[f"{split}_crps"] = ps.crps_gaussian(y_true, mu=y_pred, sig=total).mean() + + result = calculate_skill_score( + y_true, + y_pred, + total, + num_bins=50, + log=True, + filter_top_percentile = 5 + ) + + metrics[f"{split}_crps_ss"] = r2_score(result['bin'], result['crps'], sample_weight=result["count"]) + metrics[f"{split}_rmse_ss"] = r2_score(result['bin'], result['rmse'], sample_weight=result["count"]) + + return metrics + + +def calculate_skill_score(y_true, y_pred, sigma, num_bins=10, log = False, filter_top_percentile = 5): + # Create a DataFrame from the provided data + try: + df = pd.DataFrame({'y_true': y_true[:,0], 'y_pred': y_pred[:,0], 'sigma': sigma[:,0]}) + except: + df = pd.DataFrame({'y_true': y_true, 'y_pred': y_pred, 'sigma': sigma}) + + # Dont use NaNs + df = df[np.isfinite(df)].copy() + + # Create bins based on the 'sigma' column + if log: + df['bin'] = pd.cut(np.log(df['sigma']), bins=num_bins) + else: + df['bin'] = pd.cut(df['sigma'], bins=num_bins) + + # Calculate the threshold for the top N% based on 'sigma' + threshold = np.percentile(df['sigma'], 100 - filter_top_percentile) + + # Filter the DataFrame to keep only data points below the threshold + df = df[df['sigma'] <= threshold] + + # Initialize an empty DataFrame to store results + result_df = pd.DataFrame(columns=['bin', 'rmse', 'crps', 'count']) + + # Iterate over each bin + for bin_name, bin_group in df.groupby('bin'): + + if len(bin_group["y_true"]) == 0 or len(bin_group["y_pred"]) == 0: + continue + + # Calculate RMSE for the points within the bin + rmse = np.sqrt(mean_squared_error(bin_group['y_true'], bin_group['y_pred'])) + + # Calculate R2 score for the points within the bin + crps = ps.crps_gaussian(bin_group['y_true'], mu=bin_group['y_pred'], sig=bin_group['sigma']).mean() + + # Get the left bound of the bin + bin_left = bin_name.left + if log: + bin_left = np.exp(bin_left) + + # Get the count of data points in the bin + count = len(bin_group) + + # Append the results to the result DataFrame + result_df = result_df._append({'bin': bin_left, 'rmse': rmse, 'crps': crps, 'count': count}, ignore_index=True) + + return result_df \ No newline at end of file diff --git a/notebooks/regression_example.ipynb b/notebooks/regression_example.ipynb index 9957712..9b2969f 100644 --- a/notebooks/regression_example.ipynb +++ b/notebooks/regression_example.ipynb @@ -27,7 +27,7 @@ "import matplotlib.pyplot as plt\n", "\n", "from sklearn.model_selection import GroupShuffleSplit\n", - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", + "# from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", "\n", "from functools import partial\n", "from collections import defaultdict\n", From 65f910105d95abe20d9cbc0e29836debe9ae4bc8 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 14 Sep 2023 09:57:08 -0600 Subject: [PATCH 04/11] Renaming save directories for the different ensemble options --- applications/train_classifier_ptype.py | 63 -------------------------- applications/train_gaussian_SL.py | 11 ++--- applications/train_mlp_SL.py | 16 +++---- 3 files changed, 13 insertions(+), 77 deletions(-) diff --git a/applications/train_classifier_ptype.py b/applications/train_classifier_ptype.py index 105cd4f..b902016 100644 --- a/applications/train_classifier_ptype.py +++ b/applications/train_classifier_ptype.py @@ -31,69 +31,6 @@ logger = logging.getLogger(__name__) -# def load_ptype_uq(conf, data_split=0, verbose=0, drop_mixed=False): - -# # Load -# df = pd.read_parquet(conf["data_path"]) - -# # Drop mixed cases -# if drop_mixed: -# logger.info("Dropping data points with mixed observations") -# c1 = df["ra_percent"] == 1.0 -# c2 = df["sn_percent"] == 1.0 -# c3 = df["pl_percent"] == 1.0 -# c4 = df["fzra_percent"] == 1.0 -# condition = c1 | c2 | c3 | c4 -# df = df[condition].copy() - -# # QC-Filter -# qc_value = str(conf["qc"]) -# cond1 = df[f"wetbulb{qc_value}_filter"] == 0.0 -# cond2 = df["usa"] == 1.0 -# dg = df[cond1 & cond2].copy() - -# dg["day"] = dg["datetime"].apply(lambda x: str(x).split(" ")[0]) -# dg["id"] = range(dg.shape[0]) - -# # Select test cases -# test_days_c1 = dg["day"].isin( -# [day for case in conf["case_studies"].values() for day in case] -# ) -# test_days_c2 = dg["day"] >= conf["test_cutoff"] -# test_condition = test_days_c1 | test_days_c2 - -# # Partition the data into trainable-only and test-only splits -# train_data = dg[~test_condition].copy() -# test_data = dg[test_condition].copy() - -# # Make N train-valid splits using day as grouping variable, return "data_split" split -# gsp = GroupShuffleSplit( -# n_splits=conf["ensemble"]["n_splits"], -# random_state=conf["seed"], -# train_size=conf["train_size1"], -# ) -# splits = list(gsp.split(train_data, groups=train_data["day"])) - -# train_index, valid_index = splits[data_split] -# train_data, valid_data = ( -# train_data.iloc[train_index].copy(), -# train_data.iloc[valid_index].copy(), -# ) - -# size = df.shape[0] -# logger.info("Train, validation, and test fractions:") -# logger.info( -# f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" -# ) -# print( -# f"{train_data.shape[0]/size}, {valid_data.shape[0]/size}, {test_data.shape[0]/size}" -# ) - -# data = {"train": train_data, "val": valid_data, "test": test_data} - -# return data - - class Objective(BaseObjective): def __init__(self, config, metric="val_loss"): diff --git a/applications/train_gaussian_SL.py b/applications/train_gaussian_SL.py index c93bb55..f162495 100644 --- a/applications/train_gaussian_SL.py +++ b/applications/train_gaussian_SL.py @@ -129,7 +129,7 @@ def trainer(conf, trial=False, mode="single"): splits = list(gsp.split(_train_data, groups=_train_data[split_col])) # Train ensemble of parametric models - if mode == "seed": + if mode == "deep_ensemble": ensemble_mu = np.zeros((n_models, _test_data.shape[0], len(output_cols))) ensemble_var = np.zeros((n_models, _test_data.shape[0], len(output_cols))) else: @@ -137,7 +137,6 @@ def trainer(conf, trial=False, mode="single"): ensemble_var = np.zeros((n_splits, _test_data.shape[0], len(output_cols))) best_model = None - best_data_split = None best_model_score = 1e10 if direction == "min" else -1e10 results_dict = defaultdict(list) @@ -315,7 +314,7 @@ def trainer(conf, trial=False, mode="single"): for k,v in test_metrics.items(): results_dict[k].append(v) - if mode == "seed": + if mode == "deep_ensemble": ensemble_mu[model_seed] = mu ensemble_var[model_seed] = var else: @@ -370,7 +369,7 @@ def trainer(conf, trial=False, mode="single"): np.save(os.path.join(save_loc, f"{mode}/evaluate/test_sigma.npy"), ensemble_var) # make some figures - title = "Model seed ensemble" if mode == "seed" else "Cross validation ensemble" + title = "Model seed ensemble" if mode == "deep_ensemble" else "Cross validation ensemble" compute_results( _test_data, output_cols, @@ -501,9 +500,9 @@ def trainer(conf, trial=False, mode="single"): monte_carlo_passes = conf["ensemble"]["monte_carlo_passes"] modes = [] if n_splits > 1 and n_models == 1: - mode = "data" + mode = "cv_ensemble" elif n_splits == 1 and n_models > 1: - mode = "seed" + mode = "deep_ensemble" elif n_splits == 1 and n_models == 1: mode = "single" else: diff --git a/applications/train_mlp_SL.py b/applications/train_mlp_SL.py index e8470b4..79c9562 100644 --- a/applications/train_mlp_SL.py +++ b/applications/train_mlp_SL.py @@ -262,7 +262,7 @@ def trainer(conf, trial=False, mode="single"): os.symlink(fn1, fn2) # evaluate on the test holdout split - if mode == "data" and monte_carlo_passes > 0: + if mode == "cv_ensemble" and monte_carlo_passes > 0: # elif monte_carlo_passes > 0: # mode = seed or single # Create ensemble from MC dropout dropout_mu = model.predict_monte_carlo( @@ -288,7 +288,7 @@ def trainer(conf, trial=False, mode="single"): tf.keras.backend.clear_session() gc.collect() - if mode == "ensemble": + if mode == "multi_ensemble": # Compute uncertainties for the data ensemble ensemble_mu[model_seed] = np.mean(_ensemble_pred, 0) ensemble_var[model_seed] = np.var(_ensemble_pred, 0) @@ -302,7 +302,7 @@ def trainer(conf, trial=False, mode="single"): #if k in results_dict: # results_dict[k].append(v) - elif mode == "seed" and monte_carlo_passes > 0: + elif mode == "deep_ensemble" and monte_carlo_passes > 0: # elif monte_carlo_passes > 0: # mode = seed or single # Create ensemble from MC dropout dropout_mu = best_model.predict_monte_carlo( @@ -347,7 +347,7 @@ def trainer(conf, trial=False, mode="single"): return 1.0 # We only created ensemble over model or seed but not both and no MC dropout - if mode in ["model", "seed"]: + if mode in ["cv_ensemble", "deep_ensemble"]: if n_splits == 1: mu = np.mean(_ensemble_pred_deep, 0) var = np.var(_ensemble_pred_deep, 0) @@ -443,20 +443,20 @@ def trainer(conf, trial=False, mode="single"): save_loc = conf["save_loc"] os.makedirs(save_loc, exist_ok=True) - # Load the "ensemble" details fron the config + # Load the "multi_ensemble" details fron the config n_models = conf["ensemble"]["n_models"] n_splits = conf["ensemble"]["n_splits"] monte_carlo_passes = conf["ensemble"]["monte_carlo_passes"] # How is this script supposed to run? if n_splits > 1 and n_models == 1: - mode = "data" + mode = "cv_ensemble" elif n_splits == 1 and n_models > 1: - mode = "seed" + mode = "deep_ensemble" elif n_splits == 1 and n_models == 1: mode = "single" elif n_splits > 1 and n_models > 1: - mode = "ensemble" + mode = "multi_ensemble" else: raise ValueError( "Incorrect selection of n_splits or n_models. Both must be at greater than or equal to 1." From 7e54c6b36c84bf197ae683cb4ab15842ad9dc55e Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 14 Sep 2023 13:22:11 -0600 Subject: [PATCH 05/11] Added CI test configs; model test example; updated example notebooks --- .github/workflows/python-package-conda.yml | 41 ++++++++++ .github/workflows/python-publish.yml | 39 ++++++++++ applications/evaluate_ptype.py | 5 +- applications/train_classifier_ptype.py | 8 +- config/ptype/deterministic.yml | 15 ++-- config/ptype/evidential.yml | 7 +- evml/keras/models.py | 13 ++-- evml/tests/test_models.py | 91 ++++++++++++++++++++++ notebooks/classifier_example.ipynb | 81 +++++++++++-------- 9 files changed, 253 insertions(+), 47 deletions(-) create mode 100644 .github/workflows/python-package-conda.yml create mode 100644 .github/workflows/python-publish.yml create mode 100644 evml/tests/test_models.py diff --git a/.github/workflows/python-package-conda.yml b/.github/workflows/python-package-conda.yml new file mode 100644 index 0000000..3a1f7cb --- /dev/null +++ b/.github/workflows/python-package-conda.yml @@ -0,0 +1,41 @@ +name: Python Package using Conda + +on: [push] + +jobs: + build-linux: + runs-on: ubuntu-latest + strategy: + max-parallel: 5 + defaults: + run: + shell: bash -l {0} + steps: + - uses: actions/checkout@v2 + - uses: conda-incubator/setup-miniconda@v2 + with: + miniconda-version: "latest" + mamba-version: "*" + channel-priority: true + environment-file: environment.yml + auto-activate-base: false + activate-environment: test + - shell: bash -l {0} + run: | + conda info + conda list + conda config --show-sources + conda config --show + printenv | sort + - name: Lint with flake8 + shell: bash -l {0} + run: | + mamba install flake8 + # stop the build if there are Python syntax errors or undefined names + flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide + flake8 . --count --exit-zero --max-complexity=100 --max-line-length=127 --statistics + - name: Test with pytest + shell: bash -l {0} + run: | + pytest diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml new file mode 100644 index 0000000..bdaab28 --- /dev/null +++ b/.github/workflows/python-publish.yml @@ -0,0 +1,39 @@ +# This workflow will upload a Python Package using Twine when a release is created +# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries + +# This workflow uses actions that are not certified by GitHub. +# They are provided by a third-party and are governed by +# separate terms of service, privacy policy, and support +# documentation. + +name: Upload Python Package + +on: + release: + types: [published] + +permissions: + contents: read + +jobs: + deploy: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v3 + - name: Set up Python + uses: actions/setup-python@v3 + with: + python-version: '3.x' + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install build + - name: Build package + run: python -m build + - name: Publish package + uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29 + with: + user: __token__ + password: ${{ secrets.PYPI_API_TOKEN }} diff --git a/applications/evaluate_ptype.py b/applications/evaluate_ptype.py index 442ef2f..3233b47 100644 --- a/applications/evaluate_ptype.py +++ b/applications/evaluate_ptype.py @@ -48,7 +48,10 @@ def locate_best_model(filepath, metric="val_ave_acc", direction="max"): def evaluate(conf, reevaluate=False): - output_features = conf["ptypes"] + input_features = [] + for features in conf["input_features"]: + input_features += conf[features] + output_features = conf["output_features"] n_splits = conf["ensemble"]["n_splits"] save_loc = conf["save_loc"] labels = ["rain", "snow", "sleet", "frz-rain"] diff --git a/applications/train_classifier_ptype.py b/applications/train_classifier_ptype.py index b902016..dfc8427 100644 --- a/applications/train_classifier_ptype.py +++ b/applications/train_classifier_ptype.py @@ -81,10 +81,10 @@ def custom_updates(self, trial, conf): def trainer(conf, evaluate=True, data_split=0, mc_forward_passes=0): - input_features = ( - conf["TEMP_C"] + conf["T_DEWPOINT_C"] + conf["UGRD_m/s"] + conf["VGRD_m/s"] - ) - output_features = conf["ptypes"] + input_features = [] + for features in conf["input_features"]: + input_features += conf[features] + output_features = conf["output_features"] metric = conf["metric"] # flag for using the evidential model if conf["model"]["loss"] == "dirichlet": diff --git a/config/ptype/deterministic.yml b/config/ptype/deterministic.yml index 5cdb127..569594d 100644 --- a/config/ptype/deterministic.yml +++ b/config/ptype/deterministic.yml @@ -140,6 +140,11 @@ direction: max ensemble: mc_steps: 100 n_splits: 10 +input_features: +- TEMP_C +- T_DEWPOINT_C +- UGRD_m/s +- VGRD_m/s metric: val_ave_acc model: activation: leaky @@ -162,6 +167,11 @@ model: use_dropout: 1 verbose: 0 mping_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/ +output_features: +- ra_percent +- sn_percent +- pl_percent +- fzra_percent pbs: account: NAML0001 env_setup: "source ~/.bashrc \nmodule unload cuda cudnn \nconda activate evidential\n\ @@ -176,11 +186,6 @@ pbs: queue: casper select: 1 walltime: 43200 -ptypes: -- ra_percent -- sn_percent -- pl_percent -- fzra_percent qc: '3.0' save_loc: /glade/scratch/schreck/repos/evidential/results/ptype/weighted/production/classifier scale_groups: diff --git a/config/ptype/evidential.yml b/config/ptype/evidential.yml index eb155d4..d8c804f 100644 --- a/config/ptype/evidential.yml +++ b/config/ptype/evidential.yml @@ -140,6 +140,11 @@ direction: max ensemble: mc_steps: 0 n_splits: 10 +input_features: +- TEMP_C +- T_DEWPOINT_C +- UGRD_m/s +- VGRD_m/s metric: val_ave_acc model: activation: leaky @@ -162,7 +167,7 @@ model: use_dropout: 1 verbose: 0 mping_path: /glade/p/cisl/aiml/ai2es/winter_ptypes/precip_rap/mPING_mixture/ -ptypes: +output_features: - ra_percent - sn_percent - pl_percent diff --git a/evml/keras/models.py b/evml/keras/models.py index a730d76..fedea57 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -1087,11 +1087,14 @@ def load_model(cls, conf): logging.info( f"Loading a CategoricalDNN with pre-trained weights from path {weights}" ) - - input_features = ( - conf["TEMP_C"] + conf["T_DEWPOINT_C"] + conf["UGRD_m/s"] + conf["VGRD_m/s"] - ) - output_features = conf["ptypes"] + input_features = conf["input_features"] + output_features = conf["output_features"] + + # flag for our ptype model + if all([x in conf for x in input_features]): + input_features = [conf[x] for x in input_features] + input_features = [item for sublist in input_features for item in sublist] + model_class = cls(**conf["model"]) model_class.build_neural_network(len(input_features), len(output_features)) model_class.model.load_weights(weights) diff --git a/evml/tests/test_models.py b/evml/tests/test_models.py new file mode 100644 index 0000000..660c6ae --- /dev/null +++ b/evml/tests/test_models.py @@ -0,0 +1,91 @@ +import warnings +warnings.filterwarnings("ignore") + +import yaml +import unittest +import pandas as pd +from sklearn.model_selection import GroupShuffleSplit +from sklearn.preprocessing import RobustScaler, MinMaxScaler +from evml.keras.models import BaseRegressor as RegressorDNN +from evml.keras.models import GaussianRegressorDNN +from evml.keras.models import EvidentialRegressorDNN + +class TestModels(unittest.TestCase): + def setUp(self): + # Load configurations for the models + self.mlp_config = "../../config/surface_layer/mlp.yml" + self.gaussian_config = "../../config/surface_layer/gaussian.yml" + self.evidential_config = "../../config/surface_layer/evidential.yml" + + with open(self.mlp_config) as cf: + self.mlp_conf = yaml.load(cf, Loader=yaml.FullLoader) + + with open(self.gaussian_config) as cf: + self.gaussian_conf = yaml.load(cf, Loader=yaml.FullLoader) + + with open(self.evidential_config) as cf: + self.evidential_conf = yaml.load(cf, Loader=yaml.FullLoader) + + # Instantiate and preprocess the data (as you did before)... + data_file = "../../data/sample_cabauw_surface_layer.csv" + self.data = pd.read_csv(data_file) + self.data["day"] = self.data["Time"].apply(lambda x: str(x).split(" ")[0]) + + # Initialize scalers and split data + self.x_scaler, self.y_scaler = RobustScaler(), MinMaxScaler((0, 1)) + self.input_cols = self.mlp_conf["data"]["input_cols"] + self.output_cols = ['friction_velocity:surface:m_s-1'] + + self.flat_seed = 1000 + gsp = GroupShuffleSplit(n_splits=1, random_state=self.flat_seed, train_size=0.9) + splits = list(gsp.split(self.data, groups=self.data["day"])) + train_index, test_index = splits[0] + self.train_data, self.test_data = self.data.iloc[train_index].copy(), self.data.iloc[test_index].copy() + + gsp = GroupShuffleSplit(n_splits=1, random_state=self.flat_seed, train_size=0.885) + splits = list(gsp.split(self.train_data, groups=self.train_data["day"])) + train_index, valid_index = splits[0] + self.train_data, self.valid_data = self.train_data.iloc[train_index].copy(), self.train_data.iloc[valid_index].copy() + + x_train = self.x_scaler.fit_transform(self.train_data[self.input_cols]) + x_valid = self.x_scaler.transform(self.valid_data[self.input_cols]) + x_test = self.x_scaler.transform(self.test_data[self.input_cols]) + + y_train = self.y_scaler.fit_transform(self.train_data[self.output_cols]) + y_valid = self.y_scaler.transform(self.valid_data[self.output_cols]) + y_test = self.y_scaler.transform(self.test_data[self.output_cols]) + + self.data = (x_train, y_train, x_valid, y_valid, x_test, y_test) + + def test_mlp_model(self): + x_train, y_train, x_valid, y_valid, x_test, y_test = self.data + + # Instantiate and build the MLP model + mlp_model = RegressorDNN(**self.mlp_conf["model"]) + mlp_model.build_neural_network(x_train.shape[-1], y_train.shape[-1]) + + # Test the MLP model here... + # Example: mlp_model.fit(...) and assertions + + def test_gaussian_model(self): + x_train, y_train, x_valid, y_valid, x_test, y_test = self.data + + # Instantiate and build the GaussianRegressorDNN model + gaussian_model = GaussianRegressorDNN(**self.gaussian_conf["model"]) + gaussian_model.build_neural_network(x_train.shape[-1], y_train.shape[-1]) + + # Test the GaussianRegressorDNN model here... + # Example: gaussian_model.fit(...) and assertions + + def test_evidential_model(self): + x_train, y_train, x_valid, y_valid, x_test, y_test = self.data + + # Instantiate and build the EvidentialRegressorDNN model + evidential_model = EvidentialRegressorDNN(**self.evidential_conf["model"]) + evidential_model.build_neural_network(x_train.shape[-1], y_train.shape[-1]) + + # Test the EvidentialRegressorDNN model here... + # Example: evidential_model.fit(...) and assertions + +if __name__ == "__main__": + unittest.main() \ No newline at end of file diff --git a/notebooks/classifier_example.ipynb b/notebooks/classifier_example.ipynb index a32bc26..716ff20 100644 --- a/notebooks/classifier_example.ipynb +++ b/notebooks/classifier_example.ipynb @@ -10,16 +10,26 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-08 09:50:38.473040: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "2023-09-14 11:15:26.535212: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-09-08 09:50:40.918596: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-08 09:50:40.918760: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-08 09:50:40.918772: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" + "2023-09-14 11:15:27.933118: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-14 11:15:27.933277: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-14 11:15:27.933289: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: \n", + "\n", + "TensorFlow Addons (TFA) has ended development and introduction of new features.\n", + "TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.\n", + "Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). \n", + "\n", + "For more information see: https://github.com/tensorflow/addons/issues/2807 \n", + "\n", + " warnings.warn(\n" ] } ], "source": [ "import os\n", + "import yaml\n", "import warnings\n", "import numpy as np\n", "import pandas as pd\n", @@ -77,13 +87,15 @@ "metadata": {}, "outputs": [], "source": [ - "input_features = (\n", - " conf[\"TEMP_C\"] + conf[\"T_DEWPOINT_C\"] + conf[\"UGRD_m/s\"] + conf[\"VGRD_m/s\"]\n", - ")\n", - "output_features = conf[\"ptypes\"]\n", - "metric = conf[\"metric\"]\n", - "# flag for using the evidential model\n", - "use_uncertainty = False" + "input_features = conf[\"input_features\"]\n", + "output_features = conf[\"output_features\"]\n", + "\n", + "# flag for our ptype model\n", + "if all([x in conf for x in input_features]):\n", + " input_features = [conf[x] for x in input_features]\n", + " input_features = [item for sublist in input_features for item in sublist]\n", + "\n", + "metric = conf[\"metric\"]" ] }, { @@ -102,7 +114,16 @@ "execution_count": 7, "id": "dbe754e5-f0b0-4e28-946b-2e44bb308209", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", + " warnings.warn(\n" + ] + } + ], "source": [ "scaled_data, scalers = preprocess_data(\n", " data,\n", @@ -134,8 +155,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-08 09:50:45.561914: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-08 09:50:45.561960: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", + "2023-09-14 11:15:30.239452: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-14 11:15:30.239508: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", "Skipping registering GPU devices...\n" ] }, @@ -143,13 +164,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "6/6 [==============================] - 3s 350ms/step - loss: 219.4139\n" + "6/6 [==============================] - 3s 354ms/step - loss: 215.1489\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -171,7 +192,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "10/10 [==============================] - 0s 35ms/step\n" + "10/10 [==============================] - 0s 36ms/step\n" ] } ], @@ -220,9 +241,7 @@ " conf = yaml.load(cf, Loader=yaml.FullLoader)\n", " \n", "conf[\"model\"][\"epochs\"] = 5\n", - "conf[\"model\"][\"verbose\"] = 1\n", - "\n", - "use_uncertainty = True" + "conf[\"model\"][\"verbose\"] = 1" ] }, { @@ -249,15 +268,15 @@ "output_type": "stream", "text": [ "Epoch 1/5\n", - "6/6 [==============================] - 2s 150ms/step - loss: 0.7437\n", + "6/6 [==============================] - 2s 155ms/step - loss: 0.7518\n", "Epoch 2/5\n", - "6/6 [==============================] - 1s 155ms/step - loss: 0.6324\n", + "6/6 [==============================] - 1s 142ms/step - loss: 0.6497\n", "Epoch 3/5\n", - "6/6 [==============================] - 1s 143ms/step - loss: 0.5704\n", + "6/6 [==============================] - 1s 150ms/step - loss: 0.5964\n", "Epoch 4/5\n", - "6/6 [==============================] - 1s 147ms/step - loss: 0.5796\n", + "6/6 [==============================] - 1s 146ms/step - loss: 0.6335\n", "Epoch 5/5\n", - "6/6 [==============================] - 1s 142ms/step - loss: 0.5610\n" + "6/6 [==============================] - 1s 150ms/step - loss: 0.6288\n" ] } ], @@ -275,7 +294,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "10/10 [==============================] - 0s 14ms/step\n" + "10/10 [==============================] - 0s 15ms/step\n" ] } ], @@ -361,7 +380,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVi0lEQVR4nO3daXgUddb38V9lD2SBAIEAYV9CIEACqGwjCgrogDiOCzcioI4jshhRUcdxFJcB7xEFRVFcQEe2UQS5UVEeZHFDhQSMgAubMBAEFEiIkEBSz4uYSne6A+nQlU6nv5/rypV01b9Pn+pO9elTVV1lmKZpCgAAAAAAeF2QrxMAAAAAAKCmoukGAAAAAMAmNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAmNabpXr9+vYYMGaLGjRvLMAwtW7asRj0eAAA1AfUaABBoakzTnZeXpy5dumjWrFk18vEAAKgJqNcAgEAT4usEvGXw4MEaPHhwufMLCgr097//XfPnz9exY8fUqVMnPfnkk+rXr58tjwcAAFxRrwEAgabGNN3nMmbMGO3Zs0eLFi1S48aNtXTpUg0aNEhZWVlq27atr9MDAACiXgMAap4ac3j52ezcuVMLFy7UW2+9pb59+6p169a655571KdPH82dO9fX6QEAAFGvAQA1U0A03RkZGTJNU+3atVNUVJT1s27dOu3cuVOStGfPHhmGcdaf8ePH+3hJAACouajXAICaKCAOLy8qKlJwcLA2bdqk4OBgp3lRUVGSpCZNmmj79u1njVO3bl3bcgQAINBRrwEANVFANN2pqakqLCzUoUOH1LdvX7djQkNDlZSUVMWZAQCAEtRrAEBNVGOa7hMnTmjHjh3W7d27d2vz5s2Ki4tTu3btNGLECN10002aPn26UlNTdeTIEX388cdKSUnRFVdc4dXHa9asmVeWCQCAmoZ6DQAINIZpmqavk/CGtWvX6pJLLnGZPmrUKM2bN0+nT5/W448/rjfeeEP79+9XvXr11LNnT02ZMkUpKSlefzwAAOCKeg0ACDQ1pukGAAAAAKC6CYizlwMAAAAA4As03QAAAAAA2MSvT6RWVFSkAwcOKDo6WoZh+DodAAC8wjRN5ebmqnHjxgoKqhnbx6nZAICapqL12q+b7gMHDigxMdHXaQAAYIt9+/apadOmvk7DK6jZAICa6lz12q+b7ujoaEnFCxkTE+PjbADP3dZisi1xvy7YZ0vc6+ra8+G/fvhpW+L+VhhsS1y7HDhpT75HC2wJq7ph9sS1S51Qe84bOu2/r9oQ1ZRUZNW5msAfa7Zd79F2rTuXJvzi9Zj5fvY+ujvXnnVm3SFbwmq3ccCWuLvyPrQl7vV1b7Ul7uKjr9gS1y79a42xJe472dNtiZvaeLgtcTMPLLQlbmxsnC1xW9Ue6PWYReZp7flt1TnrtV833SWHp8XExPhNAQcchRnhtsQNMkJtiRseZM8nxchgew41LTL968NieJA9b8lhNh3JG+5nRz2HBxXZFNm+Q6Vr0mHY/liz7XqPtmvdqRXs/ff+YD/7qBhhU50KsWlVtKte2/W+ZNc6Yef7qB1CDHv+z+x6b7Tr/8y+93J7/h/sW9/OXa/97CMTAAAAAAD+g6YbAAAAAACb0HQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsAlNNwAAAAAANvGviy8C52DYeP09O4yMu8OWuD3DmtsSt3bIGVvijvvhVVvi2vX8flHwky1xW5tNbIm78sTztsS1y6CocbbE/TBvji1xUXMdyrfnPc+uj1+rDjTwesz3cv3r/c7f/Ji7zNcpVAv/Nl6wJe7A2rfZEtff6iqK2bG+5eTkKDY29pzj2NMNAAAAAIBNaLoBAAAAALAJTTcAAAAAADah6QYAAAAAwCY03QAAAAAA2ISmGwAAAAAAm9B0AwAAAABgE5puAAAAAABsQtMNAAAAAIBNaLoBAAAAALBJiK8TALzJNE/bErdt9DBb4n5R8JMtcXuGNbcl7pxD+22JO7D2bbbEtev5tcvKE8/7OgXALxlGqC1x7XpvOpR/xpa4ceHe/1i348R7Xo8pSa1tem53GvbUKdjLrs9v/sauz5t2rceoOPZ0AwAAAABgE5puAAAAAABsQtMNAAAAAIBNaLoBAAAAALAJTTcAAAAAADah6QYAAAAAwCY03QAAAAAA2ISmGwAAAAAAm9B0AwAAAABgE8M0TdPXSVRWTk6OYmNjdfz4ccXExPg6HcBj/2o9zpa49+583pa4N9W705a4XxT8ZEtcFNtx4j1b4prmaVvi+hvDCLUhqimpsEbVN3+s2fa8ttL/trrNlriTd83xesw2UVd6PaZk3/uSXfmimF2vm12oU3DUNnqY12MWmae1K+/9c9Y29nQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYpNo03VOnTpVhGEpPT/d1KgAAAAAAeEW1aLq//vprzZkzR507d/Z1KgAAAAAAeE2IrxM4ceKERowYoZdfflmPP/64r9NBFTGMUFviDqx9my1x7RIfbs8qOChqnC1xdxr7bYn7Y+4yW+La9X/WJupKW+LuOPGeLXFN87Qtcf2NXf8Pdjy/OTk5io2N9Xpcb5k6dar+9re/6c4779SMGTN8nY7aRg+zJe7IuDtsiTvn0E+2xLXjvam12cTrMSWptU31emXu87bE9af3DzvZta7Z9TkAcGTH/1lF67XP93SPGzdOV155pQYMGODrVAAAwDlwdBoAAJ7xadO9aNEiZWRkaOrUqRUan5+fr5ycHKcfAABQNRyPTqtbt66v0wEAwC/4rOnet2+f7rzzTr355puKiIio0H2mTp2q2NhY6ycxMdHmLAEAQAmOTgMAwHM++073pk2bdOjQIXXr1s2aVlhYqPXr12vWrFnKz89XcHCw030eeOABTZo0ybqdk5ND4w0AQBUoOTrt66+/rtD4/Px85efnW7c5Og0AEKh81nT3799fWVlZTtPGjBmjpKQk3XfffS4NtySFh4crPDy8qlIEAAAqPTrto48+8ujotClTpticGQAA1Z/Pmu7o6Gh16tTJaVrt2rVVr149l+kAAMB3ODoNAIDK8/klwwAAQPXG0WkAAFRetWq6165d6+sUAABAGRydBgBA5fn8Ot0AAAAAANRU1WpPNwAA8A8cnQYAQMXQdMMnTPO0LXENI9SWuG2irrQl7spfltkSt230MFvi/pi7zJa4drHr/wxwZMf6VsT/rkf87b1pUNQ4W+J+mDfH6zF3eD2i3Z63JSr1pJi/rWtAdcHh5QAAAAAA2ISmGwAAAAAAm9B0AwAAAABgE5puAAAAAABsQtMNAAAAAIBNaLoBAAAAALAJTTcAAAAAADah6QYAAAAAwCY03QAAAAAA2CTE1wmgejOMUF+n4JGBtW+zJe7K3OdtiTsoapwtca+MaW5L3LbRw2yJ+2PuMlviophd/2cf5s2xJW6bqCttiWuap22Ja4ecnBzFxsb6Og2/wXtTMTv+x+16/4gPt+cjqF2fW+x6X/K3/zHAn9nz/mBWaBR7ugEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYhKYbAAAAAACb0HQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsEmIrxNA9Waap32dgkcMI9SWuG2j99sSd0fee7bE/TDPlrBqE3WlPYH9zKCocbbETYqx5y15p2HP/6+/vT+g5voxd5mvU/DIyhPP2xLXjvemD/PmeD2mJJkn7Hn/+Lfxgi1x7fofs+tzi13vz/6WL4r52+eW73LO2BLXl9jTDQAAAACATWi6AQAAAACwicdN98SJE/Xss8+6TJ81a5bS09O9kRMAAAAAADWCx033kiVL1Lt3b5fpvXr10ttvv+2VpAAAAAAAqAk8brp/+eUXxcbGukyPiYnRkSNHvJIUAAAAAAA1gcdNd5s2bbRy5UqX6R988IFatWrllaQAAAAAAKgJPD7P+6RJkzR+/HgdPnxYl156qSRp9erVmj59umbMmOHt/AAAAAAA8FseN90333yz8vPz9cQTT+ixxx6TJLVo0UKzZ8/WTTfd5PUEAQAAAADwV5W6ovnYsWM1duxYHT58WJGRkYqKivJ2XgAAAAAA+L1KNd0lGjRo4K08AAAAAACocSrUdKelpWn16tWqW7euUlNTZRhGuWMzMjK8lhxqrrbRw2yJe2fCHbbE/S7njC1xFXWlPXFt8mPuMl+n4JH0xnfaEnensd+WuCsPLLMl7gxbogI1n2GE2hK3jU3v/VfGNPd6zJ2GPbna9TnANE/bEtcudv0v2MXfnl9/MyhqnC1x/e1zi32e93rEnJwct1f2KqtCTfdVV12l8PBwSdKwYcPOKzEAAAAAAAJFhZruhx9+WJJUWFiofv36qXPnzqpbt66tiQEAAAAA4O88uk53cHCwBg4cqGPHjnnlwWfPnq3OnTsrJiZGMTEx6tmzpz744AOvxAYAAAAAwNc8arolKSUlRbt27fLKgzdt2lTTpk3Txo0btXHjRl166aW66qqrtHXrVq/EBwAA54+N5AAAVJ7HTfcTTzyhe+65RytWrFB2drZycnKcfjwxZMgQXXHFFWrXrp3atWunJ554QlFRUdqwYYOnaQEAAJuwkRwAgMrz+JJhgwYNkiQNHTrU6SzmpmnKMAwVFhZWKpHCwkK99dZbysvLU8+ePd2Oyc/PV35+vnXb0yYfAICa7tlnn63w2IkTJ1Zo3JAhQ5xuP/HEE5o9e7Y2bNigjh07epQfAACBxuOme82aNV5NICsrSz179tSpU6cUFRWlpUuXKjk52e3YqVOnasqUKV59fAAAapJnnnmmQuMMw6hw0+2oIhvJAQBAKY+b7osvvtirCbRv316bN2/WsWPHtGTJEo0aNUrr1q1z23g/8MADmjRpknU7JydHiYmJXs0HAAB/tnv3blvierKRXOLoNAAASnjcdEvSsWPH9Oqrr2r79u0yDEPJycm6+eabK3Rh8LLCwsLUpk0bSVL37t319ddfa+bMmXrppZdcxoaHh1vXCwcAAFXHk43kEkenAQBQwjBN0/TkDhs3btTAgQMVGRmpCy64QKZpauPGjTp58qQ++ugjpaWlnVdC/fv3V2JioubNm3fOsTk5OYqNjdXx48cVExNzXo/r7wwj1Ja4pnnalrh25Tuw9m22xN1p7Lcl7o+5y2yJa5dHmk+wJ+5Pz9kSF/BX3qxv//3vf7V8+XLt3btXBQUFTvOefvrpSscdMGCAWrdu7XYjueR+T3diYqItNZsaWMyOGrjyxPNejynZ9xzYxa7/BX8zKGqcr1PwCJ/fYLeK1muP93TfddddGjp0qF5++WWFhBTf/cyZM7r11luVnp6u9evXVzjW3/72Nw0ePFiJiYnKzc3VokWLtHbtWq1cudLTtAAAQBmrV6/W0KFD1bJlS33//ffq1KmT9uzZI9M0z3sjuWmaTk11WRydBgBAMY+b7o0bNzo13JIUEhKiyZMnq3v37h7F+vnnnzVy5EhlZ2crNjZWnTt31sqVK3XZZZd5mhYAACjjgQce0N13361HH31U0dHRWrJkieLj4zVixAjraiQVwUZyAAAqz+OmOyYmRnv37lVSUpLT9H379ik6OtqjWK+++qqnDw8AACpo+/btWrhwoaTiDeQnT55UVFSUHn30UV111VUaO3ZsheKwkRwAgMrzuOm+/vrrdcstt+ipp55Sr169ZBiGPv30U917770aPny4HTkCAIBKqF27tnUIeOPGjbVz507rutpHjhypcBw2kgMAUHkeN91PPfWUDMPQTTfdpDNnzkiSQkNDNXbsWE2bNs3rCQIAgMq56KKL9Nlnnyk5OVlXXnml7r77bmVlZemdd97RRRdd5Ov0AAAICB433WFhYZo5c6amTp2qnTt3yjRNtWnTRrVq1bIjPwAAUElPP/20Tpw4IUl65JFHdOLECS1evFht2rTRM8884+PsAAAIDB433TfffLNmzpyp6OhopaSkWNPz8vI0YcIEvfbaa15NEAAAVE6rVq2sv2vVqqUXXnjBh9kAABCYgjy9w+uvv66TJ0+6TD958qTeeOMNryQFAADOX6tWrfTLL7+4TD927JhTQw4AAOxT4T3dOTk5Mk1TpmkqNzdXERER1rzCwkK9//77io+PtyVJAADguT179qiwsNBlen5+vvbv3++DjAAACDwVbrrr1KkjwzBkGIbatWvnMt8wDE2ZMsWrycH3BkWNsyWuaZ62Ja6/eaT5BF+n4JFHfnrO1ykAqIDly5dbf3/44YeKjY21bhcWFmr16tVq0aKFDzLzL4YRakvcNlFX2hJ3Ze7ztsS1A58DirWNHmZL3J5hzW2JGx/u8TdTK+SNX2baEheoLiq85qxZs0amaerSSy/VkiVLFBcXZ80LCwtT8+bN1bhxY1uSBAAAFTds2DBJxRvER40a5TQvNDRULVq00PTp032QGQAAgafCTffFF18sSdq9e7cSExMVFOTx18EBAEAVKCoqkiS1bNlSX3/9terXr+/jjAAACFweHyPSvHnx4Sq//fab9u7dq4KCAqf5nTt39k5mAADgvOzevdvXKQAAEPA8broPHz6sMWPG6IMPPnA7390JWwAAgG+sW7dOTz31lLZv3y7DMNShQwfde++96tu3r69TAwAgIHh8jHh6erqOHj2qDRs2KDIyUitXrtTrr7+utm3bOp24BQAA+Nabb76pAQMGqFatWpo4caLGjx+vyMhI9e/fXwsWLPB1egAABASP93R//PHHevfdd9WjRw8FBQWpefPmuuyyyxQTE6OpU6fqyivtOSMnAADwzBNPPKH//d//1V133WVNu/POO/X000/rscce0//8z//4MDsAAAKDx3u68/LyrOtxx8XF6fDhw5KklJQUZWRkeDc7AABQabt27dKQIUNcpg8dOpTvewMAUEU8brrbt2+v77//XpLUtWtXvfTSS9q/f79efPFFJSQkeD1BAABQOYmJiVq9erXL9NWrVysxMdEHGQEAEHg8Prw8PT1d2dnZkqSHH35YAwcO1Pz58xUWFqZ58+Z5Oz8AAOChm2++WTNnztTdd9+tiRMnavPmzerVq5cMw9Cnn36qefPmaebMmb5OEwCAgOBx0z1ixAjr79TUVO3Zs0ffffedmjVrxnVAAQCoBl5//XVNmzZNY8eOVaNGjTR9+nT95z//kSR16NBBixcv1lVXXeXjLAEACAweN90lCgoKtHv3brVu3VppaWnezAmVYJqnbYnbNnqYLXHt8kjzCbbEjY+w5/l95KcXbYkLILCZpmn9ffXVV+vqq6/2YTb2s6sG2sXfaqs/SW98py1xm0SesSWuXd74hSNZgOrE4+90//bbb7rllltUq1YtdezYUXv37pUkTZw4UdOmTfN6ggAAwHOGYfg6BQAAoEo03Q888IC2bNmitWvXKiIiwpo+YMAALV682KvJAQCAymnXrp3i4uLO+gMAAOzn8eHly5Yt0+LFi3XRRRc5bUVPTk7Wzp07vZocAAConClTpig2NtbXaQAAEPA8broPHz5sXafbUV5eHoeyAQBQTdxwww1u6zUAAKhaHh9e3qNHD7333nvW7ZJG++WXX1bPnj29lxkAAKgUNoIDAFB9eLyne+rUqRo0aJC2bdumM2fOaObMmdq6dau++OILrVu3zo4cAQCABxzPXg4AAHzL4z3dvXr10meffabffvtNrVu31kcffaSGDRvqiy++ULdu3ezIEQAAeKCoqIhDywEAqCYqdZ3ulJQUvf76697OBQAAAACAGqVCTXdOTk6FA8bExFQ6GQAAAAAAapIKNd116tQ550lZTNOUYRgqLCz0SmLwzKCocfYEtulcPOmN77QlbpPIIlvi3vH9i7bEBQBUX22jh9kSt7XZxJa4/uSmevZ8Driofr4tce36HHCvLVEBVDcVarrXrFlToWCZmZnnlQwAAAAAADVJhZruiy++uNx5x48f1/z58/XKK69oy5YtSk9P91ZuAAAAAAD4NY/PXl7i448/1o033qiEhAQ999xzuuKKK7Rx40Zv5gYAAAAAgF/z6Ozl//3vfzVv3jy99tprysvL03XXXafTp09ryZIlSk5OtitHAAAAAAD8UoX3dF9xxRVKTk7Wtm3b9Nxzz+nAgQN67rnn7MwNAAAAAAC/VuE93R999JEmTpyosWPHqm3btnbmBAAAAABAjVDhPd2ffPKJcnNz1b17d1144YWaNWuWDh8+bGduAAAAAAD4tQo33T179tTLL7+s7Oxs/fWvf9WiRYvUpEkTFRUVadWqVcrNzbUzTwAAAAAA/I7HZy+vVauWbr75Zn366afKysrS3XffrWnTpik+Pl5Dhw71KNbUqVPVo0cPRUdHKz4+XsOGDdP333/vaUoAAAAAAFRLhmma5vkGKSws1P/93//ptdde0/Llyyt8v0GDBumGG25Qjx49dObMGT344IPKysrStm3bVLt27XPePycnR7GxsTp+/LhiYmLOZxFQjhfa325L3GcOHLQl7o+5y2yJCwBVqbrVt6lTp+qdd97Rd999p8jISPXq1UtPPvmk2rdvX+EY1W2ZaqK20cO8HvO2+CZejylJk3fNsSWuaZ62JS4AuFPR2ubRJcPKExwcrGHDhmnYsGEe3W/lypVOt+fOnav4+Hht2rRJf/jDH7yRGgAAOE/r1q3TuHHjnDaSX3755RXeSA4AQCDzStPtLcePH5ckxcXFuZ2fn5+v/Px863ZOTk6V5AUAQCBjIzkAAJXn8Xe67WKapiZNmqQ+ffqoU6dObsdMnTpVsbGx1k9iYmIVZwkAAM61kVwq3lCek5Pj9AMAQCCqNk33+PHj9c0332jhwoXljnnggQd0/Phx62ffvn1VmCEAAKjIRnKJDeUAAJSoFk33hAkTtHz5cq1Zs0ZNmzYtd1x4eLhiYmKcfgAAQNWpyEZyiQ3lAACU8Ol3uk3T1IQJE7R06VKtXbtWLVu29GU6AADgLEo2kq9fv/6sG8ml4g3l4eHhVZQZAADVl0+b7nHjxmnBggV69913FR0drYMHiy8jFRsbq8jISF+mBgAAfsdGcgAAKs+nTffs2bMlSf369XOaPnfuXI0ePbrqEwIAAC7YSA4AQKlff/1VmZmZ+vzzzys03ueHlwMAgOqNjeQAgED31FNP6fPPP1dGRoZ++uknj+5bra7TDQAAqh82kgMAajrTNLVnzx5lZGQoMzNTv/zyi7XRWZLeeustffXVV9bt1q1bq1OnTnr33XfPGdsw/biS5uTkKDY2VsePH/ebM5kbRqgtcXMnN7Ql7h2vXGNL3Dd+mWlLXACoCfyxvp1LTVymyto6uL8tcSMjT3k9Zqt3PvN6TACoLt5//319/PHHVqN97Ngxa15wcLByc3Otr1HNmzdPR48eVVpamrp27arY2NgK1zb2dAMAAAAAaqSCggJt3bpVmZmZ2rJli55++mkFBwdLkubPn68FCxZYY0NDQ5WSkqLU1FSlpaWpsLDQmnc+X6ei6QYAAAAA1Ajbt2/XmjVrrL3XWVlZOn36tDV/7NixSkpKkiQNHTpUcXFxVpOdnJyssLAwr+dE0w0AAAAA8CvHjh3T5s2blZGRoZEjR6pBgwaSpEWLFunRRx91GlunTh2lpaUpNTVVERER1vTrr79e119/ve250nQDAAAAAKqto0eP6ssvv7T2XmdkZGjXrl3W/Hbt2umPf/yjJKlPnz664oorrL3XaWlpat68uQzD8FX6NN0AAAAAAN8zTVN79+5VZmamOnfurFatWkmS3nvvPY0cOdJlfIsWLZSamup0ErPLLrtMl112WZXlXBE03QAAAACAKlVUVKQdO3Y47b3OyMjQr7/+Kkl65plnlJ6eLknq1q2bkpKSrL3XqampSk1NVVxcnA+XoOJougEAAAAAtjl9+rS2b9+uyMhItW3bVpL01VdfqWfPni5jQ0JC1LFjR9WuXdua1qFDB23fvr3K8vU2mm4AAAAAgFecPHlSWVlZTnuws7KylJ+fr3HjxmnWrFmSpM6dOysqKkqdOnVy2oPdqVMnhYeH+3gpvIumGwAAAADgsZycHB09elTNmzeXVHxG8fr16ztd37qE4/euJalWrVo6duyYdc3smoymu4qdeKC+LXFr//O/tsR940lbwgIAUO1tHdzflrinCrx/DVhJ6vjBalviAoAkHTlyxOX71zt27NDAgQO1cuVKScWX5mrcuLFOnTplnTm8ZC92y5YtFRQU5BQzEBpuiaYbAAAAAPA70zR1/Phx1alTx5rWpUsXffPNN27HHz582On2li1bVKdOHZ9eoqu6oekGAAAAgABUVFSkXbt2Oe29zszMVExMjHbs2GGNq1evniSpbdu2TnuvU1NTVb++85G8devWrdJl8Ac03QAAAABQwxUVFTkd3n377bdr4cKFysnJcRl79OhRnThxQlFRUZKk1157TXFxcS7fy0bF0HQDAAAAQA2Sn5+vb7/91mnv9Xfffaeff/7ZOjN4UVGRcnJyFB4ers6dOzvtvU5JSVFkZKQVr0WLFj5akpqBphsAAAAAaoAXX3xRL774orZu3aozZ864zP/222/VrVs3SdLdd9+tCRMmKCkpSaGhoVWdakCh6QYAAAAAP/Drr79a378u+b1ixQq1adNGknT8+HFt2bJFUvH3sEv2XpfswS4ZJ0nt27f3yTIEIppuAAAAAKim1qxZo+eee04ZGRn66aefXOZnZGRYzfQ111yjpKQkpaamKjExkTOIVxM03QAAAADgI6Zpas+ePU57rydPnqx+/fpJKt67vXTpUmt8q1atnPZeX3jhhda8Nm3aOO3NRvVA0w0AAAAAVWjXrl164YUXrEb72LFjTvP79OljNd29evXS008/rdTUVHXt2tXp+tnwDzTd5TjxQGNb4v7fe4NsiTv8n7aEBQCg2vuy3x9tidu+y25b4taZucuWuACql4KCAm3dutXae33JJZfommuukSTl5uZq+vTp1tjQ0FClpKRYe68vvfRSa15CQoLuuuuuKs8f3kPTDQAAAADnKTc3V//+97+tvddZWVk6ffq0Nf+3336zmu7k5GRNmDBBXbt2VVpampKTkxUWFuar1GEzmm4AAAAAqKBjx44pMzNTmZmZio+P14033mjNGzdunNPYOnXqWHuvBwwYYE0PDQ3Vs88+W2U5w7dougEAAADADdM09eGHHyojI8Pag71rV+lXRPr27Ws13dHR0br11lvVsGFD60RnzZs35wzioOkGAAAAENhM09TevXuVmZmp3NxcjRw5UpJkGIbGjBmjgwcPOo1v0aKFUlNT1adPH6fpL7/8cpXlDP9B0w0AAAAgoOzYsUMbN250ukzXr7/+Kqn4xGUlTbckXX311Tp27Ji197pr166Ki4vzVerwQzTdAAAAAGqk06dPa/v27frhhx/05z//2Zo+ZswYffrpp05jQ0JC1LFjR6WlpamgoMA6sdkLL7xQpTmj5qHpBgAAAOD3Tp48qaysLKe911lZWcrPz5dhGMrJyVFUVJQkqXfv3jp9+rS19zo1NVWdOnVSeHi4j5cCNRFNNwAAAAC/kpOTo82bN6tnz54KDQ2VJN1xxx2aN2+ey9iYmBilpqbqyJEjVtM9bdq0qkwXAY6mGwAAAEC1deTIEae91xkZGdqxY4ck6ZtvvlFKSookKS0tTStWrFC3bt2Umppq7cVu2bKlgoKCfLkICHA1oun+dVKqzoQFezVmVKscr8YrMfybubbEBQDAHzzRcbLCg8K8GvPhZ7/0arwSwVcdtiUuAPdM09T+/ftVp04da4/0jBkzdNddd7kdn5iYqEOHDlm3x44dq/Hjx3OJLlQ7NaLpBgAAAOA/ioqKtGvXLqe915mZmTp8+LDeeecdXX311ZKk9u3bS5Latm3rtPc6NTVV9evXd4oZEkJrg+qJ/0wAAAAAtjlz5owKCgpUq1YtSdLq1av1pz/9STk5rkeWBgcHa+/evdbtSy65RMePH1dMTEyV5Qt4G003AAAAAK84deqUvv32W6c92N98840effRR3XvvvZKkZs2aKScnR+Hh4UpJSXHae52SkqLIyEgrXkREhCIiIny1OIBX+LTpXr9+vf71r39p06ZNys7O1tKlSzVs2DBfpgQAAACgAkzTtL4/vXfvXg0dOlRbt27VmTNnXMZmZWVZf7du3VqbN29WcnKydeZxoCbz6Wn88vLy1KVLF82aNcuXaQAAgHNYv369hgwZosaNG8swDC1btszXKQGoQr/++qtWr16tf/3rXxo+fLiSkpJ0xx13WPMbNmxoNdxxcXEaMGCAJk+erIULF+r77793upRXUFCQunTpQsONgOHTPd2DBw/W4MGDfZkCAACogJIN5WPGjNE111zj63QAVIEzZ87o+uuv16ZNm/TTTz+5zI+Ojrb+Dg8P18qVK9W2bVslJiZyBnHAAd/pBgAA58SGcqDmMU1Te/bscTp7eExMjBYtWiSp+GzgmzdvthruVq1aWd+9LvntqH///lW+DIA/8KumOz8/X/n5+dZtd2c8BAAAvkfNBqqvxx9/XB9//LEyMzN17Ngxp3l16tRx+q72jBkzFB0dra5du6pOnTpVnyxQA/hV0z116lRNmTLF12kAAIBzoGYDvlNQUKCtW7dae6/379+vpUuXWvPXr1+vNWvWSJJCQ0OVkpLidA1sx6Z7yJAhPlkGoCbxq6b7gQce0KRJk6zbOTk5SkxM9GFGAADAHWo2ULWWLl2q9957TxkZGfr22291+vRpp/lHjhxR/fr1JUnjxo3TDTfcoNTUVHXs2FFhYWG+SBkIGH7VdIeHhys8PNxleq1bG6tWlHcXJazTD16NBwCAJJ08eVLZ2dkuP1dffbV69OghSfrggw98nOX5K69m3/3WVsV4uWYHdzrs1XhAdXXs2DFt3rzZ2oP90ksvqVatWpKkVatW6dVXX7XG1qlTx2nvteO1rq+66qoqzx0IZD5tuk+cOKEdO3ZYt3fv3q3NmzcrLi5OzZo182FmAABUnGmaOn78uLKzs3Xw4EGrkR4wYIC6dOkiSfroo4903XXX6fjx425jJCQkWE13XFxcleUOoPrasmWL3nvvPWVmZiojI0O7du1ymj9+/HhdeOGFkoob6bi4OKvRbtGiBWcQB6oJnzbdGzdu1CWXXGLdLjkMbdSoUU7X8gMAwBeKiop05MgRpz3SF154oZKTkyVJ69at05gxY5Sdna1Tp0653H/GjBlW0x0dHW013BEREUpISHD66dSpk3W/rl272r9wHmJDOWAP0zS1b98+a+/1mDFj1KJFC0nS6tWr9eCDDzqNb9GihdVYN2zY0Jo+cOBADRw4sCpTB1BBPm26+/XrJ9M0fZkCACAAnT592mmPdMeOHdWmTRtJ0oYNGzR+/HhlZ2fr559/VmFhodN9Z8yYYTXd4eHh2r17tzUvNjZWCQkJatSokRISEqyYUnEjvW3bNiUkJCg2Nvase6DcHZbta2woB7zj0KFD1pnDSy7V9euvv1rz27VrZzXdffr00fDhw50u0cWRMID/8avvdAMAcDZ5eXnWId7Nmze3TtyVmZmp+++/32qyjxw54nS/Z555Runp6ZIkwzC0adMmp/kNGjSw9kg3btzYmt6pUyd9+umnVqNd8t1KdyIjI9WhQwcvLWnVY0M54JnTp09r+/btyszMVFpamlJSUiQVb9gbPny409iQkBB17NhRaWlpat68uTX9ggsu0IIFC6o0bwDeR9MNAKjWTNPU0aNHlZ2drXr16qlRo0aSpK1bt+rxxx93OvQ7NzfXut/TTz+tu+66S1Lxh9+PPvrIKW5oaKi1R7pu3brW9A4dOmj58uVWkx0fH6/Q0FC3uUVFRal3797eXmQAfqagoECbN2922nudlZVlXav+kUcesZrutLQ0XXjhhU4nOevUqVO1PMIFgHfQdAMAfKKwsFCHDh1SRESE1fT++OOPmjFjhlMjffDgQeuD6/Tp063Dmn/77TctWrTIJW6tWrWUkJDgdAmcdu3aae7cuWrcuLHVTMfFxSkoKMjl/jExMVyXFkC5cnJytGXLFkVFRSk1NVWStGPHDuuEZo5iYmKUmprqdLm8pk2basOGDVWWLwDfo+kGAHhVfn6+CgsLrUOtf/rpJ73yyisul8g6dOiQioqK9NRTT+nuu++WJB0/flwvvPCC27h169Z1+n51mzZtNH36dJcTkkVHR7t8X7pOnToaPXq0PQsMoMY6fPiwMjMzrT3YmZmZ+vHHHyVJN954o/79739Lktq3b6/mzZsrKSnJaQ92y5Yt3W7cAxBYaLoBABVSWFio4OBgSVJ2drYWL16s7OxsHThwwKmZPnr0qP71r3/pnnvukVT8ofXxxx93GzMoKMjpkPCWLVvqwQcfdGmkGzVq5HSNWam4CS/Z6w0A58M0TR04cEBHjx61riRw8uRJNWrUSEVFRS7jExMTnU5oFhwcrD179lRVugD8DE03AEBScXP8/vvvu+yRLjnE++GHH9a9994rqbjpLvm+tDsHDx60/m7RooXuuOMOp7N6O35fuqSRl6R69eqV26ADgDcUFRVp165dTnuvMzIydPjwYfXs2VOff/65pOKTHyYnJys/P99p73Vqaqrq16/v46UA4E9qRNMdmnyTQmPKP2MsAASqY8eO6ZNPPnFpoEv+vuuuu6zmed++fWc9BDs7O9v6u1mzZrr++utd9kiX/DiemKx+/fp6/vnnbVtG+BdqNqrSmTNndODAAadryXfu3Flbt251GRscHKyioiKZpml9RWXTpk1O54cAgMqoEU03AASSvLw8bd682al5dvy57bbbdMcdd0iSdu/eraFDh5Yba+/evdbfTZs21WWXXVZuI+14qaz69eu7PYkZAPhKfn6+vv32W6e911u2bFF0dLR+/vlnq5Fu06aNduzYoZSUFKe91ykpKYqMjHSKScMNwBtougGgGigoKNCuXbvcNtHZ2dkaMWKEbrnlFknFZ/ju06dPubF++OEH6+8mTZqoW7duLt+PLvm7ZcuW1tj4+HiXy2oBQHX022+/WSdrlKS//OUvmjdvns6cOeMyNiQkREeOHFGDBg0kSS+//LLq1KlT7qUAAcDbaLoBwCZFRUU6cuRIud+RHjZsmEaMGCFJ2r59u7p27VpurM6dO1t/N27cWC1btnT7HemEhAQlJSVZY+Pj47Vx40bblhEA7Pbrr786nUE8IyNDP/74o3755RfVqVNHkhQbG6szZ84oLi7Oae91Wlqa2rRp43QG8ZLmGwCqCk03AHjo9OnT1qHdZQ/xvuyyy/TnP/9ZkvTtt9+qS5cu5cZp3Lix1XQnJCQoJiam3EO7HZvu+Ph47dq1y96FBAAfcPw+9ezZs/Xkk0/qp59+cjs2KytLffv2lSSlp6dr4sSJSkxMdLlkIAD4Gk03APzut99+c7tXunfv3vrjH/8oSdq2bZs6duxYbozw8HCr6U5ISJBUvFfF3SWwevToYd0vPj5ex48ft3HpAKD6ME1Te/bscfr+dWZmpt577z2lpaVJkgzDsBruVq1aOe29Tk1NVcOGDa14TZs29clyAEBF0HQDqNFM09SxY8dcGunU1FQNGDBAUvF3oLt37+50vWhH48ePt5ru+Ph4ScXfEXQ8tLvk7969e1v3q1+/vgoKCvjeIAD8bs2aNXrssceUmZmpY8eOuczPyMiwmu6hQ4cqKSlJXbt2tQ4jBwB/RNMNwC8VFhbq8OHDTod4t2vXzjrB2O7du3XppZcqOztb+fn5LvcfN26c1XTHxcVZDXdkZKTLXulLLrnEul+9evV06NAh1atXz+k7gu4YhkHDDSCgFBQUaOvWrU57r++55x5dffXVkorfu9esWSNJCg0NVUpKitM1sMuev8LxqgkA4K9ougFUK/n5+fr555+tPdKJiYnq1q2bpOLrSA8bNkzZ2dk6dOiQCgsLne57xx13WE13bGys9uzZY82rU6eOUyN9wQUXWPPq1aun7777TgkJCYqOjj7r9wENw+AkPADgYNeuXfrnP/+pzMxMZWVl6fTp007zN2zYYDXdPXr00CuvvKK0tDR17NiRS3IBCAh+3XSbpilJysk56fXYwcrxekwgkJ04cUI///yzDh48qHr16lln2D548KD++te/6uDBg/r555919OhRp/vdcsstevrppyUVnw08IyPDaX6DBg3UqFEjNWzYUC1btlROTvG6GxwcrI8++kgNGzZUw4YNXa69KskaK5V+/7q8Q8yBqlTyv1lS52oCarZ/O3bsmLKysvTNN99o8+bN6tOnj0aNGiVJysvL06uvvmqNjY2NVefOndWlSxd16dJFF154ofU/bRiGrr32WknSqVOndOrUqapfGADwkorWa8P044r+3//+V4mJib5OAwAAW+zbt6/GnCCKmg0AqKnOVa/9uukuKirSgQMHznk4KCovJydHiYmJ2rdvn2JiYnydTsDh+fctnn/fCuTn3zRN5ebmqnHjxuc8d4C/qEk1O5D+NwNpWaXAWt5AWlYpsJY3kJZV8u3yVrRe+/Xh5UFBQTVmD0B1FxMTExArbXXF8+9bPP++FajPf2xsrK9T8KqaWLMD6X8zkJZVCqzlDaRllQJreQNpWSXfLW9F6nXN2HwOAAAAAEA1RNMNAAAAAIBNaLpxVuHh4Xr44YcVHh7u61QCEs+/b/H8+xbPP6qrQPrfDKRllQJreQNpWaXAWt5AWlbJP5bXr0+kBgAAAABAdcaebgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oemGi6lTp6pHjx6Kjo5WfHy8hg0bpu+//97XaQWsqVOnyjAMpaen+zqVgLF//37deOONqlevnmrVqqWuXbtq06ZNvk4rIJw5c0Z///vf1bJlS0VGRqpVq1Z69NFHVVRU5OvUUIO98MILatmypSIiItStWzd98skn5Y595513dNlll6lBgwaKiYlRz5499eGHHzqNmTdvngzDcPk5deqU3YtyTp4s69q1a90ux3fffec0bsmSJUpOTlZ4eLiSk5O1dOlSuxejwjxZ3tGjR7td3o4dO1pjqutru379eg0ZMkSNGzeWYRhatmzZOe+zbt06devWTREREWrVqpVefPFFlzHV9bX1dHn9eb31dFn9fb31dHn9Zb2l6YaLdevWady4cdqwYYNWrVqlM2fO6PLLL1deXp6vUws4X3/9tebMmaPOnTv7OpWAcfToUfXu3VuhoaH64IMPtG3bNk2fPl116tTxdWoB4cknn9SLL76oWbNmafv27frf//1f/etf/9Jzzz3n69RQQy1evFjp6el68MEHlZmZqb59+2rw4MHau3ev2/Hr16/XZZddpvfff1+bNm3SJZdcoiFDhigzM9NpXExMjLKzs51+IiIiqmKRyuXpspb4/vvvnZajbdu21rwvvvhC119/vUaOHKktW7Zo5MiRuu666/Tll1/avTjn5Onyzpw502k59+3bp7i4OF177bVO46rja5uXl6cuXbpo1qxZFRq/e/duXXHFFerbt68yMzP1t7/9TRMnTtSSJUusMdX5tfV0ef15vfV0WUv463rr6fL6zXprAudw6NAhU5K5bt06X6cSUHJzc822bduaq1atMi+++GLzzjvv9HVKAeG+++4z+/Tp4+s0AtaVV15p3nzzzU7T/vSnP5k33nijjzJCTXfBBReYt99+u9O0pKQk8/77769wjOTkZHPKlCnW7blz55qxsbHeStFrPF3WNWvWmJLMo0ePlhvzuuuuMwcNGuQ0beDAgeYNN9xw3vmer/N9bZcuXWoahmHu2bPHmlZdX1tHksylS5eedczkyZPNpKQkp2l//etfzYsuusi6XZ1fW0cVWV53/GW9dVSRZfX39dZRZV7b6rresqcb53T8+HFJUlxcnI8zCSzjxo3TlVdeqQEDBvg6lYCyfPlyde/eXddee63i4+OVmpqql19+2ddpBYw+ffpo9erV+uGHHyRJW7Zs0aeffqorrrjCx5mhJiooKNCmTZt0+eWXO02//PLL9fnnn1coRlFRkXJzc11q5IkTJ9S8eXM1bdpUf/zjH132qFW181nW1NRUJSQkqH///lqzZo3TvC+++MIl5sCBAyv8/NnFG6/tq6++qgEDBqh58+ZO06vba1sZ5b1uGzdu1OnTp886xtevrTf4y3p7PvxxvfWG6rre0nTjrEzT1KRJk9SnTx916tTJ1+kEjEWLFikjI0NTp071dSoBZ9euXZo9e7batm2rDz/8ULfffrsmTpyoN954w9epBYT77rtPw4cPV1JSkkJDQ5Wamqr09HQNHz7c16mhBjpy5IgKCwvVsGFDp+kNGzbUwYMHKxRj+vTpysvL03XXXWdNS0pK0rx587R8+XItXLhQERER6t27t3788Uev5u+JyixrQkKC5syZoyVLluidd95R+/bt1b9/f61fv94ac/DgwfN6/uxyvq9tdna2PvjgA916661O06vja1sZ5b1uZ86c0ZEjR846xtevrTf4y3pbGf683p6v6rzehlTZI8EvjR8/Xt98840+/fRTX6cSMPbt26c777xTH330kc+/RxSIioqK1L17d/3zn/+UVLyleOvWrZo9e7ZuuukmH2dX8y1evFhvvvmmFixYoI4dO2rz5s1KT09X48aNNWrUKF+nhxrKMAyn26ZpukxzZ+HChXrkkUf07rvvKj4+3pp+0UUX6aKLLrJu9+7dW2lpaXruuef07LPPei/xSvBkWdu3b6/27dtbt3v27Kl9+/bpqaee0h/+8IdKxaxqlc1t3rx5qlOnjoYNG+Y0vTq/tp5y99yUnV6dX9vK8sf11hM1Yb2trOq83rKnG+WaMGGCli9frjVr1qhp06a+TidgbNq0SYcOHVK3bt0UEhKikJAQrVu3Ts8++6xCQkJUWFjo6xRrtISEBCUnJztN69ChwzlPNATvuPfee3X//ffrhhtuUEpKikaOHKm77rqLoz5gi/r16ys4ONhl786hQ4dc9gKVtXjxYt1yyy36z3/+c86vAQUFBalHjx4+3WN2Psvq6KKLLnJajkaNGp13TDucz/KapqnXXntNI0eOVFhY2FnHVofXtjLKe91CQkJUr169s47x9Wt7PvxtvfUWf1lvz0d1X29puuHCNE2NHz9e77zzjj7++GO1bNnS1ykFlP79+ysrK0ubN2+2frp3764RI0Zo8+bNCg4O9nWKNVrv3r1dLpH3ww8/uHw3CPb47bffFBTkXJqCg4O5ZBhsERYWpm7dumnVqlVO01etWqVevXqVe7+FCxdq9OjRWrBgga688spzPo5pmtq8ebMSEhLOO+fKquyylpWZmem0HD179nSJ+dFHH3kU0w7ns7zr1q3Tjh07dMstt5zzcarDa1sZ5b1u3bt3V2ho6FnH+Pq1rSx/XG+9xV/W2/NR7ddbH5y8DdXc2LFjzdjYWHPt2rVmdna29fPbb7/5OrWAxdnLq85XX31lhoSEmE888YT5448/mvPnzzdr1aplvvnmm75OLSCMGjXKbNKkiblixQpz9+7d5jvvvGPWr1/fnDx5sq9TQw21aNEiMzQ01Hz11VfNbdu2menp6Wbt2rWtM9/ef//95siRI63xCxYsMENCQsznn3/eqUYeO3bMGvPII4+YK1euNHfu3GlmZmaaY8aMMUNCQswvv/yyypfPkafL+swzz5hLly41f/jhB/Pbb78177//flOSuWTJEmvMZ599ZgYHB5vTpk0zt2/fbk6bNs0MCQkxN2zYUOXLV5any1vixhtvNC+88EK3Mavra5ubm2tmZmaamZmZpiTz6aefNjMzM82ffvrJNE3XZd21a5dZq1Yt86677jK3bdtmvvrqq2ZoaKj59ttvW2Oq82vr6fL683rr6bL6+3rr6fKWqO7rLU03XEhy+zN37lxfpxawaLqr1v/93/+ZnTp1MsPDw82kpCRzzpw5vk4pYOTk5Jh33nmn2axZMzMiIsJs1aqV+eCDD5r5+fm+Tg012PPPP282b97cDAsLM9PS0pwukTlq1Cjz4osvtm5ffPHFbmvkqFGjrDHp6elms2bNzLCwMLNBgwbm5Zdfbn7++edVuETl82RZn3zySbN169ZmRESEWbduXbNPnz7me++95xLzrbfeMtu3b2+GhoaaSUlJTh/ufc2T5TVN0zx27JgZGRlZ7vt+dX1tSy4TVd7/pbtlXbt2rZmammqGhYWZLVq0MGfPnu0St7q+tp4urz+vt54uq7+vt5X5X/aH9dYwzd/PmgAAAAAAALyK73QDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYhKYbABDw1q9fryFDhqhx48YyDEPLli2z9fGmTp2qHj16KDo6WvHx8Ro2bJi+//57Wx8TAICaoKprtjcej6YbCBB79uyRYRjavHmzr1NxMXr0aA0bNszXaSCA5eXlqUuXLpo1a1aVPN66des0btw4bdiwQatWrdKZM2d0+eWXKy8vr0oeH0D11a9fP6Wnp591TIsWLTRjxgzbc1m7dq0Mw9CxY8cqfJ+K5A+cj6qu2d54PJpuwE+MHj1ahmG4/AwaNKhC909MTFR2drY6dep0zrFV3aDPnDlT8+bNq5LHAtwZPHiwHn/8cf3pT39yO7+goECTJ09WkyZNVLt2bV144YVau3ZtpR9v5cqVGj16tDp27KguXbpo7ty52rt3rzZt2lTpmACqh/Ot1++8844ee+wxm7N05a5Z7tWrl7KzsxUbG1vl+QDlqeqafa7Hq4iQSt8TQJUbNGiQ5s6d6zQtPDy8QvcNDg5Wo0aN7EjrvFHMUd2NGTNGe/bs0aJFi9S4cWMtXbpUgwYNUlZWltq2bXve8Y8fPy5JiouLO+9YAHzvfOp1dXofCAsLq7afHYDy2F2zK4M93YAfCQ8PV6NGjZx+6tatK0kyDEOzZ8/W4MGDFRkZqZYtW+qtt96y7lt27/XRo0c1YsQINWjQQJGRkWrbtq31AaFly5aSpNTUVBmGoX79+llx5s6dqw4dOigiIkJJSUl64YUXXB7jP//5j/r27avIyEj16NFDP/zwg77++mt1795dUVFRGjRokA4fPmzdr+zh5UVFRXryySfVpk0bhYeHq1mzZnriiSe8/XQCFbJz504tXLhQb731lvr27avWrVvrnnvuUZ8+fVw+VFeGaZqaNGmS+vTpU6EjUQBUf+XV6+HDh+uGG25wGnv69GnVr1/fej8pu8f50KFDGjJkiFXb58+f7/J4x48f12233ab4+HjFxMTo0ksv1ZYtW6z5jzzyiLp27ap///vfatGihWJjY3XDDTcoNzdXUnEdXrdunWbOnGntmd+zZ4/L4eW//PKLhg8frqZNm6pWrVpKSUnRwoULvfzsAZVnd82uLJpuoAZ56KGHdM0112jLli268cYbNXz4cG3fvr3csdu2bdMHH3yg7du3a/bs2apfv74k6auvvpIk/b//9/+UnZ2td955R5L08ssv68EHH9QTTzyh7du365///Kceeughvf76606xH374Yf39739XRkaGQkJCNHz4cE2ePFkzZ87UJ598op07d+of//hHucvxwAMP6Mknn7RyXLBggRo2bOiNpwjwWEZGhkzTVLt27RQVFWX9rFu3Tjt37pRUusHpbD/jx493G3/8+PH65ptv+OAKBIARI0Zo+fLlOnHihDXtww8/VF5enq655hq39xk9erT27Nmjjz/+WG+//bZeeOEFHTp0yJpvmqauvPJKHTx4UO+//742bdqktLQ09e/fX7/++qs1bufOnVq2bJlWrFihFStWaN26dZo2bZqk4q959ezZU3/5y1+UnZ2t7OxsJSYmuuRy6tQpdevWTStWrNC3336r2267TSNHjtSXX37pracIOC921+zK4vBywI+sWLFCUVFRTtPuu+8+PfTQQ5Kka6+9Vrfeeqsk6bHHHtOqVav03HPPOe2NLrF3716lpqaqe/fukopPylKiQYMGkqR69eo5HVb22GOPafr06dZ3Wlq2bKlt27bppZde0qhRo6xx99xzjwYOHChJuvPOOzV8+HCtXr1avXv3liTdcsst5X6HOzc3VzNnztSsWbOsmK1bt1afPn0q9iQBXlZUVKTg4GBt2rRJwcHBTvNK1scmTZqUu4GrRMlRKY4mTJig5cuXa/369WratKn3kgbgU+XV6/vvv1+1a9fW0qVLNXLkSEnSggULNGTIEMXExLjE+eGHH/TBBx9ow4YNuvDCCyVJr776qjp06GCNWbNmjbKysnTo0CHrEPannnpKy5Yt09tvv63bbrtNUvF72bx58xQdHS1JGjlypFavXq0nnnhCsbGxCgsLU61atc56OHmTJk10zz33WLcnTJiglStX6q233rLyA3zJzpp9Pmi6AT9yySWXaPbs2U7THL/71bNnT6d5PXv2LPdkaGPHjtU111yjjIwMXX755Ro2bJh69epV7mMfPnxY+/bt0y233KK//OUv1vQzZ864fCe7c+fO1t8le6hTUlKcpjlupXe0fft25efnq3///uXmAlSl1NRUFRYW6tChQ+rbt6/bMaGhoUpKSqpwTNM0NWHCBC1dulRr1661vtIBoGYor16Hhobq2muv1fz58zVy5Ejl5eXp3Xff1YIFC9zG2b59u0JCQqwN5JKUlJSkOnXqWLc3bdqkEydOqF69ek73PXnypLVnTyreuF7ScEtSQkJCubW4PIWFhZo2bZoWL16s/fv3Kz8/X/n5+apdu7ZHcQC72FGzvYGmG/AjtWvXVps2bTy6j2EYbqcPHjxYP/30k9577z39v//3/9S/f3+NGzdOTz31lNvxRUVFkooPMS+7NbvslsTQ0FCXxy87rSReWZGRkedYIsD7Tpw4oR07dli3d+/erc2bNysuLk7t2rXTiBEjdNNNN2n69OlKTU3VkSNH9PHHHyslJUVXXHGFx483btw4LViwQO+++66io6N18OBBScUnFWQdAPzf2er1iBEjdPHFF+vQoUNatWqVIiIiNHjwYLdjTdOUVH4tl4rrc0JCgtuzMzs25451uCRmebW4PNOnT9czzzyjGTNmKCUlRbVr11Z6eroKCgo8igOcj6qu2Wd7vGbNmlUoBt/pBmqQDRs2uNw+25a8Bg0aaPTo0XrzzTc1Y8YMzZkzR1Lx2Uql4i3aJRo2bKgmTZpo165datOmjdOPN/fStW3bVpGRkVq9erXXYgLnsnHjRqWmpio1NVWSNGnSJKWmplrnHpg7d65uuukm3X333Wrfvr2GDh2qL7/80u13Hiti9uzZOn78uPr166eEhATrZ/HixV5bJgDVU69evZSYmKjFixdr/vz5uvbaa626W1aHDh105swZbdy40Zr2/fffO103Oy0tTQcPHlRISIhLfS45V0tFhIWFOdV9dz755BNdddVVuvHGG9WlSxe1atVKP/74Y4UfA/CGqq7Z53q8imBPN+BH8vPzrT1iJUJCQqyi+tZbb6l79+7q06eP5s+fr6+++kqvvvqq21j/+Mc/1K1bN3Xs2FH5+flasWKF9R2x+Ph4RUZGauXKlWratKkiIiIUGxurRx55RBMnTlRMTIwGDx6s/Px8bdy4UUePHtWkSZO8sowRERG67777NHnyZIWFhal37946fPiwtm7dqltuucUrjwGU1a9fP2uPkjuhoaGaMmWKpkyZ4pXHO9tjAfB/Z6vXhmHof/7nf/Tiiy/qhx9+0Jo1a8qN0759ew0aNEh/+ctfNGfOHIWEhCg9Pd3piJgBAwaoZ8+eGjZsmJ588km1b99eBw4c0Pvvv69hw4Y5HZp+Ni1atNCXX36pPXv2KCoqyu2ly9q0aaMlS5bo888/V926dfX000/r4MGDTt8xB+xW1TX7XI9XEezpBvzIypUrnfaKJSQkOJ1gbMqUKVq0aJE6d+6s119/XfPnz1dycrLbWGFhYXrggQfUuXNn/eEPf1BwcLAWLVokqfiDwbPPPquXXnpJjRs31lVXXSVJuvXWW/XKK69o3rx5SklJ0cUXX6x58+Z5/fuoDz30kO6++2794x//UIcOHXT99dd7/L0zAAB85Vz1esSIEdq2bZuaNGlinWS0PHPnzlViYqIuvvhi/elPf7IuDVbCMAy9//77+sMf/qCbb75Z7dq10w033KA9e/Z4dOWPe+65R8HBwUpOTlaDBg20d+9elzEPPfSQ0tLSNHDgQPXr10+NGjVyuuQnAPcMk83tQI1gGIaWLl1K8QMAAACqEfZ0AwAAAABgE5puAAAAAABswonUgBqCb4oAAAAA1Q97ugEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYhKYbAAAAAACb0HQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYhKYbAAAAAACb0HQDAAAAAGCTEF8ncL5OnTqlgoICX6cBAIBXhYWFKSIiwtdpeBU1GwBQ01SkXvt1033q1ClFRkb6Og0AALyuUaNG2r17d41pvKnZAICaqCL12q+b7tKt5cGSjN//NlRy1LxRcvS8EeQyzTCCrPGGEewyr+w4xzGGYfz+d7A1Jkiu41xi/f47yAgu/VvO44MUZMUN+n2ZrNhyuJ9ZGjPI4b6O84Kc4hrWPEMl+RvO82SUTjNKpzk8U07zDMl6LqwxRun4IKPs/UpfpZJ5QZKMknHW+NJ5pXFL7+cuRsmYoDIxDMNNjLOMD3I73rQGBZWZ5hzfdIofZJguuRoyHXI723jTZYw1zXG8Na00n9JYptNju5vmGN/62yhZXtNhOUvGld4um6Mh12mOt42y4w3TKd+y89xNK41bVO48BZU+tlF2XMlbgmM+QSUxitzmWDLGihXkMM/hvo6PbRil4+SQgzUtqGxepvtpv4+1ls1xOcqMl+P4IOfxCjLdTFPp4ziudCW/f/8nMcqu0EGGw8oaVDotqOTvINfxZeaZQUHS7++VrvcLKp5fdl5Q8XjTehFL7h8s03qs38cEBTv/7TSv9LFL54U4zA9xztUIKZ5fMs4aE+w0reS34TDeMH6fZ4TIsKYFO80LMkJcpwUFKSfnpFok3qmCgoIa03SX1uySjx7O/3iGghz/4axpjvVaKluPXWu7ax0urdkl4x1rtku9d3jsIKNsjXas36W1ufi24TLNUJBTvXa8X5DDvNIlDHKq18XTSmu2Y722phnO0xxrtmO9LnkuHOu14/ji+lpar0vu567Wlvx299ZRMq9C9dVhjNsafZbxbj8DONRrOY0x3cQ3nepv2Vytulqh8Q71yXFa2fEO9dKl/sl0qtcl06x8ysR3rJOy5jnU0LL1281nBse8zlZzS3+7Lm9F6n3QWeqrghwf27Feyu14p3rs7jHL1OXi8c510jCKnOq14/3kmKubOuyujrut7WU+dzjNKzs+qHS8lZdjzXas15IcWh3nFbjk8YLKrjCGc72WytTXsitMkHO9lpxrtrua7jLPoWYbZetwac12rdGO9dv5sYvnhZQZH+JcryWnumzVdMeaXbZGO97+fZpjzXas1yXTSsZ7Uq/9uul2VFIoitce45zTSoqNyivaLk236wcAx6a7dHyZAm2UNtGeN92uhd11mpum26HRdmm6HQr6+TbdQQ7Po+dNt2OMsuNLb59v0+2+iXYc71poy2u6HeNXuul2KNrebLqDPG66XeO7K5zuirY1r5JN97mmlRvfobCdrek2ztp0n61AG84NdZn7WR/c3TbdrvNKi7DOOs26n7tpv491+cAQZJYWWJdPvYbK9Chy08s4FHHncdbvszXdjoW87LSzFG+nAu2usf79d2kRPkvT7VCozbJF/qxNt7t57prukscrp+l2U9yLn5IQKSi09G9Jzk2382/3TffvedVghhw23jjWJDfTjDL/5O7rsWPT7Tqt+Hawm3kO9bhsbfe46Q46xzQ3TXeZGu3UdLvMq3zT7a5GV7zpLhvDcbycxp9P0+2+iS473jzH+LK1sGRMJZpud01uueM9a7qDPG66XeO7q5Nn2zBemabb3TSXWGdruh1q9tk2artvuj2rx+5qeun4sk23m3rvpuaea1rZXJ3qeNnm2bFmu2uUy9Rhp5pddpqnTbfjxnJ389w24m4a6jLzSse4a8gdara7jd+/365YjT5X0+1QryW5bbod57k03Q4126XpDtHZm+6K1+ugcw8BAAAAAACVQdMNAAAAAIBNaLoBAAAAALAJTTcAAAAAADah6QYAAAAAwCY03QAAAAAA2ISmGwAAAAAAm9SY63Sbv19zsPiXKYcbv/92N02SilR6cbyzcRxjlplnlj5+mTFFKr02cunVMU2nv53nBVnjy160z1CRSq4SaZql1/20ppWZZzrELblapGkGqagi1+l2+O1ynW7r/o7TSseUvXSg4xh3lwN2viqrwxjTIUYlrwvq9jqfZxl/tut0yxvX6ZbpkJv3rtNtOORTGuts1+l2zaHstTbl7jrdZ7kGaEWv0+18bW33y1vudbqtuOVfp1tnvU63XMaXXqvz7NcRtWK5vU53kdNjG4bDtTndXHdUQW6uH+5u2u9jrWVzXI4y1xhVUOnv0sc+2zSVPo7b63SXzHczz/ondogVVDaPkvFFLtcTNYPkukI6/Datvx1iltzXei4cxzs//2aQ6fy307wi6zVxul9QUZnxhb8/XpE1r3RMkaRCp3Elvw2j0OFvd9fpLnNNbrfX6Q5STs5J1WSmTIdSeq5a7VivpXPX7LLzTZe/TTfTiqx67FiXz1a/g5zGO1481/g9V1NBTvW6ZFrZeaURgpzqdXFe57hOt0vdlss8w2la6d+O44PcTHN3OWDHWu1Yr53GVOI63W5r9FnGn+063SozvlLX6ZbzNG9ep9vw+Drdrp8ZHOukrHkONbRs/a7Edbpda6Lr8lak3p/tOt0q9zrdcjveqR6f5drgjjXb9TrdRU712vF+cszVTR12V8fd1vYynzucanaZulRch91Mk4qnO9Zryf2K6Viz3a20ZWq/u/paWutKx5kuK6FrfKeaXebNwDRcP2M41l7XGu1Yv38f51izyzzXxeMd6rXTchSVxnCs2Y71umSaVM51uoPPcZ3uitdrv266TdNUVFSUTpw44X6+yx/upwEAUN00atRIYWFhvk7DaypUs81zTwMAoDqpSL3266bbMAydOHFC+/btU0xMjK/TsV2PHj309ddf+zoNSfbn4s345xurMvf35D4VHXuucTk5OUpMTAyY9UGqPutEVeRRXdYJu9cHT8bX9HUiLCxMERERvk7Da6jZNTcP3p88H+fv70+eYn2o+lisD1WnIvXar5vuEjExMX75AnkqODi42iyn3bl4M/75xqrM/T25T0XHVnRcoKwPUvVZJ6oij+qyTti9PngynnXCPwXK68H7U9XH4v2p+mJ9qPpYrA/VCydS8yPjxo3zdQoWu3PxZvzzjVWZ+3tyn4qOrU6vf3VRXZ6TqsijuqwTdq8PnoyvLq8/4E51+f/k/cm79+H9qXKqy/PB+uDd+7A+VJxhmqbfflsqJydHsbGxOn78eI3dKgJUFOsD4Ix1onrh9QBKsT4ApQJhffDrPd3h4eF6+OGHFR4e7utUAJ9jfQCcsU5UL7weQCnWB6BUIKwPfr2nGwAAAACA6syv93QDAAAAAFCd0XQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1qbNO9YsUKtW/fXm3bttUrr7zi63QAn7v66qtVt25d/fnPf/Z1KoBP7du3T/369VNycrI6d+6st956y9cpBTxqNlCKeg0Uq0n1ukaevfzMmTNKTk7WmjVrFBMTo7S0NH355ZeKi4vzdWqAz6xZs0YnTpzQ66+/rrffftvX6QA+k52drZ9//lldu3bVoUOHlJaWpu+//161a9f2dWoBiZoNOKNeA8VqUr2ukXu6v/rqK3Xs2FFNmjRRdHS0rrjiCn344Ye+TgvwqUsuuUTR0dG+TgPwuYSEBHXt2lWSFB8fr7i4OP3666++TSqAUbMBZ9RroFhNqtfVsulev369hgwZosaNG8swDC1btsxlzAsvvKCWLVsqIiJC3bp10yeffGLNO3DggJo0aWLdbtq0qfbv318VqQO2ON91AqhJvLk+bNy4UUVFRUpMTLQ565qLmg2Uol4DpajXpapl052Xl6cuXbpo1qxZbucvXrxY6enpevDBB5WZmam+fftq8ODB2rt3ryTJ3RHzhmHYmjNgp/NdJ4CaxFvrwy+//KKbbrpJc+bMqYq0ayxqNlCKeg2Uol47MKs5SebSpUudpl1wwQXm7bff7jQtKSnJvP/++03TNM3PPvvMHDZsmDVv4sSJ5vz5823PFagKlVknSqxZs8a85ppr7E4RqDKVXR9OnTpl9u3b13zjjTeqIs2AQc0GSlGvgVKBXq+r5Z7usykoKNCmTZt0+eWXO02//PLL9fnnn0uSLrjgAn377bfav3+/cnNz9f7772vgwIG+SBewXUXWCSBQVGR9ME1To0eP1qWXXqqRI0f6Is2AQc0GSlGvgVKBVq9DfJ2Ap44cOaLCwkI1bNjQaXrDhg118OBBSVJISIimT5+uSy65REVFRZo8ebLq1avni3QB21VknZCkgQMHKiMjQ3l5eWratKmWLl2qHj16VHW6gK0qsj589tlnWrx4sTp37mx9v+zf//63UlJSqjrdGo+aDZSiXgOlAq1e+13TXaLs971M03SaNnToUA0dOrSq0wJ85lzrBGcDRiA52/rQp08fFRUV+SKtgEXNBkpRr4FSgVKv/e7w8vr16ys4ONhpi6AkHTp0yGVLCRAIWCeAUqwP1QuvB1CK9QEoFWjrg9813WFhYerWrZtWrVrlNH3VqlXq1auXj7ICfId1AijF+lC98HoApVgfgFKBtj5Uy8PLT5w4oR07dli3d+/erc2bNysuLk7NmjXTpEmTNHLkSHXv3l09e/bUnDlztHfvXt1+++0+zBqwD+sEUIr1oXrh9QBKsT4ApVgfHPjuxOnlW7NmjSnJ5WfUqFHWmOeff95s3ry5GRYWZqalpZnr1q3zXcKAzVgngFKsD9ULrwdQivUBKMX6UMowTdOsiuYeAAAAAIBA43ff6QYAAAAAwF/QdAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAmNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwyf8HRsSIrx2xV4gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABblklEQVR4nO3dd3gU9fbH8c+mEkhBegu9I2AooQiiogREEHuhiwWuioheFb2i3Cs/sKCABRsCXpEiGEVEwIs0UQlVaYogTQhVSCBAgOz8/sAMWZJgNpnJ7G7er+fJk+zMd8+emc3s2bMzO+MyDMMQAAAAAACwXJDTCQAAAAAAEKhougEAAAAAsAlNNwAAAAAANqHpBgAAAADAJjTdAAAAAADYhKYbAAAAAACb0HQDAAAAAGATmm4AAAAAAGxC0w0AAAAAgE1ougEAAAAAsEnANN3Lli1Tt27dVKlSJblcLn3++ecB9XgAAPgbajMAAAHUdKelpalp06Z68803A/LxAADwN9RmAACkEKcTsEqXLl3UpUuXXOefOXNG//rXvzR16lQdO3ZMl19+uV566SVdffXVtjweAABFHbUZAIAAarr/Tv/+/bVz505Nnz5dlSpVUmJiojp37qwNGzaoTp06TqcHAECRQ20GABQFAXN4+aVs375d06ZN06effqr27durVq1aeuKJJ9SuXTtNmjTJ6fQAAChyqM0AgKKiSDTda9eulWEYqlu3riIjI82fpUuXavv27ZKknTt3yuVyXfLn4YcfdnhJAAAIDNRmAEBRUSQOL3e73QoODtaaNWsUHBzsMS8yMlKSVLlyZW3ZsuWScS677DLbcgQAoCihNgMAiooi0XTHxcUpIyNDBw8eVPv27XMcExoaqvr16xdyZgAAFE3UZgBAUREwTfeJEye0bds28/aOHTu0fv16lSpVSnXr1lXPnj3Vp08fjRkzRnFxcTp8+LC+/fZbNW7cWDfccIOlj1e1alVLlgkAAH9GbQYAQHIZhmE4nYQVlixZomuuuSbb9L59+2ry5Mk6e/asXnzxRX300Ufau3evSpcurTZt2mjEiBFq3Lix5Y8HAEBRR20GACCAmm4AAAAAAHxNkTh7OQAAAAAATqDpBgAAAADAJn59IjW32619+/YpKipKLpfL6XQAAPCKYRg6fvy4KlWqpKCgwPgcnNoMAPBndtRmv2669+3bp9jYWKfTAACgQPbs2aMqVao4nYYlqM0AgEBgZW3266Y7KipK0vkVEh0d7XA2eTOk1pOWx3zuxm8tjylJf+yw5/IqZ88FWx4zNCTD8piSdPJ0uC1xx27ynzfXv7sP2hJ368kvLY9Zt3g3y2NK0qrkKbbEjYkpZXnMlJQ/LY8J+6Smpio2NtasZ4Egc1l+n9tUUSWsfb1P+eCkpfEyTVjSwfKYXx49YHlMyZ7XTsme1w47XuMk/3qds2YduCUZOv+t0PNHj3SOHGBB3OzsqPl21VC7tKzY15a4dmy7dm0LRX3btaM2+3XTnXnYWnR0tN803WFB1jdxUWHWN7GSFBliz7/HGRv+7cJC7DmE0RUSakvcUFeYLXHtEOyyZx1kvnGwkl252vf6Yv068JfXQngKpMOwM5clqkSwoiOtrU9um+pdeJD1r8n+9Nop2fXa4U+52qWg6yCz4faMZ9f7CDv+b/3r+fKvbdef3p9I/ve/YGVtDowvkAEAAAABxf3Xj3S+CQqcD+eAooamGwAAAPAphjwb7guHlgPwPzTdAAAAgM8wJGWeq4aGGwgENN0AAACAT8jacEs03EBgoOkGAAAAfIJLUuYJA4NFww0EBppuAAAAwGdkNt403ECgoOkGAAAAHJN5SHn2S4MBCAx+fZ1uf9Qt9pDlMfdsr2Z5TDtN2lLL8pjL0pItjylJW9ISbYnboMTNtsS1g13rwDDOWh7TZdu1Ne1hxzqwS8PIO2yJe1WJipbH3HfK/feDfMRZ44zTKdgmaMMGBUVY2zhMWXqfpfEyJf6535a4drDrdcOO109/eo2TnFkHbrdbffv21ccff6wKFcrq999/V0REhOV5IO82n5jpdAoBqyi/zrCnGwAAAChkhmHoiSee0Mcff6zg4GB98MEHNNxAgKLpBgAAAArZyy+/rNdff12S9OGHH6pr164OZwTALjTdAAAAQCH68MMP9fTTT0uSxowZoz59+jicEQA70XQDAAAAhWTRokW6//77JUlPPfWUhg4d6nBGAOzGidQAAACAQtKqVSt17NhRsbGxGjVqlNPpACgENN0AAABAIYmMjNTcuXMVFBQkl4tLgwFFAYeXAwAAADbasWOHXn/9dRnG+Wtxh4WFKSSEfV9AUcHWDgAAANjk4MGD6tSpk7Zt26aMjAw98cQTTqcEoJCxpxsAAACwQWpqqrp06aJt27apevXquueee5xOCYADaLoBAAAAyxm6+eabtXbtWpUtW1YLFy5UpUqVnE4KgAM4vLyQfbmnrOUx920tbXlMSWpf1m1L3HcPvm15zAYlbrY8piQZxllb4sIedj1f3aMfsSXunNQ3LI/pcoVaHlNiW7BLamqqYmLeczoNW6yfcY1KhFj7/7j8kD37CjafmGlLXDv40zZuV67dogbaEtfKdZCRkaG77rpLs2bNUmRkpL7++mvVqVPHsviAnfyp5tvzOmNYHpE93QAAAICFHnnkEc2aNUthYWH64osv1Lx5c6dTAuAgmm4AAADAQldccYVCQkI0depUXXvttU6nA8BhHF4OAAAAWOiBBx5Qp06dVL16dadTAeAD2NMNAAAAFNCCBQt0+PBh8zYNN4BMNN0AAABAAfzvf/9Tt27d1K5dOx06dMjpdAD4GJpuAAAAIJ9Wr16tm2++WWfPnlWTJk1UqlQpp1MC4GNougEAAIB82Lp1q7p06aITJ06oY8eO+u9//6vg4GCn0wLgY2i6AQAAAC/t27dPnTp10uHDh9W8eXMlJiYqPDzc6bQA+CCabgAAAMALR48eVUJCgnbt2qU6depo3rx5ioqKcjotAD6KS4YVsn2n3JbHbF/W+piS9M/tb9kS90nXe5bHrB1U3vKYOM/lCrUlrmGctTxm9+hHLI8pSXNS37Alrh3sWK9AfhxJi9apYGtfPypFsK/Arm3cjtf6blEDLY8p+cZr8rFjx3Ty5ElVrFhRCxcuVLly5ZxOCSiSUo4+ZnnM1NR0xVYbb2lMmm4AAADACzVq1NCKFSv0559/cmkwAH+Lj4wBAACAv2EYhtatW2ferlChgho2bOhgRgD8BU03AAAA8DeeeuoptWzZUh999JHTqQDwMxxeDgAAAFzCq6++qldeeUWS5Hbbcy4dAIGLPd0AAABALj766CP985//lCS9/PLL6tevn7MJAfA7NN0AAABADr766ivde++9kqTHH3/cbL4BwBs03QAAAMBFvv/+e91+++3KyMhQnz599PLLLzudEgA/RdMNAAAAXOSzzz7TqVOn1LVrV33wwQcKCuJtM4D84URqAAAAwEVeeeUV1a1bV7169VJoaKjT6QDwYy7DMAynk5CkUaNG6ZlnntGjjz6qsWPH5uk+qampiomJUUpKiqKjo+1N0CIuFy/adjCMs06nELDs+p9tUOJmy2NuPjHT8piAnfyxjv2dzGWSgiW5LI1tx+uGxGuHJP338gGWx+y9caLlMe129OhRRUVFKSSE/VJAUWVHbfaJ42RWrVql9957T02aNHE6FQAAABRBx48fV6dOnXTLLbfo1KlTTqcDIIA43nSfOHFCPXv21Pvvv6/LLrvM6XQAAMBfRo0aJZfLpSFDhjidCmCr9PR03XLLLVq9erV++OEH7du3z+mUAAQQx5vuhx56SF27dtV1113ndCoAAOAvHIWGoiIjI0N9+/bV//73P5UoUULz5s1TrVq1nE4LQABxtOmePn261q5dq1GjRuVpfHp6ulJTUz1+AACAtTgKDUWFYRh69NFHNWPGDIWGhioxMVEtW7Z0Oi0AAcaxpnvPnj169NFH9fHHH6tYsWJ5us+oUaMUExNj/sTGxtqcJQAARY83R6HxgTj82Ysvvqi33npLLpdLH330ka6//nqnUwIQgBxrutesWaODBw+qefPmCgkJUUhIiJYuXarx48crJCREGRkZ2e4zbNgwpaSkmD979uxxIHMAAAKXt0eh8YE4/NXevXv10ksvSZLGjRunu+66y+GMAAQqx66H0LFjR23YsMFjWv/+/VW/fn099dRTCg4Oznaf8PBwhYeHF1aKAAAUKZlHoS1cuDDPR6ENGzZMQ4cONW+npqbSeMMvVK5cWd9++60WL16sRx55xOl0AAQwx5ruqKgoXX755R7TSpQoodKlS2ebDgAA7Jf1KLRMGRkZWrZsmd58802lp6dn+1CcD8Thb86ePavQ0FBJUnx8vOLj4x3OCECgc/zs5QAAwDdkHoW2fv1686dFixbq2bOn1q9fn+NRaIA/Wbt2rerXr6/Vq1c7nQqAIsSxPd05WbJkidMpAABQZHEUGgLZtm3b1KVLFx08eFD//ve/NWfOHKdTAlBE+FTTXRQYxlnLY7pcoZbHtJMd68Audq1bO9bBO/UftDymJHWLGmhL3Dmpb9gSF7BL6rEnrY+Zmm55TF/ROXKAQl1hlsb0p9cNu+rHg+X+YUvcdw5MtCWur0hOTlanTp108OBBxcXF6eOPP3Y6JQBFCE03AADIFUehwd8dO3ZMnTt31o4dO1SrVi19/fXXio6OdjotAEUI3+kGAABAQDp16pS6d++un3/+WRUqVNDChQtVvnx5p9MCUMTQdAMAACAgjRw5UsuXL1d0dLTmz5+vmjVrOp0SgCKIw8sBAAAQkJ555hlt2bJFgwcPVtOmTZ1OB0ARRdMNAACAgFS8eHHNnj3b6TQAFHEcXg4AAICAMXbsWA0fPlyGYTidCgBIYk83AAAAAsTHH3+sxx57TJLUtm1bde7c2eGMAIA93QAAAAgAX3/9tfr37y9JevTRR5WQkOBwRgBwHk03AAAA/NqPP/6o2267TefOndM999yj1157TS6Xy+m0AEASh5cXOpcr1OkUHGfHOjCMs5bHlKQGJW62Je7A8o9aHvOdA+9aHlOSBtoSFfA/0SVftj5oUKqk8dbH9QG/uw8q2OLXe3+qoQ+W+4ctcfedctsS159t3rxZXbt21cmTJ5WQkKBJkyYpKIj9SgB8B69IAAAA8EtpaWnq3Lmz/vzzT7Vq1UqzZ89WWFiY02kBgAeabgAAAPilEiVKaMSIEbr88sv11VdfqUSJEk6nBADZ0HQDAADAb/Xv319r165V6dKlnU4FAHJE0w0AAAC/cebMGT322GM6cOCAOS001H++7w+g6KHpBgAAgF9wu93q16+fxo4dq4SEBLndnFgOgO+j6QYAAIDPMwxDjz32mKZNm6aQkBCNHj2as5QD8Au8UgEAAMDnjRo1SuPHn7/E3uTJk9W5c2eHMwKAvKHpBgAAgE97//339eyzz0qSxo4dq549ezqcEQDkHU03AAAAfNaXX36pgQMHSpKGDRumRx991OGMAMA7IU4nUNQYxlmnU3Ccy2X9GUa7Rz9ieUxJurlUBVvijtw9zpa4AOArViVPUXR0tKUx7agfkj21+Z36D1oeU5LeOfCuLXF9WePGjVWrVi1dddVVGjlypNPpAIDXaLoBAADgs6pXr64ffvhBMTExcrlcTqcDAF7j8HIAAAD4lO3bt+vLL780b5cuXVohIewrAuCfvG66Bw8ebJ45Mqs333xTQ4YMsSInAAAAFFH79+9Xp06d1KNHD82ePdvpdACgwLxuumfPnq0rr7wy2/S2bdtq1qxZliQFAACAoiclJUVdunTR77//rurVq+f4nhMA/I3XTfeRI0cUExOTbXp0dLQOHz5sSVIAAAAoWk6fPq2bbrpJ69evV7ly5bRw4UJVqGDPCU0BoDB53XTXrl1b8+fPzzb966+/Vs2aNS1JCgAAAEVHRkaG7rnnHi1dulRRUVGaP3++atWq5XRaAGAJr89IMXToUD388MM6dOiQrr32WknSokWLNGbMGI0dO9bq/AAAABDADMPQoEGDlJiYqLCwMH3xxReKi4tzOi0AsIzXTfe9996r9PR0jRw5Uv/5z38knb+Uw4QJE9SnTx/LEwQAAEDgMgxDYWFhCgoK0rRp03TNNdc4nRIAWCpf114YNGiQBg0apEOHDikiIkKRkZFW5wUAAIAiICgoSG+88Yb69++v5s2bO50OAFiuQNfpLlu2LA03AAAAvPbdd9/pzJkzkiSXy0XDDSBg5WlPd7NmzbRo0SJddtlliouLk8vlynXs2rVrLUsOedM9+hFb4s5JfcOWuN2iBloes31Zt+UxJemf29+yJS4ABLqWFfsq2BXqdBp58k79By2POW9fmOUxJcn6CuqMBQsW6MYbb1THjh2VmJioiIgIp1MCANvkqem+6aabFB4eLknq0aOHnfkAAAAggCUlJenWW2/VuXPndNlll5nvMQEgUOWp6X7++eclnb+cw9VXX60mTZrosssuszUxAAAABJZffvlFN9xwg9LS0nT99ddrypQpCgoq0LcdAcDnefUqFxwcrISEBB07dsymdAAAABCI/vjjD3Xq1ElHjhxRy5YtNXv2bIWF2XMYPgD4Eq8/WmzcuLF+//13O3IBAABAAPrzzz+VkJCgPXv2qG7duvrqq68UFRXldFoAUCi8brpHjhypJ554QnPnzlVycrJSU1M9fgAAAICstm7dqj179qhSpUpauHChypYt63RKAFBovL5Od+fOnSVJ3bt39ziLuWEYcrlcysjIsC47AACQo/Hjx+d57ODBg23MBPh7rVu31pIlSxQWFqZq1ao5nQ4AFCqvm+7Fixdb9uATJkzQhAkTtHPnTklSo0aNNHz4cHXp0sWyxwAAIBC9/vrreRrncrlouuEIt9utP/74Q1WrVpV0/hK0AFAUed10d+jQwbIHr1KlikaPHq3atWtLkqZMmaKbbrpJ69atU6NGjSx7HAAAAs2OHTtsicsH4rCCYRh64oknNGXKFH311Vdq3bq10ykBgGO8brol6dixY5o4caK2bNkil8ulhg0b6t5771VMTIxXcbp16+Zxe+TIkZowYYJ+/PFHmm4AABzAB+Kwwssvv2wejbFt2zaabgBFmsswDMObO6xevVoJCQmKiIhQfHy8DMPQ6tWrderUKS1cuDDfhw5lZGTo008/Vd++fbVu3To1bNgw25j09HSlp6ebt1NTUxUbG6uUlBRFR0fn63EDgcsVaktcwzhrS9xZV/S1POZt66dYHhMA7JaamqqYmBhL6tgff/yhOXPmaPfu3Tpz5ozHvNdee61AsUuVKqVXXnlFAwYM+NuxVi7TxeyqdxPq3Wt5zIG/vGt5TH/x4Ycfmv8rY8aM0dChQx3OCADyzo465vWe7scee0zdu3fX+++/r5CQ83c/d+6c7rvvPg0ZMkTLli3zKt6GDRvUpk0bnT59WpGRkUpMTMyx4ZakUaNGacSIEd6mDABAQFu0aJG6d++uGjVq6Ndff9Xll1+unTt3yjCMAn2PNvMD8bS0NLVp0ybHMTl9II6ia86cObr//vslSU8++SQNNwAoH5cMW716tZ566imz4ZakkJAQPfnkk1q9erXXCdSrV0/r16/Xjz/+qEGDBqlv377avHlzjmOHDRumlJQU82fPnj1ePx4AAIFm2LBhevzxx7Vx40YVK1ZMs2fP1p49e9ShQwfdfvvtXsfbsGGDIiMjFR4eroEDB/7tB+IxMTHmT2xsbEEXB35q+fLluvPOO+V2u9W/f3+NHj3a6ZQAwCd43XRHR0dr9+7d2abv2bNHUVFRXicQFham2rVrq0WLFho1apSaNm2qcePG5Tg2PDxc0dHRHj8AABR1W7ZsUd++57+6ExISolOnTikyMlL//ve/9dJLL3kdjw/EkR+vvvqqTp8+re7du+u9997zuLQsABRlXjfdd955pwYMGKAZM2Zoz549+uOPPzR9+nTdd999uvvuuwuckGEYHoepAQCASytRooRZOytVqqTt27eb8w4fPux1PD4QR35Mnz5dzz33nKZPn+5xRCQAFHVevyK++uqrcrlc6tOnj86dOydJCg0N1aBBg7w+jOiZZ55Rly5dFBsbq+PHj2v69OlasmSJ5s+f721aAAAUWa1bt9aKFSvUsGFDde3aVY8//rg2bNigzz77zJKzRvOBOHJz6tQpRURESJIiIiL073//2+GMAMD3eN10h4WFady4cRo1apS2b98uwzBUu3ZtFS9e3OsHP3DggHr37q3k5GTFxMSoSZMmmj9/vq6//nqvYwEAUFS99tprOnHihCTphRde0IkTJzRjxgzVrl3bvGxTXvGBOPIqNTVV11xzjTp16qT/+7//43ByAMiF1033vffeq3HjxikqKkqNGzc2p6elpemRRx7Rhx9+mOdYEydO9PbhAQDARWrWrGn+Xbx4cb399tv5jsUH4siL9PR03XzzzVq7dq327NmjwYMHq2LFik6nBQA+yevvdE+ZMkWnTp3KNv3UqVP66KOPLEkKAADkXc2aNXXkyJFs048dO+bRkOfFxIkTtXPnTqWnp+vgwYP63//+R8MNDxkZGerVq5e+/fZbRUZG6uuvv6bhBoBLyPOe7tTUVBmGIcMwdPz4cRUrVsycl5GRoXnz5qlcuXK2JAkAAHK3c+dOZWRkZJuenp6uvXv3OpARApVhGHr44Yc1a9YshYWF6fPPP1fz5s2dTgsAfFqem+6SJUvK5XLJ5XKpbt262ea7XC6NGDHC0uSc1DDyDlvibj4x05a4dph1RV9b4t62footcQGgqJkzZ47594IFCxQTE2PezsjI0KJFi1S9enUHMpNaVuyrYFeopTG7RQ20NF6mEiEnbYkbiEaMGKF33nlHLpdLH3/8sTp27Oh0SgDg8/LcdC9evFiGYejaa6/V7NmzVapUKXNeWFiYqlWrpkqVKtmSJAAAyK5Hjx6Szn/wnXmd7kyhoaGqXr26xowZ40BmCEQ///yzuYPlrbfe0u233+5wRgDgH/LcdHfo0EGStGPHDsXGxiooyOuvgwMAAAu53W5JUo0aNbRq1SqVKVPG4YwQyJo0aaKPP/5YO3bs0KBBg5xOBwD8htdnL69WrZok6eTJk9q9e7fOnDnjMb9JkybWZAYAAPJkx44dTqeAAGYYhnk5sJ49ezqcDQD4H693Vx86dEg33nijoqKi1KhRI8XFxXn8AACAwrd06VJ169ZNtWvXVp06ddS9e3ctX77c6bTg51avXq127dopOTnZ6VQAwG953XQPGTJER48e1Y8//qiIiAjNnz9fU6ZMUZ06dTxO6AIAAArHxx9/rOuuu07FixfX4MGD9fDDDysiIkIdO3bUJ5984nR68FNbt25Vly5d9P333+uZZ55xOh0A8FteH17+7bff6osvvlDLli0VFBSkatWq6frrr1d0dLRGjRqlrl272pEnAADIxciRI/Xyyy/rscceM6c9+uijeu211/Sf//xH99xzj4PZwR/t27dPnTp10uHDh9W8eXONHz/e6ZQAwG95vac7LS3NvB53qVKldOjQIUlS48aNtXbtWmuzAwAAf+v3339Xt27dsk3v3r073/eG144ePaqEhATt2rVLderU0bx58xQVFeV0WgDgt7xuuuvVq6dff/1VknTFFVfo3Xff1d69e/XOO++oYsWKlicIAAAuLTY2VosWLco2fdGiRYqNjXUgI/irkydPqlu3btq4caMqVqyohQsXmjtbAAD54/Xh5UOGDDFPpvH8888rISFBU6dOVVhYmCZPnmx1fgAAIBf33nuvxo0bp8cff1yDBw/W+vXr1bZtW7lcLn333XeaPHmyxo0b53Sa8COPPfaYVqxYoZIlS2rBggWqXr260ykBgN/zuunOeqmIuLg47dy5U7/88ouqVq3K9UEBAChEU6ZM0ejRozVo0CBVqFBBY8aM0cyZMyVJDRo00IwZM3TTTTc5nCX8yb/+9S+tXr1a48aNU+PGjZ1OBwACgsswDCM/dzxz5ox27NihWrVqKSTE697dEqmpqYqJiVFKSoqio6MdycFbLleo5TG3dL3S8piS1OCrFbbENYyztsQFAH9T0DoWFBSk/fv3+9Thv5nLJAVLclka+7cerSyNl6l24ne2xPVXbrdbQUFefwMRAAKCHT2m16+oJ0+e1IABA1S8eHE1atRIu3fvliQNHjxYo0ePtiQpAACQNy6XtY0tip7XX39dn376qXmbhhsArOX1q+qwYcP0008/acmSJSpWrJg5/brrrtOMGTMsTQ4AAFxa3bp1VapUqUv+ALmZMmWKhg4dqjvvvFPr1693Oh0ACEheHxf++eefa8aMGWrdurXHp+sNGzbU9u3bLU0OAABc2ogRI/46nBvwzty5czVgwABJ0tChQ3XFFVc4mxAABCivm+5Dhw7l+N2xtLQ0DnEDAKCQ3XXXXT71nW74hxUrVuj2229XRkaG+vTpo5dfftnplAAgYHl9eHnLli311VdfmbczG+33339fbdq0sS4zAABwSXzYjfzYuHGjbrzxRp0+fVpdu3bVBx98wPe4AcBGXu/pHjVqlDp37qzNmzfr3LlzGjdunDZt2qQffvhBS5cutSNHAACQg3xegARF2IEDB5SQkKBjx46pbdu2mjlzpkJDrb+yCgDgAq8/1mzbtq1WrFihkydPqlatWlq4cKHKly+vH374Qc2bN7cjRwAAkAO3282h5fBK2bJldccdd6hRo0b68ssvVbx4cadTAoCAl68LbDdu3FhTpkyxOhcAAADYKCgoSK+99pqOHz9u2fVnAQCXlqemOzU1Nc8BeQEHAADwHenp6Xrttdc0dOhQhYeHy+Vy8X4NAApRnprukiVL/u3JWgzDkMvlUkZGhiWJOc3lsuf7TRPq3Wt5zC+35OuAhb9lGEtsiQsAQH7sP1TGlri1bYnqGzIyMtS3b1/NmDFDK1eu1Oeff+50SgBQ5OSpW1u8eHGegq1bt65AyQAAAMAahmHo0Ucf1YwZMxQaGqqHHnrI6ZQAoEjKU9PdoUOHXOelpKRo6tSp+uCDD/TTTz9pyJAhVuUGAACAfHrxxRf11ltvyeVy6b///a+uv/56p1MCgCIp3xdl/Pbbb9WrVy9VrFhRb7zxhm644QatXr3aytwAAACQD++8846GDx8uSRo/frzuvPNOhzMCgKLLqy8D//HHH5o8ebI+/PBDpaWl6Y477tDZs2c1e/ZsNWzY0K4cAQAAkEezZ8/WP/7xD0nSc889p4cfftjhjACgaMvznu4bbrhBDRs21ObNm/XGG29o3759euONN+zMDQAAAF4qW7asoqOj9cADD2jEiBFOpwMARV6e93QvXLhQgwcP1qBBg1SnTh07cwIAAEA+XXXVVVqzZo2qV6/+t1efAQDYL897upcvX67jx4+rRYsWatWqld58800dOnTIztwAAACQB7/99pt+/vln83atWrUUHBzsYEYAgEx5brrbtGmj999/X8nJyXrwwQc1ffp0Va5cWW63W998842OHz9uZ54AAADIQXJysjp16qSrrrpKSUlJTqcDALiI12cvL168uO69915999132rBhgx5//HGNHj1a5cqVU/fu3e3IEQAAADk4duyYOnfurJ07d6pMmTKqVq2a0ykBAC7i1dnLL1avXj29/PLLGjVqlL788kt9+OGHVuXlOMM4a0vcww82sDxmmXe3WB4TAICC6F/mPoUFhVsas1qV7y2N5+9OnTql7t276+eff1aFChW0cOFClS9f3um0AAAXyfd1urMKDg5Wjx49NGfOHCvCAQAA4BLOnTunu+++W8uXL1d0dLTmz5+vmjVrOp0WACAHljTdAAAAKByGYejBBx/UF198ofDwcH355Zdq2rSp02kBAHJB0w0AAOBHTp8+rZ07dyooKEjTp0/XVVdd5XRKAIBLcLTpHjVqlFq2bKmoqCiVK1dOPXr00K+//upkSgAAFGnUZt8XERGhefPmacGCBerRo4fT6QAA/oajTffSpUv10EMP6ccff9Q333yjc+fOqVOnTkpLS3MyLQAAiixqs+/atGmTDMOQJIWHh+u6665zOCMAQF4U6OzlBTV//nyP25MmTVK5cuW0Zs0aDpUCAMAB1GbfNG/ePN10000aPHiwXnnlFQUF8Q1BAPAXjjbdF0tJSZEklSpVKsf56enpSk9PN2+npqYWSl4AABRVf1ebYb8ffvhBt912m86dO6cDBw44nQ4AwEs+8zGpYRgaOnSo2rVrp8svvzzHMaNGjVJMTIz5ExsbW8hZAgBQdOSlNqenpys1NdXjB9bZtGmTunbtqlOnTqlLly6aNGkSe7kBwM/4zKv2ww8/rJ9//lnTpk3LdcywYcOUkpJi/uzZs6cQMwQAoGjJS23mA3H77N69WwkJCTp69Khat26tTz/9VKGhoU6nBQDwkk8cXv7II49ozpw5WrZsmapUqZLruPDwcIWHhxdiZgAAWM/tdmvq1Kn67rvvnE4lV3mtzcOGDdPQoUPN26mpqTTeFjh8+LASEhK0d+9eNWjQQHPnzlWJEiWcTgsAkA+ONt2GYeiRRx5RYmKilixZoho1ajiZjoe9PZvZEvft5ddbHnOk5REBAFY5ePCgkpKSlJKSop49e0qSXC6XnnrqKSUnJzucXXbe1ubcPhAfftM3ig4LtjS3Um9vtTSeL1uyZIl+/fVXValSRQsWLFDp0qWdTgkAkE+ONt0PPfSQPvnkE33xxReKiorS/v37JUkxMTGKiIhwMjUAALx28uRJrVmzRklJSUpKStLKlSu1a9cuSVL58uV1zz33yOVyyeVyqV+/fjp27JgmTJjgcNaeqM2+4bbbbtPMmTPVqFEjjhwAAD/nMjIv+OjEg7tcOU6fNGmS+vXr97f3T01NVUxMjFJSUhQdHW1pbvbt6W5necyRu8dbHhMAcGkZGRnavn276tata0676qqrtHz5co9xLpdL9evXV6tWrfT22297NK521rH8sqo27xhQkz3dXnK73Tp+/LhiYmKcTgUAiiw7arPjh5cDAODrDMPQ3r17zb3XSUlJWr16tdLS0nTs2DGzKLds2VLbtm1Tq1atFB8fr1atWql58+Z+1URRm51hGIYee+wxffPNN1qwYAF7twEggPjEidQAAPBV48eP1+jRo3P8/nVkZKS2bdumZs3OHx01atQojRkzprBTRAAYNWqUxo8/f+TaypUraboBIIDQdAMAirSzZ89qw4YNHnuxp0+frsaNG0uSQkJClJycrODgYDVu3Njcgx0fH68GDRooOPjCIdRhYWFOLQb82Pvvv69nn31WkjR27FjddtttDmcEALASTTcAoMjZuHGjJk6cqKSkJK1du1anT5/2mL9y5Uqz6e7Ro4eaNGmiuLg4LtkEyyUmJmrgwIGSpGeeeUaPPvqowxkBAKxG0w0ACFh//vmneSbx66+/Xm3atJEk7d27V2PHjjXHlSxZUvHx8eZe7LZt25rzKlWqpEqVKhV26igClixZorvvvltut1v33XefXnzxRadTAgDYgKYbABAQzpw5o7Vr13ocJr5t2zZz/qlTp8ymu2XLlnr44YfNJrt27doKCgpyKnUUQW63W0OGDFF6erp69OihCRMm5HrmeACAf6PpBgD4Hbfbrd9++00ZGRlq2LChJGnXrl1mU51V3bp1FR8fr9atW5vTSpUqpTfeeKPQ8gUuFhQUpHnz5mnEiBEaN26cQkJ4SwYAgYpX+FxU6PqrLXFHTl1rS1wACGQHDhww916vXLlSq1atUkpKim6//XbNnDlTklS7dm3Vr19ftWrVUqtWrdSqVSu1aNFCpUqVcjj7oimm1T5FR7Dn9mIZGRnmyfcqVaqkd9991+GMAAB2o+kGAPiUrE1JRkaG6tev73GYeKaIiAiPw3FdLpe2bNlSaHkC3kpJSdH111+vIUOG6J577nE6HQBAIaHpBgA4JiMjQ5s2bfL4HnZ4eLiSkpIkScHBwSpZsqRcLpcaNmxoXqqrVatWatSokUJDQx1eAiBvTp8+rZtuukmrVq3S448/rm7duikqKsrptAAAhYCmGwBQ6F599VV9+eWXWrNmjdLS0jzmBQcH69SpU4qIiJAkffLJJ6pQoQINCvxWRkaG7rnnHi1dulRRUVGaN28e/88AUITQdAMAbJGSkqJVq1YpKSlJP//8sz755BPzDOGrV6/WsmXLJElRUVFq2bKluQe7ZcuWZsMtSXXq1HEkf8AKhmFo0KBBSkxMVFhYmL744gvFxcU5nRYAoBDRdAMALPHrr79q0aJF5qHiv/zyi8f8ESNGqF69epKk++67TwkJCYqPj1f9+vXN73ADgWb48OF6//33FRQUpGnTpumaa65xOiUAQCGj6QYAeMUwDG3fvl1JSUm64YYbVLJkSUnSRx99pP/7v//zGFujRg3ze9iZ4yTpuuuuK8SMAWd88803evHFFyVJEyZM0C233OJwRgAAJ9B0AwAu6fDhw0pKSvI42dmff/4pSfrqq690ww03SJI6dOigtWvXKj4+3vwpW7ask6kDjrruuuv01FNPKTIyUg888IDT6QAAHELTDQAwnTp1ShkZGYqMjJQkTZ8+XXfffXe2cWFhYdm+l9qpUyd16tSpUPIE/IHL5dLo0aNlGIbTqQAAHBTkdAIAAGe43W5t2bJFkydP1j/+8Q81b95c0dHRmjRpkjmmcePGkqR69eqpT58+evPNN5WUlKTjx4/rxx9/NPdyAzhv5cqV6tWrl06fPm1Oy3o9eQBA0RMQe7pPjqypkHBrPz84ur2epfEyVb7HlrAAkGe7du3SgAEDtGrVKqWmpmabv2nTJvPvBg0a6OjRox7fxwbypGS0VLxofba/ZcsWde3aVUeOHFHVqlWzneMAAFA0BUTTDQDwdOLECa1Zs8b8DnZcXJyeffZZSVLp0qW1ePFiud1uFS9eXM2bNzdPdhYfH6+qVauacYKCgmi4gTzYs2ePEhISdOTIEcXHx+uZZ55xOiUAgI+g6QaAAJCRkaEPP/zQbLI3bdokt9ttzt+3b5/ZdEdGRmratGmqV6+eGjVqpJAQSgFQEEeOHFFCQoL27NmjevXq6auvvjLPiwAAAO+0AMCPGIah3bt3a+XKlTp+/LgGDBgg6fwe6eeff17Jycnm2NjYWMXHx6tVq1Zq06aNR5w77rijUPMGAlVaWppuvPFGbdmyRZUrV9bChQtVpkwZp9MCAPgQmm4A8GFHjx7VqlWrPC7XdfDgQUlSuXLldO+998rlcsnlcunBBx/UmTNnzMPEK1as6HD2QODr27evfvzxR1122WVasGCBx9czAACQaLoBwGecOXNGv/zyi5o0aWJOu+mmm7R8+XKPcSEhIWratKni4+OVnp6uYsWKSZKef/75Qs0XgPT4449r5cqVmjlzpho1auR0OgAAH0TTDQAOMAxD27ZtM/deJyUlad26dTp79qyOHj2qmJgYSVJ8fLz27dtnHiYeHx+vK664QhEREQ4vAQBJatOmjbZt26bw8HCnUwEA+CiabgAoZGPGjNHIkSN19OjRbPNKlSqlHTt26IorrpAkvfTSS3r11VcLOUMAl/LWW2+pbdu2iouLkyQabgDAJdF0A4DFTp48qXXr1nl8DzsxMVFNmzaVJBUvXlxHjx5VeHi4mjVrZn4Hu1WrVqpZs6ZcLpcZKzg42KnFAJCDDz/8UA8//LCioqK0adMmxcbGOp0SAMDH0XQDgAV++uknTZgwQUlJSfr555+VkZHhMX/lypVm033LLbcoPj5ejRs3VlhYmBPpAsiHOXPm6P7775ck/eMf/6DhBgDkSUA03WHtoxVWIsjSmJX/vdbSeAACw969e83vYN9www1q3769JOngwYN69913zXHly5dXq1atzO9hx8fHe8wrX758oecOFCYjPEJGMWtrs5OWL1+uO++8U263W/3799eoUaOcTgkA4CcCoukGADucPn1aP/zwg8dh4nv37jXnu91us+lu2bKl/vnPf5qHiVepUsXjMHEA/uvnn39Wt27ddPr0aXXv3l3vvfce2zcAIM9ougFA0rlz57Rx40a5XC7zMPC9e/fq2muv9RgXFBSkxo0bKz4+Xh06dDCnlyxZUi+//HKh5gzAfrt27VJCQoJSUlLUrl07TZ8+XSEhvH0CAOQdVQNAkWMYhnbu3GkeJr5y5UqtXbtWp06d0q233qpZs2ZJkmrWrKm4uDjVqlXLPEy8efPmKlGihMNLAKCwlC5dWk2bNlXZsmU1Z84cLtcHAPAaTTeAgJeenm5e0icjI0PVq1fXH3/8kW1cTEyMihcvbt52uVxau5bzOwBFWWRkpObMmaOUlBRddtllTqcDAPBDNN0AAkp6erp++ukn8zvYK1euVFRUlNasWSPp/CW4KlWqpAMHDqhp06bmHuxWrVqpTp06CgoKnBM/Acif9PR0zZw5U7169ZLL5VJYWJjKli3rdFoAAD9F0w0gIIwcOVJffPGF1q9fr7Nnz3rMCwkJ0enTp1WsWDFJ0syZM1W+fHnzNgBkysjIUK9evTRr1ixt3LhRL730ktMpAQD8HE03AL9x8OBBc+/1hg0b9Nlnn5l7pjdt2qRVq1ZJksqUKWPuvc68XFfWBrtatWqO5A/AtxmGoYceekizZs1SWFiYOnXq5HRKAIAAQNMNwGdt2LBBCxcuNBvtXbt2eczfunWr6tevL0l68MEH1b17d8XHx6tGjRpczgeA11544QW9++67crlc+vjjj9WxY0enUwIABACabgCOy8jI0ObNm5WUlKSbb75ZpUqVkiTNmDFDI0eONMe5XC41aNDA3INdpkwZc17Wy3cBgLfeeust/fvf/5Ykvfnmm7r99tsdzggAEChougEUKsMwtHfvXo8Tna1evVppaWmSpAoVKqhr166SpGuuuUabNm0yDxVv0aKFoqOjnUwfQACaOXOmHnnkEUnn93b/4x//cDgjAEAgcbTpXrZsmV555RWtWbNGycnJSkxMVI8ePbyOc7pFb4VFW3tCpEhLowFFV2pqqgzDUExMjCTpk08+Ua9evbKNi4yMVIsWLRQWFmZO69ixI4d3AoXMstoc39dvavOJEyfkcrk0aNAgDR8+3KZHAQAUVY423WlpaWratKn69++vW2+91clUAFjg7Nmz2rBhg8de7F9++UVjx47V4MGDJUlxcXEKDg5W48aNPU521qBBAwUHBzu8BACKYm2+99571bBhQ7Vs2ZLzQQAALOdo092lSxd16dLFyRQAWGDHjh3q1auX1q5dq9OnT2eb/9tvv5l/169fXykpKSpRokRhpgggj4pKbd62bZtiYmLM62+3bt3a4YwAAIGK73QDyJMjR45o1apV5l7sFi1aaMSIEZKksmXL6scff5Tb7VbJkiXNy3S1atVKLVu2VPny5c04QUFBNNwAHLVv3z5dd911Cg8P18KFC7mMIADAVn7VdKenpys9Pd28nZqa6mA2QGDLyMjQW2+9ZTbZ27Zt85h/5MgRs+mOjIzUZ599pgYNGqh27drmtbMBBD5/q81Hjx5VQkKCdu3apbp166p48eJOpwQACHB+1XSPGjXKfJMPwBput1tbt25VUlKS0tLSNGjQIElScHCwXn75Ze3du9ccW7duXXMvdps2bTzi3HTTTYWaNwDf4E+1+eTJk+rWrZs2btyoSpUqacGCBebh5QAA2MWvmu5hw4Zp6NCh5u3U1FTFxsY6mBHgfw4cOOBxorNVq1YpJSVFklSmTBkNHDjQPJHQww8/rHPnzik+Pl4tWrQwr58NAJn8pTafPXtWd9xxh1asWKGSJUtq/vz5ql69utNpAQCKAL9qusPDwxUeHu50GoDfOHHihDZt2qRWrVqZ0+644w4tW7bMY1xERISaN2+u+Ph4paenq1ix85f5efrppws1XwD+xx9qs9vt1n333aevvvpKxYoV05dffqnGjRs7nRYAoIhwtOk+ceKEx/dEd+zYofXr16tUqVKqWrWqg5kB/icjI0ObNm0y92AnJSVp48aNcrvdOnbsmHmd7DZt2ujPP//0ONlZo0aNFBoa6vASAPAFgVibjxw5ohUrVig4OFgzZ85Uu3btnE4JAFCEuAzDMJx68CVLluiaa67JNr1v376aPHny394/NTVVMTEx2ps8XNHRxSzNLbL4MEvjAVbK3GwzDwMfPXq0XnzxRaWlpWUbW7lyZc2bN09NmjQx78t1aAHfkFnHUlJSFB0d7XQ6kgK3Nh84cEA//PCDevToYV1CAICAY0dtdnRP99VXXy0rev6I4lUUwdlHEcBSUlK0atUqj73YX3/9ta644gpJUsmSJZWWlqaoqCi1bNnS3IsdHx+vypUre8Si4QZwKYFUm5OTk1WxYkVJUvny5Wm4AQCO8KvvdANFyZo1a/TGG29o5cqV+uWXX7LNX7lypdl033bbbbrqqqtUr149BQcHF3KmAOB75s6dq9tvv13vvPOO+vbt63Q6AIAijKYbcJBhGNq+fbuSkpKUlJSkHj166Oqrr5Yk/fnnn5oyZYo5tkaNGmrVqpW5B7tZs2bmvDJlyqhMmTKFnT4A+KQVK1bojjvu0OnTp7V48WL16dOHo3wAAI6h6QYK0cmTJ7VkyRLzEPGkpCT9+eef5vzw8HCz6Y6Pj9fw4cPNJptryQLA39u4caNuvPFGnTp1Sl27dtX7779Pww0AcBRNN2CTU6dOaf369QoNDVWLFi0kSfv371fXrl09xoWFhSkuLk6tWrXS9ddfb06PiYnRiBEjCjVnAPBnu3btUkJCgo4dO6a2bdtq5syZXJkBAOA4mm7AAm63W7/88ou593rlypX6+eefde7cOd1yyy2aPXu2pPOHiLdp00Z16tQx92A3bdpUYWFhDi8BAPi3Q4cOqVOnTtq3b58aNWqkL7/8UsU5ySoAwAfQdAP5cOLECUVGRko6f33sihUr6tChQ9nGlStXTqVKlTJvu1wuff/994WWJwAUFZMnT9bWrVtVtWpVLViwwOO1FwAAJ9F0A3/jxIkTWr16tcde7NKlS2v9+vWSpODgYNWsWVNpaWlq3ry5x8nOqlatyncJAaAQPPHEEzp37pxuvvnmbJdKBADASTTdQC6GDx+uxMREbd68WW6322PegQMHdPr0aRUrVkySlJiYqLJlyyokhE0KAAqL2+1WRkaGQkND5XK5NGzYMKdTAgAgG7/uEAzDkCSlpp6yPHawUi2PCd9iGIb27NmjNWvWaPXq1dq8ebNmz56toKAgSdIvv/yijRs3SpIqV66s5s2bq3nz5mrRooWaNm2qM2fO6MyZM5KkEiVK6OTJk44tCwD/lJp6vtZk1rNAUFi12TAMPfnkk9q5c6emTJnC97cBAJawoza7DD+u9H/88YdiY2OdTgMAgALZs2ePqlSp4nQalqA2AwACwfbt21WzZk1LYvl10+12u7Vv3z5FRUX5/fdmU1NTFRsbqz179ig6OtrpdGwR6MsY6MsnsYyBItCX0Z+WzzAMHT9+XJUqVTKPsvF3gVSbfYU//U/7G9atfVi39mL92iclJUVVq1bV0aNHVbJkSUti+vXh5UFBQQGzZyBTdHR0wG84gb6Mgb58EssYKAJ9Gf1l+WJiYpxOwVKBWJt9hb/8T/sj1q19WLf2Yv3ax8oPwwPjY3UAAAAAAHwQTTcAAAAAADah6fYR4eHhev755xUeHu50KrYJ9GUM9OWTWMZAEejLGOjLh6KH/2n7sG7tw7q1F+vXPnasW78+kRoAAAAAAL6MPd0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbELTbZO3335bNWrUULFixdS8eXMtX74817GfffaZrr/+epUtW1bR0dFq06aNFixY4DFm8uTJcrlc2X5Onz5t96LkyptlXLJkSY75//LLLx7jZs+erYYNGyo8PFwNGzZUYmKi3YtxSd4sY79+/XJcxkaNGpljfOl5XLZsmbp166ZKlSrJ5XLp888//9v7LF26VM2bN1exYsVUs2ZNvfPOO9nG+NJz6O0y+uO26O0y+uO26O0y+tu2CEjWv2/ABd6s26xWrFihkJAQXXHFFfYm6Me8Xbfp6el69tlnVa1aNYWHh6tWrVr68MMPCylb/+Ltup06daqaNm2q4sWLq2LFiurfv7+OHDlSSNn6D7ve//4dmm4bzJgxQ0OGDNGzzz6rdevWqX379urSpYt2796d4/hly5bp+uuv17x587RmzRpdc8016tatm9atW+cxLjo6WsnJyR4/xYoVK4xFysbbZcz066+/euRfp04dc94PP/ygO++8U71799ZPP/2k3r1764477tDKlSvtXpwcebuM48aN81i2PXv2qFSpUrr99ts9xvnK85iWlqamTZvqzTffzNP4HTt26IYbblD79u21bt06PfPMMxo8eLBmz55tjvG159DbZfTHbdHbZczkT9uit8vob9siYNf7BuT//UpKSor69Omjjh07FlKm/ic/6/aOO+7QokWLNHHiRP3666+aNm2a6tevX4hZ+wdv1+13332nPn36aMCAAdq0aZM+/fRTrVq1Svfdd18hZ+777Hj/mycGLBcfH28MHDjQY1r9+vWNp59+Os8xGjZsaIwYMcK8PWnSJCMmJsaqFAvM22VcvHixIck4evRorjHvuOMOo3Pnzh7TEhISjLvuuqvA+eZHQZ/HxMREw+VyGTt37jSn+drzmEmSkZiYeMkxTz75pFG/fn2PaQ8++KDRunVr87avPYdZ5WUZc+Lr22JWeVlGf9wWs8rP8+hP2yKKJjveN+C8/K7bO++80/jXv/5lPP/880bTpk1tzNB/ebtuv/76ayMmJsY4cuRIYaTn17xdt6+88opRs2ZNj2njx483qlSpYluOgcCq9795wZ5ui505c0Zr1qxRp06dPKZ36tRJ33//fZ5iuN1uHT9+XKVKlfKYfuLECVWrVk1VqlTRjTfe6Ngn2gVZxri4OFWsWFEdO3bU4sWLPeb98MMP2WImJCTkeb1ZyYrnceLEibruuutUrVo1j+m+8jx6K7fnZ/Xq1Tp79uwlxzjxHFrB17fFgvCXbdEKgbYtIrDY+b6hqMvvup00aZK2b9+u559/3u4U/VZ+1u2cOXPUokULvfzyy6pcubLq1q2rJ554QqdOnSqMlP1GftZt27Zt9ccff2jevHkyDEMHDhzQrFmz1LVr18JIOaDl5f1vXtB0W+zw4cPKyMhQ+fLlPaaXL19e+/fvz1OMMWPGKC0tTXfccYc5rX79+po8ebLmzJmjadOmqVixYrryyiv122+/WZp/XuRnGStWrKj33ntPs2fP1meffaZ69eqpY8eOWrZsmTlm//79BVpvViro85icnKyvv/4622E9vvQ8eiu35+fcuXM6fPjwJcc48Rxawde3xfzwt22xoAJxW0Rgset9A/K3bn/77Tc9/fTTmjp1qkJCQgojTb+Un3X7+++/67vvvtPGjRuVmJiosWPHatasWXrooYcKI2W/kZ9127ZtW02dOlV33nmnwsLCVKFCBZUsWVJvvPFGYaQc0PLy/jcveDWxicvl8rhtGEa2aTmZNm2aXnjhBX3xxRcqV66cOb1169Zq3bq1efvKK69Us2bN9MYbb2j8+PHWJe4Fb5axXr16qlevnnm7TZs22rNnj1599VVdddVV+YpZGPKbz+TJk1WyZEn16NHDY7ovPo/eyGl9XDzd157D/PKnbdEb/rot5legbosIPFa/b8AFeV23GRkZuueeezRixAjVrVu3sNLza97837rdbrlcLk2dOlUxMTGSpNdee0233Xab3nrrLUVERNierz/xZt1u3rxZgwcP1vDhw5WQkKDk5GT985//1MCBAzVx4sTCSDeg5eX9799hT7fFypQpo+Dg4GyfRB08eDDbpyQXmzFjhgYMGKCZM2fquuuuu+TYoKAgtWzZ0pG9MgVZxqxat27tkX+FChUKHNMqBVlGwzD04Ycfqnfv3goLC7vkWCefR2/l9vyEhISodOnSlxzjxHNYEP6yLVrFl7fFggjUbRGBpbDeNxRF3q7b48ePa/Xq1Xr44YcVEhKikJAQ/fvf/9ZPP/2kkJAQffvtt4WVus/Lz/9txYoVVblyZbPhlqQGDRrIMAz98ccftubrT/KzbkeNGqUrr7xS//znP9WkSRMlJCTo7bff1ocffqjk5OTCSDtg5eX9b17QdFssLCxMzZs31zfffOMx/ZtvvlHbtm1zvd+0adPUr18/ffLJJ3n6/oVhGFq/fr0qVqxY4Jy9ld9lvNi6des88m/Tpk22mAsXLvQqplUKsoxLly7Vtm3bNGDAgL99HCefR2/l9vy0aNFCoaGhlxzjxHOYX/60LVrFl7fFggjUbRGBpbDeNxRF3q7b6OhobdiwQevXrzd/Bg4cqHr16mn9+vVq1apVYaXu8/Lzf3vllVdq3759OnHihDlt69atCgoKUpUqVWzN15/kZ92ePHlSQUGebV1wcLCkC3tlkT95ef+bJ16ddg15Mn36dCM0NNSYOHGisXnzZmPIkCFGiRIlzDPnPv3000bv3r3N8Z988okREhJivPXWW0ZycrL5c+zYMXPMCy+8YMyfP9/Yvn27sW7dOqN///5GSEiIsXLlykJfPsPwfhlff/11IzEx0di6dauxceNG4+mnnzYkGbNnzzbHrFixwggODjZGjx5tbNmyxRg9erQREhJi/Pjjj4W+fIbh/TJm6tWrl9GqVascY/rS83j8+HFj3bp1xrp16wxJxmuvvWasW7fO2LVrl2EY2Zfv999/N4oXL2489thjxubNm42JEycaoaGhxqxZs8wxvvYceruM/rgteruM/rgteruMmfxlWwTseN+A8/JbyzNx9vLcebtujx8/blSpUsW47bbbjE2bNhlLly416tSpY9x3331OLYLP8nbdTpo0yQgJCTHefvttY/v27cZ3331ntGjRwoiPj3dqEXyWHe9/84Km2yZvvfWWUa1aNSMsLMxo1qyZsXTpUnNe3759jQ4dOpi3O3ToYEjK9tO3b19zzJAhQ4yqVasaYWFhRtmyZY1OnToZ33//fSEuUXbeLONLL71k1KpVyyhWrJhx2WWXGe3atTO++uqrbDE//fRTo169ekZoaKhRv359j0bACd4so2EYxrFjx4yIiAjjvffeyzGeLz2PmZeOyu3/LqflW7JkiREXF2eEhYUZ1atXNyZMmJAtri89h94uoz9ui94uoz9ui/n5X/WnbREwDOvfN+ACb2t5VjTdl+btut2yZYtx3XXXGREREUaVKlWMoUOHGidPnizkrP2Dt+t2/PjxRsOGDY2IiAijYsWKRs+ePY0//vijkLP2fXa9//07LsPgmAMAAAAAAOzAd7oBAAAAALAJTTcAAAAAADah6QYAAAAAwCY03QAAAAAA2ISmGwAAAAAAm9B0AwAAAABgE5puAAAAAABsQtMNAChSli1bpm7duqlSpUpyuVz6/PPPA+rxAACAb6HpBgLczp075XK5tH79eqdTyaZfv37q0aOH02mgiElLS1PTpk315ptvBuTjAfBtV199tYYMGXLJMdWrV9fYsWNtz2XJkiVyuVw6duxYnu+Tl/wBeKLpBnxcv3795HK5sv107tw5T/ePjY1VcnKyLr/88r8dW9gN+rhx4zR58uRCeSwgU5cuXfTiiy/qlltuyXH+mTNn9OSTT6py5coqUaKEWrVqpSVLltj2eAD8S0Hr8meffab//Oc/NmeZXU7Nctu2bZWcnKyYmJhCzwcoSkKcTgDA3+vcubMmTZrkMS08PDxP9w0ODlaFChXsSKvAKPLwRf3799fOnTs1ffp0VapUSYmJiercubM2bNigOnXqOJ0eAB9QkLpcqlQpO1LKl7CwMJ99jwAEEvZ0A34gPDxcFSpU8Pi57LLLJEkul0sTJkxQly5dFBERoRo1aujTTz8173vx3uujR4+qZ8+eKlu2rCIiIlSnTh3zjUONGjUkSXFxcXK5XLr66qvNOJMmTVKDBg1UrFgx1a9fX2+//Xa2x5g5c6bat2+viIgItWzZUlu3btWqVavUokULRUZGqnPnzjp06JB5v4sPL3e73XrppZdUu3ZthYeHq2rVqho5cqTVqxPI1fbt2zVt2jR9+umnat++vWrVqqUnnnhC7dq1y/YGG0DRlVtdvvvuu3XXXXd5jD179qzKlCljvoZcvMf54MGD6tatm1nDp06dmu3xUlJS9MADD6hcuXKKjo7Wtddeq59++smc/8ILL+iKK67Qf//7X1WvXl0xMTG66667dPz4cUnn6+3SpUs1btw4c8/8zp07sx1efuTIEd19992qUqWKihcvrsaNG2vatGkWrz2g6KHpBgLAc889p1tvvVU//fSTevXqpbvvvltbtmzJdezmzZv19ddfa8uWLZowYYLKlCkjSUpKSpIk/e9//1NycrI+++wzSdL777+vZ599ViNHjtSWLVv0f//3f3ruuec0ZcoUj9jPP/+8/vWvf2nt2rUKCQnR3XffrSeffFLjxo3T8uXLtX37dg0fPjzX5Rg2bJheeuklM8dPPvlE5cuXt2IVAXmydu1aGYahunXrKjIy0vxZunSptm/fLunCh0yX+nn44YcdXhIATujZs6fmzJmjEydOmNMWLFigtLQ03XrrrTnep1+/ftq5c6e+/fZbzZo1S2+//bYOHjxozjcMQ127dtX+/fs1b948rVmzRs2aNVPHjh31559/muO2b9+uzz//XHPnztXcuXO1dOlSjR49WtL5r3O1adNG999/v5KTk5WcnKzY2NhsuZw+fVrNmzfX3LlztXHjRj3wwAPq3bu3Vq5cadUqAookDi8H/MDcuXMVGRnpMe2pp57Sc889J0m6/fbbdd9990mS/vOf/+ibb77RG2+84bE3OtPu3bsVFxenFi1aSDp/spZMZcuWlSSVLl3a43Cz//znPxozZoz5ndQaNWpo8+bNevfdd9W3b19z3BNPPKGEhARJ0qOPPqq7775bixYt0pVXXilJGjBgQK7f4T5+/LjGjRunN99804xZq1YttWvXLm8rCbCA2+1WcHCw1qxZo+DgYI95mdtg5cqVc/1QK1PmkSgAAlNudfnpp59WiRIllJiYqN69e0uSPvnkE3Xr1k3R0dHZ4mzdulVff/21fvzxR7Vq1UqSNHHiRDVo0MAcs3jxYm3YsEEHDx40D2F/9dVX9fnnn2vWrFl64IEHJJ1//Zo8ebKioqIkSb1799aiRYs0cuRIxcTEKCwsTMWLF7/k4eSVK1fWE088Yd5+5JFHNH/+fH366admfgC8R9MN+IFrrrlGEyZM8JiW9Tthbdq08ZjXpk2bXE+GNmjQIN16661au3atOnXqpB49eqht27a5PvahQ4e0Z88eDRgwQPfff785/dy5c9m+k92kSRPz78w91I0bN/aYlvXT+6y2bNmi9PR0dezYMddcALvFxcUpIyNDBw8eVPv27XMcExoaqvr16xdyZgB8SW51OTQ0VLfffrumTp2q3r17Ky0tTV988YU++eSTHONs2bJFISEh5gfhklS/fn2VLFnSvL1mzRqdOHFCpUuX9rjvqVOnzCNwpPMfomc23JJUsWLFXGtubjIyMjR69GjNmDFDe/fuVXp6utLT01WiRAmv4gDwRNMN+IESJUqodu3aXt3H5XLlOL1Lly7atWuXvvrqK/3vf/9Tx44d9dBDD+nVV1/Ncbzb7ZZ0/hDziz/lvnhPYGhoaLbHv3haZryLRURE/M0SAdY4ceKEtm3bZt7esWOH1q9fr1KlSqlu3brq2bOn+vTpozFjxiguLk6HDx/Wt99+q8aNG+uGG26w9PGqVq1qyTIBKFyXqss9e/ZUhw4ddPDgQX3zzTcqVqyYunTpkuNYwzAk5V6zpfN1uGLFijleRSFrc5613mbGzK3m5mbMmDF6/fXXNXbsWDVu3FglSpTQkCFDdObMGa/iAPDEd7qBAPDjjz9mu32pPXFly5ZVv3799PHHH2vs2LF67733JJ0/i6l0/pPuTOXLl1flypX1+++/q3bt2h4/mSdes0KdOnUUERGhRYsWWRYTyMnq1asVFxenuLg4SdLQoUMVFxdnnm9g0qRJ6tOnjx5//HHVq1dP3bt318qVK3P8/qMVjwcgsLRt21axsbGaMWOGpk6dqttvv92srxdr0KCBzp07p9WrV5vTfv31V4/rZjdr1kz79+9XSEhItjqceU6WvAgLC/Oo7zlZvny5brrpJvXq1UtNmzZVzZo19dtvv+X5MQDkjD3dgB9IT0/X/v37PaaFhISYxfbTTz9VixYt1K5dO02dOlVJSUmaOHFijrGGDx+u5s2bq1GjRkpPT9fcuXPN746VK1dOERERmj9/vqpUqaJixYopJiZGL7zwggYPHqzo6Gh16dJF6enpWr16tY4ePaqhQ4dasozFihXTU089pSeffFJhYWG68sordejQIW3atEkDBgyw5DEA6fyZgzP3LuUkNDRUI0aM0IgRIwrl8QD4n0vVZZfLpXvuuUfvvPOOtm7dqsWLF+cap169eurcubPuv/9+vffeewoJCdGQIUM8jv667rrr1KZNG/Xo0UMvvfSS6tWrp3379mnevHnq0aOHx6Hpl1K9enWtXLlSO3fuVGRkZI6XLqtdu7Zmz56t77//Xpdddplee+017d+/3+M75gC8x55uwA/Mnz9fFStW9PjJeoKxESNGaPr06WrSpImmTJmiqVOnqmHDhjnGCgsL07Bhw9SkSRNdddVVCg4O1vTp0yWdf8Mwfvx4vfvuu6pUqZJuuukmSdJ9992nDz74QJMnT1bjxo3VoUMHTZ482dI93dL5M6s//vjjGj58uBo0aKA777zT6++jAQBgt7+ryz179tTmzZtVuXJl82SiuZk0aZJiY2PVoUMH3XLLLealwTK5XC7NmzdPV111le69917VrVtXd911l3bu3OnVFT6eeOIJBQcHq2HDhipbtqx2796dbcxzzz2nZs2aKSEhQVdffbUqVKjgcWlPAPnjMvj4HfBrLpdLiYmJFEUAAADAB7GnGwAAAAAAm9B0AwAAAABgE06kBvg5viECAAAA+C72dAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAmNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAmIU4nUFCnT5/WmTNnnE4DAIB8CQsLU7FixZxOw1LUZgCAP7O6Nvt103369GlFREQ4nQYAAPlWoUIF7dixI2Aab2ozAMDfWV2b/brpvvAperAk119/u5R51Lwr8+h5V1C2aS5XkHkflyvYnHd++sXjzo+5MO2v+ynYnB+knMZdFEtBCsryWOfvF5zl7yAzbtBfuWWdZo4zgi6KEWSOy5wX5DHfZc5zZS6zGd9lzjenubLOU7Z55po2x3n+fX5c1vtkxrgwz4zruvDbnJ/ld+b8vMQIyhLDnHbR35nzcoqXfbxhDgq6aJrL4/EN875Bf/19cVyXjCy5XWq84THfnJbl76wxXDKyLP+FaUGXmHZxfJfLMMfJnJc1DyPbOJdHXM9pWW+7Lh7vyiHfrMt8ifsGudy5zlNQ1jyyjMt8Cbg4jyDDY1y2uEEXYl34+8JjZd5X5jxduN/FcYMMKSh/02TOU/Z5WccHZRkfZOQwTRdN018x5LnRmo918YbnkrkyzXlBF35fPD4oyJxvZI5zBXve56/fRg7Tzv8OluHKct/MaeZjBP8VP9jzb3Oc530vzAvJMj7kQh6ukAvz//ptzlfW+4b8tUo8x7tcIdJf01zmtGBzXJArh2lBQUpNPaXqsY/qzJkzAdN0F7w2n5/iuqheulxB2cZ5U5szY1ldm80YFtfmzN8Fqc2Zty/azOWSq0C1OXOe1bX54vH5qc0Xxl+qlmaGyHttzhwTdPG0i+abcfNYm81ltrg2m8tcgNqca3yPuN7XZun85m91bTYfx+raLElB7oLV5r/mZZ9WwNqcOdPi2myOKUhtNucFXzQvqEC1+cKY4GzzClKbM8fbVZv9uunOyiw3Lpd0UfHKadr5opS9Oc696c6h2Gcp7BfmZSnUWcZljsl7Yc/LtBwKe5Zinq2wKyh7g52PpjtrIZcyi5s3TXfWGFnHy2N8QZrunAv1hfG5Ncc5Ffasbyzy3XRnKdRWNt1BXjXdF983S245xs1eqPPbdBdkWmYxulRhd+XadGd/o5A53nyDHpT7Y7pcrlya7uz3NW9f3OgXYJpHA51ZeD2KcpZiLClLX3NhWlAO07wt7OffEWaflvk7x2J/UWHPsXgHZSm4lyjsOTXTf9t0X1zkL1XYgy/ddGedl63pDr1wO1thv/AGIOem+6+cAlj+arOkXOpxQWpz5m2ra3Pmbatr84Xx+a/Nmbfz1nTnvTZnjrG6Np8fk7059qY2Xxifh6bbi9p88fhLNd3e1GYzN4trc7a4+ajDucbPUl/zU5sz51ldm3ObV+DafH7lF6w2Z8bIWpsvnpaf2pz54BbX5vNjcmrIvajN5rwc6nEBarM5Jod5BanNmfPsqs1Bfz8EAAAAAADkB003AAAAAAA2oekGAAAAAMAmNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbBIw1+k2/rom4flfhrLc+Ot3TtPcf/2deWG8S8k6xsj2t5HDNHfmdSPN30HmvAtXwzSy/B2UZbzromluZV4d0jA8rwVqKCjbPMNjvsuc587Ldbo95inbPFe2aZ5/5zYtp8sPurL8NudfuCRivq/T7Xmtzgt/Z87LKV728YY5qMDX6ZaRJTfrrtPt8uo63dkfP/N25jjldC1QGdnGeXudbo9re16c299dp9ucl/u1QJXrdbo9l9nzWqDubPOyXwvUnct1ut3m3+fn6cL9crgWqYLyN03mvKyPleU6oUGe+cqV2zRdNE1/xZDnRms+lue08xuo4TktKGsemdPcF8b8Nc3w2PAuihuUZX7WeJnzXNnzNYI8172RZT0YWWKY4/56PjzuF+S+aHyGDPM5vfDbvI8yzHEKyvhrcbJMU27XAs1yTe4cr9MdpNTUUwpk+avN0vn6bHVtPj/F6tp8fnSQ5bU583dBanPm7eybtMtj886cl9faLOVeSwtSmy8en5/afGH8pWppZoi81+bMMXm5Trc3tdlcZotrs7nMBajNucb3iOt9bZbO1xqra7P5OFbXZkkKchesNv81L/u0AtbmzFgW12ZzTEFq81+3jYtiGEHuAtXmC/fzrMMKyihQbc4cb1dt9uum2zAMRUZG6sSJEznPz/ZHztMAAHBKhQoVFBYW5nQalqE2AwD8ndW12a+bbpfLpRMnTmjPnj2Kjo52Op1C17JlS61atcrpNDwUVk5WP44V8fIbw9v7eTP+78ampqYqNjaWbciH+Os2ZEVMf9yGpIJvR2FhYSpWrJjX9/NV1GZeV3wpZlF9XfF3vrYdFWY+vvYet7C2IW/u44+12a+b7kzR0dFF8gUpODjY55a7sHKy+nGsiJffGN7ez5vxeR3LNuQ7/HUbsiKmP29DUtHdjnJTVNcHryu8rlg5lu3INxRmPr72HrewtiFv7uOP2xAnUvNjDz30kNMpZFNYOVn9OFbEy28Mb+/nzXhf/B/xJb64fvx1G7IiJtsQAoEv/s/wumL//XhdsZavraPCzMfX3uMW1jbkzX187f8jL1yGYfjtN6hSU1MVExOjlJQUn/gEA/A3bENAwbEdeWJ9AAXHdgQUjK9tQ369pzs8PFzPP/+8wsPDnU4F8EtsQ0DBsR15Yn0ABcd2BBSMr21Dfr2nGwAAAAAAX+bXe7oBAAAAAPBlNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYJOAbbrnzp2revXqqU6dOvrggw+cTgfwSzfffLMuu+wy3XbbbU6nAvidPXv26Oqrr1bDhg3VpEkTffrpp06n5BOoz0DBUJuB/HOqNgfk2cvPnTunhg0bavHixYqOjlazZs20cuVKlSpVyunUAL+yePFinThxQlOmTNGsWbOcTgfwK8nJyTpw4ICuuOIKHTx4UM2aNdOvv/6qEiVKOJ2aY6jPQMFRm4H8c6o2B+Se7qSkJDVq1EiVK1dWVFSUbrjhBi1YsMDptAC/c8011ygqKsrpNAC/VLFiRV1xxRWSpHLlyqlUqVL6888/nU3KYdRnoOCozUD+OVWbfbLpXrZsmbp166ZKlSrJ5XLp888/zzbm7bffVo0aNVSsWDE1b95cy5cvN+ft27dPlStXNm9XqVJFe/fuLYzUAZ9R0O0IKOqs3IZWr14tt9ut2NhYm7O2F/UZKBhqM1Aw/lqbfbLpTktLU9OmTfXmm2/mOH/GjBkaMmSInn32Wa1bt07t27dXly5dtHv3bklSTkfMu1wuW3MGfE1BtyOgqLNqGzpy5Ij69Omj9957rzDSthX1GSgYajNQMH5bmw0fJ8lITEz0mBYfH28MHDjQY1r9+vWNp59+2jAMw1ixYoXRo0cPc97gwYONqVOn2p4r4Kvysx1lWrx4sXHrrbfanSLg0/K7DZ0+fdpo37698dFHHxVGmoWK+gwUDLUZKBh/qs0+uaf7Us6cOaM1a9aoU6dOHtM7deqk77//XpIUHx+vjRs3au/evTp+/LjmzZunhIQEJ9IFfFJetiMAucvLNmQYhvr166drr71WvXv3diLNQkV9BgqG2gwUjC/X5pBCeySLHD58WBkZGSpfvrzH9PLly2v//v2SpJCQEI0ZM0bXXHON3G63nnzySZUuXdqJdAGflJftSJISEhK0du1apaWlqUqVKkpMTFTLli0LO13A5+RlG1qxYoVmzJihJk2amN85++9//6vGjRsXdrqFgvoMFAy1GSgYX67Nftd0Z7r4O2CGYXhM6969u7p3717YaQF+5e+2I84qDFzapbahdu3aye12O5GWo6jPQMFQm4GC8cXa7HeHl5cpU0bBwcEen/hJ0sGDB7N9qgEgZ2xHQMGwDWXHOgEKhm0IKBhf3ob8rukOCwtT8+bN9c0333hM/+abb9S2bVuHsgL8C9sRUDBsQ9mxToCCYRsCCsaXtyGfPLz8xIkT2rZtm3l7x44dWr9+vUqVKqWqVatq6NCh6t27t1q0aKE2bdrovffe0+7duzVw4EAHswZ8C9sRUDBsQ9mxToCCYRsCCsZvt6FCO0+6FxYvXmxIyvbTt29fc8xbb71lVKtWzQgLCzOaNWtmLF261LmEAR/EdgQUDNtQdqwToGDYhoCC8ddtyGUYhlEYzT0AAAAAAEWN332nGwAAAAAAf0HTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAmNN0AAAAAANiEphsAAAAAAJvQdAMAAAAAYBOabgAAAAAAbELTDQAAAACATWi6AQAAAACwCU03AAAAAAA2oekGAAAAAMAm/w/31gXE4yaIqgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -371,7 +390,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAHTCAYAAACjj2AvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVRfA4d9m0ys9EHrvSBMERAQEBFSagqIgVREEJQiCSAdRpIkKiFItiCIifoI0AUVFkSZKlCqBEAgEkpCe7M73xySbTc8mm8xsct7nyUN2dmb2JMzN7pl777kGRVEUhBBCCCGEEEJoyknrAIQQQgghhBBCSHImhBBCCCGEELogyZkQQgghhBBC6IAkZ0IIIYQQQgihA5KcCSGEEEIIIYQOSHImhBBCCCGEEDogyZkQQgghhBBC6IAkZ0IIIYQQQgihA5KcCSGEEEIIIYQOSHImdGfYsGH07dtX6zCEEELolMFgYPv27VqHIUSJ9d9//2EwGDh58qTWoRQ7kpwJuxo2bBgGgwGDwYCzszPVqlXjhRde4M6dO3k+xzvvvMOGDRsKL0ghNBAWFsbzzz9PtWrVcHNzo2LFivTo0YNff/1V69CE0J2ibi/yQVPohfXnKOuv8+fP2+X8qdd66pefnx/33Xcf3377rU3nqVq1KqGhoTRp0sQucYk0zloHIIqfhx9+mPXr15OcnMyZM2cYMWIEERERbN68OU/H+/n5FXKEQhS9AQMGkJSUxMaNG6lVqxY3btxg//793L59W+vQhNAdaS+iJEv9HGWtfPnymfZLTEzE1dU1X6+xb98+GjduTEREBCtXrmTAgAEcP348z8mW0WikYsWK+XptkTPpORN2l3qXs0qVKnTv3p1BgwaxZ88eAEwmEyNHjqRmzZp4eHhQv3593nnnnXTHZxzW+OCDDzJhwgSmTJlCmTJlqFixIrNnzy7Cn0iIgomIiODw4cO89dZbdO7cmerVq9OmTRumTZtG7969AXWY1kcffUS/fv3w9PSkbt267NixI915Dh06RJs2bXBzc6NSpUpMnTqV5ORkAL799ltKlSqF2WwG4OTJkxgMBiZPnmw5/vnnn+epp54qop9aiPzJS3vJKCQkhEGDBlG6dGnKli1Lnz59+O+//9Lts379eho2bIi7uzsNGjRg5cqVludq1qwJQIsWLTAYDDz44IOF9eMJkavUz1HWX0ajkQcffJAXX3yRwMBAypUrR7du3diwYUOWPW25fU4qW7YsFStWpEGDBixYsICkpCQOHDhgef7777/n/vvvp1SpUpQtW5ZHHnmECxcuWJ7P2Nt88OBBDAYD+/fvp3Xr1nh6etK+fXv+/fffwvgVFWuSnIlCdfHiRb7//ntcXFwAMJvNVKlShS+++IIzZ84wc+ZMXnvtNb744oscz7Nx40a8vLz47bffWLRoEXPnzmXv3r1F8SMIUWDe3t54e3uzfft2EhISst1vzpw5DBw4kD///JNevXrx9NNPW3oKQkJC6NWrF/feey+nTp1i1apVrF27lvnz5wPwwAMPcPfuXU6cOAGoiVy5cuU4dOiQ5fwHDx6kU6dOhfiTClFweW0vqWJjY+ncuTPe3t78+OOPHD58GG9vbx5++GESExMB+PDDD5k+fToLFiwgKCiIN954gxkzZrBx40YAfv/9d0DtTQgNDWXbtm2F9wMKUQAbN27E2dmZn3/+mQ8++IBBgwYRGhpq+dq8eTPOzs506NAhT+dLSkriww8/BLB8VgOIiYkhMDCQo0ePsn//fpycnOjXr5/lBmB2pk+fzpIlS/jjjz9wdnZmxIgR+f9hSypFCDt69tlnFaPRqHh5eSnu7u4KoADK0qVLsz1m7NixyoABA9Kdo0+fPpbHnTp1Uu6///50x9x7773Kq6++avf4hSgsW7duVUqXLq24u7sr7du3V6ZNm6acOnXK8jygvP7665bH0dHRisFgUHbt2qUoiqK89tprSv369RWz2WzZ5/3331e8vb0Vk8mkKIqitGzZUlm8eLGiKIrSt29fZcGCBYqrq6sSFRWlhIaGKoASFBRUFD+uEAWSl/by9ddfK4qiKGvXrs3UNhISEhQPDw9l9+7diqIoStWqVZXPPvss3WvMmzdPadeunaIoinLp0iUFUE6cOFG4P5gQubD+HJX69fjjjyuKon4eat68ebbHnj9/XilbtqyyaNGibPdJvdY9PDwULy8vxcnJSQGUGjVqKOHh4dkeFxYWpgDK6dOn050ntc0cOHBAAZR9+/ZZjvnuu+8UQImLi7PlV1DiSc+ZsLvOnTtz8uRJfvvtN8aPH0+PHj0YP3685fnVq1fTunVrypcvj7e3Nx9++CHBwcE5nrNZs2bpHleqVImwsLBCiV+IwjBgwACuXbvGjh076NGjBwcPHqRly5bpit9YX+deXl74+PhYrvOgoCDatWuHwWCw7NOhQweio6O5evUqoA4BPnjwIIqi8NNPP9GnTx+aNGnC4cOHOXDgAP7+/jRo0KBofmAhCiAv7SXVsWPHOH/+PD4+PpZetzJlyhAfH8+FCxe4efMmV65cYeTIkZbnvb29mT9/frphWkLoRernqNSvFStWWJ5r3bp1lsdERkbyyCOP0LNnz3TD2bOzZcsWTpw4wY4dO6hTpw4fffQRZcqUsTx/4cIFBg8eTK1atfD19bUM/bXl81qlSpUA5POajaQgiLA7Ly8v6tSpA8CKFSvo3Lkzc+bMYd68eXzxxRdMnDiRJUuW0K5dO3x8fHj77bf57bffcjyndVc7qPNzcutaF0Jv3N3d6datG926dWPmzJmMGjWKWbNmMWzYMCDn61xRlHSJWeq21P1ATc7Wrl3LqVOncHJyolGjRnTq1IlDhw5x584dGdIoHEpu7SWV2WymVatWfPrpp5nOUb58eeLj4wF1aGPbtm3TPW80GgstfiHyy/pzVFbPZWQymRg0aBC+vr6WIYq5qVq1KnXr1qVu3bp4e3szYMAAzpw5Q4UKFQB49NFHqVq1Kh9++CEBAQGYzWaaNGliGSqcHev3sdT3Jvm8ZhvpOROFbtasWSxevJhr167x008/0b59e8aOHUuLFi2oU6eO3LkUJVajRo2IiYnJ876//PKLJSED+OWXX/Dx8aFy5cpA2ryz5cuX06lTJwwGA506deLgwYMy30w4vOzaS8uWLTl37hwVKlSgTp066b78/Pzw9/encuXKXLx4MdPzqb0BqRXvTCZTkf5MQtjDxIkTOX36NF9//TXu7u42H9+pUyeaNGnCggULAAgPDycoKIjXX3+drl270rBhQ5uWRBIFI8mZKHQPPvggjRs35o033qBOnTr88ccf7N69m7NnzzJjxgyOHj2qdYhCFKrw8HC6dOnCJ598wp9//smlS5f48ssvWbRoEX369MnTOcaOHcuVK1cYP348//zzD9988w2zZs0iMDAQJyf1T7mfnx/Nmzfnk08+sVSbe+CBBzh+/Dhnz56VCnTCIdjaXp5++mnKlStHnz59+Omnn7h06RKHDh3ipZdesgz5nT17NgsXLuSdd97h7NmznD59mvXr17N06VIAKlSogIeHB99//z03btwgMjKySH9mIfJr/fr1rFy5ktWrV+Pk5MT169e5fv060dHRNp1n0qRJfPDBB4SEhFiqnq5Zs4bz58/zww8/EBgYWEg/gchIkjNRJAIDA/nwww/p27cv/fv3Z9CgQbRt25bw8HDGjh2rdXhCFCpvb2/atm3LsmXLeOCBB2jSpAkzZsxg9OjRvPfee3k6R+XKldm5cye///4799xzD2PGjGHkyJG8/vrr6fbr3LkzJpPJkoiVLl2aRo0aUb58eRo2bGjvH00Iu7O1vXh6evLjjz9SrVo1+vfvT8OGDRkxYgRxcXH4+voCMGrUKD766CM2bNhA06ZN6dSpExs2bLD0nDk7O7NixQo++OADAgIC8nzTRAitHTp0CJPJxGOPPUalSpUsX4sXL7bpPI888gg1atRgwYIFODk58fnnn3Ps2DGaNGnCxIkTefvttwvpJxAZGRTrMTJCCCGEEEIIITQhPWdCCCGEEEIIoQOSnAkhhBBCCCGEDkhyJoQQQgghhBA64NDJ2Y8//sijjz5KQEAABoOB7du353rMoUOHaNWqFe7u7tSqVYvVq1cXfqBCCCGEEEIIkQuHTs5iYmK455578lzt7NKlS/Tq1YuOHTty4sQJXnvtNSZMmMBXX31VyJEKIYQQQgghRM6KTbVGg8HA119/Td++fbPd59VXX2XHjh0EBQVZto0ZM4ZTp07x66+/FkGUQgghhBBCCJE1Z60DKEq//vor3bt3T7etR48erF27lqSkJFxcXLI8LiEhgYSEBMtjs9nM7du3KVu2LAaDoVBjFsJWiqJw9+5dAgICLIsTFwVpJ8KRSDsRInfSToTIG3u2lRKVnF2/fh1/f/902/z9/UlOTubWrVtUqlQpy+MWLlzInDlziiJEIezmypUrVKlSpcheT9qJcETSToTInbQTIfLGHm2lRA1rrFevHsOHD2fatGmWbT///DP3338/oaGhVKxYMcvjMt7BiYyMpFq1aqhT9rS8g2OP1y4W//3Fxu3IVQU63sggoqKiqFq1KhEREfj5+dkpstzpt53oQwWvewt0fFjMUc1jsFccBVXQdgIQE9VT2omd3ePxhNYh8MPHBwt8ji5DHizwOQocQ+mCX5Ovr/imwOeIbXtU2kkx9U2rRwp0/MbzWX9mtsUHr24s8DkKyjhuRcHPYefPXiWq56xixYpcv3493bawsDCcnZ0pW7Zstse5ubnh5uaWxTMGtPwjYbDDa0tqpi++vp552u/PP0vh7m6iXr276bYb8bV8X9RDP/TaTvTCyVDQP7cF/x0WPAb7xFFQeW0n16+7c+6cDx073sz0XGpbkXZiP0aDq9Yh4OtZ8KF3evg53JwKHkNefxfxiW7sP9GR3m33ZXrO2VfaSXHl5Zz1VJ68cjFk9f9jG1937f8vjXl8P1EU+HpbVfr1v0LG5mDvz14OXa3RVu3atWPv3r3ptu3Zs4fWrVtnO99MCL355x9fejzUlc4PdOP06VJahyOELoWHu/Jwt6707N6FnTsDtA5HCF1KTHJh0II19J2zkRXbR2odjhC6pCgw+ZWWDHz8Aca90AazuXBfz6GTs+joaE6ePMnJkycBtVT+yZMnCQ4OBmDatGkMHTrUsv+YMWO4fPkygYGBBAUFsW7dOtauXcsrr7yiRfhC2OziRW+6d+3KzZvu3LjhQdcHH+KPP8poHZYQuhIZ6UKvHl34669SxMc7M6DvA2z7qqrWYQmhKyaTE8++/S47jz4EwKQ1c3lzy3iNoxJCf+bOacrypQ0BWPNBXUYMa0dycuH1+jl0cvbHH3/QokULWrRoAUBgYCAtWrRg5syZAISGhloSNYCaNWuyc+dODh48SPPmzZk3bx4rVqxgwIABmsQvhK1em9qca9fSuuBv33Zj/tymGkYkhP6seKc+x46lDVVPSjIyY/o9JCY69FueEHb17W/d2Xr40XTb3v5yLCG3Cj6XSIjiIijIlzfmN0m3bfNnNfjtt3KF9poOPefswQcfJKd6Jhs2bMi0rVOnThw/frwQoxKi8Kz56AihoR78fLgCAG3a3uLjT3/WOCoh9GXaa39z8YIPH2+qBUDVqjHs3H0AV9dCHosihAPp2/57Fgx7g+kbXgPA0y2Wb+cOoXK567kcKUTJ0bBhFJ9/cZjBT3YgKcmIwaCwbsOvdOiQeS6zvchtRCEciK9vMju//4GHuoVyzz23+W7XAXx8krUOSwhdcXZWWLv+V54fcxZ//zh279tP9eoxWoclhO5MGfg+y8a8jrtrHF/PGk77Rn9oHZIQutOv/xW2ffMjHh7JvL/qd55+5r9CfT2H7jkToiTy8jKxfcdBoqNdKF06UetwhNAlJyd4b+VRps/4i4CAOK3DEUK3XnxsPf3a75IeMyFy0LPnNf45t4PKlQv//USSMyEckLu7GXf3hNx3FKIEMxiQxEyIPJDETIjcFUViBjKsUQhdSkhw4pvtBVthXojiTlFg65fVCr2ssRCO7rvfHiIm3kPrMITQtcOHyxMSon07keRMCJ1JSjIw+Mn7GdCvE2+92UjrcITQrRmv38OTAzsWelljIRzZpz/0p9/c9fSe8SlRsd5ahyOELv36azl6P9yZBzt249IlL01jkeRMCB0xmQyMGNaOb7arazJNn9aCGa/fQw5FSYUokRa+0Zg331DLG3/ycS0GP3m/lMoXIoOvf+7JyKXLUBQnfv67Ld2nbSE8qrTWYQmhKydOlOaRnp2JiXHh0iUfHuzYnX//9dEsHnknE0JH9uypxObPaqbb9u479bl8Wdu7OELoycWL3sydnX59v6+3VeXw4fIaRSSE/sTGu/PSqvmYzGnlBY6da86WQ49pGJUQ+qIo8PKE1kRGulq2hYR48s6yhprFJMmZEDrSs+c1li5PK2Xs4ZHMju8OUqOGlAEXIlWtWtF8tf1H3N3TlpFY89ERunS5oWFUQuiLp3s8O+cPxr90mGXby/0+4IVHNmoYlRD6YjDAF1t/olmzO5ZtPXuFsHyFdstK5KlaY//+/fN8wm3btuU7GCEETHjpX7y9k5nwYmu2fv0jDzwQlvtBQpQwvXpd49udB+n3WCfmLTjF8BEXtQ5JCN1pUuNfDizqT4/XttCj9QEWjZqLQaZnCpGOv388+w7so3fPznh5JfPF1p9wddWu0lSekjM/Pz/L94qi8PXXX+Pn50fr1q0BOHbsGBERETYlcUKI7I0YeYGevUKoVCle61CE0K3OnW8QdHaHtBMhclC38iV+Xd6Lcr63JTETIhtlyiSye+9+nJzAw8OkaSwGRbGt1MCrr77K7du3Wb16NUajEQCTycTYsWPx9fXl7bffLpRA9SQqKiolYTUC8peuODAYCj7CV1EKfpfF2ViqQMcnJd+0XJ+RkZH4+voWOKb8knYisrK49ugCn2PsjrMFPkdSlW3SToTIRWRkuLQTIXKhKEl2/exl8yfSdevW8corr1gSMwCj0UhgYCDr1q0rUDBClCw9Ae2qAQnhCP6Lr8ntpDJahyGEztUA2modhBA654P62UvfbE7OkpOTCQoKyrQ9KCgIs6wEKkQePQ58DewGpKyxEFm5El+ND6+9yPshk7iZWEHrcITQqcqo7yXfA500jkUIvfIEdgDbgRHahpKLPM05szZ8+HBGjBjB+fPnue+++wA4cuQIb775JsOHD7d7gEIUP72ATajDM+4F9gMPA1L4Q4hUoQkBfBj6IgmKBwkmD1Zem8hzld6lkts1rUMTQkfKoyZltVIefwsMTNkmhFC5AluB+1MefwB4Ays0iygnNidnixcvpmLFiixbtozQ0FAAKlWqxJQpU5g0aZLdAxSieHEF3gFcrLY1BQYDy7UISAhd+jZ8ALFmb8vjuyY/DkV25ckKH2sYlRB6MwVoYPXYA5iJ2pNmU0kBIYqxp4BuGbZNBj4G7mTeXWM2D2t0cnJiypQphISEEBERQUREBCEhIUyZMiXdPDQhRFYSUXvOrlhtW4kkZkKk94z/Wqq6/Wd5XM8jiAHlNmsXkBC69Bpqj0Cqf4A+SGImhLWNwAKrx7dR557pLzGDfC5CnZyczL59+9i8eTOGlLqs165dIzo62q7BCVE8nQM6AxdQ/2C8rGk0QuiRpzGW5wNWUNP9HDXdz/NsxQ9wcUrO/UAhSpQk4BnUofIXgR7ATU0jEkKfZgPTgEigN/CXptHkxOZhjZcvX+bhhx8mODiYhIQEunXrho+PD4sWLSI+Pp7Vq1cXRpxCFDOXUcc+30bucAqRNXeneEZXeg8zRtycErUORwidMgGjUOefydxlIbK3GHUo4w2tA8mRzT1nL730Eq1bt+bOnTt4eHhYtvfr14/9+/fbNTghirdbgFQ4FSInrk5JuDvJItNC5ExBEjMh8kLfiRnkIzk7fPgwr7/+Oq6urum2V69enZCQELsFJoTjq0paZSAhRFYSzG78FdNM6zCE0DkDMEjrIIRwAP0BN62DKBCbkzOz2YzJZMq0/erVq/j4yIK6Qqj8UUsZ70SdAyCEyCjJ7MK60DFsuD6Gw5EPah2OEDr2HvBJyr8GjWMRQq/GAVtQ15H11DiW/LM5OevWrRvLly+3PDYYDERHRzNr1ix69eplz9iEcFBlUBOzeqhljbcB/TSNSAi9SVaMbLwxmgvx9QHYfmsg++/IjQwhMlsEPJfy/fPAOtR1MoUQaYaRVvm6G/Ad4KtVMAVic3K2bNkyDh06RKNGjYiPj2fw4MHUqFGDkJAQ3nrrrcKIUQgH8xLQxOqxK/A68mYqRJrT0c35J7ZJum0/RnThbrJ3NkcIURI1AyZk2DYQaF70oQihW6VQb2JYux916SLHY3O1xoCAAE6ePMnmzZs5fvw4ZrOZkSNH8vTTT6crECJEyTUXqIZa3hjgPGrZ1szDgYUoqVr4HON2cjl23e4DgLtTLM8FvIuPsyzJIkSaP1EX0P0E9UZfMjAYOKZlUELoTATqumXfAWVTtk0HPtcqoAKxuecsNjYWDw8PRowYwXvvvcfKlSsZNWqUponZypUrqVmzJu7u7rRq1Yqffvopx/0//fRT7rnnHjw9PalUqRLDhw8nPDy8iKIVxZ8JGAF8AASjzjm7rmlEQuhR19K76VP2C9wM8Yyq9D6V3a5qHZIQOvQ1apGDGGAk8I224QihS8eArqiftxaSuSfNcdicnFWoUIFnnnmG3bt3YzZrXwZ8y5YtvPzyy0yfPp0TJ07QsWNHevbsSXBwcJb7Hz58mKFDhzJy5Ej+/vtvvvzyS44ePcqoUaOKOHJRvCnAi8B9qAmaECIrHUsdZGq1WdRwv6R1KELo2G7UecyfaR2IEDr2N9AKmKl1IAVic3K2adMmEhIS6NevHwEBAbz00kscPXq0MGLLk6VLlzJy5EhGjRpFw4YNWb58OVWrVmXVqlVZ7n/kyBFq1KjBhAkTqFmzJvfffz/PP/88f/zxRxFHLkqGm1oHIITu+Tjf1ToEIRyArGMmRO4cv53YnJz179+fL7/8khs3brBw4UKCgoJo37499erVY+7cuYURY7YSExM5duwY3bt3T7e9e/fu/PLLL1ke0759e65evcrOnTtRFIUbN26wdetWevfune3rJCQkEBUVle5LCEUxoChPoihS1hiknYic9EOtXCqknYjsdQEqaR2ELkg7EdlrDLTQOohCZXNBkFQ+Pj4MHz6c4cOHc+bMGZ5++mnmzJnDzJlF15V469YtTCYT/v7+6bb7+/tz/XrWc3zat2/Pp59+yqBBg4iPjyc5OZnHHnuMd999N9vXWbhwIXPmzLFr7CKNwWDzPYJMFKVoh9gqCsAS1DU1uqIoY3Ay5Ls5WSSbIgp8Dq1IOylc9bwfLfA5zkZ/a4dIbDUaWAn8BPShQamIAp9x3AONC3yO5RcLfIp8kXYisvYg6lyyENR5ypc1jUZr0k5E1uqgLlXkDjwG/KptOIUk35+K4+Pj+eKLL+jbty8tW7YkPDycV155xZ6x5ZnBkL7nQlGUTNtSnTlzhgkTJjBz5kyOHTvG999/z6VLlxgzZky25582bRqRkZGWrytXrtg1fuGI5qImZgBDgY9RFBcN49GetBOR2dOoi+YCdAT2cDfZS8N4tCftRGTWDrXohztQGziAOr+s5JJ2IjKrhjr3siJq6fydqDc1ih+bb/Xv2bOHTz/9lO3bt2M0Gnn88cfZvXs3nTp1Koz4clSuXDmMRmOmXrKwsLBMvWmpFi5cSIcOHZg8eTIAzZo1w8vLi44dOzJ//nwqVco8pMDNzQ03Nzf7/wDCISlKfSAww9bHUCehHin6gHRC2olIzxt4i/T3AFvza8Qxupc7pFFM2pN2ItIzAItR20uqqqiLTmtzw1sPpJ2IzF5HTdBSeQOvAgc1iaYw2dxz1rdvX+Li4ti4cSM3btxgzZo1miRmAK6urrRq1Yq9e/em2753717at2+f5TGxsbE4OaX/sY1GdXFgRR2rJkSODIZ/gSeA+JQtZmAYBkPJTcyEyCwaeBi4YbVtbolOzITITEGdk3naatuXqB86hRBpJqCuY5bqD2CQRrEULpt6zpKTk3nzzTd54oknsuxh0kJgYCBDhgyhdevWtGvXjjVr1hAcHGwZpjht2jRCQkLYtGkTAI8++iijR49m1apV9OjRg9DQUF5++WXatGlDQECAlj+KcCAGwy4U5TFgKzAJg2ErBZjCKUQx9RfQGXUoypfAPNQbG0KINGGo6zN9h3oz41nU9TKFEGniUd8/NgINgd5A8SwUY9OnSWdnZ6ZOnUqfPn0KKx6bDRo0iPDwcObOnUtoaChNmjRh586dVK9eHYDQ0NB0a54NGzaMu3fv8t577zFp0iRKlSpFly5deOutt7T6EYSDMhgOoSiNMBikXL4Q2TsHtAFuaR2IEDp2B7UQSFLKlxAisyRgCOAH3NY4lsJj863+tm3bcuLECUvyowdjx45l7NixWT63YcOGTNvGjx/P+PHjCzkqURJIYiZEXkhiJkTuZL0/IXJnojgnZpCP5Gzs2LFMmjSJq1ev0qpVK7y80lfeatasmd2CE0JritIJuITBEJzrvkKUXPVRq2f9pnEcQuhZGdTKjN/ltqMQJZgL8DiwWetANGNzcjZokDr5bsKECZZtBoPBUr7eZJJx0qJ4UJQOwHbgForSC4PhnMYRCaFHNVHnlPkBfQEp+CFEZr6opb9bAGOA9dqGI4QuOaHOKXsCta1M0TYcjdicnF26dKkw4hBCVxSlFWpi5olaunUfitITg+GMpnEJoS+VURcErZzy+FtgYMo2IYTKE3WB6VYpj9cAXqStASiEUJeVWENa0aiJqO3kRdSqpiWHzcmZnuaaCVEY1BUVFqLe6UxVEfVu54SsDhGihJoM1LJ67IF6p1OSMyHSPA3cn2HbRNQeAplnJoSqPWqxD2uDgRXAv0UfjoZsXucM4OOPP6ZDhw4EBARw+fJlAJYvX84333xj1+CE0ILBAPAkcMxq6zdkXnhaiJJuMvCV1eNTQH+NYhFCrz5EveGX6jpqZUZJzIRI8zMwnLRlJOJR1wAsWYkZ5CM5W7VqFYGBgfTq1YuIiAjLHLNSpUqxfPlye8cnhCYMhtuoC+geBvYCz2AwJGsblBC6k4TaK/AxEAT0BCK0DEgInZoJTEetXPowcF7bcITQpc9Qb45How6RP6hpNFqxOTl79913+fDDD5k+fTpGo9GyvXXr1pw+fTqHI4VwLAZDFPAo8AQGQ6LW4QihUyZgJPAgIEtLCJG9RUBT4G+tAxFCx7YDdYFdGsehnXwVBGnRokWm7W5ubsTExNglKCH0wmCI1ToEIRyAQnFfd0YI+5A1/4TIXcluJzb3nNWsWZOTJ09m2r5r1y4aNWqU6/EPPvggmzZtIi4uztaXFqIQpJb/FkJkzxl4RusghHAATwFuWgchhM71BsppHYRu2ZycTZ48mXHjxrFlyxYUReH3339nwYIFvPbaa0yePDnX41u1asWUKVOoWLEio0eP5siRI/kKXIiC8wL+B3yJoozVOhghdMoJWIe6LtO7qOWOhRCZvQpsAr5GLZ8vhMisL7AV2A8EaBuKThkURbF58YAPP/yQ+fPnc+XKFQAqV67M7NmzGTlyZJ6ON5lM/O9//2P9+vXs3LmTOnXqMGLECIYMGYK/v7+t4RS5qKgo/Pz8ACMl/YOKwWDzyNhMFEWLQhvuwA6gs9W214C3NYjFfhQlyXJ9RkZG4uvrm/tBhUTaiX1V9L6vyF9TUSAqYTJxyY9Ztrk778LP7S0MBlMORxau69EFv6kXGRku7UTY0YvAMqvHh4HHcPSKjNJOhH11R7154Zry+AJq5dLLmkVkD/b+7JWvUvqjR4/m8uXLhIWFcf36da5cuZLnxAzAaDTSp08ftm/fTkhICIMHD2bGjBlUrVqVvn378sMPP+QnLCFs8DjpEzOAcUBpDWIRQp+SzQ2IS+6dblt8cmeSzbLepRBpygGzMmy7H+iiQSxC6JUR9Qa4q9W22qhrmQlrNidncXFxxMaqRRLKlStHXFwcy5cvZ8+ePTa/+O+//87MmTNZvHgxFSpUYNq0aVSoUIFHH32UV155xebzCZF3nwCvWz2+iVre+I424QihQy7GfyjlPhu1ZD5AIqXdp+NivKhhVELoTWp5/HCrbS+jro8phFCZUOeaWa9b9gHp1wAUkI/krE+fPmzatAmAiIgI2rRpw5IlS+jTpw+rVq3K9fiwsDCWLFlCkyZN6NixIzdv3uTzzz/nv//+Y86cOaxZs4ZvvvmG1atX2/7TCGGTt1AXlr6Nuj7TP9qGI4QOuTsfpLT7axiIpZT7bNycf9c6JCF06BjwEOoC068B72sbjhC6dBW1R/k06k3y8dqGo1M2Txg6fvw4y5ap46q3bt1KxYoVOXHiBF999RUzZ87khRdeyPH4KlWqULt2bUaMGMGwYcMoX758pn3atGnDvffea2toQuTDu6iLHobntqMQJZab8xHKew3EyRCpdShC6NhfQHPk/USInIShTiuJRl2GRWRkc3IWGxuLj48PAHv27KF///44OTlx3333cfly7hP69u/fT8eOHXPcx9fXlwMHDtgamhD5JG+kQuRGEjMh8kLeT4TInbyf5MTmYY116tRh+/btXLlyhd27d9O9e3dAHa6Yl+oks2bNIiIiItP2qKgounSRybOiMDwFeGgdhBC6Fp/cDpO5rNZhCKFzrVB7x4QQ2auMOg9T5IfNydnMmTN55ZVXqFGjBm3atKFdu3aA2ovWokWLXI8/dOgQiYmJmbbHx8fz008/2RqOELmYiLruzHeAj8axCKFP8cntiYh/g9tx72Ey6385EyG00QT1vWQvUPRLWwjhGMoD36OWzB+kcSyOyeZhjY8//jj3338/oaGh3HPPPZbtXbt2pV+/ftke9+effwKgKApnzpzh+vXrludMJhPff/89lStXtjUcIXLwHLAo5fuOwG7USkFSkVGIVAnJrYiInws4Y1KqEB73PmU8JuLsdEXr0ITQkbrALiC1d3kX6mK6h7QKSAgdKo2amDVIebwJdUH29ZpF5IjytYJwxYoVqVixIleuXMFgMFClShXatGmT4zHNmzfHYDBgMBiyHL7o4eHBu+++m59whMiCHzAnw7Z7URdA3FL04QihQ4pi4G7iWMDNss2s+BOX1AMft4+0C0wI3XkNqGj12BuYgCRnQlgbATSzeuyEuqzEp0DmUXMiazYPa0xOTmbGjBn4+flRo0YNqlevjp+fH6+//jpJSUnZHnfp0iUuXLiAoij8/vvvXLp0yfIVEhJCVFQUI0aMKNAPI0SaSNRE7IbVtslIYiZEGoNBobT7ZJydLli2eTh/h7frWg2jEkKPXkAd0pjqJ+AZjWIRQq+WACusHl9EXapIEjNb2Nxz9uKLL/L111+zaNEiy3yzX3/9ldmzZ3Pr1q1s1yerXr06AGazuQDhCmGL06jlWncD64DlmkYjhB4ZnW5TxmMCt+MW4+x0DV+3RRgMUt5YiPTigSdQh2nVAPoAcVoGJIROTUItkz8U6AFc0zYcB2RzcrZ582Y+//xzevbsadnWrFkzqlWrxpNPPpllcrZjxw569uyJi4sLO3bsyPH8jz32mK0hCZGDc6jVtWSemRDZcTJEUcbjZQwkYDDIDTQhspaE2lvmBdzVOBYh9GwW8A5wW+tAHJLNyZm7uzs1atTItL1GjRq4urpmeUzfvn25fv06FSpUoG/fvtme22AwYDKZbA1JiFxIYiZEbpwMsVqHIIQDMAFRWgchhAOQxCy/bJ5zNm7cOObNm0dCQoJlW0JCAgsWLODFF1/M8hiz2UyFChUs32f3ld/EbOXKldSsWRN3d3datWqVa0n+hIQEpk+fTvXq1XFzc6N27dqsW7cuX68t9OAeIOeCNEKUdCZzGeKT79c6DCF0zh0YonUQQjiAYeSzrqDIRZ5+q/3790/3eN++fVSpUsVSSv/UqVMkJibStWtX+0eYiy1btvDyyy+zcuVKOnTowAcffEDPnj05c+YM1apVy/KYgQMHcuPGDdauXUudOnUICwsjOTm5iCMX9tEAtaSxO2pZ4x81jUYIPTIrvtyJX0ayuQa+bm/h6bJT65CE0CEX1KJRvYDGwFRtwxFCt95GrcL4KDAYSMhxb2GbPCVnfn5+6R4PGDAg3eOqVavmePyKFStyfN7ahAkT8rwvwNKlSxk5ciSjRo0CYPny5ezevZtVq1axcOHCTPt///33HDp0iIsXL1KmTBmALIdpCkdQC7XYR/mUx/8DHgf2aBaREHpjVry4HbeEZHMtAKISpqEoHni5fqVxZELoiRG12EevlMeTUOeWTQCkQI4QaWaiJmYAj6EuNv04IEPj7SVPydn69QVbPG7ZsmV52s9gMNiUnCUmJnLs2DGmTk1/d6t79+788ssvWR6zY8cOWrduzaJFi/j444/x8vLiscceY968eXh4eGR5TEJCQrphnFFRMt5cHyYDAVaPPVDfSCU504K0E32KS3qYZHODdNtikwbg4fIdToZ4jaIquaSd6NUDqB8wrT0JLAUuFX04JZy0E72qBgRm2NYZdWrJwSKPprjK12DRP//8k7Nnz2IwGKhXrx5NmzbNcf9LlwrnD9utW7cwmUz4+/un2+7v78/169ezPObixYscPnwYd3d3vv76a27dusXYsWO5fft2tvPOFi5cyJw5GRc0FgCKUvDhoAaDzVMfU157IlAW6Jey5QgwOF/nMxjc8xWDNRejT4HPYTI77tAAaSc5e8hzVIGOD063Zl/e+bj8iItShdtJqR88gzEpnQmLCc7X+Y4XcPj6/KP1CnQ8QPf6jQp8Dq1IO9GrA8Bw4CPAiIshgSfLraOy28OaRPPm1VUFPsfUKi/YIRJtSDvJ2b62fQt8jod+256Po4KB3sA3gB8GzEyt/T5dy5VCnVriePL3eyhcNn2K/f3332natCktWrRg4MCBPPHEEzRv3pxmzZpx9OjRwooxVwaDId1jRVEybUtlNpsxGAx8+umntGnThl69erF06VI2bNhAXFzWa5ZMmzaNyMhIy9eVK1fs/jMI2xkMicDTqCvPnwQew2CI1jSmkkzaiT4ZDFDO7TPKun4KhKKuO5O/xEwUnLQTPfsEeAo3QxyPl/2Aym7/aR1QiSXtRM9+Bnrg6xzFyzXX0LXcYa0DKnby3HN25swZunbtSsOGDfnkk09o2LAhiqIQFBTEsmXL6Nq1K0eOHKFRo8x3NAMDA5k3bx5eXl4EBmbsDk1v6dKleQ6+XLlyGI3GTL1kYWFhmXrTUlWqVInKlSunm0eX+rNcvXqVunXrZjrGzc0NNze3PMclio7BYEJRRgK+GAyRWodTokk70beyrl8RnjgRWVpCW9JO9O5rxlSqhYeTzJ/RkrQTvTvGhntewtdZbogXhjwnZ7NmzaJbt2589dVX6XqlWrRowVNPPUX//v2ZPXs2X3zxRaZjT5w4QVJSkuX77GTX25UdV1dXWrVqxd69e+nXr59l+969e+nTp0+Wx3To0IEvv/yS6OhovL29ATh79ixOTk5UqVLFptcX+mAwKIAkZkLkThIzIXIjiZkQuZPErPDkOTk7ePAgu3btyjKBMhgMvPbaa/Tq1SuLI+HAgQNZfm8PgYGBDBkyhNatW9OuXTvWrFlDcHAwY8aMAdSu8ZCQEDZt2gTA4MGDmTdvHsOHD2fOnDncunWLyZMnM2LEiGwLgghtKYoraqnWDdiYvwtRYigKRCV3xcf5EE4GWRpEiOwNAA4Bt7QORAgd6wSEAUFaB1Li5Dk5u3v3brZDBQEqVqzI3bt3bXrxK1euYDAYCtRjNWjQIMLDw5k7dy6hoaE0adKEnTt3Ur16dQBCQ0MJDk6bX+Ht7c3evXsZP348rVu3pmzZsgwcOJD58+fnOwZReBTFGXVO2WNACxTl5ZSeMiGEtVuJT3MnaQB3k9sT4P4WToZErUMSQoeeBtYB/wAPo87DFEKk1w616EcsagGQ7Ee9CfvLc0GQGjVq8Pvvv2f7/G+//WZJiHKSnJzMjBkz8PPzo0aNGlSvXh0/Pz9ef/11y9BHW40dO5b//vuPhIQEjh07xgMPPGB5bsOGDRw8eDDd/g0aNGDv3r3ExsZy5coVlixZIr1mOqQoTqiVsx5L2TIGWIOiGLULSggdCk8cwJ0kdf3JWFMLQuJmYFLkb5oQ6fUD1qJ+9GmEWqEx988tQpQsLYAdqOv8lUddnug+TSMqafKcnA0aNIjAwED++uuvTM+dPn2aV155hSeffDLX87z44ousWbOGRYsWceLECU6cOMGiRYtYu3Yt48ePty16Ucy1BQZm2NYXqF30oQihU8nm0txJ7JduW5y5AfGmBtkcIURJ5AzMQ11sOlVt0pZiEUKoZgClrB6XAgq2FIywTZ6HNU6bNo19+/bRvHlzunXrRsOGDQG1iuO+ffto06YN06ZNy/U8mzdv5vPPP6dnz56Wbc2aNaNatWo8+eSTrF69Oh8/hiiODIZfUZRngE2AC2r3el8MhrPaBiaEjjg73aGKx2yuxs3AjLrWnr/bKrycZRiKEGmSUYcxfg/UT9m2FFiuVUBC6NQQ4GvUxaUBvgMcd808R5Tn5Mzd3Z0DBw6wbNkyNm/ezKFDhwCoV68e8+fPZ+LEiXkqe+ru7k6NGjUyba9Rowaurq55j1yUCAbDNhQlDtgAPI3B8LPGEQmhP+7G81T1mMnV+JmUcdmKn8sPWockhA5dBboAu1HXanpV23CE0KUY1OkknwMewJNA/qYdifzJc3IGaun6V199lVdfzf8ftHHjxjFv3jzWr19vSeYSEhJYsGABL774Yr7PK4ovg2EXilJP1jETIgduxsvU8ByP0SBlwIXIXhhqFTrbCpgJUbLEA0+gjlqK1ziWksem5Cy/+vfvn+7xvn37qFKlCvfccw8Ap06dIjExka5duxZFOMIBSWImRO4kMRMiL6K0DkAIB5CE9Jhpo0iSMz8/v3SPBwwYkO5x1apViyIMoWOK0hf4DYNByhoLkZ1YU0OciMPd+J/WoQihYzWBBsAurQMRQsd8UYcvfqJ1ICKDIknO1q9fXxQvIxyUojyOWvTjPxTlYQyG4NwOEaLEiTPV4VrcdMBMZY/5eBilMI4QmVVGnVNWFRgGbNE0GiH0KM7khlouvwPqzYx52gYk0slzKX0hCkdv1GIfRtSyxvtRlLqaRiSE3tw1VyYkbgZmPDHjzdW4WcQmN9Y6LCF0pgJqYlYT9d7zJmC4phEJoTeJZhdmnZ2CmpgBzATe0jAikVGR9JxltHXrVr744guCg4NJTExM99zx48e1CElowgn1bo2L1bZqqOvOLNIkIiH06L+khy1l8gEUPIhM7oan898aRiWE3owkrUw+qO8xY4GPUUvpCyGORjTneFSzDFsHoy4tcUODiERGeUrOAgMD83zCpUuX5vj8ihUrmD59Os8++yzffPMNw4cP58KFCxw9epRx48bl+XVEcWAGeqKuO9MkZdtKJDETIr1Grpu4m2gg1tQKAE/jCfzd3tM4KiH05k2gPDA+5XEQ0AtJzIRI06HMUV6qsYZ3/huFegMjHHUNQEnM9MKgKIqS206dO3fObRf1ZAYDP/yQ8/o6DRo0YNasWTz11FP4+Phw6tQpatWqxcyZM7l9+zbvvaf/DxxRUVEpRU6MgEHrcIqBMsBO4DTwHJDrJVlsGZ28C3R8sumO5fqMjIzE19fXTpHZTtqJfb1W9UW23XqWWLM3g8uvwsXJ9ipau29GF0Jktvk97mOtQwAgMjJc2kmxNRcYhLqI7jWNY3Fs0k6Ks6eBJag3MGTUWkEoSpJdP3vlqefswIEDBXoRa8HBwbRv3x4ADw8P7t5V1xoZMmQI9913n0MkZ8LebgMPAbGU5MRMiJwYDSYGlNtAsuKcr8RMiJJjJuqHTlmCRYjsfQr8D2kn+lPkBUEqVqxIeHg4ANWrV+fIkSMAXLp0iTx04oliKxp1mKMQIjtOBjOuTom57yhEiScfOIXInbQTPcpXQZCjR4/y5ZdfZlnQY9u2bTke26VLF7799ltatmzJyJEjmThxIlu3buWPP/7ItFi1KE6qAS2Ab7QORAgd8waeAGT5ESGy5wSMBtYi88mEyMkQ4FsgQuM4hC1sTs4+//xzhg4dSvfu3dm7dy/du3fn3LlzXL9+nX79+uV6/Jo1azCb1R6SMWPGUKZMGQ4fPsyjjz7KmDFjbP8JhAOoSFp54+eBjdqGI4QuuQNfAw8C9YBpmkYjhH6tRK3M2A21ypz0JguR2XjUCownUYuv3dI0GpF3Nidnb7zxBsuWLWPcuHH4+PjwzjvvULNmTZ5//nkqVaqU6/FOTk44OaWNphw4cCADBw60NQzhMMqiVmOsk/L4I8AL9c1VCKFyAb5ATcwAXkHtRZuAzMMUwtoS1MQMoA/qDY3HgTjNIhJCf0agJmYAzYH9qAmaFMhxBDbPObtw4QK9e/cGwM3NjZiYGAwGAxMnTmTNmjV5OsedO3dYvHgxI0eOZNSoUSxZsoTbt2/bGopwCEOAjIvljgbcNIhFCL3qjPrGaW0AUFmDWITQq9rAqAzbOqF++BRCqDyB6Rm2NULtaRaOwObkrEyZMpYKi5UrV+avv/4CICIigtjY2FyPP3ToEDVr1mTFihXcuXOH27dvs2LFCmrWrMmhQ4dsDUfo3nLSrzx/DnU9jQRNohFCn/YAwwFTyuM7qMnaVc0iEkJ/LqCW/Y5KeZyMOqzxV80iEkJ/YlErYF+y2vYaMqXEcdg8rLFjx47s3buXpk2bMnDgQF566SV++OEH9u7dS9euXXM9fty4cQwcOJBVq1ZhNBoBMJlMjB07lnHjxlmSPVGcvA7cRb3j2QNZ6FCIrHyC+qa6CngMOKVtOELo0s+o7yM7gMCUf4UQ6V0CuqBOK/kKeFvbcIRNbE7O3nvvPeLj4wGYNm0aLi4uHD58mP79+zNjxoxcj79w4QJfffWVJTEDMBqNBAYGsmnTJlvDEQ7jLdQPnVG57ShECbYN2Ie0EyFy8gfQAGknQuTkKtAO9ea4cCQ2J2dlypSxfO/k5MSUKVOYMmVKno9v2bIlQUFB1K9fP932oKAgmjdvbms4wqHIG6kQuZN2IkTupJ0IkTtJzBxRvtY5M5vNnD9/nrCwMEtZ/FQPPPBApv3//PNPy/cTJkzgpZde4vz589x3330AHDlyhPfff58333wzP+EIXTCglslfh5Q1FiInzwC7gHCtAxFCx3oAwUCQ1oEIoWNNAH/UaoyiuLA5OTty5AiDBw/m8uXLKEr6Es8GgwGTyZTpmObNm2MwGNLtn1Vv2+DBgxk0aJCtIQldWA6MBR5BXURXyhoLkdnzwHvA36gFP0K1DUcIXeoCbEW9698TmX8pRFbqos4pKwU8hbrYtCgObE7OxowZQ+vWrfnuu++oVKkSBoMh12MuXbqU6z7Ckb2BmpiBerfzf0BfpDtdCGvPoCZmoC4v8QNpvQNCCFV71LmX7ilfe4FHgd+0DEoInakO7EbtNQN1ncxhwBatAhJ2ZHNydu7cObZu3UqdOnVy3zlF9erVbX0Zm6xcuZK3336b0NBQGjduzPLly+nYsWOux/3888906tSJJk2acPLkyUKNsfiqitobYK0d0BKQpRGEULmSed2ZOqjLSuRtfUghSoZpgJfV49Ko5fIlORMizRjUz1+pnFHXkP0CULI8QjgOm9c5a9u2LefPny/Qi164cIHx48fz0EMP0a1bNyZMmMCFCxfyda4tW7bw8ssvM336dE6cOEHHjh3p2bMnwcE5342OjIxk6NCheSr/L3JyBfUDZuoi4iZgKJKYCWEtEXUB0LNW2+YgiZkQGT0JHLB6vAWYqFEsQujVdGCt1eM/gH5IYlY82NxzNn78eCZNmsT169dp2rQpLi4u6Z5v1qxZjsfv3r2bxx57jObNm9OhQwcUReGXX36hcePGfPvtt3TrZtsK5kuXLmXkyJGMGjUKgOXLl7N7925WrVrFwoULsz3u+eefZ/DgwRiNRrZv327Ta4qMjqIuePgd6ppmW7UNRwhdukraujO7gfnahiOELsWgrvO3BfVm3zDAnNMBQpRAZtTesxigM+ri7DKVpLiwOTkbMGAAACNGjLBsSy32kV1BEGtTp05l4sSJmSozTp06lVdffdWm5CwxMZFjx44xderUdNu7d+/OL7/8ku1x69ev58KFC3zyySfMn5/7B6SEhAQSEhIsj6OipIRvZqdR59HIH4eSStpJXtwAOgLRWgciNCLtJC/igcdRB/ckaxyL0IK0k7yaBHgj7ynFi83JWUGLewQFBfHFF19k2j5ixAiWL19u07lu3bqFyWTC398/3XZ/f3+uX7+e5THnzp1j6tSp/PTTTzg75+3HX7hwIXPmzLEptpIpf4mZgdyLyjgCxQ7DCUxmx/0DK+0kr/L3f/zh7RMFfuUmhiYFPsfjVQvWi/H7vwUOwaFJO8mrJK0DEBqSdmILx/3cILJm85yz6tWr5/iVm/Lly2dZfOPkyZNUqFDB1nAAMlWMTO3Fy8hkMjF48GDmzJlDvXr18nz+adOmERkZafm6cuVKvuJ0fF2Be7QOQuiUtJNUDVDLfwuRmbSTVGWAZ7UOQuiUtJNULqjVsG3+uC4cWL4Wob5w4QLLly8nKCgIg8FAw4YNeemll6hdu3aux44ePZrnnnuOixcv0r59ewwGA4cPH+att95i0qRJNsVRrlw5jEZjpl6ysLCwTL1pAHfv3uWPP/7gxIkTvPjii4C6oLaiKDg7O7Nnzx66dOmS6Tg3Nzfc3Nxsiq34uR+1vHEC6lpmv2sbjtAdaScAtVDnk5VH/eD5pbbhCN2RdgLgC+wEWqFWnJP5lyI9aScARuBjYABwHzACGeZbMticnBW0oMeMGTPw8fFhyZIlTJs2DYCAgABmz57NhAkTbIrF1dWVVq1asXfvXvr162fZvnfvXvr06ZNpf19fX06fPp1u28qVK/nhhx/YunUrNWvWtOn1S457gR2AZ8rX96jrmP2oYUxC6E0V1MQsIOXxx6jtZaNmEQmhP56oi+W2Snk8C3XOzNRsjxCi5DEAH6EmZqAuMu0JPI16k1wUZzYnZwUp6JGcnMynn37KU089xcSJE7l7V52j5OPjY2sYFoGBgQwZMoTWrVvTrl071qxZQ3BwMGPGjAHUrvGQkBA2bdqEk5MTTZqkn3NRoUIF3N3dM20X1l4BrP+PfFD/QEhyJkSaEUANq8fGlG0fI9XmhEjVE3WhaWtPAG8D4UUfjhC61Ay1XVjrCtRDLcAmijObB7EGBQUxcuTITNtHjBjBmTNncjzW2dmZF154wVKBx8fHp0CJGcCgQYNYvnw5c+fOpXnz5vz444/s3LnTMv8tNDQ01zXPRG6eBXZZPf4adQy0ECLNPOA9q8cnUUuCS2ImRJqvgHFWj0OBHkhiJoS1U0AfIDblcVzKY0nMSgKbk7OCFvRo27YtJ04UvOqYtbFjx/Lff/+RkJDAsWPHeOCBByzPbdiwgYMHD2Z77OzZs7P8eYS11LLG21CHbT2Duv6MECKNgrpY7pvAGdQegkhNIxJCn9YAw1GXlugJnNc2HCF0aT/q+mU3gYHIaKWSw+ZhjQUt6DF27FgmTZrE1atXadWqFV5eXumez20Ra6GVRGAwauWgRI1jEULPZgBvIeWNhcjJJ8B2pJ0IkZOfUYcySjspSWxOzgpa0GPQoEEA6fa1ZRFroSUT0mMmRF7IG6kQuZN2IkTupJ2UNDYnZwaDgYkTJ+a7oEdBF7EWhakU6vDFjzSOQwg9cwbGAKuRssZC5GQ08AUyvFeInPRHnaN8UeM4hF7ka52zVLYW87h79y5nz54lKSmJNm3aUK5cuYK8vLArb+B/QFvUtZpe0zYcIXTJCViHWtb4QdShvjLMV4jMpqIWyRmNOm/mlrbhCKFL/YDPUOdfPgwEaRuO0IU8JWctW7Zk//79lC5dmhYtWmAwGLLd9/jx41lu//PPP+nZsyfXr19HURR8fX3ZunUrDz30UP4iF3bkgTr2v23K48mAF/AyapEDIYRqJWpiBmrlrK9Re5vjNItICP2ZgJqYAbRALWzwMGplRiGEqgfq3Esj6vqYqQVATmoYk9CDPCVnffr0sazU3qdPnxyTs+xMnTqVatWq8eWXX+Lu7s6cOXN48cUX+eeff2w+l7C3LkCnDNv6AG+g3s0RQkAD0hKzVPcDjYBjRR+OELrkAwRm2NYI6Ig6xFEIoXoNcLV6XB71s9dJTaIR+pGn5GzWrFmW72fPnp2vF/rjjz/YuXMnrVu3BmDdunVUqFCB6OhovL2983VOYS/foS6W+yHqHZww1Ds6kpgJkeYf1LuaOwBfIAEYgCRmQli7i3rDbzdpi7K/hCRmQmT0GPAt0C7l8QfAHO3CEbph8zpntWrVIjw882KRERER1KpVK9vjbt26RbVq1SyPy5Yti6enJzdv3rQ1BFEoPgaeJm3dmX+1DUcIXfqZtBsXTwH7tA1HCF26CHRGfR+ZhjocWAiRXiTq560DqMMbx2sbjtANmwuC/Pfff1mWu09ISODq1avZHmcwGLh79y7u7u4AltL5d+/eJSoqyrKfr6+vrSEJu/kK+B6I0ToQIXTsD6A+0k6EyMlV1HnM0k6EyF4M8Chq5V+Z4y9UeU7OduzYYfl+9+7d+Pn5WR6bTCb2799PzZo1sz1eURTq1auXaVuLFi0s38s6Z3ogb6RC5E7aiRC5k3YiRO4StA5A6Eyek7O+ffsCag/Ys88+m+45FxcXatSowZIlS7I9/sCBA/mLUNjZKNQKc5mHpmpFscPdIoPB5hG66WNQzAWOQRQnfVCHZOmnYNH16CMFPoevd/kCn2PMv98W+ByiuLgXtQDID1oHIoSOVUYd5vuJ1oEIB5Hn5MxsVj+81qxZk6NHj9q8RlmnThmrAYqiFwi8BbyIWtb4urbhCKFLvYHNQATqfIBTmkYjhD41RV0b0wt4MuV7IUR6FVCL49RHrca4TNtwhEOwubvh0qVLsni0QxqDmpgBNEadgFot+92FKJG6AJ8DLqhvpHtJW/9PCKGqB+wCygBuwJfAQE0jEkJ/SqO2k/opjxcBM7QLRziMPPWcrVixgueeew53d3dWrFiR474TJkywS2DCnjzIvO5MHeABpJtdCGtTAHerx6WBvsBvmkQjhD49D/hbPXZGrfYr5fKFSNMXaJZh2xOovWfRRR6NcBx5Ss6WLVvG008/jbu7O8uWZd8lazAYJDnTpTjgIdRKjHVTtk1GEjMhMnoc2E7aouwbUBcKFUKkmYy61t+wlMc/og5tFEKkWQ+UQu0xA3WJiYeRxEzkJk/J2aVLl7L8XjiSYNQhW7uArcByTaMRQp+iUcsaf4G6Bs3zSHljITIyA8+htpe2qD0EcVoGJIROLQNiUUdl9ACuaRuOcAg2r3MmHNl1oAPqHwohRNbigP6oSZlU8RQiawowEfBE3lOEyMkHwMdIOxF5lafkLDAw43yl7C1dujTfwYiiIH8chMhdktYBCOEg5D1FiNxJOxF5l6fk7MSJE+keHzt2DJPJRP36agWas2fPYjQaadWqlf0jFDZqDlRCHb4ohMhaRdQy+eu1DkQIHXNHHdr7LtKLLEROxgPrkIXXhT3kKTmzXkB66dKl+Pj4sHHjRkqXLg3AnTt3GD58OB07diycKEUeNQB2ok5AHYo6t0wIkV5Z1JsXTVCTtIXahiOELrkAW4BeQCtgBJCsaURC6NNi4CXUSoyPos5XFiL/bF7nbMmSJSxcuNCSmAGULl2a+fPns2TJErsGJ2xRC3Whw/Kob6qfAM9qGpEQ+uOLegOjScrjucAb2oUjhC4ZgU2oiRnAU6jr/7lqFpEQ+jQLNTEDaIe6NqasBSwKxubkLCoqihs3bmTaHhYWxt27d+0SlMiPEUCA1WMjMBgwaBOOELrUG2iZYVtfwK/oQxFCt1qg9gBYewCoqUEsQuhVedRhv9aaorYfIfLP5uSsX79+DB8+nK1bt3L16lWuXr3K1q1bGTlyJP379y+MGEWezABWWj3+lbSKc0II1WbAei3Gy6jljWUYihBp/gD6kVbEIHWJiX81i0gI/bkJdCWtPL4ZGI7aeyZE/tlcSn/16tW88sorPPPMMyQlqRXNnJ2dGTlyJG+//bbdAxR5paB2rUcD3VHfSGViqhCZrUJtG7NRE7MrmkYjhD7tRe1p/hx1FMZv2oYjhC4FkbaG7Juo7UWIgrG558zT05OVK1cSHh7OiRMnOH78OLdv32blypV4eXkVRoy5WrlyJTVr1sTd3Z1WrVrx008/Zbvvtm3b6NatG+XLl8fX15d27dqxe/fuIoy2sE0HOiE9AULkZBPqvLMLWgcihI4dBuoBP2odiBA6dgG1UvY6jeMQxYXNyVkqLy8vmjVrxj333KNZUgawZcsWXn75ZaZPn86JEyfo2LEjPXv2JDg4OMv9f/zxR7p168bOnTs5duwYnTt35tFHH820XIBjk/U0hMidtBMhciftRIjcSTsR9mNQFMWmSUkxMTG8+eab7N+/n7CwMMzm9GufXLx40a4B5qZt27a0bNmSVatWWbY1bNiQvn37snBh3kpkN27cmEGDBjFz5sw87R8VFYWfnx9q0Y2iLrjhCoxFXXfGVMSvrV8GQ77vMwCgKMVjDR9FSbJcn5GRkfj6+moWi7btBNR1ZzYCURq8tj7V885Y5MF2Z6O/tUMk2ouMDJd2AsDTwC/AJQ1eW+idtJNUDwJJwM8avLbQO3t/9rJ5ztmoUaM4dOgQQ4YMoVKlShgM2lUDTExM5NixY0ydOjXd9u7du/PLL7/k6Rxms5m7d+9SpkyZbPdJSEggISHB8jgqSqsPe87AZ0Af1JKtQ4BEjWIRIj39tBOABcAU4BnUcuDhGsYiRBp9tZNnUBdivwo8jBT8EHqhr3bSHtie8n1/4AftQhElgs3J2a5du/juu+/o0KFDYcRjk1u3bmEymfD390+33d/fn+vXr+fpHEuWLCEmJoaBAwdmu8/ChQuZM2dOgWItOCfU8cx9Uh73BzyBgUCcVkHpRnHp+XJk+mgnAFNREzNQy+bvA3oCefubUJwVl14vR6afdtIP+Cjl+yqoHzh7Aac0i0iIVPppJy2AHUDq9J0dwCDgO80iEsWfzWPBSpcunWMvkxYy9t4pipKnHr3Nmzcze/ZstmzZQoUKFbLdb9q0aURGRlq+rlzRorpbY9T1mKy1B2oXfShCZEEf7aQ06rBfaw2B1hrEIkRm+mgnBuAV1CFiqSqgVvoVQnv6aCcA40i/DqYb6k1xIQqPzT1n8+bNY+bMmWzcuBFPT8/CiCnPypUrh9FozNRLFhYWlqk3LaMtW7YwcuRIvvzySx566KEc93Vzc8PNza3A8RbMadSyxt8APqiTTx8D/tIyKCEs9NFO7gCdgd1A9ZRtzwH/0ywiIazpo50oqO8n3wL3pWxbAshyOEIf9NFOAMagJmRPpjz+FhipXTiiRLA5OVuyZAkXLlzA39+fGjVq4OLiku7548eP2y243Li6utKqVSv27t1Lv379LNv37t1Lnz59sj1u8+bNjBgxgs2bN9O7d++iCNVOfkKdF7AVGIFMTBUiKxdQE7TvgfdQy+YLIdKLQB3u+zXqXLOpOe4tRMmUDDyLOn2kGvBUyjYhCo/NyVnfvn0LIYz8CwwMZMiQIbRu3Zp27dqxZs0agoODGTNmDKB2jYeEhLBpk/oBbfPmzQwdOpR33nmH++67z9Lr5uHhkVIJSO9+B+oj88yEyMkV1KGM0k6EyF408AhSWEqInJiB51F70BJy2VeIgrM5OZs1a1ZhxJFvgwYNIjw8nLlz5xIaGkqTJk3YuXMn1aurQ5pCQ0PTrXn2wQcfkJyczLhx4xg3bpxl+7PPPsuGDRuKOvx8kg+cQuRO2okQuZMPm0LkTgHitQ5ClBA2r3OW6tixYwQFBWEwGGjUqBEtWrSwd2y6VfjrbTwJHAfOFsK5RXFWstY5ux9wAQ4UwrlFcVdy1m+qhVo86pNCOLco7kpOO/EFhgPvFMK5RXGn+TpnYWFhPPnkkxw8eJBSpUqhKAqRkZF07tyZzz//nPLlyxcoIDEQdeHcm6jzAU5rG44QunQvanEcV9SbGVLWWIjMqqAWx6kBlEU+eAqRFU/UEvkdUKv7jkUdyiiENmwupT9+/HiioqL4+++/uX37Nnfu3OGvv/4iKiqKCRMmFEaMJcgjwAbU/xZ/1PWZ7tUyICF0qClq9UVfwB34Enhc04iE0J8KqEVxaqQ8Xgy8plk0QuiTG/AVamIGaiXGDeSj70IIu7E5Ofv+++9ZtWoVDRs2tGxr1KgR77//Prt27bJrcCXPRNRhWqnKAD00ikUIvRqN2jZSuSDJmRAZ9UMtHpVxm7sGsQihV/cBD2bY9iBQqcgjESKVzcmZ2WzOVD4fwMXFBbNZuoELpg/wo9Xjd4H5GsUihF69jHpnM9VuYKgmkQihXx8Ar1o9PoM6VF6KGgiR5hDqdJLUwji3UNuJVoteC5GP5KxLly689NJLXLt2zbItJCSEiRMn0rVrV7sGV/KkljXeDawDJmkbjhC6ZEZdWPp91JsZTyClwIXIylJgPHAOdY3MW9qGI4QufQv0Ba6hLs7+t6bRCGHzoNr33nuPPn36UKNGDapWrYrBYCA4OJimTZvyySdSDarg4oD+qIsc5quQphAlgILag+aO9AQIkZPVqD3N0k6EyN4+1GHA0k6E9mxOzqpWrcrx48fZu3cv//zzD4qi0KhRIx566KHCiK+Ekl4AIfJG3kiFyJ20EyFyJ+1E6EO+y9F069aNbt262TOWEqQa0A1Yq3UgQuiYN+rwxWVIL7IQ2XFCLSa1GojROBYh9Ow51GVXQrQORIgc5XnO2Q8//ECjRo2IiorK9FxkZCSNGzfmp59+smtwxVNF1Dllq4GpGscihF55ANuBt4D1qAuPCiEyWwm8CewE/DSORQi9moA6T/kAUFPjWITIWZ6Ts+XLlzN69OgsV7328/Pj+eefZ+nSpXYNrvgpi7ruTJ2Ux/OQaoxCZOQKfAF0Snn8NLA5ZbsQIs0S1HWZANoDe1DfZ4QQaUaithVQE7MDZF5mQgj9yPOwxlOnTvHWW29l+3z37t1ZvHixXYIqvnoBjTNs64161zO66MMBDBg0ed30QeigV0QxFfwUMvTOTloBXTJs6wBUBi7ZfLZ63o8WOKJrydpX77rPKePvRBv7Yj/SOgQBQAAwOMO2xilfP2be3UGEv1CwXg2/lbMKHMPrVX8r8DkeqhxaoOP3hRR8na09tyMLfA7H5wK8mGFbZeB+4N+iD0dHkpUNBTre2TCswDEMKjW2wOcoqC0RK7UOIZM895zduHEjy/XNUjk7O3Pz5k27BFV8fYzatZ7qLGp5Y20SMyH06VfUxXLjUh7fQV13xvbETIji6xrQNeVfUCv8PoUjJ2ZC2F8S0B04abVtGjLnX+hZnpOzypUrc/r06Wyf//PPP6lUSVZUz90q1C72C0AP4Ia24QihS3tQe5VDUNf++1PbcITQpTOovcwXgWGo6zUJIdK7iVqE7QiwAJBRXkLf8jyssVevXsycOZOePXvi7u6e7rm4uDhmzZrFI488YvcAi6dNwBbSVqQXQmT2E+q8AGknQmTvAtAMaSdC5CQCeAhpJ8IR5Dk5e/3119m2bRv16tXjxRdfpH79+hgMBoKCgnj//fcxmUxMnz69MGMtZuQPhBC5k3YiRO6knQiRO2knwjHkOTnz9/fnl19+4YUXXmDatGkoilr8wGAw0KNHD1auXIm/v3+hBepYDMAkYA2QeekBIUSqUcA+4D+N4xBCz3oBkcDPWgcihI41BRqhjkwSwnHZtAh19erV2blzJ3fu3OH8+fMoikLdunUpXbp0YcXnoJYDY4EnUN9UwzWNRgh9GgO8C1xFLYxTsitnCZG1LqgfNk1Af+AHbcMRQpfqAbuA8oAv8KG24QhRAHkuCGKtdOnS3HvvvbRp00YSs0zeQE3MAFqi9gpU1C4cIXRpCGpiBlAF9QNnM+3CEUKX2gPbAHfAC9iBWihHCJGmBrAb8Ef9WLsSeFnDeIQomHwlZyI75YBnMmyrDzTRIBYh9MpI5nVnKgAdNYhFCD17DjUpS+WGWr1UCJHmcdSbfNYeRX2vEcLxSHJmV7dQh6AEpzw2AUNRe8+EECoT6jDG3622zQbe1yQaIfRrFOnnz2wBxmkUixB6tRiYa/X4KNAX9b1GCMdj05wzkRfngc6oY5/fBLZqG44QunQHdZ2/b1CTtAXahiOELiWj3uCLA8qirmVm1jIgIXRqHhADPI069PeutuEIUQCSnBWKYNT5ZlK2VYjsRQM9gUStAxFCx8yowxudUZM1IUTWlqKOwJDPXsKxybDGQiN/HITInSRmQuROAZK0DkIIByCfvYTjk+SsQB7QOgAhHMBTWgcghAPIWCRHCJHZJNTqpUIUX8UiOVu5ciU1a9bE3d2dVq1a8dNPP+W4/6FDh2jVqhXu7u7UqlWL1atX5/OVP0cdliWEyN77wEtaByGEzs0FVlFM3paFKCTTUecqe+W2oxAOy+HfBbZs2cLLL7/M9OnTOXHiBB07dqRnz54EBwdnuf+lS5fo1asXHTt25MSJE7z22mtMmDCBr776Kh+v7g58BQwoyI8gRAmwGJimdRBC6NwoYD1SAlyInHRBLbrmp3UgQhQKh0/Oli5dysiRIxk1ahQNGzZk+fLlVK1alVWrVmW5/+rVq6lWrRrLly+nYcOGjBo1ihEjRrB48eJ8RuAC9Mp3/EKUHD0BV62DEELnOgDltQ5CCJ1rCtTWOgghCoVDV2tMTEzk2LFjTJ06Nd327t2788svv2R5zK+//kr37t3TbevRowdr164lKSkJFxeXTMckJCSQkJA2yTQyMjLluyjgW2A06oRtx6OLqBU9RGGPGLT/OaKiooiKigJAKeLfa87t5E/gMbSYrG1SCl5IQVG0Xy8nWdFL8RTtr3N70Gc7uY5aBjy0SGPSk6jEgrU1Q1RsgWNIMBe8rcUkF+zvjj1iMNnhb4Y+20kcMBA4VqQxFTdRBW4rBb8mkhQ9FHAp+M9h989eigMLCQlRAOXnn39Ot33BggVKvXr1sjymbt26yoIFC9Jt+/nnnxVAuXbtWpbHzJo1S0H935Mv+XKYrytXrtinoeWRtBP5csQvaSfyJV+5f0k7kS/5ytuXPdqKQVF00W2RL9euXaNy5cr88ssvtGvXzrJ9wYIFfPzxx/zzzz+ZjqlXrx7Dhw9n2rS0+S8///wz999/P6GhoVSsWDHTMRnv4ERERFC9enWCg4Px8/Oz809VskRFRVG1alWuXLmCr6+v1uE4tNTfZXBwMAaDgYCAAJycim7ksrSTwiPtxL5Sf59nzpyhfv360k6KCWkn9iXtpPiStmI/hfHZy6GHNZYrVw6j0cj169fTbQ8LC8Pf3z/LYypWrJjl/s7OzpQtWzbLY9zc3HBzc8u03c/PTy5qO/H19ZXfpZ1odV1KOyl80k7sq3LlykX6gROknRQFaSf2Je2k+JK2Yj/2vDYduiCIq6srrVq1Yu/evem27927l/bt22d5TLt27TLtv2fPHlq3bp3lfDMhhBBCCCGEKAoOnZwBBAYG8tFHH7Fu3TqCgoKYOHEiwcHBjBkzBoBp06YxdOhQy/5jxozh8uXLBAYGEhQUxLp161i7di2vvPKKVj+CEEIIIYQQQjj2sEaAQYMGER4ezty5cwkNDaVJkybs3LmT6tWrAxAaGppuzbOaNWuyc+dOJk6cyPvvv09AQAArVqxgwIC8r1Xm5ubGrFmzsuxyF7aR36X96O13qbd4HJn8Lu1LT79PPcXi6OR3aV96+n3qKZbiQH6f9lMYv0uHLggihBBCCCGEEMWFww9rFEIIIYQQQojiQJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABSc6EEEIIIYQQQgckORNCCCGEEEIIHZDkTAghhBBCCCF0QJIzIYQQQgghhNABh07OfvzxRx599FECAgIwGAxs374912MOHTpEq1atcHd3p1atWqxevbrwAxVCCCGEEEKIXDhrHUBBxMTEcM899zB8+HAGDBiQ6/6XLl2iV69ejB49mk8++YSff/6ZsWPHUr58+Twdn8psNnPt2jV8fHwwGAwF+RGEsDtFUbh79y4BAQE4OWl3/0XaidAzaSdC5E7aiRB5Y8+2YlAURbFTXJoyGAx8/fXX9O3bN9t9Xn31VXbs2EFQUJBl25gxYzh16hS//vprtsclJCSQkJBgeRwSEkKjRo3sErcQheXKlStUqVKlyF5P2olwRNJOhMidtBMh8sYebcWhe85s9euvv9K9e/d023r06MHatWtJSkrCxcUly+MWLlzInDlzMm2/cuUKvr6+hRJroZkzB5YuVb+/dg28vLSNRwMmk4mjR4+iKAou1eqTYNY6orxziouh3b1NAPj16F+YPdT/v+AL53H39KBCpcpUMJpo3bAOPj4+RRqbI7WT1GsAoHHzlvx9KxpTAW5TZff/Yq/9hX1E3rlNWOhV6jZqhrc5gQeaNdBtO7G+RkvVbkB4vAP9ocpFtSULqbp+DZDz9V8Y7cRRzllYr5+XfRMTEwg6cYx72rbHKTGWh1s21l07sW4fje5pwd/hMZiLRVeDY7C+jnJz8rOviGnWMtvjs7oOC9KmrI89+8Zibj42INvnszq375GfaTrqmVxfW1EUjv/yIy3bP4Cbs4E6nkZqVK9ml7ZSopKz69ev4+/vn26bv78/ycnJ3Lp1i0qVKmV53LRp0wgMDLQ8joqKomrVqvj6+uruQ2euKlZM+97Xt0QmZzExMfTo0QOAT4+fx93TU+OI8s5oNJF6xcUb3TE5uxF6+RKvj3oaFxdX5mzailc19Tou6qEfjtROrK+B89dvEW10K9D5svp/sef+ouCiIyOY/dxQrgdfZvqaj2nWtBmg33ZifY1+89dFkp3dizTOwpRUuVqerv/CaCeOcs7Cev3c9jUlJ7Pk1Ykc3b+bcQuXc99D6jWot3Zi3T7+Db1JTAH/hgvbWF9H1zp3J6Jx03TPOyUl0eCDFQC4hoVzK8N1ltt1WJA2ZX2s77lzBNt47koXL+XptT9d9ibbPlhB/+fG83TgNFw91f3s0VZKVHIGmX9pqaM6c/plurm54eZWTBp+2bJaR6A5g8FAnTp1Ur7XOBg7cHF1xcPTGxc3N7y8vDWLw5HaifU1UCwuApEro7MLnj5+uLq741O6jGZx5LWdFOdrNLZSZa1DENkxGPApVRonozOly5XXLIzc2kn69/Hi1T4czdVej3H10f7pthljYy3JmdvtW1qEBYDvuX9tPsbv3D952s+nVGkAylbMumOnIEpUclaxYkWuX7+ebltYWBjOzs6ULSlJS+nSWkegOU9PT86dO4dZUdh+9nruB+hcuUqVmffxVxicnFI+dCZpHZLupV4DAKHR8XAnIZcjhKPz8PJi+pqPCQ+9RkDN2pAYp3VIObK+RvdcCiM60aRxRPYTG2A1H6N4THsvNoxGI8/PWUTPZ0ZQo34j4mPuah1Slqzbx9W7cRCRqHFEJZfJ3SPH593CtUvO8ppoWctrQvfY8Odp1u5+ajRobPNr5MahS+nbql27duzduzfdtj179tC6dets55sVO2W0u2Ms7MCkfkC7A5z787hlc+kK/pTS8C6nEHqUmBDPqZ8PWR67uXuoiZnQVFzFAMv3LpER2gUiAHUE0R8H9lpGEjk5OVGjvhTfEHmT7Jnz9Bi32+FFFInKKT7e8r3Hjeu4RNzJ+8GKgu/57BO6Ez8dJDkp7QZ4YSRm4ODJWXR0NCdPnuTkyZOAWir/5MmTBAcHA+qY5aFDh1r2HzNmDJcvXyYwMJCgoCDWrVvH2rVreeWVV7QIXxvSc+bQfC5fBMANmDXmWf4+ekTbgITQqeSkJBa/9BzzRg3mh21btA5HWDFbDVfzDA3RMBIB8PHi+Sx84Vk+Xjxf61CEAzJ56KvnzPVuZLrHfmfz3nvmcS0El+joLJ/7YdsW5o8ezNsTRqVL0AqDQydnf/zxBy1atKBFixYABAYG0qJFC2bOnAlAaGioJVEDqFmzJjt37uTgwYM0b96cefPmsWLFCpvWOHN41slZYskcBhAfH0/v3r155JFHSEyIz/0AHfE78xcAFwA3bx/KVPDP+QCRpdRroHfv3sTHO9Y1IPLGyWikXKXKuLi6UaFyVa3DsZn1Nepof6ds4Rl6TesQSrxylSpjMBgIqFFL61DyTP6G60fuPWdFm5y5RKVPznz/PZPnY/1y2Ld0+Qq4urnjX7U6RufCnRXm0HPOHnzwQXJapm3Dhg2ZtnXq1Injx49n3rmkKFUq7fs7d0pkT5rJZGLnzp0APDPfscpTlwpSk7OGwMJ1n1O+ek1tA3JQ1teA2VR85vKINE5OToye+Qa9nhlBldp1tQ7HZtbX6POLTOBcPIfee0jPmeZ6PTOCpvfdT9U69bQOJc+s28cy+Rte9Kw+e+fWc+ZexD1nLpEZe86Cstkzs5z2bdGxM29v203lWnUKvQiNQydnIh+sVy0PD4dajnOnzF5cXV1Zv349ZkXB2UHmGibExfLX77/SKSU5cwYqVqmGvCXlT+o1AGq1SyiZvcjFjdls5vd939O2W08MBgMGg8EhEzNIf406u7iSXEzrZnhek+RMC98CSYkJOKUsJeNIiRlk9TdcCmEVJSerkVfJHjkvR1TUc84yDWv814bkLEPP2V/HfqNyk2b4llaLBhbV+4kkZyXZHRsmSRYjLi4uDBs2zGGqNSYlJrJo/Cj+PHyQmQ6STOpd6jUAKdUaRbGwfuEsdn68lkeefY7h02ZrHU6BWF+jey6FQTGq1mjN87okZ0VtDfA80HLSWF5dvclhblJas24fV+/qu/JqcWSMi7V8n1ty5hoZgSEpCaWIrjOXqKh0j33P/aMWUzMacz3W1yqROwDMfXEEFavVZM6mLy0JWlFw6DlnooBu39Y6ApEHRmdnAmrUopmbG26FPAlVCEdWrWp1nIDHN67BGBub6/5CezKssejVBDyA6nXqF/rcGVE8OVv/fc1D0lOU886s55yZ3NxwjovD68rlXI9zio/D57+LlseVAG/fUvhXq46nt2/2BxYCaZUlWQntOTOZTJw+fRqzomByK48xD39YtOTk5MSI6fPwrVgJFi/QOpxiIfUaAChX0zGHvYnMHn58MIFvzKQu8I3WwRSQ9TVq8i6+hX9kWGPR6wacAv6eMBmzgy7gbN0+Steoo3E0JY9zvG03v9xv3STe3/6LNWfF1So5i6pdj9JnTuP3bxAxuRS88T1/DoPZTEKp0rhF3KEB8NaGL/GpWrXIe5el56wkK6HJWXx8PC1atKBVy5YkJehz8WGz2czPO7+xFLwxGAzUvB6qcVTFR+o10KJFCxKk0pdDO7JnZ7pqhsUl1ba+RpOKcbVG16hInLMpXS3s59QvPxJpVZihLhR6UYPCJH/DtWXryISiLKdv3XMWVbc+kHMVxlSp+4RVqWbZVr5SAC6ubtkdUmgkOSvJSuiwRoPBQEBAAAEBAej1vemjedNZGvgC696YadlW+u8/ATi66F22/XMNk2fO47xF9qyvAd1eBCJXuz5dz9sTRvHmC8MKfd2ZolaSrlHPa1e1DqFYO/XzId54figzhw4g8k7RFmcoLOnfx4t3+9Aj5zgbk7NbNwspkszSJ2cNgLxVbHQ6+isAO879w1+FE1qe5WlYY//+/fN8wm3btuU7GFHESmhy5unpSUhIiK4LgtRq1ASjszP17mkJgCE5Gb+USo13mjTTMrRiIfUagJSCIHf02YMqclaldj3cPT2pe09LddhJMUrQrK/RPZfCiC6mBUFATc6i6jXQOoxiq3xAFfzKlqVK7Xp4+/hpHY5dWLePq3fjIEIq7hYlW3vO3MOLMDm7m1YQJLXnzDcPFRsrXlXXRb5cuixVrmu7/mKekjM/v7TGrCgKX3/9NX5+frRu3RqAY8eOERERYVMSJ3SghCZnjuChJ56mabuO+Kd0r/tcPI9zfDxJnl5E16itcXRC6EPT+zqwdMcPDrnItEjjGXJF6xCKtYCatVn4+bf4limHMTlZ63BEMeAcb1uFTLdbRTes0TUywvJ9VB01OfO+chnn6GiSvb2zPkhRKHP+LACdZr9JqTFDCzvMHOUpOUtdSwLg1VdfZeDAgaxevdpSSMFkMjF27Fh8fYu2mokooMKacxYTA6kNIDoavHJePV6oDn+3nXu79sDNXV3Q0d9q3HOplCGNEY2apl+rTogS5viPP1CzYRNKl68ApG8nwjHJsEb7u/DXnxidjdRo0BiAshUD1CckORN2YIyNsWl/Nzv3nBljY+nTUi0E883x8+mmeVj3nCWWLkNchYp4hF3H99w/3G7ROt15wsOuc+lKMO3qN8Qt4g6KkxPmZi3tGmt+2Pwpb926dbzyyivpKtwZjUYCAwNZt26dXYMThayE9pzFx8fzxBNPMHDgwHSFBLT0v00fsWzSWN54fmiWc2dK/3UKgIjGMqTRHlKvgSeeeIJ4mUzuME78dIA3xw5jxjP9iSzihU2LmvU1qpe/U4VFkjP7unL+LHNHPsWsZ5/gvzwUQnBE8jdcW85xtvWcFemwxqj0i1BH1m8IZF6MOhyYNeZZFr4wlOtffAzA3Rq1MLu7F0mcObE5OUtOTiYoKPPYzaCgIMxms12CEkWkhFZrNJlMbN26la+2bsVs0sc1W6tRUzy8vGl6X4csS7Zaes5kvpldpF4DW7duxWwqvnN5iptKNWpRpkJFajVuirdfKa3DKVQl6RqVcvr2VaaCP5Vr1qJSjVr4Vy6ePcslqX3okbOt1RqLalijouCaYRHq1OTM92z6GxV+QK2GjSlVrjwNE9Q5i1Ep+2rN5nXOhg8fzogRIzh//jz33XcfAEeOHOHNN99k+PDhdg9QFKIS2nPm6urKe++9h6IoRb52RXYatW7L8v8doFylypmeMyQn4/fP3wDckZ4zu0i9BgBcXF0BmUzuCCpWrc7Cz7/Fp3QZ3a9PWFDW16iziyvJisYBFSKZc2ZfXr5+zPhoM2azCY/s5tg4uMx/w4tPMSBHYLS1WmMR9ZwZY2NxSk5/LUTVbwRk7jlzBl6a+za3Y2OovERdQzYyZV+t2ZycLV68mIoVK7Js2TJCQ9V1lypVqsSUKVOYNGmS3QMUhSguTv3y8NA6kiLl4uLCuHHjNK/WePSH3dRq3IyyKQszZpWYAfhcOKcWA/HyJjqXRRRF3qReA5BSrVHo1tlTx3F2dqZWyo2J0hWK74LM1qyv0T2XwqAYV2t0v3UTp4R4zG7aDydyVMHAn1aPi2tSlsq6fVy9a9sQO1FwNpfSv3MbQ3IyirPNaYdNXKMiMm2LrJc2rDEuOpqjO7+hT8pzRqORMv4VLdUcU/fVms3DGp2cnJgyZQohISFEREQQERFBSEgIU6ZMKfZ3MoulEjq0UWt/HNjLovGj1LkzuSzOaJlvJsVARAkTfPYf5o9+mlnDBvJfSu+xKF6SPdWCUTK0Mf+i7tymK9AXOHJgr8bRiJLAlp4zxckJg6LgeqfwR2tlnG8GcLdmbcwuLrhE32XjqKd4Z+Zk3rJ63pCYiO/Fc4B+es7y9UkvOTmZffv2sXnzZsvif9euXSM6OtquwYkiEF68J9VnxWw2c+7cOc6dO6fZPMlqdRtQPqAKDVu2wad0mRz3tcw3kyGNdqOHa0DkrlxAZarVrU+1uvXxr1pD63CKVEm5RmMrqVUEpShI/nn5+tEBqArUbthY63CKRElpH3ply5yzhFKlgaIpCuIamTk5U1xdiapVF4Ae1Wvi4eXFg1bP+1y6gFNSEknePsQFZD2CqajZ3L94+fJlHn74YYKDg0lISKBbt274+PiwaNEi4uPjWb16dWHEKQpLCZx3FhcXR7169QD49Ph53K1KsBaVClWqsvDzb/H2K4VTLr1hpf4+DcCdxk2LIrQSwfoaOH+96NZfEbbx9Pbh9Q8/U+fOlLAlOayv0W/+ugjOxXPIX2ylyvheOIdniCRn+WU0GlkH3ASOVAyg+A6ATWPdPv4NLbpKgEJltKFaY0KZcrjfDsftVlEkZxFZbo+q35BS/57h4Zq1KbNtL217tLc853s2ZUhj/YaQ0uGkNZt7zl566SVat27NnTt38LCaq9SvXz/2799v1+BEESiBPWegLqxuvbh6Ufjn+O+cP30yLYay5TDmMv7akJxMqZThXBFN7inM8EocLa4BkbsbV4P5bd8uy2N3T088vX00jEg7JeEajZOes3yJjb7L/q82Wx47ASVjNmaaktA+9Mo5Lu/rnCWULQeAWy5TOOzBJcOcM5PJxPefbeBOymLUfv+eoUzKGpmp/KyTM52wuefs8OHD/Pzzz7i6uqbbXr16dUJCZMy4wymBPWdeXl5EREQUaUGQ//49w/zRzwAw75Nt1GzYJE/H+Vw4izEhpRhI9ZqFGWKJknoNQEpBkAip1qgHkeG3mD1sILeuXeWVdz6kfYdO2S40WtxZX6N7LoURXUwLgsRWqgJIcmaL5KQk3hgzlKA/fiPi5k0GDh2ldUhFzrp9XL0bB9n0mIjCYVvPWVlALfxT2FwyDGtc/cZM9n69Be9727EULIU/rKVWcYyqp4/5ZpCPnjOz2YwpizUlrl69io9Pyby76dBKaM9ZUfOvUp1ajZtRq1FTAmyouJhu8ek8FAO5HSYFQ4Tj8i5VmiZt21OhSjXqNmuhdTiiCMSmVKmVcvp55+ziQpsuPfD08aVFxwe1DkeUQDbNObP0nBXBsMYMBUHufaAzbh4elHq0PwA+/13EKcOi5anJmUP3nHXr1o3ly5ezZs0aAAwGA9HR0cyaNYtevXrZPUBRyEpgz5kWPLy8mP7BJswmM24eeb/7n1oMJLf5ZrdvOPHVB97s+9KTRR+GFihWIbRiNBp5Yd5i7kbcwa9MWbBxoVPheGRYY/48NmIMnfo8jl/ZctJORL4YY2PzPTLBGG9Dclam6IY1Zpxz1qbTQ6za9xt+ZcqSsGwhbndu43PxvOV5l4g7eNxQPzNF1W1Q6PHllc232ZctW8ahQ4do1KgR8fHxDB48mBo1ahASEsJbb72V+wmEvpTAnrOEhASGDRvG8OHDSUpMKLTXCb18iV+//5/lsZuHp81rz5ROKQaSXaXGqDsGNi7yYVz3Cnz/mRfJSQaOHNLHwtp6lnoNDBs2jISEwrsGRO5ioiLZ/fkmFEVdZdnJyUlNzEo462s0sRhfo6k9Zx43rmNIkoWEs2NKTuZ/mz4i2ep35JfSI2EL57t30x4ojruyufwN11Z+es6KZlhjBADW0fmVLQcGg6VMvt+5fyzP+Z7/F4DoqtVJ1tHagDb3nAUEBHDy5Ek2b97M8ePHMZvNjBw5kqeffjpdgRDhIEpgz1lycjIbN24EoMdLM3BxzeWAfIi4dZPZwwcSHnqNSYY1tOvR2+ZzGJKS8AtSi4HcyVAMJOaugW/Xe/G/jV7Exaj3WOq3SGTi9ET6dXbmi/UF/xmKM+trYMZbSzSOpuRKTkpi/uhnOHvqGFG3w3li7ES7nds5Jtqh56hZX6P9J8+CQl68VSsJZcthcnXDmJiAx43rxFapqnVIurR65mR+2LaFf08cZdKyD/J3EkWh+fzplofGuFhMDloF1bp9vPbmYo2jKXlsWecsdc5ZUQxrjAj6i6rAm8D0DM9F1m9IhSOH8bVKzvzOqclZlI6GNEI+krPY2Fg8PT0ZMWIEI0aMKIyYRFHSQ3IWEwOpdyyio6GQ3yxcXFxYtGgRiqLkWi0xv3zLlKVlxy789fsvNGzVJn/nuHAWY2ICSd4+xFSrAUBCHOz61IuvP/QmOlJNymo2TGL81HhGDvTA192bqKgoe/0YxVbqNQDq/A2QgiBacHZx4f7efbj230Xu7dK94Ce0mg9dede3XBw6suDn1Ij1NWp0diFZ43gKjZMTsZUq43P5Ip4hVyQ5y8Z9PR7h193f8cCjA/J9jhpbP6Py3p2WxyZPx0zMIKu/4dLrWlQMSUkYbejltvScFcGwxvIu6sih5oBbhuei6qkJmG9KQqZ+ryZqkfUcPDmrUKECffv2ZciQIXTr1i3XNZqKwsqVK3n77bcJDQ2lcePGLF++nI4dO2a7/6effsqiRYs4d+4cfn5+PPzwwyxevJiyZUvgUJoSOKzR1dWVyZMnF2q1RicnJ56b/SbRkRH4pCzAaKtSKcVA7jRuRlKyE3u/8OSrD7yJuGkEIKBmMmOmxDFuqDtlPKUYjy1SrwFIqdZI3ssCC/vqPXQUDzw2IN/txFqlg3st31/t3bfA59OS9TW651IYCcW0WiNAbOWU5EzmnWWrVaeurNr/W77bic/5szRbMMPOUWnHun1cvRtH+oFsojA529BrBmnJmevtcDCb81TcLL+8U4a49s/iudRhjdY9Z6mJWupzemHzb2jTpk0kJCTQr18/AgICeOmllzh69GhhxJYnW7Zs4eWXX2b69OmcOHGCjh070rNnT4KDg7Pc//DhwwwdOpSRI0fy999/8+WXX3L06FFGjSp5pWgBffScFROxodcIaRBAvwYBGGNjMRgMBfrAmTrf7E+XFox/uDxr5/sRcdNIhcrJTFsSzfFTZmaM8aGMp8wxE44jOSmJ7WtXkpSY1ltpj8QMoPYn6yzfm2SYvcOIC5By+hkpisLOj9dy907ae3R+24lTfBxtJo7BOT6esPvut1eIooRyjrXtZmZCqTIAOJlMuEbcsXs8P+3+H1cvngPS5pxlJapOXRQnJ9ysYvC5cBbQV6VGyEdy1r9/f7788ktu3LjBwoULCQoKon379tSrV4+5c+cWRow5Wrp0KSNHjmTUqFE0bNiQ5cuXU7VqVVatWpXl/keOHKFGjRpMmDCBmjVrcv/99/P888/zxx9/FHHkOhEe7tCTgvPDbDYTEhJCSEgIZrPZLudMTkpizrjhTADs0QrMZjAeVpOzjw534OY1Z8pUMPHSvGiOnTbxRqA3/j6FMFmuhCiMa0DkzcrXJ/Hx2/NZ/so4u5639KnjlD113K7n1FJJukZjKqtDGSU5S/PN2pWsXTCDWcMGFrhwVbM35+B37h/iy5Xn+LziMT+rJLUPvTHaWB1UcXEhIeXGgr2LgvwPWDY9kJlDBhAeGoLL3eyndZjdPbibYSkj5/h4kj08iKla3a5xFVS++xZ9fHwYPnw4e/bs4dSpU3h5eTFnzhx7xparxMREjh07Rvfu6ecqdO/enV9++SXLY9q3b8/Vq1fZuXMniqJw48YNtm7dSu/e2RdsSEhIICoqKt1XsZGQADYsJlgcxMXFUaVKFapVrUpihvUu8svZxYUujw2gAvBEAc6jKPD7fjde7eOH/xW1GMi/vi14/rVojv6VxLLpXlQpnXEktT44UjtJvQaqVKlCfAm7/rXW6bEBePn60fXxp+x63job19j1fIUlr+3E+hpNjC/e12hsas9ZiCRnqVo92I3S5f3pOuBJXFzz/zc/YPd31Pp8EwB/vLXCMsRM73JrJ/I3XDu2VGpMlVCuPGD/oiD3AdXr1ufeLj2o4O2DUxbrMFvLqvBHVN0GYDTaNa6CyndyFh8fzxdffEHfvn1p2bIl4eHhvPLKK/aMLVe3bt3CZDLh7++fbru/vz/Xr2c9l6h9+/Z8+umnDBo0CFdXVypWrEipUqV49913s32dhQsX4ufnZ/mqWrWYTFhOLYZRAuedOTs742znYiC9Bj7Dv0B+Ri4rCpz62ZVpg8ry1rgy+Jw7izsJxLj5sfnvqqya70Wt8u4YDAa7xmxPjtZOCuMaELm7p0MnVu07QssHutjtnB4hV6m8+zu7na8w2dJOSso1GivDGjOpWqce73x3kN5D8z/lwiPkKi1nqJ/L/h09jrAOnewVXqHLSzspKe1Db2yp1JgqvmxKcmbnnrNywIIPP+P5OW/hFqkuQG1yy/5mRlZzy/Q2pBHykZzt2bOHZ599Fn9/f8aMGUOFChXYvXs3wcHBmq1zlvEDq6Io2X6IPXPmDBMmTGDmzJkcO3aM77//nkuXLjFmzJhszz9t2jQiIyMtX1euXLFr/Jopo44DLmnzzry8vEhKSiIhMRH3ApTaTkpMYOvqd0hMSOt9K5WP8wQdc2HmkDLMHVmWc3+64uZh5oVOPwPg2aEVDap46jopS+VI7ST1GkhKSsLTQUtJOwpFUdixbjWRt9NuAnn5+tn1NWp/shYnk4mbbdrb9byFIa/txPoadXfgqnp5EVtZTc48Qq+pY7pLqIPbvyTYqpJcQdqJISmJNpNewDUqktv3tOTMhCn2CLHI5NZO5G+4dmydcwb2rdh4+shhTvzyo+Wxp7cPTk5OuERFAJDkk327yaoqo94qNUI+qjX27duXRx55hI0bN9K7d29cXLQrRlCuXDmMRmOmXrKwsLBMvWmpFi5cSIcOHSxVfpo1a4aXlxcdO3Zk/vz5VKpUKdMxbm5uuOWQiTus0qUhLKzEJWd5YYyNpU/LOgB8c/x8luslvTdtIoe/287Fv/9kyrtrbX6Ni38789k7Ppz40R0AZxeFXoNjeW0atFl2Gg6BoVWrgv0gRajYthNRINs+eJfPlr/JD19v4e2vvi/QEK2sOEffpeaXnwFw/pkRlP896yHteiHtJLP4ChUxG40YkxJxvxlGvH9FrUMqcr/t28V7017Gp1RpFn+9h7IVAwp0vobvLaHsyWMkefvw+5KVKBp+VssPaSf6ZWu1RrDfsMbL/wbx5thhJCcl0Q3oYPWca5Tac5bo64v7rbAsj8+q5yxKZ5Uawcaes+TkZN58803eeecd+vbtq2liBmop1VatWrF379502/fu3Uv79lnfQY2Njc1U/t+YMtZUKWGFMSw9ZyVwWKM9PPTEYHxKlebhwcNsOi74nDOLxpdi8oDynPjRHSejQveBsew/Fsu2dZ60re+F4dgxdefWre0fuBBFqF2P3pStWImeTw+3e2IGUP2rz3GJvktUrTqEtX/A7ucXhU9xdibOX70x6hmi3x73wtSo9X3UatyMDr36UMY/801iW5T/9Sfqr1Gnahyfv5jYKtXsEaIQADjH2N5zljqssaAFQQJq1qZFxy40adWWjLeuXVKGNSbl0OMcF1CZpNR1dVNE1mtQoJgKg009Z87OzkydOpU+ffoUVjw2CwwMZMiQIbRu3Zp27dqxZs0agoODLcMUp02bRkhICJs2qRNiH330UUaPHs2qVavo0aMHoaGhvPzyy7Rp04aAgILdqXI4JXRYY0JCAoGBgSiKQqcXpuT7A2PT++5n1b7f8MjQ0LNzPdjIlve8+elbDxTFgMGgMFj5lNmm2VT/6AQuPilrlSUmwp9/qt87UM+ZI0m9BgAmz31D42iKt4CatXnnf4fy3E5sYUhOps6mjwA4/+xzhbp+TlGzvkZ7jp8KhuI9tyY2oApe167iee0qt1veq3U4Rc6nVGnmbNyKm4dHgYaxu94O594p4zEoCpcGPkPIw4/aMUr9sG4fgXMWaBxNyZKfOWcJ5dRhjW4FHNbo4urKxCUrUaKicG/fJN1zrill9BNzGg5sMBBVpwFlT6oV2uP8K5Jkp6Vc7Mnmd7K2bdty4sSJwoglXwYNGsTy5cuZO3cuzZs358cff2Tnzp1Ur66WxQwNDU235tmwYcNYunQp7733Hk2aNOGJJ56gfv36bNu2TasfQTulUy7IEtZzlpyczMqVK1m1ahWm5Lwv7KooCts+eJc7N9O6y/PygTP8uhOrZ/oyoVd5ftzhiaIYaNstnq923uIThlCHC7hYf6j86y81QStVCmrVyva8Iv9Sr4GVK1diSk7WOpxiZ9/Wz/jv3zOWx4WRmAFU2vc9XiFXSChVmuA+AwrlNbRifY2aTcX/Go0tgeX0Tx4+yB8H0kb+eHh5ZRrZY6uWMyfjfjOMyLr1+XPa7AJGqF/yN1w7+Ztzlv+CIFcvXeD7zRstj43Ozri5u2fazzLnLJe5mlF161u+j6yrv14zyMecs7FjxzJp0iSuXr1Kq1at8MowEbNZs2Z2C86WmMaOHZvlcxs2bMi0bfz48YwfP76Qo3IAJbTnzMXFhVmzZqEoCkYbKj1tXbWcz1e8zcFvvmTJ9r259rhFhjuxbY0Xuzd7kZSo3glt0TGeV6Yn07+rB+4J2RQjSR3S2KoVOEAhEEeUeg2AugwCJOZ8gMizI3t2sur1V/D2K83Sb/YWeO5MTupu+ACAS089i9ndw+b1d/TM+ho1OrtQ3D9+xlauDIDntRCNIyka//3zN2+9OAJTcjJzNn5Jw1Zt7XJe/19+xOTmztElqzB55L/gld5l/huepG1AJYhzPpYusAxrtLHnLByYOWYot2/ewMXVla4Dsl+CxTV1WGMOBUEgfUJmnajpic3J2aBBgwCYMGGCZZvBYLBUSDTlssaA0JES2nPm6urK7NmzMSsK289mveRCVjo+0o8fvvqcPiNfyDExi8CPT98vw7eb/YiPVe+CNmydQOD0RAb39sTTJeWOT3brilonZ6JQpF4DAKHR8YDtdwJF1pre14F697SifovWBZ47k5PSJ49R9uQxTC6uXLBx3qcjsL5G91wKIyGxeL+3pq11VjLmnFWpXY82XR8mNvoudZq2sOu5/5w2hygdzqOxJ+v2cfVuHFB8bszonTE/PWepwxpv31LXDsqjMkCPAU9yeP/33Nule477ukSlzjnzzXE/64Qsqk4xSc4uXbpUGHEILZTQnrP8qlitBsv/dwC3bO5GxsUaeINpvM1kItaqiW/tJolMmJbA8AEe+Lj55O2F/lDHQksxEOGIvHz9mL1hC67uBZs7k5u6KYtOX32kLwnlKxTa64iiUdLWOnN2cWHConcxJSfh4upqt/OGPPQwlwY9Y7fzCZFRvhahTiml75SUhEtkBOZcRh6VPnUcAAMw6LnxPPr8+Gw/e6WyzDnzK5Xjfnfr1LN8H1VchjWmzuUSxUAJ7TlTFIXIyEjMipLjmngAq4D4f/6mesoE9az+OCQmwJ7PPdm2ugKRqMUlqtVJYMyURF4Y4k4p9zwmZQAJCVIMpAikXgMAilHKNRfUsUP7SU5KpO1DPYGs24k9eV69Yll0+tyw5wr1tbSS7hotAZWE0805U5RiOaQ7+Ow//P3TAT58ex6Q/TItqfKypAuQriciaNykYvm7yyhd+3CyX3IrcpefOWdmVzcSff1wjYrEPfwWsZUqZ7tvZPgtElYuTbctL+8paeuc5dxzluyVNgf6bu26uZ5XC/maefrxxx/ToUMHAgICuHz5MgDLly/nm2++sWtwopCV0J6z2NhYSpcuTdkyZUjIYez0l8BY4PXnniH8+rVMzycnqUnZuO4VWL/Qj8g7Rupwjk8ZzB+HY5k22odS7jYuN/HXX5CUpCbONWvadqzIs9RroHTp0sQVo3lKWrgU9Bdvjx/F4peeI+jYb0XymrU/WYfBbOZG+466XKPGHqyv0YR8VEdzNHGV1LmJznFxuN4pfu9JUXfCmTNiEB+9PY+P7Hxu699XbED2H3qLE/kbrp38VGuEtN6znIqCmEwmFjz3DBw9krYxjzenXPNQSj8Tnd7IsDk5W7VqFYGBgfTq1YuIiAjLHLNSpUqxfPlye8cnClMJTc7yqjvqAocPP/5UurkzJhMc/MaDCb3K88FsP27fMFKukonJc8M5QyMGs5ny3vm8kyfFQISDqVa3Ae17PkqrBx+ibrOWOe5rjI2lf4MA+jcIyHfxDufou9T48lMAzg97Pl/nEPpjdnUjrrw/AJ4hxW9oo2/psvR6ZiQ16jWkv53P7RmaVkRFcZFeJFG48jOsEdKKguS0ELXRaKTfc+NpblWszTn6bp7O72JZhNqG5EynbE7O3n33XT788EOmT59uWbwZoHXr1pw+fdquwYlCZj2ssQQMm0nl6elJYmIi8QkJuHl4ZLufH7APGDJ+ckrRG/h1tzuBfcrx7quluHHFGb+yJsbOjOaP08m8NdGNAtdUk2IgRSL1GkhMTMQjh2FFIndGZ2deXLicScs+SKmaVrhqbN2MS0w0UbXrcuP+Bwv99bRifY0W9jBRvSju884GjJnAoo1bKWPn83qElowKl9bkb7h2nPPbc1YubwtRd+j8EPWtPpN63Mhb4bbUOWc29ZzplM3J2aVLl2jRInNlITc3N2LysWq40FBqz1lSEpSg/zuDwYCLiwsuLi6Z5pv9vv97fv3+f5bHal1FA8d/dGPKgHIsfqk0V8+74O1nZsTkaI7+lcR7s72oXtbNPsUPpBhIkcjpGhC5uxT0F9+sXWV57OTkZNeiBtkxJCdTu5guOp1RSbxGYysXr+Tszs0wPl6yIN06XK5u9p/jWlKWH7BWEtuHXuSnWiNYDWvMUE4/IT6eDW/OIeZuFAA+F87hZFX53T0sD8mZ2YxLyvHFITmzuSBIzZo1OXnyZKbCILt27aJRo9zH/j/44IOMGDGCJ554Ao8cei1EEfD0BFdXdcHj8HAopIViHcXFv/9kyctjMJuSKfPhZ/QBDvEAr40MIOikeq26e5rpNyKWaZONNKnqZd83hYQESO19lp4zoVNRd8KZO+JJou7cxtPHl24Dny6y1w7Ytwuva1dJKF2G4MfsPThMaM2SnBWDcvrq3JmnuRT0N4nx8YycPq/QXsuzBPacCe3ke1hjas9ZhmGN7897jR937eBS0F/M3vAFfv8GpXveIw/JmcvdKAwpvW2JuZTSdwQ233acPHky48aNY8uWLSiKwu+//86CBQt47bXXmDx5cq7Ht2rViilTplCxYkVGjx7NkSNHcj1GFBKDAcqWVb8vQfPOEhMTmTx5MlMmTyYpMW3x4eoNGtPxkb607dYLg1NburObBzlE0EkPXN0U+o2M4adT8Xyywoum1QqhTPjp02nFQGrUsO+5RTqp18DkyZNJTCyeC1DbY35XVnxLl6XPqLHUbnIP7Xs+arfz5kWdDWr5/ItPDcXsXrxv7llfo0nF9BrNqDgNazQajQx8cRIVqlSj95CRhfpaJXFYY0n4G65X+anWCJCQOucsw7DGvkNHUS6gMgNfnITBYMD33zPpnncPu5HruVPnmyV7eBSLeZc295wNHz6c5ORkpkyZQmxsLIMHD6Zy5cq88847PPnkk7kev2TJEhYtWsT//vc/1q9fzwMPPECdOnUYMWIEQ4YMwd/fP18/iMinMmUgNLREldNPSkpi8eLFAHz69AuW4VhGo5HeQ1eweYUn04b7ADVwIZFuT8Tx2mwX7mvgidGpEIdPpM43a91aioEUMutrYMwrUzWOxvH0HTmW3kNGFclQxlSlTx23LDp98alhWe5j8vRk2z+ZK6s6IutrtOOwseBszOUIx1eckjOANl0fpkXHLoXeTjxDi8c1bwvr9jF60qsaR1M8ZbeUQ76rNZbLelhjrfqNeO/7ny3tJFPPWR7mnLlGRACQ5FsqX7Hpjc3JGcDo0aMZPXo0t27dwmw2U6GCbQuAGo1G+vTpQ58+fbh58yYffPABM2bM4LXXXqNXr15MmDCBLl265Cc0YasS2HPm4uLCK6+8gqIo/PfvGc4c/ZW2D73Elvd8+WWXO4piwMlJYah5AzOZS9W1f+LsUwQTjlPnm8mQxkKXeg0AKUUs5M5rTsJvhPLt+jU8M+k1S9GPokzMAGp/th6AK4/2KxGLTltfo0bnApcacghpa505Zk9QLPDhorkMnDgV75SFcIuinXiGFo9k1haZ/4YnaRtQSWEy4Rwfn69D4616zjatWERjoE7Kc9btxO+s7cMaXVPWOMttAWpHYXNyFhcXh6IoeHp6Uq5cOS5fvszy5ctp1KgR3bt3t+lcv//+O+vXr2fz5s1UqFCBYcOGERoayqOPPsoLL7xguSsiClFqUZAS1HPm6urK22+/TdjNm9SqXZ+Yu3f4bFl1FEUty93+4TimvRLNIw+NUA8oqqID1j1nolClXgMAodHxQMkpiGMrk8nE/NHPEHw2iOSkREbNWKBJHAH7dwMphUBKAOtrdM+lMBISTbkc4fhSe85coyJxvhuFYszX/WPNjAC++3wT/108z5yNXxZJoQqXqEhcoqML/XX0xrp9XL0bh5oai8LmnMPasLlJHdboEnadbRvWcBT4J8M+brdu4n7rJorBYJlDZsuwxuJQRh/yMeesT58+bNq0CYCIiAjatGnDkiVL6NOnD6tWrcrlaAgLC2PJkiU0adKEjh07cvPmTT7//HP+++8/5syZw5o1a/jmm29YvXq17T9NEYuJiUGxKveZmJhITEwMCQkJmfaLiYnBbDZbtiUlJRETE0N8hjsQtuwbGxtLTEyMZa05gOTkZGJiYojL0ICy2zfJL+VCtuo5i4uLIyYmhmSrClMmkynL82a7L5n/VMbHxxMTE0NSUlL6fWNi8rSv2Wy2/H6sJSQkEBMTk27ceW77BgcnMm9uOeJiZgDtUJQ+tOgYzuf7ovjhW1ceuc+TRNSP7NbnVRTFct4s/+8z/BxZ/X9meZ3Ex6P89Zcau1U1VFv+761/V0LYi9Fo5JnAaQTUqMVjI15I215Ic9qyoy46/QBR9RsW+msJbZg8PUkopS7x4ohDG6cDFatUY/DLrxZZBUFH/D0Jx5U630zJx/UdnzKs0dVkomnterwBZByT5JvSaxZTrYZlW556zlIXoPYrocnZ8ePH6dixIwBbt26lYsWKXL58mU2bNrFixYpcj69SpQofffQRzz77LFevXmXr1q08/PDD6f6QtWnThnvvvdfW0IpcQEAAt26ljZ19++238fb25sUXX0y3X4UKFfD29iY4ONiy7f3338fb25uRI9NPFK5Rowbe3t4EBaV1627YsAFvb+9Mc/oaNWqEt7c3x48ft2zbsmUL3t7ePPbYY+n2vffee/H29uann3+2bPvfrl0s27hRfWCVnD3wwAN4e3uze/duy7YffvgBb29v2rVrl+68PXv2xNvbm6+//tqy7cjvv+MN3JP+18WAAQPw9vbm008/tWw7ffo03v7+1M2w75AhQ/D29mbNmjWWbRcuXMDb25vKlSun2/f555/H29ubd955x7ItNDQUb29vSpUqlW7fsWMD8fb2platubz3XjJm88s0bPkFUIkTP5Wj/wMeuKXM7ZgOeAPT58yxHJ+cnIy3tzfe3t5EpvwxAHjjjTfw9vcnMMPPUapUKby9vQkNDbVse+edd/D29ub5CRPSdvz7bwxJSYQDF6wS3TVr1uDt7c2QIUPSnbdu3bp4e3unW1vQ+vcqcqYoCklJSSQlJaVLskXWWj34EMu+PUCFlGp6Wjk/vOQsOl1Sr1HL0EYHXIi6KfDeV7tp0LLoPr8Uh8qW+VFS24fWUuebJedjbTmzuwdJXmpV8LffXM4zWeyTOt8ssm59yzbXyAic4nPusXMpRmucQT6Ss9jYWHx8fADYs2cP/fv3x8nJifvuu4/Lly/nevz+/fsJCgpi8uTJlC9fPst9fH19OXDggK2hiXywpGTFfFhjVBTMmQObNqnrYJhMCwBXPtkawd5d7toGB3DiBAB/gBQDKQKxsbG4urri6upKXBH0+jiauJgYPpg9lbt30m7aFMUC0zmJqlWnWC86nZH1NZqQzwn4jsiRioKYTCY2vDmHkP8uWrYVdTtxxCTWHuRvuDZSe85MHrYlZ9+sXcWfv/5kWYja0+rmtrXU5CyqboN023MrCpI256y0TXHplc0DuuvUqcP27dvp168fu3fvZuLEiYA6XNE3D2sLzJo1i23btmXq0YiKiqJv37788MMPtoakmWvXrlEupZsW1GUGXn75ZZyd0/9aw8LCANKt6zZu3DhGjx6N0Zi+Atd///2Xad9hw4YxePDgTPueOXMGRVFwd09LLgYNGkTfvn1xyjBP6ujRo+q+VsPgHunZk57vvgvjx6frOfvxxx8xm824WS2W2aVLF6KjozOdd9euXZn2va9NG6KBjCnGV199hclkwtVq4mfTpk2JvnEDQ4YqnR9//DEbNmxIt2/t2rWJzmJs/QcffMD777+Pi9WbYqVKlYiOjiY2Ft5+G956SyE83AwcT3ds34dd8fT0tJzX+v9uATAbcJk1y7LN2fn/7J13eBRVF4ff7bvJphIIJfTeO1IEC4qiiAKKgCIiKL2qCIIUEbB8VAUURbEgHQQRpCgqihTpvXcSQoDU3Wyd74/JbjbJJtlNNn3e5+Ehmb1z5ya5d2bOPef8jtLZ1s9l5+jdd9/l7aFDUab7OWJTFIRc/56jRo1i6NChKE0mcHi7UoyzR956C2X16s62b7zxBq+++mqGv/358+cz/O1fein/6k1JFD9clbnaPd6ZPTu2cjMfc2fcIXMJ1b34Un9p46IE4DTO8sEjpIqPcyrQ5YR1n8/n52VfsGfLT/QHCqK4Q1EVT5Eomjg9Z14YZ//+to3vPpmOSq1hUM3a6AHNvRi3bYPOiTL68S6eMxCNs6TKVTO9hjPnrJiENXptnE2ePJk+ffowZswYHn30UWeY2/bt22nqkiuTGX/++afbmhTJycns3r3b2+EUKP7+aYsQO3Zx3LVLj6OyfW7a+rl5qCiVygzGYZq2LjlYSqUSZbly4jcunjN3xcEVCoXbsWXaNsNR0hgS2fXrrq1cLnfbVqPRpDEOASwWOcuW+TNjhoAYUSijfFWB1o9PY/9vE3lr3hfUrVYZPz8/ZDKZ237VKf9w+Ztm2latRu3meKZt08+TFONM3aZNGgESb/727tpJuMfPz4/79+8DYFBoIFZSa3Sl96CRXLlwjlfenlRghhlA5Q2rnF/f6PxsgY2jIHCdo/vumbBa7NmcUTxwFqLOB6MjfPcurr7QJ8fnP9G7H//9vp1uLw9AN2GUD0fmOUXBw5gXuK6PBLkaMvHESPgWZZJonHnjOWvR/mFadnyCqnXqYz93Bk4eQ3s3o3Ems1oJOH8OcOc5i8zQ3hVnzlkxCWv02jh7/vnnefDBB4mMjKRx49Ssoo4dO9KtW7dMzzt27BggxgmfOnWKqKhUF6XNZuPXX3/NkEskkQ8UMyl9qxW+/x6mTRO4elUGyChTwUrPYYl06GpEoWxHr1G/oVAoCNBrCvTFMw2nUoouSjL6+YJMJnN6742JOZMFLs5UrFaTeZv/yOCxzU+UCfHU+Tw1j9TuZsOmOOM6R2X3owt2MPlIqnGW90ZHbr1zQaGlmLX6F9QmExSUcVZCc85c10diQs4VBCW8Q5mDnDOVWsPbC75CLpdjev9dADT3MqbS6K9cQmExY/HXYyiX1h7QRWVdy8+Rc1Zc1BpzpFNbtmxZypYty/Xr15HJZERERNCqVassz2nSpAkymQyZTOa2hplOp+PTTz/NyXAkckMxkdK322HNGpgyBc6eBZARUtpG1/43uXpuHM0enoRCKRqiBfnCmSlWq2goV6pU0CORKIHYbDaWfjSNmkC9lGMFvU5qf7kQTez9Ah2DRP6T12GNyoR459f+OcjXWvf5Aqo3aESTlPzHgl4nJdVzJlEwOHPOtFkH8f69/RduAkNTvnesk+RS7gtRAwSdTQlprFUnQwkjrYc5Z5bgEppzZrVamTZtGgsWLHDm3uj1ekaMGMGUKVMyDa26fPkygiBQrVo19u/fn0YMRK1WU6ZMmQK/yZVIXD1nglDkcjoEATZvhvfeg6NHxWMBwXa6vZ7Iky8lsWDcUPZu/4U7N68x7bu1yGQyLGYz679YgF6tpPmH092GohYILVoUud9/UcVsNjNz5kwA+o9Mr7FZ8li7aC5bVn3PUeB8QQ8G0EXepMa3Xxb0MAoU1znasvdAoGQ8Hx3GmfbeXRS5qKmUGX6RqeGSfjevZdEyI//+upkf532IUqVmwda/CI8o2M00hcGA5n7xiHrxFtf18cqIMQU8mpJDqlqju+QVkatnTzN30pvYSC0y7cAhCOIu58yp1Fi7XobPsgtrVMUVrzpnXhtnw4cPZ8OGDXz88cfOfLN///2XqVOnEhMTk2l9ssqVKwOkqfckUQhweM5sNlHSsAglU/72G0ycCPv2id/76e10fS2JLq8kodOL0rp9Rr/DrcsXeXX8FGcIo81qZfXCOQAsmD658BhnUkhjvmGxWJiWUiKh75ARBTyaguepl1/j6F+/M+v4kQIRNUhPvXkfozAlE9OsJWGHDhT0cAoE1zm68YV+oCwZxpklMAiLvx5VUmK2oUw5IY1xlo3XyVUkZ+OhC7R4tBOtOz1NtXoNC9wwg9SfxaLXl7hC1K7ro8/g4dm0lvAVqWqNmT8pKtWqQ7dXXkfz9WI6AptdPnMUonbnOQt0GmcZa1lmr9ZYwnPOVqxYwcqVK+ncubPzWKNGjahUqRK9evVya5xt2rSJzp07o1Kp2LRpU5b9p6/PJZHH6HTiP6NR9J4VAePs339Fo8xRbUGjs/P0ywa6DkgkIDhtvZMK1Wowe+PONCqTCqWCJ/v0w0+lcCueUmC0aFHQIygxKJVKhg4VAy4USiVQsgVBAkJCmfXNarq1qFXQQyHo1HEqbVoLwMkxE3iob/cCHlHB4DpH5YpCdJ/Ka2QyDBUqEnTuNLpI34uC6CJTDT7d7SjkZhN2tSaLM1JRqdW8Oe+LDKrFBYUj9NNQLoKg82cKeDT5S8Z7uCXrEyR8gtKQfc6ZTCbj5eFv8szXizPU63KGNbrJOXMoNbo1zqIy95zJrFZUiQkAmIOCsxp+kcHrO75Wq6VKlSoZjlepUiVTD8Rzzz1HVFQUZcqU4bnnnsu0b5lMhs1F6l0inwgNhZs3ReOsauZSpQXN4cMwaRJs2SJ+r1QJPNHLQLc3EgkpLXpkrRYLX77/Lk+9/BqVUxZ4+gepSq3h9cmzKKfPqPJYoEies3xDo9GwcOFCACITk4GSVydn1af/o0bDJjR/+DEg4zopEASBhh9PRyYIXH/6OWLrN8qTy9y6oqB0YOEOIXado9svR2M2l5xno6F8BYLOnc4TxUZXz5lMENDduklSlWqZtl8OxABVUr4vFOskBYfnz1CufIkzzlzXx40EIyCJguQHihTPmVWb1jg7e/g//tm6iVfHT3WuEXcrxZRJzpkqLha/lI2T9EqNANqYaGRWK4KbDXWVSx6pJTAIuRtF+KKG13eZYcOGMX36dEwmk/OYyWRixowZDB/u3rVst9spU6aM8+vM/kmGWQFRyEVBTp+GF16AZs1Ew0yuEHjsBQOfbYvmtYnxTsMMYM3iuexcs5wPXn8JUzYV5QsVpUpBxYoFPQqJEsKeX39m9cI5fDxiALdveJd3k5eE//U7Zfb+jU2l5uSYCT7v/84tOQsnBjHq6dL89F3JUn8sSjhFQfLAc5Y+lNH/eubz/8r5s7wCjAYO/1v4Sv04ClAby0lK1xL5gzIlD9S1PmBiQjwzB/fjl+++YvOyJVme7whrVKZ7Pws8J24uJFWoiDUgbc1ku1KJzG5HG+NetdZhnFn89W6Nt6KIRz9F9+5pw0p27txJRESEU0r/6NGjmM1mOnbs6PsResCiRYv45JNPiIyMpH79+sybN4/27dtn2t5kMvH+++/zww8/EBUVRUREBBMnTuS1117Lx1EXIgqpnP6lSzBtGvzwg4DdLkMmE3jw6WR6Dk+gfBX3hvwz/d7g5P5/eW7AUDQuakLpcwdyU3g0T2jWTBIDkcg3WnV8knZPdaVGgyaFIncGxNCUhp9MB+DiKwMwRFREYfCNR/P+HTnrv9CzfZUfVou4zm5fLx4P8eKIQ04/L3LOXMMaAfyzEAWpXKMWk4GrQOMH2iFk2rJgSPWcScaZRP7gyDlzLUKtDwjk9ckz2LnmRzr1eiXL863+/li1WpTJaUvYOJQa3YU0JoeVxi8qEm1UJMay5TN87ihAbSkCaTme4tHTKSjdD9yjR48031fMZsd/wYIFHg9o5MiRHrcFWLVqFaNHj2bRokW0a9eOL774gs6dO3Pq1CkqZSJL3rNnT27fvs3SpUupUaMG0dHRWK1Wr65brChknrObN+GDD+CrrwSsVrFWWavHkuk1IoHKtbP+O+mDgpn+/fos65clGw281Ep0m8fFxrotFJ0vuCqRNWlSMGMooSQlJTlr5Jy5kXWicXFEqVIxZvbiwlPnD6i8fhWBF85hCgrh7CDvngOZkXBfxk9L9Wz5wR9zsvizNmxtYuxEM53bKilbyieXyRNc5+i6I+dAWXI8fYYK4jtFnnjO0vXpf/1qpm1lMhlTAAHYJJdT2GJ7nDln5Uuecea6Pk5ez1rJT8J3ONQa029wP/j0c7R76tnsnykyGaZSpVGmK5XhUGqMd6PUmFymLH5RkehuR+GuuIq6mNU4Aw+Ns2+++SZXF5k7d65H7WQymdfG2Zw5cxgwYAADBw4EYN68eWzbto3Fixcza9asDO1//fVX/vzzTy5dukRoilHiLoeuRFFIPGd3COPDCWoWfSmQnCwaZY3bmegzOoEaDd0n+wqCwPI5s6jVpBmtOj4J4NELp62gjfHkZOjdO/X7F14ouLGUUErahszv61aSEHufZwcMATxbJ/mFIimJegs+BuDMsDG5VtwyJMrYvMyfn5f5Y0gUo/drNTYzaqKJfs/q8FcHEB8fn00vBU9Jm6MOnGGNPq7h5U563u9G2pfEU//t458tP/HaxA+cxQsKz0pJiyMnr6SGNZbU9VGQKJNEz9ldo4HegGsQo6fPFFNYafzTG2fnUpQaa2XMNzOWCQcyl9N3hDWag4pHjTPIYRHqY8eOce7cOWQyGbVq1aJhw4ZZtr98+XKOBpcdZrOZgwcPMn78+DTHO3XqxJ49e9yes2nTJlq0aMHHH3/M999/j7+/P127dmX69OnoMpEGNZlMaXLsisJD3SsK2HMWGwuzeZ95jCbxU7FOXt3mZnqPTqB+y6wTO/ds3cSGLz9DqVLx6da/KRORfd6WWqNlyZ8HCfdTZ/o3z1NMJujeHXbuTD1WL+NuUVGjKK0TnU7HjRs3HN9AbMElEOsvXSCuQd4IXzi4cu4Miya9iSAIVKpVl6btH87T63lLraWL0MbcIbFSFS5lExaTFSYjbP3Rn5++1JMQKxplVepYGPpOMm/00hKkDfDVkHOMp+vEdY4eT1ZgtRa2oLq8w1nr7I77HJOc4s4T5+o5S4qP48Ohr5IUH0d4RGW65WIu5jVyswntndtA8QxrzG6duK4Pm04HcZJaY36gTPGcrVr5PSsBDdDNyz4cio1O7HYCz2Uuo59cpiyQhXFWzGT0wUvjbP/+/QwYMIBTp04hCOKDQiaTUb9+fZYuXUrLli3zZJCZERMTg81mIzw8PM3x8PBwoqLchypdunSJv//+G61Wy4YNG4iJiWHo0KHcu3ePr7/+2u05s2bNctbTKJYUkOcsMRE+/RQ+/tgPBUNQYqV63WR6jzXQ5EGTRylYrTs9TYeuPajZqKlHhhmIalulwstRWq/Jf+Utkwl69ICtW1NLGBQTitI6kcvlVKggvtCIao0FR9m/fs9z46xKrTr0GjWOu5G3aPLgQ3l6LW/R3o6i5jdiCZYTY99FyEHdQYsZdq7xY93neu7fEf0d5ataGfRWMsNf1RDqV/BGmQNP14nrHD15ORoKXVBd3mEqFYZNo0Vh8u3adOeJc93B9w8MYsj7n/DbuhU80acf2AuvQayLvIVMELBqtZhDQgt6OD4nu3Xiuj5EtUaJ/MCRB/z4KwM59tE0PgT2edmHQxTEgf+NayiNRmwaLUmVMiqGG8NTjLNM5PTVJTXnDODUqVN07NiRunXr8sMPP1C3bl0EQeD06dPMnTuXjh07snfvXuq58QCMHTuW6dOn4+/vz9ixY7O8zpw5c7z+IdK7UgVByNS9arfbkclkLF++3JlLN2fOHJ5//nkWLlzo1pMyYcKENOOOj4/PNs+uSJHPnrPkZPjiC5g5UyA6WoY/SZyhPnoS2bnsELagwOw7SUGhVDLyowWFKkQrU0wmeP55+OUX0GphzRro0qWgR+Uziv068SHKhATn12EH93E2H675/OBRWd4bC4p6n36C0mjkbpPm3Hriaa/OtVnhz406Vi/Uc+eW+DgrU8FK/zFGxryhITxAnxdDzhXSOvEAmQxD+QoEXL7o024d6oauqONiUcXHOXfd2zzZhdZPPC2uEx8J0uQFTjGQ8hHFUkxKWieFE4fnrEyd+uwhZyG/prC0xlngefEJGF+jllu1RU89ZyUu5wxgypQpPP7446xbty7Nw71p06b07t2b7t27M3XqVFavXp3h3MOHD2OxWJxfZ4a3Lw1hYWEoFIoMXrLo6OgM3jQH5cqVo0KFCmlEThyG5o0bN6hZs2aGczSaQlYPy9c4jLM89pxZLLBsGbz/vsCNG2JOWXhFKx902ED4cjF8RX/jKnFBWYfJbl/1Awn379FjsJif6O28sVjMbFq6jEC1kuaTJ2Ran8+nmM3Qsyds3iwaZj//DG3a5P1185GitE7MZjPz588HoOeAQfl+fdeHTKnD/yGzWBBUKp9e4+i+PWwGFrscK2yGWeDZ01RetxKA4+Mme/ySabfDv79qWflpALcui4+xkNI2+o4w8PZwNRWC9YXuZ3Xg6TpxnaP1uvYGZwZUycBQPiIPjLO0eS7JoaXQ3rvLmhEDefyzpfinSHgX1rnjisM4M6aEgBY3slsnruujx2tv5NewSiyJ8XEsGDecJ1Pyu2w6XY5zMdOHNQam1OhzF9IIYEwxzrS33UfEqeJLcM7ZH3/8wdatW93etGQyGe+++y5PPfWU23N37drl9uvcolarad68OTt27KBbt9So1x07dvDss8+6Paddu3asWbOGxMRE9HpxV/XcuXPI5XIiIornTS5b8jis0WaDlSthyhS4eBFARmi4jReGJvBodyMt39/mbBtw6QJx9TM3zq6cPcWSqe8gCALVGzSiyYMPez8eq5XvP/kAgI8mvJW9cWY0Qm4UHS0WePFF2LQJNBrx/8ceg5TEWon8x2KxMG7cOAC6v5L/JTRcJcKVhiSCTx3nfuNmPus/KT6Oj94ehgGoC1T3Wc++pcH/PkAmCNx4ogv3mmUfFi8I8N8uDSvmB3D1rGjMBgTb6TXEwDujlVQrXXiNMm9xnaMbn3oelCXPOPM16cMaDeUj0N67S9K+f/hm5mSGz5rn82vmFQ4vYF78nooCruvj2b79C3g0xZ8vZk1h/85fsaekgrhK6XtLZp6zODdKjQDJTkGQKPEhkO4er04owWGNCQkJmXqjAMqWLUuCS6iOJ1y/fh2ZTJYro2js2LH07duXFi1a0KZNG5YsWcK1a9cYPHgwILrGb968yXfffQdAnz59mD59Ov3792fatGnExMTw9ttv89prrxWMOERhIKuwxqQkSDFiSUz0ykgRgJ82KXhvBpw8KR4LDLXRY1AinXoZUGsAQaDMnr+c5wRcOp9ln1Vq1+PlN9/lblQkjdvlLHdGoVDw8HM98VPJUXpSsLBuXRg5EoYOTTVkPcVigV694KefRMNs40Z4/PEcjVvCdyiVSvr16weIobGQv4Ig6YUJSu/f41PjzD8wiJHTPubkm0MYBvzqs559R+m9f1N29y7sKhUnx2ZfcProPh0/fF6K80fFzRQ/vZ3uAw1MeFNB3Qr+xcYoc+A6R+WKkleTzSGn7yme1LLMYJxFVCL0xFFaR1Qi7K1JOR9sAVDSjbOM93BJECQv6T92AjEx0fgfOgCALRfGWXKp9MaZ6DmLz8Rzlly6DAAKswl17D3MIWnfw1QlVUofRLn5/fv3Zxrzu2/fPipXrpxtP1arlWnTprFgwQISExMB0Ov1jBgxgilTpqDyMrTnxRdf5O7du7z//vtERkbSoEEDtmzZ4hxLZGQk166lFpnU6/Xs2LGDESNG0KJFC0qVKkXPnj354IMPvLpuscJhcNy/L8YL5VIkQxBgG08wiQ842EeszeMfaOfZ1xJ5qq8BnX9qkrX+yqU0CdkBly5k2/9zA4flKndGpdYw4sN5lNNnETZht6d+HRMDkyfDhx/CgAEwZgxUzZi0mgGLRZTLX78e1GrRQHviiRyNWcK3aDQali1bBjgEQfI3tyR9cd3S+/Zw7vXhPr1G60ceZyaFVwa8/twPAbjUux9JlTNfT3towyQ+YNcQsfioWivwTF8DEyfIaFzFH3kxM8ocuM7R7ZejMZtLjiAIpBai9iUO6XnnNVIMm+4PPszR9ApyhRyHoZmUB7+nooDr+hAFQSRRkLwktHQ4M7/8EVnKBojVzeaHp5jSrTX9DfEdPa6We+PMrtaQXCoM7d0YdFGRGY2zlLDG4qTW6PFb+IsvvsjYsWM5ceJEhs+OHz/OW2+9Ra9evbLtZ/jw4SxZsoSPP/6Yw4cPc/jwYT7++GOWLl3KiBEjvBt9CkOHDuXKlSuYTCYOHjxIhw4dnJ8tW7aMP/74I037OnXqsGPHDgwGA9evX2f27Nkl12sGqZ4zux3i4nLV1V9/QYdOWjrzKwdpgVZn5/nBCSzeGU2PwUlpDDOA8N1pw1zdGWeHd//Bp+NHY7Wk7ozl+S75oUOpX3/5pVgk2mAQ5SVr1BC9YQcPZn6+1QovvQTr1omG2YYN8OSTeTtmiSJDetWpUof2I7Pkbuf3xsXzThlwB4XZbAk6fwZzQCBnhox2+/mlU0o+GFmWduxhF4+iVAl06ZvEn4eNrPrcj6ZV/YqtYSbh+8LKMrMZbbSYs/IycAFISlH4TV9zqSjgFAQpocaZRN5iMZuZPWE0f7kcUxlTNzFt2py/M6cPawQwlg7HHJp5ZFJyFoqNqWGNwTkeU2HDY8/ZhAkT2LlzJ02aNOHxxx+nbl3Rwj116hQ7d+6kVatWTJiQfWjKihUrWLlyJZ07d3Yea9SoEZUqVaJXr158/vnnOfgxJHKFRiOGKyYliXlnId4nVR44AJMmwfbtAAo0JDOMhTTe3B19BW2m56U3zvRXLiKzWp2KPYlxscwZMwhDYgKVa9ela/98Em/YsiX16969RY/Zzp3wySewYwesWiX+e/RRePvtjB6xgQNh7VpQqUQDLZN8TImSiV9kqufMFByCJvY+ISeOcq9pixz1Z7fbmT16ENfOn+GbWVOKTO7M2cGjMsiA37ioZOUCPf9uEx/+Cqy8yjL6/vUs7VqFoZRLBllJwNfhen5RovS8SS5nud3OWWBuOfEarrXOigIyq9UpKlRcBUEkCpaNSxexe9tmegCOSsWKFOPMqtPlKsLKEhCITaVC4bIhmVlIowNjeDmCT50Q887SkSoIEpzjMRU2PP7tarVadu3axYwZM4iMjOTzzz/n888/Jyoqig8++IBdu3ah1Wb+Eu7aT5UqVTIcr1KlSv6o5km4J4dy+idOQLdu0KqVaJgplAJP9IjjAjWYzVsEhdgzPVeebKT0/n/THFNYLGkelPqgYEb/byGtOz1N55d8k/SbbDTQt2UdOtWrSlJmohxbt6b9XiYTc8W2b4fDh0WvmEIBv/8OnTtD48awYkVqe1fDrBjJ5RcXkpKSCA4OJjg4GEMBCLPoolLDq+42bwVAWLq14A1yuZxR//uMhm0e5JVx7+V6fPmBoVwFLr6cuqajriv49J0gxjwTxr/bdMhkAh2eTOQU9fiK13mooV+JMsxc52iyoeSJBxnLlMXuSU6whzg8TckVKvIo8B1gqFhJ/OzmjbSh7IUcbXQUcqsVu1KJsXTmWgDFmYK+hxd3nuk/iNaPdGI54ChIokz5PedGDAQAmSxDaGNmSo0OjOHlAPdy+g55/+KUc+aV6atWq3nnnXc4cuQIBoMBg8HAkSNHGD9+vMcS2sOGDWP69OlpKr+bTCZmzJjB8OG+zbmQ8AIvFRsvXBDtk0aNBH76CeRygYefNbBg6x2GTIwhgpvZ9hF2YB8KUzLGMmkfLoEXzqX5vvnDj/H2gi9R+dB4NyTEk5iy25KBq1fh+PHMT27SBH74AS5dEvPP9Hqx/euvp7ZRKsU6Zs8847MxS/iWuLg44nIZxpsTZFYruujbzu9jmj8AQOl9/+Sq3yq16zH1m9UEhngpWpOPBFxMXdunRryFXaPl7m05X0wNZGTn0vyx0Q+7XUarjsms+T2J7asEapG1SFBxpqDmaKFAoXC+kPkCh4CGqUJFfkNUMU0uUxa7QoHCYkYX7V6muzDiyJ0zlKsgbhKWUEr0+shjNFod42cvopPLMYfnzOaXC/XqFEyh6Y0z90qNDoxlxXuBNpNaZyB65IoL+SIB1b179zTf79y5k4iICBo3bgzA0aNHMZvNdOzYMT+GI+EODz1n16/D9Onw9dcCNptYq6zNE0Z6jUwkorpVbOShtkLZ3b8DcLvdQ1TZkFofz7b3Hz5Y/QOjPvmMgGDf161Qa7R8+uvflPFTu8813LzZs44qVYI5c+C998Sq2vPmwe2Ul+7vvoNMyjlIFDw6nY5z50RDQavTQWz+qTVqo6OQuezSx7RoDUCpwweQmc0IHm5CxN2NYf7bwxn43gzKVy2sYvki2ttR1P1sNlXWpXqXT7V8hrUfBvDrj/5YzKJHrHFbE29NstDjcR06pbZEl5twnaMX5TqsViGbM4ofhnLlc50PZjYlM++t4XyUImBgKJeayyYolRjKR6C/fhW/G9cxli2fq2vlF2kKUJdQXNeHRqeDOEmtMTcIgsDSGe9RqWYdHu/5kts2SoOPPGe4M8489Jy5yTkDMAcEFquNinwxzoLS1R7o0aNHmu+lqu+FgGwKUd+mDDPfVvP5UgGzWTTKmj2UTO+RCVSrb83RJR35ZtFtO6Qxzu5sXMPhxAS++2Q6w2bMyVHfWSGXyylfpRrl9Brk7uKmN23yrsOQEBg/Ht54I9UD2bVr7gcqkWfI5XJnwXlRrTH/SC+jn1C9JqaQUDT374l5Zx7U+wL46oOJHN3zF/PHjeDD1b8USil5ZUI8tb5aRI1vl6BMFn/PFpTMYxSTn61KskFcf3WamRkz0cTLz+jwUxWNQuZ5jescvXw5GihZao0AxnK5FwXZuHQx+3Zs4UbKpkd6oRFDREX016/if/0qd1s8kOvr5QepBah9K5qSHpsVjImF774CadeHqNYokRv2/bGTLd8vRS6XU6/FA1SoViNDG0f4oNUXnjOXskR2pZKEqhmv54rRIQiSiYe7OImBQD4ZZ998801+XEYiN2QS1njvHnzCTBYwEsNiscxB/VYm+oxOoE6znO9U+d24RsDli9gVCu60apvms3aly9CseSv6jZuc4/5zTHw85LRQuoehvRIlm/Ry3shk3GnVlohtmym9f49b48xdDaeB783EmJjIaxOnFzrDTGY2U23ld9RZNBdN7H0A7jRqwec1pjJnfVtiCQEDVKtnYcS7ybz2vI5ATUABj1qisGHwgXH27IAhXDt/hraXL8GZkxkMvqSIysDf+N+45r6DQohfijcxyctacJ5it8OerVpWfRpAvZxpFEkUMR54+DG6vjaYcpWruTXMAJQGR1hj7tXNXT1nCVWqZxsx4ghrzNRzVozyzSCfjDOJIkC6sMaEBDFKb/ZsP+IQVThrNkim99gkGrUxpy/Q7jUOr9m9pi2wposTDr15g4mb/8gzF7XVYuHX5d8QpFHSYtyYtLX1tm8X65PVqCEm1kkUSywWC0uWLAHgmT6v5Ou1demNMyDmAdE4C9u/h7ODR3nUT1BoKSZ9udzXw8sddjsRWzZSf95Hzpfd+CrV+a75VCbt6kXcMfGRU4+TvLwgnCEDgwjWSUaZO1znaNXHn8PLFPFigS88Z2qNljfnfkGZjqJXLL3BlxSRIgpSpIyzvAlrFAT4b5eGFfMDuHpWfC4aE7MXeisIXNfHU737FvBoij4ymSzbDXGFwZees1TjLL5m7WzbJ5cRjTNVYgLKxESEdFFPlqCCMc4S7sv4aakeQ4KMNp+Zsj/BQwrEOFu7di2rV6/m2rVrmM1pcz0OudaXksg/Ujxn1jv3mD8bPvxQICZGDF9sxFGm8x72b+di9899rDGkGme3H3yEe3eieRhYDNTUalEmJ+N//SpJVar55FrpsVotfDV9IgDTRg9La5z9/LP4f+fOYk0ziWKJ2Wx2ChA9+Xz29Rl9SfqwRsDpPS516AByswm7OqMX1gi8ALT4dzeNOha+Yual/91Ng//NIOTkMQCMYWVY33YCY/cNIXqd+POER1j4343+9GYFitfiQafKqssSjesc3XjiKVAWzpfkvCQnnjMBWDzjPSo1aMSTvfuJB202p8pb+rDGpBTFxiLlOfNxzpkgwLF/1ayYF8D5Y6IHwy/AzvMDDYwebKFZ9u/O+Y7r+jjb48UCHk3RZPOKb9kJzPewvU9zztIYZ3WybW/V67HoA1AlJqCNjsRYNu06NgcG53pM3mBIlLF5mT+bvvHHmCRHJhO4PDafjbOxY8d63OGcOVnnCC1YsICJEyfSr18/Nm7cSP/+/bl48SIHDhxg2LBhHl9HwrdYA0NRAn9tuMtbKwFklKtspc/gu3w8oSlyBDbK5vrkWjKzmTJ7/wbgdvuH+ep/09kD9Ad+rVKN4DOnCLxwNs+MM7lcQZsnuqBVylG4eudsNvjlF/Hrp56SjLNijEKh4PnnnwdAns9JxI4XK1cSqtckuVQY2rsxhBw/wt3mGXNf/gf8AuyeOJZFrfej88/97qWvaD2sP+H/7gbA4q9n+4MjGXFyHJc3ibuZpcra6DfSwJv9LJSvUMi8fYWUgpyjhYU0hpTgmSDKT8C2dSuQb1hFo9YPUr5qdXQu0vPJYWXSXiPFc+Z/vYgYZ4LgrJPoiwLUZw6p+HFuACcPiBsoGp2dZ/sZefcdGQ0r+5OYUDhLDGRcH5IgiDfcvHSBr2fPwA485uE5Sp+qNabmnHniOQMxtFF1IQFdVEbjLL9yzkxG2PqjPz99qSchVvTeValjYcR4E/Vq+e4+7ZFxdvjwYY868yTvYdGiRSxZsoTevXvz7bffMm7cOKpVq8bkyZO556GMu4TvsFph+XL4e1IpvgT8TfcIK2+l57BEHn7WiNpsQD7BtyphYYf2ozQYSA4rTWzdBgye8D5hO7YyD0ioVjPFODtP5GOds+sqR6g1Gt6av4Ryek3a2nz//iuGdYaEQJs2eXJticKBVqtlzZo1gEMQJP8SynVuPGfIZMS0akPE1p8pvW+PW+PsHeAcUPd/iwqFYaYwpv7Owv/djV2l4t+2rzL82lSObBNV7wJDbbw01Mi4UUoql9IjM3go5SqRZo5uvxyN2VwCBUFSRAAANPfuYvBg3j8H9Og/mLI1aztVTJ0CGmXLZwiXd3jOdNFRyE3J2DW581AGnTrBvRatctVHVmhi7qAwJSPI5bkqNXCIprw/oiyH/hF/p0qVwFN9DLw7AVrW8kNeyPJY0+O6PkRBkPwVdirqVKhWgxFTP0Iz+W26Ap7IoCnyynNWK3vPGYi1DwMvnHNbiNqcx2GNFjPsXOPH2s/1xN4R7yHlq1oZ9FYyw1/VEOqnJz6z8kw5wCPjbFdOBRLccO3aNdq2FUN4dDodCQkJAPTt25fWrVvz2Wef+exaEpljR8badQqmzIIzZ6AdYs5Z1ZA7fPbrHVSO3Mw8UBh3hjS2exjkcgKDQ9iY8tmplERU13pI+YZrSKMPi59KSDgRBGe+SHrutGpLxNafxWLUQ8ekNBecm15q4HtgY7OWBa7bF3zyGC3fTI10ONGsKyMTPmTXn6Icsn+gnRdeNzDhTQU1y/oXOsESiaKBoEoVCdBfuegsGu22bYpnTQb0HfEWNr/UF8iscrTMwaFY/PxRGZLwu3mdxGo1czXmqmuX56lx5jQ0y4R7XHbDleuXVDzPGtbxPPwDcoXAYz2MTJwk0K6+H4oSVOi9JOL6THmkSzeenfy2x+c6BEGsPkhvSaqQupbTe7MzwykK4qbWmSWPBEFsVvh9nY7VC/XcuSW+F5apYOW1sUZGD9QQHqjPpoecke8ZxmXLluVuiuhE5cqV2bt3LwCXL1923lwl8g5BgF94iuYc5MV+Ws6cAX2QnQdfFW/ywfb7qHxX69ktpf8U65vtK106w2cJ1cUHY+CFs3k7CHc4JPQlGXyJPEKVEI/K4L52150HUvLODv8n5p3Z7SyaOJZfvvsqP4eYNTYbtZZ8ysMvdiHgykVMqBnL/2h4aCO7ztdF62fnxaGJ/Hssma8/8adWOZ1kmEn4hKBzZzL9bOPSxXw+czKZBeA5c7TchQHKZCRVrAyA/40c1lRzeXcpdXB/zvrwkJzmm0VdV7DgnSBG9azIOp5Hhp2Hn0rglz1JbF6hpUNDf8kwK+Yc+H07Mwb1JTmHEQxOtUYfeM7srurWHj4jkrOodebrnDM7MlbyIiNeqMjCicHcuaUkpLSNUdMTOXjcxswxesID8+5lOUfugQMHDrBmzRq3gh7r16/P8txHH32Un3/+mWbNmjFgwADGjBnD2rVr+e+//zIUq5bwLbt2wcQJWv5FzKvS+dt55tUkuryaRKhJC8tAFR8n5l7lUY6DLuoWIRfOYgfeWbeSGUPH4hqo4qh1EXDpYp6Nw2Q0MuTJB5HL4Oqli/j5+cH586ILUamEJ5/0+TUlChcGg8FZI+evw8fz7bqOFytTcIhTYt5BYtUaJIeVRhtzh5Cjh9kSe5/f169CrlDQvGXBh9nqbt6gxTsjKf2fuKH2W+iz9Ly3lHuUQqW289RLRt6dAC1q+Bf6kKiigOscXbzjH1CU7FIdgefdG2c3Lp3nh9kzsNvt/AI846ZNduqGhoiKBJ89hf/1qzkamy4lBwxAf/0q2ttRJLuEZPoSh4y+p8bZ3Sg5axfr+W2dHzaruC67s45pTKHWin9R59HOf17juj7+OHSsgEdT+DEmJbFo4lji79/jl+++osfgkV73ofBhnbOc4CxE7cZzZvZRzpkgwP4//ZjMYY7RGK5CQLCdXkMMvDNaSbXS+RMJ4rVxtnLlSl555RU6derEjh076NSpE+fPnycqKopu3bple/6SJUuw28X9rcGDBxMaGsrff//NM888w+DBg73/CSSyZe9emDQJfvsNQIEOA8P5jIY/v4B/eTG+3qwRXcIyQUAdH4c5JDRPxlLm7z8AOBNaikGLlqH18wOXXZykChWxabQoTMn437hGUuWqPh+DgMC9lEKGTm+tI6TxoYcgKAiS3Hs3JIoHgiBw69Ytxzf5dl2HjL6xbPkMxplY76wNFbdsovT+PbQaOoaew8ZSrko1KuTBOvCGij+vp8m0CagSE0hS6Blm+5Rv7/VDiZVBfM5Lu3vQtkWYtPPuQwpqjhZWAjPxnEVUq8nIjz/l1tnTPPOl+7SI7LxNYq2znMvpB59Ou8ET9t9ebjz9XI76yo5UL2DWNc7i7spZv8SfbSv8sZjFddnkwWTeeTOBXt1EIQ0URbc8g+v6kKKuskfn78+Exd+yY/UPPDdwaI768KVaY07IMqwxlzlnTsXS+QGcP6oGyhFIHM8NtTN+gpY6FfI3PN9r42zmzJnMnTuXYcOGERAQwPz586latSqDBg2iXLnsk1Plcjlyl/oEPXv2pGfPnt4OQ8IDjh4VjbLNm8XvlSqBJ7rH8+WqOpQjio3BPZy5K4JajcVfjyopEVVcrM+NM0ecc/juPwCQ9e5HrSbNMzZUKEioVp3g0ycJvHguT4wzlVrD/zZsJ8xPnSoI4jDOnnG37ypR3NBqtU6hI41WS54kV7rBIaNvKFeB4DMnM3we06qdaJzt28OZYWN5ccRb4gc5CENRuRh/ldeuIPKxJzB6GQqlio+jybQJVPzlJwD20Ia+tu+5Iq/Go08l8uXmxlTjMtTvC5Jh5lNc52ikRou1oBMNC5jAi+eQWa0IKfnArrkz7bt0Q/HoE5CZcebwNmWibpgUIRo6OZXTDz6V3jjbl3fG2c2Ue0gmazkxXs76LwLY8r0fyQbxXatuCxNjJ5rp87QffuaCebH2NRnu4XGSWqM7XNdJrSbN3b93eYiywD1nojda60YQJDc5Z2cOqfhxXgAn94vRCWqtnTHJHzOOjwn+6Bpyfe6LbnuL19smFy9e5OmnnwZAo9GQlJSETCZjzJgxzoKA2XH//n3+97//MWDAAAYOHMjs2bMlpUYfcvYsvPgiNGkiGmZyhUDHHgY+/fUOr78TQzkyTmxIdQur0+/o5xKbzcaCd0ay+atFlNnzFwBRHR7NtH18DVFWNeB83oiCKBQKqtZtQK36DUUp/fv3YbcoAy4ZZyUDhUJBkyZNaNKkSdpyCnmMQ6nRWLa828+XXxILn4ceOYjclDv1sRo/fO38usnM9+j8aCs6PvMo9WfPoNSBvcgsWb/MhO3bwyNdHqPiLz9hRcF7vE8H/iL8ifJs+DOJrcsRDbO8xN9f3NIUBPHrEkRBzdHCisJkQn9VnG97t2/h/QG9MCYmZn+ii/R8UibeJoMz5yynxtmJNN+HHfg3R/14QmZewET8mckEBj1TifVf6Ek2yKnewMz85Qns+1vBwOcC8FMVn3kkrY/suXTyGON7Ps0dN+VbcoLDc+YqtpOfODxn2rsxyM1pa4rlJKzxME2YPrIsE/uEcXK/BqVKoEvfJP765x4fMoFQ7hdYiL7XxlloaKhTYbFChQqcOCHelGJjYzF4sLv7559/UrVqVRYsWMD9+/e5d+8eCxYsoGrVqvz555/eDkfChStXoH9/qFdPYPVq8diDTxmZv/kOQ2fEUaZC1luv5uAQANRxsT4d13+7tvPXpnVcnDsLdUI8pqAQ7jdonGn7hOq1AHGnNF/YulXMb6tfH6rlTW01CQlwUVpzE2Vw4+J55n7/FbcAhdlE6JFDOb6OMjGRKmtS64ndbdIcQS4n6PwZan+5kIf6dufptg1pNWYQlTasRnM3Js351T78hAf7vYA++ibnqUE7/mHLQ2/zw3Yjv29W0/VBPeoiHBIlUTQJOnMSY2Iin09+m2N7drN1+TfZnqO5GyNKz8tkmUrPJ7nWOvM2RE4QMnjOAi+cQ33vrnf9eHitVC+gWOfJbIJNPwRRjUtMZCZJCQoq1rQw68sE/jsgY2SfAAI0kvpwSUMQBD6f8g4Xjh9h+ZxZPulTYShYz5k5OBSbOqUeX8ydtJ95YZxdv6TiBVbTjMMc/NtfVCx93sCO/wxsWObHA7Xz31OWHq9XbPv27dmxYwcNGzakZ8+ejBo1it9//50dO3bQsWPHbM8fNmwYPXv2ZPHixc7dDpvNxtChQxk2bJjT2JPwnFu3YMYM+PJLAYtFBsho+WgyvUYlUKW21eN+zMHBgO89Zw881pneo9/htZPHYMdWott1yFLoI75G3io2Wi0Wdq1fRbBWSYvhg1BJIY0lDovFwvLlovHy6LM98u26fik5ZwY3nrOI6jUZM/dzLi+eR/mzpym9fw8xKQqO3lJl9Q+oE1Jrrvz99SoUpmTK/PMnZf/8jfDdu9DE3idi689EbBXn//36jTCi4R6hNFz9BQBLeJ2vms9i8GQ1vTqr8FPlrgaUhOe4ztEybR+nAMSVCx1BZ06he/o5Jn25nN/WruBZD3JnHMZMcpmyovS8NeMz0RHuqEpMQBUXiyVlo9IT/K9dSbPW4qvXJPDiecL+28etTk953I8nqOJinWqvCaUj2LHSjzWL9dy7LT5Pa3CePp+EMHxwIKX1AT69dmHDdX081FUSk0uPTCZj3Kdf8cPsmbwx9UOf9Jmq1lhAxotMhjG8LPrrV9PUOhPkcqz+2Qvb3L6hYPWnev76WYedSsiw06FzEu9MkfFYCz9UhWjD0Wvj7LPPPiM5WQy3mTBhAiqVir///pvu3bvz3nvvZXv+xYsXWbduXRo3tEKhYOzYsXz33XfeDqdEExMDH30En30mkJwsGmWN2proPSqBWo29j7/2pecs/d7j84NH0byHqIJ4O4uQRnAJa7x4IU8UG61WCwvfFetITej/MqqtW8UPJAn9EoPZbKZ///4AXIjKP6PcEV5lLFfBecwhkATQ9sln0MXFwZRxhO3bAyO8v4bMbKbmt19mOG4OCeVGl27c6NINbDZCjh+h3J+/Ef7nb4ScOk7ISVHxrAKRxFCKyZUXU//DJ/mtm07aeS8AXOfoxhOXQCkZxkFnTwFQo2ETajRs4tE5qWGAFTJtY9P5kVy6DNo70fhfv0asF8ZZyImjab6/26xlinG21+fGmeNnSdCXZniPSkRdE9dlWFkLs6KG0I9vUQ2JBf88rodTCHBdH2cjuxTwaAoPdrvdqesQVq4Co/+30Gd9F7RaI0CywziLTjXOLAGBIM/csLp7O0WxdG2qYulzbOB9JlNr5R40hVCx1OsnbmhoqlCEXC5n3LhxjBs3zuPzmzVrxunTp6ldu3aa46dPn6ZJkybeDqdEEhcHc+bA3LkCCQmiUVa7qZk+oxNo8EDOhQ0sQSnGWWzu8/+mAVeArim7lJqYO86Xv9vtHsry3KSKlbGpNShMyfjduuHMB/AVcrmCZg91RKOQo9q7V/yFli4NrfKucKhE4UKhUPDUU+KLk9yN8a8wGHi2mVjWYeOhCz6JsZdZLGhTHiiOnLNVwAeD+/LO59/hl7LT7ah3Fnr0EPJkI3atd7uUlX5ej+52JMbS4eju3HbfSKHgfpPmRNVpzraAaey5Gc+Dcdt5kl+RY+fOh1OZNao2QVpVzn5YiVyT3RwtSZwC6gEBJ70ve+EwaDLLN3OQFFFJNM5uXiO2YeZh9+kJTmecxTR7gKprfvR53pkgwPVfogE4nViFqEQlwWE2Xhpq5O0BZipXXurT6xV2Mq4PSRDkbtQtZg19ldffm0ntpi1827kgpKo1FlDOGaTK6WtdjDNzQKDbtncI4+vZpdi6JiiNYunbbybQp1uKt7UQectcydF2qN1u58KFC0RHR6fZ9QXo0KFDhvbHjqXWoBg5ciSjRo3iwoULtG7dGoC9e/eycOFCPvzQN67X4kpSEnz2GXz8scC9e6JRVq2ehd6jE2ja3uRpHb9MSRUEic1VP9cvXeADwAZU3Ps3TTs9RZl/xHzC2HoNMJXOphq8Q7HxzCkCz5/1uXGm1miY+MX3lNNrUH/yvniwS5c8q+2WKQ6xA4l8R6vV8ssvYr2/yMRkwJjn19TdjkQmCNjUGkwhoSQAw4GY//axbcW3dHt9OABJlatiLFMWXXQUoUcOEdO6necXsdupuXQRABdf6k+Dee7vqRYz/LbOj3WL9dyLVgCBJFV+mU5Xt/M8a5EP/xYkw6xAcZ2j2y9HYzaXTLlGARgK/AH4372D+v5dzCGlPD7fUeMsO6XSpIhKlDr8n9e1zkJOpK2xdbdZS0AMwVTFx+VKRQ7En/9XnuTNlyJ45oyYG3pTWYnXxiQyfqySGuH+yAwlTynVdX3cSDACuRNQKg6smP8xl0+d4Mv3J/Dxum1plNFzi9xiRm4T70EF6TlLldN38ZylyzdLTJAzienMYzRJy0WvWN3mZsZMNPFSF12RUCz12jjbu3cvffr04erVqxlqS8hkMmy2jA+QJk2aIJPJ0rR3523r06cPL774ordDKvaYTLBkCcyYIXD7tmiURVS30GtkIq07JefaKHPgq7DGitVqsAa4ANR68GFsQPjuXQBEtc86pNFBQvVaonF28RxRj3bK1XgyRRBg0ybxaynfTCKPceSbGcuVB7mcAGAbMLnXKzw7wCV3RibjzgNtqfTzekrv/8cr46zc79sIvHQBc0AgV7u/mME4s9ngr006Vi/UE30jJSSqvJX+o428+bKV8PKrcvtjSkj4FBmwHLjp508FQxJBZ05xp017j8/PrgC1g6SKoiiI343rng/Obif4ZFrjzFS6DAmVqxFw9RKlDu4n6pHHPe8vHScOavmE3fzDg3AGqiuvgBUefK0iz32Uv3WXJAo/A9+bCcCLI97yqWEGqWIgIIYBy835U34mPU7PmUtUiCXFc2ZMkrHlez82Li1DEpMAqF43mRETLfR/XkegJiUPM53SY2HEa+Ns8ODBtGjRgl9++YVy5cp5dHO4fDmP5ZaLKVYrLFsG778vcP26aJSFV7TSc3gi7bsYfe7oya2Uvs1mc+YSOsqRbxQ/IDyl+PTt9o941Fd8zZS8swsZFRt9FXKmO3cWLl8GjQYez/kDVELCExwy+kku+WbNgNfHTcaW7kEa06pNinH2L6c9vYAgUOtL0Wt2uXc/rC6CAHY77PlVy8oFAdy8JN72g0vb6DvMwFsj1FQM0SPLQS01CYm8wmaz4XjEVQButX4Qft9G0NnT3hlnHoY1Gio4FBs995zpr1xEZUjCqtWhTE71vt9t+QABVy8R9t/eHBln54+pWDEvgKN7NEAFtBh56hUTL0dehh1QumF1fLYrK1GkcX3v0vr5MXzWvDy5jtIozm+bWiPWGixg48zVc5asD2Lzd36s/0JP3F3xd1GPk0znPR7d/TXBpYILYqi5wmvj7Pz586xdu5YaNWp4fE7lyr4NSyvu2O2wciVMmQIXLgDICA238cKQRB7tYUCZi2gjm58f68/ccvtZbjxnf2xcy45V3/PuF98TqEg7rUJOHkMTex+LPoB7jZt51J9TTt+NcZZbTEYjo7o9zsi4OJoAPPoo6AtfQqhE3mEwGGjcWMwr+fWffflyTUcB6j9PHed+NvWU7jwgestCjx5yJmFnR6n/9lHq6EFsag0XXhkIiCFRW3iKN1+K4PJZUYJYH2Sn1xAD40crqVZGL+2+F1Jc5+jsjTtAoSngEeUf0TeuM3PIKwwZP42uiN6zuFp1KP/7NoLOnPK8I0FIFQSpkLkgCIi5zgD+Nz33nDlCGuPq1KPUkYPO43datqHK2hWEHdjr+ViBq2eVrFgQwIHfRPEXpVLgdetiJvEB4Z+dQ/FwSr2q3LxTFZNwetf1seVv737PxQVjYiLTX+9Dpxf78vBzL+TptZTGlHwzXcGGBDoLUUdHYUOGAoHf/qnANzvF8OHwilbeGBHLlHGNUGAH7ffeX6QQrBGv/Z4PPPAAF0SLIcdcvHiRESNG8Nhjj/H4448zcuRILl68mOP+Fi1aRNWqVdFqtTRv3pzdjoLC2fDPP/+gVCoLjRCJIMBPP0HjxvDSS6JhFhhqo//4eBZuj6ZTr9wZZtmRU8+ZITGBbz+cyplDB9i5enmGzx0hjdFtOyCoPPsB4muIxlnApfOitepDBASirl6mg0P4RAppLHEIgsCFCxfEe1k+3YQd4VWn4uNYteTTLNsmVayMoWw55BYLoS4vfVlR+ytRletqt56Ywkpz/ICWdvxDF37h8lkNOn87L49KZO9xE0tm+lM9XCsZZoWYgpijhQFBEFi9cDbXz59l6f8+cCr/xteqA0DQ2ZMe96WKj0OVJBaqdlVIdUdShOhZ87t1Q4z/9QCHUmNs3YZpjse0EPPpg08eQ5GUlG0/ty4rmPtmMG8+F8aB37TI5QKPdjPy664YFjGM8kSikMvEYqYAVap4NL7ijOv6SJ9iU1LYsWY5Zw//x7cfTSPJpZxDXqBweM78C9Y4S07JOdNE32EFfQC4ZQwjNNzG2JkJHDpu4/2hOtEwK8J47TkbMWIEb775JlFRUTRs2BBVupftRo0aZXn+tm3b6Nq1K02aNKFdu3YIgsCePXuoX78+P//8M497GV62atUqRo8ezaJFi2jXrh1ffPEFnTt35tSpU1SqVCnT8+Li4njllVfo2LEjt29nomiWTwgC7NgBkybBgQPiMb8AO88NSOKpvkno/PPnxuPwnKm89Jz56QOY8s0q/ty4lmf6D4LktIm54X+Jxtnt9g973GdSxcrYVGqURqOo2BiR+d/SW1RqDXMXL6Pt0P7iL18yzkocWq2Wv//+GwCNVgvkfYiGw3Omb9GawRPeh80bMm8skxHTqi2VNq2j9L493GvcPMu+A8+epuyfvyHI5WxvM5xF/UM5/q8YEqXDQJdXzUx4T03jqv7IJYOsSOA6R+M1WqwlRA9EJpPx+pRZqNQaXuw/CPmTDwIQX1M0zgIunEdmsXi00eescRZaCls2O/7G8HLYVSrkFouodppNjhqkKjXG1muQtq8KESSVj8D/1g1KHT5A9IMPuz3/TqSSld8EsWuDDrtNXJftOhsZ/56dTq10qJNdXjATE+FeyoaiFI2U8R4eV/LUGrv0e524ezG0feIZ/DNRLPQVTqXGAvScCQL8daQinZCjsFspixjaWPdhDQfXWKhcKiUSJMnz+r6FFa+Nsx49xIKtr732mvOYQ+wjM0EQV8aPH8+YMWMyKDOOHz+ed955x2vjbM6cOQwYMICBA8Uwnnnz5rFt2zYWL17MrFmZV0UfNGgQffr0QaFQ8NNPP2V5DZPJhMmUmkAYH++7HYq//xaNsj9FMUO0fnae7mug62uJ6IPydzfIGdaYEI/MahXjirPAZrWiSGlTpU59qtSpn6GNKvY+occPA57nmwEISiUJ1WoQfDZFsdGHxplCoeDB+/eRCQI0bQoR2T+EJbInL9eJr1EoFLRrJ4YOimqNeYdjnThyzh4YNoZ7HhTxvPOAaJyF7d/D2TeyLnhWK0WhcUepbgwZLZaEUCoFBlkXMpEZlFlwHkVA4VeoKgl4uk5c5+j2y9Eee3OKKq7PE41Wx6BpH6URITCUj8CiD0CVmEDApQvE166bbZ+pIY1Z55sBoFBgKB+B/upl/K9fy9Y4k1mtBJ8Spf1j6zXM8HlMy9b4b1xL2IG9GYyzKMKZybssfq4SVotolLV4OJm337PwbAc/NEo3CeXXUkKhg4MhMG9fxAsD2a0T1/UhqjWWDGxWK3KFAplMhlwup++bE3PcV8Cl8x63dXjOCkKpURDg8G4NK+bpuXhSzXDKUoFbtEEsV9Ht+VLIwopXHUivwxovX76c4d+lS5ec/2fH6dOnGTBgQIbjr732GqdOeRFLjliE8ODBg3TqlFbNr1OnTuzZsyfT87755hsuXrzIlClTPLrOrFmzCAoKcv6rWNGDG302HDwInTtD+/aiYaZSC3Tpl8iiHXfoMyYh3w0zII3kryo+Lsu2J/f/y+hnHuHWlaz/5qX37UFmtxNXs46ztpOnJFSvCUDARd/nnZXbtV38Qio87TPyYp0UdaKuXWF0l4c5sfcfp+fMkE14lYM7rVLqnR0/kmXeWfy/tyj/808AjL/zLnKFwGPPG9jxZwyfMYJyRIkhURKFAmmdZCQpIZ6JfZ5l59ofM28kkxGXYpA5ilFnh0MhNTulRuc4UjYB/bPJCQUIuHgeZXIyFj9/EitXzfB5TEsxtDHsv9R8qIT7Mr6dH0o1LvEpI7FaZDRsbeKbnxP4a7uKno8GuDfMINU4KyFeM2mdZMRmtTL3zaF89/H7PgnlVCYkeN425RmUnQfa1+zmQSYOLM8Hr4dy8aQarZ8dYxnxXdIfcUyyEM+LxhcVvDbOKleunOW/7ChdujRHjhzJcPzIkSOUKZNN/at0xMTEYLPZCA8PT3M8PDycqKgot+ecP3+e8ePHs3z5cpTZeIYcTJgwgbi4OOe/69e9kNpNx8mT0KMHtGgBv/4KCqVApxeTWLg9mv4TEggqVXBxsoJS6Szml1UhakEQ+O6T6dy6fJH1XyzIss/wPaJL0JuQRgcJNRyiIJ7v7niCkJRE2J+/A2Dt3NmnfZdkfLlO8hqr1cqaNWtYs2YNVmvehUCs+2IBt65c4uePpqFM8QI46rRkhyGiEobyFcS8s6OHMnwefUPBZxOCSOi/DKVgYwePoX+6Lj//k8SWlVoebix5ygojnq4T1zlqy8M5Whj4fd1Kzh87zI9zP8wydyaudj0Ags54lnfmCGs0lPdsQ8Qb48yZb1a/EbiRLXfknYUcO4IpJpnVn+kZ+ngZNnwbghE/WvMvi7+/w79/Kni1SwA6VTbyyw7jrITkm2W3TvLrHl6YOL73b/7dtpktP3zDdR+IpTnENYBsc/sdG4T5VYD6wikNT7KVDuzm1GEdKrXAc68lsftoMtXbpTPUg4PzZUz5SY6KUF+8eJF58+Zx+vRpZDIZdevWZdSoUVSvXj3bc19//XXeeOMNLl26RNu2bZHJZPz999989NFHvPnmmzkZToakdkeIZXpsNht9+vRh2rRp1KpVy+P+NRoNGk3ulLIuXoSpU2H5cgFBkCGTCXToaqTnsETKVio84SqWoGDUCfFZFqKWyWS8+/l3rF44h1fGvZdlf2X2/AV4F9LoIL6GKKcfeOGs1+dmRci+v9GYTdwEguvXz9kikMiAL9ZJfmEymejZsycAF6Ji8uw6r0+eiUar441Hn4ABvUguFYZdq0sTrpUpMhl3Wral8sY1hP2Xqih5746C1d8GsnONH0GWu2xmKQDaT0ayY7QGjdK39W0kfIun68R1jm48cQmUxStsx5Uu/V4nMT6WNp2ezjJ3Ji4ldN5TxUZnWKOnnjNnrbPsjbPgk6Jxdr9hY/d9Va6KISwcv5jbfP/EZbYmid61KrVMfHquB0/zC7JuiaD28AnkME5KiOcsu3Xiuj7ORt7Jr2EVKE0efJghH/yPwJBQKqWUG8oNprBUh4jmbgyGLFSrHZuLeW2cXTsnKpbu36kFIlBiodMLRsZPVtC2np8YBZI+FSU0NE/HVBB4/V6aW0GP9957j4CAAGbPns2ECRMAKF++PFOnTmXkyJFejSUsLAyFQpHBSxYdHZ3BmwaQkJDAf//9x+HDhxk+fDgAdrsdQRBQKpVs376dRx/1rEiyp1y/DtOnw9dfC9hsYq2yBx430mtkIpVqFr7dHnNwCP43rrmV07daLDhM3qBSYbw+eWa2/WnvxmD18+Nu81ZejyW+RkpYo0Ox0UdFFSv8IxqM/5YJ52lfF4uTKBLI5XIeeughAGQ+Ltbpuk7UGi0D35tB+G+/Ap6/JDqIadUmxTjbSwyl+Ih3WNC1EmaTOObpEfPwu2HE3rQZ7d/sItU+Kkbk5RwtDFhIfQGRyWT0Hjku23Pi6qR4zjwNa7zpRc4ZOHObPal15pDRv98go3FmMcPONf6Q8BDdWU3LpN0crdqBQW8lM+wFK6XK/OLReNJQwsIas6O4rw8HgiBgs1pRpgjgPPZ8H9/17RI9prsdiaFylUzbOjxntjzKOYu8qmDVpwH8/YsWQZAhlwu8bP+OKUyj0tKjKANcrpveOJM8Z7kT9LBarSxfvpzevXszZswYElLiXQMCAjI9JyvUajXNmzdnx44ddOvWzXl8x44dPPvssxnaBwYGcvz48TTHFi1axO+//87atWupWjVj3HhOuX0bZs2Czz8XMJlEo6xp+2R6j0qgeoPCZ5Q5yExO/ywwrEcnBr3/CY3bdvCqzzsPtMOu9t6jklSpKnaVCqXBgN+tmxgifBNzXiEl1LL+J/PQeSDMIFH80Ol0/PHHH4BDEMQ3oiD3gHH9evBYr1d4otcrzuOOl8Ts5LzT46h3Fnj8OBFc4zblwAS1m5p5a+x9BoxaDIB8/DuSYVbMcJ2j2y9HYzEXngiL3GK1WHgBqAQ84kWplPiatRHkcrR3Y9DE3MEUVjrL9qmCIJ7mnHlW60xmNju9d7EuxpkVBb9tDGDll6HcuaVEycN0ZzV9a+xi6KEJhAfowQNpfbdIxlkaXNfHjQQj3DdlfUIRRBAEfpg9g6vnzvD2gi/RaPPufcW1qLM7nJ4zH+ecXSeChdNL89umAKdiaZsnjEx4K5FnHn9VbJTe+E5fs7AYGmdebzfkRtBDqVQyZMgQpwJPQEBAjg0zB2PHjuWrr77i66+/5vTp04wZM4Zr164xePBgQIxbfuUV8SVJLpfToEGDNP/KlCmDVqulQYMG+Pvnfkfg/n14912oVk1g/nwwmWTUbWHig+UxTPryfqE2zCDzQtQfA7dvXGfF/I+9TkTNSUgjpCg2VhFDZX0pCqK7HYVVpyO+bXuf9SkhAfAtcOnMKVYvnJMmd0bnpRgIQLJBxvKtdbgqq4xSsNKYYzTlEPO+jGH/HjkD761Cdu8eVK8uJrJKSBQRThzcx0ZgCXDziuc1Tm06P6f4RnZ5Z4qkJDQpm4yeC4KIG4DaO9FZivAEXjiLwmzCHBhEUsXK2O2wip7U5ySfTivDnVtKgkvbqDisBQDVb+4nPLcR3yUs50wCbt+4xpYfvubwX79z9J8/8/RautuRWX6uSPatWmPsXQWjmEcNLrBjQyB2m4xmDyWzckcCv29W80ybLIzA9J6zLMIxiypee84cgh41a9ZMc9xTQY8HHniAw4cPeyQe4gkvvvgid+/e5f333ycyMpIGDRqwZcsWZ/+RkZFcu5Z9/HhuSUiA+fPhf/8TiIsTPWXVG5jpMzqBxu3MRWZTOzPP2SIg5uXXeG7oGK8L10bl0DgDiK9Zi6DzZwi8cJbbD3XMcT/piW7bAbvkNZPwMaOB/4aOoeWTaevO+EXeAjzbwbeYYftKP9Yv0RMbo+BRHqE/y5jPSGpzDlnvRFAIMHu2eMLbb4MUnitRhGjS+kGWAaUBS7WaeOMTjKtTj4DLFwk6eyrT+mGQ6jUzBwRi9bAGlCUoGHNAIOqEePxu3sjUqHOGNNZvxIFdWlbOK8UVVgEQEGyj1xAj74xWUi2sOawKQxYTA//9B23bevGTpsNRj1XynJUYylaszHtfreDq2VO06vhknl4rO+PMUecst2qNCbEyNi7Vs+X7cEyMAqBBCyNjJ1t58Uk//FQpubVZOULTe86Kygu2F3htnOVW0GPo0KG8+eab3Lhxg+bNm2fwVmVXxDqzPocOHer2s2XLlmV57tSpU5k6darX13RgNMLixTBrlkBMjGiUVappodeoBFp1NBW5OePqObOYTThe+TTAa2PfxeZlMmhi5aoYKub8YZJQ3aHY6Fs5/Xknj/FTp4c4+t9+KbSxBGI0GmnTpg0A63fsylVfFrMZeYo3WQb0HDgswzpxyOhnFdZos8Kun3SsWaQn5pZ4aw6vaCXgwQdgxTLq4LIGVq0Sd9LDw6Ffv1yNX6Jw4jpHp6/YCHJ1AY8odwiCgNViQaUWfw7HrN3oZT9xtesTsfXnbEVBvA1pBEAmwxBREfXpk/hfv5qFcSaKgfx0sTUfDhXFCAKJ401m88K+UdSpGZq6idmhA6xfL9bMyY1xBuDnB6VK5a6PYoLr+liz/fcCHo1vsZhNqFJSQeq1eIB6LR7I82tqswlrTK1zljPjzJgoY/N3/mz62h9Dohi014p9zGAirbetQx8alE0PLqQ3zoohXhtnuRX0ePHFFwHStPWmiHVhYulS0VN265ZolJWtbKXX8ATaPpVcZDeyHcaZLDqKt3s8yRPdXiRj9p7n3PYyPy09DsXGAB8aZ4JMxrdRkURHRWL3It9Bovhgt9s5elR8wRJyMQcsZhMfDR9AeHhZupJ5nLjzRdGNcWa3w+7NWlZ9GkDkVfGWHBpu45WRRt4epqJ8bGdY4XKCIMBHH4lfjxoF2uKr4leSyTBHi7DmgSAILPtwKtfOn+Gdz74hN4FRzlpnnhpnXorwJEVUJvj0SVGxMSXn05Wzh1XU2SyGVG6PfgC1VuC5PnEs+ro6pbgHFdLlfzqMs7/+gpR3phxTuXKx9BLkBF/dwwsbO1YvZ/O3S5jy9SpCXaXu85jsPWc5U2s0ouWn74NYvyyE+Pvii3Hl2hZGjIll7ODWoniWxktTRKcTFRrvZV7yqajjtXEmk8kYM2ZMjgU9Ll++7O0lCy1jxwLICCtn44WhCTz8nBGlqqBHlTscYY2Gi+e5fuUSG5Z9wf8AL/Y0xJfHFKJzaZw5a51dPCf264MH0/36jRg8ZjyhOhXazF5s/f3T/BwSxQutVsv27WIhco1WC5hz1M+pA3s5snsXKo2Gs0BdN23kZhPaO9FA2npLArCJrozuFcG1C+IuaWCIjd5DjIwbraRqmL+4+x5UWcwzuXJFPHHbNjhxAgICYMiQHI1bovDjOketGi3WorNvmYHbN66xc81ykg0Gju/9m9atH8xxXw7FxoDLF5CbTZmKTaXWOPPWOBPzztLXOrt0Rs0PX4Rw8k94C1FYLKhbPf6caaRlBSWKrzN5UUxRFOTvvyG39bikfDMnGe7hcZYCHlHuMRkNrPt8Pndu3eDPTWvp9vrwfLt29jlnDuPMs60ViwUWMYQPmETk3DAAylex8sZbRob311JK8IPBuRhw+fKScZYZ3op5JCQkcO7cOSwWC61atSIsLCw3ly9wAkNsvDAkjsd7GVAV7YgTJw7PWXmdHy+/+S6t2z5EUI8nvOoj4FJq0eiY5tm7421+fqw/c8vtZ4mVqjgVG3W3bmL0JkQlE6Ie6kjjdg9RTq9BUVRdnBK5QqFQOJVlRbXGnNG43UOM+vhTQvQB1B3iPrxQFyU+9KxaLeaQUAQBDv+rYwb7OEAruAB+AXaeH2hgwlsKapfzz5jX2b59qnE2Z474/6BBRU+lStr08BjXObr9cjQUoaiS9JStWJnJS1dy7fxZWj7aCTyp85cJxrLlMQcFo46LJeDCOeLqNXTbLjWs0TuVX0cYvsM4O00dJvM+a/uI/Twg34fKbsUcUoola2qjVMizVmBs2BCCgiAuDo4cgbrutnA8RMo3c+K6Pm4kGAt4NL5Bo/Pj/e/W8cfGNTw3cFi+Xlt7J+Uek8k7kcNzll3Omc0Kf27SseazMKJZBEDpchb6j0lm7CAN4YEpdkNSzjZEnVSoIG5SFlM8Ms6aNWvGb7/9RkhICE2bNs1SEOLQoUNujx87dozOnTsTFRWFIAgEBgaydu1aHnvssZyNvBAwe2MMoWWKj0qM2ZSMKVBMnFbHxdLt9eGeFctNh6PwNIA9lyFXgkpFQpVqBJ0/S+DFczk2zhSG1IdnVAffCYtIlDzsdjtWixm1Rpzb7Z/pnuU60d1KzTc7fUjNj3MDOPWfBiiPH0k8M8DMu+9paFDJH3lm99YOHeD778Wv9+wBlQpGj/bhTyUh4XtMyUan/Hftpi2o3bRF7juVyYirXY/S+/cQdOZU5sbZzRSFVK89Z2KtM82la8yfXIY/OYEdBTKZwINPJ7O4zh74H6gfaAkKD2JNFQpxc2XzZjHvTDLOJNLhuk7KRFSk57Cx+T4Guc2GNiaa5PBybj9XGrP2nNntsHe7lhXzA7h1WTQtyhLJJD6g677pRESEeC0mlyXl3I+zuOCRcfbss886K7U/++yzOfoFjx8/nkqVKrFmzRq0Wi3Tpk1j+PDhnDlzxuu+Cgtav+KzA2w2JTNrSD+aBgbxKBml9L0h9Ih7Az2nJFSvRdD5swRcOMftDjkrEh7x68/Or2OrVOPgHzsJ0alo2ed5lMpcOZAliiBWq5Vt27YB0KjdQx6fJwgCSz+YyI2LFxi/aBk6D8pvOHbwT9yvwqSXxGgBldrOUPMCJjCL0vMuItdnE8f/YLowsL59S0RSdEnGdY7KazUFilau0a8/LuOX775iyjerCPOyvl92xNVJMc6yKEbtfytnYY03dVUAUF++zq7LekDGs/zEK7+04+lOpdC8nlIrtWVLzzvt0EE0zv76CwbnIpZLMs6cuK6P+rlMnyhIju75i0/fGcX4Rd9Qo2GTAh2LLvJWpsZZahHqtM8qATjwlx8/fhHG5dNiXo8+yE7vAbHMm1MdP4wQ+rHvcyW7dIFsBP+KMh69lU6ZMsX5dU6VDf/77z+2bNlCixbiztnXX39NmTJlSExMRF8MaxQUNU4f3M+Jvf8Qk2KEq5ISkZlz4HYWBEKPH/Hp2OIdeWcXzua4jyrrVjq/tlgtzBws1r4b0uMZyTgrgZhMJrp06QLAhagYj8+7ff0qf25cR7IhiVP/7aV5NuUdrp1XEvPVXVoAJ2OrIFcIPNbDyKSxSbRvPUZs5MlDq6JLaJZMJsrnSxRrXOfoxhOXQFl0hF9MRgMbly4m+uZ1/t6ykecGuFdTzilxtcW8s8xEQeQmlzxPD6Mt4u7J2bDEnz9+bEZPIIBEHml+jQ8PvkArDkCHRNFT9t9/4gktvPACOvLOdu8WXQw5Rco5c+K6Ps5G3ing0eQMQRD46auF3L9zm60/fMOIj+YX6Hj8om5xn+ZuP1MaM9Y5+51HmMgM9o4WDTqdv50eKeH5dYPVyObkYbjpk3lbWqCg8fqttFq1ahw4cIBS6eRcY2NjadasGZcuXXJ7XkxMDJUqVXJ+X6pUKfz8/Lhz545knBUCGrftwOjZiwgODkF4rRcyQUAdH+d1wUFd1C20MdE+HVuqKMj5bFq6J/jEMYJPp8Ymy2RyqjdojEohQ56+8rxEiUAulzs3imRezIGylaow5ZtVXL9wLkvDLOqaglWf6dn9s44lgphzJqtdnl++S6JjCz9Uxlx43bt0gTp1cn6+RJEgp3O0MKDR+fH+9+vYvXkDz77me9EahyhI0NlTboWiHOIGVp0Oc0holn0lxcvY9I0/m7/1J9kg/p6jVBUoa7nJlo8uon3sQGpjgwFOphS/9sY4a9pUzLe8fx9OZa0ymSWS58xJUV4fDmQyGeM+/ZqfvlrI80NGF/Rw0EW6z/2H1NQQq07HuSMqfpxdjuOIJQzUWjvP9DUycYKMxlVSwvOzysOUyBavjbMrV664lbs3mUzcuHEj0/NkMhkJCQlOdTyHdH5CQgLx8fHOdoGBnhWLlMg9drsdi9nkjHVu17krAJbAINRxsahj73ttnIUcPezzcaaR08+BmEDV1T+k+V6j1fLx2q2U02ukGmclFJ1Ox4ED4kuXKAiStShIssGANiWco2ajptRs1NRtu+tEsOiDMH7bFIjNKr4wNix1Be5Cv3eqomzlg42ouXNz34dEocd1jm6/HI3FXPgFQVzXSenyEXR/Y0SeXCe+Ri3sCgWa2Ptoo6MyhGI56goaykdk6plOwo+1Xwfz0/chJMaJL/fV6lkYMSGZsMVVYM9NtNfTKjZy5Ijo+SpXTlSL8xSVCtq1g+3bRe9ZTlCroWz+SasXdlzXx40EI9zPqmpx4cJ1nej8/ek9alwBj0jEIV7lDoVFVMP85L0K7PonJTwfM4P4gpf+7k3LpqVQyItW6HVhxuPthk2bNrFp0yYAtm3b5vx+06ZNbNiwgenTp1O1atVMzxcEgVq1ahESEkJISAihoaEkJibStGlTQkJCCA4OJiQkJPc/kYRHCILAF1PeYfrAPhgSExBcjJ7UQtT3ve439Jhv880gRbFRqUSVlIguKvOdHXcoExOJ2LzB52OSKDn8/OMyxj7bkeibmW8+xd5VMJq51OQ829cHYbPKaNo+meW/JtKylJj7ovRVSFJheUFzKC8Kgvi1RInm0F+/M/Tx1pw7cjDPr2XXaEmoVgNwH9qoy6LGmdkkYz4jqcYlfvisFIlxciJqWJixJIGD/8HolwNQ1qguNr56Ne3JOQlpdNAhJS/q77+9PxfE0OYi6iGSSOXa+bMMe6Ituwvhe0lm71fnqOH8+p9/SiFXCHTqFs95avIpI2ldRycZZj7GY8/Zc889B4gesH790kpGq1QqqlSpwuzZszM9f9euXTkboUSecPv6VfZs3USyIYmzh/+jaftHnJ85ap2pY3NgnB31vXEmqNUkVqlG4IVzBF4455E8v4OKmzegMiSRUKUaAVfch9xKSGSGAfhl5XfcvnGNfTu28Myrb6T5PDFOxsalerZ8H04yowGo38zI6Pes9HnaDz+lBq6l7L67hHVLSBQnBEFg87IlxN2NYcea5dRq4j5vxZfE16pL0PmzBJ05xe10IcZ+KeFZrsaZ1QK7NuhYs7A0dxFze8IjLAx8M5lRAzWU1ruUBnJsNDvKVzjIjXHmyDv75x/vz4W0eacSRZbf160k9k40W77/mraduxaqcj5+6Yyz27eU9OdrdtKR61TGioIHnrIxfnISj9eVodpwLZOeJHKLx8aZPSWJtWrVqhw4cMDrGmUPPeS5IppE3lO2UhWmLlvDrcsX0hhm4GqcxXrVp8xiIfjkMR+NMC3x1WsReOEcAd4YZ4JA1dWi/PjV7i/SYM4sAEzJyUwe0Au1Qs6+v/6QQhtLIEaj0VnG4/ufNmfazg+Y8dWP/LVrB136vZ56fqKMX773Z+PX/hgSxN3sFhxgBhNps2MNAaEpZdvv3IHkZDG0KiL3NfokSg6uc3T8Vz+CvPAW05TJZIz77Gs2ffN5noUypieuTj0q/vITQWdPZvjMGdZYIQKbDf7ZomXVZwFEXRVfeSK4zntMp8u+Dylf3k1OWrVq4v/pjbOUMLocGWctW4JWCzGeCxClQdrcSYPr+li24edsWhceXhn3HgHBIXTq1bdQGWaQGtZ477acdV/o2bnaDyv9qYUoxmb317NjkxZNdrX9JHKN1zlnly9fzotxSOQThsQE/FJ2CKs3aET1Bo0ytHGGNXrpOQs8fwZlcjIWfQCqxITcD9aFhBq1YJt3io3BJ44RfOoENpWaa126O40zQbBz9rC4A2rPjXKWRJHFbrezZ88eAAQ3c8DgMn9LlSlL1/6DADAlw/aV/qxf4k/8PfHBWqmmhWGj43h7WCtR7Fzjclt1eM3KloUUJVQJCU/IMEcLYUSb6/NE6+eXr/WZ4urUBzIJa0wxzo7drcqE58K4dl6U+A4MtfHy63HM/qgmWkwQlEn+pjvPWXw8nE15/jTPgWdQo4HWreGPP7w/FyTPWTqyu4cXJlzXiVwup8fgkQU8Ivdo7tzm+1k6tqwMwmwSwxQfZztzEJWF1UH+ntX2K2gcIfdFGI+MswULFvDGG2+g1WpZsGBBlm1Hjiyck04Cflq6iG0/fsvUb9cQHpH5LpzTc+ZlrTNHSOP9Bo0oszeHoRuZ4JDTD7jguWKjw2t284mnsQSn5jOqVGrGfbaUEK3KWb9PomSh0WjYsEGM+VdrNEBq2Yj9v/3KonfHUhFwVBezmOH39X6sXazn3m3RKCtb2crrbxoZ+ZqGMHQwzM2FHDkr0q63hJe4zlGVWoO1kL1/Xjlzkmmv9aLfO1N4+Nnn8/36Djn9gCuXkCenSnYLgPKyGJ712bf1uYYK/0A7L7xuYMKbCmoGqJF9lI14hMNzdv166rGjR8UXvooVITw8Z4N+6KGcG2eSUmMaMt7DLQU7oEy4fyeayX270/qJLvQZ/Y5vCzH7iDgC8Jcno7RbOPhtPGaCqd3UzJtvxfH6S0+kNpSU1fMNj4yzuXPn8tJLL6HVapmbhVKYTCaTjLNCSrLBwM7VPxJ98zoHd+3gqb4DMm3r8JypvDbORKXG+w2b5oFxJio2Bl70TLFRmZhAxV9+AuDyi33TfKZQKnngsc6U02ukGmclFKVS6cyjFdUaRQRBYNuK70iIi+VboA1ydm3Ws/LLUty+Ls6VsHI2Xh1lYOxgDeWCUvJUkjJ5MZDyzSRyiOsc3X45GgqZWuOfm9YRf+8uO1Z9T/su3fI9RCu5dBmSQ0uhvXeXoPNnia9ei908yGSmseN+JwBuayvSa0Ai774tp0Elf/HF2JNwrHLlRE+XycWIO5yiROxN8en0dMhFsWTJc5YG1/VxIyEP62nlksO7d3HryiX++nkdXV99g4BsSjvkJ8lGGR/yDh8zjoP25lTlCq2rXGbM9BAGvKAj0Jq24LQk/JR/ePRm6hrKKIU1Fk20fn5M/34d/27/hadefi3LtjkVBAk55vCcNc7RGLMisXJV7AoFqsQEtNFR2bav+PN6lAYD8dVrcrfFAyiMhffmLVF4EOvOfMWWpZ/z+GcXaMQHnJos7pIHh9l4aZiBcSPVVAzRe7YD6jDOpF1viWJG37cmEVyqNI+90KdgcmdkMuLq1EO7Zzem384wbc5DHGY3lbiKEhsWuYoVR4JpUSul7pI3yOViweezLmH0h1LErnKSb+agdWtRVt/ioZfHNVxP2uApkjza/UUEwU69Fq0LjWFmMcP2lX6s/6I0sXwIQLQmgqqmK3z9/g30L6doRFjTeZglz1m+IbkNijlJ8XH4B4riBCFlwrM1zMBVSj/W4+uo4mIJvHQBEMMafY2gVpNYuSqBly4QkHKdzBsLVF0lhjRe7vlyhjo3NpuNE/v2EKlT0ar704UuKVci77HZbOxOqTdUo2lL5zoRBDh5IIQ9Oz/gB8SQV32gjZ6DjIwfq6RGuIdGmQPJcyaRQ1znqC2idgGPRiQpPg6/gEBkMhlyuZxnB/i+wLQ33CjTgHB2c+7zyxzGDyUWRqYoMSqrVqJV7YBsesiCqlXTGmcOz1lujDM/PzFfbe9ez9rfvp36tTd11UoAruujapNc/E3yAGNSEiq1GqVKzHXs2KN3AY9IxGqBP37SsWZRADGR4ntPNS4ylak0frosrAf97cxrnUmes/zDI+Ns7FjPk3znzJmT48FI+JZ/f93Movfe4p3PvqbBA209Ps/iFAS55/E5IcePAGJNMnNIKa/G6SkJNWqLxtnFrPPOQo4fIfjMKWxqDdfc5EJYzCam9BOPv5qYiL+vbjjFIAm1pJCcnMwjj4gqpT9t28nQns/T8flpnD08mDOHRFU8PQmMZQ499w+nXq3QnOUKSDlnEjnEdY5uPHEJlNoCHc/d25FM7tuDVo89yStvv1eguTORVxWs+jSAKptb8x2LacxRHnk6ga9+aUw1xOgeWW691Y68MwcXL4r/50QMxJUHH/TcOLvmIlWe8qIvIeK6Ps5G3ing0aRiMhqYOagv/oGBvDnvC1Tqgs9rt9vhn1+0rHRRLA0tY6Pf4Fg+fL8uaixQJeU93zXPMj2S5yzf8Mg4O+zYMUrh4MGD2Gw2atcWd/POnTuHQqGgeW5vWhI+QxAEft+wCkNCPHt+/dkr4ywngiChx8Q5cq9RU2+G6RXxNWpSYTsEXM7ac+bwmt18sksaIRAHMmRE1KiFSi4rlMm5EnmPTCajXj1RUGDZl5tIjItl49L1wDDUGoFnesXx+bc1COMuRLyVwfvqMZLnTCKHuM7RHM8/H3J87z9EXbvC3u1b6P7GCALc3FvzmphIOWsWBfD7eh12m4xYmgDQVn+UX5cLqINd0i4yM8483URzKDa6Uq0ahOYyNK1dO/jf/8SvBw6ErPKe00v5SzhxXR+F6Tl+5cwpLhw/glKlIuraVSqmiJkVBIIA+3/TsHJ+QKpiaYiN3kOMjButpKpOg+z9lBBbh2c2K+NM8pzlGx4ZZ64FpOfMmUNAQADffvstISHizfn+/fv079+f9u3b580oJbxGJpPx9oIv+fXHb3n6lYFenZsTKX2nUmOeGmcOUZDMPWfKhHgitmwE4PKLL7tto9HpmL/5D8rpNfj5+bltI+E7kpKSCAgIcD5AzWYzFosFpVKZRi0zKSVRX6fTIZeLcr0WiwWz2YxCoUCr1eaorcFgQBAEtFqtM4RVrVazdOl+ZsyQ89NaLVAdhfJVHut+j7fehg411Ki/vQuA1WrFlJSEXC5PUxPPaDRit9vRaDTOG6kNSHa0BYiOFtuWKYM9KUlsm/IyZgOSAZnBgJ/LQy85ORmbzYZarUaVsltus9nEtoi117Jqa7fbMRqNkJSE66PUZDJhtVpRqVSo1eq0bSFjW0jTVhAEDAYDAH5+fhn+nt609eRv74t54u5v72hb2PHz8+PkSbGG1/bL0SQWsCDIw88+j0wmo26zVvlumN2mDF99Uopf1wZhtYhzqdlDybwzrgLCcypUiXFw62bak6pUyd1F03vOIHchjQ5at079euXK3PcHJTJqw3V93EgwQmzhWNO1m7bg3S++Q6VWF5hhJghw9B81K+YHcOG4eE/2C0hRLH1LQa2ybsRxHHU4b9zIvOP89Jzl5ZwuAuvF64IFs2fPZtasWU7DDCAkJIQPPviA2bNn+3RwEt4Tf/+u82u1RkvX/oO8zqlyeM6URiNyUzaSwwCCQEiKcXavcTOvruUNCdVT5PSzyDmr9PN6lEYj8TVqcbdZqzwbi4TnlC9fnhiXwquffPIJer2e4cOHp2lXpkwZ9Ho911xCeRYuXIher2fAgLTqolWqVEGv13P69GnnsWXLlqHX6+nVq1eatvXq1UOv13MoJaH/3Dlo3for2rTRs3lzV+RyeLzH62zbr+D6iYd5vGUZ9vy7x3n+5q1b0ev1zoKnDjp06IBer2fbtm3OY78D+vBw2rRpk7oD6e9P5z590Ov1TulngL2AHmjcpk2afnv06IFer2f58uXOY8dPnkQP1Ez3u+3bty96vZ4lS5Y4j128eBG9Xk+FWmlfDAYNGoRer2f+/PnOY5GRkej1eoKDg9O0HTt+PHq9npkzZzqPxcXFodfr0ev1WK1W5/GJEyei1+uZOHGi85jVanW2jYuLcx6fOXMmer0+Q6h8cHAwer2eyMjUfIf58+ej1+sZNGhQmrYVKlRAr9dz0RFmBixZsgS9Xk/fvmmVWWvWrIler+f48ePOY8uXL0cvhed4hCExAYuLIftQ1x6Uicg/1cCEODkTmEk1LrF5RTBWi4wGrUws3ZjA7h0qej5VClndumJjl78xkHsRHneeM18YZwEueXCzZsHs2Zn/mzUr99eTyHNsVitJ8an3uYatH6ROAb1/nD6o4r2+oUwfWIoLx9VodHZ6Dk7i3+PJfPM/f2qX07n3NDqMM8lzVijwWhAkPj6e27dvU79+/TTHo6OjSUjwbeFhCe84d/QQ0wf0pu/b79EpE6+RJ1gCAhHkcmR2O+r42Gzb+1+/iib2PjaVmri69ZFZ82aHN7FqNadio1sEgSqrfgDcC4FIlGwiI2HAAFi27Bp2+3uAWJR27VYjj7fKAw+qa0ijNBclihjGpCQ+eP0l/AODeGv+EjRaXfYn+eraiTI2f+fPpq/LYGACADUbJDNqooVXuukI0LgYOI0bw7FjvjfO8spz5sqIEVm/8CYlwYQJvr2mhE+x2+0smvgml04dZ8o3qwgOK10g47hwXMWK+XqO/C1GDqjUAk/1MfDuu9Cihl/2iqWOsMbbt8FshpQoiDRIm1r5htfGWbdu3ejfvz+zZ8+mdYp7fu/evbz99tt0797d5wOU8JwDv23DkJjAnl830fH53jlXIZTLMQcGoYm9j8pl1zszHF6zuHoNsKs1KKyGnF03G+xqDUmVqhBw+aLbz0OOHiL47ClsGq1bIRAHpuRkZgzvj0Yh589tW9OEqkn4nlu3bhEWFub8/u2332b06NEZasxFp4QAuv49hg0bxuuvv55hLl9JycVwbfvqq6/Sp09GWe/ffz/Fxx8L9OihQXT4/AXEoFJrqVDVQIUIA45gwQMHDohhcLbUDYYunTuTmJjoDKFz8NdffznDGh31kB4FEm/fRh4QACtWiA0rV2br+vWpbVNoDSQCsn//TdPvunXrnKGKDhrWry+2JS3ff/89y5YtS9O2evXqJCYmii92LsVyv/jiCxYuXOgMfwQoV66c2DYdcz78kI/nzk3TNigoyNnW9W83Y8YMpk6dmqatUql0tnUNHX733Xd5++23M/ztY2NjgbR/z1GjRjF06NAMbW/evJmh7RtvvMGrr76a4W9//vx5Z1ijg5deeokXXngBm61w1Q1Lj9FopGvXrgCMXPAVyN28LOUh1y+c5fLpE6jUGu7cvEFE9fR+W99jSoZtP/qz4Ut/4u+Lf8uGHOMDJvHQH98RVCo440mNG8P332c0znIb1hgUBCEhcN8lvL9Z3kWGSHiH6/pYtHxVgY3jfnQUR/f8Rdy9GC6dOk6zDo/m6/WvnVeycoGefTvE+6FCKfBYDyMTJwq0re+HQu7hxmDp0qm1/W7edO85ljxn+YbXxtnnn3/OW2+9xcsvv4wlpVaHUqlkwIABfPLJJz4foITn9BkznrDyFejwTI9cy8Obg0PQxN73SBTEkW+Wl2IgDuJr1M7UOKuWIgRy48lnsKSEZrpDEOwc2yNK8Npd68hI5An+/v5pwijUanUaY8K1XXpUKlWal35v2t69Cx9/DJ9+qsNoFK/fsI2J3iOf5NaVeXw2YTSnD+5LMwechoRLLL5SqUTp5nppjPoU40zhGJtOl8Zz5m4DQEFKnle6vEdXQ8LZVqHA3WPRXVu5XC6OIV1cvQbSGIdp2jpIaa9J+eeKTCZz+3t39/f0pi24/3v6Yp64yyl1tI2Pj8/wWWHCbrezc+dOAEbY7TlIQsgdtRo3Y9KXP6LWaPLcMLOY4bd1fqxbrOdetPjsKl/FyqARsUx6swlyBNBmolbYOKWu5okTqcfkcqhQIfcDq1Il1TirWVM02CQKBa7rQyjA53ipsuWZ/sN6rp07k6+GWeRVBas/C2D3Zi2CIEMmE+jwTDITJtl4tLkfKrmXNwyZTAxtvHhRzDtzZ5xJnrN8w2vjzM/Pj0WLFvHJJ59w8eJFBEGgRo0avpMjzwGO8URGRlK/fn3mzZuXqTjJ+vXrWbx4MUeOHMFkMlG/fn2mTp3KE088kc+j9g2xMXcIKhWGTCYqDz7R6xWf9GsO8rzWmVOpMQ/zzRwk1KgFO7ZkOK6Kj6PC1k1A5kIgzrYqNaM++YxgjTLDy6pE0Sc+HubOhTlzBOLjZYCM6g2i6TXSQrMO4gOrRsPuKFI8Muq8mgOSjL5ELtBoNPzwgximrVJrsObD+6fVYsGYmOAsllu/ZetszsgdNuT8/nMAK5eEEn1TXI9h5a28NtrImEEayip08GY2ifsO4+zSpdRj5cv7Rnq+cuXU+maS16xQ4bo+xHu4h4W9fYAgCMTdjXGGMJarXJVyld0YM3mAQ7F01wYdNqu46di6k5F3Jtl4qq0fakUudnEqVhSNs8zyziTPWb6R47+iv78/jRo1onHjxgVqmK1atYrRo0czceJEDh8+TPv27encuXMaUQFX/vrrLx5//HG2bNnCwYMHeeSRR3jmmWcylAsoCty+cY1xzz/JV9Pf9bkHyKHYqMom50xuNhF0WlRMyg/jLD4T9aOKm9ahTE4mrmYd7jXNOi9AoVTS4ZnuPNH9hQwhUxJFF4MBPvkEqlYVmDoV4uNlVKljYeycK8jkT7L525cwGcWQW8cc6PBM97ybA5KMvkQuUCqVvPTSS7z00kvOjYS8xGazseCdkUx6uRv3o29nf0IusNthDc/TgBMsmFKG6JtKgkvbGD41gYPHbXz4lp6ygR6GcZYuDeXKpVVfq+gj0RJX74FknBUqXNdHfj/H1y6ex5hnHuHSqePZN/YRsTFyvp4ZyPAnyrBzjR82q4ym7ZP5cVsCu35R81x7fe4MM8heFETynOUbXs/opKQkPvzwQ3777Teio6MzGAWXXHev8oE5c+YwYMAABg4U5eLnzZvHtm3bWLx4MbPcKB3NmzcvzfczZ85k48aN/PzzzzRtmvdheb7k3OH/uHc7ihP79mBMTMA/0HchF+YU9TZ1Si5IZgSdOoHCYsYUEoohIu9fQt0aZ4JAVacQyEuS+EIJw2SCL7+EGTMEoqJET1n5qlZ6j0qgdadkLp44xY0LZ1GpNdyNiqR81er5MzCHcZZbYQIJiXwgNiaaM4f2E3c3hqvnThNSJjz7k7xEEODgHxpWzgvlMmsACAiy8eIQI+PHKKlWWp+zmlWNG4uKPw58teZc+yli7wcSeYPFbOK/XTuIv3+PM4cOUK1ewzy9XmKcjI1L9fzyvR8mo2h81WthYuwkM72f8sNP5cPi9I5Njczk9CXPWb7htXE2cOBA/vzzU0GRIAAAN/1JREFUT/r27Uu5cuUKtPif2Wzm4MGDjB8/Ps3xTp06sWfPnkzOSovdbichIYHQLApLmkwmTC6S8oUlV6H9M91RqjXUbtLcp4YZ4MzZyk6tMU1IYz7MhcQq1ZxKks4xHP6PoPNnsGq1XM9CCMSBzWbjwvEj3NepaFX2kVzn50mI5Pc6sVrhu+9g2jSBa9dEo6xMBSs9hyfS4RkjipS7W81GTXnvqx9Ra7ROw8xms3E5Zdez4cPtfD84uz1191HynEm44Ok6sdlszvIPtpCIPB9XqfByTP9hA9fPn6XJgw/7vP/je9WsmBfA2SOiRyyAeN5kNj33j6ROzdDcvUs0bgy//pr6fV54zho18k2fEh6R3TpxXR9latbNt3Gp1Bomf72SA79t4+HnXsiz6xgTZfzygz8bl/pjSHCE45sZ+a6JV9MrlvoKx7qRPGcFjtfG2datW/nll19o1y4PXmi8JCYmBpvNRnh42h2+8PBwoqKiPOpj9uzZJCUl0bNnz0zbzJo1i2nTpuVqrL4iIfY+aq3WKWvc5omn8+Q6zrDGbHLOQvOhvpkrdo2WpIqV0V+97DxWdbVYD+pm565YPDBSLWYT77zwFAC9EhMLNCy3OJFf68Ruh9WrYcoUsWYZyAgtY+P5IYk82sOASg0Ws5nEewkEhZYCyFBzxmJKnQNPXb8NBPp2kNHRoktPJvONMIFEscHTdZKcnEyrVuK83XjiEih9uEOegiAI3IuOolR4OQDCIyoR7uMIiHNHVPw4L4Dje8XcTrVW4NlecSxeVp1S3IMK43K/sefIO3Pgqw0RV2+Z9GKar2S3TlzXx9nIO3k+nru3I53rxD8gMM8MM1MybF/pz/ol/sTfEzeOK9W0MOSdZAa/pCVYmwdGmYPsjDPpXSnf8DpANSQkJEsvU0GQfsdNEASPduFWrFjB1KlTWbVqFWXKlMm03YQJE4iLi3P+u55Vkb48JCk+jvdf68Wswf1INuSNXL0DRyFqdTZS+g7j7H4+KDU6SKhWw/m1Kj6OiBQhkEsv9s3slDTIkFG6fARlIyoWqOe3uJHX60QQYNMm8X2pd2/RMAsIttNvXDyfbY/mid6iYWazWpn31jAm9XmWu1G33PYlk0Hp8hGULh+RN3PAEdLoK2ECiWKDp+tEJpNRuXJlKleunGdRCSsXfMLYrh25cPyoz/u+ckbJzMEhTOgVxvG9GpQqgS59k/jjkJEVC5SiYeYr8so4K2TvOiWJ7NaJ6/rI6+f47p/XM+zxtvz76+Y8u4bFDNtX+jH8iTIs+zCQ+HsKylW2MvnTBA4dgfEDAgjOTLHUV0g5Z4UGrz1n06dPZ/LkyXz77bduZYrzk7CwMBQKRQYvWXR0dAZvWnpWrVrFgAEDWLNmDY899liWbTUaTaFQ9Yu8eplbVy6h1mq5Fx1F+SpuimT6CIfnTB13P9M26nt38b9xDUEmyxcZfQfx1WpSbtcOACr+8hMKUzJxtepy30PvnUan4/Pf91NOrynwOVycyKt1Igjw228waRLs2yce89Pb6fpaEl1eSUKnT6vmFnc3hgsnjhB75w63rlyiVNnyGceq8+Pz3/cDoMuLOSDlm0lkgqfrxM/Pz1nPb/vlaBLNvq3LZjYlc2zPbhLjYrl08hg1GjbO/iQPuHlJwcpPA9izVYzukCsEHu1m5N2JAu0b6VDK5WlKVfiEWrVSazSBFEpcDMhunbiujxsJRog159lYDv/9BxaziRP799DmyS4+7dtmg90/61i9UM/t6ymKpeVsvDrawJuDNZQNzENPWXocnrM7dyA5OePnkucs3/DaOJs9ezYXL14kPDycKlWqZKgt44gBzg/UajXNmzdnx44ddOvWzXl8x44dPPvss5met2LFCl577TVWrFjB00/nTVhgXlCjYROmfLMKtVabp4YZpHrOsipC7fCaJVSrgTXAx2FhWeDqOau8Tiz0e/nFlyUhkGLInj0wcSL88Yf4vUZn5+mXDXQdkEhAsHuJ7dDwsnzwwwZuXLxAw9YP5t9gXZGUGiUKOWqNlslLV3Dwz508+PRzue4v+oaC1Qv1/LlRh90u3ovbP21k/Hs2Hm/hhyq3SnJZoVRC3bpw5Ij4va9yziQkgGEz59KgVVse7pZ5+ou32O2wb7uWlZ/quXFRfI8ODrPx0jAD40aqqRiSQ3Gc3BAaKtboNBrFQtRly6b9XPKc5RteG2fPPfdcHgwj54wdO5a+ffvSokUL2rRpw5IlS7h27RqDBw8GRNf4zZs3+e677wDRMHvllVeYP38+rVu3dnrddDodQYWwwKTFbCIpPt5ZT6NWPuV2mYPFcI6sBEEcYiD5GdIIkOBSEDXw0gWsOh3XuvbI1zFI5C2HDomesq1bxe+VKoEnehnoPiiR4LCMZSMEQSAm8ialy4thGY6QxQJDqnEmUUi5c+uGc23o9PpcG2b3bstZ94WenWv8sFrEl8mWjyYzbpKFZ9r7o1HmU/Xshg1TjTM3xdklJLzBdZ0oFAoe7dHLJ/0KAhz6S8OK+QFcPiUaZfogOz0HGZgwRkn18AIwyhw4ClGfPy+GNroaZzKZaLhJ5AteG2dTpkzJi3HkmBdffJG7d+/y/vvvExkZSYMGDdiyZYsYpw9ERkamqXn2xRdfYLVaGTZsGMOGDXMe79evH8uWLcvv4WeJ1WJh9uhBXL9wjinfrKZMhfx72XRK6WchCBJy9CAA9xo3z4cRpZJYOa3X8MZTz3rluTObTHzy9jC0Sjnbf1qPVnqQFxpOn4bJk2HtWvF7uULg0e5Gnh+SQOny7mv5CYLAd59M57e1K5j05XKPNjDMpmTmjB0CwLffLwd8HK4hec4kcklycjK9eokvhAM/XACy3Oeb7Nqwms8nv83IjxbQ7qnMo0s8If6+jA1f6vl1uT9mk/gy2aitiTcnWnihkw5dHgiYZEmDBvl7PYkCxXV9/O/Lb3za96n/9vHB6314bsBQXhg21mfG0ol9albMD+DMIVGxVOdvp/trRia8LadehH/hyIGvWDHVOGvZMvW4v78UnZSP5Lhy38GDBzl9+jQymYx69eoVaI2woUOHMnToULefpTe4/nDERxUB4u/d5eq5M8TeiebOzev5bJyJOWcKFynbNNjthB47AsC9xvn7t7eni0O/3PNl78632zjw2zZAlOOVKHguXYJp0+CHHwTsdhkymUD7Lsn0HJ5AucpZ/40sZhPnjhwkKT6O6xfOemSc2W32vJ0DUs6ZRC6x2Wxs3LgRgNdmzAVl7o2zk/v3YLVYOHf0cI6Ns6QEGT9/48/Py/xJNohesTrNzIyeaOLlZ3T4qwooP7tbN3jnnYK5tkS+47o+Pv7ct/fwC8cOYzIaOXf0EHabLddF4M8fExVLj+1JUSzVCDzT18CE8TKaVvNDXpiMnsxqnUn5+fmK1zMuOjqaXr168ccffxAcHIwgCMTFxfHII4+wcuVKSpcunRfjLJGIuTPruXXlEvVbtcnXa1v99dgVCuSZvLgGXL6IKjEBq05HfM06+To2V+Jq1fU6rFKpVDH4/U8I0ihRq9V5NDIJT7h5Ez74AL76SsBqFWuVtXosmd4jE6hUy+pRH2qNlve+WsHh3bs8Li2hVIlzAECVF3NA8pxJ5BK1Ws2SJUsAUKrUWN2nWHrF0BlzaNS2A+27dMu+cTqSDTK2/ODHxqV6EuNEo6xaPQvD30lmQE8dgXkp8e0J5TMK/0gUX1zXh3gPt/is766vDSasfAWaP/xYrgyzK2eVrJwfwIHfRS+yUiXwRE8DE96V0bqOHwp5ITLKHGQmpy/lm+UrXs+6ESNGEB8fz8mTJ6lbVyz8d+rUKfr168fIkSNZsWKFzwdZkhAEgeib1521ZkqVLe9WbS7PkckwBwWjvXfX7cehR8SQxvv1GyPkclcpN5x9fZjXrnalSsXjPV+inF6TQdBGIn+4cwc+/BAWLhQwmUSjrMmDyfQelUiNhp49ZKOuX6VsRdEzpfXz86rmn2MOAL6fA0lJEBMjfp2ZcebvLyYfSEhkgkql4vXXXwdEtUZyqNbouk7kcjkdnunu1fkWM+xY5ce6L/TExoh1lypUszJknJGhr2gJ0RWwUSZRInFdHzcSjLnuL/rmDUqFl3UaY22ffCbHfd26LCqW/rMlRbFULvDwc0benSTwUOMUxdLCSmZy+pLnLF/xeob8+uuvLF682GmYAdSrV4+FCxey1ZG9L5EjBEHgm1lTeOu5xzlzaH9BD8cZ2uiOEIcYSD6HNKYnsuOTBXp9Ce+IjRWFPqpWFZgzB0wmGXVbmHj/+7u899V9jw2zHauXM7Jze/7ctC5vB5wTHOEgAQFQCEWGJEoOx/f+w5guj/DjvI8QvNwMsFpg5xodw58ow9IZQcTGKCgTYWXCnAQOH7UzcVAAITppc0ui6HPryiUm9OrCnLFDsJhzLskffVPBwolBjOpS2mmYPfiUkY1/G9i6WkvHpv6F2zCDzMMaJc9ZvuK1y8Nut7vdaVapVNjt7hP2JTzDYjZx5fRJDIkJRF69Qp1mrQp2PCly+u4IPSbK6N9rlD/qkb7Ebrdz7fxZjH5qHijXGnlhv1kWAxITYcEC+OQTgdhY0VNWvYGZ3qMSaPKg2es84wvHD2OzWrl27nSOxmO327lx8TwAjcJ8LGjjeKjlYfFgieKP3W7n9Glxftu1pXLUx9VzpzGbkrly5qTHuTN2O/zzi5aVnwUQdVVsH1rGxisjjbw5VEVEiOQpkyh4XNdHQESVXPUVefUyibGx3LpyCZPR4HWo+/1oOWs/T6dY+kgyb79noWt+Kpb6gszCGiXPWb7itXH26KOPMmrUKFasWEH5lBjvmzdvMmbMGDp27OjzAZYk1BotE5d8z7F//6blo50KejiZes4UBgNBZ8WbYkF7znKC2ZTMmGceAeC5xET8pcKKecqiRTB3rkB0tGiUVaxpoffIBFo9Zsqx7TJo2sc0bvcQbZ7IWUFQc3LqHHjs+m3Ahy+cjoealG8mkQuMRiMNUhQIN564BDlQP+zyykBKl69A0/aPZGuYCQLs/03DyvkBXDsvbsAGhtjoPcTIuNFKqoYVEjU5CQnSro+zkXdy1Vfzhzoy6cvlVKpZG30Wm9LpSbgv46elerb84I85OUWxtI2JsRPN9Ozkh05VBJWgHcbZ3btgMKQel96T8hWvjbPPPvuMZ599lipVqlCxYkVkMhnXrl2jYcOG/PDDD3kxxmLPzUsXqJBSWFmj8ysUhhmAOci9cRZ88hgyux1jeDmMBZEP5wMCQ0ILl0JSMWbCBAAZZStZeXFEAu2eSkah8L6fm5cuUL5qdWQyGXK5PFc5ASDOgTxBEgOR8BFhYWFenxN1/SphZcujTIlweeCxzlm2FwQ4+o8o8X3huOgx8Auw8/xAAxPeUlC7nGSUSRROcrI+HMTdjUGhVDqNsYat23l8riExVbHUmCR6xWo3MTN6opm+XbX4q4uwdzkoSDTEkpJExS4HknGWr3htnFWsWJFDhw6xY8cOzpw5gyAI1KtXj8ceeywvxlfs2fLD13wzczJDPpjNo91fLOjhpCEzz1lqSGPR85oBaHV+fPPvCcrpNZLXLB8IKWPjxeGxPNLNmGM18CN//8GsIa/Spd9AXn5zYq5fFrV+4hwA8PP1HHCENUrGmUQu8Pf3584d0SOw/XI0iR4Igty4dJ73Xu5OnWYtGTtnMSp11rL2pw+q+HFuAKf+E9tpdHae7Wdk4ngZDSr5SxtYEoUW1/VxI8EIWdRkTU/C/XtM7f8iCoWc95auJCjUs7BhkxG2Lvdnw5epiqVV61oYPj6ZgT11BGqLQV6WTCZ6z86ckYyzAiTHMnuPP/44jz/+uC/HUuIQBIHrF85ht9uJunaloIeTAUch6vSEHkkxzopgSKNE/vO/DXcILpW7ncTIq5exWsxEXr3ik7ozeYojrFGqcSaRz9y5eRNjYiJ3bt3AbDJlapxdPKFkxfwADu8Ww65UaoGn+hh4dzy0qFXI6i5JSPiYuHt3ibt7B7lcgTExIVvjzGKGHatTFEvvpCqWDnrbyLBXtIT6FWFPmTsk46zA8fgN5/fff2f48OHs3buXwMDANJ/FxcXRtm1bPv/8c9q3b+/zQRZXZDIZb0yZRdP2D9Py0ScKejgZMGcSex2aotR4r7GPhRQkiiXZbN57ROeX+lOmQkUate1QuA0zkHLOJAqMpu0fZvLXK4moXgP/gMAMn187r2TlAj37dqRIfCsEHuthZOIkgXb1C2ndJQkJHxNRvSbTv1+P3W6nbKUqmbazWeGPjTpWL9QTc0t87pSpYGXA2GRGv6GmjL6YGWUOHHL6roqNknGWr3j8ljNv3jxef/31DIYZQFBQEIMGDWLOnDmSceYB186fpWKNWshkMmQyGa0KqRy8u7BG7e1IdLcjsSsUxNZvVACjyj1mk4lPJ7+NTqlg44rv0WqLYNJuCeDW5YuUrlDRqZzV/GHfhU6bTcksmvgmAF8s+RLw4YPHsdsoGWcSuSA5OZkBAwYA0Pu9WSBzHxN8P/o2SpWKgJQcynotHsjQJuqaglWf6dn9sw5BkCGTCXToksz4STY6tvBDJSnWShQxXNfHtHmfZdveZDRw/0600xhz5Pm7w26HPVu1rPo0gFtXUhVL+44w8tYwFREhxSB8MSvcyelLxlm+4vEd+ejRozz5ZOZGRKdOnTh48KBPBlWcOfjHTt7u3ollH07zuu5MfuPOcxZ6VPSaxdesja2ISqva7TZ2b97A9p/WYrPlrLCrRN5y7dwZ3u3dlU9GDMRsSvZ5/3abnd2bN7B78wbfzwGLBRQKKO9DsRxH0WpBkB6SJQSbzcaPP/7Ijz/+iD2TORp3N4Ypr77A5H4vEHc3JsPnMZFyFr8XxIjOpflrkx+CIKN1JyPr/0xi+wYNT7bSS4aZRJHEk/XhwGI28fGIgbzbuytXz2ZefkUQ4MDvGt7qFsbcN0O4dUVJYIiNN95N5MAJC3Mn+hMR4oNQkMKOwzi7dSv1mPTcyVc89pzdvn3bbX0zZ0dKpTM5UyJzYqJuYbVYuH8nCrvdjiInsnX5hDvPWehR0QAvyiGNSqWK/hOmEahRovaynolE/nA/JhpTspG4ezFYLRbUGt96N5UqcQ4AXte08YgKFaCwh19KFGrUajVz584FQKlSY3Wzl5cYF4shIQG5Qk6y0YCj5HncXTnrl/izbYU/FrMYqti0fTJvT7LQ7VE/tMrC+9yRkPAE1/Uh3sMtmbZNNhiIu3uHZEMShsT4DJ8LAhz7V82KeQGcP5ZOsfRNBbXLlzDFUslzVuB4/PZQoUIFjh8/To0a7l3Bx44do1y5cj4bWHHliV6vULZiZeq3aluoDTNwL6UfkuI5u19ElRpBfDHv0u91yuk1WW44SBQcjdt2YOo3qylftTp+eRDX75gDQN7MASmkUSKXqFQqRo8eDYhqjbhRa6xQrQbvf78OBIHwiEokxsnYuFTPlh/8SDaIHrF6LcS6S72f9sOvKNZdkpBwg+v6uJFgzLJtQHAIU5et4cbF89Rp1jLNZ2cOiYqlJw+kVSx99x0ZDSuXUMVSR86ZJAhSYHhsnD311FNMnjyZzp07Z8jRMRqNTJkyhS5dclYQtrhz/cI5ylaq7FTOatzuoQIekWek95zJrFZCTh4F4F7jZgUxJIlizN2oWyjVGqdyVu2mLQp4RLlAMs4k8ohkg4F7tyMpX7U6AOWrVMOYJGPt5/5sXOqPIUE0ymo0NDNigon+3XUEaIqpcIGERCbY7XaunTtNlTr1AdAHBacxzC6dVPLj/AAO/yW+zypVKYqlE6BlSVcsdXjOYmNTj0nGWb7isXE2adIk1q9fT61atRg+fDi1a9dGJpNx+vRpFi5ciM1mY+LEiXk51iLJlTMnmfzK89Rs1JRxn36FRld08rRsfn7YlSrkVjFcIODiOZRGIxZ9AAlZJNMWdux2O9E3roO/Gnu5YORSzkWBc/9ONFP69UShUjL161WElAnP0+vZ7XZibom7gvawur6/gCSjL5FL7HY711IKmtvt4gukKdnIh0Nf5erZU0z+eiUVqjVg2wp/1i/xJ/6eGIlRqaaFIe8kM/glLcFaySiTKJ64rg95SOk0nwmCwJfTJvD7+lW8Nf+LNGrY1y+IiqV7t0uKpZkSGCj+i3cJAZWMs3zFY+MsPDycPXv2MGTIECZMmOAUs5DJZDzxxBMsWrSI8PC8faEqiiTExmK1mDEmJmC3F24BkAzIZJiDg9HGiLmEIcdTvGaNmkARNmjMpmSGPCYqmiUmJkqFqAsBxsQETMlGFBYFVmvmuQO+wpycOgeOX78N+PglVvKcSeQSo9FI1apVAdh44hIotVhMJgyJCZhNJv7+Rc5fP5fh3m3RKCtb2cobbxkZ+ZqGUsWt7pKERDpc18fZyLR6Bzarlfj797BZLSQbDABEXVewOkWx1G6XFEuzpWJFOHky9XvpPSlf8SpjvXLlymzZsoX79+9z4cIFBEGgZs2ahIRkzE2SEGnYuh3vf7eOclWqoSuCk9scGJRqnJ0QjbP7jYp+SKNGp0OGtENWWChftTofLN+AYLdTunxEvlxTo9PlXeeScSbhA/zSKeLq9MF0fH4jaxfd4qev2gAQVs7Gq6MMjB2soVyQZJRJlBzSrw8HSpWKsXMWc/rgfspVfpAvpuj5bZ0fNqv4zG/dycjb79ro8qAfaoVklLklIkIyzgqQHMmJhYSE0LJly+wbllCib95ArdEQHCa62ms0bFKwA8oFlsBg59ehxx3Fp4u2cabV+fHj4YuU02skr1kBYkxM5O7tSCKq1wQgPCL/DBqtnzgHAPzyYg5IxplELvH39ycpKQmbzcbCn3/j+rWWrPxUz40LKqAywWE2XhpmYNxINRVD9CVLTU6ixONYH5AiCBIXy/ljh6mZIlaWGK/mv11P8OuPqYqlTR5M5q1JVnp01EmKpdnhyDtzIL0r5SuS1rOPuXs7kqmvvoBCoWDqstWUKuvDWkcFgDk42Pm1/soloOgbZxIFj8loYObgV7h2/iyTl66geoOiWdA8UyTjTMJLkpKSCAgIcBpZZrOZ5GQT3buP4LfffwRhBdAD/8AEuvc3MHFcALXKiUaZxWLBbDajUCjSCHY5Xl51Op0ztzaztgaDAUEQ0Gq1TiVhq9WKyWRCLpejc/E0e9PWaDRit9vRaDQoU8pL2Gw2khELrbr6r922BZIBmcGQZiMlOTkZm82GWq12Kq5609Zut2M0iip/rpt0JpMJq9WKSqXCUWTDDhhTfpdu25rNzraCIGBIaevn55fm72mxWLxqqzSZcK2q5e7v6WyrVKLRaLJs683f3tG2qLDpmy/49qNpvDB0Anb7BH75zt+pWFo3RbG0z9M6SbHUUyTjrECR/Lk+xmIyYbNZxcK2xWAn0+ziOZMJAkkRlTCnqOlJSOQUq8WCxWzCbrMW9FB8T3CwmEwtIeEF5cuXJyYmtZD00KGfEBQUyG+/7QbBhkpto8/wJOyWsnw/vywac7TzZX7hwoXo9XoGDBiQps8qVaqg1+s5fTq18O6yZcvQ6/X06tUrTdt69eqh1+s5dOiQ89iqVavQ6/V07do1TduWLVui1+vZvXu389jmzZvR6/U89thjadp26NABvV7Ptm3bnMd+//NP9ECbdL+Dzp07o9fr2bBhg/PYXkAPNG6TtnWPHj3Q6/UsX77ceex4StuajRunadu3b1/0ej1LlixxHrt48SJ6vZ4KFSqkaTto0CD0ej3z5893HosE9OHhBLtsVgKMHTsWvV7PzE8+cR6Li4tDr9ej1+uxWlPvbxMnTkSv1zNx2jTnMavV6mwbFxfnPD5z5kz0ej1jx49Pc73g4GD0ej2RkZHOY/Pnz0ev1zNo0KA0bStUqIBer+fixYvOY0uWLEGv19O3b980bWvWrIler+f48ePOY8uXL0ev11NUiL+fCMBPS3Ws+zyAZIOc6g3MzF+ewN6/FQx8LgA/leSP8Jj0xlkmIaQSeYM0U31M2UpVmP69+GApFV70676Zg4LTfF9UvWY2Pz/WnxGr3VvMJr567y10SgVrvvkyzW6jRP7gHxjE5K9XEnXtCtXqNcz361vMJr6aLqrLLljwKeDDXcGI/MmZkyie7N8PEyfCzp2OF3sFXbr9yrT/taNJVR0BXxfo8CQkChSHh9lsNjN8+HDMZjtlKs1g55r3ga5YTO2pWNPCwP+3d+9RVVWJH8C/F7gP5AYiJg9FfCVSOiKyMshHSqM22cPf/FbNiI1OkrkmkzQin4NZ+FjjcqwZnwRWruiJVmNYoYG20GaUH5oFPvIFGchIChyQp/v3B3K4B47x6MA99/b9rHXX4p6zz737bs73wj77nH1iSzHnDxb4e3u2OXKo6xHm6uoOlTUYDIpr8VRHmJvKVlXBtsulKGvzd0wAqKquhofNQceamhrUAzACzSPMtqPRNq8rlzUaYTI1lhZCoOrm+h5CyDMAyCPMLcvenNhFMcKMxluPu9XUwGwzsmePEWatL5HhyJkGKivKUXD6pPy8T99+6NPXOf5Bq/PyUjx31M6ZrYb6Buz7IBX/emen4sgmda2G+nqcPt58VL6H9Ta7dMwa69K4D+z7IBUNWu8DLY84ErXDvn0/Ys6c3hgzBti3Lxsurs/eXHMG7+6MRNigxnsvlZSUQJIk9Lc5dfaZZ56BJElITk5WvOaFCxcgSRJCQppvFzF79mxIkoR3331XUTYvLw+SJCEsrPk7/vHHH4ckSfjkk08UZY8cOQJJkjBu3Dh52bRp0yBJEvbt26coe/DgQUiShClTmqcznzRhAiQAh1u0wd69eyFJEqZPny4vuweABOD4YWXptLQ0SJKE6OhoedmIm2XPHD+uKLtz505IkoS5c+fKywYPHgxJknDJ9ka7ALZt2wZJkhAbGysv8wcgXb6Ma7b3fQKwYcMGSJKEpS+8IC/z8vKCJEmQJEn+xxkAEhMTIUkSEhMS5GVubm5yWS+bv7VLly6FJEnYsHat4v2uXbsGSZLg79984Dc2NhaSJGHbtm2KspcuXYIkSRg8eLC8bO7cuZAkCTt37lSUPXPmDCRJwogRzd/H0dHRkCQJetM0wnz9ej1ef/11vPVWCta/4o+Kq7Hw6x+JFa9JyPk/gXXxg9Gvt7c83T7ggCPMX34Jq9WKiBajxqojzF9/DavVipEtRo1VR5hPnIDVav35EWabv2NXAPQdOlRR9ukFC2AF8KrNsqKiIlit1tYjzIsXN44wr14tLysrK4MVjSPdqiPMNrfmuuUI883tnXGEmSNnv9B1SULiU9H44dz3WJ70NoY6QefFVq2XcibOn25ebOvIXN3c8MfnXsRtJlf5SBJ1rYaGBvxz6UJkp3+M2L/9E/c+8HDbG3Whpn0AaJzZS1PsnFEn3H9/DwAGGAyrIcQyTPnj8+jZ+0W4GQyK7ym1I7RGo1H1u6wjZdVmvnNzc1N0MDpT1l1lVlRXV1fVsWrVsrh5FL7Fe9oe0e5MWRcXF9X2MZvNzUfW6xpv6+GCm23Zoryi7E0Gg0H1dU0mkzwS0JmygPrvsyNlO/K7bypbbnuvK5344ANg1ap0NP5mbgdwGaF31yP9iwbOWKoVm5Ez/XXRnZ9BNN2wjNqtvLwcXl5e2Hn0FIQQSJw7Ez+cPYNVb30o343eWfT7JA13xzcewb3hZsQnOadww/zzF9S6VlXhkbDGm1R//H/fo0Hjc5W1en1/qxkRfXtpWTVdaNo/y8rK4GnHa59sc2K2uMuds7hXt+PuqKl2q1dLoX08Mci7xT8ylZVA09EwSWr7Ymjb8i+/DCxfrn1FSVN6ywlQhsgHjPC+fRU+fWstZj6/FNOfmg+zqwseHOJk9xBtb746ksOOZtYR6tkVn6mD9JaTO+74EWfO+AHYBeAPGDT8f/D+7tcwPLBnp09X+1Wf1tinT2NBSUK1q6uyrLc3cO1a44Q4ly/Do6ksgJqffkK9j0/jaY03981WpzXe3HdrSktRbzYrT1WUJFTd1tiR7lFRAcPNsu0+rbGyErVWa+NpjaWlMPdq/l/OXqc1apkVpxg527x5M/72t7+hqKgId911FzZu3Kg43aKlAwcOYNGiRfjuu+8QEBCA+Ph4zJs3r1Pv7XGbJ1a8/g5KfihAUHBI2xs4GNup9MuG3dlmx4xIjaubG+av2YjfzXxSnurYafGaM+qEV96+gpDR7gAW4N4HIhE8KtzeVSLSnTNnPODhKfDonN8ieNQnGBY2HL1vv63VCKbTjDCr1K0jZVVHmNtbtm9f4Nq15pFjG2azGS2v1leMRt/s9MhlW2xvMBiaR89tJs/r0AjzzQfa8bvv6hFmrTn8NWfvvfcennvuOSxbtgy5ubkYN24cHnjgAcV5xrbOnz+P3/3udxg3bhxyc3OxdOlSLFiwAGlpaZ2ug7uHh1N2zADlVPpXh4+8dUEHIoRA2U+luFp6BRw47j6urq666Zg17QNlP5Vqvw/wtEbqhH6Dq+Wfg0eFN++j/J4ikj34xCVs2VeC6XMl9BsSCKm8jPnoKjzQaDcOP3K2YcMGzJkzBzExMQCAjRs34vPPP8eWLVuwZs2aVuW3bt2K/v37Y+PGjQCAkJAQHD16FOvXr8fvf//7Dr33oc/+hfv/d8Yv/gx6VuvZfJGys3TOaq5fx5ORjRc+S5LEG1F3sQ+3bsSf4lbYuxoKtvvAicLLQK8WF/SeO9f888cfAypHHxVunsoBgPc4o07ZtPx5xP19m3wNpO0++gi/p4gAAPk5j0OI91Bz3STnI+9SCdCT+dBci9tMUPdx6M5ZbW0tcnJysLjFTC2TJ0/GoUOHVLc5fPgwJk+erFg2ZcoUJCcny+e5tlRTU4Oamhr5edNsMa5uRlRJFb/0Y+havZsRTZcD/zBoSLs+r2tVlbxNlVSBhhsNmtbpl75+dVWV/HN5eXnjPemcSNMF3N19NPFWOTGb3XWXE9t9QKqoQHl5i87Xv/7V/LPNbHDt4u4O6PAielLSX04sqL5eBZeaxhNanPp7yuaUJ5SXA7f6bO0t19Gy7WXvenbFZ+ogveXE1WhEXW0Nam3WNX6H85Y4HdbW/mVzjVmr9W1t+0vX/9K624GmWREO7NKlSwKAyM7OVixPTEwUQ4cOVd3mjjvuEImJiYpl2dnZAoD48ccfVbdJSEgQaLzVAx98OMyjsLBQm6C1E3PChyM+mBM++Gj7wZzwwUf7HlpkxaFna/zxxx/Rt29fHDp0SHEfiMTEROzcuRMnT55stc3QoUPx5z//GUuWLJGXZWdnY+zYsSgqKoKfn1+rbVoewbl27RqCgoJQUFCguDcJdVx5eTkCAwNRWFho15mgnEFTWxYUFMBgMCAgIECefag7MCddhznRVlN75uXlITg4mDlxEsyJtpgT58WsaKcr/vdy6NMae/fuDVdXVxQXFyuWl5SUwNdXfephPz8/1fJubm7w8fFR3UbtXiZA480muVNrw9PTk22pEXvtl8xJ12NOtNW3b99u/YcTYE66A3OiLebEeTEr2tFy33To2RpNJhNGjx6NjIwMxfKMjAxERkaqbhMREdGq/BdffIHw8HDekJiIiIiIiOzGoTtnALBo0SK8/vrrSElJQX5+PhYuXIiCggL5vmVLlizBn/70J7n8vHnzcPHiRSxatAj5+flISUlBcnIy4uLi7PURiIiIiIiIHPu0RgB4/PHHUVpailWrVqGoqAjDhw9Heno6goKCAABFRUWKe54NHDgQ6enpWLhwITZt2oSAgAC89tprHZpG32w2IyEhQXXInTqGbakdvbWl3urjyNiW2tJTe+qpLo6ObaktPbWnnuriDNie2umKtnToCUGIiIiIiIichcOf1khEREREROQM2DkjIiIiIiLSAXbOiIiIiIiIdICdMyIiIiIiIh1g50zF5s2bMXDgQFgsFowePRpfffXVz5Y/cOAARo8eDYvFgkGDBmHr1q3dVFPH0JH2zMrKgsFgaPU4efJkN9ZYnw4ePIiHHnoIAQEBMBgM+Oijj9rcpqv3TWZFO8yJNpgT58acaIM5cW7MiTbslhNBCu+++64wGo0iKSlJ5OXlidjYWOHh4SEuXryoWv7cuXOiR48eIjY2VuTl5YmkpCRhNBrFhx9+2M0116eOtmdmZqYAIE6dOiWKiorkR319fTfXXH/S09PFsmXLRFpamgAgdu/e/bPlu3rfZFa0w5xohzlxXsyJdpgT58WcaMdeOWHnrIW7775bzJs3T7Fs2LBhYvHixarl4+PjxbBhwxTLnn76aXHPPfd0WR0dSUfbs+lL4urVq91QO8fVni+Jrt43mRXtMCddgzlxLsxJ12BOnAtz0jW6Myc8rdFGbW0tcnJyMHnyZMXyyZMn49ChQ6rbHD58uFX5KVOm4OjRo6irq+uyujqCzrRnk1GjRsHf3x9RUVHIzMzsymo6ra7cN5kV7TAn9sWcOAbmxL6YE8fAnNiXVvslO2c2rly5goaGBvj6+iqW+/r6ori4WHWb4uJi1fL19fW4cuVKl9XVEXSmPf39/bF9+3akpaVh165dCA4ORlRUFA4ePNgdVXYqXblvMivaYU7sizlxDMyJfTEnjoE5sS+t9ks3rSvmDAwGg+K5EKLVsrbKqy3/tepIewYHByM4OFh+HhERgcLCQqxfvx7jx4/v0no6o67eN5kV7TAn9sOcOA7mxH6YE8fBnNiPFvslR85s9O7dG66urq2OLpSUlLTqCTfx8/NTLe/m5gYfH58uq6sj6Ex7qrnnnntw5swZravn9Lpy32RWtMOc2Bdz4hiYE/tiThwDc2JfWu2X7JzZMJlMGD16NDIyMhTLMzIyEBkZqbpNREREq/JffPEFwsPDYTQau6yujqAz7akmNzcX/v7+WlfP6XXlvsmsaIc5sS/mxDEwJ/bFnDgG5sS+NNsvOzR9yK9A0xSkycnJIi8vTzz33HPCw8NDXLhwQQghxOLFi8UTTzwhl2+aNnPhwoUiLy9PJCcnczpXGx1tz7///e9i9+7d4vTp0+Lbb78VixcvFgBEWlqavT6CblRUVIjc3FyRm5srAIgNGzaI3NxceXrc7t43mRXtMCfaYU6cF3OiHebEeTEn2rFXTtg5U7Fp0yYRFBQkTCaTCAsLEwcOHJDXzZo1S0yYMEFRPisrS4waNUqYTCYxYMAAsWXLlm6usb51pD3XrVsnBg8eLCwWi/D29hZjx44Vn376qR1qrT9N0922fMyaNUsIYZ99k1nRDnOiDebEuTEn2mBOnBtzog175cQgxM0r1YiIiIiIiMhueM0ZERERERGRDrBzRkREREREpAPsnBEREREREekAO2dEREREREQ6wM4ZERERERGRDrBzRkREREREpAPsnBEREREREekAO2dEREREREQ6wM6Zk1q5ciVCQ0Pl57Nnz8ajjz7a7fW4cOECDAYDjh071u3vrcVnbk/9s7KyYDAYcO3aNQDAG2+8gZ49e8rrW/4uSD+YE+aE2sacMCfUNuaEOdEKO2fdaPbs2TAYDDAYDDAajRg0aBDi4uJQWVnZ5e/96quv4o033mhX2e4O9n333Se3i9lsxtChQ7F69Wo0NDR0y/v/UpGRkSgqKoKXl5fq+ri4OOzfv19+bq8vbEfBnKhjTsgWc6KOOSFbzIk65kTf3OxdgV+bqVOnYseOHairq8NXX32FmJgYVFZWYsuWLa3K1tXVwWg0avK+t9qB9eKpp57CqlWrUF1djT179mDBggVwdXXFiy++2KpsbW0tTCaTHWqpzmQywc/P75brrVYrrFZrN9bI8TEn6pgTssWcqGNOyBZzoo450S+OnHUzs9kMPz8/BAYGYsaMGYiOjsZHH30EoHkYNiUlBYMGDYLZbIYQAmVlZZg7dy769OkDT09PTJo0CcePH1e87tq1a+Hr64vbbrsNc+bMQXV1tWJ9y6MGN27cwLp16zBkyBCYzWb0798fiYmJAICBAwcCAEaNGgWDwYD77rtP3m7Hjh0ICQmBxWLBsGHDsHnzZsX7/Oc//8GoUaNgsVgQHh6O3NzcdrVLjx494OfnhwEDBmD+/PmIioqS26Wp7mvWrEFAQACGDh0KADhx4gQmTZoEd3d3+Pj4YO7cuZAkqdVrv/TSS3LbPf3006itrZXXffbZZxg7dix69uwJHx8fTJs2DWfPnm31GidPnkRkZCQsFgvuuusuZGVlyetaDq+3ZDu8vnLlSrz55pv4+OOP5aNWWVlZmDRpEubPn6/YrrS0FGazGV9++WW72tCZMCfqmBPmxBZzoo45YU5sMSfqmBP95oSdMztzd3dHXV2d/Pz777/H+++/j7S0NHl4+8EHH0RxcTHS09ORk5ODsLAwREVF4aeffgIAvP/++0hISEBiYiKOHj0Kf3//VuFtacmSJVi3bh1WrFiBvLw8pKamwtfXF0Bj0AFg3759KCoqwq5duwAASUlJWLZsGRITE5Gfn4/Vq1djxYoVePPNNwEAlZWVmDZtGoKDg5GTk4OVK1ciLi5Ok3bZv38/8vPzkZGRgT179qCqqgpTp06Ft7c3jhw5gg8++AD79u1rFbSm7TIzM/HOO+9g9+7deOmll+T1lZWVWLRoEY4cOYL9+/fDxcUF06dPx40bNxSv88ILL+D5559Hbm4uIiMj8fDDD6O0tLTDnysuLg6PPfYYpk6diqKiIhQVFSEyMhIxMTFITU1FTU2NXPbtt99GQEAAJk6c2OH3cTbMSfvahTn5dWNO2tcuzMmvG3PSvnZhTuxIULeZNWuWeOSRR+Tn//73v4WPj4947LHHhBBCJCQkCKPRKEpKSuQy+/fvF56enqK6ulrxWoMHDxbbtm0TQggREREh5s2bp1g/ZswYMXLkSNX3Li8vF2azWSQlJanW8/z58wKAyM3NVSwPDAwUqampimUvv/yyiIiIEEIIsW3bNtGrVy9RWVkpr9+yZYvqa9maMGGCiI2NFUII0dDQIPbu3StMJpOIj4+X6+7r6ytqamrkbbZv3y68vb2FJEnysk8//VS4uLiI4uJieTu1+litVtHQ0KBal5KSEgFAnDhxQtEWa9eulcvU1dWJfv36iXXr1gkhhMjMzBQAxNWrV4UQQuzYsUN4eXnJ5RMSEm75u2hSXV0tevXqJd577z15WWhoqFi5cuUt281ZMSfqmBPmxBZzoo45YU5sMSfqmBN954QjZ91sz549sFqtsFgsiIiIwPjx4/GPf/xDXh8UFITbb79dfp6TkwNJkuDj4yOfQ2u1WnH+/Hl5GDg/Px8RERGK92n53FZ+fj5qamoQFRXV7nr/97//RWFhIebMmaOoxyuvvKKox8iRI9GjR4921cPW5s2b5XZ5+OGHMXPmTCQkJMjrR4wYoTjfuem9PDw85GX33nsvbty4gVOnTsnL1OojSRIKCwsBAGfPnsWMGTMwaNAgeHp6yqcWFBQUKOpn+znc3NwQHh6O/Pz8dn229jCbzZg5cyZSUlIAAMeOHcPx48cxe/Zszd7DkTAn6pgT5sQWc6KOOWFObDEn6pgT/eaEE4J0s4kTJ2LLli0wGo0ICAhodeGp7U4PNJ6j7O/vrzjXtonttKEd4e7u3uFtmoabk5KSMGbMGMU6V1dXAIAQolP1AYDo6GgsW7YMZrMZAQEB8ms2adkuQggYDAbV17rVcrUyDz30EAIDA5GUlISAgADcuHEDw4cPV5wf3dZraCUmJgahoaH44YcfkJKSgqioKAQFBWn6Ho6COVHHnDAntpgTdcwJc2KLOVHHnOg3Jxw562YeHh4YMmQIgoKC2jUjUFhYGIqLi+Hm5oYhQ4YoHr179wYAhISE4Ouvv1Zs1/K5rTvuuAPu7u6KaUZtNR0psZ1S1dfXF3379sW5c+da1aPpqMedd96J48eP4/r16+2qhy0vLy8MGTIEgYGBrb4g1Nx55504duyYYjrc7OxsuLi4yBeuAlCtj9VqRb9+/VBaWor8/HwsX74cUVFRCAkJwdWrV1Xfz/Zz1NfXIycnB8OGDWvXZ2vJZDKpTlc7YsQIhIeHIykpCampqXjyySc79frOgDlRx5wwJ7aYE3XMCXNiizlRx5zoNyfsnOnc/fffj4iICDz66KP4/PPPceHCBRw6dAjLly/H0aNHAQCxsbFISUlBSkoKTp8+jYSEBHz33Xe3fE2LxYIXX3wR8fHxeOutt3D27Fl8/fXXSE5OBgD06dMH7u7u+Oyzz3D58mWUlZUBaJzxZs2aNXj11Vdx+vRpnDhxAjt27MCGDRsAADNmzICLiwvmzJmDvLw8pKenY/369V3SLtHR0bBYLJg1axa+/fZbZGZm4tlnn8UTTzwhX2ALNE7/2lSfvXv3IiEhAfPnz4eLiwu8vb3h4+OD7du34/vvv8eXX36JRYsWqb7fpk2bsHv3bpw8eRLPPPMMrl692ukQDxgwAN988w1OnTqFK1euKC7AjYmJwdq1a9HQ0IDp06d36vV/jZgTdcwJ2WJO1DEnZIs5UcecdCP7Xe7266N2QaKtlhcwNikvLxfPPvusCAgIEEajUQQGBoro6GhRUFAgl0lMTBS9e/cWVqtVzJo1S8THx//sxZANDQ3ilVdeEUFBQcJoNIr+/fuL1atXy+uTkpJEYGCgcHFxERMmTJCXv/322yI0NFSYTCbh7e0txo8fL3bt2iWvP3z4sBg5cqQwmUwiNDRUpKWldejCVDW3ardvvvlGTJw4UVgsFtGrVy/x1FNPiYqKilbb/fWvfxU+Pj7CarWKmJgYxUW+GRkZIiQkRJjNZvGb3/xGZGVlCQBi9+7dQojmC1NTU1PFmDFjhMlkEiEhIWL//v3ya3T0wtSSkhLx29/+VlitVgFAZGZmyusqKipEjx49xF/+8pdbtoezY07UMSeZ8jrmhDm5FeYkU17HnDAnt8KcZMrr9JgTgxC/4IRVItJUYWEhBgwYgCNHjiAsLMze1SHSJeaEqG3MCVHb9JgTds6IdKCurg5FRUVYvHgxLl68iOzsbHtXiUh3mBOitjEnRG3Tc054zRmRDmRnZyMoKAg5OTnYunWrvatDpEvMCVHbmBOituk5Jxw5IyIiIiIi0gGOnBEREREREekAO2dEREREREQ6wM4ZERERERGRDrBzRkREREREpAPsnBEREREREekAO2dEREREREQ6wM4ZERERERGRDrBzRkREREREpAP/Dy0BzwYJs7HJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAHTCAYAAACjj2AvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxN5R/A8c+dfR/rzBjbEIpElpQtIoRkK0qRNSLKWCJlTUpIKqSs1U8ipFJIiCS7lGmxDmMY2+z7nfP748zc2Zc7c2fOufd+36/XvJpz5pwz39F57r3f8zzP9zEoiqIghBBCCCGEEEJTDloHIIQQQgghhBBCkjMhhBBCCCGE0AVJzoQQQgghhBBCByQ5E0IIIYQQQggdkORMCCGEEEIIIXRAkjMhhBBCCCGE0AFJzoQQQgghhBBCByQ5E0IIIYQQQggdkORMCCGEEEIIIXRAkjOhO4MHD6ZXr15ahyGEEEKnDAYDW7du1ToMIezWxYsXMRgMnDx5UutQbI4kZ8KiBg8ejMFgwGAw4OTkRI0aNXjxxRe5c+dOka/x/vvvs2bNmtILUggNREREMHLkSGrUqIGrqysBAQF06dKF3377TevQhNCdsm4v8kFT6EXWz1FZv86ePWuR62fc6xlfvr6+PPTQQ3z77bdmXad69eqEh4fTsGFDi8QlMjlpHYCwPY899hirV68mNTWVM2fOMHToUCIjI1m/fn2Rzvf19S3lCIUoe3379iUlJYW1a9dSu3Ztrl+/zu7du7l9+7bWoQmhO9JehD3L+ByVVeXKlXMdl5ycjIuLS7F+x08//cS9995LZGQkS5cupW/fvhw/frzIyZajoyMBAQHF+t2iYNJzJiwu4ylntWrV6Ny5M/3792fnzp0AGI1Ghg0bRq1atXB3d+fuu+/m/fffz3Z+zmGN7du3Z9y4cUyePJkKFSoQEBDAzJkzy/AvEqJkIiMjOXDgAO+88w6PPPIINWvWpEWLFkydOpXu3bsD6jCtTz/9lN69e+Ph4UHdunXZtm1btuvs27ePFi1a4OrqSpUqVZgyZQqpqakAfPvtt5QrV460tDQATp48icFgYNKkSabzR44cyTPPPFNGf7UQxVOU9pJTWFgY/fv3p3z58lSsWJGePXty8eLFbMesXr2a+vXr4+bmxj333MPSpUtNP6tVqxYATZo0wWAw0L59+9L684QoVMbnqKxfjo6OtG/fnpdeeong4GAqVapEp06dWLNmTZ49bYV9TqpYsSIBAQHcc889zJ07l5SUFPbs2WP6+Y8//kibNm0oV64cFStW5PHHH+fcuXOmn+fsbd67dy8Gg4Hdu3fTvHlzPDw8aNWqFf/8809p/BPZNEnORKk6f/48P/74I87OzgCkpaVRrVo1vvrqK86cOcP06dN57bXX+Oqrrwq8ztq1a/H09OT3339n/vz5zJ49m127dpXFnyBEiXl5eeHl5cXWrVtJSkrK97hZs2bRr18//vjjD7p168azzz5r6ikICwujW7duPPDAA5w6dYply5axcuVK3nzzTQAefvhhYmJiOHHiBKAmcpUqVWLfvn2m6+/du5d27dqV4l8qRMkVtb1kiI+P55FHHsHLy4tffvmFAwcO4OXlxWOPPUZycjIAn3zyCdOmTWPu3LmEhITw1ltv8cYbb7B27VoADh8+DKi9CeHh4WzevLn0/kAhSmDt2rU4OTnx66+/8vHHH9O/f3/Cw8NNX+vXr8fJyYnWrVsX6XopKSl88sknAKbPagBxcXEEBwdz5MgRdu/ejYODA7179zY9AMzPtGnTWLhwIUePHsXJyYmhQ4cW/4+1V4oQFvT8888rjo6Oiqenp+Lm5qYACqAsWrQo33NGjx6t9O3bN9s1evbsadpu166d0qZNm2znPPDAA8qrr75q8fiFKC2bNm1Sypcvr7i5uSmtWrVSpk6dqpw6dcr0c0B5/fXXTduxsbGKwWBQfvjhB0VRFOW1115T7r77biUtLc10zEcffaR4eXkpRqNRURRFadq0qbJgwQJFURSlV69eyty5cxUXFxclOjpaCQ8PVwAlJCSkLP5cIUqkKO1ly5YtiqIoysqVK3O1jaSkJMXd3V3ZsWOHoiiKUr16deV///tftt8xZ84cpWXLloqiKMqFCxcUQDlx4kTp/mFCFCLr56iMryeffFJRFPXz0P3335/vuWfPnlUqVqyozJ8/P99jMu51d3d3xdPTU3FwcFAAJSgoSLl161a+50VERCiAcvr06WzXyWgze/bsUQDlp59+Mp3z/fffK4CSkJBgzj+B3ZOeM2FxjzzyCCdPnuT3339n7NixdOnShbFjx5p+vnz5cpo3b07lypXx8vLik08+ITQ0tMBrNmrUKNt2lSpViIiIKJX4hSgNffv25erVq2zbto0uXbqwd+9emjZtmq34Tdb73NPTE29vb9N9HhISQsuWLTEYDKZjWrduTWxsLFeuXAHUIcB79+5FURT2799Pz549adiwIQcOHGDPnj34+/tzzz33lM0fLEQJFKW9ZDh27Bhnz57F29vb1OtWoUIFEhMTOXfuHDdu3ODy5csMGzbM9HMvLy/efPPNbMO0hNCLjM9RGV9Lliwx/ax58+Z5nhMVFcXjjz9O165dsw1nz8+GDRs4ceIE27Zto06dOnz66adUqFDB9PNz584xYMAAateujY+Pj2norzmf16pUqQIgn9fMJAVBhMV5enpSp04dAJYsWcIjjzzCrFmzmDNnDl999RXjx49n4cKFtGzZEm9vb959911+//33Aq+Ztasd1Pk5hXWtC6E3bm5udOrUiU6dOjF9+nSGDx/OjBkzGDx4MFDwfa4oSrbELGNfxnGgJmcrV67k1KlTODg40KBBA9q1a8e+ffu4c+eODGkUVqWw9pIhLS2NZs2a8cUXX+S6RuXKlUlMTATUoY0PPvhgtp87OjqWWvxCFFfWz1F5/Swno9FI//798fHxMQ1RLEz16tWpW7cudevWxcvLi759+3LmzBn8/PwA6NGjB9WrV+eTTz4hMDCQtLQ0GjZsaBoqnJ+s72MZ703yec080nMmSt2MGTNYsGABV69eZf/+/bRq1YrRo0fTpEkT6tSpI08uhd1q0KABcXFxRT724MGDpoQM4ODBg3h7e1O1alUgc97Z4sWLadeuHQaDgXbt2rF3716ZbyasXn7tpWnTpvz333/4+flRp06dbF++vr74+/tTtWpVzp8/n+vnGb0BGRXvjEZjmf5NQljC+PHjOX36NFu2bMHNzc3s89u1a0fDhg2ZO3cuALdu3SIkJITXX3+djh07Ur9+fbOWRBIlI8mZKHXt27fn3nvv5a233qJOnTocPXqUHTt28O+///LGG29w5MgRrUMUolTdunWLDh068Pnnn/PHH39w4cIFNm7cyPz58+nZs2eRrjF69GguX77M2LFj+fvvv/nmm2+YMWMGwcHBODioL+W+vr7cf//9fP7556Zqcw8//DDHjx/n33//lQp0wiqY216effZZKlWqRM+ePdm/fz8XLlxg3759vPzyy6YhvzNnzmTevHm8//77/Pvvv5w+fZrVq1ezaNEiAPz8/HB3d+fHH3/k+vXrREVFlenfLERxrV69mqVLl7J8+XIcHBy4du0a165dIzY21qzrTJgwgY8//piwsDBT1dMVK1Zw9uxZfv75Z4KDg0vpLxA5SXImykRwcDCffPIJvXr1ok+fPvTv358HH3yQW7duMXr0aK3DE6JUeXl58eCDD/Lee+/x8MMP07BhQ9544w1GjBjBhx9+WKRrVK1ale3bt3P48GEaN27MqFGjGDZsGK+//nq24x555BGMRqMpEStfvjwNGjSgcuXK1K9f39J/mhAWZ2578fDw4JdffqFGjRr06dOH+vXrM3ToUBISEvDx8QFg+PDhfPrpp6xZs4b77ruPdu3asWbNGlPPmZOTE0uWLOHjjz8mMDCwyA9NhNDavn37MBqNPPHEE1SpUsX0tWDBArOu8/jjjxMUFMTcuXNxcHDgyy+/5NixYzRs2JDx48fz7rvvltJfIHIyKFnHyAghhBBCCCGE0IT0nAkhhBBCCCGEDkhyJoQQQgghhBA6IMmZEEIIIYQQQuiAVSdnv/zyCz169CAwMBCDwcDWrVsLPWffvn00a9YMNzc3ateuzfLly0s/UCGEEEIIIYQohFUnZ3FxcTRu3LjI1c4uXLhAt27daNu2LSdOnOC1115j3LhxfP3116UcqRBCCCGEEEIUzGaqNRoMBrZs2UKvXr3yPebVV19l27ZthISEmPaNGjWKU6dO8dtvv5VBlEIIIYQQQgiRNyetAyhLv/32G507d862r0uXLqxcuZKUlBScnZ3zPC8pKYmkpCTTdlpaGrdv36ZixYoYDIZSjVkIcymKQkxMDIGBgabFicuCtBNhTaSdCFE4aSdCFI0l24pdJWfXrl3D398/2z5/f39SU1O5efMmVapUyfO8efPmMWvWrLIIUQiLuXz5MtWqVSuz3yftRFgjaSdCFE7aiRBFY4m2YlfDGuvVq8eQIUOYOnWqad+vv/5KmzZtCA8PJyAgIM/zcj7BiYqKokaNGqhT9rR7guPtVrfE14hJ/K+EV7DE32+JW7CkT/RK/kTQYHAp8TVuRS4s0fmO9Cc6Oprq1asTGRmJr69viWMqKr22E73wdA0q0fnBAR1KHMP41z8v8TVu/HRXic5vsDGsxDGUd6tT4muc+GeztBMLc3epXuJrdHTtXPhBBdidtLPEMejBvQ5tSnyNo4nrS3yNy5cvSjuxMH18dtMHS/xbtHV62AKRlMz6sHct+tnLrnrOAgICuHbtWrZ9ERERODk5UbFixXzPc3V1xdXVNY+fGNDyRcJgcLTEVUp4dsn/fkukZiUf5lDyv8MSQy18fDyKdNwff5TDzc1IvXox2fY74mPReMyh13aiFyVtr24OJU/+fTxK/v8h0aVkf4cl7ksHQ9HeuoxpFTAq1XFxPJXrZz4+PhaLxxy23E4MhpI/5HIu4UMuS8SgB04WeNhX9PvJFegIbM/1E2knlqeHz256YYl/i5K+ZhSVokB4amOqOJ0iZ3PIaCdgofe4El/BirRs2ZJdu3Zl27dz506aN2+e73wzIfTm77996PJoRx55uBOnT5fTOhwhdClN8SEy8X0iExeTlNpS63CE0ClnYAPwDTBW41iE0CdFgb+SenMkcTh/JPVHUUo3Obbq5Cw2NpaTJ09y8uRJQC2Vf/LkSUJDQwGYOnUqgwYNMh0/atQoLl26RHBwMCEhIaxatYqVK1cyceJELcIXwmznz3vRuWNHbtxw4/p1dzq2f5SjRytoHZYQupKmeBKZ+B5G5S7Alaikt0lMba91WELojAOwFuievr0IeFW7cITQqX+Su3IuRZ1acDGlDccTnyNNKb0UyqqTs6NHj9KkSROaNGkCQHBwME2aNGH69OkAhIeHmxI1gFq1arF9+3b27t3L/fffz5w5c1iyZAl9+/bVJH4hzPXalPu5ejVz6OPt2668Ofs+DSMSQn8SUvqRmlY/yx5n4pJHoih2NZJfiEL0AJ7KsW8SEKhBLELoU4zRn3+Tu2TbF5bajDvGmqX2O636nap9+/YUVM9kzZo1ufa1a9eO48ePl2JUQpSeFZ8eIjzcnV8P+AHQ4sGbfPbFrxpHJYS+eDivw6hUJTG1GwAOhmuUcxuPwZCqcWRC6Mk3wGvAW+nbcagJ21XNIhJCb7wdr9PcbTVHEwej4ASk0cTtcyo6XSi132nVPWdC2Bsfn1S2//gzj3YKp3Hj23z/wx68veUDpxBZGQxGvF3m4u60GQfDLcq5vYyjw7XCTxTC7rwLvAIkAL2B3zSNRgg9CnQ+xYPun+BIMo1dv6K689FS/X1W3XMmhD3y9DSyddteYmOdKV8+WetwhNAlg0HBy2UBHsoaHB1uah2OEDr2EbAF6TETIn/+Tmfo6Dkbd4eoUv9dkpwJYYXc3NJwc0sq/EAh7JjBAI4GScyEKJwkZkIUpiwSM5BhjULoUlKSA99sLdkK80LYOkWBxNRHSr2ssRDWrxtQtHU0hbBXt1Jrk5BWdout50eSMyF0JiXFwICn29C3dzveebuB1uEIoVtxKSOJTppLTPLrKIolFnYVwhYNQB22+D3grXEsQujTbWMQvyWM5kD8K8SlVdQ0FknOhNARo9HA0MEt+WZrdQCmTW3CG683poCipELYpbjkQcSnPA9AYmpXopNmS6l8IXLpBaxE/bjXBtgJyNqYQmQVaazGb/EvYsSVeKUSB+JfJibNT7N4JDkTQkd27qzC+v/Vyrbvg/fv5tIlT40iEkJ/jGmBxKUMy7YvydiOlLTGGkUkhB65A++TvbxAc6C/NuEIoUOKAqeTniQ1y7DfRKU855Mf0SwmSc6E0JGuXa+yaHFmiVZ391S2fb+XoKA4DaMSQl8cHa7i6zoFyCyK4+0yDxfHY9oFJYTuJKDONcu6jMR7wDJtwhFChwwGeMBtJT4OYaZ9/o5/cZ/rJs1iKtIYkD59+hT5gps3by52MEIIGPfyP3h5pTLupeZs2vILDz8coXVIQuiOq9NvlDNMICrxHTxdVuDu/L3WIQmhQ38BjwA70r8maxuOEDrk5hBDa48l/Bb/Ik6GZB5wX4mDwahZPEVKznx9MyuXKIrCli1b8PX1pXnz5gAcO3aMyMhIs5I4IUT+hg47R9duYVSpkqh1KELolovjcSq4P42jwy2tQxFCx84CLQFZVkKI/LgY4mnl8REG0nA0pGgai0FRzCs18Oqrr3L79m2WL1+Oo6NaHctoNDJ69Gh8fHx49913SyVQPYmOjk5PWB0BKeEsVAZDyYsReLrWKNH5MQn/mO7PqKgofHx8ShxTcUk70Z+mHgNKfI3OFUpWZvjtK/oYUhUVdUvaiRCFkHYiROEUJcWin73MnnO2atUqJk6caErMABwdHQkODmbVqlUlCkYIe6Ioj6EoUtZYiII9BNTUOgghdC4IeFDrIITQOW+gq9ZBFMrs5Cw1NZWQkJBc+0NCQkhLS7NIUELYOkXpC2wCtqMo5bUORwidaoa6NtMeoK7GsQihV1VR55P9CLTTOBYh9MoD2AZsBYZqG0ohzB6HNWTIEIYOHcrZs2d56KGHADh06BBvv/02Q4YMsXiAQtgaRekKrEYdntEc2IGiPI7BIIU/hMjUEDUx80n/+hn1ieefWgYlhM5URk3Kaqdvfwv0S98nhFC5oD4Qb5O+/THgBSzRLKKCmJ2cLViwgICAAN577z3Cw8MBqFKlCpMnT2bChAkWD1AIW6IoLqiljJ2z7L0PeAZ1PRohhGo+UDHLdgAwHhiW9+FC2KXJwD1Ztt2B6ag9aWaVFBDChj0DdMqxbxLwGXCn7MMphNnDGh0cHJg8eTJhYWFERkYSGRlJWFgYkydPzjYPTQiRm8GQDDwOXMmydzmSmAmR07PAkSzbu4DRGsUihF69htojkOFvoCeSmAmR1Vpgbpbt26gjMfSXmEExF6FOTU3lp59+Yv369RgMatWcq1evEhsba9HghLBFBsNZoCNwHlgHBGOQ4lNC5HAH6ALsBw4AT5J10WkhBEAK8Bzqe8l51DZzQ9OIhNCnmcBUIArojp6HyJs9rPHSpUs89thjhIaGkpSURKdOnfD29mb+/PkkJiayfPny0ohTCJtiMISiKO2A2xgM8oRTiLzFoL6JOgHxGscihF4ZgeGo889k7rIQ+VuAOpTxutaBFMjsnrOXX36Z5s2bc+fOHdzd3U37e/fuze7duy0anBC2zGC4icEgFU6FKFgCapImhMifgiRmQhSFvhMzKEZyduDAAV5//XVcXFyy7a9ZsyZhYWEWC0wIa6co1VGU1lqHIYTOeQI9tA5CCJ0zAP21DkIIK9AHcNU6iBIxOzlLS0vDaDTm2n/lyhW8vWVBXSEAFMUftQz4tyhKZ63DEUKn3IAtwGZgjMaxCKFnHwKfp/9XJikLkbcxwAbU9xUPjWMpPrOTs06dOrF48WLTtsFgIDY2lhkzZtCtWzdLxiaEVVKUCsB3qIvmugMbUZRemsYkhP44o76JPpK+vRi1LLgQIrv5wAvp348EVqGukymEyDQY9X0E1LL5GetkWh+zk7P33nuPffv20aBBAxITExkwYABBQUGEhYXxzjvvlEaMQliZsagL6GZwAaaiKPJmKkSm3kDOB3qvoBY1EEKoGgHjcuzrB9xf9qEIoVvlUB9iZNWG3O8x1sHsao2BgYGcPHmS9evXc/z4cdLS0hg2bBjPPvtstgIhQtivN4HqqOs0AZwDemIw5B4OLIT9+gqohdpeACJR30ilDLgQmf5AXUD3c9QHfanAAOCYlkEJoTORqOuWfQ9UTN83DfhSq4BKxOyes/j4eNzd3Rk6dCgffvghS5cuZfjw4ZomZkuXLqVWrVq4ubnRrFkz9u/fX+DxX3zxBY0bN8bDw4MqVaowZMgQbt26VUbRClunJmEjgBXAZaAbBsM1bYMSQpfeAcajVmPsAZzUNBoh9GkLapGDOGAY8I224QihS8dQ15C9Bswjd0+a9TA7OfPz8+O5555jx44dpKVpXwZ8w4YNvPLKK0ybNo0TJ07Qtm1bunbtSmhoaJ7HHzhwgEGDBjFs2DD++usvNm7cyJEjRxg+fHgZRy5smbp22ctAawyGvO9FIQSoBQ7uAQ5pHYgQOrYDqAf8T+tAhNCxv4BmwHStAykRs5OzdevWkZSURO/evQkMDOTll1/myJEjpRFbkSxatIhhw4YxfPhw6tevz+LFi6levTrLli3L8/hDhw4RFBTEuHHjqFWrFm3atGHkyJEcPXq0jCMXts5gAINBhmgJUThZn0mIwkk7EaJw1t9OzE7O+vTpw8aNG7l+/Trz5s0jJCSEVq1aUa9ePWbPnl0aMeYrOTmZY8eO0blz9lLlnTt35uDBg3me06pVK65cucL27dtRFIXr16+zadMmunfvnu/vSUpKIjo6OtuXEGo542eQssYqaSciP3/HNyYlzVnrMHRB2onIXwegitZB6IK0E5G/e4EmWgdRqswuCJLB29ubIUOGMGTIEM6cOcOzzz7LrFmzmD697LoSb968idFoxN/fP9t+f39/rl3Le45Pq1at+OKLL+jfvz+JiYmkpqbyxBNP8MEHH+T7e+bNm8esWbMsGruwBYuAl4BHgRcwmP+sI5fYxPMlvoZWpJ2Urp8e7FXia7Sb8VOJr+HczdynkiNQ58nsB3qW+PdbO2knIm/tUeeShQFdgEuaRqM1aScib3WAH1HXyHwC+E3bcEpJsT9NJiYm8tVXX9GrVy+aNm3KrVu3mDhxoiVjKzKDIXvPhaIoufZlOHPmDOPGjWP69OkcO3aMH3/8kQsXLjBq1Kh8rz916lSioqJMX5cvX7Zo/MIazUFNzAAGAZ+jKPbdMyDtROT2LOqcMoC2wE6gvHbh6IC0E5FbS9SiH27AXcAe1Pll9kvaicitBurcywDU0vnbUR9q2B6ze8527tzJF198wdatW3F0dOTJJ59kx44dtGvXrjTiK1ClSpVwdHTM1UsWERGRqzctw7x582jdujWTJk0CoFGjRnh6etK2bVvefPNNqlTJPaTA1dUVV1dXy/8BwkrdDUzIsa8nsAx7Lmog7URk54VajTHrM8DmqG1ljRYB6YK0E5GdAViA2l4yVEdddFqbB956IO1E5PY6aoKWwQt4FdirSTSlyeyes169epGQkMDatWu5fv06K1as0CQxA3BxcaFZs2bs2rUr2/5du3bRqlWrPM+Jj4/HwSH7n+3oqC4OrChK6QQqbMw/QF8gMX07DXgeg8F+EzMhcosFHgOuZ9k3G3tOzITITUFdkP10ln0bUT90CiEyjUNdxyzDUaC/RrGULrN6zlJTU3n77bd56qmn8uxh0kJwcDADBw6kefPmtGzZkhUrVhAaGmoapjh16lTCwsJYt24dAD169GDEiBEsW7aMLl26EB4eziuvvEKLFi0IDAzU8k8RVuUH4HFgMxCM+mbqomlEQujPn8AjqENRNqIOBxZCZBeBuj7T96gPM54HjJpGJIT+JAJPAWuB+kB3wDYLxZiVnDk5OTFlyhR69tTPpO7+/ftz69YtZs+eTXh4OA0bNmT79u3UrFkTgPDw8Gxrng0ePJiYmBg+/PBDJkyYQLly5ejQoQPvvPOOVn+CsFr7UNdnknL5QuTvP6AFcFPrQITQsTuohUBS0r+EELmlAAMBX+C2xrGUHrPnnD344IOcOHHClPzowejRoxk9enSeP1uzZk2ufWPHjmXs2LGlHJWwD5KYCVE4ScyEKFyM1gEIYQWM2HJiBsVIzkaPHs2ECRO4cuUKzZo1w9PTM9vPGzVqZLHghNBeO+ACEFrYgULYsbtRq2f9rnEcQuhZBdTKjN8XdqAQdswZeBJYr3UgmjE7OevfX518N27cONM+g8FgKl9vNMo4aWErWgPbUJ/6P4Y6PEsIkV0t1DllvkAv1OG+QojsfFBLfzcBRgGrtQ1HCF1yQJ1T9hRqW5msbTgaMTs5u3DhQmnEIYTONEdNzDxQS7f+jJqg/aVlUELoTFXUBUGrpm9/C/RL3yeEUHmgLjDdLH17BeBJ5hqAQgh1WYkVqIkZwHjUdvISalVT+2F2cqanuWZClJ63UZ90ZghAfdopcxWFyDQJqJ1l2x31SackZ0JkehZok2PfeNQeAplnJoSqFWqxj6wGAEtQlzCyH2avcwbw2Wef0bp1awIDA7l06RIAixcv5ptvvrFocEJopx9wLMv2VtQ3UyFEpknA11m2TwF9NIpFCL36BJiXZfsaamVGScyEyPQrMITMZSQSUdcAtK/EDIqRnC1btozg4GC6detGZGSkaY5ZuXLlWLx4saXjE0Ijt4HOwAFgJ+qTz1RNIxJCf1JQ28ZnQAjQFYjUMiAhdGo6MI3MOcxntQ1HCF36H/A0EIv6kHyvptFoxezk7IMPPuCTTz5h2rRpODo6mvY3b96c06dPF3CmENYmGnWRwyeBZI1jEUKvjMAwoD2ytIQQBZkP3IfMXRaiIFuBusAPGsehnWIVBGnSpEmu/a6ursTFxVkkKCH0I17rAISwAgq2vu6MEJYha/4JUTj7bidm95zVqlWLkydP5tr/ww8/0KBBg0LPb9++PevWrSMhIcHcXy1EKcgo/y2EyE9KqhOf7X4Sxb4KZglRDM8ArloHIYTOdQcqaR2EbpmdnE2aNIkxY8awYcMGFEXh8OHDzJ07l9dee41JkyYVen6zZs2YPHkyAQEBjBgxgkOHDhUrcCFKzhP4DtgIjNE4FiH0yWh0YOii9xi68H3GLn0LtdyxECK3V4F1wBbU8vlCiNx6AZuA3UCgtqHolNnDGocMGUJqaiqTJ08mPj6eAQMGULVqVd5//32efvrpQs9fuHAh8+fP57vvvmP16tU8/PDD1KlTh6FDhzJw4ED8/f2L9YcI62WwwIc9xew1MNxQ30AfSt9eDHhi4N0SxyJEXjp4DC/R+T+FOZc4hke7RRTjrGVkVGD8+PvnCXC8m3tcPsPBkFasGH6O/7RY5wmhby8Bb6Z/3wn4HngCqcgoRFadgS9Q048GqGvIdgEuaRmU7hSrlP6IESO4dOkSERERXLt2jcuXLzNs2LAin+/o6EjPnj3ZunUrYWFhDBgwgDfeeIPq1avTq1cvfv755+KEJYQZngQeybFvNArltQhGCJ1qjlraOFOEsSnxSoA24QihS5WAGTn2tQE6aBCLEHrlCLwLuGTZdxfqWmYiK7OTs4SEBOLj1SIJlSpVIiEhgcWLF7Nz506zf/nhw4eZPn06CxYswM/Pj6lTp+Ln50ePHj2YOHGi2dcToug+B17Psn0D6IqBOxrFI4QeHUV948yoVprEfa7L8XK4qmFMQuhNRnn8W1n2vQLI2q9CZDKizjXLum7Zx2RfA1BAMZKznj17sm7dOgAiIyNp0aIFCxcupGfPnixbtqzQ8yMiIli4cCENGzakbdu23Lhxgy+//JKLFy8ya9YsVqxYwTfffMPy5cvN/2uEMMs7QDBqlbluGPhb43iE0KPNQF/U4VkDqOgYonE8QujRMeBR1AWmXwM+0jYcIXTpCmqP8mnUh+RjtQ1Hp8xOzo4fP07btm0B2LRpEwEBAVy6dIl169axZMmSQs+vVq0an376Kc8//zxXrlxh06ZNPPbYYxgMmfOOWrRowQMPPGBuaEIUwwdAAwyc0joQIXTsR9R1Z7ZpHYgQOvYncD/I3GUhChCBOq1kOJhdL8A+mF0QJD4+Hm9vbwB27txJnz59cHBw4KGHHuLSpcIn9O3evduU3OXHx8eHPXv2mBuaEMV0C6lAJ0RhbhV+iBB2T9qJEIWL0joAXTO756xOnTps3bqVy5cvs2PHDjp37gyowxV9fHwKPX/GjBlERkbm2h8dHU2HDjJ5VpSGZwB3rYMQQue6AlW0DkIInWuG2jsmhMhfVdR5mKI4zE7Opk+fzsSJEwkKCqJFixa0bNkSUHvRmjRpUuj5+/btIzk5Odf+xMRE9u/fb244QhRiPOq6M98D3hrHIoRedQO+Ri1rXEPjWITQq4ao7yW7yFyGRQiRXWXUofBbgP4ax2KdzB7W+OSTT9KmTRvCw8Np3LixaX/Hjh3p3bt3vuf98ccfACiKwpkzZ7h27ZrpZ0ajkR9//JGqVauaG44QBXgBmJ/+fVtgB2qlIKnIKESmR4ANgDNQB9iD+sTzPy2DEkJn6gI/ABXTt39AXUx3n1YBCaFD5VETs3vSt9ehLsi+WrOIrJHZyRlAQEAAAQEBXL58GYPBQLVq1WjRokWB59x///0YDAYMBkOewxfd3d354IMPihOOEHnwBWbl2PcA6gKIG8o+HCF0yYBatdQty74awHPkXrdJCHv2GpB1fT8vYBySnAmR1VCgUZZtB9RlJb4gc0kWURizhzWmpqbyxhtv4OvrS1BQEDVr1sTX15fXX3+dlJSUfM+7cOEC586dQ1EUDh8+zIULF0xfYWFhREdHM3To0BL9MUJkikJNxK5n2TcJScyEyEoBeqBWmcuwBpipRTBC6NiLqEMaM+xHfYghhMi0EMhauf086nxmSczMYXbP2UsvvcSWLVuYP3++ab7Zb7/9xsyZM7l582a+65PVrFkTgLS0tBKEK4Q5TqMO2doBrAIWaxqNEPp0HeiI+sHzHDASKW8sRE6JwFOow7SCgJ5AgpYBCaFTE4BYYBDQBbiqbThWyOzkbP369Xz55Zd07drVtK9Ro0bUqFGDp59+Os/kbNu2bXTt2hVnZ2e2bSt4nZwnnnjC3JCEKMB/qNW1ZJ6ZEPm7jdrTnADIAzQh8paC2lvmiboouxAibzOA91HfW4S5zE7O3NzcCAoKyrU/KCgIFxeXPM/p1asX165dw8/Pj169euV7bYPBgNFoNDckIQohiZkQhZMPm0IUzghEax2EEFZAErPiMnvO2ZgxY5gzZw5JSUmmfUlJScydO5eXXnopz3PS0tLw8/MzfZ/fV3ETs6VLl1KrVi3c3Nxo1qxZoSX5k5KSmDZtGjVr1sTV1ZW77rqLVatWFet3C+0pNAYKLkgjhL2LNXqjzi8TQuTPDRiodRBCWIHBFLOuoChEkf5V+/Tpk237p59+olq1aqZS+qdOnSI5OZmOHTtaPsJCbNiwgVdeeYWlS5fSunVrPv74Y7p27cqZM2eoUSPv9Xr69evH9evXWblyJXXq1CEiIoLU1NQyjlxYgsI9wHbUN9RewC+axiOEHiUYPfjyxhjUanMjUYt+CCGyc0YtGtUNuBeYom04QujWu6hVGHsAA4CkAo8W5ilScubr65ttu2/fvtm2q1evXuD5S5YsKfDnWY0bN67IxwIsWrSIYcOGMXz4cAAWL17Mjh07WLZsGfPmzct1/I8//si+ffs4f/48FSpUAMhzmKbQP4XaqOtpVE7f8x3wJLBTs5iE0JvENDc23BzNzdTA9D2foM6Z+UjDqITQG0fUYh/d0rcnoLaTcUiBHCGymo6amAE8gbrY9JNAvFYB2ZwiJWerV5ds8bj33nuvSMcZDAazkrPk5GSOHTvGlCnZn2517tyZgwcP5nnOtm3baN68OfPnz+ezzz7D09OTJ554gjlz5uDu7p7nOUlJSdmGcUZHy3hzfZgIBGbZdkd9I5XkTAvSTvTpz/gWXEvJOYpgDOqioPJmWtaknejVw6gfMLN6GlgEXCj7cOyctBO9qgEE59j3COrUkr1lHo2tKtZg0T/++IN///0Xg8FAvXr1uO+++wo8/sKF0nlhu3nzJkajEX9//2z7/f39uXbtWp7nnD9/ngMHDuDm5saWLVu4efMmo0eP5vbt2/nOO5s3bx6zZuVc0FhYilLsp5IvAxWAjGG3vwPPYTAU47ZWSl6IJk2x73U8pJ0U7Of4T0t4fnHPXIZatXRq+nYo8BjFTcxK+nd08BheovMtEYOWpJ2UrhpejxT73NiU+dxOmoDaixaLOmSreJ9fShIHQGjsnhKdb+2knehVKNAd+AbwRa3uOxRJzCzLrIIghw8f5r777qNJkyb069ePp556ivvvv59GjRpx5MiR0oqxUAaDIdu2oii59mVIS0vDYDDwxRdf0KJFC7p168aiRYtYs2YNCQl5r1kydepUoqKiTF+XL1+2+N8giiMZdazzF8BJoCcGQ6ymEdkzaSd6Nh14HQhHXXcmVNtw7Ji0E/3ycv6JSm5zgSjUdcwOaRyR/ZJ2ome/or6P3ARGA+u1DccGFbmL4cyZM3Ts2JH69evz+eefU79+fRRFISQkhPfee4+OHTty6NAhGjRokOvc4OBg5syZg6enJ8HBObtDs1u0aFGRg69UqRKOjo65eskiIiJy9aZlqFKlClWrVs02jy7jb7ly5Qp169bNdY6rqyuurq5FjkuUJSMwBKiAwRCldTB2TdqJ3r0DrECWltCWtBN983A6AHyItBNtSTvRu2NAA6SdlI4iJ2czZsygU6dOfP3119l6pZo0acIzzzxDnz59mDlzJl999VWuc0+cOEFKSorp+/zk19uVHxcXF5o1a8auXbvo3bu3af+uXbvo2bNnnue0bt2ajRs3Ehsbi5eXFwD//vsvDg4OVKtWzazfL/RCkcRMiCKRN1IhCiftRIjCSTspLUVOzvbu3csPP/yQZwJlMBh47bXX6NatWx5nwp49e/L83hKCg4MZOHAgzZs3p2XLlqxYsYLQ0FBGjRoFqF3jYWFhrFu3DoABAwYwZ84chgwZwqxZs7h58yaTJk1i6NCh+RYEEVpzAZ5FLWAghMjfENRhvvY9/1GIgsSntsXV8Q8c5aGeEAVoB0QAIVoHYneKnJzFxMTkO1QQICAggJiYGLN++eXLlzEYDCXqserfvz+3bt1i9uzZhIeH07BhQ7Zv307NmjUBCA8PJzQ0c36Fl5cXu3btYuzYsTRv3pyKFSvSr18/3nzzzWLHIEqTE/A/1PH/TVCLgEhZYyFyexN4FbXi3JNA3nNohbBncSkduZU0CSfDZfzcX8XJ4bbWIQmhQy1Ri37EoxYAyX/Um7C8IhcECQoK4vDhw/n+/PfffzclRAVJTU3ljTfewNfXl6CgIGrWrImvry+vv/66aeijuUaPHs3FixdJSkri2LFjPPzww6afrVmzhr1792Y7/p577mHXrl3Ex8dz+fJlFi5cKL1muuQArEJNzABeBD5FraQlhMg0BTUxA+gMfA94axeOEDoUn9qGW0kTAQdSlZpEJCwiNS3/h85C2KcmwDbUdf4qoy5P9JCmEdmbIidn/fv3Jzg4mD///DPXz06fPs3EiRN5+umnC73OSy+9xIoVK5g/fz4nTpzgxIkTzJ8/n5UrVzJ27Fjzohc27iGgX459vYC7yj4UIXSrCjApx75W6V9CCABFcSQyaQhZH+6lKoHEp7bRLighdOkNoFyW7XJAyZdAEUVX5GGNU6dO5aeffuL++++nU6dO1K9fH1CrOP7000+0aNGCqVOnFnIVWL9+PV9++SVdu3Y17WvUqBE1atTg6aefZvny5cX4M4RtOog61+wzwBm1e/0J4F8tgxJCZzLK43+Puu4fwEhgh2YRCaE3BoMRP/cpRCS8TapSHQBv5414O3+tcWRC6M1AYAvq4tKgvre8qF04dqjIPWdubm7s2bOHuXPnEh4ezvLly1m+fDnXrl3jzTffZM+ePbi5uRXpOkFBQbn2BwUF4eLiYlbwwh58DfQFItP/+6um0QihT0eBR4FrqPMy12objhA65ORwA3/3CTg7XMDL6VvKuXyCmUWihbADcagPwr8HfgaeBoo37UgUT5F7zkAtXf/qq6/y6quvFn5wPsaMGcOcOXNYvXq1aQ2LpKQk5s6dy0svvVTs6wpb9gNQB3VhUCFE3k4DDZF2IkT+HB0i8Xcfj4EEScyEyFci8BTqqKVEjWOxP2YlZ8XVp0+fbNs//fQT1apVo3HjxgCcOnWK5ORkOnbsWBbhCKskHziFKJy0EyEK42CI1zoEIaxACtJjpo0ySc58fX2zbfft2zfbdvXq1csiDKFrvYFDqPNnhBB5aw3EAqe0DkQI3UpNCyAlrQbuTvlXmBZC+KAOX/xc60BEDmWSnK1eLYsHi4I8hVr04wJqYYPQgg8Xwi49gFre2Aj0AH7XNhwhdCg1rRLXE+ZjVCpT0fUdPJ33ah2SEDrkgfp+0hqoBczRNhyRTZELgghROrqjFi9wRJ1Xtgeoq2lEQujPfcB3qE86ywM/Ag8XeIYQ9sePiIR3MCoBgCO3kqYQm/KY1kEJoTOuqMXWWqdvTwfe0S4ckUuZ9JzltGnTJr766itCQ0NJTk7O9rPjx49rEZLQhAPq0xrnLPtqAH2QFwohsppCZpl8AC/UdWd+0SYcIXRpmKlMvsqBmJQn8HTahcFg1CwqIfSlC2p136wGAIuA62UfjsilSMlZcHBwkS+4aNGiAn++ZMkSpk2bxvPPP88333zDkCFDOHfuHEeOHGHMmDFF/j3CFqQBXVF7ARqm7/sIScyEyGkY4I3aXgB2IouCCpHT23g5NyE2pTcAToZQ/Nxek8RMiGy2AWOAD1Afkt8CHkMSM/0oUnJ24sSJIl3MUIS6tEuXLmXFihU888wzrF27lsmTJ1O7dm2mT5/O7du3i/R7hC25DnQEtqOWAh9frKsoSqoFYxLC8pp6DCjR+WnKRi4mVyJV8aGO60YcDE+afY3j8f8rUQyW8HP8p1qHIGyWQmxKP2A20J9U5RHC4q9qEklo7B5Nfq8QRbMCdT2zhUA34C9twxHZFCk527PHci8yoaGhtGrVCgB3d3diYmIAGDhwIA899BAffvihxX6XsBa3UbvY4wFF41iE0CcHg5FaLktJwxkHQ3LhJwhht6ajfuiUpSWEyN8XqHOZpZ3oTZkXBAkICODWrVsA1KxZk0OHDgFw4cIFFEU+mNuvWNRhjkKI/BgMaTgakrQOQwgrIB84hSictBM9KlZBkCNHjrBx48Y8C3ps3ry5wHM7dOjAt99+S9OmTRk2bBjjx49n06ZNHD16NNdi1cKW1ACaAN9oHYgQumVU3LhjbEFFx18owihxIeyUAzACWAnIkHYh8jcQ+BaI1DgOYQ6zk7Mvv/ySQYMG0blzZ3bt2kXnzp3577//uHbtGr179y70/BUrVpCWpvaQjBo1igoVKnDgwAF69OjBqFGjzP8LhBUIAHagrqUxErV0vhAiqzTFmXNJrxCbVp9EpwCqOn8lCZoQeVqKWiSnE2qVORnmK0RuY1ErMJ5ELSZ1U9NoRNGZnZy99dZbvPfee4wZMwZvb2/ef/99atWqxciRI6lSpUqh5zs4OODgkDmasl+/fvTr18/cMITVqIhajbFO+vangCfqm6sQAiBNceR80lhi0+oDEJHanTTcqO78GQaDDPcWItNC1MQMoCewBXgSSNAsIiH0ZyhqYgZwP7AbNUHTpkCOMI/Zc87OnTtH9+7dAXB1dSUuLg6DwcD48eNZsWJFka5x584dFixYwLBhwxg+fDgLFy6USo02ayBwb459I1AXQRRCAMSkNSA6rXG2fZGpD5CilNcoIiH06C5yLyHRDvXDpxBC5QFMy7GvAWpPs7AGZidnFSpUMFVYrFq1Kn/++ScAkZGRxMfHF3r+vn37qFWrFkuWLOHOnTvcvn2bJUuWUKtWLfbt22duOEL3FpN93bL/UNfTkKIGQmTwdTxNTZcVZBTFcSSOOm7v4uIgD62EyHQOtex3dPp2Kuqwxt80i0gI/YlHrYB9Icu+15ApJdbD7GGNbdu2ZdeuXdx3333069ePl19+mZ9//pldu3bRsWPHQs8fM2YM/fr1Y9myZTg6OgJgNBoZPXo0Y8aMMSV7wpa8DsSgPvHsgix0KERuFZ1+xYEkQpOHUMd1ER4OoVqHJIQO/Yr6PrINCE7/rxAiuwtAB9RpJV8D72objjCL2cnZhx9+SGJiIgBTp07F2dmZAwcO0KdPH954441Czz937hxff/21KTEDcHR0JDg4mHXr1pkbjrAa7wDLyHziKYTIqbzTUXwc/8LRIPNnhMjfUeAe5P1EiIJcAVqiPhwX1sTs5KxChQqm7x0cHJg8eTKTJ08u8vlNmzYlJCSEu+++O9v+kJAQ7r//fnPDEVZF3kiFKIwkZkIUhbyfCFE4ScysUbHWOUtLS+Ps2bNERESYyuJnePjhh3Md/8cff5i+HzduHC+//DJnz57loYceAuDQoUN89NFHvP3228UJR+iCAbVM/iqkrLEQ+buV2hpfx1M4GWK1DkUIHesChAIhWgcihI41BPxRqzEKW2F2cnbo0CEGDBjApUuXUJTsJZ4NBgNGozHXOffffz8GgyHb8Xn1tg0YMID+/fubG5LQhcXAaOBx4CmkrLEQud1I6cDllOdxM4RRx3U+Lg6RWockhA51ADahPvXvCpzSNhwhdKku6pyycsAzqItNC1tgdnI2atQomjdvzvfff0+VKlUwFGGV1AsXLhR6jLBmb6EmZqA+7fwO6IV0pwuR6VZqay6nPA9AolKV/5Jeo47rO7g63NI4MiH0pBWwGXBL/9oF9AB+1zIoIXSmJrADtdcM4CtgMLBBq4CEBZmdnP33339s2rSJOnXqFH5wupo1a5r7a8yydOlS3n33XcLDw7n33ntZvHgxbdu2LfS8X3/9lXbt2tGwYUNOnjxZqjHaruqowxmzagk0BWRpBCFULlxL6ZltT5LiT7SxEZUd9mgUkxB6NBXwzLJdHrVcviRnQmQahfr5K4MT6hqyXwFKnmcI62H2OmcPPvggZ8+eLdEvPXfuHGPHjuXRRx+lU6dOjBs3jnPnzhXrWhs2bOCVV15h2rRpnDhxgrZt29K1a1dCQwsuQx0VFcWgQYOKVP5fFOQy6rplGesxGYFBSGImRFbJ1HV9G1fDNdOeKs5bqOwsiZkQ2T0NZG0XG4DxGsUihF5NA1Zm2T4K9EYSM9tgdnI2duxYJkyYwJo1azh27Bh//PFHtq/C7NixgwYNGnD48GEaNWpEw4YN+f3337n33nvZtWuX2X/AokWLGDZsGMOHD6d+/fosXryY6tWrs2zZsgLPGzlyJAMGDKBly5Zm/06R0xHUBQ/DgRdQ5woIIbJycbhNPbe3cDNcxs9pOwFOW7UOSQgdigOeALajzqEZTMbi7EKIDGmovWdLgNOoi7PLVBJbYfawxr59+wIwdOhQ076MYh/5FQTJasqUKYwfPz5XZcYpU6bw6quv0qlTpyLHkpyczLFjx5gyZUq2/Z07d+bgwYP5nrd69WrOnTvH559/zptvvlno70lKSiIpKcm0HR0tJXxzOw3ci7w42C9pJ4VzNkRxt9ubOJBIEabrChsk7aQoEoEnUZ8fp2oci9CCtJOimgB4AVL915aYnZyVtLhHSEgIX331Va79Q4cOZfHixWZd6+bNmxiNRvz9/bPt9/f359q1a3me899//zFlyhT279+Pk1PR/vx58+Yxa9Yss2KzT8VLzAyGYq3okI2iyBu41qSdFKwcHuo3BiDjezNUdXMpcQzH40t8iRLz83ygxNeIiDtigUi0Ie2kqFK0DkBoSNqJOSQxszVmD2usWbNmgV+FqVy5cp7FN06ePImfn5+54QDkqhiZ0YuXk9FoZMCAAcyaNYt69eoV+fpTp04lKirK9HX58uVixWn9OgKNtQ5C6JS0kwz3oJb/FiI3aScZKgDPax2E0ClpJxmcUathm/1xXVixYnVZnDt3jsWLFxMSEoLBYKB+/fq8/PLL3HXXXYWeO2LECF544QXOnz9Pq1atMBgMHDhwgHfeeYcJEyaYFUelSpVwdHTM1UsWERGRqzcNICYmhqNHj3LixAleeuklQF1QW1EUnJyc2LlzJx06dMh1nqurK66urmbFZnvaoJY3TkJdy+ywtuEI3ZF2AlAbtbxxZdQPnhu1DUfojrQTAB/UOWXNUCvOFT69QNgXaScAjsBnQF/gIWAoMszXPpidnO3YsYMnnniC+++/n9atW6MoCgcPHuTee+/l22+/LXTO2BtvvIG3tzcLFy5k6tSpAAQGBjJz5kzGjRtnViwuLi40a9aMXbt20bt3b9P+Xbt20bNnz1zH+/j4cPr06Wz7li5dys8//8ymTZuoVauWWb/ffjwAbEMdiuWBuuhhL+AXDWMSQm+qoSZmgenbn6G2l7WaRSSE/nigFvpolr49A3XOzJR8zxDC/hiAT1ETM1AXmfYAnkV9SC5smdnJWUkKeqSmpvLFF1/wzDPPMH78eGJi1DlK3t7e5oZhEhwczMCBA2nevDktW7ZkxYoVhIaGMmrUKEDtGg8LC2PdunU4ODjQsGHDbOf7+fnh5uaWa7/IaiKQ9f+RN+oLhCRnQmQaCgRl2XZM3/cZUm1OiAxdUReazuop4F1AFmQXQtUItV1k1RGoh1qATdgyswexhoSEMGzYsFz7hw4dypkzZwo818nJiRdffNFUgcfb27tEiRlA//79Wbx4MbNnz+b+++/nl19+Yfv27ab5b+Hh4YWueSYK8zzwQ5btLahjoIUQmeYAH2bZPolaElwSMyEyfQ2MybIdDnRBEjMhsjoF9AQyqjglpG9LYmYPzE7OSlrQ48EHH+TEiRPm/toCjR49mosXL5KUlMSxY8d4+OGHTT9bs2YNe/fuzffcmTNn5vn3iKwyyhpvRh229RzqYtNCiEwK6mK5bwNnUHsIojSNSAh9WgEMAa6jtpOz2oYjhC7tRl2/7AbQDxmtZD/MHtZY0oIeo0ePZsKECVy5coVmzZrh6emZ7eeNGjUyNyRRJpKBAaiVg5I1jkUIPXsDeAcpbyxEQT4HtiLtRIiC/Io6lFHaiT0xOzkraUGP/v37A2Q71pxFrIWWjEiPmRBFIW+kQhRO2okQhZN2Ym/MTs4MBgPjx48vdkGPki5iLUpTOdThi59qHIcQeuYEjAKWI2WNhSjICOArZHivEAXpgzpH+bzGcQi9KNY6ZxnMLeYRExPDv//+S0pKCi1atKBSpUol+fXCoryA74AHUddqek3bcITQJQdgFWpZ4/aoQ31lmK8QuU1BLZIzAnXezE1twxFCl3oD/0Odf/kYEKJtOEIXipScNW3alN27d1O+fHmaNGmCwWDI99jjx4/nuf+PP/6ga9euXLt2DUVR8PHxYdOmTTz66KPFi1xYkDvq2P8H07cnAZ7AK6hFDoQQqqWoiRmolbO2oPY2J2gWkRD6Mw41MQNoglrY4DHUyoxCCFUX1LmXjqjrY2YUADmpYUxCD4qUnPXs2dO0UnvPnj0LTM7yM2XKFGrUqMHGjRtxc3Nj1qxZvPTSS/z9999mX0tYWgegXY59PYG3UJ/mCCHgHjITswxtgAbAsbIPRwhd8gaCc+xrALRFHeIohFC9Brhk2a6M+tnrpCbRCP0oUnI2Y8YM0/czZ84s1i86evQo27dvp3nz5gCsWrUKPz8/YmNj8fLyKtY1haV8j7pY7ieoT3AiUJ/oSGImRKa/UZ9qbgN8gCSgL5KYCZFVDOoDvx1kLsr+MpKYCZHTE8C3QMv07Y+BWdqFI3TD7HXOateuza1buReLjIyMpHbt2vmed/PmTWrUqGHarlixIh4eHty4ccPcEESp+Ax4lsx1Z/7RNhwhdOlXMh9cPAP8pG04QujSeeAR1PeRqajDgYUQ2UWhft7agzq8cay24QjdMLsgyMWLF/Msd5+UlMSVK1fyPc9gMBATE4ObmxuAqXR+TEwM0dHRpuN8fHzMDUlYzNfAj0Cc1oEIoWNHgbuRdiJEQa6gzmOWdiJE/uKAHqiVf2WOv1AVOTnbtm2b6fsdO3bg6+tr2jYajezevZtatWrle76iKNSrVy/XviZNmpi+l3XO9EDeSIUonLQTIQon7USIwiVpHYDQmSInZ7169QLUHrDnn38+28+cnZ0JCgpi4cKF+Z6/Z8+e4kUoLGw4aoW53ENTtZOmdQBC5NATdUiWWrCojlf3El/x59iSrR/Y03FUiWPQg4i4I1qHICzmAdQCID9rHYgQOlYVdZjv51oHIqxEkZOztDT1A3StWrU4cuSI2WuUtWuXsxqgKHvBwDvAS6hlja9pG44QutQdWA9Eos4HOKVpNELo032oa2N6Ak+nfy+EyM4PtTjO3ajVGN/TNhxhFcwuCHLhwgVZPNoqjUJNzADuRZ2AWiP/w4WwSx2ALwFn1DfSXWSu/yeEUNUDfgAqAK7ARqCfphEJoT/lUdvJ3enb84E3tAtHWI0i9ZwtWbKEF154ATc3N5YsWVLgsePGjbNIYMKS3Mm97kwd4GGkm12IrCYDblm2ywO9gAOaRCOEPo0E/LNsO6FW+5Vy+UJk6gU0yrHvKdTes9gyj0ZYjyIlZ++99x7PPvssbm5uvPde/l2yBoNBkjNdSgAeRa3EWDd93yQkMRMipyeBrWQuyr4GdaHQbhrFI4QeTUJd629w+vYvqEMbhRCZVgPlUHvMQF1i4jEkMROFKVJyduHChTy/F9YkFHXI1g/AJmCxptEIoU+xqGWNv0Jdg2YkUt5YiJzSgBdQ28uDqD0ECVoGJIROvQfEo47K6AJc1TYcYRXMXudMWLNrQGvUFwohRN4SgD6oSZlUEhUibwowHvBA3lOEKMjHwGdIOxFFVaTkLDg453yl/C1atKjYwYiyIC8OQhQuResAhLAS8p4iROGknYiiK1JyduLEiWzbx44dw2g0cvfdagWaf//9F0dHR5o1a2b5CIWZ7geqoA5fFELkLQC1TP5qrQMRQsfcUIf2foD0IgtRkLHAKmThdWEJRUrOsi4gvWjRIry9vVm7di3ly5cH4M6dOwwZMoS2bduWTpSiiO4BtqNOQB2EOrdMCJFdRdSHFw1Rk7R52oYjhC45AxtQi+E0A4YCqZpGJIQ+LQBeRq3E2AN1vrIQxWf2OmcLFy5k3rx5psQMoHz58rz55pssXLjQosEJc9RGXeiwMuqb6ufA85pGJIT++KA+wGiYvj0beEu7cITQJUdgHZlVSp9BXf/PRbOIhNCnGaiJGUBL1LUxZS1gUTJmJ2fR0dFcv3491/6IiAhiYmIsEpQojqFAYJZtR2AAYNAmHCF0qTvQNMe+XoBv2YcihG41Qe0ByOphoJYGsQihV5VRh/1mdR9q+xGi+MxOznr37s2QIUPYtGkTV65c4cqVK2zatIlhw4bRp0+f0ohRFMkbwNIs27+RWXFOCKFaD2Rdi/ESanljGYYiRKajQG8yixhkLDHxj2YRCaE/N4COZJbHTwOGoPaeCVF8ZpfSX758ORMnTuS5554jJUWtaObk5MSwYcN49913LR6gKCoFtWs9FuiM+kYqE1OFyG0ZatuYiZqYXdY0GiH0aRdqT/OXqKMwftc2HCF0KYTMNWTfRm0vQpSM2T1nHh4eLF26lFu3bnHixAmOHz/O7du3Wbp0KZ6enqURY6GWLl1KrVq1cHNzo1mzZuzfvz/fYzdv3kynTp2oXLkyPj4+tGzZkh07dpRhtKVtGtAO6QkQoiDrUOedndM6ECF07ABQD/hF60CE0LFzqJWyV2kch7AVZidnGTw9PWnUqBGNGzfWLCkD2LBhA6+88grTpk3jxIkTtG3blq5duxIaGprn8b/88gudOnVi+/btHDt2jEceeYQePXrkWi7Ausl6GkIUTtqJEIWTdiJE4aSdCMsxe1hjXFwcb7/9Nrt37yYiIoK0tOxrn5w/f95iwRXFokWLGDZsGMOHDwdg8eLF7Nixg2XLljFvXu4S2YsXL862/dZbb/HNN9/w7bff0qSJNUzidAFGo647Y9Q4FiH0bCywFojWOhAhdOxZ4CBwQetAhNCx9kAK8KvGcQh7YHZyNnz4cPbt28fAgQOpUqUKBoN21QCTk5M5duwYU6ZMyba/c+fOHDx4sEjXSEtLIyYmhgoVKuR7TFJSEklJSabt6GitPuw5Af8DeqKWbB0IJGsUixDZ6aedAMwFJgPPoZYDv6VhLEJk0lc7eQ51IfYrwGNIwQ+hF/pqJ62Arenf9wF+1i4UYRfMTs5++OEHvv/+e1q3bl0a8Zjl5s2bGI1G/P39s+339/fn2rVrRbrGwoULiYuLo1+/fvkeM2/ePGbNmlWiWEvOAXU8c8/07T6AB9APSNAqKItQlLTCDxK6p492AjAFNTEDtWz+T0BXoGivCXk5G/t9ycMqoW9ilmsdgrAA/bST3sCn6d9XQ/3A2Q04pVlEQmTQTztpAmwDMqbvbAP6A9q/JwjbZfacs/LlyxfYy6SFnL13iqIUqUdv/fr1zJw5kw0bNuDn55fvcVOnTiUqKsr0dfmyFtXd7kVdjymrVsBdZR+KEHnQRzspjzrsN6v6QHMNYhEiN320EwMwEXU9zAx+qJV+hdCePtoJwBiyr4PpivpQXIjSY3bP2Zw5c5g+fTpr167Fw8OjNGIqskqVKuHo6JirlywiIiJXb1pOGzZsYNiwYWzcuJFHH320wGNdXV1xdXUtcbwlcxq1rPE3gDfq5NMngD+1DEoIE320kzvAI8AOoGb6vheA7zSLSIis9NFOFNT3k2+Bh9L3LQRkORyhD/poJwCjUBOyp9O3vwWGaReOsAtmJ2cLFy7k3Llz+Pv7ExQUhLOzc7afHz9+3GLBFcbFxYVmzZqxa9cuevfubdq/a9cuevbsme9569evZ+jQoaxfv57u3buXRagWsh91XsAmYCgyMVWIvJxDTdB+BD5ELZsvhMguEnW47xbUuWZTCjxaCPuUCjyPOn2kBvBM+j4hSo/ZyVmvXr1KIYziCw4OZuDAgTRv3pyWLVuyYsUKQkNDGTVqFKB2jYeFhbFunfoBbf369QwaNIj333+fhx56yNTr5u7ujq+vb76/Rz8OA3dj7fPMhChdl1GHMko7ESJ/scDjSGEpIQqSBoxE7UFLKuRYIUrO7ORsxowZpRFHsfXv359bt24xe/ZswsPDadiwIdu3b6dmTXVIU3h4eLY1zz7++GNSU1MZM2YMY8aMMe1//vnnWbNmTVmHX0zygVOIwkk7EaJw8mFTiMIpQKLWQQg7YVAURSnOiceOHSMkJASDwUCDBg2sZI0wy4iOjk7vZXNEnVhtaU8Dx4F/S+HawpYpSorp/oyKisLHx0ezWEq/nbQBnIE9pXBtYeuiom7ZSTupjVo86vNSuLawdfbTTnyAIcD7pXBtYess/dnL7J6ziIgInn76afbu3Uu5cuVQFIWoqCgeeeQRvvzySypXrlyigEQ/1IVzb6DOBzitbThC6NIDqMVxXFAfZkhZYyFyq4ZaHCcIqIh88BQiLx6oJfJbo1b3HY06lFEIbZhdSn/s2LFER0fz119/cfv2be7cucOff/5JdHQ048aNK40Y7cjjwBrU/y3+qOszPaBlQELo0H2o1Rd9ADdgI/CkphEJoT9+qEVxgtK3FwCvaRaNEPrkCnyNmpiBWolxDcXouxDCYsxOzn788UeWLVtG/fr1TfsaNGjARx99xA8//GDR4OzPeNRhWhkqAF00ikUIvRqB2jYyOCPJmRA59UYtHpVzn5sGsQihVw8B7XPsaw9UKfNIhMhgdnKWlpaWq3w+gLOzM2lp0g1cMj2BX7JsfwC8qVEsQujVK6hPNjPsAAZpEokQ+vUx8GqW7TOoQ+WlqIEQmfahTifJKIxzE7WdaLXotRDFSM46dOjAyy+/zNWrV037wsLCGD9+PB07drRocPYno6zxDmAVMEHbcITQpTTUhaU/Qn2Y8RRSClyIvCwCxgL/oa6ReVPbcITQpW+BXsBV1MXZ/9I0GiHMHlT74Ycf0rNnT4KCgqhevToGg4HQ0FDuu+8+Pv9cqkGVXALQB3WRw2IV0hTCDiioPWhuSE+AEAVZjtrTLO1EiPz9hDoMWNqJ0J7ZyVn16tU5fvw4u3bt4u+//0ZRFBo0aMCjjz5aGvHZKekFEKJo5I1UiMJJOxGicNJOhD4UuxxNp06d6NSpkyVjsSM1gE7ASq0DEULHvFCHL76H9CILkR8H1GJSy4E4jWMRQs9eQF12JUzrQIQoUJHnnP388880aNCA6OjoXD+Liori3nvvZf/+/RYNzjYFoM4pWw5M0TgWIfTKHdgKvAOsRl14VAiR21LgbWA74KtxLELo1TjUecp7gFoaxyJEwYqcnC1evJgRI0bkueq1r68vI0eOZNGiRRYNzvZURF13pk769hykGqMQObkAXwHt0refBdan7xdCZFqIui4TQCtgJ+r7jBAi0zDUtgJqYraH3MtMCKEfRR7WeOrUKd555518f965c2cWLFhgkaBsVzfg3hz7uqM+9Ywt+3AAA4YSXsACPRqKseSXkGFvNqQZ0CHHvtZAVeCC2VdLVdaUOCInw+ASX6Opx4ASnX88/n8ljkEP/DwfKPE1bif+Y4FIrF0gkPOeujf965fchxfCEu3Ex216ia9RUvFJoSW+Rg2vR0p8jZsp50p8jZKq5HyX1iHogDPwUo59VYE2gPmvI3p5P+npParE1zifdqtE55+O21jiGHzcS54kRyfY3vtBkXvOrl+/nuf6ZhmcnJy4ceOGRYKyXZ+hdq1n+Be1vLE2iZkQ+vQb6mK5Cenbd1DXnTE/MRPCdl0FOqb/F9QKv89QnMRMCNuVAnQGTmbZNxWZ8y/0rMjJWdWqVTl9+nS+P//jjz+oUkVWVC/cMtQu9nNAF+C6tuEIoUs7UXuVw1DX/vtD23CE0KUzqL3M54HBqOs1CSGyu4FahO0QMBeQUV5C34o8rLFbt25Mnz6drl274ubmlu1nCQkJzJgxg8cff9ziAdqmdcAGMlekF0Lkth91XoC0EyHydw5ohLQTIQoSCTyKtBNhDYqcnL3++uts3ryZevXq8dJLL3H33XdjMBgICQnho48+wmg0Mm3atNKM1cbIC4QQhZN2IkThpJ0IUThpJ8I6FDk58/f35+DBg7z44otMnToVRVELMBgMBrp06cLSpUvx9/cvtUCtiwGYAKwAci89IITIMBz4CbiocRxC6Fk3IAr4VetAhNCx+4AGqCOThLBeZi1CXbNmTbZv386dO3c4e/YsiqJQt25dypcvX1rxWanFwGjgKdQ31ZJVxBHCNo0CPgCuoBbGsb2KS0KUXAfUD5tGoA/ws7bhCKFL9YAfgMqAD/CJtuEIUQJFLgiSVfny5XnggQdo0aKFJGa5vIWamAE0Re0VCNAuHCF0aSBqYgZQDfUDZyPtwhFCl1oBmwE3wBPYhlooRwiRKQjYAfijfqxdCryiYTxClEyxkjORn0rAczn23Q001CAWIfTKkdzrzvgBbTWIRQg9ewE1Kcvgilq9VAiR6UnUh3xZ9UB9rxHC+khyZlE3UYegZCyCaQQGofaeCSFURtRhjIez7JsJfKRJNELo13Cyz5/ZAIzRKBYh9GoBMDvL9hGgF+p7jRDWx6w5Z6IozgKPoI59fhvYpG04QujSHdR1/r5BTdLmahuOELqUivqALwGoiLqWWZqWAQmhU3OAOOBZ1KG/MdqGI0QJSHJWKkJR55tJ2VYh8hcLdAWStQ5ECB1LQx3e6ISarAkh8rYIdQSGfPYS1k2GNZYaeXEQonCSmAlROAVI0ToIIayAfPYS1k+SsxJ5WOsAhLACz2gdgBBWIGeRHCFEbhNQq5cKYbtsIjlbunQptWrVws3NjWbNmrF///4Cj9+3bx/NmjXDzc2N2rVrs3z58mL+5i9Rh2UJIfL3EfCy1kEIoXOzgWXYyNuyEKVkGupcZc/CDhTCaln9u8CGDRt45ZVXmDZtGidOnKBt27Z07dqV0NDQPI+/cOEC3bp1o23btpw4cYLXXnuNcePG8fXXXxfjt7sBXwN9S/InCGEHFgBTtQ5CCJ0bDqxGSoALUZAOqEXXfLUORIhSYfXJ2aJFixg2bBjDhw+nfv36LF68mOrVq7Ns2bI8j1++fDk1atRg8eLF1K9fn+HDhzN06FAWLFhQzAicgW7Fjl8I+9EVcNE6CCF0rjVQWesghNC5+4C7tA5CiFJh1dUak5OTOXbsGFOmTMm2v3Pnzhw8eDDPc3777Tc6d+6cbV+XLl1YuXIlKSkpODs75zonKSmJpKTMSaZRUVHp30UD3wIjUCdsW58SR61Y4u/WyzWsX3R0NNHR0QAoFvl/U3QFt5M/gCfQYrJ2dHS8Ba5S8n9Lo1LS4ie2cY+nKSWvOGiJe1uf7eQaahnw8DKNCSzTThRFD2X+S/7/0zL3qPb/Fpb4O/TZThKAfsCxMo0J9PN+klLi9xMwKiUtMlTyv0NRLLEWnfbvjRb/7KVYsbCwMAVQfv3112z7586dq9SrVy/Pc+rWravMnTs3275ff/1VAZSrV6/mec6MGTMU1P/78iVfVvN1+fJlyzS0IpJ2Il/W+CXtRL7kq/AvaSfyJV9F+7JEWzEoShk/DrGgq1evUrVqVQ4ePEjLli1N++fOnctnn33G33//neucevXqMWTIEKZOzZz/8uuvv9KmTRvCw8MJCAjIdU7OJziRkZHUrFmT0NBQfH19LfxX2Zfo6GiqV6/O5cuX8fHx0Tocq5bxbxkaGorBYCAwMBAHh7IbuSztpPRIO7GsjH/PM2fOcPfdd0s7sRHSTixL2ontkrZiOaXx2cuqhzVWqlQJR0dHrl27lm1/REQE/v7+eZ4TEBCQ5/FOTk5UrFgxz3NcXV1xdXXNtd/X11duagvx8fGRf0sL0eq+lHZS+qSdWFbVqlXL9AMnSDspC9JOLEvaie2StmI5lrw3rbogiIuLC82aNWPXrl3Z9u/atYtWrVrleU7Lli1zHb9z506aN2+e53wzIYQQQgghhCgLVp2cAQQHB/Ppp5+yatUqQkJCGD9+PKGhoYwaNQqAqVOnMmjQINPxo0aN4tKlSwQHBxMSEsKqVatYuXIlEydO1OpPEEIIIYQQQgjrHtYI0L9/f27dusXs2bMJDw+nYcOGbN++nZo1awIQHh6ebc2zWrVqsX37dsaPH89HH31EYGAgS5YsoW/foq9V5urqyowZM/LschfmkX9Ly9Hbv6Xe4rFm8m9pWXr699RTLNZO/i0tS0//nnqKxRbIv6fllMa/pVUXBBFCCCGEEEIIW2H1wxqFEEIIIYQQwhZIciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOiDJmRBCCCGEEELogCRnQgghhBBCCKEDkpwJIYQQQgghhA5IciaEEEIIIYQQOmDVydkvv/xCjx49CAwMxGAwsHXr1kLP2bdvH82aNcPNzY3atWuzfPny0g9UCCGEEEIIIQrhpHUAJREXF0fjxo0ZMmQIffv2LfT4Cxcu0K1bN0aMGMHnn3/Or7/+yujRo6lcuXKRzs+QlpbG1atX8fb2xmAwlORPEMLiFEUhJiaGwMBAHBy0e/4i7UTombQTIQon7USIorFkWzEoiqJYKC5NGQwGtmzZQq9evfI95tVXX2Xbtm2EhISY9o0aNYpTp07x22+/5XteUlISSUlJpu2wsDAaNGhgkbiFKC2XL1+mWrVqZfb7pJ0IayTtRIjCSTsRomgs0VasuufMXL/99hudO3fOtq9Lly6sXLmSlJQUnJ2d8zxv3rx5zJo1K9f+y5cv4+PjUyqxlprp0+H999Xvr14FT09t4ykrcXEQGAiA8fJljpw5g6IoONe4m6S03Ic7JMTR8oGGAPx25E/S3Av/dzL3HEv+jtBzZ3HzcMevSlX8HI00r18Hb2/vQq9nSdbUToxGI0eOHAHg3vub8tfNWIw28Ziq6Erzfi3OvV0Wou7cJiL8CnUbNMIrLYmHG92j23aS9R4td9c93ErM44XKihT3/vn3rQXceKLgkS2leW+W5r2s1zaVnJxEyIljNH6wFQ7J8TzW9F7dtZOs7aNB4yb8dSuONBt5Da+y+mNqL3wb0P6+0NtreXHbjLnOvjGH6/2fK/AYRVE4fvAXmrZ6GFcnA3U8HAmqWcMibcWukrNr167h7++fbZ+/vz+pqancvHmTKlWq5Hne1KlTCQ4ONm1HR0dTvXp1fHx8dPehs1A1a2Z+7+NjP8mZo6Pp2zgXF7p06QLAF8fP4ubhkcfhRjL+zyY6umF0ci3CrzDvnOL8Dp8rZzPPcXDF6ORK+KULvD78WZydXZi1bhOeNdT7uKyHflhTO4mLizPdA2ev3STWsfB/e1tTmvdrce7t0hYbFcnMFwZxLfQS01Z8RqP7GgH6bSdZ79Fv/jxPqpNbmcZpacW9f1xvR5Kg4b1ZmveyHtuUMTWVha+O58juHYyZt5iHHlXvQb21k6zt45/wG8TZ0Gu4x+07urkv9PZaXtw2E/5IJ+7c26jAazukpHDPx0sAiK7fqNDXnS/ee5vNHy+hzwtjeTZ4Ki4e6vGWaCt2lZxB7n+0jFGdBf1jurq64upqIw0/R3JqjwwGA3Xq1En/XuNgzFR7w2eZG+nBO7u44O7hhbOrK56eXhpFZl3tJOs9YHU3gSgWRydnPLx9cXFzw7t8Bc3iKGo7sed71JCSYvreOTpKw0jskMGAd7nyODg6Ub5SZc3CKKydZH8ft6324RIl97ylXej3HNce6VTgMY7x8abkLOqeewu9pne58gBUDMi7Y6ck7Co5CwgI4Nq1a9n2RURE4OTkRMWKFTWKqowFBGgdgeY8PDz477//SFMUtv57rfATdMIpNpbq336da3+lKlWZ89nXGBwc0j90puQ+WWSTcQ8AhMcmwp2kQs4Q1s7d05NpKz7jVvhVAmvdBckJWodUoKz36M4LEcQmGzWOqOy4X7tq+t45JlrDSOyPo6MjI2fNp+tzQwm6uwGJcTFah5SnrO3jSkwCRCZrHJHlOMdIcmYRxszXzLhqNSx++SeGjKRRyzYEFSGRM5dVl9I3V8uWLdm1a1e2fTt37qR58+b5zjezOVmTM9uoBWM3amz9Cue4OAAigH//PGX6WXk/f8pp+JRTCD1KTkrk1K/7TNuubu5qYiZ0zTPssul7F+k5K3WKonB0zy7TSCIHBweC7pbiG1qRnjPLcI+4bvo+wd8yvVsn9u8lNUvPfmkkZmDlyVlsbCwnT57k5MmTgFoq/+TJk4SGhgLqmOVBgwaZjh81ahSXLl0iODiYkJAQVq1axcqVK5k4caIW4Wsj67BGeQGwHmlp3PX5KgDigEeB6SMH8teRQ5qGJYRepaaksODlF5gzfAA/b96gdTjCDB5XMpMzGdZY+j5b8CbzXnyezxa8qXUoghz3vDxELzbPK5dM3ytOJR8o+PPmDbw5YgDvjhueLUErDVadnB09epQmTZrQpEkTAIKDg2nSpAnTp08HIDw83JSoAdSqVYvt27ezd+9e7r//fubMmcOSJUvMWuPM6rllmVR+zXqG9FlSYmIi3bt35/HHHyc5KVHrcIrE79df8L54nhQvLwxAAODu6UUFP5lDWBwZ90D37t1JTLSOe0CYx8HRkUpVquLs4opf1epah2O2rPeotbxOWUrWnjMZ1lj6KlWpisFgIDCottahFJktv4ZnTc6c4uM0jMS6eVwJLfwgM5Sv7IeLqxv+1WviaIFkryBWPeesffv2FLRM25o1a3Lta9euHcePHy/FqKyInSZnRqOR7du3A/Dcm9ZRnjqj1yy0x5PctX4N24C1q76kcs1a2gZmpbLeA2lG+5nLY08cHBwYMf0tuj03lGp31dU6HLNlvUdHzjeCk50MvQc8wjI/VElyVvq6PTeU+x5qQ/U69bQOpciyto/3bOw1POtQXufoaJIq+2kYjfXytHBy1qTtI7y7eQdVa9cp9SI0Vp2ciRKKiNA6Ak24uLiwevVq0hQFJyuYa+h56QIBv+wmzWDgQv/nuGv9GtyAgGo1sK23pLKTcQ+AWu0SbGcyuT1LS0vj8E8/8mCnrhgMBgwGg1UmZpD9HnVydiHVjkY3eWYb1ijJWWk48vNO7m/TDmcXtSKiNSVmkNdruI0UwjIacY7NLMLiHB2pXSxWLuvrSHH9dfg3qteth095tWhgWb2fSHJmz+y058zZ2ZnBgwdbTbXGoM9WYlAUtgM/HD/Mo1oHZAMy7gFIr9YobMLqeTPY/tlKHn/+BYZMnal1OCWS9R7deSEC7Khao0e2YY0y58zSdm74nI9nTKbJwx2Y8tFqq3hImVPW9nElRt+VV82RswCOFMQpvpL2nJ0+9CtvjRxIQI0gZq3baErQyoIkZ/bs+vXCjxGacoyLo/bWjQAsd3Hhobvrs/nvq4WcJYR9qnZXXbXS3D1Sac5aOUdF4pJlKKNTYiIOyUmkuVjHGorWwL9adVzc3KhZ755SnzsjzOMcFZl9W5KzYivpnLPyfn54+ZbDv0ZNPLx8Cj/BgqRV2jM77TkzGo2cPnmSNEXB6FoZR0dHi1zXM/SiRa6TVc1vNuIcG0NMUG26LF1DYO06Fv8d9shoNHL69GkAKtWyzmFvIrcuTw/ivofaWFVhg/xkvUeNXvZT+Cevp93OUVEy78aCGrdux8KtP1GlZi2rXcA5a/soH2Q774s5e8okOSse58g72R7yFEe12nV568ttlKtUucx7l626WqMoITvtOUtMTKRJkyY0a9qUlCTLLT5cd9Vy0/dVdu8o0bXS0tL49fut1P5CHVN/7tkhkphZUMY90KRJE5JsrNJXaXG9eUPrEPJ0aOf2bNUMbSExg+z3aIodVWv0uJw7OZOhXSV36uAvRN26adoODKpttYkZ2O5ruEuOnjNZ86x4vC5fKvygPPwB/Jllu3JgNdO8zLIkyZk9s9OeM4PBQGBgIIGBgVjqvcntejjVt39j2m70zswSPfH6dM40Tk0Yjc+5/0jx8CS0dz9LhCnSZb0HLHYT2DKjkWavvWLadL96RbtYsvjhi9W8O244b784uNTXnSlr9nqPZl2bKEPOoV7CPKd+3cdbIwcxfVBfom7f0joci8j+Pm477SPXsEaZc1ksxRnJFHbxPI8C7YFLZ/+1cETmKdKwxj59+hT5gps3by52MKKM2Wm1Rg8PD8LCwixaEKTOuk9xSM38cOh28wYN353DiTkLinW92g0a0tVgAEXhUp/+pHp5WyROocq4ByC9IMgdy/Wg2qIGHyyg8tHfTdtBX3/Jn69O1zAiVbW76uHm4UHdxk2tsqhBQbLeozsvRBBrJwVBPKXnzOIqB1bDt2JFqt1VDy8fX63DsYis7eNKTAJE2kbFXek5swzPYvSc+ZSvQBBgBCr6B1g6JLMUKTnz9c1szIqisGXLFnx9fWnevDkAx44dIzIy0qwkTujA7duQlASuMtG6JJyjo6j15We59tfa+D8ud+/NzYdam33NJx5qQ5f0788/O6SEEQpRfP6//Mw9y9/Ptq/m1q84M/5VzYo0OMbH07NpHfoAVb7dQ0UrKwMu8pfXhyqZd1MygbXuYt6X3+JToZIUANG5nPe69JwVT3F6zrx9y/ET6qIMB7x9NF2qqEjDGlevXm368vf3p1+/fly4cIHNmzezefNmzp8/z9NPP02lSpVKO15haXY6tNGSam34DOe4WKKzfEC88OQAAJrOmIxDYtHK/B74fitJ6cfW/t8aDIrC9Tbtia11l+WDFqII3MPDaD55LAAXnnrWtN/1zm0Cd27XJKbjv/zMnSzz3/yrVrepYU32Lu+CIJFlH0gxOMbH0+eeQPrcE4hjfLymsZz78w8u/v2XabtiQGD6emBCz1wiI7NvS89ZsXiGFq3n7Nb1cE7s32va9gHKrmB+/syec7Zq1SomTpyYrcKdo6MjwcHBrFq1yqLBiTJgh8lZYmIiTz31FP369ctWSKA4HJKTqLPuUwDODhph2n9m7CQS/ALwunSB+h8tKvQ63/5vDe9NGM1bIwehREUR9PWX6jUHDitRfCJvGffAU089RaINTSa3JENyMi1eGYVr5B3u3NuIPye8lu3ntdevLfOYTuzfw9ujBzNt+DPoszyJ5WS9R0v6OmUtDKmpeOQxn1GGNZrn8tl/mT3sGWY8/xQX/zmjdTilwlZfw11yLDotvcbFU5SCIDF3bjNrSH/mvTiIIz+XrIibpZmdnKWmphISEpJrf0hICGlpaRYJSpSh8HCtIyhzRqORTZs28fWmTaQZS3bP1vhmE243IogPqMKVLt1N+1O9vTk5cx6gVnEs99cfBV6n9j334u7pxX0Ptab2D9twiY4itmYtrrd9pETxibxl3AObNm0izWgfc3nM1XDRPCqeOkaytw+/v78i2xDGNEdHKh07jM8/ud8LSlOVoNpU8AvgrvoNqVCmv7ns2eM96n4tHIfUVIw55g/KB1TzVPDzp2qt2lQJqo1/1Rpah1MqbLV9yDpnJeeQmID79cI/23p4+1C7wX2Uq1SZmvX0tTam2YOPhwwZwtChQzl79iwPPfQQAIcOHeLtt99myBCZG2N17LDnzMXFhQ8//BBFUUpWRCAtjborlwFwdvBIFOfsQ0bCO3ThymM9qPbjtzR9YyJ7vtqOks94/3ubPsDi7/ZQKSCQ2k90AODcgMHgIAVVS0PGPQCkD/WxjcnklhK46wfqrvkYgGNvLya+Wo1sw7SutX+UwN07qP3lOk7OmFdmcQVUr8m8L7+lnKsbjju+K7Pfq4Ws96iTswupisYBlYGMRWMTAqvhdemCab8M7TKPp48vb3y6nrQ0I+5eXlqHUypyv4bbRrXWnL3E0mtsPs8rlwFI8fLCOTY23+McnZwY+84Som7eoIJ/AGg8FDkrs5OzBQsWEBAQwHvvvUd4eq9LlSpVmDx5MhMmTLB4gKKU2WHPmbOzM2PGjClxtcbA3TvwvnieZB9fLqbPMcvp1Otv4vfbfsqd+ZM6az7mv+FjTD87vO8nmgNV07crValK5UMH8P3vH1I9PLjUp3+xYxMFy7gHIL1aozDxDL1I09fGA/Dv0FGEd3ws1zEXnnqOwN07qP7NJv6cMI3UUvwA+O+p4zg5OVH73kYAlPfz13w+T1nIeo/uvBABdlCtMaOMflzV6tmSM+ccQ71EbjeuXuHSPyE0f6QTgM0mZRmyto8rMUWb120NcvWcxcaA0QhZphKJgmUUA4mrVoNyf2cf1psQF8fvP/1A+55PAuq0rAoaV2bMi9mP5R0cHJg8eTJhYWFERkYSGRlJWFgYkydPzjYPTVgJO+w5swhFod6nHwFwfsDgfD+cJlWqzOnJasnxBh8sxDP9A8fRPbt4e+IYHgayLmhw1+fqvM1LvZ4i1dun1MIXIi8OSYk8+MoLuMREc6tJc/4aPzXP424+8BAxte7COT6O6t9+XWrxhP77N2+OeJYZg/tlK24gbFNGGf34qtWz7Zfeg4JF37nFzCH9eeelofz+0w9ahyNKIK9eYrn/zZNR8TWuWvYhvakpKbw9ejAfvDqOLZ98qEVoRVasMVOpqan89NNPrF+/3lQl6+rVq8QW0H0odMoOe87S0tL477//+O+//4o9T7LiscNUOHUco4sr554bWuCxl/r053qrtjgmJdJk+mRQFGrUvYfKVQJpA2TUOPW4cpkqP+8E4PyzBV9TlIwl7gFb1GjeTMqd+ZOk8hU4/N5ylPyG/RoMnH/meQBq/28tKKUz5q5SYFVq1L2bGnXvxr96UKn8Dr2yx3s080NV9uTMWYY1FsjTpxz3NHmASgGB3JXew2zrbLV95FznDKynWqleeKX3nMXnSM6cnJ1p3Pph3D29uLdFKw0iKzqzhzVeunSJxx57jNDQUJKSkujUqRPe3t7Mnz+fxMREli9fXhpxitJihz1nCQkJ1Kunlr3/4vhZ3Dw8zL5GvU/UXrNLvfuRVKlywQcbDJyYNZ9HezyC3++/UvPr9fDkAN5Zs4lnH33Q9ISk9vo1GNLSuN7qYWLuqmt2TKLost4DZ6/d1Dgafaj27WZqf7kOxWDgyLsfkhAQWODxob2e4t5Fb+H7399UPHaYW80ftHhMHl7evP7J/9S5M56eFr++nmW9R7/58zw4uWkcUenLKKMfn6OIhaz1VDBHR0fGvLWI6Nu3KFfY+5GNyNo+/gm3jdqtDokJOOZRmdUlOoo4DeKxVvn1nAH0eWEsj/TqR3k//7IOyyxm95y9/PLLNG/enDt37uDu7m7a37t3b3bv3m3R4EQZsMOeM1AXVs+6uLo5fP79myr7fkIxGPhv6KginRNfvSZ7+z4NwH3vzMYt4jrlKlQ0PR1xTEggaNN6gEJ74oRllOQesDVe58/SdMZkAP5+8WUi2rQv9JwUH18u9+gDWLas/vUrodmGZrl5eODh5W2x61sTe7tH8+s5k2FducXHxrD76/WmbQcHB7tJzDLYWvvIGNKYlmOKUF69aSJ/mXPOamIElgLG1FTTz/WemEExkrMDBw7w+uuv45JjMcOaNWsSFhZmscBEGbl2DWxoSEBReHp6EhkZye07d4rVa1Z3ldo7HNa5O3E1axXpnIv/nKH3lo0cc3DAJSaaxm++nu3nVX/chktUJLHVa3KtXUezYxLmybgHIiMj8bCzHpm8PPDqWJzi44l4qA0hY4pe2OnC04MAqLrze1xvlvzpddStm8wc3I8F40bw+y77njuT9R5187D9e9QpNgbXO7cBiA+slv1n8fEYUmyjGp8lpKak8NaoQSydNoGvly/ROhxN2OJreEbZ/JQc881lWKMZjEY8w9RqjXHVavAiMAZY/MZETcMyl9nJWVpaGsY81pS4cuUK3t72+XTTqqWmwu3bWkdhNdzDw6j+3WYA/hs+usjn+VerSc2GjXmrfkPSnJyouvN70/wygNrr1wFqcZGSVGW6HSGl9+2ZY3w8fe4JpM89gWZVNPQ59x+Jlf04suAjs+6/yHsbcbtxUxxSUqiZvnB6SXiVK0/DB1vhV60GdRs1KfH1hPXIGNKYVK48qXn0lErvWSYnZ2dadOiCh7cPTdq21zocYSEZPWQpPr557heFc78WjkNKCmnOziT4B/A44AG0fDR31WE9M/uTXKdOnVi8eLFp22AwEBsby4wZM+jWrZslYxOlrUL6Mq52OrSxOOqs/RSH1FQiHmzNnfvuL/J57p6eTPt4HX3WbuLfYWpS1+jtmaaf+579h1R3dy6lD3001+3rDnwy24dRHf04dtDsqaTCzikODhxeuKzw+ZN5OJ/ee1Z7wzq15HMJODo68uKcBbz15be6LG8sSk/GGmdx1Wtm25+SnqhJ70F2TwwdxYc/HjAtMSGsn0v6khE5kzNZiLrovC5fBNTlOHB05AngAtAqjyVh9Mzs5Oy9995j3759NGjQgMTERAYMGEBQUBBhYWG88847pRGjKC0B6R9+7KwoSFJSEoMHD2bIkCGkJCcV+TznqEiCvvocKFqvWfilC/z2Y+ZCua7uHrh7efH36FeICaqN282IbMeH9nwq14tyYaLvGFg735sxnf348X+epKYYOLSvBAtr24mMe2Dw4MEkJRX9HrAljvGZU8xDRo/nZouWxbrOla49SPItj8fVMAL2mT/vOC46ih1frkNJr/jo4OCAb4WKxYrFlmS9R5Pt4B7NKKMfVz37JP6MIV72/gHVmJrK+2Rfatm3YqX8Drd5tvga7hwZCUByzp6z9P2icJ6h6rzVqCpVTfv8tAqmBMxOzgIDAzl58iQTJ05k5MiRNGnShLfffpsTJ07g52eN/wR2zD99UqSd9Zylpqaydu1a1q1dizG16E/6a69fh3N8HJF3N+B6IQUTIm/dZOaQfiwcP5Lfdnyf7Wdprm4cn7Mg1znnnh1S5FjiYgx8ucSL0Y/6sW2VF8lJBu5ukszyTbF8sEB6zgqTcQ+sXbs220Rhe1Jz8wbT9/89/0Kxr5Pm5s6lvuqC6bW/XGfWuakpKbw54jlWzJzCpmWLix2DLcp6j6YZbf8ezSgGEl8te89Zso+anNn7sMalb77OK8BzWgeiE7b4Gp5xj+ca1iiLsBdZ+PatAOz++y+zHr7rjdmf4uLj4/Hw8GDo0KEMHSpV5ayOp2fmmkSD1OFI9tZz5uzszPz581EUBUenojUBh6RE7vrsUyC91yx9fb/8+JSvQNO2Hfjz8EHqN2uR6+e3HniIC32foVZ6ta0bD7Qkpu7dhcaRlAA/fOHJlk+8iI1Sn63Uqp/C2CmJDOvnjo+bF9HR0UX6m+xZxj0A6vwNSNY2oDLmkJxEnc9XZu4owTxHgAv9B1Jv1XL89+/BM/QiiZWK9qDOydmZNt17cvXieR7o0LlEMdiarPeoo5MztvHxM3+eV/LrOVM/qNr7sMaWjz7G4W2beA6wrxJeecv9Gm79BWMy5pbl7Dmz93vfHHUd1Pcyp/ub4eziqnE0xWd2z5mfnx/PPfccO3bs0M3Cf0uXLqVWrVq4ubnRrFkz9u/fX+DxX3zxBY0bN8bDw4MqVaowZMgQbt26VUbR6kjGsEY76zlzcXFh0qRJTJw0CeccVUfzU2PrJtxu3SQ+sCpXHutR6PEODg68MPNt3lq/Ld/yxmfGTTZ9f27A4AKvl5IM2z/3YHRnPz5b4ENslAOBtVKZvSyGo0dh/CBvfNykx6yoMu6BSZMm5ao8aw+qb/sa94jrFrteXM1aXG/THoOiUGvDZ2ad233QcD7ccYCge+61WDy2IOs9WtTXKWtmKqOfc85Z+gdVe+85a96mPReBwt997IMtvoY751cQxM7vfXP4RaoF7mo99azGkZSM2cnZunXrSEpKonfv3gQGBvLyyy9z5MiR0oitSDZs2MArr7zCtGnTOHHiBG3btqVr166EhobmefyBAwcYNGgQw4YN46+//mLjxo0cOXKE4cOHl3HkOlClivpfO+s5M5vRSL1VywD4b/BIFOe853TFREXyAZDeL4nBYMC7XPl8L5uapbrp9XzK5xtTYffX7ox9rDIr3/Ql8oYjflVTmbowluOn0nhjlDcVPGSOmTCD0Ui9T5Za/LLnBzwPQM2vv8ShgDkgqSkpbF25lJTkzN7KgtqJsANpaXhcySh/nTM5s885Z4qisP2zlcTcyaymXEHDeETpk56z4jnw/VaunP8PFMU05yyuRpC2QZWQ2clZnz592LhxI9evX2fevHmEhITQqlUr6tWrx+zZs0sjxgItWrSIYcOGMXz4cOrXr8/ixYupXr06y5Yty/P4Q4cOERQUxLhx46hVqxZt2rRh5MiRHD16tIwj14GM5MzOes7S0tIICwsjLCysSL2/VfbuwuvSBZJ8y3PxyQF5HpOaksKsMUMYB1iiFaSlwf7v3Hi5e2WWTivHjatOVPAz8vKcWI6dNvJWsBf+3rbxtFAL5t4DtqTqzu/xvnSeZN9yFr1ueLtHia8SiGvkHQJ3bc/3uKWvT+Czd99k8cQxFv39tsae7lH3iGs4piST5uhIQkCVbD9LTh/WmLFAr734ZuVSVs59gxmD+1n13JnSYovtwzm/OWd2du+b4+ieXbw/6SWmD+xL7D8hOMfGALkXsrc2xV4UydvbmyFDhrBz505OnTqFp6cns2bNsmRshUpOTubYsWN07px9rkLnzp05ePBgnue0atWKK1eusH37dhRF4fr162zatInu3bvn+3uSkpKIjo7O9mUT7LRaY0JCAtWqVaNG9eokJyYWenzdNSsAOP/s8xjzWbTaydmZDk/0xQ94qgSxKQoc3u3KhF6VWDyxPOGXnPApb2Tka7Ec+TOF96Z5Uq28PsdRW1M7ybgHqlWrRmJCgtbhlB1F4e6P1UVrM0rgW4yjIxf6DwSg1qb/5XtYuyf64unjS8cnn7Hs77cSRW0nWe/R5ETbvkc90is1xgdWQ8kxDziz5yyyrMPSVLP2nShf2Z+OfZ+26rkzxVVYO7HF13DTOme+ss5ZUdW7vyk1767PAx26UC39dTLBvwppbu4aR1YyxU7OEhMT+eqrr+jVqxdNmzbl1q1bTJxYtitw37x5E6PRiH9G1cF0/v7+XMsn4WjVqhVffPEF/fv3x8XFhYCAAMqVK8cHH3yQ7++ZN28evr6+pq/q1a07Izex054zACcnJ5yKWAyk/F9/YHR14/yzBRfA6dbvOf4BGhQjHkWBU7+6MLV/Rd4ZU4HQf53x8Epj0PhYfj+dzLI3Pald2Q1DIYVItGRt7cSce8BW+O/fQ7m/z5Dq4WH55Ay42PcZ0pydqfDHiXyPady6Hct+OkTThztY/PdbA3Paib3co/kVAwH7nXNWvU493v9+L90H2eGUC4rWTmytfTin95Bl9BZncExKxMHGH9AUl0/5isz+bDMjZ72DV/q81dgc81atkdnJ2c6dO3n++efx9/dn1KhR+Pn5sWPHDkJDQzVb5yznB1ZFUfL9EHvmzBnGjRvH9OnTOXbsGD/++CMXLlxg1KhR+V5/6tSpREVFmb4uX75s0fg1k9FzFh0N8fHaxlKGPD09SUlJISk5Gbd8esJyuti3P0k51pRJSU5i0/L3SU7K7H0rV4x4DtCa10cEMntYRf77wwVX9zT6jYrj4OlEVi/05J6q7rpOyjJYUzvJuAdSUlLw8PTUOpwyc/cK9SHU+f4DSbHwsEaApMp+hHXqmm2foihsW7WcqNuZRZc8zVzPz5YUtZ1kvUfdPGz7Hs2vjD5kJmfOdjC0a+/WjYT+949pW9pJ/u3EFl/DXaLuANl7zhQHh/Sf2f79X1Q/AzuybHt4eePg4GBKzuJqWH9yZvYjh169evH444+zdu1aunfvjnM+xRHKQqVKlXB0dMzVSxYREZGrNy3DvHnzaN26NZMmTQKgUaNGeHp60rZtW958802qVKmS6xxXV1dcXW1wWIGPD7i7Q0KCOrSxdm2tI9IlxcGBs4NH5tr/4dTxHPh+K+f/+oPJH6zM48yCnQtxoRvf8wPd4Dg4OSt0GxDPa1PhgXoeOFhBQpaVzbYTG1Hx2O9UOvo7RmeXPO9nSzn/zGCqb99m2t60ahlffLSIn7ds4N2vf7TLIVpZSTvJraCes2Q7WYT60J5dfDj1FbzLlWfBlp1UDAjUOiRN2V07SUvLc52zFG8fXKIicY6OItE/QKvodOPif/8wDXXhhFknj1GvVVvTz2ylGAiY2XOWmprK22+/zfvvv0+vXr00TcxALaXarFkzdu3alW3/rl27aNWqVZ7nxMfH4+CQ/c92TF/jR8lY/8teGAx2W06/MIYsi1pe7fhYno390acG4F2uPI8VUgY/p9D/nJg/thwTnq3OD3TDkVS69Ilm97F4Nq/y4MG7Pa0uMRP6d/eKDwEI7fVUqb7J32r+INF31TVtt3q0KxUDqtD12SF2n5iJvOVXRh+yDmuMLMuQyty9TR+g9r2NaN2tJxX8cz8kFrbNKS4WQ3phk6zDGjMqN8q8M1XVoFp0BdoDd9VvmO1nnpcvAnm/jlgbs3rOnJycmDJlCj179iyteMwWHBzMwIEDad68OS1btmTFihWEhoaahilOnTqVsLAw1q1bB0CPHj0YMWIEy5Yto0uXLoSHh/PKK6/QokULAgPt8ElVlSpw4YJdFQVJSkoiePJkFEWh3YuTc39gVBQav/m6afPfYaPzvM59D7Vh2U+/4+7lVaTfey3UkQ0ferH/W3cUxYDBoDBA+YKZzKTmmhM4e9vG0AxrkJSURHBwMACTZr+lcTSlzzfkTwL27UZxcODf4XnfzxZjMHDxyQE0ekctEFW1RhDvf7evyO1EqLLeo13HTgGD7cytycnUc1bQsEYdFxiyBG/fcsxauwlXd+sYxq61rO0jeNZcjaMpuYxhi0ZXN9Lc3Ez77eXhRFE5O7uwHrXnbKerK8YsP7OlnjOzX+0ffPBBTpw4Qc2a+shM+/fvz61bt5g9ezbh4eE0bNiQ7du3m+ILDw/PtubZ4MGDiYmJ4cMPP2TChAmUK1eODh06aDZfTnN22HOWmprK0qXqOk9tRkzAOWtFekWh4fzZ1Ny2ybQrut496T9S2LLiQx7p05/ylf0AivSB89Y1BzYu9eLnzR4YU9U33Qc7JfJqcAy9u6rV7XAodm0eUQxZ74Hg6WW/BEhZq/eJ2mt25bEexNWsVaxrGD082Pz31SIduw6FdwBH1OGURjst/lESWe/RLqMngg0VPsjKMSEetxsRQD4FQTKGNcbFYkhNzVXN0Zqd+G0/jsDj6dvuNjJ3qixkbR8vv1G2lcJLQ8Z8s5xLnGT0nDlHRpZxRPpx5fx//Pn7QR57Rl1L04ncyYtjQjzuN64DtlEQxOxXudGjRzNhwgSuXLlCs2bN8MzxYtKoUSOLBWdOTKNH5/00eM2aNbn2jR07lrFjx5ZyVFbCDheidnZ2ZsaMGSiKgmOON/p6Kz6k3uqP8zxv07LFfLnkXfZ+s5GFW3cVOkQr6pYDm1d4smO9JynJalLWpG0iE6el0qejO25JRStGIiwv4x4AdRkESC74BCvmefE81X78DoB/Rpb+696hndtZ+M5smgHPAJV/P0iEJGdmy3qPOjo5k1rI8dYqY/HpZG+fPIvUZCRnAM4xUSSXr1hWoZWqi3//xbwJL5IG7NE6GCuU+zU8RduASihjTmVyjjL69lqtNEPMndvMGtyf2xHXcHZxoXPXvEfueaYvx5Hs40tKufJlGWKpMDs569+/PwDjxo0z7TMYDKYKiUajMb9ThR7ZYTl9FxcXZs6cSZqisPXfzKQ0aMPnNHxvHgB/Bk+l4aJ52c5r+3hvfv76S3oOe7HAxCwSX774qALfrvclMV7tEavfPIngackM6O6Bh3P6kAVZV1QzGfcAQHhsIhCnaTylqd7KpRjS0ghv9yjRdxdnoQfz3PdQa+6+7368Tp8EMoesCfNkvUd3XoggKdk231tNlRrz6DUDUJycSPH0wjkuFuco20nOqt1Vjwfbd8L7x29pAfygdUBWJmv7uBKTAFh3xenMNc7KZdufYudzzrzKladT/+c4+OO3PNChc77H2dJ8MyhGcnbhwoXSiENoxU4Xos6p6o/f0mTmqwD8PXIc554blis5C6gRxOLv9uDqnnePV0K8gbeYyrtMInKl+uTmrobJjJuaxJC+7ni7epfuHyFEDm7Xw6m5dSMA/4x8qUx+p6ePL7OXf8bjre9Tt9M/fAuRl4Lmm2VI8fXFOS4Wl+gom3mM4uTszCtzFtDtx29xKfxwdTHMdC53bpNQxGVghHUwrXGWY/kE07BGO03ODAYD/cYE03PoKPWzVz7LPmXON7PT5Ewvc82EhRTWcxYXBxnzqmJjwQbGxCuKQlRkJGmKgqIo+P+6jwcmvYRBUTjffyBnXnkVxwR1wcdlQOLff1Gz6QMAeSZmyUmw80sPNi/3Iwq1uESNOkmMmpzMiwPdKOcmSZneKIpCVPqboeJYsgqCjvHx9GxaB4Bvjp/FqKMPTXVXfYxDSgo3mj/E7aYtSu33HNu3m9SUZB58VF3jzNXdnYySBl6hF9UPllLkwCzZ7lEbriRcUBn9DMk+vnhcDbP6tc5C//2b04cOmBaWdnR0xK2QczJ4XTxv+t4z9CIJVauVQoTWI1v7cChSeqtrmWuclcu2P2PNM1tfSiKrqFs32f7FKvqNmWCqpp7fQ/EMmT1nQaUcXdkoVhWCzz77jNatWxMYGMilS2q2unjxYr755huLBifKgB0WBImPj6d8+fJUrFABr98P8tDYYTikpHClaw9OTn/L9CFyIzAaeP2F57h1LXchhNQUNSkb09mP1fN8ibrjSB3+4wsGcPRAPFNHeFPOTdvlJkTeMu6B8uXLk2CjC7A7R96h1lefAfBvKc41uxDyJ++OHc6Cl18g5NjvueOIjcEl8k6p/X5blfUeTUqwzXsUCi6jnyHF2/or1kXfucWsof1Z9dZ0ftr4hdnnV/79V9P3brduWjI0q2Rrr+GmOWc+5bLtN937dtJzZjQamfvCc2xaupi17xS90ItXes9ZrI30nJmdnC1btozg4GC6detGZGSkaY5ZuXLlWLx4saXjE6Uto+csIgLsbL5gA6D9uOE4JSRwvXU7jrzzAaQ/pQHoDLQGHnvymWzrzhiNsPcbd8Z1q8zHM325fd2RSlWMTJp9izM0YADrqexl/U/yhHWrvX4tTgkJRDZoyPU27Uvt99Soew+tuvagWftHqduoaZ7HyNBGkR8P07DG/HvObKH3wKd8Rbo9N4ygexrwYKduZp9f+fBB0/cut29ZMjShAxnJV3K5ctn2ZxQIsZeCII6OjvR+YSyVqgSaqjMWReZDnqBSiqxsmZ2cffDBB3zyySdMmzbN1N0I0Lx5c06fPm3R4EQZqFxZ7SlKS4MbN7SOpkx4eHiQ/O+//BkYiGt0FLcaN+PQBytRXLInVL7AT8DAsZPSi97AbzvcCO5ZiQ9eLcf1y074VjQyenosR0+n8s54V2y3pppt8fDwIDk5meTkZNx1NAzRkmpvUHvN/nlhbKkOKXR0cuKleYuZ8N7H6VXTcvO8JHOVzZX1Hi1sSI/VUpQi9ZxlLsRr3R9Q+44ax7wN3+FtZjU5Q2oqlY5m9kq73paeM1t7Dc+4t1NyzDnL6Dmzp1L6Lbt054MfDxBY664iHW9ITcUjTK36aitzzsxOzi5cuECTJk1y7Xd1dSUuzlam6toRJyfwU9fsspeiIIaICJy7dcNw9SpRde/m4MfrTPOEDu/+kd/Sy44D6fMBDBz/xZXJfSux4OXyXDnrjJdvGkMnxXLkzxQ+nOlJzYqusnCoFTEYDDg7O+Ps7Gyz/99coqOICapNWDGe0hfmQsiffLNymWnbwcEBZ5f8e4u9Qi9aPAZbZw/3qOvNGzglJqI4OBBfpWq+x6WkD/VytrJhjXduRPDZwrkYUzMf2rm4FnWWWaZyf/2Bc2yMaVuGNdpe+8go+JFrnbP0bWse0luYpMQE1rw9i7iYzIXmzWkn7teu4pCaitHFlYQso5ysmdkFQWrVqsXJkydzFQb54YcfaNCg8DLN7du3Z+jQoTz11FO4u7ub++tFaQgIgOvX1Xln99+vdTSlr1cvOHsWJSiIXz9db1oT4/xff7DwlVGkGVOp8Mn/6Ans42FeGxZIyEn1XnXzSKP30HimTnKkYXVPm3hTELbr3xFjsg3VtYToO7eYPfRpou/cxsPbh079ni30HE9JzkQeMnrNEgKq5Bq5kJU1Du1S5848y4WQv0hOTGTYtDnFvpbfb/uzbbvckWGNtiYj+cpdSj99EfboKJstrLTs9Yns/24LF0L+ZOaar8z+XJXx/hJXrTo4FKuUhu6Y/VdMmjSJMWPGsGHDBhRF4fDhw8ydO5fXXnuNSZMmFXp+s2bNmDx5MgEBAYwYMYJDhw4VK3BhQfa2EPXp08R4ePB2hw7ElK9g2l3znntp+3gvHuzUDYPDg3RmB+3ZR8hJd1xcFXoPi2P/qUQ+X+LJfTXcJTGzYsnJyUyaNIlJkyaRnGybC1An+AcQ2qOvxa/rU74iPYeP5q6GjWnVtUeRzpGeM/NlvUdTbPQeLUoZfcgc6mVN1RodHR3p99IE/KrVoPvAYSW6lt/B7MmZ6y1JzmztNdwlv56z9F5jB6MRp7jYsg2qjPQc9iKVAqvS76UJxfpclVEMxFbmm0Exes6GDBlCamoqkydPJj4+ngEDBlC1alXef/99nn766ULPX7hwIfPnz+e7775j9erVPPzww9SpU4ehQ4cycOBA/P39i/WHiBKwh4Wos5SiVry9aRsTw6lVq/jipddMw7EcHR3pPmgJ65d4MHWINxCEM8l0eiqB12Y689A9Hjg6SEJmC1JSUliwYAEAoyZO0TgayzFkGT51duDwAnsjSqLXsNF0Hzi8wKGMWUnPmfmy3qNtB48GJ8v2gOpB5nyz/IuBQJa1nqyo5wygRcfHaNK2Q5HbSV4cE+KpcOJotn2uReg50/MSH5aQtX2MmPCqxtGUXH7rnKW5uWF0ccUxOQmXyEhSvWxvaZ5a9Rvy4Y+/FrudmMro28h8MyhGcgYwYsQIRowYwc2bN0lLS8MvY85SETk6OtKzZ0969uzJjRs3+Pjjj3njjTd47bXX6NatG+PGjaNDhw7FCU0Uhz0sRH3ihOnb1C+/pNOePTyqKFz85wxnjvzGg4++zIYPfTj4gxuKYsDBQWFQ2hqmM5vqK//Aydu23tjsnbOzMxMnTgRIL2Jh/U9eAQL27TZ9f6l3P4td99b1cL5dvYLnJrxmKvphzhup262bOMXG2OQHi9KS9R51dLLNUkOZa5wV0nNmJfNukhISGAdkLQBeksQMoOKxwzimJBMfUAWPa+oDVFeZc5bHa3iKtgGVgCElBef0XrGcwxpB7U1zv3E9fc5l9TKNrTSkpaXxxXvzePTJAVSpWQsoWTsxLUBdyOuINTE7OUtISEBRFDw8PKhUqRKXLl1i8eLFNGjQgM6dO5t1rcOHD7N69WrWr1+Pn58fgwcPJjw8nB49evDiiy+anoqIUmYPPWfnzpm+dW7Xjne7dSPixg1q33U3cTF3+N97NVGUkQC0eiyBqRNjefzRoeoJNjKGWWRycXHh3XffBSA8NhGwjWJG/r/uNX1vtFCFP6PRyJsjniP03xBSU5IZ/sZcs85PKl8B1zu38Qy9SFSD+ywSkz3Ieo/uvBBBUrLtLXXicbnwMvqQpedM58MaP5g1hQPAaeBlCy0cnjHf7EaL1tTctgkAl5hoHJKTSHNxtcjvsEZZ28eVmATAetc6c85SCCPZxxfHpKRsP0/x9cX9xnWbWets84oP2PrJRxz4bgtLtv9S4mq0mT1nQSUPTifM/tTZs2dP1q1bB0BkZCQtWrRg4cKF9OzZk2XLlhVyNkRERLBw4UIaNmxI27ZtuXHjBl9++SUXL15k1qxZrFixgm+++Ybly5eb/9eUsbi4OJQsL8DJycnExcWRlKNhxcXFERcXR1pammlfSkoKcXFxJCYmFvvY+Ph44uLiTGvNAaSmphIXF0dCQkKRj02qkD7vKr3nLCEhgbi4OFKzDJEypseW87p5Hms0EhcXR3yOhSETExOJi4sjJSWlWMempaWZ/n2ySkpKIi4uLtu481zHhoZm+ztCQ5OZM7sSCXFvAC1RlJ40aXuLL3+K5udvXXj8IQ+SUT+yZ72uoiim6+b5/57s8vr/aYn7JK//n1n/rYQdUhQq/36w8OPM5OjoyHPBUwkMqs0TQ180+/yMD94y70zk5HmlaE+8M+ac6b0gyJPDRnMXMBcsNifZlJw92CrbfldZ68xmuETeASDZ2yfPAk4Z89D0/nCiqB59cgBB9zRgwPipJV8mRFFMPWe2sgA1FCM5O378OG3btgVg06ZNBAQEcOnSJdatW8eSJUsKPb9atWp8+umnPP/881y5coVNmzbx2GOPZXsha9GiBQ888IC5oZW5wMBAbt7MHF7w7rvv4uXlxUsvvZTtOD8/P7y8vAhNTxAAPvroI7y8vBg2LPtE4aCgILy8vAgJCTHtW7NmDV5eXrnm9DVo0AAvLy+OHz9u2rdhwwa8vLx44oknsh37wAMP4OXlxf79mROLv/vuO7y8vHjl7bfVHek9Zw8//DBeXl7s2LHDdOzPgJe/Py1btsx23a5du+Ll5cWWLVtM+w4dOoSXlxeNGzfOdmzfvn3/z955hzdVvXH8k52m6YIOyix7CAiCCAIOlqKIDEWGyJS9FWQKiKLiTwQEBBRB9l4iCIiiIoLIEJS9V6EUaGmbndzfH7dJU7qSNN35PA9P0+Tce0/JOfee97zv+33RarWsXLnS8d7JkyfRarVUrlw5Vdvu3buj1WpZtGiR472LFy+i1WopVSq15HL//v3RarXMnj3b8V50dDRarZZge0HHq+Lk/QEZ2ogIKlT4gLlzLdhsI6j+xDogkmO/h9LhGT9UybkdEwAtMGFqSpCKxWJBq9Wi1WqJd7pRTp8+HW1EBKNITXBwMFqtlmgnr+Ts2bPRarX0HzYsVdtSpUqh1Wq56OTlW7RoEVqtlu7du6dqW7lyZbRabarags7/rz4yRxAEzGYzZrM5lZFdkPG/fhVN9M0cOXe951rwxfe/EF6qtNvH2hfevrwz9yiMY9QZqdGA3x1xQ9DVsEZFYgJY868HMapyVU4DT2fZ0jWUD+4RdPo/AGKfTP3sVcUW7dDGwjQ/7LmUj9Y4s+PYnCgknrPg0DA+Xb+TZ9tmX7BKdf8eCl0SgkSCLgsPfEHCbeNMp9MRECDmDezevZsOHToglUpp2LAhV5MXwJmxd+9eTp8+zejRowkLC0u3TWBgIL/88ou7XfPhIffshWOjo1MJZxQmLJdEw3gb9QCwWj8ClKzYEMeene7XnfFRsNHpdCiVSpRKJXpdwQ2HcSbsz/1eO5c+KYmFU8aS8OC+472MCkxnhX3h7fOcuYfzGDXqC8cYdUZz8wYSQcCs8cfkpJqbHs4iCc4hYHmN1Wpl6SdTuXnpguM9z2ZJ+oQdOoBEEIivXA1jaOr1UlEvRF2Y7uEZKTXaMQWJ5X7ye85lZmxd/BUnnEpCePo8eRT7pp++RGShCvN1O+esUqVKbNmyhfbt27Nr1y5GjhwJiOGKgcn1GDJj8uTJbNq0KcWjkczDhw9p164dP//8s7tdyjNu3bpFaGio4/fRo0czYsQI5PLU/60xMTEAqeq6DR48mLfffhvZIy7sK1eupGnbs2dPunbtmqbtqVOnEAQBtTrFuHjjjTdo164d0kfypA4fPpymbZs2bUhMTESq04mFqHU6SEzkt99+w2azoVKpIDn0rhmQeOcO0oDUCf07d+5MaZtMw4YNSUxMTBPWsXHjRqxWK0qnxM9atWql23b58uUsXbo0VduKFSuSmJhWSnbhwoXMmzcPhdNkj4yMJDExEZ0OPvsM2v12ncrARe6kOrbdi0o0Go3jvM7f3UfAFEAxebLjPblc7mircVK/speSkMvl4PR/ERcXB6T+PocPH86gQYOQG43g5O26efNmmrb9+vWjZ8+eab778+fPp/k+u3XLut6Uj8LLo7WQssO8CaP488fvuXnpAlO/W5+tEC2H5+zqFS/1zkdhwC4GoitdNsvaTYJCgUWjQa7ToXwY76hNmV0UD+OzpWK4ccFsvl+6kD92bmPurv14WzbKLqEf83TTNJ+pYu96+Wo+8gp7uK45KH3Pmb3On6KAes4O7t7Bss+moVCqmL3jVyK86OFKUXyN8to58wNuG2fvv/8+Xbt2ZeTIkTRr1swR5rZ7927q1q2b5fG//vprujUpDAZDqpC7goC/f+oixPZdnPTaPYq9sn122mrSeajI5fI0xmGWbf39QauFxESIjsavSpWURsnGmczet0cKh6dXSFwmk6X7dzgbEp60lUql6bZVqVSpjEMAs1nK0qX+fPSRQHS0wBDECfwS4Vwor+DdOV9TvUI5NBoNEokk3fMqk//h9J1m2NaN794b4yS97zO9dj7SR6PR8OCBGOevk6kgroCrNdpshB30nufsjSHvcPXsKd4aPTHbuTO+nDPPcB6jh+4bsZhtWRxRsHBVRt+OKTAIuU7n1byb8utWcHpY1vVZM+KFLj34++fdvNpnICq1n7jB6UXC7PlmjdIxzoq458x5fiRIlVCA87EU9pyzoPQ3HRxqpQX0b6z3XHOebP4C5as95lXDDJwKUBeifDPwwDh77bXXaNKkCdHR0alyipo3b0779u0zPO7EiROAGCd86tQpbjvJtlutVn788cc0uUQ+cpHISDh/XhQFcTbOcoOkJNE4BNFATMdIcRWLBZYvh6lTBa5elQASHitxA7/bBgRgNIepuO4sBAQQoFX5CkkXUSQSicN7r080ZN64ABB05j9UcQ+waPyR67KvPFmmUhVmbd+XxmPrCXbPmd+daKQGPTZ1Ohs6hbwmkyc4j1HJg5i87UwO4H/dtQLUdsyBwXA72quhXeU2r+P0kHc8VuQNKlacj9f94JV58iiaG9fQXr+KTS4ntn7DNJ+ri3jOmfP8SEzQZ944n6PMIufMVMBzzhRKFaPnfJMmossb2Dd5Eou65wygRIkSlChRguvXryORSChdujQNGjTI9Jg6deogkUiQSCTp1jDz8/Pjyy+/9KQ7PryB3TgroHL6NhusXw+TJ8PZswASQsKstO11E83B3nAb7GaYTCYj/6aU+/DhPvaQxth6DSjxu2v5ulaNhk1nbomvrVaWTJvAC116UKaSuDnjrQWnKTgEU0AgyoSH+F+/RkLlql45r4+CjeamvcaZ654zyH4haqmTSq4m+ibhf/xGTNPnXD5+44I5VKxZmzpNxGNywjCDlDl9v3ZdLFotske8cqp7vrDGwkLWOWfi+wWpCPsfO7eR8OA+L3btCeTcPNH6PGciFouFqVOnMmfOHEfujVarZejQoUyePDnD0KrLly8jCAIVKlTgr7/+SiUGolQqCQ8Pz7Evz4cLFNBC1IIA27fDpEnwzz/iewHBNtq/nciL3ZKYM2YQ5X4TC/MKiAaa2Wxi/Zfz0Srl1PtkWrohhj4KNyaTienTpwPQa9ijGpsFD3tuyt2nGrtsnDmzYf4X7Fy5hEM//cjcXfvFEC1vIZGQVDYK5X8n0F677DPOXMR5jD7ZpS9icHnhISWs0UXPWZDde5C9BeqjRk35dStcNs4O/LSTVbM+Qa5QMmfnb14P0XIms5BG8BWidp4fbw0dmce9yR72UF1TBjlnKWGND3KrS9ni6tnTzB49BKvFQomyUY6NjJzAl3OWzJAhQ9i8eTMzZsxw5Jv9+eefTJkyhdjY2Azrk5UrJ96AnWs4+chHeKsQtRdDFLNi716YMAEOHRJ/12httO2dRJu3kvDTiqqTXUe8R9KRv+DeXYfnzGqxsG7eTADmTHvfZ5wVQcxmM1OTSyR0Hzg0j3uTPaQmI8WPiJPgbgPPRLxferM3x/f/Sru+g7xrmCWTWC6KkP9O+ERB3MB5jG59vQfIC5FxJggpYY0ues7MDs9ZXLYurb6bOkQ08pfdqO7GYAwLz/LYJ59tTsNWL1OhRq0cNcyw2QhPVl9NTwwEfMaZ8/zoOmBIFq3zN3ajy5yV56yA5JyVrVKNV/sMIvbWDWplsLngDWS6JNTJwjhF3nO2evVq1qxZQ+vWrR3v1a5dm7Jly9K5c+d0jbNt27bRunVrFAoF27Zty/T8j9bn8pFLFCDP2Z9/ikaZvdqCys/Gy2/qaNsnkYDg1KUASlWoxOPNX4B1KxzvyWQyXuzaA41Clq54io/Cj1wuZ9CgQQDI5HIgfwqCuJKLVezYEeQGA4bQMBIqVk7zuSsEhBTjo9VbcyQnAFJ2NbXXsy634kPEeYxKZYXrPqWMe4AiSYy80ZUq49Ix3gprVMemGGf3a9el2IljlNu8lnP9st6kUSiUvDNrYY7NEztB506jenAfs8af+7WfSLeNuogLgqS9h5vztkPZwD6mTYHB6X5e0OqcSSQSuo0ci81my9G54n/jOgDGoJAM8/UKKm7f8dVqNVFRUWnej4qKytAD0a5dO27fvk14eDjt2rXL8NwSiQRrPi4wWajxlucsBzl2DCZOhB07xN/lCoEXOuto3y+RkDDRI2sxm/n6g/G89GZvylWtDoD21o1U51EoVbz9/sdEatOqPOYq/v6Ftq5cfkelUjFv3jwAohMNQMGtk2PPTYlp1DRLSXJn1n75PyrVqkO951oA5OhDNKlsFAD+Vy/n2DXc4dYVGWGB+VsMyHmM7r4cg8lUeJ6NmpviokofEYlN5VqdyZQFajaNMyfP2ZUOnSl24hhR61dxru/gdIVBft2xlSvA8OTfc9owAwhLDlO+92RDhAxSRZT374nJ1rnQn/yI8/y4kaAHCq4oiN3oylBKP1n4RJGUiMRsznBM5CVnj/3NHzu30XPsFMccyem5Yi/HUdi8ZuBBEerBgwczbdo0jE5JtUajkY8++oghQ9J3LdtsNsLDwx2vM/rnM8zyELvnLB8aZ6dPw+uvwxNPiIaZVCbQ4nUdc3fF0HvCQ4dhBrD+qy/4af1KPny7G0aDeLO2LwR8+CiM2ItP323YxOVjDvz4PevmzWTG0D7cSX7A5SSJ5coDeS+nf/eWlHkTghj+chhblvmKz+cV/sn35KTSrnnNwIueMyfj7FbL1pi1AWivX023FMXVs6eZ/f5oRgC7s3VV90i14ZIBUqsVZVzByEHykTl2tcaMBEHMAfmzCLudpIfxTB/Qgx+WfcP2pYty7boau3HmYt5qQcIl46xDhw6Of8ePH2f79u2ULl2aFi1a0KJFC0qXLs3333/PP3ZFhlxm/vz5lC9fHrVaTb169bKsl2Y0GpkwYQLlypVDpVJRsWJFvv3221zqbT7F7jnLR2GNly5Bjx5Qs6bAhg0gkQg0baNn9g93GTgtnrCSafMXX+nRj+r1n6L/1E/F3BlBQHPrZh703oePnEee8JBiJ48BENPIdeOsQfMXafxSW7qNHJezuTPJ2D1nmls3kKRT5zKneXBXyuIPAxnyQjg/b9Rgs0q4c71whQoWJByLKhdl9MFJFCG7OWdOxZutfhqute0AQPn1K9O0LVulGp3eHkIvoEW2ruo6UpOR0L8PAhkbZ/ZFfFHPOysUCAKKuDgg47BGQS7HrA0A8mdoo39gEG+//xG1GjahVee3cu+6Ds9ZVK5dM7dw6ekU9IirtWPHjql+L1Mm892vOXPmuNyhYcOGudwWYO3atYwYMYL58+fTuHFjFi5cSOvWrTl16hRly6a/6OjUqRN37txh8eLFVKpUiZiYGCwWi1vXLXTYPWd374LZDHnoNr95Ez78EL75RsBiEWuVNWhhoPPQBMpVzfx70gYFM235Jkf9MlXsXWRGA4JUiiRZjMag19GtQTUA4uPi0i3+7KNwk5SU5KiRc+ZG7m1IeLueV9hfB5DYbCREVUBfsnQaue2MkCsUjPz8q1yr82cIC8fi54dcr0dz6wZJURVy5boJDyRsWaxlxwp/TAbxb63V0MioCSZaPy2nRPFc6YZHOI/RjcfPgbzwePocnjMXxUDASRAku2qNsakFQa50epOKq76j5E8/oroXi7F4qOMziURC5/7DaLtwDrkVBFvs+FHkej2G4qE8rFIt3TbGkOIo4+NQ37tbZNVPnefHf9fzX8SPq8gMemRmccMqI0EQED3HisQEFPnQOANo8nI7Gr/0aq7WjvW/4Z7ia0HCJeNsyZIl2brIF1984VI7iUTitnE2c+ZM+vTpQ9++fQGYNWsWu3bt4quvvuLjjz9O0/7HH3/k119/5dKlSxQrVgwg3Ry6IkdoKMhkYLVCTAzkQUHwu4TyyTgl878WMBhEo+zxxka6jkigUq30k30FQWDlzI+pUucJGjR/ESDVzcGR2xBeAs3tW473rUXdGPdRKDZkHCGNLihi/bxxDQlxD3i1z0CA3C3ALpGQVCaKoHOn0V67km3jTO00l9NDlyhh+1J/vl/qjy5RDBCp8riJ4ROM9HjVD39lAA8f5r/woEcpDGM0PTQ3xTxgdxZVjkK8XgxrBIiv9hj3a9Wh2MnjlN2yjq2P1+OPHVvoPeFDR3mf3MxODDuYLKHfsEmGOaTG4sUJuHKxyHvOCsP8sHvCbDIZlkw2is3BwXDrRrbHv7e4ff0qq774hIEffIZfskJ3rj5TSPGcJRZVz9mjnDhxgnPnziGRSKhSpQq1atXKtP3lyzmTBG4ymThy5Ahjx45N9X6rVq04cOBAusds27aN+vXrM2PGDJYvX46/vz9t27Zl2rRp+PmlLyFtNBpT5dgVhIe620ilEBEBt26JeWe5aJzFxcHnfMAsRpD4peixq17PRJcRCTz2ZOYhUAd2bmPz13ORKxR8uXM/4Y/kMNh3aHUlSzmMM6VKzaJfjxChUWb4nftwn4I0T/z8/Lhx44b9F4jLn2qNWeFKbgrAlbOnmD/xHQRBoGyV6tR1o+iut0gsJxpn3hAFidj/a7rvG/Wwc5U/W77WkhAnGmVR1cwMes9Av85qgtQB2b52dnF1njiP0ZMGGRZL4REP0njiOfNSIV71I54zgCudulHs5HHKrVnOJwvmkJTwkIjS5Wjbe0C2ruUJ9pqFGUnoAxiLiS7fwmycZTVPnOeH1c8P4gumWmNKjbPgTAWd7CGP+SGs0Waz8dnQPlw5cwqFUsXQT2blST/8osU1XWEUBHHLOPvrr7/o06cPp06dQkhWmZNIJDz22GMsXryYJ598Mkc6mRGxsbFYrVYiIiJSvR8REcHtDHKnLl26xP79+1Gr1WzevJnY2FgGDRrE/fv3M8w7+/jjjx31NAo1kZGicZZLeWeJifDllzBjhoY4JgFQsbqBLqN01GlidEl4rmGrl3mmbUcq166bxjCDlEWArmRpOHoYEBWEikdEEqZV5YryVlGhIM0TqVRKqeQNCFGtseChvnObwIvnESQS7jZolGnbqKo16Dx8DPeib1GnybO51MPU2PMCvCEKEvJf6vxmswl+Wq9h4wItD+6K3o6S5S30f9fAkJ4qimny3iiz4+o8cR6j/12OAQqPYJZ9o0znRs6ZQxAk4aHHKoUSkwlVOiIa119qR62PpxB4/SqfDX6Hr08c5YWuPdw+f3aRJzwk5ORxIPMNF2MxMfSyMBtnWc0T5/khqjUWTBxKjVlIwafUOovL2Q65gFQqZeC0z1n84UTefGd83vXDasWqUmMIi8i6cQHDZePs1KlTNG/enOrVq7NixQqqV6+OIAicPn2aL774gubNm3Pw4EFq1KiR5thRo0Yxbdo0/P39GTVqVKbXmTlzptt/xKOuVEEQMnSv2mw2JBIJK1eudOTSzZw5k9dee4158+al60kZN25cqn4/fPgwyzy7AkkuyekbDLBwIUyfLhATI4YvVucU05iEbMUMbP6u5+HI5HKGfTonw+/bHj6ji8z9MM2iRpGZJ/kEu7pc3GO1MQeHZNn+tQHDM7035jT2Wmf+17Jf6yzkX9E4syJl79YA1nxdjLu3xMdZeCkLvUbqGdlPRUSANtvX8ja+eQISmy15UZV14Wc7dplxiSCgSHiYaX5ORqTnNQOw+vtzo017yq9bQZsrFwlftCJP5knY4T+RWq0klBNzSDPCnhenvnc3wzYFnaIyT+xF1U1Bmd/D81uts0q1Hmf6mm159jyxk1SmbKEsJ+GycTZ58mRatmzJxo0bU30ZdevWpUuXLnTo0IEpU6awbt26NMceO3YMs9nseJ0R7n7JoaGhyGSyNF6ymJiYNN40O5GRkZQqVSqVyInd0Lxx4waVK6ct4qpS5XE9rNwihwtRm82wdCl88IHAjRuiURZRxkKXfvf436RayLCxVTIjy/PsXruChAf36ThAzE/MbNzYwxqdH3Rms4lti5cSqJRT7/1xGdbn8+EeBWmemEwmZs+eDUCnPv3zuDee4Qh/ymCH/Z9DB/j95x/pN/mT5CKtuZ8T4ExiuSgAtNeyF9YoT0wk4NIFAJ5lH39MFRf4IWFWug/VMXqIklLB2jxfNGSEq/PEeYzWaNsFkOVwz3KXpDJl3arLZ1OqsKjVyA0Gz42zmDtp3rt1+SIrZn7MpO69Kb9uBSV370AV9wBTSDG3z59dHDmkmYQ0gigIAqLgVWElq3niPD869u6XW93yOlnVOLPjqHWWRzlnD4CP3xlIjwnTHAq/+eEeWxjFQMAN42zfvn3s3Lkz3S9DIpEwfvx4XnrppXSP/eWXX9J9nV2USiX16tVjz549tG/f3vH+nj17ePXVV9M9pnHjxqxfv57ExES0yUmM586dQyqVUrp0xjtVRYIc8pxZrbBmDUyeDBcvAkgoFmHl9UEJNOugR2XWIZuUVhY/Pa6cPcWiKe8hCAIVa9amTpPnMm2vcco5c/THYmH5Zx8C8Om4d33GWRHEbDYzZswYADq81TuPe+MBgkB4sucsPQn9OODT0YPRJSZQqkJl2vbKewM0saxY68z/xjXxpiBz39gQBLiz/BQSQeAqZfmDpgQEW+k8UM97I+RUCMu/Rpm7OI/RrS+9BvJCZpyVcr+EgzkwGLnhNsr4OHQelIDwe0QMxGaz8dnwflw7d5rPtVqerlGLkFMnKbt1Axd65v6C35FDmkXNQmPxZOPs/r0c71N+xXl+vNq9Vx73xnNS5ZxlgsNzliy7n9sMAg79sofYuzF8un5HvrnPFkYxEHDDOEtISMjQGwVQokQJEhIS3Lr49evXkUgk2TKKRo0aRffu3alfvz6NGjVi0aJFXLt2jQEDxETecePGcfPmTZYtWwZA165dmTZtGr169WLq1KnExsYyevRoevfu7ROH8HIhakGALZth0iT47z/xvcBiVjr2T6RVZx1K+6aYG3m8UVVr8OY747l3O5rHG2eRO+NU40zn5DmTyWQ8164TGoUUudxX66goIpfL6dFDzCkRvUoFSxBEe/kCfneisSpV3Hsiba5vMDBs6gx+2r6J1t165nb30kVfIhKrQonMbEITfQudGwWIAU78qWTVrADa/3MGgGPUZSrv8/qh4VSrXCzfLBa8hfMYlcoK333KHTEQO6agIPxibnvsPVDfTe05k0qlDP1kFt9Of5/u707kyp4dhEwZS9S6FVzo8bZbnr3sor57h8AL58Qc0qeezrRtUfCcZUXae3jBFARxPedMDHvMbp0/T8u5fA6cqPskb0/9NF/da4u85ywqKoq//vorw5jfQ4cOUa5c1v9JFouFqVOnMmfOHBITEwHQarUMHTqUyZMno3CzvtYbb7zBvXv3+OCDD4iOjqZmzZrs2LHD0Zfo6GiuXbvmaK/VatmzZw9Dhw6lfv36FC9enE6dOvHhhx+6dd1CiZcKUQvALl5g4jNqjiRHsfoH2ni1dyIvddfh55891bF2fQe7lDvjXONMH17C8b5dXShSW3DC8Hx4F5VKxdKlSwG7IIhr9cHyC/aQxnv1nsSmTn9TqeHzLan/Utv88yCVyUgqU5bASxfwv37FZePszFEFq2cH8O8hca42kh4CG7RkN+3YCqXey9VFdG7hPEZ3X47BZCo8giDg2aIqu7XO0gtrrFCjlqM25vU27an16VQCL12g+JG/uFf/KY+u4wmhh0SFaVdySO05Z6r7seIuaCEc/1nhPD9EQZCCKQpil8bPynPmEMTJo5yzksBH36zCls/qwhbGAtTghnH2xhtvMGrUKKpWrUrNmjVTfXby5Eneffddxy5GZgwZMoTNmzczY8YMGjUSFcb+/PNPpkyZQmxsLAsWLHDzT4BBgwYxaNCgdD+zT15nqlWrxp49e9y+TqHHC56z3/ZLmcBv7KcpHAO1xkabt5Jo2zsJ/0DPjLJjv+9j/w9bGDjtM+TJxrsrC05HjbMSkQh5WFTbhw9v4whpbJiSm3Lj4nlWzviAZxE9Z5A/cgKcSSoTReClC2ivXsmyNtulU3LWzA7gyK9i8WW5QuDFzjpa7z4Ed8C/gC7GfIjoPPCcmbNZ68zuOVsGOPum7PPEog3gxsvtiNqwmqj1K3PVOAs7/CeQdVkMSDHO5AYD8qQkLNr8J3zjwzUU8aJ6aJZhjck5Z7lV58xsMvHl2OG81P4N7ElC+e15Aj7PGePGjeOnn36iTp06tGzZkurVqwOiiuNPP/1EgwYNGDduXJbnWb16NWvWrKF169aO92rXrk3ZsmXp3LmzR8aZDy/h7Dlzczfu8GGYOBF27/YDmqLCwItvGnh1kJGgYq7lk6VHYnwcM0f2R5eYQLmq1d3KnbGLgSSVLHwKTz6KLhKLxbHLbhcOsNlsfD6iP9fOn2EksCQP+5cZScmiIP6ZiIJcv6Rg1dfB/LlL9AhKZQLN2uuZMEmgScgD5MtviepcNs/vKz7yniQ3ZPTt2Gs9KTwM7bJ7zvYBXwIThLQbhpdf70bUhtWU3vk9J8ZNxabMneiKsEN/AOnnkD6K1U+Dxc8PuV6P6t5dn3FWgFEme4GzErgx5bJa49bF8/ljx1ZOHviNYUB+HGGCVEpSqcK5vnNZf1KtVvPLL7/w0UcfER0dzYIFC1iwYAG3b9/mww8/5JdffkGtVrt0nqioqDTvR0VF+YQZ8hq758xoFCtDu8C//0L79tCgAezeDTK5QH8WcIFK9Bp1L1uGGYA2KJgR/5tHw1Yv07qbe0m/DjGQRyavQa+j+5PVaFWjPElJSdnqn4+CSVJSEsHBwQQHB6MrYGMg+L8TKBMeYgoM4kGNWoCYOzP8f3Op3eBpPsvj/mVGYia1zi5Rnh4sZXinMvy5yw+JRKBpGz3f/5HEjjVqnqvtj/xvsVYh6ZRsKWw4j1GDrmCNUVdI8kDQw65op/Q0rDHZcxaO6D1LzxPwoHZd4qrWQGYyUnbbRo+u4wl+MXcyzCFND2PxMKBw1zrLjIJ8D3fGbmyZXMw5U8THi5vnOcwrvfrzVMvWjPxoZr40zAD0EZEIhdRucCvLWKlU8t577/Hee+95fMHBgwczbdo0lixZ4sj3MRqNfPTRRwwZMsTj8/rwAmo1BAeLhtnt2xCScdz7hQui+uLq1QKCIEEqFXjmFT2d+9ylf9uBABzxUrfqPdeCes+1cPs4R42zUmkFZ3QJD7PdLx8Fm3gPF3h5Tbhdbvupp1MpHkZVrcHkZRv4La865gJJ5ZIVG51qnd27I2XTl6H8xFksKMAGDZobGDPRQpumGlQypz3EQ4fEn/XriztDhZyCOkazwlA81GUhAmcceTcehzWKao2fJP9+Lr1GEglXOnWjzrQJRK1fxZWOXTy6lidklkP6KMbiofjfuIa6iBpnUDjmh30s26XyM8K+MSEzGZEZ9Fj93J8/7qBS+zHmy8XIdPk3H9uTDZ6CQq5IQHXo0CHV7z/99BOlS5fm8ccfB+Cff/7BZDLRvHnz3OiOj8yIjBSNs+hoSA5ddeb6dZg2Db79VsBqFWuVNXpBT+dhiZSuaEGms2S7C1fPnmb5/z5k+GdzCXChuG5G+GfgOVOq1Hz5437CNUqfQmcRxc/Pj3PnxKWZ2s8P4gqOWmNYstz2tdp1+aB3Z/pO+oiS5Svmca9cIzE5P8D/2mXi70nY/LWWH1f5YzaJHoyW7KbHprp0eKUYfvJ0IjH++kv8Wb++WDSxEOM8Ri9K/bBYcn63PLd49J7sKik5Z3EuH2MyGpj17hBefuNNOrhoyFx/pQM1P5tG0PkzhJzIuDart3El38yOwS4KUkSNM+f5ofLzg/iCrtYYnGk7i78Wm0yG1GpF8TDe68aZIAh8O/19ylauRstO3bx67pwiyU3F34JErhhnQY8U1+vYsWOq3wtj1fcCS4kScPp0GsXGO4QzfbSSBYsFTCbRKHviWQNdhiVQ4bHsG2R2bDYbX7w7iOvnz7Lss2kM/mimx+eyhzU+GpMslUopGVWBSK0KaSGsLO8ja6RSqaPgvKjWWDCQ6XUUPyqG9s3560/+OfAbs8cM5ZN1P+TLZO1H0ZUsjU0mQ24wMK25hcsGMWCmeh09Xx1/kWf5DVolpl/Ty2oVk1tBNM4KOc5j9PLlGKDwqDV6mifiiVrj1sVfcWjPDuL/OsAkwCaXI7Vk/swyBwZx88W2lNuyjqhNaz3qqyfENHrG5bYpYY05J6dvtYA+MX/eV5znh6jWWACx2VI8Z1kVVZdIMAcGoXpwH2VcHIaISK925a+9P7Jj+WKkUik16j9FqQqVvHr+nMCTWocFhVwxzpYsya/p6T7S8Egh6vv34TOmM4dh6L4SFQ8fa2Ck64gEqj3h/Z0qqVTKqJkLWP6/D+kx5n3PT+Rc46wQ7674KFoUP3oYmdmErkQkrT6Zzdmxw+k9YVqBMMwMOgk7lofwuK0cFbhEacMlJDUiGDreQO/WNgKLZxGQeeYMJCaCv3+6Xn0fBQdPPWcmD9QaX+0zkGvnz9DzyUbwwXiMxUPxu5N1uZjLnbpRbss6Su75waO+uospIJC4GjWzbpiMMQc9ZzYbHNipZu2XAdQo/PsgeYYi4SGS5Pwxc1DmOWcgGnCqB/c9DuvNjAbNX6Rt7wFElqtQIAwz8IU1+ihKJIuCmK7d5tNp8PnnGuIRVTgr1zTQZVQStRuZcrSsStnKVZmwcHm2zqG+G5NS4ywiEqk5xZC0mM38uHIJQSo59ceMdLu2no+Cj9lsZtGiRQC80vWtPO6N69hDGu82akpQ8VAmfr0yj3uUPlaNhk1nbgFgMsLuZRo2LdQSf09GdypRgUuMfus/mi5oRLBfALiS0O+cbyZLx7NWyHAeo+VbtsMN/a58j8dhjUHu55wpVWre+WIhkXt/BMAQFuGScXa/bn0eVqpC4IV0M9O8TuyTjdwa1zkR1igI8PcvKlbPDuDqWfG5qE/MWugtL3CeHy916Z7HvfEM+zi2+Pm5pApqV3RUJsvvexOJRJK9DfE8ID8YZwkPJGxZrEWXIKHRXKPXzpsnxtmGDRtYt24d165dw2RKnetx9OjRvOiSj2TMoZEogK0Lo3nfCCChNv8wjUnYvvsCm7/3k1Dv343hOeArL54zTY0zZ+PMYuabaRMAmDpisM84K4KYTCaHANGLr3XO4964htFgwLpG3LRwJzclr7CY4ZfNfqyfH8C92+KiM6KMheCyZeAPeKX0DfBzY+7Z880aNMiB3uY/nMfo1n9fgvRy8AoonuaKOKT0MwlrFASBhZPfo1y1GrzYJaX2ql0MxBAa5trFJBIud3qTx6fnzoL17lNPZ93ICbvnTO2FsEZBgBN/Klk9K4DzJ0T1O02Ajdf66hgxwMwTVbN9Ca/jPD/Odnwjj3vjGcpkVeys8s3smBzGmXc8Z9tXf8fNWzfoPWFagUnxkCclOl57Uo7DW+gSJWxf6s+2Jf7ok6RIJAKXR+WycTZq1CiXTzhzZuY5QnPmzGHChAn06NGDrVu30qtXLy5evMjhw4cZPHiwy9fx4V1MJli8GE7NiOBLoJgxmshyFroOuMeMcXWRIrBV8kWOXPub/03jANALyLpSnmtoMqlxJpXKaPRCG9RyKbIisAPvIy0ymYzXXnsNAGkBGQM/ff0lryUmAHCt9hPk10BGqxX+2CGGRN2+Jj5iipew0mOYjncGKSm5uAb8gSj56g52z9lTuVcYOC8piGM0U6wpOXPZzTlTJsSLsXfpLCgP/bKH3WuXI5VKqd2wiUMsRx0jessMYeEuX+9a247U/N+HyEw5Ixgk06fkSt19qrFbx3pLSv/MUQWrvgjgv8Oi50blZ+PVHnrGvyehVjl/EhPyZz3BtPOj4AmC2IVtssw3S8ahVuqFWmdngW8//wibzUbtp5vSoPmL2T5nbqC5cc3x2hIQkOvXN+ph5yp/tnytJSFOvP9EVTMzdKyRGlW8d592yTg7dsw1tSJX8h7mz5/PokWL6NKlC9999x1jxoyhQoUKvP/++9y/f9+l6/jwHhYLrFwJU6fC5cvQjJIA1Ai/xewf7qI06ZCOy1mVsAHjPiB0z05mASe8dM4UGf20iwClSsW7sxcRqVW5VJvPR+FDrVazfv16wC4Ikv8TyntVroYUiCldBklU+bzuThoEAf76ScWaOQFcOy96xAKLWek2SM+Y4XLKFdeKz4hKyfkM7hhnOh2cPCm+LiKeM+cxuvtyDCZTwRYEcQ4lNIRFeHQOU3JYo8RmQ56UiCUgME2bp55vSYd+Q4mMqpBKxTTFc+a6cWYODuFW8xcps3ObR/3NimLHDjteJ5VxzwtgDM2ecXbpPzmrZgdw7DfxGShXCLzUVcf4cfBkFQ3SfJ7H6jw/REGQgiPsZEfhYo0zO46wRi/knFUFhk75lKvXLvNksxeyfb7cwv/61awb5QBmE/y0XsOGBVri7opGWMnyFvq/a2BITxXFNFoePvReiSaXjLNffvnFaxe8du0aTz8tuu/9/PxISBB3grt3707Dhg2ZO3eu167lI2NsNtiwQaxVduaM+F5wmJUmHfxhIRQ33kYmB3JIYVwQBIcxHxgcwtbk971lnKXI6KetcebDR0FBcCo2WiJZpfHh863yqjvpIghwfL+S1bMDuPivGBLlH2jj9bd1jHtHRuUS/qk37uzG2cWL4sGuLAKPHhU9L5GRULq0aKz5KFD430zZ8c4qt8o5Z9EZm9oPq1KFzGREGR+fyjgTAAniJnG3UWljMPxixALU7njOAK526OwwzuRJiR7VZ8uIMju2pvzipjFkLFYcEBfqEpPJ5WK81y/IWTNHy8HdYhkZqUygRUc9EyYKNH5Mg0yav42ywoTdyDJnUePMjslRhD3O42s6P1Oeb9Peq+M5Nyj58+4cO3d69x2rBX7d6se6eVru3hJNpvBSFnqP0jOir4qIwJwp0Z3rOWclSpTg3r17lCtXjnLlynHw4EEef/xxLl++nGrQ+MgZBAF27ICJE+H4cfE9bZCN9m8n0rpbElpjICwUJ7/U5L34WWcMOh0zhvSmTc9+PPFMsxy5hiaDGmc+fBQUbDYb86eO4xowDAg79AeQv/LNTv2tYNWsAE7/LYZEqTU2Xu2pY8IYKTXL+qcfTVGhgrgQjY+He/cgNDTrCznnm+XzHX0f6WO/J2cXc1AQsrsxKBLiAfH+vmXZN+wE5mdynPpusnHmhucM4N4TTzpel/pxO5e693azx+mjiHtAyZ92eny8KSjYURZAfT8WfYmSmba/fV3Gurlafv/eD5tNgkQi8EwbA2MnWmleX4OigOQcFSbsOWeues5MQWLdV0/DGg//vJvdK5fQEvD36Ax5i+peLCV/+jFXruWsWHrrimgqhYRZeWuYnncHKygVrM1RlWSPjLPDhw+zfv36dAU9Nm3alOmxzZo14/vvv+eJJ56gT58+jBw5kg0bNvD333+nKVbtw7v88gtMmAB//in+7udv45WeSbTpmYR/QLKcqzoYq0KJzGxCdfcuppBiXu/H90sX8s+B37hy9hTz9xzMkZtERjXOAIx6PQNfbIJUAlcvXURTwHaOfGQfnU7nqJHz27GTedyb9Dm8dxd7t21gH9AGqHD9KjaZjNgGjfK4Z3DhpILVs7Uc3y+GRCmUAi91E0Oi6lfyzzwkSq2GUqXgxg0xtNEV46yI5ZtB6jH61Z4/QJa1mlt+xv+Gd4wzU2AQ6rsxDlGQG5fOs2zODGzAy5kcp072nBldFQSx4zSWozat8ZpxVnbbxuzlskmlGEOK43f3DqrYjI2zG5Tiq49C+WlrIFaL+Lc0bKVnzHgrLzfRoJQVTKPMeX7sO+qtmJvcReFmzpkj59ID40yflMT8CaN4+OA+s4Hxbp8h7ym3cTVSS87mFqanWBoQbKPzQB3vjZBTISyDTUcv47ZxtmbNGt566y1atWrFnj17aNWqFefPn+f27du0b98+y+MXLVqEzSYmmA4YMIBixYqxf/9+XnnlFQYMGOD+X+AjSw4eFD1le/eKvyvVAi91S6Jd30QCQh7xVkokGMPC0Ny6iTo2JkeMs/ZvDyHm5nVavt4NtUbj/RAlmy3TGmcCAveTk8N93tqiiSAI3Lp1y/5L3nYmAxq0eJE3+g3llUVfUiH5vQe16mDR5n4StJ1r5+Ss+TKAQ3tEo0wmF2j5mp7x4wWedickqlKlFOOsYcOs2xcxpUYoGGPUHbzmOXuk1lnpCpUZ8eHn+I8fySvA1nSOkVgsjtwsT/PdAIJP/0vwfyeIe6y2x+cAQBCIWp/9MhjG0FDROLufNu8s7r6MUXzOfAZh3CjO1zpNDIyeaKFDcz/U6RV6L0A4z4+C+hy3G1lmVwVBktt5UufMz9+fcV99x0+rvmPMtg1uH5/nWK2UX7six07vUCydHcD5f5IVS7U2OvTVMf4dGdVK5Y5RZsdt42z69Ol88cUXDB48mICAAGbPnk358uXp378/kZFZVyyXSqWpJDs7depEp06d3O2GDxf45x/RKNu+XfxdrhBo2UlHx/6JhIRnrMBkCIsQjbO7d3hYuZpX+uKcYyZXKBj8Ueaqnpkh0+l49Qkxb2Xr0QtpYqbVsXeRmYyOGmePolCq+N/m3YRqlD5BkCKKWq12CB2p1GpyLLnSA+xzRSKR0GXAcF5d9KXjs5in8yakMfqqjHVzA/h9uxpBkCCVCjzb1sC4iVaer6tB7m5IVKVKsG+fmHeWFTExcOWK6MGoX3Qq4jqP0WiVGkvB1gNx5AFnlxQ5/TjHe8+8+Aqvjh+Z4TGqe7FIBAGbTIYxmxuOUetXcTybxlmx40cIOn8Wi1qN3OC5kIWxWHKts9gUOf3EeAlbv9WyY1kEBkSl7Rp19Yx830LXlzVoFIXjmZfmHh5f8NQa7UaWy54zD3LOnNdeVerUo3qV6sgLoHEWsX8f/jevYwoM8oogijNnjorh+f/9JUYnKNUCbd/SMWGchNrlsogEySHcNs4uXrzIyy+LwQMqlYqkpCQkEgkjR46kWbNmTJ06NctzPHjwgMWLF3P69GkkEgnVq1enV69eFCvmfS9NUeTsWXj/fVi3TvxdKhN4vp2e1wYlEl4q6ye8vQ6MOjb79VMArFYrc8eNoHy1x2jbO+e9o2lqnD2CTCajfPWaRGpVPin9IopMJqNOnTqAXa0xf7BxwRzu3LhK/6kz0h2bdxvmrnEWGy1l/fwAft7kh80qPqAavaBn7EQrLzbKRkiUO4qNdq9ZtWoQ5FpuRmHAeYzGXI5JJUVfEHGWwM4O9gXqvm/mUaJ1W/y0WSfkp4Q0hqcrv+8OZb7fxMnRk7D6ex6QX36d6AG41fIlyn6feSpIZtif1ar7seiTJOxYrmHrt1qSHop/Y30O8yETefqndQQUK1xzx3l+iGqNBY+UOmfu5py5Zpxc+u8EC6eM5d3ZiwgrWbDF0Sqs/g6Aa690oNLKJV4556VTclbPDuDorymKpS921jFhvIQnq+StOI7bd6lixYo5FBZLlSrFv//+C0BcXBw6F8LTfv31V8qXL8+cOXN48OAB9+/fZ86cOZQvX55ff/3V3e74cOLKFejVC2rUEByGWZOX9MzefpdBH8W7ZJhBStiH/YGWXf7+ZTe/bdvIipnTuXXlklfOmRmZ1Tjz4SO/cuPiedbMmcHeDas59tvPaT63qP24X+eJXOlLXKyUxR8FMrhVOD+t12CzSnjiWQOrdyfw83YlbZtos5erUjFZ4twV46wI5psVNuSJiajiHnjlXDo/MVLCcPUyO11cpDnEQNxUanyUxDLlUCQlUvpHz6X1FQ/jKZWs/nilQ+ds9cdeiPrmr/EMahnGqlmBJD2UUqaymU/mxfIXDXiB3QSocl37zYcLuO05c4T0xomKFZkgCAILJr/HhZPHWTnz4+x0M8/xu3mDEr+KeTlXXuua7fPduCjnf8ODGd0hjKO/qkXF0td07Plbx+alGhpWy3vVUrdnbNOmTdmzZw+1atWiU6dODB8+nJ9//pk9e/bQvHnzLI8fPHgwnTp14quvvnLsDFutVgYNGsTgwYMdxp4P17l1Cz76CL7+WsBslgASnmxmoPPwBKKqWtw+n8NzllwXJrs81aI1XUa8R8moCpSMqpD1AdkksxpnABazmV82rSVYLaf+kP4o0vGu+SjcmM1mVq4Ucz6avdoxj3sjUrpiZUbO/IpbVy5R//mWaT6/98ST2JQ5KwqRGC9h62ItPyzXYNSLxlfNBkZGTjDRubUXQ6I88ZwVoXwzSD1Gw59uiQd7qfkGzU3veM0AhGSDpHbFKlTpO8ilYzyV0X+Uq+3f4LE5Myi/biVXO3bx6Bxltm9GbjAQX7kqD2rX9bgvFjOcvF6SKsDdw3E8REaJchbefkfP0F4qwiR+MNjj0+d7nOfHs20LppicMl7csHA95yy5zp8goEhMyNTjJpFIGPPlN6z4fDr9pnyS7b7mJeXXrUAiCMQ0akJSOc9rfN65IWPdl1p+c1IsbfqyqFjaor4GRT4Sx3HbOJs7dy6G5BjpcePGoVAo2L9/Px06dGDSpElZHn/x4kU2btyYKmRHJpMxatQoli1b5m53ijSxsfDppzB3roDBIBpltZ820mV4AlUe9zz+2uE5i/XcOBNInaT72oDhHp/LXbKqcWaxmJmXnJ8wrl8vn3FWBDGZTPTq1QuAC7dfydO+2Gw2Rx7u0y9m3Je7DZ7OsT7oEyVsX+bPtiX+6BLEvlSubWL4OCNvtfcjQOVlERK75yw2VpTUl2fwKLLZUoyzIuY5cx6jW/+9BPKCmyvkjcKx9nli9zLUqVqdwy6Gpds9Z/rwEtnqw/VXOlB9/kyK/XOUwLOneFi1hnsnEASikkUNrrzezaOyEFak7PtBy5qvi9PyWjk6AqWVt3n3gwRGDVASGZQ8V5MKXg6WOzjPj7PRbfK4N56hdNNzZlOpHXmKivi4dI0z5+dJaGQpRvxvntf6mxdITCaiNqwC4FLnHh6d4yYlWTA9lD1bUhRLn2phYPQEC22aalDlI6PMjkdhjSVLipKtUqmUMWPGsG3bNmbOnElISEiWxz/xxBOcPn06zfunT592xA/7yJz4eLF4dIUKAv/7HxgMEqrWNTH1u3tM/vZ+tgwzAGNY9j1nU4E5U97DanHfc5ddsqpxJpXKeOLZ5jRq1tKXc1ZEkclkvPTSS7z00ktI83AM/LFjK1N6dkKXmJDu5/KElPdzQkLfaIBt3/ozqGUYa+YEoEuQUraKmRnfJnD4kITBnQNyJiQqIAAiklXzMhMFuXAB4uJE+f1atbzfj3xMfhmj3sD/evY8Z+dPHGPMay8Sc+N6GrVGV7A/y7LrOTMWD+VW8xcBKL/OfbXFkJPHCT57CqtSxbW27nnsBQE20oHanGDWpAhuX5OjCxQLUTeufIcZY7REBhXscgvuUNDnh8RkQp6cCuRqnTMAc3LemTKdvLPYO9GMee1Fzh772zudzAeU/Gkn6nux6MMiiG7Wyq1j4x9IGcXnVOQiP24IwmqRUKeJgRU7E/llp4KOz2nzpWEGHtY5s9lsXLhwgZiYGIcsvp1nnnkmTfsTJ1JqUAwbNozhw4dz4cIFGiZLKB88eJB58+bxyScF2/Wa0yQlwdy5MGOGwP37oqesQg0zXUYkULep0Wu1We2eM5WHnrPTwIeA9ftNNGrTnnrPZh3u6k0yq3EGoFSpmLBwOZFaVcZqjf7+hUK+2kf6qNVqfvjhB8AuCJL7CeX6pES+mTaBhw/us2v1d7R/e0iaNlEbVztex1ep7rVrm02wd6OGjV9puR8jLmxKRll4+109Q3upKa7JBbn+ihXhzh3RAKtaNf029nyzJ56AIubhdh6juy/HYDIVXEGQ7HjOBEHgm2kTuHzqX1bPmcHjL4iCZO7IiauTS6cYsuk5A7jyeldK79pOmW0b+ffdCVj9XK+TaZfPv/liG8zBIchcyNMXBDj2u4rVM4txiY0AaAOtdOqvZ3LL4tAKlPfuFrni7M7zQxQEyT/CTq5g31wQJBLMAYEuH2cKDMLvTrQjJNKZVfNncfnUv3z9wThmbNyVShm9oFJhtRhRd+X1rqLAmzlr50PSQwlbv/Xnh+9SFEur1xEVS7u18SsQiqVuG2cHDx6ka9euXL16NU1tCYlEgjUdRak6deogkUhStR8zZkyadl27duWNN95wt0uFHqMRFi2Cjz4SuHNHNMpKVzTTeVgiDVsZvH5PTqXWmEXSaXpUB9YDW4e/l+uGWVY1znz4yC/4+WuZ9M0qftm8jlf7pM2dkZqMVFy11OmN7D9orVb4bZsf6+Zpibkh3v5DS1roNULPO/1VRATmYg21SpXgwIHM886KaEhjYcM/G0qNEomEMXMXs+qLT+k76SNMp8Si8a4q1oH3PGcAMU8/Q1KpMvjfvE6pXT9wrd3rLh0nT0ygzA9bALj8ejeXjvnvLyWrZgVw5qhYd0lLAiP5gk6HBvNY1WJIosuKDe8mP6sLwWK8qOCocRYQCG54/jKrddZv7GQEuYw3hr5bKAyzgAvnCDv8J4JUypVOWc+Z9BRL6/G3qFi6dy2BBUix1G3jbMCAAdSvX58ffviByMhIl4qyXb582aPOFXUsFli6FD74QOD6ddEoiyhjodOQRJq20bszn93CUFw0zqQWi1v1NKxWK/YutQekPd4mt/d67TXObDIZ+hIlc/nqPnxkjRUc86TCY7WpkEHNpDLbNmYr79MZmw0O7lazZk4ANy+Jt/3gMCvdB+t4d6iSMiHaXC2wCaSIgmQW1mj3nBUxMZDChieeM6vV6gg7Lx4RydBPZgGPKNa5iNohCOJ5AWoHUilXXu/GY7M+IWrdCpeNszLbtyDX6UgoX5F79TPfbDh/QsHqWQH8cyC57pJKoM0b8SxYVpkwYqHMO6KnLDkFAasV7t+H0NBs/Wk+cg97nT5X883sPFrrzNkhovbTMOTjWV7oXf6g/BrRaxb9fMtM13MmI+xeq2HTQi3x98R7RulKZgYPj+e9oU8iAShgiqVu9/b8+fNs2LCBSvYHqwuUK1fO3csUaWw2WLNGzCsTN5UlFIuw8vrARJp11CHP4egeQanEGFIM1YP7qYpbZsa+rRvYs3Y5k75YlLOdywJHjbOISIQMRAaMej3D27dELpFw9r+TaDSuh6X4KBzodDoef/xxAH7841CuXffMP0eZCGzNqqHNRpXFX2X7eoIAR39VsXp2AJdPizcObZCNzgN1jB0hp0J4HhhldrJSbDQa4fhx8XUR9Jw5j9HPt+4BWQHNJ7LZ0NxwrwB1zI3rTB/4Fv2nfEK1JxqkGqP2xaniYbw4wLMav1Yr6nvic8wQ7gXjDLja4Q2qf/kZoUcPE3D+LAmVMwjLdcIe0ni505sZ9vnqWTmr5wRweG9K3aWWr+uZMAEalpEjWxab+gCFAooVEw2zO3eKlHHmPD927D+Yx71xH4fnzI18M3DynMXHo09M5MO+XUgE3vJu9/IcmU5HuS3rgYyFQCxm+GmdHxu+CiA2WjTKIsqIiqXD+iQrlg7NtS57Fbf9nk899RQXXJE/zoSLFy8ydOhQWrRoQcuWLRk2bBgXM9s9zYL58+dTvnx51Go19erV4/fff3fpuD/++AO5XJ5vhEgEAbZsgccfh27dxDVLYDErvcY+ZN7uGFp1znnDzI4hVAz/sD/UMkOXmMB3n0zhzNHD7Nm8Nqe7lilZiYEACAjcvnqZG1cupQnN9VE0EASBCxcuiPeyXBoDgiCw+H8f8i+iYE5mRP68i4DLFzFrPQ8zPHlQyYQuxZk+oBiXTyvw87fx5vBEDp40smi6PxUj1HlnmEHWxtnx42J+QWgoREXlVq/yDXkxRnMCv5jbyMwmbC6GegiCwLp5n3P9/FmWTJ+c5h5tCgwGQGq1Ik9KyvJ86nuxSGw2BKkUQ3HvGC+G8AhuJ5e7sCvJZUbwvycI+e8EVoWSa+1eS/P5OSrz+fhw3mkXyuG9aqRSgWbt9fx4UMe25Woa18ik7lJ4cqjmHe/UJS0oOM+Pgvgcd7fGmR1z8vhXxj9gz/qVnPnnKO8Argf5FgzK/LAZRWICiWWjiGmcWsvCipSVdGVIx7IseD+Y2GgZxSKsjJqewNGTVqYNDyBMq8yjnnsHtz1nQ4cO5Z133uH27dvUqlUrjQx57drph+jY2bVrF23btqVOnTo0btwYQRA4cOAAjz32GN9//z0tW6at75MZa9euZcSIEcyfP5/GjRuzcOFCWrduzalTpyhbtmyGx8XHx/PWW2/RvHlz7uTxTU0QYM8emDgRDh8W39ME2GjXJ4mXuifh55/7Nx5DWDhB58+IeWdZoNEGMHnJWn7duoG2b/aGWXkn7JJVjTMAhVLFR6u2UNxPmbEgiI9CjVqtZv/+/QCo1GrAlOPXlEgkjP9iIQdaNWIWsCejhoJAla/nA2JuSpUlC9y6zrnjClbNDuDkn8khUWqBV7rrmDBWwuPl/ZHmF+EAu5z+rVuQnjCCc75ZfulzLuI8Rh+q1FgKqB6I3WumjyyJvwseNIlEwtuTP0ahVPHaoBFpcmesfn7YFAqkZjOKh3FYtNpMz+coQF08zK3cnqy43OlNSv70I+W2rOe/UeOwqTJ+lti9ZrdatsYUUtzx/t1oOX35mqX0xPqjuBxr3FrP2Ek2WjXwc63Qe0QEnDkDMd4JgS4opLmHxxes0gEOz1mQm56z4GDx+IfxtHl3Igl3ohm/dBEFJ5vKBQSB8slCIJffeNORSykIcPBnfybwD/9RE26IDoxug/SMGS6nXPE8jATxMm4bZx07ivKvvXv3drxnF/vISBDEmbFjxzJy5Mg0yoxjx47lvffec9s4mzlzJn369KFv374AzJo1i127dvHVV1/x8ccZV0Xv378/Xbt2RSaTsWXLlkyvYTQaMRqNjt8fPnzoVh8zY/9+0Sj79Vfxd7XGxsvddbTtnYg2KO92g+yJ05mFNVotFmTJoYNR1R4jqtpjSF1Qn8pJsqpxBqIEb7UnGhCpVfmk9L1ITs4TbyOTyWjcuDFgV2vMOZznSUhoGFkF/hb/+xDF/zmCVaniUteeLhtnV87IWTUrgCP7UkKiXuikY8IECQ2qZrLznlcUKwYhIfDgAaSXl1xI881cnSfOY3T35Rgxr6gAYs83SypVNlPjzHmeqNR+9J/6afoNJRJMgUGo78WifBiPvmTG93rwrhiIM3caP4uuZCk0t25SavcOrr+SfiFkWVISZbZvBpJDGoEHd6VsWqhl91oNFsS1y5NNk3h3io1Xn9GgkrvxXLKXpChknrOs5onz/BDVGgsWSkfOWdYlqJwxJkdTKOLjkEqlvDVsDPWW5m06ibcJOXmckFMnsSpVXO3wBoIAx/erWD1Ly8X/lEAJgnlAh+EC773nR+US/oXGKLPjdljj5cuX0/y7dOmS42dWnD59mj59+qR5v3fv3pw6dcqtvphMJo4cOUKrVqlrH7Rq1YoDBw5keNySJUu4ePEikydPduk6H3/8MUFBQY5/ZcpkXwXwyBFo3RqaNhUNM4VSoE2PRObvuUvXkQl5aphByoMsI0GC//76kxGvPM+tK1l/57lJVjL6PnKOnJgnBZ3b164wos1z/Hso4/vRo1T5RvSaXW3fCaMLYVg3L8n4fGQw77QL48g+NVKZQIvXdOz+S8eWZRoaVc+Hhpkde2hjes+OQqrUWNTmid04yyyaISnhIRO6vspPLoQIQkqejsKFDSCHGIiX8s0cyGRc6dgFgKhMap6V3rkVRVIiieXKc7lKY5b/L4BBLcPZscIfi1lCM/ZygEb8us1Kp2YB7hlmkBLWWMg8Z4V9nig8yDmzWixs2bYx1fGFkQqrvwPEkhPHL5ZgUvdifPh2MS7+p0StsTGRaVymPN98qKRKpF+hM8zAA+OsXLlymf7LirCwMI7bk7ydOH78OOHh7u1sxcbGYrVaiYhIfdONiIjg9u3b6R5z/vx5xo4dy8qVK5FnIBjxKOPGjSM+Pt7x7/p195KbnfnvP+jYEerXhx9/BJlcoNUbSczbHUOvcQkEFXdfuj4nMIZm7DkTBIFln03j1uWLbFo4J7e7limu5JxZLRYO/Pg9P2/fiiUPimQXVrw5T3Iai8XC+vXrWb9+fY6OgY0L53DryiWW/+/DNDUh0yPw3Bkif/0JQSLhfK/+mbaNuSFj7rggRrQJ48BOPwCavqzn+z+S2LFGzfN1/JHnV6PMTkbG2f37cP68+PrJJ3O3TzmMq/PEeYxaC/B9yi6jn5RJaZOfN67h/IljrPriE5ISsja47HlnChcUGx1hjd5QanyEqx07I0ilhB3+E+2l9HMn7cWqt5bqxaBWEWz5RovJIKHK4ya+Wn6XvbSgEQfxU3gYxVFIPWdZzZPcuofnFEoPcs5OHtzPoRPHAJDEFK7v244i7gGld2wD4P0rg5n0Ziin/1ahUAq0653E/j/vM433CSa+UBpldjzSlrx48SKzZs3i9OnTSCQSqlevzvDhw6lozyHIhLfffpt+/fpx6dIlnn76aSQSCfv37+fTTz/lnXfe8aQ7ab4ge4jlo1itVrp27crUqVOpUqWKy+dXqVSoVNlTyrp4EaZMgZUrBQRBgkQi8ExbPZ0GJ1KibP4LV3F4ztIRBJFIJIxfsIx182by1phJ2b6W1OClsDLnGmeZGGdms4nPR4gL3xFvdnLZSPeROd6YJ7mF0WikU6dOAFy4HZtFa895+/3pqNR+dBww3KW6M5WTFRpvtnqZpKgK6RapvX9HysaFWn5ar8FiFu9zTzYz8N5EC22aalDJC1B9G/sz41FBKHvybeXKYvhjIcLVeeI8Rrf+ewnkBTM/1hXPWZseb5P4MI5GrV7G34WCvCly4lnLIKTI6Hs3rBFAX6Ikt59pRuS+n4jasIrTQ95N9bnf8f8oduIYJhSMPNAfHVKiqpkZPNbA22+oCbJ6QSm4kHrOsponzvPjbLRrqtL5iZSwRtc9Z3WaPIf/gGGwYA7+xoJVdNtVAr/eiMxo4B9q892J55DJRcXS8eMFnq6hQVbwIlg9wu1VaXYFPSZNmkRAQACff/4548aNA6BkyZJMmTKFYcOGudWX0NBQZDJZGi9ZTExMGm8aQEJCAn///TfHjh1jyJAhANhsNgRBQC6Xs3v3bpo1a+ZWH7Li+nWYNg2+/VbAahVrlT3VUk/nYYmUrZx/d3scao1OnjOL2Yzd5A0qHsrb70/3yrVK/rTT8Vp9+xZJFVwv0+BM6hpnkak+s2o0bDpzCwCbQc9jTzZCKZMWikKNPtxHKpXy7LPPAiDx8hiwmM3Ik4WSlCo1fSd95NJxfrduUOYHMTflfN+0RakfPpCyYW4AP670x2QUZ2Ltp428O8HMa6388CuIi/eMPGeFNN/MHXJyjOYmDs9ZqdQCXRazGZlcjkQiQSKR0GXYGJfPaXKENbpgnNk9Z+ElXD6/O1zu9CaR+36i3OZ1nO0n6nYbUbJjbSD1Z4vzeSuvoihfjKnvJjK4p4rimmQV1iQvCBEVUs9ZVhT0+eEIa8wi50wQhFTPlDrt34AFc9yqQVsQiL4qY+0cLV//sAKAhZIBPP+qgXETrTxfV4O8AH7H2cFt4yw7gh4Wi4WVK1fSpUsXRo4cSUJCAgABAZ7JRSuVSurVq8eePXto37694/09e/bw6quvpmkfGBjIyZMnU703f/58fv75ZzZs2ED58uU96kd63LkDH38MCxYIGI2iUVa3qYEuwxOoWDP/GmV2HIIgyZ6zs8Dgjq3o/8FnPP70M5kc6T7ltqxzvA7/83cue2icuVLjDMRk8w+WbyRSq8LPz8+ja/ko2Pj5+bFv3z7ALgjinV3IhPg43h/ck5ad3uSFzu5Vnqn03ddILRZinmrMg1p1HO/HE8hMRjHjlXIYdOIDqmpdEyPGm+j+qhp/RcHwVqaL3Th7VBCkkOabuYPzGN19OQazKf9FWGSFTK9zCHI4izRZzGb+N3owYZGl6DX+A7c3yVIKUbtinCULgriZNuEqd55phj68BH4xtwnf+xNL6MlUJhPzqT+fIoY0xr/9Jkc/txERkLmypEcUUePMeX7cSNDDA2PmB+QzHJ6zTHLOBGDZnM+4cvkCo+d8jUrt5wiDlOt0SEw5rzKc08RGS1k/P4CfN/nxnPVnqnKOJJmWl3e2Z1YzlWuKpYUQt42z06dPs27dujTv9+7dm1mzZmV+MbmcgQMHcvr0acBzo8yZUaNG0b17d+rXr0+jRo1YtGgR165dY8CAAYAYt3zz5k2WLVuGVCqlZs2aqY4PDw9HrVaned9THjyAzz6D2bMFdDrRKKte30i3kQlUr1dwpF7tydOKxEQAZgB3blxn9ewZ1G7U1GuxvtrLFwk9etjxe/ifv3O5Wy+PzuVKvpkPHznJL99v4vKpf1k3byZNXm7nUogWiHH25ZPlts/1HQyAQSdh19JgenGZBxQDHZSvYWboWAN9XvcjUJ0DC73cxm6cOeeTCILPc1ZIsMvomwICUwkf/HvkEIf37kKhVNGq81uUqeR6mgGA2VGINy7Ltn7JYY36sJzxnAlyOZc7dqbGV7MwTdtCb34GYKD2W4IT47GUi6LPV22Q5JQysHNYoytFuX3kCxx1zpKl8dPjMvDD2mWYDAb++eNXGjR/EbPTM0X5MB6Lxj+He5ozxMWK4fm716SE548LnQuxoOr7Ji+3zJn5WlBw2zizC3pUrlw51fuuCno89dRTHDt2zCXxEFd44403uHfvHh988AHR0dHUrFmTHTt2OM4fHR3NtWvXvHKtzEhIgNmz4X//E4iPF42yijVNdB2RwOONTQXufmnx12JRq5En54PNB2Lf7E27QSO9moRZbtOaVL+HHTqAxGLJ1POVEa7UOPPhIyd5pVsv9FYLDZq/6LJhBqI6lVynI65aDW42eJbdyzRsWqQlLlZc0FXnFG/OCWdg3yBC/LK/qZVvCA8Hf39wLiZ89SrExoJCAXXq5FnXfGQfR75ZmbKpjIY6DZsw5ONZBBYr7rZhBm6ENdpsqGJzznMmCPD3Lypm7h7Mb8ymqeEX6vMXb7COwVV/hyMg7/e2V+urpcHuOdPrITERvLDp7SOHEYSUOmeZeM4qAJPnLuHy1Us0aP6i+KZMhikwCOXDeLHOXwEzzhLiJGxdrGXHCg1GvegVq9nAyISBV2ne93sA5IPThvUXNdxeAWdX0GPQoEG888473Lhxg3r16uHvn3pgZVXEOqNzDhqU/pe5dOnSTI+dMmUKU6ZMcfuadvR6+Oor+PhjgdhY0SgrW9lM5+EJNGhuLHBGmQOJBENoONrkfAEV0HvUeKwaLyQw2y9hNlNuc2ovrDLhISEnj3O/bn23z+dKjTMAo0HP+M6voJBK+efvv3yhjUUQvV5Po0aNANi055dsnctsNiEAEkSxnNcGjnDreKlBT8Xli8W+1BrBe63Dib0l3pojSpv57EZvurIKWe+H4KfIVl/zHRKJ6D3755+U9+xiIHXqQAERmMkJnMfotNVbQarM4x65T4pSYzkEQcAE2P+K59t38vi8roY1qu7fQ2q1IkgkGIuHeXy99Djxp5JVswI4/48SKMZPsla0su5iP01RYYIjiEZZL88iQVzG3x80GrGQe0xMkTHOnOfH+t0/53Fv3EOm0yFNVphMr86Z2ZQSovnYE09SrcmzqT9PNs6UcXHoS5TK2c56CX2ihO3L/Nn2rT+6RNEoq1zbxPBxRnq090P76RqxlmPjxlCrVh73Nu9x2zjLrqDHG2+8AZCqrTtFrPMTixeLnrJbt0SjrEQ5C52HJPD0S4Yc3SjLDeLv3+NMbAzum0iuU+LXn1DH3sVQPBT1vRTFvIj9+zwyzlytcSbYBK6cEWvquSJv7qPwYbPZ+CfZIBCyMQbMJiMzRg3kZ2Cuh+cou2kd6vv3uC4rR7/1vbAip1iElbeG6Rnd00TJUis87l+B4FHj7MgR8WcRzjeDdMZoAUy9sBtniaXL8u3nHzEP2OKF89oV7hRZqDXaxUCMxUM9isZIj7PHFKyaFcC/h8SNA6VaoO1bOirV7QkDd4mGmZ22bSEyMv0TeZOICDFv886dFAXUQo637uF5gTL+AQA2hQLrI5vDe9atZPuSBTwNlMzgeFNQMP43rrmUc5nXGA2wa5U/m7/25+EDcWFcrqqoWNqvs5ogdQBYLLAouZD2wIF52Nv8g9t3K4lEwsiRIz0W9Lj8aOJ3AWbUKAAJoZFWXh+UwHPt9MgLycb279s3E2AwUB/QAznhW4rasBqA6690oLJThfvw/b9yeui7GR2WIa7mnClUKt5fvJpifgrU6gKocOcj26jVanbv3g2ASq0GPEusPnX4IMcO/MZpYKibxwoCHN4jp97HXwMww/oO/iESugxMZMwIOeVD/ZHoCqrr3Q0qPSIA9Pff4s8inm/mPEYtKjWWgrNv6cAe1nhbq2XP6u8wAN7wcZiT65wps6hz5hAD8YKM/jHqMG1YCY7sF6N95AqBFzvrmDBewpNVNMisHWFKRGphjrffzvZ1XSI8PMU4KyKkuYfHF5yc/lQ1zpzCq4x6HRsXzOburRssB97L4PiUzYm4HO1ndjCbYO8GDRu+0vLgrmiUlYyy0O9dPUN6qVMUSwG2b4ebNyE0FF57LY96nL/I1laSu4IeCQkJnDt3DrPZTIMGDQgNDc3O5fOcwBArrw+Mp2VnHYqCF3GSKS9370Pgjq1w/EiOGGbqO9GU+E18TF999fVUxlmxk8dQxMc5kr5dwsUaZwAymYzHGz9LpFaFrKC7OH14hEwmcyjLimqNnvF442cZ8eHnvDRhFNWBcy4cIwB7aMmYt0pR579tlOMSsZLiGAZ34tA4E1Uj/Qt1cc00PGqcHT8u/izinjPnMbr7cowY8lPA0CR7zmS16zJl/lKK9erEK8DWbJ7XsTjNwnOgjhHL7GRHRv/6JQWvs44NvA77QSoTaNZez4RJAk1qalIKvUsV0L07/O9/4u9lykCrVh5f1y3seWeFrNZZZjjPjxsJBav4lSIuDkir1Kjy0/DBso38tmEVYxbMzvB4+9ooP8rpWy3w6zY/1s/TEnNTNDHCSlroNULPqP4qIgLTsRu+Eut70rt3kQ5ld8Yl4+yJJ55g7969hISEULdu3UwXDkePHk33/RMnTtC6dWtu376NIAgEBgayYcMGWrRo4VnP8wGfb42lWHghUExLxmQ0IFcokUqlSCQSSj7XAo4fyZFrldu8DonNxt36DUkql1LCIKF8RQIuXyT8z9+5+eIrLp8vsxpnPnx4E5vNhsVsQqkSva7Ptm5LiwmjXDr21DE1M9nHbzwL/wmskXwKAliH9WfhF+FIi5JRZufRMCyDAYKD0xptPgoWguDwnCWVKUe1sAjSFrjxDLtinfJhvOiCzoDseM5uX5exfq6W3773w0ZZJNho+qKOsVOgRX0NivQkvnv0SDHOevTIWSEQZ4qonH5Bxe45sxtZRoMelVrcBg8vXYY3+g1FkolxZrJ7jvORcWazwcHdalbPDuDWZdG0CA6z0n2IjtFDlJQO0aZvO1y4ALt3ix7E/v1zudf5F5eMs1dffdVRqf3VV1/1aFd37NixlC1blvXr16NWq5k6dSpDhgzhzJkzbp8rv6DWZPxQKGiYjAY+HtiD8FJl6DflU2QyGYZQ7yZQO7DZHCGNV17vmuqjmEZNCbh8kYj9+9wyzlytcQZgtVg4vn8fIX4Knuz6GnIv5SL4KDhYLBZ27doFQO3Gz2bROgVBEFj84QRuXLzA2PlL8fN3TSnr4r9yVs8O4NjvaqAUKgyMab6bJ/YeRfDzI2LiyKIrgZ2eEdagARSxoqOP4jxGpVXqIkrOFBwOfD2XDgYDNqkUXWQphwCCN7CHNUrNZmT6jL0mdhl9Q1iEy+e+d0fKhq+07N2gwWoR/89fZQvTmESVtQdQpbfzb8e5VmpOC4E44yynX0Rwnh+Pebn2ak5jzzkzBQbzz4Hf+PK94Yydv4RKTvUtM8NRSiIf5JwJAhzZp2LNnAAunxbzerRBNjoP1DF2hJwK4RkYZXYWLhR/vvACVKiQCz0uGLi0Kp08ebLjtafKhn///Tc7duygfn1R6OHbb78lPDycxMREtNrC430qqJw+8hf/HvwDpVrNK736U7pCZbceaO4Q9tcB/G9cw6wN4Farl8Q4r2RiGjWl4qqlhP/xq1s1W9ypcWY2mZg+QCwQPLDjKz7jrAhiNBpp06YNABdux2bROoU716/y69aNGHRJnPr7IPWebZ5p+2vn5ayZo+XQHnFXVCoT6GP9mklMo7RNlBCX9OkjxtoXVUqVEkNZjE5FZIt4vhmkHqNb/70E8oKTH2vU6zi9TFQgva/VIiiVYtK/l7D4+2OTyZBarSgfxjk8CY9iFwTRh2f9LIu/L2XzIn92rfbHZBSfO3UaG3n3nYd069BebOROQdyInHl+ZnqtIuQ5c54fZ6Pv5nFv3MNR4ywoiC3fzOPB3TvsXLGEoZ9m7C1zxtWw3pzm5EElq74I4Nw/Yl6Pn7+Njn11jHtXRvVSLoTnGwywZIn42icEkgq3V6UVKlTg8OHDFC9ePNX7cXFxPPHEE1y6dCnd42JjYylbtqzj9+LFi6PRaLh7967POMsHPP70M4z4fD5BxUIpXUGsYeeNJOr0iFq/ChCFQKx+GmQ6neOze080wKpUoYm+RcClCyRUrJzRaVLhTo0ziVRCxZqPo5BJkBbx3fmiilQqdWwUSdwYAyXKRjF5yVquXziXqWF2+5qMtXO1/P69H4IgQSIReKaNgXHvJPLCc8mhG7/cEMOeXChBUqiRSkWPg3MURRHPNwPPx2h+QOWn4Z23B8PHk7FVe8z7F5BIMAcGoXpwH0V8fMbGmcNzlvGzLOmhhG1L/Nn+nT8Gnfj/XL2eiRHjjbz5ih8ak/fKx+QYRdBzVpDnhzI558wcFMyYyZ+w5Zt5bpVgMdlzzpLPk9ucOy4qlp48mKJY+kp3HRPGSXg8yt/18Pz16+HePTE/8+WXc7DHBQ+3jbMrV66kK3dvNBq5ceNGhsdJJBISEhIc6nh26fyEhAQePnzoaBcY6HrhVh/Zw2azYTYZHbHOjVu3TfW5MdT7xpnywX1K7t4BwJXXuqT53OrnR2z9p4g48Bvh+/e5bJy5WuMMQKX2Y8aGnURqVb4aZ0UUPz8/DifX0xIFQTIXBTHodKiTa/xVrl2XyrXrptvu7m0Z65YG8vOmlJCohq30vDfRyktPa1AaHpF87tQJoqKy9bcUCipUSG2c+Txnqcbo7ssxmE35XxDEeZ6USBTVnHVlyuXItUyBwaJxlon3wO45S08QJAkNG74NZsvyEBLjxcV9hRpmho4z0Pt1PwJVyeGLTjWn8i1F0HPmPD9uJOjhQQH4npKR3r8HiEaWn78/XYaPcet4V9VKvc2ls0pWLgzhyD5xHW9XLB0/TkKDqhpkUjdDr+1CIP365V5+ZgHBZeNs27Ztjte7du0iKChFZcZqtbJ3717KO8dbP4IgCFSpUiXNe3Xr1nW8Lmh1zgoygiCwcPJ73Lx8gfELluHnnzYu2FA8FEEqReLFGiJlvt+EzGwirvpjxD2WfsHxO02eI+LAb0Ts38fFHq5JEbta48yHD3fZvuwbdixfzJSl6wnPwPi/QzgfM4757cpiNokLvbpNDbw7wUKH5n6o5Rk8eMa491AutDjnGpQrl+IJ8FFgOPrbz8wdN4Kx85ZQpU69lALUOWScmYPshajj0m9gs6GOFcPdnD1nJqOE2QxjOuOJmStGAJWuZGbgGAOD3lQT7FcAizgXQeOsoHLt/Fkk2zdRmZRi6u5i95zllpT+Gaoymams6yKur+yKpeMnCDSt7aRY6g7//AN//glyOfTt6+UeF3xcNs7atWsHiB6wHj16pPpMoVAQFRXF559/nuHxv/zyi2c99JEj3Ll+lQM7t2HQJXH22N/Ubfp82kYyGcaQYqkKRGcLQUgRAnmta4bNYpo8BzM+IPTwn0iNBmyqrHMt3Mk58+HDVYx6HTtXfMud61c5tGcHr/Tsl+rzxHgJ2xYUoxsXSUILJqhR38jICSa6vqxBo3hk7J4/n/K6RQuoUyfn/4iCgLNxVq9e3vXDh0cIgsD2pYuIvxfLnvUrqVKnHprrycZZ6bJZHO0Z9oWtwinyxhll3AOkZrH2lSE0HIsZftnsx/p5YdxDzO2JKG2m7zsGhvdVEaYtgEaZHftmRlwcmEygLGS1fQoRP29cw9Dk/FqDh8ZZysZEzuacxdyQsX52GPv4DxviBmPTl/WMnWSlZUaKpa5i95q1bw8lPC91UVhx2TizJXtPypcvz+HDh92uUfbss64rovnIeUqUjWLK0vXcunwhfcMsGUNomNeMs5B//yHo3GmsKjXX27TPsN3DylXRR0Tidyea0L8PEZOVmp4bNc5AlK2d2usNlDIph37b5wttLILo9XpHGY/lW7Zn2E7lp+GD5Rv5Y8c22jh5cfWJEn5Y7s/Wb/3RJYgPqPocpse3UfToGkKAKp2F3qpVqaWCp03zzh9TGHCW03/yybzrRz7CeYyO/WYVSPPvglsikTBm7rdsW7KADv3Ecuz+N1Jk9HMCU2DmogiOkMZixfn1xwDWzg3g9lVxyVOa60xiGm0OfULJksVypH+5SkiI6IGwWMS8s9JZh/cXdJznx9LN3+dxb1znrTGTqLRjC8TcwRoc4tE5TM51zjIpJeEp9+9I2bhQy0/rNVjMKYql3X9oTJsXiqPKjlEG8PAhrFghvvYJgaSL2zlnly9fzol++MgldIkJaJJ3CCvWrE3FmumHFtoxFg8DTnvl2nYhkJsvvJx5gWmJhDuNnyFq01rC9+/L0jhzt8aZYBM4e+xvIGXTwUfRwmazceDAAQCEdMaA8zwpHhFJ216iUWU0wO41/mxa5M/D++JOYtlKRmZfeINX2YqkUyKoHrmt6vUwfDh8/XXq92vV8vJfVYDxec7SkGaM5kPNA+d5otZo6DRYrPcnNRrwuyMWgM65sMZgIONaT+rkEL9LiSWZPVpcBAcWs/Lm2/F8/mll1Bgh6Isc6VuuI5VCWBhERxcZ4yyre3h+wnmeSKVSwpWikIYps3VQJpicS0kYvFeA++EDCZsXaflxlZNiaUMdCw8+RwMOw7OJ7imWZsTKlZCUBNWqwXPPZf98GeHvnyPGa27gknE2Z84c+vXrh1qtZs6cOZm2HTZsmFc65sP7bFk8n12rvmPKd+uJcDHUxOAlURCZTkfpH7YAcKVjWiGQR4lp/CxRm9YSsf9X/n0v87bu1DgDUCiVjJm7mBC1wlG/z0fRQqVSsXnzZgCUKhVgcnz2194fmTf+HcbO/5bq9UTVQLMJft6kYcNXWu7fEY2yEuUsvP2OnmFvWAiN2Jr+hc6cEUU/Tp4Uy0KMGQOffpqjf1uBpIyTx9sX6gmkHqMKpQpLPlt/XjnzH1N7d6bHe5N57tXXUn2muXkDiSBg1vhjCskZz1RGnjNBgGO/KzFNTaIJcNVUCv9AG6+/rWPcOzIqByiRfFpwxCNcJiJCNM6KSN5Z2nu4OW87lAEP7sbwfvcONHyhDV1HvIdEInHkipmCPAtrtGo02BQKpGazV/LOkhKSFUuXpiiWVq1rYuREI282s+Efcjjb13AgCCkhjQMGFN36nlngknH2xRdf0K1bN9RqNV98kfFOk0Qi8Rln+RSDTsdP61YRc/M6R37Zw0vd+7h0nLG4d+ovlfrxexRJiSSWK09sg0ZZto95+hkEiYSg82dQ34nGEJGxR0yTnHjuar6ZTC7nqRatidSqfDXOiihyudyRRyuqNYoIgsCu1ctIjH/Avi3rqVLnKX7f7se6uVruXBfHSmiklZ7DdYwaoCIyKEDcAUyPFSvEh09SkpgTsnIlNGrkM87Sw3kealyQLi/AO6Ku4jxGd1+OgXym1vjrto08vH+PPWuX07RNe2ROamupxEByaPFlzzlzzrv5nSZM6FuSU8f8GIcoBuJXLZQ/fzRQs2xy3aWM5mtBp4iJgjjPjxsJ3vMeeZtjv//CrSuX+O37jbTt2Y+AwCCUCWKepDnIs7BGJBJMgUGo78WizCDn0hUMegnfr/Bn62JtKsXSIeMM9LErlnp7vhw4IG5W+vnBI/oVPlJwaWXqHMroC2ssmKg1GqYt38ifu3/gpTd7u3yct2qdRW0QQxqvdOzs0sPaFFKMBzUfp9jJ40Ts/5WrHTtn2NbfjRpnPnxkhkQiYcyX37B92WJKlBnJqFeDuXFBAUBwqJVug3WMGaakTEhadVMHOh0MHQrffiv+/vzzomEWGVl4F4Y+ihzd351IcPEwWrzeNZVhBuB/Xcw305XJGTEQcCrEGx/PhVMqXmQnu3gRjoFCKdC4wlU4A892KIukXAGoVZZdimCts4JAsw5vIDEYGP7BOCo1qsmOn1O8UCYPBUFADIlU34tF4YGcvhElC+nP5LZlibuXnIdZ0cyAMQYGdVcTkpOKpXavWZcuEBycc9cp4PjcBoWcpIfx+CffAELCI9wyzMA7nrOAi+cJPXoYm0zGtXadXD4upslzFDt5nPA/9mVqnGncqHEGYumH038fItpPQYMOL6dZWPgo/FitVn7//XcAKtV90jFPBAH+OxzCwV1TuXRKNMq0QTY69dMxdpScShGZGGUAp09Dz57w33/iJsTkyTBxoq+Giw+3cR6j1tJV87g3IkkP49EEBCKRSJBKpbzaJ/1kfn+7UmOpnDPO7LWe7h5P5N03SwOlkWOm1et6xk6S0WRyLJwBScmSOdaHfEUR85w5z4/yderncW9So09KQqFUIleIz5AW7V6n0gfjgBRPr1njj5D8uSekeI5d95xZzPDz5gCGcp7rlIV7EFHGQp9RekbkhmLp3bti4WnwCYFkgUvG2ahRo1w+4cyZMz3ujA/v8ueP25k/6V3em/stNZ962qNzeCPnrNxGUT7/9rPNMYRHuHzcnSbPUu2rWYT/8TtYrRkucN2tcWY2GpncQ8yR6JmYiL+/v8t98lE4MBgMPP+8qFK6ZddPDOr0Gs1fm8rZYwM4c1RUxVNrbHTorWfcGCmPlfbP3Ciz8+yzouesRAnRW9asWU7+GT4KMc5jdOu/l0CedUmRnOTenWje796RBi1e5K3RkzKdDylKjTljnEVflfHrqlI0BOTx8UilAt1sy5nCFMou/gd5gD9E3xIbR2YtElUoKGKeM+f5cTb6bh73JgWjXsf0/t3xDwzknVkLUShT57XbcyTNHuab2TElh0S64jmz2eCPH9SscVIsLclN3nhfzTsjtZQKzqUyEkuWiKUe6tcX//nIEJeMs2PHjqX6/ciRI1itVqpWFXfzzp07h0wmo55PZSvfIAgCP29eiy7hIQd+/D4bxlmY47XEbALcCw+RmEyU3SLulGRW2yw97td+ArM2AFX8A0JOneRBrTrpttO4GdYokUDpSlVQSCWuLbh9FDokEgk1atQAYOnX20iMj2Pr4k3AYJQqgTZv6hg/TkLdChqkWY0R59wnnU6sX7ZiRcpOtg8fHuA8RvND0vzJg39w+9oVDu7eQYd+QwnIRAZck0MFqGOjpayfH8DPm/yoZRVrI4Ur77N5eyxtWyXnr0iT1eSio8WfPs9ZocR5fuSn5/iVM6e4cPI4coWC29euUqZSlVSf240zT5Ua7diNu4zq/IH4aPprr4o1swO4dl700gUGW5kcN5qBfIV69F0k2lwSRbPZYOFC8bXPa5YlLhlnzgWkZ86cSUBAAN999x0hIeLN+cGDB/Tq1YumTZvmTC99uI1EImH0nK/5cdV3vPyW59XXDWEpC8xnerzO4f/NI+GRm01mRP6yB/X9e+jDIrjzjHteBEGhIKZRE0rt2Un4/n3pG2c2G5pb7hlnKj8Ns7fvI1KrQuOK+ICPbJGUlERAQIDjAWoymTCbzcjl8lRqmUnJ+Vh+fn5IkxdYZrMZk8mETCZDrVZ71Fan0yEIAmq12hHCqlQqWbz4Lz76SMqWDWqgIjJ5T1p0uM+7o+GZx0NQKsTbo8ViwWg0IpVKU9XE0+v12Gw2VPv3O26ktokT0Y8ejVShwLl6nqOtxeJoa7VaMSQlIZFIUo1Dg8GA1WpFqVSiSBa+sFqtGAwGJDpdxm2TQ2RsNht6vZgg7+wVNhqNWCwWFAoFyuQite60FQQBnU4HgEajSfN9utM2w++eFMV4b4yT9L57e9v8jkaj4b///gNEQZDEPBYEee7V15BIJFR/okGmhhmCkBLW6CXPWVyslE2LtOxanVJ3qdRTfnAIikviaPv0I/dxQUgxzgqL5ywrERy7cVZEPGfO8+NGgh7i8secrlq3PuMXLkOhVKYxzMAprDE5LNdTTJmUkhAE+OcPJatnB3DhpHhP1gSIiqXjBxmoUilZ2C83jdrdu+HSJTHPrHPGaSo+RNwuWPD555/z8ccfOwwzgJCQED788EM+//xzr3bOh/s8fHDP8VqpUtO2V/9s5VTZnBY6wWf+o1nHF6m47BtxF8QF7EIg19p3cknm/lFiGj8HQMT+fel+rr53F5nZ5HKNMx+5T8mSJYmNTSlk/tlnn6HVahkyZEiqduHh4Wi1Wq5du+Z4b968eWi1Wvr0Sa0uGhUVhVar5fTplBp8S5cuRavV0vmRG3+NGjXQarUcPXoUgHPnoGHDb2jUSMv27W2RSqFlx7fZ9ZeM6/8+R8snwznwx37H8du3b0er1ToKntp55pln0Gq1XLILfwB7GzRAGxREo0apFUlbt26NVqtl87ZtjvcO/vUXWq2Wxx9/PFXbjh07otVqWblypeO9kydPotVqqVy5cqq23bt3R6vVsmjRIsd7Fy9eRKvVUqpUqVRt+/fvj1arZfbs2Y73oqOj0Wq1BD+SmD1q1Ci0Wi3Tp093vBcfH49Wq0Wr1WKxWBzvT5gwAa1Wy4QJExzvWSwWR9v4+BQ1venTp6PVatOEygeXKoUWiHZ6b/bs2Wi1Wvo7F+4GSpUqhVar5eLFi473Fi1ahFarpXv37qnaVq5cGa1Wy8mTJx3vrVy5Eq1Wi4+s0SUmYHYyZJ9t25Hw0plvginj7qNIShSPz6ZIU0KchBWfBzCoZRg/LPPHYpZQs4GRxVsTWP+DGMYnMRrFWoLO3L8vhk+BGGJcFLCHNRYRz1l+wmqxkOSkGlqrYROqPdEg3bZe85zZS0kkpPacnT6iYFL3YkzrW5wLJ5Wo/Gx0GpDEnycNLPmfP1VK+KV3upzHLgTSo4drirxFHLeNs4cPH3InnckfExNDQkKCVzrlwzPO/XOUwS2fZvfaFTly/juNmiIzGnh8+vs07tsFv9u3Mm2vvn3LYVRdyUTQI9NrNnkOgGLHjyBPSOu+97t1E3C9xpmPokt0NPTpA9WrX+PIkUmAWJT2xz/17N7gR/O6nuUehv3zjze76cNHvkCflMSHb3djxtA+GNMpdCvT6ehQrSQdqpVEluwlhRQxEH1EJDaVZ3ly+kQJ6+drGdQinM1fazHqpVSubWLu6gQO/Cajd9sANCFBKSGMcXGpT2D3mhUvDkWllqXdc3b3rsubpz6yj81mY/6Ed5jYrT1xsVnnvim9lnMWLJ4v2XP2N/WYOjiSid1COf23CoVS4NWeSfz2j57V8zXULqfJu/DPa9dg+3bx9YABedOHAobbq9n27dvTq1cvPv/8cxo2bAjAwYMHGT16NB06dPB6B324zuG9u9AlJnDgx200f62L11UID879lnJb11NzxgdEHPid5m2bc3zyx9x4uV267ctu24hEEIh5qjFJ5cp7dE1d6TIkRFUg4Molwg/+wa2WrVN97m5II4DRoOeTQT1RyaT8umtnqlA1H97n1q1bhIamqH6OHj2aESNGpKkxF5McjuP8fQwePJi33347zVi+cuVKmrY9e/aka9e0st4//3yKGTMEOnZUITp8fgNiUSjVlCqvo1RpHfZcysOHDzvC4Oy0adOGxMRERwidnd9++w3bgwdoyqaEbjV79tl02+7cudMR1minYYMGJCYmpnlgbty40RGqaKdWrVrptl2+fDlLly5N1bZixYokJibyKAsXLmTevHmO8EeAyMjIdNvOnDmTGTNmpGobFBTkaOv83X300UdMmTIlVVu5XO5o6xyGOX78eEaPHp3mu4+7eRMiIlKFgg4fPpxBgwalaXvzprgh4/zd9+vXj549e6b57s+fP5/m++zWrRuvv/46Vmv+qhv2KHq9nrZt2wIwbM43IFVmcYR3uX7hLJdP/4tCqeLuzRuUrlg564NIkdH3JKTRaIBdq/zZ/LU/Dx+I32XZKmaGjDXQr4uaILWTcIFUKoZI3b8PDx6kPtGtIiYGAhCWnB9utYr/J4X8ueY8P+avXJtn/XgQc5t/DvxG/P1YLp06yRNZpG94y3NmP956J4GObGATHeFPkMkFWnTUM2GCwNOPaZBJ80E+3tdfixsGzz8P1arldW8KBG4bZwsWLODdd9/lzTffxGwWK7LL5XL69OnDZ5995vUO+nCdriPHElqyFM+80jFn5OElEi517UlMwybUf28YxU4ep8E7g4jcu4vjkz/G/MjNptzWDQBcfa1Lti57p8lzonG2f59XjDPBJnDigCjBa/PtMOY4/v6plQ6VSmUqY8K53aMoFIpUi3532t67BzNmwJdf+qHXi9ev1chIl2EvcuvKLOaOG8HpI4dSjYH0chDlcnm6xcr9/PzEOHqnRb5MJku3bw5DwqnOWUZtnQ0JT9pKpdJ026pUqlS5W+62lUgk6bZN7/t0py2k/316Y5yk933a2z7MRvHW3MBms/HTTz8BMNRm8yDOJXtUefwJJn69CqVK5bJhBk4y+qVdFwMxm2DvRg0bv9JyP0Z8dpWMsvD2u3qG9lJTXJOBmlxIiGiIZOQ5KypiIAAKBRQrJv5/3LkDUVF53aMcxXl+CHn4HC9eoiTTVmzi2rkzWRpmAMrkMG9TNnPO7hiLARBzQscmOiLBxrMvJzF2soRm9TQopLl8w8gIsxm++UZ87RMCcRm3jTONRsP8+fP57LPPuHjxIoIgUKlSpTyVI7f3Jzo6mscee4xZs2ZlKE6yadMmvvrqK44fP47RaOSxxx5jypQpvPDCC7nca+8QF3uXoOKhSCSi8uALnd/K8WsmVqjEr6u2Um3BbKoumE2ZHVsJPfIXf3/8Bfed6o1oom9iCgzi5iMGlbvENHmOSiu+FUMkH0mI1iSHNbpa4wxAoVQy/LO5BKvkaRagPgo+Dx/CF1/AzJkCDx9KAAkVa8bQeZiZJ54RH1iVanVAlmxwKbMzBpIXBz58eBuVSsWKFWKIukKpwpIL60+L2Yw+MYGAEHHh99iTDd0+hzsy+lYr/LbNj3VztcTcFOdjaEkLvUfoGdlfRYnALCS+7bnvjxpnRdFzBmLe2f37oihIITfOnOeHeA8359q1BUEg/l4swclq1pHlyhPpYnSQIsEe1hjs0bXtiqWGTVG0AUJ4QAc28gHvU3nVQZSB+SyfdssWuH1bzP1s1y6ve1Ng8DhJx9/fn9q1a3uzLx6xdu1aRowYwfz582ncuDELFy6kdevWnDp1irJl0z4cfvvtN1q2bMn06dMJDg5myZIlvPLKKxw6dIi6devmwV/gOXduXGPSm+15slkr+kz8KE0oVU4iKBScHvout59pRv0xwwi4eommvTtzsUuPVO2uv9IBmzp74RV3n2yETaHA/+Z1tFcuoY9IeeBqokXPmas1zgBkcjnPvNKBSK0qXY+Ij4KJTgfz5sEnnwjcvy8aZVHVzHTod5NtSzuw/btAHntyMSo/jWMMANkbA3v2eKfzPnw8glwup1u3boCo1kgOqzVarVbmvDeMq2dPMWXJOkLcqEnpjMbhOcvYOLPZ4MCPatbMCeDmJXH+BYdZeXOwjtFDlZQJyaLYu52MjLOi6DkDMe/szJkiIQriPD9uJKTNicxJNnw1ix3LFzNp8Woq1Kjl1rEKu+fMzZwzu2Lp7jUazCYJVSkOQBn/e2xMEuu2Issn3jJn7EIgffuK3l0fLuH2qiQpKYlPPvmEvXv3lZIFFAAAO6RJREFUEhMTkyYs7NKlS17rnCvMnDmTPn360LevKBc/a9Ysdu3axVdffcXHH3+cpv2sWbNS/T59+nS2bt3K999/X+CMs3PH/ub+ndv8e+gA+sQE/AOzl2DqCQ8ef4KfN++m1owPqLBmGRVXf5fq8yvZDGkEsPr7E/tEA8IP/UH4/n1c7ZhyzhTPWfZUwXwUXIxGMaT9o48Ebt8WjbKS5S10GZ5Aw1YGLv57ihsXzqJQqrh3O5qS5St658LXr8PZs2Luiy881kcBJy42hjNH/yL+XixXz5322DjLLOdMAH7gZd7pVprLZ0WPtTbIRueBOsaOlFMhzEWjzE5WxllR85wVsVpneYHZZOTvX/bw8MF9zhw97LZxpkxwL+cs8aGUTQsC+GG5BqNeNL5q1DcyfogCeoJSl4/Ds8+cgV9+EZ+R/frldW8KFG4bZ3379uXXX3+le/fuREZG5mnxP5PJxJEjRxg7dmyq91u1asWBAwdcOofNZiMhIYFixYpl2MZoNGI0Gh2/55dchaavdECuVFG1Tr08MczsWDUajk/5hOjnW1JvwijUyYpFcdVrEl+9pleuEdPkWcIP/UHE/l9TGWd+0e4bZ1arlcunTvLAT0GDEs/nTH5eESS354nFAsuWwdSpAteuiUZZeCkLnYYk8swremTJd7fKtesy6ZtVKFVqh2FmHwMAtZ5r7FkH7CGN9erB4cPZ/Gt8FBVcnSdWq9VR/sEa4nrYtqcUj4hk2orNXD9/ljrJKrnuIjGb0SSr+OoeyTk78Zcfn/IHf/I0nAU/fxsd++oY966M6qX8PVtLZBXWWNQ8Z3Y5/UJQ6yyreeI8P8IrV8+1fimUKt7/dg2H9+7iuXavu398vGt1zhLQModhTG9TFl2iuEapVMvEsPFGerb3I0BSBnqSee27vGbBAvFnmzZQxreB7g5uG2c7d+7khx9+oHFjDxc0XiQ2Nhar1UpEROodvoiICG7fvu3SOT7//HOSkpLo1KlThm0+/vhjpk6dmq2+eouEuAco1WpUyaGCjV54OY97lMKdZ5vzy9ofaN1crO9xrs8g7527yXPU/Hw6YX/9gdSUcsOWmc1u1zgzG4289/pLAHROTMzTfMnCRG7NE5sN1q2DyZPFmmUgoVi4ldcGJtKsow6FEswmE4n3EwgqJoZ+PFpzxnkMvHT9DhDofkfsxtnzz/uMMx8u4+o8MRgMNGggjtut/14CuWey9JkhCAL3Y25TPDlUPKJ0WSIyCUfMCk30TSQ2G1aVGkOYaCicO65g1awATh5UASXxQ0ebnibGTVLyeHl/pNnZ4PV5zlJTiDxnWc0T5/lxNjprCfvscu9OtGOe+AcEemSYQUrOmemR2pJ2jAb4aUUQb3ORu4RDIpStbGbgewYGdFMT7KxY6u+fSmQqX6HTwXfJkVQ+IRC3cTtANSQkJFMvU17w6I6bIAgu7cKtXr2aKVOmsHbtWsLtO07pMG7cOOLj4x3/rl+/nu0+e0LSw3g+6N2Zjwf0wOBUVyY/YQpJGRvRzVp57bzxVWtgCA1DrtdT7PjRVJ+5W+NMIoGwkqUpUbpMnnp+Cxs5PU8EAbZtg7p1oUsX0TALCLbRY8xD5u6O4YUuomFmtViY9e5gJnZ9lXsZ1OKzj4GwkqU9GwM2W2rjzIcPF3F1nkgkEsqVK0e5cuXEAZsDrJnzGaPaNufCSe/U6nMOabxyVsH0ASGM6xzKyYMq5HKBIXzJRSqyeo6cuhU02TPMIH3jTBCKtiAIFArPWVbzxHl+5PRz/PfvNzG45dP8+eP2bJ9LbjAAKUWk7ZhNsHuNhiEvhPPtzFDuEk5lzjH5f7EcPQ5j+wQQrH4kZyufrcVTsWaNOC8rVIBW3lsLFhXc9pxNmzaN999/n++++y5dmeLcJDQ0FJlMlsZLFhMTk8ab9ihr166lT58+rF+/nhYtWmTaNj1Z6bwg+uplbl25hFKt5n7MbUpGVcjrLuUeUil3Gj9Lua0bCP/z91QfuZtvpvLTsODnv4jUqvJ8DBcmcmqeCALs3QsTJ8KhQ+J7Gq2Ntr2TaPNWEn7a1GEd8fdiufDvceLu3uXWlUsUL5E2tMk+BgD8PBkDJ0+KCyCNBp56yv3jfRRZXJ0nGo3GUc9v9+UYEr0sCGIyGjhx4HcS4+O49N8JKtV6PNvntMvon4ivyDvtRCU7qUygWXs9E0Ym8VzjYWJDb9VeSs84i4sTE1Gh6BlnhchzltU8cZ4fNxL0EGfKsb4c278Ps8nIv38doNGLbbJ9PkEqxawVPWBWK/z+vR/r5mm5cz1ZsbSEmU9uD6AH3yEfEA+aDIQ0QkLE3Of8iF0IpH//lGLxPlzGbePs888/5+LFi0RERBAVFZWmtow9Bjg3UCqV1KtXjz179tC+fXvH+3v27OHVV1/N8LjVq1fTu3dvVq9ezcsv55+wwKyoVKsOk5esRalWFy3DLJmYJs9RbusGwg5mzzjzUXA4cAAmTIB9+8TfVX42Xn5TR9s+iQQEpx9rXyyiBB+u2MyNixeo1bCJ+xdNSgJtshxxYqIYOvIodq/Zs89COrW4fPjI7yhVat5fvJojv/5Ek5fbZft8MTdkGFfepi5w5K5YF63py3rGTrLSsr4GhSEHcmPsxplzEWr7Zm1ICKRTB7BQYzfOCoHnLD8xePoX1GzwNM+1zzj9xR1MAUHYkHLoRzVrvtRy46K4jg4OtdJtsI4xfcyULftt1ifKr56zv/8W/ymV0KtXXvemQOK2cdYun9UpGDVqFN27d6d+/fo0atSIRYsWce3aNQYMGACIrvGbN2+ybNkyQDTM3nrrLWbPnk3Dhg0dXjc/Pz+C3JQ2zQ3MJiNJDx866mlUefyJPO5R3hHz9DMABJ89nep9d2qc+SgYHD0qesp27hR/lysEXuiso0P/RIJD0yojCoJAbPRNwkqKY8Eesphj2CX0W7bMuWv48JED3L11wzE3/LTabBtmt4hk4ceh7NkSyCqzuItvqVyG9QsTeKWpPyp5Du6ap+c5sxtnRU0MBFLCGu/cyd9CEQUA53kik8lo1rGz186doAphzGuhXD4lGmXaIBud+usYN1JOxQgtElfTVuzjP79h95q9/jqEheVtXwoobhtnkydPzol+eMwbb7zBvXv3+OCDD4iOjqZmzZrs2LFDjNMHoqOjuXbtmqP9woULsVgsDB48mMGDBzve79GjB0uXLs3t7meKxWzm8xH9uX7hHJOXrCO8iBshxuKhPKhRi5BklT077tQ4AzGcZ+aogajlUnZv2YS6qO2u5mNOn4b334cNG8TfpTKBZh30vDYwgbCS6cvVC4LAss+msXfDaiZ+vdKlDQz7GAD4bvlKwA1RGKMRfvtNfJ1FSLQPH55iMBjo3FlcEPb9ZA5Isl8j6JfN61jw/miGfTqHxi9lHF3iCg8fSBnNDOYyBMN6UaDqMf+LkARDZlRC9XwWBaS9QWbGWVELaYQUz5leL3r9CzHO8+N/Xy/x6rlP/X2ID9/uSrs+g3h98Civ5bSd5DFq8R+XYopzOUaBn7+NDr31jBstpUZpDxRL86Pn7MEDWL1afO0TAvEYj6uvHjlyhNOnTyORSKhRo0ae1ggbNGgQgwalrwz4qMG1zx4fVQB4eP8eV8+dIe5uDHdvXi/yxhmIoY2PGmfuhjXarDYO790FiHK8PvKeS5dg6lRYsULAZpMgkQg0bWOg05AEIstl/h2ZTUbOHT9C0sN4rl8465Jxlq0xcOCAuPiJiICaNUVVKh8+vIzVamXr1q0A9P7oC5Bn3zj7768DWMxmzv1zzGPjLClBwvdL/Pl+aQQGRgNQvY6e4ZMsVO9zGQBVpUrZ7qtLpGecFVWlRhBDsDUa8Z50N+cVDPMS5/kxY4F3n+MXThzDqNdz7p+j2KxWZG4IjqXHuX9VtGQ3JbnFd/QkTlKMjn2SGDdWkj1hnPzoOVu2THw+1qoFTz+d170psLg94mJiYujcuTP79u0jODgYQRCIj4/n+eefZ82aNYT5XJheQ8yd2cStK5d4rEGjvO5OvuBOk+eouujLVO+5a5zJFQoGfPAZQSo5Sl++UJ5y8yZ8+CF8842AxSLWKmvQwkCXYQmUrWJx6RxKlZpJ36zm2O+/uFxawj4GABTujgF7vlmLFjmmoufDh1KpZNGiRQDIFUosXohSG/TRTGo//QxN27TPuvEjGHQSdqzQsHWxlsR4MVTxCY4wjUk0+Wk1gVJbipFUvnz2O+sK9sWpXp/yXlEOawRx0+jy5UKfd+Y8P8R7uNlr527bewChJUtR77kW2TLMrpyVs2Z2AId/VgOleQfxmVP3xQDWLtQgy64wTn7znAlCSm2zgQN9z8ds4PaoGzp0KA8fPuS///6jenWx8N+pU6fo0aMHw4YNY7XdnenDIwRBIObmdUetmeIlSqarNldUuVenHhaNP3KdWNvD3RpnIC7MW3bqRqRWlUbQxkfucPcufPIJzJsnYDSKRlmdJga6DE+kUi3XHrK3r1+lRBkxfFmt0bhV888+BgD3x4Av38xHLqBQKHj77bcBUa0RD9UaneeJVCrlmVc6uHW82QR71mrYuFBLXKxYDLdUBQuDhscxbnh9JABqOZw9Kx4QEZG+iE5OEBgoLgCd86uKsucMUoyzQu45c54fNxL0WbTOmpibNygeUcJhjD394isen+vWZRlrvgzgjx1iuK9UKvCWbSkT+QiAsPLh3lEszW+es3374MwZUVDrzTfzujcFGrczdX/88Ue++uorh2EGUKNGDebNm8dOe/a+D48QBIElH0/m3XYtOXP0r7zuTr5EUCq5Wz9FutwQXsKtGmc+8pa4OFHoo3x5gZkzwWiUUL2+kQ+W32PSNw9cNsz2rFvJsNZN+XXbxpzt8KM8eCCqUIEv38xHvufkwT8Y2eZ5Vs36FMFNgQiLGX5a78eQF8JZ/FEQcbEywktbGDczgWP/2Bjfx49Uy8tLl8SfFXJRSVgqhUeL+RZ1z1khqnWWW9y6colxndswc9RAzCbPJfljbsqYNyGI4W3CHIZZk5f0bNsdyxJ6E4xYgNprRlV+85zZhUDefBMCciHntBDj9qrWZrOlu9OsUCiw2dJP2PfhGmaTkSun/0OXmED01StUe6JBXncpX3K3UVMif/sZAF3JUm4fb7PZuHHxPHqNkqciGyL11eDIcRITYc4c+Owzgbg40VNWsaaJLsMTqNPE5Hb0w4WTx7BaLFw7dzrrxulgHwMAtUPruX7gzz+Lu/TVq0Mp98eeDx+uYrPZOH1aHN82dXGPznH13GlMRgNXzvzncu6MzQZ//KBmzdwAbl8V2xcLt/LWMD3vDFJQOiR50ZX0yEZKXhhnIC50naX07TW+irLnDAq9ceY8PwJKR2XrXNFXL5MYF8etK5cw6nVuh7o/iJGyYYGWn9ZrsJjFh9mTzxsYPclM26b+qIyPrI29ZVTlJ89ZdDRs3iy+9gmBZBu3jbNmzZoxfPhwVq9eTcnknambN28ycuRImjdv7vUOFiWUKjUTFi3nxJ/7ebKZr6J6RsQ0aup4rfNALt1kMDDylecBaJeYiH9uheAUUebPhy++EIiJEY2yMpXNdBmWQIMWRo9D0vtPncHjjZ+l0QueFQR1HgMtrt8BXNzlc8438+EjB9Hr9dSsWROArf9eArn7qrJt3upLWMlS1G36fJaGmSDAX3tVrJkdwLXz4gZsYIiVLgP1jBkhp3xoFmpyeWWcPeo5K+phjXbPWSEPa3SeH2ejs/e31nu2ORO/XknZylXRBgW7fFzCAwlbFmvZscIfk0GcG7UbGRk1wUSnVhr8FMlz1vjIgYXRc7Z4MVgsoghI7dp53ZsCj9vG2dy5c3n11VeJioqiTJkySCQSrl27Rq1atVixYkVO9LHQc/PSBUpVENWtVH4an2GWBUlloxyvdZGeeS8CQ4p5rpDkwy3GjQOQUKKshTeGJtD4JQMymfvnuXnpAiXLV0QikSCVSrOVEwDiGHAbX76Zj1wkNDTU7WNuX79KaImSyJMjXJ5q0TrT9oIA//yhZPXsAC6cFD0GmgAbr/XVMe5dGVUjXZT4zkvPmTN2cZCiapwVEc8ZeDY/7MTfi0UmlzuMsVoNG7t8rC7Rrljqjz5JjLypWsfEiAkmurdV46/MYrOvsHnOrFZIFmfxec28g9vGWZkyZTh69Ch79uzhzJkzCIJAjRo1aOHbSfaIHSu+Zcn09xn44ec06/BGXnenwHGnyXNuH6PWaFjy579EalU+r1kuEBJu5Y0hcTzfXu+xGvjx/fv4eGBP2vToy5vvTMh23Rn7GADQuDoGLl+GixdBJoNnn83W9X34yAp/f3/uJns/dl+OIdEFQZAbl84z6c0OVHviSUbN/AqFUpVp+9NHFKz6IoBTf4vtVH42Xu2hZ8JYCTXL+ru3gZVfjDOAoCBRUr4oYjfOCrnnzHl+3EjQQ3ycy8cmPLjPlF5vIJNJmbR4DUHFXAsbNuph50p/Nn+dolhavrqZIWMN9O3kR6Ba61oHCpvn7Icf4Pp1KF4cXnstr3tTKPBYSaFly5a09O0eZwtBELh+4Rw2m43b167kdXcKJHE1H8/rLvjIgv9tvktw8ewlB0dfvYzFbCL66hWv1J3xCHtIY8OGokqcDx/5jLs3b6JPTOTurRuYjMYMjbOL/8pZPTuAY7+LYVcKpcBLXXWMHwv1q3hQd8ligatXxdf5wTgrqmIg4BMEcYH4+/eIv3cXqVSGPjEhS+PMbII965IVS++mKJb2H61n8FtqimncfL55y6hKT600L7ALgfTuDWr3w699pMXlFc7PP//MkCFDOHjwIIGPLEzi4+N5+umnWbBgAU2bNs3gDD4eRSKR0G/yx9Rt+hxPNnshr7vjw0eOkMXmvUu07taL8FJlqP30M3ljmIEv38xHvqdu0+d4/9s1lK5YCf+AtBsI187LWTNHy6E9yRLfMoEWHfVMmCjQ+LFs1F26eVM00JTK3DeM0jPOimpII6R4zmJj87Yf+ZjSFSszbfkmbDYbJZzSJB7FaoF9W/1YN09L7C3xuRNeykKfUQZG9FMSrvVw09FbnjOpVDzX/fveOZ8nXLoEu3aJr/v3z7t+FDJcXuXMmjWLt99+O41hBhAUFET//v2ZOXOmzzhzgWvnz1KmUhUkEgkSiYQGzV/M6y7lKVaNhk1nbuXa9UxGA/MnvIOfXMbW1ctR+3Z68iW3Ll8krFQZh3JWvee8ZxTZxwDAwkVfA1mENtpssHev+NoXMeAjFzAYDPTp0weALpM+Bkn6McEPYu4gVygISM6hrOFUasTO7Wsy1s7V8vv3fgiCBIlE4Jk2BsZOtNK8vgZFdhVrL18Wf0ZFiQvG3MTnOUuN3XPmrGBZCHGeH1Nnzc2yvVGv48HdGIcxZs/zTw+bDQ7sVLP2ywBuXUlRLO0+VM+7gxWUDnExfDEjvBmOGByct8bZwoWi5+6FF6BixbzrRyHD5bvoP//8w4svZmxEtGrViiNHjnilU4WZI/t+YnSHViz9ZKrbdWd8eAeb1cbv2zeze8sGrFbPCrv6yFmunTvD+C5t+WxoX0xGg9fPbx8Dv2/f7NoYOH4c7t0Ta7c08JW48JHzWK1WVq1axapVq7BlMEbj78UyuefrvN/jdeLvpfWUxEZL+WpSEENbh/HbNg2CIKFhKz2bfk1i92YVLzbQZt8wg7wLaQSf5+xRQkKgCNT+dGV+2DGbjMwY2pfxXdpy9WzG5VcEAQ7/rOLd9qF88U4It67ICQyx0m98Iof/NfPFBH9Kh2QzFESlAj+/7J3DmbwUBTEa4dtvxdc+IRCv4vIMvnPnTrr1zRwnkssdyZk+Mib29i0sZjMP7t7GZrMh80S2zke2kCsU9Bo3lUCVHKWb9Ux85A4PYmMwGvTE34/FYjajVHnXu2kfA4BrNW3sKo3PPQeZ3Ad9+PAWSqWSL774AgC5Qoklnb28xPg4dAkJSGVSDHodQcnvx9+TsmmRP7tW+2M2iaGKdZsaGD3RTPtmGtRyLz937J4zn3GW90ilEBaWUlKgkOI8P8R7uDnDtgadjvh7dzHoktAlPkzzuSDAiT+VrJ4VwPkTjyiWviOjakkXFUtdwdvG1KOlJHKTDRvE8NnSpeHll/OuH4UQl42zUqVKcfLkSSpVSt8VfOLECSKL8g3RRV7o/BYlypTjsQZP+wyzPEKuUNCmx9tEalWZbjj4yDsef/oZpixZR8nyFdF4GtefCfYxALg2BuzGmS/fzEcuoVAoGDFiBCCqNZKOWmOpCpX4YPlGEAQiSpclMV7C1sVadqzQYNCJHrEa9cW6S11e1qBR5FAI95Ur4s/8YpxlFtbo75/3Ago5TUREoTfOnOfHjQR9pm0DgkOYsnQ9Ny6ep9oTT6b67MxRUbH0v8OpFUvHvyehVjk3FUtdwdvGVF56zuxCIP36FQlvbW7i8v/mSy+9xPvvv0/r1q3T5Ojo9XomT55MmzaeFYQt7Fy/cI4SZcs5lLMeb+yT4fbh41Hu3b6FXKlyKGdVrVs/j3uUjF4P+/eLr335Zj7yGINOx/070ZQsL+Z3lIyqgD5JwoYF/mxd7I8uQTTKKtUyMXSckV4d/AhQeX+DIxX5zTgr6hvFdlGQIozNZuPaudNEVXsMAG1QcCrD7NJ/clbNDuDYb+J6Vq5IViwdB096oljqKoXFc3byJPzxh2iU9e2bN30oxLhsnE2cOJFNmzZRpUoVhgwZQtWqVZFIJJw+fZp58+ZhtVqZMGFCTva1QHLlzH+8/9ZrVK5dlzFffoPKr4jWXslH2Gw2Ym/dBH8ltshgpLmdwO4jDQ/uxjC5RydkCjlTvl1LSHjOLi4cYwCwhVbPvPH+/WJsfcmSUK1ajvbLhw87NpuNa9euJb8WF5BGg55PBvXk6tlTvP/tGkpVqMmu1f5sWuTPw/tiJEbZymYGvmdgQDc1weocNsrs5LewxqIsCAIpoiCFGOf5IQ0JS/WZIAh8PXUcP29ay7uzF6ZSw75+QVQsPbjby4qlruJt4yyvPGd2r1m7dr7NkBzAZeMsIiKCAwcOMHDgQMaNG+cQs5BIJLzwwgvMnz+fCN9uTRoS4uKwmE3oExOw2Qp5KEUBwWQwMLCFqGiWmJjoK0SdD9AnJmA06JGZZVgsGecOeAvnMXDy+h0gk0WsXUK/ZUuxpowPH7mAXq+nfPnyAGz99xLI1ZiNRnSJCZiMRvb/IOW378O5f0c0ykqUs9DvXT3Deqso7m7dpexy7574M7m/uYrPc5aWIrAWc54fZ6NT6x1YLRYePriP1WLGoNMBcPu6jHXJiqU2Ww4olrpKYTDOEhJg+XLxtU8IJEdwK0i0XLly7NixgwcPHnDhwgUEQaBy5cqE5GXMaz6nVsPGfLBsI5FRFfDzGQH5BpWfHxJ8C+38QsnyFflw5WYEm42wkqVz5ZoqVxWzfPlmPvIIjSZ1pIWfNpjmr21lw/xbbPmmEQChkVZ6DtcxaoCKyKBcNsqcCQ3Nm+LsQUGpfw8IEPPKijJFwHMGaeeHHblCwaiZX3H6yF9ElmvCwsla9m7UYLWIz/yGrfSMHm+lTRMNSlkuR84UhpyzlSshMRGqVoXnn8/96xcBPMrgCwkJ4cknn8y6YREl5uYNlCoVwaGiq71SrTp52yEfqVBrNKw6dpFIrcrnNctD9ImJ3LsTTemKlQGIKF02165tHwMAmszGQGwsHDsmvvYZZz5yEX9/f5KSkrBarcz7fi/Xrz3Jmi+13LigAMoRHGql22AdY4YpKROi9Z6anKfkRUgjgEwmGmjx8eLvJUrkTT/yE0XAc2afH5AsCBIfx/kTx6hcuy4AiQ+V/P3LC/y4KkWxtE4TA+9OtNCxuZ/3FUtdpaDnnAlCSkjjgAG+aJIcwiev4mXu3YlmSs/XkclkTFm6juIlinjsuw8f6WDU65g+4C2unT/L+4tXU7Fm7bzuUvrs2yf+rFnTt+jzkaMkJSUREBDgMLJMJhMGg5EOHYay9+dVIKwGOuIfmECHXjomjAmgSqRolJnNZkwmEzKZLJVgl33x6ufn58itzaitTqdDEATUarVDSdhisWA0GpFKpfg5eZp1Oh1CUhJqwL7EtUVFoU9KStNWr9djs9lQWSyOBYfVasWQWVuVCnmy+pvVasVgMCCRSFJ5SgwGA1arFaVSiSI42GGcWcPCMOp0GbdNVme12Wzo9aLKn/MmndFoxGKxoFAoHKVWbIBe/A/Nsq0A6JLbajSaVN+n2WxO3VYQxLaARhAcsRz2tnK5HJUqpa5Wet9num2TjTMrICGloK073729bUFh25KFfPfpVF4fNA6bbRw/LPN3KJZWT1Ys7fqyX84plrpKQfec/fknnDgh1mrr0SN3r12E8CkheBmz0YjVahEL2/p2FHz4SBeL2YzZZMRmteR1VzLHbpz5VBp95DAlS5YkNjalkPSgQZ8RFBTI3r2/g2BF8f/27jwsiivfG/i3gV6QEkRQNllcEDE6IjJRiEuUjNFJYvTmfZJc0dEJRL0TE5QwRkUHY4LLEx9HM9eVgCZejUuQZK7BGFRQL+pECRoTcAkuEAUZVyiQrT3vH9BFFRQC2kt1+/s8Tz/aVaeqThf1bTh1qk5p9Jg8uxIP6zyxba0ntLVlwh/+69atA8dxiI6OlqwzICAAHMehoKDpwbtbt24Fx3F48803JWX79+8PjuPw448/CtN27doFjuMwYcIESdnf//734Dw8cEw07ZJeD47j8EKzHuaRI0eC4zgcMNy7CeDwkSPgOA7h4eGSsuPHjwfHcUhPTxemnTx5EhzHYdCgQZKyr732GjiOw/bt2yV/8O48fhyBgYGSslOnTgXHcdi8ebMwrbCwEBzHwcfHR1J25syZ4DgOa9euFaaVAOAAdGlWNi4uDhzHYdmyZcK0+41lOQ8P1Nc3fb8lJCSA4zjJwGn19fUNZQHcN/T8AVi2bBk4jkNcXJxke126dAHHcSgRDZO/du1acByHmTNnNhVsvKyxDEChaPnNmzeD4zhMnTpVst7AwEBwHIdz584J07Zv3w6O42Atyu/yAICvUxyRtrEzqqvs0HtALdZur8DJ/7NHzMTO6KRWQH9E167GXZ+5e84MvWZvvmnZYfxtnAKOVNvi6ReAj7Y1/GJx83jKb0pWqLraGnz2UQIcHeyxZ0uy5MwkMQ8nZxf8LXUnSouuolf/gWbfvuEYAIBPP/0HgFYubTx8uOFfuqSRmMkPPwAJCcDBg4Y/7O3x8qTv8OGq5xDS0xGdUy1avVZVWfJSOtEfqLb9dK92avxZdAPAW7YmRmfoYa6trcXs2bNRW/sQ3f2ScHDPUgATUFczAr6BdYiJvY3oN3XwcnVus9fYpD3MjEGn1ws9zPrOndvuNTaUBdou29jYYwCqeP7RPcyNvcZ6ANUAVFVVksv6W+1hbpzvdOsWsHs3AKA2Ohp1lZXSHuYO9EYzxlDVOFhLu3qYDWWb9zADj9/D3ErZx+lhNvYtMtRzZgSVFeUounheeN/dpwe6+5hnUAPScfp6PQ7u2YH//XKb5MwmMS19fT0unm06K9+J62yRhllDXRqOgYN7dkD/qGOgqAhQq4GRI81XOfJUOnjwBqKj3TF0KHDwYA7s7N9tnHMJO7dFILRXw7OXysrKwPM8/Pya7tF85513wPM8UlJSJOu8evUqeJ5HcHDT4yKmT58Onuexc+dOSdn8/HzwPI/Q0FBh2htvvAGe5/HPf/5TUvbUqVPgb97ECNG0302cCJ7ncVDUQwYAR48eBc/zeFF0gmPMqFHgeR4nTpyQlN2/fz94nsekSZOEacOGDQPP8zh79qykbFpaGnieR1RUlGRQkHeXLMGlS5ckZbdt2wae5zFjxgxhWu/evcHzPK5fvy4pu2nTJvA8j9jYWGGaFxoaOfealV29ejV4nsfChQuFaS6NZfmbN4VLMwEgKSkJPM8jKSlJmObg4NBQFoCL6DMsXLgQPM9j9erVku3du3cPPM/DSzQaZWxsLHiex6ZNm5oKdmu4390BQG/R8jNmzADP89hmGGmv0aVLl8DzPAYObPo+joqKAs8rr2ln6GF+8KAen332Gb74IhWrPvZCxd1YePpFYPGnPHJ/ZFg5rzd6uLsKw+0DFuph5jgcy8kRpv3f+fOP7mE+cECYdhgNPbCP7GFuPDGhAuDp6fnoHuZG59DQWxvYrKxsD/Ply+AA+ADA//wPUFsLDBmCGcnJLXuYS0rAcRy6NOvNk+1hvn8fHMeB47j29TA3lpX0MH/yyZP1MAPw8fEBx3EoLGzqY1ZCDzP1nD2hBzyPpLej8NvlX7EoeTv6DgpteyFiUfYODvjPOR+gs8ZeODtETEuv1+O/F85FTsY3iP3kv/Hc+AltL2RChmMAaBjZ65HCwwEruryHWKcXXugEQAWVahkYS8CL//k+urh/AAeVSvI9JXeGVq1Wy36XdaSs3Mh3Dg4OkgaGpCyTPhrGPjBQdnvCGf/GM9QAYG9v/+iy4vW2UlZ8Rlt8eZXWzw9o9lkkZRvZ2dnJrler1ba4msIOjX3rzcrLlVWJy4pubdBoNEJPgFBWpWrqs2+jbMMqW9ZXtqxa3XD53J07kjPwHfnZG8qWl5e3mGdpe/YAS5dmoOEn0w3ATYQ8W4+M7/WWHbG0HWqNPQiZKDNGvmBSQgUAqY3d9v/1X8CxY48qTp6QijFGD9/qoPLycri4uGDb6QtgjCFpxhT8VngJS7/4Sngava2wr6rCq6F9AADf/Pgr9K0MXfu45c1Rp9Z4cVqE+5jy68wyDMfn/fv34WyJoa2b1WPb6QvQ6hyFxln82s14NnKcxerVXEh3Z/RyFf3CrKyUNsY++ghYtKj1FYjL8/yjh/HuSNmniQX2i9JyAtxHxHg1XLstxbdfrMCU9xdi0tuzobW3w0t9FDj6nvhn5uAAPHjQ8G97yhv7ZzxnDmA4g5+RAYwfb7x1mzLfptwn/foBFy488bqVlpPAwBu4dMkTwF4Ab6LXgP/A7vRPMcC3y2Nfrmbyyxqrq2Hv7t5QtrAQNR4ej75UsaYG4LiGyw9v3oRd585tlgWAB4cOgQ0b9ujLGisroee4hssay8rQqVu31ssCeFhRgQfOzrAHoAMaeqmvX0eNg0PLgXPMdVlj54YGeO2dO6jTaBRzWaMxs2ITPWfr16/HJ598gpKSEjzzzDNYs2YNRowY0Wr5I0eOIC4uDr/88gu8vb0xb948zJo167G27dTZGYs/+xJlvxXBPyi47QUIeQrZOzhg9vI1+OOUt4Shjq0G3W9GzODj7bcQPMQRwHt4bnwEggaHWbpK7efn9+iGmamJL6N62h9AbdCtW1PjzIZcuuQEJ2eGidF/QNDgf6Jf6AC4d+vcogdTMT3MAPDvpodkO7i5waGtXuOaGgANI6E6OTlJesdaKwsAjg8etKvX2B6Nvbvt7WEWT5g2DXByghZo2cPcgd5olUrV7p5gSVlRD7xGo4FGZh3t7mFupezj9DAbm9Xfc7Zr1y7MmTMHCQkJyMvLw4gRIzB+/HjJdcZiV65cwR//+EeMGDECeXl5WLhwId577z2kpaU9dh0cnZyoYWZFGGO4f+c27t6+Beo4Nh97e3vFNMwMx8D9O7cffQy4uABhVvRHMrFaPXpXC/8PGhzWdIxaw/dUQIBlty9unNEjLxrY6IOoX5p6HRsOlmHSDB49+viCL7+v/Hzcu9f0f1OexBBvx1QesyODdIzV95ytXr0a0dHRiImJAQCsWbMGBw4cwIYNG7B8+fIW5Tdu3Ag/Pz+sWbMGABAcHIzTp09j1apVeO211zq07ePf/S9e+H+Tn/gzEPOqefAAb0U03PjM8zw9iNrEvtq4Bn+KX2zpakiIj4FzxTeBrq3cUzZihGV7BMhTY92i9xH/903CPZDiY/RVpX9PKalx1lnZ9xyZjehyNVtSkPsGGNuFmgcaIR/518uALgrOx9275tnOkSMtetlaqG46CYRvvgFkestaLT9iBBBMHRHmYNV/ddTW1iI3Nxfz58+XTB87diyOHz8uu8yJEycwduxYybQXX3wRKSkpwnWuzdXU1KBG1HVsGC3G3kGNKr7iST+GotlXVcFwO3AVXwH9Q71Ry5ujTs1VV1UJ/y8vL294Jp0NMdzAbe6zia3lRKt1VFxOxMcAX1GB8nLRLyjRZROIiADauiFeXL68HHjU8dSRsk8TC+wX5eVEh+oHVbCrabigRfHfU+KfmaencXPSUeLLjYy9blPm25T7RDT645OsW2k5sVerUVdbg1rRvIbvcAU/EufGjab/G/u4EJdNTm54tVdUVPvLGspbeoAYBf8ONWpWmBW7fv06A8BycnIk05OSkljfvn1llwkMDGRJSUmSaTk5OQwAu3HjhuwyiYmJDA2PkaAXvazmVVxcbJygtRPlhF7W+KKc0Itebb8oJ/SiV/texsiKVY/WeOPGDfj4+OD48eOS50AkJSVh27ZtOH/+fItl+vbtiz//+c9YsGCBMC0nJwfDhw9HSUkJPGWuV29+BufevXvw9/dHUVGR5NkkpOPKy8vh6+uL4uJii44EZQsM+7KoqAgqlQre3t7C6EPmQDkxHcqJcRn2Z35+PoKCgignNoJyYlyUE9tFWTEeU/ztZdWXNbq7u8Pe3h6lpaWS6WVlZfDwkB962NPTU7a8g4MD3NzcZJeRG2kGaHhoJB3UxuHs7Ez70kgsdVxSTkyPcmJcPj4+Zv2DE6CcmAPlxLgoJ7aLsmI8xjw2rXq0Ro1GgyFDhiAzM1MyPTMzExEREbLLhIeHtyj//fffIywsjB5ITAghhBBCCLEYq26cAUBcXBw+++wzpKamoqCgAHPnzkVRUZHw3LIFCxbgT3/6k1B+1qxZuHbtGuLi4lBQUIDU1FSkpKQgPj7eUh+BEEIIIYQQQqz7skYAeOONN3D79m0sXboUJSUlGDBgADIyMuDv7w8AKCkpkTzzrGfPnsjIyMDcuXOxbt06eHt749NPP+3QMPparRaJiYmyXe6kY2hfGo/S9qXS6mPNaF8al5L2p5LqYu1oXxqXkvankupiC2h/Go8p9qVVDwhCCCGEEEIIIbbC6i9rJIQQQgghhBBbQI0zQgghhBBCCFEAapwRQgghhBBCiAJQ44wQQgghhBBCFIAaZzLWr1+Pnj17QqfTYciQITh27Ngjyx85cgRDhgyBTqdDr169sHHjRjPV1Dp0ZH9mZ2dDpVK1eJ0/f96MNVamo0eP4pVXXoG3tzdUKhW+/vrrNpcx9bFJWTEeyolxUE5sG+XEOCgnto1yYhwWywkjEjt37mRqtZolJyez/Px8Fhsby5ycnNi1a9dky1++fJl16tSJxcbGsvz8fJacnMzUajX76quvzFxzZero/szKymIA2IULF1hJSYnwqq+vN3PNlScjI4MlJCSwtLQ0BoClp6c/srypj03KivFQToyHcmK7KCfGQzmxXZQT47FUTqhx1syzzz7LZs2aJZnWr18/Nn/+fNny8+bNY/369ZNMmzlzJhs2bJjJ6mhNOro/DV8Sd+/eNUPtrFd7viRMfWxSVoyHcmIalBPbQjkxDcqJbaGcmIY5c0KXNYrU1tYiNzcXY8eOlUwfO3Ysjh8/LrvMiRMnWpR/8cUXcfr0adTV1ZmsrtbgcfanweDBg+Hl5YXIyEhkZWWZspo2y5THJmXFeCgnlkU5sQ6UE8uinFgHyollGeu4pMaZyK1bt6DX6+Hh4SGZ7uHhgdLSUtllSktLZcvX19fj1q1bJqurNXic/enl5YXNmzcjLS0Ne/fuRVBQECIjI3H06FFzVNmmmPLYpKwYD+XEsign1oFyYlmUE+tAObEsYx2XDsaumC1QqVSS94yxFtPaKi83/WnVkf0ZFBSEoKAg4X14eDiKi4uxatUqjBw50qT1tEWmPjYpK8ZDObEcyon1oJxYDuXEelBOLMcYxyX1nIm4u7vD3t6+xdmFsrKyFi1hA09PT9nyDg4OcHNzM1ldrcHj7E85w4YNw6VLl4xdPZtnymOTsmI8lBPLopxYB8qJZVFOrAPlxLKMdVxS40xEo9FgyJAhyMzMlEzPzMxERESE7DLh4eEtyn///fcICwuDWq02WV2twePsTzl5eXnw8vIydvVsnimPTcqK8VBOLItyYh0oJ5ZFObEOlBPLMtpx2aHhQ54ChiFIU1JSWH5+PpszZw5zcnJiV69eZYwxNn/+fDZ16lShvGHYzLlz57L8/HyWkpJCw7mKdHR//v3vf2fp6ens4sWL7Oeff2bz589nAFhaWpqlPoJiVFRUsLy8PJaXl8cAsNWrV7O8vDxheFxzH5uUFeOhnBgP5cR2UU6Mh3JiuygnxmOpnFDjTMa6deuYv78/02g0LDQ0lB05ckSYN23aNDZq1ChJ+ezsbDZ48GCm0WhYQEAA27Bhg5lrrGwd2Z8rV65kvXv3Zjqdjrm6urLhw4ezb7/91gK1Vh7DcLfNX9OmTWOMWebYpKwYD+XEOCgnto1yYhyUE9tGOTEOS+VExVjjnWqEEEIIIYQQQiyG7jkjhBBCCCGEEAWgxhkhhBBCCCGEKAA1zgghhBBCCCFEAahxRgghhBBCCCEKQI0zQgghhBBCCFEAapwRQgghhBBCiAJQ44wQQgghhBBCFIAaZ4QQQgghhBCiANQ4s1FLlixBSEiI8H769OmYOHGi2etx9epVqFQqnDlzxuzbNsZnbk/9s7OzoVKpcO/ePQDA1q1b0aVLF2F+858FUQ7KCeWEtI1yQjkhbaOcUE6MhRpnZjR9+nSoVCqoVCqo1Wr06tUL8fHxqKysNPm2165di61bt7arrLmD/fzzzwv7RavVom/fvli2bBn0er1Ztv+kIiIiUFJSAhcXF9n58fHxOHTokPDeUl/Y1oJyIo9yQsQoJ/IoJ0SMciKPcqJsDpauwNNm3Lhx2LJlC+rq6nDs2DHExMSgsrISGzZsaFG2rq4OarXaKNtt7QBWirfffhtLly5FdXU19u3bh/feew/29vb44IMPWpStra2FRqOxQC3laTQaeHp6tjqf4zhwHGfGGlk/yok8ygkRo5zIo5wQMcqJPMqJclHPmZlptVp4enrC19cXkydPRlRUFL7++msATd2wqamp6NWrF7RaLRhjuH//PmbMmIHu3bvD2dkZY8aMwdmzZyXrXbFiBTw8PNC5c2dER0ejurpaMr/5WYOHDx9i5cqV6NOnD7RaLfz8/JCUlAQA6NmzJwBg8ODBUKlUeP7554XltmzZguDgYOh0OvTr1w/r16+XbOeHH37A4MGDodPpEBYWhry8vHbtl06dOsHT0xMBAQGYPXs2IiMjhf1iqPvy5cvh7e2Nvn37AgDOnTuHMWPGwNHREW5ubpgxYwZ4nm+x7g8//FDYdzNnzkRtba0w77vvvsPw4cPRpUsXuLm54eWXX0ZhYWGLdZw/fx4RERHQ6XR45plnkJ2dLcxr3r3enLh7fcmSJfj888/xzTffCGetsrOzMWbMGMyePVuy3O3bt6HVanH48OF27UNbQjmRRzmhnIhRTuRRTignYpQTeZQT5eaEGmcW5ujoiLq6OuH9r7/+it27dyMtLU3o3n7ppZdQWlqKjIwM5ObmIjQ0FJGRkbhz5w4AYPfu3UhMTERSUhJOnz4NLy+vFuFtbsGCBVi5ciUWL16M/Px87NixAx4eHgAagg4ABw8eRElJCfbu3QsASE5ORkJCApKSklBQUIBly5Zh8eLF+PzzzwEAlZWVePnllxEUFITc3FwsWbIE8fHxRtkvhw4dQkFBATIzM7Fv3z5UVVVh3LhxcHV1xalTp7Bnzx4cPHiwRdAMy2VlZeHLL79Eeno6PvzwQ2F+ZWUl4uLicOrUKRw6dAh2dnaYNGkSHj58KFnPX//6V7z//vvIy8tDREQEJkyYgNu3b3f4c8XHx+P111/HuHHjUFJSgpKSEkRERCAmJgY7duxATU2NUHb79u3w9vbG6NGjO7wdW0M5ad9+oZw83Sgn7dsvlJOnG+WkffuFcmJBjJjNtGnT2Kuvviq8/9e//sXc3NzY66+/zhhjLDExkanValZWViaUOXToEHN2dmbV1dWSdfXu3Ztt2rSJMcZYeHg4mzVrlmT+0KFD2aBBg2S3XV5ezrRaLUtOTpat55UrVxgAlpeXJ5nu6+vLduzYIZn20UcfsfDwcMYYY5s2bWJdu3ZllZWVwvwNGzbIrkts1KhRLDY2ljHGmF6vZ/v372cajYbNmzdPqLuHhwerqakRltm8eTNzdXVlPM8L07799ltmZ2fHSktLheXk6sNxHNPr9bJ1KSsrYwDYuXPnJPtixYoVQpm6ujrWo0cPtnLlSsYYY1lZWQwAu3v3LmOMsS1btjAXFxehfGJiYqs/C4Pq6mrWtWtXtmvXLmFaSEgIW7JkSav7zVZRTuRRTignYpQTeZQTyokY5UQe5UTZOaGeMzPbt28fOI6DTqdDeHg4Ro4ciX/84x/CfH9/f3Tr1k14n5ubC57n4ebmJlxDy3Ecrly5InQDFxQUIDw8XLKd5u/FCgoKUFNTg8jIyHbX+9///jeKi4sRHR0tqcfHH38sqcegQYPQqVOndtVDbP369cJ+mTBhAqZMmYLExERh/sCBAyXXOxu25eTkJEx77rnn8PDhQ1y4cEGYJlcfnudRXFwMACgsLMTkyZPRq1cvODs7C5cWFBUVSeon/hwODg4ICwtDQUFBuz5be2i1WkyZMgWpqakAgDNnzuDs2bOYPn260bZhTSgn8ignlBMxyok8ygnlRIxyIo9yotyc0IAgZjZ69Ghs2LABarUa3t7eLW48FR/0QMM1yl5eXpJrbQ3Ew4Z2hKOjY4eXMXQ3JycnY+jQoZJ59vb2AADG2GPVBwCioqKQkJAArVYLb29vYZ0GzfcLYwwqlUp2Xa1NlyvzyiuvwNfXF8nJyfD29sbDhw8xYMAAyfXRba3DWGJiYhASEoLffvsNqampiIyMhL+/v1G3YS0oJ/IoJ5QTMcqJPMoJ5USMciKPcqLcnFDPmZk5OTmhT58+8Pf3b9eIQKGhoSgtLYWDgwP69Okjebm7uwMAgoODcfLkSclyzd+LBQYGwtHRUTLMqJjhTIl4SFUPDw/4+Pjg8uXLLephOOvRv39/nD17Fg8ePGhXPcRcXFzQp08f+Pr6tviCkNO/f3+cOXNGMhxuTk4O7OzshBtXAcjWh+M49OjRA7dv30ZBQQEWLVqEyMhIBAcH4+7du7LbE3+O+vp65Obmol+/fu36bM1pNBrZ4WoHDhyIsLAwJCcnY8eOHXjrrbcea/22gHIij3JCORGjnMijnFBOxCgn8ignys0JNc4U7oUXXkB4eDgmTpyIAwcO4OrVqzh+/DgWLVqE06dPAwBiY2ORmpqK1NRUXLx4EYmJifjll19aXadOp8MHH3yAefPm4YsvvkBhYSFOnjyJlJQUAED37t3h6OiI7777Djdv3sT9+/cBNIx4s3z5cqxduxYXL17EuXPnsGXLFqxevRoAMHnyZNjZ2SE6Ohr5+fnIyMjAqlWrTLJfoqKioNPpMG3aNPz888/IysrCu+++i6lTpwo32AINw78a6rN//34kJiZi9uzZsLOzg6urK9zc3LB582b8+uuvOHz4MOLi4mS3t27dOqSnp+P8+fN45513cPfu3ccOcUBAAH766SdcuHABt27dktyAGxMTgxUrVkCv12PSpEmPtf6nEeVEHuWEiFFO5FFOiBjlRB7lxIwsd7vb00fuhkSx5jcwGpSXl7N3332XeXt7M7VazXx9fVlUVBQrKioSyiQlJTF3d3fGcRybNm0amzdv3iNvhtTr9ezjjz9m/v7+TK1WMz8/P7Zs2TJhfnJyMvP19WV2dnZs1KhRwvTt27ezkJAQptFomKurKxs5ciTbu3evMP/EiRNs0KBBTKPRsJCQEJaWltahG1PltLbffvrpJzZ69Gim0+lY165d2dtvv80qKipaLPe3v/2Nubm5MY7jWExMjOQm38zMTBYcHMy0Wi373e9+x7KzsxkAlp6ezhhrujF1x44dbOjQoUyj0bDg4GB26NAhYR0dvTG1rKyM/eEPf2AcxzEALCsrS5hXUVHBOnXqxP7yl7+0uj9sHeVEHuUkS5hHOaGctIZykiXMo5xQTlpDOckS5ikxJyrGnuCCVUKIURUXFyMgIACnTp1CaGiopatDiCJRTghpG+WEkLYpMSfUOCNEAerq6lBSUoL58+fj2rVryMnJsXSVCFEcygkhbaOcENI2JeeE7jkjRAFycnLg7++P3NxcbNy40dLVIUSRKCeEtI1yQkjblJwT6jkjhBBCCCGEEAWgnjNCCCGEEEIIUQBqnBFCCCGEEEKIAlDjjBBCCCGEEEIUgBpnhBBCCCGEEKIA1DgjhBBCCCGEEAWgxhkhhBBCCCGEKAA1zgghhBBCCCFEAahxRgghhBBCCCEK8P8Bjikqj4lMK9IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -381,7 +400,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABylUlEQVR4nO3dd3gU9drG8e+kR0rovfqiFBGBoDQRFQgConhUwAKiiCIqgoUDx6NgAywgNlAU4aiIqIAVwag0RUAw2BIB6WoigpTQQpL9vX9MsmSTTYPdzG5yf65rL5lfZid3xn129tlpljHGICIiIiIiIiI+F+J0ABEREREREZHSSk23iIiIiIiIiJ+o6RYRERERERHxEzXdIiIiIiIiIn6ipltERERERETET9R0i4iIiIiIiPiJmm4RERERERERP1HTLSIiIiIiIuInarpFRERERERE/ERNt5y25cuXY1kWBw4ccDpKviZMmEDr1q2djiEScHbs2IFlWWzcuNHpKHkMGTKEfv36OR1DpExr1KgR06ZNczqGSMC7+OKLGTVqVIHzlFQ9ncpn86Lkl1OnpluKbPXq1YSGhnLZZZf5/Xf5upG///77+fLLL32yLJFAMmTIECzLyvMoap3Wr1+f5ORkWrZsWei8Jd2gP/fcc8yZM6dEfpdIoPNW5zkfQ4YMKfT5H3zwQYlkFQlGp7s9XbhwIY899pifU+blrVnu1KkTycnJxMTElHge8S7M6QASPF5//XXuvvtuXnvtNXbt2kWDBg2cjlQoYwyZmZmUL1+e8uXLOx1HxC8uu+wyZs+e7TEWGRlZpOeGhoZSq1Ytf8Q6bfqwIHJScnKy+9/z58/n4YcfZtOmTe6x6OhoJ2KJlCqnsz2tUqWKPyKdkoiIiIDdtpdV2tMtRXLkyBHeffdd7rjjDi6//PJC9z6tXr2aiy66iOjoaOrXr8/IkSM5cuSI++dvvfUW7dq1o0KFCtSqVYvrr7+ePXv2APbetEsuuQSAypUre3yDn5aWxsiRI6lRowZRUVFceOGFfPfdd+7lZu8hX7p0Ke3atSMyMpJVq1Z5Pbz89ddf55xzziEyMpLatWtz1113nf6KEnFAZGQktWrV8nhUrlwZsPduzZgxg169ehEdHU3jxo1577333M/Nvfd6//793HDDDVSvXp3o6GjOOuss9weQxo0bA9CmTRssy+Liiy92L2f27Nk0b96cqKgomjVrxvTp0/P8jnfffZcuXboQHR3N+eefz+bNm/nuu+9o164d5cuX57LLLuPvv/92Py/34eUul4snn3ySJk2aEBkZSYMGDXjiiSd8vTpFAlLO+o6JicGyLI+xt99+m//7v/8jIiKCpk2b8uabb7qf26hRIwCuuuoqLMtyT2/dupUrr7ySmjVrUr58ec4//3y++OILB/46kcCQ3/b0uuuuY+DAgR7zpqenU61aNfc2Mvce5z179tC3b1/3tnfu3Ll5ft/Bgwe57bbbqFGjBhUrVuTSSy/lhx9+cP88+/Prm2++SaNGjYiJiWHgwIGkpqYC9nZyxYoVPPfcc+498zt27MhzxOi+ffu47rrrqFevHmeccQbnnnsu8+bN8/Hak4Ko6ZYimT9/Pk2bNqVp06bceOONzJ49G2OM13l/+uknevbsyb/+9S9+/PFH5s+fz9dff+3R1J44cYLHHnuMH374gQ8++IDt27e7G+v69euzYMECADZt2kRycjLPPfccAGPGjGHBggX873//4/vvv6dJkyb07NmTf/75xyPDmDFjmDRpEklJSbRq1SpPxhkzZnDnnXdy22238dNPP/HRRx/RpEkTX6wqkYDz0EMPcfXVV/PDDz9w4403ct1115GUlJTvvImJiXz22WckJSUxY8YMqlWrBsC6desA+OKLL0hOTmbhwoUAvPrqqzz44IM88cQTJCUlMXHiRB566CH+97//eSx7/Pjx/Pe//+X7778nLCyM6667jjFjxvDcc8+xatUqtm7dysMPP5zv3zFu3DiefPJJd8a3336bmjVr+mIViQS1RYsWcc8993Dffffx888/c/vtt3PzzTezbNkyAPeX07NnzyY5Odk9ffjwYXr37s0XX3xBQkICPXv2pG/fvuzatcuxv0UkEN1www189NFHHD582D22dOlSjhw5wtVXX+31OUOGDGHHjh189dVXvP/++0yfPt29gwnsozH79OlDSkoKixcvZsOGDbRt25Zu3bp5fK7dunUrH3zwAZ988gmffPIJK1asYPLkyYB9GlbHjh0ZNmwYycnJJCcnU79+/TxZjh8/TmxsLJ988gk///wzt912G4MGDWLt2rW+WkVSGCNSBJ06dTLTpk0zxhiTnp5uqlWrZuLj440xxixbtswAZv/+/cYYYwYNGmRuu+02j+evWrXKhISEmGPHjnld/rp16wxgUlNTvS7TGGMOHz5swsPDzdy5c91jJ06cMHXq1DFPPfWUx/M++OADj+WPHz/enHfeee7pOnXqmAcffLD4K0IkwNx0000mNDTUlCtXzuPx6KOPGmOMAczw4cM9ntO+fXtzxx13GGOM2b59uwFMQkKCMcaYvn37mptvvtnr78o9b7b69eubt99+22PsscceMx07dvR43muvveb++bx58wxgvvzyS/fYpEmTTNOmTT3+tiuvvNIYY8yhQ4dMZGSkefXVV4u4ZkRKr9mzZ5uYmBj3dKdOncywYcM85rn22mtN79693dOAWbRoUaHLbtGihXnhhRfc0w0bNjTPPvvs6UYWCXgFbU9PnDhhqlWrZt544w33/Nddd5259tpr3dNdu3Y199xzjzHGmE2bNhnArFmzxv3zpKQkA7jr6csvvzQVK1Y0x48f98jxf//3f+aVV14xxtifX8844wxz6NAh988feOAB0759e6+/N5u3z9G59e7d29x3330FLkd8R+d0S6E2bdrEunXr3Hu1wsLCGDBgAK+//jrdu3fPM/+GDRv47bffPA6jMcbgcrnYvn07zZs3JyEhgQkTJrBx40b++ecfXC4XALt27aJFixZec2zdupX09HQ6d+7sHgsPD+eCCy7Is9euXbt2+f49e/bs4c8//6Rbt25FXwkiAeySSy5hxowZHmM5zy3r2LGjx886duyY78XQ7rjjDq6++mq+//574uLi6NevH506dcr3d//999/s3r2boUOHMmzYMPd4RkZGnnOycx51kr2H+txzz/UYy7kXIKekpCTS0tJUtyJeJCUlcdttt3mMde7c2X2UWH6OHDnCI488wieffMKff/5JRkYGx44d055uKbPy256Gh4dz7bXXMnfuXAYNGsSRI0f48MMPefvtt70uJykpibCwMI/Po82aNaNSpUru6Q0bNnD48GGqVq3q8dxjx46xdetW93SjRo2oUKGCe7p27dr5bivzk5mZyeTJk5k/fz5//PEHaWlppKWlUa5cuWItR06dmm4p1KxZs8jIyKBu3bruMWMM4eHh7N+/P8/8LpeL22+/nZEjR+b5WYMGDThy5AhxcXHExcXx1ltvUb16dXbt2kXPnj05ceJEvjlM1uHslmXlGc89VtCbiC42I6VNuXLlin16RO6aydarVy927tzJp59+yhdffEG3bt248847eeaZZ7zOn/2F2auvvkr79u09fhYaGuoxHR4enuf35x7LXl5uqluRghVl25jbAw88wNKlS3nmmWdo0qQJ0dHRXHPNNQVui0VKs4K2pzfccANdu3Zlz549xMfHExUVRa9evbzOm99n1pxcLhe1a9dm+fLleX6WsznPuZ3MXmZ+28r8TJkyhWeffZZp06Zx7rnnUq5cOUaNGqVaL0E6p1sKlJGRwRtvvMGUKVPYuHGj+/HDDz/QsGFDrxeFaNu2Lb/88gtNmjTJ84iIiODXX39l7969TJ48mS5dutCsWbM839hFREQA9jdz2bKf//XXX7vH0tPTWb9+Pc2bNy/y31ShQgUaNWqkW4hJmbFmzZo8082aNct3/urVqzNkyBDeeustpk2bxsyZMwHvdVmzZk3q1q3Ltm3b8tR79oXXfOGss84iOjpadSviRfPmzT22jWBf0DTntjE8PNyjdgFWrVrFkCFDuOqqqzj33HOpVasWO3bsKInIIkGnU6dO1K9fn/nz5zN37lyuvfZa93Yxt+bNm5ORkcH69evdY5s2bfK4FW7btm1JSUkhLCwsz/Yz+1oqRREREZGntnNbtWoVV155JTfeeCPnnXceZ555Jlu2bCny75DTpz3dUqBPPvmE/fv3M3To0DyHil5zzTXMmjWLZ5991mP83//+Nx06dODOO+9k2LBhlCtXjqSkJOLj43nhhRdo0KABERERvPDCCwwfPpyff/45z30NGzZsiGVZfPLJJ/Tu3Zvo6GjKly/PHXfcwQMPPECVKlVo0KABTz31FEePHmXo0KHF+rsmTJjA8OHDqVGjBr169SI1NZVvvvmGu++++9RWlIiD0tLSSElJ8RgLCwtzb7Tfe+892rVrx4UXXsjcuXNZt24ds2bN8rqshx9+mNjYWM455xzS0tL45JNP3B/ca9SoQXR0NEuWLKFevXpERUURExPDhAkTGDlyJBUrVqRXr16kpaWxfv169u/fz7333uuTvzEqKop///vfjBkzhoiICDp37szff//NL7/8Uuz6FyltHnjgAfr37+++CNPHH3/MwoULPa5Env1lc+fOnYmMjKRy5co0adKEhQsX0rdvXyzL4qGHHir2HjSR0qSg7allWVx//fW8/PLLbN682X2hQm+aNm3KZZddxrBhw5g5cyZhYWGMGjXK46it7t2707FjR/r168eTTz5J06ZN+fPPP1m8eDH9+vUr8FTJnBo1asTatWvZsWMH5cuX93rrsiZNmrBgwQJWr15N5cqVmTp1KikpKcXaaSWnR3u6pUCzZs2ie/fuXu+Xe/XVV7Nx40a+//57j/FWrVqxYsUKtmzZQpcuXWjTpg0PPfQQtWvXBuy9aHPmzOG9996jRYsWTJ48Oc+hq3Xr1uWRRx5h7Nix1KxZ033l88mTJ3P11VczaNAg2rZty2+//cbSpUvdt0cqqptuuolp06Yxffp0zjnnHC6//HJ94ydBa8mSJdSuXdvjceGFF7p//sgjj/DOO+/QqlUr/ve//zF37tx8r50QERHBuHHjaNWqFRdddBGhoaG88847gP3B4/nnn+eVV16hTp06XHnllQDceuutvPbaa8yZM4dzzz2Xrl27MmfOHJ/u6Qb7yur33XcfDz/8MM2bN2fAgAHFPq9NpDTq168fzz33HE8//TTnnHMOr7zyCrNnz/a4rd+UKVOIj4+nfv36tGnTBoBnn32WypUr06lTJ/r27UvPnj1p27atQ3+FiPMK257ecMMNJCYmUrduXY9rDHkze/Zs6tevT9euXfnXv/7lvjVYNsuyWLx4MRdddBG33HILZ599NgMHDmTHjh3FujPH/fffT2hoKC1atHCfspnbQw89RNu2benZsycXX3wxtWrV8rglp/ifZUw+930SEZGgZ1kWixYt0sZVRERExCHa0y0iIiIiIiLiJ2q6RURERERERPxEF1ITESnFdAaRiIiIiLO0p1tERERERETET9R0i4iIiIiIiPiJmm4RERERERERP1HTLSIiIiIiIuInarpFRERERERE/ERNtwAwffp0GjduTFRUFLGxsaxatSrfeRcuXEiPHj2oXr06FStWpGPHjixdurQE0wa24qzLnL755hvCwsJo3bq1fwOKFFFxXsvJyclcf/31NG3alJCQEEaNGlVyQUshvScHL/2/8x1tT8XX9TRnzhwsy8rzOH78uKPZly9f7jXXr7/+6jHfggULaNGiBZGRkbRo0YJFixb5PPep5B8yZIjX/Oecc457npJa9ytXrqRv377UqVMHy7L44IMPCn3OihUriI2NJSoqijPPPJOXX345zzynu+7VdAvz589n1KhRPPjggyQkJNClSxd69erFrl27vM6/cuVKevToweLFi9mwYQOXXHIJffv2JSEhoYSTB57irstsBw8eZPDgwXTr1q2EkooUrLiv5bS0NKpXr86DDz7IeeedV8JpSxe9Jwcv/b/zHW1PxV/1VLFiRZKTkz0eUVFRjmbPtmnTJo9cZ511lvtn3377LQMGDGDQoEH88MMPDBo0iP79+7N27VqfZj+V/M8995xH7t27d1OlShWuvfZaj/lKYt0fOXKE8847jxdffLFI82/fvp3evXvTpUsXEhIS+M9//sPIkSNZsGCBex6frHsjZd4FF1xghg8f7jHWrFkzM3bs2CIvo0WLFuaRRx7xdbSgc6rrcsCAAea///2vGT9+vDnvvPP8mFCkaE7nfaFr167mnnvu8VOy0k/vycFL/+98R9tT8Uc9zZ4928TExPgqYr6Km33ZsmUGMPv37893mf379zeXXXaZx1jPnj3NwIEDTztvbqe77hctWmQsyzI7duxwj5XUus8JMIsWLSpwnjFjxphmzZp5jN1+++2mQ4cO7mlfrHvt6S7jTpw4wYYNG4iLi/MYj4uLY/Xq1UVahsvlIjU1lSpVqvgjYtA41XU5e/Zstm7dyvjx4/0dUaRIfPG+IKdG78nBS//vfEfbU/FnPR0+fJiGDRtSr149Lr/8cp8fWXI62du0aUPt2rXp1q0by5Yt8/jZt99+m2eZPXv29Pl22RfrftasWXTv3p2GDRt6jPt73Z+K/Nbr+vXrSU9PL3Ce4qx7Nd1l3N69e8nMzKRmzZoe4zVr1iQlJaVIy5gyZQpHjhyhf//+/ogYNE5lXW7ZsoWxY8cyd+5cwsLCSiKmSKF88b4gp0bvycFL/+98R9tT8Vc9NWvWjDlz5vDRRx8xb948oqKi6Ny5M1u2bHE0e+3atZk5cyYLFixg4cKFNG3alG7durFy5Ur3PCkpKSWyXT7ddZ+cnMxnn33Grbfe6jFeEuv+VOS3XjMyMti7d2+B8xRn3etdSQCwLMtj2hiTZ8ybefPmMWHCBD788ENq1Kjhr3hBpajrMjMzk+uvv55HHnmEs88+u6TiiRTZqb4vyOnTe3Lw0v8739H2VHxdTx06dKBDhw7u6c6dO9O2bVteeOEFnn/+ed8Fp3jZmzZtStOmTd3THTt2ZPfu3TzzzDNcdNFFp7TM03Wqv2vOnDlUqlSJfv36eYyX5LovLm9/a+7x0133arrLuGrVqhEaGprnm5o9e/bk+UYnt/nz5zN06FDee+89unfv7s+YQaG46zI1NZX169eTkJDAXXfdBdiHQhljCAsL4/PPP+fSSy8tkewiOZ3O+4KcHr0nBy/9v/MdbU+lpOopJCSE888/36d7W321De3QoQNvvfWWe7pWrVolsl0+nfzGGF5//XUGDRpEREREgfP6Y92fivzWa1hYGFWrVi1wnuKsex1eXsZFREQQGxtLfHy8x3h8fDydOnXK93nz5s1jyJAhvP322/Tp08ffMYNCcddlxYoV+emnn9i4caP7MXz4cJo2bcrGjRtp3759SUUX8XCq7wty+vSeHLz0/853tD2VkqonYwwbN26kdu3ap505m6+2oQkJCR65OnbsmGeZn3/+uc+3y6eTf8WKFfz2228MHTq00N/jj3V/KvJbr+3atSM8PLzAeYq17ot8yTUptd555x0THh5uZs2aZRITE82oUaNMuXLl3FccHDt2rBk0aJB7/rffftuEhYWZl156ySQnJ7sfBw4ccOpPCBjFXZe56WqrEihO5bWckJBgEhISTGxsrLn++utNQkKC+eWXX5yIH9T0nhy89P/Od7Q9FX/U04QJE8ySJUvM1q1bTUJCgrn55ptNWFiYWbt2raPZn332WbNo0SKzefNm8/PPP5uxY8cawCxYsMA9zzfffGNCQ0PN5MmTTVJSkpk8ebIJCwsza9as8Wn2U8mf7cYbbzTt27f3usySWvepqanuzyOAmTp1qklISDA7d+70mn3btm3mjDPOMKNHjzaJiYlm1qxZJjw83Lz//vvueXyx7tV0izHGmJdeesk0bNjQREREmLZt25oVK1a4f3bTTTeZrl27uqe7du1qgDyPm266qeSDB6DirMvc9CFBAklxX8ve3hcaNmxYsqFLCb0nBy/9v/MdbU/F1/U0atQo06BBAxMREWGqV69u4uLizOrVqx3P/uSTT5r/+7//M1FRUaZy5crmwgsvNJ9++mmeZb733numadOmJjw83DRr1syjKXcyvzHGHDhwwERHR5uZM2d6XV5Jrfvs26/l9zrwln358uWmTZs2JiIiwjRq1MjMmDEjz3JPd91bxmSdKS4iIiIiIiIiPqVzukVERERERET8RE23iIiIiIiIiJ+o6RYRERERERHxEzXdIiIiIiIiIn6ipltERERERETET9R0i4iIiIiIiPiJmm4RERERERERP1HTLYVKS0tjwoQJpKWlOR0l6GldSmmi17MztN6Dl/7f+Y7WpXgTzK8LZXdOSeS3jDHGb0v3sZUrV/L000+zYcMGkpOTWbRoEf369SvwOStWrODee+/ll19+oU6dOowZM4bhw4eXTOBS4tChQ8TExHDw4EEqVqzodJygpnUppYlez87Qeg9e+n/nO1qX4k0wvy6U3TklkT+o9nQfOXKE8847jxdffLFI82/fvp3evXvTpUsXEhIS+M9//sPIkSNZsGCBn5OKiIiIiIiIQJjTAYqjV69e9OrVq8jzv/zyyzRo0IBp06YB0Lx5c9avX88zzzzD1Vdf7aeUIiIiIiIiIragarqL69tvvyUuLs5jrGfPnsyaNYv09HTCw8PzPCctLc3jeP6MjAySkpKoX78+ISFBdWCAz6SmpgLwxx9/cOjQIYfTBLdAX5cul4u//vqLNm3aEBYWuG8PqtPAEOiv59Iqe71v2LCBLl26qFaDiGrGd4JhXWqbWvKC4XWRH2V3zsGDBwH7te83JkgBZtGiRQXOc9ZZZ5knnnjCY+ybb74xgPnzzz+9Pmf8+PEG0EOPMv1Yt26dr0rVL1SneuhhP1SreugR+A/VqR56BMdj1apVfquzoLqQWk6WZRV6IbWzzz6bm2++mXHjxrnHvvnmGy688EKSk5OpVatWnufk/rZv9+7dtGzZElgH1Abgw4+XcV7r/aeU+9u+S0/ped48mVTeZ8va5Frnk+UcS9/rk+XYjvtsSSGW79aVywTfN3hF5wJg586dNGjQwOEs+StKnQ65+TcmPPrjKS3/zAYTTj9kFpc56LNl+ZbldAAvgnJz5JDSUavVqh3n62+XEhWVeUrL99U2ddKvZ/hkOQBbXQk+W9aRE3/4bFkWET5bVnhoOZ8t60Tm3z5ZjoXv/h8aDvtoSaWjTgFmvraGuJ5/ntLyG9Uf7YOU/uCr7aC2XcHP/7UauMe6+ECtWrVISUnxGNuzZw9hYWFUrVrV63MiIyOJjIx0T8fExGT9qzZQj8cnbqTP5SGA9+cXpnqk7zYKESG+2+iF+Oil4MvDkIzx3bJ8mcuVGVyHWhWfK+APJyusTs+/YC9Tnt1DTMyp1WlISOjph8wSqK8XKwCbbqMPLsUU3LUaHV2Ld95bRpMmlU55+b7apvp2e+q75jbE8t3/X8uHywoJ8d3HR8vlm1y+XFeZPspkC+46hXrcedcmbr4lDcs6tW1qoF632VfbQW27Sgv/1mqpbro7duzIxx9/7DH2+eef065dO6/ncxfm0cc3MnbcL76KJyI+VrlyGv/XZC+fLf2KmJh0p+OISD4iIzP48JPlXHzxHqejiEi+DHeM2My059djBd73tCJBJaia7sOHD/Pbb7+5p7dv387GjRupUqUKDRo0YNy4cfzxxx+88cYbAAwfPpwXX3yRe++9l2HDhvHtt98ya9Ys5s2bV+zfveCD5Vx5pd5xRALZewtW0rpNOSpVUsMtEsjeW7iKSy8NzL1fImJb+OFy+vYNUcMt4gNBtcVbv349bdq0oU2bNgDce++9tGnThocffhiA5ORkdu3a5Z6/cePGLF68mOXLl9O6dWsee+wxnn/++VO6XVhs7D+++SNExG+anJWqhlskCLRqdWrXRRGRktO27X413CI+ElR7ui+++GIKuu7bnDlz8ox17dqV77//3o+pIDU1jEUL6zP4pu1+/T0icnrmvtWIPpf/ocZcJIAlJlbkr7+iueSSv5yOIiL5OHEihDf+15iht25VYy5SBEG1pzsQHT4cxuW9L+GWIZ14/LGWTscRkXxMe7YZNw3qzGU9urF/v+8udCQivpOYWJHul3Snb++L+eKLvHcYERHnnTgRwnUDLmT4bR24+87zcbmcTiQS+NR0n4bshvubr2sAMOHh83j0kXMdTiUiuT3/XFPuvzcWgPXrq3JZj0v55x813iKBJCmpIj0u7c6ePdEcPx5Gv75diY9X4y0SSNLTLa4f2JkPP6gPwMszzuauEReo8RYphJru0xD/eW2+XlXDY2zGS2ezZ09kPs8QkZJ28GA4zzzVwmNsw4aqfPpJXYcSiYg3019syl9/Rbunjx8P4+knW1DAWWUiUsLWrq3Gxx/V8xib+1Yjtmyp4FAikeCgpvs0XPWv3bzw0jr3dLVqx4n/6gtq1EhzMJWI5BQTk84Xy76gTp2j7rHJT33PoMG6BoNIIHn2ufX0H7DDPd2h49+8v3ClzhcVCSAXXvg38+Z/TViYvWu7XLl0PvlsGU2bpjqcTCSwqek+TXeM2MJLM9ZRvfpx4r/6kpYtDzodSURyOfvsVL5c/gV16x5l0pMJ3P9AktORRCSXsDDDG2+tZsDAHbTv8DeLl3xFxYoZTscSkVz+dfVu3nl3FZUqpfHRp8vp0uVvpyOJBLygunp5oLp9+BYGDNyhKyKLBLCzzkrlh58/UZ2KBLCwMMP/3lzNsWOhVKighlskUPW76ncuvuRDbVNFikh7un1EbzoigU91KhL4wsKMGm6RIKBtqkjRqekuAStX1uDhh1rpYjAiAezQoTBuvaWDLoQoEuCmPNOcjz/ShRBFAtlPP1Vi1MhYMjN1UQYR0OHlfrdqVXX69r6YI0fCOXYslN7mA10URiTApKaG0fuyS1nzbXXWra2KMdWxLJ2jJhJonnm6OWPHtCU8PJP5731NRacDiUgeP/8cQ49Lu7F3bxT//BOJvY9P9xSTsk17uv3o66+rc3mvSzhyJByAZ6e04OVdN2mPt0gAydlwAyQmViLTtQhjahTyTBEpSVOnNGPsmLYApKeH0v+aLnz9zwUOpxKRnH75JYYel3Zn794oAN6e2xiYA4Q6GUvEcWq6/WjnjnIcPep5MMFfadVxabWLBIwDByJISY7KNVoZtA9NJGAYA5t+jfEYy8gI4e8TVR1KJCLe/PFHNIcOhecarQfo1C0p29T9+dENN+5gzhurCQmxD6m5st9uHmwyjVBLh9iIBIr69Y/y5fIvOPNM+x6jNWocIzTkKizrN4eTiUg2y4IZr6xl6K0n6/KZqRu4qtZnDqYSkdzi4lJY+OEKIiMzAeh84R6gL3DU0VwiTlPT7Wd24/0tV/1rF/Pmf014iK7IKhJoGjSwG+8OHf8m/qsvsazNTkcSkVxCQuzG+7bbt/D0lA2MGv2r05FExIuePZNZ9NFyunVP5pPFy4AjTkcScZwupFYCrr9hB9ddv0MXUBMJYPXrH2XVN5+rTkUCWEgIvDRjnepUJMDFxaXQo0eKalUki/Z0l5CC3nSMAZfRu5KI0wr7cGCM3jJFnFZYnWaqTkUCQuENt2pVyg692h1mDLy4cyjP7RimxlskgLlMZzJdX2FMHaejiEg+DmecwejER/ly74VORxGRAv0beBfIfdE1kdJJh5cXUaP6o/HPdxTPApcB8OmeXcAdQNHuKdag/CU+S5F24oBPlhMaEu2T5QCUC2/os2W5fHh/yExXFZ8tq0J4LZ8ta1BM29NexqGMVF75a7YP0jjjzAYTCAk5/duSNIru7DF9NKMlyccfAiKxzFLqRv2X8JC9RVrWEfafdp5sfx3d6LNl+fKeqS7XcZ8sx7J8t0kyJjCvnxFiRfhkOS7jAnyz3p3gn21qRWAx0JTEw02YtPV74O0iPdOX29PDx7b6bFlhoZV9tqyI0Ao+W9bx9KK9/xWFr/7GelGxPlkOwB01GvlkOQcyDjNx1xs+WZYTPuz2DVUiyp32csJCPe8G4nKNwmUeAsBiASEht2BZJ4q0rEzX4dPO46Z7+EoJ0p5uRz0J3JVjeijwokNZRMSbY5lNST7+X0zW7U4yTC3+OPY4GS7ffRgWkdMVDXwKtM+aDgVmA/0dSyQieblcd7gbbgBDL1yu1zE62lNKOTXdjvoGSM8xnQF85VAWEfEm3EohPGSPx1hU6FZCrYMOJRKRvI4Ba3KNpQAbSz6KiOTLshKAw7nGlmFZ2usspZuabkd9BAwATmA33IOABY4mEhFPYSEHqRP1EBEhOwEoF7qampFTsSzfHZ4tIr7wADA169/JQByg2/+JBBLLWkNoSH+yG+8QaywhIbOcDSVSAnROt+M+xj78rRzwvsNZRMQbu/F+mAPp/aga8RaWlel0JBHx6t/AAWARsMnZKCLilWWtJTTkGoxppYZbygw13QHhU6cDiEghwkIOUi3yf07HEJFCTXI6gIgUwrK+w7K+czqGSInR4eVBoTr2RWFEJFAZY5HhquR0DBEplO/uGiEi/mFMDMZEOR1DxGfUdAe8usBK7KuwqvEWCUTGWPyddju7jz3DCVdtp+OISL4uxT7s/Dang4hIPoyJIdO1EJdrLsb47la0Ik5S0x3Q6gDxQBPgOuB/qPEWCSzGwN9pt3Eo4zIyTTX+OPY4J1x1nI4lInlcAnwAnAG8BAx3NI2I5GVMRTJdC4DWGC7G5XpbjbeUCmq6A1YI9kXWzsoxNgB4zJk4IuLVgfR+HMro5Z7ONFX589gEXCbcwVQi4qkRdsOd88P7C0APJ8KISD5crteANu5pw0W4zLPOBRLxkaBruqdPn07jxo2JiooiNjaWVatWFTj/3LlzOe+88zjjjDOoXbs2N998M/v27SuhtKfDBYzBvvdotiRgmiNpRMS7iuFfEBnyW46RDKpFziLESncsk4jktgN4OtfYO8BXJR9FRPIVEvI4sD/HSDIh1pNOxRHxmaBquufPn8+oUaN48MEHSUhIoEuXLvTq1Ytdu3Z5nf/rr79m8ODBDB06lF9++YX33nuP7777jltvvbWEk5+qL4ErgaPAr9j3HN3jaCIR8RRqHaZO9HgiQ7YAmdSKmkL5sLVOxxKRPB4HJmT9+z1gCKDb/4kEEsv6kdCQq4B/gBRCQ67EsrY7HUvktAVV0z116lSGDh3KrbfeSvPmzZk2bRr169dnxowZXudfs2YNjRo1YuTIkTRu3JgLL7yQ22+/nfXr15dw8tOxDOiD3XCnOJxFRLwJtY5QJ3oCtaMeo3zYt07HEZF8PQH0BwajhlskMFnWT4SGXJXVcG91Oo6ITwRN033ixAk2bNhAXFycx3hcXByrV6/2+pxOnTrx+++/s3jxYowx/PXXX7z//vv06dMn39+TlpbGoUOH3I/U1FSf/h2n5msg2ekQIgEjEOs01DpCubCNTscQCSiBWKuwCMhwOoRIwAjEOrWsn7Gs3wqfUSRIBE3TvXfvXjIzM6lZs6bHeM2aNUlJ8b4HuFOnTsydO5cBAwYQERFBrVq1qFSpEi+88EK+v2fSpEnExMS4Hy1atPDp3+EPxzPaYHTRJilDgrFOM101SM9s7HQMkRIVbLVqjMWxjHZOxxApUcFWpwDGdMaYCk7HECmyoGm6s1mW5TFtjMkzli0xMZGRI0fy8MMPs2HDBpYsWcL27dsZPjz/24SMGzeOgwcPuh+JiYk+ze9rR9K7sef4JP4+/pAabykzgq1OM13V2XfsOf45No30zDOdjiNSYoKpVo2x+CftHv4+PpFDJ/o7HUekxARTnQIY0wNYDHyCMRWdjiNSJGFOByiqatWqERoammev9p49e/Ls/c42adIkOnfuzAMPPABAq1atKFeuHF26dOHxxx+ndu3aeZ4TGRlJZGSke/rQoUM+/Ct860j6pexLux8I4XhmB/4+/jDVox7F0lWTpZQLpjrNbrgzjX3v7n3HnqVq9L2Eh+o8NSn9gqVWsxvuIxm9AThw4lYMFjER8x1OJuJ/wVKnAMZ0B94HooAO2I335VhW4GYWgSDa0x0REUFsbCzx8fEe4/Hx8XTq1Mnrc44ePUpIiOefGBoaCth7yINbJf5JuxMIdY8cz2zPkYxLnYskInmknriVTFPXPW2oxKG0uwn6tyCRUiQt8zx3w53t4InBpLvqOJRIRHKzj+h8CbvhztYeuNOZQCLFEDRNN8C9997La6+9xuuvv05SUhKjR49m165d7sPFx40bx+DBg93z9+3bl4ULFzJjxgy2bdvGN998w8iRI7nggguoUyfYN6QHqBH9EBZH3CMVwt+nXNhSBzOJSG4VI6cREbLRPR0Wsp1KURPI56wYEXFAVNhGKkXkvBNKBtWiHic85E/HMomIJ/tIzivxvJvPPED38ZbAFzSHlwMMGDCAffv28eijj5KcnEzLli1ZvHgxDRs2BCA5Odnjnt1DhgwhNTWVF198kfvuu49KlSpx6aWX8uSTpaM4I0MTqRH9H/Ycm0j58CVUipipD/IiASbEOkbl6LHsPzYJl6lMlajRhIYccDqWiORSMWIRFob9J4ZRLWoiZ+j2fyIBx7J+xZg4YCmwAhiKZbkcTiVSuKBqugFGjBjBiBEjvP5szpw5ecbuvvtu7r77bj+nck5kaBK1z7iDUCtFDbdIgMpuvI2JJjRkv9NxRCQfFSI+IDpsDWEh3u+KIiLOs6xNGNMF+BPLynQ6jkiRBF3TLXnpw4FI4AuxjoN13OkYIlIIbVNFAp9l7XY6gkixBNU53VJ8xoRzIO0mXCaq8JlFxDFH03tyIrOZ0zFEpAAZrpocOnGNLoQoEsCMCcGYBzGmqtNRRNy0p7sUMyacv48/zPHM9qS5zqF61MP23jYRCShH0y/jYNq/sThKlej7iQhNcjqSiOSS4arJX8eeJtPUwmUqEBMxW6d1iQQYY0KAl4GbgH4YcxmWtc/hVCJquoParsPLCvhpBPAu9q0UIC2zNb8fuQ+4AjiaZ+6QEN/sCbeM715Sh0/84bNluVy++7LhjMh6PltWpvHdPdW/25922ss47jrhgyTOcZmDuDJP/wCebUcLqq3iaR3Vr8Cf78voTPKJW4EQDOXZf2wqZ0U+Qzkv9/HOiD79/8fZ9h/f4rNlGSvDR0sq/RfDcRlf1VjpX1clqeDtKUAD4BWgFgCH0q/jUPou4L955gwLreSzXBmZB322LOPD7U1keBWfLSvE8s3nhr/Sf/XJcgBm7gn3yXIyXHk/bwWTib/vJswHnw/rRl/ggzS23UdX5/szYyzgBWBQ1kgr4HPginwab99su4zP3telNNPh5aVWQ6BDrrE2QBMHsoiIN8bA/owLyPlW7OIMDrnOdS6UiHjREXu7mlNvoJwDWUTEu+pA11xjZwHnOJBFxJOa7lJrCxAH7M2aPgT0AX50LJGIeLIsODPyRSqG/OAeqxn2CbXCPnAulIh4MR+4nZNHGPyMvY094lgiEfFkWXuwrMuBnVkjJ7CsQVjWSidjiQBquku5H4GewDbgcmCNs3FEJI8QK50zI5+nYshGaoR9Sp3w93SeqEhAmgMMw9625vxSW0QChWXtzGq8f8tquJc6HUkE0DndZcCP2IfV+OqcSxHxtRArg/+LfB7IVMMtEtDeAN5G21SRwGVZu4D2WD673ojI6VPTXSboTUck0FlWptMRRKRItE0VCXRquCXQ6PDyMq8N8DHGxDgdRETy4TLhbE27mxOZbZ2OIiIFGkqma6Lu4y0SwIxpjMv1AcbUcjqKlCFqusu01sAS4DKM+UCNt0gAcplwtqWN5GBmOw4en8qJzFinI4mIVzcDL2PMMFzmSTXeIgHImEYY8zFwCYYlGFPb6UhSRqjpLrNaYTfc2ffabIcxH2JMJeciiYgHlwljW9pIDrlaZY1EcfD4FE5ktnM0l4jkdhPwsnvKmFvUeIsEGGMaZDXc9bNGzlLjLSVGTXeZlQacyDWWmjUuIoHAwhBiHc81lo6l2xSJBJjDnLydWLb9TgQRkXydIO/n3CPAcS/ziviWmu4yaxPQHfgza3oFltUfyzrmYCYRycmyMmkc8TKVQtfZ0xwmJuoewkOTHE4mIp4WADeQfZE1y3qWEGuy7kYgEkAsKyXrdmKbs0Z+xOJyLEtfkIn/qeku0zZjN97z1HCLBCi78Z5B1dDlWQ13otORRMSrhcD1WNZUQqyJarhFAtDJxntRVsP9j9ORpIzQLcPKvC3AYCwryukgIpIPy3LRMHI2u61NTkcRkQItIjRkmdMhRKQAlvUXljUEjG4rJiVHe7qlQMaAMWc4HUNECmGMvjgTCXTGRGGMPnqJBDp99hVf0zu/FMiY/2DMlxhTzekoIpKP9Mxm7Du6kLSMzk5HEZF8GBONyzUXl3lejbdIADNmKIb1GNPQ6ShSiuhdX/JlzFhgHNASYz5R4y0SgNIzm3Lw+PMYqnAobTJpGRc6HUlEcjEmCpfrDQwXYcwANd4iAcqYmzE8DzTEsBRjGjkdSUoJveOLV8YMx5gHc4yck9V4hzuWSUQ8ZbrqZDXcFbNGwjmUNokTmec5mktETjIGXK6ZGC7OMTYAl5nkXCgRycOYqzC8mGOkflbjXdmxTFJ6nFLT/eabb9K5c2fq1KnDzp07AZg2bRoffvihT8OJkz4FdniMWNYrWFa6I2lEJK8QK5nIsBUeY+Eh3xMe8qtDiUQkN8sCK+QNPO8PfIAQa65TkUTEq5XAjx4jFnN0SzHxiWI33TNmzODee++ld+/eHDhwgMzMTAAqVarEtGnTfJ1PHGJZu7GsXsD2rOmRWNZsZ0OJiAfLMpSPmERU2EcAhIesIyZqDJaVVsgzRaQkhVhfEBIyGDgOHCA05Gos68fCniYiJciy9mHRB/gha2QilqUjUsQ3it10v/DCC7z66qs8+OCDhIaGusfbtWvHTz/95NNw4izL+h3L6o1l3aaGWyRAZTfe5SKmEhP1gBpukQAVYn1FSMggQkOuVcMtEqAs6x8s+mBxDxZPOB1HSpFi36d7+/bttGnTJs94ZGQkR44c8UkoCRyW9Tswz+kYIlIAyzKcEf6u0zFEpBAh1nKnI4hIIezDyV9zOoaUMsXe0924cWM2btyYZ/yzzz6jRYsWvsgkQcSYqhhT2+kYIlIAYyDD1cTpGCJSCGPOwphi7w8RkRJkzBkYc6bTMSTIFPud/YEHHuDOO+/k+PHjGGNYt24d8+bNY9KkSbz2mr4VKkuMqYIxHwPRQB8s60+nI4lILsbAkfThHEsfRIXICUSFxTsdSUS8MKYNma73sVhJSMhtunCpSAAyJhrD+0AzML2wrE1OR5IgUeym++abbyYjI4MxY8Zw9OhRrr/+eurWrctzzz3HwIED/ZHRw/Tp03n66adJTk7mnHPOYdq0aXTp0iXf+dPS0nj00Ud56623SElJoV69ejz44IPccsstfs8aTFyu48V8RhXgQ+BcAIz5FGN6AL/7OFngOXrCd18uHDG7fLas5WaDD5bi8sEygp/LddRny/r+6Ns+W1aIFVGs+Y0Bw8PAEABS0yZwOO13LOtdDBk+y4UxvlkMvlmOiJMyMg+cwrPaAe8CFTFcTqZrOnA9ISHFq/mCcx0KyGX5SmhIeZ8ta0fGKp8sx+UK7m3qX0fX4ou7C1uW747eMMaH265ii8au0652Fj7L+uyb5GAmCRbFqoKMjAzmzp1L3759GTZsGHv37sXlclGjRg1/5fMwf/58Ro0axfTp0+ncuTOvvPIKvXr1IjExkQYNGnh9Tv/+/fnrr7+YNWsWTZo0Yc+ePWRkOFmwpcXzQOsc002AWUBPR9KIiDc9gX/nmA7FMBPMWrC2OhVKRDxEAu8BlXKM9QPuBV5wII+IePcIcGmO6ZrAO0AbtNNCClOsr6/CwsK44447SEuzr45brVq1Emu4AaZOncrQoUO59dZbad68OdOmTaN+/frMmDHD6/xLlixhxYoVLF68mO7du9OoUSMuuOACOnXqVGKZS6/78fxmbydwu0NZRMS7pcBLHiMWI7Gsnc7EEREv0oDBQM6L0S4BpjmSRkTy8xjwbY7pfdi1q4ZbClfsY0bat29PQkKCP7IU6MSJE2zYsIG4uDiP8bi4OFavXu31OR999BHt2rXjqaeeom7dupx99tncf//9HDt2rCQil3IpQA/gF2B31r93OBlIRHKxLLAYQ/beMosRWNYbzoYSES9WAX2Aw8DnwDXYzbiIBI5U7DpdDfwD9OLkPb1FClbskyxGjBjBfffdx++//05sbCzlypXz+HmrVq18Fi6nvXv3kpmZSc2aNT3Ga9asSUpKitfnbNu2ja+//pqoqCgWLVrE3r17GTFiBP/88w+vv/661+ekpaW59+QDpKam+u6PKHX+AuKA8sB2h7NIWaI6LTrLAsxYYAGW9Z3TcaSMUa0WxzfAxcAm1HBLSVKdFkd2490Qe8eTSNEUu+keMGAAACNHjnSPWZaFMQbLssjMzPRdOi8sy/KYzv693rhcLizLYu7cucTExAD2IerXXHMNL730EtHR0XmeM2nSJB555BHfBy+19mQ9REqO6rR47LdINdxS8lSrxaW9ZlLyVKfFdRg13FJcxT68fPv27Xke27Ztc//XX6pVq0ZoaGievdp79uzJs/c7W+3atalbt6674QZo3rw5xhh+/937VbbHjRvHwYMH3Y/ExETf/RFlUk9A9zIU31Kd+pYx1TDmaqdjSCmkWvUdY8CYQRgT5XQUKWVUp77WEfviaiInFXtPd8OGDf2Ro1ARERHExsYSHx/PVVdd5R6Pj4/nyiuv9Pqczp07895773H48GHKl7dvJbF582ZCQkKoV6+e1+dERkYSGRnpnj50KPBuixE8emNfkfUv7HO+dbVk8Q3Vqe8YUw37gmstMWYEljXL6UhSiqhWfcNuuB8BRgH/Aq7Dsop7q08R71SnvtQB+ATIwD7n+3tn40jAOKWb723dupW7776b7t2706NHD0aOHMnWrf5vqO69915ee+01Xn/9dZKSkhg9ejS7du1i+PDhgP1N3eDBg93zX3/99VStWpWbb76ZxMREVq5cyQMPPMAtt9zi9dBy8aVe2PcyjADqA19g31ZMRAKFMVWxr5LcMmtkOsYMczCRiORmN9zjsRtugEsx5h2M0ecYkcDSHvgUqAhUwd6+xjqaSAJHsZvupUuX0qJFC9atW0erVq1o2bIla9eu5ZxzziE+Pt4fGd0GDBjAtGnTePTRR2ndujUrV65k8eLF7r3vycnJ7Nq1yz1/+fLliY+P58CBA7Rr144bbriBvn378vzzz/s1p1jAf7DvPZqtHnCLM3FEJB/XAOfmGrtPH+ZFAkod8m4/uwK6/alIYLkXu+HOVhm426EsEmgsY4wpzhPatGlDz549mTx5ssf42LFj+fzzz/n++9J1GMXvv/9O/fr1sb+fOKUDA8qoytiHrGaf0zIHuA0o1sstIIWE+O58OmMyAmxZLsDF7t278z0FIxCVlToNsSJ8tixDBva7/3+Bh7JGdwA9sKxd+T0tn4X5pq5NKXh/KDmq1bIgJOQMAIxpgzEfAJUAF5Y1AsuaV6xluVxHfR0voISGlPfZsizLN69Nl8uFyxwo83VqWcU+mzVfvvzc5HvRwEKge9b0p0B/4IRjiaSo/L9NLXYlJSUlMXTo0Dzjt9xyiy68IDnsx76I2gbgf5SWhlukNLEssKzHgUeBnUBc8RtuEfE7y0rAsq4A9mFZdxa74RaRknAMuAqIBxajhltyKvZXT9WrV2fjxo2cddZZHuMbN26kRo0aPgsmpcF+7AuoHUENt0jgsqwnMOZFLOug01FEJB+W9QPQRnUqEtCOY1/s0KCGW3IqdtM9bNgwbrvtNrZt20anTp2wLIuvv/6aJ598kvvuu88fGSWopTodQESKQB/kRQKf6lQkGOjOApJXsZvuhx56iAoVKjBlyhTGjRsHQJ06dZgwYQIjR470eUApzUKBqcArgE5NEAlUxlwBNMKydBFKkUBlTHWMGY9ljcWyDjsdR0Ty9Rj2lc2/cTqIlKBiN92WZTF69GhGjx5Naqq9F7NChQo+DyalXQgwG7gO+wrKccAvjiYSkbyM6Qu8DYRjTCiW9azTkUQkF7vh/hhojjFnAddgWTrSTCTwPAWMBu4CLkeNd9lR7Aupbd++nS1btgB2s53dcG/ZsoUdO3b4NJyUViHA69gNN0AN7ItOtMz3GSJS8oy5nOyG2zYZY3QakUggMaYaxnwENM8a6YAxCzGmYkFPE5ESNxm74QYoD3wCdHEujpSoYjfdQ4YMYfXq1XnG165dy5AhQ3yRSUq9KKBRrrHy2M23iASOM4Hctyk701d3CBMRn6gKVM81Vh0o50AWEfEuFDgr11g0UMeBLOKEYjfdCQkJdO7cOc94hw4d2Lhxoy8ySal3FPuQmq+zprOv9PiVY4lEJC/7HO4xOUZmAXdhWQ4FEpE8LGsTlnU5sCdrZDuW1QfLSnYyloh4yAQGAh/mmL4ZmO9YIilZp3ROd/a53DkdPHiQzMxMn4SSsuAwduP9LjAN+MLRNCLinWU9hzEu7ENX78SytJtbJNBY1q/A5RjzApZ1C5b1h9ORRCSPdOxTK98APgbmORtHSlSxm+4uXbowadIk5s2bR2hoKACZmZlMmjSJCy+80OcBpTQ7AvRxOoSIFMKyXsAYtIdbJIBZ1iYgTnUqEtCyG28pa4rddD/11FNcdNFFNG3alC5d7JP/V61axaFDh/jqKx0eLL4WAricDiFS5hX0Qd5k1ak+64s4q/CGW9tUkcCnOi2Nin1Od4sWLfjxxx/p378/e/bsITU1lcGDB/Prr7/SsqWuPi2+dBbwPdDO6SAikg9jQoG3gPHowHORQPYv7GupVHE6iIjkqxawDujhdBDxsWLv6QaoU6cOEydO9HUWkRyaYN9GrC7wGdAb+M7RRCLiyW645wDXZI2EYBivPd4iAcaYK4DZ2B/7Pgd6AvsczSQiudXErs/mwELsbetSRxOJ7xS56f7nn384evQo9erVc4/98ssvPPPMMxw5coR+/fpx/fXX+yWkBA/LOqXvcTwY0wD7wmp1s0YqYTfePbDYeNrLP10u13GnI0gZ5TInnI6Qyxygf47pcUA6hseciSNSyrhcR32wlN7A65z8yHce9gf7S7DIe2HcojABeFxLpuuw0xG80CHCAMZk+GxZllXsg3TzZV8kNFBU5mTDDfbtdRcAV6C7+5QORX7l3nnnnUydOtU9vWfPHrp06cJ3331HWloaQ4YM4c033/RLSClr9gCJucY2A9sdyCIi+VuRa/oosMqJICKSr1+B3LcPWw2n2HCLiD8cBBJyje0EkhzIIv5Q5KZ7zZo1XHHFFe7pN954gypVqrBx40Y+/PBDJk6cyEsvveSXkFK2WNZx4FpgSdbIeqA3FgedCyUiXswCbsPem3MM6AcsdzCPiOS1DeiO/QEe4BXgHp0GIhJQXMAt2NdIAdiCfV537i/MJFgVuelOSUmhcePG7umvvvqKq666irAw+3ClK664gi1btvg+oZRJlpWG3XhPRQ23SCCbDQzDbriXORtFRPKxHbvxngiMxArAw8NFxAUMBSZjN9x/OhtHfKrITXfFihU5cOCAe3rdunV06NDBPW1ZFmlpaT4NJ2WbRRoWY7E44HQUESnQG+icM5HAZrETiwlquEUCmgt4CPjD6SDiY0Vuui+44AKef/55XC4X77//PqmpqVx66aXun2/evJn69ev7JaRIfgy1nI4gIoVSnYoEOkMYhmpOxxCRQmmbGoyK3HQ/9thjfPjhh0RHRzNgwADGjBlD5cqV3T9/55136Nq1q19CinhjuBNIxNDF6Sgikq+m2Lf7m1rYjCLiEEMYMBf4Sl9miwS0a7HP977K6SBSTEW+v1Pr1q1JSkpi9erV1KpVi/bt23v8fODAgbRo0cLnAUW8MYwAns2a+ghDP6w8V1IWEWedDcRjfyt/N/b3vKOcDCQiudgN91uc/BD/BYYeWLqAk0iAuQb7dK4w4G3gRuzbikkwKNZNlatXr86VV17p9Wd9+vTxSSCRwhh6AdNyjJQDPsRwLha7nQklIrlEAZ8BtXOM3QnswLN+RcRZTwD/yjF9NvABhg46/1skYLQF3uRk65b9Zdk28t5qTAKR7+4wL1Ji4oFFucYeV8MtElCOA2OBjBxja7BvMyYigeM57MNVsx0B7lfDLRJQEoDXco29jBru4KGmW4KORQZwAycPqfkvFs84mEhEvHsPGITdeK8D+gCpjiYSEU8Wf2LfnmgzcBS4EotVzoYSkVwM9mla07OmpwOjnYsjxVasw8tFAoVFBoZBwHwsPnA6jojk633gIHbTfcjhLCLijcWfGHoAZ2LxjdNxRCRf9wAr0bncwUdNtwQte4/3B07HEJFCxTsdQEQKYV84TRdPEwl8ariDUZGa7kOHir53omLFiqccRsSXDOWB8/StvUjAi8NuzHUOqUigMrQAjmCx0+koIpKvcKAL8JXTQSSXIp3TXalSJSpXrlzgI3sef5s+fTqNGzcmKiqK2NhYVq0q2nlH33zzDWFhYbRu3dq/ASUg2A33x8CSrKudi0hgGgV8CryKLjMiEpjshvtzIB5DI4fTiIh34cA87DuH3ORwFsmtSHu6ly1b5u8cRTJ//nxGjRrF9OnT6dy5M6+88gq9evUiMTGRBg0a5Pu8gwcPMnjwYLp168Zff/1VgonFCSbrFmLQOWvkPQwDsPjUwVQiktdI4Omsf9+E3XTfCrgcSyQingzNgaVAjayReOwLr213LJOI5JZ97+7sWzvPxN6mznYskXiyjDFBczxf+/btadu2LTNmzHCPNW/enH79+jFp0qR8nzdw4EDOOussQkND+eCDD9i4cWORf+fvv/9O/fr1sV+42gtTGMvy4WUCTOapPY37gNyvh91ACyzSTjcVplQfAusCXOzevZt69eo5HabIVKfBqCHwCxCZa/xy7A/4UjDVqhSPhXVKzzN8it1k5zQfuPF0I5UBqlNfsyzf5TGmNH3Bez3wv1xjh4CmwN6SjxN0/F+rReqQfvzxxyIvsFWrVqccpiAnTpxgw4YNjB071mM8Li6O1atX5/u82bNns3XrVt566y0ef/zxQn9PWloaaWknG7PUVN3eJvg8CzQHBmdN7wGu8EnDLYFBdVoa7AT6A+9ysvF+ADXcpYtqtTS4Cbsuz82aXg0Mdy6O+JzqtDR4G2gB/Dtr+jBwBWq4A0eRmu7WrVtjWRaF7RS3LIvMzFPbO1mYvXv3kpmZSc2aNT3Ga9asSUpKitfnbNmyhbFjx7Jq1SrCwoq2B3bSpEk88sgjp51XnGPhwnAb9rdWfYDLsPjF4VTiS6rT0mIxcA32bcXGA9McTSO+p1oNfhZ7McRhN95Hgb7YH+iltFCdlhb/xf7sOxK7TnUh4UBSpMPLd+4s+pUqGzZseFqB8vPnn39St25dVq9eTceOHd3jTzzxBG+++Sa//vqrx/yZmZl06NCBoUOHMny4/Y3shAkTCj28PPe3fX/88QctWrQgEA+xCUSBcHi5++lYQAOfX2lVh5c7T3Va2jRG54cWl2pViudUDy/PZqgCZGBxqJRvB31JdeprOry8KBoBOxzOEGwC5PByfzXSxVGtWjVCQ0Pz7NXes2dPnr3fYB8as379ehISErjrrrsAcLlcGGMICwvj888/59JLL83zvMjISCIjT55jWJzbpUlgsTCgW5uUSqrT0kYNd2mlWi09LP5xOoL4ieq0tNnhdADxokhN90cffUSvXr0IDw/no48+KnDeK664wifBcouIiCA2Npb4+Hiuuuoq93h8fDxXXnllnvkrVqzITz/95DE2ffp0vvrqK95//30aN27sl5wSPAxdgBpYLHA6iojkqwIwGpgIZDicRUTyNwL4EtjkdBARyde5QHvgNaeDlDlFarr79etHSkoKNWrUoF+/fvnO589zugHuvfdeBg0aRLt27ejYsSMzZ85k165d7sPHx40bxx9//MEbb7xBSEgILVu29Hh+jRo1iIqKyjMuZY/hQuAjIBJDCBbvOR1JRPKogH3edwfsC8TciBpvkUB0HzAZSMa+0rkab5HA0xL72gzVgSjgRWfjlDFFarpdLpfXf5e0AQMGsG/fPh599FGSk5Np2bIlixcvdh/+npyczK5duxzLJ2BMMHwg7ozdcJfLmn4j6/zv+c5FEpFcygOfYjfcAFdjn1t4A5DuVCiRoOW/87BHYzfcALWBL7Ab71/zfYbIqSq952H72znA59gNN9h3+gkBnncsUVlT7KsR7N69O9+frVmz5rTCFMWIESPYsWMHaWlpbNiwgYsuusj9szlz5rB8+fJ8nzthwoRi3aNbSqvLsT/QZwsF8p6iICJOagGcl2usI1DXgSwi4l049hdiOdUCujiQRUTydyknG+5sV2J/BpaSUOymu0ePHuzbty/P+DfffMNll13mk1Ai/jUOeCHH9AfY9yEVkcCxDvuWJ0eypv8C4tAFYkQCSTrQG8i50+V+4FVn4ohIPl4A/pNj+mvs+3j777Rg8VTsprtLly7ExcWRmprqHlu5ciW9e/dm/PjxPg0n4j/3Yh9S8yFwPTpcVSQQrcQ+MmUbdsOd5GwcEfHiEHbj/S3wAPCcs3FEJB9PA2Ox79+d80ttKQnFbrpnzpxJ48aN6dOnD8ePH2fZsmX06dOHRx99lNGjR/sjo4if3AcMRA23SCD7GvtctESng4hIvlKxD1+d5nAOESnYFKA7cNjpIGVOsZtuy7KYN28eUVFRdOvWjSuuuIJJkyZxzz33+COfiJ8Fw4XfRMo61alI4FOdigQH1aoTinT18h9//DHP2Pjx47nuuuu48cYbueiii9zztGrVyrcJRRzzHLARmO1wDhHJ38XY9wceBKQ5G0VE8hEDzAX+i71dFZHANBawgElOByl1itR0t27dGsuyMObk7Sayp1955RVmzpyJMcbv9+kWKTnPYX+QB/uAkFkOZhER77piX5fhDGAh9lWUjzuaSERyqwh8Bpyf9bgMSHA0kYh482/gsax/hwBPOJil9ClS0719+3Z/5xAJIFM52XADvIz9rd9rzsQRES+6cLLhBvtCawuBf6HGWyRQVAAWYzfbAFWAJajxFgk09wOP55iegN14P+Z1bim+IjXdDRs29HcOkQCS++ISGcB+J4KISL6Ok/ciiAe8jImIczKBo7nGjqOrJosEGm81ubfEU5RmRb6Q2m+//caGDRs8xr788ksuueQSLrjgAiZOnOjzcCLOeJiT3/ZlYJ8rusC5OCLixXdAL+xGG+waHYzuOSoSSI4CVwJfZU0nYx+VstmxRCLizQzg7hzTo7LGxFeKtKcb4IEHHqBly5bExsYC9iHnffv2pUuXLrRq1YpJkyZxxhlnMGrUKH9lFSlBj2A33FuA9x3OIiLercc+THU4cAe6IqtIIDoG9ANeASYCmxxNIyL5eRlwAZHASw5nKX2K3HSvX7+eMWPGuKfnzp3L2WefzdKlSwH7quUvvPCCmm4pRXQBCZHAtwEY5nQIESnQMewjUUQksM10OkCpVeTDy/fu3Uu9evXc08uWLaNv377u6YsvvpgdO3b4NJxIYDuj8FlExGEWEO10CBEplLapIoFPdXqqitx0V6lSheTkZABcLhfr16+nffv27p+fOHHC45ZiIqVbXew9bPc4HURE8mUB07Gvnlze4Swikr9u2KdzdXI6iIjkqxKwDJjscI7gVOSmu2vXrjz22GPs3r2badOm4XK5uOSSS9w/T0xMpFGjRv7IKBJg6gBfAE2AZ7AvNiEigcUCXgRuBS4EPkGNt0gguhRYBNQAPgU6OxtHRLyIwb7dX1vgPuApZ+MEoSKf0/3EE0/Qo0cPGjVqREhICM8//zzlypVz//zNN9/k0ksv9UtIkcBxBhCP3XBnexr7CspzHMgjIt49BtyWY7oz8AHQ3ZE0IuJNW+y6zD4FpDz2F2SdgUSHMomIpxDsL8Ric4yNxv7sq7tXFVWRm+7GjRuTlJREYmIi1atXp06dOh4/f+SRRzzO+RYpnY4Cs4Anc4wlYh++KiKBYx5wM/beM7Dv3/2Cc3FExIufsY8c65tj7BN0hXORQOLCPlWrHRCaNfYHMN+xRMGoyIeXA4SHh3PeeeflabgBzjvvPKpWreqzYCKBayrwQNa/k7DvObrHuTgi4sUvnKzNDOAG4ENHE4lIbieAAcBHWdPzgSFAplOBRMSrt7G/yM4E/sQ+amyro4mCTZH3dItITtOwD6tZAvzlaBIRyc8vQA/gLNRwiwSqdGAgMAL7OgxquEUC0zzsL8p+An5zOEvwUdMtcsrmOB1ARAqViM4NFQl06cBzTocQkUItcDpA0CrW4eUiUhytnA4gIoWqj30bFBEJXBbQ0ukQIlKoltj1KrkVq+nOyMjgkUceYffu3f7KI1JK3AB8BzzsdBARyVd97Is4LQUqO5xFRLyzgJeB1ejuAyKBLA74FngJNd55FavpDgsL4+mnnyYzU+fbiOTveuB17PJ6CBjvbBwR8aIe9u3/zsS+bdHnQBVHE4lIbhYwA7gF+7Zii7Cv0yAigaU79qHnUcAw7LpV451TsQ8v7969O8uXL/dDFJHS4EzsW4rlLK3/og8JIoFmDvB/OaZbY18gUUQCx03A0BzTUcA76MgUkUBSGfvOA1E5xoYCg52JE6CKfSG1Xr16MW7cOH7++WdiY2MpV66cx8+vuOIKn4UTCT7bgHuwD63JNgV7j5qIBI7bseuyftb0L8B9zsURES/eBC4FrsuaPoHdiO93LJGI5LYf+2iUeUB41thc7PqVbMVuuu+44w4Apk6dmudnlmXp0HMRZgIu7ENrngXGOhtHRLzYin04XDxwGPtctL8dTSQiuWVi3xvYANdiN9+fOJpIRLz5EBiAfSTKAuwm3OVookBT7Kbb5dIKFCnca9j3MVzrdBARydc2oBtwDNjjcBYR8S678X4R+wKlIhKYPga6Agmo4c7rtG4Zdvz4cV/lKLLp06fTuHFjoqKiiI2NZdWqVfnOu3DhQnr06EH16tWpWLEiHTt2ZOnSpSWYVso2NdwigW8H8JfTIUSkQC7UcIsEg/XYX5RJbsVuujMzM3nssceoW7cu5cuXZ9u2bQA89NBDzJo1y+cBc5o/fz6jRo3iwQcfJCEhgS5dutCrVy927drldf6VK1fSo0cPFi9ezIYNG7jkkkvo27cvCQkJfs0pUrhI7ENvRCSw/Quo4XQIESlQI6CX0yFEpEAhwK1AqNNBHFHspvuJJ55gzpw5PPXUU0RERLjHzz33XF577TWfhstt6tSpDB06lFtvvZXmzZszbdo06tevz4wZM7zOP23aNMaMGcP555/PWWedxcSJEznrrLP4+OOP/ZpTpGARwLvAK8AzDmcRkfwNxr4wTDxQ0+EsIuJdQ+waXQBc6XAWEfEuBPuaRzOw7x5S9hrvYjfdb7zxBjNnzuSGG24gNPTkCmvVqhW//vqrT8PldOLECTZs2EBcXJzHeFxcHKtXry7SMlwuF6mpqVSponuxilOyG+7eWdP3AHkvSigiTrsReBV7M9kC+0N9LUcTiUhuDbBrsxH2VZPnAVc5GUhE8rCwdzTdlDU9EHiDstZ4F/tCan/88QdNmjTJM+5yuUhPT/dJKG/27t1LZmYmNWt67m2oWbMmKSkpRVrGlClTOHLkCP379893nrS0NNLS0tzTqamppxZYxKtOwGW5xgYDz2OfWypFoToV/4oAxuH5vXRzoD92rUpRqVbFv24GGueYDse+Y8iH6EJORac6Ff86B/vK5jldCbQGNpR4GqcUe0/3Oeec4/XiZe+99x5t2rTxSaiCWJblMW2MyTPmzbx585gwYQLz58+nRo38z8+bNGkSMTEx7keLFi1OO7PIScuxv+nLvsjEIaAPariLR3Uq/nUC+xZiv+UYexI13MWnWhX/ehT7kNVsP2EfSaaGuzhUp+JfP2MfgXIsazoN+xaAZafhhlNousePH89dd93Fk08+icvlYuHChQwbNoyJEyfy8MMP+yMjANWqVSM0NDTPXu09e/bk2fud2/z58xk6dCjvvvsu3bt3L3DecePGcfDgQfcjMTHxtLOLeJoPDAL+wW64dZXz4lKdiv/9gX07sc3A08B/nY0TpFSr4l8GuAt4GfuDfRywz9FEwUh1Kv73Jfbe7QPYR4195mgaJxT78PK+ffsyf/58Jk6ciGVZPPzww7Rt25aPP/6YHj16+CMjABEREcTGxhIfH89VV508Xyc+Pp4rr8z/whnz5s3jlltuYd68efTp06fQ3xMZGUlkZKR7+tChQ6cXXMSr94DPgYNOBwlKqlMpGX9inxKiOj1VqlXxPwPcDVTEPnpMikt1KiVjGdCEsrpNLXbTDdCzZ0969uzp6yyFuvfeexk0aBDt2rWjY8eOzJw5k127djF8+HDA/qbujz/+4I033gDshnvw4ME899xzdOjQwb2XPDo6mpiYmBLPL+KpbL7piAQX1alIcFCjKBL4yu42tdiHlztpwIABTJs2jUcffZTWrVuzcuVKFi9eTMOGDQFITk72uGf3K6+8QkZGBnfeeSe1a9d2P+655x6n/gSRImqDfUhr4dcrEBGnRGEf1trA6SAiUqChwA1OhxCRAp0JTMe+mGnpU6Q93VWqVGHz5s1Uq1aNypUrF3jhsn/++cdn4bwZMWIEI0aM8PqzOXPmeEwvX77cr1lE/KM1sASoAlQCbsM+fE5EAkck8D7QE7gU6AHsdDSRiHhzM/aXYy7sfU1vOhtHRLxojH37vwZAbeyrnZ9wNJGvFanpfvbZZ6lQoQIA06ZN82cekTLuPE423ABDsPd234auxioSKHI23GB/WPgC6I4ab5FAMgS74Qa74X4Ne5v6hlOBRCSPRpxsuAEux772UX/sK52XDkVqum+6yb6ZeUZGBmCf012rVi3/pRIps+oCFXKN1cc+1OZ4yccRES/KA/VyjVUCqqKmWySQnI3nmZQh2B/wRSRw1OLkzqZstYFoSlPTXaxzusPCwrjjjjtISys9K0AksCzG/mYv+5CaZUA/1HCLBJJ92Lcm+jlr+iDQC/jesUQi4s1/sK+Pku0J7Ht7i0jgWIN9C93siyFuxD6S7IBDefyj2BdSa9++PQkJCf7IIiIAfApci32YeT/gmKNpRMSbv7HP416F3XCvdzaOiOTjP8CTwCRggrNRRCQf3wK9gZXYDfd+Z+P4QbFvGTZixAjuu+8+fv/9d2JjYylXrpzHz1u1auWzcCJl1+Ksh4gErr3YF1ETkcD2X6cDiEih1gLdnA7hN8VuugcMGADAyJEj3WOWZWGMwbIsMjMzfZdORAoQgi6uJhLoVKcigU91KhIcgrdWi910b9++3R85RKRYxgNNgcFAhsNZRMS7WGAW9nUaNjucRUS8iwYWAh8BMxzOIiL5ux34F3AVcNThLMVX7Ka7YcOG/sghIkX2ECcPlbOAQajxFgk0bYHPgMrYt0KJAzY5mkhEcovCbri7Zz1CgJccTSQi3gwDXsz694fAlQRb413sC6nt27fP/e/du3fz8MMP88ADD7Bq1SqfBhMRb/4NPJxj+hrgTYeyiIh3LTnZcAPUwb6P95mOJRKR3EI52XBnmwbc5kgaEcnPYGB6jumLsY9MCXckzakqctP9008/0ahRI2rUqEGzZs3YuHEj559/Ps8++ywzZ87kkksu4YMPPvBjVBGBdeT9Zu8LJ4KISL52A1tzjf0I/OFAFhHxLhP77gM5/QN850AWEcnfj9i36sxpGZDuQJZTV+Sme8yYMZx77rmsWLGCiy++mMsvv5zevXtz8OBB9u/fz+23387kyZP9mVVEWAZcwcnG+w7sc0ZFJHBk37d7Xdb0F8DVQJpjiUTEm0mcPF1rP3bd6ra4IoFlI/ZtxLIb70eAJxxLc6qKfE73d999x1dffUWrVq1o3bo1M2fOZMSIEYSE2H373XffTYcOHfwWVESyrQD6AmcDrzmcRUS8y268/4t94cPjzsYRkXw8iV2fXwPfO5xFRLz7AfvaKHHAMw5nOTVFbrr/+ecfatWqBUD58uUpV64cVapUcf+8cuXKpKam+j6hiHixMushIoHrEDDG6RAiUqjnnA4gIoX6MesRnIp1ITXLsgqcFpFAUQWIcDqEiBSqltMBRKRQqlORwHcGUNHpEPkq1i3DhgwZQmRkJADHjx9n+PDhlCtXDoC0NJ2rJhIYqgKfA79j3x9YtSkSmB4HhgKXYR86JyKB5wJgMfA09qHoIhJ4zsC+ldgZQG/sU7wCS5Gb7ptuuslj+sYbb8wzz+DBg08/kYichirAUqBV1uN97NuKqfEWCSyPYt8CEOyavQz7YjEiEjjOx264Y7C/JAvBvviaiASOaOAD7FuJgX3Lzl4EWuNd5KZ79uzZ/swhIj7xLnBejunLgOeB252JIyJeDAHG5Ziuiv0hoRmB9iFBpOyqBnyK3XBnexTYBsx3JJGIePMKcEmO6fOBt7AvOhw4inVOt4gEugfx/NC+E5joUBYR8e5dYHmOaRcwFjXcIoFkL/atiXL6DHuPmogEjieAP3NM78P+PBxY1HSLlCprsQ+pOQDsArpjN94iEjiOAlcCy7KmhwP/cy6OiOTjJWBk1r+XAtei07VEAs0m7M+7fwD/YN/TO/Cucl6sC6mJSDD4Dvuw8n+AHc5GEZF8ZDfel2IfwioigWkGsBuIRw23SKDagt14lydQL0yqplukVNrgdAARKdQx1HCLBINPnA4gIoX6zekABdLh5SJlUhegnNMhRKRA1YF2TocQkUJd5nQAESnU+dgXSHSGmm6RMqcPsAT4GDXeIoGqGvA59nmkHR3OIiL5m4S9PdVFS0UCV0fs7Wk89hfaJU9Nt0iZ0hv7yskR2Hu7P8E+/0VEAkd2w90SqIh9CHonRxOJiDdPAPdn/fsBYLKDWUTEu/bYn3crYG9XP8eJxltNt0iZEQVMx264s10I3OZMHBHJx1jg3BzTFYAXAMuZOCLiRRtONtzZRgOxDmQREe8s7LsQVMwx1hL4d4knUdMtUmYcB/oCf+cYmw0860wcEcnHf/C8wNp24CrAOBNHRLxIAIYCrqxpV9a0LmQqEjgM8C/s7Wi2T7C3syUr6Jru6dOn07hxY6KiooiNjWXVqlUFzr9ixQpiY2OJiorizDPP5OWXXy6hpCKB6CegB7AH+77At6MP8iKB5gTQH/s80R3YNbvLyUAi4tVbwM1AOnBr1rSIBJZdQDdgG7AYGIC9nS1ZQdV0z58/n1GjRvHggw+SkJBAly5d6NWrF7t2ef8wsn37dnr37k2XLl1ISEjgP//5DyNHjmTBggUlnFwkkPyCfUGJ21DDLRKoTmB/MOgK7HQ4i4jk722gBfCm00FEJF+7gYuxv9Au+YYbgqzpnjp1KkOHDuXWW2+lefPmTJs2jfr16zNjxgyv87/88ss0aNCAadOm0bx5c2699VZuueUWnnnmmRJOLhJodnHykDgRCUzpwJ9OhxCRQu1wOoCIFCoZSHPstwdN033ixAk2bNhAXFycx3hcXByrV6/2+pxvv/02z/w9e/Zk/fr1pKen+y2riIiIiIiICECY0wGKau/evWRmZlKzZk2P8Zo1a5KSkuL1OSkpKV7nz8jIYO/evdSuXTvPc9LS0khLO/ktSGpqqg/SiwSLEIJhD7jqVKQrsMzpEIVSrUrZVg37GiqBTXUqchP2xYX9J2j2dGezLM9bphhj8owVNr+38WyTJk0iJibG/WjRosVpJhYJFiHYV14NfKpTKdt6ABlOhygS1aqUXdWx7zoQ+FSnUraNAL70+28Jmqa7WrVqhIaG5tmrvWfPnjx7s7PVqlXL6/xhYWFUrVrV63PGjRvHwYMH3Y/ExETf/AEiAa8m8L7TIYpEdSplWwrwjdMhikS1KmVXDeA1p0MUiepUyq6K2Lfo/N3vvyloDi+PiIggNjaW+Ph4rrrq5DeH8fHxXHnllV6f07FjRz7++GOPsc8//5x27doRHh7u9TmRkZFERka6pw8dOuSD9CLBIJlgOLQcVKdS1v3kdIAiU61K2fULwXKHENWplF2Hsh7+FzR7ugHuvfdeXnvtNV5//XWSkpIYPXo0u3btYvjw4YD9Td3gwYPd8w8fPpydO3dy7733kpSUxOuvv86sWbO4//77nfoTREREREREpAwJmj3dAAMGDGDfvn08+uijJCcn07JlSxYvXkzDhg0BSE5O9rhnd+PGjVm8eDGjR4/mpZdeok6dOjz//PNcffXVTv0JIiIiIiIiUoYEVdMNMGLECEaMGOH1Z3PmzMkz1rVrV77//ns/pxIRERERERHJK6gOLxcREREREREJJmq6RURERERERPxETbeIiIiIiIiIn6jpFhEREREREfETNd0iIiIiIiIifqKmW0RERERERMRP1HSLiIiIiIiI+ImabhERERERERE/UdMtIiIiIiIi4idqukVERERERET8RE23iIiIiIiIiJ+o6RYRERERERHxEzXdIiIiIiIiIn6ipltERERERETET9R0i4iIiIiIiPiJmm4RERERERERP1HTLSIiIiIiIuInarpFRERERERE/ERNt4iIiIiIiIifqOkWERERERER8RM13SIiIiIiIiJ+oqZbRERERERExE/UdIuIiIiIiIj4iZpuERERERERET9R0y0iIiIiIiLiJ2q6RURERERERPxETbeIiIiIiIiInwRN071//34GDRpETEwMMTExDBo0iAMHDuQ7f3p6Ov/+978599xzKVeuHHXq1GHw4MH8+eefJRdaREREREREyrSgabqvv/56Nm7cyJIlS1iyZAkbN25k0KBB+c5/9OhRvv/+ex566CG+//57Fi5cyObNm7niiitKMLWIiIiIiIiUZWFOByiKpKQklixZwpo1a2jfvj0Ar776Kh07dmTTpk00bdo0z3NiYmKIj4/3GHvhhRe44IIL2LVrFw0aNCiR7CIiIiIiIlJ2BUXT/e233xITE+NuuAE6dOhATEwMq1ev9tp0e3Pw4EEsy6JSpUr5zpOWlkZaWpp7OjU19ZRzi4h/qE5FgoNqVSTwqU5F/C8oDi9PSUmhRo0aecZr1KhBSkpKkZZx/Phxxo4dy/XXX0/FihXznW/SpEnu88ZjYmJo0aLFKecWEf9QnYoEB9WqSOBTnYr4n6NN94QJE7Asq8DH+vXrAbAsK8/zjTFex3NLT09n4MCBuFwupk+fXuC848aN4+DBg+5HYmLiqf1xIuI3qlOR4KBaFQl8qlMR/3P08PK77rqLgQMHFjhPo0aN+PHHH/nrr7/y/Ozvv/+mZs2aBT4/PT2d/v37s337dr766qsC93IDREZGEhkZ6Z4+dOhQgfOLSMlTnYoEB9WqSOBTnYr4n6NNd7Vq1ahWrVqh83Xs2JGDBw+ybt06LrjgAgDWrl3LwYMH6dSpU77Py264t2zZwrJly6hatarPsouIiIiIiIgUJijO6W7evDmXXXYZw4YNY82aNaxZs4Zhw4Zx+eWXe1xErVmzZixatAiAjIwMrrnmGtavX8/cuXPJzMwkJSWFlJQUTpw44dSfIiIiIiIiImVIUDTdAHPnzuXcc88lLi6OuLg4WrVqxZtvvukxz6ZNmzh48CAAv//+Ox999BG///47rVu3pnbt2u7H6tWrnfgTREREREREpIwJiluGAVSpUoW33nqrwHmMMe5/N2rUyGNaREREREREpKQFzZ5uERERERERkWCjpltERERERETET4Lm8HKnuFyu7H85mkOkZNiv85Ov++CgOpWyR7UqEvhUpyLBwf+1qqa7ELt3784xpTcfKRt2795NgwYNnI5RZKpTKatUqyKBT3UqEhz8WauW0dXGCvTPP/9QtWpVfv75Z2JiYpyOUyypqam0aNGCxMREKlSo4HScYlF2Zxw8eJCWLVuyb98+qlSp4nScIlOdOieY8wdzdtVqyQvm14uyO0N1WvKC+fWi7M4piVrVnu5ChIXZq6h+/fpUrFjR4TTFc+jQIQDq1q2r7CUomLNn581+3QcL1alzgjl/MGdXrZa8YH69KLszVKclL5hfL8runJKoVV1ITURERERERMRP1HSLiIiIiIiI+Ima7kJERkYyfvx4IiMjnY5SbMruDGUvecGaG4I7OwR3fmUvecGaG5TdKcpe8oI1Nyi7U4I5O5RMfl1ITURERERERMRPtKdbRERERERExE/UdIuIiIiIiIj4iZpuERERERERET8pc0339OnTady4MVFRUcTGxrJq1aoC51+xYgWxsbFERUVx5pln8vLLL+eZZ8GCBbRo0YLIyEhatGjBokWLHM++cOFCevToQfXq1alYsSIdO3Zk6dKlHvPMmTMHy7LyPI4fP+54/uXLl3vN9uuvv3rMF4jrfsiQIV6zn3POOe55SmLdr1y5kr59+1KnTh0sy+KDDz4o9DnB+noP5uyBVquq05KtUwjuWlWdnqQ69X121anvqFZPUq36PrtqtQhMGfLOO++Y8PBw8+qrr5rExERzzz33mHLlypmdO3d6nX/btm3mjDPOMPfcc49JTEw0r776qgkPDzfvv/++e57Vq1eb0NBQM3HiRJOUlGQmTpxowsLCzJo1axzNfs8995gnn3zSrFu3zmzevNmMGzfOhIeHm++//949z+zZs03FihVNcnKyx8Mfipt/2bJlBjCbNm3yyJaRkeGeJ1DX/YEDBzwy796921SpUsWMHz/ePU9JrPvFixebBx980CxYsMAAZtGiRQXOH8yv92DOHki1qjot+To1JnhrVXWqOvV3dtWpb6hWVav+zq5aLVyZarovuOACM3z4cI+xZs2ambFjx3qdf8yYMaZZs2YeY7fffrvp0KGDe7p///7msssu85inZ8+eZuDAgT5KbStudm9atGhhHnnkEff07NmzTUxMjK8iFqi4+bPfePbv35/vMoNl3S9atMhYlmV27NjhHivJdW+MKdKbTjC/3oM5uzdO1arq1Nk6NSa4alV1qjotLtVpcLzegzm7N6rV4lOt+v71XmYOLz9x4gQbNmwgLi7OYzwuLo7Vq1d7fc63336bZ/6ePXuyfv160tPTC5wnv2WWVPbcXC4XqampVKlSxWP88OHDNGzYkHr16nH55ZeTkJDgs9zZTid/mzZtqF27Nt26dWPZsmUePwuWdT9r1iy6d+9Ow4YNPcZLYt0XRzC/3oM5e25O1arqNDjqFALj9a46VZ0Wl+o0eF7vwZw9N9Vq8alW/fN6LzNN9969e8nMzKRmzZoe4zVr1iQlJcXrc1JSUrzOn5GRwd69ewucJ79lllT23KZMmcKRI0fo37+/e6xZs2bMmTOHjz76iHnz5hEVFUXnzp3ZsmWLz7Kfav7atWszc+ZMFixYwMKFC2natCndunVj5cqV7nmCYd0nJyfz2Wefceutt3qMl9S6L45gfr0Hc/bcnKpV1Wlw1CkExutddao6LYnsOalOT41qVbVaEtlzUq16F3b6UYOLZVke08aYPGOFzZ97vLjLPFWn+nvmzZvHhAkT+PDDD6lRo4Z7vEOHDnTo0ME93blzZ9q2bcsLL7zA888/77vgWYqTv2nTpjRt2tQ93bFjR3bv3s0zzzzDRRdddErLPB2n+nvmzJlDpUqV6Nevn8d4Sa/7ogrm13swZ88WCLWqOj0pUOsUAuf1rjpVnRaX6jQ4Xu/BnD2bavX0qFZ9+3ovM3u6q1WrRmhoaJ5vJPbs2ZPnm4tstWrV8jp/WFgYVatWLXCe/JZZUtmzzZ8/n6FDh/Luu+/SvXv3AucNCQnh/PPP9/k3TqeTP6cOHTp4ZAv0dW+M4fXXX2fQoEFEREQUOK+/1n1xBPPrPZizZ3O6VlWnwVGnEBivd9Wp6rS4VKfB83oP5uzZVKunTrXqn9d7mWm6IyIiiI2NJT4+3mM8Pj6eTp06eX1Ox44d88z/+eef065dO8LDwwucJ79lllR2sL/hGzJkCG+//TZ9+vQp9PcYY9i4cSO1a9c+7cw5nWr+3BISEjyyBfK6B/v2A7/99htDhw4t9Pf4a90XRzC/3oM5OwRGrapOg6NOITBe76pT1WlxqU6D5/UezNlBtXq6VKt+er0X+ZJrpUD25e9nzZplEhMTzahRo0y5cuXcV9YbO3asGTRokHv+7EvIjx492iQmJppZs2bluYT8N998Y0JDQ83kyZNNUlKSmTx5sl8v3V/U7G+//bYJCwszL730ksdl+Q8cOOCeZ8KECWbJkiVm69atJiEhwdx8880mLCzMrF271qfZTyX/s88+axYtWmQ2b95sfv75ZzN27FgDmAULFrjnCdR1n+3GG2807du397rMklj3qampJiEhwSQkJBjATJ061SQkJLhv91CaXu/BnD2QalV16qmk1nuw1qrqVHXq7+zZVKenR7WqWvV39myq1fyVqabbGGNeeukl07BhQxMREWHatm1rVqxY4f7ZTTfdZLp27eox//Lly02bNm1MRESEadSokZkxY0aeZb733numadOmJjw83DRr1syjOJzK3rVrVwPkedx0003ueUaNGmUaNGhgIiIiTPXq1U1cXJxZvXq1X7IXN/+TTz5p/u///s9ERUWZypUrmwsvvNB8+umneZYZiOveGPt+hdHR0WbmzJlel1cS6z771hP5vQZK0+s9mLMHWq2qTk8qqfUezLWqOr3JPY/q1PfZjVGd+opq9Sb3PKpV32c3RrVaGMuYrDPFRURERERERMSnysw53SIiIiIiIiIlTU23iIiIiIiIiJ+o6RYRERERERHxEzXdIiIiIiIiIn6ipltERERERETET9R0i4iIiIiIiPiJmm4RERERERERP1HTLSIiIiIiIuInarpFRERERERE/ERNtxQqJSWFu+++mzPPPJPIyEjq169P3759+fLLL52OJiJZVKcigU91KhIcVKvia2FOB5DAtmPHDjp37kylSpV46qmnaNWqFenp6SxdupQ777yTX3/91ZFcJ06cICIiwpHfLRJoVKcigU91KhIcVKviF0akAL169TJ169Y1hw8fzvOz/fv3G2OM2blzp7niiitMuXLlTIUKFcy1115rUlJSjDHG/PrrrwYwSUlJHs+dMmWKadiwoXG5XMYYY3755RfTq1cvU65cOVOjRg1z4403mr///ts9f9euXc2dd95pRo8ebapWrWouuugi93JatmxpzjjjDFOvXj1zxx13mNTUVI/fNXPmTFOvXj0THR1t+vXrZ6ZMmWJiYmI85vnoo49M27ZtTWRkpGncuLGZMGGCSU9PP611J1JSVKcigU91KhIcVKviD2q6JV/79u0zlmWZiRMn5juPy+Uybdq0MRdeeKFZv369WbNmjWnbtq3p2rWre57Y2Fjz3//+1+N5sbGxZty4ccYYY/78809TrVo1M27cOJOUlGS+//5706NHD3PJJZe45+/ataspX768eeCBB8yvv/7qfiN79tlnzVdffWW2bdtmvvzyS9O0aVNzxx13uJ/39ddfm5CQEPP000+bTZs2mZdeeslUqVLF441nyZIlpmLFimbOnDlm69at5vPPPzeNGjUyEyZMOJ3VJ1IiVKeqUwl8qlPVqQQH1apq1V/UdEu+1q5dawCzcOHCfOf5/PPPTWhoqNm1a5d77JdffjGAWbdunTHGmKlTp5ozzzzT/fNNmzYZwPzyyy/GGGMeeughExcX57Hc3bt3G8Bs2rTJGGO/8bRu3brQzO+++66pWrWqe3rAgAGmT58+HvPccMMNHm88Xbp0yfPm+uabb5ratWsX+vtEnKY6VZ1K4FOdqk4lOKhWVav+ogupSb6MMQBYlpXvPElJSdSvX5/69eu7x1q0aEGlSpVISkoCYODAgezcuZM1a9YAMHfuXFq3bk2LFi0A2LBhA8uWLaN8+fLuR7NmzQDYunWre7nt2rXL8/uXLVtGjx49qFu3LhUqVGDw4MHs27ePI0eOALBp0yYuuOACj+fknt6wYQOPPvqox+8fNmwYycnJHD16tGgrS8QhqlPVqQQ+1anqVIKDalW16i+6kJrk66yzzsKyLJKSkujXr5/XeYwxXt+Yco7Xrl2bSy65hLfffpsOHTowb948br/9dve8LpeLvn378uSTT+ZZTu3atd3/LleunMfPdu7cSe/evRk+fDiPPfYYVapU4euvv2bo0KGkp6fnmy/7DTXn73/kkUf417/+lef3R0VFef27RQKF6lR1KoFPdao6leCgWlWt+ouabslXlSpV6NmzJy+99BIjR47MU/gHDhygRYsW7Nq1i927d7u/8UtMTOTgwYM0b97cPe8NN9zAv//9b6677jq2bt3KwIED3T9r27YtCxYsoFGjRoSFFf0luX79ejIyMpgyZQohIfZBG++++67HPM2aNWPdunV5npdT27Zt2bRpE02aNCny7xYJFKpTkcCnOhUJDqpV8ZuSPZpdgs22bdtMrVq1TIsWLcz7779vNm/ebBITE81zzz1nmjVr5r6YRJcuXcyGDRvM2rVrTWxsrMfFJIwx5uDBgyYqKsqcd955plu3bh4/++OPP0z16tXNNddcY9auXWu2bt1qli5dam6++WaTkZFhjLHPa7nnnns8npeQkGAAM23aNLN161bzxhtvmLp16xrAfXXJ7ItJTJkyxWzevNm8/PLLpmrVqqZSpUru5SxZssSEhYWZ8ePHm59//tkkJiaad955xzz44IM+X58i/qA6FQl8qlOR4KBaFX9Q0y2F+vPPP82dd95pGjZsaCIiIkzdunXNFVdcYZYtW2aMKfi2CTlde+21BjCvv/56np9t3rzZXHXVVaZSpUomOjraNGvWzIwaNcp9WwVvbzzG2BeqqF27tomOjjY9e/Y0b7zxhscbjzH2bRPq1q3rvm3C448/bmrVquWxnCVLlphOnTqZ6OhoU7FiRXPBBReYmTNnnvpKEylhqlORwKc6FQkOqlXxNcuYXAf5i5Ryw4YN49dff2XVqlVORxGRfKhORQKf6lQkOKhWnadzuqXUe+aZZ+jRowflypXjs88+43//+x/Tp093OpaI5KA6FQl8qlOR4KBaDTza0y2lXv/+/Vm+fDmpqamceeaZ3H333QwfPtzpWCKSg+pUJPCpTkWCg2o18KjpFhEREREREfGTEKcDiIiIiIiIiJRWarpFRERERERE/ERNt4iIiIiIiIifqOkWERERERER8RM13SIiIiIiIiJ+oqZbRERERERExE/UdIuIiIiIiIj4iZpuERERERERET9R0y0iIiIiIiLiJ/8PZpoPWrd4lekAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByQUlEQVR4nO3dd3gU9drG8e+kI0joVZoHBSIiEJQmYoEgKIJHBURBFFFEpVg48HoU1CPFgqhHUJRiQUQFrAhEpSkiAuFYEgHpaiKilAASUn7vH5Ms2WRDEtjNzCb357r2kpnMTu6M++zsszPzG8sYYxARERERERERvwtxOoCIiIiIiIhIaaWmW0RERERERCRA1HSLiIiIiIiIBIiabhEREREREZEAUdMtIiIiIiIiEiBqukVEREREREQCRE23iIiIiIiISICo6RYREREREREJEDXdIiIiIiIiIgGipltO24oVK7AsiwMHDjgdpUDjx4+nZcuWTscQcZ2dO3diWRabNm1yOko+gwYNonfv3k7HECnTGjZsyNSpU52OIeJ6l156KSNHjjzpMiVVT6fy2bwo+eXUqemWIluzZg2hoaFceeWVAf9d/m7kH3jgAT7//HO/rEvETQYNGoRlWfkeRa3TevXqkZycTPPmzQtdtqQb9Oeee445c+aUyO8ScTtfdZ77MWjQoEKf//7775dIVpFgdLr704ULF/L4448HOGV+vprlDh06kJycTHR0dInnEd/CnA4gwWPWrFnce++9vPrqq+zevZv69es7HalQxhgyMzOpUKECFSpUcDqOSEBceeWVzJ4922teZGRkkZ4bGhpKrVq1AhHrtOnDgsgJycnJnn/Pnz+fRx55hM2bN3vmlStXzolYIqXK6exPq1SpEohIpyQiIsK1+/aySke6pUiOHDnCO++8w1133cXVV19d6NGnNWvWcMkll1CuXDnq1avH8OHDOXLkiOfnb775Jm3atOHMM8+kVq1a9O/fn7179wL20bTLLrsMgMqVK3t9g5+Wlsbw4cOpUaMGUVFRXHzxxXz77bee9eYcIV+6dClt2rQhMjKS1atX+zy9fNasWZx33nlERkZSu3Zt7rnnntPfUCIOiIyMpFatWl6PypUrA/bRrenTp9O9e3fKlStHo0aNePfddz3PzXv0ev/+/dx0001Ur16dcuXKcc4553g+gDRq1AiAVq1aYVkWl156qWc9s2fPplmzZkRFRdG0aVOmTZuW73e88847dOrUiXLlynHhhReyZcsWvv32W9q0aUOFChW48sor+eOPPzzPy3t6eVZWFpMnT6Zx48ZERkZSv359nnjiCX9vThFXyl3f0dHRWJblNe+tt97iH//4BxERETRp0oQ33njD89yGDRsCcO2112JZlmd627Zt9OrVi5o1a1KhQgUuvPBCPvvsMwf+OhF3KGh/euONN9KvXz+vZdPT06lWrZpnH5n3iPPevXvp2bOnZ987d+7cfL/v4MGD3HHHHdSoUYOKFSty+eWX87///c/z85zPr2+88QYNGzYkOjqafv36kZqaCtj7yZUrV/Lcc895jszv3Lkz3xmjf/75JzfeeCNnnXUWZ5xxBueffz7z5s3z89aTk1HTLUUyf/58mjRpQpMmTbj55puZPXs2xhify37//fd069aNf/7zn3z33XfMnz+fL7/80qupPX78OI8//jj/+9//eP/999mxY4ensa5Xrx4LFiwAYPPmzSQnJ/Pcc88BMHr0aBYsWMBrr73Gxo0bady4Md26deOvv/7yyjB69GgmTpxIUlISLVq0yJdx+vTp3H333dxxxx18//33fPjhhzRu3Ngfm0rEdR5++GGuu+46/ve//3HzzTdz4403kpSUVOCyiYmJfPrppyQlJTF9+nSqVasGwLp16wD47LPPSE5OZuHChQC88sorPPTQQzzxxBMkJSUxYcIEHn74YV577TWvdY8bN45///vfbNy4kbCwMG688UZGjx7Nc889x+rVq9m2bRuPPPJIgX/H2LFjmTx5sifjW2+9Rc2aNf2xiUSC2qJFixgxYgT3338/P/zwA3feeSe33nory5cvB/B8OT179mySk5M904cPH6ZHjx589tlnJCQk0K1bN3r27Mnu3bsd+1tE3Oimm27iww8/5PDhw555S5cu5ciRI1x33XU+nzNo0CB27tzJF198wXvvvce0adM8B5jAPhvzqquuIiUlhcWLF7NhwwZat27NFVdc4fW5dtu2bbz//vt8/PHHfPzxx6xcuZJJkyYB9mVY7du3Z8iQISQnJ5OcnEy9evXyZTl27BixsbF8/PHH/PDDD9xxxx0MGDCAb775xl+bSApjRIqgQ4cOZurUqcYYY9LT0021atVMfHy8McaY5cuXG8Ds37/fGGPMgAEDzB133OH1/NWrV5uQkBDz999/+1z/unXrDGBSU1N9rtMYYw4fPmzCw8PN3LlzPfOOHz9u6tSpY5588kmv573//vte6x83bpy54IILPNN16tQxDz30UPE3hIjL3HLLLSY0NNSUL1/e6/HYY48ZY4wBzNChQ72e07ZtW3PXXXcZY4zZsWOHAUxCQoIxxpiePXuaW2+91efvyrtsjnr16pm33nrLa97jjz9u2rdv7/W8V1991fPzefPmGcB8/vnnnnkTJ040TZo08frbevXqZYwx5tChQyYyMtK88sorRdwyIqXX7NmzTXR0tGe6Q4cOZsiQIV7L3HDDDaZHjx6eacAsWrSo0HXHxMSYF154wTPdoEED8+yzz55uZBHXO9n+9Pjx46ZatWrm9ddf9yx/4403mhtuuMEz3blzZzNixAhjjDGbN282gFm7dq3n50lJSQbw1NPnn39uKlasaI4dO+aV4x//+Id5+eWXjTH259czzjjDHDp0yPPzBx980LRt29bn783h63N0Xj169DD333//Sdcj/qNruqVQmzdvZt26dZ6jWmFhYfTt25dZs2bRpUuXfMtv2LCBn3/+2es0GmMMWVlZ7Nixg2bNmpGQkMD48ePZtGkTf/31F1lZWQDs3r2bmJgYnzm2bdtGeno6HTt29MwLDw/noosuynfUrk2bNgX+PXv37uW3337jiiuuKPpGEHGxyy67jOnTp3vNy31tWfv27b1+1r59+wIHQ7vrrru47rrr2LhxI3FxcfTu3ZsOHToU+Lv/+OMP9uzZw+DBgxkyZIhnfkZGRr5rsnOfdZJzhPr888/3mpf7KEBuSUlJpKWlqW5FfEhKSuKOO+7wmtexY0fPWWIFOXLkCI8++igff/wxv/32GxkZGfz999860i1lVkH70/DwcG644Qbmzp3LgAEDOHLkCB988AFvvfWWz/UkJSURFhbm9Xm0adOmVKpUyTO9YcMGDh8+TNWqVb2e+/fff7Nt2zbPdMOGDTnzzDM907Vr1y5wX1mQzMxMJk2axPz58/n1119JS0sjLS2N8uXLF2s9curUdEuhZs6cSUZGBnXr1vXMM8YQHh7O/v378y2flZXFnXfeyfDhw/P9rH79+hw5coS4uDji4uJ48803qV69Ort376Zbt24cP368wBwm+3R2y7Lyzc8772RvIhpsRkqb8uXLF/vyiLw1k6N79+7s2rWLTz75hM8++4wrrriCu+++m6efftrn8jlfmL3yyiu0bdvW62ehoaFe0+Hh4fl+f955OevLS3UrcnJF2Tfm9eCDD7J06VKefvppGjduTLly5bj++utPui8WKc1Otj+96aab6Ny5M3v37iU+Pp6oqCi6d+/uc9mCPrPmlpWVRe3atVmxYkW+n+VuznPvJ3PWWdC+siDPPPMMzz77LFOnTuX888+nfPnyjBw5UrVegnRNt5xURkYGr7/+Os888wybNm3yPP73v//RoEEDn4NCtG7dmh9//JHGjRvne0RERPDTTz+xb98+Jk2aRKdOnWjatGm+b+wiIiIA+5u5HDnP//LLLz3z0tPTWb9+Pc2aNSvy33TmmWfSsGFD3UJMyoy1a9fmm27atGmBy1evXp1Bgwbx5ptvMnXqVGbMmAH4rsuaNWtSt25dtm/fnq/ecwZe84dzzjmHcuXKqW5FfGjWrJnXvhHsAU1z7xvDw8O9ahdg9erVDBo0iGuvvZbzzz+fWrVqsXPnzpKILBJ0OnToQL169Zg/fz5z587lhhtu8OwX82rWrBkZGRmsX7/eM2/z5s1et8Jt3bo1KSkphIWF5dt/5oylUhQRERH5ajuv1atX06tXL26++WYuuOACzj77bLZu3Vrk3yGnT0e65aQ+/vhj9u/fz+DBg/OdKnr99dczc+ZMnn32Wa/5//rXv2jXrh133303Q4YMoXz58iQlJREfH88LL7xA/fr1iYiI4IUXXmDo0KH88MMP+e5r2KBBAyzL4uOPP6ZHjx6UK1eOChUqcNddd/Hggw9SpUoV6tevz5NPPsnRo0cZPHhwsf6u8ePHM3ToUGrUqEH37t1JTU3lq6++4t577z21DSXioLS0NFJSUrzmhYWFeXba7777Lm3atOHiiy9m7ty5rFu3jpkzZ/pc1yOPPEJsbCznnXceaWlpfPzxx54P7jVq1KBcuXIsWbKEs846i6ioKKKjoxk/fjzDhw+nYsWKdO/enbS0NNavX8/+/fu57777/PI3RkVF8a9//YvRo0cTERFBx44d+eOPP/jxxx+LXf8ipc2DDz5Inz59PIMwffTRRyxcuNBrJPKcL5s7duxIZGQklStXpnHjxixcuJCePXtiWRYPP/xwsY+giZQmJ9ufWpZF//79eemll9iyZYtnoEJfmjRpwpVXXsmQIUOYMWMGYWFhjBw50uusrS5dutC+fXt69+7N5MmTadKkCb/99huLFy+md+/eJ71UMreGDRvyzTffsHPnTipUqODz1mWNGzdmwYIFrFmzhsqVKzNlyhRSUlKKddBKTo+OdMtJzZw5ky5duvi8X+51113Hpk2b2Lhxo9f8Fi1asHLlSrZu3UqnTp1o1aoVDz/8MLVr1wbso2hz5szh3XffJSYmhkmTJuU7dbVu3bo8+uijjBkzhpo1a3pGPp80aRLXXXcdAwYMoHXr1vz8888sXbrUc3ukorrllluYOnUq06ZN47zzzuPqq6/WN34StJYsWULt2rW9HhdffLHn548++ihvv/02LVq04LXXXmPu3LkFjp0QERHB2LFjadGiBZdccgmhoaG8/fbbgP3B4/nnn+fll1+mTp069OrVC4Dbb7+dV199lTlz5nD++efTuXNn5syZ49cj3WCPrH7//ffzyCOP0KxZM/r27Vvs69pESqPevXvz3HPP8dRTT3Heeefx8ssvM3v2bK/b+j3zzDPEx8dTr149WrVqBcCzzz5L5cqV6dChAz179qRbt260bt3aob9CxHmF7U9vuukmEhMTqVu3rtcYQ77Mnj2bevXq0blzZ/75z396bg2Ww7IsFi9ezCWXXMJtt93GueeeS79+/di5c2ex7szxwAMPEBoaSkxMjOeSzbwefvhhWrduTbdu3bj00kupVauW1y05JfAsYwq475OIiAQ9y7JYtGiRdq4iIiIiDtGRbhEREREREZEAUdMtIiIiIiIiEiAaSE1EpBTTFUQiIiIiztKRbhEREREREZEAUdMtIiIiIiIiEiBqukVEREREREQCRE23iIiIiIiISICo6RYREREREREJEDXdZdi0adNo1KgRUVFRxMbGsnr16gKXXbhwIV27dqV69epUrFiR9u3bs3Tp0hJM637F2Z65ffXVV4SFhdGyZcvABpSAK+5rYOXKlcTGxhIVFcXZZ5/NSy+95PXzOXPmYFlWvsexY8ccz5+cnEz//v1p0qQJISEhjBw50udyCxYsICYmhsjISGJiYli0aFFQZC/JbR+I9+KS2u5i0/7U/7RPFfB/bbn1vX3FihU+c/30009ey5Xke3tx8g8aNMhn/vPOO8+zTElt+1WrVtGzZ0/q1KmDZVm8//77hT6nsM9j4Idtb6RMevvtt014eLh55ZVXTGJiohkxYoQpX7682bVrl8/lR4wYYSZPnmzWrVtntmzZYsaOHWvCw8PNxo0bSzi5OxV3e+Y4cOCAOfvss01cXJy54IILSiasBERxXwPbt283Z5xxhhkxYoRJTEw0r7zyigkPDzfvvfeeZ5nZs2ebihUrmuTkZK+HG/Lv2LHDDB8+3Lz22mumZcuWZsSIEfmWWbNmjQkNDTUTJkwwSUlJZsKECSYsLMysXbvW9dlLatsH4r24pLa72LQ/9T/tU8WYwNSWW9/bly9fbgCzefNmr1wZGRmeZUryvb24+Q8cOOCVe8+ePaZKlSpm3LhxnmVKatsvXrzYPPTQQ2bBggUGMIsWLTrp8kX5POaPba+mu4y66KKLzNChQ73mNW3a1IwZM6bI64iJiTGPPvqov6MFpVPdnn379jX//ve/zbhx4/QBIcgV9zUwevRo07RpU695d955p2nXrp1nevbs2SY6OtrvWX05nfeEzp07+2xc+/TpY6688kqved26dTP9+vU7rax5BSJ7SW37QLwXl9R2F5v2p/6nfaoYE5jacut7e07TvX///gLXWZLv7ae77RctWmQsyzI7d+70zCvJzzQ5itJ0F+XzmD+2vU4vL4OOHz/Ohg0biIuL85ofFxfHmjVrirSOrKwsUlNTqVKlSiAiBpVT3Z6zZ89m27ZtjBs3LtARJcBO5TXw9ddf51u+W7durF+/nvT0dM+8w4cP06BBA8466yyuvvpqEhISXJG/KAr6G09nnXkFKjsEftsH6r24JLa72LQ/9T/tUwUCW1tufm9v1aoVtWvX5oorrmD58uVePyup93Z/bPuZM2fSpUsXGjRo4DW/JD7TFFdRPo/5Y9ur6S6D9u3bR2ZmJjVr1vSaX7NmTVJSUoq0jmeeeYYjR47Qp0+fQEQMKqeyPbdu3cqYMWOYO3cuYWFhJRFTAuhUXgMpKSk+l8/IyGDfvn0ANG3alDlz5vDhhx8yb948oqKi6NixI1u3bnU8f1EU9DeezjrzClT2ktj2gXovLontLjbtT/1P+1SBwNWWW9/ba9euzYwZM1iwYAELFy6kSZMmXHHFFaxatcqzTEm9t5/utk9OTubTTz/l9ttv95pfUp9piqson8f8se31zlSGWZblNW2MyTfPl3nz5jF+/Hg++OADatSoEah4Qaeo2zMzM5P+/fvz6KOPcu6555ZUPCkBxa0pX8vnnt+uXTvatWvn+XnHjh1p3bo1L7zwAs8//7y/Yp80T1HeE0p6nSXxe0py2wfivbiktrvYtD/1P+1TBfxfW259b2/SpAlNmjTxTLdv3549e/bw9NNPc8kll5zSOk/Xqf6uOXPmUKlSJXr37u01v6Q/0xRHYZ/HClqmONteTXcZVK1aNUJDQ/N9O7N379583+LkNX/+fAYPHsy7775Lly5dAhkzaBR3e6amprJ+/XoSEhK45557APsUKGMMYWFhLFu2jMsvv7xEsot/nEpN1apVy+fyYWFhVK1a1edzQkJCuPDCC/3+rfDpvCecTEF/4+msM69AZc8rENs+UO/FJbHdxab9qf9pnypQcrXltvf23Nq1a8ebb77pmS6p9/bTyW+MYdasWQwYMICIiIiTLhuozzTFVZTPY/7Y9jq9vAyKiIggNjaW+Ph4r/nx8fF06NChwOfNmzePQYMG8dZbb3HVVVcFOmbQKO72rFixIt9//z2bNm3yPIYOHUqTJk3YtGkTbdu2Lano4ienUlPt27fPt/yyZcto06YN4eHhPp9jjGHTpk3Url3bP8Gznep7QmEK+htPZ515BSp7XoHY9oF6Ly6J7S427U/9T/tUgZKrLTe9t+eVkJDglauk3ttPJ//KlSv5+eefGTx4cKG/J1CfaYqrKJ/H/LLtizzkmpQqObcCmDlzpklMTDQjR4405cuX94wyOGbMGDNgwADP8m+99ZYJCwszL774otcw/wcOHHDqT3CV4m7PvDTSavAr7msg5xYVo0aNMomJiWbmzJn5blExfvx4s2TJErNt2zaTkJBgbr31VhMWFma++eYbx/MbY0xCQoJJSEgwsbGxpn///iYhIcH8+OOPnp9/9dVXJjQ01EyaNMkkJSWZSZMmBfSWYf7MXlLbPhDvxSW13cWm/an/aZ8qxgSmttz63v7ss8+aRYsWmS1btpgffvjBjBkzxgBmwYIFnmVK8r39VGvw5ptvNm3btvW5zpLa9qmpqZ59PGCmTJliEhISPLc7O5XPY/7Y9mq6y7AXX3zRNGjQwERERJjWrVublStXen52yy23mM6dO3umO3fubIB8j1tuuaXkg7tUcbZnXvqAUDoU9zWwYsUK06pVKxMREWEaNmxopk+f7vXzkSNHmvr165uIiAhTvXp1ExcXZ9asWeOa/L7eExo0aOC1zLvvvmuaNGliwsPDTdOmTb0+QLg5e0lu+0C8F5fUdheb9qf+p32qGOP/2nLre/vkyZPNP/7xDxMVFWUqV65sLr74YvPJJ5/kW2dJvrcXtwYPHDhgypUrZ2bMmOFzfSW17XNuv1bQ6+BUPo8Zc/rb3jIm+0pxEREREREREfErXdMtIiIiIiIiEiBqukVEREREREQCRE23iIiIiIiISICo6RYREREREREJEDXdIiIiIiIiIgGipltEREREREQkQNR0i4iIiIiIiASImm7xKS0tjfHjx5OWluZ0lFJD21TyCubXhLI7J9jzlzX6/+V/2qZSkGB+bSi7c0oiv2WMMQFbu5+tWrWKp556ig0bNpCcnMyiRYvo3bv3SZ+zcuVK7rvvPn788Ufq1KnD6NGjGTp0aMkEDmKHDh0iOjqagwcPUrFiRafjlArappJXML8mlN05wZ6/rNH/L//TNpWCBPNrQ9mdUxL5g+pI95EjR7jgggv473//W6Tld+zYQY8ePejUqRMJCQn83//9H8OHD2fBggUBTioiIiIiIiICYU4HKI7u3bvTvXv3Ii//0ksvUb9+faZOnQpAs2bNWL9+PU8//TTXXXddgFKKiIiIiIiI2IKq6S6ur7/+mri4OK953bp1Y+bMmaSnpxMeHp7vOWlpaV7n82dkZJCUlES9evUICQmqEwNOS2pqKgC//vorhw4dcjhN6RAM2zQrK4vff/+dVq1aERbm3reH0lKnwfCaKIiyOycn/4YNG+jUqZNq1eWC/fXmRsGyTbVPLXnB8trwRdmdc/DgQcB+7QeMCVKAWbRo0UmXOeecc8wTTzzhNe+rr74ygPntt998PmfcuHEG0EOPMv1Yt26dv0o1IFSneuhhP1Sreujh/ofqVA89guOxevXqgNVZUA2klptlWYUOpHbuuedy6623MnbsWM+8r776iosvvpjk5GRq1aqV7zl5v+3bs2cPzZs3B9YBtQH44KPlXNBy/ynl3jbw7VN6ni9Lfz7Xb+uK3/u3X9azJ3S7X9YDcODYLr+tKyPLP3+fv9U843y/rascFU57HRlZx/jl2Gp27dpF/fr1/ZAqMIpSp4Nu/Znxj313Susf22LT6YfMNm//fL+ty7+y/LiudD+tx/LTesC/f58/c/lrl2v/fcFeq9WqHePLr5cSFZV5Suv/+eZ3/JJz2fbGflkP+G9/CpCUtdZv68rI9F8u48f6CrUi/LKeiLDT3wfmqBsS45f1pGcdZXtafNDXKcCMV9cS1+23U1p/w3r3+yFlDje2LW7MJMUT+H2qe8918YNatWqRkpLiNW/v3r2EhYVRtWpVn8+JjIwkMjLSMx0dHZ39r9rAWfxnwiauujoE8P38whwpF3VKz/Ml2o87mMiQUL+sJyzEf39fSIj/Xp4hLh0z0J/bK4wz/LYut59OVlidXnjRPp55di/R0adWpxXCzjz9kNlcuy39+BnBGD/9jZb/mlt/fp1s+bHpNn79cJbl3tdXtpPVarlytXj73eU0blzplNefGuWf91A37k8BQvz4MS3E+G9d/my6Qyz/5AoJ8U/zDhAR4r/9Kbh4P5CtsH3q3fds5tbb0rCsU9unWpYf/34XHiv07/u6OCew+9RS3XS3b9+ejz76yGvesmXLaNOmjc/ruQvz2H82MWbsj/6KJyJ+VrlyGv9ovI9Pl35BdLS/jr6KiL9FRmbwwccruPTSvU5HEZECGe4atoWpz6/353eiImVSUDXdhw8f5ueff/ZM79ixg02bNlGlShXq16/P2LFj+fXXX3n99dcBGDp0KP/973+57777GDJkCF9//TUzZ85k3rx5xf7dC95fQa9eescRcbN3F6yiZavyVKqkhlvEzd5duJrLL3f30T+Rsm7hByvo2TNEDbeIHwTVHm/9+vW0atWKVq1aAXDffffRqlUrHnnkEQCSk5PZvXu3Z/lGjRqxePFiVqxYQcuWLXn88cd5/vnnT+l2YbGxf/nnjxCRgGl8TqoabpEg0KLFqY2LIiIlp3Xr/Wq4RfwkqI50X3rppZxs3Lc5c+bkm9e5c2c2btwYwFSQmhrGooX1GHjLjoD+HhE5PXPfbMhVV/+qxlzExRITK/L77+W47LLfnY4iIgU4fjyE119rxODbt6kxFymCoDrS7UaHD4dxdY/LuG1QB/7zeHOn44hIAaY+25RbBnTkyq5XsH+//wbcERH/SUysSJfLutCzx6V89ln+O4yIiPOOHw/hxr4XM/SOdtx794Vk+fNmESKllJru05DTcH/1ZQ0Axj9yAY896r9bQImIfzz/XBMeuC8WgPXrq3Jl18v56y813iJukpRUka6Xd2Hv3nIcOxZG756diY9X4y3iJunpFv37deSD9+sB8NL0c7ln2EVqvEUKoab7NMQvq82Xq2t4zZv+4rns3RtZwDNEpKQdPBjO009633N1w4aqfPJxXYcSiYgv0/7bhN9/L+eZPnYsjKcmx7jxDkEiZdY331Tjow/P8po3982GbN3qv1ttipRGarpPw7X/3MMLL67zTFerdoz4Lz6jRo00B1OJSG7R0el8tvwz6tQ56pk36cmNDBioMRhE3OTZ59bTp+9Oz3S79n/w3sJVul5UxEUuvvgP5s3/krAw+9B2+fLpfPzpcpo0SXU4mYi7qek+TXcN28qL09dRvfox4r/4nObNDzodSUTyOPfcVD5f8Rl16x5l4uQEHngwyelIIpJHWJjh9TfX0LffTtq2+4PFS76gYsUMp2OJSB7/vG4Pb7+zmkqV0vjwkxV06vSH05FEXC+oRi93qzuHbqVvv50aEVnExc45J5X//fCx6lTExcLCDK+9sYa//w7lzDPVcIu4Ve9rf+HSyz7QPlWkiHSk20/0piPifqpTEfcLCzNquEWCgPapIkWnprsErFpVg0cebqHBYERc7NChMG6/rZ0GQhRxuWeebsZHH2ogRBE3+/77SowcHktmpgZlEAGdXh5wq1dXp2ePSzlyJJy//w5lsEGDwoi4TGpqGD2uvJy1X1dn3TdVaZW1iTNCNCiMiNs8/VQzxoxuTXh4JvPf/ZJznA4kIvn88EM0XS+/gn37ovjrr0iMCcGydE8xKdt0pDuAvvyyOld3v4wjR8IBePaZGJ5MuktHvEVcJHfDDZCYWIlPDtzD0Szd/kTETaY805Qxo1sDkJ4eSp/rO/H57x0dTiUiuf34YzRdL+/Cvn1RALw1txEwC2NCnQ0m4jA13QG0a2d5jh71Ppngt79rkWm02UXc4sCBCFKSo7zmpWWdwfGscgU8Q0RKmjGw+ador3kZGSGkHKvuUCIR8eXXX8tx6FB4nrlnAbp0S8o2dX8BdNPNO5nz+hpCQuxTanr13sNTrR4nLESn2Ii4Rb16R/l8xWecfbZ9OnmNGn9zVaX/Uilsr8PJRCSHZcH0l79h8O0/e+Y9PWUDNzV437lQIpJPXFwKCz9YSWRkJgAdL94L9MKyjjobTMRharoDzG68v+baf+5m3vwviQjRiKwiblO/vt14t2v/B/FffE7lsN+djiQieYSE2I33HXdu5alnNjBy1E9ORxIRH7p1S2bRhyu4oksyHy9ejmUdcTqSiOM0kFoJ6H/TTm7sv1MDqIm4WL16R1n91TLVqYiLhYTAi9PXqU5FXC4uLoWuXVNUqyLZdKS7hJzsTccYyDJ6VxJxWmEfDlSnIs4rrE41boqIOxRWq0a1KmWIXu0OMwaeSBzOYz+M1Ad6ERf77XhjFu0fzeHMSk5HEZECpKaX55Z1z/LJb5c7HUVETsKY0cB8jMk76JpI6aTTy4uoYb1RBOY7imeB3gC8u2cvcBdQ1HuKrfZbipCQqMIXKtqa/LQe/woP9d/tn945v7Pf1tXn+5V+W1fykNMfbfvXwxmc/7ofwjjEX3VaPrKh13Rm1kUcS58ElOPtvwYTFXEzIVZykdbVPrLfaefJsSlrhd/W9ffx3/y2LlPk96zCVuTO+yn67e8DelS40y/r+TvrMMuPvuaXdTkhMPvUisBi4Dz+d6ApY77fDLxVxOf67704xIrw27rKRdTx27qyTJrf1pWZ5b9BsTL99Do4I9x/I9lvnLrAL+v55a8sGv3LL6tyRMw/phIScvpNcUSY9/+bjMy7yTRjAQixFhIWOhTLOl6kdR3P+PO08+QwRuMsSclxZ4dUZkwG7sk1PRj4r0NZRMSXzKxWHEt/BbC/1DDU59jxuWQZ3apIxD3KAZ8AbbOnQ4HZQB/HEolIfhmZQ8jMGuuZzjJxZGS+hNHZnlLKqel21FdAeq7pDOALh7KIiC8h1m4s61fveSHfY/GXQ4lEJL+/gbV55qUAm0o+iogUKMT6H3Akz7yVWJY7z3QS8Rc13Y76EOgLHMduuAcA/jmlSUT8w7L+pFz4ACxrCwChIUuIDLsfy8p0OJmIeHsQmJL972QgDtjiXBwRySckZB3hoTcDhwEIC3mY0NDgvVRGpKh0TbfjPsI+/a088J7DWUTEl5zGOz3zdsJDp2BZug5MxJ3+BRwAFgGbnY0iIj6FhHxLODdhTHM13FJmqOl2hU+cDiAihbCsv4gIe9LpGCJSqIlOBxCRQoSEbAA2OB1DpMTo9PKgUB17UBgRcStjLLJMNadjiEihajkdQEQKYUw0xvjrzjoizlPT7Xp1gVXYo7Cq8RZxI2Msjmc8yrHji8jKauB0HBEp0OXYp53f4XQQESmAMdGkZ75FeuYsNd5SaqjpdrU6QDzQGLgReA013iLuYgwczxhHRtaNGGpxLP1NsrIaOh1LRPK5DHgfOAN4ERjqaBoRyc+YiqRnzsWYCzDmEtIz56jxllJBTbdrhWAPsnZOrnl9gcediSMiPqVn3k5G1k2eabvxnoMxEQ6mEhFvDbEb7nK55r0AdHUijIgUID1zGsa09EwbczEZmRpPRYJf0DXd06ZNo1GjRkRFRREbG8vq1atPuvzcuXO54IILOOOMM6hduza33norf/75ZwmlPR1ZwGjse4/mSAKmOpJGRHwLD32XEOv7XHPSiQh7Ass67lgmEclrJ/BUnnlvA1+UfBQRKVBY6CTsOxDkSCEsdEoBS4sEj6BquufPn8/IkSN56KGHSEhIoFOnTnTv3p3du3f7XP7LL79k4MCBDB48mB9//JF3332Xb7/9lttvv72Ek5+qz4FewFHgJ+x7ju51NJGIeLOsg0SFDyLE+g7IIDJsFGGh8U7HEpF8/gOMz/73u8AgINOpMCLiQ4j1A+FhfYH9QArhYTdgWTsdTiVy+oKq6Z4yZQqDBw/m9ttvp1mzZkydOpV69eoxffp0n8uvXbuWhg0bMnz4cBo1asTFF1/MnXfeyfr160s4+elYDlyF3XCnOJxFRHyxrENEhQ8iMnwIYaFLnY4jIgV6AugDDEQNt4g7hVg/Eh7Wl/CwPoRYO5yOI+IXQdN0Hz9+nA0bNhAXF+c1Py4ujjVr1vh8TocOHfjll19YvHgxxhh+//133nvvPa666qoCf09aWhqHDh3yPFJTU/36d5yaL4Fkp0OIuIYb69SyUgkL+dLpGCKu4sZahUVAhtMhRFzDjXUaYiUSYm13OoaI3wRN071v3z4yMzOpWbOm1/yaNWuSkuL7CHCHDh2YO3cuffv2JSIiglq1alGpUiVeeOGFAn/PxIkTiY6O9jxiYmL8+ncExuWABm2SsiMY6zQtqwpHsuo4HUOkRAVfrVrYZ5aJlB3BV6dgTEeMOdPpGCJFFjRNdw7LsrymjTH55uVITExk+PDhPPLII2zYsIElS5awY8cOhg4t+DYhY8eO5eDBg55HYmKiX/P7X3/gU+Ad1HhLWRFsdZqWVZnvjz/AD2kPcCSrrtNxREpMcNWqBUwHPgEecDiLSMkJrjoFY7oAHwMfYUxFp+OIFEmY0wGKqlq1aoSGhuY7qr137958R79zTJw4kY4dO/Lggw8C0KJFC8qXL0+nTp34z3/+Q+3atfM9JzIyksjISM/0oUOH/PhX+NuNwCzs706uwh4Ypg+Q5mQokYALpjpNM5X54fgDpJnqAPyQdj/NI6dQPuQXh5OJBF7w1KoFTAMGZ09PzJ6Xd8RzkdIneOoUjLkC+/NuFNAWu/HuiWW5N7MIBNGR7oiICGJjY4mP9x4VOD4+ng4dOvh8ztGjRwkJ8f4TQ0NDAfsIeXCrBDwHhOaa1wO7ERcRt9iV3ptjpoZnOoMz2Z7ej6B/CxIpVS4F8t7ZZDzwjxJPIiK+GRMO/Be74c5xETDMmUAixRA0TTfAfffdx6uvvsqsWbNISkpi1KhR7N6923O6+NixYxk4cKBn+Z49e7Jw4UKmT5/O9u3b+eqrrxg+fDgXXXQRdeoE+7WVB7BvJ5b7m71ngTlOhBGRAvwj/C0qhmz2TJezfqNJxMsUcFWMiDhiOXB/rul0oB+wzZk4IpKPZaUDvfG+m8/bwJOO5BEpjqA5vRygb9++/Pnnnzz22GMkJyfTvHlzFi9eTIMGDQBITk72umf3oEGDSE1N5b///S/3338/lSpV4vLLL2fy5MlO/Ql+9jX2aeWfYJ9mPtrZOCKST6iVRkzECyQev5d0cybNI58mwnJ+ZFgRyet5IAuYjD1eykfOxhGRfCxrM8Z0A5YAq4Dbsawsh1OJFC6omm6AYcOGMWyY79NI5syZk2/evffey7333hvgVE5aC8QCOx3OISIFsRvv58kkUg23iKv9F/uLbN0bWMStLGsLxnQGfsOyMp2OI1IkQdd0iy87nQ4gIoUItY4TynGnY4hIodRwi7idZe1xOoJIsQTVNd1yKiKxB4M5w+EcInIyezPak5rV0OkYInJSDYBRTocQkZMwJgRj/g9jqjodRcRDTXepFoF9/+6HgA9Q4y3iTr9ndGBr+iB+TBtFalYjp+OIiE8NgM+wB2163OEsIuKLMSHAdOBhYLEab3ENnV5eauU03D2ypy8FPgSuAY7mW9oY9532allRhS9UROkZ+/22rt4J7/ltXZYfS7DJa2ed9joysnSPd4AjaTv9tq5vQhee9OdZWX3JMrcAIWRyBt+l3UNoyA1Y1nq/ZfDFkOG3dVm4byh2gzvvybbkyGy/rCfLaOCgklUfiAcaZk+Pwb6P978D+lv9+V4UFlrRb+uy/HnMxvLPfvC5sy/wy3oAwod856c1BXedHj2eTIh1+v+vjT+3gyn4Gm6Dhd1w59zJqAXwKcZ0w2Kf/zIECX/um926Tw0mOtJdajUA2uWZ1wpo7EAWEfHFGDCmF95vxRUx5jKnIomIT+2x96u59QDKO5BFRHyrAeTdf54LNHcgi4g3Nd2l1lYgDjzf7B3Cvr2Yv769FZHTZVkQEnIrFvG55j2HZT3lYCoRyW8+cCcnjlz+gL2PPeJYIhHxZvE70JUTAwwfB/piscKpSCIearpLte+AbsB24Grs24uJiJtYVhohIQOxWIZlPU+I9RiW+87WFhHmAEOw9625v9QWEbew2IndeG/FbrgXOxtIJJuu6S71vgPOAz9evyki/mVZxwkJGQBkqOEWcbXXgbfQPlXEvSx2YbgAS3UqLqKmu0zQm46I21mW6lQkOKhWRdxODbe4jU4vL/NaAR9hTLTTQUSkAMZEkZn5GlnmYqejiMhJDSbLPIXRQL8irmU4G8NioLbTUaQMUdNdprUElgBXAp+o8RZxIWMiycp6HcPVZGXNI8t0cjqSiPh0K/ASMAzDFDXeIi5kaAQsA7oAnwF1nA0kZYaa7jKrBXbDXSV7+kJgMcZUciyRiHgzJiK74b4ie84Z2Y33JY7mEpG8bsFuuHPcieFZNd4iLmJogN1w18+ecy5qvKWkqOkus9Kwb6WQW2r2fBFxhyzy35LoOBapToQRkQId5sTtxHL85UQQESnQcfJ/zj0C/O1AFilr1HSXWZuxT635LXt6OXAtlqU3HhG3sKwMQkLuwLLez55ziNCQ67GsBCdjiUg+C4CbODHI2pNYPK67EYi4iEUy9u3ENmfP+R/2rXX3O5ZJyg6NXl6mbcFuvB8GhqnhFnEhy8oghDvI4hAh1ptY1kanI4mITwuB/kAsFo+p4RZxIYtkDF2BKcA96IwUKSlqusu8rcBALEsnPYi4lWVlEmqNcjqGiBRqESHWJ06HEJGTsEgB+mPQoAtSctRpyUkZA8ac4XQMESmE6lTE/YyJwhh99BJxP+1Txb/0zi+FeBhYhTHVnA4iIgUwpiWZWRvIMnFORxGRAhhTDsMCDC+p8RZxtTuwr/du6HAOKU30ri8FMuYh4N/A+cBSjKnucCIRycuYFmRmLQBqkJX1Glmmm9ORRCQPY6IwvANcCtyE4WU13iKudDvwInbD/TnQyNE0UnroHV98MuZu4JFcc5oDSzAm3KFEIpKXMQ3IzFoIVMqeE0FW1hyMaedgKhHJzRgwvAZcnmtufwxPOxVJRHy6Dpiea7o+duNd2Zk4UqqcUtP9xhtv0LFjR+rUqcOuXbsAmDp1Kh988IFfw4mTPgJ25pk3DctKdyCLiPi2GyvPoE0WXwGbHEkjIvlZFljMwvv+wPuxeN2pSCLi0wrs08pzm4VuKSb+UOyme/r06dx333306NGDAwcOkJmZCUClSpWYOnWqv/OJQyxrN/btxHZkz7kby5rpYCIRycuyDCHWSCzrDXuaFYSE3IxlHXM4mYjkZllLsegLHMNuuK/GsjY5nEpEvP0JxHHii+vHgf84lkZKl2I33S+88AKvvPIKDz30EKGhoZ75bdq04fvvv/drOHGWZe0BugK3YVmvOh1HRHywG+9RhFhj1XCLuJhlxWPRB4tr1HCLuNZf2I33PcBjDmeR0qTY9+nesWMHrVq1yjc/MjKSI0eO+CWUuIfdeM91OoaInIRlGSxrhtMxRKQQlvW50xFEpFD7gZedDiGlTLGPdDdq1IhNmzblm//pp58SExPjj0wSRIypijF1nI4hIidhDBij92cRtzOmCcYU+3iIiJSoM4B/OB1Cgkyx39kffPBB7r77bo4dO4YxhnXr1jFv3jwmTpzIq6/qFOSyxJgqwBLgDIyJw7J+dTqSiORhDGSZf2PMcEKsoYSELHQ6koj4YEwsho+AFWBu0cClIq5UDvgAaIp9CeZPzsaRoFHspvvWW28lIyOD0aNHc/ToUfr370/dunV57rnn6NevXyAyepk2bRpPPfUUycnJnHfeeUydOpVOnToVuHxaWhqPPfYYb775JikpKZx11lk89NBD3HbbbQHPGkyMySrmM6oAnwItsqeXYUxX4Bc/Zjrqt3W5lWX5b11/HNngh7UU93UghcnIPOS3dVkU7wVjAHgUGAVAlnmJrMw0LN7274vPT+sq/vtQySjudj+ZLHPcX2vy03rE307t/3Eb4EMgGuiFYQ7G9PdrLn++F/mVn2piwA9v+GU9kttxsvxwP3l/voea7D2bM8oB7wOXZk9/ht14J/ntN5SebSV5FavpzsjIYO7cufTs2ZMhQ4awb98+srKyqFGjRqDyeZk/fz4jR45k2rRpdOzYkZdffpnu3buTmJhI/fr1fT6nT58+/P7778ycOZPGjRuzd+9eMjIySiRv6fY80DLXdGNgJtDNkTQi4suVwNhc06HATAxrsdjlUCYR8RYJvAtUyjWvN3AfMNmBPCLi26PA5bmmawJvA63QF6FSmGJ9fRUWFsZdd91FWpp9r8lq1aqVWMMNMGXKFAYPHsztt99Os2bNmDp1KvXq1WP69Ok+l1+yZAkrV65k8eLFdOnShYYNG3LRRRfRoUOHEstcej2A9zd7u4A7HcoiIr4twf6CLLdhWOx0IIuI+JYGDARyD0a7BJjqSBoRKcjjwNe5pv/Erl013FK4Yp8z0rZtWxISEgKR5aSOHz/Ohg0biIuL85ofFxfHmjVrfD7nww8/pE2bNjz55JPUrVuXc889lwceeIC///67JCKXcinYp9T8COTcWmynk4FEJA/7JLUHOPHh/U4sXnMqjogUaDVwFXAYWAZcj92Mi4h7pGLX6RrsW4t1B/7naCIJHsW+pnvYsGHcf//9/PLLL8TGxlK+fHmvn7do0aKAZ56effv2kZmZSc2aNb3m16xZk5SUFJ/P2b59O19++SVRUVEsWrSIffv2MWzYMP766y9mzZrl8zlpaWmeI/kAqamp/vsjSp3fse9lWAHY4XAWKUtUp0VnAYbRwHtYrHM6jpQxqtXi+Ar7WtHNqOGWkqQ6LY6cxrsB9oEnkaIpdtPdt29fAIYPH+6ZZ1kWxhgsyyIzM9N/6Xyw8gzYk/N7fcnKysKyLObOnUt0dDRgn6J+/fXX8+KLL1KuXLl8z5k4cSKPPvqo/4OXWnuzHyIlR3VaPPY7pBpuKXmq1eLSUTMpearT4jqMGm4prmKfXr5jx458j+3bt3v+GyjVqlUjNDQ031HtvXv35jv6naN27drUrVvX03ADNGvWDGMMv/zie5TtsWPHcvDgQc8jMTHRf39EmdQNONvpEFLKqE79y5hqGHOd0zGkFFKt+tutQJTTIaSUUZ36W3vswdVETij2ke4GDRoEIkehIiIiiI2NJT4+nmuvvdYzPz4+nl69evl8TseOHXn33Xc5fPgwFSpUAGDLli2EhIRw1lln+XxOZGQkkZGRnulDh1x6i42g0AN7RNbfsa/53uZsHCk1VKf+Y0w1YCnQHGOGYVkznY4kpYhq1Z8mAA8CNwD/BI45G0dKDdWpP7UDPgYysK/53uhsHHGNU7r53rZt27j33nvp0qULXbt2Zfjw4WzbFviG6r777uPVV19l1qxZJCUlMWrUKHbv3s3QoUMB+5u6gQMHepbv378/VatW5dZbbyUxMZFVq1bx4IMPctttt/k8tVz8qTvwDhAB1MO+l2FjRxOJiDdjqmKPktw8e840jBniYCIR8e0/2A032F9iL8K+Z7CIuEdb4BOgIlAFe/8a62gicY9iN91Lly4lJiaGdevW0aJFC5o3b84333zDeeedR3x8fCAyevTt25epU6fy2GOP0bJlS1atWsXixYs9R9+Tk5PZvXu3Z/kKFSoQHx/PgQMHaNOmDTfddBM9e/bk+efz3kJH/MsC/g/73qM5zgJucyaOiBTgeuD8PPPuxxh9mBdxj7rkvyXn5UAnB7KISMHuw264c1QG7nUoi7iNZYwxxXlCq1at6NatG5MmTfKaP2bMGJYtW8bGjaXrNIpffvmFevXqYX8/cUonBpRRlbFPWc25pmUOcAdQrJdbqRdiRfhtXVnmuD/WAmSxZ8+eAi/BcKOyUqcWvgeNPLWVWdjv/v8GHs6euRPoimXtLuhZAWWMO+916s/tbvz2HqhaLVtigU+x961ZwO3AG44mkqJQnYJb30MDoRywEOiSPf0J0Aco+uezsrOt3CbwtVrsSkpKSmLw4MH55t92220aeEFy2Y89iNoG4DXUcIu4j2WBZf0HeAzYBcQ51nCLyMlswN6n7gOGoIZbxI3+Bq4F4oHFFLfhltKt2AOpVa9enU2bNnHOOed4zd+0aRM1atTwWzApDfZjX3t2BDXcIu5lWU9gzH+xrINORxGRAiUATQHVqYh7HcMe6NCghltyK3bTPWTIEO644w62b99Ohw4dsCyLL7/8ksmTJ3P//fcHIqMEtVSnA4hIEajhFgkGqlMR99OdBSS/YjfdDz/8MGeeeSbPPPMMY8eOBaBOnTqMHz+e4cOH+z2glGahwBTgZUCXJoi4lTHXAA2xLA1CKeJeNYAngFHAYYeziEjBHsce2fwrp4NICSp2021ZFqNGjWLUqFGkptpHMc8880y/B5PSLgSYDdyIPYJyHPCjo4lEJD9jegJvAeEYE4plPet0JBHJpwawDDgPOBe4Gp1pJuJGT2J/MXYPdp2q8S4rij2Q2o4dO9i6dStgN9s5DffWrVvZuXOnX8NJaRUCzMJuuMH+sBDPiXsFi4gbGHM1OQ23bRLG6DIiEXepjn23kPOypztgD+JUscBniIgTJmE33AAVgI/Rrf/KjmI33YMGDWLNmjX55n/zzTcMGjTIH5mk1IsCGuaZVwG7+RYR9zgbyHtbu7Mp3o0mRSSwqpF//1kde78qIu4QCpyTZ145oI4DWcQJxW66ExIS6NixY7757dq1Y9OmTf7IJKXeUexTar7Mns4Z6fELxxKJSH72Ndyjc82ZCdyD5cfbhYvI6UrCvlPI79nT27DvE/ybY4lEJK9MoB/wQa7pW4H5jiWSknVK13TnXMud28GDB8nMzPRLKCkLDmM33u8AU4HPHE0jIr5Z1nMYkwU0A+7GsnSYW8R9ErEb75eBm4BfnI0jIj6kY19a+TrwETDP2ThSoorddHfq1ImJEycyb948QkNDAcjMzGTixIlcfPHFfg8opdkR4CqnQ4hIISzrBYxBR7hFXC0JuMTpECJyUjmNt5Q1xW66n3zySS655BKaNGlCp072xf+rV6/m0KFDfPGFTg8WfwsBspwOIVLmnazhNsauUzXlIm6nfaqI2xlCsFSnpU6xr+mOiYnhu+++o0+fPuzdu5fU1FQGDhzITz/9RPPmGn1a/OkcYCPQxukgIlIAY0KBN4BHNMCaiKv9E3sslSpOBxGRAhhqAd9g6Op0FPGzYh/pBqhTpw4TJkzwdxaRXBpj30asLvAp0AP41tFEIuLNbrjnANdnzwnBmPE64i3iOtcCc7E/9i0DugF/OppIRPKqiV2fTYEFGG7AYqnDmcRfitx0//XXXxw9epSzzjrLM+/HH3/k6aef5siRI/Tu3Zv+/fsHJKSUNfU50XADVMJuvLtisemU1mjw3yE4C/91FFnmuN/WJaWfP1/H/jksPQfok2t6LJCOMY/7Yd3u4dftLlIM/tjfGHpwouEGuAD7g/1lWOQfGLdowfy3H7QHapTSTO+hRVGZEw032LfXfQ/DNejuPqVDkU8vv/vuu5kyZYpneu/evXTq1Ilvv/2WtLQ0Bg0axBtvvBGQkFLW7MUeiTW3LcAOB7KISMFW5pk+Cqx2IoiIFOgnIDnPvDVwqg23iATAQSAhz7xd2AMkSmlQ5KZ77dq1XHPNNZ7p119/nSpVqrBp0yY++OADJkyYwIsvvhiQkFLW5Ny3e0n29HqgBxYHnYskIj7MBO7AHpjpb6A3sMLBPCKSl8V27NuJ7cqe8zIwwo/nbInI6csCbgPezJ7eil23eb8wk2BV5KY7JSWFRo0aeaa/+OILrr32WsLC7NOVrrnmGrZu3er/hFJGpQE3AFNQwy3iZrOBIdgN93Jno4iITxY7gC7ABGA4lk73FXGhLGAwMAm74f7N2TjiV0VuuitWrMiBAwc80+vWraNdu3aeacuySEtL82s4Kdss0rAYg8UBp6OIyEm9jq45E3E3i11YjFfDLeJqWcDDwK9OBxE/K3LTfdFFF/H888+TlZXFe++9R2pqKpdffrnn51u2bKFevXoBCSlSEPvWCiLibqpTEbczhGGo5nQMESmU9qnBqMhN9+OPP84HH3xAuXLl6Nu3L6NHj6Zy5cqen7/99tt07tw5ICFFfDHcDSRi6OR0FBEpUBPs2/1NKWxBEXGIIQx7hPMv9GW2iKvdgH2997VOB5FiKvItw1q2bElSUhJr1qyhVq1atG3b1uvn/fr1IyYmxu8BRXwxDAOezZ76EENvrHwjKYuIs87Fvv1fLeBe7O95RzoZSETysBvuNznxIf4zDF2xNICTiMtcj305VxjwFnAzsMDRRFJ0RW66AapXr06vXr18/uyqq67ySyCRwhi6A1NzzSkPfIDhfCz2OBNKRPKIAj4FaueadzewE+/6FRFnPYF9x5Ac5wLvY2in679FXKM18AYnWrecL8u2k/9WY+JGRT69XMQ94oFFeeb9Rw23iKscA8YAGbnmrcW+zZiIuMdz2Ker5jgCPKCGW8RVEoBX88x7CTXcwUNNtwQdiwzgJk6cUvNvLJ52MJGI+PYuMAC78V4HXAWkOppIRLxZ/IZ9e6ItwFGgFxarnQ0lInkY7Mu0pmVPTwNGORdHiq1Yp5eLuIVFBoYBwHws3nc6jogU6D3gIHbTfcjhLCLii8VvGLoCZ2PxldNxRKRAI4BV6Fru4KOmW4KWfcT7fadjiEih4p0OICKFsAdO0+BpIu6nhjsYFanpPnSo6EcnKlaseMphRPzJUAG4QN/ai7heHHZjrmtIRdzKEAMcwWKX01FEpEDhQCfgC6eDSB5Fuqa7UqVKVK5c+aSPnGUCbdq0aTRq1IioqChiY2NZvbpo1x199dVXhIWF0bJly8AGFFewG+6PgCXZo52LiDuNBD4BXkHDjIi4k91wLwPiMTR0OI2I+BYOzMO+c8gtDmeRvIp0pHv58uWBzlEk8+fPZ+TIkUybNo2OHTvy8ssv0717dxITE6lfv36Bzzt48CADBw7kiiuu4Pfffy/BxOIEk30LMeiYPeddoA/2B3sRcY/hwFPZ/74Fu+m+HchyLJGIeDM0A5YCNbLnxGNMNyxrh4OpRMRbzr27c27tPAN7nzrbsUTizTLGBM35fG3btqV169ZMnz7dM69Zs2b07t2biRMnFvi8fv36cc455xAaGsr777/Ppk2bivw7f/nlF+rVq4f9wtVRmJJkYZ3S8wz3A3lfD3uAZkDaaaY69Vy+GNedTpsFZLFnzx7OOussp8MUmeo0GDUAfgQi88y/GvsDvpycarUs8Of+5lQZPsEe3Ty3d7CsAf5ZvynNX7KpTqWk9AdeyzPvENAE2FfycYJO4Gu1SEe6v/vuuyKvsEWLFqcc5mSOHz/Ohg0bGDNmjNf8uLg41qxZU+DzZs+ezbZt23jzzTf5z3/+U+jvSUtLIy3tRGOWmqrb2wSfZ7Eb7IHZ03uBnvij4RZ3UJ2WBruwz0B5hxON94Oo4S5dVKulwS3YdXl+9vQa4C7n4ojfqU5Lg7eAGOBf2dOHgWtQw+0eRWq6W7ZsiWVZFHZQ3LIsMjMz/RIsr3379pGZmUnNmjW95tesWZOUlBSfz9m6dStjxoxh9erVhIUVbaD2iRMn8uijj552XnGORRaGO7C/tboKuBL7iJqUFqrT0mIxcD32bcXGAVMdTSP+p1oNfhb7MMRhN95HgZ5Y1mGHU4k/qU5Li39jf/Ydjn2wSQMJu0mRTi/ftavoI1U2aNDgtAIV5LfffqNu3bqsWbOG9u3be+Y/8cQTvPHGG/z0009ey2dmZtKuXTsGDx7M0KFDARg/fnyhp5fn/bbv119/JSYmBp1iU/JO97Q6gwXUx2KXX0/j1unlzlOdljaNAF0fWjyq1bLADaeX5zBUATKwOASWH/eDOr3ccarT0qYhsNPhDMHGJaeXB6qRLo5q1aoRGhqa76j23r178x39BvvUmPXr15OQkMA999wDQFZWFsYYwsLCWLZsGZdffnm+50VGRhIZeeIaw+LcLk3cxcKAbm1SKqlOSxs13KWVarX0sPjL6QgSIKrT0man0wHEhyI13R9++CHdu3cnPDycDz/88KTLXnPNNX4JlldERASxsbHEx8dz7bXXeubHx8fTq1evfMtXrFiR77//3mvetGnT+OKLL3jvvfdo1KhRQHJKMOmEPRrrAqeDiEiBzgRGAROADIeziEhBjLkL+ALL2ux0FBEp0PlAW+BVp4OUOUVqunv37k1KSgo1atSgd+/eBS4XyGu6Ae677z4GDBhAmzZtaN++PTNmzGD37t2e08fHjh3Lr7/+yuuvv05ISAjNmzf3en6NGjWIiorKN1/Kooux7+MdiX3q1LvOxhERH87Evu67HfYAMTejxlvEfYy5H/uLseTs24mp8RZxn+bYYzNUB6KA/zobp4wpUtOdlZXl898lrW/fvvz555889thjJCcn07x5cxYvXuw5/T05OZndu3c7lk/8K3DXO3fEbrjLZ0+/gd14zy/Ss913HbZIaVQB+AS74Qa4DrtObwLSnQolUqJcu7/xGg4o50wUgNrAMozpCvyU72ki4pTzgGXYDTfYd/oJAZ53LFFZU+zREfbs2VPgz9auXXtaYYpi2LBh7Ny5k7S0NDZs2MAll1zi+dmcOXNYsWJFgc8dP358se7RLaXV1dgf6HOEAvkvURARJ8UAF+SZ1x6o60AWEfEtHPsLsdxqYV++JSLucTknGu4cvbA/A0tJKHbT3bVrV/78889887/66iuuvPJKv4QSCayxwAu5pt/Hvg+piLjHOuxbnhzJnv4diEMDxIi4STrQA8h90OUB4BVn4ohIAV4A/i/X9JfY9/EO3GXB4q3YTXenTp2Ii4sjNTXVM2/VqlX06NGDcePG+TWcSODch31KzQdAf3S6qogbrcI+M2U7dsOd5GwcEfHhEHbj/TXwIPCcs3FEpABPAWOw79+d+0ttKQnFbrpnzJhBo0aNuOqqqzh27BjLly/nqquu4rHHHmPUqFGByCgSIPcD/VDDLeJmX2Jfi5bodBARKVAq9umrUx3OISIn9wzQBTjsdJAyp9hNt2VZzJs3j6ioKK644gquueYaJk6cyIgRIwKRTyTANBKyiPupTkXcT3UqEhxUq04o0ujl3333Xb5548aN48Ybb+Tmm2/mkksu8SzTokUL/yYUccxzwCZgtsM5RKRglwLDgAFAmrNRRKQA0cBc4N/Y+1URcacxgAVMdDpIqVOkprtly5ZYloXJdYuInOmXX36ZGTNmYIwJ+H26RUrOc9gf5ME+IWSmg1lExLfO2OMynAEsxB5F+ZijiUQkr4rAp8CF2Y8rgQRHE4mIL/8CHs/+dwjwhINZSp8iNd07duwIdA4RF5nCiYYb4CXsb/1edSaOiPjQiRMNN9gDrS0E/okabxG3OBNYjN1sA1QBlqDGW8RtHgD+k2t6PHbj/bjPpaX4itR0N2jQINA5RFwk7+ASGcB+J4KISIGOkX8QxAM+5omIczKBo3nmHUOjJou4ja+a3FfiKUqzIg+k9vPPP7NhwwaveZ9//jmXXXYZF110ERMmTPB7OBFnPMKJb/sysK8VXeBcHBHx4VugO3ajDXaNDkT3HBVxk6NAL+CL7Olk7LNStjiWSER8mQ7cm2t6ZPY88ZciHekGePDBB2nevDmxsbGAfcp5z5496dSpEy1atGDixImcccYZjBw5MlBZRUrQo9gN91bgPYeziIhv67FPUx0K3IVGZBVxo7+B3sDLwARgs6NpRKQgLwFZQCTwosNZSp8iN93r169n9OjRnum5c+dy7rnnsnTpUsAetfyFF15Q0y2liAaQEHG/DcAQp0OIyEn9jX0mioi42wynA5RaRT69fN++fZx11lme6eXLl9OzZ0/P9KWXXsrOnTv9Gk7E3c4ofBERcZgFlHM6hIgUSvtUEfdTnZ6qIjfdVapUITk5GYCsrCzWr19P27ZtPT8/fvy41y3FREq3uthH2EY4HURECmQB07BHT67gcBYRKdgV2JdzdXA6iIgUqBKwHJjkcI7gVOSmu3Pnzjz++OPs2bOHqVOnkpWVxWWXXeb5eWJiIg0bNgxERhGXqQN8BjQGnsYebEJE3MUC/gvcDlwMfIwabxE3uhxYBNQAPgE6OhtHRHyIxr7dX2vgfuBJZ+MEoSJf0/3EE0/QtWtXGjZsSEhICM8//zzly5f3/PyNN97g8ssvD0hIEfc4A4jHbrhzPIU9gvIcB/KIiG+PA3fkmu4IvA90cSSNiPjSGrsucy4BqYD9BVlHINGhTCLiLQT7C7HYXPNGYX/21d2riqrITXejRo1ISkoiMTGR6tWrU6dOHa+fP/roo17XfIuUTkeBmcDkXPMSsU9fFRH3mAfcin30DOz7d7/gXBwR8eEH7DPHeuaa9zEa4VzETbKwL9VqA4Rmz/sVmO9YomBU5NPLAcLDw7ngggvyNdwAF1xwAVWrVvVbMBH3mgI8mP3vJOx7ju51Lo6I+PAjJ2ozA7gJ+MDRRCKS13GgL/Bh9vR8YBCQ6VQgEfHpLewvsjOB37DPGtvmaKJgU+Qj3SKS21Ts02qWAL87mkRECvIj0BU4BzXcIm6VDvQDhmGPw6CGW8Sd5mF/UfY98LPDWYKPmm6RUzbH6QAiUqhEdG2oiNulA885HUJECrXA6QBBq1inl4tIcbRwOoCIFKoe9m1QRMS9LKC50yFEpFDNsetV8ipW052RkcGjjz7Knj17ApVHpJS4CfgWeMTpICJSoHrYgzgtBSo7nEVEfLOAl4A16O4DIm4WB3wNvIga7/yK1XSHhYXx1FNPkZmp621ECtYfmIVdXg8D45yNIyI+nIV9+7+zsW9btAyo4mgiEcnLAqYDt2HfVmwR9jgNIuIuXbBPPY8ChmDXrRrv3Ip9enmXLl1YsWJFAKKIlAZnY99SLHdp/Rt9SBBxmznAP3JNt8QeIFFE3OMWYHCu6SjgbXRmioibVMa+80BUrnmDgYHOxHGpYg+k1r17d8aOHcsPP/xAbGws5cuX9/r5Nddc47dwIsFnOzAC+9SaHM9gH1ETEfe4E7su62VP/wjc71wcEfHhDeBy4Mbs6ePYjfh+xxKJSF77sc9GmQeEZ8+bi12/kqPYTfddd90FwJQpU/L9zLIsnXouwgwgC/vUmmeBMc7GEREftmGfDhcPHMa+Fu0PRxOJSF6Z2PcGNsAN2M33x44mEhFfPgD6Yp+JsgC7Cc9yNJHbFLvpzsrSBhQp3KvY9zH8xukgIlKg7cAVwN/AXoeziIhvOY33f7EHKBURd/oI6AwkoIY7v9O6ZdixY8f8laPIpk2bRqNGjYiKiiI2NpbVq1cXuOzChQvp2rUr1atXp2LFirRv356lS5eWYFop29Rwi7jfTuB3p0OIyElloYZbJBisx/6iTPIqdtOdmZnJ448/Tt26dalQoQLbt28H4OGHH2bmzJl+D5jb/PnzGTlyJA899BAJCQl06tSJ7t27s3v3bp/Lr1q1iq5du7J48WI2bNjAZZddRs+ePUlISAhoTpHCRWKfeiMi7vZPoIbTIUTkpBoC3Z0OISInFQLcDoQ6HcQRxW66n3jiCebMmcOTTz5JRESEZ/7555/Pq6++6tdweU2ZMoXBgwdz++2306xZM6ZOnUq9evWYPn26z+WnTp3K6NGjufDCCznnnHOYMGEC55xzDh999FFAc4qcXATwDvAy8LTDWUSkYAOxB4aJB2o6nEVEfGuAXaMLgF4OZxER30Kwxzyajn33kLLXeBe76X799deZMWMGN910E6GhJzZYixYt+Omnn/waLrfjx4+zYcMG4uLivObHxcWxZs2aIq0jKyuL1NRUqlTRvVjFKTkNd4/s6RFA/kEJRcRpNwOvYO8mY7A/1NdyNJGI5FUfuzYbYo+aPA+41slAIpKPhX2g6Zbs6X7A65S1xrvYA6n9+uuvNG7cON/8rKws0tPT/RLKl3379pGZmUnNmt5HG2rWrElKSkqR1vHMM89w5MgR+vTpU+AyaWlppKWleaZTU1NPLbCITx2AK/PMGwg8j31tqRSF6lQCKwIYi/f30s2APti1KkWlWpXAuhVolGs6HPuOIR+ggZyKTnUqgXUe9sjmufUCWgIbSjyNU4p9pPu8887zOXjZu+++S6tWrfwS6mQsy/KaNsbkm+fLvHnzGD9+PPPnz6dGjYKvz5s4cSLR0dGeR0xMzGlnFjlhBfY3fTmDTBwCrkINd/GoTiWwjmPfQuznXPMmo4a7+FSrEliPYZ+ymuN77DPJ1HAXh+pUAusH7DNQ/s6eTsO+BWDZabjhFJrucePGcc899zB58mSysrJYuHAhQ4YMYcKECTzyyCOByAhAtWrVCA0NzXdUe+/evfmOfuc1f/58Bg8ezDvvvEOXLl1OuuzYsWM5ePCg55GYmHja2UW8zQcGAH9hN9wa5by4VKcSeL9i305sC/AU8G9n4wQp1aoElgHuAV7C/mAfB/zpaKJgpDqVwPsc++j2Aeyzxj51NI0Tin16ec+ePZk/fz4TJkzAsiweeeQRWrduzUcffUTXrl0DkRGAiIgIYmNjiY+P59prT1yvEx8fT69eBQ+cMW/ePG677TbmzZvHVVddVejviYyMJDIy0jN96NCh0wsu4tO7wDLgoNNBgpLqVErGb9iXhKhOT5VqVQLPAPcCFbHPHpPiUp1KyVgONKas7lOL3XQDdOvWjW7duvk7S6Huu+8+BgwYQJs2bWjfvj0zZsxg9+7dDB06FLC/qfv11195/fXXAbvhHjhwIM899xzt2rXzHCUvV64c0dHRJZ5fxFvZfNMRCS6qU5HgoEZRxP3K7j612KeXO6lv375MnTqVxx57jJYtW7Jq1SoWL15MgwYNAEhOTva6Z/fLL79MRkYGd999N7Vr1/Y8RowY4dSfIFJErbBPaS18vAIRcUoU9mmt9Z0OIiInNRi4yekQInJSZwPTsAczLX2KdKS7SpUqbNmyhWrVqlG5cuWTDlz2119/+S2cL8OGDWPYsGE+fzZnzhyv6RUrVgQ0i0hgtASWAFWASsAd2KfPiYh7RALvAd2Ay4GuwC5HE4mIL7difzmWhX2s6Q1n44iID42wb/9XH6iNPdr5cUcT+VuRmu5nn32WM888E4CpU6cGMo9IGXcBJxpugEHYR7vvQKOxirhF7oYb7A8LnwFdUOMt4iaDsBtusBvuV7H3qa87FUhE8mnIiYYb4GrssY/6YI90XjoUqem+5Rb7ZuYZGRmAfU13rVq1ApdKpMyqC5yZZ1497FNtjpV8HBHxoQJwVp55lYCqqOkWcZNz8b6SMgT7A76IuEctThxsylEbKEdparqLdU13WFgYd911F2lppWcDiLjLYuxv9nJOqVkO9EYNt4ib/Il9a6IfsqcPAt2BjY4lEhFf/g97fJQcT2Df21tE3GMt9i10cwZD3IR9JtkBh/IERrEHUmvbti0JCQmByCIiAHwC3IB9mnlv4G9H04iIL39gX8e9GrvhXu9sHBEpwP8Bk4GJwHhno4hIAb4GegCrsBvu/c7GCYBi3zJs2LBh3H///fzyyy/ExsZSvnx5r5+3aNHCb+FEyq7F2Q8Rca992IOoiYi7/dvpACJSqG+AK5wOETDFbrr79u0LwPDhwz3zLMvCGINlWWRmZvovnYicRAgaXE3E7VSnIu6nOhUJDsFbq8Vuunfs2BGIHCJSLOOAJsBAIMPhLCLiWywwE3uchi0OZxER38oBC4EPgekOZxGRgt0J/BO4FjjqcJbiK3bT3aBBg0DkEJEie5gTp8pZwADUeIu4TWvgU6Ay9q1Q4oDNjiYSkbyisBvuLtmPEOBFRxOJiC9DgP9m//sDoBfB1ngXeyC1P//80/PvPXv28Mgjj/Dggw+yevVqvwYTEV/+BTySa/p64A2HsoiIb8050XAD1MG+j/fZjiUSkbxCOdFw55gK3OFIGhEpyEBgWq7pS7HPTAl3JM2pKnLT/f3339OwYUNq1KhB06ZN2bRpExdeeCHPPvssM2bM4LLLLuP9998PYFQRgXXk/2bvMyeCiEiB9gDb8sz7DvjVgSwi4lsm9t0HcvsL+NaBLCJSsO+wb9WZ23Ig3YEsp67ITffo0aM5//zzWblyJZdeeilXX301PXr04ODBg+zfv58777yTSZMmBTKriLAcuIYTjfdd2NeMioh75Ny3e1329GfAdUCaY4lExJeJnLhcaz923eq2uCLusgn7NmI5jfejwBOOpTlVRb6m+9tvv+WLL76gRYsWtGzZkhkzZjBs2DBCQuy+/d5776Vdu3YBCyoiOVYCPYFzgVcdziIivuU03v/GHvjwmLNxRKQAk7Hr80tgo8NZRMS3/2GPjRIHPO1wllNT5Kb7r7/+olatWgBUqFCB8uXLU6VKFc/PK1euTGpqqv8TiogPq7IfIuJeh4DRTocQkUI953QAESnUd9mP4FSsgdQsyzrptIi4RRUgwukQIlKoWk4HEJFCqU5F3O8MoKLTIQpUrFuGDRo0iMjISACOHTvG0KFDKV++PABpabpWTcQdqgLLgF+w7w+s2hRxp/8Ag4ErsU+dExH3uQhYDDyFfSq6iLjPGdi3EjsD6IF9iZe7FLnpvuWWW7ymb7755nzLDBw48PQTichpqAIsBVpkP97Dvq2YGm8Rd3kM+xaAYNfsldiDxYiIe1yI3XBHY39JFoI9+JqIuEc54H3sW4mBfcvO7rit8S5y0z179uxA5hARv3gHuCDX9JXA88CdzsQRER8GAWNzTVfF/pDQFLd9SBApu6oBn2A33DkeA7YD8x1JJCK+vAxclmv6QuBN7EGH3aNY13SLiNs9hPeH9l3ABIeyiIhv7wArck1nAWNQwy3iJvuwb02U26fYR9RExD2eAH7LNf0n9udhd1HTLVKqfIN9Ss0BYDfQBbvxFhH3OAr0ApZnTw8FXnMujogU4EVgePa/lwI3oMu1RNxmM/bn3V+Bv7Dv6e2+Uc6LNZCaiASDb7FPK/8L2OlsFBEpQE7jfTn2Kawi4k7TgT1APGq4RdxqK3bjXQG3DkyqplukVNrgdAARKdTfqOEWCQYfOx1ARAr1s9MBTkqnl4uUSZ2A8k6HEJGTqg60cTqEiBTqSqcDiEihLsQeINEZarpFypyrgCXAR6jxFnGrasAy7OtI2zucRUQKNhF7f6pBS0Xcqz32/jQe+wvtkqemW6RM6YE9cnIE9tHuj7GvfxER98hpuJsDFbFPQe/gaCIR8eUJ4IHsfz8ITHIwi4j41hb78+6Z2PvVZTjReKvpFikzooBp2A13jouBO5yJIyIFGAOcn2v6TOAFwHImjoj40IoTDXeOUUCsA1lExDcL+y4EFXPNaw78q8STqOkWKTOOAT2BP3LNmw0860wcESnA/+E9wNoO4FrAOBNHRHxIAAYDWdnTWdnTGshUxD0M8E/s/WiOj7H3syUr6JruadOm0ahRI6KiooiNjWX16tUnXX7lypXExsYSFRXF2WefzUsvvVRCSUXc6HugK7AX+77Ad6IP8iJucxzog32d6E7smt3tZCAR8elN4FYgHbg9e1pE3GU3cAWwHVgM9MXez5asoGq658+fz8iRI3nooYdISEigU6dOdO/end27fX8Y2bFjBz169KBTp04kJCTwf//3fwwfPpwFCxaUcHIRN/kRe0CJO1DDLeJWx7E/GHQGdjmcRUQK9hYQA7zhdBARKdAe4FLsL7RLvuGGIGu6p0yZwuDBg7n99ttp1qwZU6dOpV69ekyfPt3n8i+99BL169dn6tSpNGvWjNtvv53bbruNp59+uoSTi7jNbk6cEici7pQO/OZ0CBEp1E6nA4hIoZKBNMd+e9A03cePH2fDhg3ExcV5zY+Li2PNmjU+n/P111/nW75bt26sX7+e9PT0gGUVERERERERAQhzOkBR7du3j8zMTGrWrOk1v2bNmqSkpPh8TkpKis/lMzIy2LdvH7Vr1873nLS0NNLSTnwLkpqa6of0IsEihGA4Aq46FekMLHc6RKFUq1K2VcMeQ8XdVKcit2APLhw4QXOkO4dled8yxRiTb15hy/uan2PixIlER0d7HjExMaeZWCRYhGCPvOp+qlMp27oCGU6HKBLVqpRd1bHvOuB+qlMp24YBnwf8twRN012tWjVCQ0PzHdXeu3dvvqPZOWrVquVz+bCwMKpWrerzOWPHjuXgwYOeR2Jion/+ABHXqwm853SIIlGdStmWAnzldIgiUa1K2VUDeNXpEEWiOpWyqyL2LTp/CfhvCprTyyMiIoiNjSU+Pp5rrz3xzWF8fDy9evXy+Zz27dvz0Ucfec1btmwZbdq0ITw83OdzIiMjiYyM9EwfOnTID+lFgkEywXBqOahOpaz73ukARaZalbLrR4LlDiGqUym7DmU/Ai9ojnQD3Hfffbz66qvMmjWLpKQkRo0axe7duxk6dChgf1M3cOBAz/JDhw5l165d3HfffSQlJTFr1ixmzpzJAw884NSfICIiIiIiImVI0BzpBujbty9//vknjz32GMnJyTRv3pzFixfToEEDAJKTk73u2d2oUSMWL17MqFGjePHFF6lTpw7PP/881113nVN/goiIiIiIiJQhQdV0AwwbNoxhw4b5/NmcOXPyzevcuTMbN24McCoRERERERGR/ILq9HIRERERERGRYKKmW0RERERERCRA1HSLiIiIiIiIBIiabhEREREREZEAUdMtIiIiIiIiEiBqukVEREREREQCRE23iIiIiIiISICo6RYREREREREJEDXdIiIiIiIiIgGipltEREREREQkQNR0i4iIiIiIiASImm4RERERERGRAFHTLSIiIiIiIhIgarpFREREREREAkRNt4iIiIiIiEiAqOkWERERERERCRA13SIiIiIiIiIBoqZbREREREREJEDUdIuIiIiIiIgEiJpuERERERERkQBR0y0iIiIiIiISIGq6RURERERERAJETbeIiIiIiIhIgKjpFhEREREREQkQNd0iIiIiIiIiAaKmW0RERERERCRA1HSLiIiIiIiIBEjQNN379+9nwIABREdHEx0dzYABAzhw4ECBy6enp/Ovf/2L888/n/Lly1OnTh0GDhzIb7/9VnKhRUREREREpEwLmqa7f//+bNq0iSVLlrBkyRI2bdrEgAEDClz+6NGjbNy4kYcffpiNGzeycOFCtmzZwjXXXFOCqUVERERERKQsC3M6QFEkJSWxZMkS1q5dS9u2bQF45ZVXaN++PZs3b6ZJkyb5nhMdHU18fLzXvBdeeIGLLrqI3bt3U79+/RLJLiIiIiIiImVXUDTdX3/9NdHR0Z6GG6Bdu3ZER0ezZs0an023LwcPHsSyLCpVqlTgMmlpaaSlpXmmU1NTTzm3iASG6lQkOKhWRdxPdSoSeEFxenlKSgo1atTIN79GjRqkpKQUaR3Hjh1jzJgx9O/fn4oVKxa43MSJEz3XjUdHRxMTE3PKuUUkMFSnIsFBtSrifqpTkcBztOkeP348lmWd9LF+/XoALMvK93xjjM/5eaWnp9OvXz+ysrKYNm3aSZcdO3YsBw8e9DwSExNP7Y8TkYBRnYoEB9WqiPupTkUCz9HTy++55x769et30mUaNmzId999x++//57vZ3/88Qc1a9Y86fPT09Pp06cPO3bs4IsvvjjpUW6AyMhIIiMjPdOHDh066fIiUvJUpyLBQbUq4n6qU5HAc7TprlatGtWqVSt0ufbt23Pw4EHWrVvHRRddBMA333zDwYMH6dChQ4HPy2m4t27dyvLly6latarfsouIiIiIiIgUJiiu6W7WrBlXXnklQ4YMYe3ataxdu5YhQ4Zw9dVXew2i1rRpUxYtWgRARkYG119/PevXr2fu3LlkZmaSkpJCSkoKx48fd+pPERERERERkTIkKJpugLlz53L++ecTFxdHXFwcLVq04I033vBaZvPmzRw8eBCAX375hQ8//JBffvmFli1bUrt2bc9jzZo1TvwJIiIiIiIiUsYExS3DAKpUqcKbb7550mWMMZ5/N2zY0GtaREREREREpKQFzZFuERERERERkWCjpltEREREREQkQILm9HKnZGVl5fzL0RwiJcN+nZ943QcH1amUPapVEfdTnYoEh8DXqpruQuzZsyfXlN58pGzYs2cP9evXdzpGkalOpaxSrYq4n+pUJDgEslYto9HGTuqvv/6iatWq/PDDD0RHRzsdp1hSU1OJiYkhMTGRM8880+k4xaLszjh48CDNmzfnzz//pEqVKk7HKTLVqXOCOX8wZ1etlrxgfr0ouzNUpyUvmF8vyu6ckqhVHekuRFiYvYnq1atHxYoVHU5TPIcOHQKgbt26yl6Cgjl7Tt6c132wUJ06J5jzB3N21WrJC+bXi7I7Q3Va8oL59aLszimJWtVAaiIiIiIiIiIBoqZbREREREREJEDUdBciMjKScePGERkZ6XSUYlN2Zyh7yQvW3BDc2SG48yt7yQvW3KDsTlH2khesuUHZnRLM2aFk8msgNREREREREZEA0ZFuERERERERkQBR0y0iIiIiIiISIGq6RURERERERAKkzDXd06ZNo1GjRkRFRREbG8vq1atPuvzKlSuJjY0lKiqKs88+m5deeinfMgsWLCAmJobIyEhiYmJYtGiR49kXLlxI165dqV69OhUrVqR9+/YsXbrUa5k5c+ZgWVa+x7FjxxzPv2LFCp/ZfvrpJ6/l3LjtBw0a5DP7eeed51mmJLb9qlWr6NmzJ3Xq1MGyLN5///1CnxOsr/dgzu62WlWdlmydQnDXqur0BNWp/7OrTv1HtXqCatX/2VWrRWDKkLffftuEh4ebV155xSQmJpoRI0aY8uXLm127dvlcfvv27eaMM84wI0aMMImJieaVV14x4eHh5r333vMss2bNGhMaGmomTJhgkpKSzIQJE0xYWJhZu3ato9lHjBhhJk+ebNatW2e2bNlixo4da8LDw83GjRs9y8yePdtUrFjRJCcnez0Cobj5ly9fbgCzefNmr2wZGRmeZdy67Q8cOOCVec+ePaZKlSpm3LhxnmVKYtsvXrzYPPTQQ2bBggUGMIsWLTrp8sH8eg/m7G6qVdVpydepMcFbq6pT1Wmgs6tO/UO1qloNdHbVauHKVNN90UUXmaFDh3rNa9q0qRkzZozP5UePHm2aNm3qNe/OO+807dq180z36dPHXHnllV7LdOvWzfTr189PqW3Fze5LTEyMefTRRz3Ts2fPNtHR0f6KeFLFzZ/zxrN///4C1xks237RokXGsiyzc+dOz7yS3PbGmCK96QTz6z2Ys/viVK2qTp2tU2OCq1ZVp6rT4lKdBsfrPZiz+6JaLT7Vqv9f72Xm9PLjx4+zYcMG4uLivObHxcWxZs0an8/5+uuv8y3frVs31q9fT3p6+kmXKWidJZU9r6ysLFJTU6lSpYrX/MOHD9OgQQPOOussrr76ahISEvyWO8fp5G/VqhW1a9fmiiuuYPny5V4/C5ZtP3PmTLp06UKDBg285pfEti+OYH69B3P2vJyqVdVpcNQpuOP1rjpVnRaX6jR4Xu/BnD0v1WrxqVYD83ovM033vn37yMzMpGbNml7za9asSUpKis/npKSk+Fw+IyODffv2nXSZgtZZUtnzeuaZZzhy5Ah9+vTxzGvatClz5szhww8/ZN68eURFRdGxY0e2bt3qt+ynmr927drMmDGDBQsWsHDhQpo0acIVV1zBqlWrPMsEw7ZPTk7m008/5fbbb/eaX1LbvjiC+fUezNnzcqpWVafBUafgjte76lR1WhLZc1OdnhrVqmq1JLLnplr1Lez0owYXy7K8po0x+eYVtnze+cVd56k61d8zb948xo8fzwcffECNGjU889u1a0e7du080x07dqR169a88MILPP/88/4Lnq04+Zs0aUKTJk080+3bt2fPnj08/fTTXHLJJae0ztNxqr9nzpw5VKpUid69e3vNL+ltX1TB/HoP5uw53FCrqtMT3Fqn4J7Xu+pUdVpcqtPgeL0Hc/YcqtXTo1r17+u9zBzprlatGqGhofm+kdi7d2++by5y1KpVy+fyYWFhVK1a9aTLFLTOksqeY/78+QwePJh33nmHLl26nHTZkJAQLrzwQr9/43Q6+XNr166dVza3b3tjDLNmzWLAgAFEREScdNlAbfviCObXezBnz+F0rapOg6NOwR2vd9Wp6rS4VKfB83oP5uw5VKunTrUamNd7mWm6IyIiiI2NJT4+3mt+fHw8HTp08Pmc9u3b51t+2bJltGnThvDw8JMuU9A6Syo72N/wDRo0iLfeeourrrqq0N9jjGHTpk3Url37tDPndqr580pISPDK5uZtD/btB37++WcGDx5c6O8J1LYvjmB+vQdzdnBHrapOg6NOwR2vd9Wp6rS4VKfB83oP5uygWj1dqtUAvd6LPORaKZAz/P3MmTNNYmKiGTlypClfvrxnZL0xY8aYAQMGeJbPGUJ+1KhRJjEx0cycOTPfEPJfffWVCQ0NNZMmTTJJSUlm0qRJAR26v6jZ33rrLRMWFmZefPFFr2H5Dxw44Flm/PjxZsmSJWbbtm0mISHB3HrrrSYsLMx88803fs1+KvmfffZZs2jRIrNlyxbzww8/mDFjxhjALFiwwLOMW7d9jptvvtm0bdvW5zpLYtunpqaahIQEk5CQYAAzZcoUk5CQ4LndQ2l6vQdzdjfVqurUW0lt92CtVdWp6jTQ2XOoTk+PalW1GujsOVSrBStTTbcxxrz44oumQYMGJiIiwrRu3dqsXLnS87NbbrnFdO7c2Wv5FStWmFatWpmIiAjTsGFDM3369HzrfPfdd02TJk1MeHi4adq0qVdxOJW9c+fOBsj3uOWWWzzLjBw50tSvX99ERESY6tWrm7i4OLNmzZqAZC9u/smTJ5t//OMfJioqylSuXNlcfPHF5pNPPsm3Tjdue2Ps+xWWK1fOzJgxw+f6SmLb59x6oqDXQGl6vQdzdrfVqur0hJLa7sFcq6rTWzzLqE79n90Y1am/qFZv8SyjWvV/dmNUq4WxjMm+UlxERERERERE/KrMXNMtIiIiIiIiUtLUdIuIiIiIiIgEiJpuERERERERkQBR0y0iIiIiIiISIGq6RURERERERAJETbeIiIiIiIhIgKjpFhEREREREQkQNd0iIiIiIiIiAaKmW0RERERERCRA1HRLoVJSUrj33ns5++yziYyMpF69evTs2ZPPP//c6Wgikk11KuJ+qlOR4KBaFX8LczqAuNvOnTvp2LEjlSpV4sknn6RFixakp6ezdOlS7r77bn766SdHch0/fpyIiAhHfreI26hORdxPdSoSHFSrEhBG5CS6d+9u6tataw4fPpzvZ/v37zfGGLNr1y5zzTXXmPLly5szzzzT3HDDDSYlJcUYY8xPP/1kAJOUlOT13GeeecY0aNDAZGVlGWOM+fHHH0337t1N+fLlTY0aNczNN99s/vjjD8/ynTt3NnfffbcZNWqUqVq1qrnkkks862nevLk544wzzFlnnWXuuusuk5qa6vW7ZsyYYc466yxTrlw507t3b/PMM8+Y6Ohor2U+/PBD07p1axMZGWkaNWpkxo8fb9LT009r24mUFNWpiPupTkWCg2pVAkFNtxTozz//NJZlmQkTJhS4TFZWlmnVqpW5+OKLzfr1683atWtN69atTefOnT3LxMbGmn//+99ez4uNjTVjx441xhjz22+/mWrVqpmxY8eapKQks3HjRtO1a1dz2WWXeZbv3LmzqVChgnnwwQfNTz/95Hkje/bZZ80XX3xhtm/fbj7//HPTpEkTc9ddd3me9+WXX5qQkBDz1FNPmc2bN5sXX3zRVKlSxeuNZ8mSJaZixYpmzpw5Ztu2bWbZsmWmYcOGZvz48aez+URKhOpUdSrupzpVnUpwUK2qVgNFTbcU6JtvvjGAWbhwYYHLLFu2zISGhprdu3d75v34448GMOvWrTPGGDNlyhRz9tlne36+efNmA5gff/zRGGPMww8/bOLi4rzWu2fPHgOYzZs3G2PsN56WLVsWmvmdd94xVatW9Uz37dvXXHXVVV7L3HTTTV5vPJ06dcr35vrGG2+Y2rVrF/r7RJymOlWdivupTlWnEhxUq6rVQNFAalIgYwwAlmUVuExSUhL16tWjXr16nnkxMTFUqlSJpKQkAPr168euXbtYu3YtAHPnzqVly5bExMQAsGHDBpYvX06FChU8j6ZNmwKwbds2z3rbtGmT7/cvX76crl27UrduXc4880wGDhzIn3/+yZEjRwDYvHkzF110kddz8k5v2LCBxx57zOv3DxkyhOTkZI4ePVq0jSXiENWp6lTcT3WqOpXgoFpVrQaKBlKTAp1zzjlYlkVSUhK9e/f2uYwxxucbU+75tWvX5rLLLuOtt96iXbt2zJs3jzvvvNOzbFZWFj179mTy5Mn51lO7dm3Pv8uXL+/1s127dtGjRw+GDh3K448/TpUqVfjyyy8ZPHgw6enpBebLeUPN/fsfffRR/vnPf+b7/VFRUT7/bhG3UJ2qTsX9VKeqUwkOqlXVaqCo6ZYCValShW7duvHiiy8yfPjwfIV/4MABYmJi2L17N3v27PF845eYmMjBgwdp1qyZZ9mbbrqJf/3rX9x4441s27aNfv36eX7WunVrFixYQMOGDQkLK/pLcv369WRkZPDMM88QEmKftPHOO+94LdO0aVPWrVuX73m5tW7dms2bN9O4ceMi/24Rt1Cdirif6lQkOKhWJWBK9mx2CTbbt283tWrVMjExMea9994zW7ZsMYmJiea5554zTZs29Qwm0alTJ7NhwwbzzTffmNjYWK/BJIwx5uDBgyYqKspccMEF5oorrvD62a+//mqqV69urr/+evPNN9+Ybdu2maVLl5pbb73VZGRkGGPs61pGjBjh9byEhAQDmKlTp5pt27aZ119/3dStW9cAntElcwaTeOaZZ8yWLVvMSy+9ZKpWrWoqVarkWc+SJUtMWFiYGTdunPnhhx9MYmKiefvtt81DDz3k9+0pEgiqUxH3U52KBAfVqgSCmm4p1G+//Wbuvvtu06BBAxMREWHq1q1rrrnmGrN8+XJjzMlvm5DbDTfcYAAza9asfD/bsmWLufbaa02lSpVMuXLlTNOmTc3IkSM9t1Xw9cZjjD1QRe3atU25cuVMt27dzOuvv+71xmOMfduEunXrem6b8J///MfUqlXLaz1LliwxHTp0MOXKlTMVK1Y0F110kZkxY8apbzSREqY6FXE/1alIcFCtir9ZxuQ5yV+klBsyZAg//fQTq1evdjqKiBRAdSrifqpTkeCgWnWerumWUu/pp5+ma9eulC9fnk8//ZTXXnuNadOmOR1LRHJRnYq4n+pUJDioVt1HR7ql1OvTpw8rVqwgNTWVs88+m3vvvZehQ4c6HUtEclGdirif6lQkOKhW3UdNt4iIiIiIiEiAhDgdQERERERERKS0UtMtIiIiIiIiEiBqukVEREREREQCRE23iIiIiIiISICo6RYREREREREJEDXdIiIiIiIiIgGipltEREREREQkQNR0i4iIiIiIiASImm4RERERERGRAPl/15W4DorcTm4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -391,9 +410,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHqCAYAAAAZLi26AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsiklEQVR4nO3dd3gU5drH8d+mk4QeIAklRDoGRIMgINKkC1iOoniECHhEFAUUFVGqgqIiNppSlVexgaBYkCYIKiKIShSE0BMiUbqkPu8fOdnDprFJdrLZ5Pu5rj3HnZ159p5l7+fOvTszazPGGAEAAAAAAJfzcncAAAAAAACUVjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdyNcrr7wim82mqKioXB+32WyaOHGipTHMmjVLixYtsmTsAwcOyGazWTY+4EqLFi2SzWbL87Zhw4YCjbdhw4ZCbWdlTjorJiZGdevWdWsMQHHIL+cLmv9Tp07VihUrihyP1XUfKA6urqnO5kbW8x44cKBQcTvj/PnzmjhxYq77UJTnL47YSysfdweAkm3BggWSpF9//VXfffedWrduXewxzJo1SyEhIYqJiXH52GFhYdq6davq1avn8rEBqyxcuFCNGzfOsbxp06YFGueqq67S1q1bC7ydlTnprKeeekoPPfSQ254fKC5bt251uD9lyhStX79e69atc1juTB5PnTpV//rXv3TjjTe6MkTAo7mqpm7dulW1atVyVVhFcv78eU2aNEmS1LFjR4fHevfura1btyosLMwNkZVdNN3I0w8//KCffvpJvXv31qeffqr58+e7pem2Qnp6utLS0uTv769rrrnG3eEABRIVFaWWLVsWeZwKFSp47PufD8pQVmTP0WrVqsnLy8tjcxcoaVxVUz0lJ6tVq6Zq1aq5O4wyh8PLkaf58+dLkp599lm1bdtW7777rs6fP3/J7RISEnTvvfeqVq1a8vPzU2RkpCZNmqS0tDSH9SZNmqTWrVurSpUqqlChgq666irNnz9fxhj7OnXr1tWvv/6qjRs32g/3ufiQ0kOHDunf//63qlevLn9/fzVp0kQvvviiMjIy7OtkHUI+ffp0Pf3004qMjJS/v7/Wr1+f5+Hlv/32m+644w7VqFFD/v7+qlOnjgYOHKjk5ORCvJJA8bLZbHrggQc0d+5cNWzYUP7+/mratKneffddh/VyO7x8//79uv322xUeHi5/f3/VqFFDXbp00c6dOyVdOidPnz6tRx55RJGRkfLz81PNmjU1cuRInTt3LtcYFy5cqEaNGqlcuXJq2bKlvv32Wxlj9PzzzysyMlLBwcHq3Lmz/vjjD4ftczu8PCMjQ6+++qpatGihcuXKqVKlSrrmmmu0cuXKIr+mQEn2119/afjw4apZs6b8/Px02WWXady4cQ41y2az6dy5c1q8eLE9d7O+Afvzzz81fPhwNW3aVMHBwapevbo6d+6sTZs2uWmPgJLhyiuvVPv27XMsT09PV82aNXXzzTfbl+V2ePm3336rdu3aKSAgQOHh4Ro7dqxSU1Nzfa5ly5apTZs2CgoKUnBwsLp3764dO3Y4rBMTE6Pg4GD98ccf6tWrl4KDg1W7dm09/PDD9nw/cOCAvameNGmSPd+zjk7L7RDxNWvWqF+/fqpVq5YCAgJUv3593XvvvTpx4kRBXzLkgW+6kat//vlH77zzjq6++mpFRUVp8ODBGjp0qN5//30NGjQoz+0SEhLUqlUreXl5afz48apXr562bt2qp59+WgcOHNDChQvt6x44cED33nuv6tSpIylzYhoxYoSOHj2q8ePHS5KWL1+uf/3rX6pYsaJmzZolSfL395eU+UdC27ZtlZKSoilTpqhu3br65JNP9Mgjj2jfvn329bO88soratiwoV544QVVqFBBDRo0yHUffvrpJ1177bUKCQnR5MmT1aBBA8XHx2vlypVKSUmxPz/gLllHalzMZrPJ29vbfn/lypVav369Jk+erKCgIM2aNUt33HGHfHx89K9//SvPsXv16qX09HRNnz5dderU0YkTJ7RlyxadPHlSUv45ef78eXXo0EFHjhzRE088oebNm+vXX3/V+PHj9fPPP+urr76SzWazP9cnn3yiHTt26Nlnn5XNZtNjjz2m3r17a9CgQdq/f79ee+01nTp1SqNHj9Ytt9yinTt3OmyfXUxMjN5++20NGTJEkydPlp+fn3788UfOPUOpduHCBXXq1En79u3TpEmT1Lx5c23atEnTpk3Tzp079emnn0rKPPS1c+fO6tSpk5566ilJmUe7SJlNuyRNmDBBoaGhOnv2rJYvX66OHTtq7dq1OQ5PBUqT/Grq3XffrYceekh79+51+Lvxyy+/1LFjx3T33XfnOe7u3bvVpUsX1a1bV4sWLVJgYKBmzZql//u//8ux7tSpU/Xkk0/q7rvv1pNPPqmUlBQ9//zzat++vb7//nuHQ91TU1PVt29fDRkyRA8//LC+/vprTZkyRRUrVtT48eMVFhamzz//XD169NCQIUM0dOhQScr32+19+/apTZs2Gjp0qCpWrKgDBw5oxowZuvbaa/Xzzz/L19fX6dcTeTBALpYsWWIkmTlz5hhjjDlz5owJDg427du3d1hPkpkwYYL9/r333muCg4PNwYMHHdZ74YUXjCTz66+/5vp86enpJjU11UyePNlUrVrVZGRk2B+7/PLLTYcOHXJs8/jjjxtJ5rvvvnNYft999xmbzWZ+//13Y4wxcXFxRpKpV6+eSUlJcVg367GFCxfal3Xu3NlUqlTJJCYm5v7iAG6ycOFCIynXm7e3t309SaZcuXImISHBviwtLc00btzY1K9f375s/fr1RpJZv369McaYEydOGElm5syZ+caRV05OmzbNeHl5mW3btjks/+CDD4wks3r1aocYQ0NDzdmzZ+3LVqxYYSSZFi1aOMwBM2fONJLMrl277MsGDRpkIiIi7Pe//vprI8mMGzcu39gBTzdo0CATFBRkvz9nzhwjybz33nsO6z333HNGkvnyyy/ty4KCgsygQYMu+RxpaWkmNTXVdOnSxdx0000Oj2Wv+4Cncqamnjhxwvj5+ZknnnjCYdvbbrvN1KhRw6SmptqXZc+N/v3751mLJZm4uDhjjDGHDh0yPj4+ZsSIEQ7PcebMGRMaGmpuu+02+7JBgwblmu+9evUyjRo1st//888/88zVrP3Oev7sMjIyTGpqqjl48KCRZD7++GOnt0XeOLwcuZo/f77KlSun22+/XZIUHBysW2+9VZs2bdLevXvz3O6TTz5Rp06dFB4errS0NPutZ8+ekqSNGzfa1123bp2uv/56VaxYUd7e3vL19dX48eOVlJSkxMTES8a4bt06NW3aVK1atXJYHhMTI2NMjovM9O3b95Kf1J0/f14bN27UbbfdxvkuKLGWLFmibdu2Ody+++47h3W6dOmiGjVq2O97e3urf//++uOPP3TkyJFcx61SpYrq1aun559/XjNmzNCOHTscTtW4lE8++URRUVFq0aKFQ/5379491yvBdurUSUFBQfb7TZo0kST17NnT4RvtrOUHDx7M87k/++wzSdL999/vdLxAabBu3ToFBQXlOIIl61DStWvXOjXOnDlzdNVVVykgIEA+Pj7y9fXV2rVrFRsb6+qQgRIlv5patWpV9enTR4sXL7bXw7///lsff/yxBg4cKB+fvA8aXr9+fZ61+GJffPGF0tLSNHDgQIfaGRAQoA4dOuSonTabTX369HFY1rx583xr5KUkJiZq2LBhql27tj3/IyIiJIk5wEVoupHDH3/8oa+//lq9e/eWMUYnT57UyZMn7QU964rmuTl+/LhWrVolX19fh9vll18uSfZzQ77//nt169ZNkvTGG2/om2++0bZt2zRu3DhJmYe3X0pSUlKuV14MDw+3P34xZ67S+Pfffys9Pb3EXH0SyE2TJk3UsmVLh1t0dLTDOqGhoTm2y1qWPTey2Gw2rV27Vt27d9f06dN11VVXqVq1anrwwQd15syZS8Z1/Phx7dq1K0f+ly9fXsaYHOeGValSxeG+n59fvssvXLiQ53P/+eef8vb2znW/gdIsKSlJoaGhOU69qF69unx8fPLM94vNmDFD9913n1q3bq0PP/xQ3377rbZt26YePXo4VY8BT3apmjp48GAdPXpUa9askSS98847Sk5OvuQveGTlZnbZlx0/flySdPXVV+eon8uWLctROwMDAxUQEOCwzN/fP98amZ+MjAx169ZNH330kR599FGtXbtW33//vb799ltJzv1NjkvjnG7ksGDBAhlj9MEHH+iDDz7I8fjixYv19NNPO5w/miUkJETNmzfXM888k+vYWQ3xu+++K19fX33yyScOE0dBfj+0atWqio+Pz7H82LFj9lgult+5oFmqVKkib2/vPL8JBDxFQkJCnsuqVq2a53YRERH2iyju2bNH7733niZOnKiUlBTNmTMn3+cMCQlRuXLl8vxgLntOulK1atWUnp6uhIQEfgYFZUrVqlX13XffyRjjUOcSExOVlpbmVN69/fbb6tixo2bPnu2w3JkP24DSrnv37goPD9fChQvVvXt3LVy4UK1bt77kT4pVrVo131qcJStHP/jgA/u3y8Xpl19+0U8//aRFixY5XLcp+wVMUTR80w0H6enpWrx4serVq6f169fnuD388MOKj4+3H8qZ3Q033KBffvlF9erVy/GpYcuWLe1Nt81mk4+Pj0Pj/s8//+itt97KMaa/v3+un7J16dJFu3fv1o8//uiwfMmSJbLZbOrUqVOB979cuXLq0KGD3n//fa7YCI+2du1a+6fnUmZuL1u2TPXq1XP6SI6GDRvqySefVLNmzRzyLK+cvOGGG7Rv3z5VrVo11/zPfrVxV8o6hSV70wCUdl26dNHZs2dzfGi9ZMkS++NZ8spdm82W4yKhu3btyvEb4UBZ5O3trbvuuksrVqzQpk2b9MMPP2jw4MGX3K5Tp0551uKLde/eXT4+Ptq3b1+utbMwP2eWlc/OfEud9WFd9jlg7ty5BX5e5I1vuuHgs88+07Fjx/Tcc8/lerXSqKgovfbaa5o/f75uuOGGHI9PnjxZa9asUdu2bfXggw+qUaNGunDhgg4cOKDVq1drzpw5qlWrlnr37q0ZM2ZowIAB+s9//qOkpCS98MILuV4ZvFmzZnr33Xe1bNkyXXbZZQoICFCzZs00atQoLVmyRL1799bkyZMVERGhTz/9VLNmzdJ9992nhg0bFuo1yLpaY+vWrfX444+rfv36On78uFauXKm5c+eqfPnyhRoXcJVffvklx5VWpczfrs66FkFISIg6d+6sp556yn718t9++y3Hz4ZdbNeuXXrggQd06623qkGDBvLz89O6deu0a9cuPf744/b18srJkSNH6sMPP9R1112nUaNGqXnz5srIyNChQ4f05Zdf6uGHH1br1q1d/4JIat++ve666y49/fTTOn78uG644Qb5+/trx44dCgwM1IgRIyx5XsDdBg4cqNdff12DBg3SgQMH1KxZM23evFlTp05Vr169dP3119vXbdasmTZs2KBVq1YpLCxM5cuXV6NGjXTDDTdoypQpmjBhgjp06KDff/9dkydPVmRkZK5zDVCaOFNTBw8erOeee04DBgxQuXLlcpyXnZsnn3xSK1euVOfOnTV+/HgFBgbq9ddfz/ETmnXr1tXkyZM1btw47d+/Xz169FDlypV1/Phxff/99woKCtKkSZMKtE/ly5dXRESEPv74Y3Xp0kVVqlRRSEhIrh9+N27cWPXq1dPjjz8uY4yqVKmiVatW2Q+nh4u48ypuKHluvPFG4+fnl++Vu2+//Xbj4+NjEhIScr0y4p9//mkefPBBExkZaXx9fU2VKlVMdHS0GTdunMOVihcsWGAaNWpk/P39zWWXXWamTZtm5s+fn+OqiAcOHDDdunUz5cuXN5Icrlh88OBBM2DAAFO1alXj6+trGjVqZJ5//nmTnp5uXyfrCuXPP/98jn3J7erlxhize/duc+utt5qqVasaPz8/U6dOHRMTE2MuXLjg3AsJWCC/K61KMm+88YYxJvMKqvfff7+ZNWuWqVevnvH19TWNGzc2S5cudRgv+9XLjx8/bmJiYkzjxo1NUFCQCQ4ONs2bNzcvvfSSSUtLs2+XX06ePXvWPPnkk6ZRo0bGz8/PVKxY0TRr1syMGjXK4QquWTFeLK9czYrz/fffty/LfvVyYzJ/BeGll14yUVFR9udu06aNWbVqVYFfa6Ckyn71cmOMSUpKMsOGDTNhYWHGx8fHREREmLFjx+aoWTt37jTt2rUzgYGBRpL9VwiSk5PNI488YmrWrGkCAgLMVVddZVasWJFrnuVW9wFP5GxNzdK2bVsjydx55525jpdbbnzzzTfmmmuuMf7+/iY0NNSMGTPGzJs3L9crgK9YscJ06tTJVKhQwfj7+5uIiAjzr3/9y3z11Vf2dXLLf2OMmTBhgsne1n311VfmyiuvNP7+/kaS/ZcLcrsC+e7du03Xrl1N+fLlTeXKlc2tt95qDh06lGOfuHp54dmMMcbivh4AUIxsNpvuv/9+vfbaa+4OBQAAoMzjnG4AAAAAACxC0w0AAAAAgEW4kBoAlDKcNQQAAFBy8E03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFikzJ3TnZGRoWPHjql8+fKy2WzuDgcoNYwxOnPmjMLDw+XlVfTP88hVwPVcnacSuQpYgZoKeAZnc7XMNd3Hjh1T7dq13R0GUGodPnxYtWrVKvI45CpgHVflqUSuAlaipgKe4VK5Wuaa7vLly0vKfGEqVKjg5miA0uP06dOqXbu2PceKilwFXM/VeSqRq4AVqKmAZ3A2V8tc0511SE2FChWYdAALuOqwNXIVsI4rDy8lVwHrUFMBz3CpXOVCagAAAAAAWISmGwAAAAAAi9B0AwAAAABgkTJ3Trez0tPTlZqa6u4wkI2vr6+8vb3dHQYAMU+WVH5+fi77OTBXycjIUEpKirvDQDbUVKDkoKaWTK6aJ2m6szHGKCEhQSdPnnR3KMhDpUqVFBoayu9MAm7CPFmyeXl5KTIyUn5+fu4ORZKUkpKiuLg4ZWRkuDsU5IKaCrgXNbXkc8U8SdOdTdabvnr16goMDKQIlSDGGJ0/f16JiYmSpLCwMDdHBJRNzJMlV0ZGho4dO6b4+HjVqVPH7f82xhjFx8fL29tbtWvXLnHfwJdl1FSgZKCmllyunCdpui+Snp5uf9NXrVrV3eEgF+XKlZMkJSYmqnr16hwWBxQz5smSr1q1ajp27JjS0tLk6+vr1ljS0tJ0/vx5hYeHKzAw0K2xICdqKuBe1NSSz1XzJB85XyTrPAr+MCjZsv59OO8FKH7MkyVf1mHl6enpbo7kfzGUlEPdkRM1FXAfaqpncMU8SdOdCw7rKNn49wHcjzwsuUriv01JjAmZ+LcB3I88LNlc8e9D0w0AAAAAgEVoumEXExOjG2+80d1hAECJxTwJZ/FeAYD8laV5kgupOSk5tnjPR/NvUrDfM42JidHixYslSd7e3goPD1fv3r01depUVa5c2akxXn75ZRljChwrAEjFO08WdI6UmCdLEmoqAOSPebJ0ces33V9//bX69Omj8PBw2Ww2rVix4pLbbNy4UdHR0QoICNBll12mOXPmWB+oh+jRo4fi4+N14MABvfnmm1q1apWGDx/u9PYVK1ZUpUqVrAsQANyMeRLO4r0CAPljnnSeW5vuc+fO6YorrtBrr73m1PpxcXHq1auX2rdvrx07duiJJ57Qgw8+qA8//NDiSD2Dv7+/QkNDVatWLXXr1k39+/fXl19+KSnzCrJDhgxRZGSkypUrp0aNGunll1922D77IR4dO3bUgw8+qEcffVRVqlRRaGioJk6cWIx7BACuxTwJZ/FeAYD8MU86z62Hl/fs2VM9e/Z0ev05c+aoTp06mjlzpiSpSZMm+uGHH/TCCy/olltusShKz7R//359/vnn9t9ozcjIUK1atfTee+8pJCREW7Zs0X/+8x+FhYXptttuy3OcxYsXa/To0fruu++0detWxcTEqF27duratWtx7QoAWIJ5Es7ivQIA+WOezJ9HndO9detWdevWzWFZ9+7dNX/+fKWmptr/kcuqTz75RMHBwUpPT9eFCxckSTNmzJAk+fr6atKkSfZ1IyMjtWXLFr333nv5vvGbN2+uCRMmSJIaNGig1157TWvXrvX4Nz6Asol5Es7ivQIA+WOedJ5HNd0JCQmqUaOGw7IaNWooLS1NJ06cUFhYWI5tkpOTlZycbL9/+vRpy+N0l06dOmn27Nk6f/683nzzTe3Zs0cjRoywPz5nzhy9+eabOnjwoP755x+lpKSoRYsW+Y7ZvHlzh/thYWFKTEy0InyUcWUpV+E+zJNFV1ZylfcKPFlZyVO4F/Ok8zyq6ZZy/jh51hXv8vrR8mnTpjl8ylKaBQUFqX79+pKkV155RZ06ddKkSZM0ZcoUvffeexo1apRefPFFtWnTRuXLl9fzzz+v7777Lt8xsx89YLPZlJGRcclYMv7Z7nDfq1x0Afcm7/EykiUpsNBj5XY1yMJcCTmv8YoylqvHy21fdz9c3uF+q8ODcqyT+vOMQj9nYZWlXC0pXJ0LJZ1JT1JgQKouq3lKUtHmSfuclHFGPra/lfHPdvs85+w8met4/3XhiHeOdWJTqjrcj768doGew1XKSq6W5JoqFa2uelJNdfV41FRcrCT/DVfSeVJNlYreixSVR/1Od2hoqBISEhyWJSYmysfHR1WrVs11m7Fjx+rUqVP22+HDh4sj1BJhwoQJeuGFF3Ts2DFt2rRJbdu21fDhw3XllVeqfv362rdvn33djH+2y6QnyaSfVMY/23N9swJWKsu5WhDJsX4ONxRNQeZJZCqruUpNhScpq3kK96Km5s2jvulu06aNVq1a5bDsyy+/VMuWLfM8n9vf31/+/v7FEV6J07FjR11++eWaOnWqGjRooCVLluiLL75QZGSk3nrrLW3btk2RkZHuDhOQVLZzFe7DPFlwZTVXea/Ak5TVPIV7edI8uf1Xxw+irD56zK3fdJ89e1Y7d+7Uzp07JWX+JNjOnTt16NAhSZmf0g0cONC+/rBhw3Tw4EGNHj1asbGxWrBggebPn69HHnnEHeF7hNGjR+uNN97QjTfeqJtvvln9+/dX69atlZSUVKDf0QOA0op5Es7ivQIA+WOezJ3NZJ0U7QYbNmxQp06dciwfNGiQFi1apJiYGB04cEAbNmywP7Zx40aNGjVKv/76q8LDw/XYY49p2LBhTj/n6dOnVbFiRZ06dUoVKlRweOzChQuKi4tTZGSkAgICCr1fnsjK88WKOlb28S4kSwfjAwv971SSzxdz9XjFef5ZfrlVGK4er7Sw+v1xqfHymyc9aR4p6nhW72tRzunO79/IiryiruZk9fvDleOV9Jrq6vGoqdTUi7n7bzhqau5jWTFe9rpakOukuKKuuvXw8o4dOyq/nn/RokU5lnXo0EE//vijhVEBAAAAAOAaHnVONwAAAICyqaz96gZKD4+6ejkAAAAAAJ6EphsAAAAAAItweLkHc/UFEQC4HofCAZ6BmgoAsArfdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAW4erlTtrRq2qxPt+Vq5MKvE1iYqKeeuopffbZZzp+/LgqV66sK664QhMnTlSbNm0siBIA/uenW7oV23MVbo78S+Mnz9bnX27R8cS/VLlyFeZIN6GmAkD+irOmSq6oq3+7dJ48v3enw/3ABi2KNJ670XSXIrfccotSU1O1ePFiXXbZZTp+/LjWrl2rv/76y92hAYDb3TrgUaWmpmnhG5N0WWRN/XmqOnMk8kRNBYD8XVxX6zfpwTyZDw4vLyVOnjyjzZs367nnnlOnTp0UERGhVq1aaezYserdu7ckyWaz6c0339RNN92kwMBANWjQQCtXrnQYZ+Om7bqm/UCVq9RGYWFhevzxx5WWliZJWrVqlSpVqqSMjAxJ0s6dO2Wz2TRmzBj79vfee6/uuOOOYtprAHDOyZMntXnLTk17eoQ6dWipiDphhZsjN25Uq1atVK5SG9WM7K6xT73KHFkKUVMBIH8nT55xrKuFnSc3brTPk9nr6up1GxUe3b5UzJM03aVEcHA5BQcHa8WKFUpOTs5zvUmTJum2227Trl271KtXL9155532T6OOHk3UDTc9pJbRl2vHd+9o9uzZmj9/vp5++mlJ0nXXXaczZ85ox44dkjKTJCQkRBs3brSPv2HDBnXo0MHCPQWslRzrl+MGzxccHKzg4EB9vGqDkpNT8lwv/znyqHr16qWrr75aO757R6+/PFYLFn+sZ56dL4k5sjShpgKuQ00tnTLnSdfU1ax5MntdbXf1VTpz7rx+2v2bJM+eJ2m6SwkfHx8tWrRIixcvVqVKldSuXTs98cQT2rVrl8N6MTExuuOOO1S/fn1NnTpV586d0/fffy9Jmj3vfdWuVUOvvvSoGjeqqxtvvFGTJk3Siy++qIyMDFWsWFEtWrTQhg0bJGW+yUeNGqWffvpJZ86cUUJCgvbs2aOOHTsW894DQP58fHy0YN4ELVn6qaqEdVL7zoMLPEfOmjVLtWvX1muvvZY5R/btqInj7tWMV5YyR5Yy1FQAyF/2ulqYeTKrrtrnyex1tXx5NW/SSF9/94Mkz54nabpLkVtuuUXHjh3TypUr1b17d23YsEFXXXWVFi1aZF+nefPm9v8OCgpS+fLllZiYKEmK/f2ArmnVXDabzb5Ou3btdPbsWR05ckSS1LFjR23YsEHGGG3atEn9+vVTVFSUNm/erPXr16tGjRpq3Lhx8ewwABTALTd20ZF9n2nF+y+q2/VtCj5HxsaqTZs2DnNk2zZX6OzZ8zpyNHMd5sjSg5oKAPm7uK4Wap7Mp64eTTguSWrfKlqbvt/u8fMkTXcpExAQoK5du2r8+PHasmWLYmJiNGHCBPvjvr6+DuvbbDb7eRLGGF30nrcvy1pPyvwDYdOmTfrpp5/k5eWlpk2bqkOHDtq4caPHHN4BoOwKCPBX1y7X6Kkn7inkHOk4Sf5vjsy8zxxZulBTASB/WXW18PNkXnU1c/l1rVtqyw8/evw8SdNdyjVt2lTnzp1zbt3Gkdr63S77m12StmzZovLly6tmzZqS/ncO2syZM9WhQwfZbDZ16NBBGzZs8Kg3PgBIBZwjmzbVli1bHObIrd/uUvnyQaoZXl0Sc2RpR00FgPy5qq6G18isq1nndXv6PEnTXUokJZ1U586d9fbbb2vXrl2Ki4vT+++/r+nTp6tfv35OjXHff27V4SPH9eDo6frt9wP6+OOPNWHCBI0ePVpeXplvlaxz0N5++237+RPXXXedfvzxR485pwJA2ZOUlKTrew7T2++s1q6f9yruwNECz5HDhw/X4cOHNWLEiMw5ctUGTXxmrkaNGMAcWcpQUwEgf0lJJx3raiHmyay6ap8nV+VSV/97Xrenz5P8Tnc+Mv7Z7u4QnBYcHKjWrVvrpZde0r59+5SamqratWvrnnvu0RNPPOHUGDVrVtcny1/WY0+8rCtb36EqVapqyJAhevLJJx3W69Spk3788Uf7m7xy5cpq2rSpjh07piZNmrh614BLyn41VP8meV9FE2VTcHCwWl0dpZdf/T/tizui1NQ01a4dUcA5sqZWr16tMWPG6I035qlK5QoaPKifxj0+xGE95sjcUVOpqfAM1FQ4Izg4MFtdzSjEPPnfuvrw8Mx58qK6mpbwv/Wua91SO3+N9eh50mYu/j6/DDh9+rQqVqyoU6dOqUKFCg6PXbhwQXFxcYqMjFRAQECufyB4lYsu9HNnH68oY7l6PE/a1wvJ0sH4QPu/U0Hl9nMVRSkori5Orhwvt33d/XB5h/utDg/KsU7qzzMK/Fz55VZhFGQ8q1+zkjxecceWfZ68mCfNI5J04Yi3w/3ABi0KPZbk2n3NHpskxaZUdbgffXntXMfK79/I1Xl6qTEvjsXP/Jpj25L8/ijJNdWV45X0murq8aipxVtTXT1eSX5/FGa80lRTXT3HubpGZx/P2Zoquaaucng5AAAAAAAW4fByAIBHOL93Z45lBfnkGwAAwB1ougEAAAAAJdb2Xw/nWJbfIeElDU03AAAAAKDQOBotf5zTDQAAAACARWi6AQAAAACwCIeXAx7Gt9noHMsK83MkAKyV/fwzTzr3DChLstdVaioAV6PpBlxsR6+qOZZduTrJDZEAAOD5stdVaioAT0PTDZRwOZv4QW6JA0D+cl5EJucHcADcK7cPxqmrAKzGOd1liM1m04oVK9wdBgCUSMyRKAjeLwCQP+bJ/+Gbbif5t1r63/9amu96BZP3WIU5nygxMVFPPfWUPvvsMx0/flyVK1fWFVdcoYkTJ6pNmzZFCTRXBw4cUGRkpHbs2KEWLVq4fHwAnuV/8+TFXDln/s+pjwYWeJvExL80fvJsff7lFh1P/EuVKlRQs8YNNW7EvWp95RUuj/HY0cPq272dln7wmRo1vtzl43syampO1FQAF7O+pjqOVbh58qK6evwvVapIXc0LTXcpcssttyg1NVWLFy/WZZddpuPHj2vt2rX666+/3B0aALjdrQMeVWpqmha+MUmXRdbU4Z9Pav3W7/T3ydPuDg0lEDUVAPJ3cV2tGVBbiSf+oq7mgcPLS4mTJ89o8+bNeu6559SpUydFRESoVatWGjt2rHr37p3rNkePHlX//v1VuXJlVavVRTfeOloHDh5zWGfhwoVq0qSJAgIC1LhxY82aNcv+WGRkpCTpyiuvlM1mU8eOHS3bPwAoipMnT2rzlp2a9vQIderQUhF1wtTyiiiNGTZEPTq1z3Wbi+fIqlWrql+/fjpw4IDDOguXrNTlV/5LgZXb6sruN2ne0vfsj/Xt3k6SdOe/eqplVB3mSA9CTQWA/J08ecahrtapGe7SulolqnWpqqs03aVEcHA5BQcHa8WKFUpOTr7k+ufPn1enTp0UHBysr7/+Wl9/9aaCgwPVq98IpaSkSpLeeOMNjRs3Ts8884xiY2M1depUPfXUU1q8eLEk6fvvv5ckffXVV4qPj9dHH31k3Q4CQBEEBwcrODhQH6/aoOTklEuun32O3Lx5s4KDg9WjRw+lpGRu/8aC5Xpq4ixNmTBcv+54XxNHP6ApL8/S2x+tlCQtfmeVJGnWm/+nzzf8wBzpQaipAMqanBcDzV/mPOmquvrfefKiuvrjZx+VqrpK011K+Pj4aNGiRVq8eLEqVaqkdu3a6YknntCuXbtyXf/dd9+Vl5eX3nzzTTVr1kxNGkdqwdwJOnQ4QRu+3i5JmjJlil588UXdfPPNioyM1M0336xRo0Zp7ty5kqRq1apJkqpWrarQ0FBVqVKleHYWAArIx8dHC+ZN0JKln6pKWCe17zxYE158VT//tifX9XPMkU2aaOHChTp06JA2bNggSXrm2Tf1/LMjdfONnRVZt6b6de+iB2Lu1IJlH0qSKv93TqxYqbJCQqozR3oQaioA5C97Xe1ye0zh6+p/58mL62rd2qWrrnJOdylyyy23qHfv3tq0aZO2bt2qzz//XNOnT9ebb76pmJgYh3W3b9+uP/74Q+XLl//vkgxJ0oULKdq3/4j+/PNvHT58WEOGDNE999xj3y4tLU0VK1Yspj0qPXybjXa4X5iLVQAomltu7KLePa7Vpm926NvvftZnn27VS28u1uvPjNddN/d1WDfnHJnpwoUL2rdvn65o7KXDR47rnvum6N77n8l80EhpaemqUD64uHYJFqKmllzUVKBkuLiubl7zi9Zs2lK4upo1T15cV03m46WlrtJ0lzIBAQHq2rWrunbtqvHjx2vo0KGaMGFCjj8QMjIyFB0draVLM69cmHHhF/tj1UIq68KFzMPp3njjDbVu3dphW29vb2t3AgAsEhDgr65drlHXLtdozMBhGv7EJD3zyuwcfxxknyMvVq1aNZ3/+ztJ0tzXn1Trq6MkSckJmQePeXsxR5YW1FQAyF9WXW3fqJ3GPnBvoepq1eCj9nkyq65m1VQps67+Y+1uWI6mu5Rr2rRprr+Pd9VVV2nZsmWqXr26KlSooIx/Tjk8XrFisGrWrKn9+/frzjvvzHVsPz8/SVJ6errL4y6JbDbH+8a4Jw4ArtO4/mX65KsNOZZnnyOzK+9XVTXDqysu7qjuvL2nJOmCv2Pz5OvrK0nKKCNzZFlATQWA/BWmrmb8cypznryormavqbEpnl1XOae7lEhKOqnOnTvr7bff1q5duxQXF6f3339f06dPV79+/XKsf+eddyokJET9+vXTpk2bFHfgqDZu2q6Rj7ygI0eOS5ImTpyoadOm6eWXX9aePXv0888/a+HChZoxI/MwrurVq6tcuXL6/PPPdfz4cZ06dSrH8wBASZCUlKTrew7T2++s1q6f9yruwFF99NkavfTmYvW+vkOO9XPMkXFx2rhxox566CEdOXJEkjR+3H/07AsL9crr72jP3oP65fe9WvLhx3plwVuSpMpVQuQfEKAtmzcq6cSfzJEehJoKAPlLSjrpUFcPHC5KXc2cJy+uq3vjSldd5ZvuUiI4OFCtW7fWSy+9pH379ik1NVW1a9fWPffcoyeeeCLH+oGBgfr666/12GOP6eabb9aZM6dVM7yaOndspQoVgiRJQ4cOVWBgoJ5//nk9+uijCgoKUrNmzTRy5EhJmRdQeOWVVzR58mSNHz9e7du3t19gCABKkuDgYLW6Okovv/p/2hd3RKmpaapVI1R333aTxgwbkmP9nHPkGdWsWVNdunT57yf0xzX07hsVGBigF19aosfGvaKgcuV0ecP6un9Q5jeZPj4+GvP4JL0x52XNff1F5kgPQk0FgPwFBwc61tWUNNUKLWxd/e88eXFdjX1FQYGlp67SdDsp+fvMf2yvctGFHiPjn+0O94syVnb+/n6aNm2apk2bluc6Jtvx0KGhofafKskeW5YBAwZowIABeY45dOhQDR06tBARAyhtsubJi1044nh4WGCDFk6Pl31eyj5WQfj7+2vq5Ac0dfIDeY6X3xyZM7bM/x/Qv4cG9O+RZ3w3/usO3fivOyRJ0ZfXLnT8pQ01NXfUVABZSnJNlTLnyYvram7jOVtXL44tq65mHy/2v79K5ql1lcPLAQAAAACwCE03AAAAAAAW4fByoBTgyuoAALhG9poqUVcBFA1NNyBpR6+qDvevXJ3kpkgAAPBs1FQAcETTDQAAAAAulv0DKIkPocoqzukGAAAAAMAifNMNAABQhqUkHtbuaXfIduKwfRnfxgGA69B0wyNl/wOBPw4A1+BcTAAAANfi8HIAAAAAACxC041ideDAAdlsNu3cudPdoQBAiXTg4DEFNbxSP+3+3d2hoISjpgKutaNX1Rw3eLYDB4/JO7Cl22sqh5c7yTsw2gWjOD9GQX8P8u7/TNSStz/JsXzv3r2qX79+wQbLxYEDBxQZGWm/X6FCBTVp0kTjxo1Tnz59nB6ndu3aio+PV0hISJFj8mT8BihKI9fMkxfLe7xze3YWeLS85sldaz5WvYg6BR4vu4NHjqlp5972+0HB5RV5WX0N/s8Duq5jV6fHqV2rhvZ9s0YhlSsVOaaSippKTXUlaipKo+KsqVLB66on1dSj+z9X8AX3foBC012K9OjRQwsXLnRYVq1atRzrpaSkyM/Pr1DP8dVXX+nyyy/XyZMnNXHiLN188y16660fVb9+lCSpZcv8t/f29lZoaGiuj/3wQ85llxoPAAqie9e2WjB3vCTpQry3JKlalco51ivKPPnJojlq0qCediR56/13l+jRkcP09vurFX15bae29/b2Vmi1st1ElQTFXVNnzSpbNTV7o0yTDHged9bU+g0aObV95jwZogtHvAv1/K7C4eWliL+/v0JDQx1u3t7e6tixox544AGNHj1aISEh6tq1qxYtWiSbzWa/eQe2lHdgS016em6+z1G1alWFhoaqcePGuu++Z5SWlqrt29fbH//888917bXXqkpYR1Wr1UV9bh6pffuP2B/Pfijchg0bZLPZtHbtWg0c2FLXXhuowYPb6sCBoh8CYrM53gDA399XoaEhmbdqmTdvb2/1+PfQS86TWbeJEyfm+xxVKlVSaLUQ1b2svoY/9KjS0lL1w/db7I9nzZOVKlVS1apVdcMNNzjOk9kOL//6ux8U1PBKff/tZt11W2+1a9lQg++8Sb//zuHnVirumvrMM9RUAJ4lv5o6etKzJaamXnx4ubtqKk13GbF48WL5+PhozpxvNGLEXNWv31+ffRav+PjM29LFz8jHx1tt21zh1HipqalaseINSZKPj699+blz5zR69Gh9t2mJ1nw6S15eNt1y+yPKyMjId7xx48bpoYde1JIlP8jHx0dTpgwu/M4CQCFkzZPffPON5s6dq/79+9vnyPj4eL3zzjvy8fFRu3btnBovLTVVyz94R5Lk4/O/A8uy5slt27Zp7dq18vLycmqenPXK8xo55im9tewTeft4a/Bg5kl3saKmvvEGNRVA6bF0xSpq6kU4vLyEK8jhYZ988omCg4Pt93v27Kn3339fklS/fn1Nnz7dYbyAgHIKDZX27dunB0dP1zOT7lfXLtfkG0/btm3l5eWlf/75RxkZGQoPr6vrr7/N/vgtt9wiScr4Z7sk6c3Z4xUa0VW7d+9WVFRUnuM+88wzqlixgyRp0KDHNXJkbyUnX5AUkG88QGGVlkMbc7vICz/zlbdPP9usCtXaZ94xUrfr2untV56XJIXXilD/QSN0Ni3z4d37T9gPCd+3b58eeOABTZ06VV27drXPcbnpcnuMvLxs+udCcuY8WbO2uvb433m6WfNklvnz56t69eraHbtfUZfnfb7w8AfHKPrqzDl60JDhGjk8RhcuXFBAAPOks0pNTY3dr+Ytr85zXGoqihvn1ZdN+dXUy+rU1vTp0x3WL1eunKSyWVNpukuRTp06afbs2fb7QUFB9v9umcdfFadOndINN9ygHt3a6pFRAy/5HMuWLVPjxo21Z88e3XffSD3++BxVrFjF/vi+ffv01FNP6dutX+tE0kn7p0x7tq7XZf5p+ufIMUnSPwd/l1q0sG/XvHlzHTyY+d8hIWGSpL//TpRU9AsxAECWjh2iNevlsZKk5AQvBf73DwBJanp5s1y3yZone/bsqTFjxlzyOZbMfFYNL6ur9Xv/1ovPTdLY8VNVsWIl++P2efLbb3XixAn7PHnocEK+fyA0aNjE/t8h1apLkhITE1WnDvOkFYq7po4cOVKjRjlXUw8dTlD9ijupqQDcKr+aelVU01y3Kas1laa7FAkKCsrzqqoX/7GQJT09Xf3791eFChU07/UnnXqO2rVrq0GDBmrQoIHGjQvWY4/dovfe260qVTLfrH369FHt2rU19/VxCg+rpoyMDDVv2V+pqWn5juvr63vRvcyPSy91WAhQkpSWb85Lu6DAcqpfL/Pb6wv+jhdVKVcuMMf6F8+TWYf/XkrN0FDVrxuh1PCrVC4wSI+Oulfvf7xWUubzZs2Tb7zxhsLDw5WRkaGoqCilpOQ/T158OJ3NxjxpteKuqcHBwerXz7maeqn3CjUVQHHIr6YGBpbLsb4ra2qVqpkXHPWUmso53WXYSy+N0s8//6zly5crIMC/wNtHR3dQvXpRWrDgGUnSyZNJio2N1ZNPPqkunVqpSeNI/X3yjKvDBoBiM2rUxfNkwQ85i776GtWr30gL5r0qSUpKumie7NJFTZo00d9//+3qsOEGRa2pHTpQUwGUbmW5ptJ0l1ErVy7UBx/M0pw5c+Tl5aWEhBNKSDihs2fPF2icO+98WMuXz1Vi4lFVqFBZVatW1bx58/THvsNat2GbHnlshkV7AADWWrn8Pc2adfE8maCEhASdPXu2QOP8O+YeffT+/+no0aOqXPmiefKPP7Ru3TqNHj3aoj1AcaGmAkD+Fi5c6NKamng8waNqKk13GfXjjxuVnp6uvn37KiwsTDUv66Gal/XQizPfKtA47dvfoLCwulqw4Bl5eXnp3Xff1fbt29W8ZX89/NgMPTf1IYv2AACs9eMP3zrMk1m3F154oUDjtO9wvcJq1tIzzzjOk1FRURo1apSef/55i/YAxcWZmnp+70777Z+43bmOQ00FMvETdaXPxo0bXVpTF8x71aNqKud0Oyn9fOZV9bzKRee7Xn5XRs1+Zb5LjVUQC+dNzHO8DRs25Fg2ceIiTZy4KM/YpMw/ELJUl2RyOUnVZrPpgw9+s9+//vrrtXv3bofx0s//YP9B+oha4Tq3Z4f9sY4dO+YYt1GjFtq2jRNiUXZ56lVgs+bJi2XlfpbABi2cHi/7vJR9rIJaOG9ino99/vabik1xvBL8xGdmaNWK952KTco5v2Wx2Wz6cNV6+5XQs+bJi6Wf/1/xqBvhOM51rVvq3J4dik2paF/WqPHluc7JnsLZmirlrKueWlMvFlErvEg1VZIuHKGmAqWZp9fU7BYtWqRFixblun5hamoWZ2rqxb2Iu2oqTTcAAAAAeJjtvx7OsSzrA16ULDTdAAAAADzSjl6ORylduTrJTZEAeaPpBoBi5kl/IPg2c7wgSURYBa16ub+bogEAAPA8XEgNAAAAAACL8E13Ljz14jQXX/hMKtjFFTyJMf/9H2PdD9gDpYkrL8yWkWH+u33hBsh+/llRzz1z9XilQUmsYSUxpkvJXlOl0llXqamA+3niHFmWuOLfx+3fdM+aNUuRkZEKCAhQdHS0Nm3alO/6S5cu1RVXXKHAwECFhYXp7rvvVlKSaw7N9PX1lSSdP1+w39VE8Tp/QTJpqdKZv9wdClDmJJ36RxLzZEmWkpIiSfL2LtqVaV0hK4asmFDyUFNRFpTUnyCj9/AMWf8+Wf9eheHWb7qXLVumkSNHatasWWrXrp3mzp2rnj17avfu3apTp06O9Tdv3qyBAwfqpZdeUp8+fXT06FENGzZMQ4cO1fLly4scj7e3typVqqTExERJUoBXzsT0sl0o8LgX/rtJRnLRx8pvvOR0x09hvC5cevy8xnL1eNnHKsx4xmT+cfDniZPK2P6FbCn/XHJ7AK51/kKawzwZGBgo238nSmfmEWWkOdy9kM884Mw84tLxso2V33gldV8zMjL0559/KjAwUD4+7j+YzcfHR4GBgfrzzz/lXVXy8uCaKl26bhVXTXXFeNRUwP2y9x5FramS83WrsH+bWzGe1fvqzHi5jWWM0fnz55WYmKhKlSoV6cNst1bkGTNmaMiQIRo6dKgkaebMmfriiy80e/ZsTZs2Lcf63377rerWrasHH3xQkhQZGal7771X06dPd1lMoaGhkqTExESZ1ERJjn8h2Hzj8t3+xImcy+L+u4lJ/dNheerfX+dY16+646GRBRvP8cAFPxNwyfjyGsuZ8YoSW+HGM5JJVXnbJ7rw9Uc5VwYs4kkXPisOF8+TF3NmHvkzzfHT/DifvAuyM/OIK8fLPlZ+45XkffXy8lKdOnXsf7i5k81mU1hYmOLi4nTocMFrquR83bK6pkqXrltFqamuHo+aipIqe02VynZddWVNlZyvW87Mcflx5XhW76sz4+VXoytVqmT/dyostzXdKSkp2r59ux5//HGH5d26ddOWLVty3aZt27YaN26cVq9erZ49eyoxMVEffPCBevfunefzJCcnKzn5fx93nD59Ot+4sv5AqF69us79doOyH4H/x7Qgh/tN533rcL9nz5xj/vZb5v+n7OvrONb8oBzrRrpwvOxj5TZeXmM5M17x72uGfGxJ8rad1wlTPufKLpT9is2ZZlj6nGVdQXM1PxR0a108T6amptqXOzOPPJBwo8P9X1Y61oCLOTOPuHK87GPlN15J3lc/Pz95eVl39lhBc9XPz08NGjTQ2diekhy/JbhUTZWcr1tW11RnxitKTXX1eNTUso2aap2iXiclez6k/jzDZTVVcr5uOTPH5ceZ8fo4Wbes3ldnxstrLF9fX5ecruW2pvvEiRNKT09XjRo1HJbXqFFDCQkJuW7Ttm1bLV26VP3799eFCxeUlpamvn376tVXX83zeaZNm6ZJkyYVOD5vb2/5e+X8wXnbCcfCFBDg+AnOwYM5x8paxebl+GD2sVw9Xvaxchsvr7GcGc+d+4rSp7C5ipxy/oFrzR+33t7eDoXImXnkYLzjH365zVN5jZfbPOLK8bKPld94JX1frVSYXPXy8pK/15Ecy11Zt6yuqc6MV5Sa6urxqKllGzXV87iipkrO1y1n5rj8uLJuWb2vzoxndU11+4XUsh/+ZozJ85C43bt368EHH9T48eO1fft2ff7554qLi9OwYcPyHH/s2LE6deqU/Xb4cM5GGoD7kauAZyBXgZKPPAVKFrd90x0SEiJvb+8c32onJibm+PY7y7Rp09SuXTuNGTNGktS8eXMFBQWpffv2evrppxUWFpZjG39/f/n7+7t+B1BkxfVtHDwDuQp4BnK1bKBGezby1HXKUi7kdug7XMNtTbefn5+io6O1Zs0a3XTTTfbla9asUb9+/XLd5vz58zmuxpp1GAa/b2e9sjTpAACQHXUQAFAYbr16+ejRo3XXXXepZcuWatOmjebNm6dDhw7ZDxcfO3asjh49qiVLlkiS+vTpo3vuuUezZ89W9+7dFR8fr5EjR6pVq1YKDw93566USFy4BPAM/CEPACjLXFkH+fsXJZFbm+7+/fsrKSlJkydPVnx8vKKiorR69WpFRERIkuLj43Xo0CH7+jExMTpz5oxee+01Pfzww6pUqZI6d+6s5557zl27gBKCCRYoPtkvu8GBRoD78eEdAJRcbm26JWn48OEaPnx4ro8tWrQox7IRI0ZoxIgRFkflPFcXOYomYA0+RQdKPlfnFjUVsAa5BRSM269eDgAAAABAaeX2b7oBAADKGo6YAYCyg6YbAOA22c8PlzhHHABQdnCdlLKBw8sBAAAAALAITTcAAAAAABah6QYAAAAAwCI03QAAAAAAWISmGwAAAAAAi3D1cgBAqcHV0AEAQEnDN90AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiPu4OAAAAAABQdDab431j3BMHHPFNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFvFxdwAAAAAAABSEzeZ43xj3xOEMvukGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALMLVywEAyIMnXRkVAACUTDTdAAAAAAAH2T94lvjwubBougEAAAAAlirLR49xTjcAAAAAABbhm24AAIoBh+kBAFA20XQDyKEsH/4DeAqaeMAzUFMBcHg5AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARQrVdL/11ltq166dwsPDdfDgQUnSzJkz9fHHH7s0OAAAAAAAPFmBm+7Zs2dr9OjR6tWrl06ePKn09HRJUqVKlTRz5kxXxwcAAAAAgMcqcNP96quv6o033tC4cePk7e1tX96yZUv9/PPPLg0OAAAAAABPVuCmOy4uTldeeWWO5f7+/jp37pxLggIAAAAAoDQocNMdGRmpnTt35lj+2WefqWnTpq6ICQAAAACAUsGnoBuMGTNG999/vy5cuCBjjL7//nu98847mjZtmt58800rYgQAAAAAwCMVuOm+++67lZaWpkcffVTnz5/XgAEDVLNmTb388su6/fbbrYgRAAAAAACPVKCmOy0tTUuXLlWfPn10zz336MSJE8rIyFD16tWtig8AAAAAAI9VoHO6fXx8dN999yk5OVmSFBISQsMNAAAAAEAeCnwhtdatW2vHjh1WxAIAAAAAQKlS4HO6hw8frocfflhHjhxRdHS0goKCHB5v3ry5y4IDAAAAAMCTFbjp7t+/vyTpwQcftC+z2Wwyxshmsyk9Pd110QEAAAAA4MEK3HTHxcVZEQcAAAAAAKVOgZvuiIgIK+IAAAAAAKDUKXDTLUn79u3TzJkzFRsbK5vNpiZNmuihhx5SvXr1XB0fAAAAAAAeq8BXL//iiy/UtGlTff/992revLmioqL03Xff6fLLL9eaNWusiBEAAAAAAI9U4G+6H3/8cY0aNUrPPvtsjuWPPfaYunbt6rLgAAAAAADwZAX+pjs2NlZDhgzJsXzw4MHavXu3S4ICAAAAAKA0KHDTXa1aNe3cuTPH8p07d6p69equiAkAAAAAgFKhwIeX33PPPfrPf/6j/fv3q23btrLZbNq8ebOee+45Pfzww1bECAAAAACARyrwN91PPfWUxo8fr1dffVUdOnTQddddp9dee00TJ07UuHHjChzArFmzFBkZqYCAAEVHR2vTpk35rp+cnKxx48YpIiJC/v7+qlevnhYsWFDg5wUAAAAAwGoF/qbbZrNp1KhRGjVqlM6cOSNJKl++fKGefNmyZRo5cqRmzZqldu3aae7cuerZs6d2796tOnXq5LrNbbfdpuPHj2v+/PmqX7++EhMTlZaWVqjnBwAAAADASgVuuuPi4pSWlqYGDRo4NNt79+6Vr6+v6tat6/RYM2bM0JAhQzR06FBJ0syZM/XFF19o9uzZmjZtWo71P//8c23cuFH79+9XlSpVJKlAzwcAAAAAQHEq8OHlMTEx2rJlS47l3333nWJiYpweJyUlRdu3b1e3bt0clnfr1i3X8SVp5cqVatmypaZPn66aNWuqYcOGeuSRR/TPP//k+TzJyck6ffq0ww1AyUOuAp6BXAVKPvIUKFkK3HTv2LFD7dq1y7H8mmuuyfWq5nk5ceKE0tPTVaNGDYflNWrUUEJCQq7b7N+/X5s3b9Yvv/yi5cuXa+bMmfrggw90//335/k806ZNU8WKFe232rVrOx0jgOJDrgKegVwFSj7yFCgYmy3nzZUK3HTbbDb7udwXO3XqlNLT0wscgC3bHhljcizLkpGRIZvNpqVLl6pVq1bq1auXZsyYoUWLFuX5bffYsWN16tQp++3w4cMFjhGA9chVwDOQq0DJR54CJUuBz+lu3769pk2bpnfeeUfe3t6SpPT0dE2bNk3XXnut0+OEhITI29s7x7faiYmJOb79zhIWFqaaNWuqYsWK9mVNmjSRMUZHjhxRgwYNcmzj7+8vf39/p+MC4B7kKuAZyFWg5CNPgZKlwE339OnTdd1116lRo0Zq3769JGnTpk06ffq01q1b5/Q4fn5+io6O1po1a3TTTTfZl69Zs0b9+vXLdZt27drp/fff19mzZxUcHCxJ2rNnj7y8vFSrVq2C7goAAAAAAJYq8OHlTZs21a5du3TbbbcpMTFRZ86c0cCBA/Xbb78pKiqqQGONHj1ab775phYsWKDY2FiNGjVKhw4d0rBhwyRlHhozcOBA+/oDBgxQ1apVdffdd2v37t36+uuvNWbMGA0ePFjlypUr6K4AAAAAAGCpAn/TLUnh4eGaOnVqkZ+8f//+SkpK0uTJkxUfH6+oqCitXr1aERERkqT4+HgdOnTIvn5wcLDWrFmjESNGqGXLlqpatapuu+02Pf3000WOBQAAAAAAV3O66f7rr790/vx5h8O4f/31V73wwgs6d+6cbrzxRg0YMKDAAQwfPlzDhw/P9bFFixblWNa4cWOtWbOmwM8DAAAAAEBxc/rw8vvvv18zZsyw309MTFT79u21bds2JScnKyYmRm+99ZYlQQIAAAAA4Imcbrq//fZb9e3b135/yZIlqlKlinbu3KmPP/5YU6dO1euvv25JkAAAAAAAeCKnm+6EhARFRkba769bt0433XSTfHwyj1Dv27ev9u7d6/oIAQAAAADwUE433RUqVNDJkyft97///ntdc8019vs2m03JyckuDQ4AAAAAAE/mdNPdqlUrvfLKK8rIyNAHH3ygM2fOqHPnzvbH9+zZo9q1a1sSJAAAAAAAnsjpq5dPmTJF119/vd5++22lpaXpiSeeUOXKle2Pv/vuu+rQoYMlQQIAAAAA4ImcbrpbtGih2NhYbdmyRaGhoWrdurXD47fffruaNm3q8gABAAAAAPBUTjfdklStWjX169cv18d69+7tkoAAAAAAACgtnD6nGwAAAAAAFAxNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYxKkLqZ0+fdrpAStUqFDoYAAAAAAAKE2carorVaokm82W7zrGGNlsNqWnp7skMAAAAAAAPJ1TTff69eutjgMAAAAAgFLHqaa7Q4cOVscBAAAAAECp41TTvWvXLqcHbN68eaGDAQAAAACgNHGq6W7RooVsNpuMMfmuxzndAAAAAAD8j1NNd1xcnNVxAAAAAABQ6jjVdEdERFgdBwAAAAAApY5TTffKlSvVs2dP+fr6auXKlfmu27dvX5cEBgAAAACAp3Oq6b7xxhuVkJCg6tWr68Ybb8xzPc7pBgAAAADgf5xqujMyMnL9bwAAAAAAkDevgm5w+PDhPB/79ttvixQMAAAAAAClSYGb7q5duyopKSnH8m+++UY9evRwSVAAAAAAAJQGBW6627dvr27duunMmTP2ZV9//bV69eqlCRMmuDQ4AAAAAAA8WYGb7nnz5ikyMlK9e/fWhQsXtH79evXu3VuTJ0/WqFGjrIgRAAAAAACPVOCm22az6Z133lFAQIC6dOmivn37atq0aXrooYesiA8AAAAAAI/l1NXLd+3alWPZhAkTdMcdd+jf//63rrvuOvs6zZs3d22EAAAAAAB4KKea7hYtWshms8kYY1+WdX/u3LmaN2+ejDH8TjcAAAAAABdxqumOi4uzOg4AAAAAAEodp5ruiIgIq+MAAAAAAKDUcfpCan/88Ye2b9/usGzt2rXq1KmTWrVqpalTp7o8OAAAAAAAPJnTTfeYMWO0YsUK+/24uDj16dNHfn5+atOmjaZNm6aZM2daECIAAAAAAJ7JqcPLJemHH37Qo48+ar+/dOlSNWzYUF988YWkzKuWv/rqqxo5cqTLgwQAAAAAwBM5/U33iRMnVKtWLfv99evXq0+fPvb7HTt21IEDB1waHAAAAAAAnszpprtKlSqKj4+XJGVkZOiHH35Q69at7Y+npKQ4/KQYAAAAAABlndNNd4cOHTRlyhQdPnxYM2fOVEZGhjp16mR/fPfu3apbt64VMQIAAAAA4JGcPqf7mWeeUdeuXVW3bl15eXnplVdeUVBQkP3xt956S507d7YkSAAAAAAAPJHTTXdkZKRiY2O1e/duVatWTeHh4Q6PT5o0yeGcbwAAAAAAyjqnm25J8vX11RVXXJHrY3ktBwAAAACgrHL6nG4AAAAAAFAwNN0AAAAAAFiEphsAAAAAAIsUqOlOS0vTpEmTdPjwYaviAQAAAACg1ChQ0+3j46Pnn39e6enpVsUDAAAAAECpUeDDy6+//npt2LDBglAAAAAAAChdCvSTYZLUs2dPjR07Vr/88ouio6MVFBTk8Hjfvn1dFhwAAAAAAJ6swE33fffdJ0maMWNGjsdsNhuHngMAAAAA8F8FbrozMjKsiAMAAAAAgFKnSD8ZduHCBVfFAQAAAABAqVPgpjs9PV1TpkxRzZo1FRwcrP3790uSnnrqKc2fP9/lAQIAAAAA4KkK3HQ/88wzWrRokaZPny4/Pz/78mbNmunNN990aXAAAAAAAHiyAjfdS5Ys0bx583TnnXfK29vbvrx58+b67bffXBocAAAAAACerMBN99GjR1W/fv0cyzMyMpSamuqSoAAAAAAAKA0K3HRffvnl2rRpU47l77//vq688kqXBAUAAAAAQGlQ4J8MmzBhgu666y4dPXpUGRkZ+uijj/T7779ryZIl+uSTT6yIEQAAAAAAj1Tgb7r79OmjZcuWafXq1bLZbBo/frxiY2O1atUqde3a1YoYAQAAAADwSAX+pluSunfvru7du7s6FgAAAAAASpUCf9MNAAAAAACc49Q33VWqVNGePXsUEhKiypUry2az5bnuX3/95bLgAAAAAADwZE413S+99JLKly8vSZo5c6aV8QAAAAAAUGo41XQPGjRIkpSWliYp85zu0NBQ66ICAAAAAKAUKNA53T4+PrrvvvuUnJxsVTwAAAAAAJQaBb6QWuvWrbVjxw4rYgEAAAAAoFQp8E+GDR8+XA8//LCOHDmi6OhoBQUFOTzevHlzlwUHAAAAAIAnK/A33f3791dcXJwefPBBtWvXTi1atNCVV15p//+CmjVrliIjIxUQEKDo6Ght2rTJqe2++eYb+fj4qEWLFgV+TgAAAAAAikOBv+mOi4tz2ZMvW7ZMI0eO1KxZs9SuXTvNnTtXPXv21O7du1WnTp08tzt16pQGDhyoLl266Pjx4y6LBwAAAAAAVypw0x0REeGyJ58xY4aGDBmioUOHSsr8ObIvvvhCs2fP1rRp0/Lc7t5779WAAQPk7e2tFStWuCweAAAAAABcqcCHlyclJdn/+/Dhwxo/frzGjBnj9GHhWVJSUrR9+3Z169bNYXm3bt20ZcuWPLdbuHCh9u3bpwkTJhQscAAAAAAAipnT33T//PPP6tOnjw4fPqwGDRro3XffVY8ePXTu3Dl5eXnppZde0gcffKAbb7zRqfFOnDih9PR01ahRw2F5jRo1lJCQkOs2e/fu1eOPP65NmzbJx8e50JOTkx1+4uz06dNObQegeJGrgGcgV4GSjzwFShanv+l+9NFH1axZM23cuFEdO3bUDTfcoF69eunUqVP6+++/de+99+rZZ58tcAA2m83hvjEmxzJJSk9P14ABAzRp0iQ1bNjQ6fGnTZumihUr2m+1a9cucIwArEeuAp6BXAVKPvIUKFmcbrq3bdumZ555Rtdee61eeOEFHTt2TMOHD5eXl5e8vLw0YsQI/fbbb04/cUhIiLy9vXN8q52YmJjj229JOnPmjH744Qc98MAD8vHxkY+PjyZPnqyffvpJPj4+WrduXa7PM3bsWJ06dcp+O3z4sNMxAig+5CrgGchVoOQjT4GSxenDy//66y+FhoZKkoKDgxUUFKQqVarYH69cubLOnDnj9BP7+fkpOjpaa9as0U033WRfvmbNGvXr1y/H+hUqVNDPP//ssGzWrFlat26dPvjgA0VGRub6PP7+/vL393c6LgDuQa4CnoFcBUo+8hQoWQp09fLsh33ndhh4QYwePVp33XWXWrZsqTZt2mjevHk6dOiQhg0bJinzU7qjR49qyZIl8vLyUlRUlMP21atXV0BAQI7lAAAAAACUBAVqumNiYuyfml24cEHDhg1TUFCQJDlcrMFZ/fv3V1JSkiZPnqz4+HhFRUVp9erV9p8li4+P16FDhwo8LgAAAAAAJYHTTfegQYMc7v/73//Osc7AgQMLHMDw4cM1fPjwXB9btGhRvttOnDhREydOLPBzAgAAAABQHJxuuhcuXGhlHAAAAAAAlDpOX70cAAAAAAAUDE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWoekGAAAAAMAiNN0AAAAAAFiEphsAAAAAAIvQdAMAAAAAYBGabgAAAAAALELTDQAAAACARWi6AQAAAACwCE03AAAAAAAWcXvTPWvWLEVGRiogIEDR0dHatGlTnut+9NFH6tq1q6pVq6YKFSqoTZs2+uKLL4oxWgAAAAAAnOfWpnvZsmUaOXKkxo0bpx07dqh9+/bq2bOnDh06lOv6X3/9tbp27arVq1dr+/bt6tSpk/r06aMdO3YUc+QAAAAAAFyaW5vuGTNmaMiQIRo6dKiaNGmimTNnqnbt2po9e3au68+cOVOPPvqorr76ajVo0EBTp05VgwYNtGrVqmKOHAAAAACAS/Nx1xOnpKRo+/btevzxxx2Wd+vWTVu2bHFqjIyMDJ05c0ZVqlTJc53k5GQlJyfb758+fbpwAQOwFLkKeAZyFSj5yFOgZHHbN90nTpxQenq6atSo4bC8Ro0aSkhIcGqMF198UefOndNtt92W5zrTpk1TxYoV7bfatWsXKW4A1iBXAc9ArgIlH3kKlCxuv5CazWZzuG+MybEsN++8844mTpyoZcuWqXr16nmuN3bsWJ06dcp+O3z4cJFjBuB65CrgGchVoOQjT4GSxW2Hl4eEhMjb2zvHt9qJiYk5vv3ObtmyZRoyZIjef/99XX/99fmu6+/vL39//yLHC8Ba5CrgGchVoOQjT4GSxW3fdPv5+Sk6Olpr1qxxWL5mzRq1bds2z+3eeecdxcTE6P/+7//Uu3dvq8MEAAAAAKDQ3PZNtySNHj1ad911l1q2bKk2bdpo3rx5OnTokIYNGyYp89CYo0ePasmSJZIyG+6BAwfq5Zdf1jXXXGP/lrxcuXKqWLGi2/YDAAAAAIDcuLXp7t+/v5KSkjR58mTFx8crKipKq1evVkREhCQpPj7e4Te7586dq7S0NN1///26//777csHDRqkRYsWFXf4AAAAAADky61NtyQNHz5cw4cPz/Wx7I30hg0brA8IAAAAAAAXcfvVywEAAAAAKK1ougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsAhNNwAAAAAAFqHpBgAAAADAIjTdAAAAAABYhKYbAAAAAACL0HQDAAAAAGARmm4AAAAAACxC0w0AAAAAgEVougEAAAAAsIjbm+5Zs2YpMjJSAQEBio6O1qZNm/Jdf+PGjYqOjlZAQIAuu+wyzZkzp5giBQAAAACgYNzadC9btkwjR47UuHHjtGPHDrVv3149e/bUoUOHcl0/Li5OvXr1Uvv27bVjxw498cQTevDBB/Xhhx8Wc+QAAAAAAFyaW5vuGTNmaMiQIRo6dKiaNGmimTNnqnbt2po9e3au68+ZM0d16tTRzJkz1aRJEw0dOlSDBw/WCy+8UMyRAwAAAABwaW5rulNSUrR9+3Z169bNYXm3bt20ZcuWXLfZunVrjvW7d++uH374QampqZbFCgAAAABAYfi464lPnDih9PR01ahRw2F5jRo1lJCQkOs2CQkJua6flpamEydOKCwsLMc2ycnJSk5Ott8/deqUJOn06dOXjDH5rMmx7Gyq4zKTnpxtjZzjZj1V9vGyj+Xq8XKOlXO8vMZybryytK/Oj1ea9zU/WTllTM7ndIYrc7Uw/wbF9f5wbrziya2ytK/OjFea9jUvRc1TqfC56ulzrzPjlaV5pCzta9Z41NT/Ka3vN/a1dO6rc+MVvKZmruNkrho3OXr0qJFktmzZ4rD86aefNo0aNcp1mwYNGpipU6c6LNu8ebORZOLj43PdZsKECUYSN27ciul2+PDhQs0J5Co3bsV3K2yekqvcuBXvjZrKjZtn3C6VqzZjivBxdxGkpKQoMDBQ77//vm666Sb78oceekg7d+7Uxo0bc2xz3XXX6corr9TLL79sX7Z8+XLddtttOn/+vHx9fXNsk/2TvoyMDP3111+qWrWqbDabS/bl9OnTql27tg4fPqwKFSq4ZEwreVq8kufFXBbjNcbozJkzCg8Pl5dXwc9cIVdzIl7reVrMRY23qHkqWZ+rnvZvInlezMRrPXfnKjU1J0+LV/K8mMtivM7mqtsOL/fz81N0dLTWrFnj0HSvWbNG/fr1y3WbNm3aaNWqVQ7LvvzyS7Vs2TLXhluS/P395e/v77CsUqVKRQs+DxUqVPCIN1gWT4tX8ryYy1q8FStWLPS25GreiNd6nhZzUeItSp5KxZernvZvInlezMRrPXflKjU1b54Wr+R5MZe1eJ3JVbdevXz06NF68803tWDBAsXGxmrUqFE6dOiQhg0bJkkaO3asBg4caF9/2LBhOnjwoEaPHq3Y2FgtWLBA8+fP1yOPPOKuXQAAAAAAIE9u+6Zbkvr376+kpCRNnjxZ8fHxioqK0urVqxURESFJio+Pd/jN7sjISK1evVqjRo3S66+/rvDwcL3yyiu65ZZb3LULAAAAAADkya1NtyQNHz5cw4cPz/WxRYsW5VjWoUMH/fjjjxZHVTD+/v6aMGFCjsN4SipPi1fyvJiJt2TytP0kXut5WsyeFm9heOI+elrMxGs9T4y5oDxtHz0tXsnzYibevLntQmoAAAAAAJR2bj2nGwAAAACA0oymGwAAAAAAi9B0AwAAAABgEZpuF5g1a5YiIyMVEBCg6Ohobdq0yd0hSZKmTZumq6++WuXLl1f16tV144036vfff3dYJyYmRjabzeF2zTXXuCXeiRMn5oglNDTU/rgxRhMnTlR4eLjKlSunjh076tdff3VLrJJUt27dHPHabDbdf//9kkrGa/v111+rT58+Cg8Pl81m04oVKxwed+Y1TU5O1ogRIxQSEqKgoCD17dtXR44cKca9cA3y1HXIVdciTx2Rq67haXkqkauehDx1HU/LVfK0cGi6i2jZsmUaOXKkxo0bpx07dqh9+/bq2bOnw0+ducvGjRt1//3369tvv9WaNWuUlpambt266dy5cw7r9ejRQ/Hx8fbb6tWr3RSxdPnllzvE8vPPP9sfmz59umbMmKHXXntN27ZtU2hoqLp27aozZ864JdZt27Y5xLpmzRpJ0q233mpfx92v7blz53TFFVfotddey/VxZ17TkSNHavny5Xr33Xe1efNmnT17VjfccIPS09OLazeKjDx1PXLVdcjT/yFXXcuT8lQiVz0Feep6npSr5GkhGRRJq1atzLBhwxyWNW7c2Dz++ONuiihviYmJRpLZuHGjfdmgQYNMv3793BfURSZMmGCuuOKKXB/LyMgwoaGh5tlnn7Uvu3DhgqlYsaKZM2dOMUWYv4ceesjUq1fPZGRkGGNK1mtrjDGSzPLly+33nXlNT548aXx9fc27775rX+fo0aPGy8vLfP7558UWe1GRp65FrlqnLOepMeSqK3l6nhpDrpZU5KlreXqukqfO4ZvuIkhJSdH27dvVrVs3h+XdunXTli1b3BRV3k6dOiVJqlKlisPyDRs2qHr16mrYsKHuueceJSYmuiM8SdLevXsVHh6uyMhI3X777dq/f78kKS4uTgkJCQ6vtb+/vzp06FAiXuuUlBS9/fbbGjx4sGw2m315SXpts3PmNd2+fbtSU1Md1gkPD1dUVFSJeN2dQZ5ag1wtHmUlTyVy1QqemqcSuVpSkafW8NRcJU+dR9NdBCdOnFB6erpq1KjhsLxGjRpKSEhwU1S5M8Zo9OjRuvbaaxUVFWVf3rNnTy1dulTr1q3Tiy++qG3btqlz585KTk4u9hhbt26tJUuW6IsvvtAbb7yhhIQEtW3bVklJSfbXs6S+1itWrNDJkycVExNjX1aSXtvcOPOaJiQkyM/PT5UrV85znZKOPHU9crX4lJU8lchVV/PkPJXI1ZKKPHU9T85V8tR5PoXeEnYXf7IjZSZ59mXu9sADD2jXrl3avHmzw/L+/fvb/zsqKkotW7ZURESEPv30U918883FGmPPnj3t/92sWTO1adNG9erV0+LFi+0XYCipr/X8+fPVs2dPhYeH25eVpNc2P4V5TUvK614QJfW9czFPyFOJXHWHspKnUsl971zME3LVk/NUIldLupL83sniCXkqeXaukqfO45vuIggJCZG3t3eOTz0SExNzfILiTiNGjNDKlSu1fv161apVK991w8LCFBERob179xZTdHkLCgpSs2bNtHfvXvtVHEvia33w4EF99dVXGjp0aL7rlaTXVpJTr2loaKhSUlL0999/57lOSUeeWo9ctU5ZyVOJXLWap+SpRK6WZOSp9TwlV8nTgqHpLgI/Pz9FR0fbr9qXZc2aNWrbtq2bovofY4weeOABffTRR1q3bp0iIyMvuU1SUpIOHz6ssLCwYogwf8nJyYqNjVVYWJgiIyMVGhrq8FqnpKRo48aNbn+tFy5cqOrVq6t37975rleSXltJTr2m0dHR8vX1dVgnPj5ev/zyi9tfd2eRp9YjV61TVvJUIlet5il5KpGrJRl5aj1PyVXytIAKfQk2GGOMeffdd42vr6+ZP3++2b17txk5cqQJCgoyBw4ccHdo5r777jMVK1Y0GzZsMPHx8fbb+fPnjTHGnDlzxjz88MNmy5YtJi4uzqxfv960adPG1KxZ05w+fbrY43344YfNhg0bzP79+823335rbrjhBlO+fHn7a/nss8+aihUrmo8++sj8/PPP5o477jBhYWFuiTVLenq6qVOnjnnssccclpeU1/bMmTNmx44dZseOHUaSmTFjhtmxY4c5ePCgMca513TYsGGmVq1a5quvvjI//vij6dy5s7niiitMWlpase1HUZGnrkWuuhZ5+j/kqut4Yp4aQ656AvLUtTwxV8nTgqPpdoHXX3/dREREGD8/P3PVVVc5/CyBO0nK9bZw4UJjjDHnz5833bp1M9WqVTO+vr6mTp06ZtCgQebQoUNuibd///4mLCzM+Pr6mvDwcHPzzTebX3/91f54RkaGmTBhggkNDTX+/v7muuuuMz///LNbYs3yxRdfGEnm999/d1heUl7b9evX5/oeGDRokDHGudf0n3/+MQ888ICpUqWKKVeunLnhhhvc9h4pCvLUdchV1yJPHZGrruGJeWoMueopyFPX8cRcJU8LzmaMMYX/nhwAAAAAAOSFc7oBAAAAALAITTcAAAAAABah6QYAAAAAwCI03QAAAAAAWISmGwAAAAAAi9B0AwAAAABgEZpuAAAAAAAsQtMNAAAAAIBFaLpRaBs2bJDNZtPJkyfdHUqpYLPZtGLFCneHgVKGPHUt8hRWIVddi1yFVchV1yoruUrT7YFiYmJks9ly3P744w/LnrNjx44aOXKkw7K2bdsqPj5eFStWtOx5AU9FngKegVwFPAO5Ck/m4+4AUDg9evTQwoULHZZVq1Ytx3opKSny8/OzJAY/Pz+FhoZaMnZ+rNwnwJXIU/IUnoFcJVfhGchVctVT8U23h/L391doaKjDzdvbWx07dtQDDzyg0aNHKyQkRF27dpUkzZgxQ82aNVNQUJBq166t4cOH6+zZsw5jfvPNN+rQoYMCAwNVuXJlde/eXX///bdiYmK0ceNGvfzyy/ZPFQ8cOJDr4TUffvihLr/8cvn7+6tu3bp68cUXHZ6jbt26mjp1qgYPHqzy5curTp06mjdvXr77mtc+7d69W7169VJwcLBq1Kihu+66SydOnHDYbsSIERo5cqQqV66sGjVqaN68eTp37pzuvvtulS9fXvXq1dNnn33m8HwbN25Uq1at5O/vr7CwMD3++ONKS0uTJM2dO1c1a9ZURkaGwzZ9+/bVoEGD7PdXrVql6OhoBQQE6LLLLtOkSZPsY0jS3r17dd111ykgIEBNmzbVmjVr8n0N4JnIU/IUnoFcJVfhGchVctVjGXicQYMGmX79+uX6WIcOHUxwcLAZM2aM+e2330xsbKwxxpiXXnrJrFu3zuzfv9+sXbvWNGrUyNx333327Xbs2GH8/f3NfffdZ3bu3Gl++eUX8+qrr5o///zTnDx50rRp08bcc889Jj4+3sTHx5u0tDSzfv16I8n8/fffxhhjfvjhB+Pl5WUmT55sfv/9d7Nw4UJTrlw5s3DhQvvzREREmCpVqpjXX3/d7N2710ybNs14eXnZ43R2n44dO2ZCQkLM2LFjTWxsrPnxxx9N165dTadOnRy2K1++vJkyZYrZs2ePmTJlivHy8jI9e/Y08+bNM3v27DH33XefqVq1qjl37pwxxpgjR46YwMBAM3z4cBMbG2uWL19uQkJCzIQJE4wxxiQlJRk/Pz/z1Vdf2Z/nr7/+Mn5+fuaLL74wxhjz+eefmwoVKphFixaZffv2mS+//NLUrVvXTJw40RhjTHp6uomKijIdO3Y0O3bsMBs3bjRXXnmlkWSWL1/u1HsAJR95Sp7CM5Cr5Co8A7lKrnoymm4PNGjQIOPt7W2CgoLst3/961/GmMxEa9GixSXHeO+990zVqlXt9++44w7Trl27PNfv0KGDeeihhxyWZZ90BgwYYLp27eqwzpgxY0zTpk3t9yMiIsy///1v+/2MjAxTvXp1M3v27HyfO/s+PfXUU6Zbt24Oyw4fPmwkmd9//92+3bXXXmt/PC0tzQQFBZm77rrLviw+Pt5IMlu3bjXGGPPEE0+YRo0amYyMDPs6r7/+ugkODjbp6enGGGP69u1rBg8ebH987ty5JjQ01KSlpRljjGnfvr2ZOnWqQ2xvvfWWCQsLM8YY88UXXxhvb29z+PBh++OfffZZmZl0ygrylDyFZyBXyVV4BnKVXPVknNPtoTp16qTZs2fb7wcFBdn/u2XLljnWX79+vaZOnardu3fr9OnTSktL04ULF3Tu3DkFBQVp586duvXWW4sUU2xsrPr16+ewrF27dpo5c6bS09Pl7e0tSWrevLn9cZvNptDQUCUmJuY7dvZ92r59u9avX6/g4OAc6+7bt08NGzbM8Vze3t6qWrWqmjVrZl9Wo0YNSbI/f2xsrNq0aSObzeawD2fPntWRI0dUp04d3XnnnfrPf/6jWbNmyd/fX0uXLtXtt99u37/t27dr27ZteuaZZ+xjpKen68KFCzp//rxiY2NVp04d1apVy/54mzZt8t1/eCbylDyFZyBXyVV4BnKVXPVUNN0eKigoSPXr18/zsYsdPHhQvXr10rBhwzRlyhRVqVJFmzdv1pAhQ5SamipJKleuXJFjMsY4JGvWsux8fX0d7ttsthzniGSXfZ8yMjLUp08fPffccznWDQsLy/e5Ll6WFW/W8+e3D1nL+/Tpo4yMDH366ae6+uqrtWnTJs2YMcMhtkmTJunmm2/OEVtAQECur0n250TpQJ6Sp/AM5Cq5Cs9ArpKrnoqmuwz44YcflJaWphdffFFeXpnXznvvvfcc1mnevLnWrl2rSZMm5TqGn5+f0tPT832epk2bavPmzQ7LtmzZooYNG9o/BXOVq666Sh9++KHq1q0rHx/XvY2bNm2qDz/80GHy2bJli8qXL6+aNWtKypygb775Zi1dulR//PGHGjZsqOjoaIfYfv/99zyLQtOmTXXo0CEdO3ZM4eHhkqStW7e6bB/gmchT55GncCdy1XnkKtyJXHUeuWo9rl5eBtSrV09paWl69dVXtX//fr311luaM2eOwzpjx47Vtm3bNHz4cO3atUu//fabZs+ebb8aYt26dfXdd9/pwIEDOnHiRK6fzD388MNau3atpkyZoj179mjx4sV67bXX9Mgjj7h8n+6//3799ddfuuOOO/T9999r//79+vLLLzV48OBLTo75GT58uA4fPqwRI0bot99+08cff6wJEyZo9OjR9glbku688059+umnWrBggf797387jDF+/HgtWbJEEydO1K+//qrY2FgtW7ZMTz75pCTp+uuvV6NGjTRw4ED99NNP2rRpk8aNG1fomFE6kKfOI0/hTuSq88hVuBO56jxy1Xo03WVAixYtNGPGDD333HOKiorS0qVLNW3aNId1GjZsqC+//FI//fSTWrVqpTZt2ujjjz+2f4r2yCOPyNvbW02bNlW1atV06NChHM9z1VVX6b333tO7776rqKgojR8/XpMnT1ZMTIzL9yk8PFzffPON0tPT1b17d0VFRemhhx5SxYoVHSaHgqpZs6ZWr16t77//XldccYWGDRumIUOG2CeMLJ07d1aVKlX0+++/a8CAAQ6Pde/eXZ988onWrFmjq6++Wtdcc41mzJihiIgISZKXl5eWL1+u5ORktWrVSkOHDnU4/wVlE3nqPPIU7kSuOo9chTuRq84jV61nM7kdYA8AAAAAAIqMb7oBAAAAALAITTcAAAAAABah6QYAAAAAwCI03QAAAAAAWISmGwAAAAAAi9B0AwAAAABgEZpuAAAAAAAsQtMNAAAAAIBFaLoBAAAAALAITTcAAAAAABah6QYAAAAAwCI03QAAAAAAWOT/AW6mu2zitKdvAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlKElEQVR4nO3dd3xT1f/H8Xda2lJadqGljFLZWBApgoBYhoCAgBMcX6ECKhRRhvgVUaaCoiIuljJE+SoucOFAligoQxAVFGSPlgrKkNHS9vz+6K+RNGlJaNIk7ev5eOQBObn33M8NvHNykntvLMYYIwAAAAAA4HYB3i4AAAAAAICiikk3AAAAAAAewqQbAAAAAAAPYdINAAAAAICHMOkGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTfy9dJLL8lisSguLs7h4xaLRePGjfNoDdOnT9f8+fM90vfevXtlsVg81j/gTvPnz5fFYsnztmrVKpf6W7Vq1SWt58lMOisxMVE1a9b0ag1AYcgv867mf9KkSVqyZEmB6/H0uA8UBnePqc5mI2e7e/fuvaS6nXHmzBmNGzfO4T4UZPuFUXtRVcLbBcC3zZ07V5L066+/6ocfflCLFi0KvYbp06crIiJCiYmJbu+7SpUqWrdunWrVquX2vgFPmTdvnurXr2/X3rBhQ5f6adq0qdatW+fyep7MpLOeeOIJPfTQQ17bPlBY1q1bZ3N/4sSJWrlypVasWGHT7kyOJ02apFtvvVU33nijO0sE/Jq7xtR169apWrVq7iqrQM6cOaPx48dLktq2bWvzWLdu3bRu3TpVqVLFC5UVX0y6kaeNGzfqp59+Urdu3fTZZ59pzpw5Xpl0e0JmZqYyMjIUEhKiq6++2tvlAC6Ji4tTs2bNCtxPmTJl/Pb/Px+UobjIndFKlSopICDAb7ML+Bp3jan+kslKlSqpUqVK3i6j2OHwcuRpzpw5kqSnn35arVq10jvvvKMzZ85cdL2UlBTdf//9qlatmoKDgxUbG6vx48crIyPDZrnx48erRYsWqlChgsqUKaOmTZtqzpw5MsZYl6lZs6Z+/fVXrV692nq4z4WHlO7fv1//+c9/VLlyZYWEhKhBgwZ6/vnnlZWVZV0m5xDyKVOm6Mknn1RsbKxCQkK0cuXKPA8v/+2333THHXcoMjJSISEhqlGjhvr06aO0tLRLeCaBwmWxWPTAAw9o1qxZqlu3rkJCQtSwYUO98847Nss5Orx89+7duv322xUdHa2QkBBFRkaqQ4cO2rJli6SLZ/LkyZN6+OGHFRsbq+DgYFWtWlVDhw7V6dOnHdY4b9481atXT6GhoWrWrJm+//57GWP07LPPKjY2VuHh4Wrfvr3++OMPm/UdHV6elZWll19+WU2aNFFoaKjKlSunq6++Wh9//HGBn1PAl/31119KSkpS1apVFRwcrMsuu0yjR4+2GbMsFotOnz6tN954w5rdnG/A/vzzTyUlJalhw4YKDw9X5cqV1b59e61Zs8ZLewT4hiuvvFJt2rSxa8/MzFTVqlV18803W9scHV7+/fffq3Xr1ipZsqSio6M1atQonT9/3uG2Fi1apJYtWyosLEzh4eHq3LmzNm/ebLNMYmKiwsPD9ccff6hr164KDw9X9erVNWLECGve9+7da51Ujx8/3pr3nKPTHB0ivmzZMvXs2VPVqlVTyZIlVbt2bd1///06evSoq08Z8sA33XDo7Nmzevvtt3XVVVcpLi5O/fr104ABA/Tee++pb9++ea6XkpKi5s2bKyAgQGPGjFGtWrW0bt06Pfnkk9q7d6/mzZtnXXbv3r26//77VaNGDUnZL0xDhgzRoUOHNGbMGEnS4sWLdeutt6ps2bKaPn26JCkkJERS9puEVq1aKT09XRMnTlTNmjX16aef6uGHH9auXbusy+d46aWXVLduXT333HMqU6aM6tSp43AffvrpJ11zzTWKiIjQhAkTVKdOHSUnJ+vjjz9Wenq6dfuAt+QcqXEhi8WiwMBA6/2PP/5YK1eu1IQJExQWFqbp06frjjvuUIkSJXTrrbfm2XfXrl2VmZmpKVOmqEaNGjp69KjWrl2r48ePS8o/k2fOnFFCQoIOHjyoxx57TI0bN9avv/6qMWPG6Oeff9bXX38ti8Vi3dann36qzZs36+mnn5bFYtF///tfdevWTX379tXu3bv1yiuv6MSJExo+fLhuueUWbdmyxWb93BITE/XWW2+pf//+mjBhgoKDg/Xjjz9y7hmKtHPnzqldu3batWuXxo8fr8aNG2vNmjWaPHmytmzZos8++0xS9qGv7du3V7t27fTEE09Iyj7aRcqetEvS2LFjFRUVpX/++UeLFy9W27ZttXz5crvDU4GiJL8x9Z577tFDDz2knTt32rxv/Oqrr3T48GHdc889efa7bds2dejQQTVr1tT8+fNVqlQpTZ8+Xf/73//slp00aZIef/xx3XPPPXr88ceVnp6uZ599Vm3atNH69ettDnU/f/68evToof79+2vEiBH65ptvNHHiRJUtW1ZjxoxRlSpV9MUXX+j6669X//79NWDAAEnK99vtXbt2qWXLlhowYIDKli2rvXv3aurUqbrmmmv0888/KygoyOnnE3kwgAMLFiwwkszMmTONMcacOnXKhIeHmzZt2tgsJ8mMHTvWev/+++834eHhZt++fTbLPffcc0aS+fXXXx1uLzMz05w/f95MmDDBVKxY0WRlZVkfu/zyy01CQoLdOo8++qiRZH744Qeb9kGDBhmLxWJ+//13Y4wxe/bsMZJMrVq1THp6us2yOY/NmzfP2ta+fXtTrlw5k5qa6vjJAbxk3rx5RpLDW2BgoHU5SSY0NNSkpKRY2zIyMkz9+vVN7dq1rW0rV640kszKlSuNMcYcPXrUSDLTpk3Lt468Mjl58mQTEBBgNmzYYNP+/vvvG0lm6dKlNjVGRUWZf/75x9q2ZMkSI8k0adLE5jVg2rRpRpLZunWrta1v374mJibGev+bb74xkszo0aPzrR3wd3379jVhYWHW+zNnzjSSzLvvvmuz3DPPPGMkma+++sraFhYWZvr27XvRbWRkZJjz58+bDh06mJtuusnmsdzjPuCvnBlTjx49aoKDg81jjz1ms26vXr1MZGSkOX/+vLUtdzZ69+6d51gsyezZs8cYY8z+/ftNiRIlzJAhQ2y2cerUKRMVFWV69eplbevbt6/DvHft2tXUq1fPev/PP//MM6s5+52z/dyysrLM+fPnzb59+4wk89FHHzm9LvLG4eVwaM6cOQoNDdXtt98uSQoPD9dtt92mNWvWaOfOnXmu9+mnn6pdu3aKjo5WRkaG9dalSxdJ0urVq63LrlixQtddd53Kli2rwMBABQUFacyYMTp27JhSU1MvWuOKFSvUsGFDNW/e3KY9MTFRxhi7i8z06NHjop/UnTlzRqtXr1avXr043wU+a8GCBdqwYYPN7YcffrBZpkOHDoqMjLTeDwwMVO/evfXHH3/o4MGDDvutUKGCatWqpWeffVZTp07V5s2bbU7VuJhPP/1UcXFxatKkiU3+O3fu7PBKsO3atVNYWJj1foMGDSRJXbp0sflGO6d93759eW77888/lyQNHjzY6XqBomDFihUKCwuzO4Il51DS5cuXO9XPzJkz1bRpU5UsWVIlSpRQUFCQli9fru3bt7u7ZMCn5DemVqxYUd27d9cbb7xhHQ///vtvffTRR+rTp49KlMj7oOGVK1fmORZf6Msvv1RGRob69OljM3aWLFlSCQkJdmOnxWJR9+7dbdoaN26c7xh5MampqRo4cKCqV69uzX9MTIwk8RrgJky6YeePP/7QN998o27duskYo+PHj+v48ePWAT3niuaOHDlyRJ988omCgoJsbpdffrkkWc8NWb9+vTp16iRJeu211/Tdd99pw4YNGj16tKTsw9sv5tixYw6vvBgdHW19/ELOXKXx77//VmZmps9cfRJwpEGDBmrWrJnNLT4+3maZqKgou/Vy2nJnI4fFYtHy5cvVuXNnTZkyRU2bNlWlSpX04IMP6tSpUxet68iRI9q6datd/kuXLi1jjN25YRUqVLC5HxwcnG/7uXPn8tz2n3/+qcDAQIf7DRRlx44dU1RUlN2pF5UrV1aJEiXyzPuFpk6dqkGDBqlFixb64IMP9P3332vDhg26/vrrnRqPAX92sTG1X79+OnTokJYtWyZJevvtt5WWlnbRX/DIyWZuuduOHDkiSbrqqqvsxs9FixbZjZ2lSpVSyZIlbdpCQkLyHSPzk5WVpU6dOunDDz/UI488ouXLl2v9+vX6/vvvJTn3nhwXxzndsDN37lwZY/T+++/r/ffft3v8jTfe0JNPPmlz/miOiIgINW7cWE899ZTDvnMmxO+8846CgoL06aef2rxwuPL7oRUrVlRycrJd++HDh621XCi/c0FzVKhQQYGBgXl+Ewj4i5SUlDzbKlasmOd6MTEx1oso7tixQ++++67GjRun9PR0zZw5M99tRkREKDQ0NM8P5nJn0p0qVaqkzMxMpaSk8DMoKFYqVqyoH374QcYYm3EuNTVVGRkZTuXurbfeUtu2bTVjxgybdmc+bAOKus6dOys6Olrz5s1T586dNW/ePLVo0eKiPylWsWLFfMfiHDkZff/9963fLhemX375RT/99JPmz59vc92m3BcwRcHwTTdsZGZm6o033lCtWrW0cuVKu9uIESOUnJxsPZQztxtuuEG//PKLatWqZfepYbNmzayTbovFohIlSthM3M+ePas333zTrs+QkBCHn7J16NBB27Zt048//mjTvmDBAlksFrVr187l/Q8NDVVCQoLee+89rtgIv7Z8+XLrp+dSdrYXLVqkWrVqOX0kR926dfX444+rUaNGNjnLK5M33HCDdu3apYoVKzrMf+6rjbtTziksuScNQFHXoUMH/fPPP3YfWi9YsMD6eI68smuxWOwuErp161a73wgHiqPAwEDdfffdWrJkidasWaONGzeqX79+F12vXbt2eY7FF+rcubNKlCihXbt2ORw7L+XnzHLy7My31Dkf1uV+DZg1a5bL20Xe+KYbNj7//HMdPnxYzzzzjMOrlcbFxemVV17RnDlzdMMNN9g9PmHCBC1btkytWrXSgw8+qHr16uncuXPau3evli5dqpkzZ6patWrq1q2bpk6dqjvvvFP33Xefjh07pueee87hlcEbNWqkd955R4sWLdJll12mkiVLqlGjRho2bJgWLFigbt26acKECYqJidFnn32m6dOna9CgQapbt+4lPQc5V2ts0aKFHn30UdWuXVtHjhzRxx9/rFmzZql06dKX1C/gLr/88ovdlVal7N+uzrkWQUREhNq3b68nnnjCevXy3377ze5nwy60detWPfDAA7rttttUp04dBQcHa8WKFdq6daseffRR63J5ZXLo0KH64IMPdO2112rYsGFq3LixsrKytH//fn311VcaMWKEWrRo4f4nRFKbNm10991368knn9SRI0d0ww03KCQkRJs3b1apUqU0ZMgQj2wX8LY+ffro1VdfVd++fbV37141atRI3377rSZNmqSuXbvquuuusy7bqFEjrVq1Sp988omqVKmi0qVLq169errhhhs0ceJEjR07VgkJCfr99981YcIExcbGOnytAYoSZ8bUfv366ZlnntGdd96p0NBQu/OyHXn88cf18ccfq3379hozZoxKlSqlV1991e4nNGvWrKkJEyZo9OjR2r17t66//nqVL19eR44c0fr16xUWFqbx48e7tE+lS5dWTEyMPvroI3Xo0EEVKlRQRESEww+/69evr1q1aunRRx+VMUYVKlTQJ598Yj2cHm7izau4wffceOONJjg4ON8rd99+++2mRIkSJiUlxeGVEf/880/z4IMPmtjYWBMUFGQqVKhg4uPjzejRo22uVDx37lxTr149ExISYi677DIzefJkM2fOHLurIu7du9d06tTJlC5d2kiyuWLxvn37zJ133mkqVqxogoKCTL169cyzzz5rMjMzrcvkXKH82WeftdsXR1cvN8aYbdu2mdtuu81UrFjRBAcHmxo1apjExERz7tw5555IwAPyu9KqJPPaa68ZY7KvoDp48GAzffp0U6tWLRMUFGTq169vFi5caNNf7quXHzlyxCQmJpr69eubsLAwEx4ebho3bmxeeOEFk5GRYV0vv0z+888/5vHHHzf16tUzwcHBpmzZsqZRo0Zm2LBhNldwzanxQnllNafO9957z9qW++rlxmT/CsILL7xg4uLirNtu2bKl+eSTT1x+rgFflfvq5cYYc+zYMTNw4EBTpUoVU6JECRMTE2NGjRplN2Zt2bLFtG7d2pQqVcpIsv4KQVpamnn44YdN1apVTcmSJU3Tpk3NkiVLHObM0bgP+CNnx9QcrVq1MpLMXXfd5bA/R9n47rvvzNVXX21CQkJMVFSUGTlypJk9e7bDK4AvWbLEtGvXzpQpU8aEhISYmJgYc+utt5qvv/7auoyj/BtjzNixY03uad3XX39trrzyShMSEmIkWX+5wNEVyLdt22Y6duxoSpcubcqXL29uu+02s3//frt94urll85ijDEentcDAAqRxWLR4MGD9corr3i7FAAAgGKPc7oBAAAAAPAQJt0AAAAAAHgIF1IDgCKGs4YAAAB8B990AwAAAADgIUy6AQAAAADwECbdAAAAAAB4SLE7pzsrK0uHDx9W6dKlZbFYvF0OUGQYY3Tq1ClFR0crIKDgn+eRVcD93J1TiawCnsCYCvgHZ7Na7Cbdhw8fVvXq1b1dBlBkHThwQNWqVStwP2QV8Bx35VQiq4AnMaYC/uFiWS12k+7SpUtLyn5iypQp4+VqgKLj5MmTql69ujVjBUVWAfdzd04lsgp4AmMq4B+czWqxm3TnHFJTpkwZXnQAD3DXYWtkFfAcdx5eSlYBz2FMBfzDxbLKhdQAAAAAAPAQJt0AAAAAAHgIk24AAAAAADyk2J3TDd+XlZWl9PR0b5eBXIKCghQYGOjtMuBDMjMzdf78eW+XgVyCg4Pd9nNgKBrIqu9hTEVu5NQ3uSurTLrhU9LT07Vnzx5lZWV5uxQ4UK5cOUVFRfEbn8WcMUYpKSk6fvy4t0uBAwEBAYqNjVVwcLC3S4GXkVXfxpgKiZz6A3dk1auT7m+++UbPPvusNm3apOTkZC1evFg33nhjvuusXr1aw4cP16+//qro6Gg98sgjGjhwYOEUDI8yxig5OVmBgYGqXr0639T4EGOMzpw5o9TUVElSlSpVvFwRvCnnzUHlypVVqlQp3jD6kKysLB0+fFjJycmqUaMG/zbFHFn1TYypuBA59V3uzKpXJ92nT5/WFVdcoXvuuUe33HLLRZffs2ePunbtqnvvvVdvvfWWvvvuOyUlJalSpUpOrQ/flpGRoTNnzig6OlqlSpXydjnIJTQ0VJKUmpqqypUrc1hcMZWZmWl9c1CxYkVvlwMHKlWqpMOHDysjI0NBQUHeLgdeQlZ9G2MqJHLqD9yVVa9Ourt06aIuXbo4vfzMmTNVo0YNTZs2TZLUoEEDbdy4Uc899xyT7iIgMzNTkjgk0oflfBhy/vx53iAUUznnm/HBmO/KeQ3NzMxk0l2MkVXfx5gKcuof3JFVvzp+d926derUqZNNW+fOnbVx40YuPFCEcFiN7+LfBjn4v+C7+LfBhfj/4Lv4t0EO/i/4Nnf8+/jVhdRSUlIUGRlp0xYZGamMjAwdPXrU4XH2aWlpSktLs94/efKkx+sE4DqyCvgHsgr4PnIK+Ba/mnRL9p80GGMctueYPHmyxo8f7/G6/F3advtDukMaXPrPduXuryB9SVLW2U029wNC493Wl7v7u5S+EhMTdfz4cS1ZsuSS+tu40fZ+s2aOaytof55EVp3jzmy5O/e+mC1395eT1Q/ffsLuscLe19w5lciqr/D0mFrQ/vxpTL3U/vLKakGyxZiKi3HnGM2Y6v3XEXfyq0l3VFSUUlJSbNpSU1NVokSJPC8+MGrUKA0fPtx6/+TJk6pevbpH64R7OXqz4UmuvkDec984LXjrU0lSYGCgoqOj1a1bN02aNEnly5d3uE7uATgx8UU1aWIuqd6igqz6v/N7Wxbati7ljcylZDW3F1988f8/7N3l8vaLCrLq33x9TJVcz6qjSXJxzyo5dY67vyRyp8IcU6XCef+bW3HKqV9Nulu2bKlPPvnEpu2rr75Ss2bN8rxYTEhIiEJCQgqjvELnyy8UxU3njq00d9YYZWRk6rc9JdSvXz8dP35cb7/9tlPrh4eXVblynq3R1xXVrLr7GyoUTEGzWrZsWUlS1llPVunbiktWyal3kdWCKao5hW8hp87z6oXU/vnnH23ZskVbtmyRlP2TYFu2bNH+/fslZX9K16dPH+vyAwcO1L59+zR8+HBt375dc+fO1Zw5c/Twww97o3zAKiQkSFFREapWLVKdOnVS79699dVXX0nKvoJw//79FRsbq9DQUNWrV09vv/2izfrjxiXa/EZ9+8736aERz+q/o19UhQoVFBUVpXHjxhXiHgFFk6tZffFF26wmJpJVoDC4ktVbbrEfV/PK6iOPPEJW/Vja9mC7G7yHMdV5Xv2me+PGjWrXrp31fs5hMH379tX8+fOVnJxsnYBLUmxsrJYuXaphw4bp1VdfVXR0tF566SV+Lgw+Zffu3friiy+sR19kZWWpWrVqevfddxUREaG1a9dqwID7FBFRRR079sqznwULP9WwIXfphx9+0Lp165SYmKjWrVurY8eOhbUrQJHmTFbvu+8+ValSRb16kVXAWy6W1bfeWqtJk5wbV4cPH0lWAQ9gTM2fVyfdbdu2tV4IzZH58+fbtSUkJOjHH3/0YFWA6z77/FuVqdRGmZlZOncu+2qhU6dOlSQFBQXZXMwkNjZWS5as1ddfv5vvm4PGcXU0ZvR9Cgitozp16uiVV17R8uXL/f5FB/AmV7O6du1avfvuu/m+QSCrgPu5ktUuXWK1datz4+rYsWMliawCbsCY6jy/Oqcb8FVtE+I1/cVROnPmnOa+tVY7duzQkCFDrI/PnDlTr7/+uvbt26ezZ88qLS1ddes2ybfPRnF1bO5XqVJFqampnigfKDZczWp6erqaNGmSb59kFXA/V7J6+vRZnT/PuAoUNsZU53n1nO7ihnNQiq6wUqGqXau6Gjeqo5deeklpaWnWT/feffddDRs2TP369dNXX32lLVu2qHv3e3T+fP4X6QkKsv1MzGKxKCsry2P7gGycL1a0uZrVe+65R+npZNUXkdOizZWsLlzIuOrLyGrRxZjqPL7pBjxg7Nix6tKliwYNGqQ1a9aoVatWSkpKsj5+8GDR/2kEwB9cLKu7dpFVwBfkl9XMTMZVwBcwpuaNb7oBD2jbtq0uv/xyTZo0SbVr19bGjRv15ZdfaseOHXriiSe0bdsGb5cIQBfP6oYNZBXwBflldcYMxlXAFzCm5o1vuvPB7+uiIIYPH6577rlHO3bs0JYtW9S7d29ZLBbdcccduvXWJK1d+7m3Sywy+H1dFER+WU1KStLnn5NVd2BMRUHlldUOHRhX3YkxFQXBmOqYxeR3+fAi6OTJkypbtqxOnDihMmXK5Lusu98guPtFzJ39+cK+njt3Tnv27FFsbKxKlixp81jW2U029wNC4y+5ttx9ubs/Z/rauNG+rVkz9/WXV18F7S+/fyNXsuWMgmTVl7Pg7v4KuzZXcioVfrYKqz9f2Ne8XkcKM6eu9OnLWXB3f77wOlJUxlRn+vP0mJrTH2PqpfGnbBX2vjKmOu7L1/pzR1Y5vBwAAAAAAA9h0g0AAAAAgIcw6QYAAAAAwEO4kBoAAD7mzM4tdm2l6jQp9DoAAEDB8U03AAAAAAAewjfdgJPyuvooAABwDWMqgMKU+wiywj56jG+6AQAAAADwEL7pBgAAAAD4DG9/M+1ufNMNAAAAAICH8E03AKBYKmqfogMAAN/EpBs+b3PXioW6vSuXHnN5ndTUvzRmwgx98dVaHUn9W+XLl9cVV1yhcePGqWXLlh6oEvA9P93SqdC2VfCc/qVyZcqoUf26Gj3kfrW48ooC18QkHv7A/8bUv1S+fAXGVBQ7hTmmSrz/9TQm3YAb3HbnIzp/PkPzXhuv2g2u15EjR7R8+XL99ddf3i4NwP+7MKeXxVbVgZ+Pa+W6H/T38ZPeLg3ABXJn9c8TlRlTAR90YVarlqyu1KN/aeW6H5T880adiQjlw+cLcE43UEDHj5/St2u3aPKTQ9QuoZliYmLUvHlzjRo1St26dZMkWSwWvf7667rppptUqlQp3XxzHa1e/bFNP6tXr1bz5s0VWq6lqsZ21qgnXlZGRoYk6ZNPPlG5cuWUlZUlSdqyZYssFotGjhxpXX/SpPs1evQdhbTXgH85fvy4bU5rVFGzK+I0cmB/Xd+ujST7nNapU0cff+x8TpeuWK3o+Db55vT+++/XHXeQUyAvdmNqjSqMqYAPyp3VGlWjL3lcvbpNnyI/rjLpBgooPDxU4eGl9NEnq5SWlp7ncuPHj1evXr20detWtWrVVWPG3KUTJ7I/tU9NPaSuXbvqqquu0uYf3tarL47S3Dc+0lNPz5EkXXvttTp16pQ2b94sKfsFKiIiQqtXr7b2v2nTKjVtmuC5HQX8WHh4uMs57dq1q+666y7rt2uHDuWf09ZXNdWp02f007bfJDnO6apVq5SQQE6BvDCmAv7hUrKa17jaLP7yIj+uMukGCqhEiRKaO3usFiz8TBWqtFPr1q312GOPaevWrTbLJSYm6o477lDt2rU1ePAknT17Wr/+ul6S9P7701W9enW98sorql+vpm7s0VbjRt+vqS8tVFZWlsqWLasmTZpo1apVkrJfYIYNG6affvpJp06d0tGjKdq/f4fi49sW8t4D3nFm5xa7c6jzkzunbdr309jnX9bPv+2wWe7CnE6aNEmnT5/W+vXZOZ0+/SI5LV1ajRvU0zc/bJRkn9OUlBTt2LFDbdu2ddfTABQ5jrLKmAp4nitjqmSf1Q63J17yuPryC48U+XGVSTfgBrfc2EEHd32uJe89r86dO2vVqlVq2rSp5s+fb12mcePG1r+HhoapVKnS+vvvVEnSnj3b1bJlS1ksFusyrVpeoX/+OaODBw9Kktq2batVq1bJGKM1a9aoZ8+eiouL07fffqtNm1aqQoVI1axZv3B2GPBRGzfa33JcmNNO17XUmvUb1fqmO/Xmh/8e6nZhTsPCwlS6dGmlpmbndPv2fHJ6KHuZNs3jtWb9Joc5XblypSIjI1W/PjkF8pM7q4ypgG+6MKvXXePecfVQyhFJRWdcZdINuEnJkiHq2OFqjRkzRmvXrlViYqLGjh1rfTwoKMhmeYvFYj1HRTI2LziSZIyxLidlv0FYs2aNfvrpJwUEBKhhw4ZKSEjQ6tWrOQwOcFJOTp947F6tWPSG/nNTdz310gzr4/nl1Jj8cpp9/9oWzbR244/aun2HXU795RA4wBdcmFXGVMB35WR11AP3u3lczW7PGVcdZdWfxlUm3YCHNGzYUKdPn3Zq2djYhlq7dq31hUaS1n2/VaVLh6lq1aqS/j0Hbdq0aUpISJDFYlFCQoJWrVrFGwTgEtWvfZnOnDnn1LING+aT0+jKkv49/+zVNxba5dSf3hwAvoYxFfAP7hpXoyNtx1VHWfWncZVJN1BAx44d13VdBuqtt5dq6887tWfPHr333nuaMmWKevbs6VQft96apAMHDmjIkCH67fe9+uiTVRr31CwNG3KnAgKyY5pzDtpbb71lPXfl2muv1Y8//si5Z8BFHDt2zDanew/pw8+X6YXX31C365wbsJOSnMjp/59/9s7HS+1y6i/nnQHeZDem7j3EmAp4SX6nbOXO6t4Dlz6uPjh8ykXHVUdZ9adxld/pBgooPLyUml8Vpxdf/p927Tmo8+ezVL16dd1777167LHHnOqjcuWqWrp0qUaOHKnXXputCuXLqF/fnhr9aH+b5dq1a6cff/zR+gJTvnx5NWzYUPv3H1ZsbAN37xpQZISHh+fKaYaqRUbpnl43aeTA/hfvQFLVqs7l9NoWzbTl1+12OT18+LAaNCCnQH7sx9QMVa8ew5gK+Bi7rKZnqFrUJY6rI5J0ZYs7bLKakfLvckVhXGXSDZ935dJjyjq7yaYtIDT+outd+GmcJDVrlv1n7r6c7S8vISHBmjThAU2a8ECefV142EyOlSuP29xPSEjQ+vXrHdaX47nnntNzzz1n07Zlyxa7fQW84YoPvrJrO3cw0OZ+qTpNnO4vdxZy9+WKkJAQm5w66s9RTo8fP25z35mcTn50uCY/Olyl6lxubduyZculFQ64mb+NqY76Y0yFv9jctaJd25VLjzm1ri+PqZJ9Vh315+y4+v2aBXbLZVzw98mPDteLc2yX8bdxlUk3fEb9+tLMmdKFp2zlDOoACkfuNwjOvjnAxTl6I89rHDyFMRUAfAfndAMAAAAA4CF80w0AAACg2CvI4eBAfph0AwCQh7zOYwUAAK4pzmMqk25csly/ZS9JcnC9BAAexKfyQNGRe1xlTAWAooFJNwDAa7i4GAAA7lOcv032ZVxIDQAAAAAAD2HSDQAAAACAh3B4eTHD+WIAALgHYyqAgtq3Tzp9+t/7HA5eNDHpBgqBxWLR4sWLdeONN3q7FPiA3Bc/87cLnxXVNwjkFP7E319HCoKs4kLFOQu+jqz+i0k38uTOF7GCXGE5qNFwB60LL7kWx/7t7/zPU11eOzX1L42ZMENffLVWR1L/Vvny5XXFFVdo3LhxatmypTsLlSTt3btXsbGx2rx5s5o0aeL2/oFLEdLcmVwucMu2TnzYx+V1bHP6l8qVKaNG9etq9JD71eLKK9xS14XIqX9z9y8D+MrEwP/G1L9UvnwFxlQUO4U5pkpuGFeP/KVyZRlX8+L1Sff06dP17LPPKjk5WZdffrmmTZumNm3a5Ln8woULNWXKFO3cuVNly5bV9ddfr+eee04VK9oPjkWBKz/L5SsDenF0252P6Pz5DM17bbxqN7heR44c0fLly/XXX395uzS4AdkqGi7M6WWxVXXg5+Naue4H/X38pLdLA3CB3Fn980RlxtQixN9/6pKfzP3XhVmtWrK6Uo/+xbiaB69OuhctWqShQ4dq+vTpat26tWbNmqUuXbpo27ZtqlGjht3y3377rfr06aMXXnhB3bt316FDhzRw4EANGDBAixcvLpSafeXbX/iO48dP6du1W7Tiy1lKaBOvgNAYxcTEqHnz5nmuk5p6SC+8MFw//PCVAgICdMUV1+iNN15UzZo1rcvMW/CxnnthgfbsTVbNmjX14IMPKikpSZIUGxsrSbryyislSU2bJmjWrFUe20d/Q7Zs8QZBOn78uE1OJSkyoJqaXRGX5zqHDh3SqFHO5vSwYqKjNajPHbrvrl6SyKkzCntMJQu+L/eYKkmxofGMqV7EmApHcmf13MFA1agane+4mjurCQnX6MUXX1SNyH+XsWZ1z2HFVM1/XE1ISNCqVas8to/u5NWrl0+dOlX9+/fXgAED1KBBA02bNk3Vq1fXjBkzHC7//fffW18oY2Njdc011+j+++/XRkc/9AoUkvDwUIWHl9JHn6xSWlr6RZc/c+aMBg1qp1KlwjV79jd67bVvFRoaruuvv17p6dnrvzZ3sZ4YN10TxyZp+/btmjRpkp544gm98cYbkqT169dLkr7++mslJydrypQPPbZ/QFEQHh7uck7btXM+p79ufk/jhj+giS9O11sffiyJnAKXgjEVnmCx2N5QcO7Ianh4TlbPS7LN6o+ff3jRcfXDD/0nq16bdKenp2vTpk3q1KmTTXunTp20du1ah+u0atVKBw8e1NKlS2WM0ZEjR/T++++rW7dueW4nLS1NJ0+etLkB7lSiRAnNnT1WCxZ+pgpV2ql169Z67LHHtHXrVofLv/POO7JYAvT446+rdu1Gio1toLFj52n//v3WT+ueevp1Pfv0UN18Y3vFxsbq5ptv1rBhwzRr1ixJUqVKlSRJFStWVFRUlMqWrVAo++pJZPVfud8c8Aah4HLntE37fhr7/Mv6+bcdDpd/5513FBDgQk5rVlXPzh30QOJdmrvoA0lFM6cSWYVnOcoqY6rryCk8LXdWO9yeeNFxNXdW5837/6x+s0mSbVZrVr/4uFqhgv9k1WuHlx89elSZmZmKjIy0aY+MjFRKSorDdVq1aqWFCxeqd+/eOnfunDIyMtSjRw+9/PLLeW5n8uTJGj9+vFtrB3K75cYO6nb9NVrz3Wb98OMxffHFF5oyZYpef/11JSYm2iy7adMmHTz4hxISStu0nzt3Trt27dIV9QN04OAR3Ttoou4f/JRyPhvLyMhQ2bJlC2mPCh9ZhaddmNPvf/hZn3+2Ti+8/oZefWqM7r65h82ymzZt0h9/uJJTSUbKyMhUmdLhhbVLXkFW4YozO7eoVJ0mLq2TO6tfLl/FmOoif88pP8fnHy7M6rfLftGyNWvzHVdzZzUg4P+zuvug/vzzb9us/v+/eVEZV71+ITVLrlQZY+zacmzbtk0PPvigxowZo86dOys5OVkjR47UwIEDNWfOHIfrjBo1SsOH/3ulzpMnT6p69eru24FcOF+s+CpZMkQdO1ytzjfEa8yYMRowYIDGjh1r9wYhKytL9evHa+JE26tSNmqU/Qnemb9/kCTNevVxtbgqTgEl/z03JjAw0OP74S3ezmpBc8obBP+Qk9OOHa7WyD4DlfTYeD310gy7NwdZWVmKj4/Xo486l1NJSkvJfjMfGFB0cyr5f1bhHy7M6tiJ8YypLvJ2TiWyWlzkZLVNvdYa9cD9+Y6rubPaqFH2nxXDD+ncuTRJ/2Y1Z0yVisa46rVJd0REhAIDA+2+1U5NTbX79jvH5MmT1bp1a40cOVKS1LhxY4WFhalNmzZ68sknVaVKFbt1QkJCFBIS4v4dAC6iYcOGWrJkiV1706ZN9b//LVL58pUVHl7G2l67dvafpYMrqmp0Ze3Zc0h33d5FAaG17foIDg6WJGVmZnqkdm8gq/CG+rUv06dfr7Jrb9q0qRYtcj6nknQuxPZNQVHMqURW4R2Mqa4hp/CW/MbV3FnNyWnW2RMqWzbcJqu5x1TJv7PqtXO6g4ODFR8fr2XLltm0L1u2TK1atXK4zpkzZxQQYFtyzqeUho/T4CZndm5xafljx47rui4D9dbbS7X1553as2eP3nvvPU2ZMkU9e/a0W/6uu+5SuXIRevjhntq8eY0OHdqjTZtW66GHHtLBgwclSWNG36enn5unl159Wzt27NDPP/+sefPmaerU7N87rVy5skJDQ/XFF1/oyJEj+uefEwXeb6AoO3bsmG1O9x7Sh58v0wuvv6Fu1yXYLX/XXXcpIsKFnO7cp19+36kFH3ykl+a+KYmcApfCbkzde4gxFfBBubO698DFx9XcWV29OierRyTZZnXnnouPqydO+E9WvXp4+fDhw3X33XerWbNmatmypWbPnq39+/dr4MCBkrIPjTl06JAWLMj+4ffu3bvr3nvv1YwZM6yHlw8dOlTNmzdXdHS0N3cFxVh4eCk1vypOL778P+3ac1Dnz2epevXquvfee/XYY4/ZLV+qVCnNmvWNXnnlv3rkkZt15swpVapUVV27dlCZMmUkHdGAe25UqVIl9fwLC/Tf0S8rLCxMjRo10tChQyVlX7zipZde0oQJEzRmzBg1adKGnzcB8hEeHp4rpxmqFhmle3rdpJED+9stX6pUKX3zzTcaMMDZnL6ksNBQXV63tgb3vUsSOQUuhf2YmqHq1WMYUwEfY5fV9AxVi8p/XM2d1WrVqqpDhw4qUyZMkmyzuv0lhZXKf1xt06aN3/xkmFcn3b1799axY8c0YcIEJScnKy4uTkuXLlVMTIwkKTk5Wfv377cun5iYqFOnTumVV17RiBEjVK5cObVv317PPPOMt3YBheD8z1OVdXaTTdu5g7aHnDi6SEvuX5Jr1iz7z9x9OerPFSEhwZo04QFNmvCAJCkgNN5umdxHYkRERGncuDfyqC/7zzt7X687e1/vsD9JGjBggAYMGCDJfl8Bb0hbf5dd28Wy6uj/bl5ZLVhOQ2xy6qi/3DmNinI+p3nVR07ha5wZU6WLZ7WwxlTJflxlTEVxcCljquR8VguSU8k+q476u1hWHdWWk9W86rswq/7E6xdSS0pKUlJSksPH5s+fb9c2ZMgQDRkyxMNVAQAAAABQcF47pxsAAAAAgKKOSTcAAAAAAB7i9cPLAQAAAABwRV7nr/sivukGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQzukuoKBGw3O1TPVKHQDy586s2vdVsP4AZCNbcOTMzi029x39NvGl9lXQ/oord7//9eUx2pP7GlOljF4Z3rtA/cE/XNKk+80339TMmTO1Z88erVu3TjExMZo2bZpiY2PVs2dPd9dYrDCJ938M6AAAAAByuHx4+YwZMzR8+HB17dpVx48fV2ZmpiSpXLlymjZtmrvrQwEENRpud0PxtXffYQWWaqYtW7Z4uxTk4u6cknv/tnffYYXVvVI/bfvd26X4PbIAT2FMBfxDTla9Paa6/E33yy+/rNdee0033nijnn76aWt7s2bN9PDDD7u1OECSLBZJindjj/n3dXrHFpd6u+e+cVrw1qd27VuXfaRaMTVc6suRvXv3KjY21nq/TJkyatCggUaPHq3u3bs73U/1apE6tPsLVa4eV+CaUHzknqjkdyhcYCl35lTKL6uu5lTyfFb3HTyshu27We8XJKu7vlumiPLlClwTkFtxH1PtchoergaXX86YCp9TmGOq5AdZLeD73/BzFQtcU0G4POnes2ePrrzySrv2kJAQnT592i1FAf6mc8dWmjtrjCTpXHKgJKlShfJ2y6Wnpys4OPiStvH111/r8ssv1/HjxzV9+nTdcsst+vHHHxUX59yAHxgYqKioCAWU4FIOKL4KI6ufzp+pBnVqKb1CNZusSi5ktVLEJW0bKAouzKmUnVVP5fTEyVOat3QlYypwCbw5prqa1XMHAy9p++7i8uHlsbGxDg+l+fzzz9WwYUN31AT4nZCQIEVFRWTfKmXfAgMDdf1/Bmj4+Kc1fPhwRUREqGPHjpo/f76uuspidxs3bly+26hYsaKioqJUv359PfXUUzp//rxWrlxpfXzt2i80YMA1ateunCpWrKgbbrhBu3YftD6e+1C4VatWyWKxaPny5WrWrJlKlSqlVq1a6fffOaQV/mPTrwdsbheTX1YfeOCBi2bVYrl4ViuUK6eoShEFyuqFh5d/88NGhdW90i6re/eS1cLG4eqFwyanUZ4ZU3NyWq9W7EVzet11jKkoHtw5pg4f/7Tu6nuvypWvoJatr9W4p6Z6bUy98PDyvMZUT2fV5Y/nRo4cqcGDB+vcuXMyxmj9+vV6++23NXnyZL3++uueqBE+wtNXqqyqSQXqz1ctXPKJBiUN1nfffSdjjGJiYhQVdb318R9/XKUxY+5W69atnerv/Pnzeu211yRJQUFB1vZz507rzjuHq3btRrrsstMaM2aMbrn9Yf34/f8UEJD352ujR4/W888/r0qVKmngwIHq16+fXnzxu0vcW8B/vfHGGxo0aFC+WR071neyOnFiP82ZQ1b9laevsMyY6nxO51wkp2fPntaiRYypgCsWLvlEN/W6W3Pe/FAyRlHR1XR1/J3Wx31tTO3Xr5+++85zWXV50n3PPfcoIyNDjzzyiM6cOaM777xTVatW1Ysvvqjbb7/dEzUCPu+zz79VmUptsu8YqdO1rfXWS89Kki6rUV1TpkyxWT4iIlSSdPDgLk2Z8oAGD56kjh075ruNVq1aKSAgQGfPnlVWVpZq1qypXr16WR9v3/4W69+bNJHmzJmjypUra9v23Yq7vHae/T711FNKSEiQJD366KPq1q2b0tLOKSSkpNP7D/iL/LJau3bti2Z10qTsrGad3ZTnNjrcnqiAAIvOnkuzyeru3dmPk1UgfzY5ldSpjfvH1LxymuPCnErkFHDkYu9/Hxox2mb5kIgoSe4ZU3O4c0w9d+6cSpb0TFZdmnRnZGRo4cKF6t69u+69914dPXpUWVlZqly5skeKA/xF24R4TX9xlCQpLSVApUJDrY81jXN82sU//5zQsGE3qFWrLrr77pEX3caiRYtUv3597dixQ0OHDtXMmTNVoUIF6+MHD+7SzJlP6Oefv9epU9nZlKT9B1LyfdFp3Lix9e9VqlSRJP39d6qiogp+EQzA1+SX1WbNmjlc58Ksjhx58awumPa06l5WUwfSS9hkNWfSTVaB/F2YU0kKPBFm/bu7xtScnP6xZ7/+++xL+Y6pJ04clUROgdwK+v63IGNqDneOqampqapRwzNZdWnSXaJECQ0aNEjbt2+XJEVEcKEXFE2Oz2OpnufyYaVCVbtW9uPnQmwv1FCqVKjd8pmZmRo1qrfCwspo9OjX8q3l7J5tkqSIrDOqqtOq062bwsPDdcstt2jbtm3WD72GD++uyMjqGj36NbVrF62srCzFxcUpPT0j3/4vPETHkn1ZW+sLFlDU5JfVsLAwu+VdyWqOqlFRql0zRo3rNLHJqkRWAWdcmFNJNhdAKuiYmiMnp7Vrxqhivcb5jqmVKkWrYUNyCuTmyfe/OfIaU/3t/a/LF1Jr0aKFNm/e7IlagGLjhReGadeun/Xss4sv6ZCzhIQExcXF6amnnpIkHT9+THv2bFe/fo+refMOatCggf7++293lw0UO2QVKLjcF2dy5gJNrvB0TmNjySngDsV5THX5nO6kpCSNGDFCBw8eVHx8vN03Axd+VQ/A3rx58/T++9M1ZcpiWSwBOno0RZL0zz/hCg8Pd7qfESNG6LbbbtMjjzyiMmWqqGzZilq8eLYiIqro5Mn9evTRRx2ud3bf7zoTJp07+Idb9gcoqhxlNSVFCg8PVykXfnkkJ6udOz+iiAjnswrg4gpjTE1J2a958xhTgYL4ePG7bh1TXX3/620uf9Pdu3dv7dmzRw8++KBat26tJk2a6Morr7T+CSB/q1evVmZmpkaM6KEuXapYb88995xL/dxwww2qWbOmnnrqKQUEBOipp97Rb79t0u23x2nYsGF69tlnPbQHQPHgKKtVqlx6VufOJauAuxXGmPrCC+QUKKgfN37v1jHV397/uvxN9549ezxRB5AnY2R3VcPcP3C/Pb2i/Xpnbc/BzrlGkqMrJObuzxXzZo/L87Ev3rL/Gb358+frgQfm27XncQ0nxVSL1ukd9qd0WCwW/fbbb5KkjRulFi2u07vvbrPpK/PMRuvyNWOilXlmo3Vfr23RTKd3bFapcuWsyzRp0kTGGG38dzXAaZlnLp6t3FnNnVMp76wWJKfSxbNaqk4TmzZHWc3vdeRiWc3JlTNZvbCfvLK6YYPJc3+AvDgzpkoXz2pxGlNz+mNMRWG6lDFVcj6rnh5Ts+v7t23cU1M19vH3nKpNss/qhaelLPxgmSTJnHXv+19PcnnSHRMT44k6gCLN/vy1vC/KBsA7XL2AIgDvYEwF4G9cnnRL0q5duzRt2jRt375dFotFDRo00EMPPaRatWq5uz4AAAAAAPyWy+d0f/nll2rYsKHWr1+vxo0bKy4uTj/88IMuv/xyLVu2zBM1AgAAAADgl1z+pvvRRx/VsGHD9PTTT9u1//e//1XHjh3dVhwAAAAAAP7M5W+6t2/frv79+9u19+vXT9u2bXOwBuAcY7JvEhcH8lWevsgEfF9WliGnPo6cQmJM9QdkFYyp/sEdWXV50l2pUiVt2bLFrn3Lli2qXLlygQtC8XXqVKAyMiQp/WKLwkvOnDkjSQoKCvJyJfCWYyfOKj1dks54uxTkIT37H0iBgQW7Mi3827FjQWTVxzGmgjHVP7gjqy4fXn7vvffqvvvu0+7du9WqVStZLBZ9++23euaZZzRixIhLLgQ4fryENm4spY4d/1TJkkGSAnTuXPZjWWm2y6Zl5vrEKSvDQY/nbO/l0Ze7+7Pry2F/5+wWcba/gHP26zrb16X2d/as0ZkzZ5Samqpy5crxZr4YO3MuQx9/XE533JGq7F/bKKVz5yySLjVbl54Ft/fn5teRgmTV0b4609+ZM1n6888/VapUKZUocUnXSkURcfp0oNNZvZRsFdaY6lx/BXsdcTarjKlwN/ePqZKvvF91pj9vvo44k1Vj3JdVl0fkJ554QqVLl9bzzz+vUaNGSZKio6M1btw4Pfjgg5dcCGCMRTNmVFHt2nsUEbFPFouU87Pw5vyfNsue/9v2II0/Mxx8QnjeNkx59eXu/nL35bC/8/ZBd7a/YFPSbt2jR53r61L727s3+89y5copKirKbnkUL/PmZf8f6NEjVcHBBcxWAbLg7v7c/TqSO1u5c+VKbc72t2+fFBAQoBo1ashisdgvgGLF2axeSrYKa0x1qr8Cvo44m1XGVHiCW8dUyWferzrTnzdfRxxlNS/uyKrLk26LxaJhw4Zp2LBhOnXqlCSpdOnSBSoCyPHnn8Hq16+OoqLSFRgo/fZbdnv6rh42y/0xJ8zm/gMpN9r1lbHjUZv7efXl7v5y9+Wov9x9udJfdzfva+zs7+2W6dLFvragoCA+jYek7A/I5s6tonfeqayIiPP6/ffs9kvJVkGy4O7+3P06kjtbuXPlSm2u9BccHKyAAJfPHkMR5GxWLyVbhTWmOtNfQV9Hco+refXHmApPcOeYKvnO+1Vn+vPm60jurNavb7eKW7Pq8qR7z549ysjIUJ06dWwm2zt37lRQUJBq1qxZ4KJQvGVkBOjgwexPn0r+/4dQloB9NstYjtp+0LMv+aR9P/tsP8HKqy9395e7L0f95e7Llf7cva8lS9rXsi/Xag4WAXTmTKD27w8sULYKkgV39+fpbOXOlSu1udofcKGLZfVSslVYY6oz/RXW6whjKjzJHWOq5DvvV53pz5uvI4U9prr8UXhiYqLWrl1r1/7DDz8oMTHRHTUBAAAAAFAkuDzp3rx5s1q3bm3XfvXVVzu8qjkAAAAAAMWVy5Nui8ViPZf7QidOnFBmZqZbigIAAAAAoChw+ZzuNm3aaPLkyXr77betJ5VnZmZq8uTJuuaaa9xeIAAAAAAA7hLUaHiulqke3Z7Lk+4pU6bo2muvVb169dSmTRtJ0po1a3Ty5EmtWLHC7QUCAAAAAOCvXD68vGHDhtq6dat69eql1NRUnTp1Sn369NFvv/2muLg4T9QIAAAAAIBfcvmbbkmKjo7WpEmT3F0LAAAAAABFitPfdP/11186ePCgTduvv/6qe+65R7169dL//vc/txcHAAAAAIA/c3rSPXjwYE2d+u8J5qmpqWrTpo02bNigtLQ0JSYm6s0333S5gOnTpys2NlYlS5ZUfHy81qxZk+/yaWlpGj16tGJiYhQSEqJatWpp7ty5Lm8XAAAAAABPc/rw8u+//17z5s2z3l+wYIEqVKigLVu2qESJEnruuef06quv6u6773Z644sWLdLQoUM1ffp0tW7dWrNmzVKXLl20bds21ahRw+E6vXr10pEjRzRnzhzVrl1bqampysjIcHqbAAAUhsK+MioAAPBNTn/TnZKSotjYWOv9FStW6KabblKJEtnz9h49emjnzp0ubXzq1Knq37+/BgwYoAYNGmjatGmqXr26ZsyY4XD5L774QqtXr9bSpUt13XXXqWbNmmrevLlatWrl0nYBAAAAACgMTk+6y5Qpo+PHj1vvr1+/XldffbX1vsViUVpamtMbTk9P16ZNm9SpUyeb9k6dOmnt2rUO1/n444/VrFkzTZkyRVWrVlXdunX18MMP6+zZs3luJy0tTSdPnrS5AfA9ZBXwD2QV8H3kFPAtTk+6mzdvrpdeeklZWVl6//33derUKbVv3976+I4dO1S9enWnN3z06FFlZmYqMjLSpj0yMlIpKSkO19m9e7e+/fZb/fLLL1q8eLGmTZum999/X4MHD85zO5MnT1bZsmWtN1dqBFB4yCrgH8gq4PvIKeBbnJ50T5w4UR999JFCQ0PVu3dvPfLIIypfvrz18XfeeUcJCQkuF2CxWGzuG2Ps2nJkZWXJYrFo4cKFat68ubp27aqpU6dq/vz5eX7bPWrUKJ04ccJ6O3DggMs1AvA8sgr4B7IK+D5yCvgWpy+k1qRJE23fvl1r165VVFSUWrRoYfP47bffroYNGzq94YiICAUGBtp9q52ammr37XeOKlWqqGrVqipbtqy1rUGDBjLG6ODBg6pTp47dOiEhIQoJCXG6LgDeQVYB/0BWAd9HTgHf4vQ33ZJUqVIl9ezZ027CLUndunWzudDaxQQHBys+Pl7Lli2zaV+2bFmeF0Zr3bq1Dh8+rH/++cfatmPHDgUEBKhatWpObxsAAAAAgMLg0qTb3YYPH67XX39dc+fO1fbt2zVs2DDt379fAwcOlJR9aEyfPn2sy995552qWLGi7rnnHm3btk3ffPONRo4cqX79+ik0NNRbuwEAAAAAgENOH17uCb1799axY8c0YcIEJScnKy4uTkuXLlVMTIwkKTk5Wfv377cuHx4ermXLlmnIkCFq1qyZKlasqF69eunJJ5/01i4AAAAAAJAnr066JSkpKUlJSUkOH5s/f75dW/369e0OSQcAAAAAwBd59fByAAAAAACKMqe+6T558qTTHZYpU+aSiwEAAAAAoChxatJdrly5PH87O0fO72tnZma6pTAAAAAAAPydU5PulStXeroOAAAAAACKHKcm3QkJCZ6uAwAAAACAIsepSffWrVud7rBx48aXXAwAAAAAAEWJU5PuJk2ayGKxyBiT73Kc0w0AAAAAwL+cmnTv2bPH03UAAAAAAFDkODXpjomJ8XQdAAAAAAAUOU5Nuj/++GN16dJFQUFB+vjjj/NdtkePHm4pDAAAAAAAf+fUpPvGG29USkqKKleurBtvvDHP5TinGwAAAACAfzk16c7KynL4dwAAAAAAkLcAV1c4cOBAno99//33BSoGAAAAAICixOVJd8eOHXXs2DG79u+++07XX3+9W4oCAAAAAKAocHnS3aZNG3Xq1EmnTp2ytn3zzTfq2rWrxo4d69biAAAAAADwZy5PumfPnq3Y2Fh169ZN586d08qVK9WtWzdNmDBBw4YN80SNAAAAAAD4JZcn3RaLRW+//bZKliypDh06qEePHpo8ebIeeughT9QHAAAAAIDfcurq5Vu3brVrGzt2rO644w795z//0bXXXmtdpnHjxu6tEAAAAAAAP+XUpLtJkyayWCwyxljbcu7PmjVLs2fPljGG3+kGAAAAAOACTk269+zZ4+k6AAAAAAAocpyadMfExHi6DgAAAAAAihynL6T2xx9/aNOmTTZty5cvV7t27dS8eXNNmjTJ7cUBAAAAAODPnJ50jxw5UkuWLLHe37Nnj7p3767g4GC1bNlSkydP1rRp0zxQIgAAAAAA/smpw8slaePGjXrkkUes9xcuXKi6devqyy+/lJR91fKXX35ZQ4cOdXuRAAAAAAD4I6e/6T569KiqVatmvb9y5Up1797der9t27bau3evW4sDAAAAAMCfOT3prlChgpKTkyVJWVlZ2rhxo1q0aGF9PD093eYnxQAAAAAAKO6cnnQnJCRo4sSJOnDggKZNm6asrCy1a9fO+vi2bdtUs2ZNT9QIAAAAAIBfcvqc7qeeekodO3ZUzZo1FRAQoJdeeklhYWHWx9988021b9/eI0UCAAAAAOCPnJ50x8bGavv27dq2bZsqVaqk6Ohom8fHjx9vc843AAAAAADFndOTbkkKCgrSFVdc4fCxvNoBAAAAACiunD6nGwAAAAAAuIZJNwAAAAAAHsKkGwAAAAAAD3Fp0p2RkaHx48frwIEDnqoHAAAAAIAiw6VJd4kSJfTss88qMzPTU/UAAAAAAFBkuHx4+XXXXadVq1Z5oBQAAAAAAIoWl34yTJK6dOmiUaNG6ZdfflF8fLzCwsJsHu/Ro4fbigMAAAAAwJ+5POkeNGiQJGnq1Kl2j1ksFg49BwAAAADg/7l8eHlWVlaet0uZcE+fPl2xsbEqWbKk4uPjtWbNGqfW++6771SiRAk1adLE5W0CAAAAAFAYCvSTYefOnSvQxhctWqShQ4dq9OjR2rx5s9q0aaMuXbpo//79+a534sQJ9enTRx06dCjQ9gEAAAAA8CSXJ92ZmZmaOHGiqlatqvDwcO3evVuS9MQTT2jOnDku9TV16lT1799fAwYMUIMGDTRt2jRVr15dM2bMyHe9+++/X3feeadatmzpavkAAAAAABQalyfdTz31lObPn68pU6YoODjY2t6oUSO9/vrrTveTnp6uTZs2qVOnTjbtnTp10tq1a/Ncb968edq1a5fGjh3r1HbS0tJ08uRJmxsA30NWgfwFNRpuc/MWsgr4PnIK+BaXJ90LFizQ7NmzdddddykwMNDa3rhxY/32229O93P06FFlZmYqMjLSpj0yMlIpKSkO19m5c6ceffRRLVy4UCVKOHcNuMmTJ6ts2bLWW/Xq1Z2uEUDhIauAfyCrgO8jp4BvcXnSfejQIdWuXduuPSsrS+fPn3e5AIvFYnPfGGPXJmUf1n7nnXdq/Pjxqlu3rtP9jxo1SidOnLDeDhw44HKNADyPrAL+gawCvo+cAr7F5Z8Mu/zyy7VmzRrFxMTYtL/33nu68sorne4nIiJCgYGBdt9qp6am2n37LUmnTp3Sxo0btXnzZj3wwAOSsif6xhiVKFFCX331ldq3b2+3XkhIiEJCQpyuCyhuHB+mav+TgJ5GVgH/QFaBvDGmAnDE5Un32LFjdffdd+vQoUPKysrShx9+qN9//10LFizQp59+6nQ/wcHBio+P17Jly3TTTTdZ25ctW6aePXvaLV+mTBn9/PPPNm3Tp0/XihUr9P777ys2NtbVXQEAAAAAwKNcnnR3795dixYt0qRJk2SxWDRmzBg1bdpUn3zyiTp27OhSX8OHD9fdd9+tZs2aqWXLlpo9e7b279+vgQMHSso+NObQoUNasGCBAgICFBcXZ7N+5cqVVbJkSbt2AAAAAAB8gcuTbknq3LmzOnfuXOCN9+7dW8eOHdOECROUnJysuLg4LV261HroenJy8kV/sxsAAAAAAF91SZNud0pKSlJSUpLDx+bPn5/vuuPGjdO4cePcXxQAAAAAAG7g1KS7QoUK2rFjhyIiIlS+fHmHVxfP8ddff7mtOAAAAAAA/JlTk+4XXnhBpUuXliRNmzbNk/UAAAAAAFBkODXp7tu3ryQpIyNDUvY53VFRUZ6rCgAAAACAIiDAlYVLlCihQYMGKS0tzVP1AAAAAABQZLg06ZakFi1aaPPmzZ6oBQAAAACAIsXlq5cnJSVpxIgROnjwoOLj4xUWFmbzeOPGjd1WHAAAAAAA/szlSXfv3r0lSQ8++KC1zWKxyBgji8WizMxM91UHAAAAAIAfc3nSvWfPHk/UAQAAAABAkePypDsmJsYTdQAAAAAAUOS4POk+duyYKlasKEk6cOCAXnvtNZ09e1Y9evRQmzZt3F4gAAAAAAD+yumrl//888+qWbOmKleurPr162vLli266qqr9MILL2j27Nlq166dlixZ4sFSAQAAAADwL05Puh955BE1atRIq1evVtu2bXXDDTeoa9euOnHihP7++2/df//9evrppz1ZKwAAAAAAfsXpw8s3bNigFStWqHHjxmrSpIlmz56tpKQkBQRkz9uHDBmiq6++2mOFAgAAAADgb5z+pvuvv/5SVFSUJCk8PFxhYWGqUKGC9fHy5cvr1KlT7q8QAAAAAAA/5fSkW8r+Pe787gMAAAAAgH+5dPXyxMREhYSESJLOnTungQMHKiwsTJKUlpbm/uoAAAAAAPBjTk+6+/bta3P/P//5j90yffr0KXhFAAAAAAAUEU5PuufNm+fJOgAAAAAAKHJcOqcbAAAAAAA4j0k3AAAAAAAewqQbAAAAAAAPYdINAAAAAICHMOkGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTcAAAAAAB7CpBsAAAAAAA9h0g0AAAAAgIcw6QYAAAAAwEOYdAMAAAAA4CFMugEAAAAA8BAm3QAAAAAAeAiTbgAAAAAAPIRJNwAAAAAAHsKkGwAAAAAAD/H6pHv69OmKjY1VyZIlFR8frzVr1uS57IcffqiOHTuqUqVKKlOmjFq2bKkvv/yyEKsFAAAAAMB5Xp10L1q0SEOHDtXo0aO1efNmtWnTRl26dNH+/fsdLv/NN9+oY8eOWrp0qTZt2qR27dqpe/fu2rx5cyFXDgAAAADAxXl10j116lT1799fAwYMUIMGDTRt2jRVr15dM2bMcLj8tGnT9Mgjj+iqq65SnTp1NGnSJNWpU0effPJJIVcOAAAAAMDFeW3SnZ6erk2bNqlTp0427Z06ddLatWud6iMrK0unTp1ShQoVPFEiAAAAAAAFUsJbGz569KgyMzMVGRlp0x4ZGamUlBSn+nj++ed1+vRp9erVK89l0tLSlJaWZr1/8uTJSysYgEeRVcA/kFXA95FTwLd4/UJqFovF5r4xxq7Nkbffflvjxo3TokWLVLly5TyXmzx5ssqWLWu9Va9evcA1A3A/sgr4B7IK+D5yCvgWr026IyIiFBgYaPetdmpqqt2337ktWrRI/fv317vvvqvrrrsu32VHjRqlEydOWG8HDhwocO0A3I+sAv6BrAK+j5wCvsVrh5cHBwcrPj5ey5Yt00033WRtX7ZsmXr27Jnnem+//bb69eunt99+W926dbvodkJCQhQSEuKWmgF4DlkF/ANZBXwfOQV8i9cm3ZI0fPhw3X333WrWrJlatmyp2bNna//+/Ro4cKCk7E/pDh06pAULFkjKnnD36dNHL774oq6++mrrt+ShoaEqW7as1/YDAAAAAABHvDrp7t27t44dO6YJEyYoOTlZcXFxWrp0qWJiYiRJycnJNr/ZPWvWLGVkZGjw4MEaPHiwtb1v376aP39+YZcPAAAAAEC+vDrplqSkpCQlJSU5fCz3RHrVqlWeLwgAAAAAADfx+tXLAQAAAAAoqph0AwAAAADgIUy6AQAAAADwECbdAAAAAAB4CJNuAAAAAAA8hEk3AAAAAAAewqQbAAAAAAAPYdINAAAAAICHMOkGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTcAAAAAAB7CpBsAAAAAAA9h0g0AAAAAgIcw6QYAAAAAwEOYdAMAAAAA4CFMugEAAAAA8BAm3QAAAAAAeAiTbgAAAAAAPIRJNwAAAAAAHsKkGwAAAAAAD2HSDQAAAACAhzDpBgAAAADAQ5h0AwAAAADgIUy6AQAAAADwECbdAAAAAAB4CJNuAAAAAAA8hEk3AAAAAAAewqQbAAAAAAAPYdINAAAAAICHMOkGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTcAAAAAAB7i9Un39OnTFRsbq5IlSyo+Pl5r1qzJd/nVq1crPj5eJUuW1GWXXaaZM2cWUqUAAAAAALjGq5PuRYsWaejQoRo9erQ2b96sNm3aqEuXLtq/f7/D5ffs2aOuXbuqTZs22rx5sx577DE9+OCD+uCDDwq5cgAAAAAALs6rk+6pU6eqf//+GjBggBo0aKBp06apevXqmjFjhsPlZ86cqRo1amjatGlq0KCBBgwYoH79+um5554r5MoBAAAAALg4r02609PTtWnTJnXq1MmmvVOnTlq7dq3DddatW2e3fOfOnbVx40adP3/eY7UCAAAAAHApSnhrw0ePHlVmZqYiIyNt2iMjI5WSkuJwnZSUFIfLZ2Rk6OjRo6pSpYrdOmlpaUpLS7PeP3HihCTp5MmTF60x7R9j1/bPeds2k5mWawn7fnM2lbu/3H25uz/7vuz7y6sv5/orTvvqfH9FeV/zk5MpY+y36Qx3ZvVS/g0K6/+Hc/0VTraK0746019R2te8FDSn0qVn1d9fe53przi9jhSnfc3pjzH1X0X1/xv7WjT31bn+XB9Ts5dxMqvGSw4dOmQkmbVr19q0P/nkk6ZevXoO16lTp46ZNGmSTdu3335rJJnk5GSH64wdO9ZI4saNWyHdDhw4cEmvCWSVG7fCu11qTskqN26Fe2NM5cbNP24Xy6rFmAJ83F0A6enpKlWqlN577z3ddNNN1vaHHnpIW7Zs0erVq+3Wufbaa3XllVfqxRdftLYtXrxYvXr10pkzZxQUFGS3Tu5P+rKysvTXX3+pYsWKslgsbtmXkydPqnr16jpw4IDKlCnjlj49yd/qlfyv5uJYrzFGp06dUnR0tAICXD9zhazao17P87eaC1pvQXMqeT6r/vZvIvlfzdTred7OKmOqPX+rV/K/motjvc5m1WuHlwcHBys+Pl7Lli2zmXQvW7ZMPXv2dLhOy5Yt9cknn9i0ffXVV2rWrJnDCbckhYSEKCQkxKatXLlyBSs+D2XKlPGL/2A5/K1eyf9qLm71li1b9pLXJat5o17P87eaC1JvQXIqFV5W/e3fRPK/mqnX87yVVcbUvPlbvZL/1Vzc6nUmq169evnw4cP1+uuva+7cudq+fbuGDRum/fv3a+DAgZKkUaNGqU+fPtblBw4cqH379mn48OHavn275s6dqzlz5ujhhx/21i4AAAAAAJAnr33TLUm9e/fWsWPHNGHCBCUnJysuLk5Lly5VTEyMJCk5OdnmN7tjY2O1dOlSDRs2TK+++qqio6P10ksv6ZZbbvHWLgAAAAAAkCevTrolKSkpSUlJSQ4fmz9/vl1bQkKCfvzxRw9X5ZqQkBCNHTvW7jAeX+Vv9Ur+VzP1+iZ/20/q9Tx/q9nf6r0U/riP/lYz9XqeP9bsKn/bR3+rV/K/mqk3b167kBoAAAAAAEWdV8/pBgAAAACgKGPSDQAAAACAhzDpBgAAAADAQ5h0u8H06dMVGxurkiVLKj4+XmvWrPF2SZKkyZMn66qrrlLp0qVVuXJl3Xjjjfr9999tlklMTJTFYrG5XX311V6pd9y4cXa1REVFWR83xmjcuHGKjo5WaGio2rZtq19//dUrtUpSzZo17eq1WCwaPHiwJN94br/55ht1795d0dHRslgsWrJkic3jzjynaWlpGjJkiCIiIhQWFqYePXro4MGDhbgX7kFO3Yesuhc5tUVW3cPfciqRVX9CTt3H37JKTi8Nk+4CWrRokYYOHarRo0dr8+bNatOmjbp06WLzU2fesnr1ag0ePFjff/+9li1bpoyMDHXq1EmnT5+2We76669XcnKy9bZ06VIvVSxdfvnlNrX8/PPP1semTJmiqVOn6pVXXtGGDRsUFRWljh076tSpU16pdcOGDTa1Llu2TJJ02223WZfx9nN7+vRpXXHFFXrllVccPu7Mczp06FAtXrxY77zzjr799lv9888/uuGGG5SZmVlYu1Fg5NT9yKr7kNN/kVX38qecSmTVX5BT9/OnrJLTS2RQIM2bNzcDBw60aatfv7559NFHvVRR3lJTU40ks3r1amtb3759Tc+ePb1X1AXGjh1rrrjiCoePZWVlmaioKPP0009b286dO2fKli1rZs6cWUgV5u+hhx4ytWrVMllZWcYY33pujTFGklm8eLH1vjPP6fHjx01QUJB55513rMscOnTIBAQEmC+++KLQai8ocupeZNVzinNOjSGr7uTvOTWGrPoqcupe/p5VcuocvukugPT0dG3atEmdOnWyae/UqZPWrl3rparyduLECUlShQoVbNpXrVqlypUrq27durr33nuVmprqjfIkSTt37lR0dLRiY2N1++23a/fu3ZKkPXv2KCUlxea5DgkJUUJCgk881+np6XrrrbfUr18/WSwWa7svPbe5OfOcbtq0SefPn7dZJjo6WnFxcT7xvDuDnHoGWS0cxSWnEln1BH/NqURWfRU59Qx/zSo5dR6T7gI4evSoMjMzFRkZadMeGRmplJQUL1XlmDFGw4cP1zXXXKO4uDhre5cuXbRw4UKtWLFCzz//vDZs2KD27dsrLS2t0Gts0aKFFixYoC+//FKvvfaaUlJS1KpVKx07dsz6fPrqc71kyRIdP35ciYmJ1jZfem4dceY5TUlJUXBwsMqXL5/nMr6OnLofWS08xSWnEll1N3/OqURWfRU5dT9/zio5dV6JS14TVhd+siNlhzx3m7c98MAD2rp1q7799lub9t69e1v/HhcXp2bNmikmJkafffaZbr755kKtsUuXLta/N2rUSC1btlStWrX0xhtvWC/A4KvP9Zw5c9SlSxdFR0db23zpuc3PpTynvvK8u8JX/+9cyB9yKpFVbyguOZV89//Ohfwhq/6cU4ms+jpf/r+Twx9yKvl3Vsmp8/imuwAiIiIUGBho96lHamqq3Sco3jRkyBB9/PHHWrlypapVq5bvslWqVFFMTIx27txZSNXlLSwsTI0aNdLOnTutV3H0xed63759+vrrrzVgwIB8l/Ol51aSU89pVFSU0tPT9ffff+e5jK8jp55HVj2nuORUIque5i85lciqLyOnnucvWSWnrmHSXQDBwcGKj4+3XrUvx7Jly9SqVSsvVfUvY4weeOABffjhh1qxYoViY2Mvus6xY8d04MABValSpRAqzF9aWpq2b9+uKlWqKDY2VlFRUTbPdXp6ulavXu3153revHmqXLmyunXrlu9yvvTcSnLqOY2Pj1dQUJDNMsnJyfrll1+8/rw7i5x6Hln1nOKSU4msepq/5FQiq76MnHqev2SVnLroki/BBmOMMe+8844JCgoyc+bMMdu2bTNDhw41YWFhZu/evd4uzQwaNMiULVvWrFq1yiQnJ1tvZ86cMcYYc+rUKTNixAizdu1as2fPHrNy5UrTsmVLU7VqVXPy5MlCr3fEiBFm1apVZvfu3eb77783N9xwgyldurT1uXz66adN2bJlzYcffmh+/vlnc8cdd5gqVap4pdYcmZmZpkaNGua///2vTbuvPLenTp0ymzdvNps3bzaSzNSpU83mzZvNvn37jDHOPacDBw401apVM19//bX58ccfTfv27c0VV1xhMjIyCm0/CoqcuhdZdS9y+i+y6j7+mFNjyKo/IKfu5Y9ZJaeuY9LtBq+++qqJiYkxwcHBpmnTpjY/S+BNkhze5s2bZ4wx5syZM6ZTp06mUqVKJigoyNSoUcP07dvX7N+/3yv19u7d21SpUsUEBQWZ6Ohoc/PNN5tff/3V+nhWVpYZO3asiYqKMiEhIebaa681P//8s1dqzfHll18aSeb333+3afeV53blypUO/w/07dvXGOPcc3r27FnzwAMPmAoVKpjQ0FBzww03eO3/SEGQU/chq+5FTm2RVffwx5waQ1b9BTl1H3/MKjl1ncUYYy79e3IAAAAAAJAXzukGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTcAAAAAAB7CpBsAAAAAAA9h0g0AAAAAgIcw6cYlW7VqlSwWi44fP+7tUooEi8WiJUuWeLsMFDHk1L3IKTyFrLoXWYWnkFX3Ki5ZZdLthxITE2WxWOxuf/zxh8e22bZtWw0dOtSmrVWrVkpOTlbZsmU9tl3AX5FTwD+QVcA/kFX4sxLeLgCX5vrrr9e8efNs2ipVqmS3XHp6uoKDgz1SQ3BwsKKiojzSd348uU+AO5FTcgr/QFbJKvwDWSWr/opvuv1USEiIoqKibG6BgYFq27atHnjgAQ0fPlwRERHq2LGjJGnq1Klq1KiRwsLCVL16dSUlJemff/6x6fO7775TQkKCSpUqpfLly6tz5876+++/lZiYqNWrV+vFF1+0fqq4d+9eh4fXfPDBB7r88ssVEhKimjVr6vnnn7fZRs2aNTVp0iT169dPpUuXVo0aNTR79ux89zWvfdq2bZu6du2q8PBwRUZG6u6779bRo0dt1hsyZIiGDh2q8uXLKzIyUrNnz9bp06d1zz33qHTp0qpVq5Y+//xzm+2tXr1azZs3V0hIiKpUqaJHH31UGRkZkqRZs2apatWqysrKslmnR48e6tu3r/X+J598ovj4eJUsWVKXXXaZxo8fb+1Dknbu3Klrr71WJUuWVMOGDbVs2bJ8nwP4J3JKTuEfyCpZhX8gq2TVbxn4nb59+5qePXs6fCwhIcGEh4ebkSNHmt9++81s377dGGPMCy+8YFasWGF2795tli9fburVq2cGDRpkXW/z5s0mJCTEDBo0yGzZssX88ssv5uWXXzZ//vmnOX78uGnZsqW59957TXJysklOTjYZGRlm5cqVRpL5+++/jTHGbNy40QQEBJgJEyaY33//3cybN8+EhoaaefPmWbcTExNjKlSoYF599VWzc+dOM3nyZBMQEGCt09l9Onz4sImIiDCjRo0y27dvNz/++KPp2LGjadeunc16pUuXNhMnTjQ7duwwEydONAEBAaZLly5m9uzZZseOHWbQoEGmYsWK5vTp08YYYw4ePGhKlSplkpKSzPbt283ixYtNRESEGTt2rDHGmGPHjpng4GDz9ddfW7fz119/meDgYPPll18aY4z54osvTJkyZcz8+fPNrl27zFdffWVq1qxpxo0bZ4wxJjMz08TFxZm2bduazZs3m9WrV5srr7zSSDKLFy926v8AfB85JafwD2SVrMI/kFWy6s+YdPuhvn37msDAQBMWFma93XrrrcaY7KA1adLkon28++67pmLFitb7d9xxh2ndunWeyyckJJiHHnrIpi33i86dd95pOnbsaLPMyJEjTcOGDa33Y2JizH/+8x/r/aysLFO5cmUzY8aMfLede5+eeOIJ06lTJ5u2AwcOGEnm999/t653zTXXWB/PyMgwYWFh5u6777a2JScnG0lm3bp1xhhjHnvsMVOvXj2TlZVlXebVV1814eHhJjMz0xhjTI8ePUy/fv2sj8+aNctERUWZjIwMY4wxbdq0MZMmTbKp7c033zRVqlQxxhjz5ZdfmsDAQHPgwAHr459//nmxedEpLsgpOYV/IKtkFf6BrJJVf8Y53X6qXbt2mjFjhvV+WFiY9e/NmjWzW37lypWaNGmStm3bppMnTyojI0Pnzp3T6dOnFRYWpi1btui2224rUE3bt29Xz549bdpat26tadOmKTMzU4GBgZKkxo0bWx+3WCyKiopSampqvn3n3qdNmzZp5cqVCg8Pt1t2165dqlu3rt22AgMDVbFiRTVq1MjaFhkZKUnW7W/fvl0tW7aUxWKx2Yd//vlHBw8eVI0aNXTXXXfpvvvu0/Tp0xUSEqKFCxfq9ttvt+7fpk2btGHDBj311FPWPjIzM3Xu3DmdOXNG27dvV40aNVStWjXr4y1btsx3/+GfyCk5hX8gq2QV/oGsklV/xaTbT4WFhal27dp5Pnahffv2qWvXrho4cKAmTpyoChUq6Ntvv1X//v11/vx5SVJoaGiBazLG2IQ1py23oKAgm/sWi8XuHJHccu9TVlaWunfvrmeeecZu2SpVquS7rQvbcurN2X5++5DT3r17d2VlZemzzz7TVVddpTVr1mjq1Kk2tY0fP14333yzXW0lS5Z0+Jzk3iaKBnJKTuEfyCpZhX8gq2TVXzHpLgY2btyojIwMPf/88woIyL523rvvvmuzTOPGjbV8+XKNHz/eYR/BwcHKzMzMdzsNGzbUt99+a9O2du1a1a1b1/opmLs0bdpUH3zwgWrWrKkSJdz337hhw4b64IMPbF581q5dq9KlS6tq1aqSsl+gb775Zi1cuFB//PGH6tatq/j4eJvafv/99zwHhYYNG2r//v06fPiwoqOjJUnr1q1z2z7AP5FT55FTeBNZdR5ZhTeRVeeRVc/j6uXFQK1atZSRkaGXX35Zu3fv1ptvvqmZM2faLDNq1Cht2LBBSUlJ2rp1q3777TfNmDHDejXEmjVr6ocfftDevXt19OhRh5/MjRgxQsuXL9fEiRO1Y8cOvfHGG3rllVf08MMPu32fBg8erL/++kt33HGH1q9fr927d+urr75Sv379LvrimJ+kpCQdOHBAQ4YM0W+//aaPPvpIY8eO1fDhw60v2JJ011136bPPPtPcuXP1n//8x6aPMWPGaMGCBRo3bpx+/fVXbd++XYsWLdLjjz8uSbruuutUr1499enTRz/99JPWrFmj0aNHX3LNKBrIqfPIKbyJrDqPrMKbyKrzyKrnMekuBpo0aaKpU6fqmWeeUVxcnBYuXKjJkyfbLFO3bl199dVX+umnn9S8eXO1bNlSH330kfVTtIcffliBgYFq2LChKlWqpP3799ttp2nTpnr33Xf1zjvvKC4uTmPGjNGECROUmJjo9n2Kjo7Wd999p8zMTHXu3FlxcXF66KGHVLZsWZsXB1dVrVpVS5cu1fr163XFFVdo4MCB6t+/v/UFI0f79u1VoUIF/f7777rzzjttHuvcubM+/fRTLVu2TFdddZWuvvpqTZ06VTExMZKkgIAALV68WGlpaWrevLkGDBhgc/4Liidy6jxyCm8iq84jq/Amsuo8sup5FuPoAHsAAAAAAFBgfNMNAAAAAICHMOkGAAAAAMBDmHQDAAAAAOAhTLoBAAAAAPAQJt0AAAAAAHgIk24AAAAAADyESTcAAAAAAB7CpBsAAAAAAA9h0g0AAAAAgIcw6QYAAAAAwEOYdAMAAAAA4CFMugEAAAAA8JD/A6ebY00eNHYNAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, From b50f01ec4ccd247eebfa2d4f51c761fffc636a63 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 14 Sep 2023 14:17:47 -0600 Subject: [PATCH 06/11] Fixing model test --- evml/tests/test_models.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/evml/tests/test_models.py b/evml/tests/test_models.py index 660c6ae..5e126c9 100644 --- a/evml/tests/test_models.py +++ b/evml/tests/test_models.py @@ -13,9 +13,9 @@ class TestModels(unittest.TestCase): def setUp(self): # Load configurations for the models - self.mlp_config = "../../config/surface_layer/mlp.yml" - self.gaussian_config = "../../config/surface_layer/gaussian.yml" - self.evidential_config = "../../config/surface_layer/evidential.yml" + self.mlp_config = "config/surface_layer/mlp.yml" + self.gaussian_config = "config/surface_layer/gaussian.yml" + self.evidential_config = "config/surface_layer/evidential.yml" with open(self.mlp_config) as cf: self.mlp_conf = yaml.load(cf, Loader=yaml.FullLoader) @@ -27,7 +27,7 @@ def setUp(self): self.evidential_conf = yaml.load(cf, Loader=yaml.FullLoader) # Instantiate and preprocess the data (as you did before)... - data_file = "../../data/sample_cabauw_surface_layer.csv" + data_file = "data/sample_cabauw_surface_layer.csv" self.data = pd.read_csv(data_file) self.data["day"] = self.data["Time"].apply(lambda x: str(x).split(" ")[0]) From c0dccdc1ccde62066eb336348ee0cf840540d998 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Wed, 20 Sep 2023 14:12:05 -0600 Subject: [PATCH 07/11] Added doc string comment to predict_ensemble --- evml/keras/models.py | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/evml/keras/models.py b/evml/keras/models.py index fedea57..cb2a026 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -260,6 +260,9 @@ def save_model(self): @classmethod def load_model(cls, conf): + """ + Load a trained model using args from a configuration + """ # Check if weights file exists weights = os.path.join(conf["model"]["save_path"], "best.h5") if not os.path.isfile(weights): @@ -278,6 +281,7 @@ def load_model(cls, conf): return model_class def mae(self, y_true, y_pred): + """ Compute the MAE """ num_splits = y_pred.shape[-1] if num_splits == 4: mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) @@ -288,6 +292,7 @@ def mae(self, y_true, y_pred): return tf.keras.metrics.mean_absolute_error(y_true, mu) def mse(self, y_true, y_pred): + """ Compute the MSE """ num_splits = y_pred.shape[-1] if num_splits == 4: mu, _, _, _ = tf.split(y_pred, num_splits, axis=-1) @@ -320,6 +325,20 @@ def predict(self, x, scaler=None, batch_size=None): return y_out def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, num_outputs=1): + """ + Predicts outcomes using an ensemble of trained Keras models. + + Args: + x (numpy.ndarray): Input data for predictions. + weight_locations (list of str): List containing paths to saved Keras model weights. + batch_size (int, optional): Batch size for inference. Default is None. + scaler (object, optional): Scaler object for preprocessing input data. Default is None. + num_outputs (int, optional): Number of output predictions. Default is 1. + + Returns: + numpy.ndarray: Ensemble predictions for the input data. + """ + num_models = len(weight_locations) # Initialize output_shape based on the first model's prediction From 1b1c8692b48a22757009ffa570a064fed8583766 Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 21 Sep 2023 14:46:33 -0600 Subject: [PATCH 08/11] Updating predict_ensemble --- applications/train_evidential_SL.py | 2 +- config/surface_layer/gaussian.yml | 2 +- evml/keras/models.py | 102 +++- notebooks/regression_example.ipynb | 689 ++++++---------------------- 4 files changed, 219 insertions(+), 576 deletions(-) diff --git a/applications/train_evidential_SL.py b/applications/train_evidential_SL.py index 311507b..c05b6c3 100644 --- a/applications/train_evidential_SL.py +++ b/applications/train_evidential_SL.py @@ -195,7 +195,7 @@ def trainer(conf, trial=False): ########## # Save model weights - model.model_name = f"model_split{data_seed}.h5" + model.model_name = f"models/model_split{data_seed}.h5" model.save_model() if conf["ensemble"]["n_splits"] > 1 or conf["ensemble"]["n_models"] > 1: diff --git a/config/surface_layer/gaussian.yml b/config/surface_layer/gaussian.yml index 0a74bcf..29ee645 100644 --- a/config/surface_layer/gaussian.yml +++ b/config/surface_layer/gaussian.yml @@ -51,7 +51,7 @@ direction: max ensemble: monte_carlo_passes: 100 n_models: 1 - n_splits: 20 + n_splits: 2 model: activation: relu batch_size: 3313 diff --git a/evml/keras/models.py b/evml/keras/models.py index cb2a026..7875fca 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -191,7 +191,6 @@ def build_from_sequential(self, model, optimizer="adam", loss="mse", metrics=Non run_eagerly=False, ) - def fit( self, x, @@ -254,7 +253,7 @@ def save_model(self): # Save the training variances np.savetxt( - os.path.join(self.save_path, f'{self.model_name.strip(".h5")}_training_var.txt'), + os.path.join(self.save_path, self.model_name.replace(".h5", "_training_var.txt")), np.array(self.training_var), ) @@ -278,6 +277,32 @@ def load_model(cls, conf): len(conf["data"]["input_cols"]), len(conf["data"]["output_cols"]) ) model_class.model.load_weights(weights) + + # Load ensemble weights + save_loc = conf["save_loc"] + n_models = conf["ensemble"]["n_models"] + n_splits = conf["ensemble"]["n_splits"] + if n_splits > 1 and n_models == 1: + mode = "cv_ensemble" + elif n_splits == 1 and n_models > 1: + mode = "deep_ensemble" + elif n_splits == 1 and n_models == 1: + mode = "single" + elif n_splits > 1 and n_models > 1: + mode = "multi_ensemble" + else: + raise ValueError( + "Incorrect selection of n_splits or n_models. Both must be at greater than or equal to 1." + ) + + model_class.ensemble_weights = [] + if mode != "single": + for i in range(n_models): + for j in range(n_splits): + model_class.ensemble_weights.append( + os.path.join(save_loc, mode, "models", f"model_seed{i}_split{j}.h5") + ) + return model_class def mae(self, y_true, y_pred): @@ -324,13 +349,12 @@ def predict(self, x, scaler=None, batch_size=None): y_out = scaler.inverse_transform(y_out) return y_out - def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, num_outputs=1): + def predict_ensemble(self, x, batch_size=None, scaler=None, num_outputs=1): """ Predicts outcomes using an ensemble of trained Keras models. Args: x (numpy.ndarray): Input data for predictions. - weight_locations (list of str): List containing paths to saved Keras model weights. batch_size (int, optional): Batch size for inference. Default is None. scaler (object, optional): Scaler object for preprocessing input data. Default is None. num_outputs (int, optional): Number of output predictions. Default is 1. @@ -338,13 +362,21 @@ def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, nu Returns: numpy.ndarray: Ensemble predictions for the input data. """ - - num_models = len(weight_locations) + #if not hasattr(self, "ensemble_weights"): + # raise ValueError("Please run YourModel.load_model(conf) to initiate loading of the trained ensemble weights") + + num_models = len(self.ensemble_weights) # Initialize output_shape based on the first model's prediction if num_models > 0: first_model = self.model - first_model.load_weights(weight_locations[0]) + first_model.load_weights(self.ensemble_weights[0]) + first_model.training_var = np.loadtxt( + self.ensemble_weights[0].replace(".h5", "_training_var.txt") + ) + if not isinstance(first_model.training_var, list): + first_model.training_var = [first_model.training_var] + if num_outputs == 1: mu = self.predict(x, batch_size=batch_size, scaler=scaler) elif num_outputs == 2: @@ -370,9 +402,14 @@ def predict_ensemble(self, x, weight_locations, batch_size=None, scaler=None, nu ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) # Predict for the remaining models - for i, weight_location in enumerate(weight_locations[1:]): + for i, weight_location in enumerate(self.ensemble_weights[1:]): model_instance = self.model model_instance.load_weights(weight_location) + model_instance.training_var = np.loadtxt( + weight_location.replace(".h5", "_training_var.txt") + ) + if not isinstance(model_instance.training_var, list): + model_instance.training_var = [model_instance.training_var] if num_outputs == 1: mu = self.predict(x, batch_size=batch_size, scaler=scaler) @@ -595,12 +632,14 @@ def build_neural_network(self, inputs, outputs): @classmethod def load_model(cls, conf): + # Load ensemble weights + save_loc = conf["save_loc"] n_models = conf["ensemble"]["n_models"] n_splits = conf["ensemble"]["n_splits"] if n_splits > 1 and n_models == 1: - mode = "data" + mode = "cv_ensemble" elif n_splits == 1 and n_models > 1: - mode = "seed" + mode = "deep_ensemble" elif n_splits == 1 and n_models == 1: mode = "single" else: @@ -626,10 +665,19 @@ def load_model(cls, conf): # Load the variances model_class.training_var = np.loadtxt( - os.path.join(os.path.join(save_loc, f"{mode}/models", "training_var.txt")) + os.path.join(os.path.join(save_loc, f"{mode}/models", "best_training_var.txt")) ) if not isinstance(model_class.training_var, list): model_class.training_var = [model_class.training_var] + + # Load ensemble weights + model_class.ensemble_weights = [] + if mode != "single": + for i in range(n_models): + for j in range(n_splits): + model_class.ensemble_weights.append( + os.path.join(save_loc, mode, "models", f"model_seed{i}_split{j}.h5") + ) return model_class @@ -662,9 +710,9 @@ def predict_dist_params(self, x, scaler=None, batch_size=None): return mu, var def predict_ensemble( - self, x_test, y_test, scaler=None, batch_size=None + self, x_test, scaler=None, batch_size=None ): - return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=2) + return super().predict_ensemble(x_test, scaler=scaler, batch_size=batch_size, num_outputs=2) def predict_monte_carlo( self, x_test, y_test, forward_passes, scaler=None, batch_size=None @@ -788,7 +836,7 @@ def build_neural_network(self, inputs, outputs): @classmethod def load_model(cls, conf): # Check if weights file exists - weights = os.path.join(conf["model"]["save_path"], "best.h5") + weights = os.path.join(conf["model"]["save_path"], "models", "best.h5") if not os.path.isfile(weights): raise ValueError( f"No saved model exists at {weights}. You must train a model first. Exiting." @@ -805,11 +853,29 @@ def load_model(cls, conf): # Load the variances model_class.training_var = np.loadtxt( - os.path.join(os.path.join(conf["model"]["save_path"], "best_training_var.txt")) + os.path.join(os.path.join(conf["model"]["save_path"], "models", "best_training_var.txt")) ) if not model_class.training_var.shape: model_class.training_var = np.array([model_class.training_var]) + + # Load ensemble if there is one + save_loc = conf["save_loc"] + n_models = conf["ensemble"]["n_models"] + n_splits = conf["ensemble"]["n_splits"] + if n_splits > 1 and n_models == 1: + mode = "cv_ensemble" + elif n_splits == 1 and n_models > 1: + mode = "deep_ensemble" + elif n_splits == 1 and n_models == 1: + mode = "single" + model_class.ensemble_weights = [] + if mode != "single": + for i in range(n_models): + for j in range(n_splits): + model_class.ensemble_weights.append( + os.path.join(save_loc, "models", f"model_seed{i}_split{j}.h5") + ) return model_class @@ -862,9 +928,9 @@ def predict_dist_params(self, x, y_scaler=None, batch_size=None): return mu, v, alpha, beta def predict_ensemble( - self, x_test, y_test, scaler=None, batch_size=None + self, x_test, scaler=None, batch_size=None ): - return super().predict_ensemble(x_test, y_test, scaler=scaler, batch_size=batch_size, num_outputs=3) + return super().predict_ensemble(x_test, scaler=scaler, batch_size=batch_size, num_outputs=3) def predict_monte_carlo( self, x_test, y_test, forward_passes, scaler=None, batch_size=None @@ -1206,7 +1272,7 @@ def locate_best_model(filepath, metric="val_ave_acc", direction="max"): scores = defaultdict(list) for filename in filepath: f = pd.read_csv(filename) - best_ensemble = int(filename.split("_log_")[1].strip(".csv")) + best_ensemble = int(filename.split("_log_")[1].replace(".csv", "")) scores["best_ensemble"].append(best_ensemble) scores["metric"].append(func(f[metric])) diff --git a/notebooks/regression_example.ipynb b/notebooks/regression_example.ipynb index 9b2969f..78c0b2e 100644 --- a/notebooks/regression_example.ipynb +++ b/notebooks/regression_example.ipynb @@ -9,12 +9,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-11 15:04:06.560229: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\n", + "2023-09-21 14:32:35.010768: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-09-11 15:04:06.720458: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", - "2023-09-11 15:04:07.382138: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-11 15:04:07.391187: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-11 15:04:07.391205: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" + "2023-09-21 14:32:35.183614: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2023-09-21 14:32:35.969632: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-21 14:32:35.969762: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-21 14:32:35.969772: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], @@ -27,12 +27,13 @@ "import matplotlib.pyplot as plt\n", "\n", "from sklearn.model_selection import GroupShuffleSplit\n", - "# from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", + "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", "\n", "from functools import partial\n", "from collections import defaultdict\n", "import pandas as pd\n", - "import yaml" + "import yaml\n", + "import os" ] }, { @@ -154,30 +155,26 @@ "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: \n", - "\n", - "TensorFlow Addons (TFA) has ended development and introduction of new features.\n", - "TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.\n", - "Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). \n", - "\n", - "For more information see: https://github.com/tensorflow/addons/issues/2807 \n", - "\n", - " warnings.warn(\n" + "ename": "SyntaxError", + "evalue": "invalid syntax (models.py, line 376)", + "output_type": "error", + "traceback": [ + "Traceback \u001b[0;36m(most recent call last)\u001b[0m:\n", + "\u001b[0m File \u001b[1;32m/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3505\u001b[0m in \u001b[1;35mrun_code\u001b[0m\n exec(code_obj, self.user_global_ns, self.user_ns)\u001b[0m\n", + "\u001b[0;36m Cell \u001b[0;32mIn[9], line 1\u001b[0;36m\n\u001b[0;31m from evml.keras.models import BaseRegressor as RegressorDNN\u001b[0;36m\n", + "\u001b[0;36m File \u001b[0;32m/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/keras/models.py:376\u001b[0;36m\u001b[0m\n\u001b[0;31m self.ensemble_weights[0].replace\".h5\", \"_training_var.txt\"\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ - "from evml.keras.model_refactor import BaseRegressor as RegressorDNN\n", + "from evml.keras.models import BaseRegressor as RegressorDNN\n", "#from evml.keras.models import RegressorDNN\n", "from evml.keras.callbacks import get_callbacks" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -187,17 +184,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-09-11 15:04:16.321043: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\n" - ] - } - ], + "outputs": [], "source": [ "model = RegressorDNN(**conf[\"model\"])\n", "model.build_neural_network(x_train.shape[-1], y_train.shape[-1])" @@ -205,34 +194,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"model\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " input (InputLayer) [(None, 4)] 0 \n", - " \n", - " dense_00 (Dense) (None, 500) 2500 \n", - " \n", - " dropout_h_00 (Dropout) (None, 500) 0 \n", - " \n", - " dense_last (Dense) (None, 1) 501 \n", - " \n", - "=================================================================\n", - "Total params: 3,001\n", - "Trainable params: 3,001\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n", - "20/20 [==============================] - 1s 35ms/step - loss: 0.0526 - mae: 0.1395 - val_loss: 0.0050 - val_mae: 0.0523 - lr: 4.7274e-04\n" - ] - } - ], + "outputs": [], "source": [ "model.fit(\n", " x_train,\n", @@ -251,24 +215,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 3ms/step\n" - ] - } - ], + "outputs": [], "source": [ "y_pred = model.predict(x_test, y_scaler)" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -277,20 +233,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.07577107317658871" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "mae" ] @@ -304,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -313,49 +258,37 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "mu_ensemble, var_ensemble = model.predict_monte_carlo(x_test, y_test, monte_carlo_steps, y_scaler)" + "results = model.predict_monte_carlo(x_test, y_test, monte_carlo_steps, y_scaler)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10, 7188, 1)" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], + "source": [ + "mu_ensemble = np.mean(results, axis = 0)\n", + "var_ensemble = np.var(results, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "mu_ensemble.shape" ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10, 7188, 1)" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "var_ensemble.shape" ] @@ -369,17 +302,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "from evml.keras.model_refactor import GaussianRegressorDNN\n", + "from evml.keras.models import GaussianRegressorDNN\n", "#from evml.keras.models import GaussianRegressorDNN" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +326,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -403,38 +336,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"model_1\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " input (InputLayer) [(None, 4)] 0 \n", - " \n", - " dense_00 (Dense) (None, 342) 1710 \n", - " \n", - " dropout_h_00 (Dropout) (None, 342) 0 \n", - " \n", - " dense_01 (Dense) (None, 342) 117306 \n", - " \n", - " dropout_h_01 (Dropout) (None, 342) 0 \n", - " \n", - " DenseNormal (DenseNormal) (None, 2) 688 \n", - " \n", - "=================================================================\n", - "Total params: 119,704\n", - "Trainable params: 119,702\n", - "Non-trainable params: 2\n", - "_________________________________________________________________\n", - "18/18 [==============================] - 2s 60ms/step - loss: 10.6310 - mae: 0.2808 - val_loss: 0.3034 - val_mae: 0.2415 - lr: 0.0024\n" - ] - } - ], + "outputs": [], "source": [ "gauss_model.fit(\n", " x_train,\n", @@ -446,24 +350,16 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 8ms/step\n" - ] - } - ], + "outputs": [], "source": [ "mu, var = gauss_model.predict_uncertainty(x_test, y_scaler)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -473,17 +369,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.17224470462003919 0.07892323927171248\n" - ] - } - ], + "outputs": [], "source": [ "mae = np.mean(np.abs(mu[:, 0]-test_data[output_cols[0]]))\n", "print(mae, np.mean(var) ** (1/2))" @@ -491,20 +379,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJNCAYAAAB5m6IGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACezElEQVR4nO39fZxcZX0//r+uc87M7CaQtbAkBEhCENQVRCBpauRLaRXDI/rzrjfSUlEsWBCtjfGmUEQE4UO1SqP9GCBVpHxQPvmg2GJLxXzaitxYrTF8hBJulJtg3AhLNJu73Zk55/r9cZ3rzJmZc3NdszN7ZndfTx+R7Ox1rrnmzGTPa69zzvsSUkoJIiIiIppWTtEDICIiIpqLGMKIiIiICsAQRkRERFQAhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqICeEUPYLZ7+x+9E6Mv7E783uIjDsM3//dt0zwiIiIi6gcMYT02+sJuHHvOFYnfe2bzp6Z5NERERNQveDqSiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBeGE+dYR3fRIREU0NQxhlSgtbP33qaZx12c2J2/CuTyIionwMYZQprcTG9qvfVcBoiIiIZg+GMOq6nz7xBF7z+jcmfo+nKomIiBSGMMq8vuunTz2NYy37q0nBArVEREQ5GMIos6o/TzsSERH1BktUEBERERWAM2E0rXi9GBERkcIQNkd0+7qvTvF6MSIiIoUhbI6YCdd9pc2ScYaMiIhmI4Yw6htps2ScISMiotmIIaxAvD6KiIho7mIIKxCvjyIiIpq7WKKCiIiIqACcCZtF+uUOSCIiIsrHENanOrlebCbcAUlEREQKQ1ifyrpe7P9+6rzEgMbZLiIiopmDIWwGSgtonO0iIiKaOXhhPhEREVEBGMKIiIiICsDTkdT3WNSWiIhmI4Yw6nssaktERLMRQxjNaFmzZM89+zSWLFue+D3OoBERUdEYwmhGy5ol2371uziDRkREfYsX5hMREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBeHckzUksAEtEREVjCKM5iQVgiYioaDwdSURERFQAhjAiIiKiAjCEERERERWAIYyIiIioALwwn6hF2p2TvGuSiIi6iSGMqEXanZP/91PnsawFERF1DUMYkSGWtSAiom7iNWFEREREBeBMGFEXsAI/ERHZYggj6gKeqiQiIls8HUlERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBLVBD1GGuIERFREoYwoh5jDTEiIkrC05FEREREBeBMWJe8/Y/eidEXdrc9/tOnnsax0z8cmiHSTlVmnaZM+6zlbUdERP2FIaxLRl/YnXjKafvV7ypgNDRTpJ2qzDpNmfZZy9uOiIj6C09HEhERERWAM2FEfSjrjkqe4iYimh0Ywoj6UNYdlVmnuFkOg4ho5mAII5pFWA6DiGjmYAgjmiM6uROTiIh6hyGMaI7o5E5MIiLqHd4dSURERFQAzoQRzXG8mJ+IqBgMYURzXNbF/P/3U+cxoBER9QhDGBGl6nZAy1py6blnn8aSZcut+iMimskYwoioI50EtJ8+9TTOuuzmxG22X/0ultcgojmFIYyIui4toHW6lmrWdWtpM2hcBJ2I+t2cC2FSSuzdu7fr/dbrNdQO7m9/viBIfLwX3+NzzZ5x8LmaVX2Jo9+yPvF7j376osTv/cdn/gwrz3xD4jZPPfMsfnf9xsTvZW2387lncfSSZcaPA8CRw4fha1/5+8TvEU2nQw89FEKIoodBMUJKKYsexHQaHx/H0NBQ0cMgIiKaVnv27MGCBQuKHgbFzLkQ1u2ZsPHxcSxZsgTPPffcnP1wcx9wHwDcBwD3AcB9APTvPuBMWP+Zc6cjhRA9+UexYMGCvvrHVgTuA+4DgPsA4D4AuA8A7gPKx4r5RERERAVgCCMiIiIqAEPYFFUqFVx55ZWoVCpFD6Uw3AfcBwD3AcB9AHAfANwHZG7OXZhPRERE1A84E0ZERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEB5lwIk1JifHwcLI9GRESUj8fN3plzIWzv3r0YGhrC3r17ix4KERFR3+Nxs3fmXAgjIiIi6gcMYUREREQFYAgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkRERFQAhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqgFf0AKhY8fVYhehFewkJQAAQBhvEF4g1a28+FiIion7CEDZH6fAimx5MDzP27SUCCQSxDTxHpgYrKSWkbO7fQVb75rZS6qCXPB4iIqJ+wxA2B7UGmOhxtIeZxPCV2V6FKT9hg3oACEi4TmOWS8+UyYT2gQSElBAi3t5uPERERP2KIWwOSQtfbe2QHIqy2kOqQJUUvlrb1gPAERIC+eNpBCvd0uAUZfR/DGNERNS/eGH+HGEawDoVGASw5vZ241Gh0C5RMYAREVE/YwijrrANeAJ2s21A80X7Zu3t+iciIppODGFEREREBeA1YURERJTroYcewiGHHJL4veHhYSxdunSaRzTzMYQRERFRrjPPPDP1e4OD8/DYY9sZxCwxhBEREVGuFe+8FIcte3nb4+Ojz+AHN1+FsbExhjBLDGFERESUa8GRS3HY0vYQRp1jCJsDel2eQkqJmq+Krroif4kiKSXq4Zg8R90dkt0e8MO/u5BwcmpPBFKiHqi/l13kticiIioCQ9gsllVdvjv9q9pg9djaRLpWmJew5FC0lFHsMVVFXy1p1BqWZNg2Pn5fqpDlivbgJsPwFe9/0leFYcuO2VqURERE04UhbJbq5eyXDlO1IP0Z6uGSQ65ezgjJSxnp79UCwBW6vaqPHyQ3V1X3JeBICSfs309ZKglQhWEnfBX0vITwRkREVASGsFlmOk49VsNTj7ltocKSKR2kXEfCpDp+AMAPzF+vniUru+kLgxMREU0XFmslK36PQ54QHaxbacHjJ56IiPoED0k053AWjIiI+gFDGBEREVEBGMKIiIiICsAQRkRERFSAwkPYxo0bsXz5cgwMDGDFihW47777MttPTk7i8ssvx7Jly1CpVPDSl74UN9988zSNloiIiKg7Ci1RsXnzZqxbtw4bN27E6aefjptuuglr167Fo48+mrr+1Dve8Q788pe/xJe//GUcf/zxeP7551Gv16d55GRDyplbEkJKdcdmr9oTEdHcVWgIu/7663HBBRfgwgsvBABs2LAB99xzD2644QZcd911be2//e1v495778VTTz2Fww47DABw7LHHTueQ5zQpZVhG1SxYxdsYt4da98imvTTsH1CFW13j8TT/Pa972/ZERDS3FXY6slqtYuvWrVizZk3T42vWrMGDDz6YuM1dd92FlStX4jOf+QyOPvpovOxlL8NHPvIRHDx4MPV5JicnMT4+3vRnNhPCpMypPRkmjKoPTNZVxfz440ntJYDxCR+7D/io+jK3vS+BXfvq+PmeOibq+e0lgJofoFYPonphae0b2wH12FiS2jeFKSD2WtP7tGlPRNTP5tpxs0iFzYSNjY3B930sWrSo6fFFixZh165dids89dRTuP/++zEwMIBvfvObGBsbwyWXXILdu3enXhd23XXX4aqrrur6+PuZDmLdqJ7fCF8Sk/VGpfx6APhSquKnYRshRNT+QE3iQLURjvZMBCi7EodWHDhoniEDgF9PBNgz0Wi/c7yOQ8oOhue7cBPa1wMJP7auUd2XcISE64jEWS4HemHxsJJ/ADhC/WmesVPtW1dkki1/0d1ntRex7+sitJwdI6J+NxePm0Up/ML8pEWY004TBUEAIQS++tWvYtWqVXjjG9+I66+/HrfcckvqbNhll12GPXv2RH+ee+65rr+GfqXDWCfHfR12fAnsqwaYqLcvVSQlUPPRFIaqvsTuAz72xwJY/Hsv6u+F/e+vSfx8vI5fT7S331cN8OyvavjVwaBpPJP15gCmBRKo+WqWTrWXEFCnHx3RHoACqcKYlM2zYlnBNf49HXLT2md9j4ioX83l4+Z0K2wmbHh4GK7rts16Pf/8822zY9rixYtx9NFHY2hoKHpsZGQEUkr8/Oc/xwknnNC2TaVSQaVS6e7gZ5DWGRtTtUCiWg9SF8WO8yVwcDJALZCop626HXOgJjE+WQ8XAc9uKwHsPugDkJjnJSSppPEEEq4r4ADRAt9543dgXklfXYNm1DRqD86CEdEMMdePm9OpsJmwcrmMFStWYMuWLU2Pb9myBa997WsTtzn99NPxi1/8Avv27Ysee+KJJ+A4Do455piejnem6+T4bxLANH2Kz5RJAGttbzurxMxDRET9rNC7I9evX4/zzjsPK1euxOrVq7Fp0ybs2LEDF198MQA1Jbpz507ceuutAIBzzz0Xn/rUp/Ce97wHV111FcbGxvDRj34Uf/qnf4rBwcEiXwoREdGsNvbsE6jV238d3vf8DgDA9u3bp/wcw8PDqSWqZqNCQ9g555yDF198EVdffTVGR0dx0kkn4e6778ayZcsAAKOjo9ixY0fU/pBDDsGWLVvw53/+51i5ciUOP/xwvOMd78A111xT1EsgIiKaEx6+Y0PGdwXe+c53Tvk5Bgfn4bHHts+ZICZk3j39s8z4+DiGhoawZ88eLFiwoOjhTBvbOyWrfoCDNfMtJutBVFbCrH9pdTryJQMO5peE8XVbZVfAFebXeTkWbTuh78wkIppp9HFzZO35WLB4WWKb0rxDMTh0+NSeZ/QZ/ODmq7B161acdtppU+prpih0JoyIiIhmhiNPXIWFJ5xS9DBmFYawOUBK2VbHKmvWxw9UTTBTfqBmtRxhNuM2UQ/wwgEffgDMLzsY9LJnuFyhSk/s8SUGSwJlN39GrBYANQAlR2bOiOnx1sNbGD0HcDP6Tpo4Nr6rkndIEhFRDEPYLKZqXyWHIhkrsBp/bKIuo+r2eQIpUa1L6Lym+lK1uVpDH6AKrO4+6GN/7DTnvmqAgzXg0IqDstt8s64AUHYBL6wzIaHKW0zWJeaVnejxVnocgEAtAOoAyq6E01aTDvDbxgj4YRhrb59evb/xvC1jicbECvpERNSMIWwW0kv6mBz0dYCo+TKxIGvaNrUAiWFNBxFXNGbgAimxZ7K5In6cL1XF/LIb4NCyC9cRKDlAKaWAii+BvZMBSg4wr+w0haXGX2PhEsCkD7hChn0KBMgusloLVHvXavHuRhiLqvPHZr84C0ZERHEMYbNM0qnHLIGUOFAz3yaQEgdrZmFNCLWc0C/21o1qjlV9YG81wOJD3DDE5J9y3F+VOLQiwufLbu9LIPABzzE7L+hLFaJcx7zmmFqhQC9axOBFRETpGMLmOD9IPnWY1d68ucD+mlnVfe2QsjAKYFrFMwtgmqNK4xuPx7FcEF30+C5LIiKaPQpfO5KIiIhoLmIIIyIiIioAQxgRERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhM1htjWwpJTQRe1N1n2XUmJeSViVeNCLhpuuK68LxpqOJwhkuJKA6aoA4dJGhmU2dDNWxyciojwMYbOMEELVtspJPjokSAgMlAS8nE+CLgJ7sBbAD3RFfom0qmHRkkkSOGK+i0EvP4oJqKWNfrnfx8F6frhSlfAlfjXhZ4Yx/ZiEKgg7UW8Up80LYxLNSxvlhSspm+uuMYwREVEaFmudhfSyORLtlfAb4QsIYu3LnoAXrgXZHCLUF61rSuo1KRu1T1WVeN2+6quljQC1BuPQgIt5vsT4pB89HueJsDCqEAjCZYwO1AIMVVyUXDUOIURjpim2bSBVpf2JusT8sgMXjeWD9HjqvmyapZqsS7WMkafWFmotsKqXHdJ8AEKq15u2EHfTOpy6Xaw9F/AmIqI4hrBZTAjRtIYj0By+WjlCzYr5gVokGwBqgcRExjJFQZg2nDCI1QM1O5Wk5AocNuhioi4xPqnWkXSF+pNUZb7qAy8c8DGvJDBUcdTsWkaKqQUSv57wMeAJzC85sbUrk9v7EvBrarHukhtWu89YbkjPiulJw3iTtCr5egEjzogREVErhrA5QITTMHXDIOA6ah5tfMI3XqJo0lcBzGQsgyU1QzVRb5+BSnKgJuE5EoOG15dN1CUcqHBl0n89CEMYhNFMVYDGPxyT/nUQ4ywYERHF8ZqwuaKDANDLyRshRN+tsWg7nH4bPxERzSycCSMiIqJcY88+gZrpKZUO7Ht+BwBg+/btme2Gh4exdOnSno1jOglpeq/+LDE+Po6hoSHs2bMHCxYsKHo408aXZqcLtQPVAHsm/PyGoVpg1//BmrqQ3tSCiqNORxrOPs3zHOPTkQAwWBLhaVgzXsp1bGl4OpKIZip93Jwe6nKYLIOD8/DYY9tnRRDjTBgRERHlGll7PhYsXtbT5yjNOxSDQ4enfn989Bn84OarMDY2xhBGxYnPXxrNsFjOd9pOkOq6YKazQ51MwNqUeLAfT6MMhml7wKJ9+H/m41f/7VV7IiJbR564CgtPOKXoYcwqDGEzkK7R1Xgg++CrA48nVLmGvLOGVV+dKiy5AkEgkVJxIurbl6qchB6ck3GqTkqJWqBqiOkWeXGs7KoCtLUAcMOq/VnhRwCoBupP2ZUo5bR3hRpDPQAckTf+WJkPCXg57Zu2jf4v/f2yf2/t2hMRUf9gCJtB2g64+nE0CoPGD8Dx+mCaAOAiuV6YH0jsq/qoxS4FEyIW3lr6CsIyE+2PAwIyHE9jQPVAYqIWRKEuKmCK5NflOcC8ktN0rZYvAd8HPCc5/LTe7lv1JWo+UPEAr+WaL0egbaUA/TpdR8KJF1+N1VmLq0tVxNVraZ9Gxv7S/F4l95/+3tp9FoiIqP8whM0AaQfotnbh/8nwKJx0xi86MEsVxgKoMHWgFkTrNja3Vxs4UKHHD1T7eEX8tDHLcDsJYKIWJLbX4xGxbYQA5nkCZc9JPW1ZD2fSPFeFHwcZs1dQtcNcIVHxBFyhlmlyHJF6CtIPgAB6rUyRue8l1CydTW0yHZai196D9nmzbkREVCyGsD6XNuORJjBMbHoWClJi94H8oqw6WAghsb9qPqKaL6N1IPMIAZTC2a/W500iAQQB4LlmQcOX6s9A7FOf178fAI5hNb0gfA6DZTLbnqcX7XWRWCIi6k8MYXOYECok2YSAetoaQCmyridLok8Zml7w3jhVada+7NoVibWdRXL7LPVwFoyIqH+xYj4RERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVgCGM5pw5tmY9ERH1KYawWaST9R7LrjAuqyBlWIzUon9XyPDvZtvULGpaSClR84OwkKnZdhP1INrWpH9fynAdSrP+fQmr9r3WJ8MgIqIErBPW54RoriafpJPwJYSAL4GDNQnPERAyvwZYIIGqL+C56u9+Tvt6AEz6seWOctY1LLkC80oOHGFWpDaQan3IST/AgCdQcdXjaXXABFRx172Tqn0ppb3en7VALXskIDFQEii76RX2o/7DcbvR+5bdPnrOnNc61fZERNR/GMJmCBFbqyZ+ADYNYDoMSKmKsx6sBdGi20IIeEIFh3rLgt26fdVHbM1HNXumljFqXjtSzQIBE75EvWWZIr2UTmsmcQQwv+yg5MYr5SevfQmoVQHqQWM/SAAH6xKTvsQ8z0HJbQ8/rmg8r25f9SUGSg480diPOpxO1mVz/zWJat3HYMlRC3639N+6VqMv1Tib2zZq2Let7Ziz0MGU2xMRUd9hCJtB4us+SkirU00qAElM+s0Bo7l/gZIr4IZrQ0qp1odMWyNSCAHPFQikRK0uAaggVPWT2+txSKlCkYRaoqjiJVex12FPShnNutVl+0LiWiCBfbUAJR+YX3IAqHUl0wKJL4H91QAlR2CgpBrEFxhPar+vGqDsCgx4KlQJiNSwI8PxOkB0WjZtLPH3NvYfo/bx4TJ8ERHNHAxhM5CeVLE5CekHwP6EBbqTOOETHKib9e0IAR8SByzWlKx4DgZLZksIqdkpabwEUi1QgazsmAWSWiDhV9NPG7aq+hIDngj3U74A6h+a2WsN/2vUc+N0NRERzTy8MJ+IiIioAJwJIyIiolxjzz4RXnpSnH3P7wAAbN++venx4eFhLF26tIghTYmQ/XIv/TQZHx/H0NAQ9uzZgwULFhQ9nI6lXbSepuZL49ORgCrlYNP+QC3AgWrKxWMJ5pXMT0cCwGQ9/VqtJAvKDsqu2SlAQN0cYNoWABZUHLiOeXt1apQnDolo5tHHzf4Ru1MtNDg4D489tn3GBTHOhBEREVGukbXnY8HiZUUPA6V5h2Jw6PDo6/HRZ/CDm6/C2NgYQxj1Jwk122M6e9bJBKnrqBsATHQyJ9T+u082mVOXLC6QEgIwvtjeDySEsGvvOObtiYj6zZEnrsLCE04pehizCkPYDOY6Ive0pP6+BFDxwnISfnoYU2UpJKoB4DkqyGSdBtRhbcAFBj0XVV/iQDX71OH8ssAhZXUqMsgoORFXdlX7eiBR85NLbGgDnoCERE0KOH5Y5T8l/Miw5lhYRx+eI1Fysk+TCqg6Y6hLVDyBipvePpASdV+/R+quynJGeyIimjsYwmaopkKkKWGstagpoAJExdNhprl9PZA4WA+a+hECcKH6aO0/Plumx1NygKEBBxN1iYO15rBU8QQWVJym668EGjXDssKYbu8KwPUEakF7MdiSg7B+V6N9AFVV3xOy6XllWPKiNSzWA7Ufyq4u8NpckFXvE22yLlGtSwyWnKawp8KdbJsZnAiLyg56Dkqm60UREdGsxBA2w8VDgqPDTBCf3Ulur8KMCh1VX2KiHmQUZQUQFlgNwkrweeMZ8FToOlBV6y8eWnFQ8Zz2SvOxoqO6/6xZrnjY8xy9rJAKX1kXytclICTgOSoYtga4VrrfsqtCblIA0yTUjQmuCEOgEKhnTAVKqdp7PjDg2V3gT0REswdD2CwRzcAEAUxuUmwEoQB7DTaIiogaXismwkr1h1YEYqsRpa+jGCtSavIUqn81o+Q6hgtyI736f1p7fS2dCb3ckWtYfa8eFpV1MtaXJCKi2YvFWmcZaXnJu03ZB9W/nShcGYYMu/sBhHX/tmzPGNpOamVdr0ZERLMbQxgRERFRARjCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVoPAQtnHjRixfvhwDAwNYsWIF7rvvvtS23/3ud1VpgpY/jz322DSOeG7ry/v4erwEve0STp0s+URERHNPoSFs8+bNWLduHS6//HJs27YNZ5xxBtauXYsdO3Zkbvf4449jdHQ0+nPCCSdM04j7m5QSIl6kIicLSClRdlThU9P+beUVX23lCrsPpZQwToZSNv8xMRkukWT62usyNi4DE3UJKWVu/zLWr834iYiofxUawq6//npccMEFuPDCCzEyMoINGzZgyZIluOGGGzK3W7hwIY488sjoj+u60zTi/qQP4L4EDtbVf7PCT2v7iudgwBPpWSbsKJCq2Kle79E0DARSwA/y25ddVdx1aEBgXiljPKGSAwx6QNnJruelnzcIlynyc8avH/cDoOoD45MSkz5yw5IAAAn4UoTBLfv1uo5afeBgXUb12lr7j/eh31PZ8n0iIpqZCgth1WoVW7duxZo1a5oeX7NmDR588MHMbU899VQsXrwYr3/96/Ef//EfmW0nJycxPj7e9Gc20AdrKdVMzcFaoGZV4m0QDxsy9qe9veeo4FNOSDMB1PqIrUv96ECQFgT06WLd1pex9rFtXAHMLwkMeE60zYCnwlglIV+7IgxfbuOUtOcIlJ3kD3T8ubMeQzi2pO9N1CX2Vhv7oGndTKjndWKvVwe+pF3jCFWkNd5eLx2l18+MB77W4KUfa7Tl7BgRdc9sPW72o8JC2NjYGHzfx6JFi5oeX7RoEXbt2pW4zeLFi7Fp0yZ84xvfwJ133omXv/zleP3rX4/vfe97qc9z3XXXYWhoKPqzZMmSrr6OoqiDsETVlzhQk5mV76MwBnWwP1BPbi+ECmHzw1moQErUfLXQd9bxPSmIpVWB1+FEhKcdBz2B+eXk9RMdob43VBHRacoBV63P6CT0L4RAyRUoOY1QopcGShOEbeIzZWntAwnsr0nsqwbQ50Bbw1fi6w2Dm4AKX66T3D6Q6vTnZJj0ksJXK91GiOR1LYmIbM3W42Y/KnztyNaDUesCz3Evf/nL8fKXvzz6evXq1Xjuuefw2c9+Fr/927+duM1ll12G9evXR1+Pj4/Pig+UlMDBuvnURyDVuoYmhBBwHYmJqv24TJfg8RyBAc+svesIzCtlh6k4J1xx3GZJJpu29UAFKtd0KSbYLU+kgyCXMyKiIszW42Y/KiyEDQ8Pw3Xdtlmv559/vm12LMtrXvMa3Hbbbanfr1QqqFQqHY+TiIhoLuFxc/oUFsLK5TJWrFiBLVu24O1vf3v0+JYtW/DWt77VuJ9t27Zh8eLFvRgiERERhcaefQI1izMw0+XgizuLHkLHCj0duX79epx33nlYuXIlVq9ejU2bNmHHjh24+OKLAagp0Z07d+LWW28FAGzYsAHHHnssTjzxRFSrVdx22234xje+gW984xtFvgwiIqJZ7+E7NhQ9hFQDA4MYHh4uehjWCg1h55xzDl588UVcffXVGB0dxUknnYS7774by5YtAwCMjo421QyrVqv4yEc+gp07d2JwcBAnnngi/uVf/gVvfOMbi3oJREREc8LI2vOxYPGyoofRZP/YKB65axO+/vU7sHTp0qKHY03IOVbee3x8HENDQ9izZw8WLFhQ9HA6VvclJgNpXJag7geoBvnttANVH/trqvCryQXiDsK6V4aVUwc9gbKr7yzMb++Hr9X0AvqJurQqFKsu5Te3oCzgOsl3aSapuLpkh1n/JUfAEWb7Xt3MAuP3iojIhj5u/u5HNmLhCacUPZwmu3c8ji3Xvgdbt27FaaedVvRwrBV+dyTZkVKFCx/qDkMp1V2AaWFMSlXbqmYYwKSU2F8NcKDWqFHlhPEk7QBfDstCCCFUWYuMshAibO8IVdQ0kCq8JVSoiLgCKHmqmoofSEz6MrV/GT6/EGo7XVg2iyMaz5/X3hGqOKwvAd+XcIREKaXkhH69UTiVgJAIw1X2cwThWBwpU8NY/PcnXd9Mr5jAMEZE1P8YwmaQIAxUrRkhCmOx7+lwVvOl0QyPlBKTdYm91aAt0OlQ4qC5fIjnAJWwuKt+XAhVYNUPVBiKd1VyEBWDjRdx1SUfVBmHRntVg6t5LI5Qs2j1QNXUio9fV8Nvba9nuVrDlf5e/DlV6Yn2FQcEgJKrZqji4UfX9vLCqv3x/eOGBVmbwhLUGB20P7cOW039h8/htoSrtAlsHcbygjMRERWPIWwG0LM7SYfdplDkCgSBRC1QRVxN62rVfIm9k35bRfxWgQSEVIGj4iUXWNWPOEKdgquHs3SVcFmktFAgoWbr3HAGK5z4amuvv/YcCc8RmKwHmPQbazYmCcuGReFKjy/6XmtbNKoYB1KNJb6+ZtJrqAcynJ0ESuFMX1Z7PQ4XgOM0L3+Z1N6P2kujE75pwZmIiPoHQ1ifk1IaXcvVmFmSmLC4hbjmS/zqoG/c3nGAeWU3d8FpPZ6SkHAdJ7MIb/N2KsTok2tZ/UspEUCgbnBhnH7qrDUmk9pXHJhfmwUVhE3bA40AZhyUJCCF8ZrlahPDfU9ERNOr0AW8KZ/tXRNS2h1sfcv7Mtww/Jge1AXs2jvQp9pMApuwqnTfCWERqADzwBb1D8v2lgEsvn4nERH1F4YwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBD2CxjVpq1wfa+OYneFgC1v9mx96tuWe1TmV5INXUTi/YyY3WEbvRPRETThyGsj0mpCnOavklSyqjYqWn7UqzqvYm6LxEYHtTVEkuNorEmYSBpRYDkvtV/K67o6Yc4kKrMhqlJP4CEefDRBXLzmuvw5UvL9uHOZxAjIuo/LNbah3RdLXUwD2tPSbWETdKhVB9g6wEwWQcAAQcSaTVedXtfAn4gMFASKLkSB2tBZt2tAU9gsOQ0CqVmrN8IhOswqgdQDyRKro4zyXXAvHANx0CK6HUD7VXtdf+TdaAuBUqueq5azhIBbqzGll4+KI1e49INlynS70VWey9ckLweqPUeXf29lJnDaFmjcHvdf1Pz2K6SaCy/5ArASWgvZeNrPeYg3JdcyoiIqL8whPWReFFTvyVQiPCgLqVavDvePpDAZL05FAkhwvaNMBaFO9k+4+Q6AvPLDuoBcLAWtK35OK/sNi1TJIQKevFwEg+PrQFHAqj6Eq5Qyw0htpyOA71upGhq70vEZgIbHdZaFiQXQqhQItQ29ZZ9pwJIc/8CarHrKCg2vV7RNB4hRLj+pIzWZozzEqrqq4XAJdxwbPE0pdaYbH+9QCwkxp4kKfz54efAE80BTj93K70wuevo9qyiT0RUNIawPhHNHgXZVyAJAbhSVbr3JVCvB5lrPgoh4ISzVjIMKGkTRkKoWSXPcVD11ezVYMlByU0+4RcPJ34YTvyc8fsS8H2JSjgr5oWzQWlaA13VTz9dKYSAF56OrYYbtS6q3dpezSipoKpnv7LaC6HeKz1T5zrZM0u+lAh8iZLrqDCYU1Ffh1q9cFOeulSzpJ4wa+8HQBAFYSIiKhJDWB8xXXBbL0g9UTPbQKjk0DR7lNd+wBNwDA/Uun/bJYRKOQEmrhbY7B8RLQBu2r6cEwaT+rdY7rFtps9kG5u2Vu15eRgRUV/ghflEREREBeBMGBEREeUae/YJ1Or9M5XueR4O7v5F0cOYEoYwIiIiyvXwHRuKHkKiwcF5GB4eLnoYHWEIIyIiolwja8/HgsXLih4GAGD/2CgeuWsTbrvtNpxxxhlYunRp0UPqCENYHzG9Iw5oXOztGxY3BdSdgqYXzwdSIgiy7y5sGk8HV3sHUtWuMulfl6DIuhO0tT1g/nq9sGyEaXt9z4Lpq/bD2mEmNzvoumQC5hfzB1K3txsPy1QQkakjT1yFhSecUvQwAAC7dzyOR+7ahJGRkRkbwACGsL4iRCOIpWUaXTVdAii5qqREPQBqKekhqhMWllNwoYJbWtiQslFuAlKiDhX20sKYlBJ1X8aqYGUHk3gR1ABh7SrIzMDhCsALi6aWHFWmIm38ArEiqFLCA1Dz0++s9BxgwBVR3a5AyswyGI4AyuHtLLp9XtFXVzTqholAwkspg9FaFFa/ByZhSWdTIXVNtMzmUd0wRzCMEREVhSGsTzQdBKUM61E1woAMi4o2DvgiOtB6jqr7VPUl/GgZHNlWukA/h+tIuFDhLb6kkA5FreqBVIVBHUQFW6WU8FtqjonYf5PKJugiqK30a/JaZsWcWIX7aPxSYsBTVelbw5IbBs1G5XnVvuIJ+IFELdbeEWrJo5IrmgqXCiDqv6kgLFRJDV1BP97eE2jbdyJ8jtayFxIqMDtCwnUaYSxrBQI1y5UdVOP9+1DV9E1mxqIirkK2FZAlIqLeYgjrQ3pZICc84NeDxuxXVvuK58APJCbqQeqSRbo9JNRyP4FUhVlzzqtJqGWB9GmsvJpdAo0w5gg1+xU9dwpVeFTNdunw0to8CpICGPRU/TBfNq+XKUR7e0cAFU8FT1cIlN32Nq39u+EsoxCt/be3d2RjvwjRmIlLE0gg8CVS6uC20YHcdOkh/f47snHqNIsfpmbXkcb10oiIaGoYwvpUY4YEuQGpuX36jErzBuo/gcwPYHFqLUjz9p4ASp6DtPUiW+lrv/JyQCNcSaProHT7iptftT7e3nPMQk88vOnwZXotXS9nnwSa15M0a88ljYiIpgNDWL+zPRbqcvq9ag/TOKX7tzuo9/rYb3vKrZMw0tNQZdm37VAYvoiIpg8r5hMREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBGML6nPVqQJYbdLLcUC/vn+tgONb927xmKWVP2+ttetG/amv/HnfymSAiInsMYX1MhgVAPcPUowu8mrTXB3MR+7vJwTeQEvXAvL1NjSpAFYStBflhQ3/HNhD6snmVgNT+w+e3bV+LLQlltj+besltb7y2aPjctUAvhWS2pR+oAiTMYUREvcc6YX1IHzD1OoKOAEoIA0RG+3qgli0SQsCDKtqa1f5gTWIytvChI5IX1NbtfdmYqfKlCoduSgoSAMqeWqZIVfTPXq8SaASSqq9WCSi7KlC21hmLj0FChJX5s1NDfAmougR8X6qxJYxFrQmpqvFHyxyFlfzRNhb1tS+ByXpjFK5QyyW1tk8ShCsFqGbp7U2KzMb3pd6fvq/eq6zCs3qJIyFEVAeusfxT5lMSEVGHGML6SDxstFa9F+GMmK6gL9ESGFoSjhBCVZ+PLcitD9BVX+JgrT22ROsIhkvXJB3Q4+JhJr7UTclVAap5eZ9wjcWoL9lYqDphSaZAAhN12RRmdGQKEtoLiOYgFmuTFM/UMkyq4n7rzOGk377qQCCByZYwo/uZqAVtAdOXwIGaCm56iaSsAKUDtwjTT9samlnbxir0SyBaPzSuLoG6r9a/bH29Sf23zjTazmgSEVE+hrA+oRfcDnLWHBICKAl1mkmFoCDz1JEQAi7U+pC1QGKyLlNnpDQ/AAKhTlXmLYGkw0zFVQt8lz2RufagXpTbDxrBI3MsYZipuAKOkOEy1slE+D0JtRi5yVoAgQSq4WwjZP4SUTrM6OWJalmLdELtm3ogMa9klmB0IHXDpZvUDJXJ8kfqVGLe660Fqt2AJ4xWD4jPxhIRUXcxhPURm+twBIB6XprSbcOliQ7UbC4At1vMSAig4gmjwKCb2Lxe/VKN1ok0OkHZrJ4TplpVDfc9YLsolGJy6jHOYjhqIXCmKiKiwvHCfCIiIqICcCaMiIiIco09+wRqeddsTJN9z+8oeghdwRBGREREuR6+Y0PRQ2gmBCYnJ4sexZQwhBEREVGukbXnY8HiZUUPAwCwf2wUj9y1CZVKpeihTAlDWB8RwvxidQnAc4W6Iy7vDkYp4QeqFINveMG9vjMv7+5IreSouyJNmuvxOsKmf1UGw+QCdH1JvsndkY3+VYkL0wv0PUdExVzzdHIJvB+oumGmF+h7TnopkSQ1P4AjBFyDC/SD8HW6Apl3vhLR7Hbkiauw8IRTih4GAGD3jsfxyF2bih7GlDGE9QkRJjAnPLinHUwbdcIEXCHheQ78QLbVCdP8QOJgWMfKEY3gk3Va3w0Dj67Yn3VwLznAIWUXJVc0KvAjPfzouy4dp1H6IKt/zwEGS04UZFyoOxmT2sfvh3TCMeQFMVeoQKWo4rI1Pz1cOYiVaxAiHE/6+1V2hSryaikIa0MEAFw3PfzoIqsA4DoCQaCCZNpr1p8BXwK+DuduclkRHTJ1X4FUxXx1AV4iIpoahrA+0lqgM15HS1ecDxLaO2F5CF0xX7WXmKjLplIKUXtIlKMDcaM/p2XmJd5eH7jjs1iHlB0MeE5TsVA92NYw1l7yQkThIeo/XqFeAIOeA0+Hu1jfnqPa1YPY/mmNHaIxA6Wrv8vmb6Okw0e8EqmUqITBtuo3ehVorA7QFECkRNlV7etBvGJ+WLKjtb0lCVWKRAgJz2kpgKv/21IUt+SG723swyKQXOsrgCq34cb6178EJE0KBgCqgVoRwLUso0FERM0YwvpQU5gRKmxkzVzp9p6jZrH2T/qJFfFb27uxcOUkBYzW/oU6NVVxBebHpndat9F1yQTUzIxv+Ho9V/VfcgTKrmj7fviFCh9SouwK1P0gt8BquFkUxjxHnYaL1lMU7c/lCGDAE+GsmwxnivTcWvvYHaFmvdSKA43Tld0KKVKqGTr9HsdDbNJ4XEi4rvrsxCbuUvmysfqByRlNHeBLjuQpSiKiDjGE9TEh1DVfpncECyFQqwfGRVmjA7bFMbTiOjikbHJ+Laxeb3NhFvTpu/yir9HyTuZdA1DhKCtwtvYPxENGfvtybEmjXswSuY7uO7udECoAOy0TfXmsCvSicdqaM2JERPZYrLXP9duxTZ29612dGNHRZewW/ff8FJrZqgEd9y7M+xei+b+9wgBGRNQZhjAiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAENYv7O8EbHX96k1yhFYrK9k07/lBravVxVtNX+OTvZnD28ehZTS+O7UTsZh0398GyIisld4CNu4cSOWL1+OgYEBrFixAvfdd5/Rdg888AA8z8Mpp5zS2wEWpFGFXhVJzQsDur3jCMwrOcZlCRyo/k0FEqgFgQozmQffWL0s8+4RhFX59Z88niNiyw7lcx3AtSipoJZwMm7etMxPL7JJtd5YIilr/6vaYPYRUvVttp0EouWyOglvRERzXaEhbPPmzVi3bh0uv/xybNu2DWeccQbWrl2LHTt2ZG63Z88evOtd78LrX//6aRrp9NIHsyBck9AJg1haUVXdfrIeYLIu4Tqqon0lJ125jv4jUHayi7YKqArygyUHgEA9XNYm7eArw7UJIRrV6rMIqEKtZdcBYguBZx3XBcKxuwIDnsgcv+cA88sOKp6DkitQcs2ihggXufYc8zAZSBgvBG5LB59qPQiXtWreQVGADdvaBjER7vsgJwgLNPZHfC1PBjEiInOFhrDrr78eF1xwAS688EKMjIxgw4YNWLJkCW644YbM7S666CKce+65WL16de5zTE5OYnx8vOlPP9JhRkrZOAjGvi/CEFYS+k1rtK8HwMGabF4rUKhAM7/swGt5lx2hQokTK/wphJpRKjvtH4qyKzCv1D7jpBcCbwQmGa47KNsq2Qu9LmXCa9fLFLUuf6ODROtxXa+DGG/uCIGK56DiNpd7FUItAD5Ycpv6d4RA2TNfXFuFsUbFehN6/UbTWT0bgVSzYvUg9rmJ1tFsZlLgNalNUxCOdSrQHML0eHQYi3+WiWjmmSnHzdmgsBBWrVaxdetWrFmzpunxNWvW4MEHH0zd7itf+Qp+9rOf4corrzR6nuuuuw5DQ0PRnyVLlkxp3L0kZWMGIo0IA5SAmhGZqMnolFASRwgMllwMeCIKX27GskBCCJRcgbKrwtf8kgpIWQdxXwL1oLHoc9ahV8+KuWGorLgiczxo6U8guwK866hZsYorojUus05XOo56rSaEUEGxNdRmkWheJL3b/ACYrEtICLRkpTZJQSsvoDVm1MLwi+wZwSAMnjaV/Ymov8yk4+ZMZx3CjjvuOLz44ottj//617/GcccdZ9zP2NgYfN/HokWLmh5ftGgRdu3albjNk08+iUsvvRRf/epX4Xlmy15edtll2LNnT/TnueeeMx7jdLNdt68emG/jiPyw09o+L3zF5QWAODUrpmbWbA7UeQGs0b8ITzma9S+E3WJJMz1c6IBkve97NyQi6iMz6bg501kv4P3MM8/A9/22xycnJ7Fz507rAbSdAklZDNj3fZx77rm46qqr8LKXvcy4/0qlgkqlYj0uIiKiuSjtuDn27BOo1Yu5zMDzPJQq5ejr8dFnChlHtxmHsLvuuiv6+z333IOhoaHoa9/38W//9m849thjjZ94eHgYruu2zXo9//zzbbNjALB371786Ec/wrZt2/CBD3wAABAEAaSU8DwP3/nOd/C6173O+PmJiIjI3MN3bCh6CE0GB+dheHi46GFMiXEIe9vb3gZAzVy9+93vbvpeqVTCsccei8997nPGT1wul7FixQps2bIFb3/726PHt2zZgre+9a1t7RcsWICHH3646bGNGzfi3//93/H1r38dy5cvN35uIiIisjOy9nwsWLxs2p93/9goHrlrE2677TaMjIxEjw8PD2Pp0qXTPp5uMg5hQaDud1u+fDn+67/+qyvpc/369TjvvPOwcuVKrF69Gps2bcKOHTtw8cUXA1DnpXfu3Ilbb70VjuPgpJNOatp+4cKFGBgYaHuciIiIuuvIE1dh4QmnTPvz7t7xOB65axNGRkZw2mmnTfvz95L1NWFPP/109PeJiQkMDAx0/OTnnHMOXnzxRVx99dUYHR3FSSedhLvvvhvLlqmkPTo6mlszbDZQZR3UnWX6arisa6alVOUoXCf/bkrdHgjbG1zMr8dT9yVK4d2LedywBEVraY00tte26zpUruG2MvaXvPbqOkS17wODwUspo/fJ6LUCcBy9rXl7fbesiVo9gOOIsHRHxt2OCQPIu0DfCd9bafDe6hs0qr5UhW4N+icimquEtCzmEwQBrr32Wtx444345S9/iSeeeALHHXccrrjiChx77LG44IILejXWrhgfH8fQ0BD27NmDBQsWFD2cqM5Xq7Q7Af1Aouo3CqUKIRDI5hphrf0Hsb9ntdc1ylq/5wig7LXX8dLfi9eEjfpP+VQ5olGxvtODc1KdsMR2+nmir5u/r2trtRaGTQuSae2z/gHpkiDxf2ZZYcYN67fF2/sWd8Gq5xRwEoJz1j/1pPdCoFFPTn92dEBPknSHbLwPIpqZ9HHzdz+ysbCZsC3Xvgdbt26ddTNh1iUqrrnmGtxyyy34zGc+g3K5cafCq171KnzpS1/q6uBmMykl6n5yAAPQVLUcAAIpMVGXmAgDGNAcMryWivdSSvgtRVNb2zut7YP2AIZwHBO1sEq7Xk4JQMlRhVYhmutCCahgFv9wqecU8By1pNJUZkd07a20WcDW8gvxoq96uaUgDBOtBXF1UVk3VljWpH3rq3EFUHYb+7hRFgLRjFWcruHWCIyN1+C5wqpIbD2QqMXeK5PCqa1tPKHqxMXHEx9r/O2TSK8PJwHUAkRFZYmIqME6hN16663YtGkT/uRP/gSu26hyefLJJ+Oxxx7r6uBmqyCQxjW+9Kmdg/X0op/xA7wrZNPsV1Z7J2zvG45HV+Z3oAJYdIBuiSDx/j0BeEKg5DqxVt2ZFQlkY5/o159XeDQKUzkFcQFdHT+/vd7GCYNnyVXbJtfiag4zjdUL0oup6q1slk6SUMV8/bQp0hQOpFo1IRYeW8ej66oJmNeH8yVQDdT+JyIixfqasJ07d+L4449vezwIAtRqta4MajaTGafqkgRSomZ4HFXr/mUHsNb2akbJfEDlsAiqaf9NC3n34JRU81C6178eamC5BqTn6u2zx9IIV9K4vT5dbCPptGTqcwAoGU65dTIeBzwtSUQUZz0TduKJJ+K+++5re/yOO+7Aqaee2pVBUeek7P1Bzu60kl01+tnALmzO4OV9bIc9Q18mEVGvWM+EXXnllTjvvPOwc+dOBEGAO++8E48//jhuvfVW/PM//3MvxkhEREQ061jPhL35zW/G5s2bcffdd0MIgU984hPYvn07vvWtb+ENb3hDL8ZIRERENOtYz4QBwNlnn42zzz6722MhIiIimjOsZ8KIiIiIaOqsZ8J+4zd+I7mwoxAYGBjA8ccfj/PPPx/vec97ujJAmvkkeE02dUYXiSUimo2sQ9gnPvEJXHvttVi7di1WrVoFKSX+67/+C9/+9rfx/ve/H08//TTe9773oV6v473vfW8vxjy3xMuzGxyMdMkD04OXsCx6EEgJIRzT4ajn6OFBVMK87EHTXZ2m+1OYLTUUHw96FBw6KbFlE2IkGvvIaBvL8ehCuab9x6v0M4gR0WxkHcLuv/9+XHPNNdEi29pNN92E73znO/jGN76Bk08+GV/4whcYwhIIIeA5MncpmmiJIfVFbDYpeV5Jt/fDNR+dnMKe+mAYyOZaXibjr/vSaD3J1rGZ0AVM01YSSGpvMtemX68frrnjCBiFpQFPrSIw6ZuNRy2pZBZtBRp1zrJebrT/7N6qaIko04KqAs3vVdr7ph8XAnAlYLhrIKHeV9dpf67W/nX7IJBR4ViGMSKabayvCbvnnntw1llntT3++te/Hvfccw8A4I1vfCOeeuqpqY9ulhJCpC5Fo5ePkQAm6gGqvoxNhsnYbEJjxgtQ1eMPVH1M1BvrP9Z92b5kTaz9RF2iZlg51hXAvJKDAc8BwrDnB42lgLJeq8mB0wmX+dELhpddZC7Vo9u7jlrTMu0Z9OsPpKogrxdKrwd62aPk5XRcAZQdwHMcVDwHh5QFvIzxuE5jPDovZfGEWnXAddTr9VK20WOrB+nrg7YSUEV1K+G+9ByBvPq6JSdcpigWwPR/439vHZcQalH1vB8kItbGD5cxSusTaF2yS4Wx1jZERDOddQg77LDD8K1vfavt8W9961s47LDDAAD79+/HoYceOvXRzXKOEG1rPgJALVDrRKYtlAw0B5+JWoADtaCtEr+eedBhQz82WQ8wWZdGp7cEgEHPwWDJaZv90ms46nUZm7YzDF+qSrsKX/H2asZQNK2/mN0+eQ1HGYYvP2Fn6jAW/44DHb6a+3eEwLySg3ml5nUfdRhsbZ+5pqSjw1r7621d/zMao2H2KDkCA55IHL8n2j9rejwdndKNxh7OuqH9B4qI/Wnup/2zCaiZyqTPvVpyqvmUKRHRTGd9OvKKK67A+973PvzHf/wHVq1aBSEEfvjDH+Luu+/GjTfeCADYsmULzjzzzK4PdjbSp3UCX2Ki3h6k0viBRC2Q0YxCFnUgV7NnprMprlBBp/VgntZ/PHCYznzpP1nthRAouepaNClN2qtx1OqBWlTaYH/6gVpuyDUII54jML8EHKzLMHzkLTcEQIYLghu0V7N6EhO+WUjWyq4I92f2vlSBqHFK1vh6MYPBRDOAshFs83rXM5OuMFsCqTEMnpokopnPOoS9973vxStf+Ur8z//5P3HnnXdCSolXvOIVuPfee/Ha174WAPDhD3+46wOd7YRIX6A7jUkAi7NZy1mEi27bMj0wCoMAFueYnOOLSZqdy+7ffDZIiORTyent7V6rvhjdhmezRqRons3rtk665twWEc1FViGsVqvhz/7sz3DFFVfg9ttv79WYiIiIqM+MPfsEavXe/crkeR5KlXLb4+Ojz/TsOYtmFcJKpRK++c1v4oorrujVeIiIiKgPPXzHhsKee3BwHoaHhwt7/l6xPh359re/Hf/4j/+I9evX92I8RERE1IdG1p6PBYuX9aTv/WOjeOSuTbjtttswMjLS9v3h4WEsXbq0J89dJOsQdvzxx+NTn/oUHnzwQaxYsQLz589v+v4HP/jBrg2OiIiI+sORJ67CwhNO6Unfu3c8jkfu2oSRkRGcdtppPXmOfmQdwr70pS/hJS95CbZu3YqtW7c2fU8IwRDWAV0XbMAT8ANVoiKvfQBVqiEIzC7od4SA66m7KvMu0Nd1pmxqg8bvchMGF6FLCdQl4DrS6IJ43cL0DjrHEXAA+H7+XXcCquBoEEi4hhetl10RllnI799Bo8yG6f4c8AQCCVQN3lwBYNKXcIW+CzPvDkz1x/bmBVNRXVlp9/lp3F2b3k7KsLCtxWeNiKhfWYewp59+uhfjmLMC2QhFjhAQjoTnCFR92V73Kwxr+nHd3kWj5lIrgeaDmueoO/vqfnI9prKr6kxpjrA7mPphHVnPSS4hEIUpGd4RGgABpKqintE+Gg+QWgE+Pk497pLnhMEz+RXoYqkyHFBdAk6spEQSEa5lJITaX75MvlNVAPDCshdRcdOUsSdt6wpg0BNhKZLkdo3AKOFLNRZPyMS7MQUaBXDjr8Hm/bWhw5jpTbyx6hNt+16HxXhXeZ81IqJ+Zx3CqDukTF66SJcnqIThQVfMl1Ii6aYUdTDVs2KyqfhoalkEKVEO+6+H/buOKsqqD+qthUdtZzbqgapHFQ9XaTMduqis0xIeovYJ/cfDTNIBGhDR8zgCcFzRVAjUEWgqPht/vQHCWT2o0Je0C+PtXUi4rgpLun9PtBSZjXeSON7k/qWUKDmqqG/Vbx6/DlKtA6xLQIThRM8yurEwGO3f8GsnDKGWFU8Sx9y6tJCUMgq5NmFMyub3PWvTpM8aEdFM0FEI+/nPf4677roLO3bsQLVabfre9ddf35WBzWZpVcE1fSBxBFBxgQP19lmx5g30dmrmJYgeTN4o3n85rK7uOd1fKFmHq7Jr1q9eqqaUM7PRdHA2CIYiFkTchMfT6NUAPJHdXoePsusgiK3jlN4eUeHZvGAS9SElBjwnDGIy3iBxOwmgFqjPT3y5pbbZsXjYRmczYvG6Zt3s37ZtPeCsGBHNLNYh7N/+7d/wlre8BcuXL8fjjz+Ok046Cc888wyklHPqYrpO2cwICKGuC/INL9xpHLCjR3LbO2gU+sw7eOnq7zYHx7w1C1vZFBEVyF74uq19RlhI03T6LqdvPSYZm4VLb2/09E3969PRxkVfoVY9MO0fsKvS39jOdP/Y92+jlwVoiYh6wbok+mWXXYYPf/jDeOSRRzAwMIBvfOMbeO6553DmmWfiD//wD3sxRrLAyuPZTNe0bN3Grr1V8zmDn00iombWIWz79u1497vfDUBVtz148CAOOeQQXH311fj0pz/d9QESERERzUbWIWz+/PmYnJwEABx11FH42c9+Fn1vbGyseyMjIiIimsWMQ9jVV1+N/fv34zWveQ0eeOABAMCb3vQmfPjDH8a1116LP/3TP8VrXvOang2UiIiIaDYxDmFXXXUV9u/fj+uvvx6/9Vu/BQD45Cc/iTe84Q3YvHkzli1bhi9/+cs9GygRERHRbGJ8d6S+q+y4446LHps3bx42btzY/VERERERzXJW14Sx/s7U2ZcAyCs00dLervuoEKzpvWth6VjkL9aj6BISpq+7tQBrHqvX29Sp4evVhVUNBmTSZipse5dQKzKYjquT4UuL/nt9e6TNe0VE1A+s6oS9/vWvh+dlb/LjH/94SgOarfRxQdXmkrlFRvX3hBCYX3Yw6UvUDNYRdB2gBFWo02RNSVVlHMiLM/rAptfuc6JNZOa2DlRBUtMaThKq4rsukJpQEL55/EI9R9JqAvFeZWK6yy/sWZdA4Et4DlKL2U6lyG20jFNGG72HhRDwHBmt02nSd9VXy2C5SK+PFoWWTqu1xvrI7L9HdO8B1FqqnqNXeGDhViLqb1Yh7Oyzz8YhhxzSq7HMSvEQEQ9Wqmp6e+HWeKSJtx/wBEqOxGQ9SAxXap3CRg2siqNmQap1mVjQ1BFAuWWZl6RgqA+geikfLQg3cMKRth7s9CLR0fI7el9Er6l9/PHFmH2opXccJAexeD8CKngGaA+eeQHApHhrAKAaqMDXGmYa4bSzoCFib3ZWD/o9FEKo4Jmy7JXmxd5bX6o/XrhigA4n8ZAy1SWL4lr71+99tyXNa+qVAhxkB2cion5gFcI++tGPYuHChb0ay6wSDw5pBzh9QG0NY2lV4F1HYLDkwA+AiXoQHXg8R0RrBMY5QqDiqQNwNUwnqoo64CYtlh2bCQlrszctGJ4kgA5EEgIiWiQ67cAXBcumcabMoECFMSf8QjfRga117HqtR1+qRcHtD/zZs3pRmBGI3rduSVqfM+sksRACntu8ADzQWHg8aX/WA8APw4n+btrC5p1q3Sfd7h9I/kWlVWtwZhAjon5kHML4Q8yezfJEQkr4hm09FxgUAlW/cZoqs71QMwP6NGJ2+3DsgVouyeQlyLDfrACQ+FwAHIPzlAEayx/lNRdChaSqyc6MsZkxqUtABLInlfF1EDYdviMEhCOjYJL3GvRMkSd6d4pQSjSvb9kDpstV6V8gGMSIqB9Z3x1JvRGfhTJrL+zWWRSiafFqE7bvuE0A0+2t+rdsO1M/sZ18FhgviIhmHuMQ9vTTT+OII47o5ViIiIioT409+wRq2XdBdWzf8zt60m+/Mw5hy5Yt6+U4iIiIqI89fMeG3j6BENGyiHOF1YX5RERENDeNrD0fCxb3ZkJm/9goHrlrEyqVSk/671cMYURERJTryBNXYeEJp/Sk7907Hscjd23qSd/9jCGsh0wKcQKNEhWm7QMpMVFT9cJa64PltS85QNnNb29z2l+VpbC4IB/mxVsBtX+q4e1wJUffhZlSAiMs8SAtLm53hC4OK1GXInczR5jfVBBVcQ+/Tiqv0drepARDXLw707etHn52nJzxdMIJS2CYFpXVnwWbemKmb6+It40KJps9BxFRrxmFsJ/85CfGHZ588skdD2Y2iQq0ZoQrGZaAaC1YnnaAkVKi6suo5pfusxZIVcCzJZwkta8Fqn3FbS7oqdvrWlimPEdE5SNM7ox0hSpLYVISIqmYbS0A6gDKrmyrjRaEY2+qRRYWDU2iAqwq86DaCJQc1U9SCG1vj6goafL4E95zND4T8eEnhTWTMCZi/7UNb1EdtoTxdCK+xJZeGcIR4XuStD9b2kPKsIhx/vhNgqf6N9F4f2RsAwYxIuoHRiHslFNOaauwncb3LQs0zXKtYSwqxJkQMID2Mgy6Sd2XTQVaW/lhgNKFOOuBxGQ9vc7XpC9RC4CKq8JbWvBI4woVwACz8KUr6GtZ26j1CNMPrhLApA+4QqIUrp+kCrTGNY7wSaHWyxiPAFASzRX4PaFm+0wq7JuEiPjMTMtfm8ahv9f6GgTaPytZ7bPo/dZpGItv07Qfw58ZniMQSIkgiC/BlN5eh/TUIsex/+oadfHCtg6yP2tpQZiIaLoZhbCnn346+vu2bdvwkY98BB/96EexevVqAMD3v/99fO5zn8NnPvOZ3oxyFtC/4QtkLzcTtUd4wJIS+2vJSxUlqfkBar7ZATiQwMG6bJsRy1N2RewAlr+dFy4Tb/IcWQffVr4EfB9wnfgcUIKwjpYMl1nKG49+2JHtpx6TtokvYWQSwDTTdkmzXVnbmrZrFRXztdhGz76m/YKmH9OnrIOEJZOS2sdfRxbR8nebWVkdhBnEiKgoRiEsXp7iD//wD/GFL3wBb3zjG6PHTj75ZCxZsgRXXHEF3va2t3V9kLOF6amWqD1gfXrQpn/9HDYBzBV22zgWB0XAfo3BKNwadK+WiTKvnJ40W5PXf68rxYuW/2a162QkNtfqAbGQlbOPVPCybJ+3oGa8PVpObRpuQ0RUJMd2g4cffhjLly9ve3z58uV49NFHuzIoot7hoZeIiPqDdQgbGRnBNddcg4mJieixyclJXHPNNRgZGenq4IiIiIhmK+sSFTfeeCPe/OY3Y8mSJXj1q18NAPh//+//QQiBf/7nf+76AImIiIhmI+sQtmrVKjz99NO47bbb8Nhjj0FKiXPOOQfnnnsu5s+f34sxEhEREc06HRVrnTdvHv7sz/6s22MhIiIimjOsrwkDgP/1v/4X/r//7//DUUcdhWeffRYA8Ld/+7f4p3/6p64OjoiIiGi2sg5hN9xwA9avX4+1a9fiV7/6VVSc9Td+4zewYcOGbo9v1rGpYCClhIC0epNsax7J8HlM6Rpeptt0UnLCimX/QUr19tynMdjIZj9OB6vRSBnWOWv8MdvMrG0nu6bTj4Lx2KP2lk9ERNQl1iHs7/7u7/D3f//3uPzyy+F5jbOZK1euxMMPP2w9gI0bN2L58uUYGBjAihUrcN9996W2vf/++3H66afj8MMPx+DgIF7xilfgb//2b62fswhSH/yFMFp7UB9I6lLAdQRci1pVZbdRzT5PyRFwwmKmpqq+DMNM9gFYoLHMjylHiKjqvwkh7OpCuQb7vlX8NSa93rZlcXosb/jx6vEm4stnVYNGXbq8MGNaR611SSZTjhDRclwm4s2Mw2HTNlbDIyKaMutrwp5++mmceuqpbY9XKhXs37/fqq/Nmzdj3bp12LhxI04//XTcdNNNWLt2LR599FEsXbq0rf38+fPxgQ98ACeffDLmz5+P+++/HxdddBHmz5/ft9eoxQuJRusC6gruaK+wrg8cvlTrJOr2rlAV3P1AtizP00xALc7tCBU4akFyBXq97FDr2pFpfTcKYSIcn14mqVGNPt6XCl/NFdOzCsk29y/guWohcT9lQHrdQdMA1rpMUSeisJVQ9d03LfPfobYldhL2ZXzdAJPRxMNjPIDoAsGeABy0L9Okx5K1iLouohsfm6n4Z0E/hyPTV5po/Wy2jye7QG98GaP4+ImIes16Jmz58uV46KGH2h7/13/9V7zyla+06uv666/HBRdcgAsvvBAjIyPYsGEDlixZghtuuCGx/amnnoo//uM/xoknnohjjz0W73znO3H22Wdnzp4VJX4AClLChxACjiOawkEAtS5iLSF8CCHguU7iLJcI/9favuw60TJDgHrDy65AyXXaDkwq7Im2D0XjoNs+pnogUYslJUcAZVctUdPef3Nl87z+9axY0zqA0OtQtvefxBVqHcipBrBWOsAEKSG3W/TrbX2pInxNrS8rgMG6lbEPZ9bp2Xr4i0D8245QC7Abr4BgMJ64tM+CEAKuA7iOWfvo+WPB2WSsjdPtFoMmIuqQ9UzYRz/6Ubz//e/HxMQEpJT44Q9/iNtvvx3XXXcdvvSlLxn3U61WsXXrVlx66aVNj69ZswYPPvigUR/btm3Dgw8+iGuuuSa1zeTkJCYnJ6Ovx8fHjcc4VaYHZxFOG0xkLLgd54TL7+jTRnknE53wFGX0XAbjEdFC1fnjkWoQKDnqAJ3dd3yj/P71LKDemaYHfxeNANMLPZ74ApAw+5XUJlyfyLfs23TmTgLRwvDq+cx2qO3+MXut4ayrkJytIuqhIo+bc411CHvPe96Der2Oj33sYzhw4ADOPfdcHH300fj85z+PP/qjPzLuZ2xsDL7vY9GiRU2PL1q0CLt27crc9phjjsELL7yAer2OT37yk7jwwgtT21533XW46qqrjMdVFCEsZwyEgLDYwGZ9SD0eWzbb2Pbfyfhn8jHaJJRMJ9v9b99/b9oSkb2ZctycDTqqE/be974X733vezE2NoYgCLBw4cKOB9D6wz3v+g0AuO+++7Bv3z7853/+Jy699FIcf/zx+OM//uPEtpdddhnWr18ffT0+Po4lS5Z0PF4iIqLZLO24OfbsE6jVu3cawPM8lCpl9Ryjz3St35nEOoS97nWvw5133omXvOQlGB4ejh4fHx/H2972Nvz7v/+7UT/Dw8NwXbdt1uv5559vmx1rpRcQf9WrXoVf/vKX+OQnP5kawiqVCiqVitGYiIiI5rq04+bDd2zo6fMODs5ryhVzgXUI++53v4tqtdr2+MTEhNUF8uVyGStWrMCWLVvw9re/PXp8y5YteOtb32rcj5Sy6dw1ERERdd/I2vOxYPGyrvS1f2wUj9y1CbfddhtGRkYAqMmZpMoIs5lxCPvJT34S/f3RRx9tmsHyfR/f/va3cfTRR1s9+fr163Heeedh5cqVWL16NTZt2oQdO3bg4osvBqCmRHfu3Ilbb70VAPDFL34RS5cuxSte8QoAqm7YZz/7Wfz5n/+51fPORVLaXdje2XP0z/U60vDC/47bh//tk5fbczafn5l+Y6HtvxXbzw7RTHXkiauw8IRTutLX7h2P45G7NmFkZASnnXZaV/qciYxD2CmnnKIuBhcCr3vd69q+Pzg4iL/7u7+zevJzzjkHL774Iq6++mqMjo7ipJNOwt13341ly1TSHh0dxY4dO6L2QRDgsssuw9NPPw3P8/DSl74Uf/3Xf42LLrrI6nmniyOya2NpqrAkMOgJ+FKi5mdvoyrpqzvWApl/J1pT/S+pKvAb3SUJAZP7NQUAhOUMHClVsdUuHZE6LRWg7xZ0JcLXm96/BKL948jsi+KlTC4DkfVq4zcJmNw1KMISHKaV6G3vjHSFKtIbSIl6Su2taCxhez1uBzk1t6ZQGT8vxHfad7zPvH9XcUH47yyrHlpTnwxjRGRJSMM1Pp599llIKXHcccfhhz/8IY444ojoe+VyGQsXLoTruj0baLeMj49jaGgIe/bswYIFC3r+fPHClW3FNaVZsdbW77X2DzTXOIq3zyq+mnWAaZT+zI5hXlhxP69YaydMAqyp1mKtreGrlYuWg3dO+6z6ZwCairtKmVxbLKt9q7QwmMWJjVF9JsNaZ1LVBGsV32d5xVo7ea90PyYzqM39q89m3o8u/flr7MfG1u39p/eVtA/yCg8ziNFsoo+bv/uRjV2dCdty7XuwdetWzoSZ0LNTQZBVr51axX8YhyWdmpaJaW+vNnAh4boqiNUzpk/idbf0jEWg+88Yl/6+SP1tPzpcJ0YxVzQXmW3dvh4gnK2TubXD2sbWxfAVjUcCQqpgAeTPHvlQ7Z3Y11mi/Yl4gdXmcBrfR45orlSfGHYSjuR5YTCJQON1iIT3zIFEWTQq5TuisZ8SxwBdYT48bRf9zXw8TV/nzH61993Yn0nhqbU8SWP/q/7iM9Qmv4PGZwFh8Fob+4dhjIiyWVfMv+6663DzzTe3PX7zzTfj05/+dFcGNRtFVb2lNFpEWh84PCGNrjvS/TtCWs2Q6Ha56wSGYUxAhOtNIjo9ndV3PTA70EXb9CCAxcdTszh9J6Ha2pzuE0KtFtD4un3/6P2mw5pun7YvdXt96tEmgLlQ4VyPLa1/hO3KTnYAi9ProZqVGA77jJ7TdvYrpb/YZ1Av1yWQ/tls/qXI7pMWWL7WtF+0iIg06xB20003RRfGx5144om48cYbuzKo2cyuKKU6Utn8HO/kZ35emIq1TJyxyWJbsb7Xx6xeT0w0Zpzynylv1qu9vf14RE4Aiz9/6x+z/pNOxGaPpxezQ53sy04Cks02nAkjojzWIWzXrl1YvHhx2+NHHHEERkdHuzIoormi15Xo5x7uTyKaOaxD2JIlS/DAAw+0Pf7AAw/gqKOO6sqgiIiIiGY762KtF154IdatW4darRaVqvi3f/s3fOxjH8OHP/zhrg+QiIiIaDayDmEf+9jHsHv3blxyySVR5fyBgQH85V/+JS677LKuD5CIiIhoNrIOYUIIfPrTn8YVV1yB7du3Y3BwECeccALXZyQiIiKyYB3CtEMOOQS/+Zu/2c2xEM05rUVuqZWuvkZENPsYhbDf+73fwy233IIFCxbg937v9zLb3nnnnV0Z2GwUrTEHs1IMenkiB2a1oXR7+3GZB4EgKnYpw9vvs7cLpKpVZcp033Sq14f0QOqiniZ1tmTTf7OXA1LvkZA2laoa71e3NVaCaFT1N1pXMraCRHaRVtlWw66bYdWmdl3HzxH+HzM2EaUxCmFDQ0PRD8ChoaGeDmi2aiyZIuA4SF26ptG+sXyR46jg4GckMX3QqlsuaKBzVPzQLjJiioA6sMcWcEkvMgrAc+0OniJMYb04RDpoFC41KWjroBFgfMMxBQiDZ1g0NCmcxJcL0m+XSXspJVxhvl6k7rOb4tlFf35FGMhNgli8mnxSEIv30ZqT8vo3qcvV1H920+TnsPksG4yHiOY2oxD2la98JfHvlC9+IIn/0BdCwEH78kVJB2hdXV04sm3B7nhY8y0LSaq+E8YMPaMmUttHB1N9NEXzAWoqa0cK0ThIdyOMCahAEp8RcpEeZnT7ptcj1HJQpvvYl6q9mzBbJNH+XqW1T3w9Qi1MnrZ8kQ6PzWsd5g88r33a2ot5n4UkekZShtNF8dcbBOmzfUmzYlmf5aTX4pusot6C4YuIeqHja8IoW1r4itPhSkIvZSQTD9Dx9q4AHCmj5YDSFl/OYjRjgNjBLaO9DkpuWHHOddoDTKe6EcZcES5cnTCcpDCjwlry2B2hVknUs115JNR74wBR4PazAoZuH77HWfS+EbIxq5cUHhvt9exSe78m7bMWv47GH+5L09Ofui89A2i6zI+ex9IztqYftU4/R8arB0TtO3gSIpqTjELYqaeeavyD6Mc//vGUBjSbmP7AF+HBvWZ4KlGtkSdx0GZRQ9hdGyQ6aF+yPPVo3LewX2LGE2ZhU4cZFdTyxy6EgAs1a2XKNLRF7aX5bIoQalbPbpkhc3qGyvY6NNfiaTqYmLKabZqO8MXgRUSdMAphb3vb26K/T0xMYOPGjXjlK1+J1atXAwD+8z//E//93/+NSy65pCeDJCIiIpptjELYlVdeGf39wgsvxAc/+EF86lOfamvz3HPPdXd0RERE1BfGnn0CNdvrX1IcfHFnV/qZ6YS0vFd7aGgIP/rRj3DCCSc0Pf7kk09i5cqV2LNnT1cH2G3j4+MYGhrCnj17sGDBgp49j+0pkEBKVC2urPcDiYOW/xjsT0eab+A5QMkVPat5ZXvKyvR0ZJzN2GudnEOzoE4xmrfvZa2xvDt5k7gWHzbbchH6fTUuq5JxHV7m8/B0JBGAxnGz2wYGBvH4449h6dKlXe97prC+MH9wcBD3339/Wwi7//77MTAw0LWBERERUf8YWXs+FixeNuV+9o+N4pG7NuHrX79jTgcwoIMQtm7dOrzvfe/D1q1b8ZrXvAaAuibs5ptvxic+8YmuD3Cm6ug3b4vtOik2adV/7DlMZwTid1TONPFSCdTO5rMz1/SimOx09k9k6sgTV2HhCadMuZ/dOx7HI3dtwuLFi6c+qBnOOoRdeumlOO644/D5z38eX/va1wAAIyMjuOWWW/COd7yj6wOciWzzka50X3bVnWj1ILtCfj2QmLS4M9IV6lShIwQCKVHzzU7P6DE4OUUyXUeffhLGd/YJNA7seWMRaJyei9dPSx2PMA+D8dPGUjYKj+Yd8EqOiE7T5Y1H1+2S0rxIrM3xVtUE02Ueun+gdgQgwtfrB9njb37vs2N5p79ImJ6KjLoXgEB63bXE5zHqXzY+PxJwhOy4Nl5a//HTwCJ8dxnGiGaPjuqEveMd72DgSmB7HVjaQaHkqrBUbzngBVJism5eMFQHO9dpHIAEgIrnwA+k8XVNgRpsWxkHRwCe215fPyreifYwIVr+G/970mhaay/pQJYUZuIV8fMrpyc/Z2Ps+Qc8XXDXQXJFfQftESQsp5Y6fpvDqwhrmslY2tBhrxuzVvr9k7IxKi/8bCat3qADSHw8aToJYMb1x9reW/uyHNn9J9c004WUpxrG0vqP6rAZLotFRP3PyW/S7te//jW+9KUv4a/+6q+we/duAKo+2M6dc/NuByntDnzqN+jk1voHqwBQCgufSikxWQ9woGYewEqOwIAnogNX1G/4X0cAFVfY1XNCWB9LSpRcgbLnREEl6YCgDyQ6kOkPW2sASwtmie3DWR8H4exY+McT6uYA3SaLfq/yCo/qArpZ9Ov2nMa+jGbuYuNFy991Edms9qnPiTDwtIwhvl18v9pq3bYx/sZnU6+IoL8fD0h5a2DaBjBHNC70T/usNfpPf2+ztm3995Hevy6snN4mkGr5MJtacrpv0/5NPptE1P+sZ8J+8pOf4KyzzsLQ0BCeeeYZXHjhhTjssMPwzW9+E88++yxuvfXWXoyzb3Vr9qtVdFCQKnwZF34FMODlH1AaYcw82Knt1Exaaz9Z4kk/rbU+NemgeX+mtg9nfPRyRHq35g3H9i4/k+vcmsJJ2DhpXcRGe0Tt9WnWrPZxraE6q/9Oi6DG+0juX7/exlqWpqfvbJmGO9W/2b/FpiWkYmPK6z8ITz+akpYXSfbis0lE/c16Jmz9+vU4//zz8eSTTzbdDbl27Vp873vf6+rgSC3OYvOzWV8vY36qwu7HuGM4Y9DJs8RnxIzah7NBpgGmE3anB0Xs7ybtm2fJTJ/DdhkdGyYzcY3+1TvVq9NirTN9Xe07Nnto3L9lSOr12UIGMKKZzzqE/dd//RcuuuiitsePPvpo7Nq1qyuDIiKaHowyRFQc6xA2MDCA8fHxtscff/xxHHHEEV0ZFBEREdFsZx3C3vrWt+Lqq69GrVYDoKbyd+zYgUsvvRS///u/3/UBEhEREc1G1iHss5/9LF544QUsXLgQBw8exJlnnonjjz8ehx56KK699tpejJGIiIho1rG+O3LBggW4//778e///u/48Y9/jCAIcNppp+Gss87qxfiIiIiIZiWrEFav1zEwMICHHnoIr3vd6/C6172uV+OiOazfbr3X5QyIbPX6s8PPJtHMZnU60vM8LFu2DL5vsWbOLKfLJJiIahOhUcQ0r70DibLFu6QKRcpo+9zxWN53Xw/Ma5YBzXf1575eWFcBsKzRZtk5GrWbTPbldAgCs2KnnZbtiAoPG3w2Zewd68X+af7sFF+Y1HZ/BuGqAvn7Muzfcjx9sEuIaIqsrwn7+Mc/jssuuyyqlE/5QSx+APED2VZUsn15kvDABqAuVWX6wVj1+8yxIFxbsh7E1kRsfgL9dSCBWt7ChzGuAAZLTlQrzJQPRAVhkw4c8fCl/x7ALJTpKvNZbFc0aBXoKuwp1d6j96uDSvD6j3F7J79ivNZJsdbWfZ722dTfk7L1seTPWqcCqf7NmPSl/x3aVMizae8I0bRSQO5YBKK1PNOCrX4skLBKebp/zoIRzWzW14R94QtfwE9/+lMcddRRWLZsGebPn9/0/R//+MddG9xMEi8cmhR+goQZJD0jFi84qrepBc2L97qOwKBQy6FUExbgbq10LqHauULCc5org0sANT8wPkgLqCr5rmlaSCChwpijvwg7FrHvJ20jmps3jSnr+NNaQX+qkwbRun1RRfzOe4zCQuwF6OWpkt6TpPZJ49M6CV9t/SH+2WyuLu+nPEFaGO3GLJZeGD7+TibtDxH7QKU9a+Jnx7i9Wp7KkemLmbeuG9n6+W0Ltk3j16EteTR6LAxfRLODdQh761vfyh8AGUSYGnRM0gezLBKNRr5E6jJCQgiUXLVu36SvFvjOW2bGl4Dvy2htw3pgtwB4yRXwcmZfbOiJNxcAJBDkzWKF/42vs2gzlG4Ekrb+pDSevWqVtbCzXhA8/pkxWQg6/vnq9hmqqD/ZPoM73fR+MZ6JQvMvRVn/VtLapy89JeC5aFrMPO+9igdb/XX6+EVbEJvKouBE1J+sQ9gnP/nJHgxjdtFBzGZNRgnzU4NCCJQcuwWC64FE3Xw48BzRtEZkt+mXarUsEMwDWK/Dgu01V6YHUCHUYkC2Fwj18vUWHb5a2ex7m2s2O2nv6NXkLZjuy/iapMxeRLOT8Y+PAwcO4P3vfz+OPvpoLFy4EOeeey7GxsZ6OTYiIiKiWct4JuzKK6/ELbfcgj/5kz/BwMAAbr/9drzvfe/DHXfc0cvxERERUR8Ye/YJ1Or28+Ke56FUKUdfj48+08VRzWzGIezOO+/El7/8ZfzRH/0RAOCd73wnTj/9dPi+D9d1ezZAIiIiKt7Dd2zoWl+Dg/MwPDzctf5mKuMQ9txzz+GMM86Ivl61ahU8z8MvfvELLFmypCeDIyIiov4wsvZ8LFi8zGqb/WOjeOSuTbjtttswMjISPT48PIylS5d2e4gzjnEI830f5XK56THP81Cv21zuPbeokhNmbW0neDu57T9e7qHb4uPphzu4TO5Am05q95hVN4+/tSa7sl9eY1wvP2tEVIwjT1yFhSecYrXN7h2P45G7NmFkZASnnXZabwY2gxmHMCklzj//fFQqleixiYkJXHzxxU21wu68887ujnAG0/W5ApleKkHfeRYg+bb09vaqNIVNkVUHjbvzpFQlKrKepeQKlAxrMMiE0gVOTthw0Ljjq7U4aNb4TTkCEOEG8RICaeJ3n5ncCRjfl6ai8gRSZtZ5Sirkm3Z33HRWTDd9vfE6VkmfjSn3b1Azbbo5Fp8d289a9O/E8m5cIpoZjEPYu9/97rbH3vnOd3Z1MLNJdHt5WPvJEWgr7iilKmAabhG2Tz+4+oFMLNSaOgaoIqDN4wE8IVQ4aenIdQTKrjA6yKlla5LHGq+lFe9HIFbvK9a9g+QwFm9vIqm8gICqq5YUhNNeYdosTmv/tkEMiNeKkk37OeuALKP/szuAd0vTe5jxmh3R3t6J/SIylf7j4aWfAlirtBlY688amn8W9PFLJqIpMA5hX/nKV3o5jllNH1g8V4Wfut9YliehdVhnTP3qqw5gKnzZFB51RVjDqG057EbtIU806nWVXVUR32RB4LyDqhaEMz+OANzoCJo0msbf9WiTwlqarAO0/joKwrK5YGZr/6LlKKrHk9V/R+siSt136/uT0j62XVHSwlJ8ZrC1jeYINIX2vPZxaf33m3hAjocrm89avH3SNkQ0u/SuGic1iQ4e4exX7rE0tnzJRN0ugHlNQSf5p7gQqgq+C2DAcxJnMZKYBrDG86jTsvrvWTMCOnw1Zu8M+oeabVHt0zeIF750DPrX31MBoLG/0vruNBzoa8VmktZwlfR4a/v4TKxN+/hSWf0cwOLinx3rzxr0562nQySiPmFdMZ+mxv6Ha9oJi/TWNgcrYbkkkW1cUJN65jMYsUlA4ycw7V/Ezu8YBTzL01+dzoqZzIT1IxWWLNrreT/DbWbC7Fea+HVcpp81XvdFNPdwJoyI+tjMTSW2gYoBjGjuYQgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkRERFQAhrB+x4t1C9fZHY/90z9Rp/jZJOothrBppH+geYbBSkoZVnw320CGVeHrgQyXjMn/ASqlqsRv2t42E8aXSDL5cW5TwgCwWJtTl6Yw77pt+14ekGbqwW6GDpsy6M96EL65M/WzSTQTMIRNg/gPsUCqoowlkb7zZfTDD6gHqvJ9yRGZAUI/hYQKPtWgUQ0/74eoH0jUfNnoI6O9EAKuI4zWcnSEWjIIQsBkqUsh0LbUUTfa69cTBOZLPuX1lTgeINo3nZQbyAt6utCsRQm1nre3qhMmets/TU3rzyn9S51E738JIZqrCg9hGzduxPLlyzEwMIAVK1bgvvvuS21755134g1veAOOOOIILFiwAKtXr8Y999wzjaO1E//B5QfNleZFGFDi1e3jP+TqfvPajkIIlFwHXkIY00vgtP6IrAeI1po0+QFaDyRq4WrXqn12GEsLG2r2TgWSeECSaCzX1Nqzqi4er6yeUf0+oX0rve/1Gpf6YNINUoZHKDRm1+KBQe0bs6Ca8SQZ/WeHmShMTVN7W3rlhF71T3ayfk6p7zevu8pARtQ9hYawzZs3Y926dbj88suxbds2nHHGGVi7di127NiR2P573/se3vCGN+Duu+/G1q1b8bu/+7t485vfjG3btk3zyPPFZ7OylvlxhApiDlRY8AOJepAeGBwh4IWzLfHfVFPHAaAWZI+hedxAzdenIrKPgvGwoVu6DuC52VX44z07oj2sxftvfdwRapmi3Nmv8I/+jb7rhPq/rGVmbGYN42S4+KDI7b85zLSGtelub0O/ptb+Gb6ml+nPKUB93w/klJbpIqJmhS5bdP311+OCCy7AhRdeCADYsGED7rnnHtxwww247rrr2tpv2LCh6ev/8T/+B/7pn/4J3/rWt3DqqacmPsfk5CQmJyejr8fHx7v3AnKYBh8Rnpr0fdP2Ag6AusXcTiAB17i1XXDRy9dYHaDD12y63FB0oDbsv9e/qNu81vhySd3uP5q9Mu23x+1t9bp/ymezFizNDUUeN+eawmbCqtUqtm7dijVr1jQ9vmbNGjz44INGfQRBgL179+Kwww5LbXPddddhaGgo+rNkyZIpjZuIiGg243Fz+hQ2EzY2Ngbf97Fo0aKmxxctWoRdu3YZ9fG5z30O+/fvxzve8Y7UNpdddhnWr18ffT0+Ps4PFBERUYq04+bYs0+gVrebOt33vLq8aPv27RgeHsbSpUu7OtaZrtDTkUD76SgppdEpqttvvx2f/OQn8U//9E9YuHBhartKpYJKpTLlcRIREc0FacfNh+/Y0GGPAu985zsxODgPjz22nUEsprAQNjw8DNd122a9nn/++bbZsVabN2/GBRdcgDvuuANnnXVWL4dJREREAEbWno8Fi5dZb1eadyhqB/biBzdfhbGxMYawmMJCWLlcxooVK7Blyxa8/e1vjx7fsmUL3vrWt6Zud/vtt+NP//RPcfvtt+NNb3rTdAy1YwLmZRECqW4NVxdk588ENrc3ew5fSuOL4fuJLjMhoW4uyK8LNh1jAqISEn0wHhvx8fTio9Dr/qm7bH5O0dx25ImrsPCEUzradveOx7s7mFmi0NOR69evx3nnnYeVK1di9erV2LRpE3bs2IGLL74YgDovvXPnTtx6660AVAB717vehc9//vN4zWteE82iDQ4OYmhoqLDXkUbfMajqdCW3kVJi0peohndGSgBCyvAW/vYjmJQSVV+iFqt+KmT2rf16DIFUdbocZIcx11GlFUxPDduWLXDDGl9mFf0l4pcg+BLwHAk3tT6Yrrovou17If6eOkjeT/ECugjHlDeebpWASKL3Tetj3XrOpP71Awxj/UuE/x4DKTN/YdCfk2j1Cb6pRFNWaAg755xz8OKLL+Lqq6/G6OgoTjrpJNx9991YtkxNd46OjjbVDLvppptQr9fx/ve/H+9///ujx9/97nfjlltume7hZ2r6ARWGqvhBSkpVD2yi3l7FXR/gBWQ0M6bbT/rtPyV1lXwH7QfUpNIOOoy5sf6BRs2uxNeQ9Bozv9vOEc2342bWEpOyacmjuHoA+JDwHHXwUO3Tf5s3CT9TEcj24Nw6HpMDlq7+bxp+TbWGwbbvx77ZWaX/9P5l7C88Zvef+OesEbKSiym3tieiqSv8wvxLLrkEl1xySeL3WoPVd7/73d4PqAcaB1b1g67mS0zUmyviJ4kq4QeBWobIoJgioE7ZNX5oprf3w1mQkpDwXCcaqwmbul0CavbLpH8pJQLkv1ZdhNYVMnytyf1O10EjHpzDZ84cTzwU6pmIXswwZIXTpnaxv9g8vU3/3Zx1o+5rfO7UL2d6ibVe/GJARErhyxbNFbrKtJQS+2v5AUyTUmLCtyuo6DrpVdbbxwWUPDcaowldId80gOkFyI2udYPda8061ds0jmmq8m064daYfYwXou3u+EwDUtJ2veq/g7q1NM3059BmVpyIOsMQNt0sf5hZH+Q6bG/zQ9ZgRaOm/q1+i7Z8wf15aDCcTRTqar1+OsCZhvepPgf1N5M1XIlo6hjCiArFgxwR0VzFEEZERERUAIYwIiIiogIwhBEREREVgCGMiMgQ7+wkom5iCJtmvSwaOhU24+rlDVO2e6eT3dnrd8D2Pe7VR0KXAe6X8UxX/70yU8dNRP2LIWwaSSnhCIFBTxjdE6eKWwp4NsUzo/8z40ug5gfR+EwEMqwRZdA8CP9IKTP7jwqVGo2g0d6XjZprJv3H64rN5oOqlKrgpn6Rpu+ttCzWapvHbfvvB0m7bjZ/doho+hReMX8u0AfAQKo/riMwr6QqvleTliGKPSSh2jth2Mgq8uo5gBercC2Rncf0MkJSqir+riPgmC5KjcYBOO/AGi2TJJLrhun9Uw/al3Bqf+JGGz/Q+1XCDyRKrmjrX/9dhu0by0Y1Xrt6vXlPbMamrlIvqscnhc3W76WN0XY8sQLrue+bzQoL/SK+/+IFhHXl/+jvM+g1EVF/YQjrkfgBTwWA5u8LIVB2VXCaTFjCqPWgJoSaEXOlWrw7/n1HAKXYOoq6vQ4kQWtfCANRy9HDD1RbNyHMJL5GNB+Q8vhSBSZXNM/M6JCWJd4+cSFqqEDrCImS07xWZFK4kwB8qLHrMDaVg2mR4as1XJmtONCI0VMdT7RQfUoYm2lLFbX+EpTYBo3PfreDPBHNHQxhPSRl8+xLEkcIDJYEan6AibrBjEIY3gIpw1k1wM346S+EmkUDwlm1hPDVNGYAdV/CdSRcx+xstc26gBJAPZyFgjBfokhX6c87DRRItch5KVxyJTfcQYUx12wYiXqx3qYtCSAw3Jk6XHc7HIULAETjmWnhS9NjN9mbFotHEBG1YQjrIdP1IQF1ytHgZFzEEQKe4RV90Vpwlgsz91IAWF8hbzMmvweLYbcq+tRjnO375fRoLPo1zvRgYvvxn4lhk4iKxwvziYiIiArAmTAiIiLKNfbsE6jVOztNcvDFnV0ezezAEEZERES5Hr5jw5S2HxgYxPDwcHcGM0swhBEREVGukbXnY8HiZdbb7R8bxSN3bcLXv34Hli5d2oORzVwMYT3kiPTb9lsFUpWr8A2LoEqouyPVBd/5VwXrC8NNL+Du5EJjXSjWdFvTO9CAxoXkpjc76Isde3l/QV7drXi76G5B0/bhBsbvr8V7S/lsPpsA64XR3HDkiauw8IRTrLfbveNxPHLXJixevLj7g5rhGMJ6yBGAcERYTDS5jZQS9UDdLegIdZekH6jHEtvHDg1RMVYp4SD9YO2GNcRUaYLkQp6agKoT1mhvd2QxKVchWv6edbDTdbz0Rq5QJS7SqjE4ArEVBhplKtKeI+p/CtL2U2uVeh3IHaS3bwrtOe3jBAAnrI+WValCCHT83s4VIvZf0yK0RESdYAjrkfgBTkDNcgWx8CATKuDrbRwBlF31PR3e8spXBABEuFRNvJ94KYJoTDqMtczSuY5Ibt8BGf1fc9kCfWBL6rn1FTpozCbGK+CXwmBbjxWt1fu4NWBIibA4rKoHFueiMYM01TzSVJw3Z0oqCJOqI1pWN0jZrLV9q9bHnISg3RqKGcDSxf6ZpM5mx2eWuSuJqFMMYdMgCkVQB9Kqr6re57V3IeG6akkh08KREoAHtQRRvK/2/sPQED6W1b5TUUBqOVC1PoMejYNYkc+m8cb/LqJtyq6Ili5KC4/xbb1YcVh9cG1tM1U2i2UHWckrpb2AzDxFmRS0oxDMtGAlvrvin5e0NkREtlgnbBrpWY+sAJbU3rC52gaA5zrR9lktddV0s/adES1/sto1tRfZB7jW2T4hROb4W2fj4o/NJKZDjvZPD8L1XNO66/I+m0REpjgTNt3ia7v0oL31rIfor4O07Shsx90nL7NjVlX6++y9nel48wMRdRtnwoiIDDHPElE3MYQRERERFYAhjIiIiKgADGFEREREBWAIIyIiIioAQ9h0s729KmxvWn9KN7OpVxVuYdi/bmd/x2b3RhFrb7jM02yhqurbfhZ6OCAiIuoYQ9g0kmHlTM9gr+sDrYRA3bBYq2oPVP0grJief8AW0VY5SSnWT7S8jsHRXUIVGY2WWDJgEtp0+JIIlyWaI2EsviRR1uvV3zNtT0RE0491wqaBDiv1QK17CAg4In2pGt3+YC1ANVzXyPcBR8gowGXVfgqkqsrvCsBz0tcJdJ3GAtHRrEn7aBpjTBhs1iLW8aVydMyLLzPUKr4sT1rA0xXgdfjSfKjfKESsTRHyxt+N9vH1OVtfa9L7mNWeiIiKwxDWI/Fw4ku0VcnX1eolGos2622qvsRkvX32S4UrFZ5cpIcfzZeA70t4joAbWwQ6XmW+MR498MYBvLNTmiK1In1aABMCbUvxJIUT/Vc/YS0/oDEjpicaDeb3uqb1fchbQ3Kq7YHmhb5Vm5bHE9rrINboN/UpiYioxxjCeqgeAL7MPpWoltsB/EAFr1ogm04hJfEDFTjKntkRtB5ISAeohAt05y3vIwAEnVy7FoWpnKZoXZ4oazzh0k2GpzQlwlmxcOZnOlJY3jqO8XCV91pt2msZE5WpbR2GLyKiwjGE9VDdMsdM+r29aMft8ZHXJIDFG2ctRN3UNAxi/XZJk+lyQPZLKzEhERHNBQxhRERElGvs2SdQs5hd8DwPpUoZ46PP9G5QMxxDGBEREeV6+I4NHW87ODgPw8PD3RvMLMEQRkRERLlG1p6PBYuXGbXdPzaKR+7ahNtuuw0jIyMYHh7G0qVLezzCmYchjIiIiHIdeeIqLDzhFKO2u3c8jkfu2oSRkRGcdtppvR3YDMZirT0iAZQcwDUqPKrOsc8rOSiZbADAC/s2vYTbFULdYWhY1NQVQCm8m9Ksf7PXqtlceh6V+7DYpt8ubdd3g9q0JyKi2Y0zYV2ma36pelmqYKojVLmKpOyjyy8AKliVXAe+K3GwFiDpZklHABVXwA2LsHqOQCBlYttGe0fdtSglZKyYVNJNeAI6TKlvuo4DP1ClM9L6b1TKEPCEqmcWJLaO959P3xEZFRpFI5yk5UiBxm8Wvb/JML8SWVtNNGSX2dB3mOrXjJz2tpr6Z9IjIioUQ1iXNMJXQ1RqQEqUXQFfStQD/ZBs2yZeTPWQiouqH2CiJqNDfdkVKLkCrVXqBVQQCtBYpka391wnsWJ+PNzob6nA2F5hXwc/X6qaY9FzOsntBQAXYfHU2GNOSv/J+7O9Xlo8lLSGmekMX8alKaL2jcekVPsh8fPS9Bz57W0kFcglIqJiMYR1Qd4BMgpXAMqOqoifVZBVty85AqWKiJYgav1+W/9SRkHHi22QFRokVGByDPp3IeGGYdJJ+H7ja4Tj0Q80wlfueBLCVysR+68OZDqo9CpcCMPw2DS+pJlG0d4u6Xtp7TsJYlnjISKi4jCETZHNDIU+kJvWZNXtPcMLs/RSSCWTFcJDDsyLuOrxuMZFSptPqxlVf7dMGfFrrfphBsx0LPGZLtP2nSzA3etwSkREnWMIm2Y9r/reZwfbngej3navnsO64n1v2naKAYyIqD/x7kgiIiKiAjCEERERERWAIYyIiIioAAxhRERERAVgCCMiIuozndwNTTMPQ9h0s/yXpZtLw+2CQBeCNWsvYdfeliqPIKz7t2nd67v/rMfeRz88TZepirft1fh73T/RbBD/NxLw38usxxA2RUKYlUnQB3JpWFSh0T4s7tryeJZqvVHwNK+9RPOSSmntbYOa/kESQI1fh7309jJapih6rSZP1EEA62Vma+zH7v/wNP2sJW2XJT5OmfL4VMT3RS/6J5ot4v9Oop8l4C8vsxnrhHWBPjimFW7V4aJaT14PMq39ZD2IwlQ9AHxIeI56orZliFqeu+ZL+IFUlfNTKr3HlyzyJRBIVZk/XhnetEp8fBxChOEuNqBaEC7yrVfWbOlfhmOI+kkYaytHNPeTRb/WePu8yvzxcdqIL9Wknqt7s3V5n7WoXax9mvguC1r2fbRep2Ex2bT+Y0uVpvbPOmY016X9ItT22BT+PVJ/KnwmbOPGjVi+fDkGBgawYsUK3HfffaltR0dHce655+LlL385HMfBunXrpm+gBvQBMjzMq/+XavHriXp2pfxo5ivWvjUkSKgw48t4+3DKOqHPQKpZsXrQPIulx9j6D1kHpwDNocZkBizepBY0BzDNl0A1aD/g14P0fZP0sCNUlf+m9SqFSA1MjgCchPauI5C2WEBWf6YkWl5rF3+Tbf6sxR5HPHCmjKs1cKU8R+v3bE5rammfTd1/vD1/06e5LOvfYrwNzS6FhrDNmzdj3bp1uPzyy7Ft2zacccYZWLt2LXbs2JHYfnJyEkcccQQuv/xyvPrVr57m0ZqJH/wm6wEm6o1Fu7Poma+DBu19qYJO1gGuqX2gZsZMDtCA6jce9EwEULN1NYMx1aUaT81X4cv0B49eIzIrHOnwJCzat66bOdXw1Sqa+enyb6/6fYzeV+S/t5rpZweI7X+L8Zv2Hz/w8Ld7mmuCjF+i0zCIzS6FhrDrr78eF1xwAS688EKMjIxgw4YNWLJkCW644YbE9sceeyw+//nP413veheGhoamebR2BGAUMOJM15TslOkBulMGWTNi8ltfXBQ4jNetFMaByqZtP2rsm6JHQkRENgq7JqxarWLr1q249NJLmx5fs2YNHnzwwa49z+TkJCYnJ6Ovx8fHu9Y3ERHRbJN23Bx79gnUkq41SbDveXVGa3R0tPsDnEUKC2FjY2PwfR+LFi1qenzRokXYtWtX157nuuuuw1VXXdW1/oiIiGaztOPmw3dssOxJ4Pd//w/wxBOPY+nSpV0Z22xT+N2R7Xf52d2Nl+eyyy7D+vXro6/Hx8exZMmSrvVPREQ0m6QdN0fWno8Fi5cZ9zO5bw8e+j8bMDY2xhCWorAQNjw8DNd122a9nn/++bbZsamoVCqoVCpd64+IiGg2SztuHnniKiw84RTjfnbveLyLo5qdCrswv1wuY8WKFdiyZUvT41u2bMFrX/vagkbVHarwKFBxgZLBHpZSlZGwYTtX6KXVYuhC/1KqmmRRwVWDuyod2H34bMdTC9SfwKi8ht3Y9XisxoT+qn5tM/6OCsT2qC3RbGL7c4Rmn0JPR65fvx7nnXceVq5cidWrV2PTpk3YsWMHLr74YgBqSnTnzp249dZbo20eeughAMC+ffvwwgsv4KGHHkK5XMYrX/nKIl5Cm3gRUAEBV0i4bqO+Vys/kFFFeRMCquipKdcByq554VUB83AkpSoxkfS60p7LQeyHjlBfZ90p6YjGePIrv7eXvKgFgBMWuU069Z2UfXUQyypwGxUx1dtkD63Rd6xxkXcz6tcgkD32+BBty2yY7JteFLQlmmkckV+AWeM/k9ml0BB2zjnn4MUXX8TVV1+N0dFRnHTSSbj77ruxbJk65zw6OtpWM+zUU0+N/r5161Z87Wtfw7Jly/DMM89M59DbJB3Q1UFFrZtYdgUCKVHzVSmHQKrwZTMB5grAEfqwmf1P0RFAyVUFSTsJX9mV1mVUFyxLPMzE+0/qu/WAHQ+beWPX40nblwFUkVhXyKhPXbvLZvxN4xXxdvlhpqnflr9Md/gQovFfKZMPAPGwGW9v0z+Q3X9Se6K5pPWzn/VzRDflv5fZpfAL8y+55BJccsklid+75ZZb2h7r1ULTUxGEpx/T6BAhAFQ8gX1VH5O+ef/x2SBEPaUruwKeKzJndJr6R+NAaTLbVAvMA4fqX8IRIrX/eADTBVYdYRYepZSJ1fmT6Fk7z/KHmAhHljaUeJixCdXxMFbUD9b48yYNYarjSuq/NdwRUezfg2z6j/oe+O9ltio8hM10MieAxQmhZsNsAhgAuBb/+hwBtV4kzAqb6tCj2uf3b1vdOX76Ma9//YOm0T5/QLYFbvXpT9M9arpvOv0B2S8/XHs9hrbf+PvgNRP1o/ilAvprmr0YwmjOsf2ZNlMr6RPRzMQfOXNH4Qt4ExEREc1FDGFEREREBWAIIyIiIioAQxgRERFRARjCiGjW6MMKNkREqRjCppuUsFlByHY5nSCAVXtdtNSkeScHONnyX5MNhBBG41d1xOzHZMPmJXcaAEz3P6WL7z/uSyKaKRjCpkgIAUeYFTkFVOV2k4KeOkgFEthfCwukZoQrfSCXAPZXJeoWYcxHLCylNI+W6RECnrAo8yBUxfqoH4NNgtgOSn+9smlcvWLyOqcyhviSTQwPndH7rbWGHfcnEfU71gnrAr2sjUT7MkS66rsvgf2TvnF1dynVskC6edVXSx5VPBWCkqrJx7uerEvUhGrvprSP08v+uLHnj6+RGO9fB7EgXKsxSVR4NXxOHTayFl1qLVzaCFqNsevHAtkc7vLoorE2S++o9nkV+xGNZyqifdMH60rOFEmfTf33aCkpVuYnoj7GENZFQjQCjz4oSwD7qgGqOaXdddCQUs1iJS4sDWCiLuEKiYonooNMWs+BBA7WJDxHtTfhAxCyeYo0rX9HCAi0r9voiPTwkrR+oEk4ivYP7Krk6zUrjcMXmsNj9pjC/5oPJ7u/2Bh0/wwQ7eL7JWvf98OyUEREWRjCekCEU0h7Jn34FussVuvSqK0vVRgbMAxW9QCQdYnBkll7CRXGHIPBCCHgQq2vGJ8py90u/K/p9XG+tFs3VKB5SSaj9obhC5j6zFcWGf4fg0M62/3PQEtE/YghrEeEUOHHxky+hKWTpX16eUzUIcy4vUUAIyIi6gaGMCIiIso19uwTqJle2Axg3/M7AADbt29v+97w8DCWLl3atbHNVELanOOZBcbHxzE0NIQ9e/ZgwYIFPXueQEqMHfCN20spUTVvDkcAA575za2uAwyW7G6GtWkdv8vPtG+bC+X9jGvfutF/1nVsSXp5OhKwG/tck3UdZJLo2kPuT6KO6ONmZ/TtWM0GB+fhsce2z/kgxpkwIiIiyjWy9nwsWLzMapvSvEMxOHR402Pjo8/gBzdfhbGxMYawogdARERE/e/IE1dh4QmnFD2MWYUhrAeklKj7EvNLqj7YZM5dj4GUOFgLUPUBVwAlV8AxqE81UQ/gCKDkiMxTaQKA54joFJrpqS59X0HeRe62pyL1NvG/ZI0nkI2yFKanlvTYHWlYAgNhGQyIzLbTefLe5I6+1lNzc+U0ZvIJjunVWqKEpz2JyBZDWBfJsHiprgmmyjdIzCsJ1AK01QpT14FJHKg1Hvcl4NclSg7gOcnXKcUfCSQw6Ut4jgpwre1LrkDrpWMy+j+zA0ZSbS/9uO2BUAe6qEp8rLPWsUgJ1FuroGe0T6LDmJvRXtdnE6K50GfSeHp94I8fyLMCX1qNsqzxzyYi9iFK2016H/QiOCd9FliXjIhsMYR1iR+oQNX6g1mHopIj4TkCVV8VY635EgdqQeoF3rVAtSu5jXCV9Zt2PZDwoYKb66iisaWwoGtSkLM9YCQNs5MAlvR33ZcOD4AKo1kVPmzDRrwIbVL7pNUH4uOZjvClA4MeStrrMgmDtkF7JonvHynVTRVJM4Kt7bvBdN/PhSBMRFPHENYF1XqQuxyRLuBacQX2Tfo4aHCbr4SaPRsIlx4yaV8LJAZKAiXXyV2qSG9j85t7J2FEtPw3SyBVYDJlM34JFez00kxGVfEtxtIpm8Bgc1emhNk+n8ni+6tXwUuznQll0V0iysMFvKdISmm8HqQQ6roskwCmOUJdz2XKc1QA089nNi7j7jtm+hSW9W2tQ4YTzaL0x5GxUak/v20np9X65GX2XHwf9uo1T2Xml4goCUMYzXi2B7t+CWDUff321vbbeIiovzCEERERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYzXi9LCNhu769bXvK1uvdybeLiIrEENYFFhUkICDbKthnCSQQBNL44O4HEr5FeyCsf2TSXFcoN23fAdubySTs7kBTYzcbfLydyTa27adDr4Yhe/xZiPfZL/138tnsk48BEfUphrApEkKg4gqUc6qpSikRSIlf7vfx/D4f+yYDBDI/LDkCqAZqOSRp0L7iibCdWXsgtoRQxgFVF6oMpFl7LW/dyVauAErCbBsBwBON4qsm7Z2EpZ1axfdZIFWwTfpe62Oypb3p/jclhN3+7FV1BP2S9GdBh41uvdTW/vVj3eg/3ke8/9bvJRGGn8uoPViigoiysWJ+FwghVBgQjeWGNF21/tcTAX6xt4ZaWA5+0peoHpQYLAkMeI1+oj4BuLG1I32p/ngCcMJDR7x92RWoeI2Fv6OlU8IDR171fH38iZbpkc3r7rUen1rbt5Znt6mS39Q+/EtJqINkWl1bVzQvQeQhnDVM6d/VASZrH8SOwn5LafpAAkKvLxnuy/g+TWwPNLWP76ROD9DRNjnV23sRAJpmj1q/h/bPjk2/Np+1qfbfuupAfJkh3SZ9ndHGgNL2f+tnmYgoDUNYFwmhZsQ8R2KyrtaRnKhL7ByvYV+1PR5IAAdqqu38soNSOKXjOojCVKu6VGsglsI5TFcAgyUHbso5USkBX0rjU6bxA1L8MZP28eDVjRkDRwAlqGCl1z53oNfSTG4v9Ixd7DEV1sxmv7KWpokHW320DoL29UKT2gsdnMPvTfUA3QjX7Wsm9iJ86T5NPwut2xk/l0X/Vv3mBKf49/R+zQxisQ1aQyLDFxGZYgjrAUcIlFxg2y8OomawDo8vgf3VAMPzVQozWe8xAPCSipM7u6MFEkbrT8afw/r0j7S7Pg7Iby/C041O7Ou89gIqjKn+zQZktSZjzixUUnsIQEB0/QAdD2P6617oZM1Km7HY9t/r9U5NtIYxhi8issUQ1kMmASzOdjkd04AxXWxnv6z6ttygz3ZNz68P6rfXO5dw3xNRpxjCiIiIKNfYs0+glnahroV9z+8AAGzfvn3KffWT4eFhLF261GobIfvlXvppMj4+jqGhIezZswcLFizo2fPUA4kf/vygcXtXAEccYp6JPQc4bNAuQ6ddN9YNAs0Xypu0h0X7TpnOLrZeWN9tnmM/09kvbE+/AnanpTvp32Zm0fat5bVdRM30cbO7Yne5zBKDg/Pw2GPbrYIYZ8KIiIgo18ja87Fg8bKu9FWadygGhw7vSl/9YHz0Gfzg5qswNjbGENYvbHN+1ZcoWcyY6ElMm/a9nI1pqVKROxagd6+139heTE5E1G+OPHEVFp5wStHDmFUYwnqg5ks8v7+Ow+d7qPsS+6p+U+2wpPa/PFjHz35VxSFlB8t/o4z55fQ6uo4ASo7AwboqPVF2zS7SD8JbHk0KlnZEqLs2s0pUSKlKOuiSE24gw5ITaSU2ZFO9MFdkt7cVhTv9tcE28aKdJqfSGuUdJCBF02MzhSPMTxt2UqKik/5NmZZbISKabgxhXRRIiV8dDLD7oB/9sHcd4CWDHibqAQ5Ug6brUwIp8esJH+OTjYS2rxrg4V9OYOF8F0uGyii11JUouyKqEab6ULXIPEei5AjjchW68OhUw0x0bU5KIc+mA6CUbcVXG0Vo28NhIFXhW5nU3pG59b+yXlrrpZC6mGdWGIhfh6SLtTqOiIJiVns9Lxo1m0GzYvFxZoVV/XqnUi4ja/Y43n8nd8tGBVl70D8RUScYwrpASol9VYkXDtTbZrx0SKi4ApVBFwdqKoztr6mwlnbR8PP7fYwdOIglQyUsOsRTFfFd0dRnXD1QNwOUXRjNFDUKX0rjWmNNryvngaaXJcNllzL600VoPUeNpx6kV79H+H2BMIyJxn4xOeWadi9KfLPWMKYDYrz/+PM4orm2WlL7+E5qKnI7Qw740YxeQpgRCe1s+80rgtqN/pOCdjfCIxFRJ7h25BRJKfGLvXWM7msPYHFCqFmqQU9g7ICPsQPpAUwLJPDcnhocAQx4jtHMVdWX4QHe7MRLYyFm8xM18bvH8g5YQTj7ZdK7hKqtVs0JYPH2fkvHnQaw5j5if0fznX5J/ev3VreN34U6U69hy6JfkiMap55NPgud9q8f60b/re/tVMIjEdFUcSasC/bXzANMXQL7Laq4zis5OKSsl6jOP0o4wr6IaydBoehq5ZqbMCvVLfFTj2btxYy/gcBU2+xVj/rv1XM0zerN7reKiPoYZ8KIumi2h6/p1vs6cr3tn4goC0MYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqICMIRN0fikX/QQqI/YlPogIqK5jSGsQ1VfYvsLE/jx6CT2VVUQyzsAB0GAkiPgTOxRX/v5AW5/NcDug3Wj/gFVWywwrhEmw22kcf+NbQ37l+FSRQYbSNn8x6T/ehA0nstkPDAfT3y73vaf/3ob9dya/0tERDMXQ5ilQEo8t6eG7z93ALv2qRC1ZyLAC/vrqAXpYcb3fez51W5c+oELce5rluO6i96O53/+TOYB2xHAbwy62LW3juf21NQSPhlHXwFgwBNww8KhaaKwAGCyHuBgLcBk3SLM6D8p4aER7oDJukTVB/wgPZxEwQKNZYlM+vclcKCm9v+kLzP6V4/7Epj0pSoG20GR2rT2uv8Aqg5cvDhtXv96Xzb6SnpO9d8g7Dde5JdhjIho5mIIs/Crgz5++POD+Onualu1+6ov8cJ+H786WA/Dg2pQr9dRr9fxlY0b8PoVr8A/br4NUko88p/fxcd+7zX4X5+5DJMH9sP36039HVpxsOgQD4MlB0II7KsG+NnuKl444CNICBtlV2BeScBzRFRdvDmINQfEmh9E1fUBteTRgVqAepAeZlo1h4fYLBCAyVqAyXqjf18CVb85/MRDlh+gZV1NNC11FB+TDMNdzW+M42BNYu9kEK1a0NQe6v2px56gLtH0+juZ6Yr3X5fN4/cloudr9J3+HPFwFZ/tigdUk/ZERDRzMIRZePiXEzjYugJ1iwM1iV376thzYBL1eh0P3vtveNPpp+Bvrvor7N+3t6mtX6/jnq/dhHVvOgX/+e07AaiZrEWHeFhQcdsq30sALx7w8bPd1ajqvieAeSWBstu+eLcQjaVfdDDUs0Gty/1oVV/iYD3IXVIpPiY9QyOlRM2XmKil918PgGoUzmRb2GoVyHAWTY+vLjHpI3F8vlQLoO+rBo32LWGzdey1AJkzmHnqQfprjYczHTrzNEJh4+uszVrbExHRzFF4CNu4cSOWL1+OgYEBrFixAvfdd19m+3vvvRcrVqzAwMAAjjvuONx4443TNNL2dQrTSAC//NVevOqoQ/Hec96CZ372ZGb7vb96Ef9006dx1KEeDp/nwXOyy3jXA2D3AR/zSwIDJSd3mSL97cmW2aDU8cdmcUzVfTUblbV+ZtQ/9ILj5mtKVn1gom72HtR8iYO1ABOGYVKHSJtq962nHTP7D/9r2r9Efvhqbd/NtRuJiGh6FBrCNm/ejHXr1uHyyy/Htm3bcMYZZ2Dt2rXYsWNHYvunn34ab3zjG3HGGWdg27Zt+Ku/+it88IMfxDe+8Y1pHrmZIDBfIxKwX/KGS+QQERHNXIUu4H399dfjggsuwIUXXggA2LBhA+655x7ccMMNuO6669ra33jjjVi6dCk2bNgAABgZGcGPfvQjfPazn8Xv//7vT+fQiYiI5pTxXTvgVQaLHkZfGh99pqPtCgth1WoVW7duxaWXXtr0+Jo1a/Dggw8mbvP9738fa9asaXrs7LPPxpe//GXUajWUSqW2bSYnJzE5ORl9PT4+3oXRExERzU5px82tt/11UUOaEQYH52F4eNhqm8JC2NjYGHzfx6JFi5oeX7RoEXbt2pW4za5duxLb1+t1jI2NYfHixW3bXHfddbjqqqu6N3AiIqJZLO24ee+99+KQQw4pYEQzw/DwMJYuXWq1TaGnI4H265qklJnXOiW1T3pcu+yyy7B+/fro6/HxcSxZsqTT4RIREc1qacfNU045BQsWLChwZLNPYSFseHgYruu2zXo9//zzbbNd2pFHHpnY3vM8HH744YnbVCoVVCqVroy54gpMGt4iWa4M4pAFQzh4YD/8ej23/f6945icOIhKZcDoNrdakB9Y42yv4Tetut9p/5CAyLkLtKl/mN8tCIQlGyzGpIr7m+/PTti8X/Z9q//yXg0imqpuHjcpW2F3R5bLZaxYsQJbtmxpenzLli147Wtfm7jN6tWr29p/5zvfwcqVKxOvB+u2FUcNYNF816jtSw4ZwPe+/1/4/73pTQAA103eTh+UX7p8GQ7d93O8ZNCs/0FPQEIYv4GeI3Bo2YFreJD2HAGvreBrupKj6pWZtxeouOb9D3h2/XuuQMn0xUK9DzYByRP2/3h6HZAYwIiIZpZCS1SsX78eX/rSl3DzzTdj+/bt+NCHPoQdO3bg4osvBqCmRN/1rndF7S+++GI8++yzWL9+PbZv346bb74ZX/7yl/GRj3xkWsZb8Ry8cuEATls8gEPKybvOFcDLDi/jN48exKmvPAH/+I//iC1btuClL31pW1vHcXD44YfjlltuwQ9/+EOsXnkKTl40gBMXVlBJCRBlV+CVR1Tw6iPVGCqeKtSaRkDN4A14Diqeg5cMuDik7KSGGVcAQxUXCyouSq4KSl7Gp0T1r/ZNxXMwNOBgwEsfj+cACyoO5ldU+0PKAuWM3OkJ4JCywGDJxWDJwUsGHVQy2pdd4CUDDuaVHJRdB4OeyAyerlCBtuQKuI5A3uScgCqA6zpqm5KTHSRdAZQdhH3nh0gRew7HIATr9gxgREQzT6HXhJ1zzjl48cUXcfXVV2N0dBQnnXQS7r77bixbtgwAMDo62lQzbPny5bj77rvxoQ99CF/84hdx1FFH4Qtf+MK0l6cYGnCx8qgBjO6r42e7q1GB0qMO9XDcb5TbZmDOOussPPLII9i4cSM+/vGPY9++ffA8Dx/60Ifw8Y9/vOkcuxACw/M8HDbg4rnxGp79dQ36zNrSl5SwZEEJbiwpCKFmrFyhKr/Hi6WWHAHPab5eTgiBgTC4HagFmAhXABAA5pVUgGptXxKAJyRqQXOx1JKjnre1/WBJoOKqZZDCwv6q/7KjQkvCeEqOxES9UX3eEWr1gNbCtY4QOKTiYiCQ2F9tLFPkCmB+2Wnb90IIVDwBP5BNlfMdAGVPtBW6FUKFNillW6FXp+W16vGUnHDdyNi+F+H+SVrFQA+i9fRqUpiybU9ERDOHkJ2s1TKDjY+PY2hoCHv27OnKBYY1X+KX++t4ScXBIVlTNKEXXngBX/va17B27Vq87GUvy20/WQ/wwn4fw/NdDGRNSYUCKeEHaAtfaeqBWmqokhBI0voPZHv4SlPzJQIpE5dVShtPIJMDTCu1TJK6lsukf71sE2A2fr0Opm5l0j6Qermo/Nca/5dnEqZs2xMRdUO3j5vUwBBGREREqXjc7J3C144kIiIimosYwoiIiIgKwBBGREREVACGMCIiIqICMIQRERERFYAhjIiIiKgADGFEREREBWAIIyIiIioAQxgRERFRARjCiIiIiApQ6ALeRdCrNI2Pjxc8EiIioulz6KGHGq3hS9NnzoWwvXv3AgCWLFlS8EiIiIimD9d+7D9zbgHvIAjwi1/8omu/EYyPj2PJkiV47rnn5uyHm/uA+wDgPgC4DwDuA6B/90Gnxz0pJfbu3cuZtB6YczNhjuPgmGOO6Xq/CxYs6Kt/bEXgPuA+ALgPAO4DgPsAmD37QAgxK15HP+KF+UREREQFYAgjIiIiKgBD2BRVKhVceeWVqFQqRQ+lMNwH3AcA9wHAfQBwHwDcB2Ruzl2YT0RERNQPOBNGREREVACGMCIiIqICMIQRERERFYAhjIiIiKgADGEGNm7ciOXLl2NgYAArVqzAfffdl9n+3nvvxYoVKzAwMIDjjjsON9544zSNtHds9sGdd96JN7zhDTjiiCOwYMECrF69Gvfcc880jrY3bD8H2gMPPADP83DKKaf0doDTwHYfTE5O4vLLL8eyZctQqVTw0pe+FDfffPM0jbY3bPfBV7/6Vbz61a/GvHnzsHjxYrznPe/Biy++OE2j7b7vfe97ePOb34yjjjoKQgj84z/+Y+42s+1nou0+mK0/E6kLJGX63//7f8tSqST//u//Xj766KPyL/7iL+T8+fPls88+m9j+qaeekvPmzZN/8Rd/IR999FH593//97JUKsmvf/3r0zzy7rHdB3/xF38hP/3pT8sf/vCH8oknnpCXXXaZLJVK8sc//vE0j7x7bPeB9utf/1oed9xxcs2aNfLVr3719Ay2RzrZB295y1vkb/3Wb8ktW7bIp59+Wv7gBz+QDzzwwDSOurts98F9990nHceRn//85+VTTz0l77vvPnniiSfKt73tbdM88u65++675eWXXy6/8Y1vSADym9/8Zmb72fgz0XYfzMafidQdDGE5Vq1aJS+++OKmx17xilfISy+9NLH9xz72MfmKV7yi6bGLLrpIvuY1r+nZGHvNdh8keeUrXymvuuqqbg9t2nS6D8455xz58Y9/XF555ZUzPoTZ7oN//dd/lUNDQ/LFF1+cjuFNC9t98Dd/8zfyuOOOa3rsC1/4gjzmmGN6NsbpZBJAZuPPxDiTfZBkpv9MpO7g6cgM1WoVW7duxZo1a5oeX7NmDR588MHEbb7//e+3tT/77LPxox/9CLVarWdj7ZVO9kGrIAiwd+9eHHbYYb0YYs91ug++8pWv4Gc/+xmuvPLKXg+x5zrZB3fddRdWrlyJz3zmMzj66KPxspe9DB/5yEdw8ODB6Rhy13WyD1772tfi5z//Oe6++25IKfHLX/4SX//61/GmN71pOobcF2bbz8RumOk/E6l75twC3jbGxsbg+z4WLVrU9PiiRYuwa9euxG127dqV2L5er2NsbAyLFy/u2Xh7oZN90Opzn/sc9u/fj3e84x29GGLPdbIPnnzySVx66aW477774Hkz/59ZJ/vgqaeewv3334+BgQF885vfxNjYGC655BLs3r17Rl4X1sk+eO1rX4uvfvWrOOecczAxMYF6vY63vOUt+Lu/+7vpGHJfmG0/E7thpv9MpO7hTJgBIUTT11LKtsfy2ic9PpPY7gPt9ttvxyc/+Uls3rwZCxcu7NXwpoXpPvB9H+eeey6uuuoqvOxlL5uu4U0Lm89BEAQQQuCrX/0qVq1ahTe+8Y24/vrrccstt8zY2TDAbh88+uij+OAHP4hPfOIT2Lp1K7797W/j6aefxsUXXzwdQ+0bs/FnYqdm089EmrqZ/yt6Dw0PD8N13bbfcp9//vm23+y0I488MrG953k4/PDDezbWXulkH2ibN2/GBRdcgDvuuANnnXVWL4fZU7b7YO/evfjRj36Ebdu24QMf+AAAFUiklPA8D9/5znfwute9blrG3i2dfA4WL16Mo48+GkNDQ9FjIyMjkFLi5z//OU444YSejrnbOtkH1113HU4//XR89KMfBQCcfPLJmD9/Ps444wxcc801c2IWaLb9TJyK2fIzkbqHM2EZyuUyVqxYgS1btjQ9vmXLFrz2ta9N3Gb16tVt7b/zne9g5cqVKJVKPRtrr3SyDwD1297555+Pr33tazP++hfbfbBgwQI8/PDDeOihh6I/F198MV7+8pfjoYcewm/91m9N19C7ppPPwemnn45f/OIX2LdvX/TYE088AcdxcMwxx/R0vL3QyT44cOAAHKf5x6zrugAas0Gz3Wz7mdip2fQzkbqooBsCZgx9S/qXv/xl+eijj8p169bJ+fPny2eeeUZKKeWll14qzzvvvKi9vh37Qx/6kHz00Ufll7/85Rl/O7btPvja174mPc+TX/ziF+Xo6Gj059e//nVRL2HKbPdBq9lwd6TtPti7d6885phj5B/8wR/I//7v/5b33nuvPOGEE+SFF15Y1EuYMtt98JWvfEV6nic3btwof/azn8n7779frly5Uq5ataqolzBle/fuldu2bZPbtm2TAOT1118vt23bFpXpmAs/E233wWz8mUjdwRBm4Itf/KJctmyZLJfL8rTTTpP33ntv9L13v/vd8swzz2xq/93vfleeeuqpslwuy2OPPVbecMMN0zzi7rPZB2eeeaYE0Pbn3e9+9/QPvItsPwdxsyGESWm/D7Zv3y7POussOTg4KI855hi5fv16eeDAgWkedXfZ7oMvfOEL8pWvfKUcHByUixcvln/yJ38if/7zn0/zqLvnP/7jPzL/fc+Fn4m2+2C2/kykqRNSzpE5cSIiIqI+wmvCiIiIiArAEEZERERUAIYwIiIiogIwhBEREREVgCGMiIiIqAAMYUREREQFYAgjIiIiKgBDGBEREVEBGMKIiIiICsAQRkSJhBCZf84///zCxnbsscdiw4YNhT0/EVE3eEUPgIj60+joaPT3zZs34xOf+AQef/zx6LHBwUGr/qrVKsrlctfGR0Q003EmjIgSHXnkkdGfoaEhCCGir0ulEi6++GIcc8wxmDdvHl71qlfh9ttvb9r+d37nd/CBD3wA69evx/DwMN7whjcAAO666y6ccMIJGBwcxO/+7u/iH/7hHyCEwK9//eto2wcffBC//du/jcHBQSxZsgQf/OAHsX///qjfZ599Fh/60IeiWTkiopmIIYyIrE1MTGDFihX453/+ZzzyyCP4sz/7M5x33nn4wQ9+0NTuH/7hH+B5Hh544AHcdNNNeOaZZ/AHf/AHeNvb3oaHHnoIF110ES6//PKmbR5++GGcffbZ+L3f+z385Cc/webNm3H//ffjAx/4AADgzjvvxDHHHIOrr74ao6OjTTN2REQziZBSyqIHQUT97ZZbbsG6deuaZqtavelNb8LIyAg++9nPAlAzVnv27MG2bduiNpdeein+5V/+BQ8//HD02Mc//nFce+21+NWvfoWXvOQleNe73oXBwUHcdNNNUZv7778fZ555Jvbv34+BgQEce+yxWLduHdatW9f110pENF14TRgRWfN9H3/913+NzZs3Y+fOnZicnMTk5CTmz5/f1G7lypVNXz/++OP4zd/8zabHVq1a1fT11q1b8dOf/hRf/epXo8eklAiCAE8//TRGRka6/GqIiIrBEEZE1j73uc/hb//2b7Fhwwa86lWvwvz587Fu3TpUq9Wmdq2hTErZdg1X62R8EAS46KKL8MEPfrDteZcuXdqlV0BEVDyGMCKydt999+Gtb30r3vnOdwJQwenJJ5/MnaV6xStegbvvvrvpsR/96EdNX5922mn47//+bxx//PGp/ZTLZfi+3+HoiYj6Ay/MJyJrxx9/PLZs2YIHH3wQ27dvx0UXXYRdu3blbnfRRRfhsccew1/+5V/iiSeewP/5P/8Ht9xyCwBEM2R/+Zd/ie9///t4//vfj4ceeghPPvkk7rrrLvz5n/951M+xxx6L733ve9i5cyfGxsZ68hqJiHqNIYyIrF1xxRU47bTTcPbZZ+N3fud3cOSRR+Jtb3tb7nbLly/H17/+ddx55504+eSTccMNN0R3R1YqFQDAySefjHvvvRdPPvkkzjjjDJx66qm44oorsHjx4qifq6++Gs888wxe+tKX4ogjjujJayQi6jXeHUlEhbr22mtx44034rnnnit6KERE04rXhBHRtNq4cSN+8zd/E4cffjgeeOAB/M3f/E1UA4yIaC5hCCOiafXkk0/immuuwe7du7F06VJ8+MMfxmWXXVb0sIiIph1PRxIREREVgBfmExERERWAIYyIiIioAAxhRERERAVgCCMiIiIqAEMYERERUQEYwoiIiIgKwBBGREREVACGMCIiIqIC/P8Bjoxmi7yJCuYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import seaborn as sns\n", "sns.jointplot(x = test_data[output_cols[0]], y = mu[:, 0], kind = 'hex')\n", @@ -515,20 +392,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJhCAYAAADxFZy8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNqUlEQVR4nOzdeZxkVXk38N+5W229d8/0LMw+AzMw7CCCbAJilKhEVAyK0aiREH2DxA3RmLiExNcoqOAS9fU1vlGjuCUhwrigICgRGPZ9lp6le3rv6q713nvO+8etW13Vdavq1kz1dPXM7/txPjI1p06dunXr3qfOved5hFJKgYiIiIhajrbQAyAiIiKiYAzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWZSz0AI4mAwMDGB0dbWqffX19WL16dVP7JCIiotbAQO0wGRgYwObNW5DJpJvabywWx9NPP8VgjYiI6AjEQO0wGR0dRSaTxll//jF0LF/blD6Tg7vw+2/8PUZHRxmoERERHYEYqB1mHcvXomf1cQs9DCIiIloEuJiAiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxUCNiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1IiIiIhaFAM1IiIiohbFQI2IiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxUCNiIiIqEUxUCMiIiJqUQzUiIiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialHGQg+AiIhax8DAAEZHR5veby6XQyQSaWqffX19WL16dVP7JGo1DNSIiAiAF6Rt3rwFmUy6+Z0LASjV1C5jsTiefvopBmt0RGOgRkREAIDR0VFkMmmc9ecfQ8fytU3rd/Cx+/H4T7+KU676IJas29yUPpODu/D7b/w9RkdHGajREY2BGhHRYTAflxSbfTnxqaeeAgB0LF+LntXHNa3f5OAuAEDb0tVN7ZfoaMBAjYhons3bJcV5uJwIAHYu3/Q+iejgMFAjIppn83FJcT4uJ/p9Oo7TlP4OB38WsFm4QIFaDQM1IqLDpJmXFOfjcqLf52KQmRoDIPDmN7+5qf1ygQK1GgZqREQl5uNesmbP+hBgp6cBKC5QoCMeAzUiooJ5TU8B3vs1H7hAgY50DNSIiArmOz3FYrr3i4haAwM1IqI55is9BRFRo1jrk4iIiKhFMVAjIiIialEM1IiIiIhaFO9RIyIiKjEf6VSYSJcOFgM1IjosFlOtSzo6zVcSXYCJdOngMVAjonnHWpe0GMxHEl2AiXTp0DBQI6J5x1qXtJgwiS61EgZqRHTYsNYlEVFjGKgRURnWuiQiah0M1I4AzT4JcnXS4tHsoGpwcBCve93rkc1mmtZnKd77RUTUGAZqi9h8rVDi6qTFYT4LiJ9+9YfRs3pT0/rjvV9ERAeHgdoiNh8rlLg6afGYzxv0Y70rWeuSiKgFMFA7AnCFUnPNxz1awPxdUp6PG/SJiKg1MFCjRW0x3aPFS8pERNQoBmq0aC2me7T8S8r33HMPtmzZ0pQ+uZKSiOjIx0CNAi2GWneL6R6t+SxNw5WURERHLgZqVGY+A4pIJIrbb/8Bli9f3pT+/GByMdyjNR8LP7iSkojoyMdAjcrMV627kecewfZ/vwV//Md/3LQ+fYtpRolZ9ImIqBEM1ChQs1eSekEFZ5SIiIgawUCNDivOKBEREYWnLfQAiIiIiCgYZ9SIiIgOA9ZlpoPBQI2IiGgesS4zHQoGakRERPOIdZnpUDBQIyIiOgxYl5kOBhcTEBEREbUoBmpERERELYqBGhEREVGLYqBGRERE1KK4mCCAUgrT09NN7XNmZgYAML77GTi5TFP6TA7uBgBM7XsOpiFats/56nex9Dlf/S6WPuer38XS53z1u1j6nK9+F0uf89VvcmgAgHduSSaTTekTANrb2yFE8947HTqhlFILPYhWk0wm0dnZudDDICIiOqympqbQ0dGx0MOgEgzUAjR7Ri2ZTGLVqlXYs2fPUfsF4DbgNgC4DQBuA4DbAGjdbcAZtdbDS58BhBDz8sXp6OhoqS/kQuA24DYAuA0AbgOA2wDgNqD6uJiAiIiIqEUxUCMiIiJqUQzUDoNIJIKPfexjiEQiCz2UBcNtwG0AcBsA3AYAtwHAbUDhcTEBERERUYvijBoRERFRi2KgRkRERNSiGKgRERERtSgGakREREQtioEaERERUYtioEZERETUohioEREREbUoBmpERERELYqBWgClFJLJJJgLmIiIqD6eN+cPA7UA09PT6OzsxPT09EIPhYiIqOXxvDl/GKgRERERtSgGakREREQtioEaERERUYta8EDttttuw7p16xCNRnH66afjnnvuqdp2cHAQV111FY477jhomobrrruuos0TTzyBK664AmvXroUQAjfffPP8DZ6IiIhoHi1ooPa9730P1113HW688UY8/PDDOO+88/CKV7wCAwMDge1zuRyWLFmCG2+8ESeffHJgm3Q6jfXr1+Mf//EfsWzZsvkcPhEREdG8EmoB19KeddZZOO200/ClL32p+NiWLVtw+eWX46abbqr53AsvvBCnnHJKzRmztWvX4rrrrguceaslmUyis7MTU1NT6OjoaOi5RERERxueN+ePsVAvnM/n8eCDD+JDH/pQ2eOXXnop7rvvvsM6llwuh1wuV/x7Mpk8rK9PRES0mPC8efgs2KXP0dFRuK6L/v7+ssf7+/sxNDR0WMdy0003obOzs/hn1apVh/X1iYiIFhOeNw+fBV9MIIQo+7tSquKx+XbDDTdgamqq+GfPnj2H9fWJiIgWE543D58Fu/TZ19cHXdcrZs+Gh4crZtnmWyQSQSQSOayvSUREtFjxvHn4LNiMmmVZOP3007Ft27ayx7dt24ZzzjlngUZFRERE1DoWbEYNAK6//npcffXVOOOMM3D22Wfjq1/9KgYGBnDNNdcA8KZW9+3bh29961vF52zfvh0AMDMzg5GREWzfvh2WZeH4448H4C1SePLJJ4v/vW/fPmzfvh1tbW3YuHHj4X2DBUopDExksao7Cu0wX9YlIiKixWtB03MAXsLbT3/60xgcHMTWrVvxuc99Dueffz4A4K1vfSt27dqFu+++u9g+6P61NWvWYNeuXQCAXbt2Yd26dRVtLrjggrJ+amnmMuMXRtP42ztewO92J7F1eQKfvGwjTlzedkh9EhERtRKm55g/Cx6otaJm7HDpvItb79mDf7l/HyAAVwK6AKQC3nTGMlx/4Rp0xhZ0QpOIiKgpGKjNH0YKTaaUwl3PjOPvf7YDwzN5KAWgEAq7hf//tweH8B+Pj+LGS9fhtSctOeyrXImIiGhxYKDWRFIpXPv9p7HtmXFoAqg2VykVkMw6uPE/n8fmpXGcwEuhREREFGDB86gdSQ5M57HtmXEAXjBWiwKwcQmDNCIiIqqOgRoRERFRi2KgRkRERNSiGKgRERERtSguJiAiIqKmeM2b3wnDNMseW9nXhW9+5YsLNKLFj4EaERERNUXPxe+EGUuUPbbvzlsXaDRHBl76XEBKAb/eOYNUXi70UIiIiKgFMVBros6ogc6oAT1E/lorEsGYjOODdw3h9d/djV+8MAMWiSAiIqJSDNSaKG7p+Nk1p+KVx/cBALSAgE3XdXR2daGzs6vYYCLj4safD+E9/7kfA5P5wzhiIiIiamUM1JpsabuFm197HL599QlY3R1FaawWTyTQ3dMLy7QKj3j/6s+jPTyYwZ/++wC+/MAYsjYvhxIRER3tWJQ9QLOKy+Zdif/z+/245e4BJDp7oOl6qLqenREN371yNbqi4doTEREtJP+82bvhZGi6XvZvnTEdz21/YIFGtvhx1ec8snQN7zrnGJy+qgvvvmMo9PNWd1nojvGjISKixeWC93ymYtXnGFd9HhJe+jwMlrZb9RsRERERzcFAjYiIiKhFMVAjIiIialEM1IiIiIhaFO9YJyIioqb49RfeV7bqM2IauPglZy7giBY/BmqHwb79+xd6CERERPNu7qrPsTtvZUH2Q8RLn/Mon8/jpptuwkVnnYzs8C4oGS6J7cBkHuNphyWliIiIjnIM1ObJL37xCxx//PG48cYbkZ1J4tGPX4Z9//UFSMeGcp3A5+gCMDTgdVs7Ebc0JrslIiI6yjFQa7L9+/fjyiuvxCWXXIJdu3YVZ8WUk8e+//oiHv27P8LU0/d5jZU3w+aHY6evjOE7b1iNd57Ri6jBj4aIiOhox3vUmiiVSmHr1q2Ynp4GALiuW9EmNzqAZ77wdnSffAnWv+njMDqWoCeu430vWYIL1yU4i0ZERERFDNSaaGJiAhMTE+HaPvJzOEYSN9/+S5y+IoaYyRk0IiJa3Oau+uyM6TVaUxgM1BaSk8O5axL12xERES0CQas+6dBwGoeIiIioRTFQIyIiImpRDNSIiIiIWhQDNSIiIqIWxcUECyi+7lTccv8oLlibwCnLYws9HCIiokPCVZ/Nx0CtiVasWIErrrgCt99+OzRNg6xSMirWswynvvXvcMxZr8T9e9K4b08GZ66M4a2ndqEvzo+EiIgWJ676bD5e+mwiTdPwgx/8AD/96U+xYsUKaFr55hW6geNe9S688pbfYMUZlwIAVKEuwYP7M7jujkH85OkkHJc1PomIiIiB2rx41atehWeeeQYf/vCHYRgGDMPAki1n4Y8+83Oc9KYPQ7ei0PTymTOpAFsC//boFP7mziHsmswv0OiJiIioVTBQmyfxeByf+MQn8OSTT+Klr3g1Lvjod9C2bE2oElG6ANZ2WcU6oURERHR04g1R82zTpk34P9/+Dq7/2YHQz0lYXvzMup9ERLSYlC4miJgGLn7JmQs8osWPgdphwICLiIiOBqWLCcbuvBXf/MoXF3hEix8vfRIRERG1KAZqRERERC2KgRoRERFRi2KgRkRERNSiuJhgnrmuxO13PwhgZfjnMCsHEREtQqWrPlk+qjkYqM2jPzy9G39z6w/w5O4hrD/lHKw54TRAAUKrPpGpCWDneB7PjOZwbK/FFaNERLRozF31SYeOgdo8GE+m8In/ewe+ve0B6JoXaO3Yfh8O7Hwam8+6CJ1LVwBKASVBmACgAGzssfDO07uxustamMETERFRy2Cg1mTf/cUf8OF/+QnS2RwAwJWz1zFTU+N48K4fYNm6zdh0xnkwzAiEpkETQNzU8JZTunD+mjhn0YiIiAgAA7WmGp2awf+65Xuod4vZ0M6nMbp3B055yUvRt2YzLlgbxxtP7EKbxbUdRERENIuBWhPlbadukOZz7Dyyux/Dv15/ybyOiYiIiBYvBmpERETUFFz12XwM1IiIiKgpuOqz+XhTFBEREVGLYqBGRERE1KIYqC0wpViGgIiIiIIxUGuiiGVCCIEwadBisRiOO+VF+Md7RvEfTyeRysv5HyAREREtKlxM0ES9HQn8y/vfhA9++UeYmElDysrZMiEETjzpZJx3/gUwTRMA8MRwDs+O5XHhugROXR6FxoS3RES0CP36C+9DLBrB5uM2YWVf10IP54ggFK+9VUgmk+js7MTU1BQ6Ojoaf34qg3/6t7vwL//5W2hCwJXebFl//zK87NKXY2l/P5RSgRUIliZ0vGJTO1Z0mIf8PoiIiA4H/7z52pu3Ifmbb2Lb7d9e6CEdMXjpcx50JGL41Dtfg1/efB1O2XgMAODCl16Eq958NfqWLAGAqmWiRlIuvrV9EvuS9mEbLxEREbUmXvqcR1vXrcAdn/4r/OsvH8F+ywvY6tXxVABWtBtYyRk1IiKiox5n1OaZpmn443NObOg5vEWNiIiIAAZqRERERC2Llz6JiIioKX79hfehu81a6GEcUTijRkRERE1xwXs+g7Ubjl3oYRxRGKgRERERtSgGaocDM9URERHRQWCgNs+eG83igz/bC6lU6Lqe6byEaqA9ERERHZm4mGCepPIuvvL7UXzn0XEIALsmbZx+TBu6YkbVqgQ+QxcYTbtYkuDHQ0REdDRjCakAh1JCSimFu55L4jP3HMBk1sXccp/re6M4cVkcuibKanoKAIYGXLiuDaetYL1PIiJaPPzzZu+GkxE1gEsuOBff/MoXF3pYRwRO2TSRKxWu+889uG8gBYHgW9N2jGWxbzKHE5cnsLYnWnz8+KURXLy+DQmLV6OJiGhxuuA9n4EZS2Dfnbcu9FCOGAzUmmg07eC+gRSA2usHcq7CH/bOwJESV2ztwdalEazuYt4ZIiIiKrfg0ze33XYb1q1bh2g0itNPPx333HNP1baDg4O46qqrcNxxx0HTNFx33XWB7W6//XYcf/zxiEQiOP744/GjH/1onkZ/aNJ5F688tp1BGhEREQVa0EDte9/7Hq677jrceOONePjhh3HeeefhFa94BQYGBgLb53I5LFmyBDfeeCNOPvnkwDb3338/rrzySlx99dV45JFHcPXVV+MNb3gDfv/738/nWyEiIiJqugUN1D772c/i7W9/O97xjndgy5YtuPnmm7Fq1Sp86UtfCmy/du1a3HLLLXjLW96Czs7OwDY333wzXvayl+GGG27A5s2bccMNN+Diiy/GzTffPI/vhIiIiKj5FixQy+fzePDBB3HppZeWPX7ppZfivvvuO+h+77///oo+X/7yl9fsM5fLIZlMlv0hIiKiYNXOm7/+wvvw289fh5V9XQs7wCPIggVqo6OjcF0X/f39ZY/39/djaGjooPsdGhpquM+bbroJnZ2dxT+rVq066NcnIiI60lU7b17wns9g83GbmJqjiRZ8McHcxK/1ksHOR5833HADpqamin/27NlzSK8fli6A58ZyyDnysLweERFRMyzUefNotGDpOfr6+qDresVM1/DwcMWMWCOWLVvWcJ+RSASRSOSgX9PXEdHRHdORzLpw66QRXt8TwWnHtOOu52cQNQTOXZPAsb3WIQepRERE861Z502qb8Fm1CzLwumnn45t27aVPb5t2zacc845B93v2WefXdHnXXfddUh9hhUzNXz/qvW4bLO30EEPiLm6ojpeubkLF27ohFVokHUUfv7CDH70ZBJjaWfex0lERESLw4ImvL3++utx9dVX44wzzsDZZ5+Nr371qxgYGMA111wDwJta3bdvH771rW8Vn7N9+3YAwMzMDEZGRrB9+3ZYloXjjz8eAPDXf/3XOP/88/FP//RPeM1rXoOf/OQn+PnPf4577733sLyn7piBj128Apcf34VP/WoQL4znAQCGJnDKiji2LosX286dPRuacfC9x6Zw8rIozjwmXgzkiIiI6Oi04LU+b7vtNnz605/G4OAgtm7dis997nM4//zzAQBvfetbsWvXLtx9993F9kGXBtesWYNdu3YV//6DH/wAH/nIR7Bjxw5s2LABn/rUp/Da17429JgOpdZnKUcqfP+xCXz598N45eYeJCwt1KXNmCFw1cldiOiCl0KJiKjl+efNFZtPx8vOfzEXEzTRggdqrahZgZpv53gOdzw3E7r9sjYDV5wQnCeOiIio1fjnzQtf9Qb86qffW+jhHFEWfNXn0aA7xpKqRERE1DgGakREREQtioEaERERUYtioEZERETUonjzFBERETXFM089iZdd8WYAwMq+Lq7+bAIGaofB4HR+oYdAREQ0785+9+dgxhIAgH133rrAozky8NLnPMo6ErfdfwBv/fcXMJG2ETYTynjGRSrvhm5PRERERybOqM2T3+ycxj/8aj8OTNtQAH742ChOXJ7Aace0QxOAFpDIVgDQBHDaihiiRrjkuERERHTkYqDWZPuTefzT3YP49c5paALw58SkAh7Zn8LzoxmcvbYD63piUEpBCAEBr92aLhPnrU2gI6Iv4DsgIiKiVsFArYnSeRev/3/PI2tLAF5wNlcqL/HzZydxTGcGF2zoRNzSkbA0XLAugbVd1mEeMREREbUyBmpNNJ2TSOVlqLZ7p3J4cE8S//uy1VjebsLQeJmTiIgWt19/4X2IRSPYfNwmrOzrWujhHBEYqC0gpYBVnZxFIyKiI8MF7/kMkr/5Jrbd/u2FHsoRg6s+iYiIiFoUAzUiIiKiFsVAjYiIiKhFMVAjIiIialEM1BZQXgr87S8O4Le7U6xCQEREi96vv/A+PPXE43jru9690EM5YnDVZxMtbTPwyuM6ccczU9BEcB41wKtK0BaLYNrVcf+eDO7bk8GZK6J4z9m9WNFuHt5BExERNckF7/kMzFiCdT6biDNqTSSEwD/80Sp86fK1WN5uIigzWixiors9Dsvwqg/4sdxDg1n8+Y/24V+3TyLvhMvFRkREREc2Bmrz4Ow1bfjR1Ztw7dlLYeoCugBMQ0d3exzxiOXV8JxTx9NVgCOBb22fxNt+tA/PjeYWaPRERETUKhiozRPL0PDOFy3Fj9+yCWetbkNHPApdE3ULrSsAUUPDpr4I71sjIiI6yjFQm2crOyx8+KUrCwFauDJRCcv7WOoFdURERHRk42ICIiIiaopff+F90HQdlnDx1ne9G9/8yhcXekiLHgM1IiIiagp/1ScArvxsEl76JCIiImpRDNSIiIiIWhQDNSIiIqIWxUBtntmuxA+2H2joOW61kgZERER0VOFignn0wO4p3PhfL2DHWAZdHe3o6mgHUDvthiaA58fzeOxAFluXRuq2JyIiahX+qs+IaeDil5y50MM5IjBQmwcjM3n8w7Zd+OnjI9AKMdZkchoz6Qz6ujsRi0bhpbadDcBE4ZETlkbwly/qxapOEzkXMHVAB6CUYsBGREQtzV/1OXbnrUzN0SQM1JrsOw8N4R/u2olcoV5n6VVMx3EwNDKGeCyKvu4uaJoGIQQ0AbRHNLzrjB6cuyZeDMgUgLwL6ELB1BisERERHW0YqDXRaCqPj/zXC3XbpTNZ7MkewNql3Ugk4njZxjb86UldiJvBtwy6CnBdwNIAnXEaERHRUYOBWhPZbvhFAEopWCqL7165OfRzHOVdBiUiIqKjA1d9EhEREbUozqgRERFRU7DWZ/MxUCMiIqKmYK3P5uOlTyIiIqIWxUBtgeVst6H2SrFqARER0dGCgVoTRQ0NmihNY1udcmw8/8yTOP7a2/Cer/w3DkzO1GwvlUImLzGekZjOuZAM2IiIiI54DNSaqDtu4tbXbUZfm1msSDCXUgrO1AFk9zyOmYkxAMCdD72Aiz78r/j6XQ/DdtyK9rarkLUV/OwfeReYzEhkHckZNiIioiOYUDzTV0gmk+js7MTU1BQ6Ojoafn4q7+KLv9mDr/1uH4QAXK9IAdzsDJyR3ZB2tupzNy7vxiff/FKceexKuFIh7yjU+oB0AbRFNBjVIkMiIqJ55p83ezecDE33Mn5awsUlF5zLlZ+HiIFagEMN1HzPjaTx0TtewAO7p2CPDsCdHq37HE0TEAD+3/tehxPWLA39Wp1RBmtERLQw/PPma2/eVlz1CQBjd96Kbbd/ewFHtvjx0uc82rQkju+8ZSs+/NIVoYI0AJBS4YTVSxsK0kwNDNKIiIiOQAzU5pkQAi/d1N3wcxp7QmPNiYiIaHFgoEZERETUohioEREREbUolpAiIiKipvBrffo6Y3qN1hQGAzUiIiJqitJan4C36pMODS99HgbMgEJEREQHg4HaPHt8KIXr/3MA3tLMcMszJ2YykFKFLhMlC80YEBIRER1ZGKjNk6msg7+/azde/3+fwgsTDhJrT4QejYd6rtIM3PHEAaTzXomoegGYUvDKSYHBGhER0ZGE96g1mVIKP358DP/4yz2YzrlQAFwF6NE2xNecBHtqGLnhXVCyvKanEAIR08CrLjgDL9q6CZoQuH9vBqs6TWzqsSCgoAXkV7N0AV0DFARyLmAIwNBUsU8iIiJavBioNZErFd72vWfxwMA0BFBRo1MIAaurH0Z7D3LDu2FPDRfbveiEDXjleaejLRYttlcABqZsDM04OK7XwvJ2s/hvhgaYuqgIxhwFuK5XrUAXszNsDNqIiGi+cdVn8zFQa6KRGRsPDEwDqAzSSmm6idjyjVi24hisslI4Y8sGrFmxpGr7vKvw2HAOM3mJLUsiMDQBrUbJKAUgLwFDKZg6AzQiIjo8uOqz+RioLaBoWweuOO/E0O1n8hKWEf62Qt6tRkREtLhxMQERERFRi2KgRkRERNSiGKgRERERtSjeo0ZERERNwVWfzcdAbQFJqbB9zxSO7W9D3Aq3M4+lHXRFdeg1Vn36lAIcqaALpucgIqL5x1WfzcdArYm6Ygb6EgbG006xrFMQv9rAUDKLH24fRNTQ8PLjl+LU1Z2BSW0BoM3SENEFdk3YMDQbqzpNdMf0mgGYBCAlYAOwNBUquCMiIqLWwXvUmihqavivd2zFlacsgYCXcHYupRSklGWlnrKOxE8eHcK/3LMbg1PZsvaWLrAsYaArohWDMkcCOydsPDuaR9aWocaWl0DOCV8/lIiIiBYeA7Um64wa+Nila/Dvb9mC45bO1vb0AzQpqwdWg8ksvvSbXfivxw8g77jojuroTxgwtOBLlzN5iSeGc9g3ZcOtNYVXIAHkXMCW9euHEhER0cJjoDZPTlyewPffsgV/9/I1iJuiYhYtiB9rPbU/ieVtJhKmF5zVu79sPONCiPAF2d1CrMhgjYiIqLXxHrV5pGsCbzxlCTYvieL1//fJ0M9b2h4JvbgAAGKmqHpvWxCNiwuIiGgelK76jJgGLn7JmQs8osWPgdph0BnlZiYioiNf6arPsTtvxTe/8sUFHtHix0ufRERERC2KgRoRERFRi1rwQO22227DunXrEI1Gcfrpp+Oee+6p2f7Xv/41Tj/9dESjUaxfvx5f/vKXy/7dtm18/OMfx4YNGxCNRnHyySfjZz/72Xy+BSIiIqJ5saCB2ve+9z1cd911uPHGG/Hwww/jvPPOwyte8QoMDAwEtt+5cyde+cpX4rzzzsPDDz+MD3/4w/hf/+t/4fbbby+2+chHPoKvfOUr+MIXvoAnn3wS11xzDf7kT/4EDz/88OF6W0RERERNIdQC5mg466yzcNppp+FLX/pS8bEtW7bg8ssvx0033VTR/oMf/CB++tOf4qmnnio+ds011+CRRx7B/fffDwBYsWIFbrzxRvzVX/1Vsc3ll1+OtrY2fPvb3w41rmQyic7OTkxNTaGjo+Ng317RI/tTeN03Hw/dfmNfHDe+fEPo9p1RDRt7I6Hb68JLpNsIpVRDK0UbbU9ERIuXf97s3XBycdWnJVxsOWErAGBlXxcXFhykBVuOmM/n8eCDD+JDH/pQ2eOXXnop7rvvvsDn3H///bj00kvLHnv5y1+Or3/967BtG6ZpIpfLIRqNlrWJxWK49957q44ll8shl8sV/55MJht9O4FsV+GRoQy2D2axtN3C8HQ+1PP2TWUxPJ1DX5tVN+2GUgqpvETOkTD1+mk6lFKQEJBKQaB+mo7SgCtM8NVoeyIiWnyqnTfn1vr07WPNz4O2YJc+R0dH4bou+vv7yx7v7+/H0NBQ4HOGhoYC2zuOg9HRUQBe4PbZz34Wzz33HKSU2LZtG37yk59gcHCw6lhuuukmdHZ2Fv+sWrXqkN6bUgq7J/P44ZNTeOxADrqm4c/PXoNLNi+BqQnUi10ytsSN//kcfvzoATiurFp1QCkFVwHPjuXwzYcn8PBgFlJVLxOllIICMJ1zMTTtIGXLYt3RWu3TtsRMXsGukyjXb59zFXLubAJfJtYlIjqyNPu8SdUt+GKCuTMu9WZhgtqXPn7LLbdg06ZN2Lx5MyzLwrvf/W687W1vg65XTyB7ww03YGpqqvhnz549B/t2kMy6uOv5GfxyRwppezZA0TSBF63txjXnr8OW/jZvzDX6caTCfzw+ghv+41k8vn8aAIoBmP+eR9Iutg9lMJxy4Ujgd3vS+O6jUxicdsra+cFYzlGYzLjIu15ANZWVGEk5sKUKbJ93gZm8giMBBSDreLN3UpUHX357R6IYoCkU6osWXovBGhHRkaOZ502qbcEuffb19UHX9YrZs+Hh4YpZM9+yZcsC2xuGgd7eXgDAkiVL8OMf/xjZbBZjY2NYsWIFPvShD2HdunVVxxKJRBCJhL/HqxrbVfjJ08liiaYg7VEDl5+yAqeMpfFfjw9hKuPU7HM0ZePmX+/GySvb8dazVqIrZiJjK+yYzGEmX/lCE1kXP34qiU29Fs5fm0DUEHAkkM67cANiJVsCIykXcVOiM6pDAHCVF5QFTeS5CkjZCpYORHQvQJbK6ycoFJPKC94MARgaL4USER0JmnXepPoWbEbNsiycfvrp2LZtW9nj27ZtwznnnBP4nLPPPrui/V133YUzzjgDpmmWPR6NRrFy5Uo4joPbb78dr3nNa5r7BgLk3dnZp3rW9sbxJycvD933I/umccvdA3hiOItHh7OBQVqp58by+NWOGSSzDqZzwUFaqbStMJZyMZNzkbaDg7RSedd7TsaWyId4z47ygjzOrBEREYW3oLWNrr/+elx99dU444wzcPbZZ+OrX/0qBgYGcM011wDwplb37duHb33rWwC8FZ5f/OIXcf311+Od73wn7r//fnz961/Hd77znWKfv//977Fv3z6ccsop2LdvH/7u7/4OUkp84AMfWJD3WIuuNTa7ZEuF6ToBWilHen/CUvCCqbCTXqrwh3NkREQElNf6LGUJF29917u58vMgLGigduWVV2JsbAwf//jHMTg4iK1bt+KOO+7AmjVrAACDg4NlOdXWrVuHO+64A+9973tx6623YsWKFfj85z+PK664otgmm83iIx/5CHbs2IG2tja88pWvxL/+67+iq6vrcL89IiKio0q1VZ8AV34erAWvFn7ttdfi2muvDfy3b37zmxWPXXDBBXjooYeq9nfBBRfgySefbNbwiIiIiBbMQQVqe/fuxU9/+lMMDAwgny/PDfbZz362KQMjIiIiOto1HKj94he/wKtf/WqsW7cOzzzzDLZu3Ypdu3ZBKYXTTjttPsZIREREdFRqeNXnDTfcgL/5m7/B448/jmg0ittvvx179uzBBRdcgNe//vXzMcYjklIKOVfgxRuWYEVXPNRzdMPEw4MZjKZrp/QothfAc2M5TOfc0OPKu9UT5s5l6QKWLkIvJnClt1o0bP9ERERHu4Zrfba3t2P79u3YsGEDuru7ce+99+KEE07AI488gte85jXYtWvXPA318DnYWp9KKfx2II3nxvIQqJ6yIudIDE47SNmqmOB3dDqDRwbGMZOrDMIs08DS7g5EI1bxsb64jmN7LcTMylg7agj0J3QviCos4eyJaTimw4IZUONTANAL3fjtNYFCFYXK9obmvUbpvziqsRWmhublVmNeNSKixS+o1mepiGng4pecyVWfB6HhS5+JRKJY32vFihV44YUXcMIJJwBAsYzT0UoIgXPXJLCxx8JvB9JI5sojF6kURlIuRtNu2XMAoLctipcevwLPH0ji2cEpuIUArrezDZ1tlTNuY2kX96czWN9tYnWXCU0IaAJYEtfRGdUrKjyMZyQms1msbDexJKEX/00XXtWEuYk2vES1CobmtRHCC8yihoCpi4r+DSgYupf4tl7ONqCQOgSApamG05QQEVFrqrbqc+zOWxmkHaSGA7UXv/jF+O1vf4vjjz8el112Gf7mb/4Gjz32GH74wx/ixS9+8XyMcdFZ1m7iT47vwBPDOTy8PwOpgGTOxf5pp+qskx8IbervwOqeBJ4YnIYZiUDTtMBZJz8WemHCxv5pB+evjWNNpwk/5gl6jlTAnqSNkbSD4/oiiBqlbYKDJUcquADaLFHWfm7/QnjBm6ULOK6CHXKeNi8BTXqVDji7RkREVK7hQO2zn/0sZmZmAAB/93d/h5mZGXzve9/Dxo0b8bnPfa7pA1ysNCFwYn8U67st/HrXDB4fzoV6nhACEBqi8TjCppPtiupY321BhUxWGzO1wEum1UQML0irF0j5/97oHWjaglecJSIiak0NB2rr168v/nc8Hsdtt93W1AEdaRKWhjNXxvHLHenQz5mddAs3wxQpzHSFnZAyGgyM5vvKJOfRiIiIgh1SwtuZmRlIWX4tr5Gb74mIiIiouoYDtZ07d+Ld73437r77bmSz2eLj/s3lrhs+FQQREREdOYJqfforPungNByovelNbwIAfOMb30B/fz9vACciIiIAwas+ueLz0DQcqD366KN48MEHcdxxx83HeIiIiIiooOH1dmeeeSb27NkzH2MhIiIiohINz6h97WtfwzXXXIN9+/Zh69atME2z7N9POumkpg3uSKCUQs5pLGFFoxeTXdlY/7LR9g3m22g0PYcKl4WkpL33CmEvuzfanoiIqFU0HKiNjIzghRdewNve9rbiY36yUy4mKJd3JZI5CcsQOH9tHPfuTkOp+oFMzBBY22Vi96QNoHZ7AWBwxsHepI2V7d7HWSsgUUphJO0CYzls6o1AKgWtTvtUXsGVQHessuJBUHtdeIlyS/eLWu1tBQgIGDpqtvcDLj9w1FA7APP7kijEgXXGQkRE1GoarvV5/PHHY8uWLfjABz4QuJhgzZo1TR3gQjjYWp8+VyrM5CVyc2opTWZd/Pz5GeyYsKvWAu2IaFjdZSJiaJjMuvjdnjSGU9WD3/6EXqgyoMHSgaUJHZGARGl+0LIvaeOF8TxsCazqNPHKY9vQG9MrPkd/txjPuBhOuZAK6Il59UWDkt/67fMuiu87qIbo3Pa2q4rVGiK6QNzyKjRUa591FOxCe7NQc7Rm/yUlrQwxm0OOARsRUfPUqvVpCRdbTtha/PvKvi4uLmhAw4FaIpHAI488go0bN87XmBbcoQRqaVtiJl+7OvlzYzlsez5V1s7UgNVdFjqj5SWjlFLYOWnjf/ZmkHdVMbiLGQLHL4mgN145KdoeEeiL6WUJcFO2xFMj+Yr6o5oAzlgZw4VrE9A1FIOktC2xf9qpuGyrCWB1p4k1XWbxaqUQAo5UyDoq8DKpJsqT5vrtbUdVBKsCQNwUxSS+fvu8611CDmofMQSsQv1Rn6tQDOjmtjc1QNcEL4kSETWJf9587c3bAmt9lhq781Zsu/3bh2lki1/Dlz4vuuiiIz5QO1hSqbpBGgBs6o1gbZeF3+xK4ZGhLPriBpa1G4HFyYUQWN9t4ZgOEw/tz2DXpI3VnSbWFgqxB5nOKaTyDjojGhKWwK5JG/uSTuAMnlTAA3szeGo4h1dvbseKDhMjKRuT2eD3IRWwa9LG0IyDrUsjiJsaco6sWsPUf45UXrAmAOQcWfW+NwUgZStkXYU2U4MQQNaWVQu9KxRm2VxVnF2zZfXLxQqF+qJKwWLpKiIianENB2qvetWr8N73vhePPfYYTjzxxIrFBK9+9aubNrjFppG5SVMXeNExsdB1nyxd4NTlUaztskK19wuwj6bD3TM4nZe4b08aJ/VHQ80wZR2FfUkHy9uN0DNSths84xbElcBMXkKIcDNergKybu377UrJwr2CYdsTEREthIYDtWuuuQYA8PGPf7zi37iYgIiIiKh5Gg7U5tb2JCIiIqL5cUhF2YmIiIh8QbU+fRHTwObjNmFlX9fhHdQi13Cg9vnPfz7wcSEEotEoNm7ciPPPPx96lQ+KiIiIjkxBtT59XO15cBoO1D73uc9hZGQE6XQa3d3dUEphcnIS8XgcbW1tGB4exvr16/GrX/0Kq1atmo8xH1Gq5VML0mAmlYbb+88JuzhAKgVHKph6+PauRODq1mpjARqrQKDmuX2j42mkPRER0VwNJyj4h3/4B5x55pl47rnnMDY2hvHxcTz77LM466yzcMstt2BgYADLli3De9/73vkYb0tr5HxsuwqTGRfHdJjojemoF+u40ssjZumo2xbwqiJM5cLfT9gR0bCi3fBSYziybpCXzLm4e1cK/3f7JB7cn4FTZznncMrBfQMZ3DuQxsCUDVmjf6UUZKFiQV56VQ5qjUcphbQtMTjtYv+0g1S+9viV8tJ5TGYVJjIS+TolvrzqDBIjaRfjGRd5t/Z2VUpBSlVMS3IwATMRERFwEAlvN2zYgNtvvx2nnHJK2eMPP/wwrrjiCuzYsQP33XcfrrjiCgwODjZzrIfNoSS8zTkS0/kaecKUFxyMpd3iTJr/EUzlvOfObZ+xJbJzggmlvJQUc19HKoXJrFuR2LYaQwM29lhY2WGWzaZ5iWQ1GFr5jFDeVdg7lcfEnDxrbZaG89bEsaqzPH1I2pZ4eiRXkSYkbgoc1xtBV6z8ErlSCkEjF/BSmsxNp2G7ClM5tyKPm6UL9MT0itk+VyrkAxLnmhqQsLSK2b5qn2dEF2ib035uiau5tJCpRoiIFpswCW956fPgNHzpc3BwEI7jVDzuOA6GhoYAACtWrMD09PShj24RihgaLF0gZUuk7fIzdjovcWDGqciY75+8OyMaEqaGiayLnKuQdyTSdnDQJwSgA4W6ml6AlrIlxjNu6FxlK9oNbOq1ijN0ZRURAGQdCV0AUcNLPDuccrF/2g7sP5WX+O/nZrC2y8Q5q+KImRp2TdrYMZ4PfO20rfDwUBb9CR0beyMwNe81ayaqdRU0oWBqAgrAdE4iU2U2LO8qDM04aLc0dEQ1CAB5R1VNnGtLYDIrETMFYoaAVMB03kW+SraZnKuQy7hoszTECol26213qQABFVgii4iIKEjDgdpLX/pSvOtd78LXvvY1nHrqqQC82bS//Mu/xEUXXQQAeOyxx7Bu3brmjnQREUKgzdIRNRSmc24xaJjO1T6TCyFgaApL4jqeH89VBHqV7b3/1zWFwaRTMetWjakBpyyPoiNSv8i6q7wapfunnYrapaX8f9k9aWNwegrHdFqoc4UQAHAg5SLrZHFifwRaiHvXpPIS4abtylmxINN5ibwr0WaFW9ySsb0ZzBpvtcxMXsKVAnEz3F0ESqFwYyILxBPRkafWqk9LuHjZFW8ue4x1P+trOFD7+te/jquvvhqnn356sSqB4zi4+OKL8fWvfx0A0NbWhn/+539u7kgXIUMT6IrqSObcukGaTwiBVN6tG6SVStsqdJAGAH1xAx0Rvfh69UwHFJivRgGImzocN3wgsrTNaOj+vpwbLkjzRXStoUUSYYM0X9RoLOBiNQQiOlLVWvUZZN+dt87jaI4MDQdqy5Ytw7Zt2/D000/j2WefhVIKmzdvxnHHHVds89KXvrSpg1zMhBCw9BYrKtliccLhGA5nr4iIaDE66IS3mzdvxubNm5s5FiIiIiIqESpQu/766/GJT3wCiUQC119/fc22n/3sZ5syMCIiIqKjXahA7eGHH4Zt28X/roaXl4iIiIiaJ1Sg9qtf/Srwv4mIiIh8tVZ9+vyanwBY9zOEQy7Knkwm8ctf/pL3rNXAzPRERHQ0CLPqk4lvG9PwcsQ3vOEN+OIXvZwnmUwGZ5xxBt7whjfgxBNPxO233970AS52tqswnZcNrWw0tNnqAOHao6H2uUIa/7ABpNHgXuLIxnKEZRscj9ZAW78cVSPtGxkL0FiZKFUYy3yNp9H+iYiotTUcqP3mN7/BeeedBwD40Y9+VCzK/vnPfx6f/OQnmz7AxUoqhWTWxUTWhRACq7uM0Pm2uqI6LlibQFc03MfTFzfwklUxtFnh2uddhcFpG27IAKMzomF1hxE6YDN0EaoeqR9QPDuax2MHcoWSWNXH4xV1V3j8QBaPHcjClSpEzVDg2bE8dhfqi9arAepKYOdEHkMzTuiAJ5mbzTNXr38FL6muX/IqTPuco4pVD6q1Ly1flSmpwMCAjYhocWv40ufU1BR6enoAAD/72c9wxRVXIB6P47LLLsP73//+pg9wsVHKSz47k5dlSVkjhoZVnQLTOYnhVHCZJ00Ay9oMdEQ0CCHQ32Zgx3ge24cycGVleSVDA47psIrtl7WbeG4sjyeGs94sz5z2pgYsTRhIWBocCQxOO+iIaOiIeBHY3Fmw2fqaGiIG0B7RcSDlVNTt9EUNgeVtBqKFLP1e8fPqCWQd6ZW9kgrYMZHHvqSNrf0RrOq0yhLUSqWgCYHdkzbu250u1kPdNZHHaStiOGZOe/+/J7MSg9M2HAmMpl0MzTg4rjeC7phe0R4AhmYcDEzli0HUSMrB+m4LbXUqOCgAKVsh57pImBr0wpaf278tUSwf5jgKeVcVyk+V9+23dyTg5zHOS0BTCpaGirH47TO2nO1fKpiaQsQQrIJARLSINVyU/dhjj8UnP/lJXHbZZVi3bh2++93v4qKLLsIjjzyCiy++GKOjo/M11sPmYIuyK6Uwka0sED6XKxXG0i4mSwqbd8d0LInrFUXBAe/S4CODGeyctIuPLU0YWJowAttnbIntQxnsTXo1WQWAnpiO7pgWmBVf14DuqI5YSRkkQ/NmxYJO8FlHYm/SLlZP0ATQnzDQGdUC20upkHcLtTwLs0RpWyJfJYLrjes4ZVm0OEM4k5e4Z1caA1N2YPvl7QbOWBkrlnHyCsfbSFWp7rAkoePYXgumJiCEwEzexQvjeczkgz+4JQkda7qsqttjrqguEDcLl6+FgFPy/oNYulfkvbT93HqwpQwN8CdnhRDIuwq5gELzvoguUFpBi0EbETWbf97s3XBy3cUElnCx5YStAFhCKoyGZ9Suu+46vOlNb0JbWxvWrFmDCy+8EIB3SfTEE09s9vgWFalQN0gDAF0TWNpmoCMqMZNT6IxoxVmoIFFDw1mrEljRkcezo3n0xHVEa1yHjJkazl6VwPNjOeyazKMrqsOscS3SLcw49cYV2i0dRiGAqTWeDd0WxrMuco5CTyw4wPRpmkBEKEznJGxZv9zVWNrFL3ek0N9mQCng8QPZmmWdBqcd3PHMNM48JgZT1zBWZcbPN5JyMZ7OYHWnCUcqHEg59dtnMjhteSzUJd2sq5BzFdoszbtcW+enUN717mWMmgJSqrrF3b2ZNm+W0ZH165LmXG8MYeuREhEdLJaQar6GA7Vrr70WZ511FgYGBvCyl70MmuYd/NevX8971BoUNTQkzPCzGz0xAys6wk+A9sZ1pOzwH7EjUTdI8wnh1TGtF1SUtpcKoWuSKgBPj+RCt3eVF7AlQhZfdxWwN2mHrjHqSsBVCnrIJRsK3sxe2NkrhXBBfmn7sPVXAYT+nIiIqLUcVHqO008/HaeffnrZY5dddllTBkREREREHl4LISIiImpRDNSIiIiIWtQhVyYgIiIiAsKVkCplCRcvu+LNZY9xJWg5BmoLSCkFRyF02gepFCK6l44hzL3hpiawot3AgRmn7spAALB0AVMTCHn/PnThLT6olmZjrrgpEDF0jGdqr8osbW/pAslcuLvsbamQcyQiITLzKqUwk1cwNJSlJanVfn/SRmfUQHes/kHIlQrPTdroSxjoCdHekQrDKQfdUR3xEImLbVdhcNqpuwK4tP3+pDceK8TS1bwrkcxKdMX0YqWMmuMvrHSNmSIwBUxFe+klL7b0cItX/LQuAuG+K6VZh5iOhOjwaXTVZxCuBC0XKlB79NFHQ3d40kknHfRgFjtNeH/qrbDzM+Z77RQceLmxqgVsSimkbYWMo9AW8VI+pPOq5qq/hKVhSUKHEAIbeyWeHslhuEoaCk0AK9pNLC20l1KVZbefSwCIGKKYh8xPXFtt1aImvGoLCdMEAMzkXeycyFfNc6YLoD2iIWp4u+dMzsWepINclQhSF977zTkKOceFpUt0RKqnDMm7ChMZB/lCvJgwJfoS1QOSvKswlXVxIOUCyGFNp4kTlkZgVQmQ9idtPLA3U3x/JyyN4LQVscAASSmF0bSL58Zy3ipRAGu7LazrtgLHr5QXoD0zmoUjAW0cWNtl4ZhOMzBAUkphJO1iX9KGVMDz43ls6LGwot0IznmnFIZnHOyfdqDgrYxd1WmiJ6ZXbT+Tk8UkxMmc91lHjeAATCqFjD2bokUTCglLqxo8+t+V4t8BaKiRfFhVpjep1Z6IqNWFSniraV4i01rZ2X2uG262pJUdbMJbwDsRpfISmSpBhSyUKQoyWwlgdhvnXYnpXHCuLNv1Xqv03yxdoD2iQRPlmfGFEBhLO3h6JFtMVAt4iW5XdZowtMog0Xa9E2rpS5saiqWw5vafdSTSdnn7NktDZ0Qrmwnxd7kDKQd7puyy8SdMUUx0O7f9cMrFgRmn7EQcN0XFeIp9WRoS5mwSXqkUprIyMLGtANATL4y10N6VXp3WuSlCBLwkwVuXRrGmyyy2T+UlHtyfwZ4pB169gdn2EUPgxaviWN892z5tSzw3msNEtvI7EzEEtiyJYkli9rfUdM7FUyNZTGUrxx8zBI7ti6A7Nts+lZfYPZkP3BfbLA3H9VnoiMzO9k3nXOyetAN/ACRMgTVdVtnsY8aWmMwGV9mI6KJsNk4prxJDKh88G2xq3uell7T3EiQHNC6Yu4/Xau/tf5xdI5ov/nnztTdvO+QZNRZtLxdqRm3nzp3F/3744Yfxvve9D+9///tx9tlnAwDuv/9+/PM//zM+/elPz88oFxFNCLRHdMRMhWTOLavpGFQGqpSfe0sTCpoAUnVmzQwN6IxqyDpeZvq2iIaIoVUE1P5/d8d0nL06gV0TeewvzJS01yiPZGhAmyWQc73alFFDBM46+c+N6AIRXSBVCNZ6onpgAOj/vT9hoC9mYNdUHsmcREdEC5xV9P++NKGjJ6Zjb9JGxpZIWFrNS2GpvETWlmizNLhKVA0qAG/bj6W9y319cQ0QXrmvoOZ+zrPtQ1nsmszjpGVRDE67eGwoO1uTc077rKNw984Unh4xcPbqGKayLgYmgystAF59z+2DGfTFdWzsjWB/0sbAlF01i1vGUXhkKIulhSoKIykXYzUuMc/kJR7cn8XyNgOrO00MzdiYCAgAfSlb4cmRXKEiho7pkvqmgeN3FQ7MOGi3NMRNb5+olSfOlsBkVnqXx3UR6tK+VICAVyutXns/iBNQoS+fEhG1glCB2po1a4r//frXvx6f//zn8cpXvrL42EknnYRVq1bhox/9KC6//PKmD3IxMjSB7qiOrKMwnatfVqqUI737p+rxTzZRw5uNmPv4XP5M3apOE11RvThTVa39bADm/Qk7ns6ICAwYg9rrmsLShAFDqz8TK4SAoXmVEJIh7psCvMS2Y2mJsJvflsB4RsIIU4IAwFRW4s7nUqETyh6YcfA/ezNeDc4QRtMuRtPp4t/rvcxwykXazoUORIZmHMzk3dDtx9KOF+yEbD+Tl8i74e5DA7wfKmZAcF9NwzXnFSBC7jtERK2g4cUEjz32GNatW1fx+Lp16/Dkk082ZVBHCiEEYqaArnlliMJqNIu8EOFPhKX9h31Oo7MPWsjL5H7fYRcjHEx7oH5wM5fWQNIahcY+LwWEDtIOhhYwI9nM9mErVxxs/yHj44MnKovaE1HzNLrqM4glXLz1Xe/mys+ChgO1LVu24JOf/CS+/vWvIxqNAgByuRw++clPYsuWLU0f4JFAhCw7REREtJg1Y9UnwJWfpRoO1L785S/jVa96FVatWoWTTz4ZAPDII49ACIH//M//bPoAiYiIiI5WDQdqL3rRi7Bz5058+9vfxtNPPw2lFK688kpcddVVSCQOPYomIiIiIs9BJbyNx+P4i7/4i2aPhYiIiIhKHFStz3/913/FueeeixUrVmD37t0AgM997nP4yU9+0tTBERERER3NGp5R+9KXvoS//du/xXXXXYdPfvKTxQS33d3duPnmm/Ga17ym6YNc/Bpdd0hEYc3nKs5G+57v9kStrhmrPgGu/CzVcKD2hS98Af/yL/+Cyy+/HP/4j/9YfPyMM87A+973vqYObrFTShWSbHrJY8PkUlNKeUlf4WXSD30QV8pLvR6CoYmyzPnN5ioFA+FSdCilEDMEZvLh+4+bGrKOG/o9aMLLpxa2veMCVshvhv95NZIxJJWXZXnv6vUPhE9x4UovD1+Y+pyAN25HqlD1ZpVSsGVj7SW8kmRhqgIopeBIAVcCmqbq1gz19y9V+O8w7f08amH2TeknaStUPQjVP8J/ZqVFYRiw0ZGiWas+Aa789DUcqO3cuROnnnpqxeORSASpVKopg1rs5pazEUKgN6Yj46iq2e5Lnzed80pQGZpXWsfvo5qoIWAIwFFewtZaBLyySwlTx3ROFWs0VqMLoCOiwdRFcVz1iMJY/ICzFrcw5oSlIWsHl8oqFTMF1nVH4UiFp0ZymKhT4L0zomFVpwlHAi+MV68v6oubAl1RHVIBadutOR4vsGgsSOuMaoiZ9U/IqlAH1pbe9jGEglX4kVq9zqU3lqmsRMQQSJjBpbX8sSt41QD2TEn0xnWv1muN9lIBE2kHe6dsLGs3sLzNqNm/K4H9KRsZR3lVKOJ6zfbTOYl7dqcwlnFx/po4Tl4WDQyQ/AAnZUs8PeKVyNrUY2FZuxEY8PiPZRyvTqqrgJXtBjqiwVU5/MfGMy4eP5CFEAJbl0bQG6/dvyO9ChRCzH4na7X3930NCqaO4gGDARsRlWo4UFu3bh22b99eVq0AAP77v/8bxx9/fNMGtlgFFYUGvIOvX5cymSuvHzlbK9MLnPznO9KrN2nq3kHfmw+aPYj7dTf9A7sFwNAUcm5wElazEPh57QW6YkDc0soKlJdqszQkzNn+O6M6Ym55aaxSflH6Yq1M5c1K+ElM59ZlTNuzJbI0IRC3dDiuQtapDGZ1AfS3mWgv1OKMADh9RQwHZhw8M5qrSIJrasDqLgtdUS84iAA4sT+C4ZRXz3JucGVoXomtaKHQug6gQ9ORcxXSAdGvKxXyVbZzkIgBLIkboZPdusrr3+/eUYDjAJbmfcZzT+ZSlc/Y5hyFvKMQt7x9rjj7VPj/tK3KSmqNpV1MZV0sazPQWRLAFIOivESy5EfG4LSD8bSLVZ1mYPvxjMR4xp1tP+NgIutiZbuJhDU7DlmYdX5wfwaPHpgtwXXXCyk8diCHl29sw9I2o6x/V3lB976kU+z/iZEc9k/b2LwkgphRvq9JBQxN25gsKZG1a9JGe8TFyg4TZsn29GuSPjGcxeCMU2it8Lu9GaxoN3D8kggsvXJfztiypFyct2+bmirb9qXt844qVsuQAHKut4+bGio+KyI6ujUcqL3//e/HX/3VXyGbzUIphQceeADf+c53cNNNN+FrX/vafIxx0agWpJXShDdjk3cVprLejI2rgKmMEzgb5tf/dKSCpYtiMBQzRLGA9dz+o7p3MvNP9JrwSkAFXbqxdIGlCQNpW2GicGKN6EB7RA+8fGbps7ODyZw3YAGvSHngTAm8IEODN3MAoBD8BBfnNnSBhKYh76pi8NUd09EXNyrerxACy9pN9CUMvDCeK9bOXN5mYFm7UfF+hRDobzPQE9MxMGVjuFAtojOqod3SKsYvhBfkWLpAOi+Rl6pwIg93GRvwtn1fXEebVTujf2ngknerz9Llpffalq6gawKqEKBVq0mayivkHBcJU4Ohe23HM05gdQdHAnuTXkC1ot2ApQvYrhfQBe2bOVfh+fE8uqIaVndaMHUgYyscSAXvy1lH4YUJr/3yNhOmDgxM2bhvII2ZgJndwRkH/3f7JE5eFsVL1yVg6sDQjIvnx/OB45/ISvxuTwarO02s7zEhCo8NzziB23M6J/HMSA5L2wwsKcwm7pyw8exYLrD9/mkHwykHm3ojWNdlAvC+Y9VqntoScPIKEUPA0mdnYKtNSrsKcF0vWJvH4hVEtMg0HKi97W1vg+M4+MAHPoB0Oo2rrroKK1euxC233II3vvGN8zHGI5KlezNsOyftUCd9qbw/7ZaoW5ZHCG8GThfer3YN9dsnLO9kYruAWaeOjz87KJUqXOqpf1aRANJ5CUfVn4USQiBiCPQlNK/Qu1H7fi5DEziuL4ruqAapAEuv3d7UBTb0WLB0G1IhMOAtpQmBtoiO/cnKmbhaVrbrMPXggDpIxlahapJKAFkXsEIUIwe8AGyiMHsWpvxWKq+wa8JGV1SHHWLKcDIrkbZz6IjoNQu1l7Z/bmwGE4VZt1oUgO1DWUxmXRzTYSDj1GwOBWD3lI2ZvIu4qdW9FUDBq7/6/FgOOVfVvbTvSOCpkRwiukBHRA9VDD7rKLgy/D2ktvS+u5xNIyIAEKr0jtYGjY6OQkqJpUuXNnNMCy6ZTKKzsxNTU1Po6OgI/bwwM2ql0rbEs2Ph76K3dIGe2KGvpqnGlY2PP8w9a76MLeueOEt1x3TEjPC1JZNZJ/RMF+AVJG+k/b6k3dD2Wd9tNFBcXCFdJwiZy2yguLgfVIdlaN6l7/DtBWJm+PaD0zZ2F2ZAw1heuCcu7PbsiGgN7TujaaehffnE/mjxsnoYRgOF5gEgqvNeNVpc/PNm74aTm7LqE/BWfm45YWvx7yv7uo7KVaANz6hddNFF+OEPf4iuri709fUVH08mk7j88svxy1/+sqkDJCIiosWhmas+5zpaV4E2nPD27rvvRj5fOQuUzWZxzz33NGVQRERERNTAjNqjjz5a/O8nn3wSQ0NDxb+7rouf/exnWLlyZXNHR0RERHQUCx2onXLKKRDCu+fjoosuqvj3WCyGL3zhC00dHBEREdHRLHSgtnPnTiilsH79ejzwwANYsmRJ8d8sy8LSpUuhN+kGwqOFIYAN3SbGMy4msvXvao/UWY05ly68FYtuiEUOftZ5qfzn1W8PoJjCIcxt2FFDIAKBTIjEtprwto9UXlqPejdW+2kkFICEqdXNIg8AXVENjgSSOVl3++gCWNtlIusoDM04ddt3RjT0txnIu8BU1q27feKmhuXtOpI5iZF0nZWQhTQPGduFpXsrY+ttH1MTiEW9pK9hFhVI5aWviBiiJPde9fGMpSWyjo3+NgPtkdrHAVcqDEzmMZxy0RnR6q7qBYC8I7F/2kZf3KjbXiqFkZQDIYD+RP32WUfihfE8bKmwvN2EVed7lncV7h9IIWZqeNHKOOJ1Fl2Mpx3cN5BGW0Tg3DVtdRddjKQc/M/eNPoSBs4+Jgarzvh3T+Zx984UVnWaOG9Nou6q7X1JG08M57Cyw8CWJZGa3xXvs3Wxf9rBkoSOZXUWdCilMJJ2MTLjYGmbl+S4Xns/Obh/zOEiCqJyh7Tq80h1uFZ9+s8RQiCVl9iTtANPooYGdEa8VA9hkmAKeCko/FZCCLhSVU214Mjy5Kp+H4aozCjgJxz1V2/6u48jUbV/AWDuuSPrKKSrBAxxU6DN0sqy5ItClYPKRK8Kkxm3LLmq30e0TgBTLPkDP8VE5XgEvGoI0ZLEVo70TnaTAcG1qQEbey2saDeL/bsKGKuyqtDQgL64F9z47XOuwp4pO7CKglSqooKDLoCEFZz3TvOz5JeUTcrXSFocxNCq5+3L2BIjqfI8a51RDSs7ggOe/UkbDw1mkCl5b341iKD+DT+pM2Y/+86ojt5YZXulVGCOvr6YjiUJvSIgkUph96SNZ0ZzkGo2nXR/m4G+Ku3H0i7G0m6xra4BL1oZx/FLKwMe21X4/d40HtyXKT5mGQIvXZfA1v5oxb6ZcyR+vzeNxw7kit/dmClw0fo2HNdrVbSfyUvc+dw0tg9li+XROqMaXn1cB47ti1Rsy1Re4oF9aeyZml1e3BHRcPaqOPrbKn+zZ2yJ58fzmCrZzxOmwMZeKzAYT+Uldk7ky3LitVsa1vVYiAcEp9WOl/XSD1Frmo9Vn3PNXQU615G6KrThQO2mm25Cf38//vzP/7zs8W984xsYGRnBBz/4wYYGcNttt+F//+//jcHBQZxwwgm4+eabcd5551Vt/+tf/xrXX389nnjiCaxYsQIf+MAHcM0115S1ufnmm/GlL30JAwMD6Ovrw+te9zrcdNNNiEajocZ0sIGa72ADNgAYSbvFGRsBoL2QZgAId/AyNVFIhFoe0M0GVKp4kq+XXBUozK7BC5SkUrBdBOb68vvPu6oiiAj6xe7/kk7lJfzjuqkBHRG9ZiqD0oN4Ki8xkrKrpvzQhTe7Vm+GwZd3FCZKkrtaupdfbm6A6G/b6ZyLvVNOMXfYynYDG3utijqYs9UAJMbSs8lXu6I6euOVZZtKSxjtn/by7PkZ82vlQfNy883OJkZ0EVh2yv+s0rbCTL56SbO5IvpsJQxHekHLTL56cL68vZBItvBD5OH9mZJs/5Xtu6IaEoXEw6UBZhBNAEsSRjFRsSO991Jt8xialwjZbz+ecfDYgVxgol3A25YrO2ZnB2fyEkPT1fe17qiO89fG0d/mBegvjOfxqx0zVRM7L2838LKN7egvVF14ZjSPewdSyDvB7Vd3mrhkfQI9cQNSKfzPvgzuen6mYjbbD9g291m47NgOdMV0uIVya48MZYsB6dz267pNnLEihpipwZUKe5M29k45VfeNZW061nZZMHRv2++dsjFU5bP13+8xHWbx2FQ/l2LwDzNqXf5587U3b5u3VZ/1jN15K7bd/u0Fee351HCgtnbtWvzbv/0bzjnnnLLHf//73+ONb3wjdu7cGbqv733ve7j66qtx22234SUveQm+8pWv4Gtf+xqefPJJrF69uqL9zp07sXXrVrzzne/Eu971Lvz2t7/Ftddei+985zu44oorAAD/7//9P7z97W/HN77xDZxzzjl49tln8da3vhVXXnklPve5z4Ua16EGakBlvc9GnudIL8+UoVcGCdXoAsWTWr1ZJKm8WYc6ZT5LnwQgfE1Lx1Vwlao7dgUFAW+GRxNAzNRCzRh6QYJTt26nL6J7AVvYItkzee+zqxfg+e2TOYklcb04K1a9FqfX3i/KboaY8ZMKeGEij+GZ6ifNUl7Ao3ulthBmXwAmMm7VbPkBTyrWEw3zFEsD8tILXFSIBL2WBqzsNEPnQIsaAp1RPXR+vogOJLMSgzNOMUippd3yfvjU29f8vtZ0GpjOSexN1k6K57c/YWkEKVthOFW/PeAFYDsnbRyoERQBhR80AM5eHUc6X7+mrz87eMLSKHKODCwpN5euAUsTurf/hNj+pgYc2xcJnF2rhrNriwcDtfnTcB61oaEhLF++vOLxJUuWYHBwsKG+PvvZz+Ltb3873vGOdwDwZsLuvPNOfOlLX8JNN91U0f7LX/4yVq9ejZtvvhkAsGXLFvzhD3/AZz7zmWKgdv/99+MlL3kJrrrqKgBeYPmnf/qneOCBBxoa26ESQhQOxo3NrnkHJQnLCBe0AN7BzNQ1zK0FWq1/x20gSIM3g9ZIwCkEoNUtxw74F2ejhmjo/pTxjBs6SAPqVyoojqfw2qY+G1SFab+m0ww1fv/fumLVi5PPbS+lDB2kAd6+0BGpH5TO9q/CB2nwLnn7pcPCGMu4NWda5ko0mKgW8GZxw7bfP+1gujD+MG87bStoIXYfv69nRvOhvu9+kxfG89BCJC722/9+b6ZmO58/hsFpJ9T9mgqAK4Fk1g29LV0JjKRCRHQFRmHGt5Eapqx5SnQQedRWrVqF3/72txWP//a3v8WKFStC95PP5/Hggw/i0ksvLXv80ksvxX333Rf4nPvvv7+i/ctf/nL84Q9/gG17Wc7PPfdcPPjgg8XAbMeOHbjjjjtw2WWXVR1LLpdDMpks+9Ms/mWcRiiEv9Q559VC9t9aGr3EIRucpqxXQit4UOHbiwZ/9furp0O2bujzanQGotF9odEZ4kZvAdAb/Jwa/VwbviN3vuODho8NjX1mYYK02bbzO3vlf7aNvgaDtNY0n+dNKtfwjNo73vEOXHfddbBtu5im4xe/+AU+8IEP4G/+5m9C9zM6OgrXddHf31/2eH9/f1mOtlJDQ0OB7R3HwejoKJYvX443vvGNGBkZwbnnnutdRnQc/OVf/iU+9KEPVR3LTTfdhL//+78PPXYiIqKjGc+bh0/DgdoHPvABjI+P49prry1WKIhGo/jgBz+IG264oeEBzP21VG+aO6h96eN33303PvWpT+G2227DWWedheeffx5//dd/jeXLl+OjH/1oYJ833HADrr/++uLfk8kkVq1a1fB7ISIiOhpUO2/++gvvm7dVn/VYwsXLrngzgCNrBWjDgZoQAv/0T/+Ej370o3jqqacQi8WwadMmRCKVy8Fr6evrg67rFbNnw8PDFbNmvmXLlgW2NwwDvb29AICPfvSjuPrqq4v3vZ144olIpVL4i7/4C9x4443QAm44iUQiDY+fiIjoaFXtvDmftT4bcSTVBW34HjVfW1sbzjzzTGzduvWgghzLsnD66adj27ZtZY9v27atYkWp7+yzz65of9ddd+GMM86AaZoAgHQ6XRGM6bq3Go8p44iIiGgxCTWj9trXvhbf/OY30dHRgde+9rU12/7whz8M/eLXX389rr76apxxxhk4++yz8dWvfhUDAwPFvGg33HAD9u3bh29961sAgGuuuQZf/OIXcf311+Od73wn7r//fnz961/Hd77znWKfr3rVq/DZz34Wp556avHS50c/+lG8+tWvZuUEIiIiWlRCBWqdnZ2zWcE7O5v24ldeeSXGxsbw8Y9/HIODg9i6dSvuuOMOrFmzBgAwODiIgYGBYvt169bhjjvuwHvf+17ceuutWLFiBT7/+c8XU3MAwEc+8hEIIfCRj3wE+/btw5IlS/CqV70Kn/rUp5o27kb4edEaWfnZYgvN5p2Xb66BJfsH0X8rUYUcc2FWlja64G3eFzXO3+JZAAexKnO+qUK+v5BvpOHxN9h/mNxv5eMpv4e3zlAaat+ohq9oqPrphub239CK5wbf63y3J6qGJaQCNCPhLeDVNPTzlWmYLaNU63vrX6KdzIVLOll6MPBrgYZJ7Jq2JbIhUyCpQqbSsNmz/IQSYcev4C3dN3T/NFR7/F7ZIid0/q+OiIa4IUInRdU1r8RV2BJLHZaApWt1T6B+gl+lVEPJjIembbwwES4/FwCsaDdC547zfkgojGfqJ7D1983pfPhtA3g1WEdSbqggw9KBdd1W1YoEc2kA2iJ6Yd+pMYrC92Qy6+LAtINoyKSrtithaKJuvU1fKi/huKpmdQ1/PH7FhvZouHqtADCdc+HIEMmkC+9XKm97mrqomarDT3kzlXGwtT8GQwsuGVbaXilgz5SNtd1eHsF6/bsSABTOOiYOAHX7d1yFAykXa7pMKNTu3/9BPJ130RMz6gZtqpD0eyrrYkWHCalUqP5dqRCtkwuudNv77/NoyAXXCglvSx1JyW8ZqAU41ECtVqklQ3iza0qVB2z+F9mrVegVCVeFg1vQB1RatzHn+MGOV4KpVk1QPwN52JqPfoApBAr1QmufbBOmhrjpnXQytsRk1g0MMPzdzpazJ31TE4iawQGM3z7jKK9sTpW6jqUMDdjQE8GSuHfJezzj1kweqwugO6YjZmqQSmEiIzGWqR5tmppXF9JP4pm2axc8l4UyUP72iBqiWA+z3kE87yrsGM/VLNjeZgmsbDcRMbRCTdDayWxjhkBXzKsRmrUldk/ZNZPZ2q4s7mtSoeq+OTseDZ1Rr6TVVNbFM6PBJZv8AG5pQkd/mwFdEyUn9upMTRQDIi/pc/C2lIUKDE8N57BjIg8FoLtQj3RuuS9g9sfDZEli5faIFljuy2/vKi+5rL/9OiIauqPB1SH8cmA7Jr16sZrwkiav7TartnekV0HCL1fmlwertt+k8hI7JvKYyStYusCpy6M4tteqCHj848T+ZB6/fH4KY2kH7RENlx/fjTOOaasIYPz2O8bz+Nnz05jISnRGNPzRpjZs7otUtPf//uxoDr/cmcJMXmJ5u4F3nNaNrf3Rqu2fGM7int1pZByFJQkdl25ow/JC/Vwxp70AsC/pYOdkHo70tv1xfRYShWB8bnsAeGQoi4cHM3CkV/rtvDUJr5pHlePOZNYt1jyNmwI9caPqvgN49Xr9H6qmBkSM8D/MFqvDUeuzEfXqgpZq9RWioQK1U089NfQO9tBDDx3yoBbaoQRqpYFHNQJewIbCJQ+/lE/KlhWzPv5Jo/Sk5bfPOiqwrFPUqCxqDiDwV74fYMyt+eiPce7HrpR38p/7Hi0NaI9UFsqWSmEmJ0tK2HgzZo5UFXUKS8dfWtBbCIG8I5ENqIMoC7ODuTnxy4p2A2u6KmdmbFfhwExlQNIR0dAe0Sp+Veddr7xPacF2AaA3rnsn4jntHam8WZU5Reur7Rd+6aywM0hTWRfPjeXKCrwbGrCy3QysSOBIhcycYLY0IC2llMJEVmJ34YTnPyaVVzB87r6mVCFgm/O4qQE9caOiKLtSCvuSNl4Yz5fVnGyzBI7pMCtmufzXnhvoa8KrxRk0A+LNBM3+XQiBPVM2nhjOVgTRmvDqf/bFy08qqcJMS9Dr9sR1dBRKhfnGMt6M4dz2ugB6YzoSllZsr+BVR9iXdCp+yEUNgeN6LfQljLL+p7IysATU3Hqo/vbaPWXjwExlQN8b03H2qhh64kbxuJJzFH6zM4mnhysrHmzojeDKk3qxNGF4VSyUt2/f+fwMnhnLV7Tf2GPhj49tK+6HSilM5SS2vTCD3ZN2RfsXHxPD207r9toXHhvPuPj5jhT2T1dWs9i6NIIL1yZglQQ9yZyLZ0bzFT8ABIAVHQY2dFtldUP3J23cM5AqKzTvb8uT+qM4fUWsrH06LzGecSq+uwJAZ1RHZ3R2ZxNCwHZV4HEKKK+967c/krTajFojWn32LVSgVprULpvN4rbbbsPxxx+Ps88+GwDwu9/9Dk888QSuvfbawNJPi83BBmpKqdCXEwFAKK/GZc5VZSfean07cnZWpt5lRe9AosHSteKMWK0Dgyu9S1S2LC/EXo0/46HgzZxE6lwasl3lXa6UCrasX1ZLE0DM0AABZO3qxbaL/UvvEp6hCWzosdBm1f5FN5N3MZi0oWkC3VG9bl3Pmbx3uTWiCyxJGDXb+zMmyZw3M1qrkLrP1EXo0kmyEPDsS9roiupYmjBqXkZSypsJtV2FhKXVLTHlSoUdE3mMZ1zkXS+grsWv4akU0BHVkTBrv4+8I/H0aA7JnDe70hUQ8M4dv/9DxdSrF2r3CXjfKQXgsQNZjNaYhQS8YMcvAzaZlXU/r4gh0BPTIQuzaLk67aOGQGdEQ85R2DVl15x1BYC+uI4tfRYc6c3k1Nt9DM37vibzErsn7Zo/FAWAjT0mjl8awa7xHO7bPV3z/WoCuHB9By5c34EnhnO4dyBV8xYCQwPOXR3HqcujeHQoi//Zl6k5/qghcNVJnTh7VRwP7c9i+1C25ixt1BC4eH0b1naZ2D1pY7BOeTJLF1jVaaAzouMP+zJ4YaIywCzVZmm4ZH0CXVEdE1kXmTql6kwN6EsY3qx0lR/OpTThzcgdibNrDNTmT8OXPt/xjndg+fLl+MQnPlH2+Mc+9jHs2bMH3/jGN5o6wIVwuAI1V3qzQWHlXVWsUxhGzPCm6MPK2rKh8Vi6N/MV9oAznLIrfsk20+ous26AViqVD74s2yx7pipnEWrpjIYfu1SN7Qua8GY8wxpLO3hkKBu6vVccvYF9zWlsX9NEY+WlnhjOYm8yfI3UNlPU/bFRKueo0PdsAsBounJWppb13WboWVYAeGI4F7qtUgqTqfCfrSYE+jpiDbT3jj1hdUY1bFkSDd2+J6ZjXbcVuv1ExqkbrJfa2GNhbZcZuvxW3NS8S5sh28cMUfcexsWIgdr8aTiP2ve//3285S1vqXj8zW9+M26//famDIqIiIiIDiJQi8ViuPfeeysev/feexGNhv9VRERERES1NVxC6rrrrsNf/uVf4sEHH8SLX/xiAN49at/4xjfwt3/7t00fIBERES0OC1nr82CV1ggFWm8VaMOB2oc+9CGsX78et9xyC/7t3/4NALBlyxZ885vfxBve8IamD5CIiIgWh1ap9XkoWq1OaMOBGgC84Q1vYFDWJGGSgB5K+0YTLTbaf6M0UZluodZYIMJne/cTsjaSOdzLZxeuvZ+zqdEs9WE3f6OZzBv5rPyVqGbIm5iV8lb/hliwetAa2RfUQWTwNzSETnLsJWwNPx7/Pv9G2jf2eTX23W1032nkvQKA49jQdSPkvuOt6g57M75SCulMBvFYuAULUkokp2fQ0d4Wqr0rFXKODL1YxHYlUjkX7SEXx+QcLx1PWyRce7uQSzEScsFF3vWOO/VWptOR66ACtcnJSfzgBz/Ajh078L73vQ89PT146KGH0N/fj5UrVzZ7jEckAT/fmYGcIzGTr5+CIqILxBIGsoX2tQ60hubl53KkVylAD3GCtgyBiKEj5yhk7NqZ6i1doCOqQxNeTrV6KRwAoC9uoC/u5UqazLg1+++KeslPBYDhlIPxGolnAW/Ju+16SUrjllZzNapSXt64ZE4VPofgHHM+P39UyvbSqXRGaqcj8ZPl+ptER/1gzdJFcVWgrtXOkg54+09HVC/kSau9L+QciX3TDmbyOXRHNWzoiVTkUCvln0iOWxLFVNbFgZnaKR8sXaA37qU48fLj1Ry61z7mpTQYz7gYSTt1gwYFwFGAVkhpU2tf1gRw4rIYThbA06M5PD+Wr7mvHdNhYHNvBEIAe5M2hlO130BPTMfShA4FYM+UUzMpMuCt8tvQbRXTeSQDcqL5BICuqAYFBUeKuvuCKxWGZma3n1YnmBUAYqZAd28COcfF6HQe+RqZhV3HRnJsCMPpacQTbVi+ag0i0eoBlZQKWUcimQMiurfSuNbq1dTUBB5/9He4Y2wEx21cjwvPOwftbdUDsH17duMbP/wu9u/fh4svOBdvufK16Ghvr9r++dEs/v3RMUxkXJywLI4zj0nUrDLx/PAM/uWeEUznHFx5Sj/+9LRlVatYKKXw6x1T+Or9g0jbEu84axn+9NQlMKtUBVFK4ZnRPP5nXwZKKZy7JoGTlkWqfr5SKTw6lMXv96ahC4Fz18RxXF/kiFstSvU1nJ7j0UcfxSWXXILOzk7s2rULzzzzDNavX4+PfvSj2L17d7GA+mJ2KAlvw2TvN4QXGAAoJoYEgLStkAqYAhCYnV3ySxABXoLc9Jw8PwJAwtKKy+NLv9T+rEH1L7qXjNZPhpnOV+aU8tM8lJZR8dvbdfMIzfZvSy+v2tzxRwyB5e1mMdu/L+cqDCbtinxzpuZVYyjdnoBXfSFhVZ4kso7EZKYyN5VeSB5amo/Mr37g50MrG6fuve7c9qm8wlimMu2HgL/tyx83NC/DfunY/fZhgmt/G+XdyqoIUnnJeksDD7+3VZ0mVnWWpyCQhQC29DPxP9vhmcpgWRNe4tw2azYD/GyCX1RUFtAE0G5piM3Zd1wFDAUkIa5FL0lKWvreTF1Am/uZ2BLbByvzqbVbGrYujaAzqhfG481kZRyFXRP5YlUCX8wUWNluFH8E+NVFZgr5y4L2zYSpVXznZvISgzNOxXcrbgr0xvSKjPdB+4JSCpNZif1JO/A7F/Q9t3SUHxcKn+101sFEurxEmVIKmakxpCdHilPD/oxg79J+LOlfUXYfkj9jG5STrc3SKnLrOXYeA08/gv0vPFXcD4QQ0HUN5774RTj1pK3QS/pPp1L41c/+Aw8/cB80TYOUEpqmIRqJ4M/e+DpccuG50LTZACmZdfHTJyewfTBdHLeAd3w5Z207NvZGy8Yzmbbxi6eHsWO0vH1vwsR7zluFc9Z1lr2ngYksbr1vPx6b0//KTgsfumgVzlhVHjyOph38dne6Yh/si+u4ZEMCy9vNssf3T9u4e0cKE3PyPfW3GbhwXQJ9DaRdOlwWc3qOuVotXUfDgdoll1yC0047DZ/+9KfR3t6ORx55BOvXr8d9992Hq666Crt27ZqnoR4+h1pCqlr2fk14B+9ql8/8SwbTJQGSf+ip1t5VXv0/W1avSDCXrtW/LOEfOG1XIZ33Apu4pZWdlIPau1IhXyUzd1D76ZyL0cKMypKEgZ6YXrP/iYyD4cIMQntEKwZ01d5vxBCFwMBLHlov2ailezOXrgKSObduYmH/JGRLYDTlVFRImMu/BKYXArRaiWoBhEpWDMwGVFnbC4KTORf7knbNS38RXWBjr4XuqI6sozBdY5bWPxEPTttI2wptlobumF4z8JeFWrdKeUFItX1ztu6lGxjAVCOAYlDjVyQQ/i+agP73Tdl4bDgLRyps6rGwutM7OVYbz0jKwd6kDaW8E2R3TA/c1/xD6HDKxf5pp/h+q826+u1H0y5G0i50DegLqBQxl/9DK+co7E3aFT9yKraP8C8BC8TN6vuaf9wZT+Uxk3OQz6SQGh2E61RPDmsYBpYdsxrtnd1wpfcDqNZovPJ23kz36L5d2PHoA7DzeVT7SdvT3YVLX3oBVi7vx/Y//A4//6+fIJ/LotrpasPaNfjLP78aa9esxn27p3HHM1NwayTWXt5u4rx1HWiPavifXZO4/4WxYmm0Un7w/qLVHXj3ecegO2biOw8P4/bHRiFQeWuAf0n5kk1d+OvzVqIjquPB/Vk8NZILvPTtP7Z1aQTnrolDAbhvIIVnRvNV2wPAScuieNHKWOgatIcDA7X503Cg1tnZiYceeggbNmwoC9R2796N4447Dtls+ESKrapZRdlLa36amnfADFMsGPAypHsHDf+3WvX2foDUSPHfsAkX/fHomqh7yclvL5VCrnbC8EPqP+copAoRVJj34BYChrAcGTwzULP/BhIdl5aSCTN+TdQuYD3Lu+fuyZFc3UvFPgFgTZdZ9XJNWe8lM7lh7z+CUkhYlbNE1frPuwo7J8MXoPdLcNX7cQL41TS8/SfseOzCvhCmf6W82dexdLh905+xdWX4+8tG007oAveAFzBGQyZjVUrhhR07MTE+FqJnT/+aTbDi4e4Vk66LA4/cjdT4gbpthRCQrgNjZhip5ETd9pqmQVhxbH71Nchq9e91EwJwXQk3l0Gm3rV6zP4gaItZSOdrB6V++5VdUbzihP5i5Y6a4wFg6t7zZMj2UUPglce2Y9mc2biF0mq1Pg9FmDqhh3NlaMPzp9FoFMlksuLxZ555BkuWLGnKoI4UmhCIGCgGUUD9g7E/izV7oqrfHkDo/r02DdywLkSIS6bl7d0GghwhROhZI7+97boN3afRQAJ8r32Dd9A3EqQB4W8i9oUL0gBAIOPI0EGaP5YwQRrgbXtH1r9/rpSph69jKoTAdIPVIkwtfDkeTQg4SjU0nrlFw+u1n8nLhr5bjS728YPAsJuo3ixdKcdxGgrSDCsaOkgDgFxyLFSQBhR+8OVSoYI0wFtg0L5yU6ggzesfsG0buRBBGuDNnGlCIBXyF5+rgPV9Cbgy3OcbNJtXr33WUXhqJNcygZrvSFj1GcbhXBna8Lzpa17zGnz84x+HbXvlcYQQGBgYwIc+9CFcccUVTR/gkSD8iZZC4c20VKKRvYF7zpGtwQtEixt35qNGw4HaZz7zGYyMjGDp0qXIZDK44IILsHHjRrS3t+NTn/rUfIyRiIiI6KjU8KXPjo4O3HvvvfjlL3+Jhx56CFJKnHbaabjkkkvmY3xERERER62GAjXHcRCNRrF9+3ZcdNFFuOiii+ZrXERERERHvYYCNcMwsGbNGrhug3dPExER0RFvMdb6PBhz64OGdTCrRRu+9PmRj3wEN9xwA7797W+jp6en0acTETVV7QQ2R5ij6F751tRCe5vyUj+1mqNl1efBOpjVog0Hap///Ofx/PPPY8WKFVizZg0SifIP5KGHHmp4EFRONHg0nl3iH+4g4q2MCp8aQCoFXaudWLbU7FjCkUrBaKD/RhfR+kkr5609Gjt/NpLywa9H6o0rRH484a0QCnsAd2Vj9VEb3faywVV4ZoMv4CoFS4RfEyUa/HAbPSWbmmgoB1+j+5qpC+QazPEXdtW5pmnQdR3SrV3ezSddB0oW0pGE2H/0SLjUGT6hW4X/CLeRnNRk4fOVQIh9YnbIYY+bEoCOYkmKOpJZu6EULH7S6tD1XeF915NZF20RraG0ObS4NByoveY1r2GtsXlSLKOiCbRbXkmpMCWZAO+EpRUeq1ciSiog70ovn1SNg4i/1D3nKKRyDtqjet1aggBgaYAhBLJ1KhTMlhtScKRExAh3UOuKaMjqXnLRMCeUmA7YKly+MwGgJ6Yh6yjM5Ov3LgB0Rr329aoeAH7JK68Ga732fuWJmUL90miI7SOEwMYeC3un62euB7wyWx1RHVlbhso3FzMEuiIaxjJuqPZSARnbRcQIl5S2N6YhblrYNZmv2b+/70znvM+pp06VBJ+XMs7LB1eL379bqDCih4tF0JfQYWYlJrPhQuWILgr7f+12/niWtRsYS7uYCZHPy9BmE0mHydFl6DpOOXErdu7ejfGJyfo/QDQdkxMTaOvogGmaqB7wFI470BBdfRJyB56HyqVrdOy9cmTpGiTWn4LpJ34NZ7p+frf0vmex766vYenZfwKjraf6vqAkFARyo3uRGT+AyPJNEIZVu70CUs/dD5maRNcpl0KYUQitSuUJ6QWwd37tH7GzE/jjaz4CKxqDpgefbv0AbWjGhaEBy9r0ut8VQwO29kexptPEdF4iZUt0RetXt6DFqeHKBEeDZlUmaIT/Mcytt5d3ERjwFNvPeVxg9lA5tzZgUHtdoJgA1G/vBwOOq5Cy3bKajQlLQ6JKGSlR6M//Aa+UQsapzNpfWk3BkbPvTcArDG/pwbNruvBKPPm/HB2pMJlxK2oslo2npAKDVAqZGsFv1BCImaLYv+0qjGecqgGepYuy4u+2qzCdcwNPugJAb1xHd0wrts87ClPZyrqjpbVfsyX/aOkCnZHK2pGztVlVcbZFKa8k1OB0cC1IUxfY1BvBkrhe/NWftr3xBG2eucXo/Sz845nqsy/evjA7zmp1Tf3+YyW1Vl2psG/axv7p4BIXtquQys8Wvhfw6o62R4L3zbmUUnMSS5fLu96+UvrPuvADvfpsV2EsXX3fnEsqr/RaUPgVVJIu53gVEKrN3nVEvHJv/naY+12by9BEWbWG8YkJPL9jF3L5gDJSQoPV0QMj2lZsb5km4vEYhBAV+6Z0XUyMDiObnik+5k6PwhnfC8jKL5dmxRBfvRVWp5dAXUmJ1M6HMf3UPVDSLZ9dUwqAgrJz3kwaAGg6uk84Dz0nXwIIAaH590t5AaM9M4GJ5x6CnZqcfT/962EtWQOBkoi8MHOWH9mN5MN3wJ0e9ZqbUXSeeBESm86CUArwA7bCTN7MU/dg6Mefhj2xHwDQ1tWHP772Y3jRZX8K6brF+7f8Y9xU1sVwyoG/q5gasKLdQFe0vGSZHziv6TJxwpJIYPmoiC7QFauscXw4HEklpObTwZSnCh2opdNpvP/978ePf/xj2LaNSy65BJ///OfR19d3UINtZYcrUCvd9ArVZ/elUsjaft1ENdu+Rt8C3kkybHu/7qR/0s/YErkqJxldAO1RvXDS9g5+euGSW9D50ZGzAVLpLFq1k6QmgKgxG5AIeEXQq13CyRay8ZcGlNXqmSqlirNZqqRtmxWcQd8PYCazsxnzdX98VdpnHYWZktm+hCWwNGHA1Kv3P52TxYNyzpFI2dVPqn59UV/O8foIau9KhdG0g7GSagWrOk2s6bIC369UXrBWOhsXVFTb50iFsbRTVsBcK+4Lle0FvCCx9LWjhvBq4Aa0z9gSOyfySOZlcd9M5auX+LJ0gd64XrXOZsX7lYWADQAKNS8zTvUZLgEv4ATqz7D5n+1YujIYr9beVSi8N+975UoFWwZ/d/1gfCI9GyxHDYHOaPCJ2u+/dDbRqz8c/Nm6rsTe/fuxZ9/+4vfWiLXDau8uCX7KxWJRRCOR4t9npiaQnBgLTESrXAf2+F7IQgAEIRBbvhHR/vWB/bvZGSQfvxuZfU9720cBys0DbnAwbyS6seSsVyOxaou377gOpnY+ivSBXYHttUgc0ZVboLf1eO3zaUxvvxPZvU8Etje7l6P7zFfD6lkJpSScqREM/egmzDx1T2D7dSedhdd/4J/Rv/Y4AN4xcHDGqTrz3W4JrOwwECn8OuiIaDhleRQ9sfoXwnpjOqKHeXaNgVo48xqovf/978dtt92GN73pTYhGo/jOd76DCy+8EN///vcParCt7HAGarUCtLkytkQmRMHzUo3cPyULRelyIV+jK6ohZmrQhQh10krmvGLzYW+x6Yh4wVO1k/jc/odnHLgqXDkqP2DTNZTNilUjlcJoyi0UAA9XV1JKhZg5OwNZi+1K7JlyQl0GA7xgMWFp3vYM0d6REllHob/NQMKqvyIr50hkbImYGa4E1ETGxVTWDV1qLG6K4oxkvXtrlFJ4fDiHkZRT93K6rz9hIFoluAzqfyYnC3U9Q3QOL1gLO2khlcKeKSd0iSD/uyIR7pKlK70fEpYuEA0RoHr7vipcFq3/JqamU3hq5x7o0QR0M1K3PZSEIRTSM9Nw7OqF3YvN7RyEnUakbxX0SLz+eB6/GzPP3FcI0OpvoLZjX4zYik1ID+6ArFFovkjogAAyL/wPVN32AmZ7L6BcTNz/Ayi7dq1rTdfxZ1/4GfrWb8Vkrv4XVwB4xaYElsQNrOkyQ992lLA0dEUP78rLI6nWZ7NETAObj9tU9ti8rvr84Q9/iK9//et44xvfCAB485vfjJe85CVwXRc6P5SD1siFZ10TaCxMa+wmd1c2VudSqvD37ohCMNdIGU0BhArS/P5NXRSvfoRpHzPD37jr1W3VQm9PTQh0x7XQ/euaCH2ZDPC2YybEPWi+qKFhRUf4W1ItXcCoMmtSrX2jpdIiIQJkwPuMLL3+PY+lbKkQDbkUQAhRmMkK2XmDtEI927CBmj+esO9V1wQ6IuE/K/+7ElY0GoXVHn6Fv+u6SE9PhG6vx9oRXboqdHuzvQdw7dDtMwd2wnGc0N/F/MguOJP7Qx6cFaaf+BWcsb2FxQa1SdfFwO6d0Fdshgix4EEBWJowsKbLCjGW1sBVn7MOZvYsSOi50T179uC8884r/v1FL3oRDMPA/v37D3kQRERERFQpdKDmui4sqzyqNwwDjhN8fwARERERHZrQ10KUUnjrW9+KSMmNotlsFtdcc01ZLrUf/vCHzR0hERER0VEqdKD2Z3/2ZxWPvfnNjZdPICIiIqJwQgdq/+f//J/5HMdRyZXe8v2oEe5GbEcq5BwFUw9OPTGXJgBdeAk1w9I1hFpF6I8nlZdIWOFumlcKoZNvAt72ybte7rQw/Vu6gKbVTyTra+TWd3+FbiMa69/LU5ZxZKib2jUBxEyBnFM9zcncsTiuKssrV0vO8ZK2dofMyZR1JGbyLuJmuAzptqswlZXoiIZrb2hAX1zHaDpc1vyEqSFuaqEWaHjVH1TDFSYasazdKKbqqEcqhZm8hKEhVJoRLyWMl8A6zGelCS9Jc600J+X9A53xKFK5PJwQBwdD19De043J5HSoW2OEpkPTNEgZ7sCjlILRtxrO+H5A1u9fuQ6c6TEvCW6VJLWlnOkxOFMj0Nt7Qt3wb/atgd6xBNmdD4VagHDc2pVY1mlhTzLEtoGXaiNiiKrpklrN0VLrs56IaeDil5zZlL6Y8DbAfKfnUMoLcEoz67dbGuJV0glIpTCZlZgoyXYeM0TNAKY0GatUXoAXJhu73952wqfRMDQv2Wi11ACykE/KTzshC8lGa3VfmgdNF9XznPlK00JkHYmpbHDiWWA2l5ffv1LBiUZ9tusl7g0bYJqatzxeF7N56ao91S8R5W9rpRQmsl4y02rPiZsaOgsBjr8v1apCYOnlKywNTVQN2KRSGJpxMDTteCVqBLCy3UBPTA/OtSUV9iZtDBYS03pBgI6YEbwv+3nm/KoDhuatamurksJEFt6fn4i/mFetSmqDiC6wocdCb9z7DZp3FSay1RPDulIhlXdL9k3vh0q1reknUQ67wDVmCCxvN4s5rQanbTw5nKv6Y2I652JP0imON24KdEX1wB9ySnkJjpM5Wdw3I7pA3KyedqMzomFZuwGjkDNxNO1iJBW8rymlYBd+HPp/H5vOYHImU3X7dCWi6O2IQxMCUkoMHhjG6Hj1FaDRRAciifZi0mXXdasGbEq6yI4PIj95wPu7nUNu7xNwJmosaBM6UFi9LHQTZu8x0OPBx3SZSyH19L3IDz7rtTejMJesgR4Lbi/MKCIrN8PoWAoAsMf3Yeq+78IeHQhsv2r9Jrzvk7fgtHMuAAAMpxz8bm+6ahWLYzoMXH1yF9Z1e/eGZ22JyYAE2UG6YzrizKO2oJq14hNgoBZoPgM1b6YiOIjQCyc5q2TpfNqWGEkHt9eEdyAvDWD8X+ECAZUGpELOkXUDjtLKAfkGUiLEDIHu2OxJxTuRVM5wlY5nbvCoidmT4NwTfVQvrxzgtamsxFAsL5SXZYlnARRnHUozfldLCuxXMghTKskfe8LUYOnh+ldKBQYFfmLS4ZRTVsbK1ICumF5RuUEVErVOF/LU+bzEvCIwt1kxWC3Zd6ayLgam8oEzejFDYFWnWTz4K6UwnnGxayK41JOlewGGnwbCO+lXn+2MmwL9JUmBlfKqMswNQP33PZpysLukzJQAsLLD9HJNoXJfSNkKU7nZpMVKKWRsGTgepQoB25x/8qtuhMnyoAtgaZuB7phR9lnJQmD+7FgeO8fzxc8+7yrsT9qBubUEvBmw0koDjvSqYOQCPisBIGGWV82I6ALL242KnH5+PsHBGQfTJa/tSm+Wbu6xQikFx5UYnkohnZtNkRG1DPR3JWDqpQG9915z+Tz27BtEOpMptjesKOIdXRBa5Q8AJSUc15393igFe2YC2dE9UGXJbQtJgadHkR14DCqXKtkIWiFAq/ywtFg7zJ5joJlW8fWyex5D+tn7vEoJxVOiN8eqt/XA7F0FYczWHjX71sLq31Be57RQmir97H2YfvA/ofJemaxINIY/e88H8afveq8X6BvejwhZmMV9ciSHRw5ki8f4mCHw6s3teOm6BJRC2fEU8I5r01V+qJQeIw43BmrlGKjNs/kI1FzpZXwPcykmagjEDIGJrCzL+F6NpQFxSyBm6hVBSCn/o867YS95eG1sN1wSVmD2pBI1BDJO7cucfv9OoUqBf2ypWcsS3kkoYswGbLVqlbrKC0BsV1WUyqo2HrdKgFlLrPCZ1Ru/Nybv/dbbNkIIpPISIykHMUtDwqxeHslvn3UkUjkJszCjWq82qCa8093epB2qPmVfXEdXVMPApF11VqtUW2GmOO+Gy6HXG9PRHhF169z6wemeKRsZR2JTTwTRKrN4fnsFYDLrYiLjIpWvXSfWPyr6Y/B/O4UJ0rqiOvrbjJrJf/2qBdsHM3h2LI/BwgxmLabmJZl2lAhX61MA7RENy9sM9MYLs0o13sBMzsW+aRvTOVnn++4FSNOZHCamM+hqi6EjHimWXAp6r0IIjE9MYnBkDJF4O8xorNhP4CsoBSkl8pkUsiMDcDLTNYajoKBgH9iB/NBzALQQH5SA0dUPpVykn7gb7kydWqJCg9mzEtbKLYgecwKEFav+2UoJZWeR/J8f44z1S/Hej38WvUv7oVXJS+jPMj+wL4Nl7QauPKEDcav6LQH+cW0y6xZnO/3jbtwMn7ux2RiolWtmoNZwUXZqnFQKB2bqH4h9aVtiLFO/XbF/AG0l2earfVH9x3UR8h6uQnstZHvAO/TO5BVcFS6RKVDIkN5A/woCuhZcD3Ru/zoUIrrAbI2G2u0BhUxeIcR5sKjD0kJVK/DfQa1La+Vj8QLAJW1mqPcKeEE7LK0YdNYbU85ReK5kZqee4ZSDvVPh94e0LQGEP3kkc653uaoOIQQ0KKzrNmGE3BcEvMuaYYIcvyujwXPesnYDPXNm0aqNJ24C+6edqvVM57IlMJ6Voe7pAwBHARt6rKqXoeeKmQIzdYM0wP8OtUUttEVLUjbVOe60t7dj2tXnzFhVeQUhoOwsZgaeRN1vixAQENDaegGxo97gCxSye55Aft8T4aJvJaEluhHfcCbqHkc0DcKK4c3vvwlveflZkNKtGqR5wxeIGsBbTunCqk4TUqman7F/XOuLG5jMuFBQ6IgEXx6nIwMDtcMgzIm5VKNznEaVWn1V+2+sezR6m7UmUPdENauxvoHSWovhgsHZE0+48TR6z27YG/T9/htZluB3G7r/QrAZOgt7jULdQRrdN73yYuH3Tb3GjPBcfrWL8PsakAk7NXyQYka4ovB+m6GZxvJQNnoqbuQ+JVeJ0Jf5gUb2eb9/5T8xXPt8Fo0cG8oufYZuL0Lv1EbnUu/SaJiKHUJgzbIeSClrBmmzzUXxsnSYQNy/p689ojFAOwowUKMjX+OxIC0iC3Wph2ghiUJpslZzNKz6DKrhOdfKvq6mvR4DNSIiImqKo6HWZzPvPwvj8C8NISIiIqJQGKgRERERtSgGakREREQtioHaYcE72ZutofR/3PxHNKaCpIPX4L7T8MKVFrzbnxYdLiaYR35STgEvWWUjGe41oGZZo1J518vwr9dIsFk6Jj8FQpg0Dkp5/doInwbBkaqsukI9jS7KzDoqVDJXwBtzxPASxwLhVghGdBEqMbHff9ZRiJvh00o08tkCXrLVsOW80GDNymihFFmY+qJAITN/A/17lSdq550qZbsKyvRSJoTZllIqaA2k9OiK6oXcU+E0mFECk1kX0RCJj72+FU5ZFsFvdmdCb9MqOWWrGk056EuEO8wbQqEjooVKZOyNJVyuPp+lewm565WyK3QOM94OoemQrlP/NZSE3tYDCAElZd32QmjQ23qgpg/AtXNQdeqM6rqO/OCz6Dz2LEh4VVtqttcEfv/kTpx34gaE3fdHUw66owuXsLZZjqRVn9VWdzZzRWcYDNTmQbG+Y/EgL9AT05FxFKZztTOiA0DU1NBmARnHS85Zq70mvDqhUioIzUsC6r9m0LgcCQzPOEjbEm2WhkSxKkpwe1cBqbyXBNPUAL1w0q12LDE0oCPqHZDzIeqFGhqQsHQIeO81FyIiyble+aI2S0PECD5J+4/N5L0SXEp55Z1MvX7AGTc1WLpXGLtednzlj9uRaI/o0KsEvwoKhf9B1wVEoXxUPUIIRHRvOwaVCyodC+AFdOFO+IWqEK7CijYDybzERKb2viYAtEV0mFGFlK3qntBNDVjWZiBuaZjOSUzn64/MVcBkRiJmeklAgeqBgJTKywPnqELA6eWoE1VOjALAkoSOrmgUuybzmMjUHr9UKObgM0LU94zoAroQmMpKJCxvXwvi7385V+GEpTH0xk38ZlcKY5na0bKlewmQZWFfqLY1/WGu7TKxvN0EANg1Agt/Px7LSOial88rXeO44+87adsr8+XXFxWofhxRCpjM5CExm/uu1nhkPoPJp3+H7IHd0Nt7oHf0eZ9rlf5lOonpP/wE+QMvwOxbDaNnlbcdquw7PUuW4o+uuA59S5biF9/+Ah747+9CExqkDP4MTt56Am675TNYs34TPvG9e/H9+56GrlUGbH7AfcbG5finq8/Dmv44XhjPY7zOvtYd1bC601z0QRpwZK36PNyrO6thCakAh1JCyp9Fq0YqL1gLmrExNCBqlP+icqXXPhsQMcRNgbaAUiN+QXP/hOB/xOMZFxNzin3rAuiIaogYWkX7tK0qyigJAKbuJTKd+3hbREPMrBx/UL1QASBhldcjBIC8K8uKTNdj6QLtllZWrsevKzmccipqRVq6QKLGSaWUX/Q6bVeOv9rnHDNEscC4X+kAEIGF3/0+wr5XpbyKCWU5WwtTLK70Ct2H6QPw+ph78nakFwAHlS2LGgLxORnunUJZtKBSW31xHb1xvWzftIsF0usOE4C3b7ZZGoyS2dliWTNZWdZMF17C2aDSTd4+W/74ZNbFzvF82Y8D/2joBCSpFihNtlz+uu0RHRGj/E4SSxdIWOX72twfPz6pFJ4ayeF3e9IVr60L77temtjU38eDZul7ohq2LImW1fX0fqQF/3CayUkMp52y8XglrmSxRFGpnOOVtiv9FwFvjJGy77MXoKVyDqaydlleWaWUV2qptGPl/X1m1+NI7theXtdTN2F2LYMWa0NxhlZKKCWRevLXSD99DyBn2wsrBmvZJujxrtnHNA26ruP8l78ap7/kQuglsz77X3gSP73177H/+SdmX1LXkUjE8Y8f/1u8/S1vhqbNbs/fP7sfH/jmL/Dc4ETxMU0IdCUi+PhVF+BPXnxs2b42kXHx/Fi+4oeopQts6DHRG1/8cyZHYgkpBmot7GADtXpBWinb9YpEO9L7pR41ameYzrveSdFV3kxFR2S24HUQgcIlVE0glXcxMuPUvPQaNUQxy3XOkUjbtd+LLlC8vOk9Vy8r8F3Kn8nzA4moUVlcfW77tK2QaiBNesL0akoqFALSGrNDAl65nKgeLmu+VN5Y8u7s7EC9Wc42S0O0EPz6F/+q8bdPWFIpZB2vT6m8AK3et9gPwl2pYMvan23GlhjNePumIYCEpRXrpAbJ2hKThX0zYQosazerXvpWSiHjqLqzd6UiukDc8vYXR9avU2vps5+trnnfl6qzckphcNrBnim7ajH2uXQxW5fWq2Va/XJVcV8rXA4N+vFTKmNL3L8njWfH8hCYvTRda/x+HVVLF9jcF0F/orLQeWl72/X2SdtVOBDwY6aUIxVSOe+zdaXCjF27xFTp/pJ3XEyk8zV/QCil4Do2hKYjNzGEiSfvg5OarNpei7ZB71wCzYwiP/gskg/+B2Rqomp7vX0J4sccD1cpbD7pNFz8qtehvbMrsK2UEg///IfY9s1/RnpmGm9781X4h7//CPp6ewPbO67EN37+CP7ph/cjZ7t4+8tOxvsuPwvtsUhw/0ph75S3rwHAMZ0Gjukwj5jKAgzU5g8DtQCHI1ADAEdKpG3ULN48t39HInRdyZm8i2RWhirADngnIEMDZMh7KjoiXoBm6uHWpOhCQQNghGw/mXEaqrmZyUs4IU60vs5I7QBkrpFU+HqtANATC3+/iawy21GN43qXHsM+RSqFXMDMZjW2612qDHPfI+DVgzW1yhnSapJZF8kQl0J9hgaY/g1yIXRENER1UfXHw1xPHMhirM7lqVK9cQ0RPXz5Hq+sWvh7+77/+CRsWbvmY6mT+qOImeH2Z8eVeH7CLgZs9eQdib1JO/T+KaWEdJ1QM7wAkBnZg/Gnfw9npnrAVTaekd3IDz0DNzkSqv2L/vgqvPjVb0PfsuWh2p/aY2N9LIdjN6wL1X4smUYm7+CYvnDnCu8Kg6qYgV3sGKjNn8U/37qI+b/4G2lf7b6XasIGaYB3EnEbuFlZCNFQoKM1WPJk9tJhOG4DQVqrafCtevf5NPgajbT3Ptvw7TUhGjrxNPrZAo0sSfBfI3zbsAFRaftGZkIa+QEHePV7G9mXEwG3QFQjhGjouCBEY2MBEDpI84UN0gAASoYO0gBA1zT0LFkaun17Ryc2HBMP3b63I3xbALAMAa4GpUYwUCMiIqKmWGyrPmvV7TzcqzurYaBGRERETbHYVn22yuXNWo6si+RERERERxAGakREREQtioHaAlGFZfK2qyClClUGx9CAaCEfVBiWJrCszUDMrP8EPxnoqk4TMSPMKj9vZV1Er5ZetJIjvQz4MsR7DZsXrHQ8fXEdS+N6qO1jakDMrJ6UdC5bKojgfJtVx5NzFPKODPXZCnjpFcKM3auGIGFLBVeF23d0zVuhGwnxAn53kZDjEQC6ohp6YuH6l0phOu8i68i6Gd79/tstDR0RDSF2TS81DQq50EJsG6kU+hI6NvRYocYf0b0E1m2WqJsE1x+PoYX/3uZdieOXRrCxxwq1oGNJwstZ12Zpob6LE1kXWVsW0rrU3j5KKbhSoSemIx7iOKKUxPjTv8ee//4qks8/CKVqr6RVUiIzPgQ91g5hWHX7t0wD1159Bb7/gx/ipRddVLd9IhHHu15/Gd58ag9WdZp120cNgXVdVqjPlehwYXqOAIeSniPMEnxHKmTsynQM1dJuaMLLSu4fs/18WLWyk/vj8dun8xLjGScwB1J7RMPyNqMkmadAMudiJOUGrvbqjGhY2maUnXhcFb5EFuCdtILyWx1MDrWYIcqCSwVgIiMxGZA5XwDojGrFpLQ+2w3OZSb9xJ/u7Pi8/6++7U0NFathLUNUTXWhAWWJhhW8fSQohvGTzM7dPLoIXrnoJSgWZWWWHFchlQ/+bFVx5awq9uAWcpcFvd+4KdCfKN93so7EdK6yqoNSCjN5heGUU/Zvfk6+oG0TNwW6IlpZgFwtCTHgBVGJQkDh96eJ4BQ4frqb0oBOARicdjA4XZmKRQDobzPQ31Ye3dfKjaYXX3s2AHarJDn2kmF7CYRV4TNwJPDceB4HZpyK9lFD4KRlUazqtIrjlwpI5oIT1WYdiV2TeUxmZ3ee4g+EgMjElQo5Z/ZzVIVqGlO5yv0PADKje7HvntuRGdtffCzSuxJLz3o1Ij2VqTFyUyOYfP5hOJnp4mPKseFmU0BAgHfOycfio29/LZb1dgIANE3Dz7fdhY/97Uexb9++ivavffUf45b//Q9Y0tcHoXmrYh8/kMUvd8wEJnU+sT+Ci9e3IWKES4hN5RZreo7FcI8aA7UAh1KZAKieT00W6kLWyswu4CXT9A8Slu7lj5pb9mg2Q3u4AMlvP5l1MVU4UFs6sLzNRFtEC+xfARhNu8UDe0QXWNZuIG4Gt/fH08jKfFObzRifd4NP8LWemzCDM9H7mdtH0rOZ82OmQHdUr2hflgzW9T67WlUJSp8n5wQcZknAMpcmvIDND6iKi/QFysoezU1OCxSS7uZl4AnGJ1Cefd/QZtO/BH1WOUchY8tiuTNZJfgMqmZgaMCSuIH2KvsO4JXW8sebd1VgpYhSpiaKP1ZMzavLGQmYQvP3zbStipnewyTm1QsB0+xnXf395l2F3ZM2pgrBfkdEwzGdZtUfF1J579cP9jUxO4MWdL6XCnALFQj8JMAzucoapP62ncq6eGY0h5Tt1XLd2Gvh+KXRQhBa+QI5RyKZlYWgUGH/tIN9SS/RatB71kUhoC/8YMi5tWe007YslsNzc2kM/c+dGH/6dxBCK5tF8//eedxZ6Dn5YuhWFG4+i6mdjyEzMlAewRZGpxSg8lnIfAYAsKy3Cx/8s1fhojO3QkpZViHAcRy4rotbbv4cvvYvX0U+n8emDevxhX/+J1x84fkV7WUhOP/1zhQe3J+BArA0oeOPNrVjZYcZumYsVfLPm70bTm7JVZ+16nZ+8ytfXIARhcdALcChBmpAZb3PvOvNooXd2FEdxZNUrQOHf5KoN7tW2t6R3gGrO1pa6ii4rT92W3onq3rt/ZNgI4lqoRRyrgxfGBzeSbleYXb/36YLgyktk1WtPQBkbFXMtF9n4MXP19QQ+le4pQOWXntblo5nOu8Fy2FzcZm6KF7Cq9e/AjCVCZ4hqTaeuCnQHdPrvl8vWFZ4YdzGSDrch6vBO3G219nXfF5grep+trODAiTq5zXz+5rMuJBQaI/oofa1rO0i59avC+o9xwuWJ7LBM91z+weAsYyLZe0m2q3ayZT99numbDwxnAtVQxfwLxnXP075+87Ox/6A3b/9Cdx8dk7ANYcQ0KwYOre8BLnkOJR0UfOIpRQAhbdccjqu+ZOXQtc1GDVO/lJK7Nu7B08/+hDe9Po/8fIAGsFJDfxtM5JyMZJysGWpV0mg0Vx6VK7VZ9QWw8xZNUzPMU+EEIUCvV6NvVozCXNpwivMHubEI4SACnFgLW0fNRSiRv1fPP5rRwwgJupnnPf/vdHknlnXm90IK26KmjNXc8cTLRSyDtt+KueEnNXzCkybQhX/O4wwQZr/71KpugWdy0fklSMLkx5WCAHHkaEvWXsF4gV64+F+LQshMJFxQgdpgFd3tj0SvqKDd8m1flDqC1u03u+rLaIV76kMs++4KlyQ5j0HoYK00v439kSKs4L12iulsH0o21At2bCHKSEEsslx7Pjld8N27t1bOTkc9gXw4uPX4a+vvDRUc03TsGndGrx468YQXXvbri+hY0mNcltErYKB2jwTwr/huIFM4CXPbegJoftv7AmNtm9Yg4GdCBE0znlGQ1nqG59jbqz/Rsbe6Fhmuw73GqrBk1Sj5zSpGt3XGnM4TrLz+RoH8/k2Mp5GfzQ1wrXzDbUXorG1a7FI/cUFpbSAW0Rqti+5L5SolXHVJxERHZU4m0aLAQM1IiIiohbFS59ERETUFAtV67NWzU6gdep2HgwGakRERNQUC1XrczGv6qyHlz6JiIiIWhQDtSNBgwuXGl3nNN/tG6VClk06WPN9f3Ej4290LA2vImysecP9N1qKp9XW4JUVaZgHB/P5NrLve93PzzdYM+qXZCrrtU45qbnydmU1hpr9g4sD6MjEQO0w0LXZsjZhuMor9xLmhK6U8jLtNzAeP1t5GN6JAWVlZOqOp6RdmJNKxBChahr6ZuzZ3F+1+vf/KWzXfl8dEa2xACNkW/8km8rLUCdcpbws9N1RPfTnWz97WjlTA3pi4ft3Gsj3oJRXf3VZW/g7LGxXIWaG3xm88lOhm8PSgUgD7ZVq7D1bIQt6+p+9IbxSTWH2BQDYl7SRC1GjUxbG3GHYcELUm/X/fWo6Bdet314AaOvqxfmXvQ6mZZVl/w+i6xpiusIlW1fCNPTAklVl7TWBJ3cPYv/wWM12pXKOgtNIWRSiRYL3qB0mUVODZXgn6TAlpFwlkHG8E4shZjOf+0rL+jRSBcDQAKtKTdFS/nFaohCkKe+EYuqz/xhYlsidLZEloKBrlWMv5deotCwNeQkviAkcj/eoWwgcxzMuoobwqiUE9O+P35bhKzYoBWRsF1IB7ZZAzkXVGo6AN1sUNwWMQv6mavVCi68Bb9soKGQcFwlLQ6zwDSwfvxduyUKQEDEEliR0TOckMjXGEzMEemIGTF0US07V2jeiuleoXdcEliZ07Jt2MB1QH9XXE9OwrN2EoXnVJ1J5N/D9+rNQEoALgbXdFpYkDOwYzwWWwPLf+ZYlEWxeEoGuCczkXeydtGtm1O+MasUM/RlbYiJTvZqEgFc4PlGo8Zq2FcbS1eqdegmkkzlZ/PwtXSBhBdeALK3g4Se8La1KEtR/3lXYNZlHsrC9E6Yo1p8N6j/reO1TtsIzY3ms67awrtusGI//Xds/lcGPt+/H0FQWmiaworcT/d3tlf0rBQiB6VQGuwdHkc3b0HUNK5f0oK+7o+K76yXx9qpHHL80ivimS3HxS16EH/3g37H9oT+U1awFAF3T4EqJ173sJfjke96Cpb1d2D08gQ9/42f4xfYXoBWSOs+2F5BS4U0XnYob3vhSdLfFYLtepZB8jX2hzfISJbO6AB2JWEIqQDNKSNViuwoz+cqSQLoWXMbEnzUoTYTrKu+kH/bHvgavwkCtA5m/Jwjh9VstJiitaemPx3a9k0nQU/yi2H5bwHsvhqi89KOUQtqZLXJdWmw66L0KeAfpeHHGslAdAfVrjpbu+nlXBZ4IvKLslQFYzBDeZzLnDUilkHdma4DWq4GqC6AjosPUy09wdpWi7HlXIZkrD5B0AfTGvRqsc9muwoxdvq95r6khEjCNmcy62Je0y6oVRA2BYzpMxOcUsvcDjvSc4Fqq4AoASimMpFzsnsyXbYv+NgOnLY+ibc5Ul1IKoykXgzN2WdATMwS6YnpFXU+lFJI5WQx+fHFToCtaOYsjlcJkRhbrefrbP21738+54xeFvubWHy2tgTp3PHP3AwVgf9LB0Exl0Xet8LlEC+WwvDEC+6YdDKcqf93FTYEtSyLojRvF4DJnS/z344N4eGCyov9YxMSa/h60xSKzP/RcF7sHRzGRTFX2H41gzfI+RCNWWZWPE5dGsTRglvTZp5/6/+3deZgU9Z0/8Pe3jr7mAgYYBhhGDsFRPHDc4MQQjAdudDckm0PXeD0BV7JmRV0fxaBBzapr1ihxw6EENHHXa9VsTCQrbB4lGjwWHPMLRyQiKOoMN3P3VfX9/VFdPd09fVTNdE/3DO/X88yj0/Pt6k9/u5j6zLeqPh889/R/4tDBA/H5mlY/Hstv+wd84cxT+ox/ZcsuLFn3W7Qe7YzHM/OEGvzbtZdg1tTxfeayJyrRFjSS9mWPCozwWX+cUHENVq/Podyzs7+YqKVR6EQNiCUkESshsROZXKtcumKtiEVMOGs7Yz9PtZOi7Nu3fwE6bbOjxeIORqWjlku6YgWlxbs1ZGaYEsdCJkwpYTh4r1qsibcQ1mqkE0YsGQpF06/iJYoY1oFCFVZz9+wJrzUfwViC5KRFk0+zVlTsVbRs7INWd8REma6gyqfmjCcYtRpt+3UFZXr2zg6mlDjQGcWxoIkxZap1ajTH9ttDBiKxPxxyvd2IIdHSEUFn2MTMGh/GV2hZtx8xJPYdCyMYNTHCp8KX49Ro1JQ42mPAlDLW2D37+LAhsa8tgogh0ZHQWD0TVVitpUTsubn2HSmtxC8YtV4n28oQYK3e+TSB7ojskzSnM7ZMRW2ZwEeHu7Fxx3705OjHNqoigNrqSrR1dOPTg0fip0kzqRszEvW1ozChQsfUUZ6spy2j0Sje/v3v8O7bf8A1X70Q3730YugZem4CQHcogkf++w289NZOXHfxbFxx/iyoWU6jmrFkPBQ1UeFR4c+xL9PgGaxen8P57s5Mip6orVy5Ev/2b/+GlpYWnHLKKVi+fDnmzJmTcfymTZtw8803Y/v27Rg/fjxuvfVWLFq0KP7zc889F5s2berzvIsvvhgvv/yyo5gGI1EDrEQh3amgfFGFlQA4jkfmXoVKGp9h1ScTTyzRdPqL9VjQyHrqMVWFV4GuOr++qStsFLTFzmEXPS6B3qb3TvncXNgHFHTVoSfSuzLlRLlHwQif856e3WF3+4Jbuw6FcbjH+eflUZHzOqtEf2zpyXraOtVnHVFX++br2/Y6vmVASgkYzi/UHxHw4J8ubHA8vjqg4isnFe73JpUmJmqFU9SbCZ599lnceOONWLp0KZqbmzFnzhx8+ctfxscff5x2/J49e3DxxRdjzpw5aG5uxve//33ccMMNeOGFF+JjXnzxRbS0tMS/tm3bBlVV8c1vfnOw3hYRERFRXhQ1UXvooYewYMECLFy4EA0NDVi+fDnq6uqwatWqtONXr16NSZMmYfny5WhoaMDChQvxne98Bw8++GB8zKhRozBu3Lj418aNGxEIBJioERER0ZBTtEQtHA5j69atmDdvXtLj8+bNw+bNm9M+58033+wz/qKLLsKWLVsQiUTSPmft2rW47LLLUFaWeSk2FAqhvb096YuIiIjS43Fz8BStPMehQ4dgGAZqamqSHq+pqUFra2va57S2tqYdH41GcejQIdTW1ib97J133sG2bduwdu3arLHcf//9uPvuu/vxLoiIiI4/mY6bA+31OZx7dvZX0euopasZlO0C40w1jNI9Z+3atZg5cyY+97nPZY3h9ttvx8033xz/vr29HXV1dTljzwe7LlGhxheSXXuskHdduXm/dhHZUrkLTBHOy6cAVqmSQt3aY39W1uvknh+73IObulRu901TSqgOt28Xfy7UZyvg7vMyTKsYseLwhoKIIWGY0vENCOFIBEKoUB3eHOPVVYSjzm+OGVvhweGuCAyHTwjo1l2oRLZMx82B9vo8Hm8WyKVoidro0aOhqmqf1bMDBw70WTWzjRs3Lu14TdNQXV2d9Hh3dzeeeeYZ3HPPPTlj8Xq98Hq9Lt/BwNgJZkC3ioeGjOwHOSV2B6emZK9ZZrPv+FQVq6CkkwRAib1OrhpkdvkJu7CtImTO8iKagKvuAwBQ5VUAL9ARNnMeJFRhlSyJxoryZru71K5vpccOmplqliXFrwjYN006HT+uXIMhgWM9RtbCraoARvpVlHtVRE2J7gyFZG0CgFdT4oVtc5UvkVLChFWMWMAq15ItATNMiWDUKi2iCqtYc7bxVsJldTgIRU10RbLvm5oCqEKiOwJoigGflvnuTyklQlGJrrCdOObe1xTR+9kaOcqd2Nsf6Vcwwq/gcLeBo8HMEyqlVcKjPWhCCKvzQlWWu1ejpsTWz3qw5dMgVAHUVekY5c88PhyN4v998Cl2ftQKj65j+pRJGD2yKuN4Aetu5680TkZnMIwtHx7EgfaejPGPKdex9MIT8Lczx+L9/Z34/ku70PxJ5lNWE0f48MO/nY6500bgQGcUm/d142iWu2OrfAqaJgYAlNYfTZR/xThuHq+Klqh5PB40NjZi48aN+NrXvhZ/fOPGjZg/f37a5zQ1NeHXv/510mMbNmzAWWedBV1P7jv33HPPIRQK4Yorrsh/8ANgr2wkHjoUAfg1q95WuppJXlUktcnRFKDcI5K6ANisg7iAJ6GAqlW9HH1eNx0hACVWXd1IUxMrtaCr9RhiB3UJkXIQFbBa9qix6v1uf3ELIVDhURDQrUrxqTWorMRDJLVAsjsEpCuhkJjY2FXUPaoCM9ZZIF0RUvugnzjeMCWiZt/xqkC8EKsQAiokRpdp6I6YfYp1AtZBdmRCCydVAJU+DaGo2aeQLGDV2EpsUyRg7Q/pCgLbq2KJD0tYtb9UIaEpyTWo7KQlsXirIa1uEfbrpo43zOQei/a47ohEMM1n5deT982oCXSGzfgfIYnbj5oSHSkV6XPta7oaq3EXq7ivQkJRBaJpkuuIYXVvMGKrwgKxxMurYH+X0aecRjBqdT+wk2gpgQNdBtqCJmrK+9Z323M0jE17u9AZjr1XCew5FsHBLoH6EXpSqywpJfa2HsGWP+9FKGyVzghHItj2/m6MGlGJ6ZMnwe9LPij6NYGKWD03ACjz6jj35AnYd7gD7+09lFRPTRXAlX9Vi3/+Uj08sb+Ypo0pwwvXnonn3m3BAxs/xNHu3ut8ParAtedMwj/NrY/XPBxdpmL+SRXYcTCE5s96kn5XaQpwxjg/TqnpjZFJGlF+FLWO2rPPPosrr7wSq1evRlNTEx577DGsWbMG27dvR319PW6//XZ8+umn+MUvfgHAKs8xc+ZMXHfddbj22mvx5ptvYtGiRXj66afx9a9/PWnbc+bMwYQJE/DMM8+4jqsQddQSK41nG2MdSK0DpK5YSZeVaPX9pRdvexQrOKsrvXXTMp0izhVD7/jeDgV2b9BcLZKA3hZYQoh43bR08bhlJ3k9ERMdsa4OuiJyJoCq0tt/0U4qMm0f6F2BsRKgzNtPN95OErKNbw+Z6Ayb8KoC1WVqUhKYOl7Cqk8WihXatVaeMu8Ldjx2AVMnVc10RUAgVqA3R50vAWt1TRWZO0WkxtIVsQrIetXM+6ZNib1HRVjJYVeO3miJ+1riimemyykMU8ZWQ61uCqEMC0P2+PaQgYNdVqJ4tKdv4paqyqtgdJmKroiJ3+/txt5jkbSng+3HaspUjK/Q0NkdxNs79mD/0Y7071NYz6qfMA6TJoyDV1NQFetmkY4pJUxTYtsnR/CX1mM4c0IF7v2baZg22p92fozYKu6/btyNZ7a24AtTRuJf/nY6JozwpV1Jtf9Ye/uTHnx4NIz6ETrOnhhg8dnjXL7qqPHUZ19FvUbt0ksvxeHDh3HPPfegpaUFM2fOxPr161FfXw8AaGlpSaqpNnnyZKxfvx433XQTVqxYgfHjx+ORRx7pk6Tt2rULb7zxBjZs2DCo7yeTxFYy2YjYSoAvlpwpOZIQ63GJMo+1IpQpSegd29vEPVc89iYEACElgjlOZ9kkrCQvoCNjgtkfiS1sFKEknQrN9hqGCQSl7NNuKNP2VUioKQfAbPNpr9gIh+MrvVYnAbtlVNbPVkoEdCW+mupkX1ABGHB+rVjYMLMmsInsxNGrZj8gJ85NpUdBVEpH+4Ipgc6wgZCLfc2U1spStu3bjysCQKxtVLbt2+MrPAqCERPbDkQcxdMWMvHnQyFsPxiKX2qQ7nn2Y/u7DLz/cStaWz7Lul1rWxJ7P2lBlV9HQ/24HKd+BRRV4PRJ1bj1S5PwpakV1jV1Gf+YESj3qrj3b2fglvOnYGRAh2HKjKe7FSHg1YC5k8swu84fb3nFJI2oMIremaAU5XtFzWmilshN1XO3nF6zZgsm9N50wqcJeNP0wcyXTgdtfhJl6qGakb2c6Hi4u4OUmw4BUuZexUxkyvQ9S7ONd9Kiy6YIwOOi+4MpnSVdtohhrdw65VWFderb4fwf7Ym6uij+vZYeHO5xPkFvfdLdp9doNh/8eUfG0kLpfONLZ0HXnN1RJwDcd2H6632J8i1fvT49wkDDKTOHde9Ot4p+1ydRyenHdXRERIQB3/Vp+/SVFXmIZngoamcCIiIiIsqMiRoRERFRiWKiRkRERFSimKgRERERlSjeTDAIeF8tEREdDwbS6zOxz+fx2NMzEyZqBRY1JXoiEv7YTDu9QzBbD9MBs2s8OaxC4XbZ1ZQSQjh/lh2Hk3hkrK1R1E1AEpAojTpP7ntuutu+63focvu9/VTdvZrTEiZuPyJT9taQcxKPGh+be7yM1bFzU54joAu0h5yNFQB0j9dxeQ5FAJ3dQYysDMDp3B/rMbK2uCLKt4Hc9clit+nx1GeB2NXPu2PFO3uivf0znZauy/cv13h3BFitquzitJnCsX+mqiLeIcEJAWfv0d6+Vd2/97Fs4wGrY4CTWmR2I++I3e4p9n2u2D2K1ZvUifj4nP+SZLzbQFfYjLdpyhRP/HGXu4AQVosmx/+wXW/f2RPtuQ4bEp0hq5OEk31CU9ztaxIShmnGE8hs8ZhSoj3U28or23hTSkRMoKUjioNdkVjtwezbN0yJkX6r92cuAkCZR8E//fVpmN94AlRFZK31JwBMGBnAN08pwzmTyqyC2DleY0yZivawwSSNaIjjilqeWQcn9GnCLQGEDGuFzaMCyLDCkKvhdH9jiseQ0Mw9Kq1f9mrKalZ8hQtWEiVhFeD16VZClakgqSasXo65ivUmbj+xjq7dBFyJrzglj483ixci3ng9HGuflfIK8b6m9o8MCRiGtNpOifQrPLpifdmP61IiZGTu4tBnvCIRivZt3dTb17I31lBUImJYDckVJK+eJo7vz2lzRQh4tN6WSaniLZ4cdiQAkNRSK5t4uyZpJaT259sRlrE2UrHtZdnHnexrigA8Wm9yY8ZitHYWwE717HiOBU3sawvH+1MGowbKYz1kE+OxO3zsOhTGW590xws9d4TCGF2modKrJu079lweDZo42B2FKYFKr4qAruBYmrZTCqw5b6rz45xJZfCoAqeOm4YvnFSLJzb9Gds/OZrUdkpVBFQhcMMF03Ht3KnwxordNo734Zc727GvLdpn+6oCXHRiBc6e6C9o4WwiGhxM1PJISomuSPYuBIa0Vtesg3zvL3yrBU7hkrSIiTQJjXWAsxOkWP4IwDpIpiYcIpYgqbEEyX6fAlaClpi0ZI4H8XjSTZPdCF4V9spcLKFLM14IAa9uJSThhARUysx9LiOmhBFrKSVip78UYfWiTF3RUISAT7WSq7CRcPAUVsP3tOM1iag9PnZANyXSJkymBLojJvTYKpI93l5lHChrlaY3QUzsN+umU4bdRzP3Z2tttDNs9vlDBbD+UAkbMtaYPXdLrHT7GmAlaOnisRNzJXZW017R+6gtjI6UbgESQEfYRE8Usb6Z1vhjQQO/39uN1s7kBMiQwP7OKNqCBmrKtfi+HoxKtHZG+zSg1xSB0WUaeiJWI3f7xxOrdHz5xHKMDiT/6q0dUYYlXzkT/7f7AH7++/fR1hMGAJw7Yyzumn8q6kYFksdX6Fj0V6PQ3BLEb97viCeUp47z4uLpFaj09r8yPBGVFiZqeSTh/AAYMWN9CvPcEzORvSLjpPuTETt4C+Ru5q0IAZ8urObfEvBqzuK3V3Bybd9eabNX1nKNt1dgeiKxU2w5xpvSShjKdQWqgqxJiBACmgBUYbVyEgJZ+4YKIaALQBMSbSEJidztwyKmRDQs4dcVSNNdy6VcrIRHQBgmQqbz/VPAXs1x9tmGo9bqWTCaPX4JoDtinYb0Ojh9bfeVtJNLzcEfAyaAw11RBCMmDnUbWeOJmsDhHgMt7RG0x3p1ZhsfjEp8dCyCco8CE8jZLsqvK/BpAlNGejA6oOGk0Z6s+9rnptXgtEnV+ODTA5heU4HzGjK3gFKEQON4PxrGePF/n/RgYpWOqaM8WeMhoqGHiVoRSbjsQdkPLlp0Jp0qdKJ3pcX59l20lXQ1Nn4qysVzVCV70pW6fd3FIoV9+s8pN0l+f1gre85fIFdCmkoCfU7zZePmvQoh4iu+TnVHTBzuNhyP/6Q9gk87nN+i0hbK3tg9kRACp9X4UOVz9g58Hg3fmTMVHoc9YQO6grmTB96yhygf3Nz1mXiXJ8A7PTNhokZERER54eauT97l6Qzv+iQiIiIqUUzUiIiIiEoUEzUiIiKiEsVErYgGo8KRw+uRAcBREc2k8S5uJACs2leFjMejCkd3EibGUyhSAnqsPEYpxGPGCrI6LbasxkqWOA1JFUC5R3H+HiQQNZzH0xEycKgr6uiGCCklDncbONpjON5+dUDFpCrd0VgBYPZEP86s9TkarwqgrkrHSL+zvVkRhd0XiGho4c0EeSRg/YJ1ckebR0U8qXDaXsctNXbnnoxVWc92F6KakETZdbyy3XWpJ9wxaVV9zx6LIhAvvmlKiYiRefsiFo99sDJlb+HdTOM9KuCPFQMNGxIdISPj+9UVoMKruorfKbuGmyEBn67E4jGT6ryl0hQBnyYghIASiyV/8UgEoxI9sUqvpgQUITMWVrYr5pfpVjw+TaInahVxzkRXBfy6CiEEqrwKjgUNdEUyvwF7P4uYVmkSj5a5RErYkPi0PYK2oBX//q4o6ip1VGa4g7IjZOD/PgmiJVYH7XC3QG2FhjJP5iRJVYAZY6yka/roKLZ82oNjwfR7Z/0IHd8+rQoTq6wyGH85HMJ//LEt/nqppld7cMXpVRhXbiWBR7oN7D4aRijDHbIj/QqmjvK4uuOWqJSku+sz9e5OG+/ydEZIp39yHkfa29tRVVWFtrY2VFZWunpups4ENlUAPk0UpANBtpischFWgpQYmd2ZAEjTCSBNDTZN9LZLSqzObhVq7Zvw2IV8042PmjJeKd6mit5VtMR4gITOBAl0JTH+5GrxPVGJrnBvGQUlturj05S01eVllmTQCbtmXeo27O2HosmdAhQB+DQFqiLSxmMVqe1/PBHDRFfYzJj0qUpyeRivKlDpVZL2zcQiud2R5C4QqoJ4CYnUzzYUtQq9Jn6+6fa1+M9SOg1IKXGwy0BLRzTtZ1LlVTChSo+/ftSU2HEghG0HQrHern3Hj6vQkhIge+Uq8d+hKSUEgN1Hwti2PxiPv0wX+EpDJb4wKWAViI5tx4hN7v9+2IXfvN8R/3df6VXwzVMqMXtiIN7twH5fEsC+tgg+aet9b15VYMooHdUBrWB/uBEVkn3c/LvlG/vc9cm7OweGK2p5JmIFOnUV6Ek4sAlYCZquikH/RWy/lgLrdJbdW9NetUpthh5PrADowkqQpLTeU7rivInf29uT6F0RyzReFYCq9hb/1TIcxO3vFWlt04jFq6ckjKnb92uAV1XRGTahCGulSKDvc3r/3zpIu13NyrUCaSexPl2BbkoEo1Y3gsR+panxyFj3BOuUpbt4TFOiK2JmbL9kM0zAhNXSrNKn9klgE+NSIFHhVRCKSoQMCV0VfRLMxPEeVaCmXENn2ER70Mx5Os+UQDAioSnW9j9pi2b8Ywew6pi1HwhhXIWGiGHi/z4NojvLKl5byERHOIyxZRpGB5R4opW679gJ1ZRRHkyq0vFeaxATKnT83SmV8VXPxLPr9nYunFqGsyf68cyf2lDlU/G1hop4UqikzI8AMKlKR025ht2HwyjzKJg0Qk+7bxIRMVErEEUIBGL9CoNRiXJP+oPyYIofdKWErvSu1mQKx35clYCq5U4wExMeRTgbL6WEJgCZJmFMF4+dMDrdvgKJKp8aXxlyEo9b6VbR0m0bsJKVQCzDdDSXLsMxY22QnFIEMKas99dAtqr5QKy3qSIS9p3s4z2qcNCwvtexoInPHBaelQB2HAjhs46oo2vprFPKEpqaOyAlVuD470+twqQRnpz7miIEKrwKrvurUY73Na8KnFLj4woaEWXFRK2A7Gr2TtreDCoBIEdSlDRcuLuOTjhIolLH2q/jJBY3Kw9uYolv02Wy5ma02/1ACHcv4DbPVBXhLiYhXO07blcDwy6bnNrXejl9ltfBHxw2IQQCntxJtc3JHw+p22eSRkS58K7PQXA8/iIupfdcSrFQ/pXSp+s+ES+l6ImoFHFFjYiIiPIi3V2fVX43nXopFRM1IiIiyot0vT4Pv7KiSNEMDzz1SURERFSimKgRERERlSgmajQkuSmjwZrOwxs/XSIazpioHWdkrPK6hPNSDoU+ELq98c1NQdrergPO+krG58dFV4BC/yNyMz2KgKu6ZRFDIhy1amjkmh97bgDnc+nVkjsc5BpfpgtX77fSp1jlbxyMFQDagqbz8hkA9ndGmegTUVHxZoLjiN2+xu4EoACw78XJduwqdLsruzCt0wTMSTzxtlboTbjsyvjpalcltm2KmL39Ru2kLWNRYFh9RiWAsJE7qdUUqwODGXud3OMFdCFhOt6+wEi/ipABdASNnOO9mkBXRCIqTfiz1Biz952wYXXbUITVrQBI/1lY/WUlDnRG0RORsd62SDvenvuwCRzuMaEqcNTv1KcJ1Fd5cPIYL7YfCGLvsWj8j5B06qp0nDelDAFdYPeRMPZ3ZS8MXB1QMXWUhyU0iFxIvOvT7vHJnp4Dw16faQyk12cpSezBCVhdEtL1gtZE5lZS6VpGFVK2BulOE8bE/pSZtgMkFxw1Yz1aU5+Sqz9lYjxSynii1+c10dtRIXF8NNbOK5WA9bkkvqaV/KTfvoDVezO1b2VXyER3mifoqoBXTS52K2AlP4lFYe25zPS6qgAUJXm8hNV8/GhPciJkbz+xjVp8fI+JjnDyC0gp086NIoAxARWVXiUp/qM9BppbgmgL9T5JAPDrAudNKcO0lKTraI+B9w+F0JPyj8KnCUyv9qA6wL9jiZxK1+uTPT7zg7+JjgO5Vm+iEhAJvTaBwq+iZWKvriWuhDlNGJ02VzfthNReyTFkn2bv8bGx8apIXn1MF48QApoAVCERNnsTRY/S2xMydbweGx8xenuF2olzuvEeFVY/zGjv+NTm6jZFCFT4VPh0Be3BKKJmciP4VBJWI/uwIRHQrZ6Whsy+kmdIwDQkhLDmqCts4mBXNG2CZW8/Ykp4VWv7nRGJIz1G2qRaCAFNkZCx1TUJq7n66ICaNv6RfhVfmhzA3mMRbD8QQtQEGsf7MLsuEG/enjr+cxP9+KQ9ij1Hw5ASOGGEjroqPe32iYiKgYnaMGZIIGpIR9eYSVgHfg3WCkkx2Y2rZZZTa+m4u3YNCLlob2TI3hWuXPHYfRzN2DVducYrQsCj9jZfz/V2FSHgVSUi8UQ2+xN0VWCET0VPRDqK35BAZ1hCV51dnygBdIQMtPUYaVfdUkVNoCNsIByVaVd4EwkhIAQwwitQ4VHgydGnUwiBySM9mDnWC7+uoNybvdCmIgQmVemoLdcggbQJHRFRMTFRG+bcntcupctxSu3aICdJTqJ0q1y5tu98rLuL7oUQUFze9eB233GSpCXKlaQlUoSA7uIPCK+moMzj/A3rTNCIqETxrk8iIiKiEsUVNSIiIsoL+65Pr67h/HP+qtjhDAtM1IiIiCgv7F6fh19ZgSce/WmxwxkWeOqTiIiIqERxRW0YU4RVZDRiOrsjcqhfT21fa+707k9NWBfMZyrNkbTt2H8zFYRNZZhWzTNFALri7CYERTjrGCFjNd+ChoSmCKsyf5btW/XI3LXcaguZ6IqYGOlTUZFSryxtPFEJjyoQNXMXLhYAaso0eDSBlo4o2nPcfqsrQF2ljnKPgqNBA6EcdyGoAvDpQ3xnJiKKYaI2jNmHKq8q4olDukOcGksmhgu7eG+u1ETEvpRYvbBM6YKuWBX/ndSGNmVyTTRDAoYB6Iq0Oh1kSHjixXdh3f2ZKdkxTInuSG/dt4ghETUAj5a+VpthWkmU0zStJ2LicE9vHbT9XVEcCwrUlGvwpvSmklIiZEi0h0yr04UCeBQFhikzloUp8ygY5VfjSfWJ1V4c7TGwry2CSJo3Pb5Cw9RRnvgfEbUVOjpDRsbaa5VeBSP8qqs7YomIShkTtWEsMSmwV9cSK+ELWEmIqmRuHTSUJMdvJT3ZVncSh6uwVs2MhAQvNYHNuWqVocsAYK1qGgB0VWYs22FvX0oZ/0zs+KWUsWK0aV4bQCgqoQoJXRNQYklfOJq5kG+qqClxpCeK7kjfJ4QMiY/bIhjhUzHKbxWbjZoS7SEjJR4rfkUAHk3AMBFfydMVoDqgwacrffa1ET4FVT4vPuuI4kBnFBJAhUfBjNEeVHjVPuPLPAoCHgVHewx0xFbjvJpAdUCFroghvx8TESVionacsA9eGiQ01UpIEk91DreDm71CpSoCppl7RUnEmkTqsT6TdrV/JwmsEVtFy/UaJoCQAehC9mn3lBq7TRFWEtYdyf0eDAkYESthc5qgSWmtiB1z0Bf0WNBAR8hAlU/NWjPNjl9VrPkv0xVUeJU+P0/8XgCYUKFhTECFKYGxZWrW8ZAS1QENFR4TURMIePomgEQ0+N5avQQnn3wS+3vmERO144ydwGjHQYuc+AqV4/HWfzWHq2i2dKtc2eQorp/02qaU6EqzypWN0yQNsNpnHQ26ewNOC9sKIeDTgEpf9u4AiePLPQI+LfeqmP1zXRXQMzR7J6LBN/3EqezvmWdM1I5DPKDlVsg5KqX5L3TnCnf9E/qx/RKaSyKiQhhGl5ATERERDS9M1IiIiIhKFBM1IiIiyov3d+7ANdd9r9hhDCtM1IiIiCgvmr73MD49dKzYYQwrTNSIiIiIShQTNaI0nHQhGMi2C7n9QnIb9tB8l0REpYOJGg17TkvG2UlI1LR7bjpLqDwqXBWhsLsX5Nq23VLKrxWmBIWUEroCBFz2D/M4K4sGwGpx5SZ6J4WDiYiOJ6yjRsOeEAIKZNaG53ZvUDtJixq9LaRyVbxXhYCiZm8hBVjJnCqsxNGUdjcEGY+xNxYZK3ZrFZcVioBfj/X1dFhsNht7+yHD6nigKgJlHgWhqJl1+6P8KsaUaVAVgYghcSxoIJilQfoov93X0+o1G8zR0sqrCivpZW00IqI4Jmp0XLDbFEnIpP6fduKWril7b0N1QBO9K2DpEgkhBHQBqCK5KbtNFdbydeJT7eTQXvFLXGELGclxCiHg0QQ002qE7voUZMITDAl0hY2kpEwRAn5dRdSUCEbMpFUtnyYwvkKHL2HlTVcFRgdU9EQljqY0SPdrVhN3T0KPMlURCOhW4pma3GkC8OkiYw9UIho6Nv37LRhZ7il2GMMKEzU6rgghoMaSLnv1LFfLpYhp9fP0ODhDqAgBrwYYprRWw2AladlyEDO21CeEFUu2VS1FEfAJIGJKRF10fjJlb/P2YJY3rMVW10xpvYdRARUjfGrG5DSgWy2fOkMmeqIS1X4F5R4l43iPaiW+9uqaVxXQVSZoRMPF3H96EO2/f6LYYQwrTNTouCSEgCFzNzq32StGTk/LqUqsy7tDUgJhFz00NQWIumjqKQG0hZy9gJ2AjS1z9utBEQIj/SpqHCZcQgj4dSZnRERO8GYCIiIiohLFRI2IiIioRDFRIyIiIipRTNSIiIgoL95avQQTRo8odhjDChO1IrILqg7VKvWlxu1cFnruzQJuX0rpevsu69q6KlRLRAQA00+ciice/WmxwxhWeNdnkVgH2t7vFWQvqkqZSZlczFbAqoafaT6ltGqRRWI3QarCKo2Rbf7tJCdX8VvAStCCUav8hwDgUSU0B+0RPIr1HqIy+/2ihinRFTbj29dVZK1Bpgqg0q+iplxDT8TE/i4D4Sx3jPo0gZoyFV5NxMuMZItHEYDmYn6IiMg5JmqDzFrF6XvgMyUgZO6EgZKlJrzWY7FCsinJr107LRhNLsthSAAS0JS+SYbdnQCwPpdsK1hSyj4FXSWAkAFETQlPloQq8WFdiRXb7fO+JHoiZp/thw0JRUjoikiKXwDwx+qc2XyaQH2VhqNBE4e7jaR5UAQwOqCiyqskPeZVkbHrgq5YtdeyFQMmIqL+Y6I2SFJXfdKOif0814oQpU/QUtmFZBVhzW1PJHsLo6gJKMIarwgBXbXaQyWuEmX6TAxToieaOSZDAj1RQFes/pqZtmM/rMBKkuyOCeGoia6ImXH/MaXVzUBTrOTSqyko84g++5H9/yN9Ciq9Cg52GegIm6j0KhgTUKGI9OM1SKiqVfzXlMkJbLZ5ISKigWGiNgicJBXJ47NXsj/euZ3PkCERdljF35TWaTxvQuPxXElIMGI6LlYbSThdmY0Q1n6gQKIjZCLksLht1JSoCqjwaUrW05BCCKiQqK3QMNa0+n3mGg8p4VWTVxWZoBERFRYTtRLFA2BmbpI0AK5aLQGARxWu5t9pkmZz2jJJCPvUqfM3rCmAL3bBWK73YP9cVbKvFqaO575JRJl8vOeDYocw7PCuTyIiIsqLSZOnFTuEYYeJGhEREVGJYqJGREREVKKKnqitXLkSkydPhs/nQ2NjI15//fWs4zdt2oTGxkb4fD5MmTIFq1ev7jPm2LFjuP7661FbWwufz4eGhgasX7++UG+BiIiIqCCKmqg9++yzuPHGG7F06VI0Nzdjzpw5+PKXv4yPP/447fg9e/bg4osvxpw5c9Dc3Izvf//7uOGGG/DCCy/Ex4TDYVx44YXYu3cvnn/+ebz//vtYs2YNJkyYMFhvi4iIiCgvinrX50MPPYQFCxZg4cKFAIDly5fjlVdewapVq3D//ff3Gb969WpMmjQJy5cvBwA0NDRgy5YtePDBB/H1r38dALBu3TocOXIEmzdvhq7rAID6+vrBeUMU57ZCPSvaExENfbXVVcUOYdgp2opaOBzG1q1bMW/evKTH582bh82bN6d9zptvvtln/EUXXYQtW7YgEokAAF566SU0NTXh+uuvR01NDWbOnIn77rsPhpG5RkMoFEJ7e3vSV7EN5R6gdtLlJH77fboZ7zadc5v/GSYcz72MFdR1w02PTgG42r5hFrbHKBERkPm4ufonDxY5suGnaInaoUOHYBgGampqkh6vqalBa2tr2ue0tramHR+NRnHo0CEAwIcffojnn38ehmFg/fr1uOOOO/DjH/8Y9957b8ZY7r//flRVVcW/6urqBvjukgkh+nEw7/3/oXLQ7W0yb1Xqtx/LNt76L2C6Ge8yLq9q9dF0wv6YnKzu2fH4VOcNzxXYBY2d1lITGBNQ4decjfeowmpHxtVJIiqgQh83qVfRbyZIPaDkOgWWbnzi46ZpYuzYsXjsscfQ2NiIyy67DEuXLsWqVasybvP2229HW1tb/Gvfvn39fTtZ41YVdwmb6TDhKbbE2MyEPqb2/6euDiYmXPExOcbbLbjcFrsFrLnXVQG/ZrU+ysSjAuUekbMgbWJCaidFntj2s32+HgXwab0FZnPHHWt4rioYFdAwOqDGm5+nUgQwyq+iOqA6agBPRDQQg3HcJEvRrlEbPXo0VFXts3p24MCBPqtmtnHjxqUdr2kaqqurAQC1tbXQdR2q2tujp6GhAa2trQiHw/B4PH226/V64fV6B/qWHBFCQEHuvp+JTLulVAm27rETKiNDBhVvkC76N97WnwQtlSIEfJr12iGjN6FUhdW8PFPD9N7Yev+ISBePIgR8qtVPNJRwpl2NNTZ3vIoG6/NOHe/VFIwtE+gKm2gPmfH4yz0KKrxKzviJiPJlMI+bx7uirah5PB40NjZi48aNSY9v3LgRn//859M+p6mpqc/4DRs24KyzzorfOHDOOefggw8+gGn29vXZtWsXamtr0yZpxWCdChWurrVKXL0plSTNTFhVyj3WSpDcjDdNaX3leTFRVazVL68K+DWBgIMkDUD8lG62eIQQ0BSBgBZbQVMBn+bsM7NX0BQl83ghBMq9KmrKNVR6FYwt01DlU5mkERENU0U99XnzzTfjZz/7GdatW4edO3fipptuwscff4xFixYBsJZWr7rqqvj4RYsW4aOPPsLNN9+MnTt3Yt26dVi7di1uueWW+Jjvfve7OHz4MBYvXoxdu3bh5Zdfxn333Yfrr79+0N9fLsPh2Oo2h3Iz3j4lWgj26UrdRV9PN7HYp1udnuYErBU5p7GoikCFV3XcN5SIiIamopbnuPTSS3H48GHcc889aGlpwcyZM7F+/fp4OY2WlpakmmqTJ0/G+vXrcdNNN2HFihUYP348HnnkkXhpDgCoq6vDhg0bcNNNN+G0007DhAkTsHjxYtx2222D/v6IiIiIBkLIUr5KvUja29tRVVWFtrY2VFZWFux1pHR/Ws/NCk2h2ac+hyolzXVg2WS6ri5fSumzJSJyY7COm8ejot/1SURERETpMVEjIiIiKlFM1IpsqJ/sct0lwOXYQo53oz9XCAz1z5aIiIqvqDcTUKxeFpCzrlp8XEqB32JShICE1dIp1+Vb9vVgdguoQowHep/jdHwu9ny7uTzNroNmvY7IeS2fPb6UPlsiIioNXFErIrsmmojVVEuXPNiPi5TxpcKOJVPXBbs2WLrx6d5Gf8bbF+EnzouV6Dkfn46d8LlJ0uw6aInbT/wMc40vpc+WiIiKjytqJcJeCVKV3hWhpFWlEj6ApyZI9upg4ipXuvG9K0n24/0bn/qc+P9L6Wh8Krs9lLu6acmJWGo8MhaLvTqYbTwREZGNiVoJSU140j1eyhITJEXJnWD2/kw6SkjtMfYKlJvxbpJdt1U4MiWkqbEASErGh8rnSkRExcNErQQN9QO421VAN+PTrpzlMZb+cvNe3YwnIqLjG69Ro4Jwm4gUMnFhUkREREMVEzUiIiKiEsVEjYiIiKhEMVEjIiIiKlFM1IiIiIhKFBM1Koj+tFwiIiKiZEzUKK+sYrEy/v9DkdubRKUcuu+ViIhKGxM1yovERMVuuySRnLgNFYpI3w4rHbtbAkuAEBFRITBRo35LXTkzzeRm6DKlT+ZQSthELFnLln/ZfTqZpBERUaGwMwENiJQy3tszE1MCIt53c+i0ThJCQACQSO796aRlFBERUT4wUaN+y5WgpY4FkhuRDxVCiHiSaX9PREQ0GJioETnEBI2IiAYbr1EjIiIiKlFM1IiIiIhKFBM1IiIiohLFRI2IiIioRDFRIyIiIipRTNSo39zeAzmE6t0SERGVBCZq1G9OqvfHxwKxsSxxQURE5BTrqNGAZKren4gJGhERUf8wUaO8SKzeb/f3FMJuWs4kjYiIqD+YqFFeCSGgMi8jIiLKC16jRkRERFSimKgRERERlSgmakREREQliokaERERUYliokZERERUopioEREREZUoJmpEREREJYqJGhEREVGJYqJGREREVKKYqBERERGVKCZqRERERCWKvT7TkNLqKt7e3l7kSIiIiAZPRUUFhGDD5lLCRC2Njo4OAEBdXV2RIyEiIho8bW1tqKysLHYYlEBIe/mI4kzTxGeffZa3vyza29tRV1eHffv2Hbf/ADgHnAOAcwBwDgDOAVC6c9Df456UEh0dHVyRKwCuqKWhKAomTpyY9+1WVlaW1D/IYuAccA4AzgHAOQA4B8DwmQMhxLB4H6WINxMQERERlSgmakREREQlionaIPB6vVi2bBm8Xm+xQykazgHnAOAcAJwDgHMAcA7IOd5MQERERFSiuKJGREREVKKYqBERERGVKCZqRERERCWKiRoRERFRiWKilicrV67E5MmT4fP50NjYiNdffz3r+E2bNqGxsRE+nw9TpkzB6tWrBynSwnEzBy0tLbj88ssxY8YMKIqCG2+8cfACLSA3c/Diiy/iwgsvxJgxY1BZWYmmpia88sorgxhtYbiZgzfeeAPnnHMOqqur4ff7cdJJJ+Hhhx8exGgLw+3vA9sf/vAHaJqGM844o7ABDgI3c/Daa69BCNHn689//vMgRpx/bveDUCiEpUuXor6+Hl6vF1OnTsW6desGKVoqWZIG7JlnnpG6rss1a9bIHTt2yMWLF8uysjL50UcfpR3/4YcfykAgIBcvXix37Ngh16xZI3Vdl88///wgR54/budgz5498oYbbpA///nP5RlnnCEXL148uAEXgNs5WLx4sXzggQfkO++8I3ft2iVvv/12qeu6fPfddwc58vxxOwfvvvuufOqpp+S2bdvknj175JNPPikDgYB89NFHBzny/HE7B7Zjx47JKVOmyHnz5snTTz99cIItELdz8Oqrr0oA8v3335ctLS3xr2g0OsiR509/9oOvfOUrcvbs2XLjxo1yz5498u2335Z/+MMfBjFqKkVM1PLgc5/7nFy0aFHSYyeddJJcsmRJ2vG33nqrPOmkk5Ieu+666+TZZ59dsBgLze0cJJo7d+6wSNQGMge2k08+Wd599935Dm3Q5GMOvva1r8krrrgi36ENmv7OwaWXXirvuOMOuWzZsiGfqLmdAztRO3r06CBENzjczsFvf/tbWVVVJQ8fPjwY4dEQwlOfAxQOh7F161bMmzcv6fF58+Zh8+bNaZ/z5ptv9hl/0UUXYcuWLYhEIgWLtVD6MwfDTT7mwDRNdHR0YNSoUYUIseDyMQfNzc3YvHkz5s6dW4gQC66/c/D4449j9+7dWLZsWaFDLLiB7AezZs1CbW0tzj//fLz66quFDLOg+jMHL730Es466yz86Ec/woQJEzB9+nTccsst6OnpGYyQqYSxKfsAHTp0CIZhoKamJunxmpoatLa2pn1Oa2tr2vHRaBSHDh1CbW1tweIthP7MwXCTjzn48Y9/jK6uLnzrW98qRIgFN5A5mDhxIg4ePIhoNIq77roLCxcuLGSoBdOfOfjLX/6CJUuW4PXXX4emDf1fyf2Zg9raWjz22GNobGxEKBTCk08+ifPPPx+vvfYavvjFLw5G2HnVnzn48MMP8cYbb8Dn8+GXv/wlDh06hH/8x3/EkSNHeJ3acW7o/1YoEUKIpO+llH0eyzU+3eNDids5GI76OwdPP/007rrrLvzqV7/C2LFjCxXeoOjPHLz++uvo7OzEW2+9hSVLlmDatGn4+7//+0KGWVBO58AwDFx++eW4++67MX369MEKb1C42Q9mzJiBGTNmxL9vamrCvn378OCDDw7JRM3mZg5M04QQAv/5n/+JqqoqAMBDDz2Eb3zjG1ixYgX8fn/B46XSxERtgEaPHg1VVfv8lXTgwIE+f03Zxo0bl3a8pmmorq4uWKyF0p85GG4GMgfPPvssFixYgP/6r//CBRdcUMgwC2ogczB58mQAwKmnnor9+/fjrrvuGpKJmts56OjowJYtW9Dc3Izvfe97AKwDtpQSmqZhw4YNOO+88wYl9nzJ1++Ds88+G//xH/+R7/AGRX/moLa2FhMmTIgnaQDQ0NAAKSU++eQTnHjiiQWNmUoXr1EbII/Hg8bGRmzcuDHp8Y0bN+Lzn/982uc0NTX1Gb9hwwacddZZ0HW9YLEWSn/mYLjp7xw8/fTTuOaaa/DUU0/hkksuKXSYBZWv/UBKiVAolO/wBoXbOaisrMSf/vQnvPfee/GvRYsWYcaMGXjvvfcwe/bswQo9b/K1HzQ3Nw+5y0Bs/ZmDc845B5999hk6Ozvjj+3atQuKomDixIkFjZdKXJFuYhhW7Nuw165dK3fs2CFvvPFGWVZWJvfu3SullHLJkiXyyiuvjI+3y3PcdNNNcseOHXLt2rXDpjyH0zmQUsrm5mbZ3NwsGxsb5eWXXy6bm5vl9u3bixF+Xridg6eeekpqmiZXrFiRVJLg2LFjxXoLA+Z2Dn7605/Kl156Se7atUvu2rVLrlu3TlZWVsqlS5cW6y0MWH/+LSQaDnd9up2Dhx9+WP7yl7+Uu3btktu2bZNLliyRAOQLL7xQrLcwYG7noKOjQ06cOFF+4xvfkNu3b5ebNm2SJ554oly4cGGx3gKVCCZqebJixQpZX18vPR6PPPPMM+WmTZviP7v66qvl3Llzk8a/9tprctasWdLj8cgTTjhBrlq1apAjzj+3cwCgz1d9ff3gBp1nbuZg7ty5aefg6quvHvzA88jNHDzyyCPylFNOkYFAQFZWVspZs2bJlStXSsMwihB5/rj9t5BoOCRqUrqbgwceeEBOnTpV+nw+OXLkSPmFL3xBvvzyy0WIOr/c7gc7d+6UF1xwgfT7/XLixIny5ptvlt3d3YMcNZUaIWXsKnYiIiIiKim8Ro2IiIioRDFRIyIiIipRTNSIiIiIShQTNSIiIqISxUSNiIiIqEQxUSMiIiIqUUzUiIiIiEoUEzUiIiKiEsVEjYjy4q677sIZZ5wR//6aa67BV7/61UGPY+/evRBC4L333hv01yYiyjcmakTD2DXXXAMhBIQQ0HUdU6ZMwS233IKurq6Cv/ZPfvITPPHEE47GMrkiIkpPK3YARFRYf/3Xf43HH38ckUgEr7/+OhYuXIiuri6sWrWqz9hIJAJd1/PyulVVVXnZDhHR8YwrakTDnNfrxbhx41BXV4fLL78c3/72t/Hf//3fAHpPV65btw5TpkyB1+uFlBJtbW34h3/4B4wdOxaVlZU477zz8Mc//jFpu//6r/+KmpoaVFRUYMGCBQgGg0k/Tz31aZomHnjgAUybNg1erxeTJk3CvffeCwCYPHkyAGDWrFkQQuDcc8+NP+/xxx9HQ0MDfD4fTjrpJKxcuTLpdd555x3MmjULPp8PZ511Fpqbm3POyQknnIB/+Zd/wVVXXYXy8nLU19fjV7/6FQ4ePIj58+ejvLwcp556KrZs2RJ/TuqpXQBYvnw5TjjhhJyvR0TUX0zUiI4zfr8fkUgk/v0HH3yA5557Di+88EL81OMll1yC1tZWrF+/Hlu3bsWZZ56J888/H0eOHAEAPPfcc1i2bBnuvfdebNmyBbW1tX0SqFS33347HnjgAdx5553YsWMHnnrqKdTU1ACwki0A+N///V+0tLTgxRdfBACsWbMGS5cuxb333oudO3fivvvuw5133omf//znAICuri78zd/8DWbMmIGtW7firrvuwi233OJoHh5++GGcc845aG5uxiWXXIIrr7wSV111Fa644gq8++67mDZtGq666ipIKZ1PLhFRvkkiGrauvvpqOX/+/Pj3b7/9tqyurpbf+ta3pJRSLlu2TOq6Lg8cOBAf87vf/U5WVlbKYDCYtK2pU6fKRx99VEopZVNTk1y0aFHSz2fPni1PP/30tK/d3t4uvV6vXLNmTdo49+zZIwHI5ubmpMfr6urkU089lfTYD3/4Q9nU1CSllPLRRx+Vo0aNkl1dXfGfr1q1Ku22EtXX18srrrgi/n1LS4sEIO+88874Y2+++aYEIFtaWqSU1lwlvj8ppXz44YdlfX19xtchIhooXqNGNMz95je/QXl5OaLRKCKRCObPn49///d/j/+8vr4eY8aMiX+/detWdHZ2orq6Omk7PT092L17NwBg586dWLRoUdLPm5qa8Oqrr6aNYefOnQiFQjj//PMdx33w4EHs27cPCxYswLXXXht/PBqNxq9/27lzJ04//XQEAoGkOJw47bTT4v9vr+ydeuqpfR47cOAAxo0b5zhuIqJ8YqJGNMx96UtfwqpVq6DrOsaPH9/nZoGysrKk703TRG1tLV577bU+2xoxYkS/YvD7/a6fY5omAOv05+zZs5N+pqoqAAzotGTiPAghMj5mx6EoSp/XSzyFTERUCEzUiIa5srIyTJs2zfH4M888E62trdA0LeOF8g0NDXjrrbdw1VVXxR976623Mm7zxBNPhN/vx+9+9zssXLiwz889Hg8AwDCM+GM1NTWYMGECPvzwQ3z7299Ou92TTz4ZTz75JHp6euLJYLY4BmLMmDFobW2FlDKexLGcCBEVGm8mIKIkF1xwAZqamvDVr34Vr7zyCvbu3YvNmzfjjjvuiN8FuXjxYqxbtw7r1q3Drl27sGzZMmzfvj3jNn0+H2677Tbceuut+MUvfoHdu3fjrbfewtq1awEAY8eOhd/vx//8z/9g//79aGtrA2DdaXn//ffjJz/5CXbt2oU//elPePzxx/HQQw8BAC6//HIoioIFCxZgx44dWL9+PR588MGCzMu5556LgwcP4kc/+hF2796NFStW4Le//W1BXouIyMZEjYiSCCGwfv16fPGLX8R3vvMdTJ8+HZdddhn27t0bv27r0ksvxQ9+8APcdtttaGxsxEcffYTvfve7Wbd755134p//+Z/xgx/8AA0NDbj00ktx4MABAICmaXjkkUfw6KOPYvz48Zg/fz4AYOHChfjZz36GJ554Aqeeeirmzp2LJ554Il7Oo7y8HL/+9a+xY8cOzJo1C0uXLsUDDzxQkHlpaGjAypUrsWLFCpx++ul45513HN9hSkTUX0IO5CIPIiIiIioYrqgRERERlSgmakREREQliokaERERUYliokZERERUopioEREREZUoJmpEREREJYqJGhEREVGJYqJGREREVKKYqBERERGVKCZqRERERCWKiRoRERFRifr/mFlPF8wE114AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.jointplot(x = mu[:, 0], y = np.sqrt(var)[:, 0], kind = 'hex')\n", "plt.xlabel('Predicted mu')\n", @@ -545,18 +411,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "from evml.keras.model_refactor import EvidentialRegressorDNN\n", - "\n", - "#from evml.keras.models import EvidentialRegressorDNN" + "from evml.keras.models import EvidentialRegressorDNN" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -565,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +442,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -588,44 +452,9 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"model_2\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " input (InputLayer) [(None, 4)] 0 \n", - " \n", - " dense_00 (Dense) (None, 295) 1475 \n", - " \n", - " dropout_h_00 (Dropout) (None, 295) 0 \n", - " \n", - " DenseNormalGamma (DenseNorm (None, 4) 1188 \n", - " alGamma) \n", - " \n", - "=================================================================\n", - "Total params: 2,663\n", - "Trainable params: 2,659\n", - "Non-trainable params: 4\n", - "_________________________________________________________________\n", - "Epoch 1/5\n", - "12/12 [==============================] - 2s 39ms/step - loss: 11.1444 - mae: 0.5552 - val_loss: 4.6190 - val_mae: 0.4523 - lr: 0.0056\n", - "Epoch 2/5\n", - "12/12 [==============================] - 0s 27ms/step - loss: 3.9801 - mae: 0.4527 - val_loss: 2.8696 - val_mae: 0.4345 - lr: 0.0056\n", - "Epoch 3/5\n", - "12/12 [==============================] - 0s 28ms/step - loss: 2.4396 - mae: 0.4464 - val_loss: 2.5025 - val_mae: 0.4439 - lr: 0.0056\n", - "Epoch 4/5\n", - "12/12 [==============================] - 0s 26ms/step - loss: 2.2616 - mae: 0.4534 - val_loss: 2.0915 - val_mae: 0.4452 - lr: 0.0056\n", - "Epoch 5/5\n", - "12/12 [==============================] - 0s 28ms/step - loss: 2.0359 - mae: 0.4519 - val_loss: 2.0502 - val_mae: 0.4507 - lr: 5.6263e-04\n" - ] - } - ], + "outputs": [], "source": [ "ev_model.fit(\n", " x_train,\n", @@ -637,17 +466,9 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2/2 [==============================] - 0s 4ms/step\n" - ] - } - ], + "outputs": [], "source": [ "result = ev_model.predict_uncertainty(x_test, scaler=y_scaler)\n", "mu, aleatoric, epistemic = result" @@ -655,17 +476,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.03140350852552427 0.06207638845240013 0.08560160808574203\n" - ] - } - ], + "outputs": [], "source": [ "mae = np.mean(np.abs(mu[:, 0]-test_data[output_cols[0]]))\n", "print(mae, np.mean(aleatoric) ** (1/2), np.mean(epistemic) ** (1/2))" @@ -673,7 +486,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -682,88 +495,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/regression_uq.py:819: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", - " plt.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFTCAYAAAAdn/SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5pklEQVR4nO3deVhV1f4/8Pc+DIeDAonKpIia5oQaiSnlkOGAluVzvZpeUxzqm+aQkdehutlk6PeprpZlVzP4eh3zImZpXk0RSzFTwUzRHCjR8CeWAoIxfn5/KJtz4IAMG86G8349z8lz1lp77c9eLfiwx6OIiICIiIh0x2DrAIiIiMg6JmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIhtRFAVbt261eR916ZdffoGiKEhKStJlf0R6wyRNpJGJEydCUZQyr3Pnzlltn5aWhqFDh1aq79dffx33339/jfpoiPz9/ZGWlobAwEAAwL59+6AoCm7cuGHbwIg04mjrAIgakrCwMERFRVmUNW/e3OJzXl4enJ2d4ePjU+P1adFHfebg4GD3Y0ANG/ekiTRkNBrh4+Nj8QoNDcWMGTMQERGBZs2aYdCgQQDKHqq+dOkSxowZA09PTzRq1AjBwcH4/vvvER0djTfeeAPHjx9X986jo6Ot9nHixAk8+uijMJlMaNq0Kf7nf/4HN2/eVOsnTpyIESNG4N1334Wvry+aNm2K6dOnIz8//67btmDBAvTu3btMebdu3bBw4UL1c1RUFDp16gQXFxd07NgRH3/8cYX9xsfH48EHH4TRaISvry/mz5+PgoICtb6oqAhLlixBu3btYDQa0apVKyxatAiA5eHuX375BQMGDAAANGnSBIqiYOLEiVizZg2aNm2K3Nxci/WOHDkSEyZMuOt2E9mUEJEmwsPD5cknnyxT3r9/f2ncuLH8/e9/l9OnT0tycrKIiACQ2NhYERHJysqStm3bSt++feXbb7+Vs2fPyqZNm+TgwYOSk5MjL730knTp0kXS0tIkLS1NcnJyyvSRnZ0tfn5+8pe//EVOnDghe/bskTZt2kh4eLhFjO7u7jJ16lRJTk6WL7/8UlxdXWXlypV33b4TJ04IADl37pxa9tNPPwkAOXPmjIiIrFy5Unx9fSUmJkYuXLggMTEx4unpKdHR0SIikpKSIgAkMTFRREQuXbokrq6u8vzzz0tycrLExsZKs2bNZOHCheo65s6dK02aNJHo6Gg5d+6cfPvtt7Jq1aoy/RUUFEhMTIwaT1pamty4cUNycnLEw8NDPv/8c7XP9PR0cXZ2lr179951u4lsya6TdHx8vDz++OPi6+tr8cuuoayP6lZ4eLg4ODhIo0aN1Ndf//pX6d+/v9x///1l2pvPgX/961/i5uYmv//+u9W+Fy5cKN27d6+wj5UrV0qTJk3k5s2bav327dvFYDDIlStX1BgDAgKkoKBAbTNq1Ch56qmnKrWN3bp1kzfffFP9vGDBAunZs6f62d/fX9avX2+xzFtvvSUhISEiUjZJv/zyy9KhQwcpKipS23/00UfSuHFjKSwslMzMTDEajWpSLq10f3FxcQJArl+/btFu2rRpMnToUPXz0qVLpW3bthbrJdIjuz7cnZ2dje7du2P58uUNcn1U9wYMGICkpCT19cEHHwAAgoODK1wuKSkJQUFB8PT0rPa6k5OT0b17dzRq1Egte/jhh1FUVIQzZ86oZV26dIGDg4P62dfXF1evXq3UOsaNG4d169YBAEQEGzZswLhx4wAA6enpSE1NxZQpU9C4cWP19fbbb+P8+fPlxhwSEgJFUSxivnnzJi5duoTk5GTk5uYiNDS08gNhxbPPPotdu3bh8uXLAG4fki++0I9Iz+z6wrGhQ4dWeGVsXl4eXn31Vaxbtw43btxAYGAglixZgkceeaRW1kf1X6NGjdCuXTur5RUxmUw1XreIlJt0zMudnJzK1BUVFVVqHX/7298wf/58HDt2DLdu3UJqairGjBkDAGofq1atQq9evSyWM/+j4G4xi4galxbjAgBBQUHo3r071qxZgyFDhuDEiRP48ssvNembqDbZ9Z703UyaNAkHDhzAxo0b8eOPP2LUqFEICwvD2bNnbR0aNTDdunVDUlIS/vjjD6v1zs7OKCwsrLCPzp07IykpCdnZ2WrZgQMHYDAYcN9992kSZ8uWLdGvXz+sW7cO69atw8CBA+Ht7Q0A8Pb2RosWLXDhwgW0a9fO4tWmTZtyYz548KCamAHg4MGDcHNzQ4sWLdC+fXuYTCbs2bOnUvE5OzsDgNWxeuaZZxAVFYXPPvsMAwcOhL+/f1U3n6jOMUmX4/z589iwYQM2b96Mvn374t5778WcOXPQp0+fMrfYENXU2LFj4ePjgxEjRuDAgQO4cOECYmJikJCQAABo3bo1UlJSkJSUhGvXrpW5Uhm4fSjaxcUF4eHh+OmnnxAXF4eZM2di/PjxaiLVwrhx47Bx40Zs3rwZTz/9tEXd66+/jsjISCxbtgw///wzTpw4gaioKLz//vtW+3r++eeRmpqKmTNn4vTp0/jiiy+wcOFCREREwGAwwMXFBfPmzcPcuXOxZs0anD9/HocOHcLq1aut9hcQEABFUfDVV18hPT3d4sr2cePG4fLly1i1ahUmT56s2XgQ1SYm6XIcO3YMIoL77rvP4vxafHy8en6t+PaPil4zZsyw8ZZQfeDs7Ixdu3bBy8sLw4YNQ9euXbF48WL1MPHIkSMRFhaGAQMGoHnz5tiwYUOZPlxdXfHf//4Xf/zxB3r27Im//vWvCA0N1fwaiFGjRuH3339HTk4ORowYYVH3zDPP4NNPP0V0dDS6du2K/v37Izo6utw96RYtWmDHjh04fPgwunfvjqlTp2LKlCl49dVX1Tb/+Mc/8NJLL+G1115Dp06d8NRTT5V7Dr1FixZ44403MH/+fHh7e1v8/Lm7u2PkyJFo3LhxmbiJ9EoR8+NMdkxRFMTGxqo/vJs2bcK4ceNw8uTJMufTGjduDB8fH+Tn55d7QUyxJk2aWN2LKb0+Iqp9gwYNQqdOndQL+oj0zq4vHKtIUFAQCgsLcfXqVfTt29dqGycnJ3Ts2LGOIyOiqvrjjz+wa9cu7N27l3dXUL1i10n65s2bFs9VLj7n5+npifvuuw/jxo3DhAkT8N577yEoKAjXrl3D3r170bVrVwwbNkzT9bVq1UqTbSKqrm+//bbCuw/Mz+/WNw888ACuX7+OJUuWoEOHDrYOh6jS7Ppw9759+9THCJoLDw9HdHQ08vPz8fbbb2PNmjW4fPkymjZtipCQELzxxhvo2rWr5usjsqVbt26p9xFbY+3WMiKqXXadpImIiPSMV3cTERHplN2dky4qKsJvv/0GNzc3PhKQiIg0JyLIysqCn58fDIaa7QvbXZL+7bff+KQhIiKqdampqWjZsmWN+rC7JO3m5nbnnQEA96SJiOobV+cAzfu8lD5fs74yM2+htf8LZvmm+uwuSZcc4lbAJE1EVP8oivaXU7m7u2repxanVHnhGBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREemU3T3MhIiI6pbRyVvT/vb01v47wUe4JWjWV77kadYX96SJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpPHCMiIpWjg7vmfU64Z6Sm/S0/oWl3AICvbn6sYW+iWU/ckyYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKT5xjIioHjMYXDXt7wHnJzXtDwAMirb9rf1Dy6eD6Rv3pImIiHSKSZqIiEinbJqkIyMj0bNnT7i5ucHLywsjRozAmTNnKlxm3759UBSlzOv06dN1FDUREVHdsGmSjo+Px/Tp03Ho0CHs3r0bBQUFGDx4MLKzs++67JkzZ5CWlqa+2rdvXwcRExER1R2bXji2c+dOi89RUVHw8vLC0aNH0a9fvwqX9fLywj333FOL0REREdmWrs5JZ2RkAAA8PT3v2jYoKAi+vr4IDQ1FXFxcue1yc3ORmZlp8SIiIqoPdJOkRQQRERHo06cPAgMDy23n6+uLlStXIiYmBlu2bEGHDh0QGhqK/fv3W20fGRkJDw8P9eXv719bm0BERKQpRUTE1kEAwPTp07F9+3Z89913aNmyZZWWHT58OBRFwbZt28rU5ebmIjc3V/2cmZl5J1E7AND45j0iojqm9X3SwcaRmvYHAEFubpr296+rer9PWgAUIiMjA+7u7jXqSRd70jNnzsS2bdsQFxdX5QQNAL1798bZs2et1hmNRri7u1u8iIiI6gObXjgmIpg5cyZiY2Oxb98+tGnTplr9JCYmwtfXV+PoiIiIbMumSXr69OlYv349vvjiC7i5ueHKlSsAAA8PD5hMJgDAggULcPnyZaxZswYAsHTpUrRu3RpdunRBXl4e1q5di5iYGMTExNhsO4iIKsNgcNG8T1/XHpr2d6+jtoemgfpweFq/bJqkV6xYAQB45JFHLMqjoqIwceJEAEBaWhouXryo1uXl5WHOnDm4fPkyTCYTunTpgu3bt2PYsGF1FTYREVGd0M2FY3UlMzMTHh4e4IVjRFTXamdPuqem/fVz7KppfwCw4Ya97Uk3sAvHiIiIqCwmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0imbPsyEiEjPDIqzpv25G6v36OOKdJNOmva3MWOlpv1RzXBPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEin+MQxImoQFEX7fQ6Ts5+m/QUo3TTtDwB2/7lR0/5ECjTtj2qGe9JEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFN8LCgR2YTWj/F0cfLVtD8AaObUTtP+Tt76WtP+AKCgMFPzPkk/uCdNRESkU0zSREREOsUkTUREpFNVTtKzZs3CBx98UKZ8+fLlmD17thYxEREREaqRpGNiYvDwww+XKX/ooYfwn//8R5OgiIiIqBpJ+vfff4eHh0eZcnd3d1y7dk2ToIiIiKgaSbpdu3bYuXNnmfKvv/4abdu21SQoIiIiqsZ90hEREZgxYwbS09Px6KOPAgD27NmD9957D0uXLtU6PiIiIrtV5SQ9efJk5ObmYtGiRXjrrbcAAK1bt8aKFSswYcIEzQMkIiKyV4qISHUXTk9Ph8lkQuPGjbWMqVZlZmbeOafuAECxdThE9YJSCz8rLs5+mvbn5KD976E/8//QtL+8gnRN+yO9EgCFyMjIgLu7e416qtFjQZs3b16jlRMREVH5KpWkH3jgAezZswdNmjRBUFAQFKX8v6qPHTumWXBERET2rFJJ+sknn4TRaAQAjBgxQrOVR0ZGYsuWLTh9+jRMJhMeeughLFmyBB06dKhwufj4eERERODkyZPw8/PD3LlzMXXqVM3iIiIi0oMqnZMuLCzEd999h27duqFJkyY1XnlYWBjGjBmDnj17oqCgAK+88gpOnDiBU6dOoVGjRlaXSUlJQWBgIJ599lk899xzOHDgAJ5//nls2LABI0eOvOs6eU6aqOp4TlobPCdtL7Q7J13lC8dcXFyQnJyMNm3a1GjF1qSnp8PLywvx8fHo16+f1Tbz5s3Dtm3bkJycrJZNnToVx48fR0JCQpn2ubm5yM3NVT9nZmbC398fTNJElcckrQ0maXuhXZKu8sNMunbtigsXLtRopeXJyMgAAHh6epbbJiEhAYMHD7YoGzJkCI4cOYL8/Pwy7SMjI+Hh4aG+bidoIiIi/atykl60aBHmzJmDr776CmlpacjMzLR4VZeIICIiAn369EFgYGC57a5cuQJvb2+LMm9vbxQUFFh9LOmCBQuQkZGhvlJTU6sdIxERUV2q8i1YYWFhAIAnnnjC4ipvEYGiKCgsLKxWIDNmzMCPP/6I77777q5tS19dXnzE3tpV50ajUb3ojYiIqD6pcpKOi4vTPIiZM2di27Zt2L9/P1q2bFlhWx8fH1y5csWi7OrVq3B0dETTpk01j42IiMhWqpyk+/fvr9nKRQQzZ85EbGws9u3bV6mL0UJCQvDll19alO3atQvBwcFwcnLSLDai+kzrC70cHcu/TqS6DIq2P6+38rX/Fr78gt8175OoKqr1xLEbN25g9erVSE5OhqIo6Ny5MyZPnmz1KywrMn36dKxfvx5ffPEF3Nzc1D1kDw8PmEwmALfPKV++fBlr1qwBcPtK7uXLlyMiIgLPPvssEhISsHr1amzYsKE6m0JERKRbVb4F68iRIxgyZAhMJhMefPBBiAiOHDmCW7duYdeuXXjggQcqv/JynlwWFRWFiRMnAgAmTpyIX375Bfv27VPr4+Pj8eKLL6oPM5k3b16lH2bC+6TJHtSHPWlnBzdN+8srzNK0P4B70lRdNrxPum/fvmjXrh1WrVoFR8fbO+IFBQV45plncOHCBezfv79GAdU2JmmyB0zS2mCSpuqxYZI2mUxITExEx44dLcpPnTqF4OBg5OTk1Cig2sYkTfaASVobTNJUPTZ8mIm7uzsuXrxYpjw1NRVubtr+0BEREdmzKifpp556ClOmTMGmTZuQmpqKS5cuYePGjXjmmWcwduzY2oiRiIjILlX56u53330XiqJgwoQJKCgoAAA4OTlh2rRpWLx4seYBEhER2asqn5MulpOTg/Pnz0NE0K5dO7i6umodW63gOWmyBzwnrQ2ek6bqseE56cmTJyMrKwuurq7o2rUrunXrBldXV2RnZ2Py5Mk1CoaIiIhKVHlP2sHBAWlpafDy8rIov3btGnx8fNRD4HrFPWmyB9yT1gb3pKl6tNuTrvQ56czMTIgIRARZWVlwcXFR6woLC7Fjx44yiZuI7k5RqnxA664cDNp+t7JS9YNud5VboO13NRcUVv9b+Ij0qtJJ+p577oGiKFAUBffdd1+ZekVR8MYbb2gaHBERkT2rdJKOi4uDiODRRx9FTEwMPD1LDn85OzsjICAAfn5+tRIkERGRPap0ki7+9quUlBT4+/vDYND+8BcRERGVqPJ90gEBAQBu34J18eJF5OXlWdR369ZNm8iIiIjsXJWTdHp6OiZNmoSvv/7aan1hYWGNgyIiIqJq3Cc9e/ZsXL9+HYcOHYLJZMLOnTvxf//3f2jfvj22bdtWGzESERHZpSrvSe/duxdffPEFevbsCYPBgICAAAwaNAju7u6IjIzEY489VhtxEhER2Z0q70lnZ2er90N7enoiPT0dANC1a1ccO3ZM2+iIiIjsWJWTdIcOHXDmzBkAwP33349//etfuHz5Mj755BP4+vpqHiAREZG9qvLh7tmzZyMtLQ0AsHDhQgwZMgTr1q2Ds7MzoqOjtY6PSHe0fuSmg6Fmjw20xqA4adpfQVG2pv0BQFFRjuZ9EjU01f4WrGI5OTk4ffo0WrVqhWbNmmkVV63hs7uppjRP0g4emvYHMEkT2ZYNvwWrWF5eHs6cOQNnZ2c88MAD9SJBExER1SdVTtI5OTmYMmUKXF1d0aVLF1y8eBEAMGvWLCxevFjzAImIiOxVlZP0ggULcPz4cezbt8/im7AGDhyITZs2aRocERGRPavyhWNbt27Fpk2b0Lt3byhKybm5zp074/z585oGR0REZM+qvCednp5u9Xujs7OzLZI2ERER1UyVk3TPnj2xfft29XNxYl61ahVCQkK0i4yIiMjOVflwd2RkJMLCwnDq1CkUFBRg2bJlOHnyJBISEhAfH18bMRIREdmlKu9JP/TQQzhw4ABycnJw7733YteuXfD29kZCQgJ69OhRGzESERHZpRo/zKS+4cNM7IuiVPtRAOUyKK6a9ico0rS/27Tts6joT037I2rYtHuYSaUOd2dmZla6w5oGRERERLdVKknfc889d71yW0SgKAoKCws1CYyIiMjeVSpJx8XFVaqzxMTEGgVDREREJWp8TjojIwPr1q3Dp59+iuPHj+t+T5rnpO0Lz0lr1BvPSRNVgQ6+YGPv3r14+umn4evriw8//BDDhg3DkSNHahQMERERlajSfdKXLl1CdHQ0PvvsM2RnZ2P06NHIz89HTEwMOnfuXFsxEhER2aVK70kPGzYMnTt3xqlTp/Dhhx/it99+w4cfflibsREREdm1Su9J79q1C7NmzcK0adPQvn372oyJiIiIUIU96W+//RZZWVkIDg5Gr169sHz5cqSnp9dmbERERHat0kk6JCQEq1atQlpaGp577jls3LgRLVq0QFFREXbv3o2srKzajJOIiMju1OgWrDNnzmD16tX497//jRs3bmDQoEHYtm2blvFpjrdg6Zui8f8TRXHStL/bnVb5e2nuQvtbsHjLFJEt6eAWLADo0KED/vd//xeXLl3Chg0bahQIERERWdLkSQ8ODg4YMWJElfei9+/fj+HDh8PPzw+KomDr1q0Vtt+3bx8URSnzOn36dA2iJyIi0ietj9tVSXZ2Nrp3745JkyZh5MiRlV7uzJkzFocQmjdvXhvhERER2ZRNk/TQoUMxdOjQKi/n5eWFe+65p1Jtc3NzkZubq36uyjd6ERER2ZL2DzauA0FBQfD19UVoaOhdv/wjMjISHh4e6svf37+OoiQiIqqZepWkfX19sXLlSsTExGDLli3o0KEDQkNDsX///nKXWbBgATIyMtRXampqHUZMRERUfTY93F1VHTp0QIcOHdTPISEhSE1Nxbvvvot+/fpZXcZoNMJoNNZViERERJqpV3vS1vTu3Rtnz561dRhERESaq/dJOjExEb6+vrYOg4iISHM2Pdx98+ZNnDt3Tv2ckpKCpKQkeHp6olWrVliwYAEuX76MNWvWAACWLl2K1q1bo0uXLsjLy8PatWsRExODmJgYW22CXVMU7f/GU7Sekpo/HQwQydO4vwJN+yOihsOmSfrIkSMYMGCA+jkiIgIAEB4ejujoaKSlpeHixYtqfV5eHubMmYPLly/DZDKhS5cu2L59O4YNG1bnsRMREdW2Gj27uz7is7u1wz1prfrjnjRRw6KTZ3cTERFR7WGSJiIi0ikmaSIiIp1ikiYiItIpJmkiIiKdYpImIiLSKSZpIiIinapXX7BBNaNofF+45vc0A4DG915rfU/z7T55XzMR1Q3uSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTvGxoDql9SM8AUAxmLTtsBYej6n1YzxFijTtj4ioLnFPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEin+MQxjWj+hDBF+yeOAdo+fUtQG08c4xPCiIiKcU+aiIhIp5ikiYiIdIpJmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKfs+IljBiiaPtVL/3/vSFGutv1BNO2PiIgs6T+zEBER2SmbJun9+/dj+PDh8PPzg6Io2Lp1612XiY+PR48ePeDi4oK2bdvik08+qf1AiYiIbMCmSTo7Oxvdu3fH8uXLK9U+JSUFw4YNQ9++fZGYmIiXX34Zs2bNQkxMTC1HSkREVPcUEdHFiUVFURAbG4sRI0aU22bevHnYtm0bkpOT1bKpU6fi+PHjSEhIqNR6MjMz4eHhAcDJ7s5JQwq17Y7npImIrBAAhcjIyIC7u3uNeqoHmaVEQkICBg8ebFE2ZMgQHDlyBPn5+VaXyc3NRWZmpsWLiIioPqhXSfrKlSvw9va2KPP29kZBQQGuXbtmdZnIyEh4eHioL39//7oIlYiIqMbqVZIGUOYQdfHR+vIOXS9YsAAZGRnqKzU1tdZjJCIi0kK9uk/ax8cHV65csSi7evUqHB0d0bRpU6vLGI1GGI3GugiPiIhIU/VqTzokJAS7d++2KNu1axeCg4Ph5ORko6iIiIhqh02T9M2bN5GUlISkpCQAt2+xSkpKwsWLFwHcPlQ9YcIEtf3UqVPx66+/IiIiAsnJyfjss8+wevVqzJkzxxbhExER1SqbHu4+cuQIBgwYoH6OiIgAAISHhyM6OhppaWlqwgaANm3aYMeOHXjxxRfx0Ucfwc/PDx988AFGjhxZ57GXVaRtd7VwZxxvmSIiql90c590Xam9+6Q1xiRNRFRP2el90kRERPaESZqIiEinmKSJiIh0ikmaiIhIp5ikiYiIdIpJmoiISKeYpImIiHSqXj27Wwslt4VLbdyKrKHaCE7XG0xE1EDc/l2rxWNI7C5JZ2Vl3XlXYNM4iIioYcvKyrrz8Kzqs7snjhUVFeG3336Dm5ubZk8cy8zMhL+/P1JTU2v8dBlbqM/xM3bbqc/xM3bbqc/xVzZ2EUFWVhb8/PxgMNTsrLLd7UkbDAa0bNmyVvp2d3evd5POXH2On7HbTn2On7HbTn2OvzKx13QPuhgvHCMiItIpJmkiIiKdYpLWgNFoxMKFC2E0Gm0dSrXU5/gZu+3U5/gZu+3U5/htEbvdXThGRERUX3BPmoiISKeYpImIiHSKSZqIiEinmKSJiIh0ikmaiIhIp5ikS9m/fz+GDx8OPz8/KIqCrVu3Vth+y5YtGDRoEJo3bw53d3eEhITgv//9r0Wb6OhoKIpS5vXnn3/aPP59+/ZZje306dMW7WJiYtC5c2cYjUZ07twZsbGxNo994sSJVmPv0qWL2qauxj4yMhI9e/aEm5sbvLy8MGLECJw5c+auy8XHx6NHjx5wcXFB27Zt8cknn5RpU9tjX53Y9TLvqxO7nuZ8deLXy7xfsWIFunXrpj59KyQkBF9//XWFy+hhvlcndlvOdybpUrKzs9G9e3csX768Uu3379+PQYMGYceOHTh69CgGDBiA4cOHIzEx0aKdu7s70tLSLF4uLi42j7/YmTNnLGJr3769WpeQkICnnnoK48ePx/HjxzF+/HiMHj0a33//vU1jX7ZsmUXMqamp8PT0xKhRoyza1cXYx8fHY/r06Th06BB2796NgoICDB48GNnZ2eUuk5KSgmHDhqFv375ITEzEyy+/jFmzZiEmJkZtUxdjX53Y9TLvqxN7MT3M+erEr5d537JlSyxevBhHjhzBkSNH8Oijj+LJJ5/EyZMnrbbXy3yvTuw2ne9C5QIgsbGxVV6uc+fO8sYbb6ifo6KixMPDQ7vAKqky8cfFxQkAuX79erltRo8eLWFhYRZlQ4YMkTFjxmgQpXXVGfvY2FhRFEV++eUXtcxWY3/16lUBIPHx8eW2mTt3rnTs2NGi7LnnnpPevXurn20x9pWJ3Ro9zPvKxK7XOS9SvbHX07xv0qSJfPrpp1br9Drfi1UUuzV1Nd+5J62xoqIiZGVlwdPT06L85s2bCAgIQMuWLfH444+X+QvM1oKCguDr64vQ0FDExcVZ1CUkJGDw4MEWZUOGDMHBgwfrMsS7Wr16NQYOHIiAgACLcluMfUZGBgCUmQfmyhvXI0eOID8/v8I2tTn2lYm9NL3M+6rErsc5X52x18O8LywsxMaNG5GdnY2QkBCrbfQ63ysTe2l1Od+ZpDX23nvvITs7G6NHj1bLOnbsiOjoaGzbtg0bNmyAi4sLHn74YZw9e9aGkd7m6+uLlStXIiYmBlu2bEGHDh0QGhqK/fv3q22uXLkCb29vi+W8vb1x5cqVug63XGlpafj666/xzDPPWJTbYuxFBBEREejTpw8CAwPLbVfeuBYUFODatWsVtqmtsa9s7KXpYd5XNna9zvnqjL2t5/2JEyfQuHFjGI1GTJ06FbGxsejcubPVtnqb71WJvbQ6ne+a75s3IKjiIdf169eLq6ur7N69u8J2hYWF0r17d5k5c2YNI6xYVeMv9vjjj8vw4cPVz05OTrJ+/XqLNmvXrhWj0VjTEMtV1djfeecdadq0qeTm5lbYri7G/vnnn5eAgABJTU2tsF379u3lnXfesSj77rvvBICkpaWJSN2PfWVjN6eXeV+d2IvpYc5XJ35bz/vc3Fw5e/as/PDDDzJ//nxp1qyZnDx50mpbvc33qsRurq7nO/ekNbJp0yZMmTIFn3/+OQYOHFhhW4PBgJ49e+piT9qa3r17W8Tm4+NT5i/Zq1evlvmL11ZEBJ999hnGjx8PZ2fnCtvW9tjPnDkT27ZtQ1xc3F2/t7y8cXV0dETTpk0rbFMbY1+V2IvpZd5XJ3Zztp7z1YlfD/Pe2dkZ7dq1Q3BwMCIjI9G9e3csW7bMalu9zfeqxF7MFvOdSVoDGzZswMSJE7F+/Xo89thjd20vIkhKSoKvr28dRFd1iYmJFrGFhIRg9+7dFm127dqFhx56qK5Dsyo+Ph7nzp3DlClT7tq2tsZeRDBjxgxs2bIFe/fuRZs2be66THnjGhwcDCcnpwrbaDn21Ykd0Me8r27spdlqztckfj3Me2vryc3NtVqnl/lenopiB2w432u0H94AZWVlSWJioiQmJgoAef/99yUxMVF+/fVXERGZP3++jB8/Xm2/fv16cXR0lI8++kjS0tLU140bN9Q2r7/+uuzcuVPOnz8viYmJMmnSJHF0dJTvv//e5vH/85//lNjYWPn555/lp59+kvnz5wsAiYmJUdscOHBAHBwcZPHixZKcnCyLFy8WR0dHOXTokE1jL/b0009Lr169rPZZV2M/bdo08fDwkH379lnMg5ycHLVN6fgvXLggrq6u8uKLL8qpU6dk9erV4uTkJP/5z3/UNnUx9tWJXS/zvjqx62nOVyf+Yrae9wsWLJD9+/dLSkqK/Pjjj/Lyyy+LwWCQXbt2WY1bL/O9OrHbcr4zSZdSfHtG6Vd4eLiIiISHh0v//v3V9v3796+wvYjI7NmzpVWrVuLs7CzNmzeXwYMHy8GDB3UR/5IlS+Tee+8VFxcXadKkifTp00e2b99ept/NmzdLhw4dxMnJSTp27GjxC81WsYuI3LhxQ0wmk6xcudJqn3U19tbiBiBRUVFqG2vx79u3T4KCgsTZ2Vlat24tK1asKNN3bY99dWLXy7yvTux6mvPVnTd6mPeTJ0+WgIAAdR2hoaFqkisvbj3M9+rEbsv5zu+TJiIi0imekyYiItIpJmkiIiKdYpImIiLSKSZpIiIinWKSJiIi0ikmaSIiIp1ikiYiItIpJmkiO/DLL79AURQkJSXZOpQyJk6ciBEjRtg6DKrn9u/fj+HDh8PPzw+KomDr1q0NYn1M0kT1wMSJE6EoSplXWFhYpZb39/dHWlpapb4Csa4T+rJlyxAdHV0n66KGKzs7G927d8fy5csb1Poca7V3ItJMWFgYoqKiLMqMRmOllnVwcICPj09thFVjHh4etg6BGoChQ4di6NCh5dbn5eXh1Vdfxbp163Djxg0EBgZiyZIleOSRR2plfVrhnjRRPWE0GuHj42PxatKkCQBAURSsWLECQ4cOhclkQps2bbB582Z12dJ7x9evX8e4cePQvHlzmEwmtG/fXv0DoPibmIKCgqAoisUvsaioKHTq1AkuLi7o2LEjPv744zLr+Pzzz9G3b1+YTCb07NkTP//8M3744QcEBwejcePGCAsLQ3p6urpc6cPdRUVFWLJkCdq1awej0YhWrVph0aJFWg8n2ZlJkybhwIED2LhxI3788UeMGjUKYWFhuv3K4GLckyZqIP7xj39g8eLFWLZsGf79739j7NixCAwMRKdOnay2PXXqFL7++ms0a9YM586dw61btwAAhw8fxoMPPohvvvkGXbp0Ub+reNWqVVi4cCGWL1+OoKAgJCYm4tlnn0WjRo0QHh6u9r1w4UIsXboUrVq1wuTJkzF27Fi4u7tj2bJlcHV1xejRo/Haa69hxYoVVrdjwYIFWLVqFf75z3+iT58+SEtLw+nTp2thxMhenD9/Hhs2bMClS5fg5+cHAJgzZw527tyJqKgovPPOOzaOsAI1/ooOIqp14eHh4uDgII0aNbJ4vfnmmyJy+9uUpk6darFMr169ZNq0aSIikpKSIgAkMTFRRESGDx8ukyZNsrqu0m2L+fv7y/r16y3K3nrrLQkJCbFY7tNPP1XrN2zYIABkz549allkZKR06NDBYtuefPJJERHJzMwUo9Eoq1atquTIEJUFQGJjY9XPn3/+uQAo8/Pj6Ogoo0ePFpGS+VvRa/r06ZVan5a4J01UTwwYMKDM3qenp6f6PiQkxKIuJCSk3Iu/pk2bhpEjR+LYsWMYPHgwRowYgYceeqjcdaenpyM1NRVTpkzBs88+q5YXFBSUOafcrVs39b23tzcAoGvXrhZlV69etbqe5ORk5ObmIjQ0tNxYiKqqqKgIDg4OOHr0KBwcHCzqGjduDABo0aIFkpOTK+yn+PRSXWKSJqonGjVqhHbt2lVpGUVRrJYPHToUv/76K7Zv345vvvkGoaGhmD59Ot59912r7YuKigDcPuTdq1cvi7rSv/ScnJzKrL90WXF/pZlMprtsEVHVBQUFobCwEFevXkXfvn2ttnFyckLHjh3rOLK744VjRA3EoUOHynyu6JdO8+bNMXHiRKxduxZLly7FypUrAUA9B11YWKi29fb2RosWLXDhwgW0a9fO4lV8oZkW2rdvD5PJhD179mjWJ9mHmzdvIikpST16lJKSgqSkJFy8eBH33Xcfxo0bhwkTJmDLli1ISUnBDz/8gCVLlmDHjh2ar09L3JMmqidyc3Nx5coVizJHR0c0a9YMALB582YEBwejT58+WLduHQ4fPozVq1db7eu1115Djx490KVLF+Tm5uKrr75SLzDz8vKCyWTCzp070bJlS7i4uMDDwwOvv/46Zs2aBXd3dwwdOhS5ubk4cuQIrl+/joiICE220cXFBfPmzcPcuXPh7OyMhx9+GOnp6Th58iSmTJmiyTqoYTpy5AgGDBigfi6ek+Hh4YiOjkZUVBTefvttvPTSS7h8+TKaNm2KkJAQDBs2rFbWp5laOdNNRJoKDw+3eiFL8QVYAOSjjz6SQYMGidFolICAANmwYYO6fOmLwd566y3p1KmTmEwm8fT0lCeffFIuXLigtl+1apX4+/uLwWCQ/v37q+Xr1q2T+++/X5ydnaVJkybSr18/2bJli9V1iIjExcUJALl+/bpaFhUVJR4eHhbbVnzhmIhIYWGhvP322xIQECBOTk7SqlUreeedd2o+iET1kCIiol3KJyJbUBQFsbGxfLwmUQPDc9JEREQ6xSRNRESkU7xwjKgB4FkrooaJe9JEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFNM0kRERDrFJE1ERKRTTNJEREQ6xSRNRESkU3b5VZV//vkn8vLybB0GERE1UM7OznBxcalxP3aXpP/880+YTCZbh0FERA2Yj48PUlJSapyo7S5Jl+xBOwBQ7rxXUHzkX4EBUIrPApSUKWqZAkVxKGkLQFEMlu/L1CtQ4KDWG9RyhzL9Kyjpy2BWb4D5++K2DneiVCzK1OXFUGYZAwxqeckWGWC4MxYGMUC58774X8OdqIrLDEpJeXE/altFKRlVxaze7L1BUUfyzjIl/ycMillcSsm/aj3K1t9tefN6xVp9BX2VqYeoDQxmZZZ9ifr+djux6FOB3Nn+4jiknLZS6Xq1T8Ws/E6ZoVSZOv5mcarvFQHUcvP1m703W29JnxXUK1LqvZX4zdavWFneoBRZ7ev2QubrLCqpN6DsMgaBYtZXhfUGs/UYSvoveY+SdubxGYrjsl5mvq7SZVDE7NePWZzmbQ0lbYu336KseLvVMphNRqgTt2Q9itkPpVJSoU5ww+1X6bZqmQFS/F5xsCgvU2/R1+3fX6IYbi93p0zU/u/UGxzKeV+yTjEUL+9oVu9Ysn7F0aze0bIeDmoZDI5QzNsCtz/fKVMMjiW/t++UGRTLMoPBgMzMW2jt/wLy8vKYpGtCTSeKApgnJkX99amWKWqZZUK9vXjpJG2t3sFKW7PEqy5jlmQrnaQty8wTcullDBbvFbN6xay+Zkm6JAlWJ0mbLw8r9TVL0lbrLdpaJtQy9eYJubpJulS9FknaUKUkbZnkSifpknLribc6Sbq8hGytrEySNlScpJVyk3R5SVipcn1JYlYsy4vbmf9BoCZU62Vlk7TlHxwl5XfisEiyCsz2F0qWt0jCd6rN21U2SRvMfv+Zl1m8r2wSNq93sFJvlqQN5km6VH25Sdp8mYqStEPFSVopKbNM0k63q8skabPkDWtJ+k4sGuGFY0RERDrFJE1ERKRTTNJEREQ6xSRNRESkU0zSREREOsUkTUREpFN2fQuW3LnF5PY/gpIP5u9LlxWh5N6H8pSuF4v3YvH5dlmReu+soOQmpOIyQ6n3BrVtyfqKy4pQfMOOmN0nrZbBoJaXLG1A8Y09IgYU3e0WLLNyoNQtWDC7T9pqvdmtRxb1sFJf8q9aL2b1vE9ared90g3xPumy6y9zT7S1srveJ11cX7bs9g+b5S1kt3/ozMrubJd5n2L+Q2Xeb+n60n0BEKXkZ+p226KStgDEbBnL93faKUWWy9x5L+p6CiFKcX2RWf2dMhQChkK1raKUvL+9SdW7T1ordpekRQSNGzfGzZs3rder/6m4jIiIqDw+Pj5wdnaucT92l6QVRcHNmzeRmpoKd3d3W4djU5mZmfD39+dYgGNhjmNxG8ehBMeiRGXHgs/uriF3d3e7n2zFOBYlOBYlOBa3cRxKcCxK1NVY8MIxIiIinWKSJiIi0im7S9JGoxELFy6E0Wi0dSg2x7EowbEowbG4jeNQgmNRoq7HQhERXrdMRESkQ3a3J01ERFRfMEkTERHpFJM0ERGRTjFJExER6RSTNBERkU7ZXZL++OOP0aZNG7i4uKBHjx749ttvbR2SpiIjI9GzZ0+4ubnBy8sLI0aMwJkzZyzaiAhef/11+Pn5wWQy4ZFHHsHJkyct2uTm5mLmzJlo1qwZGjVqhCeeeAKXLl2qy03RVGRkJBRFwezZs9UyexqHy5cv4+mnn0bTpk3h6uqK+++/H0ePHlXr7WUsCgoK8Oqrr6JNmzYwmUxo27Yt3nzzTRQVFaltGupY7N+/H8OHD4efnx8URcHWrVst6rXa7uvXr2P8+PHw8PCAh4cHxo8fjxs3btTy1lVNRWORn5+PefPmoWvXrmjUqBH8/PwwYcIE/PbbbxZ91NlYiB3ZuHGjODk5yapVq+TUqVPywgsvSKNGjeTXX3+1dWiaGTJkiERFRclPP/0kSUlJ8thjj0mrVq3k5s2bapvFixeLm5ubxMTEyIkTJ+Spp54SX19fyczMVNtMnTpVWrRoIbt375Zjx47JgAEDpHv37lJQUGCLzaqRw4cPS+vWraVbt27ywgsvqOX2Mg5//PGHBAQEyMSJE+X777+XlJQU+eabb+TcuXNqG3sZi7fffluaNm0qX331laSkpMjmzZulcePGsnTpUrVNQx2LHTt2yCuvvCIxMTECQGJjYy3qtdrusLAwCQwMlIMHD8rBgwclMDBQHn/88brazEqpaCxu3LghAwcOlE2bNsnp06clISFBevXqJT169LDoo67Gwq6S9IMPPihTp061KOvYsaPMnz/fRhHVvqtXrwoAiY+PFxGRoqIi8fHxkcWLF6tt/vzzT/Hw8JBPPvlERG5PUicnJ9m4caPa5vLly2IwGGTnzp11uwE1lJWVJe3bt5fdu3dL//791SRtT+Mwb9486dOnT7n19jQWjz32mEyePNmi7C9/+Ys8/fTTImI/Y1E6MWm13adOnRIAcujQIbVNQkKCAJDTp0/X8lZVj7U/WEo7fPiwAFB36OpyLOzmcHdeXh6OHj2KwYMHW5QPHjwYBw8etFFUtS8jIwMA4OnpCQBISUnBlStXLMbBaDSif//+6jgcPXoU+fn5Fm38/PwQGBhY78Zq+vTpeOyxxzBw4ECLcnsah23btiE4OBijRo2Cl5cXgoKCsGrVKrXensaiT58+2LNnD37++WcAwPHjx/Hdd99h2LBhAOxrLMxptd0JCQnw8PBAr1691Da9e/eGh4dHvR0b4PbvUUVRcM899wCo27Gwm2/BunbtGgoLC+Ht7W1R7u3tjStXrtgoqtolIoiIiECfPn0QGBgIAOq2WhuHX3/9VW3j7OyMJk2alGlTn8Zq48aNOHbsGH744YcydfY0DhcuXMCKFSsQERGBl19+GYcPH8asWbNgNBoxYcIEuxqLefPmISMjAx07doSDgwMKCwuxaNEijB07FoB9zQtzWm33lStX4OXlVaZ/Ly+vejs2f/75J+bPn4+//e1v6rde1eVY2E2SLqYoisVnESlT1lDMmDEDP/74I7777rsyddUZh/o0VqmpqXjhhRewa9euCr/TtaGPAwAUFRUhODgY77zzDgAgKCgIJ0+exIoVKzBhwgS1nT2MxaZNm7B27VqsX78eXbp0QVJSEmbPng0/Pz+Eh4er7exhLKzRYrutta+vY5Ofn48xY8agqKgIH3/88V3b18ZY2M3h7mbNmsHBwaHMXzBXr14t89djQzBz5kxs27YNcXFxaNmypVru4+MDABWOg4+PD/Ly8nD9+vVy2+jd0aNHcfXqVfTo0QOOjo5wdHREfHw8PvjgAzg6Oqrb0dDHAQB8fX3RuXNni7JOnTrh4sWLAOxnTgDA3//+d8yfPx9jxoxB165dMX78eLz44ouIjIwEYF9jYU6r7fbx8cH/+3//r0z/6enp9W5s8vPzMXr0aKSkpGD37t0W3x1dl2NhN0na2dkZPXr0wO7duy3Kd+/ejYceeshGUWlPRDBjxgxs2bIFe/fuRZs2bSzq27RpAx8fH4txyMvLQ3x8vDoOPXr0gJOTk0WbtLQ0/PTTT/VmrEJDQ3HixAkkJSWpr+DgYIwbNw5JSUlo27atXYwDADz88MNlbsP7+eefERAQAMB+5gQA5OTkwGCw/LXn4OCg3oJlT2NhTqvtDgkJQUZGBg4fPqy2+f7775GRkVGvxqY4QZ89exbffPMNmjZtalFfp2NR6UvMGoDiW7BWr14tp06dktmzZ0ujRo3kl19+sXVompk2bZp4eHjIvn37JC0tTX3l5OSobRYvXiweHh6yZcsWOXHihIwdO9bqrRYtW7aUb775Ro4dOyaPPvqo7m8xuRvzq7tF7GccDh8+LI6OjrJo0SI5e/asrFu3TlxdXWXt2rVqG3sZi/DwcGnRooV6C9aWLVukWbNmMnfuXLVNQx2LrKwsSUxMlMTERAEg77//viQmJqpXLGu13WFhYdKtWzdJSEiQhIQE6dq1q+5uwapoLPLz8+WJJ56Qli1bSlJSksXv0dzcXLWPuhoLu0rSIiIfffSRBAQEiLOzszzwwAPqrUkNBQCrr6ioKLVNUVGRLFy4UHx8fMRoNEq/fv3kxIkTFv3cunVLZsyYIZ6enmIymeTxxx+Xixcv1vHWaKt0krancfjyyy8lMDBQjEajdOzYUVauXGlRby9jkZmZKS+88IK0atVKXFxcpG3btvLKK69Y/PJtqGMRFxdn9XdDeHi4iGi33b///ruMGzdO3NzcxM3NTcaNGyfXr1+vo62snIrGIiUlpdzfo3FxcWofdTUW/D5pIiIinbKbc9JERET1DZM0ERGRTjFJExER6RSTNBERkU4xSRMREekUkzQREZFOMUkTERHpFJM0ERGRTjFJExER6RSTNBERkU4xSRMREenU/wd6Vm7bbYzOFAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1fX4//dsL9pd9d7lIvciFwyYjokhdAgklEBs8nMgAezkm0BogSQ4BYjDB0xJqIEQSCAJxQEbSCi2wQ0b9ypZva3KStq+O78/hAVCcpEsaVTOi2eeRDN3Zs7Iq92dM/eeq6iqqiKEEEIIIYQQQggxjOi0DkAIIYQQQgghhBCir0nCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhBBCCCGEEMOOJDyEEEIIIYQQQggx7EjCQwghhNCQoij861//0vwYA6mkpARFUdi8efOgPJ4QQgghhgdJeAghhBB96LrrrkNRlC7Lvn37um1fVVXF/Pnzj+nYv/jFL5g6depxHWM4ysrKoqqqiokTJwLwv//9D0VRaGpq0jYwIYQQQmjKoHUAQgghxHDzjW98g2eeeabTuqSkpE4/B4NBTCYTqampx32+vjjGUKbX60f870AIIYQQXUkPDyGEEKKPmc1mUlNTOy1nnnkmP/zhD1myZAmJiYmcffbZQNfhKOXl5Vx55ZXEx8djt9uZMWMGn376Kc8++yz33nsvW7Zs6eg18uyzz3Z7jK1bt3LGGWdgtVpJSEjg+9//Pq2trR3br7vuOi666CIeeOAB0tLSSEhI4KabbiIUCh312m6//XZOOOGELusnT57MPffc0/HzM888w7hx47BYLBQWFrJ8+fIjHveDDz5g1qxZmM1m0tLSuO222wiHwx3bo9Eov/3tbxk1ahRms5ns7Gx+/etfA52HtJSUlHD66acDEBcXh6IoXHfddTz//PMkJCQQCAQ6nffSSy/l2muvPep1CyGEEGLokR4eQgghxAB57rnn+MEPfsDq1atRVbXL9tbWVk499VQyMjJ4/fXXSU1NZdOmTUSjUa644gq2bdvG22+/zbvvvguAy+Xqcgyv18s3vvENTjjhBNavX09tbS0LFy7khz/8YUeCBOC///0vaWlp/Pe//2Xfvn1cccUVTJ06lRtuuOGI13DVVVfxm9/8hv3791NQUADA9u3b2bp1K//4xz8A+NOf/sQ999zDI488wrRp0/jss8+44YYbsNvtfPe73+1yzIqKCs4999yOxMSuXbu44YYbsFgs/OIXvwDaEy1/+tOf+MMf/sDJJ59MVVUVu3bt6nKsrKwsXn31VS699FJ2796N0+nEarViMpm4+eabef3117n88ssBqK+v58033+Ttt98+4jULIYQQYmiShIcQQgjRx958801iYmI6fj5UX2PUqFH87ne/O+x+f/3rX6mrq2P9+vXEx8d37HNITEwMBoPhiMM3XnzxRXw+H88//zx2ux2ARx55hPPPP5/f/va3pKSkAO29Hx555BH0ej2FhYWcd955vPfee0dNeEycOJHJkyfz17/+lbvuuqvjnDNnzmTMmDEA/PKXv+TBBx/kkksuASAvL48dO3bwxBNPdJvwWL58OVlZWTzyyCMoikJhYSGVlZX87Gc/4+6776atrY0//vGPPPLIIx37FxQUcPLJJ3c5ll6v7/jdJScnExsb27HtO9/5Ds8880xHwuPFF18kMzOT00477YjXLIQQQmjJ7/cTDAZ7ta/JZMJisfRxREOHJDyEEEKIPnb66afz2GOPdfxst9v59re/zYwZM4643+bNm5k2bVrHDXtv7Ny5kylTpnQkOwBOOukkotEou3fv7kh4TJgwAb1e39EmLS2NrVu3HtM5rrrqKp5++mnuuusuVFXlpZde4tZbbwWgrq6OsrIyFixY0Cl5Eg6Hu+2RcijmOXPmoChKp5hbW1spLy+nurqaQCDAmWeeecy/h+7ccMMNzJw5k4qKCjIyMnjmmWc6iswKIYQQg5Hf7ycvN4XqGk+v9k9NTaW4uHjEJj0k4SGEEEL0Mbvd3qlnxlfXH4nVaj3uc6uqetgb+K+uNxqNXbZFo9FjOsd3vvMdbrvtNjZt2oTP56OsrIwrr7wSoOMYf/rTn5g9e3an/b6aYDlazIeG/CiK0ie/F4Bp06YxZcoUnn/+ec455xy2bt3KG2+80SfHFkIIIfpDMBikusbDwZ334nT0LGnhafGTM+4egsGgJDyEEEIIoa3Jkyfz5z//mYaGhm57eZhMJiKRyBGPMX78eJ577jna2to6EiyrV69Gp9N1DDk5XpmZmZxyyikdw2fOOuusjp4jKSkpZGRkcODAAa666qpjOt748eN59dVXOyU+1qxZg8PhICMjg6SkJKxWK++99x4LFy486vFMJhNAt7+rhQsX8oc//IGKigrOOusssrKyjvWyhRBCCM04HGYcTnOP9lHpWi9spJFZWoQQQohB4tvf/japqalcdNFFrF69mgMHDvDqq6+ydu1aAHJzcykuLmbz5s3U19d3mXEE2oebWCwWvvvd77Jt2zb++9//8qMf/YhrrrmmIynRF6666ir+9re/8fe//52rr76607Zf/OIXLF26lD/+8Y/s2bOHrVu38swzz/DQQw91e6wbb7yRsrIyfvSjH7Fr1y7+/e9/c88997BkyRJ0Oh0Wi4Wf/exn/PSnP+X5559n//79fPLJJzz11FPdHi8nJwdFUXjzzTepq6vrNEPNVVddRUVFBX/605/43ve+12e/DyGEEEIMPpLwEEIIIQYJk8nEypUrSU5O5txzz2XSpEn85je/6RgKcumll/KNb3yD008/naSkJF566aUux7DZbLzzzjs0NDQwc+ZMLrvsMs4880weeeSRPo318ssvx+124/V6ueiiizptW7hwIX/+85959tlnmTRpEqeeeirPPvsseXl53R4rIyODFStWsG7dOqZMmcKiRYtYsGABd955Z0ebu+66ix//+MfcfffdjBs3jiuuuILa2trDHu/ee+/ltttuIyUlhR/+8Icd25xOJ5deeikxMTFd4hZCCCHE8KKo3c2LJ4QQQggxTJ199tmMGzeOhx9+WOtQhBBCiCPyeDy4XC7c5UtxOntYw8PjJyHzdpqbm3E6nf0U4eAmNTyEEEIIMSI0NDSwcuVK3n///T7v8SKEEEKIwUcSHkIIIYTo8NFHHzF//vzDbv9qPYyhZvr06TQ2NvLb3/6WsWPHah2OEEIIcczUL5ae7jPSScJDCCGEEB1mzJjB5s2btQ6jX5SUlGgdghBCCCEGkCQ8hBBCCNHBarUyatQorcMQQgghhDhukvAQQgghhBBCCCEGMfWL/3q6z0gn09IKIYQQQgghhBDiuLW0tDBz5kymTp3KpEmT+NOf/qRpPNLDoxvRaJTKykocDgeKomgdjhBCCCGEEEKIQUZVVVpaWkhPT0en69++BFFVJar2rMdGT9v3BZvNxgcffIDNZsPr9TJx4kQuueQSEhISBjwWkIRHtyorK8nKytI6DCGEEEIIIYQQg1xZWRmZmZlahzEo6PV6bDYbAH6/n0gkgqpB4uUQSXh0w+FwAO0vXKfTqXE0QhybYDDIE088QTQa5ZZbbtE6HCGEEEIIIYY1j8dDVlZWx/1jfxqoaWk//PBDfv/737Nx40aqqqr45z//yUUXXdSpzfLly/n9739PVVUVEyZMYNmyZcydO7dje1NTE6eeeip79+7l97//PYmJib2IpG9IwqMbh4axOJ1OSXiIIeWOO+7QOgQhhBBCCCFGlOFUBqGtrY0pU6Zw/fXXc+mll3bZ/vLLL3PrrbeyfPlyTjrpJJ544gnmz5/Pjh07yM7OBiA2NpYtW7ZQU1PDJZdcwmWXXUZKSspAXwogRUuFGPKampoIhUJahyGEEEIIIYQYhDweT6clEAgctu38+fP51a9+xSWXXNLt9oceeogFCxawcOFCxo0bx7Jly8jKyuKxxx7r0jYlJYXJkyfz4Ycf9tm19JQkPIQY4n74wx8yefJk1qxZo3UoQgghhBBCiH6g9vI/gKysLFwuV8eydOnSXsUQDAbZuHEj8+bN67R+3rx5HfciNTU1eDweoD3R8uGHHzJ27NjjuPLjI0NahBjC1qxZw4svvoiiKFgsFq3DEUIIIYQQQgwyX69NaTabe3Wc+vp6IpFIl+EpKSkpVFdXA1BeXs6CBQtQVRVVVTsezmpFEh5CDFHRaJSbb74ZgAULFjB9+nSNIxJCCCGEEEL0h+MpWtrXtSm/XrNEVdWOdUVFRWzevLnPznW8ZEiLEEPUc889x8aNG3E6nfzqV7/SOhwhhBBCCCHEMJaYmIher+/ozXFIbW2tZkVJj0YSHkIMQR6Ph9tvvx2Au+++e9C+wQghhBBCCCGGB5PJRFFREatWreq0ftWqVZx44okaRXVkMqRFiC+oqkrl/mqqi2sBSM5OJGN0Gjrd4MsL/vrXv6ampobRo0fzox/9SOtwhBBCCCGEEP0oikq0h4NaetoeoLW1lX379nX8XFxczObNm4mPjyc7O5slS5ZwzTXXMGPGDObMmcOTTz5JaWkpixYt6vG5BoIkPIQAPA0tvPPs/ziwuQR/WwAUMFmM5E7M5hvXn05cSqzWIXaIRqNs3boVgD/84Q+YTCaNIxJCCCGEEEIMBxs2bOD000/v+HnJkiUAfPe73+XZZ5/liiuuwO12c99991FVVcXEiRNZsWIFOTk5WoV8RIqqqj1P+wxzHo8Hl8tFc3NznxZ3EYNT0B/kHw+9we4NB0jNScLmtKIoCt4WH9UlteRNzOZb/+8CrDFWrUPtoKoqH3/8MXPnztU6FCGEEEIIIUakgbhvPHSOsrJf4nT2bFZGj8dPVtZdI/q+VvO++suXLycvLw+LxUJRUREfffTREdt/8MEHFBUVYbFYyM/P5/HHH+/SZtmyZYwdOxar1UpWVhaLFy/G7/f31yWIIW7/loPs31xC1pg07C5bR4Vhm8NK1tgMDu4oY8+GAxpH2ZmiKJLsEEIIIYQQQogj0DTh8fLLL3Prrbdyxx138NlnnzF37lzmz59PaWlpt+2Li4s599xzmTt3Lp999hk///nPufnmm3n11Vc72rz44ovcdttt3HPPPezcuZOnnnqKl19+uaPAoxBfd2BLCaoKJkvXoSFGkwG9Qc+ejfs1iKyzUCjEfffdR0NDg9ahCCGEEEIIIQaQ2stlpNM04fHQQw+xYMECFi5cyLhx41i2bBlZWVk89thj3bZ//PHHyc7OZtmyZYwbN46FCxfyve99jwceeKCjzdq1aznppJP4zne+Q25uLvPmzePb3/42GzZsGKjLEkOMv82PwXj4cjYGk7G9rofGHnvsMe655x5OPPFEotGo1uEIIYQQQgghhoCZM2cyfvx4Hn30Ua1DGXCaJTyCwSAbN25k3rx5ndbPmzePNWvWdLvP2rVru7Q/55xz2LBhA6FQCICTTz6ZjRs3sm7dOgAOHDjAihUrOO+88/rhKsRwkJiZQNAf5HDlbAJtfpKyEgY4qs7q6+u55557AFi8ePGgnDlGCCGEEEIIMfisX7+eHTt2cNNNN2kdyoDTbJaW+vp6IpEIKSkpndanpKRQXV3d7T7V1dXdtg+Hw9TX15OWlsaVV15JXV0dJ598MqqqEg6H+cEPfsBtt9122FgCgQCBwJdP8D0ez3FcmRhqxswoYP1/PqOhuomEtLhO25rqPJhsJsbNHq1RdO3uuusumpqamDJlCgsXLtQ0FiGEEEIIIcTAiqrtS0/3Gek0f0x8qEDkIaqqdll3tPZfXf+///2PX//61yxfvpxNmzbx2muv8eabb/LLX/7ysMdcunQpLperY8nKyurt5YghKDU3mZMuno2v1U/prgqa61vwuFso211JS2Mrs88rIntcpmbxbdmyhSeffBKAhx9+GL1er1ksQgghhBBCCDFUaNbDIzExEb1e36U3R21tbZdeHIekpqZ2295gMJCQ0D7k4K677uKaa67peAo+adIk2tra+P73v88dd9zR7VCA22+/vWN+YWjv4SFJj5FDURRO+GYRcSkutvxvOxX7qkFVyZ2YxZTTJjB+zpgjJuH6k6qq3HrrrUSjUb71rW9xyimnaBKHEEIIIYQQQju9KUIqHTw0THiYTCaKiopYtWoVF198ccf6VatWceGFF3a7z5w5c3jjjTc6rVu5ciUzZszAaDQC4PV6uyQ19Ho9qqoetkaD2WzGbDYfz+WIIU5RFApnjWbszFG0NXsBsDmtmtfKeO211/jf//6HxWLhd7/7naaxCCGEEEIIIcRQolnCA2DJkiVcc801zJgxgzlz5vDkk09SWlrKokWLgPaeFxUVFTz//PMALFq0iEceeYQlS5Zwww03sHbtWp566ileeumljmOef/75PPTQQ0ybNo3Zs2ezb98+7rrrLi644AIZCiCOSlEUYmLtWofRYe7cuXz/+98nPT2dnJwcrcMRQgghhBBCiCFD04THFVdcgdvt5r777qOqqoqJEyeyYsWKjhu7qqoqSktLO9rn5eWxYsUKFi9ezKOPPkp6ejoPP/wwl156aUebO++8E0VRuPPOO6moqCApKYnzzz+fX//61wN+fUIcr+TkZJ544onD9k4SQgghhBBCjAxyR9Bziip3Ul14PB5cLhfNzc04nU6twxEjUCAQkGFWQgghhBBCDGIDcd946BzFpb/E4bT0aN8Wj5+87LtG9H2t5rO0CCG6WrBgAeeeey779u3TOhQhhBBCCCGExtReLiOdpkNahBBdrVmzhhdffBFFUWhubtY6HCGEEEIIIcQQNnPmTPR6PTfddBM33XST1uEMKEl4CDGIRKNRbrnlFgCuv/56ioqKNI5ICCGEEEIIMZStX79+xA5pkYSHEIPI888/z4YNG3A4HFJoVwghhBBCCAFAFIUoSo/3GemkhocQg4TH4+G2224D4O677yY1NVXjiIQQQgghhBBi6JIeHkIMEvfffz81NTWMGjWKm2++WetwhBBCCCGEEINEb4qQStFS6eEhxKAQCoV44403APjDH/6AyWTSOCIhhBBCCCGEGNqkh4cQg4DRaGTTpk3885//5LzzztM6HCGEEEIIIcQgoqoKqtqzmhw9bT8cScJDiEHCbDZz5ZVXah2GEEIIIYQQQgwLkvAQQkOhUIgXXniBq6++GqPRqHU4QogRRlVVyjzNfF5XQ523DZvRyPiEJAoTkjDq9VqHJ4QQQghxXCThIYSGHnvsMW655Raee+45/vvf/6Io0u1MCDEwoqrKyuK9vFu8n5ZgAJNeTzga5aPSEiYnp/LtCZNxmMxahymEEEIIIPrF0tN9RjpJeAihkfr6eu655x4Avv3tb0uyQwgxoDZWV/DWvj04TCbGxid2vAd5QyE2VFVgNRq4esJUeW8SQgghxJAls7QIoZG7776bpqYmJk+ezMKFC7UORwgxgkSiUdaUlwIqSTZ7p6SGzWgkNSaGz2urqWpt0S5IIYQQQnRQUXq1AMycOZPx48fz6KOPanwVA096eAihgc8//5wnnngCgIcffhi9jJUXQgygRr+P8pZmEq22brfHmi3Uetsoa2km3eEc4OiEEEII0ZfWr1+P0zkyP8+lh4cQA0xVVW699Vai0SiXX345p556qtYhCSFGGBVQVYAjD1dpbyOEEEIIMTRJwkOIAfbPf/6T//73v1gsFn73u99pHY4QYgSKs1hJjYmh0e/rdntLMIDNaCTD4RjgyIQQQgjRneMZ0jKSScJDiAE2ZswYTjvtNP7f//t/5Obmah2OEGIEMuh0zMnIJhSN0uT3d9oWjESoaG1hfGIymQ6XRhEKIYQQQhw/qeEhxACbOHEi77//PpFIROtQhBAj2Oz0LKpaW/iwtIRabys2g5FAJEJEjTIhMZlLxoyXGVqEEEKIQUKmpe0dSXgIMUBUVe24eVAUBYNB/vyEENox6HRcMnYCExJT2FRTSW1bK3ajicnJqUxOTsFmNGkdohBCCCHEcZE7LiEGyIIFC3C5XNx9993ExcVpHY4QQqBTFMYlJjEuMUnrUIQQQghxBKqqoKo963nZ0/bDkSQ8hBgAa9eu5ZlnnkFRFK666ipmzJihdUhCCCGEEEIIMaxJ0VIh+lk0GuWWW24B4Prrr5dkhxBCCCGEEEIMAOnhIUQ/+8tf/sL69etxOBz8+te/1jocIYQQQgghxBDTm2lmZVpa6eEhRL9qaWnhtttuA+DOO+8kNTVV44iEEEIIIYQQYmTQPOGxfPly8vLysFgsFBUV8dFHHx2x/QcffEBRUREWi4X8/Hwef/zxTttPO+00FEXpspx33nn9eRlCdOv++++nurqaUaNGdQxrEUIIIYQQQoieaJ+WVunhIjRNeLz88svceuut3HHHHXz22WfMnTuX+fPnU1pa2m374uJizj33XObOnctnn33Gz3/+c26++WZeffXVjjavvfYaVVVVHcu2bdvQ6/VcfvnlA3VZQgDQ1tbGU089BcBDDz2E2WzWOCIhhBBCCCGEGDk0TXg89NBDLFiwgIULFzJu3DiWLVtGVlYWjz32WLftH3/8cbKzs1m2bBnjxo1j4cKFfO973+OBBx7oaBMfH09qamrHsmrVKmw2myQ8xICz2+1s3bqVhx56iG9+85tahyOEEEIIIYQYgWbOnMn48eN59NFHtQ5lwGlWtDQYDLJx48aO+gaHzJs3jzVr1nS7z9q1a5k3b16ndeeccw5PPfUUoVAIo9HYZZ+nnnqKK6+8ErvdfthYAoEAgUCg42ePx9OTSxHisFJSUli8eLHWYQghhBBCCCGGsOMpWrp+/XqcTmd/hDXoadbDo76+nkgkQkpKSqf1KSkpVFdXd7tPdXV1t+3D4TD19fVd2q9bt45t27axcOHCI8aydOlSXC5Xx5KVldXDqxHiS6FQiP/+979ahyGEEEIIIYQQI5rmRUsVpXOWSlXVLuuO1r679dDeu2PixInMmjXriDHcfvvtNDc3dyxlZWXHGr4QXTz++OOcccYZXH/99VqHIoQQQgghhBgG1F4uI51mQ1oSExPR6/VdenPU1tZ26cVxSGpqarftDQYDCQkJndZ7vV7+9re/cd999x01FrPZLAUlRZ9wu93cc889AMyePVvjaIQQQgghhBBi5NKsh4fJZKKoqIhVq1Z1Wr9q1SpOPPHEbveZM2dOl/YrV65kxowZXep3vPLKKwQCAa6++uq+DVyII7j77rtpbGxk8uTJ3HDDDVqHI4QQQgghhBgG1B5PSdvzmh/DkaZDWpYsWcKf//xnnn76aXbu3MnixYspLS1l0aJFQPtQk2uvvbaj/aJFizh48CBLlixh586dPP300zz11FP85Cc/6XLsp556iosuuqhLzw8h+svWrVt5/PHHAfjjH/+IXq/XOCIhhBBCCCGEGLk0G9ICcMUVV+B2u7nvvvuoqqpi4sSJrFixgpycHACqqqooLS3taJ+Xl8eKFStYvHgxjz76KOnp6Tz88MNceumlnY67Z88ePv74Y1auXDmg1yNGLlVVueWWW4hGo1x22WWcdtppWockhBBCCCGEECOaoh6q+ik6eDweXC4Xzc3NI3b6nq+LhCM01LYQVVViE2IwW7pOATyS/fOf/+SSSy7BYrGwc+dOcnNztQ5JCCGEEEII0Y8G4r7x0Dk2FD9AjNPao31bPT5m5P1kRN/XatrDQwx+0WiUbeuK+WzNHmorm1BVFVdcDJNPyKdo7lhMZkl8ANhsNvLy8rj66qsl2SGEEEIIIYQQg4AkPMRhqarK6ne28fHbn6PX64hLdKDoFDyNbbz72kbqqpqZf8VsjCZ5GZ1zzjns2LED6TAlhBBCCCGE6GtqL4qQStFSSXiII6itbGL9/3YS47QSl+joWG+xmvC1Bdi27gCjJ2YyblqOhlEOHhaLResQhBBCCCGEEEJ8QdNZWsTgtm9bOW0eH7EJMV22We1mUGDnZwc1iGzwuPXWW3nssccIh8NahyKEEEIIIYQQ4iukh4c4LE+jF71Bj6J03xXKajPTWNcywFENHp988gl//OMfAZgzZw5Tp07VNiAhhBBCCCHEsBRFIdrDISo9bT8cSQ8PcVi2GBPRSPSw2wP+EDHOkTmMIxqNcssttwBw/fXXS7JDCCGEEEIIIQYZSXiIw8orTMdoMdLW4uuyLRQMEw6FKZw6Mut3/OUvf2HdunXExMRw//33ax2OEEIIIYQQYhg7VLS0pwvAzJkzGT9+PI8++qjGVzHwZEiLOKzM/CQmzshj08d7cMWHiU2woygKLc1e6qubKRifwZjJWVqHOeBaWlq47bbbALjrrrtITU3VOCIhhBBCCCGE6N769etxOp1ah6EJSXiIw9LpdJx1yQysdjPb1h+gdF8tADaHmaknjua0b05tL146wtx///1UV1dTUFDQMaxFCCGEEEIIIfqLioKqyrS0PSUJD3FEZouRMy6czoxTxlJV1oAaVUlMdZGQ4jxsMdPhrKGhoaNQ6UMPPYTZPPISPkIIIYQQQggxFEjCQxwTZ5wdZ5xd6zA0Fx8fz+rVq3n55Zc5//zztQ5HCCGEEEIIIcRhSMJDiB6aNm0a06ZN0zoMIYQQQgghxAgh09L2jszSIsQxCIfD7N27V+swhBBCCCGEEEIcI0l4CHEMHn/8ccaPH8+vfvUrrUMRQgghhMaiapQqXzX7Ww9Q5i0nFA1pHZIQYphTe7mMdDKkRYijcLvd3H333YTDYRITE7UORwghhBAaqvJV86l7PVX+akLREDpFT4I5nulxUxkTM2pEFnUXQojBShIeQhzFPffcQ2NjI5MnT+aGG27QOhwhhBBCaKTGX8s71e/SEm4hwRSPRW8hFA3REGzk/ZoPUFWVQucYrcMUQgjxBRnSIsQRbNu2jccffxyAZcuWodfrNY5ICCGEEFpQVZUtTZ/THGom3ZKGRW8BwKgzkmJJRgE2NW4mKMNbhBD9QEXp1TLSScJDiMNQVZVbbrmFSCTCJZdcwumnn651SEIIIYTQSGu4lVJvObFGV7fDVuJMcbiDDVT6qjSITgghRHdkSIsQh/Hvf/+b999/H7PZzAMPPKB1OEIIIYTQUCAaJBQNYzfaut1u1BlQ1SjBaGCAIxNCjARRVSGq9nBa2h62H46kh4cQh+F2u4mJieEnP/kJeXl5WocjhBBCCA1Z9VbMOhP+wyQ0gtEgekWPVd99QkQIIcTAkx4eQhzGggULOPfcc3E4HFqHIoQQQgiN2Q028mPy2Ny0BYchBp3y5XNDVVWpDzSQbEkizZKiYZRCiOGqNzU5pIaHJDyEOKK0tDStQxBCCCHEIDE1dhJV/mrKfZXEGl0ds7Q0BpuwG2zMjp+BQSdfr4UQYrCQIS1CfM29997Le++9p3UYQgghhBhkYk2xzE89m8muiUTUCA3BBnwRHwUxeZyTehY59mytQxRCCPEVmic8li9fTl5eHhaLhaKiIj766KMjtv/ggw8oKirCYrGQn5/fMWXoVzU1NXHTTTeRlpaGxWJh3LhxrFixor8uQQwjn376Kb/4xS8466yz2LNnj9bhCCGEEENGja+Jd6s+58/73uPpfe/zQc123IEWrcPqc7GmWM5IOZVvZV3CpZkXcnnWJZybdg6ZtgytQxNCDGMyLW3vaNrn7uWXX+bWW29l+fLlnHTSSTzxxBPMnz+fHTt2kJ3dNUNeXFzMueeeyw033MALL7zA6tWrufHGG0lKSuLSSy8FIBgMcvbZZ5OcnMw//vEPMjMzKSsrkzoM4qii0Si33HILANdddx1jxozROCIhhBBiaNjadJA3KzbSFGzDqjejorK7pYL17n1cmDWL0Y7hN0TUYXTgMMr3SyGEGMwUVVVVrU4+e/Zspk+fzmOPPdaxbty4cVx00UUsXbq0S/uf/exnvP766+zcubNj3aJFi9iyZQtr164F4PHHH+f3v/89u3btwmg09iouj8eDy+WiubkZp9PZq2OIoecvf/kL1157LTExMezdu5fU1FStQxJCCCEGvRpfE0/vf59ANEy6NQ5FaX+iqKoqZd56Yk12Fhacictk1yQ+XyTA3pYyDrRVEIyESLbEMdaRQ6oloSNWIYTojYG4bzx0jvcOLCfGYe3Rvq0tPs7Mv3FE39dqNqQlGAyyceNG5s2b12n9vHnzWLNmTbf7rF27tkv7c845hw0bNhAKhQB4/fXXmTNnDjfddBMpKSlMnDiR+++/n0gk0j8XIoaFlpYWfvaznwFw1113SbJDCCGEOEZbm0ppCrV1SnYAKIpCpi2BOr+HnZ4KTWJzB5p5pexdXq/4kJ3NxZS0VfJh3WZeKn2H9Q070PC5nxBCDJiZM2cyfvx4Hn30Ua1DGXCaDWmpr68nEomQktJ56q6UlBSqq6u73ae6urrb9uFwmPr6etLS0jhw4ADvv/8+V111FStWrGDv3r3cdNNNhMNh7r777m6PGwgECAS+nFPd4/Ec59WJoWbp0qVUVVVRUFDQMaxFCCGEEEdX0laHVW/utreETtGh1+kpa6vnhMSBHSoaUSO8Xb2W0rYqsqypGHR6oL3nSUPQwwd1m0gwuyiIyRzQuIQQYqCtX79eenho5esfjqqqHrF7YXftv7o+Go2SnJzMk08+SVFREVdeeSV33HFHp2EzX7d06VJcLlfHkpWV1dvLEUNQeXk5Dz74IAAPPvggZrNZ44iEEEKIoUOHgsoRekqoKooy8F85S9uqKfNWk2ZJ6kh2QPt3xgSzi2A0zNamfQMelxBC9IoKag+XI701jxSaJTwSExPR6/VdenPU1tZ26cVxSGpqarftDQYDCQkJAKSlpTFmzBj0+i8/2MaNG0d1dTXBYLDb495+++00Nzd3LGVlZcdzaWKIycjI4MUXX+T666/nggsu0DocIUaEmuZWPjtYyeaDldR5WrUORwhxHAocKfgjwW6Hh0TUKBE1Sq49acDjqgk0ElYjWPSmbrc7DXbKvDUEo+EBjkwIIcRA0WxIi8lkoqioiFWrVnHxxRd3rF+1ahUXXnhht/vMmTOHN954o9O6lStXMmPGjI4CpSeddBJ//etfiUaj6HTt+Zw9e/aQlpaGydT9B57ZbJan+iOYoihcdtllXHbZZVqHIsSw5/H5eWvLbraXV9Pib09CO61mJmelcu6UQuzm7t+nhRCD18TYbNa791HmrSfTloDui94cETVKaVsd6bZ4Cp0yZasQQhyP3kwzK9PSajykZcmSJfz5z3/m6aefZufOnSxevJjS0lIWLVoEtPe8uPbaazvaL1q0iIMHD7JkyRJ27tzJ008/zVNPPcVPfvKTjjY/+MEPcLvd3HLLLezZs4e33nqL+++/n5tuumnAr08MbuFwmKamJq3DEGLECITCvPzp56zdexCrycjolARGpyRgMhj4aHcJr3z6OcGwFJgWw18kGmVvcx3vVezlvfK9bG+oJhQduq/9BLODCzNnEWuyU9xaS0lbXfv/ttaSao3josxZxBgtAx5XijkOg6LHH+m+h68n3EaWLQWTTrPnf0IIIfqZpu/wV1xxBW63m/vuu4+qqiomTpzIihUryMnJAaCqqorS0tKO9nl5eaxYsYLFixfz6KOPkp6ezsMPP8yll17a0SYrK4uVK1eyePFiJk+eTEZGBrfcckvHDBxCHPLkk09yzz338Ic//IGrr75a63CEGPZ2Vtayo6KWnMQ4LMYvP37i7VasRgNby2vYU13HxEyZJUkMXw1+L6/s38yupjoC0TAKoFd05DnjuaJgKhl2l9Yh9spoZxoLLWey01NBWVs9iqKQa0+m0JmhSbIDINueSpYtlQOt5d0WLTXpDEyKHaVJbEII0VPSw6N3FFXm4+piIOZTFtpqaGhg9OjRNDQ0sHz5cn7wgx9oHZIQw94Laz5jU3EFBSkJ3W7fW1PPSaNzuHzW5AGOTIiBEYiE+dOOT9jWWE2WPRa7sX0Ilz8SprSlkWxHHD+YMAeXyapxpMOHO9DMm1UfU+atQa8o6NETiIawG6ycnDiFmfHjj1gsXwghjmQg7hsPnWPV/sexO3r2+dDW4uPsgkUj+r5W+vCJEemee+6hoaGBSZMmccMNN2gdjhAjQqs/iMl4+I8dk15Pq7/7rudCDAe7mmrZ3VxHniMes/7LvwWL3kCBM4F9nnq21FdxSnq+hlEOLwlmF9/KOou9LWUcaKsgFAmRZIljrCOHVEuCJDuEEGKYk4SHGHG2bdvWMU3xsmXLMBjkz0CIgZDosLOrsu6w2wPhCAkxtgGMSIiBtaepjkg02inZcYhep8OsN/J5Q6UkPPqYVW9mcuwoJsvwFSHEEBZFIdrDISo9bT8caVq0VIiBpqoqixcvJhKJcMkll3DGGWdoHZIQI8bkrFRMBh3NPn+XbY1tPqxGg9TvEMNaMBJGrzv8Vy+jToc/IlOkCiGEEH1FEh5iRHn99dd59913MZvN/P73v9c6HCFGlFHJCZw4Ooc6TxtlDc20BYK0BYKUuptoaPNy8thc8pLitA5TiH6TYnMQikY4XPm01nCQLHvswAYlhBBiSFBVpVfLSCd9+cWIsmnTJhRF4cc//jH5+dJlWIiBpNMpfHPqOJIcMXx6oIw6TysA6bEOZhdkMzM/U8bTi2FtckI671fso9Lr6TIbi9vfhlVvZFpihkbRCSGEEMOPJDzEiHLvvfdy/vnnU1hYqHUoQoxIBr2Ok8bkMKsgE3erFwWF+BgrRr1e69AGlWa/n/0NDQQjEeKsVgri4zEcYSiEGBqSrTGcnzue1w5sZW9zPbEmCzpFoTHoQ6/o+EZWIaNdiVqHKYQQQgwbkvAQI86MGTO0DkGIEc+o15PqcmgdxqATjkZ5f/8BPiopocHnA8Cg05EbG8sF48ZRkBCvcYTieM1JySXebGNdTSm7m+tQae/5MTspm0kJadLLSQghRLfUL5ae7jPSScJDjAiPPPII3/jGNxg1Siq0CyEGr3f37efN3btwmMwUxMeh1+nwhULsb2zkL5s3s3BGEZku19EPJAa1sbHJjI1NJhAJo6oqZr1BEh1CCCFEP5D+sWLYW7duHT/60Y+YOHEilZWVWocjhBDdavD6+KikBJfZTKojpmM2D6vRyKj4OGpaW1lbWqZxlKIvmfUGLAajJDuEEEIcVXsPD6WHi5CEhxjWotEot9xyCwBXXnkl6enpGkckhBDd2+uup8nvJ9Fu77JNURQSbFY+r67GGwppEJ0QQgghxNAjCQ8xrP31r3/lk08+ISYmhqVLl2odjhBCHFYgEgFAd5in/Sa9nlA0QjAcHsiwhBBCCCGGLKnhIYat1tZWfvaznwFw5513kpaWpnFEQghxeLEWC4qiEIxEMHUza01rMEisxYLNZNIgOiGEEEJoKaoqRNWeDYHsafvhSHp4iGFr6dKlVFZWUlBQwK233qp1OEIIcURjExPJcDqoaPagqp1H3QbCYVoCQWZmZnabDBFCCCGEEF1JwkMMS8XFxTz44IMAPPjgg5jNZo0jEkKIIzMbDJxfWIjNZGSP202Dz0drMEhVSwsHGhuZmJLCnOxsrcMUQgghhAZ6XrC0fRnpZEiLGJZSU1O566672LBhAxdccIHW4QghxDGZmJLC94qK+PjgQXbX1eMNhnCazZyWl8dJOTnEyHAWIYatYDRImbectnAbRp2RDGsGTqND67CEEGJIk4SHGJasVit33HEHqqrKdH9CiCFlVEICBfHxNPv9BCMRnGYzFqNR67DEMKWqKjW+FnY11+CPhHAYLYyLTSXebNM6tBGlpO0ga92f4g64Ub/4L0Yfw0TXeIrip6NXZCibECNdb3psSA8PSXiIYSYSiaCqKgZD+0tbkh1CiKFIURRirVatwxDDXCga4T9lO1hTW0xLyI+iKKiqSrzZxjkZ4zgpJV8+RwdApa+K92v+iz8aIMWcjEFnIKpG8YRbWNewHkVRmBk/Q+swhRBiSJIaHmJYefLJJykqKuLDDz/UOhQhhBBiUPtf1V5WVe7CrDcwxpnMGGcyo53JhKNR/nnwczY3VGgd4rCnqirbmrfRFmkj1ZyCQdf+wEan6Ig1urDp7Wxv3kFbuE3jSIUQQ9nMmTMZP348jz76qNahDDjp4SGGjYaGBu68804aGhrYtm0bp5xyitYhCSGEEINSayjAmppiHEYLCWZ7x3qdopBmc1Hc4ubjmv1Mjk9Hr8jzsf7ijXgp91bgMri67U3jMjqp9FdR6atitGOUBhEKIQYLVW1feroPwPr163E6nX0f1BAgn2Bi2PjFL35BQ0MDEydO5Pvf/77W4QghhBCDVklrA/WBVpLMMd1uT7LEUNbaRK2vZYAjG1lC0TARNdLRs+PrdIoOBQir4YENTAghhgnp4SEOKxKOcrC4jqqKRlQVklOc5I1OwWgcfIWztm/fzvLlywFYtmxZRw0PIYQQQnQViUZRae/R0R29oiOqRgmr0YENbISxGWzYDDa8YS9Wfde6PcFoEJ2iJ8bQfWJKCDFyRFGI9rAIaU/bD0dyVyi61ehuZcW/NnHwQB3hcAQAnU5HRnY88y+cTmp6rLYBfoWqqixevJhIJMJFF13EmWeeqXVIQgghxKCWaLFj15toCflxmrreaDeHfDhNFuK/MtxlIKmqSm2giUqfm6gaJckcS6YtEd0wG15j0hkZ6xjD6vq1OKNOjLovZ2RSVZW6QD1p1lTSrWkaRimEEEOXJDxEFwF/iDde3UDx3hrSsuKxWNo/fIPBMGUlbt74x3quvO5kHM7BMYPA66+/zqpVqzCZTDz44INahyOEEEIMeuk2F2NjU9hYX4rNYMag+zKR4I+EaAr6+GbWBOwG04DH5g37WVm9kd2eMtoifhTaEwO59lS+kTaTBPPwGoc+wTWeKn81xW0lWHUWrHorITVMS8hDrCmOOQknyLS0QgjRS5LwEF3s31PNwQN1ZOYkYDR9+RIxmQxk5SZQWlzP7u0VzJgzOIpnvfrqqwD8+Mc/Jj8/X+NohBBCiMFPURS+mTWBxoCX/S112A1mLHoDbeEgwWiYqfEZnJo2esDjikQjvFX5KVuaDpBsjiXZHIuiKHjDfnZ7SvFFAlyZczoxhsHx0KUvWPVWzk45k52eXexq2YM33IZeMTA1dgrjXeNINCdqHaIQYhBQUVB7OESlp+2HI837BS5fvpy8vDwsFgtFRUV89NFHR2z/wQcfUFRUhMViIT8/n8cff7zT9meffRZFUbosfr+/Py9DU5FwhPK9VezfUkLNwTrUnpbv/ZqSA3UAnZIdh+j1OkxmA9u2lvH5ngrWbzvIrgM1BEPaFdN67rnneOWVV7j99ts1i0EIIQ6nNRDg84pqNpZWUOxuJHqc79FC9JVkq4MFY+dwSc4UEix2FEUhyx7LlflFXDNqlia9O0q8Nez0lJJhTcBptHXMXGIzWMi2pVDaVsvO5tIBj6u/WfQWpsVN5fLMS7gy+1t8O/tbnJI8V5IdQghxnDTt4fHyyy9z6623snz5ck466SSeeOIJ5s+fz44dO8jOzu7Svri4mHPPPZcbbriBF154gdWrV3PjjTeSlJTEpZde2tHO6XSye/fuTvtaLJZ+vx4t7N6wn0/e2EDl/mpCwTAWm5mcCZnMveQE0gtSe3XMUDCMTt99NlBVVWp9PvbtbmV3WwuK0l7bIzXRwdlzChmbl3I8l9MriqJw+eWXD/h5hRDiSMLRKB/sLWb1/oPUt7WhAhaDgYLEeM6bWEhWnEvrEIUg1mTlzIyxnJE+hpAaxajoup0edaAUt1YRViNY9eYu2ww6PSadgZ2eg8xMGKtBdP3PoDMcdsYWIcTIJj08ekfTHh4PPfQQCxYsYOHChYwbN45ly5aRlZXFY4891m37xx9/nOzsbJYtW8a4ceNYuHAh3/ve93jggQc6tVMUhdTU1E7LcLRr3V5eX/425XsqiU+LI7swA0dcDLs+3cdrf3yLquKaXh03KcVJKBTptqdIqbuZksZmzFYDuRnx5Gcmkp7kpNbdwmvvbqG43H28l3XMXn75ZZqbmwfsfGJoCoUj7C6tZcOuMrYdqKLNF9Q6JDFCvLtrP69v3UkgHCY/IZ4xSYnE22xsr6rlhXWfUdvSqnWIQnRQFAWTTq9psgPAFwmiP8LXU5POgD8i7+NCCCGOjWYJj2AwyMaNG5k3b16n9fPmzWPNmjXd7rN27dou7c855xw2bNhAKBTqWNfa2kpOTg6ZmZl885vf5LPPPuv7C9BYKBji49fWEfKHyBqbgdVuQafTYXfZyJ2QRX15A+v+07vrHjs+A1esjdrqzsmEYDjCnko3JoOBgtxk9F8UODMZDWSlxtHS5ueTz4uPe0jNsVi/fj1XXnklhYWFNDU19fv5xNC062Atj/9rDc+uWMcr72/mL29v4NHXPuaTbSVEozKsQPQfd5uXj/eX4LJYSHU6Ot4vY8wmRiUlUN7kYV1JucZRCjH4xJkchNXuH7oAeCMBEs2xAxuUEEIMAqrau2Wk0yzhUV9fTyQSISWl8xCIlJQUqquru92nurq62/bhcJj6+noACgsLefbZZ3n99dd56aWXsFgsnHTSSezdu/ewsQQCATweT6dlsCvfXUnNwVqSs7uO7VQUhYT0OPZ9VkxTXc97QCQkOTjjnEkoikLJ/lrc9S00ulvZua8KbyDI6FHJOGM7FwtTFIWEWDsHytw0tfh6fV3HQlVVbr75ZqA9QRYbG9uv5xND04FKN//472aq6j2kJzopyEggOzUObyDI66u3s37X8BsDLgaPPTX1NPn8JNhtXbbpFIVYq4VN5ZUEIxENohNi8BrrzMJptFEf7Pr9pSXkRa/omBibO/CBCSGEGJI0L1r69a6TqqoesTtld+2/uv6EE07g6quvZsqUKcydO5dXXnmFMWPG8H//93+HPebSpUtxuVwdS1ZWVm8vZ8D4Wv2EQxFMlu4LillsZoL+EL7W3hVrnVKUy7euOZHpswsw6PUoOoWcgmTSsxPIyUtC6WY8mMlgIByJ9HsB0xdffJFPPvkEu93O0qVL+/VcYmhSVZU1nxfjafOTnRqLydg+Htqg15GW4MRo0PHxlgP4A6GjHEmI3vGHw+hoT250x2wwEAxHCIa1K/gsxGCUZHZxStJkgtEwB701eEJttIS8lHvrcAc9zIgfS0FMutZhCiGEGCI0q4qUmJiIXq/v0pujtra2Sy+OQ1JTU7ttbzAYSEhI6HYfnU7HzJkzj9jD4/bbb2fJkiUdP3s8nkGf9LA6rBiMegK+IGZr16SHvy2A2WLE5uj9tG3ZeUlk5yURCUdRUSmrbuKZf32CPxDGajZ2ad/qDWC3mnHY+69AbGtrKz/72c8AuPPOO0lPly89oqsGj5f9lW6S4mK6TaAmx8ZQWttESXUDhTkDX2hXDH8OixmU9sKlBl3XZwttwSAJdhsWY9f3UiFGulkJhbhMdjY17KPCV4eKSro1galxo5gSm49e0fx5nRBCaKDnRUuRoqXaJTxMJhNFRUWsWrWKiy++uGP9qlWruPDCC7vdZ86cObzxxhud1q1cuZIZM2ZgPMyXRlVV2bx5M5MmTTpsLGazGbO5azXwwSxrbDpp+SlUHaglc0xap5u6aFTFXdVI0bwpuBKdx30uvaH9i0V2ehxZqXEUl9eTl5HQ6ZyhcISmVi9nnjAW22F6nfSF3/zmN1RWVpKfn8+tt97ab+cRQ1swFCEciWAydJ98Mxj0qKpKICTDCUT/KExJItkRQ2Wzh+y42E7bguEwbcEg3xg/pttkiBAjnaIoFDqzGevIoiXsQ1WjxBhtkugQQgjRY5p+cixZsoQ///nPPP300+zcuZPFixdTWlrKokWLgPaeF9dee21H+0WLFnHw4EGWLFnCzp07efrpp3nqqaf4yU9+0tHm3nvv5Z133uHAgQNs3ryZBQsWsHnz5o5jDhcGo4GTL5mNxW6mbFcF3hYf4VCEloZWSraVkpydyOxzp/XpOfU6HfNOLCTBZWd/WT0NzW20egPUuFs4WNnA6OxkTpicd9znafMG2Lankk3bStl/sI5wJArAgQMHOmbkeeCBB4btVMPi+DlsZmwWE63+7iv5e/1BjAY9rn7sjSRGthizifnjx6DX6dhX78bj8+MLhqj2tHDA3ciEtBRm5mRqHaYQg5qiKDiNNlymGEl2CCFGPFVVerWMdJpO9H3FFVfgdru57777qKqqYuLEiaxYsYKcnBwAqqqqKC39srBgXl4eK1asYPHixTz66KOkp6fz8MMPc+mll3a0aWpq4vvf/z7V1dW4XC6mTZvGhx9+yKxZswb8+vrbmKICLvrRfD55cyPluysJBUNYbGYmnTKOky6aRXJ2Up+fMyc9nu98cwbrtx1k5/4aWr0BbFYTJ0zJZebEHJwxvb+BjESirN10gHWbS2ho9qKqKga9jszUOM6aW4jdbueKK66gsrKSiy66qO8uSgw7MTYzkwrS+d+mvcTGWDHov/yirKoq1Q0tFGQkkpUSq12QYtgrys7AZjLy0f4SiusbiUSjxFjMnFcwllNG5RJj7r/ecEIIIYQQAhS1B3OIrlu3jqKiIvR6PdC1wGggEODf//433/rWt/o+0gHk8XhwuVw0NzfjdB7/kJD+Fo1GqTlYR8AbJCbWRkJ6/BELv/aVNl+QQDCMzWrEYjr+cegfr9/Hyg93YrUYSYizo9fr8AdCVNd6cDmtfPuCmWSkxhIMBjGZ5EZBHFlTi4+X3t3EvvJ64hxWbFYTgWAYt8dLcmwM3zpzKrmp8VqHKUYAVVWpb/MSikSItVqx9cH7pRBCCCG0NxD3jYfO8fddz2NzdJ397Ui8LV4uL7x2yNzX9oce9Q+cM2cObre742eXy8WBAwc6fm5qauLb3/5230UnjolOpyMtL4XcCVkkfq22Rn+yW03Eu2x9kuxoafPzyaZirFYjyYkO9F88kbeYjWRnxNHQ1MaGzw8CSLJDHJNYh5Vvnz2ds2eNwWjQ42n1E42qnDghh6vmFUmyQwwYRVFIirGT7nJKskMIIYQQvRLt5TLS9WhIy9c7g3TXOaQHHUaE6FBS5qbR4yUno+tN6Afv/pstmz4hEriBs04uxG4bWgVmhXZiY6x8Y/Y4Tp06ijZfALPJgMMmdTuEEEIIIYQYCfq8hsdA9S4Qg0ttrYedOyooLXOjUxTy8pMpLEwnPt5+TPsHgmEU6OjZcUhrq4d///3PtLY0kztqMsHQZdiRhIfoGavZ2O1UykIIIYQQQgwFai+mpe35NLbDj6ZFS8XwsH1bOe+88znNzT4sFhOqqrJnTzUbNxRz3jenkp+ffNRjOGMs6HQ6gsEwJtOXL8s3/vE0rS3NJKflcNq8i7FZJdkhhBBCCKE1b9hDlW8/nnA9OvQkmjNJseRh0MkDBiHE4NHjhMeOHTuorq4G2oev7Nq1i9bWVgDq6+v7Njox6NXUNPP2O58TCkbIy0vq6OETjaqUl7v5z4otXPvdk3E4rEc8Tl5WImkpLqpqm8lOj0NRFCrLi/nvyn8CcMa51zN9YjZmk+TohBBCCCG0VOHdw5am92kNNaAoOlRVZa+yniRzDkUJ5xBjiNM6RCGGnd5MMyvT0vYi4XHmmWd2qtPxzW9+E2gfyvL1WVvE8LdjRyWeZl+nZAeATqeQmRlPSUk9u3dXM2NG3hGPYzTqOevkQv759maKy9zEuWy8+MwyotEIo8fP5ux5ZzNjck5/X44QQgghhDiCxmA1mxpXEooGSDJnoyjtw5HD0SDV/gNsaljJSUmXolcG90MqVVWJqAEADDqp7yXEcNWjd6Li4uL+ikMMUaUH67FaTd0munQ6HXq9jsrKRuDICQ+A0bnJXHn+DNZtKeGNN95g9/aN6A1G7rrnPi46bzoOu3wYCTFYtfmDbC+rYXdFLYFQhPR4J5NyUslMcEkiXAghNOKLeDnYtoeStt34ol6chljy7IVk20b1euhJadsOfOGWL5IdX76/G3Qm4k1p1PoPUucvJdWa31eX0adUNUq9fwc1vs9oDVUACrHmfFKs04gzj9I6PCFEH+tRwiMnR56wi87ae/Ycvc2xys6IJys9jv/73Y8BWLJ4Mdd8a97xhCiE6Gc1Ta28/PFmSmobMeh0GPQ6tpdW88nug5w1ZTRzx+dJ0kMIIQZYS6iJj+vfoSZQhkkxY9CZqPIdpMJXQq59LHMSzsKoM/XomKqqUuXbj0Vv7/Z93agzEyVMQ7BqUCY8VFXlYOv7lLV+gEoUs96FqqrU+Dbh9u8k33kuabYZWocpRLfUL5ae7jPS9Sjh0dDQgNfrJTMzs2Pd9u3beeCBB2hra+Oiiy7iO9/5Tp8HKQavvPxE9u2v6XY4UyQSJRpVyczsOtXskSiKwtv/WcH//d//8YMf/KAvwxVC9LFQJMJrn2ylpKaRvJR4DF/MtKSqKnWeNt7+bDfJrhgKM49evFgIIUTfUFWVTY2rqfGXkWzJ+HJ4iRGCUT8HWncQZ0xiUuzMnh6ZKBEUdEdooqAO0tuspuB+yls/wqR3YtHHdqy3Ek9bqJqSllW4TLnYDInaBSmE6FNHeLfq6qabbuKhhx7q+Lm2tpa5c+eyfv16AoEA1113HX/5y1/6PEgxeI0bl0F8vJ2Kigai0S8/3CKRKGXlbtLSXIwZk9rj41qtVn7605/icDj6MlwhRB/bX+WmuKaBrMTYjmQHtCcuk10xBEMRNuyv0DBCIYQYeRpDdVT6S4g1JXappWHSWbDobRxo20EoGuzRcRVFR6I5E3+0tdvtETWMoig4DD172PV1qqriCVZQ6d1IpXcjnmBFpxqCvVXv205EDXZKdhxiM6QQiDTh9u847vMI0R8OTUvb02Wk61EPj08++YRnnnmm4+fnn3+e+Ph4Nm/ejMFg4IEHHuDRRx/lmmuu6fNAxeCUmOjgvPOm8p8VWygpqcNg0KOqKtFolNS0WM775jTs9mOfSvaDDz7g5JNPRq/X92PUQoi+UtXYQiQSxXKYGZRcNgslNQ0Ew2FMhsFdwE4IIYYLT6iJYNRPnDGp2+12g4OWUDOtYQ9xpp71Zsi2TaDcu5vWcGOn2VhUNUpDsIpYYwpp1oJex+6PNLPP8x/c/r2EVT8ABsVCgmU0o5zzsehdvT52a7gSo87W7TZFUdApBrxhmXVSiOGkR98+q6urycv7svjk+++/z8UXX4zhiy+xF1xwAUuXLu3bCMWgN3p0KsnXOdm9u4qK8kYUnUJOdgKjx6QSE3PshUbXr1/PaaedxvTp0/n444+xWo88la0QQnvHVJpDAUWeMAghxIDRKTqgfWhJd++/UTX6xQ1+jzp7A5BiyWW88yR2etZSGziIWWcjqkYIRf04jUlMiz8bo+7YH3Z9VTgaYFfTP6n37ybGkEqMLg2AULSNau8WQlE/k+K+jaGXx9crZqJq+LDbVTWKXulZXRMhxODWo4SH0+mkqampo3jpunXrWLBgQcd2RVEIBAJ9G6EYElwuG7NmFcCs3u2vqio333wzABMmTJBkhxBDRFqcE4Nehy8YwmrqWvG/yetnRkEGRoP02hJCiIGSaErFro+hNdyM0xjXZXtLuIlkcwYOQ2yPj60oCmOds4k3p1Pu3Yk7WIVBMZBmGUWmfWynXh895Q7soSGwD5cxG/1XCqqa9DG4dNk0BvbhDuwhxTqpV8dPsIyjIbCHqBpBp3T+XApHAyiKjjhz73unCNGfVFVBVXv2AKmn7YejHqV1Z82axcMPP0w0GuUf//gHLS0tnHHGGR3b9+zZQ1ZWVp8HKYa/v/71r3zyySfY7XbpJSTEEFKQmkB+agJl9U2EwpGO9aqqUtPUgsVooGhU5hGOIIQQoq/ZDDHkx0zAG27BG27tqH+hqirNoQYUFEY7Jvaqhwd8UafJks30+HM4O/U6Tk+5mkLXCceV7ABw+/cASqdkxyHtPS+UL9r0TqJlAk5jJs3BEsLRLx/ShqJttIRKiTOPJlamphViWOlRD49f/vKXnHXWWbzwwguEw2F+/vOfExf35Rvb3/72N0499dQ+D1IMb62trfz0pz8F4Oc//zkZGRkaRySEOFYGvY5LTpjIK6u3cKCmAZ2iYNDp8IfCOG0Wzi0qZHSaVLsXQoiBNtk1i2DUT3HrTppC7i+GtqjYDA6mxZ5Erm2s1iF2EVK96OjaW/AQnWIkpHp7fXyz3snY2MvY1/wGzaGDqF8Mb9ErZhItkxntOh+9cvjzC6ElmZa2d3qU8Jg6dSo7d+5kzZo1pKamMnv27E7br7zySsaPH9+nAYrh77e//S2VlZXk5uayZMkSrcMRQvRQkiuG68+cxc7yGnZX1BEKR0iNczIxO4WMhN4XlxPHTlVVihsa2VxZRUWzB6vRyPiUZCalpeAw926suxBiaDPojMyOP4NRMROo8pcSjASwGWLIsOZ2O8xlMLAbkqln52G3R1Q/dsPxTXNuN6YyKeF6moLFeEM1KIqOGGM6TmM2Si97vAghBq8el8xPSkriwgsv7Hbbeeedd9wBiZGlpKSE3//+9wA8+OCDWCzHXuRUCDF42MxGigoyKSqQ4SsDTVVVVu3dz6rd+/CGQtiMRsLRKJ9VVJGfEMdV06eS6ojROkwhhAYURSHRnEqiOVXrUI5JkmUcFW3r8YUbsX5teIwv3IhBsZFkGXfc59EpBuLNo4k3jz7uYwkxUHozzaxMS9vDhMfzzz9/TO2uvfbaXgUjRh6fz8f06dOxWq1cfPHFWocjhBBDztbqGt7etZcYk5Gs2C971ISjUfa7G/jH59tYNGcWBp08uRRCDG5OYxbZ9hMpafuAYKgFiy4WgEC0GRWVXPupOI1SL1CInpo5cyZ6vZ6bbrqJm266SetwBlSPEh7XXXcdMTExGAyGjuJHX6coiiQ8xDEbN24cq1evpqmpCeWY5rcUQowkrf4A2ypqOFDTQESNkp0Qy8TMVBJibFqHNiioqsqnpeWEo1ES7fZO2ww6HdmxLvbVu9lX76YwOUmjKIUQ4tgoikKu4zRsxkSqvJtoCVUBEGvKJc02nWTLRPm+KEQvrF+/HqfTqXUYmuhRwmPcuHHU1NRw9dVX873vfY/Jkyf3V1xiBFEUpVPxWyGEAChraOLlTz+nzN2MXqdDp8D6AxV8uKuYi2dMYGLm0Oii3Z/84TCljU3EWbsfDmg1GglHolR6WiThIYQYEhRFR4p1MsmWiQSjrQCYdDFSX0OMeKravvR0n5GuR+8c27dv56233sLn83HKKacwY8YMHnvsMTweT3/FJ4app556ittuu42WlhatQxEDKBSOsLO0hjU7Sli/u4z65jatQxKDVFsgyCufbqWiwUNBcjwFyfHkJcUzOjWBFn+AV9dvo6pJ3j+UL8bmHukLjQoyglcIMeQoig6z3olZ75RkhxCi13pctHT27NnMnj2bZcuW8fe//51nnnmGn/zkJ1x00UU8/fTTmKUavDiKxsZGfvazn+F2u8nNzWXRokVahyQGwP4qN299upPy+maiahRUcNjMzBidxdnTR2My9vjtSAxjOytrKWtoIi8xHv1Xak/oFIXshFj2VNez+WAlabGDb1rFgWQ26ClISGBjeQWJ9q7DfNqCQcwGPZmxMluOEEIIMZRJ0dLe6XW61Gq1cu2113Lvvfcya9Ys/va3v+H19n5ebDFy3HvvvbjdbsaPH8/ChQu1DkcMgEp3M698sIXy+mYyEpyMSkskPy0Bg07P+1v28c6mPVqHKAaZg/VNKIBB3/VjSlEUYswm9lTXD3xgg4yiKMzKzsBiMFDd0tKpvlYwHKa0qZkxSYnkx8uwQSGEGG4i0Wa8/g9panmSppZHafWuIByu7PPzqKqKGqlGDfwP1bcCNfAhakQ+g8XQ0KtHqhUVFTz33HM888wztLW1cfXVV/PYY49JHQZxVDt27OCRRx4B4I9//CMGgzzVHwnW7ymjrrmV0emJHcXGdIpCgtOGosDGPeXMHptNcqxMnSnatd+2H+GphKKgIgNTAcYlJ3HBhEJW7NrD7jo3ZoOecDQKwPiUZC6fPLFTLxkhhBBDXyh8EE/rc4QiB1FUIyh6/OoGfP73ibFfhtV8Qp+cR1XDqP53IPAxqB7an5dHQReLaj4DxXy6DDkSg1qPXp2vvPIK8+fPZ/To0axfv54HH3yQsrIyfve731FYWNirAJYvX05eXh4Wi4WioiI++uijI7b/4IMPKCoqwmKxkJ+fz+OPP37Ytn/7299QFIWLLrqoV7GJvqWqKosXLyYSiXDhhRdy1llnaR2SGACBUJjtJTXExdi6raweF2OlxRfgQLVbg+jEYJUZ7ySqqkS+uHH/KlVVafMHGJWSoEFkg4+iKMzNz+VHJ53ABRMKmZyeyom52Xxv1nRumD2DhG6GugghhBi6olEvnta/EAqXYtSPwWgchdGQh9EwnqgapKXtFULhkj45lxr4GPzvgGIE/RgwjAb96PYnE/43ILi+T84jjk5VlV4tI12PHq9feeWVZGdns3jxYlJSUigpKeHRRx/t0u7mm28+puO9/PLL3HrrrSxfvpyTTjqJJ554gvnz57Njxw6ys7O7tC8uLubcc8/lhhtu4IUXXmD16tXceOONJCUlcemll3Zqe/DgQX7yk58wd+7cnlyi6EdvvfUWK1euxGQy8cADD/TruaLR9hslg14n05dpLBSOEI5EMRv13W5XFAWdohAKRQY4MjGYTchIIT3OQUl9E3lJceiUQ8U5VSqbPLhsFqZmp2sc5eCS7nKS7hqZU871RCgaYXdjPdXelvaaMI5Y8p3xHa8xIYQY7IKhbYQiBzEaClCUL79fKYqCQZ9FKLILf2A9RkPucZ1HjXoh+BEoNtAlfrlB0YE+BcIHUYMfgWk6imI8rnMJ0V96lPDIzs5GURT++te/HraNoijHnPB46KGHWLBgQUcdh2XLlvHOO+/w2GOPsXTp0i7tH3/8cbKzs1m2bBnQPk3uhg0beOCBBzolPCKRCFdddRX33nsvH330EU1NTcd+kaJfqKrKXXfdBcCSJUsYNWpUv5ynvqmVTXsq+HxfJaFIhCRXDNPGZjC5IB2jofsbbtG/rGYjsTFWaptacdmtXbaHwhFQIDam6zYxcjksZi6bOYlXPt3K3mo3FqMenU6HNxAk1mblwunjyIyXQpyiZ8pbm3l57+cUexoIR6OogEVvYFx8MleMmkyc5ejvQ/5IiB2N1exuriUQCZNmczI5Pp00m7wehRCdtddVigD6Pn0AFwqXAdFukwyKoqDDSTC04/hPFCmDSD3ouz6IBkCfDJFqiFSB4TBtRJ9RoceDeWXwbw8THiUlJUdtU1FRcUzHCgaDbNy4kdtuu63T+nnz5rFmzZpu91m7di3z5s3rtO6cc87hqaeeIhQKYTS2/9Hfd999JCUlsWDBgqMOkQEIBAIEAoGOn2Wa3b6nKApvvvkm999/Pz//+c/75RylNY38/f3NVLk9OO0WjAY9B6rc7K2oY39FPRfNnSQzgfRQmy/I9v1VbNtfRas3QGJcDJNGpTEuNwXDMSaQ9DodM8Zk8urHW/EFQ1hNX344q6pKhbuZtDgHozOS+usyRhRfMMTuijpqmlpQFIXMBBej0xKHZMKvIDmB/+/0WWwtr2ZPVT1hNUpeYjyTs1NJj5WeDCOZqqo0B/1EVBWXyYLhGGqUNAV8PL9rE6UtTeQ4YrEY2t+LWkMBNtVVEIlGuWHCLEz6w/+tuP1t/HX/RvZ4akEFg07Hp3WlfFC1n/Oyx3Nicp70KhRCEFUDtAQ24fGvIxhxo9dZcZhm4LTMwKgfSjUPIxxK2HRPD2oECA9cSEL0UJ/d/VVXV3P//ffzpz/9CZ/Pd9T29fX1RCIRUlJSOq1PSUmhurr6sOforn04HKa+vp60tDRWr17NU089xebNm4859qVLl3Lvvfcec3vROxkZGd0OgeoL4XCEN1fvoLaxlYLMxI6uyfFOG15/kA27yslOieeECTn9cv7hqNHj5R/vbmZ/eT0mgx6TyUC1u4Vt+6ooKszk/FMnHnMCafqoTA5UuflsfyVWkxGnzUwoHKGh1Ues3cJ5s8ZhMUky6ngdrGvktbXbKHc3E41GURQFvU5Hfmo8l82ZRJJr6BWFjY+xcWphPqcW5msdihgEVFVlm7uG1VUHKfY0EFVVkq12TkjL5oTUbIy6wycrPqur5GBLI6NdiZ2KuMYYzeQ54tnRUMOuxlomJ6Z1u39EjfJK8WfsaKqmwJGASW/oiKna18K/D24lwWynMDal2/2FECNDJOqjpuWveAKbUBQDel0MoYiburZXaQluIs3xXcyG1OM6h9GQBehQ1VCXXh6qqhLFg9U457jOAbQPY1GcoDaD0k2iJtoEOmfn4S6i38i0tL3To6KlTU1NXHXVVSQlJZGens7DDz9MNBrl7rvvJj8/n7Vr1/L000/3KICvPwlRVfWIT0e6a39ofUtLC1dffTV/+tOfSEw89j+822+/nebm5o6lrKysB1cgjmb37t39fo4DVQ2U1TaSnuTqMg7bZjFhNurZuKuUcKRrAUTRlaqqvLN2F3tL68hOjSMrNY6UeAd56fEkx8Wwbkcp67aXHvPxLCYDl82dwsUnTSTRZccXDKECc8blcO3ZMxibldx/FzNCNLb6eOXjLVS4m8lJjGVMehKj0xLJiHeyp6KOV9Z8jj8oT2DE0PZxVQlP71jPVnc1Zr2BGKOJijYPL+3ewt/3bu2YnaY7n9dXY9Ubu52xxmIwEFFVdjcdfprFAx43e5rryImJ60h2QPv3jzSbE284xPq6Y39fFEIMT02+j/AENmA2ZGI15mHSJ33x/0fhDxVT1/avTlOI94bJOBGjPodQeD+q+mUNNFVVCUfK0SkuLOaZx3spKPpkME6AaC2ooc4b1QCoDWCchqKTXpdi8OrRI9Wf//znfPjhh3z3u9/l7bffZvHixbz99tv4/X7+85//cOqppx7zsRITE9Hr9V16c9TW1nbpxXFIampqt+0NBgMJCQls376dkpISzj///I7t0S++/BgMBnbv3k1BQUGX45rNZsxm8zHHLo7d+vXrmT17Npdddhl//etf+20aWndzG5GoetheAk67hQaPF68/iNNu6ZcYhpNqdwt7DtaSkuDoMhTCbjVhMxvZtLOMWROyj7mXh8Vk4OQJecwuzMbrD2HU67BZTP0R/oi09WAVlQ0eRqUmotN9mfQzGw3kJsdTXN3A7opapuRJoU8xNNV6W1lRvBuDTk+248snjU6ThZZggDVVBxkXn8y0pO5f44Fo+IhDX/Q6HcHI4ZOCZW1NBKNhbIbu37fizFb2euoIRMKY9dJjTYiRKBL14wl8il7nQK/rXBNIUQyYDBl4g3vwhw9iNeb2+jw6nQ1nzDV4Wp8lFNmDghHQo6pe9LoEYuyXYTTkHd/FHIrbOh81Wg/hPe3FS7GC2gb4wTgJxXJmn5zn61RVRSWIgqFTYVYheqpHn8hvvfUWzzzzDGeddRY33ngjo0aNYsyYMR1FRHvCZDJRVFTEqlWruPjiizvWr1q1igsvvLDbfebMmcMbb7zRad3KlSuZMWMGRqORwsJCtm7d2mn7nXfeSUtLC3/84x/JysrqcZyi91RV5dZbb0VVVcxmc78lOwAMel37G+NhegiFI1F0Ol23T/ZEV3WNrXj9IVITHN1uj3VYafB4afT4SDlMm8Mx6vW47PLB1dd2lNdiNRk7JTsOMRn0qKgcqG6QhMfXRKJRyj0efOEQTrOZtBiH1GAYpLY31NAQ8DI2tmu9H4fJTI2vlY215YdNeGTGuChubuh2W/tT0QiptsO/n6moKEfoGqygSHE4IUa4cLSRUKQJoz6+2+16JYYgVYQidceV8AAwGnKIdd5KILiFYGgnKiGM+jwspmkYDH33Wa/o4sH+PQhtRA1ugGgr6LNQTDPBOBVFZ++zc0F70qglsAFPYB2hSAM6xYzDPB2nZRYm/ciu96aq7UtP9xnpenQHWllZyfjx4wHIz8/HYrF0zLDSG0uWLOGaa65hxowZzJkzhyeffJLS0lIWLVoEtA81qaio4Pnnnwdg0aJFPPLIIyxZsoQbbriBtWvX8tRTT/HSSy8BYLFYmDhxYqdzxMbGAnRZL/rfSy+9xJo1a7Db7fzmN7/p13PlpMYRYzXT3Oon1tE5o66qKg0eLzPHZWG3So+CY6EogNL+Jtndvd+hxJLcFw4eoXDkiAk9vaIjFJGpf79qW20N7x7YT2lzE8FIBKvBwJiERL4xagxZLplxY7Bx+7zolMNPNR5jMFHV1nrY/acnZbCuugy330uCxdZpW2Wbh3iLjUmJhx9Xn2ZzYlB0+MIhrIauMyM0BX1MiU/HdIQ6IkKI4U1RDCiKDpXDfd5GUVQFRembh4B6nQub5RRsllP65HiHo+gcYD4NTKfSH7POHBKJ+qhueZGW4CZ0mNDrHISjLdS3vUFLYAtpzmuxGDL7/LxieOvRX1s0Gu2YCQVAr9djt/c+q3fFFVfgdru57777qKqqYuLEiaxYsYKcnPbCklVVVZSWfjkeNi8vjxUrVrB48WIeffTRjjoiX52SVgwObW1t/PSnPwXah0JlZGT06/mSYmOYOjqDjz8/gE6n4LCZURSFSCRKpduDw2ZmZqFMl3WsMpNjcdrMNLZ4SXB1/Rt3N3vJSo0jIbZvs/qi97KTYimu6f7pdVRVCUWipMXLGNtDttRU8+Lnm/GFQqTGOLAYDLSGgmyqqqSqtYUF02aQ4ZTf12BiNRqJqIev0RGIRkg+Qk/CsbGJnJU1indK99IY8BFnthJVVRoDXuwGExfkjyfZevjCvqOdSeQ7E9jdXEuBI7HT8Jg6fysGRcespBzpISTECGbUJWAx5OAN7cbQTV2LUNSNXh+LpY+Gmwy09ve3/uux3eT7mJbARsyG7E5DglQ1BV94P3Wt/yLT9YMRO8RFipb2To9esaqqct1113XUu/D7/SxatKhL0uO111475mPeeOON3Hjjjd1ue/bZZ7usO/XUU9m0adMxH7+7Y4j+99vf/paKigpyc3NZsmRJv59PURTOmT2WSCTClv2V1Da2tr8pq5AUZ+cbswvJS0/o9ziGizinjaljM/hg437MRgMxtva/eVVVcTd7UVWYOSFbhggNIlNy0tiwt5y65tZOs7Ecmvo3wWFlfJbMHgEQjER4Z99e/OEwBfFfvi+4zBYcJjN73PX8t2Q/V0+epmGU4uvGxCZi1RtoDQWIMXauuxWORvGFg0xPPnxyXVEUzs0tJCPGxac1ZZS2NKKgMCc1m9kp2YyNO3JXaaNOz+V5U3lx/0YOtNRj1Okx6PR4w0HsBhPzs8YxMa77GV6EECODouiItc7FFzpAIFyJSZ/a3uNDVQlHmwhHG0m0nYtRH6t1qINOVA3gCaxDr4vppv6JHrM+A19oH75wCTZj15qMQhxOjxIe3/3udzv9fPXVV/dpMGJ4KCkp4fe//z0ADz74IBbLwBQJtZiMXHzqZGZNyKG4soFgKEysw8rY7GRirFKUtqfOmDUGnz/Elr2VVLtb0OsUwlEVp93M2SeMZeqY/u21I3omJzmOs6eO5p3P9rCvqh6nzYKqqni8AZx2C+fPHE+Cw3b0A40ABxobKPc0k+Ho+vRNpygk2+1sr62lwecl3iq/s8Ei3xnPtKQM1lQfJNUaQ6zZiqIotIWClLU2ke+KZ3rSkd+XdIrCtKR0piam4Y+EURQFSw8KjKbZXPx/hSfyeUMl2xurCUTCZNhdTE3IJC8mXnp3CCGIMU0mOeYS3N7/4AvtBRQgil7nIM56BvG2c7QOcVAKR5oJRxsx6GK73a7X2QmEKwhF6kESHqIHepTweOaZZ/orDjGMlJeXk5iYyOjRozsVpB0IiqKQmRRLZlLsgJ53OLKYjFx8xhSmj8tiX1kdXn+IWIeVwtwUkuNj5Iv9IKMoCnPH55EW5+Sz4goOVDegKArTCzKZlp9OVmKs1iEOGt5QiHA0ivkwwx+sBiMtwSDeUIh4a7dNhAb0Oh3fGj0Jo17P5rpKapvbp5A16wxMTkjj0lETcZmPLcGuKEq3dTiOhcNo4aSUfE5Kye/V/kKI4U1RFGKtJ2M3TaAtuI1w1INOsWAzFWLWp8v3p8NQFD0KelS1+9my1C+GNCr9OKRmsJOipb0zcl8xot+cfPLJ7Nq1i8bGRnlTH2QikShlpW727quhpcWH02Fl9JhUsrISup3dQ6dTyMtIIC9DhgMNBYqiMDo9kdHpiahffMLJ32BXNqMRg06HPxzG0k3SwxcOYdHrsRl7d0Ms+o/NaOKqsVM5M7OAkpZGoqpKsjWGfFc8uhH2Wo+oUfZ76tjZXIUn6CfWbGN8bBp5MQnoFBluKITWjPo4Yq1ztQ5jyDDo4rEaC2gNbMHQzZCfULQegy4Wq1GSzaJnJOEh+oXdbj+ugrai7wWDYd55ZyufbyklFI5gNOgJhSKsW7efSVOzyRyXzJ6qetoCIZKcdiZlp5KTFDskbpibWnxUuptRVUiNd3RbaHWkGQr/blopiIsn0+mi3NNMflznqQOjqkpNWxtzs3NkOMsglmp3kGrv2ZTYw0kgEuK1g5+x0V1KMBrGpDMQjIb5uGYvs5PyOT9rMkaZLUYIMYQc6hnjDe3FHy77ojeM/ov6J42EI40k2OZj1MdpHaqGel60FClaKgkP0XdefPFFAoEA1113HTopZjnorF2zlw3rD5Cc7CQm5stu3/VNbbz40WbMuywkJDgwGfR8frCStXsOcuq4fM6eMrrb3h+DgT8Q4t0Ne9iyr5LmNh8ADpuFiXmpnD1rrNRuEd0y6vWcM2o0L36+mX0NbtJiHJgNBtpCQapbW8hwODg9V54gHU0oEmFPg5vylmYAMhxOxsYnYtTLjXZ/e69qN2vrDpBmdeEwfvl+3hz08WH1HhLMdk5NHaNhhEII0XN203hSYi6nvu0tfOH9oAKo6HUO4m1nkWD/htYhiiFIEh6iTzQ2NnLLLbfgdrsxGo1cc801WockvqKtLcCWLaU4ndZOyQ5VVSkNt+IhRHyrgdyxsRgM7dn0xjYf727dS6LLRlH+4JvzPByJ8q+PtrFxVxlxTit5aQmgQHOrj9Vbi/F4/Vx51nTMRnmbE11NSUlFP2Ua7x3Yz8HmJoKRCFajkaK0DM4pGC1T0h5FdWsLf9uxlX2NbsJRFVAx6PQUxMVz5fhJpMWM3N4X/a0l5GdDfQmxJlunZAeAy2SlLRzgk7piZiflYdHLsCwhxNDitMzCZiqkLbiDcLQZnWLGZhyDSZ824nuvql8sPd1npJM7AdEn7r33XtxuN+PHj+fKK6/UOhzxNbW1HpqavGRkdO4G6AkFqfF6ibNZCPvDtLUFcLlsKIpCfIwNjy/Aur1lTM1NH3RT0O6vqGfLvgrSk5zYLKaO9XEOG1aziR0lNew+WMvkUekaRikGs4nJKYxLTKLc48EXDuE0m0mLcYz4L1RH0xYM8pdtW9jX6CbXFYvli+Kf/nCIXe46Xti2hR9Mn0WMyXSUI4neqPA20RD0kmfvvrZSvNlOjc9Dtc9DbozUXxJCDD0GnROX5QStwxDDxOC6gxFD0s6dO3nkkUcAWLZsGUYp9DfoqKqKSte6Dp5gkGA0guUwXdDj7VYqGz00e/0DEGXP7D5YSySqdkp2HGIxGdApCtuLqzWITAwlep2OnNhYChOTSHc4JdlxDLbW1bC/sYGC2PiOZAeAxWBkVFw8+xsb+LxW/vb6S3tBYvWww7IVlC+e6MlzPSGEEEISHuK4qKrKrbfeSiQS4YILLuDss8/WOiTRjaQkB06nleZmb6f16hdfiP3+MGazEZvta8kDBejFFFgDocUXwGg4/FuY0aDH4w0MYERCjAw76+vQK0q3tToMOj0GnY6d9XUaRDYypNlcuIxWGgPebrc3BtuIM9tIssiwIiGEGE7ap6VVerhoHbX2JOEhjstbb73FypUrMZlMPPjgg1qHM+iEwxH276lm1VtbeOMfG1j9v53UVjd3TBk6UBwOK5MmZtLY5MXvD3Wsd5rM6FRoDQRJSXFi/Fq9i8ZWH6lxDmLtlq8fUnNxDivBUOSw2/3BMIkumWVDiL4WiIQx6A//9cGg0xGIhAcwopEl1mRjanwW7mAbvnCo07a2cABPyM/MhFzsBinaLIQQQkgND9FrkUiEH//4xwAsXryYUaNGaRxR7xxKPvR1V/a21gD/+dcmdu+oIBKJotfrCIcjfPLRXk48bSwnnDxmQLvPn3TyGBqb2tixoxJFAbPJgN8fwhLSoTjNJKd1LtLY2OYjHFWZNSp70NXvABifm8rabQdpbvXhirF22tbqC2DQ65iQl6ZRdEIMX5lOF5uqq1BVtct7mKqq+EIhMh1S9LU/zcsYT1PQy9bGCgDMegP+SBhFUZidlMepqaM1jlAIIURfk6KlvSMJD9Frer2e5557jl//+tfccccdWofTYzVuD1t2V7DrQA2hcITMlDimjM1gTG7ycU/Dqqoq7739Ods+LyU9Iw6L1dSxvqG+lf+t3E5snJ1xEwdu9hOr1cSFFxYxcWImO3dW4vH4cDltnJufwMaaavZUudEprRgNevyhMBajgTMnFTA9f3AW/cxOieOECTl8uHk/rb4g8U4bCu29Utp8QeZMzGVUZqLWYQox7ExJTuXDg8VUt7V2mY2lpq0Vp9nMtNTB+b4xXNgNZq7Kn83O5io+b6ygOegjzmRjSnwmY12pGHUyNbAQQggBoKgD3bd+CPB4PLhcLpqbm3HK1ITD0r7SOv757hbcTW047GZ0Oh2t3vZeAScXFXDm7LHHlfSorWnm+Sf+h9VqwuGydtleVuImf3QyV3z35ONOrvQFfzDMzooatpfV4g0GSXbGMCk7lbzk+EER3+GEI1E27Cxl3c5S6ppaAYh32phRmMUJE3IxGuRLvxD94cPSEv61Zye+cIhYsxVFgSa/D4vewAVjCjk1O08KwAohhBj2BuK+8dA5HtvyD6wOe4/29bW08YMpl43o+1rp4SF6paGhgfj4eK3D6BWvP8hbH2zD0+qjICux40t5UlwMTS0+Ptq4n6yUOArzU3p9jqryRrxtAZJSun9jiY23UVneSKvHhzNW+zoTFpOBaXkZTMvL0DqUHjHodZwwMZeiwizqmlpRVUiMtWM2ylubEP1pblYOyXY76yrL2eN2AzA7PYtZ6ZkUJiRKskMIIYToY4cKkfZ0n5FO7gpEj23cuJG5c+eyZMkSfvnLXw65L7Z7SmqpcbeQnRbXJfZYh5VGj5fNu8uPK+ERjR6541T7eVWi0sGqTxgNetITXVqHIcSIoSgKhQlJFCYkEYq0Fw/ubtYWIYQQQggtDb5KhGJQU1WVm2++GZ/PR0lJyZBLdgDUN7WhqmA4zJdzh81MeXXjUZMWR5Kc4sRsMeLzBrvd7mnykpjkxOHsOtxFCCGGEqNeL8kOIYQQop+pvVxGOunhIXrkb3/7G2vWrMFms/Hb3/5W63B6Ra9TUI/w5x+Jqpj1eo4nl5OWGU9uQTK7tpaTlZeI4Su1JFpbfITDUSYX5aI/wtSOQojBJRiJsLWmho1VFdS0tmE3GSlKS2daWhpO8+CbulkIIYQQYqSThIc4Zm1tbfz0pz8F4PbbbycjY2jVezgkKzUOo0GPzx/CajF22qaqKi1ePzMmZh9X7xWdTuHsc6fg8wY5WFyH0ajHZDLg8wbRG3TMPHEUk6flHO+lCCEGSCAc5pXtW1lX0T4NqN1kosHnZa/bzYbKCq6dMo0ke88KiQkhhBBCiP4lCQ9xzH73u99RXl5Obm4uP/7xj7UOB58viK8tiNliwB5z7E9XczMSGJOTzLZ9VWSmxGI1tyc9wpEolbVNxDttTB5z/Mmc+MQYLr/6RPbsqGDX9kp8viCJyQ7GT8okb1SK9O4QYghZXVbKmrIyMp1O7CZTx/pwNMreBjf/2rWThdOLhuQwPy3UtLbyeU015R4PJr2OMQlJTEhOxmY0Hn1nIYQQYgRSUVDpYdHSHrYfjiThIY7JwYMH+d3vfgfAgw8+iNWqXe0JT5OXDZ/uZ8fn5fi8AYxGA6MK05hxQgGp6bFH3d+g13HB6ZNQgb0HawmFIqAoKAokxzs475QJpCX1zbRN9hgz02blM21Wfp8cTwxPHr+fLeXVfF5RjTcUIt3lYFpmOmNTEtHrJDGmtUA4zCflZdhNxk7JDgCDTke6w8mu+jrKPM1ku2K1CXIIWVdRzr927aTB58WkNxCNqqwpK6MgLp7vTJ5MaoxD6xCFEEIIMUxIwkMck40bN6IoCqeddhoXX3yxZnE0N3n550ufUnKgFqfLisNpJRAIs3HtPg7ur+XCb80iMyfhqMdxOax857wZlFS4Ka1qJBqNEh9rZ2xuCnar6aj7C9FXajytvLB+M8XuRiwGAya9nrLGZjaWVjJ3VA4XTBonSQ+NNfp9NHi9xB0m0eswmahqaaG6tVUSHkdxoLGBV3dsJ6JGGfuV6WtDkQh7Gtz8betWbpw1G5MUQRVCCCE6UdX2paf7jHSS8BDH5JJLLmH37t0EAgFNu2yvW72XkgO1ZH+lEKjNbiY2zsbB4nr+t2ob375+7jENFzHodYzKTmJUdlJ/hy1EtyLRKK9t2U6xu5GCxHgMX0lsNPv8fLC3mAyXi1m5mZrGWFLfiLvNi16nIy8xjni7TbN4tKBXdCiKQuQw3xpUQPminTiy9RUVeAIBxiQkdPosMer15MbGsr+xgT3ueiYm935acCGEEEKIQyThIY5ZVlaWpudva/WzY2s5sXH2TrOeHJKY7KC0pJ7K8gaychI1iHDk8QZCtAUCmAwGXDaZpaKnit2N7KtzkxXr7JTsAHBZLTR4faw7WMaMnAx0GiQaKxqb+feWnRTXNRAMRzrimpmbyTkTR2MyjIyPkASbjWxXLHvdbpxmc5ftDT4fLouF3NjYgQ9uCImqKjvr63BZLN0mzi0GA+FolLLmZkl4CCGEEF0oXyw93Wdk0/xx1PLly8nLy8NisVBUVMRHH310xPYffPABRUVFWCwW8vPzefzxxzttf+2115gxYwaxsbHY7XamTp3KX/7yl/68hGHtX//611H/TQZKi8ePzxvEHvPlDYeqqtS5W9i+u5KtOyvYsbeat//zOWWlbg0jHf6a2/z8Z9Nulr35EcveXM0f3vyIl1dvoay+SevQhpQaTyvBcASbqfthVPE2K1XNLbT4AwMcGdS3tvHCp5vZVVVHYoyd0SmJFCQloNMprNy5jze27EIdIf0kdYrCSdnZ6BSobm3tdN2eQAC318vM9AwSbCOr50tvqOrRy6eNjFeVEEIIIQaCpgmPl19+mVtvvZU77riDzz77jLlz5zJ//nxKS0u7bV9cXMy5557L3Llz+eyzz/j5z3/OzTffzKuvvtrRJj4+njvuuIO1a9fy+eefc/3113P99dfzzjvvDNRlDRuNjY3ccMMNnHLKKaxYsULrcDCZDBgMOoLBMND+xbmk1M3O3VW43a1Eo+1fk3fvqeZvL3/C9m3lWoY7bDW3+Xnhw028vXk3gXCEWJsFg07H2j0Hee5/G9lfLcmmY6VTFFQ4bOIgqqooiqJJ744NJRWUNTRTkBSP3dyekNHpFBJj7CQ77GwoqaCyuWXA49LKtNQ0LiwchwLsrq9nj7ueXfV1NPp8nJydw7ljxmgd4qCnUxRGJyTQHOg+gReMRNArOjIcUrRUCCGEEH1D0/7IDz30EAsWLGDhwoUALFu2jHfeeYfHHnuMpUuXdmn/+OOPk52dzbJlywAYN24cGzZs4IEHHuDSSy8F4LTTTuu0zy233MJzzz3Hxx9/zDnnnNOv1zPc3HfffdTX1zNu3DjOPvtsrcMhLsFOTl4Su7ZXEOOw0NjkpayyAZPJgMVspLXFT2ysjcJxadTVtbJq1TYys+JxueSpa1/6eFcxe6rqyU+Jx/hFYUE7JuLsVg7UNrDis138YN4cDDLt7lFlxbuwm4y0+AM4rV2HBLnbvEzJTCPGPLCFdKNRlc9KK3FazN0WTI21Wqj1tLGv1k1GbN/MaDTYKYrC6Xn5TEhOZlttLU0+H1ajkbGJieTGxmmSlBqKZqZn8llVFTWtrSTb7R1DWyLRKCVNjeTHxVOYKHWVhBBCiK+ToqW9o9kdSTAYZOPGjcybN6/T+nnz5rFmzZpu91m7dm2X9ueccw4bNmwgFAp1aa+qKu+99x67d+/mlFNO6bvgR4CdO3fyyCOPAPCHP/wBo9F4XMdTVRVPk5e6Gg8+b7BXx1AUhZknjsLusFBR1kBVTTPRiIrJaKCt1U80GiUzOwGj0UBqqovGxjb27Kk+rrhFZ95AkM+KK4mzWzuSHYcoikJ6nJOy+iZK6ho0inBwUlWV+tY2yhubafL6O9ZnuJxMTE+h0tOCNxjq1L7K04LJoGd2buaAFwoORyMEwxHMh6nR0d7rBAKh8IDGNRgk22M4Iy+fS8ZPYP7oMeTHxUuyowfGJCRw/phCwtEoe9xuypqbKW5sZF9DA1nOWK6YMOmwrzshhBBCiJ7S7FtFfX09kUiElJTOhclSUlKoru7+JrW6urrb9uFwmPr6etLS0gBobm4mIyODQCCAXq9n+fLlR+yhEAgECHyli63H4+ntZQ0LqqqyePFiwuEw559//nH3jCk/6GbDJ/s5sLeacDiKxWpiwpQsZp5QgDO2Z70vcguSOf/SGXzw7nb2rN1LMBSBqIrVZiK3IJnU9Figveu9Tqejvn7kdLkfCB5fAG8wRLy9++k5rSYjoUiU5q/c1I90xfWNfLC3mD019YQiESxGA5MzUjlldB4pzhgumjyeYDjCtqoaQpEoBp2OcDRCrNXKhZPHMz41ecBjNur1xNttHGxoJCGm699oJBpFpb2AqRA9oSgKp+bmkhsXy+bqKkqbmjEZ9ExISmZySioui7ymhBBCiO6oKBy9ElbXfUY6zR+jfP3JpfrFmPWetP/6eofDwebNm2ltbeW9995jyZIl5OfndxnucsjSpUu59957e3kFw8+KFSt45513MBqNPPjgg0dtHwlHCQRCGE0GjMbOT/2L99Xw+t/X09zkJS4hBnuMAW9bgI/e20H5wXouvvIEnK7ub54PZ3RhGjn5STT7AtTUNJOc7CI2zobR2PnlHI1GMXYzm4voPbPBgFGvay+02XWyCsKRKAqKPKH9wr5aNy+s24y7zUtyjJ04m5W2YJAP9hZT7G7kujnTSXbE8N0TprOv1s2e2nr84TCJdhsT0lNIccRoEreiKMzMy2BfrRtfMITV1LmHV1VzC0kxdsalydAD0XOKopAbG0dubJzWoQghhBBimNPsriQxMRG9Xt+lN0dtbW2XXhyHpKamdtveYDCQkJDQsU6n0zFq1CgApk6dys6dO1m6dOlhEx633347S5Ys6fjZ4/FoPgWrVoLBIIsXLwZg8eLFjB49+rBtfd4gn28q4fNNB2lt8WM0GRg3KZOpM3JJSHQQDkf438rttLT4yclP6khKWW0mXHE2ivfVsuGTfZxxzqQex2kyGTjhxNGsfGcrCYkOdLrOiTC/P4TBoCdbpqftU7F2C6PTkth4oByXrevUkrWeVhKdNvJT4jWKsGf8oTA7ymv4vKyaFl+AhBgbU3LSGJuWdNw1SCLRKP/Zvocmr4/RSQkdvyuL0UCs1cK+Ojf/232Ab82YjEGnozA1icLUwZNAmJaVzu7qejYcrCDGZMRltRCORqlv9WI1Gpk/aUy3dUeEEEIIIYQYLDSr4WEymSgqKmLVqlWd1q9atYoTTzyx233mzJnTpf3KlSuZMWPGEWtMqKraacjK15nNZpxOZ6dlpDIYDNx9991Mnz6dO+6447Dt2loD/OuVdbz9+mYaG1oxmvQEAyE+em8Hf//LGqoqGiktrqeyopGUNFeXG2ODQY8z1saOLWX4fL2r6TFhQiYpKS5KS+s7Zm4B8PmCVFQ2kl+QRH7+4LmBHA4UReGkwhxibRaK6xo7ajiEI1GqGj0EQhHmjsvDNsBFNnujxRfgLx9t4i8ff8bW0mqqm1rYcKCcZz7YwGvrtxIKR4D2JM6Hu4t5e+sePtpTQl1L2zEd/6C7iYPuRtJczi6vf71OR2KMna2VNZ1qegwmZqOBK2ZO5pLpE4iz22j2B/CHwkzOTOXaE6cxIzdT6xCFEEIIIUaM9pn9erhoHfQgoGm/8yVLlnDNNdcwY8YM5syZw5NPPklpaSmLFi0C2nteVFRU8PzzzwOwaNEiHnnkEZYsWcINN9zA2rVreeqpp3jppZc6jrl06VJmzJhBQUEBwWCQFStW8Pzzz/PYY49pco1DjU6n4+qrr+aqq6464tCiDZ/sY/f2CjJzEjCZvnwZxSc6KC2u4/13tjFhchbRSBSzuftklM1uwtPkw9sawGrt+Q1ybKyNCy+azooVW6iqbCKqqqiqislkYNy4dM49dwoGGdLS5/KS47ny5Kn8Z9NuKhqaCUfbh7EkOmzMmzqGk8bmah3iMfnP5t1sLasmNzEO81eGQ7X6A6zZU0pijJ2QqvLx3mKafX4UlI66FacV5nF6YUGXnkVf5fEHCEYi2Ezdv/7tJhO1La20+P3E2gZnTwmL0cDpY/M5qSCbZl8Ag05HbDc9e4QQQgghhBiMNE14XHHFFbjdbu677z6qqqqYOHEiK1asICcnB4CqqipKS0s72ufl5bFixQoWL17Mo48+Snp6Og8//HDHlLQAbW1t3HjjjZSXl2O1WiksLOSFF17giiuuGPDrG2qCwSAmU3vi4Ug3ND5fkG2by3C4rJ2SHdBeLDQ5zUVZSR2Z2e3DGiLhKHpD185EoUAEo1GPydz7l2FGRjzf/e5cDhyopb6+FZ2ikJ4RR1ZWPHqZFrXfjE1PIj85ngM1DXh8fsxGAwUpCdgtg79nB0Cdp5Vt5dUkO2M6JTsAYixm7OYA/9q0A/QK8XYro1MSURSFqKpS39LGW5/vxmY2Macg+7DnsBoN6HU6guEwpm5qmgTCYYx6HZbjnAFpIJgMBpIcUpdFCCGEEEIMLZp/g73xxhu58cYbu9327LPPdll36qmnsmnTpsMe71e/+hW/+tWv+iq8EWPjxo1ceOGF3H///Vx77bVHbNvi8dHW4sMVZ+92u81mprbagz3GQnxCDO76FpJTXZ3aqKpKg7uVaTPzcDh7VrT060wmA4WF6cd1DNFzRoOesRlDc8hQdVMrHl+AUSndFwV1WMxsqaiiICWeRMeXr3OdopDsjCHQ0MzqvQcpysnAdJheRHmJcaQ5HVR7WsmOj+20TVVValtamZaVTmI3s6AIIYQQQgghjp88Aheoqsott9xCRUUFK1euPGp7o0GP3qAj/EWNg6+LRKIoQIzDwsyTRhEIhKmtbu5oH/CHKDvoJi7eTtEJBX15KUIcE0VpX9TDDGxs8fvxh8LE27tP6iU57NQ0t1DZdPgprE0GA2cWFqAoUNrQRDDcXu/EFwxxoL6ROJuVU8fkyfAQIYQQQghxVIempe3pMtJp3sND9E5bi4/dW8rYtW4fTTVNxCbGMG5GPuNmj8byxXyhqqpSddBNyd5qgoEwDqeVggkZxCZ0fqr98ssvs3r1amw2G7/5zW+Oeu7YeDuZOYns3VnZbe+MRncrrjgbWTkJWG3pKIrCutV7qShtQFVVDAY9mVkJnDZvAhlZQ2M2DzG8ZMS7cFktNLR5O/XgOKTR2z5Mx3mY2jJ6nUJEVQlHo0c8z/TsdFRU3t91gLLGZqKqilGvJz8xjm9MGEN+orz+hRBCCCGE6C+S8BiCSvZU88azH7L1f1tpq/cQjURBgfdesDDxxDFccvN80vJTePefG9m+oRh/WxBFp6CqKq54O3PnT2bqiaNRFAWv18v/+3//D4DbbruNzMyjz7ygKAozTiigrKSeyvIGUlJj0Rt0RKMqTQ1ttLUGOOMbk7DHtBdinDlnFBOnZFNaUkcwECbGaSU7J7Hbuh5CDIQ4u5XpeRm8t20fFqORmC9qj6iqSpPXjwJkxDlpCQSJ76b+RrPPj8NsOupwFEVRmJGTyeSMVA7UN+ILhXBazOTExx33tLdCCCGEEEIMNmVlZVxzzTXU1tZiMBi46667uPzyyzWLRxIeQ0xDnYc3X1zN9g+2EWrxkpiZgNFsJBKJ0lTfwra1e9ChkjNrLFvXlZCY5iI1M7694GJUpb66mXdf24jNYWXs5Cx+97vfUV5eTk5ODj/5yU+OOY6CManMv3AaH6zaQXmpu33KI1Ulxmll7pnjOeHkMZ3aW20mxo7P6NtfhhDH4exJo2n1B/mspIKqpihGvZ5QJIzNZGL+1LG0BYN8vPcgDosZo/7LOh3BcAR3i5fTx+UTazu2+jMmg4HC1KFZ70QIIYQQQmjv0FSzPd1noBkMBpYtW8bUqVOpra1l+vTpnHvuudgPM1S83+PR5Kyi13Z+dpCynZVEfAFcyS4MX0x5qdfriEt00NzYxv4dFVQ1hcgYlYrD9eUTaJ1OITk9lrL9NWxevQeTI8xvf/tbAB544AGs1p4VD50wJZu8USkU76uhxePHbDaQW5BMXEL3hSCFGEysJiPfOmEyRfkZ7Kqoo9UfIC7GyoSMFLITY2n2+alr9bK7qg6b2YTVaMAXCuELhhifkcyZ40dpfQlCCCGEEEIMKmlpaaSlpQGQnJxMfHw8DQ0NmiU8pE/1EHNgRyURv59wOIKqKEQiXxYO1el1KIpCIBilrqIBV3z3iYe4RCcVB+v5x9//id/v59RTT+00tW9P2OxmJkzJ5oS5Y5g2K1+SHWJIMeh1jE1L4sIZ47nq5GmcO7WQnKQ4FEUh1mblupOmc/nMSaQ6Y9ApCmkuB5fPnMy1J07HZbVoHb4QQgghhBghBqpo6Ycffsj5559Penp7LcZ//etfXdosX76cvLw8LBYLRUVFfPTRR90ea8OGDUSjUbKysnocR1+RHh5DjM8boKm+hWZ3K95ABEVRsNrNOFxWTGYjigIoCtFoFBQVunmR6/QKakTle99dwEknn4DL5RpxM0VEoyo63fFdczSqUlbRwIGSOny+IC6nldEFKSQlOkbc73O4irGYOWVsHnPH5BKORjHodPJvOwQ0en20+gNYTf8/e3ceX1dV7///tc98MpyTeU6apPNMSSstWGZaiiIiekFGFVCkiLQ/vV8LItp7lXsVsRdlkElEBlFRAa1CmYcW6EjneUiaZp6TkzPv3x+lgZC0NGmSk+H9fDz240H23mvtz4bscPbnrPVZdlLj4/TfTEREROQ4tbW1MX36dL7+9a93+6X4M888wy233MJ9993Haaedxm9/+1sWLFjA1q1bKSgo6Divrq6Oq6++mocffnggw+9CCY8hpKXJR2VZPY1Nfkzzwxd2E1oaffh9AVIyPESjJg4HODzx+NuCxCV0/Ra6pdGHNyWBxKR4Tj311BjcSWy0tvrZsqWczZvKaGsLkJQUz9SpeUyanIvTae9RX4FgmBdf2czGzQfxB0JYrQaRiMnb7+7m1FNGc9opY084oSKDh2EYnep4yOBU2dTC6zv2sqWiGn8ojMNqZVxWGmeMK6IwNTnW4YmIiIjERHNzc6efnU4nTqez23MXLFjAggULjtrX3XffzbXXXst1110HwLJly3jxxRe5//77ufPOOwEIBAJcfPHFLFmyJObvm5rSMoSseXMH7b4AKbmp2JwOwu0BrDYLrjgHoWCEmkONWA3IyPIw4eRCqg42EIl0Xjaz3Rdg0471pBW6cDhHTr6roaGNP//pfZb/cwPV1S2Ew1HKyup47vl1/P1va2lvD/aovzfe2cn76/bh8bgYXZROYUEaxYVpWK0Gr765nU1bD/bTnYhIdyqaWnhs5Vre3n0Au8VCZmICbruNNfvLeXzlOvbW1Mc6RBEREZHeM3u5Afn5+Xi93o7tSGKip4LBIGvXrmXevHmd9s+bN4+VK1ceDtM0+drXvsbZZ5/NVVdd1avr9KWR88Y7xLW3Bdi6Zh9ZuSmkpnvY5g9Qv6+CcH0LFpuVSMQkGo4Ql5fE6ZfMZvLpk/nHk6s4sKuSuPjDyQ1fq5/W9lb+/vqDPLPiHl4reo3Zs2fH+tb6nWmavPbaVvbvr6GgIBWb7aNv6gOBEFu2lpOZ5eXMMyceV39Nze1s3FxKkjeOxI+NoDEMg9SUBNrbG1izfj+TJ+Zq6VGRAfLa9j2UNzYzLiOtY3SVy27D63axu6aef2/ZyQ2nn6KRVyIiIjLilJWV4fF4On4+2uiOT1NbW0skEiEzM7PT/szMTCorKwF45513eOaZZ5g2bVpH/Y8//OEPTJ06tXfBnyAlPIaI1uZ2fG0BklITcMc5iUt0UbY9lco9FfgbW3E4bdjjXcz72lmc8R+nYrFY+Mr1Z7J13X62rNlHuy9I4fhs/vXO0zS1NDJhwgRKSkpifVsDora2hd27qkhLS+yU7ABwOu14Et1s3FjGKaeMxu12fGp/hyoaaWr2U1iQ2u3x5OQ4qqqbqW9oIyMtsU/uQUSOrq7Vx9aKajISErokNAzDIMebyP7aBkobGjW1RURERIakjw3Y6FEbAI/H0ynhcaI+WR/NNM2OfZ/97GcP15McJJTwGCLsDhs2u5VQIIw7zoknKZ7Js8cyefZYzKhJOBTmUFkdo2cUY7EcHlWQmBTHKWdP4pSzJ2GaJjt37uSq7/4eODzXym7vWd2KoaqurhWfL0hGRvcPucfjpqa2mYb6Nty5n57wiH64oPXR6iBaLAZR08SMxmDh6yEqGjXZV13PptJKalvaSHQ5mZSXyfjcNBw2/Zk6IhyJUlbXSHswRILLSV6KVyMWgJZAAH8oTEpc90trxznslDeGafUHBjgyERERkeEjLS0Nq9XaMZrjiOrq6i6jPgYLvUkMEd6UeIrGZbN5zV4SkzqvOmBYDBrqWklOSyS/OL3b9oZhsHjxYsLhMBdeeCHz588fqNBjzmq1YBiHX6qt1q4vh5FIFIvFwHqc00/SUhKIi3PQ0hrAk9i1KGxzs58kr5skb/cvX9JZOBJl+brtrNxxgEAojNNuIxiO8P7ug0zJz+Arp04jwdW7YXfDybbyal7ZtJuyukaC4QhOu43C9GTOnTqGMVlpsQ4vptx2O3ar9XCh0m4SZIFwBLvVgmuEJHlFRERkGDKNw1tP2/Qhh8NBSUkJK1as4OKLL+7Yv2LFCi666KI+vVZfUcJjiDAMg5PnjuPA7krK99WQkZuMw2knEolSX91MwB/iswumdbsqC8Dy5ctZvnw5drudX/7ylwMcfWzl5CSTnBxPfX0b6eldp5jU17eSnZNEWjfHupORnsjY0Rls+KAMt9uO/WPTZHztQdp8AT47Z2yPV34Zqd7fXcbrW/aS7onHG/fR768/GGLD/goSXE6+cuq0GEYYe9vKq3n67Q20B0NkJSXisttoD4bYWVFLdVMrV86dQXFm91OsRoKMxHhGp6ewsbySRJezyzDLyuYWcpO8jEpNik2AIiIiIkNEa2sru3fv7vh53759bNiwgZSUFAoKCli8eDFXXXUVM2fOZM6cOTz44IOUlpZyww03xDDqo1PCYwgpGJPJ5684lTf+sYHKg/VEIyaGAd7UBE6bP4WZp4/vtl0wGGTRokUAfPe732Xs2LEDGXbMxcc7mXFyIa+8sgW73YrX68YwDKJRk/r6VkwTZpYUHfcID8MwOPeMSbS0+Nm7vwaH3YbDaaO9PYhpwoxpBcw6uaif72p4CEUivL+rDKfd2inZAeBy2MnwJrCptJIzpxST7kmIUZSxFYlGeWXTbnzBEEXpyR0v83FOB6MzUthdVcfrW/dSlJHS5UV/pDAMgzPHF1Na38je2npyvB7cDjuBcJiKphbsVgtnTxytpYVFREREPsWaNWs466yzOn5evHgxANdccw2PPfYYl156KXV1dSxdupSKigqmTJnC8uXLGTVqVKxCPiYlPIaY0ZNyyR+dSenuKlqb23E6bRSMzSQ+8ejTJ6LRKJdeeimPP/44t99++wBGO3jMmTMGvz/EunX7qd/XejjhYZp4PW7OOWcSU6fl96i/JG8cl148i607KtiyrZzWtgCj8lOZMiGX8WOzsNv1YnU86lp8VDe3kpIQ1+3xpDgXu6vqKK9vHrEJj7K6JsrqGslKSuyS0DAMgyxvInuq6qlqaiUraeQWyR2TkcoVp5zEi1t2UVrfSDASwWaxkJvk4ewJo5melxXrEEVERER67USKlvbEmWeeiWkeu+WNN97IjTfe2IveB54SHkOQw2ljzOTc4z7f5XKxdOlSfvjDH+JwfHpRzuHIZrNy7rmTmTY1nz17q/H7Q8THOxk7NpOUlN69SMfFOZk5o5CZMwp73La1PUB1XQsmkJmaSIJbNSqke+3BEMFwBLe9+z/XLoeN2tY2fMHQAEc2+IzPSmd0eioH6hto8QeJc9gpTE3GYVMCUkRERGQkUsJjmPv4EkEjNdlxhGEYZGZ5yczyxiyGQDDMm+v3sGH7QRpb2gFISnRz0oQ85s4oxuUYWXU/UhPjyPAkUN3USryz6+9no89PostJbkrfLaM11MQ7HbjsNnyBEPGurv+OfIEQLruNhG7+/Y1ENquF0ekjt56JiIiIDE+meXjraRuAWbNmYbVaWbhwIQsXLuz74Aax4ytaIEPSunXrmD17NitXrox1KMLh1UheeHMzL7+7g2A4Ql6Gl7wML6FwhBXv7uD5NzYTjgyeNasHgt1q5TNj8/GHwjT5/J2O+YMhqptamVqQNWKnswDkpXgZlZ5MRWNLl+GFpmlS1dTKuOx00j3xPerXNE0O1TeztayKXRW1BELhvgxbRERERAaJ1atXs3Xr1hGX7ACN8Bi2TNPku9/9Lu+//z6/+c1vOPXUU2Md0oi392AtG3aUk53mId790bfx6ckJxLsdbNx5iGljc5hQODjXsO4vnxmTT21zGyt3HKC6qRWX3UYgHMEw4KTCbBac3H0x3sGizR9k26Fq6lp9WC0WCtOSKMpIwWrpm3yyxWJw3tSx1DS3sbuqjkxvAm67HV8wRFVTKxneBM6cXNyjgqUVDc28uH4nuytq8QVC2CwWMpISmDupiM+MzR+xxU9FREREZHhRwmOY+tOf/sTbb7+N2+3mf//3f/ukT9M0qa1tobS0jkgkSnJyPEVF6dg0P/64bN1bSSQa7ZTsOCLO5SASbWHb3qoRl/CwWS18vmQik/Iz2FxaRW1LG4kuJ5PyMhmfm4bDNnj/TG0/VMPf12yhsqmloyqUw2ZlYm4GX5o1pcvKM701OiuVK+bO4I0te9hdVU9dqw+X3UZJcS5nTi4mvwfLrdY0tfLkG+s5VN9MZlICOckeQpEoNU2t/HXVZkLhCJ+dpFWGRERERAYX48Otp21GtsH7JiG95vP5+P73vw/AkiVLyM/v2Qok3fH7Q7zy8ha2bD2Iry0AGFitFnJyk5k3bwr5+cNvznxlTTNbdh5iz/4aTKAoP5Up43PIyUzqVX/Nrf5jFk902K00tbb3LtghzmIxGJOVxpistFiHctwONTTzp3c30tLupygtBduHyxr7AkE27D+EAVw19+Q+G+lRnJFCUXoyVU2ttAdDJLgcpCXG93g0xvu7yjhY18SYrNSO2Bw2K7mpXioaWnhjy16mF+WQqEK6IiIiIjLEKeExDP385z+nrKyMgoICvve9751wf6ZpsmLFZtas3ktqagIZ6R4MwyAQCHPwYB3PPbeOyy6bTVpaz5bEbG0LsGtPFU3N7dhtFgpHpZGTlTQohtNv3VXBP17ZRGOTj7g4BwZwoLyedZvLuODsKUybcPyr5ByR5HETCEeOejwQiuBNOPrywjK4rNl7kLqWNsZmpXX6nY1zOshN8bKtvJr9NQ2Mzuy7ZKBhGCe09Kw/GOaD/RUkx7u7TcRkeOPZV13PropaTi7u+e+4iIiIiPSPEylaOpIp4THMlJaWdkxhueuuu3C7T/wFuqKikS2bD5Ke7iEx8aMh+k6njYL8NPbtr2HTxjLOOnvScfe5eVs5L7++lbr6NuBwUsXtdjB5Qg7nnzMFlyt2q5XUN7ax/LXNtPuDFI/66GXWNE0qqpv512ubyUxLJDOtZyuHTCjK4v3NpbS1B4j/xLfnbe1BbBYLk4qzjtlHNGpSWlFPRW0zANlpHgqyU7BYYp8kGkmiUZMtB6vwxLm6TdDFOx2U1zf3ecLjRAVCYQKhMHFHWQ3oSBKkPaAlbkVERERk6Iv5Ki333XcfRUVFuFwuSkpKeOutt455/htvvEFJSQkul4vi4mIeeOCBTscfeugh5s6dS3JyMsnJyZx77rm8//77/XkLg8qDDz6I3+/n9NNP58tf/nKf9HngQC3t7UESEroOcbdYDBITXGzdWk7kOFcY2V9ayz9f3EhrW4BR+SkUF6ZRXJhGYoKTNev3s+L1rV1WoxhI23ZXUt/QRu4nRpsYhkF2hoem5na27arscb/FuanMmJBHRW0L1fUthMIRQuEI1fUtVNQ2c9L4XEbnH31KR31TG0+88D6/+9u7PP/qJp5/bRO/+/u7PPmP1TQ0+3p1r9I7JiaRaBTbMaarGAZEooNr1R2300ac04Ev2H1C4/AqQQYJ3Sx/KyIiIiIy1MQ04fHMM89wyy23cNttt7F+/Xrmzp3LggULKC0t7fb8ffv2ccEFFzB37lzWr1/Prbfeys0338yzzz7bcc7rr7/OV7/6VV577TVWrVpFQUEB8+bNo7y8fKBuK6aWLl3K73//e+65554+mxoSDkUxLMZR+7PbrYTCEaLR40tSrNtwgFZfgJwsL9YP6x4YxuHESVpqAlu2lVNT19onsffGwYoGHA5bt/drGAYul50D5XU97tdmtXDh6ZOZf+pEnA475TVNlNc04XDYmTd7AheePqWjDsQntftDPPvSBrburSQ1KZ7R+WmMzksjxRPPlt0V/HXFBvzD+Fv5xrZ2Vu46wD83bGfF5l3sra4/7t+3/mC1WMhL8dLcHuj2eCgSwTAM0nq4VGx/c9hsnFSUQ1Obv9slkCsbW8jwJjA2Jz0G0YmIiIiI9K2YTmm5++67ufbaa7nuuusAWLZsGS+++CL3338/d955Z5fzH3jgAQoKCli2bBkAEydOZM2aNdx1111ccsklADz55JOd2jz00EP85S9/4ZVXXuHqq6/u3xsaBCwWS5/fp9frBhMikWhHguLjWlv9jBqVhs326fkzny/A3gO1JHvjuk0oeBJd1NW3Unawnowe1gTpKxaLhegxRphETbPXhSgddhtnzxrLKVNGUV3fgglkpiR2u3LLx23fV8Xeg3WMyk7B/rHCp/FuBwXZKew5WMeO/dVMHz/86i6s3XeQf36wg7pWHwaH//277Ham5Wdx8czJxDtjMxqhpCiPLeXVNPraSYr7aOqYaZocrG8iOymRCTkZMYntWGaPK2DXoRp2V9aRlhhPottJMByhpqkVh93KedPHEOeM3ZQyEREREZG+ErMRHsFgkLVr1zJv3rxO++fNm8fKlSu7bbNq1aou58+fP581a9YQCnX/7bbP5yMUCpGSknLUWAKBAM3NzZ22oWbNmjW0tbX1S9+jx2SSlpZAZWVjl6kmPl+AaNRk+vSC4xpREomYRKPdJ07g8AgKwzCOe3pMfyjKTyUSjnYbQzRqEgyEGV14Yt+Ax7sdFOWmUpyb+qnJDoCd+6uwWo1OyY4jHHYrBrDrQPUJxTQY7ays5a9rtuAPhhiTkcrYrDTGZ6eTkuDm/b1l/GPD9phNf5qcl8np44to8vnZU1VHTXMblY0t7KqsJSnOzRdnTj5qrYxY8sa7uPyMGZwxqZioGeVQQzONbe0UZ6Vy2dyTmKFipSIiIiKDkIHZw+3IsrSzZs1i0qRJ3HvvvbG9hRiI2QiP2tpaIpEImZmZnfZnZmZSWdl9fYTKyspuzw+Hw9TW1pKdnd2lzQ9+8ANyc3M599xzjxrLnXfeyU9+8pNe3MXg0NTUxAUXXIDD4WDFihVMnDixT/uPj3dy7rlT+Mc/17N/fw1JSfFYrRZaWvyEQmFmzChk4qTje0mKi3OQkpxAZVUjno8VQD0iEAhhsVhISY7dVIAJo7PIzvRSWt5Afm5yxzSTSCRK2aEGMtM9TBxz7OKifc0fCGGzHn1JW7vVgj8QHsCI+p9pmry7u5S2YJCxmZ1rmyS6nGR6E9hYWsHp44vIPoGVS3rLYjH43IwJFGYks25fOWV1TbgcNmaPLeDkotyYxHS8UhLiuHjOFM6aNprGtsPLJWcmJfTZEroiIiIiMnisXr0aj6dnCy4MFzFfpeWTowJM0zzmSIHuzu9uPxxenvXpp5/m9ddfx+Xq+nJ9xJIlS1i8eHHHz83NzeTn5x9X/IPB0qVLqampYfz48YwZM6ZfrjFhYg5x8U7Wr9/P3j3VBIIhsrK9TJ9ewLRpBdjtR38Z/zir1cJJU/N5/mAdPl+QuLiPRjdEoyYVVU0U5KVSWBC7lS0S4p1cPP8k/v7SB5SW13/4u2ViRiErw8MXzp1GkiduQGPKTPOwbV9Vt8+HaZr4g2EyUhMGNKb+1hYIsqe6jtT47v9de90uqpvbOFDbELPkgsViMDU/i6n5WUSiUSzG0WvdDEZJ8W6S4rUUsoiIiMigZ3649bTNCBezhEdaWhpWq7XLaI7q6uouoziOyMrK6vZ8m81GamrnF+S77rqLn/3sZ7z88stMmzbtmLE4nU6czq4rkAwFO3bs4J577gEO10Cx23s/hL6tLcDOHRXs3VtNKBwlO8vLhIk5ZGZ6ASgoSKWgIJX29iCRSBS323HUqSnHMn1KPgcPNbB+YykWi0FCvJNQOEJLa4CsDA/zz5mCrZupGwMpNyuJr39lDjv3VnGwsgHThNzMJMaPziQ+buB/VyaNzuL9TQeob/KRmtR59EtdYxsJcU4mje46wmkoi5gm5jHqpRye/gThQbISikZHiIiIiIgMLjFLeDgcDkpKSlixYgUXX3xxx/4VK1Zw0UUXddtmzpw5vPDCC532vfTSS8ycObPTi/4vfvEL/vu//5sXX3yRmTNn9s8NDBKLFy8mHA7zuc99jvPPP7/X/VRVNfH8c+soL6/HarVitVrYtrWc1Wv2cs7Zk5lxcmHHue7jqDlxLHa7lc/Nm0bRqDQ2bjlITW0LCXEuTikpZtrkPFJTBsdIhTi3g5Mm53PS5NiP9snPSub0kjG8+v5OWg4FSEp0g2nS2NqO1WLh3Dnjyc3wxjrMPpXgdJDuSeBgfRPeuK4jtNqDIWwWCxmewfH7IiIiIiIig0tMp7QsXryYq666ipkzZzJnzhwefPBBSktLueGGG4DDU03Ky8t5/PHHAbjhhhv4zW9+w+LFi7n++utZtWoVjzzyCE8//XRHnz//+c+5/fbbeeqppygsLOwYEZKQkEBCwvB6MVq+fDnLly/Hbrdz991397qfYDDMP/+xgfLyegoK0jpGbZimSXV1MytWbCYlNYFRo9I+pafjZ7dbmT4ln2mT84hEolgsFiyWoTMVYKAZhsEZs8aQnpLAuq1llFc1AjChKJOTJxUwsThzSE2lOB5Wi4VZxXnsq66nxR8g0fXRyJpINMrBhibGZKRSnH70gsQiIiIiIjJyxTThcemll1JXV8fSpUupqKhgypQpLF++nFGjRgFQUVFBaWlpx/lFRUUsX76cRYsWce+995KTk8M999zTsSQtwH333UcwGOTLX/5yp2vdcccd/PjHPx6Q+xoIwWCwo+7IzTffzLhx43rd19491Rw8WE9ubkqnKSqGYZCZ6WXf/ho2bz7YpwmPj18j1tNXBoNo1KSssoG6pjashkF+djIp3s5TVwzDYPKYbCaNzsLnP7wqUZzLPuwSHR9XUphLWV0j7+4uo6a5jQSXg1AkQps/SG6Kl4tnTu4oKisiIiIiIvJxMS9aeuONN3LjjTd2e+yxxx7rsu+MM85g3bp1R+1v//79fRTZ4NbW1sZJJ51EQ0MDt99++wn1VVXVRCQSxeHo/tchMcHF3j3Vn1pQVnqnuq6Ff729lX0H6wiEwmBCYryTkybkcfbscbg+sbSpYRjHtZTtcGC3Wrm4ZApjM9NYd+AQlY0teNwuzpk0hhmjckhJGNjisSIiIiIisWCah7eethnpYp7wkN5JTk7mj3/8I7W1tXi9J167QXmM2GhqaefPL62nrLKB7DQv8W4HUdOksbmdN9fsJhAK88Wzp43oRJPNauGkUTmcNCpHSTcRERERETluGgs+xKWlnfg0k8xMLxaLhWAw3O3xllY/RcXpetHsBxt3HqK0ooGinNSOURsWwyDFG0dGaiIbd5Rz8MN6HdL98tMiIiIiIsOf0cttZFPCQygenUFeXgrl5fVEIh8t8XmkaGmc28HUqbFfqWQ42rSznHhX98v7JsY5afeH2FtWG4PIREREREREhjZNaREcDhuf+9xJPP/8OkpLazuWpfUHQng8Ls49e0qfFiytrW6mqrIJgKzsJFLTE/us76HENE18/hAOe/dFWw3DwLAYBEORAY5MRERERERk6FPCYwSJRqOHX6I/MS3A7wtQvesQnpYWGlt9BG1WknNSmHjaWCZOzCEz88RrhAC0tfp59d+b2bmtnLbWAGAQn+Bk/ORczpo3hfgE56f2MZwYhkF6SgK7D9SQltz1eDRqYpomifGugQ9OREREREQGD/PDradtgFmzZmG1Wlm4cCELFy7s68gGNSU8hjnTNNmzYT+b3t5G2Y5DWKwWxp1czNS5E8kuzqSptpkX7n+RvRtLsVgt2Ow2wu0BmivqMLMSST99fJ/EEQyE+cdf17Jt00HSMhJJy/AA0NzUzpp3d+NrDXDxV0/BfpTRDsPV9PG57Nxfja89SNwnVl6prm8hOTGO8UUZMYpORERERESGutWrV+PxeGIdRkwo4TGMmabJO39/n7f++h7hQIiE5ARC/hArn1/N5ne2c8F157Dp7e3sXr+f/PE52J0fLX/aVNPMO39/n/TcFKZ8duIJx7JnZyU7t1WQm5+C0/XRdbxJcbhcdnZuO8SenZVMmJx7zH4ikSjhUAS7w4bFMrBFeKprW9i05SA7dlUSjkQpyE1myqQ8Rhf1vqDr5DHZ7CqtYd2WUtxOB94EF5GoSX1TG3a7lfmzJ5Ls0dKrIiIiIiIj2QkM8BjRlPAYxvZvLuXtv75HXIKb5NFZHfvTclM4tLuSv/16OeFQhMxR6Z2SHQDedA/N9a1seG0zk04dj8VyYvVtd26vwMDslOw4wumyY2Kye3vFURMejQ1tbFp/gC0flBHwh0j0uJl68iimnFSA+xMjI/rDnn3VPLd8A/UNrSTEu7BYDNZtLGPztkOcfuo45p46tldJD7vNykVnTSU33cvarWU0tviwGAbjijKYNWUUE4oy++FuREREREREhj8lPIaxLSt3EPSHyPlYsgMO147ILs5kwxtbwISC8d0nGZIyPFQdqKG1oQ1P6okVFvW1BrDbu/91M02TiC/A9pXb8Zgh4r1xjD6pkKT0w7VDDuyt4YVn11Bd2YTH68bhtFFT3czyv69j945KvvDlWf1a/8PnC7B8xSZaWv0UF340miM9DRoa23hz5U5yspMYU9y7qScOu41TZxQza+oomlv9WCwGSYluDMPANE1C4QiGYWDrZiUXERERERER6Z4SHsPYvs2lRCNRGmubSUiKw2b76D+3xWrBYhj42wNH78CEvlq7OSUtgV3bD3XZH41EObBuN7vf24Un0UnbgUpM08Sb5mHC6ZMI2By8/K9NNNS1kpwSj8NhJTklgaTkeILBMDu2lLM6J4kz503pkzi7s2N3FdU1LRTkp3QZxZGcFE9jUy2bth7sdcLjCLvNSmpSPACRaJTN+ypYt+sgh+pbsBgGk0ZlUDI2j7y0pC5tTdOkrqmNYCiCJ95FQtzIKgArIiIiIjKsaU5LryjhMQy1Nft452/vseWdHbQ0tOLe5cKd4Ca7OIOc0Vkd01OcbjvRaJS2Jh8JH75of1xjTTOFU/JJSO56rKfGTcph/eq9tDS1k+h1d+wv33SAPe/vxOawM2FmMUnJCUSjUfbvruGPv3sbT04Kbb4QHq+bSCTK3t3VNDW2M2FyLg6HDY/XzeYNpZzy2XG44/pnaktdfStgHnWERUK8k7LyekzT7HUtj4+LRKP8a/V23tq8D0wTT5ybUCTCm5v2sXFvBZfMncakgo+muuwsreHdD/axv7KeSDiK2+1g6pgcPju9CG+i+xhXEhERERERGb40Rn6Y8fsCvHD/i6x8bg3edA8Op514bxxBf5A9G/azf0sZJiaB9iBx3jgmfGYM1aU1BP3Bjj5M06ShqgkMOOmsKSdcvwNgVFE6JaeMpqG+jUMH6/G1BWiub2X3ml1EMSgcn4P3w6SLiUFj1CAcNQm1tGMxDNxxDuLinXi8bupqW6g41ABAosdNa6ufpkbfCcd4NBar5ZjZ0WjUxGa19kmyA2BbaTVvb95PSkIcRVmppHriyEhKYEx2Ku2BEP94dyutH47M2byngmdeXMe2/VUkuBykJcdjRk3eWLOLZ1asp6m1vU9iEhERERGRWDJ6uY1sGuExzOx4fzc71+whb1w2kXAUX5OPtgYfiSkJBAMhKvZU4UlLpLmmhTEnF3HBdefw79+9xu71+wCw220E/EHiEt2c/uXZTJw9tk/islgMzp4/ldT0RNa/v4+62hZaKusxwhEmnVxETkFqR8KgqSVAW3uIpKQ42lr9kGDFNMEwwGq14HDYqK5oIjc/hXA4gtVqwdqP9S3ycpKx2qwEAiGcnyjuapomrW0BZp1c1GfXW7+nnIgZxRvv6rTfMAxyU73sq6pne1k1UwqzePm9HYRCYYpyPppu43LYSUpwsbu0hjVbyjjnlHF9FtvxCEUi7D5US1ldE6ZpkpmUyPjcdNyOrgVrRURERERE+osSHsPMlne2Y7XZcLgOT+8YN3M0u9fvo7m+FdM0aWtqo3TrQT6zYAYXXH8uSelevrzo8+zesJ89G/bR3hogLTeZ8bPGkDM6q89GLQBYbRZO/kwx004eRWN9G3vW7+NfNXXkfizZARAIRYiaJnabFZsBFoeV9vYg8fGH61I4HFaCwTChUIT6ujYKi9JJTT96UdXWVj+NjT6sVgsZGZ4eJ0eKR6VRXJjGzt1V5OUkdSQ9IpEo5RWNpCTHM3XSsZfTPV7RqMnBmiY8ble3x61WCyZQ1+xj78E6qutbycvwdvnvZLNZ8SS4+GBnOZ+dUYzTMTCPek1TK8+u2syeyjoi0ShwOFGTl+rl4tlTKMxIHpA4RERERESGFdXw6BUlPIaZproWXPEfFaz0pnmYfuZk6isbaW9pp+ZgPTPnTefS//wiVpsVAIfLwaTZ45g0e2BGAthsVtIyPEQn5RLviaO1oY3ElISO41bL4eFXfl8Ap9tBRn4KZQfqaTeCuNx2IhETwwJ1NS3YbBZOnl2MxdI1MdPa6ufdVbvZvPkgbW0BLBaDzCwvM2cWM3Vq3nEnc2w2K19YcBLP/2sDe/fXEglHDg83ATLSE1lw7lQy0j198u/GMMBhs+IPho4dk9VCiy+A+WFiqDtxLgdt7UF8/uCAJDwCoTB/XrmRXYdqGZWejPPDVXlC4QiltY38+Z0PuPa8z5CSENfvsYiIiIiIiCjhMcx4UxOpr2jstM9mt5GRn4ZpmoTDUQqnFHQkO2IpPS+V0TMK2fj6VuI87o6YvAlO7BZobQ4ydlo+o0ZnYlgsVJQ30NTgo60tQHJKAvEJTuaePYkJk7uOrmhvD/Lcc2vZsb2CpKR4MjI8RCJRKisaeeH5dbT7Apwye8xxx5rkjePyL5/C3gO1HCyvJxKJkpaayLgxmcT34YoohmEwpTCLF9fuIKubIqht/iAOm5XCzGRaWw/X8YhEo1i7qbMSCIax26y4nAMzlWRHeQ17q+opzEjB8bHfL7vNSlFGCrsra9l0oJIzJhcPSDwiIiIiIjKyKeExzEw+bQK7N+wn0B7E6e68aklzbQvxXjejTyqMTXCfYBgGZ116Go3VzezfWkZ8YhzOOAftLX4cwQBxyfG4kxMAk8LRGSSlxHNgbw0ZWV7OvWAanzltLIme7lch2bz5IDt3VJKfn4rjY6MbcnNTqKlp5p13djF+Qg5JScc/2sBmszJudCbjRmd++sknYMaYXNbvKWdfVQP5ad6OERxt/iDldU2cNDqXwqwUfO1BkhLd1Da0kZnaeUpP1DRpaPFx+ozRuAco4bGnqo5o1OyU7DjCYjFwO+xsK6tSwkNEREREpIc0o6V3lPAYZsZ/Zgzj3x/Ntnd3kZThxZOaSDQSpaGqkfZWP6dd/BmyCjM6zj+8IksjvhY/7gQXKVlJfVq349MkZybxlf/vQja/vZ3Nb2/D1+Insyidc66aSItpYdOGMkr31WIYBharhcnT8jnr/KkUjc44ap+mabLxg1JcLnunZMcRqamJ7D9Qy+7dVcyc2XfFRvtKRlICXzl9Os+v2kJpbSNm1MQEXHYbJ4/J5aI5k7FaLCTGu/jsScX8651tVNQ2k54Uj81mpa09SGVdM1kpHmZNHjVgcYfD3Y80OcJqsRAKRwYsHhERERERgVmzZmG1Wlm4cCELFy6MdTgDSgmPYcYV5+TzN8wjOSuJrSt3UL67AovFICU7mdO/PJuZ80/qSGhU7Kti1Qtr2PvBAYLtQRwuO0VTC5h94Uxyx2QPWMyJyQnMuXAmsz9fQjgUxma3dcQ469SxlO6vJRgI4/G6GVWcju1TpuOEw1FaWv24PzHC5QiLxcAA2toCfX0rfWZ0dirf/vyp7DhYTV2zD4vFoDAzmYL05E71SuZMK8JqsbDyg32UVTcRjZo4HVbGjcpg3uwJXUZ+9Kfs5ETCkcMFZy3dJM1aAwFK0vumuKuIiIiIyIhyAkM8Vq9ejcfTNzUHhxolPIaheE8c864+k9mfL6G+ohGL1ULmqDSc7o9qTVTsreKvy/5BTXk9aTkpJGV4CbQF2Pz2Dsr3VPGlmy8gb1zOgMZtGAb2TyxdmuhxM3lafo/6sdksuN0OGhvauj1umiamaeJyDe5lUl0OG9OLj/3fwGIxmD2tkOnjcymtaCAYDuNNcJOXkdRtIdf+NKkgkze27KW8rom81M4rx9Q0txHvdDC9cGB/p0REREREZOTq2fqcMqR4UhIpnJxPwYTcTskO0zR5++/vU1NeT+HkAjypiTicdhJTEiickk9DZSNv/fU9THNozvoyDIOpU/Np8wUJdzOForHRR0Kii9HHmBYz1LiddsYXZjB1TA4FWckDnuwASEmI48JZk3DYbeyqqKOqsYXqplZ2V9YSCIU4b/o4LUsrIiIiIiIDRiM8RqDa8nr2by4lPS+1y4uxYRhk5KdRuu0glfuryS7q3wKd/WXq1Dy2bz/E/v21pKclkpjoIhKJUlfXSnt7kNNPn0Ba2sBN9xgpphVmk5zgZt3ecrYfrMGMRvnMmAJmjM5hbHbagNaHEREREREZPowPt562GdmU8BiBfM0+Ar4Aqdkp3R53J7qoOViHr7l9gCPrO4mJbi6+eCavvbaV3burqKtrPVzLJCWBuaeP5zOfGR3rEIet/LQk8tOS+MKswyOElOQQEREREZFYiPmUlvvuu4+ioiJcLhclJSW89dZbxzz/jTfeoKSkBJfLRXFxMQ888ECn41u2bOGSSy6hsLAQwzBYtmxZP0Y/NDnjnNiddgLt3RftDPiC2F12nHHObo8PFcnJ8Vx88Uy+/vXTufyKOVxx5alce90ZzJkzFqs15r/6w55hGEp2iIiIiIhIzMT0re+ZZ57hlltu4bbbbmP9+vXMnTuXBQsWUFpa2u35+/bt44ILLmDu3LmsX7+eW2+9lZtvvplnn3224xyfz0dxcTH/8z//Q1ZW1kDdypCSUZBG/oRcasrqutTpME2TmoN15IzOIrt46Ne4MAyD9HQP48ZlM3p05lFXbhEREREREZHhJaYJj7vvvptrr72W6667jokTJ7Js2TLy8/O5//77uz3/gQceoKCggGXLljFx4kSuu+46vvGNb3DXXXd1nDNr1ix+8YtfcNlll+F0Du0RCv3FYrEw58KZJCTHU7b9EP62AKZp4vcFOLizAneCk9MuOrxWs4iIiIiIiMhQFLOERzAYZO3atcybN6/T/nnz5rFy5cpu26xatarL+fPnz2fNmjWEQqF+i3U4KppSwEULzyd/Qg61h+rZv7mM2vI6csZk8oUbz2fMjKJYhygiIiIiIiIAZi+3ES5mRUtra2uJRCJkZnZeBSQzM5PKyspu21RWVnZ7fjgcpra2luzs7F7FEggECAQ+qmfR3Nzcq36GmtHTCymcks+h3ZX4mttxJbjIG5uN1aaRHSIiIiIiIjK0xXyVlk8WNTRN85iFDrs7v7v9PXHnnXfyk5/8pNfthzKr1Ur++NxYhyH9oKHJx/Y9lVTXtWC3WSnMS2VMYToOe8wfexERERERkX4XszeftLQ0rFZrl9Ec1dXVXUZxHJGVldXt+TabjdTU1F7HsmTJEhYvXtzxc3NzM/n5+b3uTyTWNm0v58U3tlLf5MNqNYhGTVat28fogjQumjedZG9crEMUERERERHpVzGr4eFwOCgpKWHFihWd9q9YsYJTTz212zZz5szpcv5LL73EzJkzsdvtvY7F6XTi8Xg6bSJDVemhev7x6ibaA0GK8lMpzEuluCCN7AwPO/dW8cLLGwlHorEOU0REREREjpdqePRKTFdpWbx4MQ8//DCPPvoo27ZtY9GiRZSWlnLDDTcAh0deXH311R3n33DDDRw4cIDFixezbds2Hn30UR555BG+973vdZwTDAbZsGEDGzZsIBgMUl5ezoYNG9i9e/eA359ILHyw9SCtrQGyM7xYLB9N9XI6bORmJbHnQC0HDtbFMEIREREREZH+F9PJ/Jdeeil1dXUsXbqUiooKpkyZwvLlyxk1ahQAFRUVlJaWdpxfVFTE8uXLWbRoEffeey85OTncc889XHLJJR3nHDp0iBkzZnT8fNddd3HXXXdxxhln8Prrrw/YvYnEQiQSZde+ajyJrm7r2rhcdsLhCOWVjYwelR6DCEVERERERAZGzKsX3njjjdx4443dHnvssce67DvjjDNYt27dUfsrLCzsKGQqMtKYfHrhXwz0jIiIiIiIjBCzZs3CarWycOFCFi5cGOtwBlTMEx4i0ndsVgv5Ocls2n6I1OT4LsdDoQgWwyAtJTEG0YmIiIiIyEBbvXr1iK1TGdMaHiLS96ZPysdms1Lf2NZpfzRqcrCykdysJMYUajqLiIiIiMiQYRq920Y4jfAQGWbGFWVw5uyxvPnebvaW1hLvdhCORPH7Q2RlePn8OVNxOvToi4iIiIjI8Ka3HpE+FI2aVJQ30FjfisVqIX9UGgmJrgGNwTAMTj9lLPk5KWzeUU55VRMOm5UJY7KYNDabZG/cgMYjIiIiIiISC0p4iPSR6qomXv3XJg7sqyHgD4Fh4E2KY8asIk49Yzw2m3XAYjEMg+KCNIoL0gbsmiIiIiIiIoOJEh4ifaCxoY3nnnmfQ+UNZGR5iYtzEI2aNNa38fpLmwkFwpy9YOqxV08RERERERGRPqOipSJ9YPOGUsrL6ikoTCM+3olhGFitFlLTE0lKiWfD2n3U1bTEOkwRERERERmKzF5uI5wSHiInKBKJsvmDMhISXVitXR8pb1IcrS0B9u2pjkF0IiIiIiIiI5MSHiInKBKOEvCHcBxl5RPDMDAsHK7rISIiIiIiIgNCCQ+RE2R3WPF43fh8gW6PR6NRTJMBX61FRERERERkJFPCQ+QEGYbBtJNHEQyEux3FUVPVTHJKAqPHZcUgOhERERERkZFJq7SI9IHJ0wvYs6OKrZvKSPS4SPS4CYejNNS1YrdbOf2ciSR63LEOU0REREREhqLeFCFV0VKN8BDpCy6XnQu/PJNzFkzFHeekob4NX1uA4rGZfPHSU5heUhjrEEVERERERAat4uJi6urquuxvbGykuLi4V31qhIdIH3HHOZh79iRmnTqW5iYfNquVpJR4LBYj1qGJiIiIiIgMavv37ycSiXTZHwgEKC8v71WfSnhIv6moaGT79goqKhpwOGyMLs5g3Phs4uOdsQ6tX7lcdlwub6zDEBERERERGfSef/75jn9+8cUX8Xo/epeKRCK88sorFBYW9qpvJTykz5mmydo1+3jttW20tPpxOe1EIlE2bzpIXl4KX7joZDIyPLEOU0RERERERGLsi1/8InB4MYhrrrmm0zG73U5hYSG//OUve9W3Eh7S5/bvr+XlV7Zgs1ooLkrHMA5P6QiHI5SW1bH8nxu44srTsNutMY5URERERERkCBjGRUuj0SgARUVFrF69mrS0tD7rW0VLpc9t3FhKwB8iPd3TkewAsNms5OakUFZWz759NTGMUERERERERAaTffv29WmyAzTCo1umeTgV1tzcHONIhp5IJMr27Qew203a29u6PaetrYV9e8vJyoob4OhERERERET6xpH3xSPvj/3L+HDraRuYNWsWVquVhQsXsnDhwj6PrC+98sorvPLKK1RXV3eM/Dji0Ucf7XF/Snh0o6WlBYD8/PwYRzJ8/e/PYx2BiIiIiIjIiWtpaelUaHOwWb16NR7P4K+h+JOf/ISlS5cyc+ZMsrOzO80W6C0lPLqRk5NDWVkZiYmJHf+Sm5ubyc/Pp6ysbEj8sogMND0jIken50Pk6PR8iBydno/BzTRNWlpayMnJ6fdrGYDRw4EkJ54uGFgPPPAAjz32GFdddVWf9amERzcsFgt5eXndHvN4PPpjI3IMekZEjk7Ph8jR6fkQOTo9H4PXYB7ZMdQEg0FOPfXUPu1TRUtFREREREREJKauu+46nnrqqT7tUyM8RERERERERCSm/H4/Dz74IC+//DLTpk3Dbrd3On733Xf3uE8lPI6T0+nkjjvuwOl0xjoUkUFJz4jI0en5EDk6PR8iR6fnQ0aSjRs3ctJJJwGwefPmTsd6W8DUMAdmDR0RERERERER6YHm5ma8Xi93vvISrvj4HrX1t7Wx5Jx5NDU1jdgaMKrhISIiIiIiIiLDjqa0iIiIiIiIiEhMnXXWWcecuvLqq6/2uE8lPEREREREREQGM/PDradthpAj9TuOCIVCbNiwgc2bN3PNNdf0qk8lPEREREREREQkpn71q191u//HP/4xra2tvepTNTw+5r777qOoqAiXy0VJSQlvvfXWMc9/4403KCkpweVyUVxczAMPPDBAkYoMvJ48HxUVFVx++eWMHz8ei8XCLbfcMnCBisRAT56Pv/71r5x33nmkp6fj8XiYM2cOL7744gBGKzLwevKMvP3225x22mmkpqbidruZMGHCUT8EiwwHPX0HOeKdd97BZrN1+VZcZLi58sorefTRR3vVVgmPDz3zzDPccsst3Hbbbaxfv565c+eyYMECSktLuz1/3759XHDBBcydO5f169dz6623cvPNN/Pss88OcOQi/a+nz0cgECA9PZ3bbruN6dOnD3C0IgOrp8/Hm2++yXnnncfy5ctZu3YtZ511FhdeeCHr168f4MhFBkZPn5H4+Hhuuukm3nzzTbZt28YPf/hDfvjDH/Lggw8OcOQi/a+nz8cRTU1NXH311ZxzzjkDFKlI7KxatQqXy9WrtlqW9kOnnHIKJ598Mvfff3/HvokTJ/LFL36RO++8s8v5/+///T+ef/55tm3b1rHvhhtu4IMPPmDVqlUDErPIQOnp8/FxZ555JieddBLLli3r5yhFYuNEno8jJk+ezKWXXsqPfvSj/gpTJGb64hn50pe+RHx8PH/4wx/6K0yRmOjt83HZZZcxduxYrFYrf//739mwYcMARCux0LEs7YpeLkt73tBZlvZLX/pSp59N06SiooI1a9Zw++23c8cdd/S4T43wAILBIGvXrmXevHmd9s+bN4+VK1d222bVqlVdzp8/fz5r1qwhFAr1W6wiA603z4fISNEXz0c0GqWlpYWUlJT+CFEkpvriGVm/fj0rV67kjDPO6I8QRWKmt8/H7373O/bs2dOrlz+Rwczr9XbaUlJSOPPMM1m+fHmvf99VtBSora0lEomQmZnZaX9mZiaVlZXdtqmsrOz2/HA4TG1tLdnZ2f0Wr8hA6s3zITJS9MXz8ctf/pK2tjb+4z/+oz9CFImpE3lG8vLyqKmpIRwO8+Mf/5jrrruuP0MVGXC9eT527drFD37wA9566y1sNr3KyfDyu9/9rs/71FPyMZ9c89c0zWOuA9zd+d3tFxkOevp8iIwkvX0+nn76aX784x/z3HPPkZGR0V/hicRcb56Rt956i9bWVt59911+8IMfMGbMGL761a/2Z5giMXG8z0ckEuHyyy/nJz/5CePGjRuo8EQG3Nq1a9m2bRuGYTBp0iRmzJjR676U8ADS0tKwWq1dMqnV1dVdMq5HZGVldXu+zWYjNTW132IVGWi9eT5ERooTeT6eeeYZrr32Wv785z9z7rnn9meYIjFzIs9IUVERAFOnTqWqqoof//jHSnjIsNLT56OlpYU1a9awfv16brrpJuDwtEjTNLHZbLz00kucffbZAxK7SH+orq7msssu4/XXXycpKQnTNGlqauKss87ij3/8I+np6T3uUzU8AIfDQUlJCStWrOi0f8WKFZx66qndtpkzZ06X81966SVmzpyJ3W7vt1hFBlpvng+RkaK3z8fTTz/N1772NZ566ik+97nP9XeYIjHTV/8PMU2TQCDQ1+GJxFRPnw+Px8OmTZvYsGFDx3bDDTcwfvx4NmzYwCmnnDJQoUsMGGbvtqHkO9/5Ds3NzWzZsoX6+noaGhrYvHkzzc3N3Hzzzb3qUyM8PrR48WKuuuoqZs6cyZw5c3jwwQcpLS3lhhtuAGDJkiWUl5fz+OOPA4dXZPnNb37D4sWLuf7661m1ahWPPPIITz/9dCxvQ6Rf9PT5ADqqhbe2tlJTU8OGDRtwOBxMmjQpFrcg0m96+nw8/fTTXH311fzf//0fs2fP7vhmz+124/V6Y3YfIv2lp8/IvffeS0FBARMmTADg7bff5q677uI73/lOzO5BpL/05PmwWCxMmTKlU/uMjAxcLleX/SJD0b///W9efvllJk6c2LFv0qRJ3HvvvV2K+x4vJTw+dOmll1JXV8fSpUupqKhgypQpLF++nFGjRgFQUVHRaT3soqIili9fzqJFi7j33nvJycnhnnvu4ZJLLonVLYj0m54+H0CnuXZr167lqaeeYtSoUezfv38gQxfpdz19Pn77298SDodZuHAhCxcu7Nh/zTXX8Nhjjw10+CL9rqfPSDQaZcmSJezbtw+bzcbo0aP5n//5H771rW/F6hZE+k1vPmOJDFfRaLTb2RJ2u51oNNqrPg3zSKVNERERERERERk0mpub8Xq9/M9LL+GKj+9RW39bGz+YN4+mpiY8Hk8/Rdh3LrroIhobG3n66afJyckBoLy8nCuuuILk5GT+9re/9bhP1fAQERERERERkZj6zW9+Q0tLC4WFhYwePZoxY8ZQVFRES0sLv/71r3vVp6a0iIiIiIiIiAxm5odbT9sMIfn5+axbt44VK1awfft2TNNk0qRJJ7SanUZ4iIiIiIiIiAxTs2bN6ij+ORi9+uqrTJo0iebmZgDOO+88vvOd73DzzTcza9YsJk+ezFtvvdWrvjXCQ0RERERERGSYWr169aCu4bFs2TKuv/76bmP0er1861vf4u6772bu3Lk97lsjPEREREREREQkJj744APOP//8ox6fN28ea9eu7VXfSniIiIiIiIiISExUVVV1uxztETabjZqaml71rYSHiIiIiIiIyGBmGr3bhoDc3Fw2bdp01OMbN24kOzu7V30r4SEiIiIiIiIiMXHBBRfwox/9CL/f3+VYe3s7d9xxB5///Od71beKloqIiIiIiIhITPzwhz/kr3/9K+PGjeOmm25i/PjxGIbBtm3buPfee4lEItx222296lsJDxERERERERGJiczMTFauXMm3v/1tlixZgmmaABiGwfz587nvvvvIzMzsVd9KeIiIiIiIiIhIzIwaNYrly5fT0NDA7t27MU2TsWPHkpycfEL9KuEhIiIiIiIiMogZ5uGtp22GmuTkZGbNmtVn/aloqYiIiIiIiIgMO0p4iIiIiIiIiMiwo4SHiIiIiIiIiAw7quEhIiIiIiIiMpiZH249bTPCKeHRjWg0yqFDh0hMTMQwjFiHIyIiIiIiIoOMaZq0tLSQk5ODxaLJE4OREh7dOHToEPn5+bEOQ0RERERERAa5srIy8vLyYh2GdEMJj24kJiYCh39xPR5PjKMRGb4ikQgXXngh77zzDiUlJbz00kvYbPqzJCIiIiKDX3NzM/n5+R3vjzL46M2iG0emsXg8HiU8RPpROBzm7LPPZvPmzfzxj38kJSUl1iGJiIiIiPSIyiAMXppoJCIxY7PZWLp0KXv37mXMmDGxDkdEREREZHAye7mNcEp4iMiA8/v9BIPBjp81skNERERERPqaEh4iMuC+//3vM3v2bLZt2xbrUEREREREZJhSDQ8RGVD//ve/+c1vfgNAaWkpEydOjHFEIiIiIiKDnyqF9JxGeIjIgKmpqeHrX/86AN/5zneYP39+jCMSEREREZHhSgkPERkQpmly/fXXU1lZyaRJk/jf//3fWIckIiIiIiLDmBIeIjIgHn74YZ577jnsdjtPPvkkbrc71iGJiIiIyCBkmiZRM4BpRmMdigxxquEhIv1u165d3HLLLQD87Gc/46STToppPCIiIiIy+ETNAM3+NTQH3iMUqcdiuEh0luBxzcRhTY91eDIEKeEhIv3OZrMxffp0XC4XixcvjnU4IiIiIjLIRKLtVLY8SUtwPQZ2bJZEwtFmatueoyWwnmzPNbhsubEOM3bMD7eethnhlPAQkX5XVFTEm2++SXNzMxaLZtKJiIiISGeN7e/QEliL01aA1fLR1GfTzKQ9tJua1r+R570Rw9BnSTl++m0RkX7T1tbW8c82m42UlJQYRiMiIiIig1HUDNAceA+rJaFTsgPAMKw4bXm0h/bQHt4XowhlqFLCQ0T6RXNzM9OnT+d73/segUAg1uGIiIiIyCAVjjQRjjZgs3i7PW61xBM1A4QitQMcmQx1SniISL/47ne/y549e/jLX/6C3++PdTgiIiIi0kum6ccMbcYMrsYMbcU0g33av2FYMbBimuGjXP/wai3GSK7IYPZyG+FG8G+MiPSXv/zlLzz22GMYhsEf/vAHvN7us/UiIiIiMniZpgmhNZj+FRCtAjMKhgUsueCaj+GY3ifXsVlScNmLaQtswmZN6nI8FK3DZknCbS/qk+vJyKERHiLSp8rLy/nmN78JwJIlS5g7d26MIxIRERGRXgmtx/T9CaL1YCkA21iw5EOkAtP3R8zQ1j65jGEYJLvnYrG48IfLMM0IcDjhEorUE47W43XNxm5VPTjpmZgnPO677z6KiopwuVyUlJTw1ltvHfXciooKLr/8csaPH4/FYuGWW27p9rxnn32WSZMm4XQ6mTRpEn/729/6KXoR+bhoNMrXvvY1GhoaKCkp4Y477oh1SCIiIiLSC6YZxAy8CmYErAVg2A8fMBxgLQR8mIHXO6abnKh4xyQyE/4DmxFPe3g3vuAO2kM7iJrtJLvPITX+/D65jowsMU14PPPMM9xyyy3cdtttrF+/nrlz57JgwQJKS0u7PT8QCJCens5tt93G9OndD59atWoVl156KVdddRUffPABV111Ff/xH//Be++915+3IiLAPffcw8svv4zb7ebJJ5/E4XDEOiQRERER6Y1IKYTLwZrV9ZhhgJEJ4f0QreizS3pcn6Eg+XtkJ15DesJFZCZeSkHSLWTEX4LF0OdK6bmYJjzuvvturr32Wq677jomTpzIsmXLyM/P5/777+/2/MLCQv7v//6Pq6+++qg1AZYtW8Z5553HkiVLmDBhAkuWLOGcc85h2bJl/XgnIgKQkZGBx+Ph7rvvZvz48bEOR0RERER6ywwAIcDZ/XHDAWbow/P6js3iweuaTWrc+SS7z8Jpy8UwjD69xlBkmL3bAGbNmsWkSZO49957Y3sTMRCzoqXBYJC1a9fygx/8oNP+efPmsXLlyl73u2rVKhYtWtRp3/z585XwEBkAl19+OWeddRZZWd18EyAiIiIiQ4fhASMOzFYwErseN9vAcIOh4vSD3erVq/F4PLEOIyZilvCora0lEomQmZnZaX9mZiaVlZW97reysrLHfQYCAQKBjzKTzc3Nvb6+yEjk9/txuVwAZGdnxzgaERERETlh1jywjYHQRjDiD6/OcoQZgWg1OE7DsKbGLkaRTxHzoqWfHJ5kmuYJD1nqaZ933nknXq+3Y8vPzz+h64uMJC+//DJjxozhpZdeinUoIiIiItJHDMPAcJ1/uIZHZCdE6yDaBpFaiOwCawGG6+xYhylyTDFLeKSlpWG1WruMvKiuru4yQqMnsrKyetznkiVLaGpq6tjKysp6fX2RkaS+vp5rrrmG8vJyrYYkIiIiMoBMM0owtAdf+yu0tb9EIPgBphns02sYtgKM+G+A8wwgAmbD4cIQznMw4r+O0V1BU5FBJGZTWhwOByUlJaxYsYKLL764Y/+KFSu46KKLet3vnDlzWLFiRac6Hi+99BKnnnrqUds4nU6czqMU4xGRbpmmyTe/+U0OHTrE+PHj+eUvfxnrkERERERGhEi0iZa2PxIIbsI02wEDw7BgtxWTGH8Zdlthn13LsOZgxF2KGV0Apg+MBAxLQp/1L8fJ/HDraZsRLmYJD4DFixdz1VVXMXPmTObMmcODDz5IaWkpN9xwA3B45EV5eTmPP/54R5sNGzYA0NraSk1NDRs2bMDhcDBp0iQAvvvd73L66afzv//7v1x00UU899xzvPzyy7z99tsDfn8iw9njjz/Os88+i81m48knnyQuLi7WIYmIiIgMe6YZpqX1CfzBNdisBRhGAoZhEDX9BMO7aWr9HcmJ38FqTevT6xoWDzAyC1/K0BXThMell15KXV0dS5cupaKigilTprB8+XJGjRoFQEVFBaWlpZ3azJgxo+Of165dy1NPPcWoUaPYv38/AKeeeip//OMf+eEPf8jtt9/O6NGjeeaZZzjllFMG7L5Ehru9e/dy0003AbB06VJKSkpiHJGIiIjIyBAM7SQQ2oTNWoTF8tEXThbDhd06jlB4O+2B1STELYhhlCKDg2Gapga6fEJzczNer5empqYRu3yPyNGEw2HOOOMMVq5cyWc/+1lef/11rFZrrMMSERERGRFa2p6jrf05HPZJ3R4PhUux27JJ8S4Z4MhGnoF4bzxyjZ8/twJ3fHyP2ra3tfGfF503ot9rY75Ki4gMLYFAgKKiIjweD3/4wx+U7BAREREZUAGO9RpnGHaipn/gwhEZxGI6pUVEhp74+HieeOIJSktLKSgoiHU4IiIiIiOK1ZoBRDHNKIbRNfFhms3YrRMHPjDpXypa2isa4SEixyUYDPLxGXBKdoiIiIgMPKd9GjZrJuFIGZ+sThCJNgA2XM5ZsQlOZJBRwkNEjst3vvMdLrroIqqrq2MdioiIiMiIZbWmkBB3MYZhIxTeTjhSTSRSRyi8m2i0jjjXOTjsU2MdpvQxo5fbSKcpLSLyqZ5//nkefPBBDMNgy5YtZGRkxDokERERkUErGK6iNbiZcLQRi+Em3jEBl62w2ykoveFyfgaLJYn2wCqCoW1ghnHYJ+F2zsHpOLnPriMy1CnhISLHVFlZybXXXgvA4sWLOeuss2IckYiIiMjgZJomDe2vUe97iXC0EbBgEqXe9zIeVwnp8Zdgtbj65FoO+zgc9nGYZgDTjGAYbgxD3+mLfJwSHiJyVKZp8o1vfIPa2lqmT5/OT3/601iHJCIiIjJotQTWUdv2PBbDjds+viMBEY4209j+NhYjjoyEi/v0mobhRHmOEUBFS3tFY51E5Kjuu+8+/vWvf+F0OnnyySdxOp2xDklERERkUDLNCE3+tzGJ4rBldhptYbN4sFlTafavJhSpi2GUIiOLEh4i0q1t27bxve99D4Cf//znTJ48OcYRiYiIiAxeoUgd/vBB7Nb0bo/bLSmEo434wwcGODKRkUtTWkSkW21tbWRnZzNu3DhuuummWIcjIiIiMqiZRMCMYhz1O2UDDBPTjAxoXCIjmRIeItKtmTNnsmHDBvx+PxaLBoOJiIjI8GGaJmHTBxjY+qjYp92ags2aQjjagNUS3+V4xGzBasTjsGad8LVkBFINj15RwkNEOgmHw9hsh/80eDwePB5PjCMSERER6RumGaXGv4mq9nW0hioxMPA4CsmKO5lkx9gTSnxYDCde12yqW/9CJNrWKekRNUMEw4dIdM7Eacvri1sRkeOgr21FpENjYyNTpkzh/vvvxzSVEhYREZHhwzSj7G95me2Nf6YhsAeLYcPAQk37RrY2PE1l++oTvkaS+7N4XXMIRipoD+0hGK7EHzqAP7QXt2Mc6QkXaelYkQGkhIeIdFi4cCE7duzgl7/8JT6fL9bhiIiIiPSZxuAeDra9g9PqxesYhcuahMuWTJKzCAtW9re8jC9cc0LXsBhOMhMvIzvx6yQ4pmK1xOOyF5CZ+FVyPdfhOEpBUxHpH5rSIiIAPPXUUzz11FNYrVaeeOIJ4uO7zj0VERERGapq2jcTJYjLmtTlWJwtg4bgHmr92yhIOLGkhMVw4HGV4HGVnFA/InLilPAQEQ4cOMCNN94IwO23387s2bNjHJGIiIhI32oLV2I34ro9ZhgGVsNG+wmO8BDpL4Z5eOtpm5FOU1pERrhIJMI111xDU1MTs2fP5rbbbot1SCIiIiJ9zmpxETFDRz0eNSNYDecARiQi/U0JD5ER7pe//CVvvPEG8fHxPPHEEx0rtIiIiIgMJ2nOiUTMIFEz0uVYOOrHYlhJdo6JQWQi0l+U8BAZ4cLhMFarlXvuuYfRo0fHOhwRERGRfpHmmozHXkBTcD/haDsApmkSjLTSEjpIinMcSU59FhIZTvRVrsgId+utt/KlL32J8ePHxzoUEREREdpCNVT7t9AY2AdAkrOIDNdk4u0nVkzUYU1kfNKX2dP8Ak3B/UTNMCYmNouLDPdJjPZ8Dqth74tbEJFBQgkPkREqEolgtVoBmDBhQoyjEREREYEa/zZ2Nv0Df7gBm8UNQH1gF4d8qxnn/Tzprokn1H+8PYMpKdfQFNyPL1yNgYUEew6J9nwMw+iLWxDpH+aHW0/bjHCa0iIyAv3rX/9i5syZbNmyJdahiIiIiADgC9exq+mfhCI+khzFJNpzSLTnkOQoJhTxsavpn/jCdSd8HYthI9k5htz4U8mJn43HUaBkh8gwpYSHyAhTU1PD17/+dTZs2MAjjzwS63BEREREAKhp30Z7uJ5Ee26nBIRhGCTac2kP11PTvjWGEYrIUKOEh8gIYpom119/PVVVVUyePJmf/vSnsQ5JREREBICm0AGshqPb0RaGYWA1HDSFSmMQmYgMVUp4iIwgDz/8MM899xwOh4Mnn3wSt9sd65BEREREADCwHLPkgPnhOSIix0t/MURGiF27dnHLLbcA8NOf/pTp06fHNiARERGRj0l2FhE1g5hmtMsx04wSNYMkO4tiEJmIDFVapUVkBAiFQlx55ZX4fD7OOussFi9eHOuQREREZAhrD7dwqH03LeE6LFhJdeaR6SrEZun9sq5prokctL9HU6gMjz0Pi3F4NTnTjNIUKiPenknaCa7SIiIjixIeIiNAY2MjdrudpKQkfv/732OxaHCXiIiI9E65bxcfNL5Ca6j+w2koJhbDQrpzFDNTzyfeltSrfl1WLxO8F7Gj6XmaQgc6pq+YREmwZTLe+wVcVm8f3onI0GEARg+XmdXaQ0p4iIwI6enpvPHGG2zfvp38/PxYhyMiIiJDVEOwknUNLxKK+ElzFmAxDiclwtEglf69rK1/kdPSL8Fq9O41I8lZyEmpX6fWv53m0EEAPPY80lwTcFoT++w+RGRkUMJDZBiLRqMdozmsViuTJ0+OcUQiIiIylJW2bcUXbibDOarTaio2i4MURzY1/gPU+EvJchf3+hpOayK58bPIZVZfhCwiI5jGtYsMY9deey2LFi3C7/fHOhQREREZ4kzTpKJ9D25rQrdLx9otTiKEqQ9WxCA6EZGuNMJDZJj685//zGOPPYbFYuGyyy7jlFNOiXVIIiIiMqSZRIkce2lY08A85uKyIiIDRyM8RIahgwcP8q1vfQuAJUuWKNkhIiIiJ8wwLKQ58/BHW7s9HjHDGIZBoi1lgCMTGQHMXm4jnBIeIsNMNBrla1/7Gg0NDcycOZM77rgj1iGJiIhIjJimSUuoifpgDe2RthPuryBuElbDTmu48RPXidIQrCTJnkm2e/QJX0dEpC9oSovIMLNs2TJeeeUV4uLiePLJJ7Hb7bEOSURERGKgJnCIbc0bqGgvJWKGcVgcjIofy4TEGSTak3rVZ6ariEmeU9nWvIpq/wGc1niiZoSg2Y7XlsaMlPOwW5x9eyMiIr2khIfIMLJx40aWLFkCwN133824ceNiHJGIiIjEQqW/jLdr/01ruBmPLZk4SwKBSDubm9ZQ7T/E6emf61XSwzAMxntmk+LMocy3nfrgIazYyHaPIT9uAgn25L6/GRGRXlLCQ2QYKSsrw+12M3/+fL75zW/GOhwRERGJgYgZYUPDSnzhVrKc+R0rqjgsTuJtiVT6y9jesp5ZKWf1qn/DMMhwjSLDNaovwxYR6XNKeIgMI5/73OfYuHEjLper2+XiREREZPirCVRQG6wk2ZHe5fOAxbCSaEviQNtupng/g9saH6MoRaRHelOEVEVLlfAQGQ5M0+z4QFNQUBDjaERERKSngtEQ5b5yWiOt2A07ee5cEuwJverLH2n7sGZH97U0nFY3LaFG2iM+JTxEZFhTwkNkiKurq2P+/Pn893//N+eff36swxEREZEeOtB2gHfr3qc2WEvUPPw1boItgSneyZycPAOrYe1Rf3bDgYGFcDSMzdL1434oGsRq2LAbjj66AxHpb8aHW0/bjHRallZkCDNNk29961usXbuWRYsWEQ6HYx2SiIiI9EBFeyWvVL9OXbCOdEcGee5cclw5YMJ7de+zvmFDj/vMcOXitafQFKrrcsw0TZrDDWS7C0iwefrgDkREBi8lPESGsN///vc8++yz2Gw2nnjiCWw2DdoSERHpbw3BRtY3fMBbNStZXb+WivZKoma0x/2Ypsmmps20hlvJcmZh/3A0hsWwkORIIs4ax+bmrbSF23rUr93iYLJ3JiZR6gJVhKOHvxAJRgNUB8pJsHmY6DlJ9b5EZNjT25HIELV3716+853vALB06VJKSkpiHJGIiMjwZpomGxo3srZhPa3hNiwYRInitLgYnziWz6afisNiP+7+fBEfB30HSbJ5u00+eO1eDvkrONRewdjEMT2KdXT8JAC2Nq2lLliJSRSrYSPDmcP0pDmkO3N61J+IxJiKlvaKEh4iQ1A4HObKK6+ktbWVuXPn8p//+Z+xDklERGTY29W6m1V17+G0OMl352IYBqZp4ov42Ni0GafVyWlps4+7v1A0TMSM4LK6uj1uMSwYQNjs+ZRVwzAYkzCZUXFjqfaXEzKDuKzxpDuze1wTRERkqFLCQ2QIuvPOO1m1ahUej4c//OEPWK364CIiItKfomaUTU1bMU2TZEdSx37DMIi3xROKhtnRvJNp3ikkHufqKnG2ONy2OHxhH26ru8vxYDSIxbCQYOvdai1weHpLblxRr9uLiAxlquEhMsSYpsn+/fsBuO+++xg1alRsAxIRERkBmkLN1AZq8dq93R732BNpjbRSFag+7j4dFjsTEsfhi7YTioY6HTNNk5pALZnOTHLc2ScUu4jIQLr44otJTk7my1/+cqxDiX3C47777qOoqAiXy0VJSQlvvfXWMc9/4403KCkpweVyUVxczAMPPNDlnGXLljF+/Hjcbjf5+fksWrQIv9/fX7cgMqAMw+CRRx7hnXfe4fLLL491OCIiIiNC1IximiYWo/uPzwYGpkmPi5dO9k6iKH4Ulf5KagN1tIV9NIWaKGs/iMeeyJy0UzQFRUQ+quHR0y0Gbr75Zh5//PHYXPwTYprweOaZZ7jlllu47bbbWL9+PXPnzmXBggWUlpZ2e/6+ffu44IILmDt3LuvXr+fWW2/l5ptv5tlnn+0458knn+QHP/gBd9xxB9u2beORRx7hmWeeYcmSJQN1WyL9xjQ/+qt16qmnqrq6iIjIAEm0J5JoT6Q13NrtcV+kHZfV2Wm6y/FwW92cm3kOn007jQRbPIHo4S/pTkqazoLs88lxq7ioiAwtZ511FomJibEOA4hxwuPuu+/m2muv5brrrmPixIksW7aM/Px87r///m7Pf+CBBygoKGDZsmVMnDiR6667jm984xvcddddHeesWrWK0047jcsvv5zCwkLmzZvHV7/6VdasWTNQtyXSL/7+979z4YUXUlVVFetQRERERpwj00/aI+34I4FOx8LRMHXBegri8klzpPa4b7fVzckpM/hK/iVcmv8VLiv4D87ImEu6M62vwhcROS5vvvkmF154ITk5ORiGwd///vcu5/R0lkYsxSzhEQwGWbt2LfPmzeu0f968eaxcubLbNqtWrepy/vz581mzZg2h0OF5j5/97GdZu3Yt77//PnB46c7ly5fzuc99rh/uQmRgVFRUcN111/HPf/6T++67L9bhiIiIDBmHa2E0sr5hB6vrt7KrpYxgtOerngBMTZrCRM946oL1HGqvpD7YQJW/mgp/FXnuHE5NO+WERl/aLDYS7AlHXbVFRKS/tbW1MX36dH7zm990e7ynszRiLWartNTW1hKJRMjMzOy0PzMzk8rKym7bVFZWdnt+OBymtraW7OxsLrvsMmpqavjsZz+LaZqEw2G+/e1v84Mf/OCosQQCAQKBjzL1zc3NJ3BnIn3LNE2+8Y1vUFdXx/Tp07n11ltjHZKIiMiQEIgEea16LVub99IW9mNgYDEMslypnJv1GQrisnrUn8Ni5+yMMxkVP4pdLbtpCDaSbE9ibOIYxiQUE2eL66c7ERHpvU++3zqdTpxOZ7fnLliwgAULFhy1r4/P0oDD9TNffPFF7r//fu68886+C7qPxLxo6Sez4KZpHjMz3t35H9//+uuv89Of/pT77ruPdevW8de//pV//OMf/Nd//ddR+7zzzjvxer0dW35+fm9vR6TP3Xvvvfz73//G5XLx5JNPHvWPk4iIiHzENE1erV7D6votOC0OCuOyKYzPJsuVSqW/jn+Uv02Nv6HH/dosNsYnjuXzOQu4qvCrXJL/RaYlTVGyQ0T6lWH2bgPIz8/v9L7b28REb2ZpxFrMRnikpaVhtVq7jOaorq7uMorjiKysrG7Pt9lspKYeni95++23c9VVV3VknKZOnUpbWxvf/OY3ue2227BYuuZ4lixZwuLFizt+bm5uVtJDBoWtW7fy/e9/H4Cf//znTJ48OcYRiYiIDA3VgQa2Nu0j1ZGExx7fsd9hsZPvzmS/7xCbmnZztmtWDKMUEel/ZWVleDyejp97+wXq8c7SmD9/PuvWraOtrY28vDz+9re/MWtWbP7Wxizh4XA4KCkpYcWKFVx88cUd+1esWMFFF13UbZs5c+bwwgsvdNr30ksvMXPmTOx2OwA+n69LUsNqtWKaZqcVLj7uWEN6RGIlGAxyxRVX4Pf7mT9/PgsXLox1SCIiIkNGqa8SX8RPhjO5yzHDMEi0xbO95QCnp5+MzaJlX0Vk+PJ4PJ0SHifq02ZpvPjii312rRMV0yktixcv5uGHH+bRRx9l27ZtLFq0iNLSUm644Qbg8MiLq6++uuP8G264gQMHDrB48WK2bdvGo48+yiOPPML3vve9jnMuvPBC7r//fv74xz+yb98+VqxYwe23384XvvAFrFb9z0yGjrKyMpqbm0lNTeV3v/tdt6OTREREpHvhaATDMI46VdpusRGORoiYkQGOTERkaOrNLI1Yi9kID4BLL72Uuro6li5dSkVFBVOmTGH58uWMGjUKOLwyxcervRYVFbF8+XIWLVrEvffeS05ODvfccw+XXHJJxzk//OEPMQyDH/7wh5SXl5Oens6FF17IT3/60wG/P5ETMXr0aDZs2MD27dvJzs6OdTgiIiJDiscej8HhxEd3Izhaw+3kutNxWOwDH5yIyBDUm1kasWaYR5vnMYI1Nzfj9Xppamrq06E/IiIiIjIw/JEAv9//TxqDLeS40juN9GiPBKgO1PP5nLlMTxobwyhFZCgbiPfGI9f41VMv4Y6L//QGH9Pua2PR5fN6FF9rayu7d+8GYMaMGdx9992cddZZpKSkUFBQwDPPPMNVV13FAw88wJw5c3jwwQd56KGH2LJlS8fAhcEkpiM8RKSra6+9lpNOOombbrrpmCsWiYiIyNG5rE7OyZjFPyveYb+vgiR7AjbDSkvYR8gMM9U7homeoliHKSIyqKxZs4azzjqr4+cji3tcc801PPbYY586S2OwUcJDZBB56qmnePTRR7FarZx99tlalUVEREa0qBnFBKxG7+pYjUnM58u2s/mgYRd7Wg8SiIbIdKUwNWkMU7xjcFj0UVhE5OPOPPPMoy72ccSNN97IjTfeOEARnRj9lRcZJA4cONDxh+NHP/qRkh0iIjJiHfTVsLFxL7tayjExyYtLZ3pSMWMScns8+jHXnUGuOwN/JEjEjOCyOnudQBERkaFFCQ+RQSASiXD11VfT1NTE7NmzufXWW2MdkoiISExsadrP8kPv0RJqx2OPw8Bgc+M+djSXMTd9KnPTp/ZqyqfL6uiHaEVEZDBTeltkEPjFL37Bm2++SUJCAk888QQ2m3KRIiIytETMKPtaq3i3difv1e6ktK32U4dFf1JjsJWXKtcSikYois8izekl1emhMD4Lt9XJ2zWb2d9W1U93ICIyeBlm7zaAWbNmMWnSJO69997Y3kQM6K1KJMbWrVvH7bffDsA999zD6NGjYxyRiIhIz9QGmnnh4Fr2tVYRjIaBwyMqxiZm8/ncEryOuOPqZ2fLQeoDzRTFZ3UZxZHiSGRfWwVbmvZTlJDV5/cgIjJcrV69esSuPqqEh0iMrV27FtM0ueSSS/ja174W63BERER6pC0c4NnSd9nbWkWOO4U4mxPTNGmLBPigcT8hM8zlhXOPq0Botb8Rq2HBcpQaG3FWF4faa/v6FkREZJhSwkMkxq6//npOOukkiouLtQytiIgMOduaDrKvtZrC+AxsFisAhmGQYHNREJfGruYKdjVXMDkp/1P7slusHGsSTMSMYtfKKiIicpxUw0NkEJg1axapqamxDkNERKTHtjUfxG6xdiQ7Ps5ptWNisru14rj6GhWficUwCEZCXY5FzSjtkQDjPZ+eOBEREQElPERiorq6mvPOO49NmzbFOhQREZET4o+Euk12HGE1LAS6SWB0pzghh6L4LMraa/BHgh37Q9Ewpb5qslwpTPKMOuGYRUSGHLOX2winhIfIADNNk+uuu46XX36Zb3zjGz2uYC8iIjKYZLm8+MPdJzRM0yQYDZPuPL5ieQ6LjQtz5zDek09NoJG9bRXsbaugvL2WbHcqF+WdSpIjoS/DFxGRYUyTIEUG2EMPPcQLL7yAw+HgkUceUd0OEREZ0iYnFbC2fi+NwTaSHPGdjtUGWvDY3Uz0Hv80lGRHIl8tOIv9vioOtdcRNU3SnV7GJOTgsNr7OnwRERnGlPAQGUA7d+5k0aJFANx5551MmzYtxhGJiIicmKL4DE5Ln8Cb1VtpCvlIssdjYtIYbMNmsTIvazpZ7qQe9Wm1WBmdkMPohJz+CVpEREYEJTxEBkgoFOKKK67A5/NxzjnncMstt8Q6JBEREYLRCAda6vBFQnjsLgoSkrEeZVnY7hiGwTlZU8lweVlXv4+K9noMDCZ58zg5pZgJntx+jF5EROTolPAQGSBLly5lzZo1JCcn89hjj2GxqISOiIjEjmmarK87yCuHdlDuayJsRnFabBQmprIgbyJjPOnH3ZfFsDA9uZCpSQX4wkEMA+KsTk3bFBHpI4Z5eOtpGzi8IqTVamXhwoUsXLiw74MbxJTwEBkAkUiEd955B4Df/va35OXlxTgiEREZ6dbXHeSPe9cSNk1y45JwWm34wkF2NVVT62/la2NPoSixZ0umWwwLCXZXP0UsIiK9sXr1ajye4ysePdzoK2aRAWC1WlmxYgXPP/88X/nKV2IdjoiIjHDBSJhXDu0gYpoUJqTgtB7+DizO5mB0Yhp1/lZer9ytlcRERGRIU8JDZIBYrVYuvPDCWIchIiLCvtY6yn1NZLm7fuNnGAYZbg87G6uoC7TFIDoREZG+oYSHSD/605/+xM0330x7e3usQxEREenQHg4drtlh7X52s8tqIxiN4AuHBjgyERHpltnLbYRTDQ+RfnLw4EG+9a1v0djYSFFRUcdytCIiIrGWYHfisFhpDwdx2xxdjreFg7isdhLtzhhEJyIi0jc0wkOkH0SjUa655hoaGxuZNWsWN910U6xDEhER6VCYkMqohBQOtTd1qdMRMaPU+FuZmpxNsjMuRhGKiIicOCU8RPrBr371K1599VXi4uJ44oknsNvtsQ5JRESkg81i4fy8iXjsLna11NAcbCcQCVMf8LGruYaC+GTOzBkb6zBFREROiKa0iPSxDz74gFtvvRU4nPgYN25cjCMSEZHBpCUUYHN9BXub6oiYJqMSk5makk2Ka2BHU4z3ZnLN2FN4vWI3u5trqA/6cFvtzM0czVnZY7staCoiIjKUKOEh0of8fj9XXHEFwWCQL3zhC1x//fWxDklERAaRAy0NPLV7HaUtjVgNA8MwWFm1n9fidvOV4ulMTska0HjGeNIZnZhGtb8VfyREot1JijN+QGMQEZFPZ5iHt562GemU8BDpQ1u2bKG8vJzMzEwefvhhDMOIdUgiIjJItIYCPL17PQdbGxntScVmOTyzOGqaHGht4I97NnCT6zQy4xKPu89gJIw/EsJls+Ow9O5jnWEYZLqP/5oiIiJDhRIeIn2opKSEjRs3UlpaSnp6eqzDERGRQWRLfSWlrQ0UJ36U7ACwGAaFCcnsaKphfW055xdM+NS+6gKtvFezj/V1ZfijIeKsDkpSR/GZ9EKSHCo0KiIiH5k1axZWq5WFCxeycOHCWIczoJTwEOlj+fn55OfnxzoMEREZZPY212NgdEp2HGEYBvE2B9saqz814VHV3swf9rzLgbZ6kuxuXFY7raEALxzcyLamCq4aPVvTUkREpMPq1avxeEZmXSat0iJygkzT5Nvf/jb//Oc/Yx2KiIgMYiYmnzbR8ZNLxHZ3/F/lmznQVs+YxHQy3R68DjfZcV5GJ6Sxq7maVyu2913QIiIiQ5gSHiIn6LHHHuOBBx7g4osv5uDBg7EOR0REBqmCxGQipknEjHY5ZpomvnCIMd60Y/ZR2d7MzqYqslwerEbnj3E2i5V0VwKbGsppDPr6NHYREYkxs5fbCKeEh8gJ2LNnDzfffDMAS5cuJS8vL8YRiYjIYDU1JYvsOA/7WxqIfmwkh2maHGxrIsnh4uS03GP20RD00RYO4rG7uj3usbtpDQdoCCjhISIiooSHSC+Fw2GuvPJKWltbOf300/n+978f65BERGQQ8zrcXDpmOqmuOHY21XCgpYGy1kZ2NNXgsFr5UvE08hKSjtmH3WLFZrEQika6PR6KRrAZVuwWaz/cgYiIxIxGePSKipaK9NLPfvYz3n33XbxeL3/4wx+wWvXhUkREjm18UgYLJ5/GhtpDbG+qJhqNMtqbxoy0XHLjvZ/aviA+mUyXh2p/C3nxyV2OV/ubGZWQRnbcp/clIiIy3CnhIdIL7777LkuXLgXgvvvuo6CgIMYRiYjIUJHuTuC8/HGclz+ux22dVjtzs8byl/3rqGhvIsOViNWwEI5GqfI3YzWsnJ45pkt9DxERkZFICQ+RXli+fDmRSITLL7+cyy+/PNbhiIjICHJKWiGhSJjXK3eyt6X28MovBqQ5EzkvZyLTklVPSkRkuDE+3HraZqRTwkOkF5YuXUpJSQlnnHFGrEMREZEYiJhRwtEoDosVwxjYj5QWw8LpWeOYnpLPruYqfJEQCTYn4z2ZxNudAxqLiIjIYKaEh0gvXXTRRbEOQUREBtghXxPvV5eysaGccDRKVpyHWWkFzEjNw2YZ2GkkXoebmWmFA3pNERGJEdM8vPW0zQinCZ4ix6miooIrrriCysrKWIciIiIxsLOpmge3r+SlQ9vxh0Md+57YvZpn92846sopIiIiEhsa4SFyHEzT5Otf/zovvvgiNTU1vPTSS7EOSUREBpA/EuJv+zfSEPQx3pPeMY0lzRVPS8jPyqp9FCWm8pn0UTGOVERERI7QCA+R4/Cb3/yGF198EZfLxf/93//FOhwRERlg2xqrKPc1kR+f3KVmR6LdhcWw8H5NKaaGD4uIiAwaSniIfIotW7bw/e9/H4C77rqLiRMnxjgiEREZaHX+NqKmicNi7fa41+Gkqr2ZQDQ8wJGJiIgc26xZs5g0aRL33ntvrEMZcJrSInIMgUCAK664gkAgwIIFC7jxxhtjHZKIiJyASDTK7qY6KnwtGEBhYjIFiUmfutKKzWLFxMQ0zW7PDUWj2C1WLIa+SxIRkX5gfrj1tA2wevVqPB5PX0c0JPQo4fHee+9RX1/PggULOvY9/vjj3HHHHbS1tfHFL36RX//61zidWhJNhofbb7+dDz74gLS0NB599NEBX3pQRET6TkVbM3/atYk9TXUEPywwGmezMzk1ky+PnorX6Tpq26LEFOJsDppDAbyOzueZpkljsJ2zs8cedQSIiIiIDLweJTx+/OMfc+aZZ3YkPDZt2sS1117L1772NSZOnMgvfvELcnJy+PGPf9wfsYoMKJ/Px3PPPQfAww8/TFZWVowjEhHpW5FolB31tayvqqCytYVEh5OpGZlMz8gizu6IdXh9qino5/Ht69jX3EB+YhJxNjumadISCvJeZRnBSITrJs/CfpSERUF8MtNTclhZtR8DSLQ7MQyDUDTCwbYmUp3xzFLBUhER6SfGh1tP24x0PUp4bNiwgf/6r//q+PmPf/wjp5xyCg899BAA+fn53HHHHUp4yLAQFxfH2rVr+fvf/85FF10U63BERPpUOBrl7zu28mbZfkLRKHE2G4FIhPVVh5iQms5VU04ixR0X6zD7zIaaQ+xtbmCMNxWb5fC0E8Mw8Dic2D3JbKmvYkdDDVNSu09uG4bBxYXTMYGNdYeoaG/GwMAAsuI8XFw4jYKE5IG7IREREflUPUp4NDQ0kJmZ2fHzG2+8wfnnn9/x86xZsygrK+u76ERiLCEhgSuvvDLWYYiI9Ln3DpXxauleMuLiO03lCEYibK2t5q87t3LttJJhM5VvY20lLqutI9nxcW6bnUg0yvZjJDwA4m0Orhw9k9KsBvY01xE2I6Q645mYlEmcbXiNiBERERkOepTwyMzMZN++feTn5xMMBlm3bh0/+clPOo63tLRgt9v7PEiRgfT0009TVVXFzTffjKWbD8YiIkNdOBplVXkpDou1S90Kh9VKTkIiW2urKWtuosCbFJsgjyIQCbOtvpp9zQ1EolFyEjxMTsk8Zv0NgPZICPsx/qZbLBYCkU9fYcUwDEYlpDAqIaXHsYuIiPTaCRQtHcl69DZ3/vnn84Mf/IC33nqLJUuWEBcXx9y5czuOb9y4kdGjR/cogPvuu4+ioiJcLhclJSW89dZbxzz/jTfeoKSkBJfLRXFxMQ888ECXcxobG1m4cCHZ2dm4XC4mTpzI8uXLexSXjEz79+/nhhtuYNGiRTzxxBOxDkdEpF80+NupbG0l2eXu9niiw4kvFOJQa8sAR3Zs1b5W7tv4Lg9tfp9/H9jJK2W7eXzbWn614W221lcfs21uvIe2cLDbY6ZpEopGSHfH90fYIiIiEiM9Snj893//N1arlTPOOIOHHnqIBx98EIfjoyGcjz76KPPmzTvu/p555hluueUWbrvtNtavX8/cuXNZsGABpaWl3Z6/b98+LrjgAubOncv69eu59dZbufnmm3n22Wc7zgkGg5x33nns37+fv/zlL+zYsYOHHnqI3NzcntyqjECRSISrr76a5uZm5syZw+WXXx7rkERE+oUBHJ6pcoyvfswj5wwOgUiYJ3duYHtDDfmJSUxITmdccjpjvGnU+dt4ascGKtqaj9p+RnouDouVhkB7l2MVvhZSnG6mp2X35y2IiIjIAOvRlJb09HTeeustmpqaSEhIwGrtXMn8z3/+MwkJCcfd39133821117LddddB8CyZct48cUXuf/++7nzzju7nP/AAw9QUFDAsmXLAJg4cSJr1qzhrrvu4pJLLgEOJ13q6+tZuXJlx/SaUaNUNV0+3c9//nPeeustEhISeOKJJ7DZevR4iIgMGSnuOPITvexqqMPTzVSQxoCfRKeDAk/SwAd3FNsbatjdWEeRJxmn9aO/z1aLhaLEFHY01rC2upzPF3m6bT8hOZ2zckfz8sHdNPh9JLviiJom9X4fLquNL4yeTGZc4kDdjoiIiAyAHhcoOHDgAH/605948MEH2bJlS6djKSkpnUZ8HEswGGTt2rVdRoTMmzePlStXdttm1apVXc6fP38+a9asIRQKAfD8888zZ84cFi5cSGZmJlOmTOFnP/sZkUjkqLEEAgGam5s7bTKyrF27lh/96EcA/PrXv6a4uDjGEYmI9B+LYXBq3ijAoMbXhml+NNLDFwpR2dbK9IwssuKP/0uM/ra/qZ5INNIp2XGEYRgk2p1sqqs6anuLYXBh0USumVDCuOR0gpEwkWiUkoxcrp08i89mF/Zj9CIiIhILPfoK+8033+SCCy7A5/Mdbmyz8fvf/56vfvWrPb5wbW0tkUik06ovcLgwamVlZbdtKisruz0/HA5TW1tLdnY2e/fu5dVXX+WKK65g+fLl7Nq1i4ULFxIOhzteaD/pzjvv7FR8VUYWn8/HFVdcQTgc5pJLLuGaa66JdUgiIv3u5KwcatvbeHnfHnbU1+KwWglHo1gtFmZm5XLRuEmDaoWWCCaHJ+N0z2IYRMzoMfuwWizMysyjJCOXtlAQi2EQZ7MPqvsUERHploqW9kqPRnjcfvvtnHXWWRw8eJC6ujq+8Y1v8J//+Z8nFMAnP2SYpnnMDx7dnf/x/dFolIyMDB588EFKSkq47LLLuO2227j//vuP2ueSJUtoamrq2LS07sjy1ltvsWfPHnJycvjtb3+rD74iMiJYDIP5RWP57qw5XDh2IiXZuZw9qpgbZnyGr087mUSHM9YhdpL14XSTcLT7pEZLKECx5/hWTrEYBokOJ/F2h/7mi4iIDGM9GuGxadMm3nzzTXJycgD45S9/yUMPPURDQwPJyck9unBaWhpWq7XLaI7q6uouoziOyMrK6vZ8m81GamoqANnZ2djt9k71RSZOnEhlZSXBYLDbKTdOpxOnc3B9sJOBM3/+fFatWoXP5+v4PRIRGQkMwyDfk0R+DGp1NAf81Pp8WAyDnEQPjk/UBfukqalZ5MR7ONDSQLEnpVOiotrXittmZ2aGCpSLiMjwZHCscY5HbzPS9Sjh0djYSEZGRsfP8fHxxMXF0djY2OOEh8PhoKSkhBUrVnDxxRd37F+xYgUXXXRRt23mzJnDCy+80GnfSy+9xMyZMzsKlJ522mk89dRTRKNRLJbDA1h27txJdnb2cdcXkZFn5syZsQ5BRGREaA4EeGXvHtZWHKI5EMBiGGQnJHL6qFGckpeP5SgjLhIdTr4ydipP7dzAjsYaEuxOLIZBSyhAnM3O5wonMDYpbYDvRkRERAazHi9DsXXr1k6jLEzTZNu2bbS0tHTsmzZt2nH1tXjxYq666ipmzpzJnDlzePDBByktLeWGG24ADk81KS8v5/HHHwfghhtu4De/+Q2LFy/m+uuvZ9WqVTzyyCM8/fTTHX1++9vf5te//jXf/e53+c53vsOuXbv42c9+xs0339zTW5VhzDRN/r//7//jmmuuYfr06bEOR0RkRPCFQjzxwQY+qKokNS6OPI+HSDRKZWsLT23aSGswyHmjxxy1/cSUDBZOncPamnI21VV2FB0tychljDdV01NERGT4Ms3DW0/bjHA9Tnicc845naq5A3z+85/HMIyO+hvHWhHl4y699FLq6upYunQpFRUVTJkyheXLl3csI1tRUUFpaWnH+UVFRSxfvpxFixZx7733kpOTwz333NOxJC1Afn4+L730EosWLWLatGnk5uby3e9+l//3//5fT29VhrEHH3yQX/3qVzz88MOUlpaSlJQU65BERIa9tYcOsam6iuLkZJxHlv62WhmVlER1Wyuv7tvLSVnZpMfHH7WPrPhEPhc/gc8VThigqEVERIa2WbNmYbVaWbhwIQsXLox1OAPKMD+ZvTiGAwcOHNd5RxIWQ1VzczNer5empiY8Hk+sw5E+tmPHDmbMmEF7ezt33303ixYtinVIIiJDTigSYUd9LQdbmsGEPI+HcSlpR63FYZomv1q1krLmJkZ1k2Q2TZMddXV8dcpUzigs6ufoRURETtxAvDceuca9D/4bd9zRvxDoTruvjYXfPH9Ev9f2aITHUE9kiIRCIa644gra29s555xz+O53vxvrkEREhpyK1hb+uHUjexoaCEejmJjYLVaKk5K5bNJUchK7fqiKmiaNfj9xH9bc+iTDMDCA1mCwn6MXEREZojRDpcd6tCztp/nrX/963PU7RGLhxz/+MWvXriU5OZnHHnuso7CtiIgcn9ZgkCc2f8D2ulpyEz2MT01jQmo6eYkedtbV8sTmD7pNWlgMgwSng/ZwuNt+jww4dR8lISIiIiLSUz1+23vooYf4yle+wuWXX857770HwKuvvsqMGTO48sormTNnTp8HKdIX3nrrLe68807gcA2PvLy8GEckIjL0bKqpYk9DPWOSU3DZPhoo6rTZGJ2Swt7GBjZWV3ZpZxgGn8nNwxcMEeqm1lddezsep5OJaen9Gr+IiIiMHD1KeNx1110sXLiQffv28dxzz3H22Wfzs5/9jP/4j//gi1/8IqWlpfz2t7/tr1hFTsjDDz+MaZpcc801fPnLX451OCIiQ9L22hqsFgObpWutDpvFis1iYWttTbdtS7JzmJCexp6Geurb24maJsFIhPLmZhra25lbMIqshIT+vgUREREZIXpUw+ORRx7hgQce4Bvf+Aavv/46Z599Nq+++iq7d+/WKhcy6P3ud7/jlFNO4corr4x1KCIiR9UeCrGlupqt1dX4QiGyEhKYnp1NYVLSoFh2NRAJYzvGdECbxUIw0v20lUSnk2umz2D5rp1sqqpkT309FsMgIz6eBWPHccaowkFxjyIiIjI89CjhceDAAc4991wAzjzzTOx2Oz/96U+V7JAhwWKxcOONN8Y6DBGRo6r3tfPkBxvYUVuLgYHdauGDikrePnCAc0ePYd7YMVhinBDI83hZX1XRsRT9x5mmSXsoRIEn6ajtk91urpg2nZq2MdT42rAaFgq8XtXuEBERORaTnhctVZHTnk1p8fv9uFyujp8dDgfp6ZprK4NXWVkZ3/ve9/D5fLEORUTkmKKmybNbNrOluoYCr5cxqSmMSkpifFoqbpudf+3cyYaKiqO2D0UibKuq4Z39B3iv9CC1bW39EudJGdl4nS4qWlu7HKtsa8XrdDI9M+tT+0mPj2dSegbj09KU7BAREZF+0aMRHnC4DkLCh/Nrw+Ewjz32GGlpaZ3Oufnmm/smOpETEI1Gueaaa3jttdeorKzkiSeeiHVIIiJHdaCxke01teR5EnF+rBioYRikxcfR5PfzblkZJ2Vndxnlsa++gb9t2sqBhkYiZhRM8LhcnDIqj/PHj+3U34nK83j4wtgJ/G3HVnbW1ZL04RchjX4/brudL46bSL7H22fXExERETA+3HraZqTr0SeggoICHnrooY6fs7Ky+MMf/tDpHMMwlPCQQeFXv/oVr732GnFxcdxxxx2xDkdE5JgONTfTHgqR7/V0ezw1zk1ZYxOtgQCej422rGhu4Q9rN1DT2ka+14vLbiNqmtT72nlpx24i0Shfmjq5T2M9La+A9Lh43j90kJ31tQCcmpfPrJw8xqekfUprERERkYHRo4TH/v37+ykMkb71wQcfcOuttwKwbNkyxo4dG+OIRET6x3ulZVQ0tzA+Pa1j5Iflw1EhFgPeLz3IqYWjyErsu9VPDMNgfGoa41PTCEejAMcsZCoiIiInSDU8eqVHn05effVVJk2aRHNzc5djTU1NTJ48mbfeeqvPghPpjfb2dq644gqCwSBf+MIXuO6662IdkoiMUFHTZH9dA6/s2MO/t+7k/f0HaQ0Euj03x+PBbbfTGgx2e7y+3U9+kpcEp7NjXzAS4YNDlaS43d0WM012u2kJBNlVW9c3N9QNm8WiZIeIiIgMSj0a4bFs2TKuv/56PJ6uw229Xi/f+ta3uPvuu5k7d26fBSjSU0uWLGHLli1kZmby8MMPa4lDEYkJXzDE3z7YwoaDFbSHwh3zaDM9CXxh6kSm5XYu7DkqKYkJ6WmsO1RBcYoNh9UKHF75pM7XDsDs/PxOiY1QJEIoEsH+4bmfZBgGhgHBcPfLxIqIiIgMZz36SuaDDz7g/PPPP+rxefPmsXbt2hMOSqS36urqOurK/O53v9MqQiISE6Zp8tzGrazcW0qS28249FTGZaQxOi2FRl87f1q3iX11DZ3aWAyDSyZPYWJ6OgcaG9ldV8+BxkZ21NbRHg6xYNw4ZmRnd2rjtttJjnMfddRIKBLBwCDZ7e63exUREZGBYPZyG9l6NMKjqqoK+zGWjrPZbNTU1JxwUCK9lZqaysaNG3n++edZsGBBj9o217ewY/UeSrcdxIya5I/PYdysMSRnaLUBEemZ8qZmNhysINuTiMf10RQUq8VCQXISu2rqeH9/GUWpyZ3apcS5uX7WTLZUV7OluhpfMER2YgLTs7IpTE7qMmLNYhh8piCfZ9ZvpD0U6rS8q2maHGxqJisxgQkZSv6KiIjIyNOjhEdubi6bNm1izJgx3R7fuHEj2Z/49klkoOXm5vLtb3+7R20ObDvIPx9cQXVpLXaHHcOAzW9v5/1/rWfBdecw5qSifopWRIajfbUN+IIhcrtZccUwDFLi3GytrMYfCuOyd/5fsdtuZ2ZuLjNzc4/rWrPyctlVU8u6g4dw2+14XS7C0Qg1bT68LhcXTp5AnOPoX1aIiIjIEKCipb3SoyktF1xwAT/60Y/w+/1djrW3t3PHHXfw+c9/vs+CEzleTz/9NC+88EKv2rY0tPLPB1dQd6iBwkn55I/PIW9cDoVTCmipb2P5w69QX9nw6R2JiHwoEo1+WD+j+xpCVouFaNTsWOHkRLjsNi6fMZ0vT59CWnwcbcEg4WiU2aPyufaUEqZlZ316JyIiIiLDUI9GePzwhz/kr3/9K+PGjeOmm25i/PjxGIbBtm3buPfee4lEItx22239FatIt3bv3s31119PW1sb//73v5k/f36P2u9YvYea0jpGTcrDYv0oB2ixGOSOzWLfplK2vbuL0774mb4OXUSGqbSEeCyGQSAcxmnr+r/apnY/hanJfTbywmW3ceboIk4rLKAlEMRusZD4sak0IiIiIiNRjxIemZmZrFy5km9/+9ssWbIE0zw8RsYwDObPn8999933/7d33/F11efhxz/n3L2n9pZseW8bY4PZIxACAdJQZpISWhealNA0IU1+DSFtk6YZJGXzoiGTkMlIHMAhgDE23nvL2ntLd69zfn/ICIRkYwlLwvLzfr3u64XO+J7nXHRs3+d+v89DTk7OuAQqxEjS6TS33HILkUiE888/n0suuWTUYzQcasJgMgxJdrxNURSsdgu1+xok4SGEOGmV2QGKfB7qu3spD/qHdFYJxROkdY1lJYUjtpL9IEwGA367FCgVQgghphpFH3iN9hyAZcuWYTAYuOuuu7jrrrtOfXAfYqNKeACUlJSwZs0aenp6qKqqQtd1pk+fjs/ne/+ThTjF/vM//5NNmzbh8Xj46U9/iuE4rRnfzwk/c0hXWyHEKJmNRq5dMJtfbt3F4fZOPFYrJoNKfyKBruusLCtmSXH+ZIcphBBCiDPAli1bcLuH1xU7E4w64fE2n8/HsmXLTmUsQozKW2+9xTe/+U0AHnnkEYqLi8c0TuH0PHa9tg9N01DVobM8dF0nFolTMrvwA8crhDizlAf93HHOMrbVN7GjoYVUJsOM7CBLSwpZUJCLaYwJWiGEEEIIcXLGnPAQZ5berjAt9V3ouk4w10NW3vD2iBMpFApxyy23kMlkuOmmm7jxxhvHPNaMZdPY/OcdNB1uoaAyH1UduC9d12muasWf62Pm8umnKnQhxBkkx+Xkyjkz+MjsSjKahlFVJ/XPTiGEEEKIM4kkPMQJxWNJ1v95N/u21RDqjQE6NoeVitn5XHj1Yjx+x6TE9Yc//IGjR49SVFTEQw899IHGcgdcXHnHJax5fC21e+ux2MygKCSiCfx5Xi7/zEUE8/2nKHIhxJlIVRRUmdEhhBBCCDGhJOEhjiuT0Vj7u63sfPMI3qCT4mk5KAqE+2Ps3nSUcF+M6z97PjbHxHcCuO2223C5XAQCAbxe7wcer2xuMTf/v09waHMVNfsaQNMpmlnAzOXTCeRJfRohxICWUIh9He10R6PYTSZmBLOo8PtPefFRIYQQQoghdH3gNdpzznCS8BDH1Vjdwf5tNWQX+HC4rIPbXR47VpuZmsMtHNrdwMIV0yYlvmuvvfaUjufN8rD8o0tY/tElp3RcIcRQjd197Kxv5khbFwpQmZvFwpI88r2TU0yrLx4nlk7hMltwmM0jHqPrOn+tqWbt0Sp643EMqkpG1/lLTTVL8vL4xOy52EynpsWsEEIIIYQ4NSThIY6r5mAzyUR6SLLjbSazEbPJyIHttROW8NA0jfvuu4/Vq1eTny/dDYQ4HW2vbeLZbfvpi8ZwWC2ATnV7D5uP1nPd0rnML86bsFjq+3pZV1fLvo52UpkMNpOJxbn5nFdSSsBuHxp3SwvPHzqE3WRkRjA4WIcjlEjwZn0DNpOZT8yeM2GxCyGEEEKI96e+/yHiTBWLJDEYjv8rYraaiIYTExbPgw8+yDe/+U3OPvtsEomJu64Q4tRo6Q3x3Pb9pDIZpucGKfC5KfB5qMwNEEuleXb7fjpCkQmJ5Wh3F0/u2Mb6hjqMqorPaiOjabx49Aj/t2MbndHo4LEZTePNhjp0NHKcziFFR10WC1kOO9uam4acI4QQQgghJp8kPMRxuf12MmkN/Thrv2LRBIHsiZmCvnfvXr70pS8BcO+992KxTHzdECHEB7OnoZWeSIwCn3tI0kBRFIr8HjpDEfY2to57HBlN44+HD9ERiTDDHyRgs+Mwm8l2OJnuD1DV082rtdWDx3fHYjT09RG0j1yk2Wez0RePU9fbO+6xCyGEEOIMpY/xdYaThIc4rulzC3G4rfR0hofti4bjgMLMRSXjHkcikeDmm28mkUhwxRVX8I//+I/jfk0hxKlX29mDzWwasS2roihYTEbqOnvHP47eHmp6eyh0u4fFYlRVgjY7O1tb6E/EAdB0HV3Xj1uYVGHg3xOaFAYTQgghhPhQkYSHOK6sPC/LL5pNJBSjqbaDaDhOLJqgrambtuYe5i8vZ9qcgnGP42tf+xq7d+8mGAzyf//3fyN+WBJCfPgZVOW4M8ZgIGFgUMf/+e5LJEhqGeymkQuUOs1moqkU/ceWzvlsNgJ2fDPriQAAWu1JREFUOz2x2IjHh5IJHCYTuU7nuMUshBBCCCFGT4qWiuNSFIUVl87B7XOwY8MROpp60HQdX8DFqisWsHDldIwmw7jG8Ne//pXvfe97ADz55JPk5uaO6/WEEOOnMjfI7oYWNE1HfU9iI6NppDMa03OCQ7b3xeLsa2zjSGsnGV2nJOBlflEuWe6xJxcsBgMqCqlMBpNh+J9hiUwGk6piMQz8FWk2GDi7sIjf7NtLOJnE+a5OLqlMhub+MEsL8il0T06XGSGEEEJMfYo+8BrtOWc6SXiIE1JVlXlnlTN7SSk9HSF0TccTcGK2TMyvzn/+53+i6zp///d/z9VXXz0h1xRCjI95hbm8eaSO6s5uyoI+DOrAJMN0RqOms5tCv5s5hTmDx9d19vDMpt009fRjMqioisKuumbWH67l40vmsGCMHV0q/H5ynE5aI2GK3J4h+3Rdpz0SZnFePsF3dWpZWVRMU6ifTY2NtAIOk4lEJk0inaEyGOCaGbNk9pkQQgghxIeMJDzESTEYVIK5nvc/8BR7/vnn+e///m++/OUvT/i1hRCnltdh44bl8/nN5j0cbe8+VhNj4KuHQr+HT541H5d1oCBxJJHk15v30NIboiLbP5gc0XWdhu4+/rB1L1kuB/m+0c+qsBpNXFxWwTP79tDY30eu04lRNZBIp2kK9eOxWjm/pGxIAsNiNHLDnHnMycpmW0sL7eEwTrOZRXn5LMzNxSWFlIUQQggxrsZShVSmeEjCQ3yoORwO7r///skOQwhxipRl+bnz4rPZ39xOQ1cfigLFAS+z8rNxWN5ZKrK/qZ3G7j7Ks95JdsA7HV0Ot3axs75lWMIjndGo6eomHE9iM5soD/owG4f/VbeisAhN1/lrzVFqe3vRdB2jqlLo9nBV5QymBwLDzjEZDCzKy2dRXv4pfEeEEEIIIcR4kYSH+NCpra3l2Wef5fOf/zyqKnV1hThd6LpOKJYgldFw2yyYjCPX+HFaLZxVXsRZ5UXHHau+qxdFAaNh+J8BiqLgtJo40toJC2YMbj/Y2sGLew/T0N1LWtNQFYV8r5uLZ1awqDh/WCvcc4tLWJyXz5HuLuKpFG6LhQp/APMIdT2EEEIIIcTpRxIe4kMlk8lw6623sn79ehobG/nud7872SEJIU7CkZZONh2q52hrFxlNw+uwsXRaIWdNL8ZqHv1fNTqgcOKaGPq7pmkeae/kl5t2Ek4kyfe4sJpMJNNpWvrC/HrrHhRFYVHx8JkZdpOJBTlSDFkIIYQQH3KyomVM5Otz8aHyne98h/Xr1+NyubjrrrsmOxwhxEnYVdPMz1/bzo6aJkwGA06rhe5QlGc37eO3G3aTSKVHPWZxwIOm62Q0bdg+XdeJJFKDHV10Xef1QzX0xRKUBXxYTSYAzEYjJQEvaU3jrwerSaYzH+xGhRBCCCHEaUUSHuJDY9u2bfz7v/87AP/7v/9LWVnZJEckhHg/4XiCP28/RCqdoSIngM9pw2WzUBDwUBjwsKOmiZ01zaMed3Z+NoV+NzUdPUOSHrqu09jTj9duZVHJwIyNtv4wRzu6yXE5RuyUkut20dzbR31375jvUwghhBBCnH4k4SE+FCKRCDfddBPpdJpPfOIT3HbbbZMdkhDiJBxq6qCjP0y+3z0s2WAzmzAbDGw92oiuj25OpdNq4W+WzSfX4+Roeze1nT3Ud/VyuLUTq8nItUvmDBYsjafTpDIZrKaRl85YjAZSGY14KjW2mxRCCCGEEKclqeEhPhS++MUvcvjwYfLz83nsscdG/JZWCPHh0xuJo+sM6aTybk7bwPKWZDqD5TgJieMpzfLxDxedzd7GVo60dpLRdEqzvMwrzCPH4xw8zm21YDUZCSdS+EfoyBJNprCajLis1tHdnBBCCCHEh4WuD7xGe84ZThIeYtLV1NTw5JNPAvCTn/wEv98/yREJIU6WxWhAR0fX9RETlcl0BrvFdNyEyPvx2q2cW1nKuZWlxz3G77AzJz+HN6vq8NgsQ66l6zrNff3MzM2iyOcZUwxCCCGEEOL0JAkPMenKysp46623eO2117jkkksmOxwhxChU5AVwWi30ReN4HbYh+zRNpy8aZ8WMkhHby55KF82soKG7l6r2LoJOBw6LiXgqTVsoQpbLzkfmVqKqMnNMCCGEEOJMIgkP8aGwePFiFi9ePNlhCCFGKdfrYklFAev21ZDRdHxOG6qiEEumaOrup8DvZnFFwbjHkeN28qmVS3j9cDV7m9poD0UwGw2cVVrIeZVllAS84x6DEEIIIcS4kba0YyIJDzFpfv3rXzN9+nQWLVo02aEIIcZIURSuXDITg6qy7WgTR1u7UACjQaUi18/Hls0m+131NsZTjtvJJ5fO57LZcSKJBDazCZ/dJjWBhBBCCHFGW7ZsGQaDgbvuuou77rprssOZUJLwEJPi4MGDfPrTnyadTrNhwwaWLl062SEJIcbIbDTysWWzWTmzlNr2btIZDb/LTlm2f9yXsozEa7fitUuBUiGEEEJMHcqx12jPAdiyZQtut/sUR3R6kISHmHDJZJJbbrmFWCzGJZdcIktZhPgQS6bTHG7rpCMcxaSqlAV95HuHt6AFCLjsBFz2SYhSCCGEEEKI4SThISbcfffdx7Zt2/D5fDz11FOoY+zeIIQYX0fbu3h2534ae/rRNA1dB4fFxIKiPK5eOBu72TTZIQohhBBCCHFck/5J8+GHH6asrAyr1cqSJUt44403Tnj866+/zpIlS7BarZSXl/Poo48e99hf/epXKIrCxz/+8VMctRirN954g29/+9sAPP744xQUjH8xQyHOJLqu09YbYndtC7trW+gOR8c0TmtfiKc376Khu48in5vpOUGm5wx0ZFlfVcezO/ahS293IYQQQoiJoetje53hJnWGxzPPPMPdd9/Nww8/zDnnnMNjjz3GFVdcwf79+ykuLh52fE1NDVdeeSV33HEHP//5z3nzzTe58847ycrK4vrrrx9ybF1dHV/84hdZtWrVRN2OeB99fX3ceuut6LrOpz/9aT7xiU9MdkhCTCl9kThrth/kQEMb4XgSAI/dyqLyfC5dWIltFDMyttY10dYfpjInOLh8RVEUPDYrCrCroZVzp5dS7PeOw50IIYQQQgjxwU3qDI/vf//73H777Xz2s59l1qxZPPDAAxQVFfHII4+MePyjjz5KcXExDzzwALNmzeKzn/0sf/d3f8d3v/vdIcdlMhluvvlmvvGNb1BeXj4RtyJOwqOPPkpdXR1lZWX86Ec/muxwhJhSYskUz6zfxabD9djMJqblBqjIDWBQVV7dc5Rn39pLRtNOaqyMprGroWUguTFCrQ6X1UI0leJoe9epvg0hhBBCCCFOmUmb4ZFMJtm2bRv33nvvkO2XXXYZGzZsGPGcjRs3ctlllw3Zdvnll/Pkk0+SSqUwmQa+vbz//vvJysri9ttvf98lMgCJRIJEIjH4c39//2hvR5yEf/3Xf8VoNLJixQpcLtdkhyPElLKvvo1DTe2UZfswGwf+aFcYKCRqNRnZWdvC0mlFTM8Pvu9YGU0nndEwGQwj7lcUBRVIZU4ugSKEEEIIIcRkmLSER2dnJ5lMhpycnCHbc3JyaG1tHfGc1tbWEY9Pp9N0dnaSl5fHm2++yZNPPsnOnTtPOpZvfetbfOMb3xj1PXwY6LpOR2MXNXvqSUQTOL0Opi0qwx348CUUVFXlX/7lXyY7DCGmpD11LRgM6mCy490cVjPNPf0camo/qYSHyaCS7XZS1dZJwDm860r6WKLD77B98MCFEEIIIcT704+9RnvOGW7Su7S8d7q0rusjTqE+0fFvbw+FQtxyyy088cQTBIPv/4/6t33lK1/hnnvuGfy5v7+foqKikz5/sqRTaV57ZgM7/7qHSF9s4OtcXceT5WbV9Wez+JL5J3wvJ4Kmafzwhz/k7//+73E4HJMaixBTWTiWwDJCsuNtRoM6WNcjo2kcaupgZ00zLT0h7BYT84pzmV+ah9s+sIxlWWkBh1s7CccTOK2WwXF0Xaexp48cj4tZednjfl9CCCGEEEKM1aQlPILBIAaDYdhsjvb29mGzON6Wm5s74vFGo5FAIMC+ffuora3lYx/72OB+7diadaPRyKFDh6ioqBg2rsViwWKxDNv+Ybfxha1seHYL3hwPWUUDhQU1TaOzsZuXf/IaNpeN2WdXTmqM3//+9/nXf/1Xfv7zn7NlyxZpQSvEOAl6nNR19I64T9d1UukMPqeddEbjj1v3s/FgPRlNw2E109Uf4XBTB1urGrnxvIXkeF0sKMrjaEc3bx2tpzMcxWO3ks5o9ERieO1WrlkwC4fFPLE3KYQQQgghxChM2qdPs9nMkiVLWLt27ZDta9euZeXKlSOes2LFimHHv/zyyyxduhSTycTMmTPZs2cPO3fuHHxdffXVXHjhhezcufO0mLVxsiJ9EXa8sgenz4E3yz04k0NVVbKLg2gZnW0v7yKTyUxajDt37uTf/u3fAPjHf/xHSXYIMY7ml+SiqgrheGLYvp5wDKfVwpyibHZUN7H+QB1+p42K3AC5XhdFQS8VuQHqO3t5dtM+MtpA/Y7rFs/hxuULKAn4SKUzqIrCqspS/m7VUuYUjJyYFkIIIYQQ40Da0o7JpC5pueeee7j11ltZunQpK1as4PHHH6e+vp7Vq1cDA0tNmpqa+OlPfwrA6tWrefDBB7nnnnu444472LhxI08++SRPP/00AFarlblz5w65htfrBRi2/XTXeKSV3vZ+imbkj7jfn+ulpbqN7pZesgoDExwdxGIxbr75ZlKpFB//+Me5/fbbJzwGIc4kMwqyWTatkI2H6rFb4vgcNnQdukJR0prGJQumk+tz8fyWAxhVBbfdOuR8g6pS4HdT09ZNTVs30/KCmAwGziorYmlJIbFUCqOqYjFN+kpIIYQQQgghTsqk/sv1hhtuoKuri/vvv5+Wlhbmzp3LmjVrKCkpAaClpYX6+vrB48vKylizZg1f+MIXeOihh8jPz+dHP/oR119//WTdwqTJpDPomo5qGHnWhMFkQMtoZNKTM8Pj3nvvZf/+/eTm5vLEE09Mei0RIaY6o0Hl48vnkuN1saWqke5QBFAoCLg5q7KYpRWFhOMJ2ntDeI9TbNRuMZNM99PeF2Fa3jt1kFRVkeUrQgghhBDitDPpX9Xdeeed3HnnnSPue+qpp4ZtO//889m+fftJjz/SGFOBL8eDzWUl0hfF6R1eDDTUHcbpdeDJck94bC+99BI/+tGPAPjxj388qgKyQpxqsUSKqsYOQtEEFrORioIgXueHq7tIPJVmX0sbB9o6iCXT5LodzMvPpcTvHZIs7InEONLSSTSRxGG1MCM/iNv2zkwNk9HAeXPKOXtGMV2hKAoKQbcD47HEqKIox2r9jDy98e0i0AZVEpRCCCGEEOL0N+kJDzE2uaXZlM0rZt+bh7A5rRiMhsF9iViS/u4wF914DjaH9QSjnHqapvHFL34RgM997nN85CMfmdDrC/Fuu6uaWbvlEO094YGuXDp4nFbOmVfGqoXlGD4EdWW6ozGe3rqLQ22dKAqYVAO7mlpYf7SOi2dUcOnMaeg6rDtQzev7q+mNxlFQ0NEJOO1cPG8aZ08vHpIYMRuN5PmGJzudVjNlOX5217bgGyHpE4olcFjMFAW943nLQgghhBBCTAhJeJymFEXhwhvPpb8rRN3+RhxuO2abiWgoTjKeZPaKSs66YtGEx6WqKi+99BLf/OY3+e///u8Jv74Qbzvc0MEf1u0hlclQnOPFaDSgaTpdfRFe3HwQo0Hl3AXlkxqjruv8Yec+9re0Ux7wYT7WVlbXdboiUV7cf4Rsl5NYNMmfdhzEbjZTkR1AVRUymkZ7X5hnt+zDajKyqKzgfa+nKArLphdxqKmDlp4QuV7nYKIkmkjS0htieWUxeT7XuN63EEIIIYQYpbEUIZWipZLwOJ0F8/38zb9czd71B9m7/gCxSIL8ihzmrZrF7JUzsNonp9Vufn4+jzzyyKRcWwgYSBhs2FNDNJ6kvOCdor2qqpDlc5LpCrFxby2LZxRit05ebYq67l4OtnVQ6HUPJjtgIDERdDroTyR482gd0b4EJoOBHI9z8BiDqpLnc1PX0cP6g7XMK84bXLpyIjMLsvjYslm8vPMwR1o6Magqmq5jMqgsLi/gY8tmSc0dIYQQQggxJUjC4zTnDrhYec0yVly9lHQqjdFknJQPK1VVVezbt49rrrlmwq8txHt19UWoa+0mOEJ9G4Cg10F9Wy91rT3MKh3/9qo9kRiH2juJp1K4rRYqc7JwWsw09/UTT6VxmEdOuvhsNg61dKDGdUqzfCMek+V20NzTT0tvP0UB7/vGoigKZ88oYVpekP0NbXSFolhNRqblBSnL8Z9U0kQIIYQQQojTgSQ8pghFUTCZTZNy7VQqxS233MKmTZv4wQ9+wN133z0pcQjxtlRaI53RML+rts27GQ0quqaTHOcuRhlN46+Hqll3pIbeWBxVUdB1nWyXk4/MmY52bJrh8ZKUigKapqNpGkbDyPdiMhhIaxqpjDaq2IJuB+fNmdwlPUIIIYQQQown+SpPfGD/+Z//yaZNm/B4PFx33XWTHY4QuB1WHFYLoVhixP2ReBKL2TDu3VrWV9Xyp72H0HWYlhVgWlaAsqCf/niC32zfSzSZwmoyEk4kRzy/OxqjNOjFa7cd9176Y3EcFjP+47SaFUIIIYQQU4A+xtcZThIe4gPZuHEj3/zmNwF45JFHKC4unuSIhACHzcyC6fn0hmKk3jOLQ9N0WrtClOb6Kcr2jlsMkUSSN6rqsJmM5LidqMdmcRhVlSKfh2Q6Q1VbF5XZQRp7+4bNNumKDLSVvWhmBTPzs2ntC5HRhs7iSGUydIaiLCjJwysJDyGEEEIIIYaQJS1izEKhELfccguapnHzzTdz4403TnZIQgw6d34Zje29HGrowGkz47CaSaTS9IZi5AfcXH72TFR1/Ord1Hb10BmOUOI/Tu0Np4P6nl4+s2IJiXSGw+2dqMfa0sbSaexmE5fNms7ConyKvB46wxGqWrtw261YTUZiyRShWILKvCAXzqkYt/sQQgghhBDidCUJDzFm//zP/0x1dTXFxcU89NBDkx2OEEO47FZuvGQxWw82sP1wI5F4EpPRwIWLp7NsVhHZo2i92huNEUkkcVgseO3WkzonrWlkdB3DcZIqJoOBjKbjsJi5feUS9rW0s7+lnVgqRY7byfz8XMoCPhRFIcvt5FPnL2Hr0Ua21zQRS6bw2K1cNLeCpRWFuG0nF5MQQgghhDg9KbqOMso2s6M9fiqShIcYkx07dvDjH/8YRVH42c9+hsfjmeyQhBjGabdwweJpnDO/jFgihdlkwDqK4r5NPX2sO1TL/uZ2kuk0FpOR2fnZnDejjHyvG4BoMsXB5na6QlEMqkpplo/SoA+f3YbdZCKcSOKyDm8R3R+P47SY8dqs2EwmlhYXsLS44Lix+Bw2Lp0/nQvmlJNMZbCYjNJRRQghhBBCiBOQhIcYk0WLFvHcc8+xf/9+zjvvvMkOR4gTMhkNmI7TseV4Grp7+dmGHbT0hclyOfDYLUSTKd6sqqO2s4dbVy4mEk/y7NZ9tPSG0HUdHR2rycScgmw+vnQO07ID7G5sxW42YVDfSU4kMxm6IzEunzMd5wjJkBPei8GA6TgdW4QQQgghhBDvkISHGLOrr76aq6++erLDEGc4Xddp6w7R1NmHrkNuwEVB0HPcVq/vPbe+s5fDrZ1EEkk8NiuzCrLJdjt4ee8R2vrCTM8JDBYctZpMeO02jrR28vute+kNxeiLxSkJegeTEJFEkq01TWg6XDG/ku5IlKqOLjw2K1ajkUgyRTiRYHZeNhdMLxvX90YIIYQQQogzmSQ8xHFl0hq11e20NPUCOlk5bnbve4uVK8+moOD4U++FmCjhaII/bdzPgdo2ovGB1q42i4nphVlcdc4cvK7jdy5JptO8sO0AW6obiSVTqKqKpmn8dd9R5pXkcKSti1yPazDZ8TZVUcj1uNhS3YDdYGJuUe6Q5IrDYqbQ7+FAczurZpbydyuXsqm2gZ0NLSTSaXx2K5fOquCs0qIRl7oIIYQQQgghTg1JeIgRdXeG+fNz26mt7iBzrF1mR1cjj/7kXpwOB1u3baWiQjpDiNHTdZ20pmFQ1A/UJSWVzvC713axp7qVHL+T3MBAEdJwLMnOqmZiyRS3XL4Um2Xkmh2v7D3KukO15LqdFPoHZoTouk5nKMpf9h4loaXJ845c2NRuNtHZH2V6TmDEmSQOi5nmnn5qO3q4eO40rpo3k8tmTSORzmA1GWVJihBCCCGEGB1dH3iN9pwznCQ8xDCJeIo//n4rNUfayC/yY7GaSKWSPPHzr5BOpygsqCQYyJvsMMVpJpXJsLemle1VjbT1hDEZDcwry2PxtAKyvc5Rj3e4oYMDde0U5XiGFCJ12S1YzEaONHZyoLaNxTMKh53bF42zpboRn92K+11dVwY6ojjoCEVoDYWIJ9M4rOZh58dTaQDMJ0hcKIpCRtMGfzYbjZiN8keuEEIIIYQQE0VK/Ithjh5upa66g8KSABbrwAfJ3z73JI3N1bicXj5ywe0cOdA8yVGK00kqk+G5Dft4+rWdHGnqRNd1IvEkL287xFMvb6GurWfUYx6ub0fX9RG7rpiNBgyqwv7a1hHPbezuoyccxe+0j7i/KOBBRaGua3hcuq7TEQpT6HejaSNnzdMZDV3XCbhGHl8IIYQQQohR00f5EpLwEMPVHG1HB0zmgW+j9x3Yxotrfw3A7bf9K35/kCMHWyYxQnG62VnVzKaD9WR7HJTm+Am4HeT6XEzLD9LRF+H5t/aROrZ06mRFEykMJ2jLajIaiCZSI+7TNB0dhtXnGDxXVclxOzEbDdR29pBID8zoiKfS1HX1Yjeb+ejCWSiqSl80PuRcXddp7O4lz+tiVn72qO5JCCGEEEIIcerI/GoxTDqVwWAY+CAYjvTzxFPfBuCCVVexaMFKWpt7SaZG9+FUnLk0TWfrkQZMBhWnbWiRTlVRKAx6aOjoo6q5k1nFOSc9bpbXSSqdQdf1EetoxJMpsn0jL5XJcjtwWs30xeJ47cMLm/ZG45QG/Fw8r4I3DtfS1NOPpmkYVJUCn4fL5kwbSGbo8MahWrrCUdw2CxlNoy+aIOCyc83SOdgtw5fDCCGEEEIIMXpjmbYh0zwk4SGGyc71kN46MCX/hTU/p6e3k5zsQm76mzsBiMeS5OV7JzdIcdqIJVN09EWG1Mp4N4vJOFAstD86qnFnl+awYU8N3f1RAh7HkH194Rhmo5G5ZSPXmsnxOJlVkM2mqgYcZjMm4zu1OKLJFP3xBOfPKuOs8iIWFudT09lNNJHCYTFTluUbLDp61eKZlGb52FbdSFNPP2aTiWVzi1hSXkC+zz2q+xFCCCGEEEKcWpLwEMNUzs5n0/ojtLf2cd01f0c6neacFZdhsdjo7gxjs5uZNW94IUghRqKqCob3FPB8N13X0XQNozq6FXYFWR5WLajglW2HCccS+Fx2FEWhNxQlremct6Cc8vzAiOcqisKVC2fSF41zqKUTi9GA1WQkmkyhazpLygo4d2YZMFAPZEZu1ojjGFSVBSV5LCjJI5XJfODOM0IIIYQQQohTRxIeYphA0MVFH5nLy3/cRUtDP1de+hkUFOqqOzCZjZx/6WwKi0f+ICmmnq7eCFWNnSSSaVx2C9NLsoYtTTkRm9lEZWEWbx2sx38sKfFu/dEEDouFkhzfqOJSFIULF08j4LGz9UADzV196DoUZnlZOquYRZUFJ0w++Bw2PrVqCbsbWthZ20J/PE5J0MeisnzmFuaMuqOKtJoVQgghhBDj5gOsaFm2bBkGg4G77rqLu+6661RH9qEmCQ8xTCaTYde+N/jELZezb1cD1UfaQId5i0qYt6iY8uk5I9ZMEFNLOqPx6pbDbN5XT38kzsD/cYWg18HFyytZNEK71+NZNqOI/fVtNHT0UhDwYDCo6LpOOJ6krTfEilkl5Pldo45RVRUWTi9gfkU+fZEYug4epxXDSc4WcVjNrJheworpJaO+thBCCCGEEKeDLVu24HafmcutJeEhhvn2t7/N1772Na655hqeffZZMhkNdDAYpanPmWT9jmr+uuUIHqeVioIAiqKQyWi0dod4/vW92CwmZpaeXJHR0hw/1587nz9tPkBNWzegoKNjMxtZPrOYq5bPHkyivbcIqa7rVHd0s6ehlZa+EHazmdn52cwpzMF+rCWtqir4pAWsEEIIIYSYqnR94DXac85wkvAQQ2zZsoX77rsPgGuvvRbghK0/xdQUjibYtLcWp90ypCCowaBSkOWhprmbTXtqmVGSfdKzfeaW5lKa4+NgQwc94Sgmo4Hy3ABFWR5SmQxbqhrZUdNER38Ep9XMorIC5pXksuloA68dPEosmcZuNpHMZNhe28T0nAB/e/YCgi7H+19cCCGEEEIIccaRhIcYFIlEuOWWW0in0/zN3/wNt91224jH6bpOU3sfR+s7SKTSuBxWZpRm4/fIB8/TVSqT4UhLJ4eaOogmUyTCKVo6+5lRmj3i8UGPnfrWXrr7ogS8J///3WmzsLRy6FKYWDLFbzfuYUdNM0aDgsNipq03zO837eXF3QcJpVJkuxwU+b1D4j3c2smz2/fzd6uWSqFQIYQQQgghxDCS8BCDvvjFL3L48GEKCgp49NFHR/zmPpFM89Kb+9lxoJFYPIWiDMyU8rpsXHBWJcvnl3zg+h6pVIamtl6SyTRul42coEtqhoyjcDzBbzfuYW9DGxltoFtKV1eEjrY+7E4zpdl+3vvuG40GkqkY+xvbMbarWE1GKnIDuG0jt549kY2H6thW3URRwIPt2BIVgFQ6wysHqzCZjMzIDQ45x2QwUOj3cKS1k7quHsqy/GO5dSGEEEIIIU4TH6Bq6RlMEh4CgBdeeIFHH30UgJ/85Cf4/SN/gHxtyxE27qwhy+ciP8uDoihouk5nT5g16/ZiNqrMmZaH2WwcdZJC13V2H2hiw7ajtHaEyGQyWK0mppVkccGKGeRmnZmFdk6lWCzJgQPN7N3bSH9/DI/bSqs5TV2on7Ic32DCwW+10tMe5mBjOzaziVzv0IKidZ09NEXChLfsHfz/7HPaWDWrlFWzyk66aGg8mWbL0UZcVvOQZAeAxkAtj0QyTSiWwG0fmkxxWMw09/TT3BOShIcQQgghhBBiGEl4CJLJJHfeeScA99xzDxdffPGIx/WFYuw40IDXZcftfOfDpwKoKZ3Gwx08dvivzCzLobQ0i/kLiikvzzrpxMeOvQ288MoeQCcny4XJaCASS7D7YBPtXWFuumYZQb/zg97uGSscjvPss9uoOtKKyWTEajVxoKuf3ZEugn4nxtx3kgZvz6ypb+mhobOXHI+Lt/83tvaF2N/eQZbfRUmWF7PRSEbT6OiP8MdtB1EVhfNml59UTD2RKL2RGAHnyMtiTEYD8ViCaCI1LOGhHyvCJJN/hBBCCCHElCcTPMZEqlEKzGYzL7zwAjfccAP/9V//ddzjGlp76AvH8bnf6Yah6zoN1Z0c3t1IMpIkGkuSSKbZvbuB3/xmE9u3155UDLF4knWbqzAYFArzfFjMRlRVweWwUlYUpKW9j827Tm4sMbJ16w5x+FALBQV+Cgv9BIMu7AEbRquRcHeUhobuwWMVRaG8NAufy0Zzez8N7T30hmI0tvWyp7ENm93MomkFmI0DOVODqpLrdWEzmVh/oJZIPHlSMRlUFVVR0XRt2D6zwYDbaiGV0UZMaoQTSaxmIwU+z9jeECGEEEIIIcSUJgkPAcDChQv51a9+hcViOe4xmczAh9J3f/js74nSWNOJyWzE7bVjshpxe2yUlgYxqCqvvXqAjo7Q+16/ur6Lzp4wWSPM4FBVBZ/Hzr7DLURjJ/dBWgzV2xvlwP4m/H4nZvM7E7t0dFRVwWo10d7eTzKZHtzndFiorMwlL9+D1WIindFwuqz4Aw4WVhRgMQ2fIJbldtAZilLd1j1s30iCLgeFATcd/ZFh+xRFwWm2YDEZSGv64IwOgEQ6TXNPPzPzsikOSMJDCCGEEEJMcTrvtKY96ddkBz35ZEnLGezQoUOEw2GWLFlyUscHfU6sZiORWBKnfSAx0tnWTyat4XLbCEUTWMwmLMdqMWRluaiu6eDQoWaysmaccOxYPAn6QDHMkVgtRsKRBPFECrvNPIq7FABdXWHC4ThFRYEh290mMyZVRTEYSMRSRGPJIQmRWCbN/JkF3HHxWegMLEF58MWN2C0mRmI81sI4mUmPuP+9VFVhxYwSatt7aOsNkeVxoioKuq7TH0ug6HDRrAp643EOt3ZiNRlJHUu8zS7I4eOLZ0tBWyGEEEIIIcSIJOFxhkomk9x0003s3r2bX/ziF3zyk59833Pysz1UFAXZe6SF0oIARoNKpD+O0Wgglc6QSqcpLfAPfuhVFAWT0UBn5/vP8HDYzSjqQGcO0whJj1g8hcVsxGYd+YO2ODGDqqCqKpqmY3jX2+sxW8iy2mkIhzDrQ2fv9EXjpDMaZ00vwnoswaFjx2kxE44nsVuGJ55iyRQGVSGeTPPWoTo0HXK8TkqzfcctZLqgJI9QLMEre6qoau1CYaBgqcNi5vzZ5Xx0yQzaQxH2NrTR1h/GZjYxMy+LmXlZI84yEUIIIYQQQgiQhMcZ67777mP79u34/X7OPffckzpHURQ+cu5swtEktU1d2K1m4qk04WicFBq5QQ8F2UOXF2Q0bXDGx4mUFQXJ8rto7wxRkOsdOkZGo7c/xgVnV2KzyuyOscjJ9eDzO+jpiZCd/U63G0VRmOMP0N0fJWpK0xmNEU6niCZTmA0GzptdxtKKwsHj7RYTC8vyeWnnYXwO25DklK7r1HX0kEym+dPWA8SPLY8xGw1U5Aa4+qw55HiHL1lSFIVVs8qYVZjNwcYO+mNxrGYT0/MCFPoHOgEV+b0U+b3j9wYJIYQQQgghphxJeJyB1q1bx7e//W0AnnjiCfLz80/63KDPyU0fXcreI83sOtxEJCtGMpKksiyH3Cz3kG/xk8k0qqJQVpb1vuNaLSYuWFHJ82t3UdfUTZbficlkIBJN0NkdoTjfx1kLS0Z/swIAm83MksWlvPTyHnp7o3g8NpRjS0cSoSTTjE4qlxaRtCtEEylyPE7ml+QxPS+Iqg5dMnLOzFJq23s41NyBx27FYTGTTKfpCEXoDcWwmo147FYK/RYURSGaSLK/sY1YMsVnLl6GyzZynZigy8G5s0bu1iKEEEIIIYQQoyUJjzNMX18ft956K7qu85nPfIbrrrtu1GO4nVZWLipn5aJyQqEYz/zqLRoae0glMxisAwmPaDRJS0sv0ytzKa/IPqlx588swGw0sGFbNU2tPaQzGjarmWULSjlv+TR8Hvkw/EGctbyCSCTBtu21dNeEBxMeDqeFC8+fzXnnzcBgeP86xh67lVvOX8Smww1sq24iHE9gMhqozA1yKNNBWbYf27tm9dgtZsqzA9S0d7O3vpUVMyRxJYQQQgghxKi8XYh0tOec4SThcYa56667qK+vp7y8nB/+8IcfeDyXy8bV1yzhz2t20dDQRTqtATpms5FZs/O58soFQ4pgvp+Z03KZXpZNW2c/qVQGt8s6JRId6XSGdFrDfKzd7mQwGFQuvmQOc+cVcvRoO5FIAqfDSsW0bLKz3aMq/um2Wbl0wXTOm11GOJ7EajLyyu4qqlu7hyQ73mY0qJiNBvbUScJDCCGEEEIIMTEk4XEGWbt2Lb/4xS8wGAz8/Oc/x+VynZJxs7Pd3HLrOdTWdtDe3o+iKOTleSkqCozpw73BoJKf4z0lsU22ro4QO7fVcmhvE8lUGo/XzvzFJcxdUIxlEgqwKopCbq6X3PfUSRkri8k4WDg0nkpjPE5hUhio5RFPpk7JdYUQQgghhBDi/UjC4wxy8cUX84Mf/IBoNMqKFStO6dgGg0pFRQ4VFTmndNzTWVNDN8//ejNtrX24PDbMJiNtLb386fdd1B7t4KPXLcE6hbrOBF12UpkMuq6POFskkkgy15c7CZEJIYQQQgghzkSS8DiDqKrK3XffPdlhjLuMptHaFSKVzuB12vC6bBMfQ1rjL2t209kRorQie3Cmi8dnJx5PsXdXPYXFfpafWznhsY2XOcW5rNtXTXtfmBzv0NlDvZEYJoOBBaUnXyBXCCGEEEIIIT4ISXicAV566SXOOeccnM7hLUGnEl3X2VfTyvpd1TR19pHOaNitZuaU5XLBomn43fYJi6W+rpOmhi5y8r3DlvVYrSZsNjO7ttWxeHkFJpPhOKOcXnK8Ti5dWMmfth3gaGsXfqcdVVHoicTQ0TlvdjnT84KTHaYQQgghhBCnHylaOiaS8Jjidu7cycc+9jFKSkp48803yc4+uY4pp6Pthxt57o29pDMaWV4HJqOBUDTBhj01tHb1c9OlSyZstkdvV5h0SjvukhWX20p/X5RIOI7Xd/oXZX3bypkl+Jw2Nh9poK69B13XKc/1s3RaIQvL8ietYKsQQgghhBDizCMJjyksFotx8803k0qlmDt3LllZWZMd0riJxJL8ddsRAEpyfYPb/W47boeV6uZuthys59JlMyYkHqPJAOhomj7ih/x0WsNgUDEaRze7I55Icai2ndaOPlAU8rLcVJZmYx2hM8pkUBSF2UU5zCrMJhxPous6TqtFEh1CCCGEEEKICScJjynsy1/+Mvv37yc3N5fHH398VG1HTzdVTZ109kYofley421Gg4rbYWHnkSbOX1iB+VhXEV3XaWrvo6Glh3RGI+B1MK04OLj/gygsCeJy2+jrieALDF1KpOs6Pd0R5i4sxuG0nPSYjW29PPfKbpra+9B1DR0FVYHCXB/XXDgPh91CMpXG5bBis5iIJ1JU1XbQ1RvBaFApzvdTkDt8ic14UBQFl+3k700IIYQQQghxArKkZUwk4TFFvfjii/zv//4vAE899dSUnt0BEI0n0dExGkZui2qzmIglUsQSKcwmI5FYkj+9vpcD1a3EEilURUFRFAqyPXz0/LmU5Ps/UDw+v4P5i0t587UDqKqK22tDURQyaY22ll4cDguLl5WddBKqPxznD3/ZSUtHP8W5vsGZIal0hgM1beytbiHb70JRwGGzkOdz0dbWR3dvFF3X0XUdm8XEjIpcPnrRXBx2SUYIIYQQQgghpjZJeExBHR0dfOYznwHgc5/7HJdffvkkRzT+bBYToJDJDCwVea94Mo3VZMRqMaFpOi+8tocdBxrIDbjJz/KgKArJVJqm9j5+t3Ynt159Flm+D1bkddXFs9A0jd3ba6k9GkZRFRQgkOXi/Evn4M120RuK4XJYMKgjJ2redqC6leb2PkoLAkOO7QvH6QlH6emP4rCbKcz20tEVYuPmo9jNRs6aX4rdZkbXdSLRJDv2NQDwiSsXyzITIYQQQgghxJQmCY8p6Etf+hKtra3Mnj2b//7v/57scCbEtIIgfpedjt4wuQH3kH0ZTaMvHOOSZZVYTEZqm7o4UN1KfpYHx7uWXZhNRkry/VQ3dLL7UBMXn/3B6n2YzUYuuXI+C5eWUVfdTjKZwem2EjPovFXdRMvm/QDkBtwsmV3EgukF6OiDs00ANE0nkkhysKYNk9EwJNmRzmhUNXWS1nScNgvJZAa71Uw6oWFSVZKaRnt3mNICP4qi4HRYyFXcHDzaSmNrD8UfcBaLEEIIIYQQQnyYnfhr5Qnw8MMPU1ZWhtVqZcmSJbzxxhsnPP71119nyZIlWK1WysvLefTRR4fsf+KJJ1i1ahU+nw+fz8cll1zC5s2bx/MWPnS+9a1vcfXVV/OLX/wCm21iupJMNqfdwgWLKkimNRrbe0mm0mi6Tn8kTk1TN0XZPpbNLAagtrmbRCI9JNnxNlVRcNot7KtqQT+JNW+hUJxdexvYvK2G/QebicdTQ/YrikJWjpulK6ax4rxKOpIJXli/j5qmLmwWE3aLidrmLv7vD29x/6N/5vtP/ZUHfvoqf1q3lxc3H+TxNW/xg9+t49VdVdR39NIdjg6O3ROKEo4lcNnMqKqKpg0sXensCmG1GrGaTbR29ZPJaEPep3giRX1T91jfaiGEEEIIIcREe7uGx2hfZ7hJneHxzDPPcPfdd/Pwww9zzjnn8Nhjj3HFFVewf/9+iouLhx1fU1PDlVdeyR133MHPf/5z3nzzTe68806ysrK4/vrrAXjttde48cYbWblyJVarle985ztcdtll7Nu3j4KCgom+xUmRm5vLc889N9lhjKtMRqOpoZtIOI7FYqKwJMDyOSUYjQbe3F1DS1eIdEbDbjGxsLKAS5ZWEvAMtH9NZzROVDrDaDSQTKXRdY57nKbpbNxylLe2VNPXFwXlWHIj6OKiVTOZPTN/2DkNrb2s33kUl92C320HBgqYtneHaW3vo6G5mzkVeVgtJp5+ZQf9qSTFeT6Ksr047BZq67vYdbSZWcU55PpcJJJp0EFVVdIZDbfTiq7raPrALBHVaCCZypBKD13moygK6bQ2LD4hhBBCCCGEmEomNeHx/e9/n9tvv53PfvazADzwwAO89NJLPPLII3zrW98advyjjz5KcXExDzzwAACzZs1i69atfPe73x1MePziF78Ycs4TTzzBb3/7W1555RVuu+228b2hSZRKpXj11Ve57LLLJjuUcVdX3cHrf9lHU0M3qWQa1aDi8TmonJ3H9Fn5fPojy+gKR0mmMnhdNnJ8ziHFQX2ugVkvGU0bsXZGOBpnZnnuCWtcbN5ew9pX92O3mSgp9qOqKql0hrb2fp5/cScWi5GKsuwh5+yrbiGaSJGf5Rnc1tUboaG5B6fdQiyRIpXJYDWZiaNhVBRC/XFshSbKi4L098YIRxMcbuzA57RhNKjo6ITCcWwWI1nH7tPpsNDVHcGsKKiqgsHwzn2k05mB98BrH9ubL4QQQgghhBCniUlb0pJMJtm2bduwD+iXXXYZGzZsGPGcjRs3Djv+8ssvZ+vWraRSqRHPiUajpFIp/P7j1ytIJBL09/cPeZ1u/uM//oPLL7+cL3zhC5Mdyrhqqu/iuV9vpq6mA3/ASX6xn2gyxZbtNTz11Bs89L9r+dlP1tNc3cW0ggC5ftewTigzynLI8rlobu8btmwlFImjoLBwxvFnA0VjSTZtrcZqMZIVdKEeS5qYjAYK8rxEo0k2basZNnZHTxjLe1retnWG0DQNq8WEwaASjado6Q2BAn63g0gsSVdvBIfDQkVZFg6rma6eCIfrO0ilMiSTGZLpDNOKs3DYzCiKQk62G+XYvWT5nJiOdXTRdZ3m9n5ygm6mlw5NxgghhBBCCCE+vN7uvDja15lu0hIenZ2dZDIZcnJyhmzPycmhtbV1xHNaW1tHPD6dTtPZ2TniOffeey8FBQVccsklx43lW9/6Fh6PZ/BVVFQ0yruZXBs3buQ//uM/AFi+fPkkRzN+dF1n05tH6OmOUFwaxGQ2cOhIK81tfTicFhw2M4logkgkzl/+spdXXtk/4kPutFu4/NxZWMxGqhs76eyN0Nsfpb6lm86+CMvnlzCzPPe4cTQ0dtPdEyHgdwzbpygKwYCT+oYuunsiQ/bZrWZSmcyQ++kPxzEfS4Jomo7RoBCKJ7AYDKjHEjXRY3VBcnM8zJ9TiD/gwGBQCHgdrFpUTmGuF0VVBmt1OJxWTDYTBkWBjE5PX5SO7jDV9Z047RauuGAOdpt5lO++EEIIIYQQQpxeJr1Ly3u/fdd1fdi29zt+pO0A3/nOd3j66ad57bXXsFqtxx3zK1/5Cvfcc8/gz/39/adN0iMUCnHLLbegaRq33HILf/u3fzvZIY2b3p4oNVXtBLIGZm10dofp6o7gcdkwGFTMJiPh0EACwW63sGN7LfPmFpJf4BsyTiKRoijbyw0fWcyeI80crusgrWmUFQZZNKuQudPzMY7Q2vZtqXRmIDlxbObEe5mMBtIZjVQ6M2T7jJJsth1oIJFMYzEPPHqqqpBK62Q0DR2dgMdBX0+KeCZ97Cx9yNIat9tGdp6Hj541i4sWTiOjaWzYVcNbu2upbe1BAYwGleWLyyjP9dPa1kdbZwiz0cC5y6axcHYh+TneUb/3QgghhBBCiEmkH3uN9pwz3KQlPILBIAaDYdhsjvb29mGzON6Wm5s74vFGo5FAIDBk+3e/+13+67/+i7/85S/Mnz//hLFYLBYsluEdO04H//zP/0x1dTUlJSU8+OCDkx3OuErEU6RSGdyegRoc7R0hFEUZLMhpMKjouk4mncHnd9DZGeJIVetgwqOzM8SOHXXs39dEKpXGZjMzb34Rt3/8bOx2C1aLcUjiLBpLcri6jcbWHnQdCnK8zKjIweO2YTEbiUaT2O3DZ0qEIwnsNjMu59AkW2VJNpUl2RyoaSPX78RptxD0OThS10EilSLL5yLL5ySipTnc2oklZUBVVTzvGiccS2A1GSnPG1iiZVBVVi2qYNHMQmqbu0mlMnicVorz/AM1PnSdVDqDqqonTOIIIYQQQgghxFQzaQkPs9nMkiVLWLt2Lddee+3g9rVr13LNNdeMeM6KFSt44YUXhmx7+eWXWbp0KSaTaXDb//zP//Af//EfvPTSSyxdunR8buBD4He/+x0//vGPURSFn/3sZ3g8nvc/aZIk4ika6jpJJtI43TYKivxDOoecDIfTgsU6kGiwWE0kkmmMxnfGSKczqKqCyWwcTIREI0kA2lr7+P0fttDS3IvHY8dqNRONJvnLX/ZSfbSda69bis36zu9QU2svz728i6a23mNJEB1dg9xsN1ddNI/iIj9HqtspLQoMmYGRSmfo7Yty/jkzcNiHJtEsZiPXXTSfNev3c7iunbaeCIlUBoNBxWIyMr04C6PBQL7XTWNXH629IYqyfHjd9oHlL9EEbb0hllUWUZw1dNaK02ZhbkXesPdMUZTBJTNCCCGEEEIIcSaZ1E9C99xzD7feeitLly5lxYoVPP7449TX17N69WpgYKlJU1MTP/3pTwFYvXo1Dz74IPfccw933HEHGzdu5Mknn+Tpp58eHPM73/kO/+///T9++ctfUlpaOjgjxOl04nQ6J/4mx0l/fz933HEHANdceB0N6zt4reVNZi2vJKcka8Li0HWdzvYQ4VAMi9VETp53SCJD13V2bqnhrTeP0NUeQtN0TGYDhcUBLrhsDkUlwZO+lsttY+acQjatP4zbY8NmNRGNDSQ0dHQi4QRujw23ZyBBkM5oOJwWdF3nr6/up7Wlj7Ky7MEEhctlxe93cLS6nbc2VnH5RwZmAoUjCZ59aSct7X0U5/sGl66k0xmOHG3n8Z+tY+HsQowGlaM1Hfh9dsxmI9FYkv5QnLyAC7/dyqH9TRQWB3C8a4aGx2njby9fTEtnP80dfQCkUmk2766jrStEmx5C13VyHA6cNgt2l4Xqli4A7BYzZ88s4arls07YQUYIIYQQQggx1cialrGY1ITHDTfcQFdXF/fffz8tLS3MnTuXNWvWUFJSAkBLSwv19fWDx5eVlbFmzRq+8IUv8NBDD5Gfn8+PfvSjwZa0AA8//DDJZJJPfOITQ6719a9/nfvuu29C7msiRDpj3HzBp3lpw59ZFDyb+v2NHN5ylG1rd3PxTatYeOHccY+hraWX9a8epKaqjXgshdGkkl/o5+xzK6mcnQ/Aji01vPj8DoxGA/mFPowmA7Foktrqdp57JsL1N68g7z01Nk7krHOm0VjXSV11BzaziUxaIxpNkEyksVhNlJRnoaoKvb1RHHYz06fn0tLSS11tJzk5nmGJAqPRgN/nYP/+Js45txKn08rBowOFUEsK35mFkkymqapqp6srRF9/jP7eGC6nBXSIxlJkMjqqDh4M9Df1s6ZuG4qi4PHZWXxWOWevqhxMnCiKQn6WZ0h72gUzCjlS205nbwSDqlKU56Mw10Ntaw8d/RGMqkpxto+8EbrOCCGEEEIIIYQYbtLnut95553ceeedI+576qmnhm07//zz2b59+3HHq62tPUWRfTjpuk5TdTuP/OtP6Tuoc37JdXR3xckptJE/PY/+jn7+8rPXCeT7KDpBa9UPqr2tj9//ahPtLX0Es10EslwkE2kaajtpa+njquuWUDotm7feOIzJZCAnzzt4rs1uprg0SO3RDra9dZSrrj/5ZUeBoIvrbjqbt944zIE9jVjNBvpDcfx+B+XTcnA4rbS29hGPJznn3Epycz0cOtRCPJ4iN3fkJT9Op5X2jn76+2I4nVZqGrowGNXBZIem6Rw50kZ7ez8OhwWXW8dsMVJWHKSppReX08ol581iwyv7aQ2Fyc51Y3dY0DSdnq4wr760l2QyzUWXzzvufdmtZhbMLBy2fUZRNjNO+t0RQgghhBBCTEm6PvAa7TlnuElPeIiTp+s6b72yj1//6CWq3jqEYjKjhpN0tvbRUt9FdoGPGfOL6GrqYt+GQxTNKBio/dATJZlI4XBZsTuP361mNLZsqKKtuZfSineWiNjsZopKgzQ1dLP+1QNkNI2uzhAFRf5h5yuKgi/g4MjBFsKhOE7XyccVCLr46LVLWHXhLLq6wuze3UBNbQehcJxoPEkg4OSCC2aydFk5iqJgMhlQVYV0WsNkGt5ZJZXKYDSoGI/t0zRtsCUsQF9flK6uME6nFZPJQCKZRtN1zGYjJUUBauo62fDGIVqaeigpy3pXEVWFYLYbozHCjs01zF9UQjDbPar3WQghhBBCCCHE2EjC4zSyb1stL/1mC6017aiqisvvQAEyGY1kIkVnSy+qqpBX6KNmdz0N1e1sW3eI2kOtA11JHBZmLy5l6XkzcPscY44j1B/j8IFm/AHniLUksnLctDX30lDbCTrHbd9qthjpj8VIxFOjSni8ze214/baKavIJhyO09UVRlUVcnI8mM3v/GoXFPgJBF10dYXIzfUOG6erK0RZeTbBoAuAwjwfu/Y3omkDLWH7+2NkMm8nSwZqg3hcA51iVFXBZjOxa1st5cXBEQuxenx2ao92UHO0XRIeQgghhBBCiNGTEh5jIn0qTxOZjMbON4/Q3xMBwGQy8HaqwWBQMZmMaJpOf09k4NUf5w//t469W6oxW4x4A04yqQzr/7ybZ596Y3CcsYjFkiQTaaw204j7zWbjQE0LVUVVVZKJ9MjjRJNYbWbsjg/eEtjptFJSEqSoKDAk2QFgtZpYflY5qVSGjo5+MhkNGChC2tzcg9li4qyzygeTN7Om5eL3OWhu6x1oc5vRGJjwoROKJLCYjWQF3imAa1AVksk0ZsvI+UNFUVDUgU41QgghhBBCCCEmhiQ8ThN9XWHamnrIpDNY3XYUVUE79sEdwGAyoGkaqVSG7tYeImmI9McomZ6L2+fAZrcQyPFQPC2H2kOtbH3j0JhjsdnMmC1G4rGRP8Ank2kMBoXSiixy8720tfahv2f9WCat0dcTZc78Qmx285hjOVmLl5RxyaVzMRoN1Dd0UVPbQWNjN263jSuvXEBl5TstXf1eB1deOBeb1Ux1XSfReIp4PEV3z0BB0ell2Tjf1XI2Gkvh9zuIRhIjXlvTNNAZ0q1FCCGEEEIIIcT4kiUtpwlN09F1HUVRsbgdpJx24qEoVpcNRR3IW+m6TjISA7cfjEayC/zDOnoYTQY8fgcHttWy4uI52MYwu8LltlE5K58tG6pwe+3DlrV0tPWTneuhbFoOBoPKC7/dSl1NB4Gga6B9ayRBT3eEkrIslpxdMfY35SREowmqjrTR3RPBaFC59LJ5pFJpksk0DoeF8vJsbLbhCZfZ0/Pwex3sO9zM/sMthPpiWEwGKitycB9bzgLQH4pjMKisWDWD3ZtrSCRSWCxDZ750tofw+hxMm5E7rvcqhBBCCCGEmKKkaOmYSMLjNOHxO/AGnLQ1dhMJaQQq8uk82kQ8FEVRFDQNMqk0dq+D+RfMpbs3jsU68pITu9NKX0+ESCg+poQHwLKV06ivHWgPG8x2YXdYSCbSdHb0YzabOPfCWZjNRqbNyOO6G89my4Yq6mraCfXHsNnMrDhvBmedM41kRqOquh2j0UBBnnfEoqJjVVXVxksv7aajvR9Q0I8VGq2szOWKKxfgfJ8ZF7lZbnKz3Fx8zkz2HmjiTy/vprMrQiqtYVAV+kNxdB3OXlrOqrOnkYwkObi3CafbisttI5PO0N0VwWhUWXXRLFxu2wmvJ4QQQgghhBDi1JGEx2nCZDYy/+wK6g63YDQaSGZ0cmaVEOsJE+0JEQvHsef4WHrJPFZetZg//XIDmXQGwwgFQ5OJFEaT4bgJkZORnePh2huW8+ZrB6k+0kZPVwSjSaWoOMjZqyqpnJ0/eGxJeRbFZUF6uiIkk2mcLiuxRIpX3jjIkep2YrEkBoNKdpabs5eWs3Be0bCZKaPV2trLCy/sIBKOU/yuYqLRaJI9exoAuP4TZ41YdHUkc2cV4HJa2bmngaqadjIZnfLSLBbMLWLOzHwMBpWrP7GM3Hwve3fU090ZHljWUz4wi2XGu94PIYQQQgghhBgdqVo6FpLwOI0sWjmdjuZe1r+4m9aGbiKh+ECXFpsdb9DPvOXlXPuZVQRyPGx42UVXWz/ZBb4hY+i6TndniIUrpuPy2j9QPLn5Xq67cTmd7SHCoRhmi4ncfO+InUoURcEfHCj02d0T4bfPb6OpuYesoIvsoItUOkNXV5gXXtxFOp1h2eKyYWPE4ynqqzuIH+vqUlwWPG4HmN27G+jpiVBeljUkeWK3m8nL83LkSCuNjd0UFwdO+n5LigKUFAUG2tJqGlaLacjYNruZ8y+Zw1nnTKe/N4rRaMB3nE42QgghhBBCCCHGlyQ8TiMms5GPfPIsps0pYOvrhzh6oJFEPEVugZ/F581g/lkVg0mMsy6cxdrfbaWtqYdAjhuj0UA8lqS9qQdfwMmScytPSUyKopCV4yYr5+TbrW7fVUdjUzdlJe/MvLCYjeTneWlr7+eNjUeYNSMfp8NCX2+U2qPtHNzXxNHDraRSGVRFQTWo5OV7Of/SOVRUDq2NkcloHDrYgsdtG3GmiN1uobWtj4aGrlElPN5mMZ/4sbHZzCPWBRFCCCGEEEIIMXEk4XGaMRgNzFhQzIwFxSc8bvG5lSgobH7tAE01nei6jtFkoKA8iws+upD80uCYrh8Ox2lq6iGT0fD5HOTmeka1/CSRTLPvYDMet23EmSDBgJP6xm6OHG0j1BFm26ajNNR20tbSh6KAP+ikYnoudqeFlqZenv/NFq678WxKyrMGx9B1nYymjTj+2xRFGWxPK4QQQgghhBAfarKiZUwk4TFFqarKkvNmMHtJKfVH20klUjg9dorKs0as6/F+0ukMGzdWsX1bLb29UXRdw2ozU1aWxcUXzyEYdJ3UOOFwnLa2PrSURiyUwOGy4nZZ6GvopKu6jWQkTjit85dEhlg8g91pIZ3K4HRZsdnNREIJDh9oZva8IgpL/NTVdLB5wxGKy4KDiReDQSU318ORw234fI4R7wUg4HeO+n0QQgghhBBCCHF6kITHFGdzWJgxv+gDjaHrOq+9doA31x/G4bBSVORHVRUikQT79zXR3xfjkzcsx+M5cU2Q9rY+XvjdVuqrO0inM1hNRvRMhkxdG4ZofKAeh1GlvzfGtq44eaVZuGbkE4smcbisGAwqbq+N3u4ILU09VHryCQRd1FV30NMVGawRoigK8+cXU3Wkjf7+GO53dUfRdZ3mll5ycjxUTMv5QO+LEEIIIYQQQkwIaUs7Jsef8y/EMZ2dIXZsr8PjsZOV5cJgUFEUBafTSklJkIbGrsHOJ8cTCSf442+30lTXRWmBH7PVhNtrR2vppreug7iu4Mz1ojqsOPMDmO0W+pq7aK3rRNP1IctTrDYz3V1hUskMZrORdDpDIpEacr0ZM/JYfvY0+vpj1NV30tUVpr29n+qaDjxuGx/5yHysH6BLjRBCCCGEEEKIDzeZ4SGG6OuL0tjYjabp+P0O8vN9VFd3EA7HKSvLGna8waDidFjZs6eRlSsrj9uR5PCBZhrruygqCZLKZOiPJuhq7yPa0oXVbSeRztDRGcJut5Cd5aIzlMJkVOht60G12UilMphMhmPXVEgmNTKaRiySwGo143RZh8V10UWzKSr0s2dPAy0tvVisRhYvKWX+/CKysk6+yKoQQgghhBBCTCZd19FHOWNjtMdPRZLwEAAkk2neeOMQu3bW0x+KgQ4Wq5HS0izcLiuKqhy3OKnZbCQRT5FOD8y4GEn14TYMRnXwNac8l/19UWrjKfCYyaQzqCjMrMzFYDbRHe7GZDURD8ex+dxEIgk8noGuK8lkBrPFiKoq9HRHWHFeJa53LVt5m8GgMnNWPjNn5ZPJaKgnuAchhBBCCCGEEFOLJDwEuq7zl7/sY9OmKrweOyXFQRQFotEkBw80YzIZSSXTaJqGqg5fBRWNJsnL8wzOwBhJKpUesizFZjVRmu+jz23HHnARjSbJznKTHXST0XScNhN9/XEMChQU+mlo6qa3J4rFYiQWS+L12Wms66K4NMhZK6e/7z2eqGOLEEIIIYQQQoipRz4FClpaetm9qx6HzYRZVUin0iiKgsNhoaQkSCQSJ53R6OgIDTs3kUiTTKWZN7/4hLMncvK8JOLpIdOqnAE3NpcNPZlCBVyugVkaBlWhrMAD6Qwp1YDJbqakLAun00KoP47dbiY718s5F8zk2hvPxheQbitCCCGEEEKIqUwf4+vMJjM8BG+9up8ju2pR4wl0HUxmI9lFAQqm52GxWfB47CRTGdLpDPX1XQQCTgwGlVAoRn8ozqxZ+cydW3jCa8ycW8D2zdV0doTIyh6on2FxWsmelkfVW4ex+5wEs99pbaumUuTaVQqXTiOlKuiqypwFxVTMyGHGrAICWS7sDsu4vi9CCCGEEEIIIUbnj3/8I//yL/+Cpml8+ctf5rOf/eykxSIJjzNAJp2hdl8DXc09KKpCwbRc8spzUBSFg5uP8ObzWwj1xcny2jEYVJKJFHUHmujvDjNr+XTMZiNWm4lLL53H9m01NDf3oGk6TqeVi5aVs3x5xYgdT5LJNEePttHTHcVgUJi3uISdW2qoq+7A6T5WZNTrwVeajSWdor22HbPFRDKexGK3cMG1y7j45lUkkxlSyTQ2h+WEy2aEEEIIIYQQYkoay4SNSZjgkU6nueeee3j11Vdxu90sXryY6667Dr/fP/HBIAmPKa+troMX/++vNB5uJpPKoOtgdVqYvqSc8/9mJa//egNKRsPusmG2mFAUBaPJiNVuoaetj5aadgwuO6WlQebMKWDWrHy6ukJkMhoejx2bzTzidWtrO3n5pd20tPahawMVha1WE9n5HrwuK80NPQAsO2c6s/7hAvRYnKrt1YR7o3iz3ExfWkHRjHxUVcVmNGCzj3wdIYQQQgghhBAfDps3b2bOnDkUFBQAcOWVV/LSSy9x4403Tko8kvCYwpqqWvjlf/2ezqZuSucU4nA70HWdSF+UXa/uo7mqle6WXsrKsgk39RFNZnBYBn4lVFXFYjPTXNtB7swC5s0vPrZded+Wrh0d/Tz//HZ6eyMU5HsxmYwD140kqGvowr+olNVfuBxVVYYUE522sGz83gwhhBBCCCGEECe0bt06/ud//odt27bR0tLCH/7wBz7+8Y8POebhhx/mf/7nf2hpaWHOnDk88MADrFq1CoDm5ubBZAdAYWEhTU1NE3kLQ0jR0iko0h/l5Z++xoOf/z+2vbybzsYu9m88QuORZnRdx+l1kD8tl5o9dXS39tDb2Ik5FCHUG6GzL0oinSaV0UgpKqFokunl2cyalX/S19+1q56uzhDFRQFMpoEEiqIoOJ1WcnI8HDzYTFtbn3ROEUIIIYQQQoiTooM+ytcY1rREIhEWLFjAgw8+OOL+Z555hrvvvpuvfvWr7Nixg1WrVnHFFVdQX18/EKU+/Jonam4x3mSGxxQTjyb446Mvc+CtI/S29eHyO3B47MTCcY7urCUZT1E2rxiLbWDJSl9niL6OfhSDimIwEnNYSbmdOL12DLpOsdfKVR9bhNl8cr8qmqZz6GALLpd1xF9sh8NCe0c/9XVdFBZOzjouIYQQQgghhDidxBKxMZ/T398/ZLvFYsFiGbkBxBVXXMEVV1xx3DG///3vc/vttw8WIn3ggQd46aWXeOSRR/jWt75FQUHBkBkdjY2NLF++fNSxnyqS8JhiDm2u4tCWoxRW5tHd2ouu6xgMBpweB/FogpbqNrKKAoQ6w0T6o5jMRsw2M06PAx2deDRJpLmdXHchipbinEsW4g243v/Cx2iaRiqdwWgcubiooigoKKQzmVN1y0IIIYQQQggxJZnNZnJzc/nCD+4c0/lOp5OioqIh277+9a9z3333jXqsZDLJtm3buPfee4dsv+yyy9iwYQMAZ511Fnv37qWpqQm3282aNWv493//9zHFfipIwmOK2ffmQQxGA2arGafXTltddHCfxW4m2hajq6mbzsYeDAYDuWU59HeFCPdGsLts2OwWktEE9TtrWHLZfBZdPG9U1zcYVLKz3RytasPncwzbn05nQAGvd/g+IYQQQgghhBDvsFqt1NTUkEwmx3S+ruvDZt4fb3bH++ns7CSTyZCTkzNke05ODq2trQAYjUa+973vceGFF6JpGl/60pcIBAJjut6pIAmPKaavK4TVMfALnFUUpKOhi0QsicVmRkFBVRVCPRF62npx+RxULi2np7WX5qpWQj3hwQfCbDNx9lVLyC4Kjur6iqIwf34xR6vaCIfjOJ3WwX26rtPa2kt2lpvp03NOMIoQQgghhBBCCBhIelit1vc/cIK8N4Hy3qTK1VdfzdVXXz3RYY1IEh4jeLvQynvXOp0OTA4DvfV9OLNs2HxmAqVemqvaIAQWm4lwJIzWniGpJSivLEYx6fiLPLhyHIS6w2hpDaPFSG9nPxaPeUzvQUGBk1mzs9m+vRZVUXC5rGQyOv39UdxuO2evKCGVipNKxcfhHRBCCCGEEEKI8ff2Z6WRCnVORcFgEIPBMDib423t7e3DZn18WEjCYwShUAhg2FqnKafuxLu//dz/G5fLfvVr4zKsEEIIIYQQQky4UCiEx+OZ7DDGndlsZsmSJaxdu5Zrr712cPvatWu55pprJjGy45OExwjy8/NpaGjA5XINTs3p7++nqKiIhoYG3G73JEcoxIePPCNCHJ88H0IcnzwfQhyfPB8fbrquEwqFyM/Pn+xQTplwOExVVdXgzzU1NezcuRO/309xcTH33HMPt956K0uXLmXFihU8/vjj1NfXs3r16kmM+vgk4TECVVUpLCwccZ/b7ZY/bIQ4AXlGhDg+eT6EOD55PoQ4Pnk+Prym2syOrVu3cuGFFw7+fM899wDwqU99iqeeeoobbriBrq4u7r//flpaWpg7dy5r1qyhpKRkskI+IUl4CCGEEEIIIYQQggsuuOB9a5Lceeed3Hnn2NrkTjR1sgMQQgghhBBCCCGEONUk4XGSLBYLX//618fcs1iIqU6eESGOT54PIY5Png8hjk+eDyE+GEU/U3roCCGEEEIIIYQQ4owhMzyEEEIIIYQQQggx5UjCQwghhBBCCCGEEFOOJDyEEEIIIYQQQggx5UjCQwghhBBCCCGEEFOOJDze5eGHH6asrAyr1cqSJUt44403Tnj866+/zpIlS7BarZSXl/Poo49OUKRCTLzRPB8tLS3cdNNNzJgxA1VVufvuuycuUCEmwWiej9///vdceumlZGVl4Xa7WbFiBS+99NIERivExBvNM7J+/XrOOeccAoEANpuNmTNn8oMf/GACoxViYo32M8jb3nzzTYxGIwsXLhzfAIU4jUnC45hnnnmGu+++m69+9avs2LGDVatWccUVV1BfXz/i8TU1NVx55ZWsWrWKHTt28G//9m98/vOf53e/+90ERy7E+Bvt85FIJMjKyuKrX/0qCxYsmOBohZhYo30+1q1bx6WXXsqaNWvYtm0bF154IR/72MfYsWPHBEcuxMQY7TPicDj4p3/6J9atW8eBAwf42te+xte+9jUef/zxCY5ciPE32ufjbX19fdx2221cfPHFExSpEKcnaUt7zPLly1m8eDGPPPLI4LZZs2bx8Y9/nG9961vDjv/yl7/M888/z4EDBwa3rV69ml27drFx48YJiVmIiTLa5+PdLrjgAhYuXMgDDzwwzlEKMTk+yPPxtjlz5nDDDTfw7//+7+MVphCT5lQ8I9dddx0Oh4Of/exn4xWmEJNirM/H3/7t3zJ9+nQMBgPPPvssO3funIBohTj9yAwPIJlMsm3bNi677LIh2y+77DI2bNgw4jkbN24cdvzll1/O1q1bSaVS4xarEBNtLM+HEGeKU/F8aJpGKBTC7/ePR4hCTKpT8Yzs2LGDDRs2cP75549HiEJMmrE+Hz/+8Y85evQoX//618c7RCFOe8bJDuDDoLOzk0wmQ05OzpDtOTk5tLa2jnhOa2vriMen02k6OzvJy8sbt3iFmEhjeT6EOFOciufje9/7HpFIhE9+8pPjEaIQk+qDPCOFhYV0dHSQTqe57777+OxnPzueoQox4cbyfBw5coR7772XN954A6NRPsoJ8X7kKXkXRVGG/Kzr+rBt73f8SNuFmApG+3wIcSYZ6/Px9NNPc9999/Hcc8+RnZ09XuEJMenG8oy88cYbhMNh3nrrLe69916mTZvGjTfeOJ5hCjEpTvb5yGQy3HTTTXzjG9+gsrJyosIT4rQmCQ8gGAxiMBiGZVLb29uHZVzflpubO+LxRqORQCAwbrEKMdHG8nwIcab4IM/HM888w+23385vfvMbLrnkkvEMU4hJ80GekbKyMgDmzZtHW1sb9913nyQ8xJQy2ucjFAqxdetWduzYwT/90z8BA8sidV3HaDTy8ssvc9FFF01I7EKcLqSGB2A2m1myZAlr164dsn3t2rWsXLlyxHNWrFgx7PiXX36ZpUuXYjKZxi1WISbaWJ4PIc4UY30+nn76aT796U/zy1/+ko9+9KPjHaYQk+ZU/R2i6zqJROJUhyfEpBrt8+F2u9mzZw87d+4cfK1evZoZM2awc+dOli9fPlGhC3HakBkex9xzzz3ceuutLF26lBUrVvD4449TX1/P6tWrAfjKV75CU1MTP/3pT4GBjiwPPvgg99xzD3fccQcbN27kySef5Omnn57M2xBiXIz2+QAGq4WHw2E6OjrYuXMnZrOZ2bNnT8YtCDFuRvt8PP3009x222388Ic/5Oyzzx78Zs9ms+HxeCbtPoQYL6N9Rh566CGKi4uZOXMmAOvXr+e73/0un/vc5ybtHoQYL6N5PlRVZe7cuUPOz87Oxmq1DtsuhBggCY9jbrjhBrq6urj//vtpaWlh7ty5rFmzhpKSEgBaWlqG9MMuKytjzZo1fOELX+Chhx4iPz+fH/3oR1x//fWTdQtCjJvRPh8AixYtGvzvbdu28ctf/pKSkhJqa2snMnQhxt1on4/HHnuMdDrNXXfdxV133TW4/VOf+hRPPfXURIcvxLgb7TOiaRpf+cpXqKmpwWg0UlFRwbe//W3+4R/+YbJuQYhxM5Z/YwkhTp6iv11pUwghhBBCCCGEEGKKkBoeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEIIIYQQQogpRxIeQgghhBBCCCGEmHIk4SGEEEKcYd566y0uvvhigsEgiqIMefX29k52eEIIIYQQp4QkPIQQQogzyK5du7jgggtYsGAB69at48UXX8Tv93PhhRfyzDPP4PV6JztEIYQQQohTQhIeQgghxBnk85//PNdccw3f//73mT17Npdffjk33ngjoVCI7u5uFi5cyNy5c7FYLCxcuJCFCxfy2GOPHXe86upqXnjhhfe97rPPPsvdd999Cu9ECCGEEOLEjJMdgBBCCCEmRltbG+vXr+evf/3rkO0OhwNFUVi9ejWrV69m+/btfO5zn+PNN9983zH//Oc/E41G+djHPnbC43bv3s38+fM/UPxCCCGEEKMhMzyEEEKIM8S2bdvQNI0FCxYM27506dLBn/ft28ecOXOGHLNnzx5WrFjB3Llzuf7660kmk7z++ut87Wtf44knnmDRokXEYjF+9rOfsXz5cubNm8fVV19NMpkEJOEhhBBCiIknCQ8hhBDiDKFpGgCxWGxw2549e1i3bh233HLL4La9e/cOSXjE43FuvPFGfvKTn7B3716CwSC/+tWvOP/885k7dy6vvPIKO3bswGazceWVV7Jp0yb27NlDMBjkjTfeAEZOogghhBBCjCdJeAghhBBniOXLl2Oz2fjSl77EwYMH+dOf/sQ111zD6tWrWbly5eBx+/btY+7cuYM/P/vss3zkIx+hsrISgJkzZ9LR0QFAY2MjRUVFAOi6zuOPP86yZctYsGABf/jDH7BarUSjUVRVxWazTeDdCiGEEOJMJwkPIYQQ4gyRlZXFr3/9azZv3sz8+fP5/Oc/z+rVq3nggQeGHPfeGR4HDhxg1qxZgz/v27eP2bNn09jYSEFBweD2p556iqqqKtatW8euXbtwu93Mnj172HhCCCGEEBNBipYKIYQQZ5CrrrqKq6666rj7w+EwkUiE3NzcwW15eXkcPHgQgO3bt7N582Yee+wxNmzYQH5+/uBx+/btY+XKldhsNn74wx+iaRo+n0/qdwghhBBiUsgMDyGEEEIM2r9/P7Nnzx6y7dZbb2X//v3MmzePu+++m1//+tcYDAbmzp3LkSNHmDdvHgcPHuTWW2/lm9/8Jueffz5dXV3MmzcPGKgTIgkPIYQQQkw0Rdd1fbKDEEIIIYQQQgghhDiVZIaHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLKkYSHEEIIIYQQQgghphxJeAghhBBCCCGEEGLK+f9mlR5Xy/tSiQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9CklEQVR4nO3dd3hUZfbA8e+dmfRGCKT3QknoIC0U6U0JNlAQREEXdRcVy+LPXUVXFyuiu+IqIoqiohSDGHqTYqMpPZAEkpCE0NLrzNzfHxMGYgJmwiSTcj7Pk4fMvXfunLkZJifvvO85iqqqKkIIIYQQQjQyGlsHIIQQQgghRG1IIiuEEEIIIRolSWSFEEIIIUSjJImsEEIIIYRolCSRFUIIIYQQjZIkskIIIYQQolGSRFYIIYQQQjRKksgKIYQQQohGSRJZIYQQQgjRKEkiK4QQ16AoCt9++63Nz1GfTp06haIoHDhwoEGeTwghriaJrBCi2Zg6dSqKolT5OnnyZLXHZ2ZmMmrUqBqde86cOXTp0uWGztEUBQUFkZmZSYcOHQDYtm0biqKQk5Nj28CEEE2CztYBCCFEfRo5ciSLFy+utK1169aVbpeVlWFvb4+vr+8NP541ztGYabXaZn8NhBB1R0ZkhRDNioODA76+vpW+hgwZwl//+ldmzZpFq1atGDZsGFB1WkB6ejp33303LVu2xMXFhR49evDzzz/zySef8OKLL/Lbb7+ZR3k/+eSTas9x8OBBBg8ejJOTE15eXjz00EMUFBSY90+dOpVx48bx5ptv4ufnh5eXF48++ijl5eV/+tyeffZZevfuXWV7p06deOGFF8y3Fy9eTPv27XF0dKRdu3YsWLDguufdvn07PXv2xMHBAT8/P2bPno1erzfvNxqNvPbaa0RGRuLg4EBwcDCvvPIKUHlqwalTpxg0aBAAnp6eKIrC1KlTWbJkCV5eXpSWllZ63DvuuIMpU6b86fMWQjRfMiIrhBDAp59+ysMPP8yuXbtQVbXK/oKCAgYOHEhAQACrV6/G19eXffv2YTQamTBhAocOHWLdunVs2rQJAA8PjyrnKCoqYuTIkfTu3Ztff/2V7Oxspk+fzl//+ldz4guwdetW/Pz82Lp1KydPnmTChAl06dKFBx988LrPYdKkSbz66qskJSUREREBwOHDhzl48CDLly8HYOHChbzwwgv897//pWvXruzfv58HH3wQFxcX7rvvvirnPHPmDKNHjzYnnMeOHePBBx/E0dGROXPmAKYEeuHChbz99tv069ePzMxMjh07VuVcQUFBrFixgjvuuIPjx4/j7u6Ok5MT9vb2zJw5k9WrV3PXXXcBcP78edasWcO6deuu+5yFEM2cKoQQzcR9992narVa1cXFxfx15513qgMHDlS7dOlS5XhAXbVqlaqqqvrBBx+obm5u6oULF6o99wsvvKB27tz5uuf48MMPVU9PT7WgoMC8//vvv1c1Go2alZVljjEkJETV6/XmY+666y51woQJNXqOnTp1Ul966SXz7WeffVa96aabzLeDgoLUL774otJ9/vWvf6l9+vRRVVVVU1JSVEDdv3+/qqqq+n//939q27ZtVaPRaD7+vffeU11dXVWDwaDm5eWpDg4O6sKFC6uN54/n27p1qwqoly5dqnTcww8/rI4aNcp8e/78+Wp4eHilxxVCiD+SqQVCiGZl0KBBHDhwwPz17rvvAtCjR4/r3u/AgQN07dqVli1b1vqxjx49SufOnXFxcTFvi42NxWg0cvz4cfO2mJgYtFqt+bafnx/Z2dk1eoxJkyaxdOlSAFRV5csvv2TSpEkAnDt3jrS0NKZNm4arq6v56+WXXyYpKemaMffp0wdFUSrFXFBQQHp6OkePHqW0tJQhQ4bU/EJU48EHH2TDhg2cOXMGME1/uLw4TwghrkWmFgghmhUXFxciIyOr3X49Tk5ON/zYqqpeMzG7erudnV2VfUajsUaPMXHiRGbPns2+ffsoLi4mLS2Nu+++G8B8joULF9KrV69K97s6cf6zmNWKqReKoljlugB07dqVzp07s2TJEkaMGMHBgwf57rvvrHJuIUTTJSOyQghRA506deLAgQNcvHix2v329vYYDIbrniM6OpoDBw5QWFho3rZr1y40Gg1t2rSxSpyBgYEMGDCApUuXsnTpUoYOHYqPjw8APj4+BAQEkJycTGRkZKWvsLCwa8a8e/fuSvOGd+/ejZubGwEBAURFReHk5MTmzZtrFJ+9vT1Atddq+vTpLF68mI8//pihQ4cSFBRk6dMXQjQzksgKIUQN3HPPPfj6+jJu3Dh27dpFcnIyK1as4McffwQgNDSUlJQUDhw4wPnz56uswAfTx/6Ojo7cd999HDp0iK1bt/K3v/2NyZMnm5NNa5g0aRJfffUV33zzDffee2+lfXPmzGHu3Lm88847JCYmcvDgQRYvXsy8efOqPdcjjzxCWloaf/vb3zh27Bjx8fG88MILzJo1C41Gg6OjI3//+9955plnWLJkCUlJSfz0008sWrSo2vOFhISgKApr1qzh3LlzlSo2TJo0iTNnzrBw4UIeeOABq10PIUTTJYmsEELUgL29PRs2bMDb25vRo0fTsWNHXn31VfNH8nfccQcjR45k0KBBtG7dmi+//LLKOZydnVm/fj0XL17kpptu4s4772TIkCH897//tWqsd911FxcuXKCoqIhx48ZV2jd9+nQ++ugjPvnkEzp27MjAgQP55JNPrjkiGxAQQEJCAr/88gudO3dmxowZTJs2jX/84x/mY/75z3/y5JNP8vzzz9O+fXsmTJhwzTm9AQEBvPjii8yePRsfHx/++te/mve5u7tzxx134OrqWiVuIYSojqKq1dSZEUIIIWxg2LBhtG/f3rwITwghrkcSWSGEEDZ38eJFNmzYwKRJkzhy5Aht27a1dUhCiEZAqhYIIUQjsWPHDkaNGnXN/VfPN21sunXrxqVLl3jttdckiRVC1JiMyAohRCNRXFxsrrNanerKigkhRFMmiawQQgghhGiUpGqBEEIIIYRolCSRFUIIIYQQjVKzW+xlNBrJyMjAzc1NengLIYQQQjQwqqqSn5+Pv78/Gs31x1ybXSKbkZEhbQ+FEEIIIRq4tLQ0AgMDr3tMs0tk3dzcANPFcXd3t3E0QgghhBDianl5eQQFBZlztutpdons5ekE7u7uksgKIYQQQjRQNZkCKou9hBBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJIiuEEEIIIRqlZtcQQQghmiujqlJQprd1GEKIRsheq8FRp7V1GFVIIiuEEM3E4XP5nLhUaOswhBCNiLaoiLhukQDo8/LQ1aBtbH2SqQVCCNFMlBuN/HnDRyGEqJ7BaOsIqpJEVgghhBBCNEqSyAohhBBCiEZJElkhhBBCCNEoSSIrhBBCCCEaJUlkhRBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEM2CtqiI29v5c3s7f7RFRbYOR1iBJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRklX2zuWlZWRnZ2N0WistD04OPiGgxJCCCGEEOLPWJzInjhxggceeIDdu3dX2q6qKoqiYDAYrBacEEIIIYQQ12JxIjt16lR0Oh1r1qzBz88PRVHqIi4hhBBCCCGuy+JE9sCBA+zdu5d27drVRTxCCCGEEELUiMWLvaKjozl//nxdxCKEEEIIIUSNWZzIvvbaazzzzDNs27aNCxcukJeXV+lLCCGEEEKI+mDx1IKhQ4cCMGTIkErbZbGXEEIIIYSoTxYnslu3bq2LOIQQQgghhLCIxYnswIED6yIOIYQQQgghLFKrhgg5OTksWrSIo0ePoigK0dHRPPDAA3h4eFg7PiGEEEIIIapl8WKvPXv2EBERwdtvv83Fixc5f/488+bNIyIign379tVFjEIIIYQQQlRh8YjsE088wdixY1m4cCE6nenuer2e6dOn8/jjj/PDDz9YPUghhBBCCFEPVBXHc9m4nkrG9VQybicTbR3RdVmcyO7Zs6dSEgug0+l45pln6NGjh1WDE0IIcWOMRiNJSUmmG65etg1GCNFg2OVcwvV0iilZPZWMy+mKf0+lYFdUWP2dVLV+g6wBixNZd3d3UlNTq3T2SktLw83NzWqBCSGEsI7S0lLTN662jUMIUb+0RUW4pqaYR1ddT6XgeioJ11PJOORcuub9VI2GwoAgCkLDKQwMJuLLT007jMZ6irzmLE5kJ0yYwLRp03jzzTfp27cviqKwc+dOnn76ae655566iFEIIUQtKYpCaGgoAIn55bYNRghhdUpZGS7ppyuS1Mujqym4nUrG6Wzmde9b7ONHQUgYBaHh5IeGUxgaZvo3MATV3h4wJcPmRFarreunYzGLE9k333wTRVGYMmUKer0eADs7Ox5++GFeffVVqwcohBCi9hRFwdW1Yii2IMemsQghaslgwDkzA9fTyVdGVyumBbikp6JcZ6S0tIUnBSHhFISGUxBW8W9IGAXBYRhcXOrxSdQNixNZe3t73nnnHebOnUtSUhKqqhIZGYmzs3NdxCeEEEII0fSpKg7nz1UkqEmVRlddT59CW1Z6zbvqnZ2vJKihEeRXfF8YEkaZZ8t6fBL1r1Z1ZAGcnZ3p2LHjDQewYMEC3njjDTIzM4mJiWH+/Pn079//mscvXbqU119/nRMnTuDh4cHIkSN588038fKSRQxCCPFHqqqSn59/+YZtgxFCYJeXe2VENSWp0uiqXWHBNe9ntLOjIDi0UsJ6+fsSbx9QFKvHmnvxAp4OjlY/rzXVKJG9/fbb+eSTT3B3d+f222+/7rErV66s8YMvW7aMxx9/nAULFhAbG8sHH3zAqFGjOHLkCMHBwVWO37lzJ1OmTOHtt9/m1ltv5cyZM8yYMYPp06ezatWqGj+uEEI0F6qqkpqaarrh5W/bYIRoJrTFRbiknrpq3mqSaWT1VDKOFy9c836qolBUsciqIMQ0X9WUsIZR5B9YL3NUC3Jz+GljArsS4jn00y7e/Lxh51c1SmQ9PDxQKjJ9d3d38/c3at68eUybNo3p06cDMH/+fNavX8/777/P3Llzqxz/008/ERoaysyZMwEICwvjL3/5C6+//rpV4hFCiKbo8tSvMqw/YiNEc6WUl+OSnlppRNX0fTLOmRnXvW9xax9TshoaTkFoWMW/ERQGBWO0d6inZ3BVPAUF/Lp1Azu//5bfdm1HX35lYeihvb/UezyWqFEiu3jxYvP3n3zyiVUeuKysjL179zJ79uxK24cPH87u3burvU/fvn157rnnSEhIYNSoUWRnZ7N8+XLGjBlzzccpLS29UnoGyMvLs0r8QgjRGGg0GsLDwwHYl5Vj22CEaGyMRpyyMiolq5drrbqkn0ZjMFzzrmUeLa5UAzCProZTGByG3rXh1MI7dewwz064lbLSEvO24Dbt6Tc6jtjRYwlo5Q1vvWLDCK/P4jmygwcPZuXKlbRo0aLS9ry8PMaNG8eWLVtqdJ7z589jMBjw8fGptN3Hx4esrKxq79O3b1+WLl3KhAkTKCkpQa/XM3bsWP7zn/9c83Hmzp3Liy++WKOYhBBCCNHMqCoOFy+YF1hdng7geioZ19RTaK9K8P5I7+RUZb7q5ZHWhrjIqrysjN93/0BxYQH9xowDICiyLY7Oznj5+hM7Ziyxo+IIjmp75U5FRbYJtoYsTmS3bdtGWVlZle0lJSXs2LHD4gD+OE1BVdVrTl04cuQIM2fO5Pnnn2fEiBFkZmby9NNPM2PGDBYtWlTtfZ599llmzZplvp2Xl0dQUJDFcQohhBCikbtqwWO352bhmnYal9Mp2Odf+9Nao50dhYHBV42umv4tCAunxNu3ThZZWZPBYODwL7vZlRDPTxsSKMjNwcvXj76jxqLRaNDqdLz57UZaevtabepofapxIvv777+bvz9y5EilUVODwcC6desICAio8QO3atUKrVZbZfQ1Ozu7yijtZXPnziU2Npann34agE6dOuHi4kL//v15+eWX8fPzq3IfBwcHHBzqf76JEEI0BEajkZSUFNMN54Y3QiREvTAYCNjwPW0//K95U9Da1ebvVUWhyD+w0ojq5a8i/0BUXa2LPNnMyYMH2PbtN/y4fg0558+Zt7do7U2vYaMpLS7GqaKOrJdP1fypsajxT6ZLly4oioKiKAwePLjKficnp+t+xP9H9vb2dO/enY0bN3LbbbeZt2/cuJG4uLhq71NUVITuDy8mbcUKPlXKygghRLWKi4tN3zjL+6RoXjQlxYSs+pqoj/+Ha9rpSvsOz3yG/Ki2plHW4BCMDbzM1J+5nAddHlXd9u03rF1qWuPk6uFJnxFjiB0dR/RNvc25U1NQ40Q2JSUFVVUJDw/nl19+oXXr1uZ99vb2eHt7W3xhZs2axeTJk+nRowd9+vThww8/JDU1lRkzZgCmaQFnzpxhyZIlANx66608+OCDvP/+++apBY8//jg9e/bE31/KygghxB8pikJISAgAJwr0No5GiPphf+ki4V9+SvjnH5vLXZV6eJIy4V7afWgadDs59SEMTaCZU2riMXYmxLMrIZ5HXn6LmJ59ABgw9g6KCwqIHRNHpz790dnZ2TjSulHjRPbyG6HxOm3QLDVhwgQuXLjASy+9RGZmJh06dCAhIcH8WJmZmVfqHwJTp04lPz+f//73vzz55JO0aNGCwYMH89prr1ktJiGEaEoURcHNzc10ozDHprEIUdec09OI/PRDQpd/ga7ik4jCgCBO3P8XTt9+N4A5kW3MMk4ls3vtanYmxJN24rh5++5135kT2Tadu9GmczdbhVhvFLWWn8kfOXKE1NTUKgu/xo4da5XA6kpeXh4eHh7k5ubi7u5u63CEEKLe7MvK4XRuMTLBQDQ1HscOE/XRAgLXrjaXxMppH0PitEc4M/JW8xxXbVERcd0iAYjfd7LRjcjmXjjPKw/dS9LhK+uWdHb2dB0wiH6j4+h+8zDzvFdrufqalebk4eDhZtXzV8eSXM3i2cvJycncdtttHDx4EEVRqszJMFynppoQQoj6paoqhYWFl2/YNhghrElVaf3zLtp8tACfndvMm8/27c+JaY+Q3XdAg68o8GcuncsmPSmRjr37AeDe0ou8SxfRaLV06tOf2NFx9Bo6Ehd3DxtHajsWJ7KPPfYYYWFhbNq0yTxf9sKFCzz55JO8+eabdRGjEEKIWlJVlVOnTpluSIta0QQoej3+GxNo89ECPCtGJlWNhvSRt3Ji2sPkxHSycYQ3Jv/SRX7auJZdCfEc/mU3zm4efLRjP3b29iiKwqy3/4dPUAgeLb1sHWqDYHEi++OPP7JlyxZat26NRqNBo9HQr18/5s6dy8yZM9m/f39dxCmEEKKWHB1Nq7GlRa1ozDQlxYSuXEbk4g/MFQj0jo6cvv1uTtz/F4qCQmwcYe0VFeTzy+b17EqI57dd2zHoryzM9AsN49K5bLwDAgGaxbxXS1icyBoMBlwrWqu1atWKjIwM2rZtS0hICMePH/+TewshhKhPGo2GyEjT/DZpUSsao2orELTwJHnS/SRNup+yJjAyuWrhe6z84F3z7dB20cSOjqPvqLH4NuIEvT5YnMh26NCB33//nfDwcHr16sXrr7+Ovb09H374obmftxBCCCFso7EvaLrszyoQNMbnVV5WyoGd29j5fTw3jxtP1/43A9BvdBw/bfiefqPjiB0dR2BElG0DbUQsTmT/8Y9/mBcOvPzyy9xyyy30798fLy8vli1bZvUAhRBCCNF8eBw9RNSi96tWIJj+KGdG3NLoumwZ9HoO/rTT1CJ241qKKtrhajQacyIb3KYd7yb80ChbxNqaxa+GESNGmL8PDw/nyJEjXLx4EU9PT/kBCCFEA2M0Gq8s9nLytGksQlzT5QoEC9/DZ9d28+bGXIGgvKyMxXNf4Mf1a8irmBIB4Nnah9jRY+l/y5WuppI/1Z7Fieynn37KnXfeictVdcpatpT+3UII0VAVFRWZvnFqYdM4hPijplSBQFVVzqanmue02tnbc3TvL+RdvIC7Z0t6j7iFfqPjaNe9Z5NqEWtrFieyTz31FI888gi33nor9957LyNHjkTXyIb5hRCiuVAUhaCgIACSiqzXmVGIG6EtLiJk1ddVKxDccY+pAkFgsI0jrBlVVTmdeJRdCavZlRBPzvlsPt51EMeK+buTnpiNVmdHx96xTbZFrK1ZnIFmZmaybt06vvzyS+6++26cnJy46667uPfee+nbt29dxCiEEKKWFEXBw6OiWHpxjk1jEcL+0kXCv/iEiM8/xuHSRcBUgSDp3gdInjSVMs/GUYEgIyWJnQnx7EqIJz3phHm7g5MTp44dpl23mwDoMWiYrUJsNixOZHU6Hbfccgu33HILRUVFrFq1ii+++IJBgwYRGBhIUlJSXcQphBBCiEbquhUI7rgbg1PjqUCw6ZulvP/Pp8237ewd6DZwMLGj4+g+cKh5NFbUjxuaE+Ds7MyIESO4dOkSp0+f5ujRo9aKSwghhBWoqnpljqy0qBX1rNoKBNEdSJz2SKOoQHDxbBa7168hKCKKzrEDAejUZwA6Ozs69ulPv9Fx3DRkBC5u7jaOtO4YnJ1ZeSwDgDFXrY9qKGr1Cro8Ert06VI2bdpEUFAQ99xzD99884214xNCCHEDVFUlJSXFdENa1Ir6oKq0/mknbT5a8IcKBANInP4I5/r0b9AVCPIuXeCn9QnsTIjnyK8/oqoq3W8eak5kvQOD+Hj3wSadvDYmFiey99xzD9999x3Ozs7cddddbNu2TebGCiFEA2Zvbw9AmY3jEE3b9SoQJE5/hNzojjaO8NpUVWV7/HJ2fv8tv+3+AWPF6DFA26496H7z0ErHSxLbcFicyCqKwrJlyxgxYoRUKxBCiAZOo9HQpk0bQFrUirrRWCsQlJeXocE0n1VRFDZ+/TnH9v0KQHh0R2LHxNF35Fi8AwJtGab4ExZlouXl5WRmZhIVFSVJrBBCCNGMNcYKBOVlpcQDXwGrh/RiwcYfcfM01cIffe8DdOl3M7GjxuIfFmHTOEXNWZSN2tnZcejQIelAIYQQQjRT16xA8MAMTt8+ocFVINCXl3Pwp53s/D6eXzYlUHR5R0E+e3/Yws1xdwIQOzrOZjGK2rN4WHXKlCksWrSIV199tS7iEUIIYUVGo5HU1FTTDQcP2wYjGrXGWIHg8C8/8sbM6eTnXDJvCwTGA/6fryK0e0+bxSasw+JXXVlZGR999BEbN26kR48elVrVAsybN89qwQkhhLhxBQUFpm8cZIGKsFAjqkCgqionftuHwaCnffdeAARGRFGYn4eHVyv6jLiFAUNG8vdpd6MB4qM7YmggsYvasziRPXToEN26dQMgMTGx0j6ZciCEEA2LoigEBAQAkFJi42BEo9FYKhCoqkrK0UPsSohnV8JqzmWkE92jN//6fCUAHl6teHXZ94S2i0ar06EtKkJj45iFdVmcyG7durUu4hBCCFEHFEXB09MTgBSpWiD+RGOpQJCedIKd33/LroR4Mk4lm7c7OjvTOiAQg8GAVqsFIKJDJ1uFKepBrSe0nDx5kqSkJAYMGICTkxOqqsqIrBBCCNEINbYKBJ+89iL7f9gCmFrEdr95KP1Gx9Ft4GAcGthiM1G3LE5kL1y4wPjx49m6dSuKonDixAnCw8OZPn06LVq04K233qqLOIUQQtSCqqqUlJRcvmHbYESDU20FgsBgTtz/lwZRgeBCVga71n7H7rWreXL+B7T2N9V0HXjr7WgUDbFj4rhp8HCcXd1sGqewHYsT2SeeeAI7OztSU1Np3769efuECRN44oknJJEVQogGRFVVkpKSTDekRa2ocK0KBMenP0rG8DE2rUCQe+E8P65fw86EeI7u+dm8fffa74ib9jAA/W+9nf633m7xuQ3Ozqw8lmG1WIXtWfxK3bBhA+vXrycwsHKni6ioKE6fPm21wIQQQljH5QY20qK2mWvgFQiy0k7z4Qt/5+BPOzEajebt7bv3JHZ0HH1G3GKz2ETDZXEiW1hYiLNz1Y8azp8/j4ODg1WCEkIIYR0ajYZ27doB0qK2ubpmBYJRY0mc9rDNKhAUFxZyISuDwIgoADw8vTi69xeMRiMRHTrTb3QcfUfdSiu/AJvEJxoHixPZAQMGsGTJEv71r38BphWxRqORN954g0GDBlk9QCGEEELUTujXnxOxdHGlCgSn7pzIyakP2aQCQWlJMft/2MqutfHs2bqRgPBI3ly5AQAnV1dmvvYuoe1j8AsJq/fYRONkcSL7xhtvcPPNN7Nnzx7Kysp45plnOHz4MBcvXmTXrl11EaMQQgghasj+0gXz951fnQPYtgKBvryc33b/wK6EeH7ZtI7iwgLzvpLCIgrzcnFxN3Wd6zNSpg8Iy1icyEZHR/P777/z/vvvo9VqKSws5Pbbb+fRRx/Fz8+vLmIUQghRS0ajkfT0dNMNO1nZ3ZS5Hz9C5JKPCPpupXlbYUAQJx6YYdMKBP97/mm2rvrafLuVnz+xo+PoNzqOsOiOUrpT3JBaLUv09fXlxRdftHYsQggh6kBeXp7pGy9X2wYirM9gwG/7JiI+/Qjvn6t+Krp51Ub07vXTmthoNJJ4YC+7EuIZMfE+AsNNc19vGjKC/Tu20nfkrcSOjqNNl+5oNNJfS1iHxYnsunXrcHV1pV+/fgC89957LFy4kOjoaN577z1zBxkhhBC2pyiK+dOy02Uy8tVU6AryCVm5jIjPP8Y19RQARq2WjOGjSR4/mQH3jweo8zJaqqqSfPggOxO+Zfe67zifcQYAZ3d37pn5DAA9bh5Gj+3DzZ22hLAmi1/hTz/9NK+99hoABw8eZNasWTz55JNs2bKFWbNmsXjxYqsHKYQQonYURcHLyzQn8rRULWj0nNNOE/H5x4Qu/xK7irmmZR4tSBk/ieSJUyn2C0BbVFTncRQV5BO/6H12JsSTdTrFvN3JxZVeQ0fRqc8A8zatDWvSiqbP4ldXSkoK0dHRAKxYsYJbb72Vf//73+zbt4/Ro0dbPUAhhBCiWVNVWv3yI5FLFuK3ZQNKRYe2vPBIkqY8SOrYOzBUUxbT2ooK8s0dtOzs7Vm7dDGFebnYOzrSY9Aw+o0eR9cBg7B3cKzzWIS4zOJE1t7enqKKv/Y2bdrElClTAGjZsuWVeVhCCCEaBFVVKSsru3zDtsEIi2hKSwha8y0RSz6ixfEj5u1ZAwZzcvJ0smMHQB3PNT2Xkc7utd+xa+1qCvNy+e/6XSiKgp29A/c89gyuHi3oMWg4Ti4udRqHENdicSLbr18/Zs2aRWxsLL/88gvLli0DIDExsUq3LyGEELalqionTpww3ZAWtY2CY/ZZwr76lLCvPsPxoqmUlt7JidRx4zk5+QEKKhZR1ZWc8+fYve47diXEc2zfr+btGq2WjJQkAsIjARg16f46jUOImrA4kf3vf//LI488wvLly3n//fcJCDB13Fi7di0jR460eoBCCCFujKwQbxxaHPqdyCULCVy7Gk15OQBFfv4k3fsAp+6cSLlHizqPYfXiD/jsjX+ZW8QqikL77r3od8s4eg8fg0fL+q1BKxoGoxHyL2kgwtaRVGVxIhscHMyaNWuqbH/77betEpAQQgjr0Wg05nUN0qK24VH0evw2rSNyyUJaXTX6eb7bTZyc8iCZQ0fWWeWBooJ8ft2ygbD2HQiOagtAaLtojEYjUZ26Ejs6jr4jb8HLV0bymwtVhYvZGlITdaSdsCP1hI7UEzrSk3R4+RqZmGjrCKuq1f8Og8HAqlWrOHr0KIqi0K5dO8aNG4dOViYKIYQQf8ouN4fQ5V8QsXQxzhUlq4x2dqSPGsvJydPJ6di5Th63tLiIfdu3sDMhnn3bN1NWWsKYKdN54P9eAiCmZ1/e2/gjvkEhdfL4ouHIv6SQelWyejlxLcyr/hOcC1mg14NDA0v1LA7n0KFDjB07lrNnz9K2rekvuMTERFq3bs3q1avp2LGj1YMUQgghmgLX5JNEfL6IkFVfoysuBqDUsyUpd08h+e4plPj4Wv0xDQYD+3/YYmoRu3k9JUWF5n3+oeH4BAabb2u1Wklim5jiAoW0pMvJqs6cvOacq76ur0ar4hdiILSNnjbtjXToAJ07KnSJ1uHiaFfP0f85ixPZ6dOn06FDB/bu3WtufnDp0iWmTp3KQw89xI8//mj1IIUQQtSO0WgkIyPDdEMrK8ttQlXx3rWdyCUf4fvDFvPmnLbRJE2ZRtott2G0cskqFbi6/cUHL/ydi9lZALT2DyR2jKlFbGi7GGkR20SUlUJGiilhTU20Myeu2Weunep5B+gJaaMnqp2R6Bjo3Emhc4wGb3c7HHSNo4yaxYnsb7/9xp49eyp18PL09OSVV17hpptusjiABQsW8MYbb5CZmUlMTAzz58+nf//+1zy+tLSUl156ic8//5ysrCwCAwN57rnneOCBByx+bCGEaA5ycnJM33jVfa3R+qQtKiKum2kFffy+k/VSS9US2uIiguNXEPHZR7gnmSpHqIpC5qBhnJzyIOd79QUrJpFGo5Fj+35ld/xyngf2Xo5Dq2XExPvIu3iBfqPjiOrcTZLXRsygh6xULakn7CpGWE2jrJmntRgN1f9cPVsbCI7SE9HOQHQ0dO4IXTtp8ffS4ahzaNSvB4sT2bZt23L27FliYmIqbc/OziYyMtKicy1btozHH3+cBQsWEBsbywcffMCoUaM4cuQIwcHB1d5n/PjxnD17lkWLFhEZGUl2djZ6vd7SpyGEEM2Gj48PAGn6xvvLqjFxyjxD+BefEPb1UuxzcwAod3Hl9B13k3TvAxQGh1rtsVRVJenQb+z8Pp5da1dz8Wymed/2q467c8ZjVntMUT+MRjifob0yh/WkaR5repKO8mu0m3ZxNxLSppzwtgbaR0PHjtC1k4ZQPx0udvaNOmG9lholslc3Ovj3v//NzJkzmTNnDr179wbgp59+4qWXXjK3rq2pefPmMW3aNKZPnw7A/PnzWb9+Pe+//z5z586tcvy6devYvn07ycnJtGzZEoDQ0FCLHlMIIZoTjUZD69atAUiTqgV1R1VpeWAvkUsW4r8hAY3BAEBBUAhJk6dx+vYJ6Cu6YlnLvh+28NG/nuNs2mnzNmdXN3oNGsbT361kAJBg1UcUdUFVIee8psoc1rQTOkqKql945eBkJChST1hbA+2iVTp0gG6dFKJCdLg52KNpggnrtdQokW3RokWlLF5VVcaPH2/eplZ0i7n11lsxVPzn/TNlZWXs3buX2bNnV9o+fPhwdu/eXe19Vq9eTY8ePXj99df57LPPcHFxYezYsfzrX//Cycmp2vuUlpZSWlpqvi3dx4QQQliLUlZGwPo1RH62iJa/7zdvz+4VS9KUaWTePAy01S+qsVRGShKKRoNfSBgA7p4tOZt2GgcnJ3oMGk6/MXF06XczTgYjo75baZXHFNZVkKuQdrIiWU28krjm51SfsOrsVPzD9IS10dMmWqVDDHTtrBAdpcPD0Q6dxr6en0HDU6NEduvWrVZ/4PPnz2MwGMwfeV3m4+NDVlZWtfdJTk5m586dODo6smrVKs6fP88jjzzCxYsX+fjjj6u9z9y5c3nxxRetHr8QQjQGqqpemX4lLWqtxv7SBcKWLSX8i09wqlhEZbB3IO2WcSRNmU5uu5g/OUPNZJ9JZ/e61ez6Pp7kIwcZfMfdPPrKPAAiOnTmmf8sonPsQByvnh9c0UZe2E5JkUJ6pUoBpoT14tlrVArQqPgGGwipqBQQHQ1dOil0itbi5aLDTtvwqgU0FDVKZAcOHFhnAfxxvoaqqtecw2E0GlEUhaVLl+Lh4QGYpifceeedvPfee9WOyj777LPMmjXLfDsvL4+goCArPgMhhGi4VFXl+PHjphvSovaGuSceI+KzjwhevRJtaQkAJa29Sb7nPlImTKbUq9UNP8alc9n8uO47dibEc3z/HvN2jVZLWUmJ+baiKPQaNuqGH0/UXnkZZJ7SmeexXl6AdTZNi6pWn8u08tcTEnWlUkCnTgpdYjT4tNDh2EgqBTQktSprm5OTw6JFi8wNEaKjo3nggQfMyWVNtGrVCq1WW2X0NTs7u8oo7WV+fn4EBARUepz27dujqirp6elERVXtP+3g4ICDg0ON4xJCCCEqMRrx3baJyM8+wvvHnebNl2I6cfK+B0kfeSuqvfU+4p0z9S7SK6ocKIpCTM++xI6Oo/fwUbh7SotYWzAYIDtdW6lxQOoJHRkpOgzXWETp4XVVpYAYlU4dFLp21BDobYdTI68U0JBYnMju2bOHESNG4OTkRM+ePVFVlXnz5vHKK6+wYcMGunXrVqPz2Nvb0717dzZu3Mhtt91m3r5x40bi4uKqvU9sbCzffPMNBQUFuLq6AqZmDBqNhsDAQEufihBCNHkajYYOHToA0qLWUrqCAoJXLSPy849xPZ0CgKrRcGbYaE7eN52LXW+6ofJZhfl5/Lp5Pb9sXsfjb76HfUUt2b4jb+W3XdsrWsTeiqd39YM7wvpUFS5kaa4suEqsqBaQZEdZSfU/a2dXI0FR+opKAaq5UkBEYNOtFNCQKKpq2aSp/v37ExkZycKFC80tafV6PdOnTyc5OZkffvihxudatmwZkydP5n//+x99+vThww8/ZOHChRw+fJiQkBCeffZZzpw5w5IlSwAoKCigffv29O7dmxdffJHz588zffp0Bg4cyMKFC2v0mHl5eXh4eJCbm4u7u7slT10IIRq1fVk5nM4tpqnMlK2rOrLO6alEfPYxoSu+xK4gH4Aydw9O3TWRpIn3UxxQ+4GTkqIi9m7byM6EePb/sJXyMtNi5Gf+s8g8TcBoNKLRVL/4pyYaen3dhiL3ouaqBVdXpgUUFVR/7e0dVIIiywlra6Bte5WOHVW6dNTSNlyLu4OuWVUKqGuW5Gq1GpG9OokF0Ol0PPPMM/To0cOic02YMIELFy7w0ksvkZmZSYcOHUhISCAkxNQeLzMzk9TUVPPxrq6ubNy4kb/97W/06NEDLy8vxo8fz8svv2zp0xBCCCGuUFVa/foTkUsW4rdlA4rRCEB+WAQnp0wnNe6uG0oI05NO8PV789izdQOlFa1pAQIjoogdHUdY9JX27jeSxIqqigqUKslq6gkduReqX3il1ZkqBYS2MdC2vZGYGOjSWSEmSouns04qBTQwFiey7u7upKam0q5du0rb09LScHOzvEbeI488wiOPPFLtvk8++aTKtnbt2rFx40aLH0cIIZojo9F4ZS2CUn2ZwuZMU1pC4PfxRH72ES2OHjZvP9vvZk5Omc7ZfjdDLRJLfXk5hXm5eFQs/lIUhV0J8QD4BIUQO9rUIja4TTv56NlKSkvgTLLuDx2vdJzPqD7VURQVnyCDaeFVeyMxHaBzB+gco6OVmw57qRTQKFicyE6YMIFp06bx5ptv0rdvXxRFYefOnTz99NPcc889dRGjEEKIG3Dx4kXTN1K1wMzhXDbhXy0h7KslOF44D4De0ZHUceNJmjyN/Iiqi4f/jMFg4NjeX9iZEM9P69cQ07MvT73zIQAB4ZFMfvofdOjZl4gOnSV5vQH6cshKrUhUE3XmBVhZqVqMxuqva0sfAyFR5US2MxLdATrFKHTppMG/pQ4HrSy8aswsTmTffPNNFEVhypQp5tqEdnZ2PPzww7z66qtWD1AIIcSNudzZ68w1fsk3Jy0O/07EkkUEJXyLprwcgCJfP5In3U/KXZMob+Fp0flUVeXE7/vZlRDP7rXfcTH7SiWeEwf3Y9Dr0VZMxRs3rfpPH0X1jEbIPqM1ja4mVoy0ntRxJlmHvrz617JbCyPBUeVEtDPSPtpIp44KXTtpCPbV4SyVApokixd7XVZUVERSUhKqqhIZGYlzI5lMLou9hBDNVbNd7GUw4L95PZFLFtJqz8/mzRe6dOfkfQ+SMXQUql3tPkZ+9dH7+XXzevNtZzd3eg8fTeyosXTs3c+cxIprU1W4lK2pMoc17aSO0uLqp3U4OhsJjrrcotVIxw4KXTsrRAba4eqglYVXjVydLva6zNnZmY4dO/75gUIIIYQN2OXlErL8SyI+/xiXjHQAjDod6SNvJWnKdC516mrR+dKTT7Dr+3humfoQLm6mX67tu/Xk4I87uGnwCGJHx9Gl30Ds7KV2+bXkX1JIPVl5DmvaCTsKcqtPWO3sVQIj9IS20dM2WqVjB+jSSUO7cC0ejnZoZeFVsyd/KgohRBOmqirGihX4zaVFrWtKEhGfLSLk26/RVbRrLW3hScrdU0i+ZwolPn41PtfZ9FR2JcSzKyGeU8eOAKbFWjePuwuA4RMmM3LifTg4NY5PJetLceGVFq2mElemuqyXzl27RatfqIHQihatHTpA544KHdtp8XTRYaeRhVeiepLICiFEE6aqKkePHjXdaMqLvVQV713biViyCL/tm8ybc6PakTRlGqm33o7RsWZVGwpyc9j27TfsTIjnxG/7zNu1Oh1dYm/Gy/dKIuxU0ZynuSovu1wpQEdqop15SkB2+rXTC+8APSFtrrRo7dxJoXOMBm93OxykRauwkCSyQgghGr1B40fjXtHWVVUUsm4eyskp0znXu1+Num8ZDAa0WtNoYWlJMZ+8OgdVVdFoNMT06ku/0XH0GjoKN8+Wdfo8GiqDHrJStX8obWVH5mktRkP117dFa1Npq4h2BqKjVTp3VOjaSYufl05atAqrkURWCCGaMEVRiImJAWB/E2pR63YykfCln5hvuyedoNzZhdO3TyDp3gcoDA3/03MU5uXy86Z17EqIR9Fo+MeHnwPg5ePHqEn34xcaTp8Rt+DZ2ruunkaDo6pwLkNbZQ5repKO8rLqE08Xd9PCq/C2etrHQMcO0K2ThlB/adEq6l6tEtnExES2bdtGdnb2lblXFZ5//nmrBCaEEOLGVUoiGnlCoSkpJmBDAmHLPqPV3l8q7Ts46/9IuWcKerfrr3AuKSpiz9YN5hax+vIy07m1WvJzLuFWUX5r2j+adsdIVYXcC5pKyWpqomlaQHHhNVq0OppatIZfbtHaAbp2VogK1eHuYIdGkYVXov5ZnMguXLiQhx9+mFatWuHr61vpTVJRFElkhRBCWJVb0glCv/6ckG+/wT43BwCjVsvZAYPx22rq9Jh87wN/2kJ2+f/eYcX/3qGspMS8LSiqLf1Gx9F31FhzEtvUFOQqpJ38Q2mrEzryLlW/8EpnZ2rRGtZGT5tolQ7RFS1a2+jwcLSTFq2iQbE4kX355Zd55ZVX+Pvf/14X8QghhLAio9FIdna26YbaeMpCaUpLroy+XlX7tcg/gJS7JnH69gmUu3mY68j+kb68nN9/3EFEh854tPQCwKNlK8pKSvANCaPf6DhiR40luE27au/fGJUWQ9pJO3Oienke68Wz1SesiqLiG2wgpKJSQEwMdOmk0ClaS0sXadEqGgeLE9lLly5x11131UUsQggh6sD586YWrI2haoFr8gnCli0l+NtvcMi9BICq0ZA5aBgp4+/lbL+boWJRlraitNZlBoOBI7/+xK6EeH5c/z0FuZeY9ty/GD15GgB9R95CeHRHwmM6Nup5m+VlkHnqyhzWyyOtZ9O0qGr1z6uVn4HgqHKi2htNC686aegco8HXU4ejVAoQjZjFiexdd93Fhg0bmDFjRl3EI4QQwspatWoFQMY1khxb05SW4L8hgbBln9N6z0/m7UV+/py6cyKn7rznmrVfjcBPwMLXX2LX5nXknMs27/PwaoXxqtq5Lu4eRHToVFdPw+oMBshO116Zw1qRuGak6DDoq/9ZunsaCG6jJ6KtkeiYKy1ag7ztpFKAaJIsTmQjIyP55z//yU8//UTHjh2x+0Nbv5kzZ1otOCGEEDdGo9Hg6+sLQEYDq1rgmnySsK+XEvzt1zjkXDX6evNQTo2/l6z+g8yjr9eSC9wMlH+1xHROjxb0Hj6GfmPiiL6pj7mkVkOmqnDxrIbUigVXl6cGpCXZUVZSfeLp5HK5UoCBdtEqHTtCt84aIgKlUoBoXhRVtazVS1hY2LVPpigkJyffcFB1yZL+vUII0ZTsy8rhdG4xtuzvpSkrvTL6+uuP5u2XR19P33E3xb7VT4FIO5nIzoRvyTp9iifeWoC2qIi4bpFMAjLGjKPv2Dvo1Kc/dvYNdzFS7kVNRacrnXkBVuoJHUX512nRGmlaeNUuWqVDB+ha0aLVzUGHViMJq2h6LMnVLB6RTUlJqXVgQggh6lelsQobtqh1TT5J6DdLCVlVefQ1a+AQUiZMvuboa1bqKXYlrGZnQjypiUfN2yc+MRv/lqYpE0uB+H+9+adVC+pTUYFSacHV5e9zL1yjRavWVCkgtI2Btu2NxHQwLbzq0EaLp7MOnbRoFaJa0hBBCCGaMFVVOXLkiOlGPS/2Mo++fr2U1r/sNm8v8vW7MvrqF1DtfX/dsoHl78/n5MED5m06Ozu69LuZfqPj8KhIYm2ttORyi1a7Sk0Ezmdc+9erT9CVFq0xHaBLR+gUraO1u1QKEMJStUpk09PTWb16NampqZSVlVXaN2/ePKsEJoQQonFyTUm6Mvp66SJQMfo6YDApEyZztv8gVF3lXz8558+h1WrNLWDLSoo5efAAGq2Wjr370W90HD2HjsTVo8WVO/2hakFd0pdDVmpFopp4pYlAVqoWo7H6j/dbepsWXkW2NRDdATp3UOjSUYOflw5HrSy8EsIaLE5kN2/ezNixYwkLC+P48eN06NCBU6dOoaoq3bp1q4sYhRBC1JKiKLRv3x6A37Lz6uxxNGWl+G9cS+jXS/H+eZd5e7GPH6fuvIdTd95TZfQ1P+cSP29ay66EeA79tIsJM5/mzhmPAdD95mE8+MJc+gwfg4dX/Y2+Go2mFq2X57FensN6JlmHvrz6xNPVw0hwVDkR7Yy0j75SKSDEV4ezLLwSok5ZnMg+++yzPPnkk7z00ku4ubmxYsUKvL29mTRpEiNHjqyLGIUQQtSSoihXVu7XQULlciqZsK8/rzz6qihkDRjCqQmTyBowpNLoa3FBAb9sWc+uhHh+27UdfXm5ed+ZpBPm7x2dnRl5z31Wj/cyVYVL2aYWrVc3EUg7qaOkqPqFV47ORoLMlQKMdIhR6NZZITLIDlcHezSSsApR7yxOZI8ePcqXX35purNOR3FxMa6urrz00kvExcXx8MMPWz1IIYQQDYdSVob/prWEfb0U7592mrcXe/teGX31D6xyP4NezyPD+5B38YJ5W0jb6IoWsbfiGxxaJ/Hm5yhV5rCmnbCjILf6hFVnpxIYoSe0jZ620SodO0CXjgrtI00tWrXSolWIBsPiRNbFxYXS0lIA/P39SUpKIiYmBriqe4wQQogbV1gIrq6m7wsKwMXF4lMYjUbOnTtnuqHeWALmcjqFsK8/J3jV1zhWJKOqonB2wGBSJtxbafS1vKyM33Zt5/CvPzLl6X+aRoZ1Ojr3HcDJg7/Rb0wcsaPjCIpsc0MxXa24UCE96co81stNBC6du0alAI2Kb4iB0IoWrR06QOeOCp3amyoF2MnCKyEaPIsT2d69e7Nr1y6io6MZM2YMTz75JAcPHmTlypX07t27LmIUQghxA8yJbC2qFihlZfhvXkfY15/j/eMfR1/v5tQdEykOMI2+GvR6Du3+gV0J8fy8cS0FuTkA3Bx3FyFtTfN0Z7z0Bg5OTjc0b7S8DM6k6Eg/5MrPvMIhOvDLrcGcPXPtxLO1v6lSQGQ7IzEx0LmTQpcOGrzd7XCQFq1CNFoWJ7Lz5s2joKAAgDlz5lBQUMCyZcuIjIzk7bfftnqAQgghbkzLlqZKAFnUPHl0OZ1iqjywclnl0df+g0yjrwOHmkdf05NOsO6LT9i97jtyL1z5ZK5Fa2/6jrwVx6tGkh0tqPVqMMDZVK15wdXleawZp3QYDZefy/+Z/jlz+TENBEfqiWhnIDoaOnWEbp20BLTS4SgtWoVocixOZMPDw83fOzs7s2DBAqsGJIQQwno0Gg3+/qaR2Kw/aVGrlJXhv2U9oV9/js/uHebtxa19OH3nPaTcaRp9VVWV8rJS7CsS2ewzaaxduhgAtxae9BlxC7Gj42jfo1eNWsSqqqlSwJVuV6ZqAekndZSXVZ94OrsZCY0oZcCBT4jhMB7LXqRrTxdC/aVFqxDNSa3qyObk5LB8+XKSkpJ4+umnadmyJfv27cPHx4eAgOqLWwshhGiYXFJPXRl9rRhRVRWFs/1uvjL6amdHauIxds5/jV0J8fQePprJT/0DgE59+jN8wmR6Dh1Jx9790NlV/xG/qkLuBU2lBVepiabktbiw+oVX9o4qQZHlhLU10K69SseO0LWTQptQHW56Axq3R0wHjnkNXGSKgBDNjcWJ7O+//87QoUPx8PDg1KlTPPjgg7Rs2ZJVq1Zx+vRplixZUhdxCiGEsCKlrAy/LRsI+/qzSqOvJa29OXXHPZy6cyJFgUFknEpm90fvsTMhnrQTx83H7dm2yZzI6uzs+MuLr1U6f2GeYhpdTaw8LSDvUvUjtFqdSsDlFq3RRjrEQJfOCjFtTJUCdNVVCigsq7pNCNGsWJzIzpo1i6lTp/L666/j5uZm3j5q1CgmTpxo1eCEEELcGKPRWKlFrXPaaUK/XkrIqmU4njctAlMVhezYgaRMmEzmzabRV4B/TZ/IgZ3bzOfS2dnTbeBg+o2Oo/vNwwAoLaaiUsCVWqypJ+y4kFV9wqooKr7BBnOL1g4VC686tdfi5WZhi1YXF9MwrxCi2bI4kf3111/54IMPqmwPCAggKyvLKkEJIYSwovJy3Ldto8W3q+n2wzbz5pLW3py6/W5O3TWRMw6O/LplA0O1Wi5/yO8dGIxGq6Vz3wH0HnEbQRFjOJ/pSeoJHTsTTInr2VQtqlr9fNRWfgaCo8orKgWodO6koXOMBl9PHY5SKUAIYQUWJ7KOjo7k5VVtc3j8+HFat25tlaCEEEJYQXIyysKFxCxejHL2LHDV6Ov4e0ns2p0ft25i1z+e4vAvuzEajQSER9HSuy+pJ3Q4uc6lx6B3yDrtwsIXr92i1d3TQHAbPZHtDLSPVunUUaFbJw2B3jqcpFKAEKIOWZzIxsXF8dJLL/H1118DpvaHqampzJ49mzvuuMPqAQohhLBAeTl89x188AFs2HCl4JaPD1njJ/Lz0FvYfOwwO5d/yW9P/AujoR3QC5iGg1NPXprWBn1Z9b8anFyMBJtbtJoWXnXrrBARaCeVAoQQNqGoqmUTjPLy8hg9ejSHDx8mPz8ff39/srKy6NOnDwkJCbjUovNMfcrLy8PDw4Pc3Fzc3d3r7XGNRiNgSvwvv9lf3gamEjnXO1ZVVS7/qORY6xx79fbaHvtnP09Ljr3W85DXSdN/nVwrNmNBAXh7g16P5tIlc2evap9HSgosXAiLF6NcNc1LHTqUvHse4kBwHAm/6Nm6+Sz7fziDnV00BkMLysquxODoaERRQAX8wwyEtdXTLsZIxxiVzh00tIuww81Bh1ajNKifUWP+2ct7ROM/9urt9f4eUc8/+/piSa5m8Yisu7s7O3fuZMuWLezbtw+j0Ui3bt0YOnRorQNuDi4vtmjXrh26itqL58+fJzs7G09Pz0ply44ePYqqqrRp0wZ7e9NK3QsXLpCVlYWHhwdBQUHmY48fP47BYCAyMhJHR9Ocs0uXLpGRkYGbmxshISHmY0+cOEF5eTnh4eE4VxQlz83NJT09HRcXF8LCwszHJiUlUVpaSmhoKK4VLTLz8/NJTU3F2dm5Uj3hlJQUiouLCQkJMS8ALCws5NSpUzg6OhIZGWk+9tSpUxQVFREUFISHhwcARUVFpKSkYG9vT5s2V9pVpqamUlBQQEBAAJ6engCUlJSQlJSETqejXbt25mPT09PJy8vDz88PLy8vAMrKyjhx4gQajYbo6GjzsRkZGeTk5ODj42OeDqPX6zl+3LQiu0OHDuZjs7KyuHjxIq1bt8bHxwcw/ac/evQogLk9M0B2djbnz5+nVatW+Pr6VvnZt2/f3lxT89y5c5w7d46WLVuaa3xefWzbtm2xq1hwc+HCBc6ePUuLFi0IDLzSv/7YsWMYjUaioqJwcHAA4OLFi2RmZuLu7k5wcLD52MTERPR6PRERETg5OQGmMnpnzpzB1dWV0NBQ87EnT56krKyMsLAw8x+meXl5pKWlVfnZJycnU1JSUul1UlBQwOnTp3FyciIiIsJ87OWffXBwsPmN6fLrxMHBgaioKPOxp0+fprCwkMDAQFq0aAFAcXExycnJ2NnZ0bZtW/OxaWlp5j+qLxf+Ly0t5eTJk2i1Wtq3b28+9syZM+Tm5uLr60urVq0AKC8vJzExEUVRKv08MzMzuXTpEt7e3nh7ewNgMBg4duwYUPl1cvbsWS5cuFDpdaKqqvnnGR0dbf4Fcfln7+XlhZ+fX5WffaX3iNxcsn/5Bc/ly7m6sKH5PSIsDPsNG66Mvlb84il282ZH1FTmF97Js8874+mp8t0nF3jnHR/0+jDuuMODOXMy2LIlnzf+42+qFNDeyF/uScXJQU9Lv2C8PV3RaezIyckxv0e0cJL3iD/+7OU9Qt4jbPoeUc95RENUqzqyAIMHD2bw4MHWjEUIIUQN2J05Q4vlyzEsXwOXMgFQgII+fdgUPoXxSx+gfJ/pl9ds9QigMnXqBY6dbIVnYAkjh5jKVo0YbWTGo1pzpYDjxxXKy6GFkw6dDUZhhBDCUhZPLQD45Zdf2LZtG9nZ2ZWGtcHUwrYhk6kFcqx8bCjHNrTXybViK88p4KR/LEf07Tj8xMc4/rCB3gc/pF/hejSYzn0WbxZzP4u100mzD8dgyKCs7DBwCBe3NPoO9+fxmQPpGOZPQEAAGo2mUVz3hnDs1dvlPUKOvdaxV2+XqQXWYUmuZnEi++9//5t//OMftG3bFh8fH/OTBtNF2LJlS+2irie2SmSFEOJajEY4fRoOHar8deyYim9ZKtP5iGkswp9M8302awezJuQBkm4ajV97DUf3LmLHd//C3VNDn5G3mlrEdu+JRqNBo8C4Nn7XiUAIIRqOOp0j+8477/Dxxx8zderU2sYnhBDNkqpCVlbVhPXwYZXCwiuDAm7kcSfLmc9nDGS7efQ1x7Ela/y78U5eBnvOb+H//n4/UweWANC5bx9ujltAx9790OpqPWtMCCEaFYvf7TQaDbGxsXURixBCNBkXL8Lhw39MWlUuXqyuRJWCo66Mib4JTDQupf/ZNdgbSsx7k4E3Wvuw6NxZypM3AeDo7My5jHTzMb7BofgGh9btkxJCiAbG4qkFr7/+OhkZGcyfP7+OQqpbMrVACGFNhYVw5EjVhDUjo/qaqhqNim+IqeNVcGQ5fR1/ZeDJL2m381scL14wH5cXHsmR3v2Z8MViUiu22dk70G3gEPqNiaP7wCE4ODn/aXyKqhKuv4SdRqFdu3Y2me8mhBCWqNOpBU899RRjxowhIiKC6Ohoc/mPy1auXGnpKYUQosErLYXjx6tOCUhOrn6EFaC1v57gKD3BbfQERekJjionIFxPi3NpBK1ZSXD8ctxSksz3ynV2YXebdjj84xVyYjqiKSrC84vFxABtXnqDHqPH4uzqZnHsWlSMRovX9QohRINncSL7t7/9ja1btzJo0CC8vLwqLfaqjQULFvDGG2+QmZlJTEwM8+fPp3///n96v127djFw4EA6dOjAgQMHbigGIYS4zGCApKSq81gTE1UMhj++35lut2htMCWsUeUVCaueoAg9Tq5Xkke7vFwC1q0h+JXltNrzs3l7mU7HJvcWvHfxPBuKCtElHuXjiEgcKlYQ78H0Rh1/y20YnP98BPaPVOC0XQuGhra+4fdrIYRoaCxOZJcsWcKKFSsYM2bMDT/4smXLePzxx1mwYAGxsbF88MEHjBo1iiNHjlQq1PxHubm5TJkyhSFDhnC2on+4EEJYQlUhLa1qwnr0qEpJSfWjrM5uRkLa/CFhjSrH3bP60U6lrAzfHVsIWr0Sv60b0ZaVAmBUFPa4e/C/vFyW6/XkXzwPQNuuPeg3Oo6rJ3zd8LItRaFc0ZoL4gshRFNi8Xtky5YtK3XiuBHz5s1j2rRpTJ8+HYD58+ezfv163n//febOnXvN+/3lL39h4sSJaLVavv32W6vEIoRourKzqyashw6p5OdXn7DaO6oERZZXjLKaktXgNnpaeptauF6XquL52z6CVy8nMGE1DjmXzLtyo9qSNvYO/pdzifcWvQ9AREwnxo0eS9+RY/EOCLzWWYUQQlTD4kR2zpw5vPDCCyxevNjc5rQ2ysrK2Lt3L7Nnz660ffjw4ezevfua91u8eDFJSUl8/vnnvPzyy7V+fCFE05OTc6VSwJWKASrnzlWfsGp1KgFhFclqxUhrcJSe1gEGKjqF1phL6imCvltJ0OqVuJ1ONm8/7+DA5wYDxpnPEPrgo6AoxKSnco+rG31HjcU/NPw6Z7UCVcXDWMqFCxdo2bKlTC8QQjQpFiey7777LklJSfj4+BAaGlplsde+fftqdJ7z589jMBjMPYcv8/HxISsrq9r7nDhxgtmzZ7Njxw5zn+E/U1paSmlpqfl2Xl5eje4nhGi4iorg6NGqI6zp6dUnrIqi4hN8ZR6raZRVj1+IHjv72sdhl3OJwHXfERy/HK/9e8zbi7Va4hWFxXo9m0tLMQDD0lOZUZFE+gQGc+fDj9f+gS2gAK0NhWRmFuLp6SmJrBCiSbE4kR03bpxVA/jjm6qqqtW+0RoMBiZOnMiLL75ImzZtanz+uXPn8uKLL95wnEKI+ldeDomJVRPWpCRQ1eoXXnn5Giolq8FR5QRG6HFwsk5MmrJSfLdvIWj1cny3bUZbXgaAUaNhm0bDYr2eVQYDhYCXrx9jRo0ldvQ4Ijp0sk4AtVCg2OPv5mizxxdCiLpicR1ZaykrK8PZ2ZlvvvmG2267zbz9scce48CBA2zfvr3S8Tk5OXh6eqK96vM+o9GIqqpotVo2bNjA4MGDqzxOdSOyQUFBUkdWiAbEaISUlKrzWI8fVykvr34E0d3TQHCbimkBkXqC25QTFKnHxb0O3tJUlZb7fyU4fgWB677DPjfHvCunXTRpt95B2i238cTMBzmbfpq+I28ldvRY2na96YbqtmqLiojrFglA/L6TtapaAEiLWiFEo1KndWStxd7enu7du7Nx48ZKiezGjRuJi4urcry7uzsHDx6stG3BggVs2bKF5cuXExYWVu3jODg4yGpdIRoIVYUzZ/5Yi9VUj7W4uPppAU4uxiqLroKj9Hh4Ges8XpdTyQSvXkHQdytxTTtt3p6p0fCZ0ciXOh2Pf/INbi08AXjq3Q9p4dVaWsQKIUQ9sem77axZs5g8eTI9evSgT58+fPjhh6SmpjJjxgwAnn32Wc6cOcOSJUvQaDR06NCh0v29vb1xdHSssl0IYXvnz1dfKSA3t/qE1c5eJTBSX2VaQCu/GlQKsCL7SxcITFhN8OoVtPztypz/QkVhuaryGbDVaMTe2YWeQ0dSUlRoTmS9fGTUUwgh6pNNE9kJEyZw4cIFXnrpJTIzM+nQoQMJCQmEhIQAkJmZSWpq6p+cRQhhS/n5V1cIuJKwnj1bfcKq0ar4h+qvSlZNCatPkAGtjd6RNKUl+G7dRPDq5fj+sAWNXg+AqtFwKCyCuUkniFdV9A6OdL95KLNGx9Ft4GAcHK008bYOKapKaPkljh3LpU2bNtKiVgjRpNhsjqytWDLvQghxRUkJHDtWNWE9ffraw6XegXrztIDgqHKC2ugJCKtcKcBa80AtZjTitfcXglcvJ2DdGuzzr1Q0SfULIOe+B0kbM46zisKCfzxJvzHjuGnQcJxcXesnPqxzbRRVJUp/EYDo6GhJZIUQDV6jmCMrhGiY9Ho4caLqKOuJEypGY/WVAlp6G0yjq5HlFfVY9QRG6HFyaXh/J7smnzTNe129ApeMdPP2VGAp8DmgDQ1jztSHAGgB/N//ltggUutQgVSdB4NCWknpLSFEk1OjRHbWrFk1PuG8efNqHYwQov4YjXD6dNV5rMeOqZSVVT8twNXDaJrD2ubKHNagSD1uLRpewno1hwvnCfz+W4JXr8Dz0G/m7XnAcuAzYDvQrntPYkfH0WfELTaKtA4oCmWKDienhj8NQgghLFWjRHb//v01Opn8tS9Ew6OqkJVVNWE9fFilsLD6hNXR2WgqaXXVoqvgKD0tWtfvwqsboSkpxm/LBoLjV+CzcysagwEAo1bL2X6DeDsznf8kHiOwYxdiR43lf6NupZVfgI2jrszg7MzKYxm2DkMIIRqsGiWyW7dures4hBBWcPFi9QuvLl6sPmHV2akEhF81hzVKT3AbPa39DTTKqZRGI61++dE073X999gVFph3/QqU/+0pLt09hVKvVvgcPcRbLq74BofaLNx6oaq4GUu5dOkSLVq0kAEHIUSTInNkhWiECgvhyJGqCWtGxjUqBWhUfIMNlZLV4Cg9vsF6dHbV3KWRcTuZSHD8cgK/W4lL1pURzFOY5rx+DuSFhPPXPv1p59UKgLD2zaNsnwL4GAo5c6YQDw8PSWSFEE1KrRLZX3/9lW+++YbU1FTKysoq7Vu5cqVVAhNCQGkpHD9edUpAcnL1CStAa/+KEdar5rEGhOuxb2J9QRzOZRP0/bcErV6B55ErzVJygG8wzXs95udP39FxTB8dR1h0x2abxBUqdvi4NLEXgBBCUItE9quvvmLKlCkMHz6cjRs3Mnz4cE6cOEFWVlalDl1CiJozGCApqeo81sREFYOh+koBLVoZKtVhDY7SExipx9m1YS+8uhHa4iL8Nq0jOH453rt/QGM0dfcy6nRkDRjMieGjufedN+g0ZAQjR8cxs0v3Zl9uSlUUMu3c6RUqzRqEEE2PxYnsv//9b95++20effRR3NzceOeddwgLC+Mvf/kLfn7yRinE9agqpKVVTViPHlUpKal+lNXZzVh5DmvFAiyPlnXforVBMBho/fMuglavwH/dGuxLis27fgTW+wXQY+U6yjy9AJgfd1ezHXkVQojmxuJENikpiTFjxgDg4OBAYWEhiqLwxBNPMHjwYF588UWrBylEY5SdXX2L1vz86hNWe0eVoIir2rO2MSWvLX0aT6UAa3I/fpTg1csJWvMtTmczzduTMM15Xe7kTKvhY4gdE0dpi5ZcvkSSxAohRPNhcSLbsmVL8vPzAQgICODQoUN07NiRnJwcioqKrB6gEA1dTs6VSgFXKgaonDtXfcKq1akEhFWMrLbRExRpSl69Aw1otfUdfcPieO4sfpvX47/iS1olnTBvz9PZsVRfzjJ7e8oHD6ffmNt4bsAg7B0cbRht46CoKsHlOSQm5hMZGdnsp1oIIZoWixPZ/v37s3HjRjp27Mj48eN57LHH2LJlCxs3bmTIkCF1EaMQDUJRERw9WnWENT29+oRVUVR8gg1XpgVEmkZZ/UIqt2ht7nQVfxgXA8NG9kNT0TXboNORNWgYaWPvZLu7O2fPn+PBm4fh5OJiw2gbJ3uMVRbmCiFEU6CoqmrRypCLFy9SUlKCv78/RqORN998k507dxIZGck///lPPD096ypWq7Ckf69onsrLITGx6rSApCQVVa3+Y2svX4N5wdXlSgGBEXocpJlStbRFRfht3YD3t98QsPsH7CqaFQDsBL5QFNyf/zc977nPdkE2FaqKM3r6B3nh7OwsUy+EEA2eJbmaxYlsYyeJrLjMaISUlKoJ6/HjKuXl1f+yd2thJLhNecUoq57gNqaRVhf3ZvXfqFY0pSX4/rCVwIRv8d22CV3xlUVbR4BlwM8dOhFy50R6Dx+DR0svm8Xa1GgUGNdGFuMKIRoHS3K1WtWRNRqNnDx5kuzsbIzGyiunBwwYUJtTClFnVBUyMqomrEeOqBQVVT8twMnFaJ4KEBR1JXH18GqeC69qSykrw/vHHfjFL8d/8zocS0vN+/KDQnj/bCY7gkMZcjKRh4BuS1ZicHa2XcBCCCEaFYsT2Z9++omJEydy+vRp/jiYqygKhqs+IhSivp0//8dFV6Z5rDk51SesdvYqgZH6KtMCWvlJwlpbil5Pq1924/fdSvzXr8H5qkWgZ7RaCqdMJ330OHI6dMInN4fp9g7EdYsEYI+tgm7KVBUXtcw8siFTC4QQTYnFieyMGTPo0aMH33//PX5+fvKmKGwiP/+PyaopYT179hotWrUq/qH6q5JVU8LqE2RAK42ab5zRiNe+XwlM+Baf71bhmp9n3pUFfA1s9vXH6fYJ3DbjMezsTavd3Fp4mlbRiTqjAH76AtLSCoiOjpb3bCFEk2Lxr/ATJ06wfPlyIiMj6yIeISopKYFjx6omrKdPX7tFq3eg/soc1qhygtroCQiTSgFWp6p4HjxAwJpVBK5fg/PZLPOu88AKYJ1XKzTj7qLvLbcxpV2MJFE2Uqzo8HKS/wBCiKbH4kS2V69enDx5UhJZYVV6PZw8WXUe64kTKkZj9S1aPVsbKiWrwVF6AiP0OLnIwqs6o6p4HDtMwPfx+MQvx/PcWfOuclc3MoaNYldkW5ZlnqHPLbdxb+dukrzamKoonLHz4KZwWewlhGh6LE5k//a3v/Hkk0+SlZVFx44dsbOzq7S/U6dOVgtOND1GI6SmVt+itays+lFWVw9jpQVXQVF6giPLcfOUhLW+uCWdIOD7b/H59hu8MtLN2wuA1cDp4WNo/+Z/Mdo74AhI0SwhhBD1weJE9o477gDggQceMG9TFAVVVWWxlzBTVcjKqpysHj4Mhw+rFBRUn7A6OldUCrhq0VVwlJ4WrWXhlS24pJ4iMGE1gQnxeCQeNW8vAb4HVjk6cmHYaHqMvZOOvWMx/uGPWiGEEKKuWZzIpqSk1EUcohG7dKnqCOuhQyoXL1afsOrsVALCr5rDGmUqc9Xa34B0z7Qtp4x0Atd+h/e33+Bz4ph5u1FnxwZFYRkqZ24eRrdxd3JLv5ulRWwjoKgqQfpcTp4sJDw8XFrUCiGaFIsT2ZCQkLqIQzQChYVw5EjVhDUj4xqVAjQqvsGGSslqcJQe32A9Ohm8azAczmUTsO47fOKX43foN/N2A3Cub3/OjI4jY+gojp9JY1hYJI5S57XRcVANlJTIp2VCiKanVoWHkpKSmD9/PkePHkVRFNq3b89jjz1GRESEteMTNlBWBsePV01Yk5OvXSmglb++yhzWgAg9MmDXMNlfuoD/hrX4fvsNvgf2oKmoCW0EdgBfazQc69mXe99cYO6wFd6iYbefFtVTgTM6N2IDvWThnRCiybE4kV2/fj1jx46lS5cuxMbGoqoqu3fvJiYmhu+++45hw4bVRZyiDhgMkJxcdVpAYqKKXl99pQAPL8NVCatpDmtgpB4XN1l41dDZ5eXit2kdgWtX4737BzRXzWf/EVOt19+79iBq3Hh6Dx/FEE9pEdskKArFij2urq62jkQIIaxOUf/YnutPdO3alREjRvDqq69W2j579mw2bNjAvn37rBqgtVnSv7epUFVIS6u86Opyi9aSkupHaJzdjJXnsFaMtHq0NFZ7vLg2bVGRuXNV/L6T9dqCVVtYiN/WDfitXoHvru3YXZW85kR3YH+XHry8fw+ht42n78hb8fT2qbfYRP3RKDCujZTfEkI0DpbkahaPyB49epSvv/66yvYHHniA+fPnW3o6YWXZ2VVHWA8fVsnLq35agL2jSlDEVe1Z25iS15Y+UimgsdKUFOP7w1b8vluB37ZN2JeXm/cdBn6N6Yj/mwsoCDNNBXrURnGKeqKqOKvl5Ofn4+rqKtMLhBBNisWJbOvWrTlw4ABRUVGVth84cABvb2+rBSauLze3+hat585Vn7BqdSr+Yfoq0wK8Aw1otfUevrAypawMn13bCVy7Gr9N67ArKjTvOwEsA7YFBtP69gnEjo6jIDTcZrGK+qUA/vp8Tp/Olxa1Qogmx+JE9sEHH+Shhx4iOTmZvn37oigKO3fu5LXXXuPJJ5+sixibteJiOHq0asKallZ9wqooKj5BhkrJanCUHr9QadHa1Ch6Pa1/3oX/mlX4b1yLY0G+eV+6VsuXBgMbfXxxi7uLfmPG8XCbdpLENFMlihZPR3kDEEI0PRYnsv/85z9xc3Pjrbfe4tlnnwXA39+fOXPmMHPmTKsH2FyUl8OJE1WnBZw8qaKq1S+8auljMDcNuDyPNTBCj6OzLLxqsoxGWu35Gf/vv8UvIR6X/DzzruJWrTkzaizpo8ayOS8XN69W/KVDZ0lemzlVUUi3a0GPCJkjK4RoeixOZBVF4YknnuCJJ54gP980AuTm5mb1wJoqoxFSUqpOCzh2TKW8vPpRVrcWRoLblBMcqSeoYg5rUKQeVw9JWJsFVcXzt30EJsTj+91K3C5dNO86DywH1ri7M2zhFwS1jwGgq20iFUIIIepVrerIXiYJ7J/bswe2b7+SsB45olJUdO0WrcEVC66unhbg4SULr5odVcXj6CECE+IJXPsdLmfSzLtygJVAvLMzJSNvpfctt3Ffz75odTf031kIIYRodGr0m69bt25s3rwZT09Punbtet2PKht6+a36tnQpVC7moGBnrxIYUbW0VSs/adHa3LmdTCQw4Vt8v12OZ0a6ebve2ZmTN/XlHz/uIGfoSHreejsTYwdiZy/zHsX1KapKgD6P5ORiQkNDpUWtEKJJqVEiGxcXh4ODg/l7mXNXcwMGwG8nyvAOK61IWsvxDTaglcEzUcHldAqBa1fj++03eJ1KNm8vBn7y9cNp9oucHTgYg5Mzd5aWYC/t0oSFnFQ9RUV6W4chhBBWZ3FDhMbOFg0RfjpziYyCknp5LNHwVNcQwelMOoHrVhOQsJqWh383H1sGrMfUIvZ0nwHcdOfdxI4aa5vARdOgqrhRTi9/T9zc3GQgQgjR4NVpQ4Tw8HB+/fVXvLwqt6/MycmhW7duJCcnX+OeQojwLz/Fd/0aWv++37xND2wGvlEUjvboReexdzB02GjcWnjaLE7RhCgKhYp9s+lkKIRoXixOZE+dOoXhqjaXl5WWlpKenl7NPYRovuzycglcs4pyTP/ZOr7xL8BUEul8j96kj4ljpaKQWV5OnxG3MLq1NBURQgghaqrGiezq1avN369fvx4PDw/zbYPBwObNmwkLC7NudEI0QprSEny3b8H/26/x+2ELdvorcxN3Y+qy5fPKPNrdPgEwlcqSclmizqgqTqqegoICXFxcZGqBEKJJqXEiO27cOMBUR/a+++6rtM/Ozo7Q0FDeeustqwYnRKNhMND61x8JWrMK//XfY39Vo4LDwFJgL9D6kVn0ibsDvxD5o0/UDwUI0Odx6lSetKgVQjQ5NU5kjUYjAGFhYfz666+0atWqzoISolG4XOs1fjm+8cvxyLlk3lXQypsF57PZ4OdPy9HjeH7RAv4NxE9/BIOzs+1iFs1SqaLF3V5KpQghmh6L39lSUlLqIg4hGg3n9FQCVq/Ad/kXtM44Y96ep9Nx4bbxpN1yO+dv6o1jShIPh0eiKy6mw6IFNoxYNGeqopBm14JxUdKiVgjR9NQokX333Xd56KGHcHR05N13373usTNnzrQogAULFvDGG2+QmZlJTEwM8+fPp3///tUeu3LlSt5//30OHDhAaWkpMTExzJkzhxEjRlj0mEJYyv7iBQLXfUerr5YQmHjMvL0EWAN86+ZO0bjxTPq/F80f3QZGRNkmWCGEEKKZqFEi+/bbbzNp0iQcHR15++23r3mcoigWJbLLli3j8ccfZ8GCBcTGxvLBBx8watQojhw5QnBwcJXjf/jhB4YNG8a///1vWrRoweLFi7n11lv5+eef6dpVlssI69IWFeG3eR3Ba1bhvWs7mopFW0ZgC7DCyZmMEWPoNu4u4m7qg1artWm8QgghRHNj04YIvXr1olu3brz//vvmbe3bt2fcuHHMnTu3RueIiYlhwoQJPP/88zU6XhoiiOtR9Hq8d/+A1xefELpzO476cvO+S9Ed2RoazlK9nnZ33E2nPv1r1CK2uoYIQtQXRVUJMOTT2tmekJAQaVErhGjw6rQhgrWUlZWxd+9eZs+eXWn78OHD2b17d43OYTQayc/Pp2XLlnURomguVBXP3/bh9cUnhGxci0dxkXlXEnC0/yDsn51DQbhpqsAkG4UpRG05q+UUFpb/+YFCCNHI1CiRnTVrVo1POG/evBodd/78eQwGAz4+PpW2+/j4kJWVVaNzvPXWWxQWFjJ+/PhrHlNaWkppaan5dl5e3jWPFc2La/IJgr9bhe+qZbTIyjRvzwa+0WjY27UHHndPocfgETi5uNguUCFugApkaV3p4ddCSm8JIZqcGiWy+/fvr3R77969GAwG2rZtC0BiYiJarZbu3btbHMAf31hVVa3Rm+2XX37JnDlziI+Px9v72t2Q5s6dy4svvmhxXKJpcjybhdc3SwlduxqfpBPm7QVAvKKwu30M2rvvo8eIMdzi0cJmcQphNYpCgcaBFi1a2DoSIYSwuholslu3bjV/P2/ePNzc3Pj000/x9DT1gr906RL333//NasNVKdVq1Zotdoqo6/Z2dlVRmn/aNmyZUybNo1vvvmGoUOHXvfYZ599ttKIcl5eHkFBQTWOUzR+uvw8vOKX4/XFJ0Qln+TykiyjVkt2v5tJveU21ujsCOvZhyFeUh9ZCCGEaCwsniP71ltvsWHDBnMSC+Dp6cnLL7/M8OHDefLJJ2t0Hnt7e7p3787GjRu57bbbzNs3btxIXFzcNe/35Zdf8sADD/Dll18yZsyYP30cBwcHHBwcahSTaDo0ZaV4bkjA/dOFRB/6HQfVaN63C9gYEETnz1ei+gUA0MU2YQpR91QVB9VAUVERTk5OMr1ACNGkWJzI5uXlcfbsWWJiYiptz87OJj8/36JzzZo1i8mTJ9OjRw/69OnDhx9+SGpqKjNmzABMo6lnzpxhyZIlgCmJnTJlCu+88w69e/c2j+Y6OTnh4eFh6VMRTY3RSKs9PxP03UoC1q/BPi/XvOsI8H2r1mSMvZOoe6bQKSiE+irXYXB2ZuWxjHp6NCEqU4AgfS7JybnSolYI0eRYnMjedttt3H///bz11lv07t0bgJ9++omnn36a22+/3aJzTZgwgQsXLvDSSy+RmZlJhw4dSEhIICQkBIDMzExSU1PNx3/wwQfo9XoeffRRHn30UfP2++67j08++cTSpyLqSL2Wm1JVXA79htOH/6Xdjq14lxSbd+W4e/AVkDziFgKmTCciqi0RdReJEA1WORqc7aTOsRCi6bG4jmxRURFPPfUUH3/8MeXlpnIuOp2OadOm8cYbb+DSwFd3Sx3ZulcfiaxD6ikc/vcOEZvWEXbVyGuhgwPnbrmNtFtvJ6tbTzR2djICJZo9jQLj2kiLWiFE41CndWSdnZ3NbWWTkpJQVZXIyMgGn8CKxs/+0kVarvgK908/pMO5bPP2UmCDvQO/9+mHyyNPENy5GwAy/iSEEEI0bbVuiODi4kKnTp2sGYsQVWiKimjx3QrabtuEz46tldrE7tDp2Nu1B+X3P0z4wMG0lxaxQgghRLNicSJbWFjIq6++yubNm8nOzsZoNFban5ycbLXgRPOk6PWw/EtafrGY7ieO43rV7Jec6A5sDAgmZdgoQkeNJdTOzoaRCtHwKaqKrz6f06fLCAoKkha1QogmxeJEdvr06Wzfvp3Jkyfj5+cn8w+Fdagq+vVrcFv8Ad0P/Ya3wWDelaIo5Nz7AOfvnkJ+RBRaINJ2kQrR6Liq5eTnS4taIUTTY3Eiu3btWr7//ntiY2PrIh7RzLimJBG0ZhUtPluE31WLts4B2wODybxtPF5T/4KjzMEWolZUIFvrQhcfDxl4EEI0ORYnsp6enrRs2bIuYhHNRMmxI2jee4tBp1LwOXHMvL0Q2N7ah9TRY3GdMRNnTy8CbBemEE2DopCncZT3bSFEk2RxIvuvf/2L559/nk8//RTnuqwPKpqUkvRUyt6bR5vNG+iVl1O5TWzsQE6NGsvJnn1wDgjC26aRCiGEEKKxqFWL2qSkJHx8fAgNDcXuD4tt9u3bZ7XgRONWBmS/+TIhGxMYdS4bp6v27Xd2IWnYKJyeeZ5Sr1YAyJ9FQtQBVcVeNVBSUoKDg4NMLxBCNCkWJ7Ljxo2rgzBEU2E0GGh9YC8AdsCDX3xi3pdkb8+Bm3pT+pfHcOzZBw2mGrBCiLqjAMH6XE6elBa1Qoimx+JE9oUXXqiLOEQjVl5Wyqn45Xh9toghKUmEVXR8U4BLzi7satOOggdmYD9sNIqi4GjbcIVodgwo2Gul7JYQoumpdUOEvXv3cvToURRFITo6mq5du1ozLtHA6cvLOb5tMw6f/I9eB/Yy4apyWWUOjtiXmlry/rB9HwY3N+xtFagQzZyqKKTYt5QWtUKIJsniRDY7O5u7776bbdu20aJFC1RVJTc3l0GDBvHVV1/RunXruohTNBRGI1nvvkGLj99nVlkZl4tiGYGDfv6k33EPxgmTubV/F9MO6bYlhBBCiDpicSL7t7/9jby8PA4fPkz79u0BOHLkCPfddx8zZ87kyy+/tHqQwnZUVeXE7/sJzM+jx56fCV69HOeMM+b96W7unBh5C0V/eYzSwCAAtEVFtgpXCCGEEM2IxYnsunXr2LRpkzmJBYiOjua9995j+PDhVg1O2Iaqqpw6dpj9q77Bd/Vybs+5RN+r9pe5ufNb957kTX+U3O49QRaPCNFgKaqKj6GAtDQ9AQEB0qJWCNGkWJzIGo3GKiW3AOzs7DAajVYJSthGevIJfvxuFbqVX3HL2SweBfPCLIOicG7AYE6Pu4vMwcMxOsiSLSEaCzdjGbm5ZQQESIsRIUTTYnEiO3jwYB577DG+/PJL/P39AThz5gxPPPEEQ4YMsXqAon64HT+C9p445hUVcvWSkAy/AM7ePZmM2++mtLW0KhCisVGBc1pnOrZ2l9JbQogmx+JE9r///S9xcXGEhoYSFBSEoiikpqbSsWNHPv/887qIUVjZhbOZ/LhuDae2rOetm4cR9t0KWhw5xLCK/QUuLqSNvYOMuyaR276DTB0QojFTFHI1TrRq1crWkQghhNVZnMgGBQWxb98+Nm7cyLFjx1BVlejoaIYOHVoX8Qkryb14gR/Xr+HXNd8SvvdnpgCjAbufdwNgtLMj8+ZhpN52F1n9B6NWM31ECCGEEKIhqXUd2WHDhjFs2LA/P1DY1MmDv/HF23Nx+Gknk41G5gJeV+0/174DZ+68h/TRcZR5trRVmEKIuqKq6DBSVlaGnZ2dTC8QQjQpNV6+umXLFqKjo8nLy6uyLzc3l5iYGHbs2GHV4ITlSoqKuHg2CwDHs5n0jv+GL3b/wM9GI3/FlMQWerXm+PRH2LhmGztWbSB50v2SxArRRClAaHkOiYmJqKpq63CEEMKqajwiO3/+fB588EHc3d2r7PPw8OAvf/kL8+bNo3///lYNUPy5stIS9v+wlV1r4zm8ZQNPxnTmVkdHvH/cgVJRSUJvb0/G8DGkjruL7D79pVGBEM2IEdDKSKwQoglS1Br+iR4SEsK6desq1Y+92rFjxxg+fDipqalWDdDa8vLy8PDwIDc3t9qkvC78dOYSGQUlVj2nvryc33/cwa7v4/ll01q6FRZwHzAeuPpZne/ek9Rxd5E+8lb0bvXzfIUQDYtGQVrUCiEaDUtytRqPyJ49e7ba+rHmE+l0nDt3ruZRihvywn13UrLvV6YAHwERV+0rDAgiNe5OUsfdRWFwqG0CFEIIIYSoYzVOZAMCAjh48CCRkZHV7v/999/x85O/+K1NVVUSD+xl97o1THz8GVwMRgLWf8eKrEyirzqu3NmFMyNvIXXceM736AXSvUcIIYQQTVyNE9nRo0fz/PPPM2rUKBwdK3d1Ki4u5oUXXuCWW26xeoDNkaqqpBw5yK61q9mVsJoLGekMBtoe+o1Oh39DV2KapqAqCtl9+pE6bjwZQ0dhcHa2beBCiAZHUVVaGwo5c+YMfn5+0qJWCNGk1HiO7NmzZ+nWrRtarZa//vWvtG3bFkVROHr0KO+99x4Gg4F9+/bh4+NT1zHfkHqfI1tYCK6uAMTvO3ndZPNS9lnWffUpu75fTebpZNoC9wGTFYXAq35M+WERnB43nrSxt1PsJy0nhRDXpqgqUfqLAERHR0siK4Ro8OpkjqyPjw+7d+/m4Ycf5tlnnzWXcVEUhREjRrBgwYIGn8Q2ROVlpdjZOwBQUlzE5gXzuRuYqij0vJy8qiplHi1IHx3H6XF3calTV+m2JYSoERW4oHWivZebrUMRQgirs6ghQkhICAkJCVy6dImTJ0+iqipRUVF4enrWVXxN0oWsDHat/Y5dCfG09PFl9tsf4LNzGz2//YaHNBrsjEZQVYxaLWf7D+L0uPFkDR6GsSLhFUKIGlMULmmc8fb2tnUkQghhdbXq7OXp6clNN91k7ViatGwg4evP2bFpLUf3/AxAJ2DiES2jBnbD8eIF87E57aJJHTeetFtuo7RVa9sELIQQQgjRwNW6Ra2ouVnAO4Dx1Tl4A48Df3Fypl1xERgMcPECJV6tSLvldlJvu4vcdjE2jVcI0YSoKhpU9Ho9Wq1WWtQKIZoUSWTrQRhwG/CIqxsDCwvQqioUF2Gwsydz8HBSx93F2X43o16nTq8QQtSGAoSXX+LYsUtER0dLIiuEaFIkka1r8+bxKPA3gIJ8AC527sbpcXeRPmos5S1kfrEQQgghRG1IIlvXFIXLxW4S75/BqbvuoSA8yqYhCSGaD1VROGnvJS1qhRBNkhQUrGsTJ5q/Pfq3pySJFUIIIYSwEklk65rU1hVCCCGEqBOSyAohhBBCiEZJElkhhBBCCNEoSSIrhBBCCCEaJUlkhRBCCCFEoyTlt+qaiwt7Mi6Rmlds60iEEM2UVpogCCGaKElk60Fnb3fCWzjbOgwhRDPlqNPaOgQhhKgTNk9kFyxYwBtvvEFmZiYxMTHMnz+f/v37X/P47du3M2vWLA4fPoy/vz/PPPMMM2bMqMeILWen1dDSyd7WYQghhBBCNCk2nSO7bNkyHn/8cZ577jn2799P//79GTVqFKmpqdUen5KSwujRo+nfvz/79+/n//7v/5g5cyYrVqyo58iFEEIIIYStKaqqqrZ68F69etGtWzfef/9987b27dszbtw45s6dW+X4v//976xevZqjR4+at82YMYPffvuNH3/8sUaPmZeXh4eHB7m5ubi7u9/4kxBCCCGEEFZjSa5msxHZsrIy9u7dy/DhwyttHz58OLt37672Pj/++GOV40eMGMGePXsoLy+v9j6lpaXk5eVV+hJCCCGEEI2fzRLZ8+fPYzAY8PlDC1cfHx+ysrKqvU9WVla1x+v1es6fP1/tfebOnYuHh4f5KygoyDpPQAghhBBC2JTN68gqfygLo6pqlW1/dnx12y979tlnyc3NNX+lpaXdYMRCCCGEEKIhsFnVglatWqHVaquMvmZnZ1cZdb3M19e32uN1Oh1eXl7V3sfBwQEHBwfrBC2EEEIIIRoMm43I2tvb0717dzZu3Fhp+8aNG+nbt2+19+nTp0+V4zds2ECPHj2ws7Ors1iFEEIIIUTDY9OpBbNmzeKjjz7i448/5ujRozzxxBOkpqaa68I+++yzTJkyxXz8jBkzOH36NLNmzeLo0aN8/PHHLFq0iKeeespWT0EIIYQQQtiITRsiTJgwgQsXLvDSSy+RmZlJhw4dSEhIICQkBIDMzMxKNWXDwsJISEjgiSee4L333sPf3593332XO+64o8aPeXlOrVQvEEIIIYRoeC7naDWpEGvTOrK2kJ6eLpULhBBCCCEauLS0NAIDA697TLNLZI1GIxkZGbi5uV23OkJTkZeXR1BQEGlpadIA4jrkOtWcXKuak2tVM3Kdak6uVc3Jtaq5hnatVFUlPz8ff39/NJrrz4K16dQCW9BoNH+a3TdF7u7uDeLF2dDJdao5uVY1J9eqZuQ61Zxcq5qTa1VzDelaeXh41Og4m9eRFUIIIYQQojYkkRVCCCGEEI2SJLJNnIODAy+88II0hfgTcp1qTq5Vzcm1qhm5TjUn16rm5FrVXGO+Vs1usZcQQgghhGgaZERWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJItsELFiwgLCwMBwdHenevTs7duy45rGZmZlMnDiRtm3botFoePzxx+svUBuz5DqtXLmSYcOG0bp1a9zd3enTpw/r16+vx2hty5JrtXPnTmJjY/Hy8sLJyYl27drx9ttv12O0tmXJtbrarl270Ol0dOnSpW4DbCAsuU7btm1DUZQqX8eOHavHiG3H0tdUaWkpzz33HCEhITg4OBAREcHHH39cT9HaliXXaurUqdW+rmJiYuoxYtuw9DW1dOlSOnfujLOzM35+ftx///1cuHChnqK1kCoata+++kq1s7NTFy5cqB45ckR97LHHVBcXF/X06dPVHp+SkqLOnDlT/fTTT9UuXbqojz32WP0GbCOWXqfHHntMfe2119RffvlFTUxMVJ999lnVzs5O3bdvXz1HXv8svVb79u1Tv/jiC/XQoUNqSkqK+tlnn6nOzs7qBx98UM+R1z9Lr9VlOTk5anh4uDp8+HC1c+fO9ROsDVl6nbZu3aoC6vHjx9XMzEzzl16vr+fI619tXlNjx45Ve/XqpW7cuFFNSUlRf/75Z3XXrl31GLVtWHqtcnJyKr2e0tLS1JYtW6ovvPBC/QZezyy9Tjt27FA1Go36zjvvqMnJyeqOHTvUmJgYddy4cfUcec1IItvI9ezZU50xY0albe3atVNnz579p/cdOHBgs0lkb+Q6XRYdHa2++OKL1g6twbHGtbrtttvUe++919qhNTi1vVYTJkxQ//GPf6gvvPBCs0hkLb1OlxPZS5cu1UN0DYul12rt2rWqh4eHeuHChfoIr0G50feqVatWqYqiqKdOnaqL8BoMS6/TG2+8oYaHh1fa9u6776qBgYF1FuONkKkFjVhZWRl79+5l+PDhlbYPHz6c3bt32yiqhsca18loNJKfn0/Lli3rIsQGwxrXav/+/ezevZuBAwfWRYgNRm2v1eLFi0lKSuKFF16o6xAbhBt5TXXt2hU/Pz+GDBnC1q1b6zLMBqE212r16tX06NGD119/nYCAANq0acNTTz1FcXFxfYRsM9Z4r1q0aBFDhw4lJCSkLkJsEGpznfr27Ut6ejoJCQmoqsrZs2dZvnw5Y8aMqY+QLaazdQCi9s6fP4/BYMDHx6fSdh8fH7KysmwUVcNjjev01ltvUVhYyPjx4+sixAbjRq5VYGAg586dQ6/XM2fOHKZPn16Xodpcba7ViRMnmD17Njt27ECnax5vv7W5Tn5+fnz44Yd0796d0tJSPvvsM4YMGcK2bdsYMGBAfYRtE7W5VsnJyezcuRNHR0dWrVrF+fPneeSRR7h48WKTnid7o+/rmZmZrF27li+++KKuQmwQanOd+vbty9KlS5kwYQIlJSXo9XrGjh3Lf/7zn/oI2WLN4520iVMUpdJtVVWrbBO1v05ffvklc+bMIT4+Hm9v77oKr0GpzbXasWMHBQUF/PTTT8yePZvIyEjuueeeugyzQajptTIYDEycOJEXX3yRNm3a1Fd4DYYlr6m2bdvStm1b8+0+ffqQlpbGm2++2aQT2cssuVZGoxFFUVi6dCkeHh4AzJs3jzvvvJP33nsPJyenOo/Xlmr7vv7JJ5/QokULxo0bV0eRNSyWXKcjR44wc+ZMnn/+eUaMGEFmZiZPP/00M2bMYNGiRfURrkUkkW3EWrVqhVarrfJXVXZ2dpW/vpqzG7lOy5YtY9q0aXzzzTcMHTq0LsNsEG7kWoWFhQHQsWNHzp49y5w5c5p0ImvptcrPz2fPnj3s37+fv/71r4ApCVFVFZ1Ox4YNGxg8eHC9xF6frPU+1bt3bz7//HNrh9eg1OZa+fn5ERAQYE5iAdq3b4+qqqSnpxMVFVWnMdvKjbyuVFXl448/ZvLkydjb29dlmDZXm+s0d+5cYmNjefrppwHo1KkTLi4u9O/fn5dffhk/P786j9sSMke2EbO3t6d79+5s3Lix0vaNGzfSt29fG0XV8NT2On355ZdMnTqVL774osHODbI2a72mVFWltLTU2uE1KJZeK3d3dw4ePMiBAwfMXzNmzKBt27YcOHCAXr161Vfo9cpar6n9+/c3uF+g1labaxUbG0tGRgYFBQXmbYmJiWg0GgIDA+s0Xlu6kdfV9u3bOXnyJNOmTavLEBuE2lynoqIiNJrK6aFWqwVM7+0Nji1WmAnruVxWY9GiReqRI0fUxx9/XHVxcTGvwpw9e7Y6efLkSvfZv3+/un//frV79+7qxIkT1f3796uHDx+2Rfj1xtLr9MUXX6g6nU597733KpVrycnJsdVTqDeWXqv//ve/6urVq9XExEQ1MTFR/fjjj1V3d3f1ueees9VTqDe1+f93teZStcDS6/T222+rq1atUhMTE9VDhw6ps2fPVgF1xYoVtnoK9cbSa5Wfn68GBgaqd955p3r48GF1+/btalRUlDp9+nRbPYV6U9v/f/fee6/aq1ev+g7XZiy9TosXL1Z1Op26YMECNSkpSd25c6fao0cPtWfPnrZ6CtcliWwT8N5776khISGqvb292q1bN3X79u3mfffdd586cODASscDVb5CQkLqN2gbsOQ6DRw4sNrrdN9999V/4DZgybV699131ZiYGNXZ2Vl1d3dXu3btqi5YsEA1GAw2iLz+Wfr/72rNJZFVVcuu02uvvaZGRESojo6Oqqenp9qvXz/1+++/t0HUtmHpa+ro0aPq0KFDVScnJzUwMFCdNWuWWlRUVM9R24al1yonJ0d1cnJSP/zww3qO1LYsvU7vvvuuGh0drTo5Oal+fn7qpEmT1PT09HqOumYUVW2I48RCCCGEEEJcn8yRFUIIIYQQjZIkskIIIYQQolGSRFYIIYQQQjRKksgKIYQQQohGSRJZIYQQQgjRKEkiK4QQQgghGiVJZIUQQgghRKMkiawQQgghhGiUJJEVQohGYM6cOXTp0sV8e+rUqYwbN+6GzmmNcwghhC1JIiuEEDdg6tSpKIqCoijY2dkRHh7OU089RWFhYZ0+7jvvvMMnn3xSo2NPnTqFoigcOHCg1ucQQoiGSGfrAIQQorEbOXIkixcvpry8nB07djB9+nQKCwt5//33Kx1XXl6OnZ2dVR7Tw8OjQZxDCCFsSUZkhRDiBjk4OODr60tQUBATJ05k0qRJfPvtt+bpAB9//DHh4eE4ODigqiq5ubk89NBDeHt74+7uzuDBg/ntt98qnfPVV1/Fx8cHNzc3pk2bRklJSaX9f5wWYDQaee2114iMjMTBwYHg4GBeeeUVAMLCwgDo2rUriqJw8803V3uO0tJSZs6cibe3N46OjvTr149ff/3VvH/btm0oisLmzZvp0aMHzs7O9O3bl+PHj1vxagohRM1JIiuEEFbm5OREeXk5ACdPnuTrr79mxYoV5o/2x4wZQ1ZWFgkJCezdu5du3boxZMgQLl68CMDXX3/NCy+8wCuvvMKePXvw8/NjwYIF133MZ599ltdee41//vOfHDlyhC+++AIfHx8AfvnlFwA2bdpEZmYmK1eurPYczzzzDCtWrODTTz9l3759REZGMmLECHNclz333HO89dZb7NmzB51OxwMPPFDrayWEEDdEFUIIUWv33XefGhcXZ779888/q15eXur48ePVF154QbWzs1Ozs7PN+zdv3qy6u7urJSUllc4TERGhfvDBB6qqqmqfPn3UGTNmVNrfq1cvtXPnztU+bl5enurg4KAuXLiw2hhTUlJUQN2/f/81Yy8oKFDt7OzUpUuXmveXlZWp/v7+6uuvv66qqqpu3bpVBdRNmzaZj/n+++9VQC0uLr72RRJCiDoiI7JCCHGD1qxZg6urK46OjvTp04cBAwbwn//8B4CQkBBat25tPnbv3r0UFBTg5eWFq6ur+SslJYWkpCQAjh49Sp8+fSo9xh9vX+3o0aOUlpYyZMiQWj+HpKQkysvLiY2NNW+zs7OjZ8+eHD16tNKxnTp1Mn/v5+cHQHZ2dq0fWwghaksWewkhxA0aNGgQ77//PnZ2dvj7+1da0OXi4lLpWKPRiJ+fH9u2batynhYtWtTq8Z2cnGp1v6upqgqAoihVtv9x29XP7/I+o9F4wzEIIYSlZERWCCFukIuLC5GRkYSEhPxpVYJu3bqRlZWFTqcjMjKy0lerVq0AaN++PT/99FOl+/3x9tWioqJwcnJi8+bN1e63t7cHwGAwXPMckZGR2Nvbs3PnTvO28vJy9uzZQ/v27a/7nIQQwlZkRFYIIerR0KFD6dOnD+PGjeO1116jbdu2ZGRkkJCQwLhx4+jRowePPfYY9913Hz169KBfv34sXbqUw4cPEx4eXu05HR0d+fvf/84zzzyDvb09sbGxnDt3jsOHDzNt2jS8vb1xcnJi3bp1BAYG4ujoWKX0louLCw8//DBPP/00LVu2JDg4mNdff52ioiKmTZtWH5dGCCEsJomsEELUI0VRSEhI4LnnnuOBBx7g3Llz+Pr6MmDAAHOVgQkTJpCUlMTf//53SkpKuOOOO3j44YdZv379Nc/7z3/+E51Ox/PPP09GRgZ+fn7MmDEDAJ1Ox7vvvstLL73E888/T//+/aud2vDqq69iNBqZPHky+fn59OjRg/Xr1+Pp6Vkn10IIIW6Uol6eGCWEEEIIIUQjInNkhRBCCCFEoySJrBBCCCGEaJQkkRVCCCGEEI2SJLJCCCGEEKJRkkRWCCGEEEI0SpLICiGEEEKIRkkSWSGEEEII0ShJIiuEEEIIIRolSWSFEEIIIUSjJImsEEIIIYRolCSRFUIIIYQQjZIkskIIIYQQolH6f8IOvRU1lh4HAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyHUlEQVR4nOzdeVxU5f4H8A+yo4i4sSggaAVJhjJmaGgLYerttmjXzExzuRGaC5W5leZGLvnjmiJXQs3rkre028Y1SAUtsVygLMlMcQ0uYQYixvr8/jjOcpgZGJaZMwOf9+t1XnPOM88553tG5ni+85zzPHZCCAEiIiIiIiIianZtlA6AiIiIiIiIqKVi0k1ERERERERkJky6iYiIiIiIiMyESTcRERERERGRmTDpJiIiIiIiIjITJt1EREREREREZsKkm4iIiIiIiMhMmHQTERERERERmYmD0gG0ZDU1Nfj111/h7u4OOzs7pcMhomYmhMD169fh6+uLNm34G6Yaz31ELRvPfYbx3EfUsjXl3Mek24x+/fVX+Pn5KR0GEZnZpUuX0L17d6XDsBo89xG1Djz3yfHcR9Q6NObcx6TbjNzd3QFI/zDt27dXOBoiam4lJSXw8/PTfNdJwnMfUcvGc59hPPcRtWxNOfcx6TYj9a1F7du358mXqAXjbYRyPPcRtQ4898nx3EfUOjTm3McHcYiIiIiIiIjMhEk3ERERERERkZkw6SYiIiIiIiIyEz7TbQWqq6tRWVmpdBjUyjg6OsLe3l7pMIiIiIiIWjQm3QoSQqCgoAB//PGH0qFQK9WhQwd4e3uzMxwiIiIiIjNh0q0gdcLdtWtXuLm5MfEhixFCoKysDIWFhQAAHx8fhSMiIiIiImqZmHQrpLq6WpNwd+rUSelwqBVydXUFABQWFqJr16681ZyIiIiIyAzYkZpC1M9wu7m5KRwJtWbqvz/2KUBEREREZB5MuhXGW8pJSfz7q+X0aWDPHqWjILJNZ87w+0NErVt1NZCRARw7pnQkZGWYdBMRqQUHAyNHAunpSkdCZDuEAKZNA26/Xfr+2NlJ059/Kh0ZEZF5bdoEhIZqz3sODsADDwD9+wM//2x4nU8/BVatsmycpDgm3WR2dnZ2+M9//qP4Nizp/PnzsLOzQ05OjlVuj+rBX6iJDKuqApYuBT78EDh7FvD3B9q0Adav16/r6gqkpAD5+dJyTY2UoBMR2aKSEu05rKBASrInTQJ+/NFw/TvukOq88Ya27LffgL/+FZg9G/jsM/PHTFaDSTc12IQJE2BnZ6c3/fLLLwbr5+fnY9iwYSZte9GiRQgLC2vSNloiPz8/5OfnIzQ0FACQkZEBOzs7DjdHROZRXAxcviwv++MPwNEReP114KmngF69gEuX6t7O5MmAr6904WlvLyXoZWX17/+DD4DwcID9TRCRNRg1CvDwkM5hdnZAQ0Z9WbJE2xLetau2/NFHgXfeMb7ejRvASy8BBw82Pm6yGoon3YmJiQgMDISLiwvCw8Nx6NChOutnZmYiPDwcLi4uCAoKQlJSkuz9PXv2QKVSoUOHDmjbti3CwsLwr3/9S1anR48eBpPGqVOnauoYSizvvffe5jtwG/fII48gPz9fNgUGBsrqVFRUAAC8vb3h7OzcpP01xzZsmb29Pby9veHgwAEHLILPulNrlp0NdOgA+PlJ34WnnpJePT3rXu/gQeD774GTJ+uu17YtcPMmUFSk/15ZmZRw/+1vwIkTgJNTow+DiKjJ1D8a7t5df92zZ6WWcCGkHxlNMX068NNP+uXV1YC7O7BuHTBkCHD9esPiJqujaNK9a9cuzJw5E/Pnz0d2djYiIyMxbNgwXLx40WD9vLw8DB8+HJGRkcjOzsa8efMwffp07Nb5InTs2BHz589HVlYWvv/+ezz//PN4/vnn8cUXX2jqHD16VJYspt96fvOpp56S7a92YpmammqGT8E2OTs7w9vbWzY99NBDmDZtGuLi4tC5c2c8/PDDAPRvDb98+TKefvppdOzYEW3btoVKpcI333yDLVu24M0338R3332n+aFjy5YtBrdx8uRJPPjgg3B1dUWnTp3w97//HaWlpZr3J0yYgMcffxyrV6+Gj48POnXqhKlTp5rUS/fcuXMN/sDSp08fLFy4ULO8efNmhISEwMXFBcHBwUhMTKxzu5mZmbjnnnvg7OwMHx8fzJkzB1VVVZr3a2pqsGLFCvTq1QvOzs7w9/fHsmXLAMhvLz9//jweeOABAICnpyfs7OwwYcIEbN26FZ06dUJ5eblsvyNHjsRzzz1X73ETUStXXi5dXPbrJy//8EPj6+zbJ7XGVFQAkZHAXXdJzzcKAQwebHw9NzegSxdpf+rHZpKSpIT8b3+T11W3EDk6Ar//rl2uq4WIiKixhAB27AAGDtQ+HmNIbKw2yRYCCArSvldVJZWtW1f//kJCAHXuI4T22XDdx3EiIxt3LGQ9hILuueceERMTIysLDg4Wc+bMMVh/9uzZIjg4WFb2wgsviHvvvbfO/fTt21csWLDA6PszZswQPXv2FDU1NZqy8ePHi8cee6yeI6hbcXGxACCKi4v13rt586Y4deqUuHnzprawpkaI0lLLTzrHbQpjn82QIUNEu3btxKuvvip++uknkZubK4QQAoD46KOPhBBCXL9+XQQFBYnIyEhx6NAhcebMGbFr1y5x+PBhUVZWJl5++WXRu3dvkZ+fL/Lz80VZWZneNm7cuCF8fX3Fk08+KU6ePCn27dsnAgMDxfjx42Uxtm/fXsTExIjc3Fzx6aefCjc3N7Fx48Z6j+/kyZMCgPjll180ZT/88IMAIE6fPi2EEGLjxo3Cx8dH7N69W5w7d07s3r1bdOzYUWzZskUIIUReXp4AILKzs4UQQly+fFm4ubmJ2NhYkZubKz766CPRuXNnsXDhQs0+Zs+eLTw9PcWWLVvEL7/8Ig4dOiSSk5P1tldVVSV2796tiSc/P1/88ccfoqysTHh4eIh///vfmm3+9ttvwsnJSezfv9/gsRr8O2zN1P91xsebVL2u73hrxs/FzM6dE+L6dSEyM4X47bfm227PnrqXj4anAQMavt0bN4S4dEmI8nLj2xWi/n0bmq5ebb7jJ5PxO24YP5cWwtj5pmtXIT7/XIiSkoZvMzlZ2sabbwqRny/EXXfpb799+7rPdz/+KE3Ned6nBmnKd1yxpLu8vFzY29uLPXv2yMqnT58uBg8ebHCdyMhIMX36dFnZnj17hIODg6ioqNCrX1NTI7788kvh5uYm0tLSjMbRqVMnsWzZMln5+PHjhYeHh+jSpYu47bbbxOTJk8X//ve/hhxiw5Pu0tLGXXQ0dSotbdBxjR8/Xtjb24u2bdtqplGjRokhQ4aIsLAwvfq6CfM///lP4e7uLq4auVBauHChuPvuu+vcxsaNG4Wnp6co1Yn7888/F23atBEFBQWaGAMCAkRVVZWmzlNPPSVGjx5t0jH26dNHLF68WLM8d+5c0b9/f82yn5+f2LFjh2ydJUuWiIiICCGEftI9b948cccdd8h+2Fm/fr1o166dqK6uFiUlJcLZ2VmTZNdWe3sHDhwQAMS1a9dk9V588UUxbNgwzXJCQoIICgqS7VcXk+5a1N+Jt94yqTovsAzj59KMqqqE+Oyzus/hOj8QytZ7910hap0jjNqwQb7NAwek8ldekZYXLZK22VRvvGHa/0u+vkJERJj+/9jly02PjUzG77hh/FxagH/8Q//8kppqnn1lZNR/brvnHuPvubsLcatxiiyjKd9xxW4vLyoqQnV1Nby8vGTlXl5eKCgoMLhOQUGBwfpVVVUo0nk2rLi4GO3atYOTkxNGjBiBd955R3Orc23/+c9/8Mcff2DChAmy8mHDhmH79u3Yv38/3n77bRw9ehQPPvig3q27usrLy1FSUiKbWqoHHngAOTk5mmnt2rUAAJVKVed6OTk56Nu3Lzp27Njofefm5uLuu+9G27ZtNWWDBg1CTU0NTp8+rSnr3bs37HWeqfHx8UFhYaFJ+xg7diy2b98OABBCYOfOnRg7diwA4LfffsOlS5cwadIktGvXTjMtXboUZ8+eNRpzRESEbFzsQYMGobS0FJcvX0Zubi7Ky8vx0EMPmf5BGDBlyhSkpaXhypUrAKRb4NX9ExCRlSotBVJTpeec1YqKgL//XbrF8C9/qXv9Xr20t1zrDlszebL8OWwhgO3bpWema9d/8UVtvT//BO6/X5pftkwa9mbhQtOfUazLm29qLxmNdagmBHDlivSZmKp7d+k4rl5teoxE1DpVVwMzZmiXn3tO6mHcXB35Dhli/Lbx336TRnz45hvj61+/DqxYIc3/8QeQliY9JkRWSfFemWonA0KIOhMEQ/Vrl7u7uyMnJwelpaXYt28f4uLiEBQUhPvVFxE6UlJSMGzYMPj6+srKR48erZkPDQ2FSqVCQEAAPv/8czz55JMGY4uPj8ebb75pNPZ6ublJF1+W5ubW4FXatm2LXr16GSyvi6ura4P3VVtdfyO65Y6Ojnrv1dTUmLSPZ555BnPmzMGJEydw8+ZNXLp0CU8//TQAaLaRnJyMAQMGyNazN3JRaihm3b/d5vhcAKBv3764++67sXXrVgwdOhQnT57Ep59+2izbJqJmlp4OREfrl0dHSxdPxgQGAnl5pu+nIT+6/e9/gG6nlU5OwG23mb5+Q7i6AosXy4fT0X1+skMHKQEHpGfGBw2SLlJnzQIuXJCWa7v3XuDMGWleCHaKSESmuXoV6NxZu3zkCFDrGs8sDh4E4uOBefOk5Vde0R/DOzsb6NvX8PpvvilNutTnTbIqirV0d+7cGfb29nqt2oWFhXqt2Wre3t4G6zs4OKBTp06asjZt2qBXr14ICwvDyy+/jFGjRiE+Pl5vexcuXMCXX36JyZMn1xuvj48PAgICcEb9n7kBc+fORXFxsWa6VN9QKrXZ2UmdyFh6suBFSZ8+fZCTk4Pff//d4PtOTk6orq6ucxt33nkncnJycOPGDU3Z119/jTZt2uD2229vlji7d++OwYMHY/v27di+fTuioqI0f5deXl7o1q0bzp07h169esmm2j2468Z8+PBhTaINAIcPH4a7uzu6deuG2267Da6urti3b59J8Tnd6tHX0Gc1efJkbN68GZs2bUJUVBT8/PwaevhkJZQY3SE+Ph79+/eHu7s7unbtiscff1x2Bwk1UVkZkJUF9O5tOOEG9BPuGTOAo0e1LcTnzmnnTemkx1Q//SQfzsYSXn8d2LhRmi8sBLy9DddzcpI+g9WrgW7dpA6O/v1v/c/wl1+k/9PuvFMa2ufYMfPGT0SWVVMjTfn52lbdmhrTEs0ff5Q6bPzuO+Dxx6VOH9V3++gm3G++aZmEW23uXOAf/5B+SHzpJf33Q0O18R0+XP/2mHRbJcWSbicnJ4SHh2t6DldLT0/HwIEDDa4TERGhVz8tLQ0qlUqvVVOXEMLgbeGbN29G165dMWLEiHrjvXr1Ki5dugSfOsblc3Z2Rvv27WUTyY0ZMwbe3t54/PHH8fXXX+PcuXPYvXs3srKyAEjDueXl5SEnJwdFRUUG/93Gjh0LFxcXjB8/Hj/88AMOHDiAl156CePGjTP6g01jjB07Fu+//z4++OADPPvss7L3Fi1ahPj4ePzjH//Azz//jJMnT2Lz5s1Ys2aNwW3Fxsbi0qVLeOmll/DTTz/h448/xsKFCxEXF4c2bdrAxcUFr732GmbPno2tW7fi7NmzOHLkCFJSUgxuLyAgAHZ2dvjss8/w22+/yXpuHzt2LK5cuYLk5GRMnDix2T6PVsUKWseUGt0hMzMTU6dOxZEjR5Ceno6qqipER0fLfuSiRigslHrfbttWShhPndK+16WLfksFAHzxhXTxlJAAGHt0Z+pUqU51tdQarPvEn6G/laeeAhYskJL/mhopDvUF6x13NMuhNtiUKdL+u3Rp2HpPPaX9jD75RP5ebq702r9/88RIRMpS37liby9Nvr6Ai4u2TD1+tu51oxBSy3G/ftJ7oaHSozRhYcDHH0tJuCGvvWaRQ5KZPh346ivA31//PQcH4Px56RGkiAjpuK5dM76tTZuA+fMND0VGymnGZ8sb7P333xeOjo4iJSVFnDp1SsycOVO0bdtWnD9/XgghxJw5c8S4ceM09c+dOyfc3NzErFmzxKlTp0RKSopwdHQUH374oabO8uXLRVpamjh79qzIzc0Vb7/9tnBwcNDroKq6ulr4+/uL1157TS+u69evi5dfflkcPnxY5OXliQMHDoiIiAjRrVs3UdKAHgsb3JGajair9/IZM2bolUOnEzQhhDh//rwYOXKkaN++vXBzcxMqlUp88803Qggh/vzzTzFy5EjRoUMHAUBs3rzZ4Da+//578cADDwgXFxfRsWNHMWXKFHH9+vU6Y5wxY4YYMmSIycd57do14ezsLNzc3GTbVtu+fbsICwsTTk5OwtPTUwwePFjTMWDtjs+EECIjI0P0799fODk5CW9vb/Haa6+JyspKzfvV1dVi6dKlIiAgQDg6Ogp/f3+xfPlyo9tbvHix8Pb2FnZ2drKe24UQYty4caJjx47izz//rPMYbfnv0CzU6cqKFSZVN2enOdYyukNhYaEAIDIzM02M3AY7Eyorkzq0UXcU9vvvQixeLMQPPzRsO7//LsTHHwvxzTdCbN0qxM8/C3H0aMM6AKuuFuJ//2vwqBJ1Htv8+UL8+mvzbM+aGfuM33hD6chaHJv7jlsIP5dGKi+Xzn3l5Ybfz801X2fCulO7dpY97qYKCJDi7t5diIEDDR9TrQ6rqWlssvdytfXr14uAgADh5OQk+vXrJ7uwGz9+vF6SlJGRIfr27SucnJxEjx49xIYNG2Tvz58/X/Tq1Uu4uLgIT09PERERId5//329/X7xxRcC0A4BpausrExER0eLLl26aJKf8ePHi4sXLzbo2Fpq0k3WLyoqSrz00kv11uPfYS1WknRby+gOQghx5swZAUCcPHnS5Pit5sKzpka6kKusFOLPP6Whq9Tlzzxj2kXYwoVCLF0qJa3V1dptp6c3/sLu1VeFWLZMCAP/LtQEdX3m6h/MN2+Wlh94QNFQbZ3VfMetDD+XBqqpEeKTT+Tf1TVrhFiyRIi8PGkUheZOrCdOFOK++4Q4flzax6lTzfcjp6WVlEhDiKmZ8uNuTY0Qy5cLodOQRaZryndc8Y7UYmNjERsba/C9LVu26JUNGTIEJ06cMLq9pUuXYunSpfXuNzo6GsLIMw+urq6y2y2JbMXvv/+OtLQ07N+/H+ua81nP1kbh28vNMbqD+tGY4uJidOvWDeXl5bC3t0diYqLR0R2EEIiLi8N9992H0NBQo/GWl5fLHgVRfOSGvXubr7dZ9W3fCxY0fVu7dgF/+1vTt0OGnToFLFkCPPSQ9Gz3gQPann9rP+514ABQWSnd8k9Elvf998Ddd+uXx8VJr6+/bni9qirpdvLCQmDlSmD5cqnPB6D+/7tv3pRuSW8p3N2l/ivUjhyROpOsrXt3aJ7zfvttbadtZ88CQUHmj5MAKPhMN5FSDh06JBvqq/Zky/r164cXXngBK1aswB1KPZ9JzcacozscPXoUy5YtQ1xcHDIyMgxub9q0afj++++xc+fOOuOMj4+Hh4eHZlKk876ff5Z6Ax84sHEJt+4zfLffrh2GpaHeeAMICQHUnXv27i1d6AnBhNvcQkKAHTuASZOk3oB37aq7vpH+EYjITDIztR2XGUq465KbK51H1aPEdO0qdayoTriB+tu5W1LCbciAAcCoUdJ8Zqb8vaAgqf+OV1/VlvXsKf0ASRbBpJtaHZVKJRtjvPZky86fP4/i4mK88sorSodCTWANozu89NJL+OSTT3DgwAF07969znibPHJDUxQXAz16SJ2ARUdLPYPrCg+XOtx59VXgmWe05UOHyi/G3npLO3/6NDB7NrBtm9ST7K+/6vcoO326NI5q7Yu6N9+UWlyLiqTlH35o+Rd61iogAPjPf4y/b2DYS7IOHLnBhtXUSMNg2dlJ5+U//5QSZjs7wMDQvejbV/vD5DffSB0k6g4jePmy9F5wsMUOwaZ98IH0eQ0eDHz9tbY8L0/7g4WuBx+0XGytHJNuanVcXV31hvrSnaiVOn9eO6/w7eVKju4ghMC0adOwZ88e7N+/3+gweLoUGbnhzTelf6cOHaQxm3X5+ko92AohDRl15Yp0G+L27drkeO/e+vcxdiywdi3g4yO96ibX//iHfIgZsk6PPSb9e23davj9O+6QLvjJanDkBgu7cgVYtgxwdZV+iNL53Or16afSeXjcOGlIPw8PKbEbMkR6/+efpe3q3gKt5uws/aB54oT2h8l77pGGAnzzTWlEBiGkIQKpcYxcL+ixs9OO+EDm06xPl5OMKR2plZWVKRAZkaSsrIwdqan16aNNqVatMmkVc3aao9ToDi+++KLw8PAQGRkZIj8/XzM15Fxlts+lrEzq3XbWLP0bB++9V4jdu4U4cqR590ktzzff6P/9UINw5AbDrLYjNfXf/PLl2r/5pUvr73RsyBDpNTVViKIibWeSTelNPDdX0Y+i1fnPf/T/DXJyhDh5Ur88P1/paK2eTXek1lqpW57Kysrg6uqqcDTUWpWVlQFAnS2hrcb33ysdgczo0aNx9epVLF68GPn5+QgNDUVqaioCAgIAAPn5+bKWn8DAQKSmpmLWrFlYv349fH19sXbtWowcOVJT58aNG4iNjcXly5fh6uqK4OBgbNu2DaNHj9bU2bBhAwDg/lq3AW7evBkTJkww3wEbc+0a0LGj8fefeEJ6ro+dwZCp7rlHGqdX93GiEyeksXxJURUVFTh+/DjmzJkjK4+Ojsbhw4cNrpOVlYXo6GhZ2dChQ5GSkoLKykq9/9+EENi/fz9Onz6NFXX03VBcXAxAaiU3xuo6kaxtxQpA97NUd6AFmNY5pPq54OHDG7bfHj2A7GypM7SMDOC++6S7jdzdG7Ydajr13T7qO/j8/KTn6Wtq9Ov++9/So1NkFky6FWJvb48OHTqgsLAQAODm5lZnB0lEzUkIgbKyMhQWFqJDhw6wN/ScDylOidEdhJFRHSyupgaYMQMw1gv/okXSc388b1JjbNsG6PbIHx4OrF8PGPm+kWXY2sgN8fHxeFM9woFS3nlHP1G6806pbwlTLF8OqFTAoEHSM8C1fsCoU9u20g+jP/8MvPyy1DdGWJg8NrIORUXS30RkpLTcpg3wv/8BKSnaH2NmzGDSbUZMuhXk7e0NAJrEm8jSOnTooPk7JB1M5JT13XfyCzc1Ly/pIuFf/wKefdbiYVEL0ru3vPUHkJ4jZdJtFcw5ckNpaSn27duHuLg4BAUF6d3VA2hHbvjqq6/qjHPu3LmIUw9xBaml22KjN3zwgfEREWon3EOGSMlVaCjw4YdS52UffST9vet+dg8/rL3ZWD281r//DYwZI99e9+5S7//qdXv3Nq2fDFJOp07ahFuta1dg7lzpjoTqaqmsqgpwYHpoDvxUFWRnZwcfHx907doVlZWVSodDrYyjoyNbuMm6FBVJLdjr12vLvLyAkyeBLl0UC4tasJ9/loaIA4Dr15WNhSwycgMAhIWFITc3F/Hx8XpJt3rkhoMHD9Y7coOzszOcnZ1NPbymy8oy3jmWnZ12LGZdNTXa5Fi308CpU43vx84OcHOT5p9+Wpqo5bp2DVB3gHrhgjSUGDU7Jt1WwN7enskPEbU+QkjP1c6dC+j0IqyxaxfHtibzuu02YOdOqSXv5k2gokI+7i9ZlO7IDU888YSmPD09HY899pjBdSIiIvDpp5/Kyho7csNLL72Ejz76CBkZGSaN3GAxQkjDGK5erf/e3/8O/POf2uWrV4HKSukHS961RaZwd5em69elkVz8/QH29dPsmHQTEdXGCxXLqKqSbnus3cI4cCBw4ACTH7IM3U6inJ2B1FRg2DDl4mnl4uLiMG7cOKhUKkRERGDjxo24ePEiYmJiAEi3dF+5cgVbbw0DFxMTg3Xr1iEuLg5TpkxBVlYWUlJSsHPnTs024+PjoVKp0LNnT1RUVCA1NRVbt27VdBwJAFOnTsWOHTvw8ccfw93dXdN67uHhoVyHt0JIifbs2frvRUUBn3wiDcmlS6d1n8hkYWHAoUPS31XPnsDp04bH9aZGY9JNRETKcHSULiZff11anjZN6oinbVtl46LWpfa48vHxTLoVxJEbbikr0z8XurpK/VqwF3Bqbr6+2vmzZ4GCAo6R3szshNV0VdvylJSUwMPDA8XFxWhf+z91IrIuuq3bb78N6HSOYwy/44Y1+HMpK9M+P0ikhEcfBT77TLvMS6M68dxnWLN9Ltu2AePGycvS06VWSCJzmDIFePdd7fKhQ9JQbyTTlO84W7qJiEhZTLhJaR99xGcYSXl//ql/u7iTE1Bayr9PMq99++TLkZHAH38AHh6KhNMStVE6ACIiIiJFOThIPZmrlZYqFwu1Trt26Sfc334LlJcz4SbzCwrSL3vvPcvH0YIx6SYiqo2dhxC1PrrD5Li7Sz1AE5nbn39KjzfpDss1bpz0iEP//srFRa3LJ58AK1fKy06dAl57jT9CNhMm3UREtTnwyRuiVqdNrUuiZ58F+vYFPv5YmXio5bpxA1i/Xkq2a7dunzgB3OqZnchi3NyAV1+VEm21f/5TSsTZI36zYNJNRFRb7YtvImodtmzRzv/739I48o8/Lo3hTdRcysul0RpqKymRfughUkpIiH4HahUVysTSwvDKkoiIiAjQ7zFaTbdnc6Km6tgReOIJ7fIff0i3k3MoMLIGgwfrl/EW8yZj0k1EREQESHe56I5Xq/b995aPhVq2PXukRFsI9hBN1sXQj4+ffmr5OFoYJt1ERLXpjtlNRK2LoQT7hx8sHwcRkRKCg4GDB4HkZG3ZM88oF08LwaSbiIiISK1TJ6CmRmqBXLJEKvvf/5SNiYjIkiIjgcmT5aO5CKFcPC0Ak24iIiIiXeq7XW7ckF6zspSLhYhIKbq3lX/3nXJxtABMuomIauPt5UQEyMdJ5jBORNTaPPKIdp496zcJk24iIiIiQ0JDtfPjx3PoMCJqXdgI0WyYdBMR1Xb1qtIREJE1qN2T+YEDysRBRGQNOHRYozHpJiKqbf58pSMgImvQrh2wd692ecQI4MwZ5eIhIrK0F17Qzr/8snJx2DjFk+7ExEQEBgbCxcUF4eHhOHToUJ31MzMzER4eDhcXFwQFBSEpKUn2/p49e6BSqdChQwe0bdsWYWFh+Ne//iWrs2jRItjZ2ckmb29vWR0hBBYtWgRfX1+4urri/vvvx48//tg8B01ERES2YehQ+fLttwNlZcrEQkRkaStWaOc3blQuDhunaNK9a9cuzJw5E/Pnz0d2djYiIyMxbNgwXLx40WD9vLw8DB8+HJGRkcjOzsa8efMwffp07N69W1OnY8eOmD9/PrKysvD999/j+eefx/PPP48vvvhCtq3evXsjPz9fM508eVL2/sqVK7FmzRqsW7cOR48ehbe3Nx5++GFcv369+T8IIiIisl6zZ8uX27ZVJg4iIkvz8FA6ghZB0aR7zZo1mDRpEiZPnoyQkBAkJCTAz88PGzZsMFg/KSkJ/v7+SEhIQEhICCZPnoyJEydi9erVmjr3338/nnjiCYSEhKBnz56YMWMG+vTpg6+++kq2LQcHB3h7e2umLl26aN4TQiAhIQHz58/Hk08+idDQULz33nsoKyvDjh07zPNhEBERkXWaMkW/rKbG8nEQESlh0SKlI7B5iiXdFRUVOH78OKKjo2Xl0dHROHz4sMF1srKy9OoPHToUx44dQ2VlpV59IQT27duH06dPY/DgwbL3zpw5A19fXwQGBuLpp5/GuXPnNO/l5eWhoKBAti9nZ2cMGTLEaGxERM1NicdvGrNfohavVy/g7Fl5mb29MrEQEVlap05KR2DzFEu6i4qKUF1dDS8vL1m5l5cXCgoKDK5TUFBgsH5VVRWKioo0ZcXFxWjXrh2cnJwwYsQIvPPOO3j44Yc17w8YMABbt27FF198geTkZBQUFGDgwIG4eqvHYvX+GxIbAJSXl6OkpEQ2ERE1hlKP3zR0v0StRlAQUF6udBRERJb36KPa+epq5eKwYYp3pGZXa/w3IYReWX31a5e7u7sjJycHR48exbJlyxAXF4eMjAzN+8OGDcPIkSNx1113ISoqCp9//jkA4L333mtSbPHx8fDw8NBMfn5+RusSEdVFqcdvGrpfolbFyQkwcHcIEVGLptsQ+eST+nf+UL0US7o7d+4Me3t7vZbjwsJCvRZmNW9vb4P1HRwc0Enntoc2bdqgV69eCAsLw8svv4xRo0YhPj7eaCxt27bFXXfdhTO3hgFR92TekNgAYO7cuSguLtZMly5dMlqXiMgYpR6/acx+Ad7lQ63M/fdLrw4OfK6biFoHFxft/CefAFOnKheLjVIs6XZyckJ4eDjS09Nl5enp6Rg4cKDBdSIiIvTqp6WlQaVSwdHR0ei+hBAor+OWsPLycuTm5sLHxwcAEBgYCG9vb9m+KioqkJmZaTQ2QHruu3379rKJiKihlHr8pjH7BXiXD7Uy6u9HVRXw22/KxkJEpIRao0JR/RS9vTwuLg7vvvsuNm3ahNzcXMyaNQsXL15ETEwMAKnl+LnnntPUj4mJwYULFxAXF4fc3Fxs2rQJKSkpeOWVVzR14uPjkZ6ejnPnzuGnn37CmjVrsHXrVjz77LOaOq+88goyMzORl5eHb775BqNGjUJJSQnGjx8PQLqtfObMmVi+fDk++ugj/PDDD5gwYQLc3NzwzDPPWOjTIaLWTonHbxqzX97lQ62K7o/8776rXBxERGQzHJTc+ejRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5ss57AgMDkZqailmzZmH9+vXw9fXF2rVrMXLkSE2dGzduIDY2FpcvX4arqyuCg4Oxbds2jB49WlPn8uXLGDNmDIqKitClSxfce++9OHLkiGa/ADB79mzcvHkTsbGxuHbtGgYMGIC0tDS4u7tb4JMhotbMEo/fAEBYWBhyc3MRHx+P+++/v1H7BaS7fJydnRt0jEQtQkWF0hEQESnjm2+AAQOUjsJmKJp0A0BsbCxiY2MNvrdlyxa9siFDhuDEiRNGt7d06VIsXbq0zn2+//779cZlZ2eHRYsWYRHHpSMiC9N9/OaJJ57QlKenp+Oxxx4zuE5ERAQ+/fRTWVlDH79pzH6JWqVRo4APPwS6dlU6EiIiy9i1C9BpxMS0acDRo8rFY2MUT7qJiEhfXFwcxo0bB5VKhYiICGzcuFHv8ZsrV65g69atAKTHb9atW4e4uDhMmTIFWVlZSElJwc6dOzXbjI+Ph0qlQs+ePVFRUYHU1FRs3bpV1jN5ffslIgBubtLrjRvKxkFEZCl/+5s0qR83Cw1VNh4bo/iQYUREpG/06NFISEjA4sWLERYWhoMHD5r0+E1GRgbCwsKwZMkSo4/f9O7dGwMHDsSHH36Ibdu2YfLkySbvl4gAtG0rvTLpNovExEQEBgbCxcUF4eHhOHToUJ31MzMzER4eDhcXFwQFBSEpKUn2/p49e6BSqdChQwe0bdsWYWFh+JeBod8aul+iVmnuXOmVHUY3CFu6iYislBKP39S3XyICoO7fhb2XN7tdu3Zh5syZSExMxKBBg/DPf/4Tw4YNw6lTp+Dv769XPy8vD8OHD8eUKVOwbds2fP3114iNjUWXLl00Pzp27NgR8+fPR3BwMJycnPDZZ5/h+eefR9euXTF06NBG7Zeo1VL/6FhaqmwcNsZOqLu3pWZXUlICDw8PFBcXc/gwImtXu3duE06N/I4bxs+FWrw33gCWLJHmq6uBNq3rxkFzfscHDBiAfv36yR57CQkJweOPP474+Hi9+q+99ho++eQT5ObmaspiYmLw3XffISsry+h++vXrhxEjRmDJrX/Hhu7XEJ77qFWYMQNYu1aab2VpZFO+463rfwkiIiKiptIZEQA//6xcHC1MRUUFjh8/jujoaFl5dHQ0Dh8+bHCdrKwsvfpDhw7FsWPHUFlZqVdfCIF9+/bh9OnTGDx4cKP3S9Rq+fpq51tZ0t0UTLqJiIiIGmL6dO08hw1rNkVFRaiurtYbotDLy0tvKEO1goICg/WrqqpQVFSkKSsuLka7du3g5OSEESNG4J133sHDDz/c6P0CQHl5OUpKSmQTUYunM7oJvvtOuThsDJNuIiIAuPNOpSMgIlthZwd4e0vzTLqbnV2tx32EEHpl9dWvXe7u7o6cnBwcPXoUy5YtQ1xcHDIyMpq03/j4eHh4eGgmPz+/Oo+LqEXo0UM7X1ysWBi2hkk3ERHQ6p7JJKImUreA5uUpG0cL0rlzZ9jb2+u1LhcWFuq1Qqt5e3sbrO/g4IBOOo8BtGnTBr169UJYWBhefvlljBo1SvOsdmP2C0hDNxYXF2umS5cuNeh4iWySkxMQFibNX72qaCi2hFeZREQAn0siosYpL1c6ghbDyckJ4eHhSE9Pl5Wnp6dj4MCBBteJiIjQq5+WlgaVSgVHR0ej+xJCoPzWv11j9gsAzs7OaN++vWwiahXUPfoXFiobhw3hkGFEREREDfXAA8CBA4CBzrqo8eLi4jBu3DioVCpERERg48aNuHjxImJiYgBIrctXrlzB1q1bAUg9la9btw5xcXGYMmUKsrKykJKSgp07d2q2GR8fD5VKhZ49e6KiogKpqanYunWrrKfy+vZLRDq6dJFedfpNoLox6SYiAtjSTUQNc+CA9JqSAjz/vLKxtCCjR4/G1atXsXjxYuTn5yM0NBSpqakICAgAAOTn5+PixYua+oGBgUhNTcWsWbOwfv16+Pr6Yu3atZoxugHgxo0biI2NxeXLl+Hq6org4GBs27YNo0ePNnm/RKSjQwfp9fXXgZdfBlxdFQ3HFnCcbjPieI1ENiQ0FPjxR+0yx+luNH4u1Cr06gWcPQuEhACnTikdjUXxO24YPxdqNSZOBDZvlubXrwdiY5WNx0I4TjcRUVPZ2ysdARHZkhkzpNe77lI2DiIiS9PtfHbLFsXCsCVMuomIACbdRNQwbm7Sa2amsnEQEVnamjXa+Z9+Ui4OG8Kkm4gI4JBhRNQw6l7L//c/4JtvlI2FiMiSdG+tvn5duThsCK8yiYgAtnQTUcP07Kmdv/de5eJoDllZwIABwJEjSkdCRLZi0CClI7ApTLqJiAD5r7ZERPV5+GH58pdfKhNHcxg4EPj2W15EE5Hp4uKkV5VK2ThsBJNuIkt47DHAzk4+tW8PeHpKLax//ql0hOTAERSJqAHatAEefVS7XDsJt0U1NUpHQES2wtlZeuVY3SbhVSaRueTlAUFBxt/XfQbG1RWorGTipySOnkhEDbVtG+DhoXQURESWp+7X4vx5RcOwFWzpJmpO1dVSq/U339SdcBvi6AikpQGdOwMvvWSe+Mg4Jt1E1FDt2wP9+mmXq6uVi4WIyJJ8fLTzly4pF4eNYNJN1BTV1VJnOupbxh0cpFZrQ53qXL4sdVKTmQmUlQEPPaR/O+LQocDVq8C6dVKPuIZs3qx/q7r610ZqPCbdRNQYus9ysxdfImotQkK089OnKxeHjWDSTdQYV68CU6ZISfa5c8br/d//ScmcEEC3blLvsIMHS4n5l19KLdvGkuv77jO8vYkT9cuzshp3HKTFpJuIGqNDB+38oUOKhUFEZFG6577//Ed6TJKMYtJN1BA3bkgty507A+++W3/9mTPrr9O1q5Tw1R6q5ZdfgAULtMsffaTtKbI2dmLRdEy6iagx7Oy087y9nIhaE92+iObOVS4OG8Ckm8hUZWVAu3aG3xNCutg6cwbYsEHbut0QAwZI61y4oC1btkx7C/mTT2rL33sP+P137TBXTz1V//ZLSoCbN+XLJSUNi7ElY9JNRI2lPgfn5CgaBhGRRe3erZ1/+23l4rABTLqJjNFNwv74A2jbVv7+N99Iz++p67VpA/TqBcTENG2//v51v3/xIvDcc9JwY7pDjfXuDfTvr1+/pkZK2j08ADc3qUW9Y0dp2cNDnoi3Zky6iaix7rxTen3zTWXjICKypL/+VekIbAaTbiJdhw5pW5bbtJFe77hDSnB1VVcD99xjvOW7qYwlgKtWAX5+2uXvv9fOnzoFHDsmxdypk7bDNXt7+TYiIoBr17TLH3wgvVZXS8M+2NkB8+Y1y2HYFCbdRNRYuncNzZ+vXBxERJb23HNKR2ATFE+6ExMTERgYCBcXF4SHh+NQPZ2QZGZmIjw8HC4uLggKCkJSUpLs/T179kClUqFDhw5o27YtwsLC8K9//UtWJz4+Hv3794e7uzu6du2Kxx9/HKdPn5bVmTBhAuzs7GTTvYZ6pKaW4//+T+rkrLaff9bOL1woJWdtLPDVKSmRejdPTgZ++kna7yuvyOvccYfhdX//3XCHa4YsWwZ4eUnP5QQGSmXx8VIv662JFSbdzX1+TE5ORmRkJDw9PeHp6YmoqCh8++23sjpVVVVYsGABAgMD4erqiqCgICxevBg1NTXNfnxELcbtt2vnc3OVi4OIyNLWrtXOf/qpcnE0xvXrUoObJa5xhILef/994ejoKJKTk8WpU6fEjBkzRNu2bcWFCxcM1j937pxwc3MTM2bMEKdOnRLJycnC0dFRfPjhh5o6Bw4cEHv27BGnTp0Sv/zyi0hISBD29vZi7969mjpDhw4VmzdvFj/88IPIyckRI0aMEP7+/qK0tFRTZ/z48eKRRx4R+fn5munq1asNOr7i4mIBQBQXFzfwkyGz+v13ITZsEOL994WYPl2IF18UYvZs9VPYxqdp05SO3LAbN+qPHRDiv/81rZ7udPOm0kdnOYMHy4/dBOb8jpvj/PjMM8+I9evXi+zsbJGbmyuef/554eHhIS5fvqyps3TpUtGpUyfx2Wefiby8PPHBBx+Idu3aiYSEBJNj57mPWp0//5SfP1QqpSNqGCs699kyfi7UKlVXN/gcYjX69ZNiXr/epOpN+Y4r+sncc889IiYmRlYWHBws5syZY7D+7NmzRXBwsKzshRdeEPfee2+d++nbt69YsGCB0fcLCwsFAJGZmakpGz9+vHjsscfqOYK68eSrgD/+EOJ//xMiM1M/gXzxRdMSzQMHhFD/ALN9uxDvvms7yaeh4/nmG+m9mhohli4VIilJWj540LTP49w55Y7HkiIjrerC0xLnx6qqKuHu7i7ee+89TdmIESPExIkTZfWefPJJ8eyzz5ocO8991CoNGSI/hxw5onREprOic58t4+dCrZatJt3qmO+5x6TqTfmOK3Z7eUVFBY4fP47o6GhZeXR0NA4fPmxwnaysLL36Q4cOxbFjx1BpYGw4IQT27duH06dPY7Ch24ZvKS4uBgB07NhRVp6RkYGuXbvi9ttvx5QpU1BYWFjnMZWXl6OkpEQ2kYVcuAA4O0tjBnp5AUOG6NfZsKH+7RQVAfffr+007ZlngEmTABeX5ozWfHRPe8XF0nji99wjvWdnJz1r+MIL0vKAAfJ133oLKC8Hfv1VXh4UZP64rYEV3V5uifMjAJSVlaGyslJ27rvvvvuwb98+/HzrsYrvvvsOX331FYYPH240Xp77iAA88IB8+d57AVdXoJ5rByIim9ejh3a+vFyxMBrk5EmL7k6xpLuoqAjV1dXw8vKSlXt5eaGgoMDgOgUFBQbrV1VVoUhnnOLi4mK0a9cOTk5OGDFiBN555x08/PDDBrcphEBcXBzuu+8+hIaGasqHDRuG7du3Y//+/Xj77bdx9OhRPPjggyiv4w8pPj4eHh4emslPt8MrarrSUiA7G3By0nZ2duoU8PHH0pe9osL0bb36KpCQIA3vsmULsGIFUFAgdUDWUrRvL/VSboyTE/Ddd8CHH0oJ+muvSWU+PtrO1dRaQycZVpR0m/P8qGvOnDno1q0boqKiNGWvvfYaxowZg+DgYDg6OqJv376YOXMmxowZYzRenvuIIJ1Da/vzT+DZZy0fCxGRJf3wg3Y+I0OxMBpEt88mC3Cov4p52dnZyZaFEHpl9dWvXe7u7o6cnByUlpZi3759iIuLQ1BQEO6//3697U2bNg3ff/89vvrqK1n56NGjNfOhoaFQqVQICAjA559/jid1x0vWMXfuXMTFxWmWS0pKePHZHD780Pg41L17y5dDQ6WexocOlTodc3aWyv/3P+DKFSAsTL8TtLvvbvaQbUafPtJU26hR0rjkbm7S8r/+BWzdatnYLM2Kkm41c5wf1VauXImdO3ciIyMDLjp3cuzatQvbtm3Djh070Lt3b+Tk5GDmzJnw9fXF+PHjDe6X5z4iSHdECQHMnAn84x/act3RIoiIWiLdYXUfeQQ4ehRQqZSLxxQWvu5TLOnu3Lkz7O3t9VptCgsL9Vpr1Ly9vQ3Wd3BwQCedFso2bdqgV69eAICwsDDk5uYiPj5eL+l+6aWX8Mknn+DgwYPo3r17nfH6+PggICAAZ86cMVrH2dkZzuokj0xXUSG1sKr/+K9eBbp3b/jtKf/9r/RFN8TLS5rIdK6uUi+Ujz4qLRcVAZ07KxuTOVlR0m3O8yMArF69GsuXL8eXX36JPrV+dHn11VcxZ84cPP300wCAu+66CxcuXEB8fLzRpJvnPiIdYWHy5WPHFAmDiEgxgwZZ/23mRh69MxfFbi93cnJCeHg40tPTZeXp6ekYOHCgwXUiIiL06qelpUGlUsHR0dHovoQQstvChRCYNm0a9uzZg/379yNQPUxSHa5evYpLly7Bx8en3rotWnY2MHasdEv3zZvSL/qdOkm3J5tC9w/899+BYcOk1mj1uNht2gBduhj/ov7tb8DZs1KCpHsLdGmp8YSbGm/ECO18z57KxWEJVpR0m/P8uGrVKixZsgR79+6FysCv0GVlZWhT624Qe3t7DhlGZCp7e/2yK1csHwcRkVIqKiwzDFdTzJ9v2f01uOu1ZqQeEiclJUWcOnVKzJw5U7Rt21acP39eCCHEnDlzxLhx4zT11UPizJo1S5w6dUqkpKToDYmzfPlykZaWJs6ePStyc3PF22+/LRwcHERycrKmzosvvig8PDxERkaGbEiwsrIyIYQQ169fFy+//LI4fPiwyMvLEwcOHBARERGiW7duoqSkxOTjaxG9WGZkNGyIKVdXaQirq1eFuHBBiJdflobounpViFdfbfiQVeqpvFzpT6L10v132LdP6WjMZ8AAq+rB1xznxxUrVggnJyfx4Ycfys59169f19QZP3686Natm2bIsD179ojOnTuL2bNnmxx7izj3ETVWTY0QU6YI4eGhPZ/ccYfSUdXNis59toyfC7Vqly/LzyWffqp0RHXTjdUCvZcr3q/7+vXrRUBAgHBychL9+vXTG7ZryJAhsvoZGRmib9++wsnJSfTo0UNs2LBB9v78+fNFr169hIuLi/D09BQRERHi/fffl9UBYHDavHmzEEKIsrIyER0dLbp06SIcHR2Fv7+/GD9+vLh48WKDjs3qT75lZUJ88IEQb70lxKhRQqSmSsntn38K8eijjU+QGzrZ2emXnT6t9KdDas89J/+30RnzvkW55x6ru/Bs7vNjQECAwXPfwoULNXVKSkrEjBkzhL+/v3BxcRFBQUFi/vz5orwBP3xZ/bmPyBIuXbKdYXSs7Nxnq/i5UKuney5ZvlzpaOpm4aTbTtonmUNJSQk8PDxQXFyM9u3bW27HlZXSn1B1tTRUyZo1QFUVMHs2kJQEHD4MHDzYuG0fPAh4eABjxkjDcyUlSc/6zp0LfPNNw7dXUQHU8WgAWYG8PPmwYfffDxw4oFg4ZnPPPVLHH2omnBoV+45bOX4uRLeoOzHs0MG6O1TT7WyR575G4+dCBPn5ZPp0eceS1kQ3znvuMSmPacp3XPHey6mZVFUBe/dqO70yJDGxcdvOzwe8veVlP/4oXz5yRPqP+p//BNLTpbGeu3UDnnwSWLUKuO8+6fngoUOlWGtqtD2Lk3Wr3edBRob0Y0tMjCLhmA1/fySi5rZ1qzTk4p13Kh0JEZHlrV0LLFsGtGundCSKY9Jty4QAZswA3nmncevPmwf07y8lv488AqxeDWzfLl0cLFjQ8IsEOzspEaudjD3zjHyZLdu2RwjgttuAX36Rll98sWUn3XWNb05EZCr1cHyHDwMlJQBbP4motfn9dybdULD3cmqiI0ek7vgNJdzqsfJefVVqka6oAH77TfrF/epV7RMMy5YBjz8u9SBuZyfVz8kBduzgr/Kkr/adEnZ2wJYtioRiFrpJ97RpysVBRC2H7ti1R44oF4eNSUxMRGBgIFxcXBAeHo5Dhw7VWT8zMxPh4eFwcXFBUFAQkpKSZO8nJycjMjISnp6e8PT0RFRUFL799ltZnaqqKixYsACBgYFwdXVFUFAQFi9ezJEbiBpqzhz58v/+p0wcVoZJt60pKQE8PYGICCArS1v+xhvAV19JiUNpqfS6cqWUPDs6SuMrjxvHFjxqvIcfBi5elJc9/7z0uEBLoJt0Gxryh4ioKbp0UToCm7Br1y7MnDkT8+fPR3Z2NiIjIzFs2DBcrP3/zy15eXkYPnw4IiMjkZ2djXnz5mH69OnYvXu3pk5GRgbGjBmDAwcOICsrC/7+/oiOjsYVnaHcVqxYgaSkJKxbtw65ublYuXIlVq1ahXcaezchUWu1aBHw5Zfa5XvuUSwUk+k+320mvL3cFty8CahUwKlT+u+dOQP06mX5mKh18vPTL3N0bBkd4vGZbiJqbg89pJ3nOcYka9aswaRJkzB58mQAQEJCAr744gts2LAB8fHxevWTkpLg7++PhIQEAEBISAiOHTuG1atXY+TIkQCA7du3y9ZJTk7Ghx9+iH379uG5554DAGRlZeGxxx7DiBEjAAA9evTAzp07cezYMXMdKlHL5OwsP/fZAgucn9nSbc1u3ABGjwbc3PQT7thYqZdyJtxkDT76SOkImo4XxETU3Jydga5dpfnz5xUNxRZUVFTg+PHjiI6OlpVHR0fj8OHDBtfJysrSqz906FAcO3YMlZWVBtcpKytDZWUlOurc/Xffffdh3759+PnnnwEA3333Hb766isMHz7caLzl5eUoKSmRTURkwPXrSkegOCbd1mrxYqnTgX//W17+3/8C5eXA+vWAA29UIAVcvqx0BObBpJuIzKGwUHrNzVU2DhtQVFSE6upqeHl5ycq9vLxQUFBgcJ2CggKD9auqqlBUVGRwnTlz5qBbt26IiorSlL322msYM2YMgoOD4ejoiL59+2LmzJkYM2aM0Xjj4+Ph4eGhmfwM3Q1G1Frp/ui1bp1ycVgJJt3WpLpa6mjFzg5YuFD+3qVLUlLwyCOAk5My8REB0lBw6s741DZvVi6e5sKkm4jMIShIel2wQNk4bIhdrecrhRB6ZfXVN1QOACtXrsTOnTuxZ88euKh7l4f0LPm2bduwY8cOnDhxAu+99x5Wr16N9957z+h+586di+LiYs106dIlk46PqFXQbRycN0+5OKwEm0qtxe7dwKhR+uXFxRxihKzf3r1KR9B0TLqJyBzOnVM6ApvRuXNn2Nvb67VqFxYW6rVmq3l7exus7+DggE6dOsnKV69ejeXLl+PLL79Enz59ZO+9+uqrmDNnDp5++mkAwF133YULFy4gPj4e48ePN7hvZ2dnODs7N+gYicgKWaAjNbZ0W4Pqamn4Ll3btklJABNusmYqldIRNB/dpJsJOBE1F90W7q+/Vi4OG+Dk5ITw8HCkp6fLytPT0zFw4ECD60REROjVT0tLg0qlgqNOB5+rVq3CkiVLsHfvXqgM/N9VVlaGNm3kl8X29vYcMoyoKe6/X+kITMOO1FoJe3tg504gIADYuBGoqQHGjlU6KqL6rV+vdATNh4k2EZnD3/6mnd+xQ7k4bERcXBzeffddbNq0Cbm5uZg1axYuXryImJgYANIt3eoexwEgJiYGFy5cQFxcHHJzc7Fp0yakpKTglVde0dRZuXIlFixYgE2bNqFHjx4oKChAQUEBSktLNXUeffRRLFu2DJ9//jnOnz+Pjz76CGvWrMETTzxhuYMnamkyMpSOwGrw9nJrcccd7NmUbE/nztr5fv2AEyeUi6WpmHQTkTmEhmrndc+ZZNDo0aNx9epVLF68GPn5+QgNDUVqaioCAgIAAPn5+bIxuwMDA5GamopZs2Zh/fr18PX1xdq1azXDhQFAYmIiKioqMKrWY3wLFy7EokWLAADvvPMOXn/9dcTGxqKwsBC+vr544YUX8MYbb5j/oIlaqtWrgVdeAdpYeTsvx+kmIqsWGKidz86Wfjjq0UOpaJqGSTcRmYOdHRAXB6xZA/z+u9LR2ITY2FjExsYafG/Lli16ZUOGDMGJOn70PW9Co4a7uzsSEhI0430TUTO4/XbptSU9jthIVv6zAxFZtdq/DE6frkwczYFJNxGZi3q4MA6bQ0StibqjwYoKZeOwAky6iahpdFsQPv1UPi6jLWHSTUTmonuLuZ0dUF6uXCxERJaiHuY4J0fRMOrFjtSIyOrdes5OQ30rka1h7+VEZC6TJsmXH31UmTiIiCxJZwSB1o5JNxE1XWqqdv78eeDPPxULpdGYaBORudT+MTI9Hag1hjQRUYuj28+PNV9ncZxuIrIJw4ZJw96pffutcrE0ljX/Z0BEts3ODqiqkpexUzUiaunatdPO//yzcnFYASbdRNQ8nn5aO2+BXwybHZNuIjIne3vg7FmloyAispy2bbXzwcHKxWEFmHQTUfO56y7p1RZvLy8oUDoCImrpgoKADz5QOgoiIstw4OjUaky6iaj5nDwpvb78srJxNEZZmdIREFFroNtz+cWLysVBRGQJt92mdARWgUk3ETW/kyd5uzYRkSF9+2rnjx9XLg4iIkt45BGlI7AKTLqJqPn4+2vnDx5ULo6m4g8GRGQuISHa+SefBD79FPj1V+XiISIypwkTtPM1NYqFoTQm3UTUfP79b+38gw8qF0cLkZiYiMDAQLi4uCA8PByHDh2qs35mZibCw8Ph4uKCoKAgJCUlyd5PTk5GZGQkPD094enpiaioKHxroKf5K1eu4Nlnn0WnTp3g5uaGsLAwHGeLHFHzqN3R5F//CnTrpkwsQKu+CCYiC3B11c5/8YVycSiMSTcRNZ8BA7TzuidZa2eFLdu7du3CzJkzMX/+fGRnZyMyMhLDhg3DRSPPgObl5WH48OGIjIxEdnY25s2bh+nTp2P37t2aOhkZGRgzZgwOHDiArKws+Pv7Izo6GleuXNHUuXbtGgYNGgRHR0f897//xalTp/D222+jQ4cO5j5kotYtP1+Z/Y4ercx+iah1cHbWzmdlKReHwhRPupu7JWfPnj1QqVTo0KED2rZti7CwMPzrX/9q8H6FEFi0aBF8fX3h6uqK+++/Hz/++GPTD5iotbhxA6isVDoK01hhS8+aNWswadIkTJ48GSEhIUhISICfnx82bNhgsH5SUhL8/f2RkJCAkJAQTJ48GRMnTsTq1as1dbZv347Y2FiEhYUhODgYycnJqKmpwb59+zR1VqxYAT8/P2zevBn33HMPevTogYceegg9e/Y0+zETtWq+vsrs98MPldkvEbUOgYHa+SVLgF69gAsXlItHIQ1Kur/99ltUV1drlkWt1qHy8nL8W/f20nqYoyWnY8eOmD9/PrKysvD999/j+eefx/PPP48vdG5nMGW/K1euxJo1a7Bu3TocPXoU3t7eePjhh3H9+nWTj4+oVdLtMMPJSbk4GsLKku6KigocP34c0dHRsvLo6GgcPnzY4DpZWVl69YcOHYpjx46h0siPH2VlZaisrETHjh01ZZ988glUKhWeeuopdO3aFX379kVycnKd8ZaXl6OkpEQ2EVEdNm4Ehg1TOgoiIvOr/UjN2bPAxInKxKIk0QBt2rQR//vf/zTL7u7u4uzZs5rlgoIC0aZNG5O3d88994iYmBhZWXBwsJgzZ47B+rNnzxbBwcGyshdeeEHce++9de6nb9++YsGCBSbvt6amRnh7e4u33npL8/6ff/4pPDw8RFJSUv0HdktxcbEAIIqLi01eh8jm3bghhHTDtjTZgvJyecxvvGHSaub6jl+5ckUAEF9//bWsfNmyZeL22283uM5tt90mli1bJiv7+uuvBQDx66+/GlwnNjZW9OzZU9y8eVNT5uzsLJydncXcuXPFiRMnRFJSknBxcRHvvfee0XgXLlwoAOhNPPcR1ePYMfm5R+cay2J092/iOZvXN4bxcyEy4l//0j/XGLk2sRjdWAYMMGmVpnzHG9TSLWq1bNdeNlZmiCVacoQQ2LdvH06fPo3BgwebvN+8vDwUFBTI6jg7O2PIkCFGYyOiW9zcgL/9TekoGubIEfmylTzjbVfr12EhhF5ZffUNlQPS3Tw7d+7Enj174OLioimvqalBv379sHz5cvTt2xcvvPACpkyZYvS2dgCYO3cuiouLNdOlS5dMOj6iVi88XL58+rQycRARmdOzz+qX7d9v+TgU1OzPdNd1QairqKgI1dXV8PLykpV7eXmhoKDA4DoFBQUG61dVVaGoqEhTVlxcjHbt2sHJyQkjRozAO++8g4cfftjk/apfGxIbwFssiTQiI5WOoGG+/FLpCGQ6d+4Me3t7vfNNYWGh3nlJzdvb22B9BwcHdOrUSVa+evVqLF++HGlpaejTp4/sPR8fH9x5552yspCQEKOP/QDSj5Lt27eXTURkonPntPO3GgiIiFqcRYvky2fPKhKGUhTvSM0cLTnu7u7IycnB0aNHsWzZMsTFxSEjI6PB+21obPHx8fDw8NBMfn5+RusStWh33610BA1z86bSEcg4OTkhPDwc6enpsvL09HQMHDjQ4DoRERF69dPS0qBSqeDo6KgpW7VqFZYsWYK9e/dCpVLpbWfQoEE4Xau17eeff0ZAQEBjD4eI6qLbyRARUUs1dy6wbZt2eeFC5WKpzcRG46ZwaOgKp06d0rSmCCHw008/obS0FABkrc31MWdLTps2bdCrVy8AQFhYGHJzcxEfH4/777/fpP16e3sDkFq8fXx8TIoNkG6xjIuL0yyXlJQw8abWycNDO3/jBtC2rXKxmMIKb3GKi4vDuHHjoFKpEBERgY0bN+LixYuIiYkBIJ1vrly5gq1btwIAYmJisG7dOsTFxWHKlCnIyspCSkoKdu7cqdnmypUr8frrr2PHjh3o0aOH5jzYrl07tGvXDgAwa9YsDBw4EMuXL8ff/vY3fPvtt9i4cSM2btxo4U+AqBUJDweOH1c6CiIi83FyAsaO1d5qbqQRQREWeKywwS3dDz30EMLCwhAWFoaysjL85S9/QVhYGPr27YuoqCiTt2POlpzahBAoLy83eb+BgYHw9vaW1amoqEBmZqbR2ADeYkmkoXt7cny8cnGYSmdUBmsxevRoJCQkYPHixQgLC8PBgweRmpqqaXHOz8+X3fIdGBiI1NRUZGRkICwsDEuWLMHatWsxcuRITZ3ExERUVFRg1KhR8PHx0Uy6w4r1798fH330EXbu3InQ0FAsWbIECQkJGDt2rOUOnqi1SUjQztfxGBsRkc2bN0967d9f2TgsrEEt3Xl5ec26c3O05MTHx0OlUqFnz56oqKhAamoqtm7dKusEqL792tnZYebMmVi+fDluu+023HbbbVi+fDnc3NzwzDPPNOtnQNQiOeicWpYtA5YuVS4WU1jZkGFqsbGxiI2NNfjeli1b9MqGDBmCEydOGN3e+fPnTdrvX/7yF/zlL38xqS4RNYPu3bXzv/8O3LrjjoioxVEPJ1teLg0d5uQEJCUpG5MFNCjpNuWZvpycHJOf/Rs9ejSuXr2KxYsXIz8/H6GhoSa15MyaNQvr16+Hr6+vXkvOjRs3EBsbi8uXL8PV1RXBwcHYtm0bRo8ebfJ+AWD27Nm4efMmYmNjce3aNQwYMABpaWlwd3c36diISMeMGcA//qF0FMZZSW/lRNRK9eihnbfCO2+IiJqNOunWTbSXLAG6dFEmHguxE6aO8VWH4uJibN++He+++y6+++47VPM/DADSM90eHh4oLi7mrebU+mRnA/36SfPdugGXLysbT12GDwf++1/t8oIF0n8A9eB33DB+LkSN4OcnnSePHdMfSsycancgZMJlIb/jhvFzITLB4sWGO1GzdAOI7rnv3nuBrKx6V2nKd7xJvZfv378fzz77LHx8fPDOO+9g+PDhOHbsWFM2SUQtRd++2vkrV5SLwxS3OhEjIlKM+odJA6MKEBG1GNbUa7maNXakdvnyZSxduhRBQUEYM2YMPD09UVlZid27d2Pp0qXoq3uhTURkC3QeUSEiUlxZmdSh2v79fPyFiFqWjz9WOgJFNCjpHj58OO68806cOnUK77zzDn799Ve888475oqNiGxdcrL0ak3DQhjSpkk3/RARNa89e6TbHR96CPj6a6WjISJqPn/9K/D22/rlp09bPhY1C4zT3aArzbS0NEyePBlvvvkmRowYAXt7e3PFRUQtgb+/9HrypLJx1KeqSukIiKi10x3KdNw44MIFad7ASAUtXWJiIgIDA+Hi4oLw8HAcOnSozvqZmZkIDw+Hi4sLgoKCkFSrJ+Tk5GRERkbC09MTnp6eiIqKwrfffqu3nStXruDZZ59Fp06d4ObmhrCwMBzn+OlEzS8uTuq/Ii5OW6YzfGlL1KCk+9ChQ7h+/TpUKhUGDBiAdevW4bfffjNXbERk67p2lV6vX5cuIq0VO38kIqVFRRkuT0mxbBwK27VrF2bOnIn58+cjOzsbkZGRGDZsmGw0G115eXkYPnw4IiMjkZ2djXnz5mH69OnYvXu3pk5GRgbGjBmDAwcOICsrC/7+/oiOjsYVnf5Grl27hkGDBsHR0RH//e9/cerUKbz99tvo0KGDuQ+ZqHUKD5e3eFv7XZFN1KCkOyIiAsnJycjPz8cLL7yA999/H926dUNNTQ3S09Nx/fp1c8VJRLZId/jAbduUi6M+tZNuPkNJRNZi5kzt/LVrLf5HwjVr1mDSpEmYPHkyQkJCkJCQAD8/P2zYsMFg/aSkJPj7+yMhIQEhISGYPHkyJk6ciNU6rWbbt29HbGwswsLCEBwcjOTkZNTU1GDfvn2aOitWrICfnx82b96Me+65Bz169MBDDz2Enj17mv2YiVq1v/5Veq2sVC4Ga+xIDQDc3NwwceJEfPXVVzh58iRefvllvPXWW+jatSv+qv7giIg8PeXLBm7nswot/CKWiGyEoQ6GEhKAigogMRHo2BEYO9biYVlKRUUFjh8/jujoaFl5dHQ0Dh8+bHCdrKwsvfpDhw7FsWPHUGnkIr6srAyVlZXo2LGjpuyTTz6BSqXCU089ha5du6Jv375IVvdLQkTm4+wsvbbwEbCa3HvQHXfcgZUrV+Ly5ct4//33YWeBB9GJyIbo3OKHAQOAmzeVi8UYJt1EZA3++ldg61b98kOHgKlTpflduywbkwUVFRWhuroaXl5esnIvLy8UFBQYXKegoMBg/aqqKhQVFRlcZ86cOejWrRuidG7pP3fuHDZs2IDbbrsNX3zxBWJiYjB9+nRsNfTvcUt5eTlKSkpkExE10AcfSK9K/shlgfzVoSGVJ06cWG+dTp06NToYImqBHn5YvvzTT/IxvK0BO1IjImvx+OP6Zc88Y/EwlFS7AUcIUWejjqH6hsoBYOXKldi5cycyMjLg4uKiKa+pqYFKpcLy5csBAH379sWPP/6IDRs24LnnnjO43/j4eLz55pumHRQR1e/mTcDVVekozKJBLd1btmzBgQMH8Mcff+DatWsGpz/++MNMoRKRTWrXTr7cr58ycdRFpzMdIiJFubsDNTXyZwwLC+V1WujdOZ07d4a9vb1eq3ZhYaFea7aat7e3wfoODg56DUGrV6/G8uXLkZaWhj59+sje8/HxwZ133ikrCwkJMdqBGwDMnTsXxcXFmunSpUv1HiMR1bJzp3b+9deVi8PMGpR0x8TEoLi4GOfOncMDDzyAlJQUfPTRR7Jpz5495oqViGyRnZ1+z+XW1rK8bJl8uY7bCYmIzE7dQjt4sOH3W2jS7eTkhPDwcKTrDp8GID09HQON9GwcERGhVz8tLQ0qlQqOjo6aslWrVmHJkiXYu3cvVCqV3nYGDRqE07XGCf75558RoNshaC3Ozs5o3769bCKiBho1Sjv/0UfKxWFmDUq6ExMTkZ+fj9deew2ffvop/Pz88Le//Q1ffPGF5lYeIiI9W7cCQ4dqlzMzlYvFFGytICJr8Je/GC5voUk3AMTFxeHdd9/Fpk2bkJubi1mzZuHixYuIiYkBILUu697uHRMTgwsXLiAuLg65ubnYtGkTUlJS8Morr2jqrFy5EgsWLMCmTZvQo0cPFBQUoKCgAKWlpZo6s2bNwpEjR7B8+XL88ssv2LFjBzZu3Iip6mfpicg8HHSedh49Wrk4zKzBHak5OztjzJgxSE9Px6lTp9C7d2/ExsYiICBAdvIiIpLZu1c7b2w8WiIi0vLxMVzegpPu0aNHIyEhAYsXL0ZYWBgOHjyI1NRUTYtzfn6+7JbvwMBApKamIiMjA2FhYViyZAnWrl2LkSNHauokJiaioqICo0aNgo+Pj2bSHVasf//++Oijj7Bz506EhoZiyZIlSEhIwNgW3Fs8kdV47DHpNT4eKCtTNhYzaVBHarXZ2dnBzs4OQgjU1NQ0V0xE1BqUluo/701ERFrGbldurkd0rHE0CQCxsbGIjY01+N6WLVv0yoYMGYITJ04Y3d758+dN2u9f/vIX/MXY3QVEZD66wyW++iqwfr1ysZhJg1u6y8vLsXPnTjz88MO44447cPLkSaxbtw4XL15EO15AE1FdJkzQzl+7plgYREQ2wchzzM3W0s0GEyKyBkOGaOcTE6VhEluYBiXdsbGx8PHxwYoVK/CXv/wFly9fxgcffIDhw4ejTZsmD/lNRC3dpk3a+dq98Srp2WeVjoCISF/nzkBSEuDsDHz5pbZ848bm2T774yEia6B7fQgAjz6qTBxm1KDby5OSkuDv74/AwEBkZmYi00hnSOzBnIgM0h0zdcsWIDxcsVBk3N2VjoCIyLAXXpAmXfPmAXPnNn3bbOkmImsQFCRfLi6Wrhl//BGoNZRfs1DgB8cGJd3PPfcc7HQvmomIGqp3b+kkum4d8PTTwKBBSkfUojslIiIyqva5j9d4RKSUnBwgLExe1ru3eRJkBX5wbFDSbajzCiKiBvnxR+18XBzwzTfKxaJmbeOGExEZ4uravJ2fsaWbiKzF3XcDwcHATz/Jy0tKjHcq2VgHDzbv9kzAB7GJyLL++U/tfLduysWhiy3dRGQL1OfP5hp2sXbSzZZuIlKS7vCyahMnSq+Vlc23n/Hjm29bJmLSTUSW9fe/A7NnS/MdOyobixqTbiKyBa6u0uuffzbP9tjSTUTWJCBAv2z3buC55wAnJ2Dr1ubZjwJ3ODLpJiLLy8uTXlNSlI1DzUqT7sTERAQGBsLFxQXh4eE4VM8QGpmZmQgPD4eLiwuCgoKQlJQkez85ORmRkZHw9PSEp6cnoqKi8O233xrdXnx8POzs7DBz5szmOBwiaipnZ+m1vLx5tsekm4isjbplW9e//iW9NlcLde2k2wJ3+TDpJiLLy87Wzv/8s3JxqFlh0r1r1y7MnDkT8+fPR3Z2NiIjIzFs2DBcvHjRYP28vDwMHz4ckZGRyM7Oxrx58zB9+nTs3r1bUycjIwNjxozBgQMHkJWVBX9/f0RHR+PKlSt62zt69Cg2btyIPn36mO0YiaiB1El3bm7zbM8Kz31E1MqlpABff23efdROui3QmzmTbiKyPN0LxqIi5eJQs8ILzzVr1mDSpEmYPHkyQkJCkJCQAD8/P2zYsMFgffWQjgkJCQgJCcHkyZMxceJErF69WlNn+/btiI2NRVhYGIKDg5GcnIyamhrs27dPtq3S0lKMHTsWycnJ8PT0NOtxElEDqJPu0tLmaZnhM91EZI0GDgTeeMN82+ft5UTUKjg4aHuitIaLPCtLuisqKnD8+HFER0fLyqOjo3H48GGD62RlZenVHzp0KI4dO4ZKI52PlJWVobKyEh1rPVs/depUjBgxAlEmdtZUXl6OkpIS2UREZpCfL18uK2va9nh7ORFZK/WPjObApJuIWo3u3aXXGzeUjQOwuqS7qKgI1dXV8PLykpV7eXmhoKDA4DoFBQUG61dVVaHIyN0Ec+bMQbdu3WTJ9fvvv48TJ04gPj7e5Hjj4+Ph4eGhmfz8/Exel4ga4Lbb5MtnzzZte2zpJiJr1batfllwcPNsuzUm3Up0FNSjRw/Y2dnpTVOnTtXUmTBhgt779957b/MdOFFr17mz9Pree8rGAVhd0q1mV+sCWAihV1ZffUPlALBy5Urs3LkTe/bsgYuLCwDg0qVLmDFjBrZt26YpM8XcuXNRXFysmS5dumTyukTUAP36yZfXrm3a9mon3RZ4rpGIyCR//7t2/tlnpdeffgKuXm36tmtf97X0jtSU6ijo6NGjyM/P10zp6ekAgKeeekq2v0ceeURWLzU11QyfAlErpT7BbdumbByAIr941qVz586wt7fXa9UuLCzUa81W8/b2NljfwcEBnTp1kpWvXr0ay5cvR1pamqyjtOPHj6OwsBDh4eFwcHCAg4MDMjMzsXbtWjg4OKDayI8Tzs7OaN++vWwiIjOwswMOHtQut2vXtO3x9nIislaurtLdkDk58h7NJ0xo+rYV+MFR0aRbqY6CunTpAm9vb8302WefoWfPnhgyZIhsf87OzrJ6tZ97JKIm0L1N0sgt0xZjZS3dTk5OCA8P1/wgqJaeno6BAwcaXCciIkKvflpaGlQqFRwdHTVlq1atwpIlS7B3716oVCpZ/YceeggnT55ETk6OZlKpVBg7dixycnJgb2/fTEdIRI0WGamd79WradtSoLWHiMhkbm7A3XcDuh2+fvaZcvE0gWJJt9IdBenGsW3bNkycOFHvFsyMjAx07doVt99+O6ZMmYLCwkJTD4+I6qPb+qp0D+ZWlnQDQFxcHN59911s2rQJubm5mDVrFi5evIiYmBgA0i3dzz33nKZ+TEwMLly4gLi4OOTm5mLTpk1ISUnBK6+8oqmzcuVKLFiwAJs2bUKPHj1QUFCAgoIClJaWAgDc3d0RGhoqm9q2bYtOnTohNDTUsh8AERmn/u43tU8MtnQTkS3QvQYxx4+DLfn2ciU7CtL1n//8B3/88Qcm1LpVYdiwYdi+fTv279+Pt99+G0ePHsWDDz6I8vJyo8fEHnyJGiAuTjt/9KhycQBWmXSPHj0aCQkJWLx4McLCwnDw4EGkpqYiICAAAJCfny97FCcwMBCpqanIyMhAWFgYlixZgrVr12LkyJGaOomJiaioqMCoUaPg4+OjmXTvFiIiG6DuYKipvZezpZuIbMHo0dp5G+17wkHpACzRUVBGRobRToFSUlIwbNgw+Pr6yspH6/zjhoaGQqVSISAgAJ9//jmefPJJg9uKj4/Hm2++aTR2ItLRtat2Pj4eeP554PffgQ4dgDYW/j3QCpNuAIiNjUVsbKzB97Zs2aJXNmTIEJw4ccLo9s6fP9/gGDIyMhq8DhGZmaur9JqT07TtNHV9IiJLaAE/CCrW0q1UR0G6Lly4gC+//BKTJ0+uN14fHx8EBATgzJkzRuuwB1+iRjpzBjhyRLrlfNo0y+/fSpNuIiKDPvxQev3446ZtJzCw6bEQEVnC5s3Sa62G0mbRkjtSU6qjIF2bN29G165dMWLEiHrjvXr1Ki5dugQfHx+jddiDL1ETRERIr0Y6UjQrJt1EZEuaa6zaFtB6RESthDrZ7tJF2TgaSdHey5XoKEitpqYGmzdvxvjx4+HgIL/LvrS0FK+88gqysrJw/vx5ZGRk4NFHH0Xnzp3xxBNPmPETIWpldIb7UxSTbiKyJc88o51vSgsNn+kmIluhfvTQHB1AWuDcp+gz3aNHj8bVq1exePFi5OfnIzQ01KSOgmbNmoX169fD19e3zo6CdC1cuBCLFi3SLH/55Ze4ePEiJuqO+3aLvb09Tp48ia1bt+KPP/6Aj48PHnjgAezatQvu7u7N/CkQtWJ//avh8ooKwMnJcnEw6SYiW/LTT9r57duBZ59t3HbYezkR2Qp10l1VpWwcjWQnhI12AWcDSkpK4OHhgeLiYt5qTmSMoV8Xf/lFmqKjLdPyEhoK/PijvMyEUyO/44bxcyEys6+/Bu67T5ofNAj46qvGbefLL4GHH9YuOzkBdYzSosbvuGH8XIjMSPd8VVPTtOvD2uveey+QlVXvak35jiveezkRkZ5evaTXu+4Cvv/e/PtjSzcR2ZL+/bXzTbkDjy3dRGQrfvhBO19VBej052ULFH2mm4gINTXSidTQuPYnT1omBibdRGRLdC82b7ut8dth0k1EtkLdIAMAlZXKxdFITLqJSFl2dkDv3sZbayzx7A6TbiKyJbq3Rr77buO3U3ucbnakRkTWSvdRGCbdRETN7LPPzL8PJt1EZKtu3pReKyoa3pP53LnyZROe5yYiUoTuHT5NSboNnSdb8jjdRER6XF31y7ZsMf9+mXQTka1RD5faqxdQVgb07Cl1PtkCJCYmIjAwEC4uLggPD8ehQ4fqrJ+ZmYnw8HC4uLggKCgISUlJsveTk5MRGRkJT09PeHp6IioqCt9++63R7cXHx8POzg4zZ85sjsMhoubQRidtLStr/HYUuuZj0k1E1qOsDMjOBi5d0pYVF5t/v0y6icjWDBwovf7yC9C2LXD5stS7r40/p71r1y7MnDkT8+fPR3Z2NiIjIzFs2DDZELK68vLyMHz4cERGRiI7Oxvz5s3D9OnTsXv3bk2djIwMjBkzBgcOHEBWVhb8/f0RHR2NK1eu6G3v6NGj2LhxI/r06WO2YySiJho/vvHrMukmIgIQFgZ07w6MGSMtDx9u/n0y6SYiW2MsuT592rJxNLM1a9Zg0qRJmDx5MkJCQpCQkAA/Pz9s2LDBYP2kpCT4+/sjISEBISEhmDx5MiZOnIjVq1dr6mzfvh2xsbEICwtDcHAwkpOTUVNTg3379sm2VVpairFjxyI5ORmenp5mPU4iaoKMDODYscatq9Bo2Uy6icg6tWsnvV6+bP59MekmIlvTu7fhckvcHWQmFRUVOH78OKJr3SYfHR2Nw4cPG1wnKytLr/7QoUNx7NgxVBp57rOsrAyVlZXo2LGjrHzq1KkYMWIEoqKiTIq3vLwcJSUlsomILOTs2catZ+gHSz7TTUStlrOz9Lp2LVBaat59MekmIlvj5WW43NRnHc+da75YmklRURGqq6vhVevYvLy8UFBQYHCdgoICg/WrqqpQVFRkcJ05c+agW7dusuT6/fffx4kTJxAfH29yvPHx8fDw8NBMfn5+Jq9LRE3UoUPj1rtwoVnDMBWTbiKyTvv3a+cb+2umqZh0E5GtcXMzXL53b/3rnjoldbxmpexqDV0mhNArq6++oXIAWLlyJXbu3Ik9e/bAxcUFAHDp0iXMmDED27Zt05SZYu7cuSguLtZMl3T7IyGi5qf7HWts6/SAAc0TSwM5KLJXIqL6nDqlnQ8LM++tP0y6icjWqO8Gqu333+tfd/v25o2lmXTu3Bn29vZ6rdqFhYV6rdlq3t7eBus7ODigU6dOsvLVq1dj+fLl+PLLL2UdpR0/fhyFhYUIDw/XlFVXV+PgwYNYt24dysvLYW9vr7dvZ2dnOBv7dyCi5te9u3Z+0ybgkUcavo3r15svngZgSzcRWaczZyy3LybdRGSL/vxTvywlpf71kpObP5Zm4OTkhPDwcKSnp8vK09PTMVDdW3stERERevXT0tKgUqngqDOu76pVq7BkyRLs3bsXKpVKVv+hhx7CyZMnkZOTo5lUKhXGjh2LnJwcgwk3ESnsgw+UjqBB2NJNRNapVy/58unTwB13mGdfTLqJyBY5OwM3bwKurg1bb8AA4LPPzBNTE8XFxWHcuHFQqVSIiIjAxo0bcfHiRcTExACQbum+cuUKtm7dCgCIiYnBunXrEBcXhylTpiArKwspKSnYuXOnZpsrV67E66+/jh07dqBHjx6alvF27dqhXbt2cHd3R2hoqCyOtm3bolOnTnrlRNQCsSM1ImrVdIeDmDfPfPth0k1EtsrFpeEt1wEB5omlGYwePRoJCQlYvHgxwsLCcPDgQaSmpiLgVsz5+fmyMbsDAwORmpqKjIwMhIWFYcmSJVi7di1GjhypqZOYmIiKigqMGjUKPj4+mkl3WDEiskEKDf/VGGzpJiLr1bWrdn7PHkDdKc7vvwPNNYaqEDZ10iYi0jN5svScYlwc4ONTf30rP+fFxsYiNjbW4HtbtmzRKxsyZAhOnDhhdHvnz59vcAwZGRkNXoeILOz8eSAwsOnbYUs3EbVqxoZf2bOn+fbBVm4iaglCQqRXY0OJ6TI0Ti0Rka2pqFA6ApMx6SYi62botkkPj+bbPi8+iaglUHf2Zco5jec9IrJV8fHa+fLy5tlmHUMSNhcm3URk3SZP1i978UWgslKab+otQVbc0p2YmIjAwEC4uLggPDwchw4dqrN+ZmYmwsPD4eLigqCgICQlJcneT05ORmRkJDw9PeHp6YmoqCh8++23sjrx8fHo378/3N3d0bVrVzz++OM4ffp0sx8bETUzddJtyjmtqsq8sRARmcvLL2vnmyvp5u3lREQA3ngDuP127XJREeDkJP0y6esLFBY2fttWmnTv2rULM2fOxPz585GdnY3IyEgMGzZM1oGQrry8PAwfPhyRkZHIzs7GvHnzMH36dOzevVtTJyMjA2PGjMGBAweQlZUFf39/REdH48qVK5o6mZmZmDp1Ko4cOYL09HRUVVUhOjoaN27cMPsxE1ETNCTpttLzHhFRvRwdgdtuk+ZtKOm2E8LKe9OwYSUlJfDw8EBxcTHat2+vdDhEts/Y7T8bNgC3hpNpsOJioEMH/XITTo3m/I4PGDAA/fr1w4YNGzRlISEhePzxxxGve2vVLa+99ho++eQT5ObmaspiYmLw3XffISsry+A+qqur4enpiXXr1uG5554zWOe3335D165dkZmZicGDB5sUO899RAr46isgMlK6GP3557rrPvsssH274fcUPvfZMn4uRBZy113ADz8AX34JPPRQw9Y1dC2pUgFHj9a7alO+42zpJiLbcfy44fL6LjDrYoUtPhUVFTh+/Diio6Nl5dHR0Th8+LDBdbKysvTqDx06FMeOHUOl+lb8WsrKylBZWYmOHTsajaW4uBgA6qxDRFaAt5cTUWvh7Cy92lBLN5NuIrId/foZLv+//2v8Nq0w6S4qKkJ1dTW8avVC7OXlhYKCAoPrFBQUGKxfVVWFoqIig+vMmTMH3bp1Q1RUlMH3hRCIi4vDfffdh9DQUKPxlpeXo6SkRDYRkYW1uXVJd+4cYOQ8ocGkm4hsmfpHxuvXlY2jAZh0E1Hrpk66LdBzZUPZ1YpJCKFXVl99Q+UAsHLlSuzcuRN79uyBi4uLwe1NmzYN33//PXbu3FlnnPHx8fDw8NBMfsaGeiMi87l5Uztf3+M2TLqJyJapO4F9+mngiSeavj22dBMR1fLBB9KrsVbvhlIn3epfTa1A586dYW9vr9eqXVhYqNearebt7W2wvoODAzp16iQrX716NZYvX460tDT06dPH4PZeeuklfPLJJzhw4AC6d+9eZ7xz585FcXGxZrp06VJ9h0hEzS0yUjt/7VrddZl0E1FL8Z//KB2BSZh0E5FtGTVK+kXy+HHg3/+Wyvz9G789K0y6nZycEB4ejvT0dFl5eno6Bg4caHCdiIgIvfppaWlQqVRwdHTUlK1atQpLlizB3r17oVKp9LYjhMC0adOwZ88e7N+/H4GBgfXG6+zsjPbt28smIrIwe3ugVy9pfvjwuusy6SailsQG+gVn0k1Etkvd6mvk9miT1NRIr1aUdANAXFwc3n33XWzatAm5ubmYNWsWLl68iJhbt43OnTtX1uN4TEwMLly4gLi4OOTm5mLTpk1ISUnBK6+8oqmzcuVKLFiwAJs2bUKPHj1QUFCAgoIClJaWaupMnToV27Ztw44dO+Du7q6pc1P31lUisk7qZHrXrrrrWWFfFkREJktLky+3aQNYeX8yiifdiYmJCAwMhIuLC8LDw3Ho0KE662dmZiI8PBwuLi4ICgpCUlKS7P3k5GRERkbC09MTnp6eiIqKwrfq+/5vWbRoEezs7GSTt7e3rI4QAosWLYKvry9cXV1x//3348cff2yegyai5qFOlH/+ufEtN+qLzzaKnw5lRo8ejYSEBCxevBhhYWE4ePAgUlNTERAQAADIz8+XjdkdGBiI1NRUZGRkICwsDEuWLMHatWsxcuRITZ3ExERUVFRg1KhR8PHx0UyrV6/W1NmwYQOKi4tx//33y+rsqu8inoiUd/689JqdXXc9tnQTkS1r106/bNSo+tdTsAHBQbE9A9i1axdmzpyJxMREDBo0CP/85z8xbNgwnDp1Cv4GbhfNy8vD8OHDMWXKFGzbtg1ff/01YmNj0aVLF82FZUZGBsaMGYOBAwfCxcUFK1euRHR0NH788Ud069ZNs63evXvjyy+/1Czb12rlWrlyJdasWYMtW7bg9ttvx9KlS/Hwww/j9OnTcHd3N9MnQkQNovu9/egj4KmnGr4NK7y9XC02NhaxsbEG39uyZYte2ZAhQ3DixAmj2zuvviCvg7CBW7SIqImYdBORLVMPGaar1iN2BtU3soMZKdq0s2bNGkyaNAmTJ09GSEgIEhIS4Ofnhw0bNhisn5SUBH9/fyQkJCAkJASTJ0/GxIkTZa0027dvR2xsLMLCwhAcHIzk5GTU1NRg3759sm05ODjA29tbM3Xp0kXznhACCQkJmD9/Pp588kmEhobivffeQ1lZGXbs2GGeD4OIGq6iQjt/azzpBrPipJuIqEGWLpVen3yy7npMuonIlhnqTPf55xu/PSMNHM1JsaS7oqICx48fR3R0tKw8Ojoahw8fNrhOVlaWXv2hQ4fi2LFjqKysNLhOWVkZKisr0bFjR1n5mTNn4Ovri8DAQDz99NM4d+6c5r28vDwUFBTI9uXs7IwhQ4YYjQ3gWLVEFnflina+9vM9plIn3b//3vR4iIiUlJsrve7ZU3c9PtNNRLaupgaYPl27vHlz47fVs2fT46mHYkl3UVERqqur9Ya/8fLy0hv2Rq2goMBg/aqqKhQVFRlcZ86cOejWrRuioqI0ZQMGDMDWrVvxxRdfIDk5GQUFBRg4cCCuXr2q2Y9626bGBnCsWiKLe/pp7bx6KLGG2r27eWIhIlKaTj8Pdfbma6ShgojIZtjZAZ6eSkdhMsV7DrKzs5MtCyH0yuqrb6gckJ7L3rlzJ/bs2QMXnd6Nhw0bhpEjR+Kuu+5CVFQUPv/8cwDAe++916TYOFYtkYXZ2QHBwdL86NGN28bJk80XDxGRkmbP1s5/953xeky6iagluDWii8n+/FM7P2NG88ZSD8WS7s6dO8Pe3l6v5biwsFCvhVnN29vbYH0HBwd06tRJVr569WosX74caWlp6NOnT52xtG3bFnfddRfOnDmj2Q+ABsUGcKxaIkU8+qj02r1749bns9xE1FIMHaqd79tXOyRibUy6iagl8PYGwsJMr6/u9wIAli1r9nDqoljS7eTkhPDwcKTX6mkuPT0dAwcONLhORESEXv20tDSoVCo4OjpqylatWoUlS5Zg7969UKlU9cZSXl6O3Nxc+Pj4AJCG3vH29pbtq6KiApmZmUZjIyKFqJPmxj6j+Mwz2vn77mt6PEREStG5FgIAvP224Xq6nVASEdmy5GTT637xheHyOu5kbi6K3l4eFxeHd999F5s2bUJubi5mzZqFixcvIubWrQJz587Fc889p6kfExODCxcuIC4uDrm5udi0aRNSUlLwyiuvaOqsXLkSCxYswKZNm9CjRw8UFBSgoKAApaWlmjqvvPIKMjMzkZeXh2+++QajRo1CSUkJxo8fD0C6rXzmzJlYvnw5PvroI/zwww+YMGEC3Nzc8IzuBToRKU+ddBtr0amPetiJsDBgzhxp3oQf64iIrN78+YbLmXQTUUuhMyR0vW7136XHAsOlKjpO9+jRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5uKjTKUhgYCBSU1Mxa9YsrF+/Hr6+vli7dq1mjG4ASExMREVFBUbVGiB94cKFWLRoEQDg8uXLGDNmDIqKitClSxfce++9OHLkiGa/ADB79mzcvHkTsbGxuHbtGgYMGIC0tDSO0U1kbdrc+u1w7Vrg+++BAwcatr76NsvaLURERLZo/HhA3UfNyy8brsOkm4haCgeddFYI01utLdC6rUvRpBsAYmNjEWtkbLQtW7bolQ0ZMgQnTpwwur3z58/Xu8/333+/3jp2dnZYtGiRJlEnIiul+0x2RkbD19dNui18AiYianZvvaVNuo09dsOkm4haCt3rwOpqeRJem5OT4fNfS7+9nIioyb75pmnrG2rptsBtRkREZuHtre3Rt7zccB31RefQoXX3ck5EZO10k+yqqrrrKviDI5NuIrJte/c2bX22dBNRS3OrY9h6k+4tWziCAxHZtoYk3Qpi0k1Etk23d15f34avz5ZuImpp1B1E7t4N/Pqr/L3qam3Hk05O/LGRiGxbY5NuC5/7mHQTkW2bPh1ITJTm8/Mbvj5buomopfntN+m1qEjq2besTPuebuu3k5Nl4yIiam66SXdjh4+1ACbdRGTb7O2142sL0fBnvNnSTUQtzdmz8uVp07Tzus80WmlLd2JiIgIDA+Hi4oLw8HAcOnSozvqZmZkIDw+Hi4sLgoKCkJSUJHs/OTkZkZGR8PT0hKenJ6KiovDtt9/K6sTHx6N///5wd3dH165d8fjjj+P06dPNfmxE1MzatNGex+pr6Q4Kkl47djRvTAYw6SYi26e+lRIAXnmlYeuypZuIWprarT2bN2vPdbpJtxUOlbhr1y7MnDkT8+fPR3Z2NiIjIzFs2DDZELK68vLyMHz4cERGRiI7Oxvz5s3D9OnTsXv3bk2djIwMjBkzBgcOHEBWVhb8/f0RHR2NK1euaOpkZmZi6tSpOHLkCNLT01FVVYXo6GjcuHHD7MdMRE2kbiz588+664WHS6+LFvH2ciKiBnNx0c536tSwddW/irKlm4haCkPjc6tvK1cn3Vb6Q+OaNWswadIkTJ48GSEhIUhISICfnx82bNhgsH5SUhL8/f2RkJCAkJAQTJ48GRMnTsTq1as1dbZv347Y2FiEhYUhODgYycnJqKmpwb59+zR19u7diwkTJqB37964++67sXnzZly8eBHHjx83+zETUTOZM6fu9w3d3QhwyDAiIpPoJt11jc9oCFu6iailGTJEv0ydbKtf1XcIWdF5r6KiAsePH0d0dLSsPDo6GocPHza4TlZWll79oUOH4tixY6hUn99rKSsrQ2VlJTrWcYtpcXExANRZh4iszPvv1/2+saTbAhp4dUpEZIV0by9v6AWkgidgIiKLqZ10W2EnakVFRaiuroaXl5es3MvLCwUFBQbXKSgoMFi/qqoKRUVF8FEPn6Zjzpw56NatG6KiogxuUwiBuLg43HfffQgNDTUab3l5Ocp1OqYrKSkxWpeIrICC13xs6SYi2+fhAXh7S/NtGnhaY0dqRNQa1L69XJ10W1FLt5pdrZiEEHpl9dU3VA4AK1euxM6dO7Fnzx646N4lpWPatGn4/vvvsXPnzjrjjI+Ph4eHh2by8/Orsz4RmZm6Y11j1Nd8CnQiyaSbiFqGt96SXm/dEmgy3l5ORK2B+tlkK27p7ty5M+zt7fVatQsLC/Vas9W8vb0N1ndwcECnWn18rF69GsuXL0daWhr69OljcHsvvfQSPvnkExw4cADdu3evM965c+eiuLhYM126dKm+QyQic/rqq7rfZ0s3EVETdeggvXLIMCIi4B//kC+/8IL0WlfSrfDzy05OTggPD0d6erqsPD09HQMHDjS4TkREhF79tLQ0qFQqOOqc11etWoUlS5Zg7969UKlUetsRQmDatGnYs2cP9u/fj8DAwHrjdXZ2Rvv27WUTESmgvhZuNSbdRERN5OEhvf7xB5Cfb/p6bOkmopZo+nT50GFFRdJrXbeX799vmdjqEBcXh3fffRebNm1Cbm4uZs2ahYsXLyImJgaA1Lr83HPPaerHxMTgwoULiIuLQ25uLjZt2oSUlBS8ojN85MqVK7FgwQJs2rQJPXr0QEFBAQoKClBaWqqpM3XqVGzbtg07duyAu7u7ps7Nmzctd/BE1DhxcdJrWFjd9Yxd89XXQt4M2JEaEbUMbm7aeV9faaxG3Q7WjFGfgHV7PWdLNxG1BIb6uKirpbuhQy6awejRo3H16lUsXrwY+fn5CA0NRWpqKgICAgAA+fn5sjG7AwMDkZqailmzZmH9+vXw9fXF2rVrMXLkSE2dxMREVFRUYNSoUbJ9LVy4EIsWLQIAzZBk999/v6zO5s2bMWHChOY/UCJqPq6u0qvuD42GGGvpvnGj+WOqhS3dRNQy1L6tb+tW09az4pbuxMREBAYGwsXFBeHh4Th06FCd9TMzMxEeHg4XFxcEBQUhKSlJ9n5ycjIiIyPh6ekJT09PREVF4dtvv23yfonIRpSUaDtUs+KO1GJjY3H+/HmUl5fj+PHjGDx4sOa9LVu2ICMjQ1Z/yJAhOHHiBMrLy5GXl6dpFVc7f/48hBB6kzrhBmDwfSEEE24iW6A+j508CTz2mPF6vL2ciKiJgoPly+3ambZeVZX0amXPdO/atQszZ87E/PnzkZ2djcjISAwbNkzWwqMrLy8Pw4cPR2RkJLKzszFv3jxMnz4du3fv1tTJyMjAmDFjcODAAWRlZcHf3x/R0dG4cuVKo/dLRDbEw6Pulm4rTMCJiOp14IB2/pNPjNczlnRb4LqPSTcRtRy6J011x2r1sdKW7jVr1mDSpEmYPHkyQkJCkJCQAD8/P80tkLUlJSXB398fCQkJCAkJweTJkzFx4kSsXr1aU2f79u2IjY1FWFgYgoODkZycjJqaGuzbt6/R+yUiG8Okm4haGp0+HAAANTWG6yl4zcekm4halogI6VV9C2V9rLD38oqKChw/fhzR0dGy8ujoaBw+fNjgOllZWXr1hw4dimPHjqFSfYy1lJWVobKyEh1v9VjcmP0SkZW79Sy0hnpYRSu+vZyIqEE6d5YvG3tGm7eXExE1E3XnaeqeeutjhS3dRUVFqK6u1huX1svLS288WrWCggKD9auqqlBk5LOYM2cOunXrhqioqEbvFwDKy8tRUlIim4jISsyfL19+8UXp1VBHk1ZyDiQiapLr1w2X8/ZyIqJmom7hnjIF+O23+utbce/ldrUugIUQemX11TdUDkhD6OzcuRN79uyBi4tLk/YbHx8PDw8PzeTn52e0LhFZmLEhrwy1dDPpJqKWQGc4QBljDS1MuomIGigrSzt/333117fClu7OnTvD3t5er3W5sLBQrxVazdvb22B9BwcHdKo1DNDq1auxfPlypKWloU+fPk3aLyCNm1tcXKyZLl26ZNJxEpEFGDuvGXqmm4ioJbjjDvlyTQ1w6ZLxlu7wcLOHxKSbiFqu/v3rr2OFz3Q7OTkhPDwc6enpsvL09HQMHDjQ4DoRERF69dPS0qBSqeCoc2yrVq3CkiVLsHfvXqhUqibvFwCcnZ3Rvn172UREVmLQIMPl7EiNiFoS9Wg0at27A0OHSreav/AC4O8PlJVJ79VOunv1Mnt4TLqJqGW5/Xbt/Pbt9dfXHTLMii444+Li8O6772LTpk3Izc3FrFmzcPHiRc34s3PnzsVzzz2nqR8TE4MLFy4gLi4Oubm52LRpE1JSUvCKTo+eK1euxIIFC7Bp0yb06NEDBQUFKCgoQKnObVj17ZeIbEy/fsChQ/rlvL2ciFoSe3v58pUrQFoa8MwzwLvvyt9ToCM1h/qrEBHZkOxsoG1b0+vrtnQ7O0u/hPr4mCe2Bhg9ejSuXr2KxYsXIz8/H6GhoUhNTUXArZ6I8/PzZWNnBwYGIjU1FbNmzcL69evh6+uLtWvXYuTIkZo6iYmJqKiowKhRo2T7WrhwIRYtWmTSfonIBhl61EaddOve2cOkm4hams8+0y9ToKHFTggr6TGoBSopKYGHhweKi4t5uyWRJemeSE+flrd+66qq0v7a+dlnwIgRDdoNv+OG8XMhskK1LzD79QOOHwfOntXeWllYCHTpUu+m+B03jJ8LkcI++QR47LH6612/Dri6ajvRzc4GwsLqXa0p33HeXk5ELZuxYSMAQOfWayVuNSIiUsyJE/plbOkmIlv217+aVq92nxatoffyxMREBAYGwsXFBeHh4Thk6LkjHZmZmQgPD4eLiwuCgoKQlJQkez85ORmRkZHw9PSEp6cnoqKi8O2338rqxMfHo3///nB3d0fXrl3x+OOP4/Tp07I6EyZMgJ2dnWy69957m+egici8fvlFO2/sl8iSEuAf/9AuM+kmopZs8+b66zDpJqLWQIHbyxVNunft2oWZM2di/vz5yM7ORmRkJIYNGyZ7TlFXXl4ehg8fjsjISGRnZ2PevHmYPn06du/eramTkZGBMWPG4MCBA8jKyoK/vz+io6Nx5coVTZ3MzExMnToVR44cQXp6OqqqqhAdHY0bN27I9vfII48gPz9fM6WmpprngyCi5tWzp3a+utpwnU2b5MtMuomoJQsKMlzOpwyJqCV78EH5soODfsJtgQRc0Y7U1qxZg0mTJmHy5MkAgISEBHzxxRfYsGED4uPj9eonJSXB398fCQkJAICQkBAcO3YMq1ev1nQWtL1Wb8XJycn48MMPsW/fPk1Pv3v37pXV2bx5M7p27Yrjx49j8ODBmnJnZ2d4e3s32/ESkQL27gWCg/XLb96ULzPpJqKWrHbPvnPn6tdhSzcR2Tpvb6CgQLtc+/rO0HCJFqBYS3dFRQWOHz+O6OhoWXl0dDQOHz5scJ2srCy9+kOHDsWxY8dQqe6BuJaysjJUVlaiY8eORmMpLi4GAL06GRkZ6Nq1K26//XZMmTIFhYWFdR5TeXk5SkpKZBMRKax7d8Pl8+bJl5l0E1FL1qbWJd8DD+jXYdJNRLZuxQr5cu0c0dBwiTU15o0JCibdRUVFqK6uhpeXl6zcy8sLBbq/TugoKCgwWL+qqgpFRUUG15kzZw66deuGqKgog+8LIRAXF4f77rsPoaGhmvJhw4Zh+/bt2L9/P95++20cPXoUDz74IMrLy40eU3x8PDw8PDSTn5+f0bpEZGaRkdKrqSdSB46gSEQtWO2k+/ffpVfeXk5ELcmYMfJlU5Luhgw120iKX2Xa1fpVVQihV1ZffUPlALBy5Urs3LkTGRkZcHFxMbi9adOm4fvvv8dXX30lKx89erRmPjQ0FCqVCgEBAfj888/x5JNPGtzW3LlzERcXp1kuKSlh4k2kFFdX6bW8HPj1V+nZ7rq+j2zpJqKWrPbt5YaSbbZ0E5Gtc3SUzm979gAjR0rXgbp071x+913pVvQ77jB7WIol3Z07d4a9vb1eq3ZhYaFea7aat7e3wfoODg7o1KmTrHz16tVYvnw5vvzyS/Tp08fg9l566SV88sknOHjwILobuwX1Fh8fHwQEBODMmTNG6zg7O8PZ2bnO7RCRhRw5Ir3u3w/c6s8BZWVSMp6Xp1+fSTcRtSY+PvplTLqJqKVQN7jW6ihbZtIky8QCBW8vd3JyQnh4ONLT02Xl6enpGDhwoMF1IiIi9OqnpaVBpVLBUeeCedWqVViyZAn27t0LlUqltx0hBKZNm4Y9e/Zg//79CAwMrDfeq1ev4tKlS/Ax9J8UEVkfdZ8KW7Zoy9Q/mhnqxZdJNxG1ZGVl8mV1x7G6Ld5MuomopfnxR6UjAKDw7eVxcXEYN24cVCoVIiIisHHjRly8eBExMTEApNu1r1y5gq1btwIAYmJisG7dOsTFxWHKlCnIyspCSkoKdu7cqdnmypUr8frrr2PHjh3o0aOHpmW8Xbt2aNeuHQBg6tSp2LFjBz7++GO4u7tr6nh4eMDV1RWlpaVYtGgRRo4cCR8fH5w/fx7z5s1D586d8cQTT1jyIyKixureHbh8WV727rvA2rWG6zPptighBKqqqlBtbEg3IjOxt7eHg4NDnY+ytUilpdr5I0eYYCukurraaOe/RObU6s59Bw8qHYGMokn36NGjcfXqVSxevBj5+fkIDQ1FamoqAgICAAD5+fmyMbsDAwORmpqKWbNmYf369fD19cXatWs1w4UBQGJiIioqKjBq1CjZvhYuXIhFixYBADZs2AAAuP/++2V1Nm/ejAkTJsDe3h4nT57E1q1b8ccff8DHxwcPPPAAdu3aBXd3dzN8EkTU7CZPBm595zXeecd40t1a/hOyAhUVFcjPz0dZ7ZY3Igtxc3ODj48PnBQaOkYRPXtq5wcMMFyH50GzKi0txeXLlzX9ERFZWqs69912m9IRyNgJfvPNpqSkBB4eHiguLkb79u2VDoeodfH3By5d0i8vKQEMfR9//dXwM4514HfcsLo+l5qaGpw5cwb29vbo0qULnJycWs+v7qQ4IQQqKirw22+/obq6Grfddhva1O7VuyVLTwd8fYHevbVlP/+s7UTo+nXg1l2BdeG5z7C6Ppfq6mqcOXMGbm5u6NKlC897ZFGt8tyXny+d72pr00bqXLcRmnLuU7z3ciIis3juOWDZMv1yQyfJ8eMbnHBT41RUVKCmpgZ+fn5wc3NTOhxqhVxdXeHo6IgLFy6goqLC6OgmLdLDDysdQatVWVkJIQS6dOkCV/XoGkQW1OrOfcYeG4yNtWwct7TwnziIqNV68EHT6+p2tkYW0eJ/YSerxr8/HexIzaLYwk1KalXnPgcjbcsK9eHTij55ImpVTLhFEoD07DcRETHpJqKWw1hyrVBHhky6iahlMrXTw1deMW8c1GrZ2dnhP//5j+LbsKTz58/Dzs4OOTk5Vrk9MoAt3dTMeO6zvu21SsZauv/4w6JhqDHpJqKWydSkW92BEFE9JkyYADs7O73pl19+MVg/Pz8fw4YNM2nbixYtQlhYWJO20RL5+flpRjcBgIyMDNjZ2eEPhS6aiFojnvssj+e+ZmAs6VaoTwUm3UTUMukm3SkphuuUlFgmFmoxHnnkEeTn58umwMBAWZ2KigoAgLe3N5ydnZu0v+bYhi2zt7eHt7c3HIxdPFHzspKW7sTERAQGBsLFxQXh4eE4dOhQnfUzMzMRHh4OFxcXBAUFISkpSfZ+cnIyIiMj4enpCU9PT0RFReHbb79t8n5bE577LIvnvmZg7Pl1hTqQY9JNRC2T7jPdw4frvz9okOmt4US3ODs7w9vbWzY99NBDmDZtGuLi4tC5c2c8fKuH6Nq3R16+fBlPP/00OnbsiLZt20KlUuGbb77Bli1b8Oabb+K7777TtCBtudW5X+1tnDx5Eg8++CBcXV3RqVMn/P3vf0dpaanm/QkTJuDxxx/H6tWr4ePjg06dOmHq1KmoNOEZtrlz5+Lee+/VK+/Tpw8WLlyoWd68eTNCQkLg4uKC4OBgJCYm1rndzMxM3HPPPXB2doaPjw/mzJmDqqoqzfs1NTVYsWIFevXqBWdnZ/j7+2PZrZEHdG+xPH/+PB544AEAgKenJ+zs7DBhwgRs3boVnTp1Qnl5uWy/I0eOxHPPPVfvcbd6VnZ7+a5duzBz5kzMnz8f2dnZiIyMxLBhw3Dx4kWD9fPy8jB8+HBERkYiOzsb8+bNw/Tp07F7925NnYyMDIwZMwYHDhxAVlYW/P39ER0djStXrjR6v60Nz30899kcY+cze3vLxqEmyGyKi4sFAFFcXKx0KESt03//K8Tu3dL87t1CSJeX0nT//U3ePL/jhtX1udy8eVOcOnVK3Lx5UyqoqRGitFSZqaamQcc1fvx48dhjj+mVDxkyRLRr1068+uqr4qeffhK5ublCCCEAiI8++kgIIcT169dFUFCQiIyMFIcOHRJnzpwRu3btEocPHxZlZWXi5ZdfFr179xb5+fkiPz9flJWV6W3jxo0bwtfXVzz55JPi5MmTYt++fSIwMFCMHz9eFmP79u1FTEyMyM3NFZ9++qlwc3MTGzdurPf4Tp48KQCIX375RVP2ww8/CADi9OnTQgghNm7cKHx8fMTu3bvFuXPnxO7du0XHjh3Fli1bhBBC5OXlCQAiOztbCCHE5cuXhZubm4iNjRW5ubnio48+Ep07dxYLFy7U7GP27NnC09NTbNmyRfzyyy/i0KFDIjk5WW97VVVVYvfu3Zp48vPzxR9//CHKysqEh4eH+Pe//63Z5m+//SacnJzE/v37DR6r3t9ha3bqlPa8+OefJq1iznPfPffcI2JiYmRlwcHBYs6cOQbrz549WwQHB8vKXnjhBXHvvfca3UdVVZVwd3cX7733XqP3awjPfTz38dxnZXSv+9TTyy83enNNOfcx6TYjXpATWSH1STcqqsmb4nfcsAZdeJaWGv5P0RJTaWmDjmv8+PHC3t5etG3bVjONGjVKDBkyRISFhenV171o/Oc//ync3d3F1atXDW574cKF4u67765zGxs3bhSenp6iVCfuzz//XLRp00YUFBRoYgwICBBVVVWaOk899ZQYPXq0ScfYp08fsXjxYs3y3LlzRf/+/TXLfn5+YseOHbJ1lixZIiIiIoQQ+hee8+bNE3fccYeo0bnIX79+vWjXrp2orq4WJSUlwtnZWXOhWVvt7R04cEAAENeuXZPVe/HFF8WwYcM0ywkJCSIoKEi2X12t7sKzLrpJd3m5SauY69xXXl4u7O3txZ49e2Tl06dPF4MHDza4TmRkpJg+fbqsbM+ePcLBwUFUVFQYXKekpES4uLiITz/9tNH7FUKIP//8UxQXF2umS5cu8dwneO4Tguc+q/HWW/p//7NnN3pzTTn38fZyImqdFBqnkWzbAw88gJycHM20du1aAIBKpapzvZycHPTt2xcdO3Zs9L5zc3Nx9913o23btpqyQYMGoaamBqdPn9aU9e7dG/Y6t8/5+PigsLDQpH2MHTsW27dvBwAIIbBz506MHTsWAPDbb7/h0qVLmDRpEtq1a6eZli5dirNnzxqNOSIiQjY28aBBg1BaWorLly8jNzcX5eXleOihh0z/IAyYMmUK0tLSNLcLb968WdP5EzWAwp9XUVERqqur4eXlJSv38vJCQUGBwXUKCgoM1q+qqkJRUZHBdebMmYNu3bohKiqq0fsFgPj4eHh4eGgmPz+/eo/RVvHcx3OfTXrtNeDKFeDvf9eWKTRWOZ/OJ6LWiUm3dXBzA3Sey7P4vhuobdu26NWrl8Hyurg2Q2+pQgijF1K65Y61/rbt7OxQU1Nj0j6eeeYZzJkzBydOnMDNmzdx6dIlPP300wCg2UZycjIGDBggW8/eyDNyhmIWt54htrOza5bPBQD69u2Lu+++G1u3bsXQoUNx8uRJfPrpp82ybbI8Q38zdSURdf2N1bZy5Urs3LkTGRkZcKnVoVJD9zt37lzExcVplktKSkxPvHnuMxnPfcbx3GcCX1/gn/8ENm6UlhV6ppst3UTUOtlA0t3cPfj++OOPGDlyJHr06AE7OzskJCTobaOqqgoLFixAYGAgXF1dERQUhMWLF5t84dJgdnZA27bKTBZsCejTpw9ycnLw+++/G3zfyckJ1dXVdW7jzjvvRE5ODm7cuKEp+/rrr9GmTRvcfvvtzRJn9+7dMXjwYGzfvh3bt29HVFSUpvXPy8sL3bp1w7lz59CrVy/ZVLsXY92YDx8+rLnYBIDDhw/D3d0d3bp1w2233QZXV1fs27fPpPicnJwAwOBnNXnyZGzevBmbNm1CVFRUi251bFZW1JFa586dYW9vr9e6XFhYqNcKrebt7W2wvoODAzp16iQrX716NZYvX460tDT06dOnSfsFpM7F2rdvL5tMxnMfAJ77eO5TAJNuIiILsvKk2xw9+JaVlSEoKAhvvfUWvL29DW5nxYoVSEpKwrp165Cbm4uVK1di1apVeOedd8xynK3FmDFj4O3tjccffxxff/01zp07h927dyMrKwsA0KNHD+Tl5SEnJwdFRUV6vdEC0u2PLi4uGD9+PH744QccOHAAL730EsaNG1dnYtBQY8eOxfvvv48PPvgAzz77rOy9RYsWIT4+Hv/4xz/w888/4+TJk9i8eTPWrFljcFuxsbG4dOkSXnrpJfz000/4+OOPsXDhQsTFxaFNmzZwcXHBa6+9htmzZ2Pr1q04e/Ysjhw5ghQjw/wFBATAzs4On332GX777TdZ78Vjx47FlStXkJycjIkTJzbb59GqKJx0Ozk5ITw8HOnp6bLy9PR0DBw40OA6ERERevXT0tKgUqlkLZ+rVq3CkiVLsHfvXr1bohuzXzINz30891kdhW4vZ0dqZsROloiskLojjWefbfKmbLkH34CAAPF///d/euUjRowQEydOlJU9+eST4tkGfF4N6kjNhtTVg++MGTP0yqHTEZAQQpw/f16MHDlStG/fXri5uQmVSiW++eYbIYTUIdPIkSNFhw4dBACxefNmg9v4/vvvxQMPPCBcXFxEx44dxZQpU8T169frjHHGjBliyJAhJh/ntWvXhLOzs3Bzc5NtW2379u0iLCxMODk5CU9PTzF48GBNB1S1O/8RQoiMjAzRv39/4eTkJLy9vcVrr70mKisrNe9XV1eLpUuXioCAAOHo6Cj8/f3F8uXLjW5v8eLFwtvbW9jZ2cl6LxZCiHHjxomOHTuKP+vphduW/w6b3Y8/as+L1dUmrWLOc9/7778vHB0dRUpKijh16pSYOXOmaNu2rTh//rwQQog5c+aIcePGaeqfO3dOuLm5iVmzZolTp06JlJQU4ejoKD788ENNnRUrVggnJyfx4YcfanrJzs/Pl/1917dfU/DcJ+G5T8Jzn5VRn+eWLGn0Jth7uZVi0k1khdQn3eefb/KmbLkHX2NJd3x8vAgICNAMk5KTkyO6du2q12trXVrqhSdZv6ioKPHSSy/VW49/hzqsLOkWQurlOSAgQDg5OYl+/fqJzMxMzXvjx4/XS6QyMjJE3759hZOTk+jRo4fYsGGD7P2AgAABQG/SHb6pvv2aguc+UgrPfSZQn+eWLWv0Jppy7mNHakTUOlnx7eXm6MHXx8fHpH2/9tprKC4uRnBwMOzt7VFdXY1ly5ZhzJgxRtcpLy+X3RJYUlJi0r6Imsvvv/+OtLQ07N+/H+vWrVM6HNtiRc90q8XGxiI2Ntbge1u2bNErGzJkCE6cOGF0e+fPn2/yfomsEc99jaDQM91MuomodbLipFvNnD34GrNr1y5s27YNO3bsQO/evZGTk4OZM2fC19cX48ePN7hOfHw83nzzTZP3Qco4dOgQhg0bZvT9UqV6Um4G/fr1w7Vr17BixQrccccdSodju6wk6SZqTjz3kQyTbiIiCxgxAvj8cyAmRulIjDJ3D751efXVVzFnzhzNUCl33XUXLly4gPj4eKNJd5OGzSGLUalUyMnJUToMszC1JZMMCAqSXm3gh0iixuC5jwAA/foBJ04AI0cqsnsm3UTUunz8MXDtGtC5s9KRGKXbk+4TTzyhKU9PT8djjz1mcJ2IiAi9sTkN9eBbn7KyMrSp1bOnvb19nUOGOTs7w9nZ2eR9kDJcXV0NjrNLrZyrK1BSAjjwkpBaJp77CADwzTfSua5jR0V2zzMsEbUu9vZWnXCrxcXFYdy4cVCpVIiIiMDGjRtx8eJFxNxqoZ87dy6uXLmCrVu3AgBiYmKwbt06xMXFYcqUKcjKykJKSgp27typ2WZFRQVOnTqlmb9y5QpycnLQrl07zQXJo48+imXLlsHf3x+9e/dGdnY21qxZw2FIiFoyd3elIyAiMi8HB8USboBJNxGRVRo9ejSuXr2KxYsXIz8/H6GhoUhNTUVAQAAAID8/XzZmd2BgIFJTUzFr1iysX78evr6+WLt2LUbq3Eb166+/om/fvprl1atXY/Xq1RgyZAgyMjIAAO+88w5ef/11xMbGorCwEL6+vnjhhRfwxhtvNOvxCd3Om4gsjH9/pBT+7ZGS+PenHDvBT99sSkpK4OHhgeLiYrRv317pcIiomfE7blhdn0t1dTV+/vlndO3atUHPmhM1p6tXr6KwsBC333477BXqVMeW8dxnWF2fS2VlJX755Rf4+vrCw8NDoQipteO5r2macu5jSzcREVmMvb09OnTogMLCQgCAm5tbg3pXJ2oKIQTKyspQWFiIDh068KKTLMbBwQFubm747bff4OjoqNd3BpE58dynPCbdRERkUd7e3gCgSbyJLK1Dhw6av0MiS7Czs4OPjw/y8vJw4cIFpcOhVornPuUw6SYiIotSX3x27doVlZWVSodDrYyjoyNbeUgRTk5OuO2221BRUaF0KNQK8dynLCbdRESkCHt7e14AEFGr0qZNG7i4uCgdBhFZGB8oISIiIiIiIjITJt1EREREREREZsKkm4iIiIiIiMhM+Ey3GamHQC8pKVE4EiIyB/V3W/1dJwnPfUQtG899hvHcR9SyNeXcx6TbjK5fvw4A8PPzUzgSIjKn69evw8PDQ+kwrAbPfUStA899cjz3EbUOjTn32Qn+TGk2NTU1+PXXX+Hu7g47O7s665aUlMDPzw+XLl1C+/btLRShZfEYbV9LPz6gYccohMD169fh6+uLNm34tI4az31yLf0YW/rxATzG2njuM4znPrmWfowt/fgAHmNtTTn3saXbjNq0aYPu3bs3aJ327du32D9qNR6j7WvpxweYfoxs5dHHc59hLf0YW/rxATxGXTz36eO5z7CWfowt/fgAHqOuxp77+PMkERERERERkZkw6SYiIiL6//buPSyqav0D+DvCzDAgiFxUFAQVBbEoURGkJJ8QNO+VnswL5iU1y8vjybSbpmV6ysvJY3r0qKgnryGWmUii4IWU5KIpgxCCWo4XVDJEUJjv7w9+sw+bucAII3vw/TzPPI+z95q919przddZe5i9GWOMMQvhSbdEKJVKmj9/PimVyoauisVwG61fY28f0ZPRRil5Eo53Y29jY28fEbeR1b8n4Xg39jY29vYRcRvrE19IjTHGGGOMMcYYsxD+ppsxxhhjjDHGGLMQnnQzxhhjjDHGGGMWwpNuxhhjjDHGGGPMQnjSbUFff/01tWvXjuzs7Khbt2507Ngxk+WTk5OpW7duZGdnR+3bt6e1a9fqlYmNjaWAgABSKpUUEBBAcXFxlqp+jcxp3549e6hv377k7u5OTk5OFBoaSgcPHhSViYmJIZlMpvcoLS21dFOMMqeNSUlJBuufnZ0tKielPiQyr43jxo0z2MYuXboIZaTUj0ePHqVBgwZR69atSSaT0d69e2t8jbW9D6WIs+9/OPv+x1r70Npyj4izryE09twj4uyrjrNPen0o6ewDs4gdO3ZALpdj/fr1yMrKwowZM+Dg4IBLly4ZLH/x4kXY29tjxowZyMrKwvr16yGXy/Htt98KZVJSUmBjY4PFixdDrVZj8eLFsLW1xcmTJx9XswTmtm/GjBlYunQpUlNTkZOTg3nz5kEulyM9PV0os2nTJjg5OUGj0YgeDcXcNh45cgREhAsXLojqX15eLpSRUh8C5rexqKhI1LYrV67AxcUF8+fPF8pIqR9//PFHfPDBB4iNjQURIS4uzmR5a3sfShFnnxhnXyVr7kNryz2As+9xa+y5B3D2GcLZJ70+lHL28aTbQoKDgzFlyhTRMn9/f8ydO9dg+Tlz5sDf31+0bPLkyQgJCRGejxgxAv369ROViYqKwmuvvVZPta49c9tnSEBAAD755BPh+aZNm9CsWbP6qmKdmdtGXfjeuXPH6Dal1IdA3fsxLi4OMpkMBQUFwjKp9aNObcLX2t6HUsTZVzPOvkrW2ofWlHsAZ9/j0NhzD+DsM4SzT3p9WJXUso//vNwCHjx4QGlpaRQZGSlaHhkZSSkpKQZf8/PPP+uVj4qKotOnT9PDhw9NljG2TUt5lPZVp9Vq6a+//iIXFxfR8uLiYvL29iZPT08aOHAgZWRk1Fu9zVGXNnbt2pU8PDzoxRdfpCNHjojWSaUPieqnHzds2EARERHk7e0tWi6VfjSXNb0PpYizr2acff9jrX3Y2HKPyLreh1LT2HOPiLOPs68SZ5+4jLl9yJNuCygsLKSKigpq2bKlaHnLli3p2rVrBl9z7do1g+XLy8upsLDQZBlj27SUR2lfdcuWLaN79+7RiBEjhGX+/v4UExND33//PW3fvp3s7OwoLCyMcnNz67X+tfEobfTw8KB169ZRbGws7dmzh/z8/OjFF1+ko0ePCmWk0odEde9HjUZDBw4coIkTJ4qWS6kfzWVN70Mp4uyrGWdf7bZpKZx7hlnT+1BqGnvuEXH2cfZx9tVHH9rWrarMFJlMJnoOQG9ZTeWrLzd3m5b0qHXZvn07LViwgL777jtq0aKFsDwkJIRCQkKE52FhYRQUFESrVq2ir776qv4qbgZz2ujn50d+fn7C89DQULpy5Qp9+eWX1Lt370fa5uPwqPWJiYkhZ2dnGjp0qGi5FPvRHNb2PpQizj7DOPusvw8ba+4RWd/7UGoae+4RcfZVx9knzT401+N6L/I33Rbg5uZGNjY2emdAbty4oXemRKdVq1YGy9va2pKrq6vJMsa2aSmP0j6dnTt30oQJE2jXrl0UERFhsmyTJk2oR48eDXK2rC5trCokJERUf6n0IVHd2giANm7cSGPGjCGFQmGybEP2o7ms6X0oRZx9xnH2WX8fNtbcI7Ku96HUNPbcI+Ls4+zj7KuPPuRJtwUoFArq1q0b/fTTT6LlP/30E/Xq1cvga0JDQ/XKJyQkUPfu3Ukul5ssY2yblvIo7SOqPNM5btw42rZtGw0YMKDG/QCgzMxM8vDwqHOdzfWobawuIyNDVH+p9CFR3dqYnJxMv/32G02YMKHG/TRkP5rLmt6HUsTZZxhnn/X3IVHjzT0i63ofSk1jzz0izj7OPs6+eulDsy67xmpNd1n+DRs2ICsrCzNnzoSDg4Nwxb+5c+dizJgxQnndJetnzZqFrKwsbNiwQe+S9SdOnICNjQ2WLFkCtVqNJUuWNPhtB2rbvm3btsHW1harV68W3VKgqKhIKLNgwQLEx8cjLy8PGRkZeOONN2Bra4tTp0499vYB5rdxxYoViIuLQ05ODs6dO4e5c+eCiBAbGyuUkVIfAua3UWf06NHo2bOnwW1KqR//+usvZGRkICMjA0SE5cuXIyMjQ7g9hrW/D6WIs4+zT+rZ19hzD+Dse9wae+4BnH0AZ58hUutDKWcfT7otaPXq1fD29oZCoUBQUBCSk5OFddHR0QgPDxeVT0pKQteuXaFQKODj44M1a9bobXP37t3w8/ODXC6Hv7+/6I39uJnTvvDwcBCR3iM6OlooM3PmTLRt2xYKhQLu7u6IjIxESkrKY2yRPnPauHTpUnTo0AF2dnZo3rw5nnvuOezfv19vm1LqQ8D8cVpUVASVSoV169YZ3J6U+lF3Ow9j464xvA+liLMvXHjO2fc/1tqHgHXlHsDZ1xAae+4BnH2cffqk1odSzj4Z8P+/FmeMMcYYY4wxxli94t90M8YYY4wxxhhjFsKTbsYYY4wxxhhjzEJ40s0YY4wxxhhjjFkIT7oZY4wxxhhjjDEL4Uk3Y4wxxhhjjDFmITzpZowxxhhjjDHGLIQn3YwxxhhjjDHGmIXwpJsxxhhjjDHGGLMQnnQ/oQDQm2++SS4uLiSTySgzM5NeeOEFmjlzpsnX+fj40MqVKx9LHZmYTCajvXv3EhFRQUGB0G91NWbMGFq8eLFZr4mJiSFnZ+c679uSxo0bR0OHDq1V2Rs3bpC7uzv98ccflq0UaxCcd9ZHSnlXk6SkJJLJZFRUVFSv260PtRnnOr/++it5enrSvXv3LFspZlU4P62PNeWnuaq2zeo+u4FJikajwdtvv4127dpBoVDA09MTAwcOxKFDh+p1Pz/++CPkcjlOnDgBjUaDhw8f4tatW7h7967J13l7e2PFihX1WhcmNn/+fDzzzDN6yzUaDUpLSwEA+fn5ICJkZGTUaV9nzpxB8+bNDfb7N998gyZNmmDy5Ml66zZt2oRmzZrVad+W3mZRURHu3LlT6/KzZs3ChAkT6m3/rGacd6yh8y48PBxEpPcwlHvGlJWVQaPRQKvV1lj2yJEjICKzsqkuajPOqxo2bBgWLVpkwRqx+sL5yRoqP3XbNPWYP3++0W3VpU5EhLi4OOG5NX12s33Mc3xmQkFBAYWFhZGzszP94x//oMDAQHr48CEdPHiQpk2bRtnZ2fW2r7y8PPLw8KBevXoJy1xcXOpt+43RgwcPSKFQNNj+W7VqVe/b/Ne//kXDhw8nR0dHvXUbN26kOXPm0Jo1a2j58uVkb29f7/u3hIqKCpLJZNSsWTOzXvfGG29QcHAwffHFF9S8eXML1Y7pcN5J25OUd5MmTaKFCxeKlpmTdwqFwiL1rQ/mjvM33niDpkyZQvPmzSMbGxsL1YrVFeentDX2/LS3tyeNRiOs+/LLLyk+Pp4OHTokLGvatGm918EQq/rs1tCzfvY//fv3R5s2bVBcXKy3rupZ8UuXLmHw4MFwcHCAo6Mjhg8fjmvXrgnrdWe+tmzZAm9vbzg5OeFvf/ubcFYyOjpadDbK29sbQOUZ/xkzZgjbuX79OgYOHAg7Ozv4+Pjgv//9r96Zy6KiIkyaNAnu7u5wdHREnz59kJmZWeu6AEBFRQWWLFmCDh06QKFQwMvLC59++qmw/vfff8eIESPg7OwMFxcXDB48GPn5+UaPo+6bhB9++AGBgYFQKpUIDg7G2bNnReVOnDiB559/HnZ2dvD09MQ777wjOvbe3t5YtGgRoqOj4eTkhLFjxwIAjh8/jt69e0OlUsHZ2RmRkZG4ffs2AECr1WLp0qVo164d7OzsEBgYiN27d+vV7dChQ+jWrRtUKhVCQ0ORnZ0NoPLbXqp2tnDTpk0AxGf3DJ0lPH/+PPr37w8HBwe0aNECo0ePxs2bN40ep4qKCjg7O+OHH37QW5efnw+VSoWioiL07NkTmzdvFq039K30999/j6CgICiVSrRr1w4LFizAw4cPhfXLli3DU089BXt7e3h6emLq1Kn466+/RMeFDJwlvX37NsaMGQNnZ2eoVCr069cPOTk5enXZt28fOnfuDBsbG1y8eBHR0dEYMmSIqL2mxhkA+Pj4YMOGDUaPGas/nHecd1LIu+rjoDrdvrdv347Q0FAolUoEBATgyJEjeu3UjduCggIMHDgQzs7OsLe3R0BAAPbv32/w26Ho6GizjmV8fDyeffZZ2NnZoU+fPrh+/Tp+/PFH+Pv7w9HREa+99hru3btntH2lpaV499134enpCYVCAV9fX/znP/8R1peVlUGpVCIxMdHoMWENj/OT81MK+alT/Rv3iooKfPLJJ2jTpg0UCgWeeeYZHDhwQFhfvd7h4eEAgNTUVERERMDV1RVOTk7o3bs30tLSRPuq2jYda/nsxpNuibh16xZkMhkWL15sspxWq0XXrl3x3HPP4fTp0zh58iSCgoKEAQtUDv6mTZvi5Zdfxq+//oqjR4+iVatWeP/99wFUBt/ChQvh6ekJjUaDGzduANAP0f79++Opp55CSkoKTp8+jV69ekGlUgkhqtVqERYWhkGDBuGXX35BTk4OZs+eDVdXV9y6datWdQGAOXPmoHnz5oiJicFvv/2GY8eOYf369QCAe/fuoWPHjhg/fjzOnj2LrKwsvP766/Dz80NZWZnBY6QLqs6dOyMhIQFnz57FwIED4ePjgwcPHgAAzp49i6ZNm2LFihXIycnBiRMn0LVrV4wbN07Yji70v/jiC+Tm5iI3NxcZGRlQKpWYOnUqMjMzce7cOaxatUoIq/fffx/+/v6Ij49HXl4eNm3aBKVSiaSkJFHdevbsiaSkJJw/fx7PP/88evXqBQAoKSnB7Nmz0aVLF2g0Gmg0GpSUlAAwHaJXr16Fm5sb5s2bB7VajfT0dPTt2xd9+vQxOpYyMjJARKL/gHU++ugjvPrqqwCAVatWoXfv3qL11Sfd8fHxcHJyQkxMDPLy8pCQkAAfHx8sWLBAKLNixQocPnwYFy9eRGJiIvz8/DB16lQAlR/0Vq5cCScnJ6Hdugn54MGD0blzZxw9ehSZmZmIioqCr6+v0JebNm2CXC5Hr169cOLECWRnZ6O4uFhv0m1qnOmMGDFCNAaYZXDecd4B0si72k66PT098e233yIrKwsTJ06Eo6MjCgsLRe3UTXYGDBiAvn374uzZs8jLy8O+ffuQnJyM8vJyxMbGgohw4cIFaDQaFBUVmXUsQ0JCcPz4caSnp8PX1xfh4eGIjIxEeno6jh49CldXVyxZssRo+0aMGAEvLy/s2bMHeXl5OHToEHbs2CFqc3BwsCi7mbRwfnJ+AtLIz6rjqOqke/ny5XBycsL27duRnZ2NOXPmQC6XC1+YpKamCicUNBqNMAYSExOxdetWZGVlISsrCxMmTEDLli1FJ14MTbqt5bMbT7ol4tSpUyAi7Nmzx2S5hIQE2NjY4PLly8Ky8+fPg4iQmpoKoHLw29vbiwbpu+++i549ewrPV6xYIZyx1KkaohcuXAAR4eTJk8J6tVoNIhJCNDExEU5OTsLvRnQ6dOiAf//737Wqy927d6FUKvUmPzobNmyAn5+f6LdyZWVlUKlUOHjwoMHX6IKq6geJW7duQaVSYefOnQCAMWPG4M033xS97tixY2jSpAnu378PoDJEhw4dKiozcuRIhIWFGdxvcXEx7OzskJKSIlo+YcIEjBw5UlS3qr+52r9/P4hI2K+x3+iYCtGPPvoIkZGRovJXrlwRPtwZEhcXBxsbG73fIVZUVMDLywt79+4FANy8eRNyuRy5ublCmeqT7ueff17vA8DWrVvh4eFhcN8AsGvXLri6uhrdJgDk5OSAiHDixAlhWWFhIVQqFXbt2iW8johEZ8wBiCbdNY0znVmzZuGFF14wWYbVHecd551U8i48PBxyuRwODg6iR0xMjGjfVSeyDx8+hKenJ5YuXSpqp27S/fTTTxudtBr6TfejHsvPP/8cRIS8vDxh2eTJkxEVFSVqX/Vx/tNPPxmsm86wYcOs4gPsk4rzk/NTKvmpU70erVu3xmeffSYq06NHD7z11lsG62RMeXk5HB0dsW/fPoNt07GWz278m26JAEBElVflM0WtVpOXlxd5eXkJywICAsjZ2ZnUajX16NGDiCqvGln1d2seHh5048aNWtdHrVaTra0tde/eXVjm7+8vumJ1WloaFRcXk6urq+i19+/fp7y8POG5qbqo1WoqKyujF1980WA90tLS6LffftP7DV5paaloH4aEhoYK/3ZxcSE/Pz9Sq9Wi7X7zzTdCGQCk1WopPz+fOnfuTEQkaj8RUWZmJg0fPtzg/rKysqi0tJT69u0rWv7gwQPq2rWraFlgYKDwbw8PDyKqvApj27ZtTbbJmLS0NDpy5IjB39Dk5eVRp06d9Jbfv3+flEql3phLSEige/fuUf/+/YmIyM3NjSIjI2njxo1Gr1qZlpZGv/zyC3322WfCsoqKCiotLaWSkhKyt7enI0eO0OLFiykrK4vu3r1L5eXlVFpaSvfu3SMHBweD29WNw549ewrLXF1dRX1JVPmbyqrH1NB2TI0zHZVKRSUlJSbLsLrjvOO8k0reERGNGjWKPvjgA9GyFi1aiJ5XPb66sVI1g6qaPn06TZ06lRISEigiIoJeeeUVk/n0qMeyZcuWZG9vT+3btxctS01NNbifzMxMsrGxofDwcKN1IeIclDrOT85PKeVndXfv3qWrV69SWFiYaHlYWBidOXPG5Gtv3LhBH3/8MR0+fJiuX79OFRUVVFJSQpcvXzb5OmvJLJ50S0THjh1JJpORWq02eZsjAAYHffXlcrlctF4mk5FWq611fWoT6lqtljw8PCgpKUlvXdWwNVUXlUplsh5arZa6desmCjsdd3d3k681RNcerVZLkydPpunTp+uVqRpk1SeDpuqra9P+/fupTZs2onVKpVL0vOoxqVqnR6XVamnQoEG0dOlSvXW6kK7Ozc2NSkpK9C74sXHjRrp9+7boQkJarZYyMjJo0aJFBi+uo9Vq6ZNPPqGXX35Zb52dnR1dunSJXnrpJZoyZQotWrSIXFxc6Pjx4zRhwgR6+PCh0XbpxqGh5VXHpkqlMjlWaxpnOrdv336kccXMw3lnfB+cdzWrz7wjImrWrBn5+vqaXQ9j42XixIkUFRVF+/fvp4SEBPr8889p2bJl9M477xgsX5djac7YNycHO3ToUKuy7PHj/DS+D87PmtV3fhpTfTwYG49VjRs3jm7evEkrV64kb29vUiqVFBoaSg8ePDD5Omv57Mb36ZYIFxcXioqKotWrVxu8R6bu/p8BAQF0+fJlunLlirAuKyuL/vzzT+FsW33o3LkzlZeX0+nTp4VlFy5cEN2HNCgoiK5du0a2trbk6+sreri5udVqPx07diSVSkWJiYkG1wcFBVFubi61aNFCbx81XZ365MmTwr/v3LlDOTk55O/vL2z3/Pnzetv09fU1GSiBgYFG6xoQEEBKpZIuX76st82qZ5prolAoqKKiotblq7bHx8dHb9/GvkV+9tlniahy/OjcunWLvvvuO9qxYwdlZmaKHsXFxXTgwAGj+79w4YLB49mkSRM6ffo0lZeX07JlyygkJIQ6depEV69erbHdAQEBVF5eTqdOnRLVMScnx6zxXtM40zl37pzeWWZW/zjvOO90GjLvzFH1+JaXl1NaWppwfA3x8vKiKVOm0J49e2j27Nm0fv16IiLheFdtc30dy5o8/fTTpNVqKTk52WQ5zkFp4/zk/NSRYn46OTlR69at6fjx46LlKSkpwrgzlINERMeOHaPp06fTSy+9RF26dCGlUkmFhYU17tNaMosn3RLy9ddfU0VFBQUHB1NsbCzl5uaSWq2mr776SvjTl4iICAoMDKRRo0ZReno6paam0tixYyk8PFzvT1vqws/Pj/r160eTJk2iU6dOUVpaGk2cOFF05i4iIoJCQ0Np6NChdPDgQSooKKCUlBT68MMPReFrip2dHb333ns0Z84c2rJlC+Xl5dHJkydpw4YNRFT5Z39ubm40ZMgQOnbsGOXn51NycjLNmDGDfv/9d5PbXrhwISUmJtK5c+do3Lhx5ObmJpwVfu+99+jnn3+madOmUWZmJuXm5tL3339v9JsInXnz5tEvv/xCb731Fp09e5ays7NpzZo1VFhYSI6OjvT3v/+dZs2aRZs3b6a8vDzKyMig1atX0+bNm2t1PIgq/7wqPz+fMjMzqbCwkMrKymp8zbRp0+j27ds0cuRISk1NpYsXL1JCQgKNHz/eaCC7u7tTUFCQKBi3bt1Krq6uNHz4cHrqqaeER2BgIA0cOFDol+o+/vhj2rJlCy1YsIDOnz9ParWadu7cSR9++CEREXXo0IHKy8tp1apVdPHiRdq6dSutXbtWr93FxcWUmJhIhYWFVFJSQh07dqQhQ4bQpEmT6Pjx43TmzBkaPXo0tWnThoYMGVLbQ1rjOCMiKikpobS0NIqMjKz1dtmj47zjvCNq2LzTKSkpoWvXroked+7cEZVZvXo1xcXFUXZ2Nk2bNo3u3LlD48ePN7ivmTNn0sGDByk/P5/S09Pp8OHDwodNb29vkslk9MMPP9DNmzepuLi43o5lTXx8fCg6OprGjx9Pe/fupfz8fEpKSqJdu3YJZQoKCuiPP/6giIiIetsvq3+cn5yfRNLIT0PeffddWrp0Ke3cuZMuXLhAc+fOpczMTJoxYwYRVf58R6VSUXx8PF2/fp3+/PNPIiLy9fWlrVu3klqtplOnTtGoUaNq/AsHq/rs9rh/RM5Mu3r1KqZNmwZvb28oFAq0adMGgwcPFt2epLa3gKiq+oUwarowBgBoNBoMGDAASqUSbdu2FW7jUPUWEHfv3sU777yD1q1bQy6Xw8vLC6NGjRIu3FGbulRUVODTTz+Ft7c35HI52rZtK7ool0ajwdixY+Hm5galUon27dtj0qRJ+PPPPw0eQ93FJ/bt24cuXbpAoVCgR48eehfaSk1NRd++fdG0aVM4ODggMDBQdOGH6m3VSUpKQq9evaBUKuHs7IyoqCjhojharRb//Oc/4efnB7lcDnd3d0RFRSE5OVlUt6oX0dFdFVJ3W4vS0lK88sorcHZ2NusWEDk5ORg2bJhway1/f3/MnDnT6IUvAGDt2rUICQkRnj/99NPChS6qi42Nha2tLa5du2bwomfx8fHCFUudnJwQHByMdevWCeuXL18ODw8PqFQqREVFYcuWLXrHYsqUKXB1dTV4y7BmzZoJrzV0y7DqDN0yzNQ427ZtG/z8/IweK1b/OO847xoy74DKcUDVbl9DRMLFyHT73rZtG3r27AmFQoHOnTuLbqlVvZ1vv/02OnToAKVSCXd3d4wZM0a40jkALFy4EK1atYJMJhPdMszcY2ko+6qPwerj/P79+5g1axY8PDyEW4Zt3LhRWL948WLRhdiYdHF+cn42dH7qmLplmFwu17tlGACsX78eXl5eaNKkiXBF/fT0dHTv3h1KpRIdO3bE7t279Y5t1bYB1vXZTQYY+dEkY1YqKSmJ+vTpQ3fu3BH9VojpKy0tJT8/P9qxY4foQiJPouDgYJo5cya9/vrrDV0VxmqN8672HiXvCgoKqF27dpSRkSH8iWVjVVZWRh07dqTt27frXQSJscaI87P2pPp50Zo+u/GflzP2BLOzs6MtW7bU6jczjdmNGzfo1VdfpZEjRzZ0VRhjFsJ5Z9qlS5fogw8+4Ak3Y0yPFPPT2j678dXLGXvC1XT7mCdBixYtaM6cOQ1dDcaYhXHeGdepUyeDtwtijDEi6eWntX124z8vZ4wxxhhjjDHGLIT/vJwxxhhjjDHGGLMQnnQzxhhjjDHGGGMWwpNuxhhjjDHGGGPMQnjSzRhjjDHGGGOMWQhPuhljjDHGGGOMMQvhSTdjjDHGGGOMMWYhPOlmjDHGGGOMMcYshCfdjDHGGGOMMcaYhfCkmzHGGGOMMcYYs5D/A7XRfhdKYRCzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvHUlEQVR4nO3deVzUdf4H8NdwDXiACAMDyoAnKqaSVKKrZpSm5mbXbuWWWdmaltcahbqlq0nuWqFZupoXmtqBuvZLyw5BM80L8yK1REAcHPAARB2uz+8Pl1m/MxwzwwzfOV7Px2Me2/czn8/3+/4O8tl58zm+CiGEABERERERERHZnIfcARARERERERG5KibdRERERERERHbCpJuIiIiIiIjITph0ExEREREREdkJk24iIiIiIiIiO2HSTURERERERGQnTLqJiIiIiIiI7IRJNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqS7EXbt2oURI0YgPDwcCoUCW7Zssev1kpOTcdddd6Fly5YICQnByJEjcerUKbtek4ioBvs8InIX7O+IyJaYdDdCWVkZevbsicWLFzfJ9TIyMjBhwgTs27cP3377LSorKzF48GCUlZU1yfWJyL2xzyMid8H+johsSSGEEHIH4QoUCgU2b96MkSNHGsrKy8sxc+ZMfPLJJ7h69Sq6d++O+fPn495777XJNQsLCxESEoKMjAwMGDDAJuckIjIH+zwichfs74iosbzkDsCVjRkzBufOncPGjRsRHh6OzZs348EHH8SxY8fQqVOnRp+/uLgYANC6detGn4uIqLHY5xGRu2B/R0SW4Ei3jRj/FfT3339Hp06dcP78eYSHhxvq3X///bj77rsxb968Rl1PCIGHH34YV65cwe7duxt1LiIiS7HPIyJ3wf6OiBqLI912cvjwYQgh0LlzZ0m5Xq9HUFAQAODcuXNo165dveeZMGFCreuJXnnlFRw9ehQ//vij7YImIrIS+zwichfs74jIUky67aS6uhqenp44dOgQPD09Je+1aNECANCmTRtkZWXVe57AwECTsldffRVbt27Frl270LZtW9sFTURkJfZ5ROQu2N8RkaWYdNtJbGwsqqqqoNPp0L9//1rreHt7o0uXLmafUwiBV199FZs3b0Z6enqDf0ElImoq7POIyF2wvyMiSzHpboRr167ht99+MxxnZ2fjyJEjaN26NTp37oxRo0bh2WefxbvvvovY2FgUFRXhhx9+wB133IFhw4ZZfL0JEyZg/fr1+M9//oOWLVuioKAAABAQEAA/Pz+b3RcRUW3Y5xGRu2B/R0Q2JchqO3fuFABMXqNHjxZCCFFeXi7efPNNERUVJby9vYVarRaPPPKIOHr0qFXXq+1aAMSqVatsd1NERHVgn0dE7oL9HRHZEncvJyIiIiIiIrITD7kDICIiIiIiInJVTLqJiIiIiIiI7IQbqVmhuroaFy5cQMuWLaFQKOQOh4gcnBACpaWlCA8Ph4eHc/2tk/0dEVnKWfs89ndEZClz+zsm3Va4cOECIiIimvSaaWlpePTRRw3Hb7/9NmbOnNmkMRBR4+Tl5Tndc1fl6O+IyDU4W5/H/o6IrNVQf8ek2wotW7b87395AGiav4RqNBrJcU5OHgDPJrk2uZZ2ze+3uE122Xd2iMSdCADVt/UdzkOO/o6ch5dna4vbVFZdtkMk5Fics89jf0dkvs7NRljc5vT1L+0QidzM6++YdFvhf1OOFJAr6c7NzWuya5Nr8VB4W9GK/9ZswRmnK8rR35HzUCismTrMf0fuwtn6PPZ3RObz5PdJiYb6OybdTsDX1xchISGSsltJNxGR8+rUqRPatAmHVluAgoICFBcXyx0SEZFNXb6sQ0lJCQoLi6DT6TBhwkScO3dO7rCIqIkx6XYCta0vystj0k1Ezm306GcwY0aS4XjDho14+ulnZIyIiMh2/P39ERgYiMDAQERGRgK4tekSEbkf59lS0o1pNNKk+/Lly7h27ZpM0RAR2UZYWJjkuLCwSKZIiIhsT6VSmZQVFhbKEAkRyY1JtxOofT03EZFzU6tDJccFBQUyRUJEZHvGSwPLyspw/fp1maIhIjkx6XYCxiPdubm5MkVCRGQ7arVaclxQcFGmSIiIbE+lCpYcc5SbyH0x6XYCJSWlOHHihGFKOUe6icgVhIVJk26tVitTJEREtmc8vZxLaIjcFzdScwLvv5+C999PAQC0atUKXl78sRGRc/Pw8DCZesmRbiJyJSEh0qRbp9PJFAkRyY3Zm5O5evWq3CEQETVacHAwPD09JWVc001EroQj3URUg9PLiYioyRnvXF5VVcVRICJyKcazedjHEbkvJt1ERNTkjHcuLywsRHV1tUzREBHZHjdSI6IanF5O5GZ+v/a13CEQcedyF1FReUnuEIgclulIN5Nuch1ZZZvlDsGpcKSbiIiaHHcuJyJXx5FuIqrBkW4H99BDwzF48APIzc1Fbm4ejh8/gZMnT8odFhFRo3Ckm4hcHTdSI6IaTj/SnZ+fj7/85S8ICgpCs2bN0KtXLxw6dKjeNhkZGejduzd8fX3Rvn17LF26tImitdygQffi1Vcn4F//mo9PP12PpKTX5Q6JiKjRONJNRK4sICAAPj4+kjJupEbkvpx6pPvKlSvo168fBg0ahO3btyMkJAS///47WrVqVWeb7OxsDBs2DGPHjsW6deuwZ88ejB8/HiqVCo899ljTBW8mjSZCcpybmytTJEREtsORbiJyZcaj3ACnlxO5M6dOuufPn4+IiAisWrXKUBYVFVVvm6VLl0Kj0SAlJQUA0LVrVxw8eBALFixw0KRbIznOzc2TKRIiItsx3r2cz+gmIldy5coVvPrqZISEqKBSqdCqVQBu3Lghd1hEJBOnTrq3bt2KIUOG4IknnkBGRgbatGmD8ePHY+zYsXW22bt3LwYPHiwpGzJkCFasWIGKigp4e3vbO2yLcKSbiFzRnXfeDbVa/d9XKPbu3Sd3SERENnPp0iUsXvyh3GEQkYNw6qT77NmzWLJkCaZOnYrp06dj//79mDhxIpRKJZ599tla2xQUFCA0VDrCEhoaisrKShQVFSEsLMykjV6vh16vNxyXlJTY9kbqoFQqTaZgcqSbiFxBWVkZfv/9d/z+++9yh0JERERkV06ddFdXVyMuLg7z5s0DAMTGxuLEiRNYsmRJnUk3ACgUCsmxEKLW8hrJycmYPXu2jaI2X0REhEkZR7qJiIiIiIich1PvXh4WFoZu3bpJyrp27VpvYqpWq03WDup0Onh5eSEoKKjWNklJSSguLja88vKaZrTZeGr51atXUVpa2iTXJiIiIiIiosZz6pHufv364dSpU5Ky06dPIzIyss428fHx+PLLLyVlO3bsQFxcXJ3ruZVKJZRKZeMDtpDxJmo5ORzlJiIiIiIiciZOPdI9ZcoU7Nu3D/PmzcNvv/2G9evXY9myZZgwYYKhTlJSkmSq+bhx45CTk4OpU6ciKysLK1euxIoVKzBt2jQ5bqFe3ESNiIiIiIjIuTl10n3XXXdh8+bN2LBhA7p37445c+YgJSUFo0aNMtTRarWSZLVdu3bYtm0b0tPT0atXL8yZMweLFi3i48KIiJpIjx49cN99g9C1a1cEBgbKHQ4ROaj8/Hz85S9/QVBQEJo1a4ZevXrh0KFD9bbJyMhA79694evri/bt22Pp0qVNFK3Uvn17kJPzOw4e/Bnbt/8f+vXrJ0scROQYnHp6OQA89NBDeOihh+p8f/Xq1SZlAwcOxOHDh+0YlW1wpJuIXNHEia/ghRfGGI4XLvwAkydPlTEiIqk2Lfpb3Cb/2m47ROK+rly5gn79+mHQoEHYvn07QkJC8Pvvv6NVq1Z1tsnOzsawYcMwduxYrFu3Dnv27MH48eOhUqmafHBFo4lAWFiYYQAlJWVRk16fiByL0yfdrsw06eZINxE5P7Va+tjGixcvyhQJETmq+fPnIyIiAqtWrTKURUVF1dtm6dKl0Gg0SElJAXBrc92DBw9iwYIFTZp0KxQKBAcHS8oKC4ua7PpE5Hicenq5q+P0ciJyRWq1WnJcUMCkm4iktm7diri4ODzxxBMICQlBbGwsli9fXm+bvXv3YvDgwZKyIUOG4ODBg6ioqLBnuBKtWrUy2Zy3sLCwya5PRI6HSbeDCg4Ohp+fn6SM08uJyBWEhRkn3QV11CQid3X27FksWbIEnTp1wjfffINx48Zh4sSJSE1NrbNNQUEBQkOlM2lCQ0NRWVmJoiLTkWa9Xo+SkhLJyxZUKpVJGZNuIvfG6eUOys/PD9u3fw2NJgKRkZHw9fWFVquVOywiokbx8PBASEiIpEyrZdJNRFLV1dWIi4vDvHnzAACxsbE4ceIElixZInkqjTGFQiE5FkLUWg4AycnJmD17tg2jvsU46S4tLcXNmzdtfh0ich4c6XZQeXl5GDZsBLp374WWLQMRHKxGVVWV3GERETVKUFAQvLykf+/lSDcRGQsLC0O3bt0kZV27dq131p9arTbpT3Q6Hby8vBAUFGRSPykpCcXFxYZXXp5tlvGFhEiTbp1OZ5PzEpHz4ki3kyguLpY7BCKiRgsLC5McV1dXc9olEZno168fTp06JSk7ffo0IiMj62wTHx+PL7/8UlK2Y8cOxMXFmayxBgClUgmlUmmbgG9jPNLNTdSIiCPdRETUZIx3LtfpdJzFQ0QmpkyZgn379mHevHn47bffsH79eixbtgwTJkww1ElKSpJMNR83bhxycnIwdepUZGVlYeXKlVixYgWmTZvWpLFzpJuIjDHpJiKiJsOdy4nIHHfddRc2b96MDRs2oHv37pgzZw5SUlIwatQoQx2tViuZbt6uXTts27YN6enp6NWrF+bMmYNFixY1+TO6OdJNRMY4vZyIiJoMdy4nInM99NBDeOihh+p8f/Xq1SZlAwcOxOHDh+0YVcNUKuNndHMJDZG740g3ERE1GeORbu5cTkSuxvgJDTodk24id8eRbgekVCrx6afrkZubh5ycHOTm5uH//u8r3LhxQ+7QiIgahSPdROTqTKeXM+kmcndMuh1Q27Zt8fDDf5SUBQQEMekmIqfHNd1E5Oq4kRoRGWPS7YA0mgjJcXFxMUpKSmSKhojIdox3L+dINzmi/Gu75Q6BnJRCoUBwsPGabm6kRuTumHQ7II1GIznOzc2TKRIichSzZs3C7NmzJWWhoaF1Jq3p6ekYNGiQSXlWVha6dOlilxjNYfycbq1WK1MkRES25+npiUmTpkKlCkZISAhCQlTIz8+XOywikhmTbgdkPNKdk5MjUyRE5EhiYmLw3XffGY49PT0bbHPq1Cn4+/sbjo3XGjY1tbot1Go11Go1wsLUOH78hKzxEBHZUmVlJT76aIncYRCRg2HS7YA40k1EtfHy8jJZE92QkJAQtGrVyj4BWeHGjRvIzs5Gdna23KEQERERNQk+MswBGY905+bmyhQJETmSM2fOIDw8HO3atcOTTz6Js2fPNtgmNjYWYWFhSEhIwM6dOxusr9frUVJSInkRERERkfWYdDsg06SbI91E7u6ee+5BamoqvvnmGyxfvhwFBQXo27cvLl26VGv9sLAwLFu2DGlpadi0aROio6ORkJCAXbt21Xud5ORkBAQEGF4RERH11iciIiKi+imEEELuIJxNSUkJAgICAHgCUNj8/GVlxWjWrJnh+A9/uBd79uyx+XWIqKkIAFUoLi6WrK9ujLKyMnTo0AGJiYmYOnWqWW1GjBgBhUKBrVu31llHr9dDr9cbjktKSv6beNunvyMiV2T7Pq8p2Pv7HRG5IvP6O450O5igoCBJwg1wejkRmWrevDnuuOMOnDlzxuw2ffr0abC+UqmEv7+/5EVERERE1mPS7WCMN1GrqqrChQsXZIqGiByVXq9HVlaWySO46pOZmWlRfVvr06cPEhLuQ0xMDIKCgmSLg4jIXlJTV+P8+XM4fPgAvvlmG5544nG5QyIiB8Ddyx2M8Xru/Px8VFVVyRQNETmKadOmYcSIEdBoNNDpdJg7dy5KSkowevRoAEBSUhLy8/ORmpoKAEhJSUFUVBRiYmJQXl6OdevWIS0tDWlpabLdw8yZSRg+fJjheMaMv2PevHdki4eIyNbatm2DNm1uvQBg27avZY6IiBwBk24HYzzSnZPDqeVEBJw/fx5PPfUUioqKoFKp0KdPH+zbtw+RkZEAAK1WK1mKUl5ejmnTpiE/Px9+fn6IiYnBV199hWHDhtV1CbszftxZQcFFmSIhIrIPlSpYclxYWChTJETkSJh0OxjuXE5Etdm4cWO9769evVpynJiYiMTERDtGZDm1OlRyrNVqZYqEiMg+QkJCJMc6nU6mSIjIkXBNt4PhM7qJyBV5eHggNFSadHOkm4hciYeHh8l+FYWFRTJFQ0SOhCPdDubQocNo2bIlNJoIREZGcqSb6hTYrLtV7a5cP27jSIgaFhQUBC8v6f/lFBQUyBQNkeO4s9nTFrc5fH29HSKhxmrdujU8PT0lZRzpJiKASbfD+ec/F+Cf/1xgOPbw4GQEInJ+xuu5q6ur+WWUiFyKSqUyKSsq4kg3EXF6ucOrrq6WOwQiokYLC5Mm3YWFhXwyAxG5lJAQadJ95coVVFRUyBQNETkSJt1ERGR3xiPdWi2nlhORazEe6ebO5URUg0k3ERHZnfHO5VzPTUSuxjTp5tRyIrqFSTcREdldWFiY5Jg7lxORqzGeXs59K4ioBpNuIiKyOz6jm4hcHUe6iagu3L3cgcyYkYS77opDbm4ecnNzsXNnBg4dOiR3WEREjWa8ppsj3UTkajjSTUR1YdLtQPr3/wOGDBlsOE5KmsGkm4hcAtd0E5Gr40g3EdWF08sdiEYTITnOzc2TKRIiItsyXtPN6eVE5Go40k1EdeFItwPRaDSS49zcXJkiISKyHV9fXwQEBEjKOL2ciFzN/PkLEBUVCZVKhZAQFU6fPiN3SETkIJh0O4jWrVujefPmkjKOdBORK7h58yb8/FoiNDQUYWFhUKtD+UdFInI5qalr5Q6BiBwUk24HYTzKXVVVhfz8fJmiISKyrZs3byInJwc5OTlyh0JERETUpJx6TfesWbOgUCgkL+Mdcm+Xnp5uUl+hUODXX39twqhrFxkpTbrz8/NRVVUlUzRERERERERkC04/0h0TE4PvvvvOcOzp6dlgm1OnTsHf399wbLzbpBxM13NzajnV78r141a1a9Oiv8VtQqrbWHWtzOsbrWpHROQuDl9fL3cIROQiWjfrYXGby9eP2iESMubUI90A4OXlBbVabXiZk0CHhIRI2piTqNub6c7lXO9IRERE7smVZjMSETn9SPeZM2cQHh4OpVKJe+65B/PmzUP79u3rbRMbG4ubN2+iW7dumDlzJgYNGlRvfb1eD71ebzguKSmxSey34+PCiIiIiP7HVWYzEhE5ddJ9zz33IDU1FZ07d8bFixcxd+5c9O3bFydOnEBQUJBJ/bCwMCxbtgy9e/eGXq/H2rVrkZCQgPT0dAwYMKDO6yQnJ2P27Nn2vBVOLycil3XffYPg6emJgoKL0Gq1uHTpEoQQcodFRA6uZjajJUJCQtCqVSv7BFSPGTOSMH78OBQWFkGn02Hbtq+RkrKwyeMgIsfk1En30KFDDf99xx13ID4+Hh06dMCaNWswdepUk/rR0dGIjo42HMfHxyMvLw8LFiyoN+lOSkqSnK+kpAQRERF11rcGp5cTkauaPz8ZcXG9DccvvvhXrFixUsaIiMgZNMVsRlsJDw83vADg7NnsJrkuETkHp1/TfbvmzZvjjjvuwJkzZ8xu06dPnwbrK5VK+Pv7S1625OPjY+ika3Ckm4hcRViYdKRKq9XKFAkROYua2YzffPMNli9fjoKCAvTt2xeXLl2qtX7NbMa0tDRs2rQJ0dHRSEhIwK5du+q8hl6vR0lJieRlrZAQ6TR2nU5n9bmIyPU49Ui3Mb1ej6ysLPTvb/7uzJmZmQgLC7NjVA1r08Z0Z2iOdBORK1AoFAgNDZWUFRRclCkaInIWTTGb0ZbLB43XjhcWFtnkvETkGpx6pHvatGnIyMhAdnY2fv75Zzz++OMoKSnB6NGjAdyaFv7ss88a6qekpGDLli04c+YMTpw4gaSkJKSlpeGVV16R6xYAmE4tLykpQXFxsUzREBHZTlBQELy8pH/fLSgokCkaInJW9pjNmJSUhOLiYsMrL8/6WYYc6Sai+jj1SPf58+fx1FNPoaioCCqVCn369MG+ffsQGRkJ4NYUxttHjMvLyzFt2jTk5+fDz88PMTEx+OqrrzBs2DC5bgEAcPnyFfz738uh0URAo4lAaek1WeMhIrIV45lE1dXV/DJKRBazx2xGpVIJpVJpi/BqGekutMl5icg1OHXSvXHjxnrfX716teQ4MTERiYmJdozIOseOHcO4cePlDoOIyObUaunU8qKiIlRWVsoUDRE5i2nTpmHEiBHQaDTQ6XSYO3euyWzG/Px8pKamArg1mzEqKgoxMTEoLy/HunXrkJaWhrS0NLvH6unpieDgYEmZTsekm4j+x6mTbiIicmzGo0xaLaeWE1HDnGk2Y22PqeVINxHdjkk3ERHZjfFIN9dzE5E5nGk2Y0hIiElZURE3UiOi/7F6I7Xnnnuu3scwEBERqdXSx4Vx53IicjUqlXRq+aVLl1BVVSVTNETkiKwe6S4tLcXgwYMRERGBMWPGYPTo0bU++oqIHEv+td2Wt7FDHOQe+IxuInJ1xiPd3CyS5HL5+lGL20S2uN+qa+Vc+86qdu7K6pHutLQ05Ofn45VXXsHnn3+OqKgoDB06FF988QUqKipsGSMRETkpjnQTkavjM7qJqCGNek53UFAQJk2ahMzMTOzfvx8dO3bEM888g/DwcEyZMsWiZym6q+7du+PQof3YvPkLLFz4PqZMmSx3SERENsM13UTk6viMbiJqSKOS7hparRY7duzAjh074OnpiWHDhuHEiRPo1q0b3n//fVtcwmW1b98Od94Zi5EjH8bEia9g6tRJcodERGQzpruXc3o5EbkWjnQTUUOsTrorKiqQlpaGhx56CJGRkfj8888xZcoUaLVarFmzBjt27MDatWvxj3/8w5bxuhyNRiM5zs3NkykSIiLb8vPzQ0BAgKSM08uJyNVwpJuIGmL1RmphYWGorq7GU089hf3796NXr14mdYYMGYJWrVo1IjzXp9FESI5zcnJkioSIyLZqe4wOp5cTkatZs2Ytjhz5BSqVCipVMDIzj8gdEhE5GKuT7vfffx9PPPEEfH1966wTGBiI7Oxsay/hFoyTbo50E5GryMnJgVLZHKGhoQgLC4NaHYqSkhK5wyIisqmtW7/E1q1fyh0GETkwq6eX79y5s9ZdysvKyvD88883Kih3wunlROTKysvLkZeXh/379/NLKREREbklq5PuNWvW4MaNGyblN27cQGpqaqOCciemI925MkVCREREREREtmbx9PKSkhIIISCEQGlpqWR6eVVVFbZt21brOj4y5e3tbbKzL0e6iYiIiIiIXIfFSXerVq2gUCigUCjQuXNnk/cVCgVmz55tk+BcXZs2beDhIZ1swJFuIiIiIiIi12Hx9PKdO3fi+++/hxACX3zxBX744QfD68cff0Rubi5mzJhhj1hdjvHU8tLSUly9elWeYIjIoc2aNcvwB8+al1qtrrdNRkYGevfuDV9fX7Rv3x5Lly5tomiJiIiIqIbFI90DBw4EAGRnZ0Oj0UChUFjUvri4GJs3b8bu3btx7tw5XL9+HSqVCrGxsRgyZAj69u1raUhOy3QTNY5yE1HdYmJi8N133xmOPT0966ybnZ2NYcOGYezYsVi3bh327NmD8ePHQ6VS4bHHHmuKcPHQQ8NRUVGBgoKL0Gq1KCoqQnV1dZNcm4ioKTzxxOP44IMU6HSFKCwsxOHDmXjttdflDouIHIxFSffRo0fRvXt3eHh4oLi4GMeOHauzbo8ePSTHWq0Wb775Jj755BOo1Wrcfffd6NWrF/z8/HD58mXs3LkTCxYsQGRkJN566y38+c9/tu6OnAgfF0ZElvDy8mpwdLvG0qVLodFokJKSAgDo2rUrDh48iAULFjRZ0r1kyWK0bdvWcPzQQw/jq6+2Ncm1yTJenv5WtauscuxHwLXwbW9Vu2s3z9o4EnJVarUaoaGhCA0NBVD/H0OJHFHOte8armQjdzZ72qp2h6+vt3EkTc+ipLtXr14oKChASEgIevXqBYVCASGEST2FQoGqqipJWc+ePfHss89i//796N69e63nv3HjBrZs2YL33nsPeXl5mDZtmiXhOR3jke6cHI50E1Hdzpw5g/DwcCiVStxzzz2YN28e2revPanYu3cvBg8eLCkbMmQIVqxYgYqKCnh7e9faTq/XQ6/XG46tfa62QqEwfAmtUVBw0apzERE5qpAQleRYp9PJFAkROTKLku7s7GyoVCrDf1vixIkThrZ18fPzw1NPPYWnnnoKhYWFFp3fGUVGcno5EZnnnnvuQWpqKjp37oyLFy9i7ty56Nu3L06cOIGgoCCT+gUFBSZJb2hoKCorK1FUVGTy5IQaycnJNtkMs3Xr1iaJfUFBQaPPS0TkSIy/2xYWFskUCRE5MouS7sjIyFr/2xwNJdyNre+MOL2ciMw1dOhQw3/fcccdiI+PR4cOHbBmzRpMnTq11jbGe27UzEyqby+OpKQkyflKSkoQERFRZ/261JbUX7zIkW4ici0c6SYic1i8e3mN5ORkrFy50qR85cqVmD9/fq1txo8fj2vXrhmO165dKzm+evUqhg0bZm1ITmfFilX497+XY/v2r3Hy5EmcPWvZ7AEicl/NmzfHHXfcgTNnztT6vlqtNhlZ1ul08PLyqnVkvIZSqYS/v7/kZQ21WjrKXlhYiMrKSqvORUTkqDjSTUTmsDrp/ve//40uXbqYlMfExNT5WJp///vfuH79uuF4woQJkr8I6vV6fPPNN9aG5HTeey8F48aNx7BhIxAT0xN79+6VOyQichJ6vR5ZWVl1ThOPj4/Ht99+KynbsWMH4uLi6lzPbUvGcWm1nFpORK6HI91EZA6rk+6CgoJav+ypVCpotdpa2xhvulbbJmxERGRq2rRpyMjIQHZ2Nn7++Wc8/vjjKCkpwejRowHcmhb+7LPPGuqPGzcOOTk5mDp1KrKysrBy5UqsWLGiyTaoNB7p5npuInJFpiPdrr8nERFZzuqkOyIiAnv27DEp37NnD8LDwxsVFBERSZ0/fx5PPfUUoqOj8eijj8LHxwf79u0z7K+h1WolmzG2a9cO27ZtQ3p6Onr16oU5c+Zg0aJFTfa4MONHm3HnciJyNd7e3ggMDJSU6XRMuonIlEUbqd3uxRdfxOTJk1FRUYH77rsPAPD9998jMTERf/vb32wWIBERARs3bqz3/dWrV5uUDRw4EIcPH7ZTRPULC5Mm3XXNgCIiclbBwcEmZRzpJqLaWJ10JyYm4vLlyxg/fjzKy8sBAL6+vnj99deRlJRUZ7s333wTzZo1AwCUl5fj7bffRkBAAABI1nsTEZHz4kg3Ebm6kJAQyXFVVRUuX74sUzRE5MisTroVCgXmz5+Pv//978jKyoKfnx86deoEpVJZZ5sBAwbg1KlThuO+ffvi7NmzJnWIiMi5cU03Ebk6lUo60n3p0iVUV1fLFA0ROTKrk+4aLVq0QFhYGBQKRb0JNwCkp6c39nIu4//+7z8IDw9Hbm4ucnJysWrVGhw5ckTusIiIbMJ093JOLyci12I80s2dy4moLlZvpFZdXY1//OMfCAgIQGRkJDQaDVq1aoU5c+ZY/Fe+yspKyfO63UHPnj0QG9sLDz/8R0yc+AoiItrKHRIRkU34+vqiVatWkjJOLyciV8NndBORuawe6Z4xYwZWrFiBd955B/369YMQAnv27MGsWbNw8+ZNvP322yZttm3bhkuXLuGZZ54xlL399tuYM2cOKisrcd999+HTTz812QnS1Xh5eZns8J6bmydTNGRrzZVRFrcp05+zeRxEcgkNDTUp4/Ryx1ZZVSJ3CHZx7ebZhivJ7N5mL1jcJv36CjtEQpbiM7rJXqz5Lgk4/vfJw9fXyx2CbKxOutesWYOPP/4Yf/zjHw1lPXv2RJs2bTB+/Phak+4FCxZIHlfz008/4c0338Q//vEPdO3aFTNmzMCcOXPw3nvvWRuWU2jTpg08PKSTDG5/1A8RkTMznnJ548YNFBcXyxQNEZF9fP31NygrK0NISAhUqmD89NM+uUMiIgdlddJ9+fJldOnSxaS8S5cude7cePz4cbz77ruG4y+++AIPPPAAZsyYAeDWlMRJkya5fNKt0URIjq9du4YrV67IFA0RkW0dOHAAPj7NEBoaCrVajVatAuQOiYjI5nbv/hG7d/8odxhE5ASsXtPds2dPLF682KR88eLF6NmzZ61tSktLERQUZDj+8ccfDc/4BoCYmBhcuHDB2pCchkajkRzn5OTIFAkRkX1UVFTg/PnzOHjwIL777nu5wyEiIiKSjdVJ9z//+U+sXLkS3bp1wwsvvIAXX3wR3bp1w+rVq/Gvf/2r1jbh4eHIysoCcGt095dffkG/fv0M71+6dMnwDG9XZjzSzfXcRERERP8za9YsKBQKyUutVtfbJiMjA71794avry/at2+PpUuXNlG0RET1szrpHjhwIE6fPo1HHnkEV69exeXLl/Hoo4/i1KlT6N+/f61tHn/8cUyePBlr167F2LFjoVar0adPH8P7Bw8eRHR0tLUhOQ3jkW4m3URERERSMTEx0Gq1htexY8fqrJudnY1hw4ahf//+yMzMxPTp0zFx4kSkpaU1YcRERLVr1HO6w8PDa90wrS5vvfUWLly4gIkTJ0KtVmPdunXw9PQ0vL9hwwaMGDGiMSE5BdORbm6iRkRERHQ7Ly+vBke3ayxduhQajQYpKSkAgK5du+LgwYMmm/gSEcnBoqT76NGjZtft0aOHSVmzZs2wdu3aOtvs3LnTknCcFqeXExEREdXvzJkzCA8Ph1KpxD333IN58+ahffv2tdbdu3cvBg8eLCkbMmQIVqxYgYqKCnh7e5u00ev10Ov1huOSEtd8dB4Ryc+ipLtXr15QKBQQQtRbT6FQoKqqqlGBmWPWrFmYPXu2pCw0NLTe58FmZGRg6tSpOHHiBMLDw5GYmIhx48bZO1SJyMhIyTFHuonIlTz55J9RXFwMrbYABQUF0Ol0qK6uljssInIi99xzD1JTU9G5c2dcvHgRc+fORd++fXHixAnJprw1CgoKEBoaKikLDQ1FZWUlioqKEBYWZtImOTnZ5HukuXr06IFvv90OnU6HwsIiaLVajBr1rFXnIiLXZ1HSnZ2d3aiL3b5TeX1++OEHs88ZExOD7777znB8+3R1YzXrfcaOHYt169Zhz549GD9+PFQqVZNNPQoICEDLli0lZRzpJiJXoVAosGbNSvj4+BjK4uL64NChQzJGRUTOZujQoYb/vuOOOxAfH48OHTpgzZo1mDp1aq1tFAqF5LhmkMi4vEZSUpLkXCUlJYiIiKi1rrHQ0BCEhNx6AcDFixfNakdE7smipNt4hNZS6enpiIyMxPDhw2ud5mMNZ1vvY/wZVldXIz8/v0muTURkb4GBgZKEG0C9s4+IiMzRvHlz3HHHHThz5kyt76vVapO+RqfTwcvLq9aRcQBQKpVQKpVWxVOTbP/vWoVWnYeI3EOjNlJbu3Ytli5diuzsbOzduxeRkZFISUlBu3bt8PDDD5vUf+edd7B69Wp8/vnnGDVqFJ5//nl07969MSHYfb2PrRmv59ZqtaioqLD7dYmImkJtUzg5AkREjaXX65GVlVXnE3Li4+Px5ZdfSsp27NiBuLg4u3y/U6lUkuPCQibdRFQ3qx8ZtmTJEkydOhXDhg3D1atXDWu4W7VqZRhJNpaYmIiTJ09iy5YtKC0tRb9+/XD33Xdj6dKlVm1eUbPe55tvvsHy5ctRUFCAvn374tKlS7XWb2i9T130ej1KSkokL2vxcWFE5MrUamkfW1hYiMrKSpmiISJnNW3aNGRkZCA7Oxs///wzHn/8cZSUlGD06NEAbk0Nf/bZ/62hHjduHHJycjB16lRkZWVh5cqVWLFiBaZNm2aX+EJCpEm3Tqezy3WIyDVYPdL9wQcfYPny5Rg5ciTeeecdQ3lcXFyDHVx8fDzi4+OxcOFCfP755/jwww8xbdo0XLhwAf7+/mbH0BTrfYDGbbRhbN++nzFjxt8RGRkJjSYCJ06ctMl5yXGU6c/JHQKRbIxHugsKOMptLQ+PZla1q66+buNIyJ7Sr6+QOwSHdP78eTz11FMoKiqCSqVCnz59sG/fPsMyPa1WK9mItl27dti2bRumTJmCDz/8EOHh4Vi0aJHdlg+ajnTXPXhDjsfLs5XFbSqrrto8jrrwu6TrsTrpzs7ORmxsrEm5UqlEWVmZWec4fPgwMjIykJWVhe7duzd6+o891vsAjdtow9jhw4dx+PBhq9oSETk645FurVYrUyRE5Mw2btxY7/urV682KRs4cGCTfcfiSDcRWcLq6eXt2rXDkSNHTMq3b9+Obt261dnuwoULmDdvHjp37ozHH38crVu3xs8//4x9+/bBz8/P2nAA/G+9T21rCoFbI+zffvutpMyc9T5KpRL+/v6SFxERmTLe2JIj3UTkijjSTUSWsHqk+7XXXsOECRNw8+ZNCCGwf/9+bNiwAcnJyfj4449rbTNs2DDs3LkTgwcPxr/+9S8MHz4cXl7W7+U2bdo0jBgxAhqNBjqdDnPnzjVZ75Ofn4/U1FQAt9b7LF68GFOnTsXYsWOxd+9erFixAhs2bLA6BiIi+p+wMOOkmzuXE5Hr4Ug3EVnC6ox3zJgxqKysRGJiIq5fv46nn34abdq0wcKFC/Hkk0/W2ubrr79GWFgYcnNzMXv27DrXSZs7NcjR1/sQEbkbjnQTkTvg7uVEZIlGPTJs7NixGDt2LIqKilBdXW3yzEJjb731VmMuZ8LR1/sQEbkbrukmIldXs+zwdnxONxHVx+qke/bs2fjLX/6CDh06IDg42Kw2tk66iYjIsZjuXs7p5UTkWoxHuQGOdBNR/azeSC0tLQ2dO3dGnz59sHjxYpt0Njdv3sSCBQsafR5H9fTTT6GoqACHDu3H5s1f4I03EuUOiYjIZpRKJQIDAyVlnF5ORK7GeGZnRUUFrl69Kk8wROQUrE66jx49iqNHj+K+++7De++9hzZt2mDYsGFYv349rl+v+xmhRUVF+Oqrr7Bjxw5UVVUBuNVZLVy4EFFRUZJnfrsajSYCQUFBuPPOWIwc+TDuvXeg3CEREdlMaGioSRmnlxORq1GppDM8i4qKIISQKRoicgZWJ90AEBMTg3nz5uHs2bPYuXMn2rVrh8mTJ5tspFPjp59+QqdOnTBixAgMHToUffv2xcmTJxETE4MPPvgAM2fOlGx85mo0Go3kODc3T6ZIiIhsz3hq+c2bN1FcXCxTNERE9sHHhRGRpRq1kdrtmjdvDj8/P/j4+KC0tLTWOn//+98xZMgQzJw5EytXrkRKSgoeeughzJo1C8888wwUCoWtwnFIGk2E5NiV/8BARO4nKKi15JjruYnIFR058gumT58JlUqFkJAQnD9/Xu6QiMjBNSrpzs7Oxvr16/HJJ5/g9OnTGDBgAGbNmoUnnnii1vq//PILMjIyEBMTg7lz52LhwoWYP39+nfVdTWQkR7qJyHVt27Yd3t5+CAkJgVqthp+fn9whERHZ3PHjx3H8+HG5wyAiJ2J10h0fH4/9+/fjjjvuwJgxYwzP6a7P5cuXDVNymjVrhmbNmiE2NtbaEJxOzfPDa+Tk5MgUCRGRfVRWVuLChQu4cOGC3KEQEREROQSrk+5Bgwbh448/RkxMjNltFAoFSktL4evrCyEEFAoFrl+/jpKSEkk942cfuoKAgAC0bNlSUuYqI92eHi2saldVfc3iNt5eQVZdq6LyklXtiIjkUl1d96akZB5/v2ir2pXcOGXjSGzr6cDxVrVbf+UjG0dC5Jwqq67KHYJdWNPnOXp/5yqsTrrnzZtnVj1/f38cOXIE7du3hxACnTt3NrwnhJCMdNck4jW7mrsS403UqqurkZ+fL1M0RERERERE1BRstpFaXW5/hMLOnTvtfTmHZbyJWkFBAcrLy2WKhoiIiIiIiJqC3ZPu2w0c6L7PpebjwoiIiIiIiNxPkyXdZWVlaN68ud3qOzo+LoyIXN0LLzyPgoICaLUF//1frWS2ExGRs/Pz80Nu7lnodDoUFhZBp9Nh/PhXUVTEZ3UTUd2aLOnu2LEjXn31VTz33HMIDw+vtY4QAt999x3ee+89DBgwAElJSU0Vnt2ZJt0c6SYi19G6dWt8/PG/JWUREe34/FoicikqlQrBwcEIDg42lI0dO07GiIjIGdg96VYoFACA9PR0zJw5E7Nnz0avXr0QFxeH8PBw+Pr64sqVKzh58iT27t0Lb29vJCUl4aWXXrJ3aE2K08uJyJWFhYWZlF28eFGGSIiI7Kfm0bc1ysvLUVxcLFM0ROQsmmwjtejoaHz++ec4f/48Pv/8c+zatQs//fQTbty4geDgYMTGxmL58uUYNmwYPDw87B1Wk+P0ciJyZWp1qOS4qKgIFRUVMkVDRGQfISHSpLuwsFCmSIjImdg96d6+fTvatGljOG7bti2mTJmCKVOm2PvSDsPLy0vyGQAc6SYi16JWqyXHWm2BTJEQEdmP8Uh3YSHXchNRw6xOuquqqrB69Wp8//330Ol0qK6ulrz/ww8/AAD+8Ic/NC5CF+Dh4YHnnnsBGk0ENBoNNJoI5OTkyB0WETmx5ORkTJ8+HZMmTUJKSkqtddLT0zFo0CCT8qysLHTp0sWm8YSFSZPuggIm3UTkeoxHunU6nUyREJEzsTrpnjRpElavXo3hw4eje/fuhrXbZKq8vBzr1n0idxhE5CIOHDiAZcuWoUePHmbVP3XqFPz9/Q3HxiM1tmA80l1QwPXcROR6ONJNRNawOuneuHEjPvvsMwwbNsyW8RARUT2uXbuGUaNGYfny5Zg7d65ZbUJCQtCqVSu7xmU6vVxr1+sREckhJCREcsw13URkDqt3LPPx8UHHjh1tGQsRETVgwoQJGD58OO6//36z28TGxiIsLAwJCQnYuXOnXeIy3kiNI91E5IpUqmDJMaeXE5E5rB7p/tvf/oaFCxdi8eLFnFru5qqqrzXZtSoqLzXZtZpSK7+uFre5eiPLDpHYVn+/MRa32X1jlR0icQ0bN27E4cOHceDAAbPqh4WFYdmyZejduzf0ej3Wrl2LhIQEpKenY8CAAbW20ev10Ov1huOSkhIzr8U13eR4Sm6ckjsEu1h/5SOr2k0JG29xm/e11l3LVXF6OTkyR+/zhja37pHQ28uW2TiSpmd10v3jjz9i586d2L59O2JiYuDt7S15f9OmTZLjo0ePmn1uc9cpEhG5i7y8PEyaNAk7duyAr6+vWW2io6MRHR1tOI6Pj0deXh4WLFhQZ9KdnJyM2bNnWxwfp5cTkTvgRmpEZA2rk+5WrVrhkUceMbt+r169oFAoDM/tNlbznkKhQFVVlbVhOSSlUikZOSIistShQ4eg0+nQu3dvQ1lVVRV27dqFxYsXQ6/Xw9PTs8Hz9OnTB+vWravz/aSkJEydOtVwXFJSgoiIiHrP6ePjg9atW0vKOL2ciFwRR7qJyBpWJ92rVlk2BTQ7O9vaSzm9ixfzUVFRgdzcPOTm5uK1197Ab7/9JndYROREEhIScOzYMUnZmDFj0KVLF7z++utmJdwAkJmZibCwsDrfVyqVUCqVFsVmPMoNcKSbiFxPs2bN0Lx5c0kZR7qJyBxWJ901CgsLcerUKSgUCnTu3LnOR9FERkY29lJOyd/fHwEBAQCA4OBg3HlnLP72t0SZoyIiZ9OyZUt0795dUta8eXMEBQUZypOSkpCfn4/U1FQAQEpKCqKiohATE/PfRxeuQ1paGtLS0mwam3HSffPmTRQXF9v0GkREcqvtOy53Lycic1iddJeVleHVV19FamoqqqurAQCenp549tln8cEHH6BZs2aS+lu3bjX73H/84x+tDcvhaDQak7Lz58/LEAkRuTqtVovc3FzDcXl5OaZNm4b8/Hz4+fkhJiYGX331lc0f9Wi6czk3USMi12OcdJeXl5u92SQRuTerk+6pU6ciIyMDX375Jfr16wfg1uZqEydOxN/+9jcsWbJEUn/kyJFmndfV1nRrNNK1kBcuXEB5eblM0RCRK0lPT5ccr169WnKcmJiIxET7z6wJDAxEdXU1PDxuPYVSq2XSTUSup6CgAG+8MR0qlQoqlcrsZT1ERFYn3Wlpafjiiy9w7733GsqGDRsGPz8//OlPfzJJumtGw92N8Uh3bm6eTJEQEdnHmjWpWLfuE6hUKqjVakPyTURkC8nJyZg+fTomTZqElJSUWuukp6dj0KBBJuVZWVno0qWLTeI4f/485s//l03ORUTuxeqk+/r16wgNDTUpDwkJwfXr1xsVlCsxHum+feonEZGrqKqqQkFBAaeWE5FNHThwAMuWLTP7cbKnTp2Cv7+/4biuvYaIiJqS1Ul3fHw83nrrLaSmphqeGXvjxg3Mnj0b8fHxJvUXLVqEl156Cb6+vli0aFG95544caK1YTkcjnQTERERWe7atWsYNWoUli9fjrlz55rVJiQkBK1atbJvYEREFrI66V64cCEefPBBtG3bFj179oRCocCRI0fg6+uLb775xqT++++/j1GjRsHX1xfvv/9+nedVKBQulnQbj3Qz6SYiIiJqyIQJEzB8+HDcf//9ZifdsbGxuHnzJrp164aZM2fWOuW8hl6vh16vNxxzUzQisherk+7u3bvjzJkzWLduHX799VcIIfDkk09i1KhR8PPzM6l/+3O63emZ3ZxeTkRERGSZjRs34vDhwzhw4IBZ9cPCwrBs2TL07t0ber0ea9euRUJCAtLT0zFgwIBa2yQnJ2P27Nm2DJuIqFaNek63n58fxo4da3G7o0eP1rk2Z8uWLWbvdO7oPD090aZNG0kZR7qJiIiI6paXl4dJkyZhx44dhiWMDYmOjkZ0dLThOD4+Hnl5eViwYEGdSXdSUhKmTp1qOC4pKUFEREStdYmIGkMhhBDmVt66dSuGDh0Kb2/vBp+7Xd+ztsPCwrBnzx60b99eUp6WloZnn30WZWVl5oYki5KSEgQEBADwBKCos17btm2Rlycd1Q8OVuPSpUv2DZDIDY0JGm9xm1WXPrJDJLURAKpQXFws2eDHGTTU3zVr1gyjRj0NrVaLgoKLKCgoQH5+Piz4vxYicjmN6/O2bNmCRx55RPJIrqqqKigUCnh4eECv15v1uK63334b69atQ1ZWllnXbai/y8w8CF9fJQoLi6DT6TB79lwcO3bM3NuiBnh4NLO4TXU1N292B9Z8x/P3se5aC7WWfjc0r7+zaKR75MiRKCgoQEhISL2j0Q09a/vll19GQkICfvrpJ4SFhQEAPv30Uzz//PMmz5l1ZsabqF2/fp0JNxG5lKioKCxbJn1EpFLZHOXl5TJFRETOLiEhwSSZHTNmDLp06YLXX3/d7OdjZ2ZmGr5n2kJ0dGf4+fmh5glk//rXezY7NxG5NouS7tuftd2Y526/+eabuHTpEu6//37s3r0bX3/9NV588UWsXbsWjz32mNXndTRcz01Erk6tlj468tKlS0y4iahRWrZsie7du0vKmjdvjqCgIEN5UlIS8vPzkZqaCgBISUlBVFQUYmJiUF5ejnXr1iEtLQ1paWk2ial58+YmexYVFhba5NxE5Po8rG2Ympoq2fGxRnl5uaEDrM/ChQtx5513ok+fPhg7diw2bNjgUgk3AERG8nFhROTajEeRtFqtTJEQkTvRarWSwYzy8nJMmzYNPXr0QP/+/fHjjz/iq6++wqOPPmqT64WEhJiU6XQ6m5ybiFyf1RupjRkzBg8++KBJJ1RaWooxY8bg2WeflZTXtgZ85MiRyMjIwFNPPQWFQmGoU996cGfCZ3QTkaszHukuKLgoUyRE5MrS09Mlx8bLERMTE5GYmGi366tUKsnxzZs3ce3aNbtdj4hci9VJtxACCoXpJhPnz5//7yYUUvWtAV+5ciVWrlwJoOH14PVJTk7G9OnTMWnSJKSkpNRaJz09vdZnNmZlZaFLzSIdG1m6dBn27fsZERFtodFokJGxy6bnJyKSm1qtlhwz6SYiVxQSIk26OcpNRJawOOmOjY2FQqGAQqFAQkICvLz+d4qqqipkZ2fjwQcfNGnXmDXg5jhw4ACWLVtW56PIjJ06dUqyw5zxXzBt4dixY9zVkohcGqeXE5E7MP6eWFhYJFMkROSMLE66a0asjxw5giFDhqBFixaG93x8fBAVFdXka7OvXbuGUaNGYfny5Zg7d65ZbUJCQtCqVSv7BkZE5OJMp5cXyBQJEZH9qFTBkmNuokZElrA46X7rrbcA3HpMzJNPPgmlUml2259//hmXL1/G0KFDDWWpqal46623UFZWhpEjR+KDDz6w6JwAMGHCBAwfPhz333+/2Ul3bGwsbt68iW7dumHmzJm1TjmvodfrJZvGlZSUWBQfEZGr4ppuInIHxnsY6XRMuonIfFbvXt6tWzccOXLEpPznn3/GwYMHa20za9YsHD161HB87NgxvPDCC7j//vvxxhtv4Msvv0RycrJFcWzcuBGHDx82u11YWBiWLVuGtLQ0bNq0CdHR0UhISMCuXXWvt05OTkZAQIDhFRERUWddIiJ3wunlROQOTKeXM+kmIvNZnXRPmDABeXmmu3Hn5+djwoQJtbY5cuQIEhISDMcbN27EPffcg+XLl2Pq1KlYtGgRPvvsM7NjyMvLw6RJk7Bu3Tr4+vqa1SY6Ohpjx47FnXfeifj4eHz00UcYPnw4FixYUGebpKQkFBcXG1613TcRkbvx8fFB69atJWUc6SYiV8SN1IioMaxOuk+ePIk777zTpDw2NhYnT56stc2VK1cQGvq/qYgZGRmSTdfuuusuixLaQ4cOQafToXfv3vDy8oKXlxcyMjKwaNEieHl5mb0Lep8+fXDmzJk631cqlfD395e8GuLv749mzZqZfS9ERM7GeOdygCPdROSauJEaETWG1Um3UqnExYumIxparVayo/ntQkNDkZ2dDQAoLy/H4cOHER8fb3i/tLQU3t7eZseQkJCAY8eO4ciRI4ZXXFwcRo0ahSNHjsDT09Os82RmZppMkWys119/DWVlxSgs1OLQof1ITJxm0/MTEcnNOOnW6/W4evWqPMEQEdkRN1Ijosaw+jndDzzwAJKSkvCf//zH8Fzuq1evYvr06XjggQdqbfPggw/ijTfewPz587FlyxY0a9YM/fv3N7x/9OhRdOjQwewYWrZsie7du0vKmjdvjqCgIEN5UlIS8vPzkZqaCgBISUlBVFQUYmJiUF5ejnXr1iEtLQ1paWkW3X9DNBoNACA4OBjBwcFIT8+w6fmJXNUj/uOsarfq0kc2joQawp3LichdcCM1+6uuvi53COSgXOE7ntVJ97vvvosBAwYgMjISsbGxAG6t2Q4NDcXatWtrbTN37lw8+uijGDhwIFq0aIE1a9bAx8fH8P7KlSsxePBga0OqlVarRW5uruG4vLwc06ZNQ35+Pvz8/BATE4OvvvoKw4YNs+l1NRrpZmu5uVwHTkSuxXQTNSbdROR6WrRoYbJ3EEe6icgSVifdbdq0wdGjR/HJJ5/gl19+gZ+fH8aMGYOnnnqqziniKpUKu3fvRnFxMVq0aGEy/fvzzz+XPPfbGunp6ZLj1atXS44TExORmJjYqGuYwzjpzsnJsfs1iYiakr9/S1RVVRn6co50E5ErEkIgMfENhISEQKVSQaUK5kZqRGQRhRBCyB2EsykpKfnvlHpPAAqT9z09PXHz5jXJ2vbeve/B4cOHmy5IIidl7fTyzSVLbRyJLQkAVSguLjZrI0ZH0lB/5+HhgeDgYISFhaGioqLOjTSJyJ04Z5/XUH9HRGTKvP7OopHurVu3YujQofD29sbWrVvrrfvHP/7RklO7lLCwMJPN5G6f4k5E5Cqqq6uh0+k46kNERERUB4uS7pEjR6KgoAAhISEYOXJknfUUCoXZj+tyRTWbqNW4ceMGior4aAkiIiIiIiJ3Y1HSXV1dXet/k5TpJmoc5SYiIiIiInJHVj2nu6KiAoMGDcLp06dtHY9L4M7lREREREREBFiZdHt7e+P48eNQKLjJRG2Mp5cz6SYiIiIiInJPViXdAPDss89ixYoVtozFZXB6ORG5upCQEPz1ry/hj38cgbvvvhsRERENNyIickKffbYBv/56HLt3p2PTps8xePADcodERE7G6ud0l5eX4+OPP8a3336LuLg4NG/eXPL+e++91+jgnBVHuonI1cXEdMPSpR8aji9fvoygoFAZIyIiso+OHTsiOjoa0dHRAID//OdLmSMiImdjcdJ99uxZREVF4fjx47jzzjsBwGRtt7tPO+dINxG5urCwMMmxVquVKRIiIvtSqYIlx4WFhTJFQkTOyuKku1OnTtBqtdi5cycA4M9//jMWLVqE0FCOcABAy5YtERgYKCnjSDcRuRq1WtrnFxRclCkSIiL7CgkJkRzrdEy6icgyFifdQgjJ8fbt21FWVmazgJyd8dRyADh//rwMkRA5p80lS5vsWrMix1nXLqfpYnRUarVacsykm8g1VYrVFrcpKbmO1gEv2T4YGfj7+8PHx0dSxpFuIrKU1Wu6axgn4e4uOzsbAwfeB41GA40mAsHBwbh586bcYRER2RSnlxORO1CpVCZlTLqJyFIWJ90KhcJkzba7r+G+3fXr17Fr1265wyAisivT6eUFMkVCRGQ/xlPLy8rKcP36dZmiISJnZdX08ueeew5KpRIAcPPmTYwbN85k9/JNmzbZJkIiInI4XNNNRO6Am6gRkS1YnHSPHj1acvyXv/zFZsEQEZFz4PRyInIH3ESNiGzB4qR71apV9oiDiIichI+PD4KCgiRlHOkmIlfEkW4isgUPuQMgIiLnUtsjIjnSTUSuyHgjtcLCIpkiISJnxqTbhjw8PNClSxc0a9ZM7lCIiOzG+HFh5eXluHLlikzREBHZj+n0cp1MkRCRM2PSbUNhYWHIyjqGsrJiFBZqcejQfvj7+8sdFhG5oOTkZCgUCkyePLneehkZGejduzd8fX3Rvn17LF3a+GeMc+dyInIXnF5ORLbApNuGNBqN4b+Dg4PRrVtXlJaWyhgREbmiAwcOYNmyZejRo0e99bKzszFs2DD0798fmZmZmD59OiZOnIi0tLRGXd90EzUm3UTkmriRGhHZApNuG9JoIiTHubm5EELIFA0RuaJr165h1KhRWL58OQIDA+utu3TpUmg0GqSkpKBr16548cUX8fzzz2PBggWNioEj3UTUlOSc2cORbiKyBYt3L6e6mSbdeTJFQkSuasKECRg+fDjuv/9+zJ07t966e/fuxeDBgyVlQ4YMwYoVK1BRUQFvb2+TNnq9Hnq93nBcUlJiUqdZs2aorKyEl9et/wvhzuVEZC+WzuwZO3Ys1q1bhz179mD8+PFQqVR47LHHrL7+v/71HsLDwxASEgKVKhjnzuVYfS4icl9Mum3o9unlAJNuIrKtjRs34vDhwzhw4IBZ9QsKCkx2Gg8NDUVlZSWKiopMpokDt0aUZs+eXe9533hjOpKSZiAoKAhhYWEoKysz/yaIiMx0+8yehv7IePvMHgDo2rUrDh48iAULFjQq6V64cJHVbYmIajDptqHappcTkeOaldP4qYdNJS8vD5MmTcKOHTvg6+trdjuFQiE5rlnyYlxeIykpCVOnTjUcl5SUICIiwqSeEAJFRUUoKuLjc4hcmZfiOSta2WZpnSPM7CFqrGZKTcOVjFzXM4eQS6VYbVH9kpLraB3wUoP1mHTbEEe6icheDh06BJ1Oh969exvKqqqqsGvXLixevBh6vR6enp6SNmq12mS9tU6ng5eXF4KCgmq9jlKphFKptP0NEBFZwFFm9hAR2QKTbhviSDcR2UtCQgKOHTsmKRszZgy6dOmC119/3SThBoD4+Hh8+eWXkrIdO3YgLi6u1lEfIiJH4Ggze4iIGotJt420aNECrVu3lpRxpJuIbKVly5bo3r27pKx58+YICgoylCclJSE/Px+pqakAgHHjxmHx4sWYOnUqxo4di71792LFihXYsGFDk8dPRGQuzuwhIlfDpNtGavvLaF4ek24iajparVYyw6Zdu3bYtm0bpkyZgg8//BDh4eFYtGhRozYVIiKyN87sISJXw6TbRiIjpeu5dTodbt68KVM0ROQO0tPTJcerV682qTNw4EAcPnzYZtds164dhgwZjIKCAhQUXER+fj7/wEhENuUoM3vmzZuLJ554DDpdIQoLC7F583+wZk2q9TdGRG6LSbeNGG+ilpPD9dxE5Hr69LkHS5YsNhyfOHEC3bv3ki8gInJLTTGzJyoqEh07dkTHjh0BAFlZvzY6biJyT0y6bYSbqBGRO1Cr1ZLjgoKLMkVCRO5Ejpk9KpVKclxYWGizcxORe/GQOwBXwceFEZE7UKulj+Rh0k1EriokJERyrNMx6SYi6zDpthHTkW4m3UTkeoyfdWu8WzARkatQqYIlxxzpJiJrcXq5jTzzzHNo374dNBoNNJoI7Nq1W+6QiIhsznikW6vVyhQJEZH9KBQKk+nlHOkmImsx6baRvLw87uBLRC6Pa7qJyB20atUKXl7Sr8kc6SYia3F6ORERmS0szDjp5vRyInI9xuu5ASbdRGQ9jnQT1UHpHdpwpVroKzjyR67J29sbwcHSNY5aLZNuInI9xuu5S0pKoNfrZYqGnNl1PZ9o5Ey8FM9Z2EKYVculRrqTk5OhUCgwefLkeutlZGSgd+/e8PX1Rfv27bF06dKmCZCIyImFhpr+IYoj3UTkikx3LtfJFAkRuQKXSboPHDiAZcuWoUePHvXWy87OxrBhw9C/f39kZmZi+vTpmDhxItLS0pooUiIi52S8nru8vByXL1+WKRoiIvsxfUZ3kUyREJErcImk+9q1axg1ahSWL1+OwMDAeusuXboUGo0GKSkp6Nq1K1588UU8//zzWLBggdXXj46ORnR0NJo1a2b1OYiIHJ3pM7o5yk1ErikkxHjnco50E5H1XCLpnjBhAoYPH47777+/wbp79+7F4MGDJWVDhgzBwYMHUVFRYdX158+fh19/PY6ysmIUFmoxbtxfrToPEZEjM31GN/cvICLXxJFuIrIlp99IbePGjTh8+DAOHDhgVv2CggKTdYmhoaGorKxEUVGRyZdKANDr9ZLNM0pKSiTvazQaw38HBwejvLzcklsgInIKHOkmIndhvJEady4nosZw6pHuvLw8TJo0CevWrYOvr6/Z7RQKheRYCFFreY3k5GQEBAQYXhEREZL3NRrpcW4udykkItdjvKabO5cTkasy3UiNSTcRWc+pR7oPHToEnU6H3r17G8qqqqqwa9cuLF68GHq9Hp6enpI2arXaZHRGp9PBy8sLQUFBtV4nKSkJU6dONRyXlJQYEu/mzZubtMvJYdJNRK7Hx8cHFRUV8Pb2BsCRbiJyXatXp2L//gNQqVQICVHh5MmTcodERE7MqZPuhIQEHDt2TFI2ZswYdOnSBa+//rpJwg0A8fHx+PLLLyVlO3bsQFxcnOGLpDGlUgmlUlnre7dPLa+Rl5dn7i0QETmNsWP/ipdeGofWrVtDrVbj6tWrcodERGQXa9eukzsEInIhTp10t2zZEt27d5eU1Yw815QnJSUhPz8fqampAIBx48Zh8eLFmDp1KsaOHYu9e/dixYoV2LBhg1UxGE8t1+l0uHnzplXnIiJydEIIXLp0CZcuXZI7FCIiIiKn4NRrus2h1Wola6zbtWuHbdu2IT09Hb169cKcOXOwaNEiPPbYY1ad33ikOzeXo9xERERERER0i1OPdNcmPT1dcrx69WqTOgMHDsThw4dtcj1uokZERERERER1cfmRbnvjSDcRERERERHVxeVGupua6Ug3k25Xoa+4KHcI5KAqxWqL6peUXEfrgJfsEwyRDXh5trKqXWXVVZvGUZ/myiiL25Tpz9k8DiIiIksx6W4kTi8nIndwxx13oH///igoKIBWW4C8vDycP39e7rCIiGxuzJjnMGNGEgoLi6DT6bB37z68884/5Q6LiJwYk+5G8PDwQNu2bSVlHOkmIld0//0JeO+9BYbjH37YiYSEwTJGRERkHxEREejQoQM6dOgAAKiurpY5IiJydlzT3QihoaHw8fGRlHGkm4hckVqtlhwXFBTIFAkRkX2pVMGS48LCIpkiISJXwaS7ESIjIyXHer0eOp1OpmiIiOxHrQ6VHGu1TLqJyDWFhIRIjvndjogai0l3Ixiv587Ly4MQQqZoiIjsJywsTHLMkW4iclUqlUpyzJFuImosruluhE2bNqNdu07QaCJMHh1GRORKjEe6Cwq4uz8RuSbT6eWFMkVCRK6CSXcjVFZW4ty5czh37pzcoRAR2RXXdBORu+D0ciKyNU4vJyKienl7e5tMt+SabiJyRR4eHggKCpKUcXo5ETUWk24iIqqX8agPwJFuInJNrVu3hqenp6SMI91E1FhMuomIqF7GU8srKipw+fJlmaIhIrIf41k9AFBUxJFuImocJt1ERFSv2nYu55MaiMgVGc/suXLlCioqKmSKhohcBZNuKwUGBuKBBx5AdHQ0mjVrJnc4RER2Y7qJGncuJyLXZPq4MO5cTkSNx6TbSnfddRd27NiOX389jrKyYvz663G5QyIisgvuXE5ETW3JkiXo0aMH/P394e/vj/j4eGzfvr3O+unp6VAoFCavX3/91aLrmu5czqSbiBqPjwyzkvFzua9dK5MpEiJqal6K5yxs4dxTsY2nl3Pncsfm5dnK4jaVVVdtHkddlN6hDVeqRZn+nG0DIYfWtm1bvPPOO+jYsSMAYM2aNXj44YeRmZmJmJiYOtudOnUK/v7+huPa1mjXhyPdzsXbK6jhSrWoqLxk40iI6sek20rGSXdubq5MkRAR2RdHuomoqY0YMUJy/Pbbb2PJkiXYt29fvUl3SEgIWrVqZfV1OdJNRPbApNtKpkl3nkyREBHZl0KhgF6vh1KpBMA13UTUtKqqqvD555+jrKwM8fHx9daNjY3FzZs30a1bN8ycORODBg2qs65er4derzccl5SUYNu2bSguLoVKpUJIiAqHDh222X0Qkfti0m0ljnQTkbt49NFHAXgiMLA11Go1p1sSUZM4duwY4uPjcfPmTbRo0QKbN29Gt27daq0bFhaGZcuWoXfv3tDr9Vi7di0SEhKQnp6OAQMG1NomOTkZs2fPNin/6quvAShseStE5OYUgs99sVhJSQkKCwvRoUMHQ9kTTzyJL75IkzEqInJcAkAViouLJWsNnUFJSQkCAgIAeIJfQp2Dq67p1ldwhoXzsE2fV15ejtzcXFy9ehVpaWn4+OOPkZGRUWfibWzEiBFQKBTYunVrre/XNtIdEREB9nfOg2u6SX7m9XfcvdxKtzrl/+H0ciKyJ7l28iUikouPjw86duyIuLg4JCcno2fPnli4cKHZ7fv06YMzZ87U+b5SqTT0qTUvIiJ74PRyK/n4+EiOOb2ciOxJrp18iYgchRBCMjLdkMzMTJOnLxARyYFJtw2Ul5fj4kVOeyMi+5FrJ18iIjlMnz4dQ4cORUREBEpLS7Fx40akp6fj66+/BgAkJSUhPz8fqampAICUlBRERUUhJiYG5eXlWLduHdLS0pCWxqV/RCQ/Jt02kJeXBy6NJ6KmYq+dfImIHMXFixfxzDPPQKvVIiAgAD169MDXX3+NBx54AACg1WolswzLy8sxbdo05Ofnw8/PDzExMfjqq68wbNgwuW6BiMiAG6lZoaSkRDJd84cfdiIhYbCMERGRY7PNpkLGO/muX7++zi+Up06dwq5duyQ7+S5durTenXyB2jcWmj9/PgoKdNBqL+LcuXPIz8+3+h7I/riRGsnPOTePLCkpwaVLl1BYWASdToezZ7MxadIUucOienAjNZKfef0dR7ptgJuoEVFTiI6OxpEjRww7+Y4ePbrOnXyjo6MRHR1tOI6Pj0deXh4WLFhQb9Jd2yN0bv/b7IYNG/H008/Y4G6IiBxPu3bt0K5dOwC3/nhJRGQL3L3cBriJGhE1BXvv5AvcWidZXFxseOXlSf+oqNUWWBU7EZGz0ekK5Q6BiFwER7ptgCPdRCQHe+zkq1QqoVQq63y/oIBJNxG5h8JCJt1EZBtMum2AI93W8fK0fJ1XZVWJVdfy8bL8MUnllfw/W3IcjrKTb0EB19Vaw8PD1+I21dU3rbpWU67PtgbXZpOz4Ei3dTw8mlnVrrr6usVtmnJtNtePU2Mw6bZS+/btodG0g0ajwZEjv8gdDhG5OEfZyVer1TaqPRGRs+BINxHZCpNuK2VnZyM7OxeAQu5QiMgNrFixot73V69eLTlOTExEYmKizePgSDcRuQuOdBORrXAjNSIiMhtHuonIXXCkm4hshUk3ERGZpaKiApcvX5Y7DCKiJqHT6eQOgYhcBJNuIiIyy8WLFyXP7CYicmWFhUVyh0BELoJJNxERmYXP6CYid8KRbiKyFSbdVoqOjkazZtY9EoGIyBnxGd1E5E4uXeKjnojINph0W+nXX39FWVkJHnlkpNyhEBE1Ce5cTkTuoqioCFVVVXKHQUQugkl3I+XnX5A7BCKiJsGdy4nIXXDnciKyJSbdjZSbmyt3CERETYIj3UTkLviMbiKyJS+5A3Bm5eXluHiRX0KJyD1wpJuIXN3y5cuhUoXg+PETcodCRC6ESbcVah6Zc/78eQhRLXM0zsu6Rw9Z97gi635OfDQS2cqtf0vO+LgtIQRatWoFtTr8v7uXO989OIKm7O+I5OecfZ4QAi+99BJuTQRVyB2O07L+5+7Y/16s/87v2PdFjWVef8ek2wqlpaVo1aqV3GE4varqK012rYoqzkgg+ZWWliIgIEDuMCxSWlqK4uJiFBcXyx2KUxOiTO4QiJqcs/V5paWl//0vDqg0hhClDVdyQpVVXHJAdWuov1MIZ/szpAOorq7GhQsX0LJlSygU1v0ltKSkBBEREcjLy4O/v7+NI3QMrn6Prn5/AO/RVoQQKC0tRXh4ODw8nGsrjcb2d87+b4jxy4vxy8va+J21z7PF9zs5Ofu/N3vh51I3fja1s+RzMbe/40i3FTw8PNC2bVubnMvf39/l/5G7+j26+v0BvEdbcKbRntvZqr9z9n9DjF9ejF9e1sTvjH2eLb/fycnZ/73ZCz+XuvGzqZ25n4s5/Z3z/PmRiIiIiIiIyMkw6SYiIiIiIiKyEybdMlEqlXjrrbegVCrlDsVuXP0eXf3+AN4jNZ6zf76MX16MX17OHr+74c+rdvxc6sbPpnb2+Fy4kRoRERERERGRnXCkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJtJx999BHatWsHX19f9O7dG7t3766zbnp6OhQKhcnr119/bcKILbNr1y6MGDEC4eHhUCgU2LJlS4NtMjIy0Lt3b/j6+qJ9+/ZYunSp/QNtBEvv0dl+jsnJybjrrrvQsmVLhISEYOTIkTh16lSD7Zzp52jNPTrbz9EROGt/5+z9mLP3Uc7eBzl7/7JkyRL06NHD8Bza+Ph4bN++vd42jvLZk5Q1fZk7sLaPcXXW/O67o+TkZCgUCkyePNkm52PSbQeffvopJk+ejBkzZiAzMxP9+/fH0KFDkZubW2+7U6dOQavVGl6dOnVqoogtV1ZWhp49e2Lx4sVm1c/OzsawYcPQv39/ZGZmYvr06Zg4cSLS0tLsHKn1LL3HGs7yc8zIyMCECROwb98+fPvtt6isrMTgwYNRVlZWZxtn+zlac481nOXnKDdn7u+cvR9z9j7K2fsgZ+9f2rZti3feeQcHDx7EwYMHcd999+Hhhx/GiRMnaq3vSJ89SVnbF7i6xvyOujJLf/fd0YEDB7Bs2TL06NHDdicVZHN33323GDdunKSsS5cu4o033qi1/s6dOwUAceXKlSaIzvYAiM2bN9dbJzExUXTp0kVS9te//lX06dPHjpHZjjn36Ow/R51OJwCIjIyMOus4+8/RnHt09p9jU3OV/s7Z+zFX6KOcvQ9yhf4lMDBQfPzxx7W+58ifPf2POX2BuzLnd9Rd1fe7725KS0tFp06dxLfffisGDhwoJk2aZJPzcqTbxsrLy3Ho0CEMHjxYUj548GD89NNP9baNjY1FWFgYEhISsHPnTnuG2eT27t1r8pkMGTIEBw8eREVFhUxR2Yez/hyLi4sBAK1bt66zjrP/HM25xxrO+nNsSu7W3zn7v/8ajvrZO3sf5Mz9S1VVFTZu3IiysjLEx8fXWseRP3sic1jyO+ouzPnddzcTJkzA8OHDcf/999v0vEy6bayoqAhVVVUIDQ2VlIeGhqKgoKDWNmFhYVi2bBnS0tKwadMmREdHIyEhAbt27WqKkJtEQUFBrZ9JZWUlioqKZIrKtpz55yiEwNSpU/GHP/wB3bt3r7OeM/8czb1HZ/45NjV36++c+d8/4NifvbP3Qc7avxw7dgwtWrSAUqnEuHHjsHnzZnTr1q3Wuo762ROZw9zfUXdhye++O9m4cSMOHz6M5ORkm5/by+ZnJACAQqGQHAshTMpqREdHIzo62nAcHx+PvLw8LFiwAAMGDLBrnE2pts+ktnJn5cw/x1deeQVHjx7Fjz/+2GBdZ/05mnuPzvxzlIs79XfO+u8fcOzP3tn7IGftX6Kjo3HkyBFcvXoVaWlpGD16NDIyMur88u2Inz2ROSzpY9yBpb/77iAvLw+TJk3Cjh074Ovra/Pzc6TbxoKDg+Hp6WkyyqPT6Uz+QlyfPn364MyZM7YOTzZqtbrWz8TLywtBQUEyRWV/zvBzfPXVV7F161bs3LkTbdu2rbeus/4cLbnH2jjDz1EO7tbfOeu///o4wmfv7H2QM/cvPj4+6NixI+Li4pCcnIyePXti4cKFtdZ1xM+eyByN/R11RZb87ruLQ4cOQafToXfv3vDy8oKXlxcyMjKwaNEieHl5oaqqqlHnZ9JtYz4+Pujduze+/fZbSfm3336Lvn37mn2ezMxMhIWF2To82cTHx5t8Jjt27EBcXBy8vb1lisr+HPnnKITAK6+8gk2bNuGHH35Au3btGmzjbD9Ha+6xNo78c5STu/V3zvbv3xxyfvbO3ge5Yv8ihIBer6/1PUf67InMYavfUXdQ3+++u0hISMCxY8dw5MgRwysuLg6jRo3CkSNH4Onp2bgL2GQ7NpLYuHGj8Pb2FitWrBAnT54UkydPFs2bNxfnzp0TQgjxxhtviGeeecZQ//333xebN28Wp0+fFsePHxdvvPGGACDS0tLkuoUGlZaWiszMTJGZmSkAiPfee09kZmaKnJwcIYTpPZ49e1Y0a9ZMTJkyRZw8eVKsWLFCeHt7iy+++EKuW2iQpffobD/Hl19+WQQEBIj09HSh1WoNr+vXrxvqOPvP0Zp7dLafo9ycub9z9n7M2fsoZ++DnL1/SUpKErt27RLZ2dni6NGjYvr06cLDw0Ps2LGj1tgd6bMnqYb6Andlzu+oO2rod5/+x5a7lzPptpMPP/xQREZGCh8fH3HnnXdKHk8wevRoMXDgQMPx/PnzRYcOHYSvr68IDAwUf/jDH8RXX30lQ9Tmq3nsifFr9OjRQgjTexRCiPT0dBEbGyt8fHxEVFSUWLJkSdMHbgFL79HZfo613RsAsWrVKkMdZ/85WnOPzvZzdATO2t85ez/m7H2Us/dBzt6/PP/884bfW5VKJRISEiRfuh35syephvoCd2XO76g7auh3n/7Hlkm3Qoj/7oJBRERERERERDbFNd1EREREREREdsKkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJNREREREREZCdMuomIiIiIiIjshEk3ERERERERkZ0w6SYiIiIiIiKyEybdRP81a9Ys9OrVq8F6f//73/HSSy9ZdO709HQoFApcvXrVuuCagLn3DwB6vR4ajQaHDh2yb1CNsGvXLowYMQLh4eFQKBTYsmWLS12PyBr27Ocacu7cOSgUChw5csSm57WF5557DiNHjjSrrk6ng0qlQn5+vn2DsgD7OyL7kbPftFRUVBRSUlIAOMd3NWs5Y5/HpJvsQqfT4a9//Ss0Gg2USiXUajWGDBmCvXv3yh1ao1y8eBELFy7E9OnTTd776aef4OnpiQcffLBJYrF1Ij9t2jR8//33ZtVVKpWYNm0aXn/9dZtc2x7KysrQs2dPLF682CWvR/Jzp37uueeeg0KhMHlZ0t9FRERAq9Wie/fuDdZt6gR94cKFWL16tVl1Q0JC8Mwzz+Ctt96yb1AWYH9HzsJd+s3a+svbX88991y957NFIukM39Ws5Yx9npcN4yEyeOyxx1BRUYE1a9agffv2uHjxIr7//ntcvny5UeetqKiAt7e3jaK03IoVKxAfH4+oqCiT91auXIlXX30VH3/8MXJzc6HRaJo+QCsIIVBVVYUWLVqgRYsWZrcbNWoUXnvtNWRlZaFr1652jNA6Q4cOxdChQ+t8v7y8HDNnzsQnn3yCq1evonv37pg/fz7uvfdeu1yPXI+79XMPPvggVq1aJSlTKpVmn9fT0xNqtdoWIdpcQECARfXHjBmDu+++G//6178QGBhop6jMx/6OnIW79Jtardbw3qeffoo333wTp06dMpT5+fk1SVyO/l3NWs7Y53Gkm2zu6tWr+PHHHzF//nwMGjQIkZGRuPvuu5GUlIThw4cb6ikUCixZsgRDhw6Fn58f2rVrh88//9zwfs1Ix2effYZ7770Xvr6+WLduHQBg1apV6Nq1K3x9fdGlSxd89NFHkhhef/11dO7cGc2aNUP79u3x97//HRUVFZI677zzDkJDQ9GyZUu88MILuHnzZoP3tnHjRvzxj380KS8rK8Nnn32Gl19+GQ899JBZIyY//fQTBgwYAD8/P0RERGDixIkoKyszvL9u3TrExcWhZcuWUKvVePrpp6HT6QyfzaBBgwAAgYGBkr+a6vV6TJw4ESEhIfD19cUf/vAHHDhwwHDemhHyb775BnFxcVAqldi9e3et06dWrlyJmJgYKJVKhIWF4ZVXXjG8FxQUhL59+2LDhg0N3qsjGjNmDPbs2YONGzfi6NGjeOKJJ/Dggw/izJkzcodGTsAd+7maUanbX7cnnObea83o9ZUrVzBq1CioVCr4+fmhU6dOhqS+Xbt2AIDY2FgoFArJF6X6PpfbP8/+/fvDz88Pd911F06fPo0DBw4gLi4OLVq0wIMPPojCwkJDO+Pp5dXV1Zg/fz46duwIpVIJjUaDt99+2/D+HXfcAbVajc2bNzf4eToC9nfkCNyp37y9nwwICIBCoZCUrV+/Hh06dICPjw+io6Oxdu1aQ9uaxP2RRx6BQqEwHP/+++94+OGHERoaihYtWuCuu+7Cd999V29czv5dzVoO2ecJIhurqKgQLVq0EJMnTxY3b96ssx4AERQUJJYvXy5OnTolZs6cKTw9PcXJkyeFEEJkZ2cLACIqKkqkpaWJs2fPivz8fLFs2TIRFhZmKEtLSxOtW7cWq1evNpx7zpw5Ys+ePSI7O1ts3bpVhIaGivnz5xve//TTT4WPj49Yvny5+PXXX8WMGTNEy5YtRc+ePeuM9/Lly0KhUIh9+/aZvLdixQoRFxcnhBDiyy+/FFFRUaK6utrw/s6dOwUAceXKFSGEEEePHhUtWrQQ77//vjh9+rTYs2ePiI2NFc8995zknNu2bRO///672Lt3r+jTp48YOnSoEEKIyspKkZaWJgCIU6dOCa1WK65evSqEEGLixIkiPDxcbNu2TZw4cUKMHj1aBAYGikuXLkli6dGjh9ixY4f47bffRFFRkXjrrbck9//RRx8JX19fkZKSIk6dOiX2798v3n//fcl9JyYminvvvbfOz8xRABCbN282HP/2229CoVCI/Px8Sb2EhASRlJRk8+uR63G3fm706NHi4YcfrvczMfdeMzMzhRBCTJgwQfTq1UscOHBAZGdni2+//VZs3bpVCCHE/v37BQDx3XffCa1Wa+i/Gvpcaq7RpUsX8fXXX4uTJ0+KPn36iDvvvFPce++94scffxSHDx8WHTt2FOPGjavz/hITE0VgYKBYvXq1+O2338Tu3bvF8uXLJff7pz/9SdJnOwr2d+So3K3frLFq1SoREBBgON60aZPw9vYWH374oTh16pR49913haenp/jhhx+EEELodDoBQKxatUpotVqh0+mEEEIcOXJELF26VBw9elScPn1azJgxQ/j6+oqcnBzDuSMjI532u5q1nKXPY9JNdvHFF1+IwMBA4evrK/r27SuSkpLEL7/8IqkDQPKlRwgh7rnnHvHyyy8LIf7XqaakpEjqREREiPXr10vK5syZI+Lj4+uM55///Kfo3bu34Tg+Pr7Wa9fXqWZmZgoAIjc31+S9vn37GuKsqKgQwcHB4ttvvzW8b5x0P/PMM+Kll16SnGP37t3Cw8ND3Lhxo9br13wJLS0trfWcQghx7do14e3tLT755BNDWXl5uQgPDxf//Oc/Je22bNkiOb9x0h0eHi5mzJhR5+chhBALFy4UUVFR9dZxBMYd5GeffSYAiObNm0teXl5e4k9/+pMQ4n///up7TZgwwazrkWtyp35u9OjRwtPT0+R35h//+IfF91qTdI8YMUKMGTOm1jiM69Zo6HOpaffxxx8b3t+wYYMAIL7//ntDWXJysoiOjpbcX03SXVJSIpRKpUmSbWzKlCkO+UWW/R05MnfqN2sYJ919+/YVY8eOldR54oknxLBhwwzH5v5edevWTXzwwQeG49qSbmf5rmYtZ+nzuKab7OKxxx7D8OHDsXv3buzduxdff/01/vnPf+Ljjz+WbB4RHx8vaRcfH2+ycU5cXJzhvwsLC5GXl4cXXngBY8eONZRXVlZK1uR98cUXSElJwW+//YZr166hsrIS/v7+hvezsrIwbtw4k2vv3Lmzznu6ceMGAMDX11dSfurUKezfvx+bNm0CAHh5eeHPf/4zVq5cifvvv7/Wcx06dAi//fYbPvnkE0OZEALV1dXIzs5G165dkZmZiVmzZuHIkSO4fPkyqqurAQC5ubno1q1bref9/fffUVFRgX79+hnKvL29cffddyMrK0tS9/bP1ZhOp8OFCxeQkJBQZx3g1pqk69ev11vHEVVXV8PT0xOHDh2Cp6en5L2ade1t2rQx+cyMOcJaTpKPO/VzADBo0CAsWbJEUta6dWuT8zd0rzVefvllPPbYYzh8+DAGDx6MkSNHom/fvnXGZu7nAgA9evQw/HdoaCiAW1PCby+rWa5jLCsrC3q93mX6P/Z35Ejcrd+sTVZWlsku5/369cPChQvrbVdWVobZs2fj//7v/3DhwgVUVlbixo0byM3Nrbeds/RVtuKofR6TbrIbX19fPPDAA3jggQfw5ptv4sUXX8Rbb71l1o6Nt2vevLnhv2sSz+XLl+Oee+6R1Kv5xdq3bx+efPJJzJ49G0OGDEFAQAA2btyId999t1H3ExwcDODWOkSVSmUoX7FiBSorK9GmTRtDmRAC3t7euHLlSq2/tNXV1fjrX/+KiRMnmryn0WhQVlaGwYMHY/DgwVi3bh1UKhVyc3MxZMgQlJeX1xnjrT/AmX6GQoh6P1dj5m7wcfnyZcln4SxiY2NRVVUFnU6H/v3711rH29sbXbp0aeLIyNm4Sz9XE2PHjh0tPqfxvdYYOnQocnJy8NVXX+G7775DQkICJkyYgAULFtRa35zPpcbtGyrVXN+4rOZ8xlyt/2N/R47GnfrNupjzPc3Ya6+9hm+++QYLFixAx44d4efnh8cff7ze74WA8/RVtuKofR43UqMm061bN8lGYcCtDtD4uL5fgtDQULRp0wZnz55Fx44dJa+ajXf27NmDyMhIzJgxA3FxcejUqRNycnIk5+natWut165Phw4d4O/vj5MnTxrKKisrkZqainfffRdHjhwxvH755RdERkZKRrJvd+edd+LEiRMm99CxY0f4+Pjg119/RVFREd555x30798fXbp0MRmV8fHxAQBUVVUZymra//jjj4ayiooKHDx40KJdK1u2bImoqKgGHyF2/PhxxMbGmn3epnTt2jXDzwMAsrOzceTIEeTm5qJz584YNWoUnn32WWzatAnZ2dk4cOAA5s+fj23bttn8euQ+XLGfs4Sl96pSqfDcc89h3bp1SElJwbJlywDU3r+Z87nYQqdOneDn5+dU/R/7O3Jm7tZvdu3aVfI9Dbi1ue7t39O8vb0l/R8A7N69G8899xweeeQRw2aO586da/B6jtRX2YpT9nkWT0gnakBRUZEYNGiQWLt2rfjll1/E2bNnxWeffSZCQ0PF888/b6gHQAQHB4sVK1aIU6dOiTfffFN4eHiIEydOCCHqXtO3fPly4efnZ9jg6+jRo2LlypXi3XffFUIIsWXLFuHl5SU2bNggfvvtN7Fw4ULRunVryXqajRs3CqVSKbl2QxtlCCHEo48+Kv72t78Zjjdv3ix8fHwMm5jdbvr06aJXr15CCNP117/88ovw8/MT48ePF5mZmeL06dPiP//5j3jllVeEELc20fDx8RGvvfaa+P3338V//vMf0blzZ8nncf78eaFQKMTq1auFTqczrPWeNGmSCA8PF9u3b5dspHb58uVaY6lhvKZ79erVwtfXVyxcuFCcPn1aHDp0SCxatEjSJjIyUqSmptb7mcml5j6NX6NHjxZC3Frr/uabb4qoqCjh7e0t1Gq1eOSRR8TRo0ftcj1yLe7Uzwlxa83zgw8+KLRareRVWFho9b3+/e9/F1u2bBFnzpwRx48fFw899JC4++67hRC39sbw8/MTc+fOFQUFBYY+tqHPpbbPs7Y+z3iNpfFGarNmzRKBgYFizZo14rfffhN79+6VrBMvKysTfn5+YteuXfV+lk2F/R05A3frN2sY9zebN28W3t7eYsmSJeL06dOGjdR27txpqNOpUyfx8ssvC61Wa/j+NnLkSNGrVy+RmZkpjhw5IkaMGCFatmwpJk2aZGhX25puR/6uZi1n7POYdJPN3bx5U7zxxhvizjvvFAEBAaJZs2YiOjpazJw5U1y/ft1QD4D48MMPxQMPPCCUSqWIjIwUGzZsMLxfV6cqhBCffPKJ6NWrl/Dx8RGBgYFiwIABYtOmTYb3X3vtNREUFCRatGgh/vznP4v3339f0uEJIcTbb78tgoODRYsWLcTo0aNFYmJig53q119/Ldq0aSOqqqqEEEI89NBDko0vbnfo0CEBQBw6dKjWL3379+8XDzzwgGjRooVo3ry56NGjh3j77bcN769fv15ERUUJpVIp4uPjxdatW00+j3/84x9CrVYLhUJh+MW/ceOGePXVV0VwcLBQKpWiX79+Yv/+/YY25ibdQgixdOlSER0dLby9vUVYWJh49dVXDe/99NNPolWrVpKfKZG7cKd+TohbSWltXzhu34zM0nudM2eO6Nq1q/Dz8xOtW7cWDz/8sDh79qyh/vLly0VERITw8PAQAwcONOtzsVXSXVVVJebOnSsiIyOFt7e30Gg0Yt68eYb3169fL7l3ImqYu/WbNYz7GyFuPSGmffv2wtvbW3Tu3NkkKd66davo2LGj8PLyEpGRkYb7HjRokPDz8xMRERFi8eLFYuDAgfUm3fyu5jgUQvx3EShRE1MoFNi8ebPk2aiOTgiBPn36YPLkyXjqqafkDkdWTzzxBGJjYzF9+nS5QyFyWO7UzznjvVrr7rvvxuTJk/H000/LHQqRy3HGvsRRvx/yu5rj4JpuIgsoFAosW7YMlZWVcociK71ej549e2LKlClyh0JENsZ+rn46nQ6PP/64Q32xJiJ5OWK/ye9qjoUj3SQbZ/xLJhGRJdypn3OneyUi+2FfQq6ISTcRERERERGRnXB6OREREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdBMRERERERHZCZNuIiIiIiIiIjth0k1ERERERERkJ0y6iYiIiIiIiOyESTcRERERERGRnfw/cnbPWDcYpjAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDx0lEQVR4nO3deVhV5f7+8XvLLCo5AhooaCnOClqohB4V0uas1JxI8UTkgDQ55FxpZR4iFdNQMi2tr9lgZpKpOdBxgo4p2qRiBocwFYcEgfX7w5/7tGOjYMBm6/t1Xeu6XM/6rGc9i5Xn3D6swWQYhiEAAADAjlSz9QAAAACAsiLEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAJAKZlMJn300Uc276MyHTlyRCaTSWlpaVWyPwA3LkIsgBtWRESETCZTseXHH3+0Wp+Zmak+ffqUqu9p06apffv2f6uP65GPj48yMzPVunVrSdLmzZtlMpl06tQp2w4MgN1xtPUAAMCW7rzzTi1dutSirX79+hbr+fn5cnZ2lpeX198+Xnn0Yc8cHBxu+J8BgPLBTCyAG5qLi4u8vLwslp49e2rUqFGKjY1VvXr11Lt3b0nFbwX45ZdfNGDAANWpU0fu7u4KCgrSv//9byUlJWn69On69ttvzbO7SUlJVvvYt2+f/vGPf8jNzU1169bVP//5T509e9a8PSIiQvfff7/mzJkjb29v1a1bV08++aQuXrx41XObMGGCbr/99mLtbdu21dSpU83rS5cuVUBAgFxdXdWiRQstWLDgiv1u2bJFnTt3louLi7y9vTV+/HgVFBSYtxcVFenll19Ws2bN5OLiIl9fX7344ouSLG8nOHLkiHr06CFJql27tkwmkyIiIrRs2TLVrVtXeXl5Fsft16+fhg4detXzBnBjYCYWAKx4++239cQTT2j79u0yDKPY9rNnzyo0NFSNGjXSJ598Ii8vL+3du1dFRUXq37+/vvvuO61fv15ffvmlJMnDw6NYH+fPn9edd96p22+/Xbt27VJ2drYiIyM1atQoc+iVpE2bNsnb21ubNm3Sjz/+qP79+6t9+/YaOXLkFc9h0KBBmj17tn766Sc1bdpUkrR//37t27dP//d//ydJWrx4saZOnap58+apQ4cOSk1N1ciRI+Xu7q5hw4YV6/P48ePq27evOWwePHhQI0eOlKurq6ZNmybpUnhevHix/vWvf6lbt27KzMzUwYMHi/Xl4+Oj1atXq1+/fjp06JBq1aolNzc3OTs7a8yYMfrkk0/08MMPS5JycnK0du1arV+//ornDOAGYgDADWrYsGGGg4OD4e7ubl4eeughIzQ01Gjfvn2xeknGmjVrDMMwjDfffNOoWbOmceLECat9T5061WjXrt0V+1i0aJFRu3Zt4+zZs+btn332mVGtWjUjKyvLPMbGjRsbBQUF5pqHH37Y6N+/f6nOsW3btsaMGTPM6xMmTDA6depkXvfx8THeffddi31mzpxpBAcHG4ZhGIcPHzYkGampqYZhGMbEiRON5s2bG0VFReb6+fPnGzVq1DAKCwuN3Nxcw8XFxVi8eLHV8fy1v02bNhmSjJMnT1rUPfHEE0afPn3M63FxcYa/v7/FcQHc2LidAMANrUePHkpLSzMv8fHxkqSgoKAr7peWlqYOHTqoTp0613zs9PR0tWvXTu7u7ua2rl27qqioSIcOHTK3tWrVSg4ODuZ1b29vZWdnl+oYgwYN0ooVKyRJhmHovffe06BBgyRJv/32m44dO6YRI0aoRo0a5uWFF17QTz/9VOKYg4ODZTKZLMZ89uxZ/fLLL0pPT1deXp569uxZ+h+EFSNHjtSGDRt0/PhxSZduebj8IB4ASNxOAOAG5+7urmbNmlltvxI3N7e/fWzDMEoMZX9ud3JyKratqKioVMd49NFHNX78eO3du1d//PGHjh07pgEDBkiSuY/Fixfrtttus9jvz6H5amM2/v/tFiaTqVx+LpLUoUMHtWvXTsuWLVN4eLj27dunTz/9tFz6BnB9YCYWAK5B27ZtlZaWpt9//93qdmdnZxUWFl6xj5YtWyotLU3nzp0zt23fvl3VqlXTrbfeWi7jvPnmm3XHHXdoxYoVWrFihXr16iVPT09Jkqenpxo1aqSff/5ZzZo1s1j8/PxKHPOOHTss7hPesWOHatasqUaNGumWW26Rm5ubNm7cWKrxOTs7S5LVn1VkZKSWLl2qJUuWqFevXvLx8Snr6QO4jhFiAeAaDBw4UF5eXrr//vu1fft2/fzzz1q9erVSUlIkSU2aNNHhw4eVlpamnJycYk/aS5d+1e/q6qphw4bpu+++06ZNmzR69GgNGTLEHDTLw6BBg7Ry5Up98MEHGjx4sMW2adOmadasWXr99df1/fffa9++fVq6dKnmzp1rta/o6GgdO3ZMo0eP1sGDB/Xxxx9r6tSpio2NVbVq1eTq6qrnnntOzz77rJYtW6affvpJ33zzjRITE63217hxY5lMJq1du1a//fabxZsZBg0apOPHj2vx4sUaPnx4uf08AFwfCLEAcA2cnZ21YcMGNWjQQH379lWbNm00e/Zs86/h+/XrpzvvvFM9evRQ/fr19d577xXro3r16vriiy/0+++/q1OnTnrooYfUs2dPzZs3r1zH+vDDD+vEiRM6f/687r//fottkZGReuutt5SUlKQ2bdooNDRUSUlJJc7ENmrUSOvWrdPOnTvVrl07RUVFacSIEXr++efNNZMnT9ZTTz2lKVOmKCAgQP379y/xHt5GjRpp+vTpGj9+vDw9PTVq1Cjztlq1aqlfv36qUaNGsXEDgMkwrLw7BgCAKqB3794KCAgwP3AHAJcRYgEAVc7vv/+uDRs2aNCgQTpw4ICaN29u6yEBqGJ4OwEA2KmtW7eqT58+JW7/8/2l9qZjx446efKkXn75ZQIsAKuYiQUAO/XHH3+Y36NqjbVXhwHA9YIQCwAAALvD2wkAAABgdwixAAAAsDs82GVFUVGRfv31V9WsWZPvdAMAAFQiwzB05swZNWzYUNWqXWG+1bCx+fPnG02aNDFcXFyMjh07Gl9//fUV6zdv3mx07NjRcHFxMfz8/IyEhASL7UuXLjUkFVv++OOPUo/p2LFjVvtgYWFhYWFhYWGpnOXYsWNXzGs2nYldtWqVYmJitGDBAnXt2lVvvvmm+vTpowMHDsjX17dY/eHDh9W3b1+NHDlSy5cv1/bt2xUdHa369eurX79+5rpatWrp0KFDFvu6urqWelw1a9aUJB07dky1atW6xrMDAABAWeXm5srHx8ecx0pi07cT3HbbberYsaMSEhLMbQEBAbr//vs1a9asYvXPPfecPvnkE6Wnp5vboqKi9O2335q/V56UlKSYmBidOnXqmseVm5srDw8PnT59mhALAABQiUqbw2z2YFd+fr727NmjsLAwi/awsDDt2LHD6j4pKSnF6sPDw7V7925dvHjR3Hb27Fk1btxYN998s+6++26lpqZecSx5eXnKzc21WAAAAFB12SzE5uTkqLCwUJ6enhbtnp6eysrKsrpPVlaW1fqCggLl5ORIklq0aKGkpCR98skneu+99+Tq6qquXbvqhx9+KHEss2bNkoeHh3nx8fH5m2cHAACAimTzV2z99el/wzCu+EYAa/V/br/99ts1ePBgtWvXTiEhIXr//fd166236o033iixzwkTJuj06dPm5dixY9d6OgAAAKgENnuwq169enJwcCg265qdnV1stvUyLy8vq/WOjo6qW7eu1X2qVaumTp06XXEm1sXFRS4uLmU8AwAAUJkKCwstbh+EfXJycpKDg8Pf7sdmIdbZ2VmBgYFKTk7WAw88YG5PTk7WfffdZ3Wf4OBgffrppxZtGzZsUFBQkJycnKzuYxiG0tLS1KZNm/IbPAAAqDSGYSgrK+tvPbSNquWmm26Sl5fX33ofv01fsRUbG6shQ4YoKChIwcHBWrRokTIyMhQVFSXp0q/5jx8/rmXLlkm69CaCefPmKTY2ViNHjlRKSooSExP13nvvmfucPn26br/9dt1yyy3Kzc1VfHy80tLSNH/+fJucIwAA+HsuB9gGDRqoevXqfIjIjhmGofPnzys7O1uS5O3tfc192TTE9u/fXydOnNCMGTOUmZmp1q1ba926dWrcuLEkKTMzUxkZGeZ6Pz8/rVu3TuPGjdP8+fPVsGFDxcfHW7wj9tSpU/rnP/+prKwseXh4qEOHDvr666/VuXPnSj8/AADw9xQWFpoDbEm3DsK+uLm5Sbp0S2iDBg2u+dYCm74ntqriPbEAAFQNFy5c0OHDh9WkSRNz+IH9++OPP3TkyBH5+fkV+yBVlX9PLAAAQGlxC8H1pTyuJyEWAAAAdsem98QCAIDiUvuW7t7PDutO2PUxcWWXf92empqq9u3b23o4FiIiInTq1Cl99NFHNhsDIRYAANilvHTnSj2eS0B+meojIiL09ttvF2sPDw/X+vXrr7q/j4+PMjMzVa9evavWVnbgff3112Xrx6oIsQAAXEFVnqF0ahN71ZqL++ZWwkhQkjvvvFNLly61aCvtB5YcHBzk5eVVEcP62zw8PGw9BO6JBQCgPDi1ib3qghuPi4uLvLy8LJbatWtLuvRwU0JCgvr06SM3Nzf5+fnpgw8+MO975MgRmUwmpaWlSZJOnjypQYMGqX79+nJzc9Mtt9xiDsh+fn6SpA4dOshkMql79+7mfpYuXaqAgAC5urqqRYsWWrBgQbFjvP/++woJCZGbm5s6deqk77//Xrt27VJQUJBq1KihO++8U7/99pt5v4iICN1///3m9aKiIr388stq1qyZXFxc5OvrqxdffLG8f5wWmIkFANiN0syKcs9mxSptGGcGuHQmT56s2bNn6/XXX9c777yjgQMHqnXr1goICLBae+DAAX3++eeqV6+efvzxR/3xxx+SpJ07d6pz58768ssv1apVKzk7X7rVYvHixZo6darmzZunDh06KDU1VSNHjpS7u7uGDRtm7nvq1KmKi4uTr6+vhg8froEDB6pWrVp6/fXXVb16dT3yyCOaMmWKEhISrJ7HhAkTtHjxYv3rX/9St27dlJmZqYMHD1bAT+x/CLEAgDKz91+xS7YJWaW/h7NmhY4DlWft2rWqUaOGRdtzzz2nyZMnS5IefvhhRUZGSpJmzpyp5ORkvfHGGxazpZdlZGSoQ4cOCgoKkiQ1adLEvK1+/fqSpLp161rcgjBz5ky99tprevDBByVdmrE9cOCA3nzzTYsQ+/TTTys8PFySNHbsWA0cOFAbN25U165dJUkjRoxQUlKS1XM8c+aMXn/9dc2bN8/cZ9OmTdWtW7fS/ZCuESEWAHBDIlCiMvTo0aPY7GWdOnXMfw4ODrbYFhwcbL594K+eeOIJ9evXT3v37lVYWJjuv/9+denSpcRj//bbbzp27JhGjBihkSNHmtsLCgqK3dPatm1b8589PT0lSW3atLFou/yp2L9KT09XXl6eevbsWeJYKgIhFgDs3PUwK3r2/Xml7JFACfvi7u6uZs2alWmfkj4E0KdPHx09elSfffaZvvzyS/Xs2VNPPvmk5syZY7W+qKhI0qVbCm677TaLbX/91KuTk1Ox4/+17XJ/f2WrL6nxYBcAAICNfPPNN8XWW7RoUWJ9/fr1FRERoeXLlysuLk6LFi2SJPM9sIWFheZaT09PNWrUSD///LOaNWtmsVx+EKw83HLLLXJzc9PGjRvLrc/SYCYWAG4Q5TsryowoUBp5eXnKysqyaHN0dDS/+/WDDz5QUFCQunXrphUrVmjnzp1KTEy02teUKVMUGBioVq1aKS8vT2vXrjU/ANagQQO5ublp/fr1uvnmm+Xq6ioPDw9NmzZNY8aMUa1atdSnTx/l5eVp9+7dOnnypGJjy+eNGa6urnruuef07LPPytnZWV27dtVvv/2m/fv3a8SIEeVyDGsIsQBQhZXuvk0CJUrGvb+2tX79enl7e1u0NW/e3Pzk/vTp07Vy5UpFR0fLy8tLK1asUMuWLa325ezsrAkTJujIkSNyc3NTSEiIVq5cKelSMI6Pj9eMGTM0ZcoUhYSEaPPmzYqMjFT16tX16quv6tlnn5W7u7vatGmjmJiYcj3PyZMny9HRUVOmTNGvv/4qb29vRUVFlesx/spk2PpzC1VQbm6uPDw8dPr0adWqVcvWwwFwAytNADnwVOnCR+djw65epNLNxNrimKU9ri2OWdrj3ijHlMrv7Q8XLlzQ4cOH5efnJ1dX13Lps6owmUxas2aNxftWbxRXuq6lzWHMxAJAKZR2Nqv8w12pygDghsODXQAAALA7zMQCuG5V5VdPAQB3dP49hFgAN7zSPLXPr/UBoGohxAKoFKWZFS3vB3J42hqo2krzvwtGPR+5TXivEkYDe0OIBfC38PoeAIAtEGKBG1D5zor+3dEAAFB2hFjgOsKsKADgRkGIBWyIp+cBALg2hFjg/yvvQFmenwst/TfvS1UGAKgCNm/erB49eujkyZO66aabbD0cq6ZNm6aPPvpIaWlpth5KMYRYVCrbffWoNE+zEygBwJ6UdvKhvFzrb8V27NihkJAQ9e7dW+vXry/nUVkq72D89NNPa/To0X9/YBWAEHsDK+9Aya+8AQAobsmSJRo9erTeeustZWRkyNfX19ZDuirDMFRYWKgaNWqoRo0ath6OVXx2FuXGqU3sVRcAAG4k586d0/vvv68nnnhCd999t5KSkq5Yv2PHDt1xxx1yc3OTj4+PxowZo3Pnzpm3L1++XEFBQapZs6a8vLz06KOPKjs7W5J05MgR9ejRQ5JUu3ZtmUwmRURESJLy8vI0ZswYNWjQQK6ururWrZt27dpl7nfz5s0ymUz64osvFBQUJBcXF23dulXTpk1T+/btLca4ZMkStWrVSi4uLvL29taoUaP+/g/qGjATa2d4NRIA4EZz9Nffdb7AVapmGVvsYSZu1apVat68uZo3b67Bgwdr9OjRmjx5skwmU7Haffv2KTw8XDNnzlRiYqJ+++03jRo1SqNGjdLSpUslSfn5+Zo5c6aaN2+u7OxsjRs3ThEREVq3bp18fHy0evVq9evXT4cOHVKtWrXk5uYmSXr22We1evVqvf3222rcuLFeeeUVhYeH68cff1SdOnXMY3j22Wc1Z84c+fv766abbtKWLVssxpiQkKDY2FjNnj1bffr00enTp7V9+/YK/AmWjBBbRfBqJAAArj+JiYkaPHiwJOnOO+/U2bNntXHjRvXq1atY7auvvqpHH31UMTExkqRbbrlF8fHxCg0NVUJCglxdXTV8+HBzvb+/v+Lj49W5c2edPXtWNWrUMAfSBg0amO+JPXfunBISEpSUlKQ+ffpIkhYvXqzk5GQlJibqmWeeMfc5Y8YM9e7du8TzeeGFF/TUU09p7Nix5rZOnTpd2w/nb7KHf8QAAADYnUOHDmnnzp0aMGCAJMnR0VH9+/fXkiVLrNbv2bNHSUlJ5vtQa9SoofDwcBUVFenw4cOSpNTUVN13331q3Lixatasqe7du0uSMjIyShzHTz/9pIsXL6pr167mNicnJ3Xu3Fnp6ekWtUFBQSX2k52drV9//VU9e/Ys1flXNGZiAQAAKkBiYqIKCgrUqFEjc5thGHJyctLJkyeL1RcVFenxxx/XmDFjim3z9fXVuXPnFBYWprCwMC1fvlz169dXRkaGwsPDlZ+fX+I4DMOQpGK3MBiGUazN3d29xH4u35pQVTATCwAAUM4KCgq0bNkyvfbaa0pLSzMv3377rRo3bqwVK1YU26djx47av3+/mjVrVmxxdnbWwYMHlZOTo9mzZyskJEQtWrQwP9R1mbPzpdsTCwsLzW2X99+2bZu57eLFi9q9e7cCAgJKfU41a9ZUkyZNtHHjxrL+OCoEM7EAAKDclecHX+zR2rVrdfLkSY0YMUIeHh4W2x566CElJibqX//6l0X7c889p9tvv11PPvmkRo4cKXd3d6Wnpys5OVlvvPGGfH195ezsrDfeeENRUVH67rvvNHPmTIs+GjduLJPJpLVr16pv375yc3NTjRo19MQTT+iZZ55RnTp15Ovrq1deeUXnz5/XiBEjynRe06ZNU1RUlBo0aKA+ffrozJkz2r59u03eJctMLAAAQDlLTExUr169igVYSerXr5/S0tK0d+9ei/a2bdtqy5Yt+uGHHxQSEqIOHTpo8uTJ8vb2liTVr19fSUlJ+uCDD9SyZUvNnj1bc+bMseijUaNGmj59usaPHy9PT0/z669mz56tfv36aciQIerYsaN+/PFHffHFF6pdu3aZzmvYsGGKi4vTggUL1KpVK91999364YcfytRHeWEmFgAA2KWiV9Ms1gNb+dhmIFZ8+umnJW7r2LGj+T7V2FjLd6h36tRJGzZsKHHfgQMHauDAgRZtl/u6bPLkyZo8ebJFm6urq+Lj4xUfH2+13+7duxfrR7o08zpt2jSLtscff1yPP/54iWOsLMzEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B0e7AIAADeM8z+klaqu+i3tK3Qc+PtsPhO7YMEC+fn5ydXVVYGBgdq6desV67ds2aLAwEC5urrK399fCxcuLLF25cqVMplMuv/++8t51AAAALAlm4bYVatWKSYmRpMmTVJqaqpCQkLUp0+fEr//e/jwYfXt21chISFKTU3VxIkTNWbMGK1evbpY7dGjR/X0008rJCSkok8DAAAAlcymIXbu3LkaMWKEIiMjFRAQoLi4OPn4+CghIcFq/cKFC+Xr66u4uDgFBAQoMjJSw4cPL/ai38LCQg0aNEjTp0+Xv79/ZZwKAAAAKpHNQmx+fr727NmjsLAwi/awsDDt2LHD6j4pKSnF6sPDw7V7925dvHjR3DZjxgzVr1+/1J9Sy8vLU25ursUCAACAqstmITYnJ0eFhYXy9PS0aPf09FRWVpbVfbKysqzWFxQUKCcnR5K0fft2JSYmavHixaUey6xZs+Th4WFefHyqzhc/AAAASqtJkyaKi4uz9TAqhc3fTmAymSzWDcMo1na1+svtZ86c0eDBg7V48WLVq1ev1GOYMGGCxWffcnNzCbIAAFRxtw/4VwX2vqxYy8V9c0u995WyjCQNGzZMSUlJV9x/zZo1PJx+BTYLsfXq1ZODg0OxWdfs7Oxis62XeXl5Wa13dHRU3bp1tX//fh05ckT33HOPeXtRUZEkydHRUYcOHVLTpk2L9evi4iIXF5e/e0oAAACSpMzMTPOfV61apSlTpujQoUPmNjc3N1sM67pis9sJnJ2dFRgYqOTkZIv25ORkdenSxeo+wcHBxeo3bNigoKAgOTk5qUWLFtq3b5/S0tLMy7333qsePXooLS2N2VUAAHDN9uw/VmwpiZeXl3nx8PCQyWSyaHv33XfVtGlTOTs7q3nz5nrnnXfM+zZp0kSS9MADD8hkMpnXf/rpJ913333y9PRUjRo11KlTJ3355ZcVecpVmk3fThAbG6u33npLS5YsUXp6usaNG6eMjAxFRUVJuvRr/qFDh5rro6KidPToUcXGxio9PV1LlixRYmKinn76aUmSq6urWrdubbHcdNNNqlmzplq3bi1nZ2ebnCcAAMBla9as0dixY/XUU0/pu+++0+OPP67HHntMmzZtkiTt2rVLkrR06VJlZmaa18+ePau+ffvqyy+/VGpqqsLDw3XPPfeU+GrS651N74nt37+/Tpw4oRkzZigzM1OtW7fWunXr1LhxY0mXpuL/fGH8/Py0bt06jRs3TvPnz1fDhg0VHx+vfv362eoUAAAAymTOnDmKiIhQdHS0pEuTet98843mzJmjHj16qH79+pKkm266SV5eXub92rVrp3bt2pnXX3jhBa1Zs0affPKJRo0aVbknUQXY/MGu6Oho80X8K2s3PIeGhmrv3r2l7v9KN00DAABUtvT0dP3zn/+0aOvatatef/31K+537tw5TZ8+XWvXrtWvv/6qgoIC/fHHH8zEAgAAoIIUFer8D2nmP+f/N+N/65Lysn+56hsNnnnmGX3xxReaM2eOmjVrJjc3Nz300EPKz8+vuHFXYTa9JxYAAOBG07ypn1L2pFm0/Tv1WwUEBJjXnZycVFhYaFGzdetWRURE6IEHHlCbNm3k5eWlI0eOVMKIqyZmYgEAACpRzIhhGhLzrNq3aqHuwZ217quv9fGGrzR/8bvmNx54N7xZKz/4WDXqNZGzk7Nqedykeg0aafm7q3TPPffIZDJp8uTJ5leJ3oiYiQUAAKhE9/TuoVcnPaO4t5Yp6K6HtGTVai2cNU1BnYPNNTHPPK9/p2zVXb1u16CH+0qSYp+bolq1PNSlSxfdc889Cg8PV8eOHW11GjbHTCwAALBL36wcZ7HewT/7qvtc+MWhVH2n59e9pjFZExERoUe6trdoG/noIxr56CN/Oeb//nxH9966o3tvi+0NG/lo4ZKVCmz1v/feP/nkkxY1N9LtBczEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAFRdRYUyDEkybD0SlKPyeL8tr9gCAABV1+lsnTh9XrVqnJZr9ZqSqeRXZF3Iu3p3eYWlDMNFBaUqu3DhQqnqSnXccj5mVWQYhvLz8/Xbb7+pWrVqcnZ2vua+CLEAAKDKMhUW6Nm4zXq8XzsFBnjL0bHkXyK7GWeu2t/Fk6X7JfRvBedLVXfYsXSBMj/7t0o/ZlVWvXp1+fr6qlq1a78pgBALAACqtN9O/aEXl3wjjxouqlndWdWqmazW7f3Xiqv29WOie6mOOSrr/lLVleaYpT1uaY/53SfjS1VXVTk4OMjR0VEmk/XrWFqEWAAAUOUZhnTqTJ5OnSn5ngGXakev2o8pp2apjnc0M7dUdaU5ZmmPW9pjurq6lqrueseDXQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHdsHmIXLFggPz8/ubq6KjAwUFu3br1i/ZYtWxQYGChXV1f5+/tr4cKFFts//PBDBQUF6aabbpK7u7vat2+vd955pyJPAQAAAJXMpiF21apViomJ0aRJk5SamqqQkBD16dNHGRkZVusPHz6svn37KiQkRKmpqZo4caLGjBmj1atXm2vq1KmjSZMmKSUlRf/5z3/02GOP6bHHHtMXX3xRWacFAACACmbTEDt37lyNGDFCkZGRCggIUFxcnHx8fJSQkGC1fuHChfL19VVcXJwCAgIUGRmp4cOHa86cOeaa7t2764EHHlBAQICaNm2qsWPHqm3bttq2bVtlnRYAAAAqmKOtDpyfn689e/Zo/PjxFu1hYWHasWOH1X1SUlIUFhZm0RYeHq7ExERdvHhRTk5OFtsMw9BXX32lQ4cO6eWXXy7fEwAAAKjCUvvWLVVdh3UnKngkFcNmITYnJ0eFhYXy9PS0aPf09FRWVpbVfbKysqzWFxQUKCcnR97e3pKk06dPq1GjRsrLy5ODg4MWLFig3r17lziWvLw85eXlmddzc3Ov9bQAAABQCWwWYi8zmUwW64ZhFGu7Wv1f22vWrKm0tDSdPXtWGzduVGxsrPz9/dW9e3erfc6aNUvTp0+/xjMAAABAZbNZiK1Xr54cHByKzbpmZ2cXm229zMvLy2q9o6Oj6tb935R5tWrV1KxZM0lS+/btlZ6erlmzZpUYYidMmKDY2Fjzem5urnx8fK7ltAAAAFAJbPZgl7OzswIDA5WcnGzRnpycrC5duljdJzg4uFj9hg0bFBQUVOx+2D8zDMPidoG/cnFxUa1atSwWAAAAVF02vZ0gNjZWQ4YMUVBQkIKDg7Vo0SJlZGQoKipK0qUZ0uPHj2vZsmWSpKioKM2bN0+xsbEaOXKkUlJSlJiYqPfee8/c56xZsxQUFKSmTZsqPz9f69at07Jly0p84wEAAADsj01DbP/+/XXixAnNmDFDmZmZat26tdatW6fGjRtLkjIzMy3eGevn56d169Zp3Lhxmj9/vho2bKj4+Hj169fPXHPu3DlFR0frl19+kZubm1q0aKHly5erf//+lX5+AAAAVZ1Tm9ir1lzcN7cSRlI2Nn+wKzo6WtHR0Va3JSUlFWsLDQ3V3r17S+zvhRde0AsvvFBewwMAAEAVZPPPzgIAAABlVaaZ2J07dyowMFAODg6Sir8OKy8vTx9//LEeeeSR8h0lAAAAJEl56c6lrKxZoeOwtTLNxAYHB+vEif991cHDw0M///yzef3UqVMaOHBg+Y0OAAAAsKJMIfbyhwVKWi+pDQAAAChP5X5P7JW+tgUAAACUBx7sAgAAgN0p8yu2Dhw4YP70q2EYOnjwoM6ePStJysnJKd/RAQAAAFaUOcT27NnT4r7Xu+++W9Kl2wj++rYCAAAAoCKUKcQePny4osYBAAAAlFqZQuzlz8ECAAAAtlSmB7t+//13/fLLLxZt+/fv12OPPaZHHnlE7777brkODgAAALCmTCH2ySef1Ny5c83r2dnZCgkJ0a5du5SXl6eIiAi988475T5IAAAA4M/KFGK/+eYb3Xvvveb1ZcuWqU6dOkpLS9PHH3+sl156SfPnzy/3QQIAAAB/VqYQm5WVJT8/P/P6V199pQceeECOjpdurb333nv1ww8/lO8IAQAAgL8oU4itVauWTp06ZV7fuXOnbr/9dvO6yWRSXl5euQ0OAAAAsKZMIbZz586Kj49XUVGR/u///k9nzpzRP/7xD/P277//Xj4+PuU+SAAAAODPyvSKrZkzZ6pXr15avny5CgoKNHHiRNWuXdu8feXKlQoNDS33QQIAAAB/VqYQ2759e6Wnp2vHjh3y8vLSbbfdZrF9wIABatmyZbkOEAAAAPirMn92tn79+rrvvvusbrvrrrv+9oAAAACAqylTiF22bFmp6oYOHXpNgwEAAABKo0whNiIiQjVq1JCjo6MMw7BaYzKZCLEAAACoUGUKsQEBAfrvf/+rwYMHa/jw4Wrbtm1FjQsAAAAoUZlesbV//3599tln+uOPP3THHXcoKChICQkJys3NrajxAQAAAMWUKcRK0m233aY333xTmZmZGjNmjN5//315e3tr0KBBfOgAAAAAlaLMIfYyNzc3DR06VNOnT1fnzp21cuVKnT9/vjzHBgAAAFh1TSH2+PHjeumll3TLLbdowIAB6tSpk/bv32/x4QMAAACgopTpwa73339fS5cu1ZYtWxQeHq7XXntNd911lxwcHCpqfAAAAEAxZQqxAwYMkK+vr8aNGydPT08dOXJE8+fPL1Y3ZsyYchsgAAAA8FdlCrG+vr4ymUx69913S6wxmUyEWAAAAFSoMoXYI0eOXLXm+PHj1zoWAAAAoFSu+e0Ef5WVlaUxY8aoWbNm5dUlAAAAYFWZQuypU6c0aNAg1a9fXw0bNlR8fLyKioo0ZcoU+fv7KyUlRUuWLKmosQIAAACSyng7wcSJE/X1119r2LBhWr9+vcaNG6f169frwoUL+vzzzxUaGlpR4wQAAADMyhRiP/vsMy1dulS9evVSdHS0mjVrpltvvVVxcXEVNDwAAACguDLdTvDrr7+qZcuWkiR/f3+5uroqMjKyQgYGAAAAlKRMIbaoqEhOTk7mdQcHB7m7u5f7oAAAAIArKdPtBIZhKCIiQi4uLpKkCxcuKCoqqliQ/fDDD8tvhAAAAMBflCnEDhs2zGJ98ODB5ToYAAAAoDTKFGKXLl1aUeMAAAAASq3cPnYAAAAAVBabh9gFCxbIz89Prq6uCgwM1NatW69Yv2XLFgUGBsrV1VX+/v5auHChxfbFixcrJCREtWvXVu3atdWrVy/t3LmzIk8BAAAAlcymIXbVqlWKiYnRpEmTlJqaqpCQEPXp00cZGRlW6w8fPqy+ffsqJCREqampmjhxosaMGaPVq1ebazZv3qyBAwdq06ZNSklJka+vr8LCwnT8+PHKOi0AAABUMJuG2Llz52rEiBGKjIxUQECA4uLi5OPjo4SEBKv1CxculK+vr+Li4hQQEKDIyEgNHz5cc+bMMdesWLFC0dHRat++vVq0aKHFixerqKhIGzdurKzTAgAAQAWzWYjNz8/Xnj17FBYWZtEeFhamHTt2WN0nJSWlWH14eLh2796tixcvWt3n/PnzunjxourUqVPiWPLy8pSbm2uxAAAAoOqyWYjNyclRYWGhPD09Ldo9PT2VlZVldZ+srCyr9QUFBcrJybG6z/jx49WoUSP16tWrxLHMmjVLHh4e5sXHx6eMZwMAAIDKZPMHu0wmk8W6YRjF2q5Wb61dkl555RW99957+vDDD+Xq6lpinxMmTNDp06fNy7Fjx8pyCgAAAKhkZXpPbHmqV6+eHBwcis26ZmdnF5ttvczLy8tqvaOjo+rWrWvRPmfOHL300kv68ssv1bZt2yuOxcXFxfwVMgAAAFR9NpuJdXZ2VmBgoJKTky3ak5OT1aVLF6v7BAcHF6vfsGGDgoKC5OTkZG579dVXNXPmTK1fv15BQUHlP3gAAADYlE1vJ4iNjdVbb72lJUuWKD09XePGjVNGRoaioqIkXfo1/9ChQ831UVFROnr0qGJjY5Wenq4lS5YoMTFRTz/9tLnmlVde0fPPP68lS5aoSZMmysrKUlZWls6ePVvp5wcAAICKYbPbCSSpf//+OnHihGbMmKHMzEy1bt1a69atU+PGjSVJmZmZFu+M9fPz07p16zRu3DjNnz9fDRs2VHx8vPr162euWbBggfLz8/XQQw9ZHGvq1KmaNm1apZwXAAAAKpZNQ6wkRUdHKzo62uq2pKSkYm2hoaHau3dvif0dOXKknEYGAACAqsrmbycAAAAAyooQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOyOzUPsggUL5OfnJ1dXVwUGBmrr1q1XrN+yZYsCAwPl6uoqf39/LVy40GL7/v371a9fPzVp0kQmk0lxcXEVOHoAAADYgk1D7KpVqxQTE6NJkyYpNTVVISEh6tOnjzIyMqzWHz58WH379lVISIhSU1M1ceJEjRkzRqtXrzbXnD9/Xv7+/po9e7a8vLwq61QAAABQiWwaYufOnasRI0YoMjJSAQEBiouLk4+PjxISEqzWL1y4UL6+voqLi1NAQIAiIyM1fPhwzZkzx1zTqVMnvfrqqxowYIBcXFwq61QAAABQiWwWYvPz87Vnzx6FhYVZtIeFhWnHjh1W90lJSSlWHx4ert27d+vixYvXPJa8vDzl5uZaLAAAAKi6bBZic3JyVFhYKE9PT4t2T09PZWVlWd0nKyvLan1BQYFycnKueSyzZs2Sh4eHefHx8bnmvgAAAFDxbP5gl8lkslg3DKNY29XqrbWXxYQJE3T69GnzcuzYsWvuCwAAABXP0VYHrlevnhwcHIrNumZnZxebbb3My8vLar2jo6Pq1q17zWNxcXHh/lkAAAA7YrOZWGdnZwUGBio5OdmiPTk5WV26dLG6T3BwcLH6DRs2KCgoSE5OThU2VgAAAFQtNr2dIDY2Vm+99ZaWLFmi9PR0jRs3ThkZGYqKipJ06df8Q4cONddHRUXp6NGjio2NVXp6upYsWaLExEQ9/fTT5pr8/HylpaUpLS1N+fn5On78uNLS0vTjjz9W+vkBAACgYtjsdgJJ6t+/v06cOKEZM2YoMzNTrVu31rp169S4cWNJUmZmpsU7Y/38/LRu3TqNGzdO8+fPV8OGDRUfH69+/fqZa3799Vd16NDBvD5nzhzNmTNHoaGh2rx5c6WdGwAAACqOTUOsJEVHRys6OtrqtqSkpGJtoaGh2rt3b4n9NWnSxPywFwAAAK5PNn87AQAAAFBWhFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDuEGIBAABgdwixAAAAsDuEWAAAANgdQiwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3SHEAgAAwO4QYgEAAGB3CLEAAACwO4RYAAAA2B1CLAAAAOwOIRYAAAB2hxALAAAAu0OIBQAAgN0hxAIAAMDu2DzELliwQH5+fnJ1dVVgYKC2bt16xfotW7YoMDBQrq6u8vf318KFC4vVrF69Wi1btpSLi4tatmypNWvWVNTwAQAAYAM2DbGrVq1STEyMJk2apNTUVIWEhKhPnz7KyMiwWn/48GH17dtXISEhSk1N1cSJEzVmzBitXr3aXJOSkqL+/ftryJAh+vbbbzVkyBA98sgj+ve//11ZpwUAAIAKZtMQO3fuXI0YMUKRkZEKCAhQXFycfHx8lJCQYLV+4cKF8vX1VVxcnAICAhQZGanhw4drzpw55pq4uDj17t1bEyZMUIsWLTRhwgT17NlTcXFxlXRWAAAAqGg2C7H5+fnas2ePwsLCLNrDwsK0Y8cOq/ukpKQUqw8PD9fu3bt18eLFK9aU1CcAAADsj6OtDpyTk6PCwkJ5enpatHt6eiorK8vqPllZWVbrCwoKlJOTI29v7xJrSupTkvLy8pSXl2deP336tCQpNze3TOf0d+SdNUpVd/bi1euMwryr1khSbjkes7THtcUxS3vcG+WYpT3ujXLM0h6X/3Ztf8zSHpf/jmx/zNIe90Y5ZmmPW6X/263ETHT5WIZxlfEbNnL8+HFDkrFjxw6L9hdeeMFo3ry51X1uueUW46WXXrJo27ZtmyHJyMzMNAzDMJycnIx3333Xomb58uWGi4tLiWOZOnWqIYmFhYWFhYWFhaWKLMeOHbtilrTZTGy9evXk4OBQbIY0Ozu72EzqZV5eXlbrHR0dVbdu3SvWlNSnJE2YMEGxsbHm9aKiIv3++++qW7euTCaTcnNz5ePjo2PHjqlWrVplOk9UPVzP6w/X9PrDNb2+cD2vPxV5TQ3D0JkzZ9SwYcMr1tksxDo7OyswMFDJycl64IEHzO3Jycm67777rO4THBysTz/91KJtw4YNCgoKkpOTk7kmOTlZ48aNs6jp0qVLiWNxcXGRi4uLRdtNN91UrK5WrVr85buOcD2vP1zT6w/X9PrC9bz+VNQ19fDwuGqNzUKsJMXGxmrIkCEKCgpScHCwFi1apIyMDEVFRUm6NEN6/PhxLVu2TJIUFRWlefPmKTY2ViNHjlRKSooSExP13nvvmfscO3as7rjjDr388su677779PHHH+vLL7/Utm3bbHKOAAAAKH82DbH9+/fXiRMnNGPGDGVmZqp169Zat26dGjduLEnKzMy0eGesn5+f1q1bp3Hjxmn+/Plq2LCh4uPj1a9fP3NNly5dtHLlSj3//POaPHmymjZtqlWrVum2226r9PMDAABAxbBpiJWk6OhoRUdHW92WlJRUrC00NFR79+69Yp8PPfSQHnroofIYnqRLtxtMnTq12C0HsE9cz+sP1/T6wzW9vnA9rz9V4ZqaDONq7y8AAAAAqhabfrELAAAAuBaEWAAAANgdQiwAAADsDiH2KhYsWCA/Pz+5uroqMDBQW7dutfWQUAqzZs1Sp06dVLNmTTVo0ED333+/Dh06ZFFjGIamTZumhg0bys3NTd27d9f+/fttNGKU1axZs2QymRQTE2Nu45ran+PHj2vw4MGqW7euqlevrvbt22vPnj3m7VxT+1JQUKDnn39efn5+cnNzk7+/v2bMmKGioiJzDde06vr66691zz33qGHDhjKZTProo48stpfm2uXl5Wn06NGqV6+e3N3dde+99+qXX36pkPESYq9g1apViomJ0aRJk5SamqqQkBD16dPH4rVfqJq2bNmiJ598Ut98842Sk5NVUFCgsLAwnTt3zlzzyiuvaO7cuZo3b5527dolLy8v9e7dW2fOnLHhyFEau3bt0qJFi9S2bVuLdq6pfTl58qS6du0qJycnff755zpw4IBee+01i4/NcE3ty8svv6yFCxdq3rx5Sk9P1yuvvKJXX31Vb7zxhrmGa1p1nTt3Tu3atdO8efOsbi/NtYuJidGaNWu0cuVKbdu2TWfPntXdd9+twsLC8h/wFT9Ke4Pr3LmzERUVZdHWokULY/z48TYaEa5Vdna2IcnYsmWLYRiGUVRUZHh5eRmzZ88211y4cMHw8PAwFi5caKthohTOnDlj3HLLLUZycrIRGhpqjB071jAMrqk9eu6554xu3bqVuJ1ran/uuusuY/jw4RZtDz74oDF48GDDMLim9kSSsWbNGvN6aa7dqVOnDCcnJ2PlypXmmuPHjxvVqlUz1q9fX+5jZCa2BPn5+dqzZ4/CwsIs2sPCwrRjxw4bjQrX6vTp05KkOnXqSJIOHz6srKwsi+vr4uKi0NBQrm8V9+STT+quu+5Sr169LNq5pvbnk08+UVBQkB5++GE1aNBAHTp00OLFi83buab2p1u3btq4caO+//57SdK3336rbdu2qW/fvpK4pvasNNduz549unjxokVNw4YN1bp16wq5vjb/2EFVlZOTo8LCQnl6elq0e3p6Kisry0ajwrUwDEOxsbHq1q2bWrduLUnma2jt+h49erTSx4jSWblypfbu3atdu3YV28Y1tT8///yzEhISFBsbq4kTJ2rnzp0aM2aMXFxcNHToUK6pHXruued0+vRptWjRQg4ODiosLNSLL76ogQMHSuLvqT0rzbXLysqSs7OzateuXaymIrITIfYqTCaTxbphGMXaULWNGjVK//nPf7Rt27Zi27i+9uPYsWMaO3asNmzYIFdX1xLruKb2o6ioSEFBQXrppZckSR06dND+/fuVkJCgoUOHmuu4pvZj1apVWr58ud599121atVKaWlpiomJUcOGDTVs2DBzHdfUfl3Ltauo68vtBCWoV6+eHBwciv3LITs7u9i/QlB1jR49Wp988ok2bdqkm2++2dzu5eUlSVxfO7Jnzx5lZ2crMDBQjo6OcnR01JYtWxQfHy9HR0fzdeOa2g9vb2+1bNnSoi0gIMD88Cx/T+3PM888o/Hjx2vAgAFq06aNhgwZonHjxmnWrFmSuKb2rDTXzsvLS/n5+Tp58mSJNeWJEFsCZ2dnBQYGKjk52aI9OTlZXbp0sdGoUFqGYWjUqFH68MMP9dVXX8nPz89iu5+fn7y8vCyub35+vrZs2cL1raJ69uypffv2KS0tzbwEBQVp0KBBSktLk7+/P9fUznTt2rXYq+++//57NW7cWBJ/T+3R+fPnVa2aZbRwcHAwv2KLa2q/SnPtAgMD5eTkZFGTmZmp7777rmKub7k/KnYdWblypeHk5GQkJiYaBw4cMGJiYgx3d3fjyJEjth4aruKJJ54wPDw8jM2bNxuZmZnm5fz58+aa2bNnGx4eHsaHH35o7Nu3zxg4cKDh7e1t5Obm2nDkKIs/v53AMLim9mbnzp2Go6Oj8eKLLxo//PCDsWLFCqN69erG8uXLzTVcU/sybNgwo1GjRsbatWuNw4cPGx9++KFRr14949lnnzXXcE2rrjNnzhipqalGamqqIcmYO3eukZqaahw9etQwjNJdu6ioKOPmm282vvzyS2Pv3r3GP/7xD6Ndu3ZGQUFBuY+XEHsV8+fPNxo3bmw4OzsbHTt2NL+iCVWbJKvL0qVLzTVFRUXG1KlTDS8vL8PFxcW44447jH379tlu0Cizv4ZYrqn9+fTTT43WrVsbLi4uRosWLYxFixZZbOea2pfc3Fxj7Nixhq+vr+Hq6mr4+/sbkyZNMvLy8sw1XNOqa9OmTVb/v3PYsGGGYZTu2v3xxx/GqFGjjDp16hhubm7G3XffbWRkZFTIeE2GYRjlP78LAAAAVBzuiQUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFgEq0efNmmUwmnTp1ytZDuS6YTCZ99NFHth4GABsgxAK4IURERMhkMhVbfvzxxwo7Zvfu3RUTE2PR1qVLF2VmZsrDw6PCjgsANwJHWw8AACrLnXfeqaVLl1q01a9fv1hdfn6+nJ2dK2QMzs7O8vLyqpC+r6QizwkAbIGZWAA3DBcXF3l5eVksDg4O6t69u0aNGqXY2FjVq1dPvXv3liTNnTtXbdq0kbu7u3x8fBQdHa2zZ89a9Ll9+3aFhoaqevXqql27tsLDw3Xy5ElFRERoy5Ytev31182zvkeOHLF6O8Hq1avVqlUrubi4qEmTJnrttdcsjtGkSRO99NJLGj58uGrWrClfX18tWrToiuda0jkdOHBAffv2VY0aNeTp6akhQ4YoJyfHYr/Ro0crJiZGtWvXlqenpxYtWqRz587pscceU82aNdW0aVN9/vnnFsfbsmWLOnfuLBcXF3l7e2v8+PEqKCiQJL355ptq1KiRioqKLPa59957NWzYMPP6p59+qsDAQLm6usrf31/Tp0839yFJP/zwg+644w65urqqZcuWSk5OvuLPAMD1jRALAJLefvttOTo6avv27XrzzTclSdWqVVN8fLy+++47vf322/rqq6/07LPPmvdJS0tTz5491apVK6WkpGjbtm265557VFhYqNdff13BwcEaOXKkMjMzlZmZKR8fn2LH3bNnjx555BENGDBA+/bt07Rp0zR58mQlJSVZ1L322msKCgpSamqqoqOj9cQTT+jgwYNlOqfMzEyFhoaqffv22r17t9avX6///ve/euSRR4rtV69ePe3cuVOjR4/WE088oYcfflhdunTR3r17FR4eriFDhuj8+fOSpOPHj6tv377q1KmTvv32WyUkJCgxMVEvvPCCJOnhhx9WTk6ONm3aZD7GyZMn9cUXX2jQoEGSpC+++EKDBw/WmDFjdODAAb355ptKSkrSiy++KEkqKirSgw8+KAcHB33zzTdauHChnnvuudJcWgDXKwMAbgDDhg0zHBwcDHd3d/Py0EMPGYZhGKGhoUb79u2v2sf7779v1K1b17w+cOBAo2vXriXWh4aGGmPHjrVo27RpkyHJOHnypGEYhvHoo48avXv3tqh55plnjJYtW5rXGzdubAwePNi8XlRUZDRo0MBISEi44rH/ek6TJ082wsLCLNqOHTtmSDIOHTpk3q9bt27m7QUFBYa7u7sxZMgQc1tmZqYhyUhJSTEMwzAmTpxoNG/e3CgqKjLXzJ8/36hRo4ZRWFhoGIZh3Hvvvcbw4cPN2998803Dy8vLKCgoMAzDMEJCQoyXXnrJYmzvvPOO4e3tbRiGYXzxxReGg4ODcezYMfP2zz//3JBkrFmzpsSfA4DrF/fEArhh9OjRQwkJCeZ1d3d385+DgoKK1W/atEkvvfSSDhw4oNzcXBUUFOjChQs6d+6c3N3dlZaWpocffvhvjSk9PV333XefRVvXrl0VFxenwsJCOTg4SJLatm1r3m4ymeTl5aXs7Owr9v3Xc9qzZ482bdqkGjVqFKv96aefdOuttxY7loODg+rWras2bdqY2zw9PSXJfPz09HQFBwfLZDJZnMPZs2f1yy+/yNfXV4MGDdI///lPLViwQC4uLlqxYoUGDBhgPr89e/Zo165d5plXSSosLNSFCxd0/vx5paeny9fXVzfffLN5e3Bw8BXPH8D1jRAL4Ibh7u6uZs2albjtz44ePaq+ffsqKipKM2fOVJ06dbRt2zaNGDFCFy9elCS5ubn97TEZhmER/i63/ZWTk5PFuslkKnaP6V/99ZyKiop0zz336OWXXy5W6+3tfcVj/bnt8ngvH/9K53C5/Z577lFRUZE+++wzderUSVu3btXcuXMtxjZ9+nQ9+OCDxcbm6upq9Wfy12MCuLEQYgHAit27d6ugoECvvfaaqlW79PjA+++/b1HTtm1bbdy4UdOnT7fah7OzswoLC694nJYtW2rbtm0WbTt27NCtt95qnqUsLx07dtTq1avVpEkTOTqW3//8t2zZUqtXr7YIszt27FDNmjXVqFEjSZcC/4MPPqgVK1boxx9/1K233qrAwECLsR06dKjEf2S0bNlSGRkZ+vXXX9WwYUNJUkpKSrmdAwD7w4NdAGBF06ZNVVBQoDfeeEM///yz3nnnHS1cuNCiZsKECdq1a5eio6P1n//8RwcPHlRCQoL5af8mTZro3//+t44cOaKcnByrM6dPPfWUNm7cqJkzZ+r777/X22+/rXnz5unpp58u93N68skn9fvvv2vgwIHauXOnfv75Z23YsEHDhw+/ati+kujoaB07dkyjR4/WwYMH9fHHH2vq1KmKjY01/wNAkgYNGqTPPvtMS5Ys0eDBgy36mDJlipYtW6Zp06Zp//79Sk9P16pVq/T8889Lknr16qXmzZtr6NCh+vbbb7V161ZNmjTpmscMwP4RYgHAivbt22vu3Ll6+eWX1bp1a61YsUKzZs2yqLn11lu1YcMGffvtt+rcubOCg4P18ccfm2c5n376aTk4OKhly5aqX7++MjIyih2nY8eOev/997Vy5Uq1bt1aU6ZM0YwZMxQREVHu59SwYUNt375dhYWFCg8PV+vWrTV27Fh5eHhYhM2yatSokdatW6edO3eqXbt2ioqK0ogRI8wB9LJ//OMfqlOnjg4dOqRHH33UYlt4eLjWrl2r5ORkderUSbfffrvmzp2rxo0bS7r0pog1a9YoLy9PnTt3VmRkpMX9swBuPCbD2o1GAAAAQBXGTCwAAADsDiEWAAAAdocQCwAAALtDiAUAAIDdIcQCAADA7hBiAQAAYHcIsQAAALA7hFgAAADYHUIsAAAA7A4hFgAAAHaHEAsAAAC7Q4gFAACA3fl/EKGhWPydnasAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/mElEQVR4nO3deVxU9f4/8NeZGWZAlEFlEQURV0gDjbFCr7ZolHnNvHX12+JSUBJZGpXpz7qhZbYqlkFaKlezrte0botldK8LRhs0ZOZWghEyxJIOgsowM+f3B3HkMAMyODMs83o+HvNI3nzOOZ83B96dz3zOfI4giqIIIiIiIiIiIrokivbuABEREREREVFXwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATa1iz179kAQBJw+fbq9u9Ks1NRUjBw5sr27QUQEADhx4gQEQUB+fn57d8XGnDlzcOutt7Z3N4iI3GrAgAFIS0tr725QB8MBNrlUTk4OlEolbrrpJpcfy9mD9sceewz//e9/nbIvIqI5c+ZAEASbV2vrY1hYGAwGA0aMGHHRtu4ejK9evRqZmZluORYRUVP2amvj15w5cy66/QcffOCWvlLXp2rvDlDXtmHDBjz00EN46623UFRUhP79+7d3ly5KFEVYLBZ0794d3bt3b+/uEFEXctNNN2Hjxo2ymEajadW2SqUSffr0cUW3LplWq23vLhCRBzMYDNK/t27din/84x84evSoFPPx8WmPbpGH4gw2uUxNTQ3+/e9/44EHHsBf//rXi85u5OTkYPz48fDx8UFYWBgefvhh1NTUSN9/++23odPp0KNHD/Tp0wd33nknysrKANTP1lx33XUAgJ49e8reraytrcXDDz+MoKAgeHt74y9/+Qu+++47ab8NM9+7du2CTqeDRqNBdna23VvEN2zYgOHDh0Oj0SAkJATz5s279B8UEXkMjUaDPn36yF49e/YEUD+DkpGRgUmTJsHHxwcRERHYtm2btG3TWelTp07hrrvuQmBgIHx8fDBkyBBp8B4REQEAGDVqFARBwLXXXivtZ+PGjYiKioK3tzciIyORnp5uc4x///vfGDduHHx8fDB69GgcO3YM3333HXQ6Hbp3746bbroJ5eXl0nZNbxG3Wq144YUXMHjwYGg0GvTv3x/Lly939o+TiAgAZDVVq9VCEARZ7J133sGgQYOgVqsxbNgwbN68Wdp2wIABAIBp06ZBEATp6+PHj2Pq1KkIDg5G9+7dMXr0aHzxxRftkB11Nhxgk8ts3boVw4YNw7Bhw3D33Xdj48aNEEXRbtsff/wRN954I/72t7/hwIED2Lp1K/bv3y8bwJpMJjzzzDP44Ycf8MEHH6CwsFAaRIeFhWH79u0AgKNHj8JgMGD16tUAgIULF2L79u345z//ie+//x6DBw/GjTfeiD/++EPWh4ULF2LFihU4fPgwoqOjbfqYkZGBBx98EPfffz9+/PFHfPjhhxg8eLAzflRERACAp556Crfddht++OEH3H333bjjjjtw+PDhZtseOnQIn376KQ4fPoyMjAwEBAQAAL799lsAwBdffAGDwYAdO3YAAN58800sWbIEy5cvx+HDh/Hcc8/hqaeewj//+U/Zvp9++mk8+eST+P7776FSqXDHHXdg4cKFWL16NbKzs3H8+HH84x//aDaPxYsX44UXXpD6+M477yA4ONgZPyIiIoe8//77mD9/Ph599FEcPHgQc+fOxT333IPdu3cDgDTpsnHjRhgMBunr6upq3Hzzzfjiiy+g1+tx4403YsqUKSgqKmq3XKiTEIlcZMyYMWJaWpooiqJYV1cnBgQEiFlZWaIoiuLu3btFAOKpU6dEURTFmTNnivfff79s++zsbFGhUIjnzp2zu/9vv/1WBCCeOXPG7j5FURSrq6tFLy8vccuWLVLMZDKJffv2FV988UXZdh988IFs/08//bQYExMjfd23b19xyZIljv8giIhEUZw9e7aoVCpFX19f2WvZsmWiKIoiADEpKUm2zVVXXSU+8MADoiiKYmFhoQhA1Ov1oiiK4pQpU8R77rnH7rGatm0QFhYmvvPOO7LYM888I8bFxcm2e+utt6Tvv/vuuyIA8b///a8UW7FihThs2DBZblOnThVFURSrqqpEjUYjvvnmm638yRAROc/GjRtFrVYrfT1mzBjxvvvuk7X5+9//Lt58883S1wDE999//6L7vuyyy8TXXntN+jo8PFxctWrVpXaZuhh+Bptc4ujRo/j222+lWROVSoUZM2Zgw4YNmDhxok37vLw8/PLLL9iyZYsUE0URVqsVhYWFiIqKgl6vR2pqKvLz8/HHH3/AarUCAIqKinDZZZfZ7cfx48dRV1eHsWPHSjEvLy9ceeWVNrNCOp2u2XzKyspQUlKCCRMmtP6HQETUxHXXXYeMjAxZrFevXtK/4+LiZN+Li4trdqGyBx54ALfddhu+//57xMfH49Zbb8WYMWOaPXZ5eTl+++03JCQk4L777pPiZrPZ5jPUje/iaZh5vvzyy2Wxho/oNHX48GHU1tayXhJRh3D48GHcf//9stjYsWOlOx2bU1NTg6VLl+Ljjz9GSUkJzGYzzp07xxlsuigOsMkl1q9fD7PZjH79+kkxURTh5eWFU6dO2bS3Wq2YO3cuHn74YZvv9e/fHzU1NYiPj0d8fDzefvttBAYGoqioCDfeeCNMJlOz/RD/vCVdEASbeNOYr69vs/vh4hhE5Ay+vr4Of7Skaa1qMGnSJPz666/45JNP8MUXX2DChAl48MEH8fLLL9tt3/Cm5JtvvomrrrpK9j2lUin72svLy+b4TWMN+2uK9ZKIOprWXAc29fjjj2PXrl14+eWXMXjwYPj4+OD2229v8bqTCOBnsMkFzGYzNm3ahFdeeQX5+fnS64cffkB4eLhslrrBFVdcgZ9++gmDBw+2eanVahw5cgQVFRV4/vnnMW7cOERGRtrMnqjVagCAxWKRYg3b79+/X4rV1dUhNzcXUVFRrc6pR48eGDBgAB/bRUQu9fXXX9t8HRkZ2Wz7wMBAzJkzB2+//TbS0tKwbt06APbrYXBwMPr164eCggKbOtuwKJozDBkyBD4+PqyXRNQhREVFya4DgfqFdRtfB3p5ecnqJQBkZ2djzpw5mDZtGi6//HL06dMHJ06ccEeXqZPjDDY53ccff4xTp04hISHB5rbD22+/HevXr8eqVatk8SeeeAJXX301HnzwQdx3333w9fXF4cOHkZWVhddeew39+/eHWq3Ga6+9hqSkJBw8eBDPPPOMbB/h4eEQBAEff/wxbr75Zvj4+KB79+544IEH8Pjjj6NXr17o378/XnzxRZw9exYJCQkO5ZWamoqkpCQEBQVh0qRJOHPmDL788ks89NBDbftBEZHHqa2tRWlpqSymUqmkxcm2bdsGnU6Hv/zlL9iyZQu+/fZbrF+/3u6+/vGPfyA2NhbDhw9HbW0tPv74Y+mCMSgoCD4+Pvjss88QGhoKb29vaLVapKam4uGHH4afnx8mTZqE2tpa5Obm4tSpU0hJSXFKjt7e3njiiSewcOFCqNVqjB07FuXl5fjpp58crrtERJfq8ccfx/Tp03HFFVdgwoQJ+Oijj7Bjxw7ZiuANkyhjx46FRqNBz549MXjwYOzYsQNTpkyBIAh46qmnmr1zh6gxzmCT061fvx4TJ060+1zU2267Dfn5+fj+++9l8ejoaOzduxc///wzxo0bh1GjRuGpp55CSEgIgPpZmszMTGzbtg2XXXYZnn/+eZvbIPv164elS5di0aJFCA4OllYgf/7553Hbbbdh5syZuOKKK/DLL79g165d0qNxWmv27NlIS0tDeno6hg8fjr/+9a/4+eefHdoHEXm2zz77DCEhIbLXX/7yF+n7S5cuxb/+9S9ER0fjn//8J7Zs2dLsGhNqtRqLFy9GdHQ0xo8fD6VSiX/9618A6gftr776KtauXYu+ffti6tSpAIDExES89dZbyMzMxOWXX45rrrkGmZmZTp3BBupXOH/00Ufxj3/8A1FRUZgxY0azn9kmInKlW2+9FatXr8ZLL72E4cOHY+3atdi4caPs8YWvvPIKsrKyEBYWhlGjRgEAVq1ahZ49e2LMmDGYMmUKbrzxRlxxxRXtlAV1JoIoNvPcJCIiInIbQRDw/vvvy54nTURERJ0LZ7CJiIiIiIiInIADbCIiIiIiIiIn4CJnREREHQA/sUVERNT5cQabiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJygU3wG22q1oqSkBD169IAgCO3dHSLqxERRxJkzZ9C3b18oFJ3/PUbWRyJyJtZIIiL7WlsfO8UAu6SkBGFhYe3dDSLqQn777TeEhoa2dzcuGesjEbkCayQRkX0Xq4+dYoDdo0cPAPXJ+Pn5tXNviKgzq6qqQlhYmFRXOjvWRyJyJtZIIiL7WlsfO8UAu+GWHj8/PxZHInKKrnKrIOsjEbkCayQRkX0Xq4+d/8M1RERERERERB0AB9hERERERERETtApbhEnaiuLxYK6urr27ga1A6VSCZVK1WVucyRyNtZHz+bl5QWlUtne3SDqkERRhNlshsViae+uUDu41PrIATZ1WdXV1SguLoYoiu3dFWon3bp1Q0hICNRqtduOmZ6ejpdeegkGgwHDhw9HWloaxo0bZ7ftnDlz8M9//tMmftlll+Gnn35ydVfJg7E+kiAICA0NRffu3du7K0QdislkgsFgwNmzZ9u7K9ROLrU+coBNXZLFYkFxcTG6deuGwMBAzmJ6GFEUYTKZUF5ejsLCQgwZMsQtz3PdunUrFixYgPT0dIwdOxZr167FpEmTcOjQIfTv39+m/erVq/H8889LX5vNZsTExODvf/+7y/tKnov1kURRRHl5OYqLizFkyBDOZBP9yWq1orCwEEqlEn379oVarWaN9DDOqI8cYFOXVFdXB1EUERgYCB8fn/buDrUDHx8feHl54ddff4XJZIK3t7fLj7ly5UokJCQgMTERAJCWloZdu3YhIyMDK1assGmv1Wqh1Wqlrz/44AOcOnUK99xzj8v7Sp6L9ZEAIDAwECdOnEBdXR0H2ER/MplMsFqtCAsLQ7du3dq7O9ROLrU+cpEz6tL4rqNnc8esdQOTyYS8vDzEx8fL4vHx8cjJyWnVPtavX4+JEyciPDzcFV0kkmF99Gw8/0TNc+f1A3U8l1ofOYNNHuGZZ56BwWBwyb5DQkLw1FNPuWTf1HlUVFTAYrEgODhYFg8ODkZpaelFtzcYDPj000/xzjvvtNiutrYWtbW10tdVVVUA6m8vN5vNAOovDBQKBaxWK6xWq9S2IW6xWGSfvW0urlQqIQiCtN/GcQA2i780F1epVBBFURYXBAFKpdKmj83FmZPzcmrYVhRFiKIo1UdBEOx+JvtS4w010ln7d4SrcnJ23BHOPGbDQk6Na4erObJOBQBs2bIFL774In7++WdotVrcdNNNePnll9G7d2+X95UI4DUkOY4DbPIIBoMBn3xzCN20AU7d71ljBSZf1bq2AwYMgLe3t3Sr8tVXX4033nhD1iYxMRGzZ89u8WJjz549MJlM0kxpSUkJ7rrrLuzevbttSTjZiRMnoNPpUFFR0abtm+aTmpqK//f//p9bFyq7FE3f9RRFsVXvhGZmZsLf3x+33npri+1WrFiBpUuX2sT1ej18fX0B1N/aNGjQIBQWFqK8vFxqExoaitDQUBw7dgxGo1GKDxw4EEFBQTh48CDOnTsnxSMjI+Hv7w+9Xi8bpEVHR0OtViM3N1fWB51OB5PJhAMHDkgxpVKJ0aNHw2g04siRI1Lcx8cHMTExqKioQEFBgRTXarWIiopCSUkJiouLpThzcl5OI0aMgNVqxdmzZ2GxWPDbb79hV94x+PoHQgQgio3eHIBQP0CDKBukSXFRhIjm4+eMlbgx1oy6ujqo1WqcP39e1keNRgMvLy+cO3cOUVFR0Gg08Pb2hiAIiIuLwyuvvCI77vz58zF79mxcccUVspx8fX1htVpx7tw5ZGdnw2QyYeLEifD19cVvv/2Gu+++Gzt37gRQP4js1q0bzGaz7M0qpVIJHx8f1NXVwWQySXGVSgVvb2/U1tbK3sRQq9UXzanxGyfe3t5QqVQ4fPgwxo0bh19//RVA/e+NQqFATU1NszlJP19BgNFoxJ133omPP/4YAPDcc89h4cKF8Pf3dygnoP6NuYMHD0rx0NBQ+Pn5wVUcXadi//79mDVrFlatWoUpU6bg5MmTSEpKQmJiIt5//32X9ZOoMV5Duk9XuYYUxE6whGhVVRW0Wi2MRqNLCz91DM54p1Cr1WLy5MkICQmBSqXCk08+ia9/PQPdHSl22ysEoU2f0c3Z9AKuiwxCenr6RdsOGDAAH3/8MUaMGGH3+xaLpVWf80hNTUV1dTVefvllh/vrDpdaHJsSBAFnzpxp00qO58+fR2FhISIiIqTz66p6YjKZ0K1bN2zbtg3Tpk2T4vPnz0d+fj727t3b7LaiKGLo0KH461//ilWrVrV4HHsz2GFhYaisrJTy4Wxv181p+fLl+P3332V9adi26exjc/EePXpg8uTJ6Nu3L1QqFZYsWSKrj03fDhIEARo79VEAYO8ConH8q00v4NphgUhPT7/oDGtERAQ++ugjqUY2bd+WGtnRZqoFQUBhYSFGjx4te1PFEU33rVAoUFVVhR49ejjUl9raWhQUFKB///5SfVQoFKiurnbZNddVV12FK664AhkZGVIsKioKt956q911Kl5++WVkZGTg+PHjUuy1117Diy++iN9++61Vx+Q1pGe51GvIptePAHgN6UYd5RrS3vUj0Pp6wg8YUIfT8E7h7iNlbX59U1CJWrMVNSYLzpw3o85ihRUizFar7ctigbUd3mfKzMzETTfdhFmzZkGn0+Hbb7/FtddeK81KGI1GJCYm4vLLL0dMTAzuvfde5Ofn44033sCmTZswcuRILFu2DCdOnEBAwIV3VT/77DNcccUViI6OxjXXXINDhw4BqH/XcuTIkUhOTkZMTAyGDx9uM7PVWFFREYKCgmSzHrNnz8arr74KAPjuu+9w/fXXQ6fT4YorrsD27dvt7qe5/gDAxo0bMXLkSMTExECn0+HEiROyfJKSkgAAY8aMwciRI1FUVITg4GDZozPuuOMO2cVae1Gr1YiNjUVWVpYsnpWVhTFjxrS47d69e/HLL78gISHhosfRaDTw8/OTvYD6AV/Dq2FApVAo7MYbnhF+sXjDzHvjWENcEIRWxwHYxBsuBJr2sbk4c6qPGwwGfPTVQfz3UKn0aqh7jWMtxRvqY3WtGVXn6mzqY13j15/1UQBsXrATaxpv+Dk1/Nwb/t341RBv+v3MzExMmjQJs2fPxujRo/Hdd9/huuuuwyeffAJBEFBVVYX77rsP0dHRGDlyJBISEvDDDz9g7dq12Lx5M0aNGoVly5bh119/lVZLFwQBu3btwhVXXIGYmBhce+21OHz4MARBwN69ezFy5Eg8+OCDGDlyJEaMGIG8vLxm+/7bb78hKCgIdXV1UmzOnDl47bXXAAC5ubmYMGECRo8ejdjYWOzYscNurrt27UJsbKxNfxp+BqNGjcLIkSMxevRo/Prrrzhx4oSUzwMPPAAAGDt2LEaOHInffvsNffr0wblz56R93HHHHXjjjTea/bnb+91zhbasUzFmzBgUFxdj586dEEURv//+O9577z1Mnjy52ePU1taiqqpK9gIufIzGbDZLbz5ZrVa7cYvF0qp4wxsXjWMN8ca3318sDsAm3vDmXdM+NhdnTvVxg8GAXblHsf+XSum152g5dh8pk8X2/1KJPX/WyMaxvKLT0vVjda0Z1bX115BioxppafRquIYUAZsX7MQaxxt+Rg2vpl83jjf93saNG2XXkN988w2uvfZafPTRRxBFEadPn0ZCQoJ0DXnPPfdAr9fLriGXLl0qXXM17PfTTz+VXbP99NNPEEURu3fvtrmG/O6775rt+6+//ipdQzbEZs+ejdWrV0MURZtryPfee89urs31RxRFbNiwQXYNWVhYiMLCQimfuXPnSnWk8TVkTU2NtI+Ga8jmfu7N/e5dTJtuEXf08zO1tbVYtmwZ3n77bZSWliI0NBRLlizBvffe25bDkwfopg3AmFlPtHl7fw2g8fWCr38AlF4aeHl3g0JxHiov23cYzXXnL6WrDrn99tuld8Jmz56N/fv3Q6/XY8iQITZtFyxYgO7du+OHH36AQqFAeXk5AgMDkZSUJHv38cSJE9I2ZWVluPvuu7F7925cfvnl2LJlC6ZPny7dAvjTTz/hrbfeQnp6Ot544w0sWbIEu3btstvX/v37Y+TIkfjwww9x++23o7q6Gh999BFWrlyJ06dPY+7cufjkk08QEhKCiooKxMbGYuzYsbJ9tNSfPXv2YPny5cjOzkZISIg0aC4rK5O2f+ONN7B27Vrk5ORI7z5OnDgR77zzDhITE1FaWoovvvgCb775ZhvPiHOlpKRg5syZ0Ol0iIuLw7p161BUVCS9UbB48WKcPHkSmzZtkm23fv16XHXVVc2+M03UWFetjwBrZFeukW1Zp2LMmDHYsmULZsyYgfPnz8NsNuOWW26R3sSwhx+j8eycAODvU25ERGS0FD96vgeMFjViff+AstF9Nz+e1cIkKhDre0qKeXspofH1Q3f/3uihqR8m+Xj7QKE4B5WXNwRBhKLRPqwWK0Sx/mVz55JCCdFqhbXxx24EBZQNdy6J9YO3mpqai37kRBRF3HbbbVJ9nDVrFvbv348vv/wSgwYNAlD/hkNDH+bNm4fu3bvjyy+/hEKhwNmzZ9G7d2/ce++9qK6uxnPPPQdBEKSfa01NDcrLy3H33Xfj008/xZVXXol//vOf+Pvf/45vv/0W58+fl+pjWloaMjIysHjxYnzwwQd2P0bTu3dvREdH48MPP8TkyZNhNBrx0UcfYdmyZaioqMDcuXOxbds2BAcHo6KiAuPHj8fVV18NoH5w3bg///3vfxETE4MNGzZI/cnOzsZzzz2HPXv2wN/fX6qPDTPfFosFr7zyCtatW4fPP/8cfn5+6NatG66//nps3LgRc+bMwe+//y7Vx6Yfo2k4B8XFxfjjjz9kv6ut4fAA29HPzwDA9OnT8fvvv2P9+vUYPHgwysrKbG7PI/IE7733njSIyszMxF/+8he7F44A8PHHHyMvL0+aUQgMDLzo/r/55huMHDkSl19+OQDgrrvuwoMPPijdLjVs2DDodDoAQFxc3EVvEbrnnnuQmZmJ22+/Hf/+979x/fXXo3fv3ti5cycKCgowadIkqa0oijh69KhsBeyW+vPJJ59g1qxZCAkJAYBWPw5j/vz5mDt3LhITE7F27Vrceeedbbp93BVmzJiByspKLFu2DAaDASNGjMDOnTuln4nBYEBRUZFsG6PRiO3bt2P16tXt0WWiDoU1smvXSMCxdSoOHTqEhx9+GP/4xz9w4403wmAw4PHHH0dSUhLWr19vd5vFixcjJeXCrbwNH6MZNWqU7GM0ABARESE7Hw3xoUOH2tyGD9SvX9D0IycAMGrUKFkfGuINv0uN4z4+PjZxoP7CvXG84WcSEBCAXr162cT79u2LPn362PSROQGf7MtFXNg1Utzy5/00+TX+sv41xPNqekoxfw0wCIAIATXW+pzNEBrNOAto/IEhi8UMpUJRP3BW2t4BIigUUNq5YVihUEAh1N+91PDGD4BmbzUXBAHbt2+3qY/R0RfeSFAqldLPYNeuXcjNzUWPHj0AQDqGl5cXvLy8ZMds+P7//vc/jBo1CqNHjwZQP4ifP38+qqqq4O3tLdVHURRxzTXX4LXXXpPtR6PRQKPRSF/fe++9yMzMxG233YZ33nkH119/Pfr37y/Vx9tuu03Wh19++QUDBgyAIAiy/sTExEj7e/TRR1FVVYX//ve/mDlzJvr16yfLr2EtC6VSKcV8fX2lR1IuWLAASUlJePDBB7F582bccccd6N69O0RRhJeXl9SX8+fr31wODQ2V3rgBgOrqarvnpymHB9iOPuf1s88+w969e1FQUCD9MQ0YMMDRwxJ1Sc6+6GnuQqUh1rhwK5XKi77RNW3aNDz88MMoLS3Fxo0bsXjxYuk40dHR2Ldvn802jWeLLtaftrjyyivh7e2NvXv34s0338T//ve/Nu/LFZKTk5GcnGz3e5mZmTYxrVYru+WdiC5gjXRcR62RAQEBUCqVNrPVZWVlNrPaDVasWIGxY8fi8ccfB1A/i+rr64tx48bh2Wefld58aKzpRX6Dxh/vaNCw3kFTzX2Wtbl40/22Jd5wu35TzfXR0bgn5WS2WGGxM6i1F6uPC43+3Zhw0X+Ldr7b3B7sxRt/ZKPh6+Y0/XhH9+7dbdrb+0iOve/bi9vbHqj/+QuNPmfecF7NZnOLff/b3/6G+fPn4/fff0dmZiYWL14stblYfWwph4b+XCwPez+Tq666Ct7e3ti3bx/eeustqT42t5+Gj3A1PnZrODTAbvj8zKJFi2Txlj4/8+GHH0Kn0+HFF1/E5s2b4evri1tuuQXPPPOM9G4CkTucM1Yg952XbOJWqxkK2P+fwMWcNVYACHJC72zdcssteOmll7B69WrZ7Y9+fn44efKk3W3i4uKQkJCAw4cPIyoqCv/6178QGhqKPn36yG7Tai1vb2/8/e9/x9NPP42CggLceOONAOpv2/v555/xv//9D9dffz0AID8/H5dddlmr+zNlyhTce++9uP/++9GnT59mB5k9evSA0WiUXWjPnz8fd999N4YPH46hQ4c6nBcRybmiPgKskayRFzRep6LxQpBZWVmYOnWq3W3Onj1r87vXMKjqBGv0UhfCa0jWR0c49NvQls/PFBQUYP/+/fD29sb777+PiooKJCcn448//sCGDRvsbsPnvHp2TgCgUiqgxIX2lj+XzGkcuxCH7DM1f/boz//WLykRGNwH142CXXXnz8JLqbA7U3LxFWID0adPH6lNS+2BC4s2NPy78X8bNLRZuXIlHnnkEYwYMQJqtRo6nQ5vvvkmbr31VmzevBkjR47EtGnTMHv2bGm7gIAAbNq0CXfddRcsFgv8/f2xdevWZhfKaHz85vp+zz334Morr8TChQuhUCggiiL8/f3x0Ucf4fHHH8cjjzyCuro69O/fX/bYlIv1Z9y4cViyZAni4+MhCALUajW2bdtm06+UlBRcf/318PHxweeff47AwEDcdttteOCBB/Dggw9KM0Ctfc5raxeoIPIUramPDbcZOi7I7iyjM6xatUpWI0ePHo0333wT06ZNk2rk3/72N8yaNUvaJjAwEJs3b5bVpH//+9+X1I+GGvnEE09I/z/t2bOn3Rr5wQcfyLZtqT/jx4/Hk08+KauR7733ns3xH330UVmNDAoKwu23344HHngA8+bNu6TcnM3RdSqmTJmC++67DxkZGdIt4gsWLMCVV16Jvn37tmcq5EFcVyNZH7tqfXToMV0lJSXo168fcnJyEBcXJ8WXL1+OzZs32313Iz4+HtnZ2SgtLZU+GL5jxw7cfvvtqKmpsTuLnZqaaneBii+++MJmgYrjx4/bXfjg8OHDdhdz+OGHH+wu5vDdd99d8mIOp0+ftruYQ1lZmd3FHIqLi+0u5uDpOaWmpsIvZECbF6gAgOPmnpg6WIOIsH7w+vPZdyKAs1YVlIIIb+HCz6X2/DlY6mrRt29fu88PNZlMdp+J2rDgSoOGBSrOnTtnd4GKs2fP2n0masNqho1/xo48E9XX1xdms1n6vAhw4TmvdXV1XTKnL7/8EomJifj+++/h5eXVbE4AcOzYMdk7m1qtFpdddlmXeWQLH0HjWZKTk7H7SNklL3I2bbAXQkL7Q+lleyttY9WVpejhrZJ9/pE6vm+//RZ33303jhw50uwtjZf6GJq2Sk9Px4svviitU7Fq1SqMHz8eADBnzhycOHECe/bskdq/9tpreOONN1BYWAh/f39cf/31eOGFF6TPXl4Ma6RnudQa6Uh9BFgjOyN31EeHZrDb8vmZkJAQ9OvXT7bqWlRUFERRRHFxsd3FS7hABXO6lAUqAKCHpn5BinOiAiar/DM6FlFAjXghVlNdg+4ald3PZwEXFoRoqrnPeTW3QEVzH4lobuGapgtQAPU/H3vxxos5NNYVc0pKSkJWVhbefPNN2TvG9nKqra2FSqXCiBEjpBxau0AFEVFnlJiYiM8//xxvvfWWSx+71VaOrlPx0EMP4aGHHnJxr4jIE7irPjo0wG7L52fGjh2Lbdu2obq6WroF99ixY1AoFAgNDbW7DReoYE6XskCFXOOnsTaN12sY3ze3sER7xR1xKcfMz8/HnDlzbNrMnj0bjzzyyCXvv62a20dzK8e21JfGtaMjXnASUcfVmhrZkbz11lvt3QUi8hCsj/Y5/Il8Rz8/c+edd+KZZ57BPffcg6VLl6KiogKPP/447r33Xi5yRtQBjBw5Evn5+e3dDSKiDok1kojIPtZH+xweYDv6nNfu3bsjKysLDz30EHQ6HXr37o3p06fj2WefdV4WRE2I4p/Lm3GRUY/GVWaJbLE+EsD6SGTPhfrIvw9Pdqnnv03P3XD08zORkZHIyspqy6GI2sRkAaxWEVZLHYCLL1JBXVPD4mb2Pm9O5KlYHwmAtChkcx/VIvJEZ82AxSrCYqqFSm1//Rnq+i61PrbtwZZEHdw5C1B8xorup/+AVqlq8TPBVqsFZjNkK1ZT5yaKIs6ePYuysjL4+/vzApKoEdZHslqtKC8vR7du3dr8jHOirqjOChyqMEOjKkcvAEq1hjXSwzijPrKqUpf1TakVvX3O4ez535pdAg0AamuqUKVSyB7xRF2Dv7+/bFV7IqrH+kgKhQL9+/d3yqKURF1JXjkAmHCZ+XcoFQJrpAe61PrIATZ1WTVmYPsvFnT3skDRwt+H/oO3cdXA3nj66afd1zlyOS8vL85cEzWD9ZHUajWfqkDUjLxy4EClGd1UQEtjLNbIrulS6yMH2NSlWUWg6iJvKhrK/4Cxt6rZZz0TEXVFrI9ERM2rswJG1khqA751SUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERuUV6ejoiIiLg7e2N2NhYZGdnN9t2zpw5EATB5jV8+HA39piIyDEcYBMROZEjF48AUFtbiyVLliA8PBwajQaDBg3Chg0b3NRbIiL32bp1KxYsWIAlS5ZAr9dj3LhxmDRpEoqKiuy2X716NQwGg/T67bff0KtXL/z97393c8+JiFqPA2wiIidx9OIRAKZPn47//ve/WL9+PY4ePYp3330XkZGRbuw1EZF7rFy5EgkJCUhMTERUVBTS0tIQFhaGjIwMu+21Wi369OkjvXJzc3Hq1Cncc889bu45EVHrqdq7A0REXUXji0cASEtLw65du5CRkYEVK1bYtP/ss8+wd+9eFBQUoFevXgCAAQMGuLPLRERuYTKZkJeXh0WLFsni8fHxyMnJadU+1q9fj4kTJyI8PNwVXSQicgoOsImInKAtF48ffvghdDodXnzxRWzevBm+vr645ZZb8Mwzz8DHx8cd3SYicouKigpYLBYEBwfL4sHBwSgtLb3o9gaDAZ9++ineeeedFtvV1taitrZW+rqqqgoAYDabYTabAQAKhQIKhQJWqxVWq1Vq2xC3WCwQRfGicaVSCUEQpP02jgOAxWJpVVylUkEURVlcEAQolUqbPjYXZ071cQBQKRVQ4kJ7CwQAgix2IQ4oIbYyrgAgyuIqZf0xeZ48I6fG/24JB9hERE7QlovHgoIC7N+/H97e3nj//fdRUVGB5ORk/PHHH81+DpsXj56dE8CLR6Djn6fOnJOrCYIg+1oURZuYPZmZmfD398ett97aYrsVK1Zg6dKlNnG9Xg9fX18AQGBgIAYNGoTCwkKUl5dLbUJDQxEaGopjx47BaDRK8YEDByIoKAgHDx7EuXPnpHhkZCT8/f2h1+tl5yM6OhpqtRq5ubmyPuh0OphMJhw4cECKKZVKjB49GkajEUeOHJHiPj4+iImJQUVFBQoKCqS4VqtFVFQUSkpKUFxcLMWZU31OADB5vA4Rvqek+NHzPWC0qDHS97Ssvv14VguTqEBso7YAkFfTE2rBisu7Xdi3BQLyanpBq6zDMO8zUrzXeB2qDCd4njwkJ61Wi9YQxMbVv4OqqqqCVquF0WiEn59fe3eHXCw5ORm7j5RhzKwn3HK8nE0v4LrIIKSnp7vleNS+XFVPSkpK0K9fP+Tk5CAuLk6KL1++HJs3b5YV+gbx8fHIzs5GaWmpVLR37NiB22+/HTU1NXZnsVNTU+1ePH7xxRc2F4/Hjx+3+z+7w4cP2/2f3Q8//GD3f3bffffdJf/P7vTp03b/Z1dWVmb3f3bFxcV2/2fn6TmlpqbCL2QAIiKjpXjDxWOs7x9OuHg0yS4eC48cQJXhBFJTU3mePCQnPz8/l9RIk8mEbt26Ydu2bZg2bZoUnz9/PvLz87F3795mtxVFEUOHDsVf//pXrFq1qsXj2HsTMiwsDJWVlVI+nvamiSflNG/ePGT/XIG4ux6V4q58E/KrLa9g3JAArFmzhufJA3Kqrq5Gz549L1ofOcCmDocDbHIlV9WTtlw8zp49G19++SV++eUXKXb48GFcdtllOHbsGIYMGWKzDS8ePTsnXjx2jvPUmXOqrq522TXXVVddhdjYWNn/by+77DJMnTrV7joVDfbs2YPrrrsOP/74I0aMGOHQMXkN6Vl4DUmu1Np6wlvEiYicQK1WIzY2FllZWbIBdlZWFqZOnWp3m7Fjx2Lbtm2orq5G9+7dAQDHjh2DQqFAaGio3W00Gg00Go1NXKVSQaWSl/SGi+imGi7cWxtvut+2xAVBsBtvro+Oxj0pJ7PF+udgWM5erD5u//Zb+3FBFjdbrC32keepa+bkKikpKZg5cyZ0Oh3i4uKwbt06FBUVISkpCQCwePFinDx5Eps2bZJtt379elx11VUOD66JiNoDH9NFROQkKSkpeOutt7BhwwYcPnwYjzzyiM3F46xZs6T2d955J3r37o177rkHhw4dwr59+/D444/j3nvv5SJnRNTlzJgxA2lpaVi2bBlGjhyJffv2YefOndKq4AaDweaxhkajEdu3b0dCQkJ7dJmIyGGcwSYicpIZM2agsrISy5Ytg8FgwIgRI1q8eOzevTuysrLw0EMPQafToXfv3pg+fTqeffbZ9kqBiMilkpOTkZycbPd7mZmZNjGtVouzZ8+6uFdERM7DATYRkRM5evEYGRmJrKwsF/eKiIiIiNyBt4gTEREREREROQEH2ERERERERERO0KYBdnp6OiIiIuDt7Y3Y2FhkZ2c323bPnj0QBMHmZe+ZsERERERERESdlcMD7K1bt2LBggVYsmQJ9Ho9xo0bh0mTJtms+tjU0aNHYTAYpJe957sSERERERERdVYOD7BXrlyJhIQEJCYmIioqCmlpaQgLC0NGRkaL2wUFBaFPnz7Sq7nnQxIRERERERF1Rg4NsE0mE/Ly8hAfHy+Lx8fHIycnp8VtR40ahZCQEEyYMAG7d+92vKdEREREREREHZhDj+mqqKiAxWJBcHCwLB4cHIzS0lK724SEhGDdunWIjY1FbW0tNm/ejAkTJmDPnj0YP3683W1qa2tRW1srfV1VVQUAMJvNMJvNAACFQgGFQgGr1Qqr1Sq1bYhbLBaIonjRuFKphCAI0n4bxwHAYrG0Kq5SqSCKoiwuCAKUSqVNH5uLM6f6OAColAoocaG9BQIAQRa7EAeUEFsZVwAQZXGVsv6YPE+ekVPjfxMREREROVObnoMtCILsa1EUbWINhg0bhmHDhklfx8XF4bfffsPLL7/c7AB7xYoVWLp0qU1cr9fD19cXABAYGIhBgwahsLAQ5eXlUpvQ0FCEhobi2LFjMBqNUnzgwIEICgrCwYMHce7cOSkeGRkJf39/6PV62cV8dHQ01Go1cnNzZX3Q6XQwmUw4cOCAFFMqlRg9ejSMRqNs8TYfHx/ExMSgoqICBQUFUlyr1SIqKgolJSUoLi6W4sypPicAmDxehwjfU1L86PkeMFrUGOl7WjY4/vGsFiZRgdhGbQEgr6Yn1IIVl3e7sG8LBOTV9IJWWYdh3mekeK/xOlQZTvA8eUhOWq0WRERERESuIIiNp58uwmQyoVu3bti2bRumTZsmxefPn4/8/Hzs3bu3VftZvnw53n77bRw+fNju9+3NYIeFhaGyshJ+fn4APGvGzdNymjdvHrJ/rkDcXY9KcVfOYH+15RWMGxKANWvW8Dx5QE7V1dXo2bMnjEajVE86s6qqKmi12i6TD7UsOTkZu4+UYcysJ9xyvJxNL+C6yCCkp6e75XjU/rpaTelq+VDLWCPJlVpbTxyawVar1YiNjUVWVpZsgJ2VlYWpU6e2ej96vR4hISHNfl+j0UCj0dh2VqWCSiXvcsNFdFPNLaLWXLzpftsSFwTBbry5Pjoa96SczBbrn4NhOXux+rj9OyjsxwVZ3GyxtthHnqeulZO9NkREREREzuDwLeIpKSmYOXMmdDod4uLisG7dOhQVFSEpKQkAsHjxYpw8eRKbNm0CAKSlpWHAgAEYPnw4TCYT3n77bWzfvh3bt293biZERERERERE7cjhAfaMGTNQWVmJZcuWwWAwYMSIEdi5cyfCw8MBAAaDQfZMbJPJhMceewwnT56Ej48Phg8fjk8++QQ333yz87IgIiIiIiIiamdtWuQsOTkZycnJdr+XmZkp+3rhwoVYuHBhWw5DRERERERE1Gnww4hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATURERERukZ6ejoiICHh7eyM2NhbZ2dkttq+trcWSJUsQHh4OjUaDQYMGYcOGDW7qLRGR49r0HGwiIiIiIkds3boVCxYsQHp6OsaOHYu1a9di0qRJOHToEPr37293m+nTp+P333/H+vXrMXjwYJSVlcFsNru550RErccBNhERERG53MqVK5GQkIDExEQAQFpaGnbt2oWMjAysWLHCpv1nn32GvXv3oqCgAL169QIADBgwwJ1dJiJyGAfYRERERORSJpMJeXl5WLRokSweHx+PnJwcu9t8+OGH0Ol0ePHFF7F582b4+vrilltuwTPPPAMfHx+729TW1qK2tlb6uqqqCgBgNpulmW+FQgGFQgGr1Qqr1Sq1bYhbLBaIonjRuFKphCAINjPqSqUSAGCxWFoVV6lUEEVRFhcEAUql0qaPzcWZU30cAFRKBZS40N4CAYAgi12IA0qIrYwrAIiyuEpZf0yeJ8/IqfG/W8IBNhERERG5VEVFBSwWC4KDg2Xx4OBglJaW2t2moKAA+/fvh7e3N95//31UVFQgOTkZf/zxR7Ofw16xYgWWLl1qE9fr9fD19QUABAYGYtCgQSgsLER5ebnUJjQ0FKGhoTh27BiMRqMUHzhwIIKCgnDw4EGcO3dOikdGRsLf3x96vV52MR8dHQ21Wo3c3FxZH3Q6HUwmEw4cOCDFlEolRo8eDaPRiCNHjkhxHx8fxMTEoKKiAgUFBVJcq9UiKioKJSUlKC4uluLMqT4nAJg8XocI31NS/Oj5HjBa1Bjpe1o2OP7xrBYmUYHYRm0BIK+mJ9SCFZd3u7BvCwTk1fSCVlmHYd5npHiv8TpUGU7wPHlITlqtFq0hiI3fOuigqqqqoNVqYTQa4efn197dIRdLTk7G7iNlGDPrCbccL2fTC7guMgjp6eluOR61r65WT7paPtQy1kdyNVfVlJKSEvTr1w85OTmIi4uT4suXL8fmzZtlF8MN4uPjkZ2djdLSUunCdseOHbj99ttRU1Njdxbb3gx2WFgYKisrpXw8acbN03KaN28esn+uQNxdj0pxV85gf7XlFYwbEoA1a9bwPHlATtXV1ejZs+dF6yNnsImInCg9PR0vvfQSDAYDhg8fjrS0NIwbN85u2z179uC6666ziR8+fBiRkZGu7ioRkdsEBARAqVTazFaXlZXZzGo3CAkJQb9+/WSzRlFRURBFEcXFxRgyZIjNNhqNBhqNxiauUqmgUskvexsuoptquHBvbbzpftsSFwTBbry5Pjoa96SczBbrn4NhOXux+rjgQFyQxc0Wa4t95HnqWjnZa2MPH9NFROQkDSvkLlmyBHq9HuPGjcOkSZNQVFTU4nZHjx6FwWCQXvYuGomIOjO1Wo3Y2FhkZWXJ4llZWRgzZozdbcaOHYuSkhJUV1dLsWPHjkGhUCA0NNSl/SUiaisOsImInKTxCrlRUVFIS0tDWFgYMjIyWtwuKCgIffr0kV7NvatLRNSZpaSk4K233sKGDRtw+PBhPPLIIygqKkJSUhIAYPHixZg1a5bU/s4770Tv3r1xzz334NChQ9i3bx8ef/xx3Hvvvc0uckZE1N54izgRkRO0ZYXcBqNGjcL58+dx2WWX4cknn7R723gDrpDr2TkBXCEX6PjnqTPn5EozZsxAZWUlli1bBoPBgBEjRmDnzp0IDw8HABgMBtkdP927d0dWVhYeeugh6HQ69O7dG9OnT8ezzz7r0n4SEV0KDrCJiJygLSvkhoSEYN26dYiNjUVtbS02b96MCRMmYM+ePRg/frzdbbhCrmfnBHCF3M5wnjpzTq5eLDE5ORnJycl2v5eZmWkTi4yMtLmtnIioI+Mq4tThcJVccqWOtEKuPVOmTIEgCPjwww/tfp8r5Hp2Tlwht3Ocp86cU3V1dZe65uI1pGfhNSS5UmvrCWewiYicoC0r5Npz9dVX4+233272+1whlzlxhdzOcZ46c05ERNR2rKpERE7QlhVy7dHr9QgJCXF294iIiIjIDTiDTUTkJCkpKZg5cyZ0Oh3i4uKwbt06mxVyT548iU2bNgEA0tLSMGDAAAwfPhwmkwlvv/02tm/fju3bt7dnGkRERETURhxgExE5iaMr5JpMJjz22GM4efIkfHx8MHz4cHzyySe4+eab2ysFIiIiIroEHGATETmRIyvkLly4EAsXLnRDr4iIiIjIHfgZbCIiIiIiIiIn4ACbiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJyAA2wiIiIiIiIiJ+AAm4iIiIiIiMgJ2jTATk9PR0REBLy9vREbG4vs7OxWbffll19CpVJh5MiRbTksERERERERUYfl8AB769atWLBgAZYsWQK9Xo9x48Zh0qRJKCoqanE7o9GIWbNmYcKECW3uLBEREREREVFH5fAAe+XKlUhISEBiYiKioqKQlpaGsLAwZGRktLjd3LlzceeddyIuLq7NnSUiIiIiIiLqqFSONDaZTMjLy8OiRYtk8fj4eOTk5DS73caNG3H8+HG8/fbbePbZZy96nNraWtTW1kpfV1VVAQDMZjPMZjMAQKFQQKFQwGq1wmq1Sm0b4haLBaIoXjSuVCohCIK038ZxALBYLK2Kq1QqiKIoiwuCAKVSadPH5uLMqT4OACqlAkpcaG+BAECQxS7EASXEVsYVAERZXKWsPybPk2fk1PjfRERERETO5NAAu6KiAhaLBcHBwbJ4cHAwSktL7W7z888/Y9GiRcjOzoZK1brDrVixAkuXLrWJ6/V6+Pr6AgACAwMxaNAgFBYWory8XGoTGhqK0NBQHDt2DEajUYoPHDgQQUFBOHjwIM6dOyfFIyMj4e/vD71eL7uYj46OhlqtRm5urqwPOp0OJpMJBw4ckGJKpRKjR4+G0WjEkSNHpLiPjw9iYmJQUVGBgoICKa7VahEVFYWSkhIUFxdLceZUnxMATB6vQ4TvKSl+9HwPGC1qjPQ9LRsc/3hWC5OoQGyjtgCQV9MTasGKy7td2LcFAvJqekGrrMMw7zNSvNd4HaoMJ3iePCQnrVYLIiIiIiJXEMTG008XUVJSgn79+iEnJ0d2q/fy5cuxefNm2cUwUD8rdfXVVyMhIQFJSUkAgNTUVHzwwQfIz89v9jj2ZrDDwsJQWVkJPz8/AJ414+ZpOc2bNw/ZP1cg7q5HpbgrZ7C/2vIKxg0JwJo1a3iePCCn6upq9OzZE0ajUaonnVlVVRW0Wm2XyYdalpycjN1HyjBm1hNuOV7OphdwXWQQ0tPT3XI8an9draZ0tXyoZayR5EqtrScOzWAHBARAqVTazFaXlZXZzGoDwJkzZ5Cbmwu9Xo958+YBqL89UxRFqFQqfP7557j++uttttNoNNBoNLadValsZsEbLqKbarhwb228udl1R+KCINiNN9dHR+OelJPZYv1zMCxnL1YfFxyIC7K42WJtsY88T10rJ3ttiIiIiIicwaErTbVajdjYWGRlZcniWVlZGDNmjE17Pz8//Pjjj8jPz5deSUlJGDZsGPLz83HVVVddWu+JiIiIqNNw5FGve/bsgSAINq+md0wSEXUkDs1gA0BKSgpmzpwJnU6HuLg4rFu3DkVFRdIt4IsXL8bJkyexadMmKBQKjBgxQrZ9UFAQvL29beJERERE1HU1POo1PT0dY8eOxdq1azFp0iQcOnQI/fv3b3a7o0ePym7HDAwMdEd3iYjaxOEB9owZM1BZWYlly5bBYDBgxIgR2LlzJ8LDwwEABoPhos/EJiIiIiLP0vhRrwCQlpaGXbt2ISMjAytWrGh2u6CgIPj7+7upl0REl6ZNH0ZMTk7GiRMnUFtbi7y8PIwfP176XmZmJvbs2dPstqmpqS0ucEZEREREXUvDo17j4+Nl8Ys96hUARo0ahZCQEEyYMAG7d+92ZTeJiC6ZwzPYRERERESOaMujXkNCQrBu3TrExsaitrYWmzdvxoQJE7Bnzx7Z5E5j9p5EAwBms1l6woUnPTnD03ICAJVSIXvqjCufRKNS1h+T58kzcmr875ZwgE1EREREbiEI8qd7iKJoE2swbNgwDBs2TPo6Li4Ov/32G15++eVmB9grVqzA0qVLbeJ6vR6+vr4A6j/DPWjQIBQWFqK8vFxqExoaitDQUBw7dgxGo1GKDxw4EEFBQTh48CDOnTsnxSMjI+Hv7w+9Xi+7mI+OjoZarUZubq6sDzqdDiaTCQcOHJBiSqUSo0ePhtFolC3e5uPjg5iYGFRUVKCgoECKa7VaREVFoaSkBMXFxVKcOdXnBACTx+sQ4XtKih893wNGixojfU/LBsc/ntXCJCoQ26gtAOTV9IRasOLybhf2bYGAvJpe0CrrMMz7jBTvNV6HKsMJnicPyUmr1aI1HHoOdnvhMww9C59hSK7U1epJV8uHWsb6SK7mqppiMpnQrVs3bNu2DdOmTZPi8+fPR35+Pvbu3duq/Sxfvhxvv/02Dh8+bPf79maww8LCUFlZKeXjSTNunpbTvHnzkP1zBeLuelSKu3IG+6str2DckACsWbOG58kDcqqurkbPnj2d+xxsIiIiIiJHNX7Ua+MBdlZWFqZOndrq/ej1eoSEhDT7fY1GA41GYxNXqVRQqeSXvQ0X0U01XLi3Nt50v22JC4JgN95cHx2Ne1JOZov1z8GwnL1Yfdz+HRT244IsbrZYW+wjz1PXysleG7t9alUrIiIiIqJL4MijXoH6VcYHDBiA4cOHw2Qy4e2338b27duxffv29kyDiKhFHGATERERkcs5+qhXk8mExx57DCdPnoSPjw+GDx+OTz75BDfffHN7pUBEdFEcYBMRERGRWyQnJyM5Odnu9zIzM2VfL1y4EAsXLnRDr4iInKdNz8EmIiL70tPTERERAW9vb8TGxiI7O7tV23355ZdQqVQYOXKkaztIRERERC7DATYRkZNs3boVCxYswJIlS6DX6zFu3DhMmjRJdsujPUajEbNmzcKECRPc1FMiIiIicgUOsImInGTlypVISEhAYmIioqKikJaWhrCwMGRkZLS43dy5c3HnnXciLi7OTT0lIiIiIlfgZ7CJiJzAZDIhLy8PixYtksXj4+ORk5PT7HYbN27E8ePH8fbbb+PZZ5+96HHsPeMVAMxms/TsSE96JqWn5QQAKqVC9jxXVz7jVaWsPybPk+fkREREl4YDbCIiJ6ioqIDFYkFwcLAsHhwcjNLSUrvb/Pzzz1i0aBGys7Obfb5jUytWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUpw51ecEAJPH6xDhe0qKHz3fA0aLGiN9T8sGxz+e1cIkKhDbqC0A5NX0hFqw4vJuF/ZtgYC8ml7QKuswzPuMFO81XocqwwmeJw/Kyc/PD0RE1HaC2Pjt1Q6qqqoKWq0WRqORhd8DJCcnY/eRMoyZ9YRbjpez6QVcFxmE9PR0txyP2per6klJSQn69euHnJwc2a3ey5cvx+bNm2UXw0D9rNTVV1+NhIQE6Rmwqamp+OCDD5Cfn9/scezNYIeFhaGyslLKx9Nm3Dwpp3nz5iH75wrE3fWoFHflDPZXW17BuCEBWLNmDc+Th+RUXV3dpa65eA3pWXgNSa7U2nrCGWwiIicICAiAUqm0ma0uKyuzmdUGgDNnziA3Nxd6vR7z5s0DUH8briiKUKlU+Pzzz3H99dfbbKfRaKDRaGziKpXKZha84SK6qYYL99bGm5tddyQuCILdeHN9dDTuSTmZLdY/B8Ny9mL1ccGBuCCLmy3WFvvI89Q1cyIiorZjVSUicgK1Wo3Y2FhkZWXJ4llZWRgzZoxNez8/P/z444/Iz8+XXklJSRg2bBjy8/Nx1VVXuavrREREROQknMEmInKSlJQUzJw5EzqdDnFxcVi3bh2KioqkW8AXL16MkydPYtOmTVAoFBgxYoRs+6CgIHh7e9vEiYiIiKhz4ACbiMhJZsyYgcrKSixbtgwGgwEjRozAzp07ER4eDgAwGAwXfSY2EREREXVeHGATETlRcnIykpOT7X4vMzOzxW1TU1ORmprq/E4RERERkVvwM9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2ERERETkFunp6YiIiIC3tzdiY2ORnZ3dqu2+/PJLqFQqjBw50rUdJCK6RBxgExEREZHLbd26FQsWLMCSJUug1+sxbtw4TJo0CUVFRS1uZzQaMWvWLEyYMMFNPSUiajsOsImIiIjI5VauXImEhAQkJiYiKioKaWlpCAsLQ0ZGRovbzZ07F3feeSfi4uLc1FMiorZr0wDbkdt79u/fj7Fjx6J3797w8fFBZGQkVq1a1eYOExEREVHnYjKZkJeXh/j4eFk8Pj4eOTk5zW63ceNGHD9+HE8//bSru0hE5BQqRzdouL0nPT0dY8eOxdq1azFp0iQcOnQI/fv3t2nv6+uLefPmITo6Gr6+vti/fz/mzp0LX19f3H///U5JgoiIiIg6roqKClgsFgQHB8viwcHBKC0ttbvNzz//jEWLFiE7OxsqVesuWWtra1FbWyt9XVVVBQAwm80wm80AAIVCAYVCAavVCqvVKrVtiFssFoiieNG4UqmEIAjSfhvHAcBisbQqrlKpIIqiLC4IApRKpU0fm4szp/o4AKiUCihxob0FAgBBFrsQB5QQWxlXABBlcZWy/pg8T56RU+N/t8ThAXbj23sAIC0tDbt27UJGRgZWrFhh037UqFEYNWqU9PWAAQOwY8cOZGdnc4BNRERE5EEEQZB9LYqiTQyov2i+8847sXTpUgwdOrTV+1+xYgWWLl1qE9fr9fD19QUABAYGYtCgQSgsLER5ebnUJjQ0FKGhoTh27BiMRqMUHzhwIIKCgnDw4EGcO3dOikdGRsLf3x96vV52MR8dHQ21Wo3c3FxZH3Q6HUwmEw4cOCDFlEolRo8eDaPRiCNHjkhxHx8fxMTEoKKiAgUFBVJcq9UiKioKJSUlKC4uluLMqT4nAJg8XocI31NS/Oj5HjBa1Bjpe1o2OP7xrBYmUYHYRm0BIK+mJ9SCFZd3u7BvCwTk1fSCVlmHYd5npHiv8TpUGU7wPHlITlqtFq0hiI3fOrgIk8mEbt26Ydu2bZg2bZoUnz9/PvLz87F3796L7kOv12PSpEl49tlnpUF6U/befQwLC0NlZSX8/PwAeNa7JZ6W07x585D9cwXi7npUirvy3cevtryCcUMCsGbNGp4nD8ipuroaPXv2hNFolOpJZ1ZVVQWtVttl8qGWJScnY/eRMoyZ9YRbjpez6QVcFxmE9PR0txyP2p+raoqj15CnT59Gz549pf9PAPWzR6IoQqlU4vPPP8f1119vcxxeQ3p2TryG7BznqbPm1NprSIdmsNtye0+D0NBQlJeXw2w2IzU1tdnBNcB3Hz09J4DvPnaG89RZc2rtu49EROQ8arUasbGxyMrKkg2ws7KyMHXqVJv2fn5++PHHH2Wx9PR0/O9//8N7772HiIgIu8fRaDTQaDQ2cZVKZXObecNFdFONB/WtiTd3+7ojcUEQ7Mab66OjcU/KyWyx/jkYlrMXq4/b3kHRfFyQxc0Wa4t95HnqWjnZa2OPQzPYJSUl6NevH3JycmQrOS5fvhybN2+WXQw3VVhYiOrqanz99ddYtGgR1qxZgzvuuMNuW7776Nk58d3HznGeOmtOnMGmzowz2ORqrqwpW7duxcyZM/HGG28gLi4O69atw5tvvomffvoJ4eHhWLx4MU6ePIlNmzbZ3T41NRUffPAB8vPzW31M1kjPwhpJrtTaeuLQDHZAQACUSqXNbHVZWZnNrHZTDe80Xn755fj999+Rmpra7ACb7z4yJ7772DnOU2fMqbXvPhIRkXPNmDEDlZWVWLZsGQwGA0aMGIGdO3ciPDwcAGAwGC76TGwioo7OoSvNxrf3NJaVlYUxY8a0ej+iKMpmqImIiIio60tOTsaJEydQW1uLvLw8jB8/XvpeZmYm9uzZ0+y2qampDs1eExG1B4dXEU9JScHMmTOh0+mk23uKioqQlJQEADa397z++uvo378/IiMjAdQ/F/vll1/GQw895MQ0iIiIiIiIiNqXwwNsR2/vsVqtWLx4MQoLC6FSqTBo0CA8//zzmDt3rvOyICIiIiIiImpnDg+wgfrbe5KTk+1+LzMzU/b1Qw89xNlqIiIiIiIi6vK42g8RERERERGRE3CATUREREREROQEHGATETlReno6IiIi4O3tjdjYWGRnZzfbdv/+/Rg7dix69+4NHx8fREZGYtWqVW7sLRERERE5U5s+g01ERLa2bt2KBQsWID09HWPHjsXatWsxadIkHDp0CP3797dp7+vri3nz5iE6Ohq+vr7Yv38/5s6dC19fX9x///3tkAERERERXQrOYBMROcnKlSuRkJCAxMREREVFIS0tDWFhYcjIyLDbftSoUbjjjjswfPhwDBgwAHfffTduvPHGFme9iYiIiKjj4gCbiMgJTCYT8vLyEB8fL4vHx8cjJyenVfvQ6/XIycnBNddc44ouEhEREZGL8RZxIiInqKiogMViQXBwsCweHByM0tLSFrcNDQ1FeXk5zGYzUlNTkZiY2Gzb2tpa1NbWSl9XVVUBAMxmM8xmMwBAoVBAoVDAarXCarVKbRviFosFoiheNK5UKiEIgrTfxnEAsFgsrYqrVCqIoiiLC4IApVJp08fm4sypPg4AKqUCSlxob4EAQJDFLsQBJcRWxhUARFlcpaw/Js+T5+RERESXhgNsIiInEgRB9rUoijaxprKzs1FdXY2vv/4aixYtwuDBg3HHHXfYbbtixQosXbrUJq7X6+Hr6wsACAwMxKBBg1BYWIjy8nKpTWhoKEJDQ3Hs2DEYjUYpPnDgQAQFBeHgwYM4d+6cFI+MjIS/vz/0er3sYj46OhpqtRq5ubmyPuh0OphMJhw4cECKKZVKjB49GkajEUeOHJHiPj4+iImJQUVFBQoKCqS4VqtFVFQUSkpKUFxcLMWZU31OADB5vA4Rvqek+NHzPWC0qDHS97RscPzjWS1MogKxjdoCQF5NT6gFKy7vdmHfFgjIq+kFrbIOw7zPSPFe43WoMpzgefKgnPz8/EBERG0niI3fXu2gqqqqoNVqYTQaWfg9QHJyMnYfKcOYWU+45Xg5m17AdZFBSE9Pd8vxqH25qp6YTCZ069YN27Ztw7Rp06T4/PnzkZ+fj71797ZqP88++yw2b96Mo0eP2v2+vRnssLAwVFZWSvl42oybJ+U0b948ZP9cgbi7HpXirpzB/mrLKxg3JABr1qzhefKQnKqrq7vUNRevIT0LryHJlVpbTziDTUTkBGq1GrGxscjKypINsLOysjB16tRW70cURdkAuimNRgONRmMTV6lUUKnkJb3hIrqphgv31sab7rctcUEQ7Mab66OjcU/KyWyx/jkYlrMXq4/bv4PCflyQxc0Wa4t95HnqmjkREVHbcYBNROQkKSkpmDlzJnQ6HeLi4rBu3ToUFRUhKSkJALB48WKcPHkSmzZtAgC8/vrr6N+/PyIjIwHUPxf75ZdfxkMPPdRuORARERFR23GATUTkJDNmzEBlZSWWLVsGg8GAESNGYOfOnQgPDwcAGAwGFBUVSe2tVisWL16MwsJCqFQqDBo0CM8//zzmzp3bXikQERER0SXgAJuIyImSk5ORnJxs93uZmZmyrx966CHOVhMRERF1IfzgDREREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERuUV6ejoiIiLg7e2N2NhYZGdnN9t2//79GDt2LHr37g0fHx9ERkZi1apVbuwtEZHjuIo4EREREbnc1q1bsWDBAqSnp2Ps2LFYu3YtJk2ahEOHDqF///427X19fTFv3jxER0fD19cX+/fvx9y5c+Hr64v777+/HTIgIro4zmATERERkcutXLkSCQkJSExMRFRUFNLS0hAWFoaMjAy77UeNGoU77rgDw4cPx4ABA3D33XfjxhtvbHHWm4iovXEGm4iIiIhcymQyIS8vD4sWLZLF4+PjkZOT06p96PV65OTk4Nlnn222TW1tLWpra6Wvq6qqAABmsxlmsxkAoFAooFAoYLVaYbVapbYNcYvFAlEULxpXKpUQBEHab+M4AFgsllbFVSoVRFGUxQVBgFKptOljc3HmVB8HAJVSASUutLdAACDIYhfigBJiK+MKAKIsrlLWH5PnyTNyavzvlnCATUREREQuVVFRAYvFguDgYFk8ODgYpaWlLW4bGhqK8vJymM1mpKamIjExsdm2K1aswNKlS23ier0evr6+AIDAwEAMGjQIhYWFKC8vlx0nNDQUx44dg9FolOIDBw5EUFAQDh48iHPnzknxyMhI+Pv7Q6/Xyy7mo6OjoVarkZubK+uDTqeDyWTCgQMHpJhSqcTo0aNhNBpx5MgRKe7j44OYmBhUVFSgoKBAimu1WkRFRaGkpATFxcVSnDnV5wQAk8frEOF7SoofPd8DRosaI31PywbHP57VwiQqENuoLQDk1fSEWrDi8m4X9m2BgLyaXtAq6zDM+4wU7zVehyrDCZ4nD8lJq9WiNQSx8VsHHVRVVRW0Wi2MRiP8/PzauzvkYsnJydh9pAxjZj3hluPlbHoB10UGIT093S3Ho/bV1epJV8uHWsb6SK7mqppSUlKCfv36IScnB3FxcVJ8+fLl2Lx5s+xiuKnCwkJUV1fj66+/xqJFi7BmzRrccccddtvam8EOCwtDZWWllI8nzbh5Wk7z5s1D9s8ViLvrUSnuyhnsr7a8gnFDArBmzRqeJw/Iqbq6Gj179rxofeQMNhERERG5VEBAAJRKpc1sdVlZmc2sdlMREREAgMsvvxy///47UlNTmx1gazQaaDQam7hKpYJKJb/sbbiIbqrhwr218ab7bUtcEAS78eb66Gjck3IyW6x/Dobl7MXq44IDcUEWN1usLfaR56lr5WSvjT1c5IyIiIiIXEqtViM2NhZZWVmyeFZWFsaMGdPq/YiiKJuhJiLqaDiDTUREREQul5KSgpkzZ0Kn0yEuLg7r1q1DUVERkpKSAACLFy/GyZMnsWnTJgDA66+/jv79+yMyMhJA/XOxX375ZTz00EPtlgMR0cVwgE1ERERELjdjxgxUVlZi2bJlMBgMGDFiBHbu3Inw8HAAgMFgQFFRkdTearVi8eLFKCwshEqlwqBBg/D8889j7ty57ZUCEdFFcYBNRERERG6RnJyM5ORku9/LzMyUff3QQw9xtpqIOh1+BpuIiIiIiIjICdo0wE5PT0dERAS8vb0RGxuL7OzsZtvu2LEDN9xwAwIDA+Hn54e4uDjs2rWrzR0mIiIiIiIi6ogcHmBv3boVCxYswJIlS6DX6zFu3DhMmjRJ9pmZxvbt24cbbrgBO3fuRF5eHq677jpMmTIFer3+kjtPRERERERE1FE4PMBeuXIlEhISkJiYiKioKKSlpSEsLAwZGRl226elpWHhwoUYPXo0hgwZgueeew5DhgzBRx99dMmdJyIiIiIiIuooHFrkzGQyIS8vD4sWLZLF4+PjkZOT06p9WK1WnDlzBr169Wq2TW1trewZh1VVVQAAs9kMs9kM4MKDv61WK6xWq9S2IW6xWCCK4kXjSqUSgiBI+20cBwCLxdKquEqlgiiKsrggCFAqlTZ9bC7OnC48wF2lVECJC+0tEAAIstiFOKCE2Mq4AoAoi6uU9cfkefKMnBr/m4iIiIjImRwaYFdUVMBisSA4OFgWDw4ORmlpaav28corr6CmpgbTp09vts2KFSuwdOlSm7her4evry8AIDAwEIMGDUJhYSHKy8ulNqGhoQgNDcWxY8dgNBql+MCBAxEUFISDBw/i3LlzUjwyMhL+/v7Q6/Wyi/no6Gio1Wrk5ubK+qDT6WAymXDgwAEpplQqMXr0aBiNRhw5ckSK+/j4ICYmBhUVFSgoKJDiWq0WUVFRKCkpQXFxsRRnTvU5AcDk8TpE+J6S4kfP94DRosZI39OywfGPZ7UwiQrENmoLAHk1PaEWrLi824V9WyAgr6YXtMo6DPM+I8V7jdehynCC58lDctJqtSAiIiIicgVBbDz9dBElJSXo168fcnJyEBcXJ8WXL1+OzZs3yy6G7Xn33XeRmJiI//znP5g4cWKz7ezNYIeFhaGyshJ+fn4APGvGzdNymjdvHrJ/rkDcXY9KcVfOYH+15RWMGxKANWvW8Dx5QE7V1dXo2bMnjEajVE86s6qqKmi12i6TD7UsOTkZu4+UYcysJ9xyvJxNL+C6yCCkp6e75XjU/rpaTelq+VDLWCPJlVpbTxyawQ4ICIBSqbSZrS4rK7OZ1W5q69atSEhIwLZt21ocXAOARqOBRqOx7axKBZVK3uWGi+imGi7cWxtvut+2xAVBsBtvro+Oxj0pJ7PF+udgWM5erD4uOBAXZHGzxdpiH3meulZO9toQERERETmDQ1eaarUasbGxyMrKksWzsrIwZsyYZrd79913MWfOHLzzzjuYPHly23pKRERERERE1IE5NIMNACkpKZg5cyZ0Oh3i4uKwbt06FBUVISkpCQCwePFinDx5Eps2bQJQP7ieNWsWVq9ejauvvlqa/fbx8eFnIYmIiIiIiKjLcPheyRkzZiAtLQ3Lli3DyJEjsW/fPuzcuRPh4eEAAIPBIHsm9tq1a2E2m/Hggw8iJCREes2fP995WRARdRDp6emIiIiAt7c3YmNjkZ2d3WzbHTt24IYbbkBgYCD8/PwQFxeHXbt2ubG3RERERORMDs9gA/ULCCQnJ9v9XmZmpuzrPXv2tOUQRESdztatW7FgwQKkp6dj7NixWLt2LSZNmoRDhw6hf//+Nu337duHG264Ac899xz8/f2xceNGTJkyBd988w1GjRrVDhkQERER0aXgaj9ERE6ycuVKJCQkIDExEVFRUUhLS0NYWBgyMjLstk9LS8PChQsxevRoDBkyBM899xyGDBmCjz76yM09JyIiIiJnaNMMNhERyZlMJuTl5WHRokWyeHx8PHJyclq1D6vVijNnzqBXr17NtrH3GEMAMJvN0uPRPOmxa56WEwColArZIwtd+RhDlbL+mDxPnpMTERFdGg6wiYicoKKiAhaLxeaRhcHBwTaPNmzOK6+8gpqaGkyfPr3ZNitWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUpw51ecEAJPH6xDhe0qKHz3fA0aLGiN9T8sGxz+e1cIkKhDbqC0A5NX0hFqw4vJuF/ZtgYC8ml7QKuswzPuMFO81XocqwwmeJw/Kic+KJiK6NILY+O3VDqq1D/Um13jmmWdgMBjcdrx9+/ahUhOCmx96zi3Hy9n0Aq6LDEJ6erpbjkfty1X1pKSkBP369UNOTg7i4uKk+PLly7F582bZxbA97777LhITE/Gf//wHEydObLadvRnssLAwVFZWSvl42oybJ+U0b948ZP9cgbi7HpXirpzB/mrLKxg3JABr1qzhefKQnKqrq7vUNRevIT1LcnIydh8pw5hZT7jleLyG9CytrSecwaaLMhgM+OSbQ+imDXDL8Yp/PwWffoFuORaRswQEBECpVNrMVpeVldnMaje1detWJCQkYNu2bS0OrgFAo9FAo9HYxFUqFVQqeUlvuIhuquHCvbXxpvttS1wQBLvx5vroaNyTcjJbrH8OhuXsxerjggNxQRY3W6wt9pHnqWvmREREbccBNrVKN22A294N3LHk/9xyHCJnUqvViI2NRVZWFqZNmybFs7KyMHXq1Ga3e/fdd3Hvvffi3XffxeTJk93RVSIiIiJyEQ6wiYicJCUlBTNnzoROp0NcXBzWrVuHoqIiJCUlAQAWL16MkydPYtOmTQDqB9ezZs3C6tWrcfXVV0uz3z4+PtBqte2WBxERERG1De8LIiJykhkzZiAtLQ3Lli3DyJEjsW/fPuzcuRPh4eEA6j9uUVRUJLVfu3YtzGYzHnzwQYSEhEiv+fPnt1cKREQulZ6ejoiICHh7eyM2NhbZ2dnNtt2xYwduuOEGBAYGws/PD3Fxcdi1a5cbe0tE5DjOYBMROVFycjKSk5Ptfi8zM1P29Z49e1zfISKiDmLr1q1YsGAB0tPTMXbsWKxduxaTJk3CoUOH0L9/f5v2+/btww033IDnnnsO/v7+2LhxI6ZMmYJvvvkGo0aNaocMiIgujjPYRERERORyK1euREJCAhITExEVFYW0tDSEhYUhIyPDbvu0tDQsXLgQo0ePxpAhQ/Dcc89hyJAh+Oijj9zccyKi1uMMNnm8ihOHsa/sSLOzjq4QEhKCp556ym3HIyIiak8mkwl5eXlYtGiRLB4fH4+cnJxW7cNqteLMmTPo1auXK7pIROQUHGCTxzPXnsdJhRa7j5S55XhnjRWYfJVbDkVERNQhVFRUwGKx2Dy2MDg42Obxhs155ZVXUFNTg+nTpzfbpra2FrW1tdLXVVVVAACz2Sw9g9zTnm3uSTkBgEqpgBIX2tc/elCQxS7EASXEVsYVAERZXKWsPybPk2fk1PjfLeEAmwiAV3et2x5DlrPpBbcch4iIqKMRBPnz10VRtInZ8+677yI1NRX/+c9/EBQU1Gy7FStWYOnSpTZxvV4PX19fAEBgYCAGDRqEwsJClJeXS21CQ0MRGhqKY8eOwWg0SvGBAwciKCgIBw8exLlz56R4ZGQk/P39odfrZRfz0dHRUKvVyM3NlfVBp9PBZDLhwIEDUkypVGL06NEwGo04cuSIFPfx8UFMTAwqKipQUFAgxbVaLaKiolBSUoLi4mIpzpzqcwKAyeN1iPA9JcWPnu8Bo0WNkb6nZYPjH89qYRIViG3UFgDyanpCLVhxebcL+7ZAQF5NL2iVdRjmfUaK9xqvQ5XhBM+Th+TU2ie8cIBNRERERC4VEBAApVJpM1tdVlZmM6vd1NatW5GQkIBt27Zh4sSJLbZdvHgxUlJSpK+rqqoQFhaGUaNGwc/PD8CFmc6IiAjpKQ+N40OHDrU7MzpixAibGTcANguuNcR1Op1N3MfHxyYO1F+4N443vOkQEBAguyW+Id63b1/06dPHpo/MCfhkXy7iwq6R4g0z0vk1/rL+NcTzanraxM+JSps4ABgtXrL4V/tyMW5IAM+Th+RUXV1tcyx7OMAmIiIiIpdSq9WIjY1FVlYWpk2bJsWzsrIwderUZrd79913ce+99+Ldd9/F5MmTL3ocjUYDjUZjE1epVFCp5Je9DbeBNtVwQd/aeNP9tiUuCILdeHN9dDTuSTmZLdY/b+eWsxerj9u/g8J+XJDFzRZri33keepaOdlrY7dPrWpFRERERHQJUlJSMHPmTOh0OsTFxWHdunUoKipCUlISgPrZ55MnT2LTpk0A6gfXs2bNwurVq3H11VdLs98+Pj6tvlWTiMjdOMAmIiIiIpebMWMGKisrsWzZMhgMBowYMQI7d+6UbsE0GAwoKiqS2q9duxZmsxkPPvggHnzwQSk+e/ZsZGZmurv7REStwgE2EREREblFcnJys4/FbDpo3rNnj+s7RETkZK27kZyIiIiIiIiIWsQBNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AVcSJiIja6JlnnoHBYHDb8fbt24fTmhC3HY+IiIgcwwE2ERFRGxkMBnzyzSF00wa45XjFv5+CT79AtxyLiIiIHMcBNhER0SXopg3AmFlPuOVYO5b8n1uO06DixGHsKzvS7HOLXSEkJARPPfWU245HRETkTBxgExERkV3m2vM4qdBi95EytxzvrLECk69yy6GIiIhcggNsIiIiapZXd63bZuhzNr3gluMQERG5SptWEU9PT0dERAS8vb0RGxuL7OzsZtsaDAbceeedGDZsGBQKBRYsWNDWvhIRERERERF1WA4PsLdu3YoFCxZgyZIl0Ov1GDduHCZNmoSioiK77WtraxEYGIglS5YgJibmkjtMRERERERE1BE5PMBeuXIlEhISkJiYiKioKKSlpSEsLAwZGRl22w8YMACrV6/GrFmzoNVqL7nDRERERERERB2RQwNsk8mEvLw8xMfHy+Lx8fHIyclxaseIiIiIiIiIOhOHFjmrqKiAxWJBcHCwLB4cHIzS0lKndaq2tha1tbXS11VVVQAAs9kMs9kMAFAoFFAoFLBarbBarVLbhrjFYoEoiheNK5VKCIIg7bdxHAAsFkur4iqVCqIoyuKCIECpVNr0sbl4R81JoVDAS6WEElaIEGCFAAEiFLhwzObiVggQW4grIEJoEq8/dv3xGlggABBksQtxQNloHy3HFQBEWdxLVf9n4MqcGse9VEooFAqIosjfvXbIqfG/iYiIiIicqU2riAuCIPu6YaDgLCtWrMDSpUtt4nq9Hr6+vgCAwMBADBo0CIWFhSgvL5fahIaGIjQ0FMeOHYPRaJTiAwcORFBQEA4ePIhz585J8cjISPj7+0Ov18su5qOjo6FWq5Gbmyvrg06ng8lkwoEDB6SYUqnE6NGjYTQaceTIESnu4+ODmJgYVFRUoKCgQIprtVpERUWhpKQExcXFUryj5hQTE4PQQSb09D2Fc1YlfjznjwBVLSI0NVJ7o8ULR8/7oa/XOfRTX+hLuVmDwtruGKCpQaDqwpsmJ00+OFnXDUO8z0CrrJPihbX153f6jeMR5XtKih893wNGixojfU/LBsc/ntXCJCoQ26gtAOTV9IRasOLybhd+XhYIyKvpBa2yDsO8z0hx79un4l///c6lOZWbvTHcxwgfhQUDJ41H7+5qGI1G/u61Q06u/qhKeno6XnrpJRgMBgwfPhxpaWkYN26c3bYGgwGPPvoo8vLy8PPPP+Phhx9GWlqaS/tHRERERK7j0AA7ICAASqXSZra6rKzMZlb7UixevBgpKSnS11VVVQgLC8OoUaPg5+cHoH52CgAiIiIQHh4utW2IDx061GbGDQBGjBhhM+MGAKNGjZL1oSGu0+ls4j4+PjZxoP7CvXG84U2HgIAA9OrVyybet29f9OnTx6aPHS2nH374AfuOlePqO3UQ/5wZrjBr8IdZLbVriJfU+aC0zluKN8xIn6j1RVFtN5v4z+d72J3B/veuffjrkBuleMOMdH6Nv6x/DfG8mp428XOi0iYO1A+cG8c/eO8/QM++Ls/pp3NaCBDx9af7MH5oIBITEwHwd8/dOVVXV9scy1kaFoFMT0/H2LFjsXbtWkyaNAmHDh1C//79bdo3XgRy1apVLusXEREREbmHQwNstVqN2NhYZGVlYdq0aVI8KysLU6dOdVqnNBoNNBqNTVylUkGlkne54TbQphou6Fsbb7rftsQFQbAbb66PjsbbKyer1Yo6s+XP26vriRCkwW1jjsatf9763ZS5yfEa2IvVx+3fQWE/Lu9LndkMrzb03dGcGuJ1ZgusVqs0MOTvnntzstfGWRovAgkAaWlp2LVrFzIyMrBixQqb9g2LQALAhg0bXNYvIiIiInIPh28RT0lJwcyZM6HT6RAXF4d169ahqKgISUlJAOpnn0+ePIlNmzZJ2+Tn5wOonzkqLy9Hfn4+1Go1LrvsMudkQUTUzhoWgVy0aJEs7uxFILlGRcfKiWtUcI2Krvb3REREl8bhAfaMGTNQWVmJZcuWwWAwYMSIEdi5c6d0C6bBYLB5Jnbj20Xz8vLwzjvvIDw8HCdOnLi03hMRdRDuWgSSa1R0rJy4RgXXqOhqf08NH8UjIqK2adMiZ8nJyUhOTrb7vczMTJtY43dwiYi6MlcvAsk1KjpWTlyjgmtUdLW/J1euUwFwIUgi6vraNMAmIiI5dy0CyTUqOlZOXKOCa1R0xb8nV+FCkETkCfhhGyIiJ2i8CGRjWVlZGDNmTDv1ioio42i8EGRUVBTS0tIQFhaGjIwMu+0bFoKcNWuWyx+xSETkLJzBJiJyEi4CSURkHxeC5GJ87sgJAFRKhdsWglQp64/J8+QZOTX+d0s4wCYichIuAklEZB8XguRifO7ICQAmj9chwk0LQXYbOQhffPoRnn76adnHHM6cOYNffvkFISEhsvUPKisrUVRUhP79+6N3795SvLS0FAaDAYMHD0aPHj2keFFRESorKxEVFQVv7/r1Lry9vTFlypROfZ466+9ea++k4QCbiMiJuAgkEVHzuBAkF+NzdU6f7MtFXNg1UtylC0H+ewfqvHyxI+cIlN8ck+KiKMJssUJxrBxKxUEpbrWKsFitUB6rgEJx4ffeYrXCahWR/XOF7O/BYrHCKl6InzVW4qbRkbj77rsBdO7z1Bl/91q7CCQH2ERERETkUlwIsuU4F+NzXk5mi9W9C0H21OLqmQvt7sPZcja9wIUgWxF3VU6tXRSSi5wRERERkUtxIUgi8hScwSYiIiIil+NCkETkCTjAJiIiIiKX40KQROQJOMAmIiIiIrfgQpBE1NVxgE1ERERERE73zDPPwGAwuO14+/btw2lNiNuOR2QPB9hEREREROR0BoMBn3xzCN20AW45XvHvp+DTL9AtxyJqDgfYRERERETkEt20ARgz6wm3HGvHkv9zy3GIWsLHdBERERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETqBq7w4QeZqKE4exr+wIkpOT3XbMkJAQPPXUU247HhERERGRJ+IAm8jNzLXncVKhxe4jZW453lljBSZf5ZZDERERERF5NA6widqBV3ctxsx6wi3Hytn0gluOQ0RERETk6TjAJiIiog6BH6EhIqLOjgNsIiIi6hD4ERoiIursOMDuhJ555hkYDAa3HW/fvn04rQlx2/GIiMhz8SM0RETUmbVpgJ2eno6XXnoJBoMBw4cPR1paGsaNG9ds+7179yIlJQU//fQT+vbti4ULFyIpKanNnfZ0BoMBn3xzCN20AW45XvHvp+DTL9AtxyLn4y2X7sX6SETUPNZIIurqHB5gb926FQsWLEB6ejrGjh2LtWvXYtKkSTh06BD69+9v076wsBA333wz7rvvPrz99tv48ssvkZycjMDAQNx2221OScITddMGuO0d/h1L/s8txyHX4C2X7sP62DG48y4f3uFD1HqskUSXxt2TJp48YXIpHB5gr1y5EgkJCUhMTAQApKWlYdeuXcjIyMCKFSts2r/xxhvo378/0tLSAABRUVHIzc3Fyy+/7LLi6O5bqHNzcwEAOp3OLcfjBR05yp23XH64bA727dvnkTPmnaE+egJ33uXDO3w6N97h416ske2PHzPs3Nw5aeLJEyaXyqEBtslkQl5eHhYtWiSLx8fHIycnx+42X331FeLj42WxG2+8EevXr0ddXR28vLwc7PLFuf0W6sKTUGmDccZNM4S8oKOOzFNnzDtLfQQ8401IkyYEE93wphLv8Onc3F2vDEfyENrL161/fx1lQN9ZaqQn1EdDnQ+C+oW75Xi8ZnU+d02auHvCxN1/C4Dr6qNDA+yKigpYLBYEBwfL4sHBwSgtLbW7TWlpqd32ZrMZFRUVCAmxfVertrYWtbW10tdGoxEA8Mcff8BsNgMAFAoFFAoFrFYrrFar1FahUMBkMkEBEQpciFssVlhFESqlAoIgSHGzxQpRFOGlUsr6YDZbIAI28TqzBQIAVaO4l0oJq9UCq8UMlVIhxUVRhNlihUIQoLQXVwhQKi7ErVYRFqsVSoUCCsWFPlqsVlitF/rupVJCPFuFLzcud1lOUlwQIFjrIJ6twtebVrgsJylusaLu/Fkoa4z4etOFd7OdnVPj8wSzCaaqP/DlxuUuy6nxeWr4ee7fuNxlOTU+T3bPn5Nzkvr+5/nz8fWX/f05O6fG50kBESaTCadPn7apBfZqRHV1tbQ/Z+os9VGhUOC3335DVu5hKW6xWOrPs0opP59mS/3vqJf8fxVmsxmiCJt4XZ0ZggCoVPJ42Ylf4eUfjPKvf5RioijCbLbU/y4qlXbiCtl5tlqtsFisUCrrc7jQ9/ocG/f9dMVpCL4qZG94lvWxDTl5Wn1UKgQoYHVLfTTXnkdpbU982uhvwdG/p/q4IMu1pb+nibGtr48KhcLja+Svv/6KL/KONDmnrquRp0tKYPXpCcP+/Faf00upkacrTkPlp4FoMbvlGrLhmpU1su05tVeNrD1zGqXKYKleOeP/z/Vx+39P5b8WQekXKLtWqM/JdTXyBp0ZVVVVzV4vtfkaUnTAyZMnRQBiTk6OLP7ss8+Kw4YNs7vNkCFDxOeee04W279/vwhANBgMdrd5+umnRQB88cUXXy57/fbbb46Uv4tifeSLL7660os1ki+++OLL/uti9dGhGeyAgAAolUqbdxrLysps3mFs0KdPH7vtVSoVevfubXebxYsXIyUlRfraarXijz/+QO/evWXvdDSnqqoKYWFh+O233+Dn53fR9h1ZV8mFeXQsXSUPwPFcRFHEmTNn0LdvX6f2o7PUR6DrnH/m0bF0lTyArpNLW/Lw9Brpyee+o+oquTCPjsWV9dGhAbZarUZsbCyysrIwbdo0KZ6VlYWpU6fa3SYuLg4fffSRLPb5559Dp9M1+9kZjUYDjUYji/n7+zvSVQCAn59fpz7xjXWVXJhHx9JV8gAcy0Wr1Tr9+J2tPgJd5/wzj46lq+QBdJ1cHM2DNdJzz31H1lVyYR4diyvqo+KiLZpISUnBW2+9hQ0bNuDw4cN45JFHUFRUJD2TcPHixZg1a5bUPikpCb/++itSUlJw+PBhbNiwAevXr8djjz3m6KGJiDo01kciouaxRhKRJ3D4MV0zZsxAZWUlli1bBoPBgBEjRmDnzp0IDw8HUL+Cd1FRkdQ+IiICO3fuxCOPPILXX38dffv2xauvvsrHKxBRl8P6SETUPNZIIvIEDg+wASA5ObnZJdszMzNtYtdccw2+//77thyqTTQaDZ5++mmbW4Q6o66SC/PoWLpKHkDHy6Wj10eg4/3M2op5dCxdJQ+g6+TSEfPo6DWyI/7M2qKr5AF0nVyYR8fiyjwEUXTycxiIiIiIiIiIPJDDn8EmIiIiIiIiIlscYBMRERERERE5AQfYRERERERERE7QaQfY6enpiIiIgLe3N2JjY5Gdnd1i+7179yI2Nhbe3t4YOHAg3njjDTf1tGWO5LFjxw7ccMMNCAwMhJ+fH+Li4rBr1y439rZljp6TBl9++SVUKhVGjhzp2g62kqN51NbWYsmSJQgPD4dGo8GgQYOwYcMGN/W2eY7msWXLFsTExKBbt24ICQnBPffcg8rKSjf11r59+/ZhypQp6Nu3LwRBwAcffHDRbTrq37q7sUZ2rBrJ+tix6iPQ+Wsk62PbsT6yPrpKV6mRnb0+Au1cI8VO6F//+pfo5eUlvvnmm+KhQ4fE+fPni76+vuKvv/5qt31BQYHYrVs3cf78+eKhQ4fEN998U/Ty8hLfe+89N/dcztE85s+fL77wwgvit99+Kx47dkxcvHix6OXlJX7//fdu7rktR3NpcPr0aXHgwIFifHy8GBMT457OtqAtedxyyy3iVVddJWZlZYmFhYXiN998I3755Zdu7LUtR/PIzs4WFQqFuHr1arGgoEDMzs4Whw8fLt56661u7rnczp07xSVLlojbt28XAYjvv/9+i+076t+6u7FGdqwayfrYseqjKHaNGsn62Dasj6yPrtJVamRXqI+i2L41slMOsK+88koxKSlJFouMjBQXLVpkt/3ChQvFyMhIWWzu3Lni1Vdf7bI+toajedhz2WWXiUuXLnV21xzW1lxmzJghPvnkk+LTTz/dIQqko3l8+umnolarFSsrK93RvVZzNI+XXnpJHDhwoCz26quviqGhoS7ro6NaUxw76t+6u7FGXtARaiTrY8eqj6LY9Wok62PrsT5ewProXF2lRna1+iiK7q+Rne4WcZPJhLy8PMTHx8vi8fHxyMnJsbvNV199ZdP+xhtvRG5uLurq6lzW15a0JY+mrFYrzpw5g169ermii63W1lw2btyI48eP4+mnn3Z1F1ulLXl8+OGH0Ol0ePHFF9GvXz8MHToUjz32GM6dO+eOLtvVljzGjBmD4uJi7Ny5E6Io4vfff8d7772HyZMnu6PLTtMR/9bdjTXygo5QI1kfO1Z9BDy3RnbEv3N3Y328gPXRubpKjfTU+gg4929d5cyOuUNFRQUsFguCg4Nl8eDgYJSWltrdprS01G57s9mMiooKhISEuKy/zWlLHk298sorqKmpwfTp013RxVZrSy4///wzFi1ahOzsbKhUHePXsC15FBQUYP/+/fD29sb777+PiooKJCcn448//mi3z9C0JY8xY8Zgy5YtmDFjBs6fPw+z2YxbbrkFr732mju67DQd8W/d3VgjL+gINZL1sWPVR8Bza2RH/Dt3N9bHC1gfnaur1EhPrY+Ac//WO90MdgNBEGRfi6JoE7tYe3txd3M0jwbvvvsuUlNTsXXrVgQFBbmqew5pbS4WiwV33nknli5diqFDh7qre63myDmxWq0QBAFbtmzBlVdeiZtvvhkrV65EZmZmu8/SOJLHoUOH8PDDD+Mf//gH8vLy8Nlnn6GwsBBJSUnu6KpTddS/dXdjjexYNZL1sWPVR8Aza2RH/Tt3N9ZH1kdX6So10hPrI+C8v/WO89ZPKwUEBECpVNq8i1JWVmbzrkODPn362G2vUqnQu3dvl/W1JW3Jo8HWrVuRkJCAbdu2YeLEia7sZqs4msuZM2eQm5sLvV6PefPmAagvMqIoQqVS4fPPP8f111/vlr431pZzEhISgn79+kGr1UqxqKgoiKKI4uJiDBkyxKV9tqcteaxYsQJjx47F448/DgCIjo6Gr68vxo0bh2effbbTzGx0xL91d2ON7Fg1kvWxY9VHwHNrZEf8O3c31kfWR1fpKjXSU+sj4Ny/9U43g61WqxEbG4usrCxZPCsrC2PGjLG7TVxcnE37zz//HDqdDl5eXi7ra0vakgdQ/67jnDlz8M4773SYzzY4moufnx9+/PFH5OfnS6+kpCQMGzYM+fn5uOqqq9zVdZm2nJOxY8eipKQE1dXVUuzYsWNQKBQIDQ11aX+b05Y8zp49C4VCXg6USiWAC+/edQYd8W/d3VgjO1aNZH3sWPUR8Nwa2RH/zt2N9ZH10VW6So301PoIOPlv3eFl0TqAhuXj169fLx46dEhcsGCB6OvrK544cUIURVFctGiROHPmTKl9w7LrjzzyiHjo0CFx/fr1HeoRC63N45133hFVKpX4+uuviwaDQXqdPn26vVKQOJpLUx1lFUhH8zhz5owYGhoq3n777eJPP/0k7t27VxwyZIiYmJjYXimIouh4Hhs3bhRVKpWYnp4uHj9+XNy/f7+o0+nEK6+8sr1SEEWx/uer1+tFvV4vAhBXrlwp6vV66VERneVv3d1YIztWjWR97Fj1URS7Ro1kfWwb1kfWR1fpKjWyK9RHUWzfGtkpB9iiKIqvv/66GB4eLqrVavGKK64Q9+7dK31v9uzZ4jXXXCNrv2fPHnHUqFGiWq0WBwwYIGZkZLi5x/Y5ksc111wjArB5zZ492/0dt8PRc9JYRyqQjuZx+PBhceLEiaKPj48YGhoqpqSkiGfPnnVzr205mserr74qXnbZZaKPj48YEhIi3nXXXWJxcbGbey23e/fuFn/nO9PfuruxRnasGsn62LHqoyh2/hrJ+th2rI+sj67SVWpkZ6+Poti+NVIQxU40d09ERERERETUQXW6z2ATERERERERdUQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgE7XStddeiwULFkhfDxgwAGlpae3WHyKijoQ1kojIPtZHz8IBNjVrzpw5EAQBgiDAy8sLAwcOxGOPPYaamhoAwIkTJyAIAvLz85Gamiq1be514sSJZo/1z3/+E1deeSV8fX3Ro0cPjB8/Hh9//LGbMpXbs2cPBEHA6dOnZfEdO3bgmWeeaZc+EVHHwxp5WhZnjSSiBqyPp2Vx1kfPwgE2teimm26CwWBAQUEBnn32WaSnp+Oxxx6zaffYY4/BYDBIr9DQUCxbtkwWCwsLs3uMxx57DHPnzsX06dPxww8/4Ntvv8W4ceMwdepUrFmzxtUptlqvXr3Qo0eP9u4GEXUgrJEXsEYSUWOsjxewPnoYkagZs2fPFqdOnSqLJSYmin369BFFURQLCwtFAKJer7fZNjw8XFy1atVFj/HVV1+JAMRXX33V5nspKSmil5eXWFRUJIqiKD799NNiTEyMrM2qVavE8PBw6etvv/1WnDhxoti7d2/Rz89PHD9+vJiXlyfbBoD45ptvirfeeqvo4+MjDh48WPzPf/4jy6nxa/bs2aIoiuI111wjzp8/v9kcT58+Ld53331iYGCg2KNHD/G6664T8/Pzpe/n5+eL1157rdi9e3exR48e4hVXXCF+9913F/0ZEVHHxBrJGklE9rE+sj56Ms5gk0N8fHxQV1fntP29++676N69O+bOnWvzvUcffRR1dXXYvn17q/d35swZzJ49G9nZ2fj6668xZMgQ3HzzzThz5oys3dKlSzF9+nQcOHAAN998M+666y788ccfCAsLk4539OhRGAwGrF69+qLHFUURkydPRmlpKXbu3Im8vDxcccUVmDBhAv744w8AwF133YXQ0FB89913yMvLw6JFi+Dl5dXq3Iio42ONtI81kohYH+1jfex6VO3dAeo8vv32W7zzzjuYMGGC0/Z57NgxDBo0CGq12uZ7ffv2hVarxbFjx1q9v+uvv1729dq1a9GzZ0/s3bsXf/3rX6X4nDlzcMcddwAAnnvuObz22mv49ttvcdNNN6FXr14AgKCgIPj7+7fquLt378aPP/6IsrIyaDQaAMDLL7+MDz74AO+99x7uv/9+FBUV4fHHH0dkZCQAYMiQIa3Oi4g6PtbI5rFGEnk21sfmsT52PZzBphZ9/PHH6N69O7y9vREXF4fx48fjtddec9vxRVG0WzibU1ZWhqSkJAwdOhRarRZarRbV1dUoKiqStYuOjpb+3bAoRllZWZv7mZeXh+rqavTu3Rvdu3eXXoWFhTh+/DgAICUlBYmJiZg4cSKef/55KU5EnRdrZOuwRhJ5HtbH1mF97Ho4g00tuu6665CRkQEvLy/07dvX6bejDBkyBPv374fJZLIpgiUlJaiqqsLQoUMBAAqFAqIoyto0vdVozpw5KC8vR1paGsLDw6HRaBAXFweTySRr1zQPQRBgtVrbnIfVakVISAj27Nlj872GdzBTU1Nx55134pNPPsGnn36Kp59+Gv/6178wbdq0Nh+XiNoXa2TrsEYSeR7Wx9Zhfex6OINNLfL19cXgwYMRHh7uks963HHHHaiursbatWttvvfyyy/D29sbM2bMAAAEBgaitLRUViDz8/Nl22RnZ+Phhx/GzTffjOHDh0Oj0aCiosKhPjUUaYvF0uptrrjiCpSWlkKlUmHw4MGyV0BAgNRu6NCheOSRR/D555/jb3/7GzZu3OhQ34ioY2GNbB3WSCLPw/rYOqyPXQ8H2NSu4uLiMH/+fDz++ON45ZVXcPz4cRw5cgRPPvkkXn31Vbz55pvo3bs3AODaa69FeXk5XnzxRRw/fhyvv/46Pv30U9n+Bg8ejM2bN+Pw4cP45ptvcNddd8HHx8ehPoWHh0MQBHz88ccoLy9HdXX1RbeZOHEi4uLicOutt2LXrl04ceIEcnJy8OSTTyI3Nxfnzp3DvHnzsGfPHvz666/48ssv8d133yEqKsqhvhGRZ2GNZI0kIvtYH1kfOyoOsKndpaWlIT09He+++y5GjBiBqKgovPTSS/jf//6Hu+++W2oXFRWF9PR0vP7664iJicG3335r8zzFDRs24NSpUxg1ahRmzpyJhx9+GEFBQQ71p1+/fli6dCkWLVqE4OBgzJs376LbCIKAnTt3Yvz48bj33nsxdOhQ/N///R9OnDiB4OBgKJVKVFZWYtasWRg6dCimT5+OSZMmYenSpQ71jYg8D2skEZF9rI/UEQli0w8kELWzEydO4JprrkFcXBy2bNkCpVLZ3l0iIuowWCOJiOxjfaSOgDPY1OEMGDAAe/bsQWRkpM3nY4iIPB1rJBGRfayP1BFwBpuIiIiIiIjICTiDTUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AT/H3E7OcuNjZFpAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "compute_results(test_data, output_cols, mu, np.sqrt(aleatoric), np.sqrt(epistemic))" ] @@ -777,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -785,13 +519,25 @@ "with open(config) as cf:\n", " conf = yaml.load(cf, Loader=yaml.FullLoader)\n", " \n", + "conf[\"save_loc\"] = \"./\"\n", "conf[\"model\"][\"epochs\"] = 1\n", - "conf[\"model\"][\"verbose\"] = 1" + "conf[\"model\"][\"verbose\"] = 0\n", + "n_splits = conf[\"ensemble\"][\"n_splits\"]" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# make save directory for model weights\n", + "os.makedirs(os.path.join(conf[\"save_loc\"], \"cv_ensemble\", \"models\"), exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -803,105 +549,10 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 0%| | 0/2 [00:00.predict_function at 0x2ad5811f0dc0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2ad5811f0dc0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 8ms/step\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 2/2 [00:04<00:00, 2.48s/it]\n" - ] - } - ], + "outputs": [], "source": [ - "n_splits = 2\n", "ensemble_mu = np.zeros((n_splits, test_data.shape[0], 1))\n", "ensemble_var = np.zeros((n_splits, test_data.shape[0], 1))\n", "\n", @@ -941,7 +592,11 @@ " callbacks=get_callbacks(conf, path_extend=f\"\")\n", " )\n", " \n", - " model.model_name = f\"model_split{data_seed}.h5\"\n", + " model.model_name = f\"cv_ensemble/models/model_seed0_split{data_seed}.h5\"\n", + " model.save_model()\n", + " \n", + " # Save the best model \n", + " model.model_name = f\"cv_ensemble/models/best.h5\"\n", " model.save_model()\n", " \n", " mu, var = model.predict_uncertainty(x_test, y_scaler)\n", @@ -960,27 +615,44 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 [==============================] - 0s 6ms/step\n", - "3/3 [==============================] - 0s 6ms/step\n" - ] - } - ], + "outputs": [], "source": [ - "models = [f\"./model_split{data_seed}.h5\" for data_seed in range(n_splits)]\n", - "\n", - "ensemble_mu, ensemble_var = model.predict_ensemble(x_test, models, scaler = y_scaler)" + "model = GaussianRegressorDNN().load_model(conf)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.ensemble_weights[0].replace(\".h5\", \"_training_var.txt\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.loadtxt(model.ensemble_weights[0].strip(\".h5\") + \"_training_var.txt\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#models = [f\"./model_split{data_seed}.h5\" for data_seed in range(n_splits)]\n", + "ensemble_mu, ensemble_var = model.predict_ensemble(x_test, scaler = y_scaler)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -990,113 +662,18 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.020515849193125695 0.08046230428861377\n" - ] - } - ], + "outputs": [], "source": [ "print(epistemic.mean() ** (1/2), aleatoric.mean() ** (1/2))" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/regression_uq.py:819: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", - " plt.tight_layout()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFUCAYAAAAAmsQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCW0lEQVR4nO3deVxU9f4/8NcZYIYdRWVTRExz10hIcTd3y+Jxu1pdU1DrdzWXzDbNbuYtL3q/bZZGV1Oob255EbNSv5oLbpmpkAumuSUaKJrsOizz+f1hHBkGkIHPMEfn9ewxOfM5n/M+n8+ZOfPmzDnncxQhhAARERFpjs7eDSAiIqLKMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJE9mZoihYv3693WPUp/Pnz0NRFKSmpmoyHpFWMEkTSRYTEwNFUSwep0+frrR+RkYGhg0bVqPYb731Fh544IE6xbgXBQcHIyMjAx07dgQA7Ny5E4qiIDs7274NI6ojZ3s3gOheNHToUMTHx5uVNWnSxOx1UVER9Ho9AgIC6rw8GTHuZk5OTg6/DujexD1pIhswGAwICAgwewwYMABTpkzBjBkz0LhxYwwaNAiA5U/VFy9exFNPPQVfX194eHggPDwcP/74IxISEjB37lz8/PPP6t55QkJCpTGOHj2Khx9+GG5ubmjUqBH+3//7f8jPz1enx8TEICoqCu+++y4CAwPRqFEjTJ48GcXFxXfs26xZs9C9e3eL8s6dO2POnDnq6/j4eLRr1w6urq5o27YtPvnkk2rjJicn46GHHoLBYEBgYCBmzpyJkpISdbrJZMKCBQvQqlUrGAwGNG/eHPPmzQNg/nP3+fPn0b9/fwBAw4YNoSgKYmJi8MUXX6BRo0YwGo1my33iiScwduzYO/abyC4EEUkVHR0tHn/8cYvyvn37Ck9PT/HKK6+IX375RZw4cUIIIQQAkZSUJIQQIi8vT7Rs2VL07t1b7N69W/z6669izZo1Yt++faKwsFC89NJLokOHDiIjI0NkZGSIwsJCixgFBQUiKChI/OUvfxFHjx4V27ZtE6GhoSI6Otqsjd7e3mLixInixIkT4ptvvhHu7u5iyZIld+zf0aNHBQBx+vRptezYsWMCgDh58qQQQoglS5aIwMBAkZiYKM6ePSsSExOFr6+vSEhIEEIIce7cOQFApKSkCCGEuHjxonB3dxfPP/+8OHHihEhKShKNGzcWc+bMUZfx6quvioYNG4qEhARx+vRpsXv3brF06VKLeCUlJSIxMVFtT0ZGhsjOzhaFhYXCx8dHfPXVV2rMrKwsodfrxfbt2+/YbyJ7cOgknZycLB599FERGBho9iV3ryyP7CM6Olo4OTkJDw8P9fHXv/5V9O3bVzzwwAMW9ct/Fv7zn/8ILy8vce3atUpjz5kzR3Tp0qXaGEuWLBENGzYU+fn56vTvvvtO6HQ6kZmZqbYxJCRElJSUqHVGjhwpnnzyyRr1sXPnzuKf//yn+nrWrFkiIiJCfR0cHCxWrlxpNs/bb78tIiMjhRCWSfr1118Xbdq0ESaTSa2/ePFi4enpKUpLS0Vubq4wGAxqUq6oYrwdO3YIAOL69etm9SZNmiSGDRumvv7www9Fy5YtzZZLpCUO/XN3QUEBunTpgkWLFt2TyyP76d+/P1JTU9XHRx99BAAIDw+vdr7U1FSEhYXB19e31ss+ceIEunTpAg8PD7WsZ8+eMJlMOHnypFrWoUMHODk5qa8DAwNx5cqVGi1j9OjRWLFiBQBACIFVq1Zh9OjRAICsrCykp6djwoQJ8PT0VB/vvPMOzpw5U2WbIyMjoSiKWZvz8/Nx8eJFnDhxAkajEQMGDKj5iqjEc889hy1btuDSpUsAbv0kX3aiH5EWOfSJY8OGDav2jNiioiK88cYbWLFiBbKzs9GxY0csWLAA/fr1s8ny6N7h4eGBVq1aVVpeHTc3tzovWwhRZdIpX+7i4mIxzWQy1WgZf/vb3zBz5kwcPnwYN27cQHp6Op566ikAUGMsXboU3bp1M5uv/B8Fd2qzEEJtl4z1AgBhYWHo0qULvvjiCwwZMgRHjx7FN998IyU2kS049J70nYwbNw579+7F6tWrceTIEYwcORJDhw7Fr7/+au+m0T2qc+fOSE1NxR9//FHpdL1ej9LS0mpjtG/fHqmpqSgoKFDL9u7dC51Oh/vvv19KO5s1a4Y+ffpgxYoVWLFiBQYOHAh/f38AgL+/P5o2bYqzZ8+iVatWZo/Q0NAq27xv3z41MQPAvn374OXlhaZNm6J169Zwc3PDtm3batQ+vV4PAJWuq2effRbx8fFYvnw5Bg4ciODgYGu7T1RvmKSrcObMGaxatQpr165F7969cd999+Hll19Gr169LC6tIZLl6aefRkBAAKKiorB3716cPXsWiYmJ+OGHHwAALVq0wLlz55CamoqrV69anKkM3Pop2tXVFdHR0Th27Bh27NiBqVOnYsyYMWoilWH06NFYvXo11q5di2eeecZs2ltvvYXY2FgsXLgQp06dwtGjRxEfH4/333+/0ljPP/880tPTMXXqVPzyyy/4+uuvMWfOHMyYMQM6nQ6urq547bXX8Oqrr+KLL77AmTNnsH//fixbtqzSeCEhIVAUBd9++y2ysrLMzmwfPXo0Ll26hKVLl2L8+PHS1geRLTBJV+Hw4cMQQuD+++83O66WnJysHlcru+yjuseUKVPs3BO6m+j1emzZsgV+fn4YPnw4OnXqhPnz56s/Ez/xxBMYOnQo+vfvjyZNmmDVqlUWMdzd3fF///d/+OOPPxAREYG//vWvGDBggPRzIUaOHIlr166hsLAQUVFRZtOeffZZfPbZZ0hISECnTp3Qt29fJCQkVLkn3bRpU2zcuBEHDhxAly5dMHHiREyYMAFvvPGGWucf//gHXnrpJbz55pto164dnnzyySqPoTdt2hRz587FzJkz4e/vb7Ydent744knnoCnp6dFu4m0RhHlf19yYIqiICkpSd1o16xZg9GjR+P48eMWx9E8PT0REBCA4uLiKk+EKdOwYcNK914qLo+I6s+gQYPQrl079YQ+Iq1y6BPHqhMWFobS0lJcuXIFvXv3rrSOi4sL2rZtW88tI6La+uOPP7BlyxZs376dV1nQXcGhk3R+fr7ZeMplx/p8fX1x//33Y/To0Rg7dizee+89hIWF4erVq9i+fTs6deqE4cOHS11e8+bNpfSJqK52795d7VUI5Y/v3m0efPBBXL9+HQsWLECbNm3s3RyiO3Lon7t37typDh9YXnR0NBISElBcXIx33nkHX3zxBS5duoRGjRohMjISc+fORadOnaQvj0gLbty4oV5HXJnKLi0jIttw6CRNRESkZTy7m4iISKOYpImIiDTK4U4cM5lM+P333+Hl5cXxeomIyKaEEMjLy0NQUBB0Ouv3ix0uSf/+++8cBpCIiOpVeno6mjVrZvV8Dpekvby8AAB/9xsHvU4vLe7+7EJpscocM+2WGu9m0WWp8QBAoEh6TCKie4cAYFJzj7UcLkmX/cSt1+lh0BmkxXVWSqTFKqMock8ZsMXP+0LwkAER0Z3U9vuXJ44RERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjncYCZl1uT9DJ0ir/thus7SYpXx0DWRG89ZbjwAKBXF0mNev3FMajwhTFLjERHVF+5JExERaRSTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUYxSRMREWmUw444VlCSBUVxkhbvlPMFabHKBJvaSI13yrRfajxbaeweJjVeXtHvUuMBgLHkstR4HBWNiCrDPWkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKLsm6bi4OHTu3Bne3t7w9vZGZGQkNm3aVGX9jIwM/O1vf0ObNm2g0+kwffr0+mssERFRPbPriGPNmjXD/Pnz0apVKwDA559/jscffxwpKSno0KGDRX2j0YgmTZpg9uzZ+OCDD+q0bL3OU+qIYwXIlharjA98pca7X9ddajwASCveIT3mtaJMqfEauLaSGg8AdDoXqfGKSrKlxgMAnWKQHrOoJEt6TCKqml2T9IgRI8xez5s3D3Fxcdi/f3+lSbpFixZYuHAhAGD58uX10kYiIiJ70czY3aWlpVi7di0KCgoQGRkpLa7RaITRaFRf5+bmSotNRERkS3Y/cezo0aPw9PSEwWDAxIkTkZSUhPbt20uLHxsbCx8fH/URHBwsLTYREZEt2T1Jt2nTBqmpqdi/fz8mTZqE6OhopKWlSYs/a9Ys5OTkqI/09HRpsYmIiGzJ7j936/V69cSx8PBw/PTTT1i4cCH+85//SIlvMBhgMMg/gYaIiMjW7L4nXZEQwuwYMhERkaOy657066+/jmHDhiE4OBh5eXlYvXo1du7cic2bNwO49VP1pUuX8MUXX6jzpKamAgDy8/ORlZWF1NRU6PV6qcexiYiItMCuSfry5csYM2YMMjIy4OPjg86dO2Pz5s0YNGgQgFuDl1y4cMFsnrCwMPX5oUOHsHLlSoSEhOD8+fP12XQiIiKbs2uSXrZsWbXTExISLMqEEDZqDRERkbZo7pg0ERER3WL3s7vtpbD4KhRF3t8oJucG0mKVOYsU6TFl8zdYjgxXV5eNx6XGyy/KkBoPAEpKc6TG0zs3khoPAFxt8Jn0db1ParyrN+RdblnGZLopP6Yokh6TqCa4J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ474pizkysUxUlaPBedu7RYZfKKfpcar4EhRGo8WwnVd5ca74xxj9R4ACBQIjWeseSy1HgAUGIqkB/TRe5tZPU2GBXN1Ul+TCfFRWq8azdOSI0HACZTofSYZH/ckyYiItIoJmkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKIcdcUyv85Q64pjs0cEAwFXyaEy5xfLbWFJ6Q3pMH0NzqfEecBkqNR4AHDQlSo0nxE2p8QDAJOSOigYAN4uvSo1nizba4jOpd/aSGi/UvY/UeABQgGyp8WzxfVFovCA95r2Oe9JEREQaZdckHRcXh86dO8Pb2xve3t6IjIzEpk2bqp0nOTkZXbt2haurK1q2bIlPP/20nlpLRERUv+yapJs1a4b58+fj4MGDOHjwIB5++GE8/vjjOH78eKX1z507h+HDh6N3795ISUnB66+/jmnTpiExUe5Pj0RERFpg12PSI0aMMHs9b948xMXFYf/+/ejQoYNF/U8//RTNmzfHhx9+CABo164dDh48iHfffRdPPPFEfTSZiIio3mjmmHRpaSlWr16NgoICREZGVlrnhx9+wODBg83KhgwZgoMHD6K4uLg+mklERFRv7H5299GjRxEZGYmbN2/C09MTSUlJaN++faV1MzMz4e/vb1bm7++PkpISXL16FYGBgRbzGI1GGI2374Gbm5srtwNEREQ2Yvc96TZt2iA1NRX79+/HpEmTEB0djbS0tCrrK4pi9loIUWl5mdjYWPj4+KiP4OBgeY0nIiKyIbsnab1ej1atWiE8PByxsbHo0qULFi5cWGndgIAAZGZmmpVduXIFzs7OaNSoUaXzzJo1Czk5OeojPT1deh+IiIhswe4/d1ckhDD7ebq8yMhIfPPNN2ZlW7ZsQXh4OFxcXCqdx2AwwGAwSG8nERGRrdl1T/r111/H7t27cf78eRw9ehSzZ8/Gzp07MXr0aAC39oLHjh2r1p84cSJ+++03zJgxAydOnMDy5cuxbNkyvPzyy/bqAhERkc3YdU/68uXLGDNmDDIyMuDj44POnTtj8+bNGDRoEAAgIyMDFy7cHkYuNDQUGzduxIsvvojFixcjKCgIH330Ua0uvzKJYigwSeuLlz5IWqwyDRW5MU8bt0mNBwCuLo2lxywoyZIa77JLhtR4ANDKfYDUeKcL5b83NhlqFK5S49mijSXyNmtVsfGa1Hi/SR5eFQBC3HpIjefvFCI1HgCkuzeQHlOvc5ca7+qNqs+Jqg0hBEpN12s9v12T9LJly6qdnpCQYFHWt29fHD582EYtIiIi0g67nzhGRERElbM6SU+bNg0fffSRRfmiRYswffp0GW0iIiIi1CJJJyYmomfPnhblPXr0wH//+18pjSIiIqJaJOlr167Bx8fHotzb2xtXr8o/GYKIiMhRWZ2kW7Vqhc2bN1uUb9q0CS1btpTSKCIiIqrF2d0zZszAlClTkJWVhYcffhgAsG3bNrz33nvq3amIiIio7qxO0uPHj4fRaMS8efPw9ttvAwBatGiBuLg4s4FHiIiIqG5qdZ30pEmTMGnSJGRlZcHNzQ2enp6y20VEROTwFFF2GykHkZubCx8fHyhwq/LOWbXRyL2TtFhlSoX275FtskEb84suSY3XwTBMajwAyNflSI13ueSU1HgAUGi8KD2mSRRJjefqYnl72boyiRIbxKz8fgK1VWrKlxoPABRF7mhwzjoPqfEAwNnJTXrMEOeuUuM1NjWQGq9EFOGHm58jJycH3t7eVs9foz3pBx98ENu2bUPDhg0RFhZWbXLjaGBERERy1ChJP/744+qdpKKiomzZHiIiIvpTjZL0nDlzAAClpaXo168fOnfujIYNG9q0YURERI7OquuknZycMGTIEGRnZ9uoOURERFTG6sFMOnXqhLNnz9qiLURERFSO1Ul63rx5ePnll/Htt98iIyMDubm5Zg8iIiKSw+rrpIcOHQoAeOyxx8zO8hZCQFEUlJaWymsdERGRA7M6Se/YscMW7SAiIqIKrE7Sffv2tUU7iIiIqIJaDQuanZ2NZcuW4cSJE1AUBe3bt8f48eMrvYWlVjk7eUNRrD4kX6UbpdelxSrj49xUajx/U7DUeABggIv0mCf0B6TGu6ErlBoPADxNcj/rBc5+UuMBQEnpDekxi0quyY1XKnfkNlvRKbX6qqySk07+UMqyRwgrMRVIjQcAOsVLekzZSmDSVDyrs9TBgwdx33334YMPPsAff/yBq1ev4v3338d9993H0caIiIgksvrPwxdffBGPPfYYli5dCmfnW7OXlJTg2WefxfTp07Fr1y7pjSQiInJEVifpgwcPmiVoAHB2dsarr76K8PBwqY0jIiJyZFb/3O3t7Y0LFy5YlKenp8PLS/vHG4iIiO4WVifpJ598EhMmTMCaNWuQnp6OixcvYvXq1Xj22Wfx9NNPWxUrNjYWERER8PLygp+fH6KionDy5Mk7zrd48WK0a9cObm5uaNOmDb744gtru0FERKR5Vv/c/e6770JRFIwdOxYlJbfu2+ri4oJJkyZh/vz5VsVKTk7G5MmTERERgZKSEsyePRuDBw9GWloaPDwqP1MxLi4Os2bNwtKlSxEREYEDBw7gueeeQ8OGDTFixAhru0NERKRZihBC1GbGwsJCnDlzBkIItGrVCu7u7nVuTFZWFvz8/JCcnIw+ffpUWqdHjx7o2bMn/ud//kctmz59Og4ePIg9e/bccRm5ubnw8fGBi5O/1Euw9M7yf+q/Ky7BEja4BAtyL8Hyc2olNR4AuJnq/nkv77LuN6nxACDbKD+m7EuwIPnSJluRfQmWLdwNl2C5ujSWHjPYqYvUeA1M3lLjlYgi/HTzf5GTkwNvb+tjW52lxo8fj7y8PLi7u6NTp07o3Lkz3N3dUVBQgPHjx1vdgPJycm5dM+nr61tlHaPRCFdXV7MyNzc3HDhwAMXFxXVaPhERkZZYnaQ///xz3LhhOUjCjRs36nRsWAiBGTNmoFevXujYsWOV9YYMGYLPPvsMhw4dghACBw8exPLly1FcXIyrV69a1DcajbwJCBER3ZVq/BtObm4uhBAQQiAvL89sb7a0tBQbN26En1/tR02aMmUKjhw5csefrP/xj38gMzMT3bt3hxAC/v7+iImJwb///W84OTlZ1I+NjcXcuXNr3S4iIiJ7qfExaZ1OZ3bXK4tAioK5c+di9uzZVjdi6tSpWL9+PXbt2oXQ0NAazVNcXIzLly8jMDAQS5YswWuvvYbs7GzodOY/DhiNRhiNRvV1bm4ugoODoShe1fbHWrY4ZuXvJvdYS/PSllLjAYCnopce01cv9zj3L0WSj6MCaO1S9SGZ2vih9JjUeABwzXhaekzZxyl1ikFqPMA254cUFmVKjWeL7wvZx3tNokRqPABo7RQpPabs8zkaikCp8UpFMU4Vrq/1Mekaf1J27NgBIQQefvhhJCYmmh031uv1CAkJQVBQkFULF0Jg6tSpSEpKws6dO2ucoIFbZ5Q3a9YMALB69Wo8+uijFgkaAAwGAwwG+V8EREREtlbjJF1296tz584hODi40oRorcmTJ2PlypX4+uuv4eXlhczMW3+t+vj4wM3NDQAwa9YsXLp0ST3eferUKRw4cADdunXD9evX8f777+PYsWP4/PPP69weIiIiLbH6N5eQkBAAty7BunDhAoqKisymd+7cucax4uLiAAD9+vUzK4+Pj0dMTAwAICMjw2yEs9LSUrz33ns4efIkXFxc0L9/f+zbtw8tWrSwtitERESaZnWSzsrKwrhx47Bp06ZKp5eWltY4Vk0OhyckJJi9bteuHVJSUmq8DCIioruV1b9ZT58+HdevX8f+/fvh5uaGzZs34/PPP0fr1q2xYcMGW7SRiIjIIVm9J719+3Z8/fXXiIiIgE6nQ0hICAYNGgRvb2/ExsbikUcesUU7iYiIHI7Ve9IFBQXq9dC+vr7IysoCAHTq1AmHDx+W2zoiIiIHZnWSbtOmjXqnqgceeAD/+c9/cOnSJXz66acIDJR7fRkREZEjs/rn7unTpyMjIwMAMGfOHAwZMgQrVqyAXq+3OMmLiIiIas/qJD169Gj1eVhYGM6fP49ffvkFzZs3R+PG8u9wYis6xVnqiGON3dpLi2UrDXTyB3UxCpP0mMFybzCFtt4N5QYE8EuuvM8OAOSUXJIaz1ZkjxDmboO7IrnoJH+AAAS5d5AeUzYnIXcUs0DRSGo8AGjhLn+EwvOFckeY6+Ijt41GkxGnCms/f61HJCkqKsLJkyeh1+vx4IMP3lUJmoiI6G5gdZIuLCzEhAkT4O7ujg4dOqgDjUybNg3z58+X3kAiIiJHZXWSnjVrFn7++Wfs3LnT7E5YAwcOxJo1a6Q2joiIyJFZfRBj/fr1WLNmDbp37252TLd9+/Y4c+aM1MYRERE5Mqv3pLOysiq9b3RBQYHUE7GIiIgcndVJOiIiAt999536uiwxL126FJGR8u8VSkRE5Kis/rk7NjYWQ4cORVpaGkpKSrBw4UIcP34cP/zwA5KTk23RRiIiIodk9Z50jx49sHfvXhQWFuK+++7Dli1b4O/vjx9++AFdu3a1RRuJiIgcUq2ufu/UqRM+//xz2W0hIiKicmqUpHNzc2sc0Nvbu9aNqU/OOncoSq3HcrFQZKrDkDJVeNilp9R4Hs7yT+zr1KBYesy8YrmjmOUWy3ufy7TwvPO90K0x0X2o1HgAkGWUHhJeLnLj/ZxzQ25AAJA/CB46erlJjZeaVyA1HgB4KnJHysoRN6XGA4BSIX/EsfbecmNeltzt4jp+VdQoSTdo0OCOZ24LIaAoCkpLS+vWIiIiIgJQwyS9Y8eOGgVLSUmpU2OIiIjothol6b59+1Y5LScnBytWrMBnn32Gn3/+GdOnT5fVNiIiIodW64N127dvxzPPPIPAwEB8/PHHGD58OA4ePCizbURERA7NqrO7L168iISEBCxfvhwFBQUYNWoUiouLkZiYiPbttX+rRiIiortJjfekhw8fjvbt2yMtLQ0ff/wxfv/9d3z88ce2bBsREZFDq/Ge9JYtWzBt2jRMmjQJrVu3tmWbiIiICFbsSe/evRt5eXkIDw9Ht27dsGjRImRlZdmybURERA6txkk6MjISS5cuRUZGBv7+979j9erVaNq0KUwmE7Zu3Yq8vDyrFx4bG4uIiAh4eXnBz88PUVFROHny5B3nW7FiBbp06QJ3d3cEBgZi3LhxuHbtmtXLJyIi0jKrz+52d3fH+PHjsWfPHhw9ehQvvfQS5s+fDz8/Pzz22GNWxUpOTsbkyZOxf/9+bN26FSUlJRg8eDAKCqoejWfPnj0YO3YsJkyYgOPHj2Pt2rX46aef8Oyzz1rbFSIiIk1ThBB1Ht+wtLQU33zzDZYvX44NGzbUOk7ZvaqTk5PRp0+fSuu8++67iIuLw5kzZ9Syjz/+GP/+97+Rnp5+x2Xk5ubCx8cHoR5DoFPkjXHYDiHSYpV5qLHcYTwHBv8mNR4AlJrkD7nZ0Mv6X2Wq4+EhfwhGH3/t/3JzOu1+6THXn7lParzdV+UPPdmtodwhPAHgjyK58XLrOlZkJYLd5X5f3LxLBo88VItfcauTp8uXGq9UFONU4Xrk5OTUathsKd+wTk5OiIqKqlOCBm4NjAIAvr6+Vdbp0aMHLl68iI0bN0IIgcuXL+O///0vHnnkkUrrG41G5Obmmj2IiIjuBvJ3g2pJCIEZM2agV69e6NixY5X1evTogRUrVuDJJ5+EXq9HQEAAGjRoUOXlYLGxsfDx8VEfwcHBtuoCERGRVJpJ0lOmTMGRI0ewatWqauulpaVh2rRpePPNN3Ho0CFs3rwZ586dw8SJEyutP2vWLOTk5KiPmvwkTkREpAW1up+0bFOnTsWGDRuwa9cuNGvWrNq6sbGx6NmzJ1555RUAQOfOneHh4YHevXvjnXfeQWBgoFl9g8EAg8Fgs7YTERHZil33pIUQmDJlCtatW4ft27cjNDT0jvMUFhZCpzNvtpOTkxqPiIjoXmHXJD158mR8+eWXWLlyJby8vJCZmYnMzEzcuHH7RvCzZs3C2LFj1dcjRozAunXrEBcXh7Nnz2Lv3r2YNm0aHnroIQQFBdmjG0RERDZh15+74+LiAAD9+vUzK4+Pj0dMTAwAICMjAxcuXFCnxcTEIC8vD4sWLcJLL72EBg0a4OGHH8aCBQvqq9lERET1wq5JuiY/TyckJFiUTZ06FVOnTrVBi4iIiLRDM2d3ExERkTlNnN1tD9mmTCiKk7R414S/tFhlSk1yR066VuAlNR4ARHQ+Kj2ms8EoNd7Zk62kxgOAoEi5/S660lBqPABo1f6U9JivhR2XGq/FpsFS4wHAzsvSQ+J6UYnUeA81kr9/9M3VHKnx2hoaSI0HAOk3b9y5kpUuO2VIjZdVLHe7EcJUp/m5J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ474lh+USYURd7fKIcgd9QbADh9rbnUeAWXs6TGA4Bmp7pIj+lf2lhqPE+di9R4APBYxjNS4xlN8v9efjj0tPSYbQbvkxpv/Im+UuMBwIC/fCI9ZnGx3K/K9358QGo8ALihyB3Nq1Q0kBoPAC44pUuP6Sw5jd0svio1Xl1vocw9aSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKEXUdcyyu0xubi58fHwAuEBRFGlxFcVVWixbcdcHSI8pewg9AAhx6yE13rXS36TGAwCdIneo0W5Kd6nxACDQTf6ovwbJf9Y/1LhAbkAADwTJH3rS2ytfarxvjnWWGg8A7vfJlhrv89N+UuMBwDljnvSYx0zJUuOZTMVS4wlhgrHkEnJycuDt7W31/Hbdk46NjUVERAS8vLzg5+eHqKgonDx5stp5YmJioCiKxaNDhw711GoiIqL6YdcknZycjMmTJ2P//v3YunUrSkpKMHjwYBQUVP3X9cKFC5GRkaE+0tPT4evri5EjR9Zjy4mIiGzPrnfB2rx5s9nr+Ph4+Pn54dChQ+jTp0+l8/j4+Pz5c/Ut69evx/Xr1zFu3DibtpWIiKi+aerEsZycHACAr69vjedZtmwZBg4ciJCQEFs1i4iIyC40cz9pIQRmzJiBXr16oWPHjjWaJyMjA5s2bcLKlSurrGM0GmE0GtXXubm5dW4rERFRfdDMnvSUKVNw5MgRrFq1qsbzJCQkoEGDBoiKiqqyTmxsrPoTuY+PD4KDgyW0loiIyPY0kaSnTp2KDRs2YMeOHWjWrFmN5hFCYPny5RgzZgz0en2V9WbNmoWcnBz1kZ4u//IMIiIiW7Drz91CCEydOhVJSUnYuXMnQkNDazxvcnIyTp8+jQkTJlRbz2AwwGAw1LWpRERE9c6ue9KTJ0/Gl19+iZUrV8LLywuZmZnIzMzEjRs31DqzZs3C2LFjLeZdtmwZunXrVuPj10RERHcbu+5Jx8XFAQD69etnVh4fH4+YmBgAt04Ou3Dhgtn0nJwcJCYmYuHChbVetgJnKJA34tjdoMB4XnpMJ52n9JiyRwjLNcofcUzv5HPnSlZIM5yVGg8A0m5KDwl34SU13k75A46hxW+t5Mf0kPtVmSN3UCsAgEFn/WhW1flghNyRvAAg6r8PSo+pUySnMcm7rkKY6jS/3X/uvpOEhASLMh8fHxQWFtqgRURERNqhiRPHiIiIyBKTNBERkUYxSRMREWkUkzQREZFGMUkTERFpFJM0ERGRRjFJExERaRSTNBERkUZp5laV9U2gBJA44pgwFUmLVUZRtP83lE6RPy76zZJsuQFFidx4AFydG0iNd61E/ohjzjZ4by5Lfm8aGOTfB74QedJj/p7fSGo8d+EqNR4AZKVXfaOh2vjuUi+p8QDg9bbZ0mM+c0JuvJvFV6XGq8mgXdXRfhYgIiJyUEzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBqliLqOWXaXyc3NhY+PDwAnyBwW1BbuhmFBFRuMLGsScodY1Slyh0u0BXdDM+kxZQ9vCAAmyUOs6hT5nx9vQwvpMfU6d6nxmpe2lhoPAEINXlLjedhg0GgfF/kx8yWP+vvZ1U+lxruVYouRk5MDb29vq+fXfhYgIiJyUEzSREREGsUkTUREpFFM0kRERBpl1yQdGxuLiIgIeHl5wc/PD1FRUTh58uQd5zMajZg9ezZCQkJgMBhw3333Yfny5fXQYiIiovpjg/P3ai45ORmTJ09GREQESkpKMHv2bAwePBhpaWnw8PCocr5Ro0bh8uXLWLZsGVq1aoUrV66gpETyKX5ERER2ZtckvXnzZrPX8fHx8PPzw6FDh9CnT58q50lOTsbZs2fh6+sLAGjRooWtm0pERFTvNHVMOicnBwDU5FuZDRs2IDw8HP/+97/RtGlT3H///Xj55Zdx48aNSusbjUbk5uaaPYiIiO4Gdt2TLk8IgRkzZqBXr17o2LFjlfXOnj2LPXv2wNXVFUlJSbh69Sqef/55/PHHH5Uel46NjcXcuXMrW6LE1tvG3THOjC3aKDfm3bAehSi1QUz5/ZYdU9jg82OLdSl7EJdSyQP2AECxMEqNV2SSGg4AYLRBTNntlL/diLrFFRrx/PPPi5CQEJGenl5tvUGDBglXV1eRnZ2tliUmJgpFUURhYaFF/Zs3b4qcnBz1kZaWJv5ca3zwwQcffPBRL4875baqaGJPeurUqdiwYQN27dqFZs2qHx4xMDAQTZs2/XNoz1vatWsHIQQuXryI1q3Nh9szGAwwGAzqa09PT6Snp8PLywuKoo1hQXNzcxEcHIz09PRaDRunNfdaf4B7r0/sj7bda/0B7r0+1bQ/Qgjk5eUhKCioVsuxa5IWQmDq1KlISkrCzp07ERoaesd5evbsibVr1yI/Px+enp4AgFOnTkGn090xwQOocT178Pb2vic+vGXutf4A916f2B9tu9f6A9x7fapJf8rvVFrLrieOTZ48GV9++SVWrlwJLy8vZGZmIjMz0+wksFmzZmHs2LHq67/97W9o1KgRxo0bh7S0NOzatQuvvPIKxo8fDzc3N3t0g4iIyCbsmqTj4uKQk5ODfv36ITAwUH2sWbNGrZORkYELFy6orz09PbF161ZkZ2cjPDwco0ePxogRI/DRRx/ZowtEREQ2Y/efu+8kISHBoqxt27bYunWrDVpkHwaDAXPmzDE7dn43u9f6A9x7fWJ/tO1e6w9w7/WpvvrjcPeTJiIiultoajATIiIiuo1JmoiISKOYpImIiDSKSZqIiEijmKRt5JNPPkFoaChcXV3RtWtX7N69u8q669atw6BBg9CkSRN4e3sjMjIS//d//2dWJyEhAYqiWDxu3rxp664AsK4/O3furLStv/zyi1m9xMREtG/fHgaDAe3bt0dSUpKtu6Gypj8xMTGV9qdDhw5qHXu+P7t27cKIESMQFBQERVGwfv36O86TnJyMrl27wtXVFS1btsSnn35qUcde74+1/dH69mNtf+6G7cfaPml5G4qNjUVERAS8vLzg5+eHqKgonDx58o7z1dc2xCRtA2vWrMH06dMxe/ZspKSkoHfv3hg2bJjZ9d7l7dq1C4MGDcLGjRtx6NAh9O/fHyNGjEBKSopZPW9vb2RkZJg9XF1dNdefMidPnjRra/khW3/44Qc8+eSTGDNmDH7++WeMGTMGo0aNwo8//mjr7ljdn4ULF5r1Iz09Hb6+vhg5cqRZPXu9PwUFBejSpQsWLVpUo/rnzp3D8OHD0bt3b6SkpOD111/HtGnTkJiYqNax5/tjbX+0vv1Y258yWt1+AOv7pOVtKDk5GZMnT8b+/fuxdetWlJSUYPDgwSgoKKhynnrdhmo14jdV66GHHhITJ040K2vbtq2YOXNmjWO0b99ezJ07V30dHx8vfHx8ZDXRKtb2Z8eOHQKAuH79epUxR40aJYYOHWpWNmTIEPHUU0/Vub13Utf3JykpSSiKIs6fP6+W2fP9KQ+ASEpKqrbOq6++Ktq2bWtW9ve//110795dfW3P96e8mvSnMlrafsqrSX+0vv1UVJv3SMvb0JUrVwQAkZycXGWd+tyGuCctWVFREQ4dOoTBgweblQ8ePBj79u2rUQyTyYS8vDyL+2rn5+cjJCQEzZo1w6OPPmqxp2ALdelPWFgYAgMDMWDAAOzYscNs2g8//GARc8iQITVeR7Ul4/1ZtmwZBg4ciJCQELNye7w/tVHVuj948CCKi4urrWPr90cGLW0/daHF7UcWLW9DOTk5AGDx+SmvPrchJmnJrl69itLSUvj7+5uV+/v7IzMzs0Yx3nvvPRQUFGDUqFFqWdu2bZGQkIANGzZg1apVcHV1Rc+ePfHrr79KbX9FtelPYGAglixZgsTERKxbtw5t2rTBgAEDsGvXLrVOZmZmndZRbdX1/cnIyMCmTZvw7LPPmpXb6/2pjarWfUlJCa5evVptHVu/PzJoafupDS1vPzJoeRsSQmDGjBno1asXOnbsWGW9+tyGNHGryntRxdtgCiFqdGvMVatW4a233sLXX38NPz8/tbx79+7o3r27+rpnz5548MEH8fHHH9fLuOXW9KdNmzZo06aN+joyMhLp6el499130adPn1rFlK22y05ISECDBg0QFRVlVm7v98dalfW/Yrk935/a0ur2Y427YfupCy1vQ1OmTMGRI0ewZ8+eO9atr22Ie9KSNW7cGE5OThZ/LV25csXir6qK1qxZgwkTJuCrr77CwIEDq62r0+kQERFh878y69Kf8rp3727W1oCAgDrHrI269EcIgeXLl2PMmDHQ6/XV1q2v96c2qlr3zs7OaNSoUbV1bP3+1IUWtx9ZtLL91JWWt6GpU6diw4YN2LFjxx1vZ1yf2xCTtGR6vR5du3a1uAHI1q1b0aNHjyrnW7VqFWJiYrBy5Uo88sgjd1yOEAKpqakIDAysc5urU9v+VJSSkmLW1sjISIuYW7ZssSpmbdSlP8nJyTh9+jQmTJhwx+XU1/tTG1Wt+/DwcLi4uFRbx9bvT21pdfuRRSvbT11pcRsSQmDKlClYt24dtm/fjtDQ0DvOU6/bkFWnmVGNrF69Wri4uIhly5aJtLQ0MX36dOHh4aGeyThz5kwxZswYtf7KlSuFs7OzWLx4scjIyFAf2dnZap233npLbN68WZw5c0akpKSIcePGCWdnZ/Hjjz9qrj8ffPCBSEpKEqdOnRLHjh0TM2fOFABEYmKiWmfv3r3CyclJzJ8/X5w4cULMnz9fODs7i/3792uuP2WeeeYZ0a1bt0pj2vP9ycvLEykpKSIlJUUAEO+//75ISUkRv/32mxDCsj9nz54V7u7u4sUXXxRpaWli2bJlwsXFRfz3v/9V69jz/bG2P1rffqztj9a3n9r0qYwWt6FJkyYJHx8fsXPnTrPPT2FhoVrHntsQk7SNLF68WISEhAi9Xi8efPBBs9P5o6OjRd++fdXXffv2FQAsHtHR0Wqd6dOni+bNmwu9Xi+aNGkiBg8eLPbt26fJ/ixYsEDcd999wtXVVTRs2FD06tVLfPfddxYx165dK9q0aSNcXFxE27Ztzb6EbM2a/gghRHZ2tnBzcxNLliypNJ4935+yS3aq+vxU1p+dO3eKsLAwodfrRYsWLURcXJxFXHu9P9b2R+vbj7X9uRu2n9p85rS6DVXWDwAiPj5erWPPbYi3qiQiItIoHpMmIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNYpImIiLSKCZpIgdx/vx5KIqC1NRUezfFQkxMjMUNF4hqa9euXRgxYgSCgoKgKArWr19/1y6PSZroLhETEwNFUSweQ4cOrdH8wcHByMjIqPYWfGXqO6EvXLgQCQkJ9bIsuvcVFBSgS5cuWLRo0V2/PN6qkuguMnToUMTHx5uVGQyGGs3r5OSEgIAAWzSrznx8fOzdBLqHDBs2DMOGDatyelFREd544w2sWLEC2dnZ6NixIxYsWIB+/frZZHl1wT1poruIwWBAQECA2aNhw4YAbt27Ni4uDsOGDYObmxtCQ0Oxdu1add6Ke8fXr1/H6NGj0aRJE7i5uaF169bqHwBldwIKCwuDoihmX17x8fFo164dXF1d0bZtW3zyyScWy/jqq6/Qu3dvuLm5ISIiAqdOncJPP/2E8PBweHp6YujQocjKylLnq/hzt8lkwoIFC9CqVSsYDAY0b94c8+bNk706yUGNGzcOe/fuxerVq3HkyBGMHDkSQ4cO1eStS7knTXQP+cc//oH58+dj4cKF+N///V88/fTT6NixI9q1a1dp3bS0NGzatAmNGzfG6dOncePGDQDAgQMH8NBDD+H7779Hhw4d1Hv/Ll26FHPmzMGiRYsQFhaGlJQUPPfcc/Dw8EB0dLQae86cOfjwww/RvHlzjB8/Hk8//TS8vb2xcOFCuLu7Y9SoUXjzzTcRFxdXaT9mzZqFpUuX4oMPPkCvXr2QkZGBX375xQZrjBzNmTNnsGrVKly8eBFBQUEAgJdffhmbN29GfHw8/vWvf9m5hRVYfUsOIrKL6Oho4eTkJDw8PMwe//znP4UQt+7mM3HiRLN5unXrJiZNmiSEEOLcuXMCgEhJSRFCCDFixAgxbty4SpdVsW6Z4OBgsXLlSrOyt99+W0RGRprN99lnn6nTV61aJQCIbdu2qWWxsbGiTZs2Zn17/PHHhRBC5ObmCoPBIJYuXVrDNUNUNQAiKSlJff3VV18JABbbkbOzsxg1apQQ4vbnuLrH5MmTa7S8uuKeNNFdpH///hZ7n76+vurzyMhIs2mRkZFVnvw1adIkPPHEEzh8+DAGDx6MqKioam9In5WVhfT0dEyYMAHPPfecWl5SUmJxTLlz587qc39/fwBAp06dzMquXLlS6XJOnDgBo9GIAQMGVNkWotoymUxwcnLCoUOH4OTkZDbN09MTANC0aVOcOHGi2jhlh5lsjUma6C7i4eGBVq1aWTWPoiiVlg8bNgy//fYbvvvuO3z//fcYMGAAJk+ejHfffbfS+iaTCcCtn7y7detmNq3il52Li4vF8iuWlcWryM3N7Q49Iqq9sLAwlJaW4sqVK+jdu3eldVxcXNC2bdt6blnleOIY0T1k//79Fq+r+7Jp0qQJYmJi8OWXX+LDDz/EkiVLAEA9Bl1aWqrW9ff3R9OmTXH27Fm0atXK7FF2opkMrVu3hpubG7Zt2yYtJjmW/Px8pKamqr8inTt3Dqmpqbhw4QLuv/9+jB49GmPHjsW6detw7tw5/PTTT1iwYAE2btwofXl1xT1poruI0WhEZmamWZmzszMaN24MAFi7di3Cw8PRq1cvrFixAgcOHMCyZcsqjfXmm2+ia9eu6NChA4xGI7799lv1BDM/Pz+4ublh8+bNaNasGVxdXeHj44O33noL06ZNg7e3N4YNGwaj0YiDBw/i+vXrmDFjhpQ+urq64rXXXsOrr74KvV6Pnj17IisrC8ePH8eECROkLIPubQcPHkT//v3V12WfzejoaCQkJCA+Ph7vvPMOXnrpJVy6dAmNGjVCZGQkhg8fbpPl1Ym0o9tEZFPR0dGVnsBSdgIWALF48WIxaNAgYTAYREhIiFi1apU6f8WTwd5++23Rrl074ebmJnx9fcXjjz8uzp49q9ZfunSpCA4OFjqdTvTt21ctX7FihXjggQeEXq8XDRs2FH369BHr1q2rdBlCCLFjxw4BQFy/fl0ti4+PFz4+PmZ9KztxTAghSktLxTvvvCNCQkKEi4uLaN68ufjXv/5V95VIdJdRhBCibmmeiLRAURQkJSVxeE2iewiPSRMREWkUkzQREZFG8cQxonsEj1wR3Xu4J01ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUUzSREREGsUkTUREpFFM0kRERBrFJE1ERKRRTNJEREQaxSRNRESkUQ55P+mbN2+iqKjI3s0gIiIHoNfr4erqWqt5HS5J37x5E25ubvZuBhEROYiAgACcO3euVona4ZL07T1oJwDKn88VlP3yr0AHKGVHAW6XKWrZrXkUxelWXQCKojN7bjldgQIns+k66KAoThbxlXLL1JWbfmsep3LPdWpM3Z9tKl+mQAed0FWY/9Z/AKATOtzukU6Nc3seRf33dnxFLdcpt8tux1HUcnXNKuWml3uuU8rPA7N5dArKzXPrYTYd5tPvNH/F6UqF6WUx1eeKeSyL6RBqBV25MvNYQn1+q56wiKlAlGuTMKtb1l71eQ2mKyh7Xn6ZwrydFcoqtlNRhBoTirjVV7P+iNvPldvPb8c0n662rdLnsIxTbvmVzaNTTGbl6r+6isssV08Hy3l0AopiqrR9FtN1t6eXLUdRTOWeQ62H8jF1ZfNUXlZ+WRXLoIhyX0O350fFmDoBlGubGkstKxf/9tdc+Q9mueWU31jUTpX78Ohu/6srtwGULwcgdDrgz++uW3UrmW4W61ZdUdYQxel2mbocJwidU6XPKy5T6JwAnXOF6c63l684l5vufHs6nMzKoHOGolTy/M9/FZ3z7e9wxRm6svLyZTodcnNvoEXwCygqKmKStlZZwrn1gbydlNQPaLkyRS2rPDFbJumK082TtFIhSevU8vJlNU3SlZeVlVeapP+sbT5dKTe9bkm6ssRc8yRdfh7rk7C108vaa57czNtZMUmXT+gWZahhki6XeGUkaZ3VSVpYtLNikrRI0krdknTFhFxZWaVJWk3ClSdppdokXVUSVqyefjsxK+oyzZJtWZ4xS8iVl1kmaZgt53Z52Y4BUHEDUnQo98FGxf0L8zJrknT5ZF2xzKxeTZJwxelO1SdpXfkkfbus+iTtVOF5ZUm6bDlVJGnFvMw8SbtUkaTLEnNVSfrPdtYBTxwjIiLSKCZpIiIijWKSJiIi0igmaSIiIo1ikiYiItIoJmkiIiKNcuhLsMSfl43c+kfg9ovyzyuWmf78t+y6h6qUny4snosKZaayS13Uf3Vq3dsXJIlyz3Vq3fLXYCh/tk9AB1HhOulbF9T8+Vzoys1dNl1R5zHd6RKscv+aXYKlzle+zPJ5ZWWVXgdtFuvP6aLcdF4nrU7nddJVXYIFy3nuquukLfupltX5OukKl21V3BiVchtb+WWXv4a7QkxhvrFUPr2SWEKxbKf4c91BJyDKzSMqrAehM6nrXuhMqHg9udAJQFf653JMavnt6SYApX+W3f5XUco/r/110nXhcElaCAFPT0/k5+dXPl39X/VlRERENREQEAC9Xl+reR0uSSuKgvz8fKSnp8Pb29vezdGc3NxcBAcHc/1Ugeunelw/VeO6qd69vH44dncteHt733MfBJm4fqrH9VM9rp+qcd1Uj+vHHE8cIyIi0igmaSIiIo1yuCRtMBgwZ84cGAwGezdFk7h+qsf1Uz2un6px3VSP66dyihCC5y0TERFpkMPtSRMREd0tmKSJiIg0ikmaiIhIo5ikiYiINMrhkvQnn3yC0NBQuLq6omvXrti9e7e9m1TvYmNjERERAS8vL/j5+SEqKgonT540qyOEwFtvvYWgoCC4ubmhX79+OH78uJ1abF+xsbFQFAXTp09Xyxx9/Vy6dAnPPPMMGjVqBHd3dzzwwAM4dOiQOt1R109JSQneeOMNhIaGws3NDS1btsQ///lPmEwmtY4jrZtdu3ZhxIgRCAoKgqIoWL9+vdn0mqwLo9GIqVOnonHjxvDw8MBjjz2Gixcv1mMv7Ew4kNWrVwsXFxexdOlSkZaWJl544QXh4eEhfvvtN3s3rV4NGTJExMfHi2PHjonU1FTxyCOPiObNm4v8/Hy1zvz584WXl5dITEwUR48eFU8++aQIDAwUubm5dmx5/Ttw4IBo0aKF6Ny5s3jhhRfUckdeP3/88YcICQkRMTEx4scffxTnzp0T33//vTh9+rRax1HXzzvvvCMaNWokvv32W3Hu3Dmxdu1a4enpKT788EO1jiOtm40bN4rZs2eLxMREAUAkJSWZTa/Jupg4caJo2rSp2Lp1qzh8+LDo37+/6NKliygpKann3tiHQyXphx56SEycONGsrG3btmLmzJl2apE2XLlyRQAQycnJQgghTCaTCAgIEPPnz1fr3Lx5U/j4+IhPP/3UXs2sd3l5eaJ169Zi69atom/fvmqSdvT189prr4levXpVOd2R188jjzwixo8fb1b2l7/8RTzzzDNCCMdeNxWTdE3WRXZ2tnBxcRGrV69W61y6dEnodDqxefPmemu7PTnMz91FRUU4dOgQBg8ebFY+ePBg7Nu3z06t0oacnBwAgK+vLwDg3LlzyMzMNFtXBoMBffv2dah1NXnyZDzyyCMYOHCgWbmjr58NGzYgPDwcI0eOhJ+fH8LCwrB06VJ1uiOvn169emHbtm04deoUAODnn3/Gnj17MHz4cACOvW4qqsm6OHToEIqLi83qBAUFoWPHjg6zvhzmBhtXr15FaWkp/P39zcr9/f2RmZlpp1bZnxACM2bMQK9evdCxY0cAUNdHZevqt99+q/c22sPq1atx+PBh/PTTTxbTHH39nD17FnFxcZgxYwZef/11HDhwANOmTYPBYMDYsWMdev289tpryMnJQdu2beHk5ITS0lLMmzcPTz/9NAB+dsqrybrIzMyEXq9Hw4YNLeo4yve2wyTpMkrZzcj/JISwKHMkU6ZMwZEjR7Bnzx6LaY66rtLT0/HCCy9gy5Yt1d5ezlHXj8lkQnh4OP71r38BAMLCwnD8+HHExcVh7Nixaj1HXD9r1qzBl19+iZUrV6JDhw5ITU3F9OnTERQUhOjoaLWeI66bqtRmXTjS+nKYn7sbN24MJycni7++rly5YvGXnKOYOnUqNmzYgB07dqBZs2ZqeUBAAAA47Lo6dOgQrly5gq5du8LZ2RnOzs5ITk7GRx99BGdnZ3UdOOr6CQwMRPv27c3K2rVrhwsXLgBw7M/PK6+8gpkzZ+Kpp55Cp06dMGbMGLz44ouIjY0F4NjrpqKarIuAgAAUFRXh+vXrVda51zlMktbr9ejatSu2bt1qVr5161b06NHDTq2yDyEEpkyZgnXr1mH79u0IDQ01mx4aGoqAgACzdVVUVITk5GSHWFcDBgzA0aNHkZqaqj7Cw8MxevRopKamomXLlg69fnr27Glxyd6pU6cQEhICwLE/P4WFhdDpzL9WnZyc1EuwHHndVFSTddG1a1e4uLiY1cnIyMCxY8ccZ33Z7ZQ1Oyi7BGvZsmUiLS1NTJ8+XXh4eIjz58/bu2n1atKkScLHx0fs3LlTZGRkqI/CwkK1zvz584WPj49Yt26dOHr0qHj66afv2ctEaqL82d1COPb6OXDggHB2dhbz5s0Tv/76q1ixYoVwd3cXX375pVrHUddPdHS0aNq0qXoJ1rp160Tjxo3Fq6++qtZxpHWTl5cnUlJSREpKigAg3n//fZGSkqJe9lqTdTFx4kTRrFkz8f3334vDhw+Lhx9+mJdg3csWL14sQkJChF6vFw8++KB62ZEjAVDpIz4+Xq1jMpnEnDlzREBAgDAYDKJPnz7i6NGj9mu0nVVM0o6+fr755hvRsWNHYTAYRNu2bcWSJUvMpjvq+snNzRUvvPCCaN68uXB1dRUtW7YUs2fPFkajUa3jSOtmx44dlX7XREdHCyFqti5u3LghpkyZInx9fYWbm5t49NFHxYULF+zQG/vgrSqJiIg0ymGOSRMREd1tmKSJiIg0ikmaiIhIo5ikiYiINIpJmoiISKOYpImIiDSKSZqIiEijmKSJiIg0ikmaiIhIo5ikiYiINIpJmoiISKOYpImIiDTq/wPjuhwzqd9icgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxcVZ3//9ddaq+uXpPu7AkJCVnIQhIgLAICwcAg4MZmgBFUvoB+kXF+gs4oqF/RGWVwhmWEGUFcEBUXVASjoOwQQgKBECBrZ+lO0t3pqu6uve75/dFJkaark+7QSXc67yePeqSr7rn3nHvTKep+6nM+xzLGGEREREREREREhhB7oAcgIiIiIiIiItLfFPAQERERERERkSFHAQ8RERERERERGXIU8BARERERERGRIUcBDxEREREREREZchTwEBEREREREZEhRwEPERERERERERlyFPAQERERERERkSFHAQ8RERERERERGXIU8BARERlAlmXx29/+dsCPcTBt2LABy7JYsWLFoDyeiIiIDA0KeIiIiPSjK664Asuyuj3WrFlTsn1DQwOLFi3q1bFvvvlmZs+e/b6OMRSNGTOGhoYGZsyYAcDf/vY3LMuitbV1YAcmIiIiA8od6AGIiIgMNR/60Ie47777urw2bNiwLs+z2Sx+v5+6urr33V9/HONQ5jjOYX8NREREpDtleIiIiPSzQCBAXV1dl8fpp5/Oddddxw033EBNTQ1nnnkm0H06yubNm7nooouoqqoiEokwb948XnzxRe6//35uueUWXn311WLWyP3331/yGCtXruSDH/wgoVCI6upqPvOZz9De3l7cfsUVV3D++efz3e9+lxEjRlBdXc21115LLpfb57nddNNNHH/88d1enzlzJl/72teKz++77z6mTp1KMBjkqKOO4q677trrcf/+979z7LHHEggEGDFiBDfeeCP5fL643fM8vvOd7zBp0iQCgQBjx47l//2//wd0ndKyYcMGTjvtNAAqKyuxLIsrrriCBx54gOrqajKZTJd+P/rRj3LZZZft87xFRETk0KMMDxERkYPkRz/6Ef/n//wfnn32WYwx3ba3t7dzyimnMGrUKB555BHq6up45ZVX8DyPCy+8kNdff53HHnuMv/zlLwCUl5d3O0YymeRDH/oQxx9/PEuXLmX79u1cddVVXHfddcUACcCTTz7JiBEjePLJJ1mzZg0XXnghs2fP5tOf/vRez+HSSy/l29/+NmvXrmXixIkAvPHGG6xcuZJf/epXANx777187Wtf44477mDOnDksX76cT3/600QiES6//PJux9yyZQtnn312MTCxevVqPv3pTxMMBrn55puBzkDLvffey3/8x39w0kkn0dDQwOrVq7sda8yYMTz88MN89KMf5a233iIWixEKhfD7/Xz+85/nkUce4eMf/zgATU1N/OEPf+Cxxx7b6zmLiIjIoUkBDxERkX72hz/8gWg0Wny+u77GpEmT+Ld/+7ce9/vZz37Gjh07WLp0KVVVVcV9dotGo7iuu9fpGz/96U9JpVI88MADRCIRAO644w7OPfdcvvOd71BbWwt0Zj/ccccdOI7DUUcdxTnnnMNf//rXfQY8ZsyYwcyZM/nZz37Gv/7rvxb7nD9/PpMnTwbgG9/4Bt/73vf4yEc+AsCECRNYtWoVP/jBD0oGPO666y7GjBnDHXfcgWVZHHXUUWzdupUvfelLfPWrX6Wjo4Pvf//73HHHHcX9J06cyEknndTtWI7jFK/d8OHDqaioKG675JJLuO+++4oBj5/+9KeMHj2aU089da/nLCIiMpDS6TTZbHa/9vX7/QSDwX4e0aFDAQ8REZF+dtppp3H33XcXn0ciES6++GLmzZu31/1WrFjBnDlzijfs++PNN99k1qxZxWAHwIknnojnebz11lvFgMf06dNxHKfYZsSIEaxcubJXfVx66aX88Ic/5F//9V8xxvDggw9y/fXXA7Bjxw42bdrElVde2SV4ks/nS2ak7B7zggULsCyry5jb29vZvHkzjY2NZDIZTj/99F5fh1I+/elPM3/+fLZs2cKoUaO47777ikVmRUREBqN0Os2E8bU0bkvs1/51dXWsX7/+sA16KOAhIiLSzyKRSJfMjD1f35tQKPS++zbG9HgDv+frPp+v2zbP83rVxyWXXMKNN97IK6+8QiqVYtOmTVx00UUAxWPce++9HHfccV322zPAsq8x757yY1lWv1wXgDlz5jBr1iweeOABzjrrLFauXMnvf//7fjm2iIjIgZDNZmnclmDjm7cQK+tb0CLRlmbc1K+RzWYV8BAREZGBNXPmTP7nf/6HlpaWklkefr+fQqGw12NMmzaNH/3oR3R0dBQDLM8++yy2bRennLxfo0eP5gMf+EBx+swZZ5xRzBypra1l1KhRrFu3jksvvbRXx5s2bRoPP/xwl8DHc889R1lZGaNGjWLYsGGEQiH++te/ctVVV+3zeH6/H6Dktbrqqqv4j//4D7Zs2cIZZ5zBmDFjenvaIiIiA6asLEBZLNCnfQzd64UdbrRKi4iIyCBx8cUXU1dXx/nnn8+zzz7LunXrePjhh3n++ecBGD9+POvXr2fFihU0NTV1W3EEOqebBINBLr/8cl5//XWefPJJPve5z7F48eJiUKI/XHrppfz85z/nl7/8JZ/85Ce7bLv55pu59dZb+f73v8/bb7/NypUrue+++7jttttKHuuaa65h06ZNfO5zn2P16tX87ne/42tf+xo33HADtm0TDAb50pe+xP/3//1/PPDAA6xdu5YXXniB//3f/y15vHHjxmFZFn/4wx/YsWNHlxVqLr30UrZs2cK9997Lpz71qX67HiIiIjL4KOAhIiIySPj9fv785z8zfPhwzj77bI4++mi+/e1vF6eCfPSjH+VDH/oQp512GsOGDePBBx/sdoxwOMzjjz9OS0sL8+fP52Mf+xinn346d9xxR7+O9eMf/zjNzc0kk0nOP//8Ltuuuuoq/ud//of777+fo48+mlNOOYX777+fCRMmlDzWqFGjePTRR3nppZeYNWsWV199NVdeeSX/8i//Umzzr//6r/zTP/0TX/3qV5k6dSoXXngh27dv7/F4t9xyCzfeeCO1tbVcd911xW2xWIyPfvSjRKPRbuMWERGRocUypdbFExERERmizjzzTKZOncp//ud/DvRQRERE9iqRSFBeXk7z5luJxfpYwyORpnr0TUyePBnHcbj22mu59tprD9BIByfV8BAREZHDQktLC3/+85954okn+j3jRUREZLBaunQpsVhsoIcxIBTwEBERkaKnn36aRYsW9bh9z3oYh5pjjjmGnTt38p3vfIcpU6YM9HBERER6zex69HWfw50CHiIiIlI0b948VqxYMdDDOCA2bNgw0EMQERGRg0gBDxERESkKhUJMmjRpoIchIiIi8r4p4CEiIiIiIiIyiJld//V1n8OdlqUVERERERERkSFHGR4leJ7H1q1bKSsrw7KsgR6OiIiIiIiIDDLGGNra2hg5ciS2fWBzCTxj8EzfMjb62n4oUsCjhK1btzJmzJiBHoaIiIiIiIgMcps2bWL06NEDPQwpQQGPEsrKyoDOX9zDdb1iERERERER6VkikWDMmDHF+8cDScvS7p9DIuBx11138e///u80NDQwffp0br/9dk4++eQe22cyGb7+9a/zk5/8hMbGRkaPHs1XvvIVPvWpT/Wqv93TWGKxmAIeIiIiIiIi0iOVQRi8Bn3A46GHHuL666/nrrvu4sQTT+QHP/gBixYtYtWqVYwdO7bkPp/4xCfYtm0b//u//8ukSZPYvn07+Xz+II9cRERERERERAbKoA943HbbbVx55ZVcddVVANx+++08/vjj3H333dx6663d2j/22GP8/e9/Z926dVRVVQEwfvz4gzlkERERERERkX6jZWn3z6BeljabzbJs2TIWLlzY5fWFCxfy3HPPldznkUceYd68efzbv/0bo0aNYvLkyXzxi18klUr12E8mkyGRSHR5iIiIiIiIiMiha1BneDQ1NVEoFKitre3yem1tLY2NjSX3WbduHc888wzBYJDf/OY3NDU1cc0119DS0sIPf/jDkvvceuut3HLLLf0+fhEREREREZH3S0VL98+gzvDY7b1FYIwxPRaG8TwPy7L46U9/yrHHHsvZZ5/Nbbfdxv33399jlsdNN91EPB4vPjZt2tTv5yAiIiIiIiIiB8+gzvCoqanBcZxu2Rzbt2/vlvWx24gRIxg1ahTl5eXF16ZOnYoxhs2bN3PkkUd22ycQCBAIBPp38CIiIiIiIiIyYAZ1hoff72fu3LksWbKky+tLlizhhBNOKLnPiSeeyNatW2lvby++9vbbb2PbNqNHjz6g4xU5lOXzBd5ev53Hn1rF7/+6kueWraOltWOghyUiIiIictjzMPv1ONwN6gwPgBtuuIHFixczb948FixYwD333EN9fT1XX3010DkdZcuWLTzwwAMAXHLJJXzjG9/gH//xH7nllltoamrin//5n/nUpz5FKBQayFMRGbTaOtI88pfXeGvddvIFD9u2KBQ8nn55DWeeNJVjpo8Z6CGKiIiIiIj0yaAPeFx44YU0Nzfz9a9/nYaGBmbMmMGjjz7KuHHjAGhoaKC+vr7YPhqNsmTJEj73uc8xb948qqur+cQnPsE3v/nNgToFkUHNGMMfn3idlW81MHpEBaGADwDPGLY3tfHok69THg0ycdywAR6piIiIiMjhSUVL949ljNF1eI9EIkF5eTnxeJxYLDbQwxE5oDY17OS+Xz1PeVmIaLh7LZv1m5qYNXU0H1s0p8diwSIiIiIih5uDcd+4u49Nm75BLBbs475pxoz518P6vnZQ1/AQkQNvS2Mr6UyOSMhfcntFLMz6Tc2kM/mDPDIREREREYF3Mzz6+jjcKeAhcpjzdi3z3FP2hmVZGGPwlAwmIiIiIiKHEAU8RA5zw6qiOLZNOpMruT3enqJuWIxw0HeQRyYiIiIiIrL/FPAQOcxNGFPD2JGVbNkWp+B5XbbF21JgYPa00arfISIiIiIyQDyzf4/D3aBfpUVEDizXsfmHDx7Nw48tZ/2mZkIBH67r0JHK4HMcTph7BDMmjxzoYYqIiIiIiPSJAh4iQt2wGIvPP5Y31jSy6p0GMpk8Rx0xnBlTRjFp3DBsW9kdIiIiIiIDRcvS7h8FPEQEgFhZiAVzJrBgzoSBHoqIiIiIiMj7phoeIiIiIiIiIjLkKMNDREREREREZJDTFJW+U4aHiIiIiIiIiAw5yvAQERERERERGcRUtHT/KMNDRERERERERIYcBTxEREREREREZMjRlBYRERERERGRQczDwsPq8z6HO2V4iIiIiIiIiMiQowwPERERERERkUFMRUv3jzI8RERERERERGTIUYaHiIiIiIiIyCBmjIUxfavJ0df2Q5EyPERERERERERkyFHAQ0RERERERESGHE1pERERERERERnEvF2Pvu5zuFOGh4iIiIiIiIgMOcrwEBERERERERnEDBaGPhYt7WP7oUgZHiIiIiIiIiIy5CjgISIiIiIiIiJDjqa0iIiIiIiIiAximtKyf5ThISIiIiIiIiJDjjI8RERERERERAYxLUu7f5ThISIiIiIiIiJDjjI8RERERERERAYxYyyM6WMNjz62H4qU4SEiIiIiIiIiQ44CHiIiIiIiIiIy5GhKi4iIiIiIiMggpmVp948yPERERERERERkyFGGh4iIiIiIiMgg1rksbd8yNrQsrTI8RERERERERGQIOiQCHnfddRcTJkwgGAwyd+5cnn766R7b/u1vf8OyrG6P1atXH8QRi4iIiIiIiMhAGvRTWh566CGuv/567rrrLk488UR+8IMfsGjRIlatWsXYsWN73O+tt94iFosVnw8bNuxgDFdERERERESkX6lo6f4Z9Bket912G1deeSVXXXUVU6dO5fbbb2fMmDHcfffde91v+PDh1NXVFR+O4xykEYuIiIiIiIjIQBvUAY9sNsuyZctYuHBhl9cXLlzIc889t9d958yZw4gRIzj99NN58sknD+QwRURERERERA4Ys5+Pw92gntLS1NREoVCgtra2y+u1tbU0NjaW3GfEiBHcc889zJ07l0wmw49//GNOP/10/va3v/GBD3yg5D6ZTIZMJlN8nkgk+u8kREREREREROSgG9QBj90sq+vcI2NMt9d2mzJlClOmTCk+X7BgAZs2beK73/1ujwGPW2+9lVtuuaX/BiwiIiIiIiLSTwxWn5elVQ2PQT6lpaamBsdxumVzbN++vVvWx94cf/zxvPPOOz1uv+mmm4jH48XHpk2b9nvMIiIiIiIiIjLwBnXAw+/3M3fuXJYsWdLl9SVLlnDCCSf0+jjLly9nxIgRPW4PBALEYrEuDxERERERERE5dA36KS033HADixcvZt68eSxYsIB77rmH+vp6rr76aqAzO2PLli088MADANx+++2MHz+e6dOnk81m+clPfsLDDz/Mww8/PJCnISIiIiIiIrJfjLEwpo9TWvrYfiga9AGPCy+8kObmZr7+9a/T0NDAjBkzePTRRxk3bhwADQ0N1NfXF9tns1m++MUvsmXLFkKhENOnT+ePf/wjZ5999kCdgoiIiIiIiIgcZJYxRqvVvEcikaC8vJx4PK7pLSIiIiIiItLNwbhv3N3H0vXfIxoL9Wnf9kSK+RP+6bC+rx3UNTxERERERERERPaHAh4iIiIiIiIiMuQM+hoeIiIiIiIiIoczDwuPvhUh7Wv7oUgZHiIiIiIiIiIy5CjDQ0RERERERGQQM1iYPmZs9LX9UKQMDxEREREREREZchTwEBERERERERnEDBbG9PExABkemzZt4tRTT2XatGnMnDmTX/7ylwd9DHvSlBYRERERERERed9c1+X2229n9uzZbN++nWOOOYazzz6bSCQyMOMZkF5FREREREREZEgZMWIEI0aMAGD48OFUVVXR0tIyYAEPTWkRERERERERGcR2L0vb10dfPfXUU5x77rmMHDkSy7L47W9/263NXXfdxYQJEwgGg8ydO5enn3665LFefvllPM9jzJgxfR5Hf1HAQ0RERERERETo6Ohg1qxZ3HHHHSW3P/TQQ1x//fV85StfYfny5Zx88sksWrSI+vr6Lu2am5u57LLLuOeeew7GsHukKS0iIiIiIiIig5jZ9ejrPgCJRKLL64FAgEAgUHKfRYsWsWjRoh6Pedttt3HllVdy1VVXAXD77bfz+OOPc/fdd3PrrbcCkMlkuOCCC7jppps44YQT+jjq/qUMDxEREREREZEhasyYMZSXlxcfuwMTfZXNZlm2bBkLFy7s8vrChQt57rnnADDGcMUVV/DBD36QxYsXv++xv1/K8BAREREREREZojZt2kQsFis+7ym7Y1+ampooFArU1tZ2eb22tpbGxkYAnn32WR566CFmzpxZrP/x4x//mKOPPnr/Bv8+KeAhIiIiIiIiMogZLEwfi5Dubh+LxboEPN4vy+o6DmNM8bWTTjoJz/P6ra/3S1NaRERERERERGSvampqcBynmM2x2/bt27tlfQwWCniIiIiIiIiIDGKesfbr0Z/8fj9z585lyZIlXV5fsmTJgBcn7YmmtIiIiIiIiIgI7e3trFmzpvh8/fr1rFixgqqqKsaOHcsNN9zA4sWLmTdvHgsWLOCee+6hvr6eq6++egBH3TMFPEREREREREQGsfdTw6MvXn75ZU477bTi8xtuuAGAyy+/nPvvv58LL7yQ5uZmvv71r9PQ0MCMGTN49NFHGTduXJ/7OhgU8BARERERERERTj31VIwxe21zzTXXcM011xykEb0/quEhIiIiIiIiIkOOMjxEREREREREBrGDNaVlqFGGh4iIiIiIiIgMOcrwEBERERERERnEPCy8PmZs9LX9UKQMDxEREREREZEhav78+UybNo0777xzoIdy0CnDQ0RERERERGSIWrp0KbFYbKCHMSAU8BAREREREREZzAzsY7XYkvsc7jSlRURERERERESGHGV4iIiIiIiIiAxiWpZ2/yjDQ0RERERERESGHGV4iIiIiIiIiAxiyvDYP8rwEBEREREREZEhRwEPERERERERERlyNKVFREREREREZBDzsPD6OEWlr+2HImV4iIiIiIiIiMiQowwPERERERERkUHMGAtj+li0tI/th6JDIsPjrrvuYsKECQSDQebOncvTTz/dq/2effZZXNdl9uzZB3aAIiIiIiIiIjKoDPqAx0MPPcT111/PV77yFZYvX87JJ5/MokWLqK+v3+t+8Xicyy67jNNPP/0gjVREREREREREBotBH/C47bbbuPLKK7nqqquYOnUqt99+O2PGjOHuu+/e636f/exnueSSS1iwYMFBGqmIiIiIiIhI/zP7+QCYP38+06ZN48477zzYwx5wgzrgkc1mWbZsGQsXLuzy+sKFC3nuued63O++++5j7dq1fO1rXzvQQxQREREREREZtJYuXcqqVau49tprB3ooB92gLlra1NREoVCgtra2y+u1tbU0NjaW3Oedd97hxhtv5Omnn8Z1e3d6mUyGTCZTfJ5IJPZ/0CIiIiIiIiL9qDNjo49FSw/MUA4pgzrDYzfL6voXa4zp9hpAoVDgkksu4ZZbbmHy5Mm9Pv6tt95KeXl58TFmzJj3PWYRERERERERGTiDOuBRU1OD4zjdsjm2b9/eLesDoK2tjZdffpnrrrsO13VxXZevf/3rvPrqq7iuyxNPPFGyn5tuuol4PF58bNq06YCcj4iIiIiIiIgcHIN6Sovf72fu3LksWbKECy64oPj6kiVLOO+887q1j8VirFy5sstrd911F0888QS/+tWvmDBhQsl+AoEAgUCgfwcvIiIiIiIi0g88Y+GZvk1p6Wv7oWhQBzwAbrjhBhYvXsy8efNYsGAB99xzD/X19Vx99dVAZ3bGli1beOCBB7BtmxkzZnTZf/jw4QSDwW6vi4iIiIiIiMjQNegDHhdeeCHNzc18/etfp6GhgRkzZvDoo48ybtw4ABoaGqivrx/gUYqIiIiIiIgcGAZrP4qWKsPDMsaoeOt7JBIJysvLicfjxGKxgR6OiIiIiIiIDDIH475xdx+/f+d/iJSF+7RvR1uSc4+86rC+rx30GR4iIiIiIiIihzNleOyfQb1Ki4iIiIiIiIjI/lDAQ0RERERERESGHE1pERERERERERnEjOl89HWfw50yPERERERERERkyFGGh4iIiIiIiMgg5mHh9bEIaV/bD0XK8BAREREREREZoubPn8+0adO48847B3ooB50yPERERERERESGqKVLlxKLxQZ6GANCAQ8RERERERGRQcxgYfo4RaWv7YciTWkRERERERERkSFHGR4iIiIiIiIig5gyPPaPMjxEREREREREZMhRhoeIiIiIiIjIIGZM56Ov+xzulOEhIiIiIiIiIkOOAh4iIiIiIiIiMuRoSouIiIiIiIgcVJ7nkUgkiMfjtLa2kslkOPbYY4vbX331VWbNmjWAIxxs+l60FBUtVcBDRERERERE9s/atWvZsWNHMXCx558+n4+bb7652Paiiy7i+eefp7W1lba2NsweRSaqq6tpamoqPn/55ZcV8JD3TQEPETksecawpS1BKpcj6vczIlqGZSkKLiIiIkNfLpcjHo8XgxOe5zF//vzi9v/6r/9i3bp1JYMY1dXVvPjii8W2H/vYx1ixYkXJfmpqaroEPLZt20Z9fX2XNoFAgPLycmpqarq8Pnny5Pd/okOIMRbG9HFZ2j62H4oU8BCRw85bzU38Zf1a1ra2kCnkCTouk6trWDhhEhMqKgd6eCIiIiK98uabb9LU1FQyMFFRUcGXv/zlYtuFCxfy+uuvE4/HSSaTXY4zadIk3nnnneLzH/7whz0GMRKJRJfnY8eOpbW1lYqKCsrLy4t/lgpi3H777WSz2eL28vJygsFgyX5OPvnkvlwKkZL6PeDx0ksvMXfuXBzHAcAY0+Vb00wmw+9+9zs+8YlP9HfXIiL7tLp5Bz96bTmt6TQjysoIuT6SuSzLG7eypS3Bp2Yew3gFPUREROQAMMaQTqe7BCdc12XevHnFNt/61rfYunVrlwyM3T9PnDiRv/71r8W2Z599Nhs2bCjZ15FHHtkl4LF9+3YaGhq6tIlGo5SXlzNixIgury9evJizzjqrS/Bi98+VlV0/J/3ud7/r9flrioocbP0e8FiwYAENDQ0MHz4cgPLyclasWMERRxwBQGtrKxdffLECHiJy0BU8j8fWvkM8k+HIqupiMDYWCFLmD/B2SzN/2bCWK2fN1fQWERER2asVK1awc+fOktkVo0aN4p/+6Z+KbefNm0d9fT2tra3kcrkux5k/fz4vvfRS8fk999zDxo0bS/bp9/u7PJ84cSI+n69bZkVFRQWjRo3q0va+++4DKG6PxWK4bunbwRtuuKH3F0IOCm/Xo6/7HO76PeCxZ+GZUs97ek1E5ECrT8TZEG9lZFn3eh2WZVEbibK6uYntyQ5qI9EBGqWIiIgcCJ7n0d7e3iUwEQ6HOeaYY4ptvvzlL9PS0lIyiDF//nx++9vfFtueeuqpxOPxkn3Nnz+/S8CjqamJHTt2FJ9bllUMTrw3u+Kzn/0sHR0d3aaIVFRUUFVV1aXtX/7yl16f/5w5c3rdVmSoGJAaHvrmVEQGQkcuSzqfI+z6Sm4P+3y0pJK0Z7PURg7y4ERERKRXPM/j5Zdf7haQ2P3zlClTuO6664DOL1onTpzIzp07SSQSeF7X77wXLlzI448/Xnx+11139RjEeO90kClTptDW1laydsXu7PbdfvOb3+C6brFNNBrFtu2S/dx00019viYy9Jn9WJa278vYDj0qWioih42wz0fAcUnl84R93YMeqXyOgOsSKbFNRERE9l8+nyeRSHQrqjl79mygs87fl7/85R6DGGeddRY//vGPi8c7/vjje8waX7hwYTHgYVlWMWNjN5/PVww8vDe74oYbbsAY0y2zolQBzj1XKtkXZVeIDIwDEvBYtWoVjY2NQGdUdfXq1bS3twN0WVtZRORgGherYHx5JWt2NjOxsqpLtpkxhsb2NubWjdJ0FhERkR5ks1mWLl1aMigRj8eZO3cuV111FQBtbW1MnTqVeDxevBfY0yc+8QkeeughAFzX5bbbbuux3+3btxd/tm2badOmYdt2MSCxZ3bF1KlTu+z7xBNPEA6Hi22DwWCPGedf/epX+3xNRA6G97Ms7fz583Ech2uvvZZrr732QAxv0DogAY/TTz+9S8T1H/7hH4DOCOt7V20RETlYHNvmrImTaHytjbU7WxgRLSPouiRzORra26gJRzh9whGH1HtUMr+DnZl1FEyWgBOjKnAkPjs80MMSEZFBJJPJdAtO1NXVcfTRRwMQj8f56le/2i27YvefF198MXfeeScAHR0dnHTSST329YlPfKIY8AiHw2zZsqXL9t2Bh/Lycurq6oqvO47DV77yFUKhUMnaFcOGDetynNdff73X579njQ6Rw9HSpUuJxWIDPYwB0e8Bj/Xr1/f3IUVE+s20muFcMfMY/rzuHdbHW8kW8gQdl6OH1XLWxCM5oqJq3wcZBAomx4a2v9KYfIWs1waWhWUg7A5nQtkZDAvNGOghiohIP9jzy8JUKsVLL73UY3bFqaeeyqWXXgrA5s2bmTt3LvF4nEwm0+24n/nMZ/jBD34AdNbE+M///M8ex9Dc3Fz8ORaLMXHixJKrgpSXl3dZdtRxHF555RVisVixnW8v00a/+c1v9u3iiIjsQ78HPMaNG9ffhxQR6VdTa4YxpbqGTYk4yVyOqN/P6LLYIZXZUd/+d+o7niJoV1Lh78xK8Uye9lwjb8cfwbVDVAYmDvQwRUQOa8YYOjo6ugUmxo8fX5x20dDQwDe+8Y2SAYx4PM4111zDt7/9bQAaGxs59dRTe+zPcZxiwCMcDneZBgIUAw8VFRVdalfEYjG+/OUvdwtelMqucByHNWvW9PoaqHaFSP8wux593edw1+8Bj5aWFpLJJKNHjy6+9sYbb/Dd736Xjo4Ozj//fC655JL+7lZEpE9sy2JcecVAD2O/pAutNCRfJmCXE3Iri6/blkuZbxTx7AYakkuLgRAREdk/e2ZXJBIJli5d2mNRzQ9/+MN85CMfATqnW5xyyinE43EKhUK3437pS18qBjFSqRR33313j2NobW0t/lxZWclRRx3VY2Bi3rx5xbYVFRWsWLGi2KasrAzHcUr24TgO/+///b8+Xx8RkcGu3wMe1157LSNGjCgWHdq+fTsnn3wyI0eOZOLEiVxxxRUUCgUWL17c312LiBwWEtl6Ml6CCt/4btssyyLoVrEzu56s10bAOTzna4qIeJ7XbVWQ1tZWjjrqKCZPngzA2rVr+c53vtNjdsVXv/pVbrzxRgDWrFnDGWec0WN/dXV1xYBHKBSipaWluM1xnC7Bidra2uK24cOH89WvfrXkqiDvza6oqKjgzTff7NX527bdZXqJiBzatCzt/un3gMcLL7zAfffdV3z+wAMPUFVVxYoVK3Bdl+9+97vceeedCniIiOyngskBYFl2ye225ZL3Ungm3+tjGmPwTAdgYVthZYaIyIAyxuB5XjEjobm5ea8rg1x66aUsWrQIgGeffZZFixbR1tZW8tjf/va3+dKXvgR0Zk/ce++9PY5jz6VMq6urmT59epcVQfYMYixYsKDYduzYsbzxxhvFNuFwz++r0WiUW265pW8XSEREeqXfAx6NjY1MmDCh+PyJJ57gggsuwHU7u/rwhz/Mrbfe2t/diogc0gqmM+XZsUqnG+8p6FRi4yPvpXDtULft2UJnZoff3vfyusZ4dGRXkEi/QCa/CYCQbyJlweMJ+6Yr8CEi+yWbzZbMmJg9ezZHHHEEAK+99hr/8R//0WX7nu3vuOMOPvvZzwKwYsWKYkCjlKOPPrq4PRQKdQl2BIPBLsGJPTMmxo0bxze+8Y0ep4jU1NR0advblUF8Ph/Tpk3r/QUTEZEDot8DHrFYjNbW1mLx0pdeeokrr7yyuN2yrJKVokVEDkdbU1tY076aLclNGGBEaCRHRqcwKjS2x2BDuX8s5f4x7Myup8I3rkumR97LkPM6GBv9AI7t32vfxhh2Jh9jZ+pPGAyuVQkY2jOv0JF9nerweVSET+vHsxWRQ4HneRhjitkVjY2NvPzyyz0uWXrNNddwyimnAPDHP/6Rj3/846RSqZLH/u///u9iEKOpqYn777+/x3HsmV1RW1vL7NmzS64KUlFRwcknn1xsO23aNN56663i9kAg0GMfNTU1/Mu//Euvr42IyEAxxsKYPk5p6WP7oajfAx7HHnss//mf/8m9997Lr3/9a9ra2vjgBz9Y3P72228zZsyY/u5WROSQ81bbKl5oeoa0lybidmZjvNO2mvUda5lfuYAZ5bPImwxZL4lrBQg4EaBzysoRZR/izdZfsjO7jqBTjm35yXnt5L0Mw0IzGBGev8/+0/m17EwtwbHK8TnVxdd9TjXZQiM7U38i5D+SgDt6L0cRkcHEGEM6nS4ZnDjhhBOKn8Gef/557rrrrpLTQxKJBA8++CAXXngh0DlF5GMf+1iPfZ5++unFgEcwGOwS7IhGo10CFFVV7y79PXnyZG699dYelzetrn73fWnGjBksX768V9cgGAwWa3SIiMjhrd8DHt/4xjc444wz+MlPfkI+n+fLX/4ylZXvriLw85//vPg/RRGRw9XObAsvNT8PFowMvRtQKPdVEM/t5OWWp0nm19OR30LOS+FYfmqDRzIuOo+Ybzgx/2hmVH2SxuQrNKVfp2DyhN3h1IXmUBuajWsH9zmG9sxyjEnhc8d22+aza0nl36Ij85oCHiIHUS6Xw7Ks4lTg+vp6li1b1mPtiptuuqm4MsdPfvITPvWpT5HL5Uoe+6GHHioGPLZu3cpPfvKTHsex58ogI0eOZP78+SWnfZSXl3PCCScU2y5YsIB169ZRXl5OLBYrnkcpo0ePLhYEFRGRvdOytPun3wMes2fP5s033+S5556jrq6O4447rsv2iy66SHMaReSwt6FjHR359i7Bjt0idoDN6ZdZHX+bkaEJBO0ycibD+vaXaMpsYE7VeVT4RxFxhzExdhYTyk6nYHI4lh+7hxogxniAwdpje7awBdsKl2xvWRY2frKFxs5vjPNrac8sJ5PbgGX5iARmEvHPxudUldxf5HDkeR7t7e0lAxNnnHFGcWWOJUuW8L//+78lgxjJZJLHH3+chQsXFtteddVVPfZ54YUXFgMewWCwGOywbZtYLNYtOLHb7Nmz+e53v9tjdsWeX1YtWLCAl156qVfXIBwOd6nlJiIiMpD6PeABMGzYMM4777yS284555w+H++uu+7i3//932loaGD69OncfvvtXeZq7umZZ57hS1/6EqtXryaZTDJu3Dg++9nP8oUvfKHP/YqIvB/GGLan46xt30bWyxPzhZgSG0nEDdKcbcK13ZJ1OpL5eiCJYQRRX2fBPD9hwk45zdl63kr8jWOrLy7W7rAtF9sq/XbekdtMc3oZrZnVGFMg6htLVWgOFf6p2FYQY0p/EwxgKGARoDX1F3Ym/4RnkthWFEOeZO5NEs6zDC9bTLDE8rgih5rdU0F8Pl8xK2HNmjUsX7682/SQ3T9/+9vfLn6J85//+Z9cf/31GFP6+7Q9gxgbN27koYce6nEse2ZXjB07lgULFpRcFaSiooJjjjmm2PZDH/oQ9fX1VFRUEI1G91p0eOLEifzTP/1Tr6+PiIgMLC1Lu3/6PeDxwAMP9KrdZZdd1qt2Dz30ENdffz133XUXJ554Ij/4wQ9YtGgRq1atYuzY7mnYkUiE6667jpkzZxKJRHjmmWf47Gc/SyQS4TOf+UyfzkVEZH/lvDx/bniVV1rW055PYWNjMAwLxDhjxEx8tg/PeN32K5gM6cI2wI9jd32LtiybmDuclswmWnMNVPpH7XUMOzNvsDHxMNlCKz47hoVDS+ZVdmbeYETkVKK+GbRnVmBMHus9ARPPdBaXduwgLck/4lghAu679ZeM8Ujn17Kj/UFGlX8BuxdTaEQOpHw+TyKRKJldce655xZrR/zmN7/hpz/9ackgRjab5cUXX+TYY48F4Le//S3//M//3GOf1113XTHgEQqFisEOn8/XLUARjb67atIJJ5zA7bff3mN2xZ6ZGGeeeSZnnnlmr65BNBrt0o+IiMjhrt8DHldccQXRaBTXdXv8lsOyrF4HPG677TauvPLKYjrn7bffzuOPP87dd99dcnnbOXPmMGfOnOLz8ePH8+tf/5qnn35aAQ8ROWieaHydZ3a8SZW/jNpgOZZlUTAejamdPLL5ZU6qHYnBkPfyuHsENjyToWCyGGNT7qvodly/EyaR3066kAB6DnhkCwk2tf2evJeizDep+E1vkBoyhZ00dPyNibGPE/JNIpV7h4AzFsfunN5S8NrJFDYR8R1N3tuJMVl87rgux7csm4A7jkx+I8ncKqKBY7qNQaS3jDG0t7cTDoeLK4O8/vrrvPbaayUDGPF4nP/+7/8ufvFxyy23cPPNN/d4/JdeeqkY8FizZg0PP/xwj233XBlk4sSJfOADHyhZt6KiooKpU6cW21500UWce+65lJeXEwwG95pdMW3aNE3vFREROQj6PeAxdepUtm3bxic/+Uk+9alPMXPmzP0+VjabZdmyZd0KWi1cuJDnnnuuV8dYvnw5zz33HN/85jf3exwiIn2xM9vOKy3rKPdFqPBHiq87ls3IUBUbOrazqT1DXXAkDenNDAvU4d+1hGze80gV0kTcGBW+ym7HLpgcFjautfclZ+PZN0nnt1PmO6LbjVfAqSRTaGFn9m1GRxfT1P4LUvl3yBSyWIBlBYkGjqE6/DG2Jr6PY8dK9mFbfgwe2UJDH6+QDDXpdLoYiHjvyiAXX3wxkUjnv4Mf//jH/OpXv+rWJpFI4Hkeb7/9NkceeSQADz74IN/61rd67HPbtm3FgEc4/G4tmnA43C1AEQy+m4F05plncuedd/YYxNgzQ+KCCy7gggsu6NU1KCsro6ysrPcXTUREpA+M6Xz0dZ/DXb8HPN544w1efPFFfvjDH/KBD3yASZMmceWVV3LppZcSi5X+0NyTpqYmCoVCscjXbrW1tTQ2Nu5139GjR7Njxw7y+Tw333zzXgt+ZTIZMplM8XkikejTOEVk6CkYj3VtO9jc0YrBUBcq58jYcHx26aKge9rY0UQin2R8ZHi3bZZlUeUvY1OyhdNqT+DV+Is0pLdQMAUAbGzK/aMoc8EtUZejPddMma+GSv/eV05J53cAVpcipXvy2VE6cpvwu7WMKL+GdG4tmcIWLCz87hiCbmfRQWvXVJyeWBjA3utYZHArFAokEgnKy8ux7c6/y2XLlvHGG2+UXNo0Ho/z0EMPFTMmPv/5z/Nf//VfPR7/lFNOKQYxVq9ezSOPPNJj2z2zK4466ig++MEPdglM7PnnuHHvZh1dffXV/OM//iPl5eX4fL69nu/s2bOZPXv2Pq+LiIiIHPoOSNHS4447juOOO47bb7+dX/7yl9x333188Ytf5Pzzz+eHP/whgUCgT8d777eTxpi9pooCPP3007S3t/PCCy9w4403MmnSJC6++OKSbW+99VZuueWWPo1JRIau5kw7v9rwCu8ktpP1CliAa9uMj1bz0XHHMDJcsdf9C96u4IVVOhDg2japgkfYLWPRiHPZmtpCU2YHAFX+agJWntdaH6E1t4WYW4tj+/BMgfZ8Ex55JkSPw7X3/j5q4e41UGEoYFudN4aW5RDyTybE5G7twv7pxFN/xdi13d53PZMGfARLLGsrB4cxho6OjpLTPlpbW/n0pz9dLMB555138uijj3Zr297eDsD27dsZNmwYAP/7v//L3Xff3WO/LS0txYDHnlkNe64KsvvPPZclPe+88xg3blzJmhUVFRWEQqFi28WLF7N48eJeXQdlV4iIyFCnoqX754AEPHYLhUJcdtlljB8/nq997Wv8/Oc/54477uh1wKOmpgbHcbplc2zfvr1b1sd77V4S7eijj2bbtm3cfPPNPQY8brrpJm644Ybi80QiUVynXkQOL+lCjofWv8zqeCOjw5WEXX/x9TWJHTy4bimfnnwSMX+ox2NUBaL4LJdUPkvI7T71JJFLUeELU+YL4VguY8LjGBPuWiMD6x94O/EU8VwD3q7/XYXdKo6KHseY8Ox9nkeZfzx20qXgpXHeU1DUGI+c105t+JR9Hycwn/bMMrKFTfid0cWVYTyTIZ3fQNg3jaCve6BEeieTyRCPxxk+/N1soGeffZbVq1f3WLviz3/+czGLYfHixfz0pz/t8fgf//jHqanpXOln1apVPProoz22jcfjxYDHzJkzOeuss7pN99j95+5jAnzpS1/in//5nykrKyvW3+jJscceWywIKiIiInKgHbCAx5YtW/jRj37EfffdR0dHB5/85Ce5++67u6zrvi9+v5+5c+eyZMmSLnNolyxZ0uOyt6UYY7pMWXmvQCDQ56wTERmaVscbeSexnfGRavzOu2+RQcfHEdEa1rY38XrrVk4YPrHHY4yNDGNcZBhr2hoZHx3WJdMjXciSzGc4rXYGfrvnt+C60BRqAhNozmwg43Xgs4NU+8fhd8I97rOnMv9Eyv2T2Zl5g4g7BtfuDNB4JkdHfjMht47q4Kx9Hifom0BN9BM0t/+aVP7tXZkjHhYWYd9RDC+7uJgpcrjZPRWk1JSPjo4O/s//+T/FtrfeeitPPvlkt7a7/9+UzWaLQYy77rqLn/3sZz32m0gkqK6uBihOFXVdt2TWhOe9uxLQJZdcwty5c3tcFcTvfzc4d/XVV3P11Vf36jr0dbqqiIiIyMHS7wGPX/ziF9x33338/e9/56yzzuJ73/se55xzzj6/9enJDTfcwOLFi5k3bx4LFizgnnvuob6+vvhB7KabbmLLli3F5XDvvPNOxo4dy1FHHQXAM888w3e/+10+97nP9c8JisiQ9nZ8GwbTJdixm2Pb+G1nnwEPx7JZNHIOv6h/jnXt2yjzhfDbLh35DFkvz6zKccyvnrTPsbi2n9rQ/mVP2JaP8bGPQZtNIvM2Xj5LZ00Pi5A7knFl5xN0h/XqWGWBuQTdcXRkV5LNb8WyfIR8RxL2T8W23s0eyRYSxDOryHo7sS0fUd9Eor5xxayQ3jDGkM5voD2zkpy3A8eKEvFPI+w/qltgxRgPQxYLX4+1SvbWTzKZpL29vUvG4F//+lfWrFlTMoiRyWRYsmRJse2HP/zhvWZM7DmdZOXKlV32fa89gxhz584lHo/3WLtiz2kf3/nOd/jud79LKBTa51TPE088kRNPPHHvF0ZEREQGJWMsjOnjlJY+th+K+j3gcdFFFzF27Fi+8IUvUFtby4YNG7jzzju7tfv85z/fq+NdeOGFNDc38/Wvf52GhgZmzJjBo48+WixW1tDQQH19fbG953ncdNNNrF+/Htd1mThxIt/+9rf57Gc/2z8nKCJDWsbL4+zlBt1n22QL+X0eZ2S4isUTTmF5yzpea60n5+UZGapkTtURzKoYR8A58FkRfqeCI8svpy23nvZcPZgCQXcYMf+UYsZHb/mcGipCp/W4vSW9nC3tj5LON+16xeBYISqCMxhbdgGuve/MFGMKNCf/xM7kkxRMEsvyY0ye1vQzRP2zqCu7CMeO4nlJ2tqfY/uOv9HSso22dkM6OZ5UciRtbZDL5bq859900028+OKL3aaIFAoFotEobW1txbbf+973+NOf/tTjGHO5XDETY3dmQzAYLLnaRyaTKQY8PvOZz7Bo0aJubSoqKrpNBbnhhhu6TLPcG9WtEBERkX2ZP38+juNw7bXXcu211w70cA4qy5j+Xaxm/Pjx+/yWybIs1q1b15/d9qvd1erj8bhSdUUOM3/d+ia/3fQqk8uGl3wvezuxjdPqpnDBuDm9PmbBeOS9An7b3ef746GoLbuGta0P4Jk8YXdEMdsi57WTyjcwLLSAcbGPA5AvbCaVXsHOnfVkMg7jxp6E33cUluXy84f/nTfe+QPJNpuONotEIkVbIk28tR3Xl+Nnv7qV4ZHzaOv4EWecfjMvL91ecjyRSKRYiBNg0aJFPPbYYyXbuq5LKpUqBia++c1vsmzZspK1K8rLyzn//POLbdvb2/H5fJoSKSIicpg6GPeNu/v44esPES7r3dTm3ZJtST4148LD+r623zM8NmzYsM82W7Zs6e9uRUT6xYzKUfx92zs0phKMCJd32daUbifiBphVtfclYd/LsWwcZ+gs3ZpMJrtM91i99Tc0NL1BviOG66vno5eeAHQuffvNLz/PW6seJtfxNRLxll2rgmQxBkaOjPDKa58k4J9DWfhC/u3bd7L85Y0l+4xE/LRnVhAC0pmllMdiwHaiZQFisSCxsiCxmKG8opphNbOLq3kZY7j+C9eyePGlVFZWdwtiRCKRLkGof/mXf+n1dYhGo+/nMoqIiIjIAXZAV2l5r8bGRr71rW9x7733kkqlDmbXIiK9UhuKcfboGTxS/yrvtG2n0tcZSY/nUri2w4dGTmNCtGYfRxm8crlcsR7FqFGjiq//4he/YOvWrd3qVuxeuePnP/95se3cuXNZvXp1yePXjawoBjwAVq/cxqsvbyrZNpMBxx5BOvMieZPj2BNrqRsZJVYepSwWIlYeIhYLUhYLEisPkS+0ksz8DdeK8aMf/yOBgNslkOR57XjeDipiNwAZ0umlZLLPM39+E5blx++fRzAwEcfZ+ypfIiIiIoONlqXdP/0e8GhtbeXaa68tLpt34403ct1113HzzTfz3e9+l+nTp/PDH/6wv7sVEek3xw87gupAhKVNG1mT2I7BMKtqNPNrxjOtfMSATktJJBIlgxKtra3EYjEWL15cbHvppZeybt26Lu13B5tnzJjBypUri22/+tWv8tZbb5Xs873LdJeXl2Pb9q5siRiBaIayWIjy8jKG1XZNl7zu/zubptaNjK30UVVuU1U1qTMjIxYkGOysheFQRzb7Ol/48lz87kgcu3vmhDGGVO41jJfB9o0kHO6+3K9tRyl4m3ZNm3mCbPZFsALYVhmeSZJMPUI2+wpl0U/huuN7d8FFRERE5JDV7wGPL3/5yzz11FNcfvnlPPbYY3zhC1/gscceI51O86c//YlTTjmlv7sUEel3R8ZqOTJWS9bLgwGf7byvQIcxhnQ6TWtrK57ndcmuuP/++9mxY0eX4MXuPydOnMh9991XbDt58mS2bdtWso+jjz66S8Bj2bJlPQYx8vmuhVcXLVrEnDlzSq4MUlPTNaPlySefJBgM7poyUuCtnf9NR66eqG9ct35OOG0i6bzNcKeDgDsKxy7v1sa2KrFowLFj5LyWkgGPghfHsSI4lh/IlTwnYwpgLLK5N8lll+I447D3KJZq7Dpy+bfpSP6KWNn1WNZBTXIUERERkYOs3z/t/fGPf+S+++7jjDPO4JprrmHSpElMnjyZ22+/vb+7EhE54Pz2u2+Tzc3NPWZX1NXVcdFFFxXbnnPOOWzbtq1L21yu80b95JNP5qmnniq2vemmm2hsbCzZf2tra5fnFRUV7Ny5s1sxzfLyciZN6rrU7fe+9z1yuVyXdhUVFcRisWLhzd3+4z/+o9fXZM9lUS3LoSY0n/bcOnJeGz773VVDjCnQkd9CmW8UPrZi7SWt0sKmzD+N1vRr5L047h6BEc9kyBYaiAUWELDayOZWYtsV3Y7heU1YdgWFfD2WFekS7Ogcq43rjCWXW0suvwa/76hen7OIiIjIQDKm89HXfQ53/R7w2Lp1K9OmTQPgiCOOIBgMctVVV/V3NyIiveZ5Hu3t7cTjcWzbLmZXGGO4++67SwYw4vE4c+fO5b/+67+Kxxk9ejTpdLpkHx/4wAe6BDyWLVtWMhPDsiw8z+vy2vnnn09HR0fJ7Iq6uroubV977TX8/u7TOUo555xzetXu/aoKzqEjt4mm1AtkCk24VhSPHHmvnbBvFKPLPk429SC5/BZsu3uFcGPasK0IFaEzwK6iNfUM2cI2bCuEMVkwHlH/LIZHL6BQ2Egut4Z8vh7HGYVlORhj8LxmPG8nweCp5LIvlwyIANh2mEIhh+c1ldwuIiIiIkNHvwc8PM/D5/MVnzuOQyQS6e9uROQwYoxh+/bt3bIrdv85YcIEPvrRjwKdUzVOP/30LtsTiUQxyPDhD3+Y3/3ud0Bn8OGGG24gk8mU7HfP9zJ4t3bFnhkTTjhEIBrhyKlT2ZlOURnszH64995796hz8W52RTQaxba7rthy99139/pa9DbYcTDZlo8xZedR5p9ES3oZqVwjrh2lNnwq1cE5BNxqkt6J5PI/7pyaskf2hjE58oXNBAPz8blHMNwdT9Q/g7bMq2QL23HtKFH/0UT8R+PYQVxnJmXRi+hIPkI+/zYGq7OElx0jHPoQoeAptOaWY0xP0152B5ucg3BlRERERPqHipbun34PeBhjuOKKKwgEAgCk02muvvrqbkGPX//61/3dtYgMQvl8nkQiQTwex+/3F7Mr0uk0P/jBD7plVez++YMf/CDf+c53AMhkMt0yHfb04Q9/uBjwcF2XF154gWw2262dz+fDvCe375JLLsGyrG7LlZaXl3epswGwefPm4lSQN1u287t1q9jU3opnDAb4t1f+zskjJ7Bw7JGce+65+33NDkW25VIVnEVVcFbxGu9Z8yQUOIF8YQup9FMUvAZsohgyGJPF75tGWfjju9o7RPxTifin9thXMLAAn28a2ewbeKYVywrid4/CcUYA4HOnkM2+hG1Xdau74nnNWHYFPvfI/r8IIiIiIjKo9HvA4/LLL+/y/JOf/GR/dyEiB1GhUKChoaHH2hUzZswo3ty3trZyzjnndGnT3t5ePNbll1/O/fffD3QGR6+//voe+x05cmTx52AwSDAYJBAIdAtKVFRUMG/evC77PvTQQ4RCoW5TRHYX2txTX1aN2h3sWJ9o4cerl5PIphkTrSDguHjGsCPVwR/Wv4kFLBo/pdfHHWpKFXe1LJey8CcI+GaQzi6jUGjEsqIE/bMJ+Odg233LBHTsckLBE0puCwY/QC73JoXCRhxnNJbl7pr20kLBayIcOhvHOXSXFhYRERGR3un3gMeeqwmIyMBKp9PFwEM0Gi0GEeLxOP/zP//TY+2Kj3zkI/zrv/4rANu3b++2LOmeLrvssmLAIxAI8Nxzz5VsFw6Hu9wIB4NBLr74YsrKykpmV4wdO7bL/h0dHd2mgvTk/PPP71W7/fXMlg20pJNMrqgpnpNtWdSGo4Dhqa3rWTBiLBWB0N4PdJixLIeA/2gC/qMPaD9+31FEI5eSTP2GfH4NAAaDbZURCp5JOPQPB7R/ERERkf6moqX7R2vyiQxiuVyOzZs3l1yuNB6Pc9xxx7Fw4UIANm3axMc+9jFaW1uL2/esTfH5z3+e73//+wAkk0m++MUv9tjvrFmzij+Xl5fjum7JzIry8nJOOumkYttgMMivf/3rbnUrysvLu9XDsCyLn/3sZ72+Fr0NdhxoiWyGVTu3UxOKlMxkqAlFWNPazDutzcyvHT0AIxSAQGAePt8UsrnX8bxWLMuPz52yq9Cp5rOKiIiIHA4U8BA5AIwxJJPJYuChsrKSESM66wts27aN+++/v2QAIx6P86lPfYovfOELALzzzjtMnz69x37+7//9v8WAh+M4vPTSSyXbxWKxLgGDiooKLr300pIBjIqKCsaPH19sGwqFyGazvbpJtCyLCy64YJ/tDmXZQp685xF6TwBnN8eysSyLbCF/kEcm72XbZQQDCwZ6GCIiIiL9oO9FS1HRUgU8RHqSyWSor6/vMTDxwQ9+kFNOOQWAN954g8WLF3dpUygUisf62te+xs033wxAc3MzN954Y4/9bty4sfhzRUVFsRZFqQyLBQvevZmrqanhkUce6da2rKwMx+m6IkUoFOInP/lJr66Dvg3vqswfoMwfIJHJUOYPdNuezudxLEvTWQ4RucJ2UtmVZPON2FaQoP9Igr6jsK3BtxqOiIiIiPSNAh4y5HieRyKRKAYe6urqqK2tBTqDCT/+8Y97XBnki1/8IldddRUAy5Yt48QTT+yxH9u2iwEPy7JYvnx5tzaO41BRUdEl4FBbW8vll1/eJaNizyDFEUccUWw7cuRIkslkr87b7/cfdiuDDISA43Jc7Rh+vfZ1MoUwAefdt1FjDJs74owrq2BypYpiDnbt6efZ2fFb8l4LFi5QIJH+CyHfdKqjl+I6lQM9RBER6SepfJaslyfs+vHZugWSQ4/Z9ejrPoc7/WuXQSmZTLJx48aSBTXj8Tjnnnsuxx9/PADPP/88n/3sZ4vbE4lEl2Pdfvvt/N//+38B2LJlS7EYZylbtmwp/lxRUVEsqFlq6seeK4OMHz+eP/3pT93avLdQJ0B1dXVxpRI5NJ04chxrWpt5rbmBMl9nxkemUKA53cGwUITzj5iGz3b2fSAZMKnsalrafwFYBN2jiv9OPZMmmV2B1eFjWNmnsSwbz9tJPvsqXmET4MPxTcJ1p2PZyuIRERnsGlNxXtyxjpWtm8l5BaJugLnV45lfM4EyX3CghyciB5gCHtKvstlsMSgRj8cZO3Ysw4YNA2D16tX8/Oc/LzlFpLW1lW9961tceOGFAPztb3/jnHPO6bGf4cOHFwMenuexcuXKbm0CgUC37IoxY8Zw1VVXlQxglJeXM3HixGLbadOmdQue9CQcDvOhD32oV23l0Bf1Bbh82jE8u3UjS7dtIpHN4No2p4w6gpNGjmdsWcVAD1H2oSP9PJ5JEvR1XT7YtoL4nbGksm+Qya/HNe2kk7/A87Zj4WDwsDJP4rgTCUQW4zgjBugMRERkXzZ1tPDT9S/QmGql0h8h5PhI5FL8fvMK3m5r5JIJxxPzKXgtMpQp4CHdJBIJNmzY0OPKIJdccgmzZ88G4PHHH+f6668vbk+lUl2O9aMf/YjLLrsMgLVr13LLLbf02O+2bduKP1dWVlJVVdVjdsXMmTOLbWfMmMGSJUu6tQkEutdXGDNmDPfee+/7uTwiQGfQ46xxkzlt9ETacxn8jkPU1/13TgYfz0uRyr2NY1eV3O7YUbKFzWQyy8jnl2G8DhxnMpbVWfjXmCyF3DtkOn5KqOxzWJb+3kVEBhvPeDy65TV2pBJMKqvF3pXJF/OHyHp53mxt4Nnt77Bo1Mx9HElkcOhclrZvtfW0LK0CHkOGMYZUKtUlMDF58mSqqjo/0C9fvpxf/epXPQYx/vu//5tFixYB8Pvf/55PfvKTPfY1ffr0YsAjn8+zevXqbm2i0SgVFRVdVgaZNGkSV199dY/ZFZMmTSq2XbBgAc3Nzb069/Lycs4444xetRXpb37HocoJD/QwpA/MrlmwFj1PO7IAL/8WlteC40zpMjXNsvzY7gQK+TXkc6vw+ecc+EGLiBxEmUKWeK4D27Ko9MdwrMGxNHxfbOxoYX17EyPC5cVgx25+26XCH2Z5Sz2n1E4h7CpwLTJUKeBxCPvFL37BV77ylWLQIpfLddn+29/+lvPOOw+AVatW8a1vfavHY+3YsaP4c3V1NcOHD+8xu2Lq1KnFtscffzxPPvlkl+2xWAzX7f6rNWXKFO6+++73e9oiIu+LbYXwu6NJ5VbhUt1tu2fSgIvtNWFZZSVXKrKsAIYChfxGBTxEZMjIFLIsa1nNa/G1JHIdWJZFXbCaYyonMy024ZBaua0120G2kO8xmBHzBWnOdBDPphTwkEOCipbuHwU8DmHZbJY1a9Z0ec22bWKxWLfsiunTp3Pdddd1Wxlk9597Zld86EMf6jK9ZG+qq6s59dRT++V8REQOBsuyiAYXkM6tJl9owXXendpiTIFsfgMB3xQcEhjTvo+jeQd2sCIiB0nWy/Now3OsbF1LxA1R6Y9SMIbNyW1sTm6nPZ/iuOrpxfZ5L8/G5GbqOzaTNVkqfRVMjI6nOlB6uuDB5rddsCDvFXBLFBLPeQVc28bv6HZIZCjTv/BD2JlnnskzzzzTJQMjGo2WjL7Pnj2b//qv/xqAUYqIDD5h/xxioc0kUn8hn9uObZVhyOGZFAF3PNXRC/EyT5HL/K3k/sbksbBwnJEHd+AiIgfIW4mNvBFfz4hQNUHn3YyHiBukKdPKc00rmRQdTXWgnPZ8B3/Z9nc2dmzCw+BgkzN5lreu5Ljqucwqnz7g2SDjozXUBKI0ZdqpC5V32WaMYUemjaMrRlPljwzQCEXkYFDA4xBWW1tLbW3tQA9DROSQY1k2FeFzCfom05F5mWx+M7YVJByYTdg/G9epJG/mk8u+hFdoxHbqivsa4+EV1mM7o3F9R+96zWC8Rrz8ZsBgu6Ox7BED/oFfRKS33oivw7HsLsGO3ar95azvaGBt+xaq/DGe2vEca9s3MCI4HL/tBzrfB3fmWnl2x4uU+8qYEBnX5RjGGLJeHseyS2Zc9LeIG+DEYUfy+y0r2J5OUBOIYls2Oa9AQ6qViBvghOGT9D4thwxjrP0oWqrfbwU8RETksGRZNiH/VEL+qSW3O+4k/KHzyKZ+TyG3GuwomALGdOC4owiEL8ayIxivjWzqN+Szr2JM265jR3F9R+MLX4BtVxzEsxIR6TtjDM3ZBKESwQ7onApoWRbt+STbMjtY31HPMH91Mdixu02Vv5LNqQbeiL/F+PBYLMsi5+VZ2bqR5TvX0Zxpw7UdpsZGM6fyCOpClQf0vE6qPZK8KfDs9jWsa2vaNU6oC5Zz1qgZTI7V7eMIInKoU8BDRESkBMuy8AdOxXXHkcsuo5Bfi4UPxzcDn/8YbGcYxmTJdPyEQnYZOCOw7V1TXEycXOZZPNNBMHollhUa2JMRkcNeppClPrmNdCFDyA0yNlzXWeeCzve7iBtkezpZcl9jDMYYAo6f7ekdZApZhvuDJdvG3CgNqW2kvQyu5fL7LUt5pWUtjmVT5guRLeR4avvrrIpv4iNjFjAhuv/ZyplClrZ8EsdyqPB1n9btWDanj5jG3OrxrGnbTrqQI+YLcmRZLSHX38NRe88zHhkvj2vZ+GzdVsmBpaKl+0f/MkVERHpgWRaOewSOe0TJ7YXcKgq5lVjuhK5BDasC2wri5V6nkHsD1z8P6Kz9USg0ADlsuwbbjh2Esxg8jMnTnn2LROZVcoVmXDtGWWAmZf5p2LZWSRA5EIwxvJFYx3NNr9GUacXDYGMxPFjFSTWzOCo2HoDpsQnUJ7eVLPLZnk8RcgKMj4xgR2YbFvQ4FcTCwmAwxuPV1g280rKW2mBFl5VQagIxNnbs4LGGZVw5cWEx8NJbqUKGZS1vsbJ1LYl8EseyGRUaxryqKUyKju42tgp/mHnV4/vUx95kCjlebV3Pip3rac2249ou08vHMKfyCIYHK/qtH5H+Mn/+fBzH4dprr+Xaa68d6OEcVAp4iIiI7KdCbiVQKJnBYVlBDBaF7Eoc31xy2ZfIpP9GobAZQwHbjuHzzScYOvOwCHx4Jktj28O0pl/E4HUGhEyGeGYZZYGZjCy7CNeODvQwRYac1W0b+VPDc2BgRLAGn+2S8/Jsz+zk0YZncS2HSWVjmFo+njcS69nY0cjwQAURN4TB0JprJ57r4NiqqYwM1uCZHK7tI13IlKz3kSi0My48Gr/tZ/nOdbi2023ZV8uyGBmuYmuqhbVtDUwtH9Pr88kUsvxhy3O8EV9P1A1R4YuS9wqsbd/MpuQ2zqo7jlmVk/Z9oP2UKeT4zeYXWNm6Ab/tI+oGyRZy/G1bZ9bKR8ecwNjIsAPWv8j+WLp0KbHY0P+sUYoCHiIiIvvJmA4Me0uL9uOZNrKZv5FM/hIA267Ftlw8r5VM+o94hc2Eo1dh271fKcAUmiD/OqbQAlYAyz0S3IlY1oEvBLi/WpJPszP9LAFnZJfARsFLk0i/gs8uZ0TZxwdwhCJDT94r8GLz63jGY1RoePF1n+0yKjSM+mQjL7a8wYToKKJumPNGfYAnti9jXfsWmrJxAGJuhJOHzeLEmllYlsWoUB2jQyNY31HPqFAdzh7vO4lcOxYWU2OTyXgFmjNtxNzSU/r8totnPHZm313+u2AK1Hc0UJ9sJOflqPSXMyk6hnJ/WbHNG/H1vJnYwKhQDQFn1/uvA2W+MI3pFv6+YwUTo6OI+g7MVMJlLWt5becGRoarCDnvvv9XB2Js7NjOYw2v8KkjzjgohVnl8GKwMPSxaGkf2w9FCniIiIjsJ8seDmZZj9sNKSBMOvUnLCvYZRlbx6nF2BXkcq+Ry75EIHjaPvszxkD2eUz6T+C1ADbgYQiAbyaEP4Y1CLMkCl6a1vQLOFa0WxaHYwfxO8NIZFZQHf4gfqcaz0uRzq0ik98IGPzOKIL+o3F6GRQyxpDJvUVHdhm5XSvwhPyzCAfm4Njle7TLkcq9RSq7Gs8kce0awoGZ+J1Rh8zKDdnCDtozr5HO12PhEvYfSdQ/A2cQ/h7IwdeYbmJbupkaf0XJ7TX+CramdrAjvZO6UDWV/jI+MuoUtmVaaMkksC2bkaEaYr53/+3Zls0pw08k05hla7oRFxfXdkl7aXyWn3mVszgyegQ5r4BjWeSNV7JvYwwGg7MrMNCeT/J4w3Osbd9E3hSwsSgYjwp/GacOn8f08kkYY3itdS0+23032LGH4YEKNia3saZ9M7Mrj3z/F/A98l6BFTvXEXL9XYIdndfFYmSois3JJtZ3bOPIMi1bLjIYKOAhIoeU9myWVxsaWdGwlfZMluHRKMeMHMH02lpc2x7o4clhxvXPIp95Cs9rxraru2wzXisWAbBDeF4Ljju52/6WFcCywmQzz+MPnLrvm+z8m5jUbwAXnCPB2vU773VA7iVMOgChiwbdzXq2sJ1soYWAU7o4oc+uJJlfSybfACZNS/tPyeTXgSnQ+eWUhd8ZQ1X0EgK+iXvtyxiPePIPJFJLMGSwrciuwMZKOjLPURW9Ar87koLXRlP7gySzr+KZPBYuhizx9BNUhBZSHjpz0F3H92rLLGd7+8PkCk1Ylh+DRzz9PEHfOOrKPknQHdVtH2PMoD8v6T8ZL0feFPDZvpLb/baPvFcga3LF1yzLoi5YTV2wuuQ+AFX+Cj488kOs7VjPuvaNZLwsNf5KjiybyKjQCGzLJuDYTImN5oXmt6jydy8omsgliThBxoWH4RmPvzS+wJtt6xgZHFacKuMZw45MC0saX6DMjVAXGkY810HYKV0w1d71ntiWL1189f1qz6dpzXVQ1kPWSsDxUTAerdmOA9K/HN6M6Xz0dZ/DnQIeInLIaE4m+cnyFbzV1ITfcQi6LpvjcZZv3crxY8bwsaNn4HeUQioHj+0cgRs4jXz6MQpeAtuuAcB4zUAWN3gGHkHAwrJKB+QsK4LnxYEs0HPhTmMMJvMcmAy475nvbkeAOsi+CoFTwRnRD2fXvzpvdXr65NX5uuelaEn9gUx+HX53ArbV+Q2qMXky+XU0t/+Y4bHP4zpVPfaTzC4nkX4cxy7Hdca/24PJk8mvYWfHzxlW9jlaOn5Le2Ypfmccjh3e1caQ93awM/kIrlNNNDD3/Z/4AZLObWJb2y/wTIaQb0rxZtKYPKn8Ora1/YzR5Z/DsYN4Jk9bZiWtmVfI5LdiWyHKA3MoD87Bv5drKYe+qBsmaPtJFlJE3XC37clCmqDjL7ltX8JuiKPLp3F0+bQe2xxTdQRvJjaxKdnEyFAVru1gjKEtn2JHJsGCmqOoDXZmmaxt30xtoLpLXRDbsqgNVrOxo4GV8XcYHa4l4Phoz6VK9mdM5zoW/h4CPO+Xz3ZwLJu8KZTc7hmDMeAO4umFIocbfR0qIocEYwy/W/Umb+7YwRGVlUyorGREWRmTqqsZHonwzMZ6nt24caCHKYcZy7Lwh/4Bf+QyHHccxrRiTCu2Owp/5JP4Q+fvqs3h7fog3p0xKSwrAnR+QPe8OPnMS+TSfyeffQXj7fqm0rRBYT3YPXzrapWDaYf8hn4/z/cr4Nbhd4eR85pLbs95Lbh2BZg4mfw6Au4RxWAHgGW5BNxJ5PKbSWaX99iPMYaOzPMY4+E6Xa+TZbn4nXFkcmtozzxHR2YFPruuGOzobGPhczrrHLSln8X0kIo/GLRllpH3Wgm4Y7p8c25ZLkF3Aqn8BpK5VXgmR0P7w2xKPEBbZiUFL0OmsIOG9l+zMX4vqfyWATwLOdCGByoZFxnJjkwr3nvegzzj0ZxtZWJ0NFX+A1PMcHS4hgtGH091oIz65A7WtTeyrmMbHfk0x9VMZuGI2ViWRUN6Bxkv22PmRswXYUPHVvKmwPTYBNrzKQol/n0m8p3ZHxMiByboG3GDTIzWsTPbXvI9PZ7roMwXYpyKlsoBYe3n4/CmDA8ROSRsSSR4c/sORpaV4XtPFkdZIEA4nebF+s2cMHYsAVdvbXLwWJaDL7AA1z9/V2aHwbJrsKzO30PXNw3LrsDzmnCcrh+CjcljTBu+wNkAZFNPks/8BeM17T46llOHP3gOjm9SZ25qD5kiFG96+36TbkwGY3JYVuiAFD61LT+VwRNoaP8luUIrPqeiuC3vtZMttDAschZ5rwGwsazu385alo1lh0hn3yAWOr1kP55Jks1vwrUrS4/DDmEKeVLZ1/FMOz6n9Bx7x64mk68n7+3E5/Sc1j+QOnJv4thlJaen2JYPjEcqV0/Oy9CSeo6AU4trv1v40ZgCyfxaGtp+zYSKawZ1wdv91VkjonO60uE6jceyLE4eNovmbCsbklup9MUIOn7ShQw7c22MCNWwoGbmAR3D5NgoxkSG8U7bVlqzHbiWw/jocEYEK4t/L54xWFg9/j3Zlk3BFPCMx4yKI3izbSP1yUZqA1WE3WCx+Gki38EJ1TMYFqg4YOczr2oS77Q1sDnVzIhgZTFrJZ5L0pJt5wPDplMVKNv3gUTkoNBdgYgcEhrb2+nIZRkVK/0hoioUoinZwc5UiroyfdCQg8+yXKwSNSocp5ZA4FTSqd9TMFlsZzjgYkwrXqEB151MIHAs+eyz5FK/AiuI5UzCshyMyWEKW8kkf0YgfHnnvvlNsEfhzSKvAyw/9FAno5RCYSuZ9HNkc8sxJotjV+IPLMDvPw7b7nuK+95Uhk4gW2hmZ/pZMtlt2FYAQxYLH5WhBdSEz2Rnx8+x9pJ8amFjyO11e+e3WXubtLzvgJCFtWvi8+Cd/Nz57fLeb+KNKbAz/QIWvi7BDugM1AWdMSRz6+nIrSXq715jZm/yXhvJ7Ft4JoVjRwj7pvS6qOyBliu00ZxewY70K+QLHficMmpCx1AdnI1vkIzxYKoNVvORUafx8s43eaetnniuHb/t4/iqGcytmkp1oMT7ST8LOX5mVozvcXt1oBzHssl6uZLTUdpyHYyPjCRg+wk6Ac4fdTJ/2fYy9R3b2JbZCUC5L8Ipw2dzYs3RBzTANT5ay/mjj+PPjcupT+4AwGCIOEFOqpnKB+sObABJRPpGAQ8ROSTY1rsVAEp9jPF2FeKzD9Nv8WRwC4bOxrJCZDN/p5DfABSwrDL8/hMIhj+MZQXJpZ8A/NjOu4UmLcuH5Y7Dy79DLvsUAf+xkF8HXgLsPVLQTQG8LeCbCs6EXo0pn19HR/t95AtbsO0qLCtAvtBAvuOn5HJvEolcsV9BD2NyGDws/N2mWtRGzyMWmElb9nWyhZ24dhllgWlEfEd2Tjlxx9KxayrJe2ueGGPwvCR+94ge+7asIEHfkXRkXsJ1arptL3jtWFaYsP9okrl38Ew7jtU9QJr3Wgi4Yzqn2QxSYf+R7Ew+AXRP3TcmD1j4nEqy6Ve6ZNTsydmV8ZIpbCdK7wIexhji6WdoSf6FbKHzZs/Cwu/WUhU+i1jg2AHNpsgUWlkb/znxzNu4dhjHCpHKb2ND4tfsTL/BxPKL8Dv7N32j4GXIeW3Ylg+fHTukskaGBStZNOIETh42m3QhS8gJEnFLTx8ZCOPCIxkZGsamZCNjwnXF4qPQGewAOLriyOI1Hx6s5KKxp7M11cTObBuO5TA6PKzLajIH0tTyMYyP1vJO21bi2SR+22FCtJZhgfJD6vdCDi0qWrp/FPAQkUPC2PIKyoNBdqZSVIe734Q1JZNMqKwsuU1koFmWQzB0Bv7ACRQK68EUsO1qbGcklmVRyL2JV2jEdsaV3t+uw8uvh9D5EDgZss9BfgdYESALJgXueKzQR4tTE7x8PYXsK3j5twCw3aNw/Mdgu2MwJk8y+TCFQiOue1QxuGDblRiTIpddRsadSCh0Vq/PMZNbR3vmBVLZNzDGI+AbRzRwHCH/rOLxLcsm7J9I2F96pZWwfxZtzl/JFurxO+O63DjkCw3YdoxI4Ji9XGeLSGABqexKsvkt+HZdXwDPpMnmNxEJzCMSOJFkbhXtmWUErEmdU0B29+PFMSZHNLigOC1pMIoF5pJILyWT34rfGbFH0VKPdG4DQd8YIv5pkHwC00OBxd0FHi16P50lkXmJ7e0PY1k+Qr4jsCy3syBsoYFtbb/AtgKUBWb3wxnuny3tfyGeeYsy/xFd/l4LJktrZjVbO55kfOy8Ph0z7yVpTL5IU/oVsoUEtuUS80+kLnw8MX/PAbjBKOqG96tA6YHm2g5n1B3PH7c+xcZkAyEngGs5JAtpHMthfvV0JpeN77KPbdmMDg9ndHj4gIx5X1krIjI4DN7/k4uI7KEmEmbuqFH8dc1a/I5DWaCzirsxhh0dSQxw4rhxOFqaVgYx2w5j29O7vW5MBosCuwuXdmP5wctjKGCHLgDfFEz2FShsBSuM5Z8NvtlYuzISCtml5JK/wng7sXZNZSik11LIPo8v/HE8K0w+tw7HGdstk6KzjkeUbOYFgsFTsayeV47ZrSOzjOb2n1Pw4rvqZ9gks6+Syr5OLLSQivA/9LhKzZ5cp4bKyMdo6fg5mdxqbDuGhUXeJHCsMiojH8Hvlg4K7Rb0TaUy8jFaO35HOvcmtuXHmEJnsCUwi8rIhdi2Q1XkYxS8JOncW4AP2/JTMEksXMpDp1EWOH6f4x1IId8RDI9ewI7235HKvYVthzHGw5gMAXcUtdEL8Tu1RHwTiWeWl1yNJe/FcawoYd/4XvXpmQw7U08CFgF3z0wkl6A7hlRuHTtTTxL1Hz0gNUHS+RZ2Zt4g6A7vEuwAcCw/AaealvRrjIicQqCHrJf3ynsp1sR/QUv6dXxOGX6nHM/kaEotJ55dw8TYx6gK9rxKifReXbCGj41ZyFuJDbzVtoGsl+WI6BimxiYwITKqS9aHyOHIYGH6WIS0r+2HIgU8ROSQcc6UySSzWV7ZupWtbW04lkXe84gFg/zDlCnMHVW6AKHIYGfZlWCFO1disbqn2xsv0RnYsCs7sw58M7F8peeJe4VGcsmHwWSx3aPe/ebfNpjCps5AiP8EII9lh3oYTwWe14rnJboVWn2vfGEnOzt+jTFZgu67y6P6GEa+0EwitYSgbxIhf+9uCsOBY3CdYXRkXiadex2MIeybTyQwn4CvdGZIl7FbFtHgSQR8k0hmXiVf2IZl+Qn6pxL0HYW9K4Djc2qojX2WZPZVOrIrKHjtRJwRRAJzCPmmHhJFPMuDCwi4Y2hLLyedX49l+Yj4pxL1z8LndBZurQotoD27mlR+M0FnZDHwlPfayRQaqQqdTMCp61V/6Vw9mXwDAbf0e63fqSWd20Qmv5Wgb0zJNgdSptBEzmunrIcAjt+J0ZHbTKbQ3OuAx47Uy7Rk3iDqG4tjvxv889vltOc3Ud/+GDH/BNwe/i1J35T7ohxbPYNjq2cM9FBEZIg4JAIed911F//+7/9OQ0MD06dP5/bbb+fkk08u2fbXv/41d999NytWrCCTyTB9+nRuvvlmzjqr92m5IjI4hXw+Lp09i+PHjmH1jiY6slmqQyFm1NUyoqz0agUihwLbGYvjTiafW45tRbtkQ3Su5LIDX2Ahdi9qShSyy8Frwdoj2AGdgQCcMZj8akx+A2BK1sro7DQHllNytZT3SmVfI1/YTmCPYMdurlNNPtdER2ZprwMeAH53DH53DHBBr/d5L59TR3l47zfyjh2hLHgCZcET9ruf9/JMDs+ksK1AMbhyIAXd0QSjo3vcHvUfxYiyj7Kt/Y905N/ZVfjVwyFIZfB46qLn9vq905DrXM2nh0wky/JjyOOR7WxvMuRzb5DPvoZnEtj2MHz+WTjulAMSULIsBwsbjwJOiWk6xhSwsLF6+fHXM3l2pF7BtUJdgh2dfVlE3JG05+qJZ9dQHTy6X85BBl7Wy9GSjWOMocpfTsDx73snERm0Bn3A46GHHuL666/nrrvu4sQTT+QHP/gBixYtYtWqVYwdO7Zb+6eeeoozzzyTb33rW1RUVHDfffdx7rnn8uKLLzJnzpwBOAMR6U+ObTO5pobJNd0LEoocqizLwh/6MJ63Ay+/GsuuxrKCGNMBXiuObwq+4Bm9OpYpbAArVPIm1rIsjBXEJo9lV+5aKrfr/PfO4qA78PuPw7L2vXpDrrCNzqVkS6eb21YZmXx9r8Z+KCt47cTTL5LIvES+kMC2/EQDs3ZlYZQqLHrwlkytDB5LxDeJtuwqcoWd2FaAiG8iYd+ELn9vnsnSnnmdRGY52UITrl1OLDCbssBMHDuMa1fg2BEKpg23xO9GwUvgWBF8dgWe106q4yfkc8sBsAiQZyXZzDP4AycTDH+0VwG1voi4owi5w0nnm4j4umehpAtNhNzakttKKXgpsl4Cnx0tud22XAyGbCHe5XVjDAWTAiwcK6hg/CEi7xVYvvNNVsbfpjWXwBio8Jcxo/xIjqmchs8e9LdNMsQZ9qNo6QEZyaFl0P/Lve2227jyyiu56qqrALj99tt5/PHHufvuu7n11lu7tb/99tu7PP/Wt77F7373O37/+98r4CEiIoOW7Y4mGP0sucyzFLKvYEwHlh3BDZyKGzwR267s5ZEc9r70qodtRwm4J5JO/ZECNrZd3RkMMTkKhU1YdoxA8ANdbtSMyeJ5bViWH7vLEqd+zF77y2PT/9+QGpPDmDzWILihzHttNCZ+THt2JbYdwbWieCZDS/LPdGRfp67sMkK7pllkC83E08tIpJdRMBn8TjXlwfmUB+Zg2wcuI8TvVFEdOqnH7QUvTWPbQyQyywBwrDCZfAPt2deJZqYyouyT+J0RRHxHkcgsxfFFu2RpGJMnV9hBRegD+JxqUh0/I59diuNOwLLene7heXGymb9iO8MJBD/Yr+fo2EGGh45nY9vvSOebCDi7f689MoVmPJOjNnxCt/oePbEtP5blUjDZktuN8QCDY/mLz3dmXqMptYxkfisAZf6J1ATnEfMfOeC/p9Izz3j8bftLvLzzDUK2nypfZ0Avnm/nie0v0ppNcEbdCTiqIyJyyBnUAY9sNsuyZcu48cYbu7y+cOFCnnvuuV4dw/M82traqKrqXqxrt0wmQyaTKT5PJBL7N2AREZH3wXbqCIQ/igmejSG9q4Bo35aOtH1T8HLLdhXq7JrWb0wBTA7HdxQ+/3GARyb9DIX8W3Qu+GzhOCMIhc/H5+tcptTzOshkniGbeQHPawXLxe+bQSB4Mq57BEH/JNrSPjwvhf2eOgbGeBRMB7F+XLUjk99IR/oFktnXMMbD544gGjieSOCYAVtVpTX1NO3Z1wj6JnSZxuIzw0jl1tDU8Qijy68lU2hkS+LHpPKbcK0ybMtPMreOjtzbdGRXM7Ls4gMa9NibltTfiWdeIOiMxdljOeLdWR9N9qOMiF1MdeRsst52krm38dlV2HaIgpek4O0k5JtEVfhMvMIOctlXsO3hXYIdALZdjvHi5DLP4g+c2KuiuH1RGz6evEmxLfksbbk1gIUxBr9TzpjoIoaF5vX6WI4doDowgy0dfyfoVHfLYsoUduK3Y8T8EzHGY0v74zQk/wZ01vgAQ3N6Oa2ZNxlbdi7DQsf234lKv9qc3MarrW9R7S/vsorNcKeKjnyKlfF3mFw2ngl7mT7WXwrGoznTTsF4VPjDhDSlRuR9GdQBj6amJgqFArW1tV1er62tpbGxsVfH+N73vkdHRwef+MQnemxz6623csstt7yvsYqIiPQXyw5hsX9FEB3fLAr2U5j8WnCPKAYBjMlj8muxnDHYvplYlp9w+CMEAieSz72FMRlsuwLXNx171w2v53XQ0XEfuexyLKsMy45hTJZM5mlyuVVEopcR8k0h6JtGMrsCP+Nw7EjnviZDNr8BvzOKSGBuv1yXZPZ1mtt/Sr7QhGtXYuGSzr1FOreaTH4dVZGPHfSgR8FL0ZZ5Gccu71azw7JsAu5oUrl1JHNraUouIZXbTMQ3qRiM8js1FLwk8cxSQr5xVIdPO6jj7zyHJIn0i7hWeZdgB3RmOfid4bRlXqM6fwYBdwQjY1cRTz1HW+YVCl4Hjh2iMnQu5cET8DlV5LLLMSaO7Uwu2Z9t1+AVduAVtuO4YzDGkCvUk86txvNSOHY5Qf8MfPsomFuKZTmMjp5BdXAm8czb5E0K1w5T4Z9C0O37VMjh4fnszLxJIreeiDsK1w52Lv1baCbnJRgdOZ2gW0088zaNyacI2BX49yiIGnCqSOYb2NL+GGW+CQTdvp+THHjvtG8kZ3Ill+yNuCGasq28077xgAY8jDGsbN3M803vsDW5k4LxKPeFOaZqPCcMP1KBD5H9NKgDHru9NwXQGNOrtMAHH3yQm2++md/97ncMH97zGt033XQTN9xwQ/F5IpFgzJiDX11cRETk/bLsCnyRT5Lr+Bkmv7bLknSWOxZf+BIs+936C45Ti+PUljoU2cxz5LLLd01LeDfTxNjVFPJrSSZ/TSz2/1EdvRSrwyGVXUW2kOns0XIIuOOpil6Ez3n/NXcKXgc723+F57UR3KMgq0sNBS9OW/opgr5JRAK9/wa/P+S9OPlCHLfEsq8Ajh0mk8/Rnl1FMruOkDuqW+aNY4dxvAit6RepDJ2IbR3cG5tsYQe5QisBt/TvgWtXksy/Q6bQiN8dht8ZxrDoeVSFz8IzKRw7/J5gz74+o+2eVW7hmSytHb+mI/MCBdOOhQUGHKeSWPBDlIVO26+pICF3OCG3589+vRV265hUfiEb2/5Ee64ez+QBg9+pYHTkTEZFTwWgJf0qnsl2CXYUx+LUkci9Q2tmFXXuKe97TNL/Erl2fHuZ6hSwfbTm2vb7+J7xaEzFSXtZom6QYYFYt9/r55vW8MfNyylgqPFHcSybeC7Fo1tXsDW1k0+MO46A0791b+TQomVp98+gDnjU1NTgOE63bI7t27d3y/p4r4ceeogrr7ySX/7yl5xxxt4LvQUCAQKBgUkhFRER6W+2OwF/2fV4udfxChs7X3PGYftmYO3KwNgXY3Jksi9gWdFu02osy8Jxx1Ao1JPLvYXfP5NhZZ8hk19LJrcB8PA5tQT90/ptpZJU9nVyhQYC7sRuNwqOXU7O20FH+sWDHvCwLR+W5eKZXIl1QXavDNJZ1NQjU8yAeS/XriBXaCVfiOPflQVgjCFvOsB4uHa025SK/mJhw65aF6U/G3uA1RmM2INjB3HoPuXKcUZjWRUYrwWrRLDL85qxneHYzjDiycdoS/0V16nF54wu1tzIF7bRmvw1jhM76H+n71XmH8e0qqtoy24g4+3ExkfMPwG/827gMFnYitvD361lWdi4pPLbD9aQpY8iboi8yfe4PefliTrdsz964+1EA09vX019cgc5r0DQ8XFkWR2nDJ/OyHBnbaaWTDtPNL6B33apDb37exVy/VQUQrzWuomjykcyv/qI/RqDyOFsUAc8/H4/c+fOZcmSJVxwwbtL0y1ZsoTzzjuvx/0efPBBPvWpT/Hggw9yzjnnHIyhioiIDCqWHcEJHIfDcfu1v/Ha8Ao7sexY6eNbATAentey67lD0DeZoK/0NIb3K+81YTA9TllxrHKy+S27Cpn278cbY/Ikc++Q2VWIMuiOIeSbiGU5uHYVId+RtGVewbXLuwVjsoUduE4VQXcsmBd7XArYmDydq904GGNIZFfTnH6Jjux6DIaQW0d1cD6VwTn9vqSr360l4NSSLWzDsbuvgJctNOHffQ69YDs1+PxzyWaWYHlhrD1rgnitGFL4AyfhmRQdmedxnEpc592ivJZl43NHkMmtpT39FGF//59zX9mWS3lgUo/bXStI2uR63G4wOHbf6vHIwTMxOpZXW98iVcgQcroGadOFDFgwqax3v/97Wh3fwq/qX6SjkGZ4oJyA7ZIsZFjesoGtqVYuHX8SdaEKVica2JntYGK0+xe6QcePa9m80ryhS8Aj5xV4O76dhlQcC4tR4XImxYbj2iqsKrKnQR3wALjhhhtYvHgx8+bNY8GCBdxzzz3U19dz9dVXA53TUbZs2cIDDzwAdAY7LrvsMr7//e9z/PHHF7NDQqEQ5eX7Xl5PREREACuAZfkw+1ihor+LTvY4HFz2tsCeMTlsOwL074f9TL6Rbe0PkcqtxZAHY7AsPxHfFIaXfRy/M4yK0Mmkcu+Qzm8k4I7CtnwY45HzmvBMG1WhDxMNTMdNPk7Oa8FfIush6zURC8zEtStpSj/Plrbf75oiUYmFRXtuHe25tSTzWxkV/Yd+zfawLT8VoRNpbPs52UIzPruqGLjJewnyppVhgXNwndLBr1KCoXMxJkE++wrG87DwdxbiJYg/cAa+wEmksivJe80E3NKBBNcZTjZfT76wHV+JpX0Hk4rADFozb+GZAvZ7gjMFL41l2cT8EwdodLIv48IjOarsCF6Pv0O5L0q5r3Mp4kSundZcG1PLJzIh0rf6HXmvwBPb3iBVyDI+PKz4bypmh4m6Ida2b+OZ7av52LjjaculsbGwe5i+FXEDtGQ7C5k6lk1DMs6vNixnXVszeVMAwGc5TIzV8PHxxzA8VFbyOHJoM2Y/lqXVurSDP+Bx4YUX0tzczNe//nUaGhqYMWMGjz76KOPGjQOgoaGB+vr6Yvsf/OAH5PN5rr32Wq699tri65dffjn333//wR6+iIjIIcm2I/j8M0mnn8C2a7plLnheE5ZdiesemIyO9wr4JmFbIQpeG47d9cO8MYaCaaUscGK/BgLyXhuNbT8hlVtLwB2Ls2sVmoKXpD37Gl5bllGxq4n4p1BbdglNHY+QyW/A7PqE6drlVIf/garw6ViWS3lwPs3JJVi4xWwQYwpkCg04VoiK4AlkCjtoaH8cy3KJ+t69wfI7FWQLcXakniHmn0wscFS/nSdARfB48oVWWlJ/J5l7C8tyMRSwrSCVoQ9QHdn79OD3suwIocgV5P3Hk8+9hvESWHYNPv9sHHcSlmXvsZxx6b8zCweDh6HwPs/uwKsMHE2TbyntufVE3NE4drA4JSmZ30plYAYx/5EDPUzpgWs7LKw7gagb4s3EOjalGgGLMjfMsdUzOaFmDj67b7dNGzua2JpsoTbYPfPLtixqAmW8ldhKa7aDoOPDw/RYpzBTyFMTLMPGoj2X4cF1L7O+rZmx0UqCu+p6pPI53mxt5OfrX+aqyScSdrvWAvKMR8bLYmMRcDSVXw4fgz7gAXDNNddwzTXXlNz23iDG3/72twM/IJEDoCPeweZ3GvEKHlV1FQwf2/0GQ0TkYAoETiKXe51Cfg2OOwbL6lyhwvN2YLxWgqFzcZzqgzMWdwJh/yzaM8/jZzS2VYZldRa9zBbq8Tl1RAL7N32nJ+2Z10jl1+6avvLuRybHDhP0HUEy9w4d2TeIBedSFphF2Hckydxb5L04thUg7JuMb4/rMzxyNsbkiKdfJpPbtus93nQWAY2cTVlgGtuSfyPntRL1db859jvlZAtN7Eyv6PeAh2U51ETOpiwwi7bs6+S9VhyrjGhgKiF3/H4FkizLj88/E59/ZsntPmc4thXGMwkcq3sWbt7biWtX4toH53fs/fA7MSaUX0h94re05TZg8p31IBwrSFVwDuPKzsPeS1FMGXgBx89ptccxt2o6OzI7MRiGB6qI7cr26KtkIUPOFIoBifcKOX6a8gk68hkmlQ0n4gaI51JU+LvWCsl7BTryGc6snIFlWazcuYX17c0cUVbTZfpKyPVxRFkNaxNNrGptYF7NuF3753m7fS1vJt5iZ7YV27IZGx7NtNhRjAzV7de5ycBQ0dL9c0gEPESGsnwuz3OPLGXFE6/TuiOB8QyhsiATZ47jtItPoqquct8HERE5AFx3HJHIFaSSvyZf2AimABgsu5Jg6MOEQh86aGOxLJuq6IWATTK7As9s6Sy2iYXfHU1V5OP43ZH92mdH9g0sfCVrgtiWH8tAMreaWLBz2V3HDlMWmNPj8WzLT130Y1QGF9CRewfPZHDtcqL+afh2FcDM5Hdg4fYY8HbsMKlCQz+cXXeWZRH0jSboO3BLb+7J54wm6JtKMrMU2xfpcp09L0nBJIgFzsS292+J5oMt7I5gcuWnacuuI1VoxMIm4o4h4htzwArOSv+L+aL7HeTYU3hX7Y1MIVdydZV0IYvfdgm7fip8EeZWHcHT21eT8wpUByKdU9nyabalExxRNpxZlZ01RFa1NuKznJK1Ony2g2VZvJ3YzryacRRMgaeanuP1+CpsyyHqRPDweD2+ivUdGzlt+MlMiqoQqgxtCniI9EI6mWHdqxtINLfjC7iMmzaamlHv/xsnYwxPPvgsz/9+KdGKKGOmjMK2Ldpbk6x8ejXx5nY+/k/nUlb5/v/HKyKyP3y+KbixfyKfe7uzQKkVwHUnHbTMjj05dpSasivI5jeQya/DmDyuM4yQb+oBuSn2TBprb9/KWy6eSffpmPsKKthWYK9TODyTw7GGRvFLy7KoiFxAwWslk1+DbYWwrCCe146hQMR/LGXBUwd6mH3SWdx0MuXse6pXwUuRzG/GmAIBdziBHpY2lkPT2EgNI0JVNKZ2MjbStW6PMYamTBvzqo+g0t/5Ge/sUTMJuz6WNq9jfccODJ1Bk5mVY1k0chbluzI/soXCXguTOpZFptCZYbS2fT1vxN+k0ldB2H03cyTmlrEts4Nnm15gZLCuyzboLNTalk/hs1zKfRFlHMshTQEPkX1455V1/PWnT7O9vqmz8I/xiFREmHnKNE698ET8gf1PUd22cQcrnnydytoKymveLQZXVhkhFA1Sv2ozq557i+POmdsPZyIisn86pybMGOhhAJ03yQHfBAK+CQe8r4A7ho7smyW3GWMwJoPf6d+skjL/kexIPUXBSxVrhrzbZwHPpKkIlJ4icijyOcMZFruajszLJDNLKXjtBHxTiASOJRyYg10iuGOMhyG/K/vm/d+IGVOgYLLYlg+7n1f4KcUzeXYkn6Up/TyZfBPg4dplVARnMiJ8RjHbRw5tPtvltNppPLzpRTZ27OhcpcVxSeazbMvEGRaMceKwo7q0P3PE0RxXM4lNHc3kjUdNIMrIUGWX3/PR0QpWxRtK1vswxpAp5Bm5a2nb1W3vdAZO3hPQsCyLYYFqtqYaWd9Rz/TyznF05FO83PImbyTWkcyncSybseE65lYdxfhI/77XyX4w7K12d8/7HOYU8BDZi81vb+X3//1n0u0ZRh05Ap/fxRhDvKmN5x95Gdu2OeOTH9jv469fWU9HPMnwsd0r9rs+h1A0yMqnV3Ps2ccoui4icpCVBWYRTz9LtrADvzOsy7ZsoRHXrqCsn4MPZf5JxPzTaM28StCpw7U7a5XkvSSp/BYivvFUBI7u1z4HmmOXEwudTix0eo9FGwGyhVZ2pl5mZ+YVCiaFzy6nKjiPiuAxuHa45D57k/M6aEq9QlNqGTmvDccKUB2cTU1oHkH3wGRbGGNoaH+Mbcm/4tgRwr7RWNhkvTg7kn8nk29iQvni/TofGXymV4zBsiye3v4mW5ItZL08QcfPtPLRfLB2BqPC3X/PYr4Q0yt6nlY2s3IUz21bx450e7fVWBpTCSr8IWZWjcIzHs2ZFiJO6d8lx3IAQ1u+DYCOfJpHtjzFO+2biLkRyn1R8l6eN9s2UJ9s5OwRJzIlNm7/L4bIAFHAQ2Qvlv91JYnmNibMGFv8AGZZFhXDYhjP8Nrf32DumTOprK3Yr+Nnkhks2+rxw10gHCDZnsLzPBzHKdlGREQOjKA7garQWTQn/0iqEMd1KjEY8oWd2FaQYdHzCbij+rVP2/Ixtuxj2JaPROZN0oXtWIBl+Yj5pzC67AJ8fVge9lDT0/8PM/kdbEz8hI7cOly7DNsKkM5vZVPbL0lk3mRs+cW4du+nf+YKbayNP0Rr5k0cO4xrR8ibJJvaH2Nn5g0mVlxC2K3tr9MqSucbaEo9j9+pwr/HFJaAU4XPjpLIvklr5jVqQsf3e98yMKaVj2Zy2Qi2pnaSLuSIukFGhCr2+4ussZFKzho1lUc3v8Gath2U+zozweLZFCHXxz+MOZoR4XKMMfhsl458cq/Hc3dlNb3W+g7vtG9iTKj23RVpnABRN8zWdBN/3/EK4yIjCDr+vRxNDiQleOwfBTxEepBsS7H21Q1U1pb+n1L5sBgbV22i/s0t+x3wiFREwBg8z2Db3ftIJlKMOWqEgh0iIgPAsiyqwmcQcGuJp18ind+ABcSC8ykPHkfY178rpezmc2KMj32SVH4zHflNYAxBt5aobwKWdfj9/8AYw9aOP9CRW0fUN+nda+BUU/AyxDOvsSM5khHRc3p9zMbkM+zMrCLqH49jvXsDF3SG0ZZbx+a2P3FkxeX9nl2ZyK4mb9oJ2iO6bbMtP7blpyX9igIeQ4xrO93qeOwvy7I4pe5IakMxXm6qZ23bDizg2GHjmV8zjiNjw4rtJkWP4PnmlzCmqtvvcjKfxG/7GRUaQc7LszK+hogT6rb8rmVZ1AYq2ZJuYkPHVo6KjQfAM4a3E9t5tXkL21JtRH0Bjq4cwYzKkYRcrUgkg4cCHiI9yGfzFPIFgpHSkWx7V2ZGLpvf7z4mzZlArKaM5q0tDBvdtQBgJpkhn8sx46Sp+318ERF5fyzLIhqYScR/NJ7JYFkWthU4KP2GfWMI+8Yc8L4Gu3R+K+2Ztwk6I7oFfBw7gM+pYGf6FYaFT8W1I/s8Xs7roCm9Ar9T2SXYAZ3L84bcOuLZtSTzW4n4+jeDJ+d1AD1ndjpWiJwX3+vUHhHLsphaUcfUijqyXgGLzhVa3mtK2ZG83baGLekGhgeG4bd9GGPoKCRpye5kWmwKtcHhdOTTdOTThN3SBZFd2wUM7fkUAHnP45H6lTyzbS05UyDk+MkW8ixv3sRRFbVccsQ8KgPdp9IkcinacikCjku1v0y/431lrM5HX/c5zCngIdKDcCxErLqMlsY4ZZXdP0BlUlls16Zi2P6nFlcOL+eE847lrz99is1vb6WqrhLHtUk0t9O2s53pJ05h2oJ9V3o/1LQmU6SyeaJBP2XBA3/jICLyflmWNWRWRznUZLxm8iZJ0C5dNNFnl5P+/9m77/g46gP//6+Z2b7SqkuukmXJ3RiMbbAxpgQwJRDKXWJSKAnchcQphLvv7+CAQJK7kEsBkhzkQi4JR3IBLgccSXACBkIwoRnjBhhjuclFsrpWWm2dmd8ftheEZLBsNUvvZx7ziHdmPp/5jBlLu+/9FLuBlN1yWIFHym4j43QSeN+8LAd5jBzibj1Ju6XfAw+vlQu4hww0bDdO0ByjD4Jy2Hy9BB0HFfjyWTrmI/yl4a80JBtxXAcHCFp+ZufNYEnxIkzDxGd68JoWaSfdaz2O6+ACPnN/z41Xm3byl/otFAdyyPO9O7lyys7wZms9j9du5Krqk7LPcXOyg782vs2bbbtI2Ck8pofJOaWcUjKNypz+Hzom8l4KPEQOweP1MOf0Wfzx58+S6EoSCL37wdx1Xeq272PClLFMmn10376ddP5ccvLDvPbUevbtaMC2HSKFOcw//wROOn8u/uDICQR2tbSx6p0dbKprJG3bBLwe5kwcw5IplZTkfvibVBERGX1MPBgYuNgYvbx13b9ii4lxmCusGIYHAwuHDL19VNx/ncOvry8ivml4zFxSTgv+9y3tbDtJXDdFYUArs0n/GRMo428mfIxd8T20p6OYmIwNllHsK8oGEn7Lx7TcCl5q3ki+N4L5vsCtNdVBxBNiUngsGcfh5YbteEyrW9gB4LM8jAtF2NRWz56udiaE82lOdvDQzr+yM9ZIkS+HkkAeSSfDG227qI018TflC5ka0QowMnAUeIh8gBPOnMXuzXt446+b8Qd95OSHSSfTtDd1UDy+gLOvOB2P9+j+GRmGwaxTpjH95Gpa6tqwMzZ5JRGC4ZH1TeKOplZ+/dJa9kU7KcnNITfgpyuV4s+btrGtoZWrFs+lJPfwJ5wTEZHRIeStwGcVk7KbCHjG9DietJsIeysJWKWHVV/QKiHsnUBHahteX8/fOwm7Cb9VRK63/1ekCFhjKAmeSn3sKWwngd8qwjAs0nYbKbuF/MCco1qFJ2U3k7ZbMA0vAc+EAQlt5NjjMT1Uhj/4eT4hfypbO3dT21XPmEAhAcuP7Tq0pqLE7ARnlJxIxBumMdFJQ7yDwl6GrADkegPUxzuoOxB4vNz0DjtjjUzOKcMyTAD8lpdcT4DaWCPP1G9kck4Zng/oqSL7Hc2kpQsWLMCyLJYvX87y5cv7uWXDm34KinwAf9DPhdctpWJWORv+8ibtTVE8Pg+LLzmJ48+YSWl5791hj4RlWT3m8RgpHMfljxs309QZY2pZcfYbhZDPS0EoSE1DM39+exufWNC/yzuKiMixz2OGKQqeQl3n70jaTfjM/d9Mu65Nwm4ATIqDiw97QlfDMCkLLaYzXUssvZegpwzTsHBdh6Tdgu3EGJ/7kQFZGtYwDMaGz8Fr5tIUf4mEvQ9cB68VoSx8NmXhj2CZ735rnnG6aE68QXNiI2mng4CniOLA8RT4Z2Aa704MmbKbaI49RUdqI7YTw8BDwDuBwuAZ5PrnaoiMfKiSQAEXjV/Ccw2vs7trHxnHxgXyfTl8pGgeJxXNBsAAMIwP/+BtGMQyCd5oq6XQl5MNO949bDAmWMDeeAs7Yo1U5/YMM6X/rF69mkhk5K7w9UEUeIh8CH/Qz/ylxzP3rNkku1J4fB58fs0+3Re1LW1sb2plbF6kx5suyzQpzgnzxp59LJ0VJz8UpKkzRkNHDNMwmFCQR45fS6CJiIxmJaHTcNw4zfGX6ExvYf/HLhefWcjY3I+S5z++T/UV+GcyKXIJezpX0pnevr8+18Fr5TE+51zGhBYPxG0A+ydGLQktpjC4gHhmL7g2fqukx3LDSbuNmvb/oT21BdPwYRl+4ol6WhJvUBw4gcmRy7BMP2m7lT3t/0VXuga/VYrXU4zrpkika9mb+TVj3CT5wUUDdj8ycowPlnJ5+VL2xBuIpmN4DQ8TQmWE3zOZaYE/xPhQHts6mol4e/ZGbkvFyfX6mRjKpzOdIGGnKeilJxXs7+mRcZ3sZKjywVx3/9bXMqOdAg+Rw2RZFqHc4IefKD1EE0mS6QzhQwQXOX4f9dEOdrdGeWrTFjbsqSea2L8aQlE4xMLKiZwxdTI+Lc8rIjIqmYaHsTkfpSCwgI7UZhw3gcfMIdc3A5+V3+f6DMOgJDiffN802lPvkHI68BgBIr6pBDyF/X8DvbAMHzneSb0ec12X2o4/0ZbcTMRX2a03R8bpojGxhpBnLONzzqAt/hLxdA1hb/W7Q1gMD0GzkkRmN01dT5Hjn43HzB2Eu5JjnWWYlIcO3dvCMkwWllaytaOJpkSMIn8o+2VWPJOiIdHBqaVVlAVziaa78JoWSSdNkJ7vAdOOjYFBwNQXWzJwFHiIyIALeDxYpkkqk8Hn6fljJ5nJYBgGf3xrMzub2yjJDVNVUoTjujR1xvjDxrfpTCS59IRZ6pYrIjKKBTylBDyHN1fH4fBauRQHh98koXG7gbbk2weG23TvVeoxQ3jNXBoTaygNnkg0uQaPmdfrfB1+ayxdmW3EUu+Qp8lQpZ/MK5pIcyLGn+ve4Z32BnyWh4xjY5omc4smclH5bAzDIM8XZmpkHKubt5LnDfV4D9eYaKfUH2FSTv8NERd5PwUeIjLgJhXnMzY/l/poJ+WF+d2Oua5LQzRGJOxnV2s7lcUF2VDENAzGRHIJeL28smM38yomUPG+8iIiIiNNPNNA2o0RNHv/pt1n5pGwm+jK1GE7XViHmG/k4LwmttM5YG2V0cc0DM4dP52Z+WW80VpHQ6KTsMfHjPwxTM0r7bZU7sLiqezobGBHrIGyQD4hj5+Uk6ExEcVxHZaUziBgqYfH4TEObH0tM7op8BCRAefzeDhz+mT+Z/VGdrW0MyaSg9djkUhnqGuPEgn68Xk9eDNWrz1A8gJ+9kU7eLu+UYGHiIiMeAYHJ3h06e0Di4sLmFhGANMMYDtxPGZez/NcG+CQgYjIkTIMg/KcQspzPngI2IRQEX9bvohn6jdSG2ukLt6KZZiUBfJYXDqDEwsqB6nFMlop8BCRQTGvYjyuC89sqqG2tR3HcfBYFhMK8jh39lR+98YmAodY4tcwDCzTpDOZGuRWi4iIDL4c7wR8Zj4Ju4Wgp7jH8aTdTMgzjpB3PBH/PBpjf8DnlvRYqSZp78NnFRH2TR+spov0MCmnlKurzmR3VzMd6Th+00t5uBi/pUUA+kKTlh4ZBR4iMigMw2BB5QSOmzCGbY3NdKXSRAIBKksK8FoWf92+k4Zo711uXdfFdhzygv5BbrWIiMjg81l5lARPZE/sGSzbj8/aP+Go67ok7WYcN0NZ6CRMw0N+cBGx1Ft0pbfgs8bgMSO4pEhmGsBwKApdqAlLZchZhklFWHN1yOBT4CEigyrg9TBzXFmP/XMnjOWNPfuIp9MEvd0T/5auOLl+PzPG9N9EdSIiIsPZhPBHyDhdNCXWEs/UYxgWjpvBZ0aYmHMOJYETAfBZRYyLXEVT7E90pt4ilWnEwIPfM47C0Onk+U8a4jsRERk6CjxEZFg4bvwYjp8wltd37SU/GKAgFMB2XZo6u0hlMiydOYVxefqGSkRERgfL9DM5ciklwRNpT9aQcWP4rDwKfNMJesZ0W/HC7yljXORKUvY+0k4rJj4C3omYhiaDlGOP67o0tnUS7Uzg93kYW5yHxzI/vKBILxR4iBwDUsk0NW/XseWNPcQ6ExQU5zLtuAlUVJViDcNfAKlMBtcFn8c67GVk/R4Pl8+fw5hIDq/V7mFvewemYVCam8Mpk8tZWDlRS9KKiMioYhgmEV8lEd+HT+xoGAZ+zxj89L6yi8ixoL65gz+v2cI7uxpIJNN4LIvxpXmcOmcysyaP0XtB6TMFHiLDXKwjwR/+51W2bNqLYYDP52HbO/WsX72NuSdXcdaFJ+DxWh9e0QBzXZfNext5rWYP2xtaAKgsLWR+9XimjSs5rF9QIZ+XC2ZP47QplTR1xvYvS5uXi88a+vsTERERkYHT2NrJQytfZ09jG6UFuZQW5JBK2+yqb+V/m9ZhO3M4fsr4oW7mEDJwtSxtnynwEBnmnvvTBt7euIvxk4rx+9+d26IzGmf1C1soKo0wf/GUIWzh/rDjr5t2sOL1t0lmMuSHgwCs3b6Ht3bVc97caSyZWXnYqXyO30eOX91wRUREREaLlzbuYHdDG9UTijDN/T2Yg36TirGF7Gpo49k1W5hWUUrAp9Vd5PANv77wIpLV3BBl8xt7KCqNdAs7AHIiQfwBD+tf3UY6nRmiFu63pyXKU+vfwef1UDWmmKLcMEW5YarGFOHzeli5YQt7mtsHrT2JVIYN2+p45vUtPLuuhnd2N5KxnUG7voiIiIgcvs54kje311OUF8qGHe81pjCXfS2dbN/bMgStGybcI9xGOfXwEBnGGurbiXUkKC7rfXWSvMIwLU0dtDXHKBmTN8ite9cbtfV0xFNUjy3qcawkEmZLXRMba+uZUJw/4G3Zua+V/3vxDfY0teM4+3/Kez0m1eOKuezU4yjIDQ14G0RERETk8MUTaZLpDPk5gV6Pez0WruvSlUgNcsvkWKfAQ+QY4LrQ62gQF4bD2Ly6lg78Xk+vQ1YMwyDo87K3JTrg7WiJdvHb59fT0NbJxJJ8vJ79c3/Ek2ne2rkPx3G5+twF2f0iIiIiMvSCAS9+r4d4Mk0o0HNYczpjYxhGr8dEPoiGtIgMY2PGF5ATCdDR1tXr8baWGMVluRQU5Qxyy7rzey1s59BDRjK2g8878Pnqhu17qWuOMqmssFuoEfR7KS8roGZvE1v2NA54O0RERETk8OUE/cyqHENzexdOL+8p61s6KCvMoXJc4RC0To5lCjxEhrGCohymz5lIS2MHiXj3LnzRti7SqQzHn1Q15Ku0TB1fgu04pG27x7G0bWM7DjPG9z4spz+9tXMfoYAP0+zZ08Tv9WA7LtvqRvHYTxEREZFhatFxk5hQms/WPc20dyawbYd4Ms3OuhYs0+Qj86ZowlLpMw1pERnmTj/3OOKxJG9v2I3juHi8FulUGn/Ax8IzpnP8gsqhbiIzJ5QyuayQrfXNTCjOJ3jgl1EilWZXUxuVZYXMnDjwgUcq42D1MtHVQaZpaPJSERERkWGopCCHy885kede38I7tY20RGN4LIuJYwpYcvxkZlaOGeomDinX3b/1tcxop8BDZJgLhf187PKFHDd/HzVv7aWrM0F+UQ5TZ41nwqTiw17qdUDb6PexbPHxPPrKG2ytbyZjO7iA1zKZNr6UyxbOJjQIy8yWl+Sxp7H31WAcx8V2XEoLhnb4j4iIiIj0bkxRLsvOnktjWyfRWBK/12JscR4eSwMT5Mgo8BA5Bni8FlNmjGPKjHFD3ZRDKsnL4ZqzTmLbvubsBKXjCiNMLisatF9Sx00ex+s1e2iJdlEYeXc1Ftd12dvcTnEkxIzyskFpi4iIiIj0nWEYlBbkUlqQO9RNGWYM+r5YwdB/MTrUFHiISL/xWCZTx5UwdVzJkFy/elwRZx5fzbPramiLxYmEAjiuSzQWJxIO8tGTZ1KQExyStomIiIiIyOBS4CEiI4ZhGHxkbjXjiiOsrdnLzn0teA2TJcdNZm71BMpL84e6iSIiIiIiMkgUeIjIiGIYBjPKy5hRXobtOBgYva7aIiIiIiJyzHAPbH0tM8op8BCREeuDVmwREREREZGRTYGHiIiIiIiIyDCmDh5H5pj4+vPee++lsrKSQCDAvHnzWLVq1SHPraur41Of+hTTpk3DNE2uv/76wWuoyBBra+5k1/ZG9u1tw3GcoW6OiIiIiIjIkBn2PTwefvhhrr/+eu69914WL17MT3/6U84//3zeeustysvLe5yfTCYpKSnh5ptv5q677hqCFosMvuaGKC/9eRNbNu0lEU/h8ViMLy9mwWlTh/VStiIiIiIiIgNl2PfwuPPOO7nmmmu49tprmTFjBnfffTcTJ07kJz/5Sa/nT5o0iR/+8IdceeWV5OXlDXJrRQZfS1MHj/33S6x5aSten4ey8QVE8sPs2LqP3z34Mm9v2DXUTRQRERERkaPhHuE2yg3rwCOVSrFmzRqWLl3abf/SpUt58cUX++06yWSSaDTabRM5Vrz+Yg17djZTUV1KXkEYr9dDKMfPxMoS0imbVU+/SSqZHupmioiIiIiIDKphHXg0NTVh2zZlZWXd9peVlVFfX99v17njjjvIy8vLbhMnTuy3ukUGUlcsyaaNu8gvCmNZPf85l47No7GunZ3bGoegdSIiIiIi0j+MI9xGt2EdeBxkGN3/Q7mu22Pf0bjppptob2/Pbrt2aQiAHBviXSmS8TTBoK/X416fB8dx6OpMDnLLREREREREhtawnrS0uLgYy7J69OZoaGjo0evjaPj9fvx+f7/VJzJYAkEvXp+HRCJNMNzzGc6kbQzDIBD0DkHrRERERESkX2hd2iMyrHt4+Hw+5s2bx8qVK7vtX7lyJaeccsoQtUpk+AjnBJh23Hjamjt7XYa2aV87RaURKqpK++2aruuSydi4rn6CioiIiIjI8DWse3gA3HDDDVxxxRXMnz+fRYsWcd9991FbW8t1110H7B+OsmfPHh544IFsmXXr1gHQ2dlJY2Mj69atw+fzMXPmzKG4BZEBNW/RFHZsaaB2awPFY/IJ5/hJpTI07YtiGgaLzpxB4BBDXvoimUzzxlt72LBxF21tXQQCXo6bNYHjZk8gLy/UD3ciIiIiIiLSf4Z94LFs2TKam5v55je/SV1dHbNnz2bFihVUVFQAUFdXR21tbbcyc+fOzf55zZo1/OY3v6GiooIdO3YMZtNFBkXJmDwu+dQiVq18g51bG2iqb8fjtSgbl89JS6Yxa275UV8jHk/xuz+s5a239+L1WIRCftrb4zz59Bu8uWkvl10yj5Li3H64GxEREREReT+NaDkyhqt+6T1Eo1Hy8vJob28nEokMdXNEDovruuzb20ZnNI7P72HsxEK83v7JNJ9/YTNPP/Mm48YVEPC/Ox+IbTvsqG1ixvRxfPITJ/frZMIiIiIiIsPZYHxuPHiNb7/wRwI54T6VTXTG+OdTzx/Vn2uHfQ8PETk8hmEwZnwBjC/o13qTyTTrN+wiJxzoFnYAWJbJmNI8duxsYm9dG+PH9e+1RUREREQEdfE4Qgo8jkHxWIJt63fS2dqJL+hj0uxyCkrzhrpZMkK1t8fp6EhQkN/7PB2hkI+GxigtrTEFHiIiIiIiMmwo8DjGvPXyOzz30F9p2tMC7B/GkFuYw7ylx3PqJSdheawhbqGMNJZlYpoGtt1zFRggu1qLZQ7rRZ9ERERERGSUUeBxDNm2YScrfvY06WSGCVPH4fFaOI5L2742nv+fF7E8JqdecvJQN1NGmIKCMOPHFbB9RyM5OYEex1tbu8jLCzFxQuEQtE5EREREZDQwDmx9LTO66SvZY4Truqx+ch1d0TjjqsrwePf35DBNg8KxBYQiIV5fuYFYe2yIWyojjWkazJ83CY/HZF9DO46zv0eH67q0t3cR7Ygz9/hycnN7hiEiIiIiIiJDRYHHMaKtMcqut/dQNLag15UwCscW0NYQpfbtvUPQOhnppk8by7lLj8Pr9bCjtontOxrZvqOReCLN4kVTOHXx1KFuooiIiIiISDca0nKMyKQy2Bkbj6/3/2SWZeK6LplUZpBbJqOBYRjMmzuJ6qoyamr20dmZwOf3MrmyhNKSXC1HKyIiIiIiw44Cj2NEbmEOOflhOttiBHuZRyHemcAX8JJXMrDrKzuOw+536mitb8PymIyfOk4rxIwieZEg806cNNTNEBERERER+VAKPI4RgZCf2adO59kHXyCvOIIv4M0ecxyHfTsamHzCJCZMHTtgbWiobWTlr56ndtNu0ok0LpBbEOa402Zy+scX4Qv4BuzaIiIiIiIio5Z7YOtrmVFOgccxZP65J7Cnpp53XttKKCdIKBIklUgTbY5SNqmUsz61BHOAlgZta2zn//79T9Rt3ceYylKCOQEcx6W9McqL/7eaVDLNBdecpaENIiIiIiIiw8iCBQuwLIvly5ezfPnyoW7OoFLgcQwJR0Jc+uXz2fCXt1j/l7fobIvhDXg49W8WcsIZsygeXzRg137jhbfZW1NPxayJWNb+UMU0DQrK8rC8Fm+s2sSJHzmOsZPLBqwNIiIiIiIi0jerV68mEhnYqQ+GKwUex5hgTpCTPzqP+eeeQCKWwBvw4fN7P7zgUXBdl7de3Ew4EsqGHe+VWxCmeU8z29+oVeAhIiIiIiIiw4ICj2OU5bEI54UH5VqO45DoSuIN9B6sGIaBYRikE+lBaY+IiIiIiMioojk8jsjATPggI4plWRSNKyTW3tXrccd2cN39K8mIiIiIiIiIDAcKPOSwzD51Oo7tEO9M9DjWuKuZ/LII1SdWDkHLRERERERERHrSkBY5LDMWTmXbhp1s+MtbBMMBcotysDMOrfva8Ad9nPGJxUQKc4e6mSIiIiIiIiKAAg85TD6/l4/+3dmMm1zG+ufepL2pA9MymTq/inlnz6HqhElD3UQRERERERGRLAUecth8AR8nf3QeJ54zh46WTiyPRaQoF8MwhrppIiIiIiIiI5dr7N/6WmaUU+Ahfeb1eSkcUzDUzRARERERERE5JE1aKiIiIiIiIiIjjgIPERERERERERlxFHiIiIiIiIiIyIijOTxEREREREREhjP3wNbXMqOceniIiIiIiIiIyIijwENERERERERERhwFHiIiIiIiIiIy4ijwEBEREREREZERR5OWioiIiIiIiAxnmrT0iKiHh4iIiIiIiIgMqcmTJ9Pc3Nxjf1tbG5MnTz6iOhV4iIiIiIiIiMiQ2rFjB7Zt99ifTCbZs2fPEdWpIS0io0Q6lWbbhloadzVhGAbjqsoonzEBy2MNddNERERERGSU+t3vfpf985NPPkleXl72tW3bPPPMM0yaNOmI6lbgITIK1G3fx59+/iy7t9Th2A64Lh6/l0mzJnLBtWdRUJY/1E0UEREREZFR6JJLLgHAMAyuuuqqbse8Xi+TJk3iBz/4wRHVrcBDZISLtnTw+588Rd22fYyvHosv4AUg0ZVky5pt/D5jc/k/XYIv4BviloqIiIiISK9G8KSljuMAUFlZyerVqykuLu63ujWHh8gIt/nVGvZurad8xoRs2AEQCPmZMG0cO9/cTc26HUPXQBERERERGfW2b9/er2EHqIdHr1x3fxQWjUaHuCUiR2/9i2/gWg6pTAIyPY/HU3HeWr2JCTPHDH7jRERERESOUQc/Lx78/DiwjANbX8scW5555hmeeeYZGhoasj0/DvrFL37R5/oUePSio6MDgIkTJw5xS0QGyePAV4a6ESIiIiIix56Ojo5uE23KkfnGN77BN7/5TebPn8/YsWMxjKMPbBR49GLcuHHs2rWL3NzcfvlLFolGo0ycOJFdu3YRiUSGujkyCuiZk8GmZ04Gm545GWx65uT9XNelo6ODcePGDfi1DMDoY0eSY+2T7H/8x39w//33c8UVV/RbnQo8emGaJhMmTBjqZsgIFIlE9AtSBpWeORlseuZksOmZk8GmZ07eSz07+k8qleKUU07p1zo1aamIiIiIiIiIDKlrr72W3/zmN/1ap3p4iIiIiIiIiMiQSiQS3HfffTz99NPMmTMHr9fb7fidd97Z5zoVeIgMAr/fz2233Ybf7x/qpsgooWdOBpueORlseuZksOmZExlYGzZs4IQTTgDgjTfe6HbsSOfWNNzBWUNHRERERERERPogGo2Sl5fHHc88RSAc7lPZRCzGTWctpb29fdTOO6M5PERERERERERkxNGQFhEREREREREZUmeeeeYHDl159tln+1ynAg8RERERERGR4cw9sPW1zDHk4PwdB6XTadatW8cbb7zBVVdddUR1KvAQERERERERkSF111139br/9ttvp7Oz84jq1BweIkfg3nvvpbKykkAgwLx581i1atUhz3300Uc555xzKCkpIRKJsGjRIp588ske57W1tbF8+XLGjh1LIBBgxowZrFixYiBvQ44hA/HM3X333UybNo1gMMjEiRP52te+RiKRGMjbkGNIX565F154gcWLF1NUVEQwGGT69Om9vml55JFHmDlzJn6/n5kzZ/LYY48N5C3IMaa/n7mf/exnLFmyhIKCAgoKCjj77LN59dVXB/o25BgyED/nDnrooYcwDINLLrlkAFouMrp85jOf4Re/+MURlVXgIdJHDz/8MNdffz0333wza9euZcmSJZx//vnU1tb2ev7zzz/POeecw4oVK1izZg1nnnkmF110EWvXrs2ek0qlOOecc9ixYwf/+7//y+bNm/nZz37G+PHjB+u2ZBgbiGfuv//7v7nxxhu57bbb2LRpEz//+c95+OGHuemmmwbrtmQY6+szFw6H+dKXvsTzzz/Ppk2buOWWW7jlllu47777sue89NJLLFu2jCuuuIL169dzxRVX8IlPfIJXXnllsG5LhrGBeOaee+45PvnJT/LnP/+Zl156ifLycpYuXcqePXsG67ZkGBuIZ+6gnTt38o//+I8sWbJkoG9DZFR46aWXCAQCR1RWy9KK9NHJJ5/MiSeeyE9+8pPsvhkzZnDJJZdwxx13HFYds2bNYtmyZXz9618H4D/+4z/43ve+x9tvv43X6x2QdsuxayCeuS996Uts2rSJZ555JnvOP/zDP/Dqq69+4DdcMjr0xzN32WWXEQ6H+dWvfgXAsmXLiEaj/PGPf8yec95551FQUMCDDz7Yvzcgx5yBeObez7ZtCgoK+Pd//3euvPLKfmm3HLsG6pmzbZvTTz+dz372s6xatYq2tjb+7//+r7+bL6NIdlnalUe4LO05x86ytJdddlm3167rUldXx2uvvcatt97Kbbfd1uc61cNDpA9SqRRr1qxh6dKl3fYvXbqUF1988bDqcByHjo4OCgsLs/t+97vfsWjRIpYvX05ZWRmzZ8/m29/+NrZt92v75dgzUM/cqaeeypo1a7Ldu7dt28aKFSv46Ec/2n+Nl2NSfzxza9eu5cUXX+T000/P7nvppZd61Hnuuecedp0ycg3UM/d+XV1dpNPpbj8LZXQayGfum9/8JiUlJVxzzTX91l6R0SIvL6/bVlhYyBlnnMGKFSuOKOwATVoq0idNTU3Ytk1ZWVm3/WVlZdTX1x9WHT/4wQ+IxWJ84hOfyO7btm0bzz77LJ/+9KdZsWIFW7ZsYfny5WQymew38jI6DdQzd/nll9PY2Mipp56K67pkMhm+8IUvcOONN/Zr++XYczTP3IQJE2hsbCSTyXD77bdz7bXXZo/V19cf1XMsI9dAPXPvd+ONNzJ+/HjOPvvsfmm3HLsG6pn761//ys9//nPWrVs3EM0WGfF++ctf9nudCjxEjsD714d2XfcD14w+6MEHH+T222/n8ccfp7S0NLvfcRxKS0u57777sCyLefPmsXfvXr73ve8p8BCg/5+55557jn/913/l3nvv5eSTT6ampoavfvWrjB07lltvvbXf2y/HniN55latWkVnZycvv/wyN954I9XV1Xzyk588qjpl9BiIZ+6g7373uzz44IM899xzRzwOXEae/nzmOjo6+MxnPsPPfvYziouLB7LZIiPemjVr2LRpE4ZhMHPmTObOnXvEdSnwEOmD4uJiLMvqkf43NDT0+Jbg/R5++GGuueYafvvb3/b4dmns2LF4vV4sy8rumzFjBvX19aRSKXw+X//dhBxTBuqZu/XWW7niiiuy30wdd9xxxGIx/v7v/56bb74Z09SIx9HqaJ65yspKYP/ztG/fPm6//fbsh88xY8YcUZ0y8g3UM3fQ97//fb797W/z9NNPM2fOnP5tvByTBuKZ27p1Kzt27OCiiy7Knus4DgAej4fNmzdTVVXVz3ciMrI0NDRw+eWX89xzz5Gfn4/rurS3t3PmmWfy0EMPUVJS0uc69Y5WpA98Ph/z5s1j5cqV3favXLmSU0455ZDlHnzwQa6++mp+85vf9DpHwuLFi6mpqcn+YgR45513GDt2rMKOUW6gnrmurq4eoYZlWbiui+ayHt2O9Jl7P9d1SSaT2deLFi3qUedTTz3VpzplZBqoZw7ge9/7Ht/61rf405/+xPz58/ulvXLsG4hnbvr06WzcuJF169Zlt4997GOceeaZrFu3jokTJ/brPcjoY7hHth1LvvzlLxONRnnzzTdpaWmhtbWVN954g2g0yle+8pUjqlM9PET66IYbbuCKK65g/vz5LFq0iPvuu4/a2lquu+46AG666Sb27NnDAw88AOz/4HnllVfywx/+kIULF2a/TQgGg+Tl5QHwhS98gR//+Md89atf5ctf/jJbtmzh29/+9hH/w5aRZSCeuYsuuog777yTuXPnZoe03HrrrXzsYx/r1tNIRqe+PnP33HMP5eXlTJ8+HYAXXniB73//+3z5y1/O1vnVr36V0047jX/7t3/j4osv5vHHH+fpp5/mhRdeGPwblGFnIJ657373u9x666385je/YdKkSdmfhTk5OeTk5AzyHcpw09/PXCAQYPbs2d2ukZ+fD9Bjv4j07k9/+hNPP/00M2bMyO6bOXMm99xzT49Jhg+XAg+RPlq2bBnNzc1885vfpK6ujtmzZ7NixQoqKioAqKur67aG+09/+lMymQzLly9n+fLl2f1XXXUV999/PwATJ07kqaee4mtf+xpz5sxh/PjxfPWrX+Wf/umfBvXeZHgaiGfulltuwTAMbrnlFvbs2UNJSQkXXXQR//qv/zqo9ybDU1+fOcdxuOmmm9i+fTsej4eqqiq+853v8PnPfz57zimnnMJDDz3ELbfcwq233kpVVRUPP/wwJ5988qDfnww/A/HM3XvvvaRSKf72b/+227Vuu+02br/99kG5Lxm+BuKZE5Gj4zgOXq+3x36v19utJ3xfGK76LouIiIiIiIgMO9FolLy8PL7z1FMEwuE+lU3EYty4dCnt7e1EIpEBamH/ufjii2lra+PBBx9k3LhxAOzZs4dPf/rTFBQU8Nhjj/W5Ts3hISIiIiIiIiJD6t///d/p6Ohg0qRJVFVVUV1dTWVlJR0dHfz4xz8+ojo1pEVERERERERkOHMPbH0tcwyZOHEir7/+OitXruTtt9/GdV1mzpzZY7XBvlAPDxEREREREREZEs8++ywzZ84kGo0CcM455/DlL3+Zr3zlKyxYsIBZs2axatWqI6pbgYeIiIiIiIiIDIm7776bv/u7v+t1npG8vDw+//nPc+eddx5R3Qo8RERERERERGRIrF+/nvPOO++Qx5cuXcqaNWuOqG4FHiIiIiIiIiIyJPbt29frcrQHeTweGhsbj6huBR4iIiIiIiIiw5lrHNl2DBg/fjwbN2485PENGzYwduzYI6pbgYeIiIiIiIiIDIkLLriAr3/96yQSiR7H4vE4t912GxdeeOER1a1laUVERERERERkSNxyyy08+uijTJ06lS996UtMmzYNwzDYtGkT99xzD7Ztc/PNNx9R3Qo8RERERERERGRIlJWV8eKLL/KFL3yBm266Cdd1ATAMg3PPPZd7772XsrKyI6pbgYeIiIiIiIiIDJmKigpWrFhBa2srNTU1uK7LlClTKCgoOKp6FXiIiIiIiIiIDGOGu3/ra5ljTUFBAQsWLOi3+jRpqYiIiIiIiIiMOAo8RERERERERGTEUeAhIiIiIiIiIiOO5vAQERERERERGc7cA1tfy4xyCjx64TgOe/fuJTc3F8Mwhro5IiIiIiIiMsy4rktHRwfjxo3DNDV4YjhS4NGLvXv3MnHixKFuhoiIiIiIiAxzu3btYsKECUPdDOmFAo9e5ObmAvsf3EgkMsStERERERlcXV1d7Nixg23btnXbdu3axWuvvYZlWQB87nOf45FHHulW1ufzUVlZyeTJk/nJT35CQUEBAO3t7YTDYTwevf0UkZEhGo0yceLE7OdHGX70G6cXB4exRCIRBR4iIiIyIkWjUbZu3UpNTQ2XXXZZNsS47rrr+OlPf3rIcu3t7UyaNAmAv/3bv6W6urrbdqiu3XpPJSIjlaZBGL4UeIiIiIiMcC+88ALPPvtsNuCoqamhoaEhe3znzp2Ul5cDUFRUBEB+fj5TpkyhqqqqW6AxZsyYbLnLL7+cyy+/fHBvRkRkNNKkpUdEgYeIiIjIMcp1XRoaGroFGTU1NWzZsoXHH3+ccePGAfDEE0/wne98p0f50tJSqqqq6OzszO772te+xg033JANPkRERI5VCjxEREREhjHHcairq6OmpoZ58+aRk5MDwF133cXXv/71bmHFe23ZsiUbeCxZsoSGhgaqqqqYMmUK1dXVVFVV9TrMpLi4eOBuRkREZBAp8BAREREZJjZv3txj6Mm2bduIx+MArFq1ilNPPRWAcDhMZ2cnhmFQXl7eY+jJ7Nmzs/VecMEFXHDBBUNyTyIi0j80U0jfKfAQERERGQSpVIqdO3d2G3pSU1PDt771LU488UQA/vznP/PFL36xR1nLsqisrKSrqyu777LLLuO0006jsrISv98/aPchIiJyrFDgISIiItJP4vE427ZtY+zYsRQWFgLwu9/9juuvv57a2lps2+5RZtmyZdnA4/jjj+fCCy/s1lOjqqqKiooKvF5vt3LFxcUafiIiIsPOpZdeynPPPcdZZ53F//7v/w5pWxR4iIiIiPRRQ0MDq1at6tFbY/fu3QD8+te/5tOf/jQAgUCA7du3AxAKhboFGdXV1SxevDhb76JFi/j9738/+DckIiLST77yla/wuc99jv/6r/8a6qYo8BARERF5v9bWVmpqarrNpfGZz3yGs88+G4A1a9bwt3/7t72WzcvLo6OjI/v65JNP5vnnn88u6WoYGoUtIiIj15lnnslzzz031M0AFHiIyPs4jovjOFiWqTflIjJiua5LY2MjlmVll19du3Yt1113HTU1NbS0tPQoU1VVlQ08pk2bxsKFC7sNPTm4FRYWdvv5mZeXx5IlSwbnxkREZGRyD2x9LdNHzz//PN/73vdYs2YNdXV1PPbYY1xyySXdzrn33nv53ve+R11dHbNmzeLuu+8etr/nFHiICACNLZ2s37SbN96pI5OxKSnK5YQZ45k1ZSwejzXUzRMROSJdXV289tprPYae1NTU0NHRwb/8y79w8803AxAMBnn11VezZceOHdstyDjrrLOyxyZPnsxLL7006PcjIiIykGKxGMcffzyf/exn+Zu/+Zsexx9++GGuv/567r33XhYvXsxPf/pTzj//fN566y3Ky8uHoMUfTIGHiLBzTwuPPrmOhuYOcsMBPB6TrbWNbNnRwI7dzXz0zNkKPURkWLJtm927d3cLMhYtWsRll10GwI4dOzj99NN7LWsYBk1NTdnXkydP5pFHHsnOrxEOhwflHkRERAZSNBrt9trv9x9yda/zzz+f888//5B13XnnnVxzzTVce+21ANx99908+eST/OQnP+GOO+7ov0b3EwUeIqNcOm3zx7+8SXNbjMnlxZgHumEX5Yfp7EqyemMtE8YWMG/28EtsRWR0SKfTdHV1kZeXB0B9fT3XXnstNTU1bN++nVQq1e38a665Jht4TJ48ORtgHJwk9OBWWVlJIBDIlvP5fNlyIiIiI8XEiRO7vb7tttu4/fbb+1xPKpVizZo13Hjjjd32L126lBdffPFomjhghjzw6Mv4nxdeeIF/+qd/4u2336arq4uKigo+//nP87Wvfa3beY888gi33norW7dupaqqin/913/l0ksvHYzbETnmbK1tYk99G+PL8rJhx0E5IT+t7V2se2s3c2dOxDQ1p4eIDAzbtnnnnXd6HXqyc+dOPve5z3HfffcBkJubyxNPPJEt6/P5mDx5cjbQeG+PjkAgwJYtWwb9fkRERPrVUczhsWvXLiKRSHb3oXp3fJimpiZs26asrKzb/rKyMurr67Ovzz33XF5//XVisRgTJkzgscceY8GCBUd0zaM1pIFHX8f/hMNhvvSlLzFnzhzC4TAvvPACn//85wmHw/z93/89AC+99BLLli3jW9/6FpdeeimPPfYYn/jEJ3jhhRc4+eSTB/sWRYa9lvYYjuPi8/b+4yCSE6CxpZN4Mk046Bvk1onISBKLxbKrnmzdupVx48Zll26Nx+PMnDnzkGVra2uzfw6Hw/zyl79kwoQJTJkyhQkTJmBZGnYnIiLSm0gk0i3wOFrvX9jAdd1u+5588sl+u9bRGtLAo6/jf+bOncvcuXOzrydNmsSjjz7KqlWrsoHH3XffzTnnnMNNN90EwE033cRf/vIX7r77bh588MFBuCuRY4tlmbi4PX5QHZSxHSzTwKPeHSJyGFKpFD7f/nDUtm3+7u/+LttTo66urtu5Z599djbwyMnJYerUqYTD4W7DTqqqqpgyZQpjx47tVvbqq68elPsRERGR/YqLi7Esq1tvDoCGhoYevT6GiyELPPpj/M/atWt58cUX+Zd/+ZfsvpdeeqnHEJdzzz2Xu++++5D1JJNJkslk9vX7J3URGcnKxxYQCvjoiCWJ5AS6HXNdl7ZonJOOr8Dv9w5RC0VkuGlqaup16ElNTQ3z5s3LfrNjWRZPPPEEDQ0N2bKFhYXZIOP9PS83b948qPchIiIih8/n8zFv3jxWrlzZbcqIlStXcvHFFw9hyw5tyAKPwx3/05sJEybQ2NhIJpPh9ttvz/YQgf0TmfW1zjvuuINvfOMbR3AXIse+MSURZk0dy6vrd2IaBuGQD8MwsG2HvQ3tRMJ+5s6c+OEViciI4bou9fX12aEnhmFw1VVXZY9Pnz6d5ubmXsu+f76M73znOwSDwWzIUVBQMKBtFxERkSPX2dlJTU1N9vX27dtZt24dhYWFlJeXc8MNN3DFFVcwf/58Fi1axH333UdtbS3XXXfdELb60IZ80tIPG//Tm1WrVtHZ2cnLL7/MjTfeSHV1NZ/85CePuM6bbrqJG264Ifs6Go32mMlWZKQyDIPzTpuF47i8uaWOfU1RDMPABUoKczjvtJlUjC8c6maKSD97/+/Gb33rW6xduzY7x0ZXV1f22JQpU7oFHlOmTMmGGO8denLw/9/rs5/97MDfjIiIyAhnuPu3vpbpq9dee40zzzwz+/rg5+SrrrqK+++/n2XLltHc3Mw3v/lN6urqmD17NitWrKCioqLvFxsEQxZ4HM34n8rKSgCOO+449u3bx+23354NPMaMGdPnOj9oHWKR0SAY8HLZuSdw8vGT2L67mUzGIT8SZGplKeGQ/m2IHKsymQw7d+7MDjc5GGbU1NTg8/lYt25d9tzf/e53vPbaa9nXpmlSUVFBdXU1M2bM6FbvCy+8oElCRURERqAzzjgD1/3gpOSLX/wiX/ziFwepRUdnyAKP/hr/47put/k3Fi1axMqVK7vN4/HUU09xyimn9E/DRUYowzCYMLaACWPV3VzkWJJMJtm+fTtbt26lqampW0+MU045hdWrV/dazuv1Ytt2NrhYvnw50Wg022Nj0qRJ2clH309hh4iIiBwLhnRIy4eN/7npppvYs2cPDzzwAAD33HMP5eXlTJ8+Hdj/DdP3v/99vvzlL2fr/OpXv8ppp53Gv/3bv3HxxRfz+OOP8/TTT/PCCy8M/g2KiIj0s1/96lf89a9/zfbUqK2tzX4T4/P5+MxnPpMNJCorK9m4cSOTJ09mypQpPYafmKaZrVernoiIiMhIM6SBx4eN/6mrq6O2tjZ7vuM43HTTTWzfvh2Px0NVVRXf+c53+PznP58955RTTuGhhx7illtu4dZbb6WqqoqHH364x0zwIiIiw0k0Gu0x7KSmpoY9e/bwzjvvZMOJxx9/nEceeaRb2ZycnGyYEYvFiEQiAPz85z8nFAp1CzZERERERgvD/bABOqNQNBolLy+P9vb27JtGERGRo+G6Li0tLWzdupWtW7dy+eWXZycNveqqq7K9GXuze/duxo8fD8BDDz3EW2+9RVVVFVVVVUyZMoXS0tIPnfBbRERE+tdgfG48eI3vPr6SYDjcp7LxWIz/7+JzRvXn2iFfpUVERGQk+vOf/8yzzz7brbdGW1tb9viZZ57JmDFjALITa5eWlnYbdnJwGEpJSUm23OWXXz6o9yEiIiJyrFLgISIi0geO47Bnz55eh5889dRTlJaWAvDEE0/wgx/8oEf58ePHU1VVRUdHRzbwuPHGG7nllltG7bcvIiIiMnAWLFiAZVksX76c5cuXD3VzBpUCDxERkffJZDLs2rWLmpoaTjnlFMIHupDecccdfOMb3+i2Oth71dTUZAOPM844g1gs1m2S0MmTJxMKhXqUKywsHLibERERkVFt9erVo/ZLFQUeIiIyqr355ps888wz3XpsbN++nXQ6DcDLL7+cnfg6EomQTCbxeDxMmjQpO/zk4DZjxoxsvRdeeCEXXnjhkNyTiIiIiCjwEBGRESwej7Nt27Zuw05qamr4wQ9+wJw5cwB45pln+OpXv9qjrN/vp6qqing8nt23bNkyzj//fMrLy/F49CtUREREBol7YOtrmVFO79ZEROSY1tHRwdatWykvL88ODfntb3/LDTfcwO7du3st8+abb2YDjxNPPJFLL700O0HowW38+PE9lnMtLi6muLh4YG9IRERERPqFAg8RETkm7N27l7/85S/ZXhoHh5/s27cP2L9c67JlywAIBoPZsCMvLy8bZhycS+OUU07J1nvqqady6qmnDv4NiYiIiBwm48DW1zKjnQIPEREZcq7r0tjY2GPoybXXXstHPvIRYP+EW5/61Kd6LV9SUkJXV1f29amnnsrLL79MdXU1hYWFGIZ+5YuIiIiMNgo8RERkUDiOQ11dHX6/Pzss5NVXX+Xzn/88W7dupaOjo0eZOXPmZAOP6dOns2TJkm7DTg722MjLy+tWLj8/PzvRqIiIiIiMTgo8RESkX3V2dvLKK6/06K2xdetW4vE43/3ud/l//+//AfuHnqxbtw4AwzAoLy/PhhhVVVWcffbZ2XqnTZvG888/PxS3JCIiIjK0NGnpEVHgISIifZJOp9mxY0e3IOP000/n0ksvBWDr1q3dgor3siyL1tbW7OspU6bw+9//nurqaiorK/H7/YNyDyIiIiIy8inwEBGRHhKJBPF4nIKCAgB2797NNddcQ01NDTt37sS27W7nJ5PJbOBRVVXFtGnTuq16crDXRkVFBV6vN1suEAhw4YUXDt6NiYiIiMioocBDRGSUymQyvPnmm91WPDm47d69my9+8Yv8+7//OwC5ubk89dRT2bLBYLDbXBqnn3569lhOTg5vv/32oN+PiIiIiMh7KfAQERnB2trauoUZkyZN4tOf/jQAHR0dnHDCCYcse3BZV9i/tOsDDzxARUUFU6ZMYcyYMVr5RERERGSwaA6PI6LAQ0TkGOa6LolEgmAwCEAqleJzn/tcNuBobm7udv7555+fDTwKCgqYOnUqBQUF3YaeHByKUlRU1K3sFVdcMTg3JSIiIiL9ZsGCBViWxfLly1m+fPlQN2dQKfAQERnmXNelrq6u2ySh7x1+smTJEv7whz8A4PP5eOKJJ2hra8uWHzNmTDbMWLhwYbe6N2/ePJi3IiIiIiKDbPXq1UQikaFuxpBQ4CEiMgw4jsPu3buzIYbP5+Pqq6/OHp8+fTodHR29lq2pqen2+q677iISiVBVVUVVVRU5OTkD2XQRERERkWFJgYeIyCBxXbfbvBc333wzGzZsoKamhu3bt5NMJrPHZs6cmQ08DMNg2rRptLS0ZFc7ee9WWVnZ7TrvDUpEREREREYrBR4iIv0omUyyffv2bkNODg5Dyc3N5fXXX8+e+8QTT7B+/frsa6/Xy+TJk6murmbWrFnd6n3llVcwTXPQ7kNEREREhg/D3b/1tcxop8BDRKSPYrEYW7duZevWrbS1tfHZz342e+ykk05iw4YNvZYLBoPdenl87WtfIx6PZ3tqTJw4Ecuyei2rsENEREREpG8UeIiIfIj//M//5MUXX8z21qirq8seC4fDXH311dkQo6qqim3btjFlypRuw08Orn7yXlddddWg3oeIiIiIyGiiwENERiXXdWlubu6x4klNTQ0NDQ3U1NRkQ4zf//73/O53v+tWvrCwMBtmxONxQqEQAL/+9a8JBoPd5uoQEREREZHBp8BDREYs13XZt29fdlLQz3zmM9kgYtmyZfz2t789ZNmmpiZKSkoAuPzyy5k/f3633hqFhYW9ljsYfIiIiIiIyNBS4CEiI8aTTz7Js88+222i0Fgslj1+wQUXUFRUBMD48eOz///+VU+qqqrIz8/PlvvkJz85qPchIiIiItKNe2Dra5lRToGHiAx7mUyG2traXlc+WbVqVba3xRNPPMGPf/zjbmVN06S8vJzq6mo6OjqygcfXv/51vv3tbxMMBgf9fkREREREZOAp8BCRYSGZTLJjxw5qamo488wzs0NDbrvtNr797W+TyWR6Lbd169Zs4HH22WcDdOutMWnSJHw+X49yBQUFA3QnIiIiIiIyHCjwEJFBt27dOp5++uluvTVqa2tx3f397tasWcOJJ54IQH5+PplMBr/f323Vk4NDT6ZNm5at92Mf+xgf+9jHhuSeRERERERkeFHgISL9KhqNsnXr1h6rn9xzzz3MmjULgGeeeYb/9//+X4+y4XA4u+rJQVdeeSUf//jHGTduHKZpDtp9iIiIiIjIsU2Bh4j0WUtLCzU1NVRXV2eHk/z617/mH/7hH2hoaOi1zKZNm7KBx4IFC1i2bBlTpkzp1mOjtLS0x3KuB+fcEBERERER6QsFHiJySLt27cquevLeHhutra0APPLII1x22WXA/t4ZB8OOkpISqqqqugUaixYtytZ72mmncdpppw3+DYmIiIiIyKihwENklHIch7179/YIM770pS9x+umnA/DKK69w9dVX91p+3LhxJBKJ7OszzjiD119/naqqKiKRyGDcgoiIiIjIqGAARh+XmT3Yb3rBggVYlsXy5ctZvnx5fzdtWFPgITKC2bZNbW0tubm5FBcXA/DCCy9w3XXXsXXr1m6BxUGLFi3KBh6zZs3irLPO6jZJaHV1NZMnTyYcDncrV1BQoJVPRERERESGmdWrV4/aLyQVeIiMAO3t7bz44ovdJgmtqalh+/btpNNp7rrrLq6//noAQqEQb775JgCWZVFZWdkt0PjIRz6SrXfGjBk8/fTTQ3FLIiIiIiIiR0WBh8gxIB6Ps23btmyQsXXrVpYuXcoll1wCwJYtW7jgggt6Levz+YhGo9nX06dP549//CNTpkyhvLwcr9c7GLcgIiIiIiIyqBR4iAwTHR0dpFKp7KokO3bs4LOf/Sw1NTXs3r27x/kejycbeFRVVTFnzpzskJP3Thg6fvx4LMvKlguFQpx33nmDck8iIiIiIiJDRYGHyCBKpVKsX7++2yShB7d9+/Zx/fXXc9dddwGQm5vLc889ly0biUS6hRlnnHFG9lhBQQHr168f5LsREREREZFB4R7Y+lpmlFPgIdKPXNelqampW5AxdepUPv3pTwPQ1tbGSSeddMjy9fX12T8XFhby3//930yePJnq6mqKioowDOOQZUVERERERORdCjxE+sh1XWKxGDk5OQB0dXVx9dVXZwOOjo6Obud/7GMfywYeJSUlTJ06lbKysuzwk/dOGJqfn58tZxgGn/rUpwbtvkREREREREYSBR4ivXBdl9ra2h7DTg5OGHruuefy2GOPARAMBlmxYgWxWCxbfuLEidkgY9GiRdn9hmGwefPmQb8fERERERGR0UaBh4xa6XSanTt3ZoOMcDjMZz/72ezxGTNmEI/Hey27bdu27J8Nw+Dee++loKCA6upqKisrCQQCA95+EREREREROTQFHjKi2bbdbYWSf/zHf+SNN96gpqaGHTt2YNt29tgJJ5yQDTwMw2DmzJl0dnb2GHYyZcoUKioqul3nyiuvHJwbEhERERGR0UeTlh4RBR5yzIvFYr2uelJTU0NZWRmrV6/OnvvHP/6Rt956K/s6GAxmg4w5c+Z0q3f16tWaJFREREREROQYpcBDjgltbW3ZUKOjo4Nrr702e2z+/Pm8/fbbvZZrb2/Hdd1scPFP//RPZDKZbI+NsWPHHjLUUNghIiIiIiLDgXFg62uZ0U6BhwxL99xzDy+99FJ2ktCmpqbssby8PK655ppsIFFdXU1jY2O2p8Z7h6BUV1d3q1dDT0REREREREaHIQ887r33Xr73ve9RV1fHrFmzuPvuu1myZEmv5z766KP85Cc/Yd26dSSTSWbNmsXtt9/Oueeemz3n/vvv7zbx5EHxeFwTSQ4x13Wpr6/vseJJTU0Nra2tbN26NXvuE088wR//+Mdu5cvKyrIhRiqVwu/3A/C///u/2T+LiIiIiIiIwBAHHg8//DDXX3899957L4sXL+anP/0p559/Pm+99Rbl5eU9zn/++ec555xz+Pa3v01+fj6//OUvueiii3jllVeYO3du9rxIJNJj6U+FHYPDcRx2795NTU0NtbW1XH311dljH/vYx/jDH/5wyLItLS0UFhYCcMUVV3D66adnA47JkyeTm5vbazmFHSIiIiIiMqJp0tIjMqSBx5133sk111yTnY/h7rvv5sknn+QnP/kJd9xxR4/z77777m6vv/3tb/P444/z+9//vlvgYRgGY8aMGdC2y36///3v+fOf/5ztsbFt2zaSyWT2+KWXXkpeXh4A5eXlmKZJRUVFt1VPDv45Eolky33yk58c9HsRERERERGRkWPIAo9UKsWaNWu48cYbu+1funQpL7744mHV4TgOHR0d2V4BB3V2dlJRUYFt25xwwgl861vf6haIvF8ymez2IT0ajfbhTkamZDLJ9u3buw07Obi9/vrr2d4WK1as4D/+4z+6lfV6vVRWVlJdXU1nZ2c28Pj2t7/NXXfdhc/nG/T7ERERERERGY0WLFiAZVksX76c5cuXD3VzBtWQBR5NTU3Ytk1ZWVm3/WVlZdTX1x9WHT/4wQ+IxWJ84hOfyO6bPn06999/P8cddxzRaJQf/vCHLF68mPXr1zNlypRe67njjjv4xje+ceQ3c4zq6urKhhnnnXcewWAQgBtvvJHvfve7uG7vfaC2bt3KCSecAMB5551HOBzu1lNj4sSJeDw9H62DwYeIiIiIiIgMjtWrV3frTT+aDPmkpe9f+vO9S4h+kAcffJDbb7+dxx9/nNLS0uz+hQsXsnDhwuzrxYsXc+KJJ/LjH/+YH/3oR73WddNNN3HDDTdkX0ejUSZOnNjXWxnWVq9ezdNPP92tp8bevXuzx9evX8+cOXMAKCoqwnVdcnJyeqx4Ul1d3S04uvjii7n44osH/X5ERERERERGDc3hcUSGLPAoLi7GsqwevTkaGhp69Pp4v4cffphrrrmG3/72t5x99tkfeK5pmixYsIAtW7Yc8hy/33/MTnzpui4tLS3dgoyDw1B++ctfMm3aNACeeeYZ/vmf/7lH+YKCAqqrq7sN6bnmmmu48sorKS0tPazwSURERERERGS4GbLAw+fzMW/ePFauXMmll16a3b9y5coP7DHw4IMP8rnPfY4HH3yQj370ox96Hdd1WbduHccdd1y/tHs4+fnPf84//uM/0tbW1uvxzZs3ZwOPk08+mSuvvLJbT42qqqoe858Ave4TEREREREROZYM6ZCWG264gSuuuIL58+ezaNEi7rvvPmpra7nuuuuA/UNN9uzZwwMPPADsDzuuvPJKfvjDH7Jw4cJs75BgMJidH+Ib3/gGCxcuZMqUKUSjUX70ox+xbt067rnnnqG5yQGUm5ubDTvGjx/fY9WTk046KXvumWeeyZlnnjlELRUREREREREZXEMaeCxbtozm5ma++c1vUldXx+zZs1mxYgUVFRUA1NXVUVtbmz3/pz/9KZlMpsfssldddRX3338/AG1tbfz93/899fX15OXlMXfuXJ5//vluH/5HinPOOYeNGzcyefJkQqHQUDdHREREREREZNgw3EMtxTGKRaNR8vLyaG9vH7Wz2YqIiIiIiMihDcbnxoPXuOvBlQRD4T6VjXfF+NonzxnVn2vNoW6AiIiIiIiIiEh/U+AhIiIiIiIiIiOOAg8RERERERERGXEUeIiIiIiIiIjIiDOkq7SIiIiIiIiIyIdw3f1bX8uMcurhISIiIiIiIiIjjgIPERERERERERlxFHiIiIiIiIiIyIijwENERERERERERhxNWioiIiIiIiIyjBnu/q2vZUY79fAQERERERERkRFHgYeIiIiIiIiIjDgKPERERERERERkxFHgISIiIiIiIjJCLViwgJkzZ3LPPfcMdVMGnSYtFRERERERERnO3ANbX8sAq1evJhKJ9HeLjgnq4SEiIiIiIiIiI44CDxEREREREREZcRR4iIiIiIiIiMiIo8BDREREREREREYcTVoqIiIiIiIiMowZ7v6tr2VGO/XwEBEREREREZERR4GHiIiIiIiIiIw4CjxEREREREREZMTRHB4iIiIiIiIiw5l7YOtrmVFOPTxEREREREREZMRR4CEiIiIiIiIiI44CDxEREREREREZcRR4iIiIiIiIiMiIo0lLRURERERERIYxw92/9bXMaKceHiIiIiIiIiIy4ijwEBEREREREZERR4GHiIiIiIiIiIw4CjxEREREREREZMTRpKUiIiIiIiIiw5l7YOtrmVFOPTxEREREREREZMRRDw8RERERERGR4Uw9PI6IeniIiIiIiIiIyIijwENERERERERERhwNaREREREREREZxowDW1/LjHbq4SEiIiIiIiIyQi1YsICZM2dyzz33DHVTBp16eIiIiIiIiIgMZ667f+trGWD16tVEIpEBaNTwpx4eIiIiIiIiIjLiKPAQERERERERkRFHgYeIiIiIiIiIjDhDHnjce++9VFZWEggEmDdvHqtWrTrkuY8++ijnnHMOJSUlRCIRFi1axJNPPtnjvEceeYSZM2fi9/uZOXMmjz322EDegoiIiIiIiIgMM0MaeDz88MNcf/313Hzzzaxdu5YlS5Zw/vnnU1tb2+v5zz//POeccw4rVqxgzZo1nHnmmVx00UWsXbs2e85LL73EsmXLuOKKK1i/fj1XXHEFn/jEJ3jllVcG67ZERERERERE+o97hNsoZ7ju4U/1+sorr9DS0sL555+f3ffAAw9w2223EYvFuOSSS/jxj3+M3+8/rPpOPvlkTjzxRH7yk59k982YMYNLLrmEO+6447DqmDVrFsuWLePrX/86AMuWLSMajfLHP/4xe855551HQUEBDz744GHVGY1GycvLo729fdTOZisiIiIiIiKHNhifGw9e48c/f5JgKNynsvGuGF++5txR/bm2Tz08br/9djZs2JB9vXHjRq655hrOPvtsbrzxRn7/+98fdlCRSqVYs2YNS5cu7bZ/6dKlvPjii4dVh+M4dHR0UFhYmN330ksv9ajz3HPP/cA6k8kk0Wi02yYiIiIiIiIyHBhHuI12fQo81q1bx1lnnZV9/dBDD3HyySfzs5/9jBtuuIEf/ehH/M///M9h1dXU1IRt25SVlXXbX1ZWRn19/WHV8YMf/IBYLMYnPvGJ7L76+vo+13nHHXeQl5eX3SZOnHhY1xcRERERERGR4cnTl5NbW1u7hQl/+ctfOO+887KvFyxYwK5du/rUAMPonju5rttjX28efPBBbr/9dh5//HFKS0uPqs6bbrqJG264Ifs6Go0q9BCRYS/tdNGU2ERT4i3SThchTwmlwdnk+6owDWuomyciIiIiMqT6FHiUlZWxfft2Jk6cSCqV4vXXX+cb3/hG9nhHRwder/ew6iouLsayrB49LxoaGnr00Hi/hx9+mGuuuYbf/va3nH322d2OjRkzps91+v3+w553RERkOIhnWni7/VHaktswDQ+W4aM9vZN98fWMD53E5Mi5mEaffsSLiIiIyHB1JJOQatLSvg1pOe+887jxxhtZtWoVN910E6FQiCVLlmSPb9iwgaqqqsOqy+fzMW/ePFauXNlt/8qVKznllFMOWe7BBx/k6quv5je/+Q0f/ehHexxftGhRjzqfeuqpD6xTRORY4rouWzv+SFtyKxHfRPJ85eR4x1Dgm0zAymd314vsi68b6maKiIiIiAypPn399y//8i9cdtllnH766eTk5HD//ffj8/myx3/xi1/0mDD0g9xwww1cccUVzJ8/n0WLFnHfffdRW1vLddddB+wfarJnzx4eeOABYH/YceWVV/LDH/6QhQsXZntyBINB8vLyAPjqV7/Kaaedxr/9279x8cUX8/jjj/P000/zwgsv9OVWRUSGrY70HlqTWwl7yrCM7r3q/FYuSbuduq41lAVPUC8PERERERm1+vROuKSkhFWrVtHe3k5OTg6W1X2M+G9/+1tycnIOu75ly5bR3NzMN7/5Terq6pg9ezYrVqygoqICgLq6Ompra7Pn//SnPyWTybB8+XKWL1+e3X/VVVdx//33A3DKKafw0EMPccstt3DrrbdSVVXFww8/zMknn9yXWxURGba6Mg1knDg5nrG9Hg9Y+XRlmkjaUYKewl7PEREREREZ6QzXdfs0smfnzp089dRTZDIZTjvtNGbNmjVQbRsyg7GesojIkaqPr2VT62/J91X2OiFz0u4g48SZV/wFAp6CIWihiIiIyMg3GJ8bD17j3//zSYKhcJ/KxrtifOnac0f159o+9fB4/vnnueCCC+jq6tpf2OPhv/7rv/jkJz85II0TEZGecj3j8ZphUk4Uv5XX43jCbiXfN7nXYyIiIiJyDNKkpUekT5OW3nrrrZx55pns3r2b5uZmPve5z/H//X//30C1TUREehHylFAcmEEs00jaiWf3u65LV6YZA4OxoXkYRp9+xIuIiIiIjCh96uGxceNGnn/+ecaNGwfAD37wA372s5/R2tpKQYG6TYuIDAbDMJicey62m6ApsQmHDCYeHDeN18xlUu5ZlARmD3UzRURERKSfGAe2vpYZ7foUeLS1tVFaWpp9HQ6HCYVCtLW1KfAQETlCKSdFa6oFgHxvPn4r8KFlfFaYGfmfoC21jZZkDWmni6BVRHFgOmHPmF7n9jiUZGYXnck1xNNbAJOgdxq5/nn4DjEpqoiIiIjIsaDP6xW+9dZb2eVgYX8X6k2bNtHR0ZHdN2fOnP5pnYjICGa7Gd5s38jmjreIpttxccn1RJiaO4PZeXPwmr4PLG8aHgr9Uyn0Tz3iNnQkVtMU+18yThuWkQO4xNPv0JF8iZKcywn7jjviukVERESkn7ju/q2vZUa5PgceZ511Fu9f2OXCCy/EMAxc18UwDGzb7rcGioiMRI7r8ErzX9nYvh6/GaDAt3/52I5MB6+0/JVouo2TixbRktxJyonhMf0U+ysJWLn91oZkZg9NsUdw3TRBz7RsrxDXdUlmdtDU+T/48sbhtYr67ZoiIiIiIoOlT4HH9u3bB6odIiKjSn2ijrejb5HvLSDkeXeJsUJfEQk7xKboX2lPvYZJGgAXl5CVR2XOyVTmnNQvE5J2JteScVq7hR2wf44Qv6eCeOYdYqkN5AfPPOpriYiIiIgMtj4FHhUVFQPVDhGRUaW2azspN0WJp7f11DtJZXbSkoxQnTsHy/DguA6xTDOb2p/BNDxMypl/1G1IZLZiGaFe5/swDBMTH8n0Dgge9aVERERE5GhphEqf9euahY8++qjm7xAROQydmU48hrfHftd16UrXYhouhhHEMvbn0qZhkustwWP62BFbTdpJHHUbDCxcnEMed3HAsI76OiIiIiIiQ6HPgcfPfvYzPv7xj/OpT32KV155BYBnn32WuXPn8pnPfIZFixb1eyNFREaakBUi46Z77LfdGCmnHdf14TV6Tloa9hTRmW6iNbXnsK/lui4ZJ07a6cR13w04Qr4ZOG6i2753y2RwsQl6qwFI2y20x5+jofMhmjofoTO5DsdNHnYbREREREQGW5+GtHz/+9/nn//5n5kzZw6bNm3i8ccf5+abb+bOO+/ky1/+MsuXL6e4uHig2ioiMmKUhybxVnQjCTtOwHp3zIiLg+NmAJN8X8/lvk0sXFxsN3VY14mmamiKryaaqsHFJegpozgwn6LACYR9J9BurSJhbydgTcI40JvDdTMkMtsIeMoJ+46jM/k6TbHHSNsN2V4hRuJZgp6plOZ+Gq+ln/siIiIiMvz0KfD4+c9/zn/8x3/wuc99jueee46PfOQjPPvss9TU1JCfnz9ATRQRGXnGBsdTnTOVtzveJMeTS44ngoFBLJMk6WTI9eYR8eb3KJdyuvAYfoJW3odeozn+Ojs7/o+M04XfKsDEpDO1jY5UDbH0bspzL6Q099M0dDxIPFODgcnBwaF+TzklOZ8ibbfQ2Pkwjpsk6JmanSzVcZN0pd+iseNBxuZ9AcPo86JfIiIiIiIDqk/vUHfu3MnZZ58NwBlnnIHX6+Vf//VfFXaIiPSRZVicUnw6YU8OWzrepiFRhwuEPTlMCs/FceoBh/eOPHRdh45MA2WB6eR5x35g/Um7lV2dK8B1iPiqsvt9Vj4pO0pj/EUivioKArMZn389Xak3SGR2YmAQ8FQS8s3GMsM0dv6WjNPWYyUX0/ATsCroSm8mnn6HkG9mP/8NiYiIiEiWS98nLdUkp30LPBKJBIFAIPva5/NRUlLS740SERkNfKaPBYWLmBWZQ3OqCYACXyEew2Vty//RmNhGwMrBawbJOCnidjsR3ximRU7vdWWV92pPbiJptxDxVvU45rMiJJ0mWhLrKAjMxmNGiAROIcIp3c5zXYeu1Jt4zPxer2eaQbDTJDI7FXiIiIiIyLDT5z7I//mf/0lOTg4AmUyG+++/v8e8HV/5ylf6p3UiIqNAyBMm9L7laecWXsqu2Hr2xDeSsuNYppcp4SVMDJ1AjrfoQ+tM2i0YGNkhKO/nMXLoytR9aD0uNh80v7WLAR+w0ouIiIiIHD3jwNbXMqNdnwKP8vJyfvazn2Vfjxkzhl/96lfdzjEMQ4GHiMhRCli5TImcyuTck0k7cTyGH4/pP+zypuHD/YB+jI6bxvqQ+gzDJOippiP5ClilvdSRwsDEZ4057HaJiIiIiAyWPgUeO3bsGKBmiIhIbyzDi2V5+1wu1zcZy/CRcbrwmKFux1zXJuN2Ueg//sPrCcynM7WWtN2I13p3CKPrOiQzO/F7JhLyzupz+0RERESkDzSHxxE5dD/lXjz77LPMnDmTaDTa41h7ezuzZs1i1apV/dY4ERE5MrneSvL9s4hldpO2O3Dd/b/xbCdBR3oHYe94CgLHfWg9Qe9MCkLn47gJutKbSWb2kMzUEs+8g88aQ0nOMkwz8KH1iIiIiMjQWLBgATNnzuSee+4Z6qYMuj718Lj77rv5u7/7OyKRSI9jeXl5fP7zn+fOO+9kyZIl/dZAERHpO8OwqIhcimFYtCU3EU/Xg2Fg4CHXN5ny3IvxW4WHUY9BQXApQU8lHak1JNM7MQwfYd9x5Pjn4rWKP7QOERERERk6q1ev7vUz/GjQp8Bj/fr1/Nu//dshjy9dupTvf//7R90oERE5el4zh8mRT9KV2UMsXYuLTcAqJdc3GdM4/GEyhmEQ9E0l6Js6gK0VERERkUPTmJYj0afAY9++fXi9h36T7PF4aGxsPOpGiYiMJK7rYrsOlmF+6HKy/c0wDMLeCYS9Ewb1uiIiIiIiQ61Pgcf48ePZuHEj1dXVvR7fsGEDY8eO7ZeGiYgc61pTnaxr2cGGtp2knDSFvlxOKKzkuPxyfGafVwUXERERkdFKHTyOSJ8mLb3gggv4+te/TiKR6HEsHo9z2223ceGFF/Zb40REjlV18VZ+tf15/lS3lvZ0F7brsiPWwCO1L/HYrldI2umhbqKIiIiIyIjWp68Yb7nlFh599FGmTp3Kl770JaZNm4ZhGGzatIl77rkH27a5+eabB6qtIiKDxnVddnW1sjvWCsCYYIRJOUWYxofnxLbr8Mc9a9kbb6EypwzrQJkify7xTJK1LduZECpiccn0Ab2HoeC6Li4ZDEwMwxrq5oiIiIjIKNanwKOsrIwXX3yRL3zhC9x0003ZZQ4Nw+Dcc8/l3nvvpaysbEAaKiIyWNpTcf6vdh2b2uuIZ1KAgd/yMCW3lEsqTqAkkPuB5WtjTeyINTA2UJANOw4KevwEPT7WtGzjpKJqvCNkaIvjpmlJrKc58RrJTCOm4aPAfxyFwXkEPX37veC4KbrSW7DtdkwzQNA7BY/5wX/nIiIiIiOZ4e7f+lpmtOvzO+2KigpWrFhBa2srNTU1uK7LlClTKCgoGIj2iYgMqpSd4X+2v8aGtt2MC+YzPpiPYRjEMkk2tu0hbqe5Zspiwl7/IetoSXWSdjOEPL2fE/GGaE/FiKbjFPmP/Q/yjpumNvoITYnXMDDxmrlknBh7Y0/RmtzApMjl5PgmHVZdsdRbNMZ+TzKzC9d1MDDwWEUUBM+gIHgGxmH0sBERERERgSMIPA4qKChgwYIF/dkWEZEhtzm6j7fa66kIFxGw3l2VKuzxU5lTzNaORja27WFhyeRD1mEdWInFcV3MXlZlsR0H0zDxjJAP783xNTTFXyXoGYvHDGf3B9xSOjM72NXxO6YVfuFDl8LtStdQF/0VthvD75mIafhx3Qwpu5HG2P8BJoWhMwb0XkRERERk5BgZ77ZFRI5A2rbpTKXIOE523+b2elzX7RZ2HOQ1LTymyZutez+w3omhYnI9QdpSsV6Pt6Q6mRQuIeINHd0NDAOua9OcWI1p+LqFHQCGYRKyxtOV2UVHqia733baSGd2krHrs0MjXdelLf48GaedgKcS0/AfqMOD3zMW0wjQlngO2+n971RERERE5P1GxuBxEZE+aIl38fKeXbxWt5d4Jk2Oz8eCsRM4efwE4nYaj9mzV8ZBPtND/ENWWCny53JCQSV/aXgTj2mS6wliGAaO67Av0U7A8jK/qBqjl94fx5qMEyORacZr5vV63DL9OLZN0m7GtpuIJVaSTL6O48YwDC8+zxRCwbMwzFK6Uu/gtUp7/XvxWaUkMjvoSteQ6z9+oG9LREREREYABR4iMqo0xDr5xYbX2dbaQp4/QNDrpTWR4H/ffpM3mxqoKA2RdGxc1+31g3dXJsWYYORDr3PWmOPIuDbrWrbTkGjHYH9dhf4czh4zh2mRcf1+b0PBMDwYholLptfjruuC6+I6Mdo67yOd3oJllmJZ43DdJMn0BlKZbQSDF+C4abxm73+3huHBdR1cNwWAbTeSTG/EcdoxDD8+7ww81qQRESKJiIiI9HDgPVWfy4xyCjxEZNRwXZc/1LzDttZWphQW4zH3j+orCAQpDdlsamok7C8jzxugMdlJ6ftWY2lNdeG3PBxfOOFDr+W3vFw0fj7zC6vY2rmPlJMh4g0yNXcceb5jfyjLQR4zRJ5vGo3xl/GZhT0Ch7TTjsfMwePsJp3egtczDcM48KvHCGAaETL2NhKJ57HMALbTgWX2/PuxnS4Mw4tl5BFPPEes6w/YTsv+sMV1MI0wAf9JhMMfxzQCg3HrIiIiIjLMKfAQkVGjPtbJW00NjM3JzYYdB3kti+JQiG3N7SypruK5hnfY1tFIgT+MiUFrqgsXl4+MnU5VbslhXc8wDMaFChkXKhyI2xk2ioMn0ZZ8i67MLoKecZiGB9d1STsdJOwGSoIn4dgbMM2id8OOAwzDwGNNIGPvJGjNIZraiMct7DbBqeu6pDJ7CPqqsWinI/ZbMHx4PdMPBB4urttOPPFnDCNITvhvB/uvQERERESGIQUeIjJqNMe76EylGJfT+1Kwef4Au6PtTMsZR3luIa82bmdnrAXXdamOlLCgeBJzCydijpDVVfpLjq+SisjfsrvzCWLpHbgG4Lp4zBAlwcWMDZ1Ee8crmEbvy5cbhh/Xdcj1TSFDmlhqMx4zD8vMwXVTpO1GfFYZRaELSSSewMXGa41/T3kDw8jHdVMkki8TDJyBZRWTyewhldqA4zZiEMLrm9G9h4mIiIiIjGh61ycio8b+VVYM0o6Dz7J6HE87Nh7TxO/xUB0Zz+z8cXRmkriuS47Xr6DjAxQEjiPXN5n25CZSThsmXnJ8VYQ843HdDgx8uG4cyOlR1nXTGIaB11PKOP9C2hKriCZfw3aiGHjJD55GfuBUPGaArswOLLP3HjamWUwm8w6p9Hbc1DriiRW4TivgAzLEE0/j880lJ/xpTLNnO0RERESGLffA1tcyo5wCDxEZNSry8hgTzmVfrJOJkZ6rijTEYlTk5TP2QA8QwzDI9Wo+iMPlMcMUBef32G8YEfy+OXQl/nxgWEv34Mi267HMMnyeqZhmmOLwhRQEz8J2OzENP54DE5lm7DpwHTB6hlUHrgQGZDKbSKZexjRCWJ6Z2XlFHCdGMvUyhuEnJ3yVJjgVERERGeH0daWIjBoBj5fTyieRtm3qOztwDsxcbTsOezqiGMAZ5ZN6zO8hRy8YOAOPNZZ05h0cpxNg/3CVzE5c0oSCSzHNcPZ8ywzis0qyYcf+fYVYViGO09rrNVy3A9wAmcx2cG0sa0y3UMM0w1jWOFKpddj23gG6UxEREREZLvSuXkRGlVMnVnDx1BmYhsGWlibeaW6iprWFgMfDx2fM5sQxI2O52OHG65lIXu61+H2zsZ0mUum3ydg78FhFRMKfIuhf8qF1GIafgH8xLp04TqzbMdfNkLF34/VW4DhtWFZxr3WYRj6u20HG3tkv9yUiIiIyGAz3yLbRTkNaRGRUMQ2DsyurmDd2HJuaGulKp8nx+ZhRXEKeX8NXBpLXU0l+7lfIZHZgO20Yhh+vt6pPy8gGAktIZ3aSTL2K41gYRg6um8BxY3i91YRCH6Wz42d8eJ7vHNW9iIiIiMjwp8BDREalgkCQUyaUH1UdHakkb7U00JqM47cspuaXMC6cq7khPoBhmHi9k/F++Km9Mo0AkZwrSaZmk0i+im3XY1qFhH0L8PvnYxo5WFYZtr0L0+w5T4vrdmIYQSxz7NHdiIiIiMig0qylR0KBh4jIEVjTsIffbX+Lhq7981E4LuR6fZw0ZiIXT56J39KP14FiGD4C/oUE/AtxXbdHwBTwL6Yz9iscp71b6OG6aWx7Fz7fiXg8lYPdbBEREREZZHpHLiLSR5tbG3nonfWkHZvJkSI8ponrurQl4zy7ayse0+SyqtlD3cxRobfeNH7/IjL2HpLJv2Db9RhGGJcUuEk8nmmEQ5/osVKMiIiIiIw8CjxERPrAdV1e2LuDznSSKXnF2Q/chmFQEAhhuy6v1O/itHGVFAfDH1KbDATD8BAOfRyfdybJ1GvYdh2GEcbvm4vPdyKmmTvUTRQRERHpG41oOSIKPERE+iCaSrKlrYniQLjX3gWFgRA17U1sbW9R4DGEDMPC55uDzzdnqJsiIiIiIkNEfXpFRPog4zrYrovHtHo9bhoGYJBx7MFtmIiIiIiIdDPkgce9995LZWUlgUCAefPmsWrVqkOeW1dXx6c+9SmmTZuGaZpcf/31Pc65//77MQyjx5ZIJAbwLkRktMj1+inwB2lPxXs93pVJ4zVN9e4QERERERliQxp4PPzww1x//fXcfPPNrF27liVLlnD++edTW1vb6/nJZJKSkhJuvvlmjj/++EPWG4lEqKur67YFAoGBug0RGUV8lsWiseV0pdN0ZdLdjjmuy+7OdiojhVTlFQ1RC0VERERkxHHdI9tGuSGdw+POO+/kmmuu4dprrwXg7rvv5sknn+QnP/kJd9xxR4/zJ02axA9/+EMAfvGLXxyyXsMwGDNmzMA0WkRGvUVjytne3sLqht34TA+5Pj8pO0NbKsGEnDwuq5qFxxzyDnQiIiIiIqPakL0jT6VSrFmzhqVLl3bbv3TpUl588cWjqruzs5OKigomTJjAhRdeyNq1az/w/GQySTQa7baJiBxKwOPlU9Pm8plpc6mI5OO6LmGvj4sqZ3Dd7JOpiBQMdRPlMLmuSyqzh67UBuKpTThO70OVREREROTYM2Q9PJqamrBtm7Kysm77y8rKqK+vP+J6p0+fzv33389xxx1HNBrlhz/8IYsXL2b9+vVMmTKl1zJ33HEH3/jGN474miIy+gQ8HhaPm8QpYytI2jYe01SvjmNMOlNPa9fvSaTewnFjgIXXKiM3cAa5wdMwDP33FBERkWFCy9IekSFflvb9yzq6rtvrUo+Ha+HChSxcuDD7evHixZx44on8+Mc/5kc/+lGvZW666SZuuOGG7OtoNMrEiROPuA0iMnoYhkHAM+Q/SqWPMnYzjR2/JJnZhtcai9eYAGRI2/to6fofHJLkh84d6maKiEg/aEt1URPdR9xOE/EFmZpbRtDjG+pmicggGLJ36cXFxViW1aM3R0NDQ49eH0fDNE0WLFjAli1bDnmO3+/H7/f32zVFRGR460y8RDKzlYBnKoZx8FehF59nAmm7no74s+T45+Ox3p189mgDeRERGVy26/Dn+k38taGGtlQXBvtXbxwTiLB0/GyOL9AXnHLsMA5sfS0z2g1Zf12fz8e8efNYuXJlt/0rV67klFNO6bfruK7LunXrGDt2bL/VKSIixy7XTRNLvoZl5L8n7HiXxyzFdlqJp9/GdV0y6beIx/6LruhtxNq/RaLr/7DtvUPQchER6YsX9m3hT3vewMWlKreE6kgp5eFCmlOdPLLzNd6JHvkwehE5NgxpP+wbbriBK664gvnz57No0SLuu+8+amtrue6664D9Q0327NnDAw88kC2zbt06YP/EpI2Njaxbtw6fz8fMmTMB+MY3vsHChQuZMmUK0WiUH/3oR6xbt4577rln0O9PRESGH8dN4bhxTKP35coPzt1h2zFSiSdJxVfgksQ0Irh0Yif+QCb1CoHwFXi8Mwez6SIicphimSR/bdxCyOOjNBDJ7veaFhNDhWzrbOSvDVuYklum3nsiI9iQBh7Lli2jubmZb37zm9TV1TF79mxWrFhBRUUFAHV1ddTW1nYrM3fu3Oyf16xZw29+8xsqKirYsWMHAG1tbfz93/899fX15OXlMXfuXJ5//nlOOumkQbsvEREZvkzDj2XmkLFbgcIex13X3n+e20Iq/iKGEcKyKt5zfByOs51k10OYuf+IaUZ61CEicizLODYdmS5MwyDiCR+TgcD2ziaak51MChf3OGYYBiX+XLZ3NtGSilHkzxmCFor0kevu3/paZpQb8pn2vvjFL/LFL36x12P3339/j33uh/xHu+uuu7jrrrv6o2kiIjICGYaHsP9kWmK/xXFTmEb3ievSdh0eqwQPUTIku4Ud+8sbmGY5tr0VO70R0794MJsvIjJg0k6GdW1bWN+6hbZ0JyYGE0IlzC2YRnXOhGMq+Eg7GVwXrEOsoOY1LTJph5SdGeSWichgGvLAQ0REZLDlBBYST71JPP0mHrMYy8zDddNk7H1gWOSFzsdNPo1p5PZa3jA84LrYdj3eQW67iMhAyDg2f6p/mXWt7+A3fUS8IRzXYUvHbnbE6jl7zAJOLJiWPT9hJ9jWuZNtsZ2knBRFvkKqcysZFxgzLIKRfF8Yn+WhK5Mk5Om5OEE0nSDH6yfPFxyC1onIYFHgISIio45lRiiOfJZo10piyTWk7T2Ahc9bRSR4OiHfiXQl/4KLfehKDABrkFosIjKwNnfUsqG1hlJ/ASHPu3Mc5XrDNCRaWdWwjsnhceT7cmlLtfPUvufYE6/DxMRjWOyM7eLN6NvMKzieBYVzMY0hWxsBgIpwIZU5xWxur2Nybinme0KYlJOhLdXFeeNn9xqGiMjIocBDRERGJY+ZT2HOx4mEzsG2WzEMD15rHIaxP8TweOeQTDze63K0rpvAwIPHUzUUTRcR6Xdvtm/DMOgWdhxU7M9nR1cdWzp3M69gGs81/pXdXXsYFxiDx3z340R7OsorLa9T4Mtnau7Q/nw0DZMLxs+hLdXFlo59FPrC+E0PnZkknZkEM/PHsbh0ypC2UaRP3ANbX8uMckMbvYqIiAwxj5mP31uJzzMxG3YAePzzMc0yHHsrrvvuGG/XTWBntmF5p2F5p/VWpYjIMcV1XRqTbYSs3levMg0DA4OOdIy6xD52d+2l1F/cLewAyPNGcHHZFH2nx7x7KSdDS7KDaLrrQ+fkO1wZx6Y91UksE++1zonhQq6qWszZY2biMS3idpp8X4iPTZjLpysXEvFqOIvISKceHiIiIr2wrLEEwp8h2fUwtr2Vg1+TGHjw+I4jEPoMxvsmPBURGY5c16Uu0cTWzj3EMwnC3iBV4QmUBQoxDAPDMAhZfhoz8Q+sw2d6aUq2kHYzBA4RjkSsHPYlGonbCUKeIHE7xWvNW1jXup1ougvLMJmcO4YFhVOozCk7ovtJ2WnWt9Wwvq3mwOSqJpNyxnBiwVQmhcd2O3dMMI+LJp7AOeNmkbIzBD0+vObRD0eMprt4J7qX9nQMn+mhMqeM8cGiYTF/iYi8S4GHiIjIIXi8M7By/5FMeiO2XY9heLA8lVieaRiGpisVkeEv49g81/ga61q30GUnsAwL27V52XqDEwunc1rJXCzDZEZeJbV1L2O7Dtb75t/ozMQJWD4mhcfSnGrkg/rJu4Cxf5IjEnaKR3e9yBttteR4AuR4g2Qcm/Wt29naUc8lE05mRt7EPt1PysnwRN1LbGjbSsD0kesNYbs2b7RtY1vnXi4Yu4iZeZN6lAtYXgJW//zcXt+6nZX162hJdoLh4roQtHwcl1/B+ePmEbAUhssA0LK0R0SBh4iIyAcwzBy8/kUfuBqL63RipzdiZ3YALqZnEh7vcRhm76u8iIgMlldb3uTl5jcp9EYo8+/v0eG6LtFMjBebNhDxhJhXOIOZkUm82b6N2q56yvyFhDwBXNelPR2jJRXlxMJpjAsWYxkuPsNH3I4TtHoOCenIdDI5XEHQCvBy82bebNvFxFAx/veEDXneELvjzTxVv47KnLI+BQRvtW9nY9s2xgQKCVrvTjga8YSpSzTz7L41VITHEO5lLpL+sLWjjj/sWY2DS2VOKaZh4rounZkErzZvwWN6uGj8ggG5toj0nQIPERGRo2BntpOK/TeOXYvrHujKbDxH2pqAP/QpLG/10DZQREatuJ1kfdsWwlaAiDec3W8YBnneHBJ2krWtmzkuv5qIN8zHxi/h6frV1HbV05BsBSDsCbKwaDanl+5feaUsUEJ5aALvdG5lXKAMr7k/yHBdl7Z0O5ZhMjNvGg4ua1u3EfT4uoUdB68/NlBAbVcTNR11zM6vAKAjHWNzxw62dNSSctKUBYqYFplERWhsNljY2LYNj2F1CzsO1lkWKKS2ax81nbs5Pr//f/a6rstrLTV02Ukm54zpdu1cbxDbddjYtoOFRdMoCUT6/foi0ncKPERERI6Q47STjP0a196NYVVjGvt/rbpuBtfeTrLr1wRyv4ppFgxxS0VkNNqXaKY1FWVcoLjX4/m+CE3JVhoSrUwIlVLiz2dZ+VnsiTfSnIxiGSbjQyUU+t798G4aJqeXnkLaTVPbtQcAyzBJOWnCVohFRQuYHK6gy04STcUJW70v++oxLcAlmu4CoCHRwhN7n6cu0YTf9OIxLPbGG3mjvYaTimZzavFcMq5DSyp6yN4blmFiQLbO/hbLJNje2UChr/fee3neENtj+9jV1ajAQ2SYUOAhIiJyhOz0BpzMLkzPlG4rvBiGB6wqHHszdmodZuDMIWzl8OK6Lkm7jozTgWUECXgmYBhaNE5kILiui4t7yH9jJgbOgXOy+wyTiaEyJoYOPaFoxJvLhePOZUeslp1du0nZSQp9BVTlVFLi3z9xp9f04DUt0q59yLY5rovX9JBxbFbWv0RdoomJoTHd5hCJpjt5pXkjpf5CpuZW4DU9dGUSh64TF18/TEraG9t1cHCwDjGH08EJS23XGZDrixypBQsWYFkWy5cvZ/ny5UPdnEGlwENEROQI2el3wPB0CzsO2v8Bw4+d3oQ3cCaO3UwqtYZ0eh2um8TjqcDrm4/HM2PUzOofT++ksespulI12G4C0/AR8lZQFDqLHN+MoW6eyIhT6M8jxxMimo5R0EuvhGgmRq431K0Hx+HymV6m5lYxNbfqEMc9zMybyPMNb1Doy8V838+51nSMiDfI5Jwx1HbVsTu+j7GB4h4Tpka8OUTTnbzRXsO03EnMzJvEcw1rKXbzMN93bkemi5AVoCLUfaWW/hL2BCjy5bIv0UZuL0vaxu0UHsOiyK/5m2QAHMWkpatXryYSGZ29jvSVioiIyBGz+aBfpQYmLjaZzHY6O35EvOth7MwuHLuFZGIVsY57ScT/gDsKZlGPp2vZHf0vOpLr8Zi5hDyT8JqFdKa2sCf6azqSbw11E0VGnDxvDtNzJ9GajpJy0t2OJe0U7elOZkYmE/b0/PDeH04srKI0UMCO2D4SdgoAx3VoSkZpS3Uyr7CaIn8uTck2HNfBf4jJS3O9OdQnmkg6KY7Lm0yZv4DarnfrdF2XtlQnzal2ZudVUhYYmGGEHtPihMLJJJ00XZlkt2OO61AXb6E8XEJ5qGRAri8ifaceHiIiIkfI8lSSSa3Gdd0evTRc18V1uzDNcuKxB7HtvQeWs303IHHsZpKJP+LxTMTrO6FP13bdDLhxMLwYxsCsRtBfXNeluetZkpl9hL1Ts39XHiOMZUwmntlOU9dT5Pim7h8OxMHu7p2Ai2nk9GnYi+u6JDPv0JVcS8rehUmQoH8OId8JWGakx7m204bjJrHMCJYZ6rf7FhkOTi05nrZ0lC0du/EYFgHLR8JJYrsOMyOTWVR83IBduyyQz99MXMSTdWvZ1dWE7Tq4uOR5Q3ykbA6nl84GwDSMD1jodv+/U+PA/4r8eVw8YQlP1b/Knq4mbNfGxSXHE2JR0WzOKJ07oL3mTiyYzJ6uZta2bsVIGuR4gqSdDJ2ZBOOChZw/bt6B+UlEZDhQ4CEiInKELO/xmOafce2dYFVk32S7rotr78Iwi8AMkcnsxPJM6vGh3bSKyKSbSSZfxuM9/rDepLtuHFKv4qZeBbsNDA+u9zgM30IMz4SBuM2jlrab6Extxm+V9bhHwzDwW2OJp2vpSu8g5K0ikd5IZ+JFkplt4Lp4PRPICZxCyDfvQ4MP13Vo71pBNPEUrpvANEK4bpp4eh0xz18pyrkKr2ccAIn0VqLxvxBPv43rpjHNHHL8C4gET8Nj5g/UX8eQODh3StpuxTgwlMg0Dn8pUDl2hT1BLh5/Bu907GRTdDvt6RhjvcXMjFQyLVKBz/ygRbePXnm4hM9OPoudsQba0jE8hkVFuJR837urxowJFOM3vXRlEoR6mZA0mu5kVl51tgfIuGAxV1ScS23XPlpTHViGxYRQCUX+vAG9FwDvgWVnJ+eMYX3rdpqS7QS9IRaXzGBO/iQKNZxFZFhR4CEiInKETKsUX+jjJLsexrHfxiAHAJdODKMAf/jjZOxGwMYwel+pwDQLsDM7gDTwwR9AXTeOG/tvSK8FIwRGLrgpSP4ZN/0mhD+N4Rl+y+DabheOm8RnFfV63DKDuHYK2+2iI/5n2roewyWNxywCwyCZ3kwyvZl0sI680EUfGAzFU2uJJv6IZUTweCqy+103QzJTQ0vsfyiNfIl4+h0aOx4g47TiNUswzVxst4PW2O9IpLdSGvnsMRF6JDN76UiuJ5HZgYGHsG86Ob45eKx3P/glMnU0xP5IZ2ozGacL0/Dg94yhOHg6+YGTR80cMqNZwPIxJ38Kc/KnDMn1PaZFVe6h59UYFyyhMjyBTR3bGGeUZIMN13VpTLbiP9D+97JMi8qccVQOaMt75zU9nFBQyQkFldiug4mhf0cy8NwDW1/LjHIKPERERI6CxzcX0yojk1yDndkEuJieaXh887A8E8nE//SB5V0cDLwc1rRayZf3hx1WORjvGXPvloC9FTf+OOR8GWOYfXNvGSFMw4/tdGH2MkbfduIY+HCdTqLxFZhmAK81KXvcYxWQsVuIJp4m4JtGwDut1+u4rktn8mVc18Hj6b4Mp2F48FkVJNNbSKTeorXrCRy3g4Dn3SE2FmEcs4h46k2i8RcoDF/Yf38JA6A98SqNnY+RcVoxjQAuDh3J1/F7VzE259MEvBUkM43sij5APL0Lv2csfms8LimSdgN7O/8HhwxFwVOH+lZklDMNk3PGLCRDhu2de7BdB8swsV2biDeH00rmUREeN9TN7NX7J1kVkeFFgYeIiMhRMq1x+ELjgIt6HLM8lWD4cJ0Yhhnudsx1XVynFV/gzOzcFYfiuun9w1iMcPewA8AwwJoAdi1kasA782hvqV95rWJyfNNpS7yKx8zr9k3owaEWQe8kXKcZx23Db03vUYfHKiSTbqQr+fohAw/H7SKVqcVj9j5hoWkGce00nak1JO1d+KwJPb6VNQ0vlllALLma/ODZmObwnB8lnt5BY+ejOGQIeqe9ZziVTTy9lfrOB5mY9xVaEy8RT+88MHfK/nkFDPwEPRNJZPbS1PUMef4T8Jg5Q3k7IuR6w1w6/ix2xvays6uOtJOh0JfHlNxyCo5gFRkREVDgISIiMqA8nmq83pmkU69jGZUYB8IK13Vw7F0YRgSfb2G3Mq4TxyWBYYTeHQrjdoLTBsYh3vgbAXAdcFr73EbHacd1U5hm7oBMgGoYBkWhM4lndtKV2YLfGoNlhLHdOEl7Hx4zh+LQUpKplzHwHbJruGmESNl7Dn0dTMDgg/vwujhODFwb8xD3apm52E47thvFZHgGHh3J18k4bd3CDgDDsAh4K0mmd9CRXEd7ci1es7DXpZP9VhldmW10pjaTH5jXp+u7rkvaacJxujDNMD6r+MMLDSLXtelM7ybjduE1w4Q9E/o08a0MDa/poTq3nOrc8qFuisiwY7guRh9Xdevr+SORAg8ROeY0d3XxTlMTiUyGvECA6cUlhHwDO+mayJEyDItQ6JN0uTaZzCZcNw1YgI1plhAM/Q0ebxUAjl1POvlX7NTruG4Swwzj8S7AE1i8f9iL4WH/XB+9cJ0DFzz8fwuZzHaSib+QSr8JbhrTzMXrW0ggsATT7N9vVIPeciZErqKpayWx1BaSbiOm4SPHN4Wi0Fnk+GaQSq/DxT5kHa6bwnp/75b3MIwAAU81sdRqPL18ALedTgwC+DzlxFJv4LqZXnvWOG4Sw/AcMhAZDmLpt7HMSK/hkGl4cXHoSm/DcZKY7+tZdNDBEMR2u/p07Xh6B63xZ4ml3t4flBkBwr6ZFITOIuAZ3/eb6Wdtyc3s7fwznZlaHCeFZfrJ8VYwLvwR8vzDb44bGT460jG2dO5kT7wB13WZECqjOqeciFc9oESOVQo8ROSYkXEcnq7ZyvPbd9CWiGMYBgZQlpPDhdOnMXfc8BzfK2JaRYRzv0Am/Tbp9BYgiWWNxeudg3lgIk8ns5tE7Oc4mf2ruxhGGNeJkY7/H3ZmE/7wNeCZAakXwSjcP4zlvZwWMCNgVR1Wm9LpTcQ678dxmjHMYgwzhON2EI8/gp15h3DONQMQelQwIXINSbuOjNOBZQQJvOeb96B3BrHEKhw30SNscN0Mrpsm+AHL9xqGQTiwiHh6I+nMXjzW2Gwg4LgJUpldhP3zyA2cRkfyVdJ2Az5P958bruuScRqJBJb0WMJ2ONn/0++DmYYP0wxiO114e7kXx80ABh7j8D/MxdPbqIveT8puxGeVYVpF2E4X7YkXSWR2MDbyOQJDuFpQe/IdtrY/TMaJEfSUYXmC2G6caGoL8cw+qvM/RcR3eP9G3s92kqSdTkzDi9fM1SSVI0xtVx1P1f+VxmQrHsPCAN5o30Kxv4ClY05hUnjowzwR6TsFHiJyzPjztm384e23yfMHmFJUhGkYpG2bPdEOHtqwkaDXy/SSkqFupkivDMOH1zcHr29Oj2Ou65KK/w7H3o3pmZ4NAAzycM1S7Mxm0omn8fkX4WbeAmcHmOP5/9u78/g6yvvQ/59nZs7MWbWvlmRbXrAtr2CDsdkJewIEkgvNQtPcpL2UtAmhv9uSV5qGm7RJc3Ob0PtKSBNuenObNgTSBEISSCALYGPA4AW877a8SNYunf2cmXl+f8gIy5KMJEuWJX/fr5d4oZk5zzwjPTo+853n+X5RNmgNuh10Jzg3oE6qhKJ1Bu21AAplVvQtj9E6Rzr1JL7fhWmdvCQihmGUkctvwcysIRx+77CvL++1kc5tJpXbBtrFCcwi7FyEc1KllN6fgyJoDR6cDNoNBO0GUrk3sc0aDNV7U+n5SXJeI8HABYQG+fn1ayPQQFHkA3Qnf0HW3dmbDBUXMAjZiymO/BGWWURB8Go6Uj8j5x4jYFaglIXvp8l5RwiY5RQErxj2tU+EcGA+Hfnn0FoPuPH2dR6UQTgwC6ViHE/+El+XYZwymyXrNeGY5UTtwXOinEprn/bkr8l5bYQC7yR7NUwHyygknd9DR+o5qmMfn5BggNYex5K/x/UTRAP1fX2wVJhoYBbx/H6OJV8kFqgf0fIW109xPPUarZmN5Lw4hjIptOdQGb6UAnsiaoSIsRbPJ3mu+WU6cj1MD1VhnBgfvvZpyrTyXPPL3FV3M0X2+Jec1VrTmUviaU1hIIRtyu2aEGdC/oKEEJNCPJtlzYFDRG2biug707MDpsmMokL2dnSw5sBB5pWVyVM3Men4XiOeuxvDqBlwI6aUhVLluPmNBEI3oMIfRqefBu8w4AO6N69H8HpU8EagN8Gpl12Dl12H9lsBhTLKMZ3VmM7luPnduF4jplU34O9FKRvDKCKfexUdes+wcnpk8ntoj/87Oe8YhgqjMEjndxLPvExx5P3EgsOrAmIoh5LIR1E4ZPLbyPvHQCkUNmF7CcWRuzGN099wKKWIBa8kaM0hlXuTvNeMoYIEA/MJ2g0YJ4I+haFrAUVP5gWy7v7enyMBgoFZFEduxwnMHFafJ0qBcxE9mdfIekdwTkq+qrVLJn+AYGAmEXshoUCGRG4nyfwebLMCy4jh6xw5rwWlApRHbsQ0wsM6Z9Y9Qiq/F9uqHmTcGNhmJcnczhMzZyrH/JrfTdI9RiJ/mJBVOUj/FCGrknjuAGm3mXBgeDMCXT/N3u4n6MhsxTKi2GYMX7u0pjfSldvD7IIPUhI8t5IEi5HbkzhEa6aT6eF3gh3QWz2mOlhBY+oYexIHubhk8bj1QWvNju5jvNa+l0OJdnx8iuwIK0rqWVk2G8eUpbtCjIYEPIQQk8L+jg7aUylmlQysvqCUojwSYW9HB+2pNGWR4X14F+Jcof1O0Ckw6gbdr4wCtHcM7XdiBBrAmgX5Xb2zOrDBmosye2c3ae3hpn+Kl3kBVBhlVvRu99pxU0+g/VY8oxq0N2QwQ6kYvt+D78cxzdMHPDw/QXviMfJ+C0FrXl/ARmtN3muiM/EktjkNJzBrWD8LyyymLPan5NyD5LxG0JqANQ3Hmj1o4s2hBKxpFA4xk6T3Gg2Kwu8hFlxJJr8XX2exjCKCgdnvWjHnXBAMzKAi+gFaEk+Syu86sQTIQ2uXYGA6VdE/wjRCmISoK/xjWlO/oyf7Fhn3KEpZhAOzKQtfScwe/g2cq+P4OoOpBs8JYhgR8m4Hro5j0xvw8LzjePkdaJ1GGQVYgYUYRtEY/AQG6Z+fwjtNnhdTBfF1K65OD7vN1vQGOrLbiAamYxpO33bbKCThHqYx8WsK7HosY+jcMuLcdzjVTMAw+wU73mYohW3YNCabRh3w6M6l2JdoJuPliVoh5saqCFn9S3S/3r6fXxzZSM73KHWimMqgK5fk6SMbOZLu4IN1l8hsj/Od1r1fI33NeU7+aoQQk0Le632SbRmDT0O2DYMe3yfvD53wUIhzlVIOGhNFHrAHHqBzoKy+JSlKBcFeOmhb2t2Dl30ZZVahjMJ3zmGF0X43XnYtOFf3Hqu9QYMIWmf7ne900rkt5N0jONacfrNTlFLY1jQy+Z0ks28MO+Dx9mudQD1OYPyXC5hGlIizbMza83UOz09iKOddZ04MthxlJAqCF+NYdSSyb5JxD50IZMwj6izGOilnh22WUhO7i/LwdeT9Lgxsglb1gN+9r/MkczvoyW4m77VhGYXEnKVE7UWYRhBThTCUfSLoMfDaenOv2JgqhNYu2fSvyGVfQutuwACtMcwynNAtBOzLx3w2XsCIYiqntzLLIHlJXD+NqRysIZK4Drwel9b0BiwV6hfsgBP5YqxqEvlGunN7KQ2O35N/cbYMPR57az+N/MbR1z5rW3bycusuuvKpE2dQlAcLuK5qMUuLe5f8deaSPN+0FUMZ1EdL+l4fsRxSbo7NHYeYF6tmeWn/98S0m6clE+/NZxYqwJGAiBADyF+FEGJSKA71rmNN5nJE7IE3hN3ZLDHHodA5d6sqCDEUw5qJYVajveMoa+AsD+0fxwjMRxlV79qWl38TyPcLdrxNGYVovxnl92CYpfh+C6ZZ3f9cWqP9VhznymElLc25R9Ew5KwIQ8XI5He/azuTnevH6U6voyf7Op4fR6kAUXspRaHVOCdVLsl7nXRnNtCd3YTvp7CtSgqDyylwlmKoQYJd78KxqnCsdx8XALZZgm2WDLrP97M0J35Cd+Z1wMdQIdL6EPHsJqLOYqpjHyZoTScYmE46f4CQ0T/xp9aavNtMxF6EbVaTzTxPNvMMhirGMOejlEJrD99vIpN8AqUiBOyLRny9pxO2qokF6unK7cAKzO4XUNFak3abKQ0tIWQOb7mN56fJ+T0EjMGTuvZWw4Gc1923zdcuifwB0u5xFAbhQC2RQZaOiXNLTaiS7T178bXGOOV3pbUm6+eoC1UP8eqhvdq6h183vUnYdKiPlGMoA9f3aM508dTh1wmaAeYVTGNXdxMduQSzoxUD2ghbNqYy2NhxqC/gkfNc1hzfy2tth+jIJAEoC0a5tHwml1XOJmAMfzacmGRkwsaISUFyIcSkMLO4iFmlJRzp6cE/ZXpe1nXpymS4uLZGytOKSUmpEIHgNUAW3zuG1r0zlbTO47uHQDkEnKuHlWhR+23A6QJ/Doo0jnM12k/geU0nnS+D5+7DMMtxglcOt/ec7slo76ezsf24obXG9TrIe8fxdXZM2x4N1++hqecHtCafxPW7MYwIGk1n+ncc7XmUdH4/AFm3mcbu/0Nz4knyXis+eZL5XRzr+Xea4k/g69yEXUNH+iW6MuuwzQrCgTkErRrCgVkErTri2c20Jn+FUhYloet7gyH5/fh+BugNDGTcfZhGAcXha9E6RT77EkpFMczyvpt9pUxMsxaNSy7zIvrtUsr0Lo1KZTeQyLxMOrd1VL9XpQxqotfimMXEc/vIeXF8nSfn9RDP7yVklTMtcs2wgw+GslHKwhvi99Lbf415IlCVdpvZ3fV9dnd+n0M9T3Kw5z/Z1fFd9nX/OzmvZ8TXI86eubHplNpFNGda0Sd9xtBa05RppcguYG7BjNO0J967wgAAPTFJREFUMFDazfFK226CRoCKYEHfchnLMKkNl5Lxc7zSuhtf+3Tn0xioQZfUQO9Mj7ZsD572cX2fnx3azM8b3yKey1AZilEZitGdS/GzQ5t5uvGtAZ+ThDifyQwPIcSkYBoGty2YT1c6za62NkpCIRzTIpHLksjlWVxVxZUzZ050N4UYNcu+DO3ncbO/RXt7TzzEUSizCjv4Xqx3qU7yNqUK4HQ3izqLUjGCwesByGZfwHP3nnixiWXNIBS+A8vqP3Xa81rw/U6UCmCadSjVG1x0AjNRaYWvcwNmKGit8XScmD3c4Mnpaa1J57eRyKwhk98H2sM0S4gFVxF1LsOYoDwKXek1JHNbCQZm9/sZBIxS0vl9tCafprbgUzQnniSTP0QkMKffchLPT9KVeZWgVUtp+Oqz3n/PT9OdeRVLxbBOmc1gqCABo5x49i1Kw9cRdRZTxUfoSD1Hxj2CdvMoFSAUmEVp+GYi9jzyuS34fivmECWSDaMSzzuE7zdjGFXEMy8Sz/wO12sFNAqDgFVHUfg2QiPIMQIQs+uZU/gRmlIv0pPdR9Zrx1QOpcFlVEeuIhqYPuy2TMOh1FnE0eQLBM3SAQHHrNeJbRRQYM8m7/VwoPsJEvmDhK1aLCPUG5jTCToyG9G4zC78KIaSoPy5qDAQ47rK1TzfvI6DqWMEjd6/46zOUxSIcV3lKkrsgbPmTudQspW2XJy6UOmg+8vsGIeSrbRnEwRNqzcF9RDL3HKeS4kTxUCxo6eZ9W2HqA4VEg28s9RqWriI7lyaV1sOsLSkljkFUrVu6tGMfIqHBL8k4CGEmDRmFBXxpxev4JXGw2xuaiLjuZSEw9w0r5aVdXVEB1nqIsRkoZSBHboWy1mOn9+F1imUUYBpzUcNs4oGgBFYgpd7tTdJ5CnJG7WfAmVg2EtRyiQUugnHWYWb340mi2EUY1kX9AUzoDfQkUn/ilxuC1onQVlYZh1O8Fps+2JCgQacQD2Z/D6C1py+pS1a++S8RiyjhIizYkx+Rsnsq3QknsDXGSyzvPfpu9dJe+IJMvmDlMU+eiJ559nj+Wl6sq9jGkUDAj5KGThWDen8AToza0nl9+FYNQNyZ5hGBMMP05VZT3Fo9aiWtpyJnNdC3uvEHmKpR8AoJuXuJes2YZtlxJylROwGMvmDeDqFaUQIWTNPWtaUp/dD9uDT6pWy0L4H2iWRXUtX6icogjjWrN7ywDpL3j1Ke/zfKCv4JMHA8Mrmvi1mzyQamEHaa8HzU1hGhOBJM01GoiK0go7sDuL5A4StGiwjiNY+Ga+DnN9FbeQ9BK1SWlLrSOQPEg3Mwjjx+1VKEVAxlGXRld1JT24vRc6CEfdBnB2zorXcPf0mdvUcpDHdBEBdqIoLCmaOONgBkNcevtaYQ8zaCBgWnvbJ+S6zY5WETZuefJpCu//7vad9kl6Wa4sbUErxVscxPN/rF+x4W6Ed4ngmztbOY30BD601jakj7Ens43imBVOZzIrUMzc2i2K7aMTXJcRkIwEPIcSkUhWLccfCBm6ZdwFZ1yUUCBAwZa2qmDoMoxDDuWT0rw8swAgsw8+tB6MCjBM5G/wOtN+KYV+CYb1zA2kYhdjOxYO25XntJBOPknf3YZpVGKoCdA7Xa8RN/huQx3EuozT6UdrjPyTr7gNlgFZo8gTMCkoi/wXbqh319bzN9bvoSv0SgGBgbt9204ji+ylS2ddJ2Q1Eg6vP+Fwj61c3nhfHGiI3hmmE0a5LOn+oN1AzRMLMgFFE3uvA9bqxrbP7ZFZhnFiVNNSTQN1b/fikpUuGChC25w56tGGUoVQYreO9M45O4ftdvZWHCBFP/w6Fg31SnhNDOdhWPVl3N/H0CzjWBSMOViilCI9BadxwoJq5hXdzKP4MifxhfFzQGtssoi5yAzXRqwHozG7BVE5fsONklhFCu64EPCaBIruAlWVLWMnwZtSdtq1AhKARIOVliVgDA7EJN03Ycii0w0RMh4tKZvBy6x5c7VNshzGUQdLN0pTuYnqkjGUlMwHoyCZPW6LWNiw6simgN9ixvmMDGzo3k/fzhK0wnvZ4uf1VdsR3cV3l1dSckpukJ59kT/wwPfkEAcNieqSK2lDFkMtthDjXScBDCDEpOZaFY8lbmBCnUsomEP4wrlGIl9sI3h5671aLMYPXYQXfixrmDIJsdi35/D6swAXvPL1XFpYxC9c9TDr9DIHAUmyrhorCvySd20omvweNh2NNJ2wvwTIHn849UuncNvJeK0Fr4E22YYRRXoBE5jUizqpxSRCptUve7wQgYJT0zdLozfMQwNc5TAYGM7R2UYBpBAGF1v6guVh686gYIyq9O1ZsqwLbrCTvtWIOUho577cTsEpxBkmoOxjDrMO05uPmNqBUuF9CW62zaL8TO3Qbeb+ZvNeMYw2sxqOUwjIryeR34/ptBMyJm54fs2fQUPKnxHMHyPpdGASI2TNxzKK+Y1yd6Tcz6lQKA+9EzhNxfqgJF1MfrWB7z1FmRex+AYO879KZS3JN5SKiJ4Iht9QswzEDbGg/yIFkK1pD0AywsKiGW6Yto+jEzI9CO0TWd4c8r+t7xOzeNg+mGnmjczMhM0hl8J2EqFprjqWbeLFlLR+ovQ3H7J0tsqVrLy+0bKArn0Cp3oqmthFgXmwGN1ZfSsh898pdYhzJipZRkbsFIYQQYopRRoRA+C4s51p87xgAhlmDGkHwQesMudx6DLN40AosplmN5+7Hze/Adi7GNCJEgyuJBleO2XWczPO7UKghAwKGESPvtQIuMHZ5ErT26M68SnfmVXJeMwCOVUNhcDUFzgoso5hwYC492Q1YRtGAYEvOa8UySykMXkpPdgt5vxN7kN9Dzm8j5izEMopPXG+WntxOkvlGwCNkTaPAaRiyYsiZMJRDcWg1TfEnyHsdWEZx33W4fpy830lZ+CYC5vCm9SulCIbfT1p34OV3o4wClAqh/QSaFJa9DDt4Len8LkAPGSgwcPDo7i2TPMEMZVHoDD6jBSBsTiOZOzzoPq01Go+QNbACh5i6DGVwQ/VSOnNJ9iWOUxSI4JgBUm6WuJvhgoJpXF4xv+94xwxwS80yVpXNpTHVjqs9yuwYdZGSfsGSRcXVvN52iLSbI2T1D14n3SymMlhU1DtrY1fPHlztUhjoP9NKKUVlsILmTAuHUoe5IDaHA8ljPNf8GhrNjHBV3zlTboa3uvdgGSbvrb5MKg6JSUcCHkIIIcQUpcwyTLNsVK/Vfgrtp1FDLMHoDYJofJ08gx4On6EcNP6QSf20zmKaRYzlRxutfVqTT9OZ/h0K68RsFU06f4B0fj95r43S8M0Uha4kld9Lxj2IY9VgKButPfJeG75OUhK6jnBgJoXOCtrSv0UpC0sVnCjV6pP1mjGUTXFwNUop0m4zh+M/IZE7gOadSiYhq4q62AeIDbGU5EwUBVeT9zrpTK8h57ahsNA6j6EcioKXURq+YUTtmWY14cifk8u9iptbj9ZpDKsa276UgH0JyohgGkUobHw/iTHIOPN0HFNFMAcpsXyuKQkuoT2zkZzXhX3SzA+AtHecgFlEkdMwMZ0TE2ZauJiP1l/BGx372NLVSMbLEwuEuLJiActLZxELDEy0XOxEKHYGf98FWFBUzdKSGja0NVLqRChxeqtCdWRTdGSTXFpRz9yCCnzt05Q5TsQcPAeUZVi91aRyXWitebNzN2kvy8xI/yUuYStIuS5iV88hLilpoCLYu3xPa82BRDtbOppoycSJBRwWFFWxoLAS25RbzHGhde/XSF9znpPRKIQQQogBlBFGGSG0TgEDbzi17p1SbaihP5iPpWBgHqaK4vldWGbxKX3x8PweCkLXj+nTx1R+N13pFwkYZVgn3cRaRgF5r53O9O+J2A2E7blUxT5Ea+qXZN3DvctTFFhGMWWhWykJXwtAeeRmfLJ0ZzaQ9ZtB9WbFCBjFlEduI2ovxPMzHO75CfH8XiKBmX0JTLX2SOUPcajnCeYU/RnBMc7zoZRJeeRWYs4S4tmtuH4HplFA1G4gHJg9qqU2hllCMHQLOngjkAOcfst5HKseJzCbTH4njprb73entYvrtVEYvhnTiI3BFY6vAnsuleEraE69SNbvwjGK0Pjk/C4M5VAbuXnQ35mvXTQ+BgF5cj5FlQcLuHnahVxbuYis7xIyAwSM0d+C2YbJXfXLKbRDbG4/wr54GwAlTpgbahq4ftp8LMNAa42hDFw99PIX6D0m7WVpTDVTbA/+txa1wrTlujmabqUiWIKvNc8e2c4LzXtIuTmCZoC877Gu5QCLiqv50KzlxALv5C3xtc/BZCvbuw7TlosTtRzmF9QyN1Z92nwkQowFCXgIIYQQYgClgtj2CjLpX6CNigE3vL7XhGFWYAXOThLGgFlLJLiSnvTv0bhYRm+ZUM9PkPOO4ARmEgkOnnx1tBLZN/F1tl+w422WUUI6v5tE9i1CgZlEnSWE7Xkkczvx/B6UcggHLiBw0mtNI0h19G6Kg6tI5nb3tR2zGwicSHrak91BIn+ASKC+XwlTpUzCgXoS+d10Zd6kKnrdmF5r7zkUocBMQoGZY9yuCQx8kq2USVH4dtoS7WTcnQSMcpQK4usEnt9BMDCPWPDaMe3LeFHKoDZ6I+FANW3pN0i5TSgUJc4yykIrKLAv6Hd8Mt9IR+Z1urM70PiErVpKgsspchYPmuNFTH6OGRizm/uIZXPnjGVcU3UBx1LdKNVblrbIfufvTCnFrMgM3ujcTHFg4HK7rJfFUhaVwQp8fHytCQwRdFNKoZTC170zzt5oa+T5YzspskPURd4JQGe8PJvbjxK2bD4yawVKKVzf47mmN3mtbTc538M2LfK+x8aOgywoqOGOupVEA2e3upY4v0jAQwghhBCDcpwrcPPbyLu7MM3qExU3cngnclmEgzdhjENOicEopSiO3IGhHBKZV8i6uwGFUjYhexElkTsJjHL5zlCy3nGMIUoC994A2OT91r5thnKIOUtP22ZvUGEGocCMQfcn8gd7n/gPktdCKYWpIvTkdlDF2Ac8JoITmEV57L8Rz7xEOvcWvt+FYUQoDN1GNHjlgNk8Oa+TeG73iYo3UWL2/CEr3wxHxu2gO7eTvJ/AVEEK7TmErOpRzbZQyqQ0eCElzlJcnUJhYKrQgLa6slto7PlP8n43AaMQpUy6s9vpye2gInQV06K3SNBDDEuxE6bYGbps+bzYXHbF93I820KFU96XlyPn5zieaWVWdOaJKi2KEqeQpnQbscDAv6eMl8NSJiV2AZ72eaXlAIYyKDll6U3QDFAVLmBrZxPN6R6qw4Vs6jzA2tYdlNixfiV3s16erd2NhCyHD9StlBlOwyJZS0dDAh5CCCGEGJRplhGJfpJ06lfk81vxdWtvlRazFif4Hmx79OVzR8NQDsWRO4gFryTr7kdrF8ssx7FmjcsNomVE0To35H6t3TFf0qO131smdghKGb2lUacQ26qjNPoRPP9WfJ3BVDEMo/+MEK09WlJ/oC21htyJBLYacMxyqiI3UhxcPqIbJq01x1Mvcyz5B3Je19tbsYwo5eFLqIveOGjQaTiUMgiowQOBea+Ho/Gn8XSGaGBOX58ds5Sc10VL+iWidj2FzsJRnVuIk1UEy7m24kpealvH0fQxQKHRWMqkPjqDayuuwDwxe29J4RwOp5pJumki1jt/f772ac62MyNczfRIFZ3ZFE3pHkqHCLQUBoK0pOMcSXVTHozyRvs+AobVL9gBvTNeyp1CdnYfobViARXBcz9Xj5icJOAhxDmg7VgH217eya7X9+HmXWrmVLPwsnnMXjpTIt5CiAllmlVEov8V3z+O73eiCGBaM05bgnO8WWbpmJW7PZ2ovYh4ZgO+zmKo/uUYPT+NUoqoPbaJKEOBanTaR2tv0LwZrp+kdIyX7pwrTKMAk4JB97WmXqYp+SssFSMamN0b+NEuGbeZI/H/xDSCFDqLhn2ujsybNMZ/hWkEidm97WmtyfldNCX+gKWC1IzDsqHu3HYyXivRwKwB/77bZhE5r52OzCYJeIgxMys6k8pgOQeSh+jMdWEqk+pQFXWhGqyTcoksKpxNc6aNTZ27ac91EzFD5LVLystSHSzlhqpLMJXZO19gOIkwtaYjl6A120OxPXhguCAQoi3bQ1O6UwIewyETPEZFAh5CTLCD2w7zy395jrajHUQKwximwZsvbGP7K7tY/f5LuPIDl0rQQwgxoZRSmGYVplk10V05qyL2YsL2AhK5LTjWNEzVezPu+t3kvCZizkWE7fnv0srIFNoLCZoVpNwjhK3p/d7/M+5xLBWhKLhsTM95rnP9FO3ptZgqRPCk0q6GsggHaknkDtCWWkuB3TCsmT5aexxPvQpAyKrs266UwjGL8XWelvTrVIQvHfMywFm37cS5Bk8CaxkxUu7hIasRCTEaESvCosLTB2ctw+T6qpXMiExjW/d+WrMdxIwwlxXUs6CgniK792+h2A5TGSrgSKqrX2LSt/XkM0Qtm2nhQnrTMr+74R4nxGhIwEOIYUj2pNi3+SDdbXFsx2LGwjoqZ5Sf8YeRdDLDr//v7+lq6aZ+8TsfbMtrS+lq6WbdU+uZNquSuRfNGovLEEIIMQKmEaIq9lFak0+SzG0n5x8HNKYRoyh4BeXR2/qqqIwV2yykNnYHh+P/SSK/B8uIAgrXT2CpCNXRm4lYg+f/mKpS+YNk/VbCQ1x30CojlT9E1mshaL17UC7ttZJ0j+JYg+d8ccxSEvkDJPKNFI9xKVnDCHC6R64aF0PZEuwQE8JUJgsKZrKgYOaQQTfLMFhVUc9jB96gM5vql0Mk67k0pXq4tGIm08KFeNqnwimkKdNJxBoYHOnOp4haQapCReN5WVOHZhRlacelJ5OKBDyEeBfbX93NH360hvamTgB8XxOOhVh4+Xyu+8gVOCHnXVoY2r5NB2g51EbtBQMTpBVVFNLV1sOWtTsk4CGEEBMkYBZRHfsTst5Rsu4xFOBYddhm1bjdlBY6C7DNP6Uzs5me3A609igJXkSxs4xIoP68uxn2df5EbpPBZ0UoAvh4+Do/rPa09gAfY8j2jJOOG1uRwEwMbFw/hXVKQlytfVw/QUXo6pO2aVLuMbpze3H9DLYZo8ieR9AauKTL85MkctvJe50YyiYcmINj1Zx340WMjdONm4vLp3M8HWfN8b20ZhInytK6aGBxyTRun74YpRSWMlleOosnD6+nK5ek6KSlLRkvT1u2h5Wlc2U5ixhXEvAQ4jQObT/Ms//nt+QzLnXzajAtE6018c4krz+7CdM0uOnjoy+Z136sE+1rrMDgf4qx4ihHdzfh+z6GIRnbhRBiIiilCFq1BK3as3bOkFVFKHoT07jprJ3zXGWbJZgqhKcTWCo2YL/rxwkY0X4lgE/HMUsIGDFyfjchY+BT57wfx1JhguOQJyYamE2Bs4Cu7JuErJq+CjO+zpHKHyFoVlF8YsmSr/M0xp+lJb2BvJ88kahV45hFTItcTXX4sr6b0nj2LVoST5M9UUEJfEwVoSC4nIrI+zEHuU4hRstUBrdOX0RDcSVvdhyjNRMnYjksKq6moaiK4Enldy8qmUVbpofX2vfQno3jmAHyngtKsbhoOjdUL5u4CxHnBQl4CDEErTUbf7eFZFeKGQvr+j5UKKUoKIniez7bXt7JihuXUTatZFTnMEwDfZq5Zr7rY4YC8nRGCCHEeStk1RK159KdfZNoINwv/4Wv8+T8DirC1xMwBgZDBmMZIcqCF3E48Rtso7BfMKA3EepxSkMXErKqx/xaDGUxPfYBFAY9uR2k3aP0ZjAwCAVqqYveQdAqB+BY8kWOJdcQtMoInyiVq7VP2mujMf4MthGlLLSMVH4/TfEf4/tpwlY9SllorXH9bjrTL6EwqYr9lzG/FnF+M5RibkEFcwsqTnucqQxunLaM+YW17Og+TFs2QcRymF9Qw9yCamyj/+2o1pqjrd3sOHic9u4kkaDN3Lpy5tSWYVmDz8oS4nQk4CHEEFLxNAe3HqaosmjQgENhWYyD2w5zZNexUQc8auZWE3ACZJJZgpH+S2O01sS7Eiy9ukECHkIIIc5bSimqozeT99pJ5PcSMIowlIOnU7h+nJi9gIrwVSNqsypyOSn3GB2ZrRiGjaXCeDqL66eI2fXURW8et397A2Yh9YV/TDJ/kGT+EBqPoFlBzJ6HafR+Fsh5cY6nX8c2C3BOmrmilEHYqiCeO8Tx1GuUBhfTlX4F1+8mbM3t93Cmd8aLT3dmA8WhK3CGkd9EiPFgKIP6aAX10dMHR3xf88LGvazZvI9EOocdMHFdj1e2HqShvoo7rlpCJDS2eZPE1CcBDyGG4OU9fM/DDg7+xqqUAgWeO/o1vjMaapm1eDq7Xt9HzZwqnHDvBx3P82nef5yiikIWXbFg1O0LIYQQU0HImsbMwo/TkVlPV2Yzns4SMIqoCL+HktAlw57d8TbLCDO78I8oct6iLb2RrN9B0CyjLHgRpcGl2Obg5XHHilIGUXsWUXvwHF2J/GGyXicFgZmD7g9aZSTdoyTyh0jmdhAwSoZIMFlMzt1DKr9fAh7inPfW3mP89vXdxMI2c0pL+8Z0Optn8+6jhJwAH7hm6QT3cgJpPYqkpZK1dMKTAjzyyCPU19cTDAZZvnw5a9asGfLYpqYmPvzhDzNv3jwMw+D+++8f9Lif/vSnNDQ04DgODQ0NPPnkk+PUezGVRQrDFJUXkuhMDLo/m8piWSZFFaNPtGRaJrf86XVccPFsjje2sX/LIQ5uPUzjjiMUlMV4759eR9XM00fDhRBCiPOBY5VTHX0v80r/O/NK/zsXlHyWysh7RhzseJtpBKkIX0JD6b0sK/sbFpV8murIFeMe7BgOjUdveYXBP6orTDR+b0JXPBSBwY9TClDoYSZ0FWKieL7P69sbUQpKCyP9AnghJ0BFcZRt+5tp6YxPYC/FZDShMzwef/xx7r//fh555BEuu+wyvvvd73LzzTezfft2pk+fPuD4bDZLeXk5n//85/nmN785aJuvvPIKd999N1/+8pe54447ePLJJ7nrrrtYu3YtK1euHO9LElOIaZksuXohzzz6W9KJDKHoSWt8fZ/mgy3Uza9hRsOZJbErLCvgrv/vNg5uO8zR3U24eY+S6iIuWD6LSGHk3RuYRBKZLG8ebmZj41Hi6Syl0TAXzahhSW0VzhCJW4UQQoiTGcoe83LAJ+cFORcEzTIsFSbvxwcNwOT8bmyjkLBVQ8AoI+seI2AOfADj6ywKE9scvASvEOeKrniaY+3dlBSEB91fGA3SdrSdo63dVBSPLsgpzk8TeofxjW98g0984hN88pOfBODhhx/mN7/5Dd/5znf46le/OuD4mTNn8s///M8A/Ou//uugbT788MNcf/31fO5znwPgc5/7HC+++CIPP/wwjz322DhdiZiqll69kCO7j7FlzQ4syyRSFMHNuvR0JqicUc71f3zVkBVWRsIKWMxZVs+cZfVj0OtzU2cyzX+8tpndzW0ELQsnYLHneBs7mlrZWlfN3ZcsIWwP/oRKCCGEOJ+ErSqKnAtoTW/CMsIY6p3PGq6fIe/1UB27jIAZpSi0kqb4j/H8JKbxzoMSrX0y7mFC1gzC9tyJuAwhhk2f+M+7pc6RFRpipCYs4JHL5diwYQMPPvhgv+033HAD69atG3W7r7zyCp/97Gf7bbvxxht5+OGHh3xNNpslm832fd/T0zPq84upxXYCvPfPrmfW4hm89dI2Opq7CMUclt+4hEWXLxh1stLzjdaaZ97aya6mVmaVlxAw33mSls7l2XToKNMKY9y4+IIJ7KUQQghxblBKMT16Ezmvm57cfkwjhKmCuH4SH5fS0FKqwqsBKAxeTCp/gJ7MayjPwjQK0DqP63fjWFVUxO4c8xkxQoy1omiI8qIozR09REPOgP3xVJZw0KayRGZ3iJGZsIBHW1sbnudRWVnZb3tlZSXNzc1DvOrdNTc3j7jNr371q/yP//E/Rn1OMbXZToClVy9kyVUN5HMupmVgmufW1NdzXUs8yfamFioLov2CHQAhO0BBKMgbh45y+QUziTg2PZkMLfEkhlJMKywgKMtdhBBCnGeCVikXFN1De+ZN2jKbyfsJCux6ykLLKHUW95XTNZRDdewuIoG5dGfWk/NaMYwQZaHVFAZX4IxDeV0hxpplGixfUMeTL7xFTzJDQeSdpeS5vEdze4IL59UwrWzic+xMGElaOioTfhdxakZprfUZlwEbaZuf+9zneOCBB/q+7+npoa6u7oz6IKYepRS2I0suRqOlJ0Eik6OqYPCofFE4xPGeOIc7utnd2sbGxmN0ZzIooCIWZVV9HZfNmYllTHieZSGEEOKssc0Y1ZHLqY5cjtY+Sg3+76ChHIpCl1IYXInWOZQyUWrCP+YLMSLL59fR0hHn1W2HaO1KEnIscnkPz9PMm1HOe1c3jFu5aDF1Tdg7YVlZGaZpDph50dLSMmCGxkhUVVWNuE3HcXCcgVOnhBBjwzQUSil8rTEH+YfK9/3eZS/bdrK/rZOSSJi64kJ8rWlLpPjZm9vpyWR53+L58g+dEEKI89JQwY7+xyiUks+0YnKyTINbLmtg3oxKtuw7RltXknDQpqG+kob6KkLy4FGMwoQ9LrVtm+XLl/P888/32/7888+zevXqUbe7atWqAW0+99xzZ9SmEOLM1JUUURIJ0ZZIDbq/LZHCNBUH2ruYUVpMeSxCwDRxLIuaogJKwmFe3t/I0S7JryOEEEIIMVWZhsEF08v5wDVL+W93rOaem1ewfH6dBDvgnSUtI/06z03oXLcHHniAe+65hxUrVrBq1Sq+973v0djYyL333gv0LjU5evQo//Zv/9b3ms2bNwOQSCRobW1l8+bN2LZNQ0MDAJ/5zGe48sor+drXvsbtt9/Oz3/+c37729+ydu3as359QohesaDDyll1PPPWLhzLpDAURCmFPjGDw9M+4YCNix40X0dxOEhrS5Idza3UFg8suyeEEEIIIYQQp5rQgMfdd99Ne3s7X/rSl2hqamLRokU888wzzJgxA4CmpiYaGxv7vebCCy/s+/8NGzbwox/9iBkzZnDw4EEAVq9ezY9//GP+9m//li984QvMnj2bxx9/nJUrV5616xJCDHTN/NkkcznW7z/C8Z4khgIfTVEoyC2L57H+8FF8NXgUWimFaSh6MtlB9wshhBBCCCHEqSY8m9F9993HfffdN+i+H/zgBwO26WFMy/ngBz/IBz/4wTPtmhBiDNmWyR0XLuTimbXsam4jncsTCzosmFZBZUGUve0dtMaTg75Wa43n+8SCUlZPCCGEEEIIMTwTHvAQQpw/lFLUlRRRV1I0YN+yumq2NR0n67o4Vv+3pq50hohts6Cq/Cz1VAghhBBCiHOIlKUdFanxKIQ4JyypqWLRtEoOtnXSlkji+T45z+NYdw/tiSSrZk2ntkjydwghhBBCCCGGR2Z4CDEJaK1pbe7mwJ7jZDN5orEgcxZMo6AoPNFd68fzfQ62dHKsswc0TCspYGZFMabx7rHVUCDAhy9eSlkkzOYjTRxo78RQirJohOvnz+HKufVSklYIIYQQQggxbBLwEOIcl8+7vPTrLWx+/QDJeObETb+msDjC5dct5MJLZ58TgYD2eJInX9vK3qZ2cq4H9ObtmFNVyvtXLqKsIPKubUQdhzsvXMQ182bTEk9iGoqaogJCASlFJoQQQgghzl9a62Hlszz1Nec7CXgIcY575Q87eeWFnRSVRimvKkQphe/7tB3v4fmnNxGOOMxfUjehfUzn8jz+8lvsPtZKbWkhYac3uWgqm2Pr4eNkXY+PX3sx4WHWUC8OhygOh0bdn8aWLt7af4xDLZ2YyuCC2jKWzJpGWeG7B12EEEIIIYQQU4Pk8BDiHJboSfPm6/uJFoQoLI70zeQwDIOK6iJ832fjK/vwfX9C+7n98HH2NrVTX1HSF+wACDs29RUl7GtuZ/uR42elL6/tbORff/0af3hzL8c7Exxp7+ZXr+3g+8++xt6jbWelD0IIIYQQQowpPcqv85wEPIQ4hx1tbKe7I0lRaXTQ/cWlMY4daaezLXGWe9bfrqOtGAoCljlgX8AyMQ2DXUdbxr0fjS2dPLt+B6CYM62MaaUF1JYVMqemjI54mqfWbSWezo57P4QQQgghhBATTwIeQpzDPM9HazCMwXN0mJaB72k8b2JneGTzHpY5MNjxNss0yOTcce/H5n3HSKRzVJXE+uU1UUoxvaKI5o44Ow6dnZkmQgghhBBCiIklAQ8hzmHFpVGCIZtkYvBZCfHuNLHC0IRXa6ksipLN5wdNjKS1Jp1zqSqOjXs/DjR3EAnZg+4zTQOlFE0dPePeDyGEEEIIIcaWrGkZDQl4CHEOq6opZubcClqbugbM4shm8iR60ixePpPgEDf5Z8viGVVEgg5t8dSAfe3xFNGgzeLp1ePeD0Op02aj1lpjDKNErhBCCCGEEGLykyotQpzDlFJce8tS4t0ZGve2EI462MEAqUQWN+/SsGw6K1bPnehuUltayHVL5vDrTbvYfzxLUSQIQFcyg2Uoblx2AXVlhePej3m1FRxs7kBrPaBUb971epe2lBeNez+EEEIIIYQYU1r3fo30Nec5CXgIcY4rrSjggx+7jG2bDrF14yEymRw1dSUsWjGThqXTcYLDK/U6npRSXLVwFuUFEV7fe4TGti601iyqq2TFnFoW1lUOCECMh6Wzq3lj92EOt3RRW17YN5vD9TwOHe9kZlUxF9SVj3s/hBBCCCGEEBNPAh5CTAIFRWFWXbOAS6+ej+f6mJZxVgIII6GUYuH0KhrqKkmfSFAasq2z2s/K4hh3XrGYn6/bxr6mdkzDOLHERTGzspgPXLGEkD3xASIhhBBCCCFGZDQpOWSChwQ8hJhMlFJYgaGroZwLlFKEnYkLKsyvq6DqvTG2Nx7nWFsPpqGYWVXC/LoKQhPYLyGEEEIIIcTZJQEPIcSUUxQNsbph5kR3QwghhBBCCDGBJOAhxBTgeT77dzez883DtLX2EI44zFtYy7zFNYTCzkR3TwghhBBCCHEmJGnpqEjAQ4hJzs17/PaXm9j06n48zycUtmk+2smerUfZsqGCW//oUopKIhPdTSGEEEIIIYQ4qyTgIcQk99YbB3hj7V5KK2JEC0J92928x4E9x/ndLzdz5z2rz7kkp0IIIYQQQojhkqylo2FMdAeEEKPn5j3efH0/tmP1C3YAWAGT8uoi9u9qpvlo55idM5PJ09GRIJHMjlmbQgghhBBCCDHWZIaHEJNYT3eKjtYEBcXhQfdHog5tzd20NndTXVtyZufqSfPGxoNs3XaEVCpHIGBywZxKViyvp7q66IzaFkIIIYQQQoixJjM8hJjEDKVAgfZPP13NMM5sOUt3T5qfPvkGf3hhB9msSywWxDAU6zcc4Imfrqexsf2M2hdCCCGEEEKchh7l13lOAh5CTGIFxWGqaorp6kgOuj/enSYSC57x7I71r+9n3/4WZkwvpbwsRiTsUFwUYdbMcjo7U/z+hR14nn9G5xBCCCGEEEKIsSQBDyEmMcMwWHbJLBTQ0RZHn1R6Kp3K0n68h/mLaymtKBj1OVKpLFu3HaW4KIJlmf32KaWorCzg8NEOjhztGPU5hBBCCCGEEKfxdlnakX6d5ySHhxCTXMOy6fR0pXjlDzs4sPs4AdvEcz2sgMmi5TO55pYlZ9R+PJElnc5RPESekFDQxs179MQzZ3QeIYQQQgghhBhLEvAQYpJTSnHp1fOZNa+aPTuO0tmWIBSymTWvihmzKzBPmZUxUnbAxLIM8jmPUHDgftf1UEphB87sPEIIIYQQQojBaa37zeYe7mvOdxLwmKSSPSmSXUnskE1hWQFKnVlSSjG5KaWonFZE5bSiMW+7qChM/cxytm47QiwWHDDW2toTlJZGmV5XOubnFkIIIYQQQojRkoDHJNPV2s3rz25m+6u7ySQyWLZF/ZLpXHzjMurm1Ux098QUpJTikovrOdTYxpGjHVRWFGLbFp7n096eIJfzuPbqWYRC9kR3VQghhBBCCCH6SMBjEulu6+Fn//wMh7YdpqiikKLKQvKZPFte3E7jjqPcft+N1C+eMe79SPak6GrpxrRMymtLz3jJhDj3zZhexu23XsTvX9hB0/FufM8HpSgpDnPVlfNYsbx+orsohBBCCCHEFDaaOrOypEUCHpPI689u4tC2w8xcWNcXZAhFgsRKohzeeZQ/PL6Ouvk1WIHx+bWm4mle/eUbbF27k0RXCtM0qJhRxvLrl7L4igWyrGaKmzunkpkzyjh4qI14PIPjWMycUUYk4kx014QQQgghhBDniF/+8pf81V/9Fb7v8zd/8zd88pOfnLC+SMBjkkjF02x/dTdF5YUDZlQopaicUU7TvmYO7zw6LrM8Mqksv/jOb9j+ym6KyguoqCvFc32a97fwi395jlRPmkvft3zMzyvOLYGAydw5lRPdDSGEEEIIIc4vk2SCh+u6PPDAA/zhD3+goKCAiy66iDvvvJOSkpKz3xkk4DFpJLtTpBMZisoLB93vhB3cvEeiKzUu59++bhc71++lbt407OA7uRpq5lbTdrSDdU+/zrxL5lBcMXj/xMQ7ureJHa/s5tCOIyhDMXvpTBpWzaO8VpKNCiGEEEIIIc7c+vXrWbhwITU1vfklb7nlFn7zm9/woQ99aEL6Y0zIWcWIOSEby7bIZXKD7nfzLoahsMchcaTWmi1rdmAH7X7BjreVVBcTb4+zd9OBMT+3GBub/7CVx776JGufWk9HUxdthzv4w2Nr+dFXfsaejfsnuntCCCGEEEKIc8BLL73ErbfeyrRp01BK8dRTTw045pFHHqG+vp5gMMjy5ctZs2ZN375jx471BTsAamtrOXr06Nno+qAk4DFJxEqizFoyg/amzkHrKbcd7aB0WgnTF4x9pRbf9+lu6yEUDQ663zAUSilS3eMzu0ScmaYDx/ndf6xB+5r6RdOpnFFOVX0F9YtnkOxK8ev/+3t62uMT3U0hhBBCCCHEkDToEX6NYk1LMplk6dKlfOtb3xp0/+OPP87999/P5z//eTZt2sQVV1zBzTffTGNjY28vB7lXnchcjxLwmCSUUlx804UUVxbSuPMomVQW6J3Z0XywBTfvcun7lhOKDB6UOBOGYRCOhcmeOOeptNb4viYoySvPSTte3U2iM0HF9LJ+bzZKKabNqaT9WCe7Xt87gT0UQgghhBBCnE46myadTY3wKw1AT09Pv69sdvD7OoCbb76Zv//7v+fOO+8cdP83vvENPvGJT/DJT36SBQsW8PDDD1NXV8d3vvMdAGpqavrN6Dhy5AjV1dVj+JMYGcnhMYnUzq3m9k/dzAuPv8yxvc24eQ9lKEqri7n0fcu58D2Lx+W8SikWXzGfZ7//e9y8O6AKTHdrD9GiMPVLxr8krhi5wzuPEYqGBo2sGoaBFbA4tv/4BPRMCCGEEEIIcTq2bVNVVcVnv3nfqF4fjUapq6vrt+2LX/wiDz300IjbyuVybNiwgQcffLDf9htuuIF169YBcMkll7B161aOHj1KQUEBzzzzDH/3d383qr6PBQl4TDIzF9Zxz9/9Fw7vOkaiM4Edspm+oJZgeHxnVyy8bD7bX93NoW1HKKspIVYSxfd8Opq6SPakuOyOSyT55TnKsAx8f+jpbNrXAyr/CCGEEEIIISZeMBjkwIED5HKD53J8N1rrAQ8+HWd0945tbW14nkdlZf+qjZWVlTQ3NwNgWRb/9E//xDXXXIPv+/z1X/81paUTd58oAY9JyLRMZi6se/cDx1C0KML7//IWXnj8ZfZtOkB7UyfKUJRUFnHpbcu59L3LJ3Rtlhja7CUz2bfpIL6vMYz+vyM376F9zfT5Y5/7RQghhBBCCHHmgsEgweDYpy4YrVPv+04Nqtx2223cdtttZ7tbg5KAxyDeTrTS09MzwT05t5hBxbV/fBlLr2ug83gXhmUwbVYloWiIZCo50d0TQ6hZWEmkIsTerfuZNruibzaHm3c5sqeZabMrqZxTKuNdCCGEEEKIEXj78/NgiTqnorKyMkzT7JvN8baWlpYBsz7OFRLwGEQ83lux4tS1TkJMVZ/+5p9NdBeEEEIIIYSYlOLxOIWFhRPdjXFn2zbLly/n+eef54477ujb/vzzz3P77bdPYM+GJgGPQUybNo3Dhw8Ti8VkmYYYEz09PdTV1XH48GEKCgomujviPCBjTpxtMubE2SZjTpxtMubEqbTWxONxpk2bNtFdGTOJRIK9e9+p4HjgwAE2b95MSUkJ06dP54EHHuCee+5hxYoVrFq1iu9973s0NjZy7733TmCvhyYBj0EYhkFtbe1Ed0NMQQUFBfIPpDirZMyJs03GnDjbZMyJs03GnDjZVJvZ8cYbb3DNNdf0ff/AAw8A8LGPfYwf/OAH3H333bS3t/OlL32JpqYmFi1axDPPPMOMGedmxU4JeAghhBBCCCGEEIKrr776XXOS3Hfffdx33+jK5J5txkR3QAghhBBCCCGEEGKsScBDiLPAcRy++MUvjrrmtRAjJWNOnG0y5sTZJmNOnG0y5oSYfJQ+X2roCCGEEEIIIYQQ4rwhMzyEEEIIIYQQQggx5UjAQwghhBBCCCGEEFOOBDyEEEIIIYQQQggx5UjAQwghhBBCCCGEEFOOBDyEGIVHHnmE+vp6gsEgy5cvZ82aNUMe+7Of/Yzrr7+e8vJyCgoKWLVqFb/5zW8GHNfV1cWnPvUpqqurCQaDLFiwgGeeeWY8L0NMIuMx5h5++GHmzZtHKBSirq6Oz372s2QymfG8DDGJjGTMrV27lssuu4zS0lJCoRDz58/nm9/85oDjfvrTn9LQ0IDjODQ0NPDkk0+O5yWISWasx9yjjz7KFVdcQXFxMcXFxVx33XWsX79+vC9DTCLj8T73th//+McopXj/+98/Dj0XQgybFkKMyI9//GMdCAT0o48+qrdv364/85nP6Egkog8dOjTo8Z/5zGf01772Nb1+/Xq9e/du/bnPfU4HAgG9cePGvmOy2axesWKFvuWWW/TatWv1wYMH9Zo1a/TmzZvP1mWJc9h4jLl///d/147j6P/4j//QBw4c0L/5zW90dXW1vv/++8/WZYlz2EjH3MaNG/WPfvQjvXXrVn3gwAH9wx/+UIfDYf3d736375h169Zp0zT1V77yFb1jxw79la98RVuWpV999dWzdVniHDYeY+7DH/6w/va3v603bdqkd+zYoT/+8Y/rwsJCfeTIkbN1WeIcNh5j7m0HDx7UNTU1+oorrtC33377OF+JEOJ0pCytECO0cuVKLrroIr7zne/0bVuwYAHvf//7+epXvzqsNhYuXMjdd9/N3/3d3wHwL//yL3z9619n586dBAKBcem3mLzGY8z9xV/8BTt27OB3v/td3zF/9Vd/xfr160/7hEucH8ZizN15551EIhF++MMfAnD33XfT09PDs88+23fMTTfdRHFxMY899tjYXoCYdMZjzJ3K8zyKi4v51re+xR//8R+PSb/F5DVeY87zPK666io+/vGPs2bNGrq6unjqqafGuvtCiGGSJS1CjEAul2PDhg3ccMMN/bbfcMMNrFu3blht+L5PPB6npKSkb9vTTz/NqlWr+NSnPkVlZSWLFi3iK1/5Cp7njWn/xeQzXmPu8ssvZ8OGDX3Tu/fv388zzzzDe9/73rHrvJiUxmLMbdq0iXXr1nHVVVf1bXvllVcGtHnjjTcOu00xdY3XmDtVKpUin8/3ey8U56fxHHNf+tKXKC8v5xOf+MSY9VcIMXrWRHdAiMmkra0Nz/OorKzst72yspLm5uZhtfFP//RPJJNJ7rrrrr5t+/fv5/e//z0f+chHeOaZZ9izZw+f+tSncF2374m8OD+N15j7oz/6I1pbW7n88svRWuO6Ln/+53/Ogw8+OKb9F5PPmYy52tpaWltbcV2Xhx56iE9+8pN9+5qbm89oHIupa7zG3KkefPBBampquO6668ak32LyGq8x9/LLL/P973+fzZs3j0e3hRCjIAEPIUZBKdXve631gG2Deeyxx3jooYf4+c9/TkVFRd923/epqKjge9/7HqZpsnz5co4dO8bXv/51CXgIYOzH3AsvvMA//MM/8Mgjj7By5Ur27t3LZz7zGaqrq/nCF74w5v0Xk89oxtyaNWtIJBK8+uqrPPjgg8yZM4cPfehDZ9SmOH+Mx5h72//8n/+Txx57jBdeeIFgMDim/RaT11iOuXg8zkc/+lEeffRRysrKxrPbQogRkICHECNQVlaGaZoDov8tLS0DnhKc6vHHH+cTn/gEP/nJTwY8XaquriYQCGCaZt+2BQsW0NzcTC6Xw7btsbsIMamM15j7whe+wD333NP3ZGrx4sUkk0n+7M/+jM9//vMYhqx4PF+dyZirr68HesfT8ePHeeihh/puPquqqkbVppj6xmvMve1//a//xVe+8hV++9vfsmTJkrHtvJiUxmPM7du3j4MHD3Lrrbf2Hev7PgCWZbFr1y5mz549xlcihHg38olWiBGwbZvly5fz/PPP99v+/PPPs3r16iFf99hjj/Enf/In/OhHPxo0R8Jll13G3r17+/5hBNi9ezfV1dUS7DjPjdeYS6VSA4IapmmitUZyWZ/fRjvmTqW1JpvN9n2/atWqAW0+99xzI2pTTE3jNeYAvv71r/PlL3+ZX//616xYsWJM+ismv/EYc/Pnz2fLli1s3ry57+u2227jmmuuYfPmzdTV1Y3pNQghhmkiSsMIMZm9Xcbs+9//vt6+fbu+//77dSQS0QcPHtRaa/3ggw/qe+65p+/4H/3oR9qyLP3tb39bNzU19X11dXX1HdPY2Kij0aj+i7/4C71r1y79y1/+UldUVOi///u/P+vXJ8494zHmvvjFL+pYLKYfe+wxvX//fv3cc8/p2bNn67vuuuusX58494x0zH3rW9/STz/9tN69e7fevXu3/td//VddUFCgP//5z/cd8/LLL2vTNPU//uM/6h07duh//Md/lLK0os94jLmvfe1r2rZt/Z//+Z/93gvj8fhZvz5x7hmPMXeqj33sY1KWVogJJgEPIUbh29/+tp4xY4a2bVtfdNFF+sUXX+zb97GPfUxfddVVfd9fddVVGhjw9bGPfaxfm+vWrdMrV67UjuPoWbNm6X/4h3/QruuepSsS57qxHnP5fF4/9NBDevbs2ToYDOq6ujp933336c7OzrN3UeKcNpIx97//9//WCxcu1OFwWBcUFOgLL7xQP/LII9rzvH5t/uQnP9Hz5s3TgUBAz58/X//0pz89W5cjJoGxHnMzZswY9L3wi1/84lm8KnEuG4/3uZNJwEOIiae0lrnLQgghhBBCCCGEmFokh4cQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEEIIIYQQYsqRgIcQQgghhBBCCCGmHAl4CCGEEOeZV199lfe85z2UlZWhlOr31dXVNdHdE0IIIYQYExLwEEIIIc4jb775JldffTVLly7lpZde4te//jUlJSVcc801PP744xQVFU10F4UQQgghxoQEPIQQQojzyKc//Wluv/12vvGNb9DQ0MCNN97Ihz70IeLxOB0dHSxbtoxFixbhOA7Lli1j2bJlfPe73x2yvf379/OLX/ziXc/71FNPcf/994/hlQghhBBCnJ410R0QQgghxNlx/Phx1q5dy+9///t+2yORCEop7r33Xu699142btzIX/7lX/Lyyy+/a5vPPvssqVSKW2+99bTHvfXWWyxZsuSM+i+EEEIIMRIyw0MIIYQ4T2zYsAHf91m6dOmA7StWrOj7ftu2bSxcuLDfMVu2bGHVqlUsWrSID3zgA+RyOV588UX+9m//lkcffZQLL7yQdDrND3/4Q1auXMnixYu57bbbyOVygAQ8hBBCCHH2ScBDCCGEOE/4vg9AOp3u27ZlyxZeeuklPvrRj/Zt27p1a7+ARyaT4UMf+hD/7//9P7Zu3UpZWRk//vGPueqqq1i0aBG/+93v2LRpE6FQiFtuuYXXXnuNLVu2UFZWxpo1a4DBgyhCCCGEEONJAh5CCCHEeWLlypWEQiH++q//mp07d/KrX/2K22+/nXvvvZfVq1f3Hbdt2zYWLVrU9/1TTz3FTTfdxAUXXADA/PnzaW1tBeDIkSPU1dUBoLXme9/7HhdffDFLly7lySefJBgMkkqlMAyDUCh0Fq9WCCGEEOc7CXgIIYQQ54ny8nKeeOIJ1q9fz5IlS/j0pz/Nvffey8MPP9zvuFNneOzYsYMFCxb0fb9t2zYaGho4cuQINTU1fdt/8IMfsHfvXl566SXefPNNCgoKaGhoGNCeEEIIIcTZIElLhRBCiPPI+973Pt73vvcNuT+RSJBMJqmqqurbVl1dzc6dOwHYuHEj69ev57vf/S7r1q1j2rRpfcdt27aN1atXEwqF+Od//md836e4uFjydwghhBBiQsgMDyGEEEL02b59Ow0NDf223XPPPWzfvp3Fixdz//3388QTT2CaJosWLWLPnj0sXryYnTt3cs899/DlL3+Zq666ivb2dhYvXgz05gmRgIcQQgghzjaltdYT3QkhhBBCCCGEEEKIsSQzPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU44EPIQQQgghhBBCCDHlSMBDCCGEEEIIIYQQU87/D/2zlHgq+7aDAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4qElEQVR4nO3deVxUZfvH8c9hZlgFFBdERRZxA1xY3FJzwTTb1NRMbdfK9rSn0l+LZov5VGY9pU/5lLZpllq2mBsuuWaKSwpugOICIooiIDDL+f0xMICAMjg4DFzv12tewpkzZy44MHy95z7XraiqqiKEEEIIIYQDcbJ3AUIIIYQQQlhLQqwQQgghhHA4EmKFEEIIIYTDkRArhBBCCCEcjoRYIYQQQgjhcCTECiGEEEIIhyMhVgghhBBCOBwJsUIIIYQQwuFIiBVCCCGEEA5HQqwQQlRAURR+/vlnux/jRjp27BiKorBnz54aeTwhhCgiIVYIUWc89NBDKIpS5nb06NFy909NTWXw4MGVOva0adPo3LnzdR2jNvL39yc1NZXw8HAANmzYgKIoXLhwwb6FCSEcntbeBQghxI106623Mn/+/FLbGjduXOrzgoICnJ2dadq06XU/ny2O4cg0Gk2d/x4IIaqHjMQKIeoUFxcXmjZtWuoWExPD008/zaRJk2jUqBG33HILUHYqwMmTJ7n33nvx8fHBw8OD6Oho/vrrLxYsWMAbb7zB3r17LaO7CxYsKPcY//zzD/3798fNzY2GDRvy2GOPkZ2dbbn/oYceYujQobz//vv4+fnRsGFDnnrqKfR6/TW/tilTptC9e/cy2zt27MjUqVMtn8+fP5/27dvj6upKu3btmDNnzlWPu3HjRrp27YqLiwt+fn5MnjwZg8Fgud9kMjFz5kxCQkJwcXGhZcuWvP3220Dp6QTHjh2jX79+ADRo0ABFUXjooYf4+uuvadiwIfn5+aWed/jw4TzwwAPX/LqFEHWTjMQKIQTw1Vdf8cQTT7BlyxZUVS1zf3Z2Nn369KF58+b88ssvNG3alLi4OEwmE6NGjWL//v2sXLmStWvXAuDt7V3mGLm5udx66610796dv//+m/T0dMaPH8/TTz9tCb0A69evx8/Pj/Xr13P06FFGjRpF586defTRR6/6NYwdO5Z3332XxMREWrVqBcCBAwf4559/WLJkCQDz5s1j6tSpfPLJJ0RERLB7924effRRPDw8ePDBB8sc89SpU9x2222WsHnw4EEeffRRXF1dmTZtGmAOz/PmzePDDz+kV69epKamcvDgwTLH8vf3Z+nSpQwfPpxDhw7h5eWFm5sbzs7OPPvss/zyyy+MHDkSgIyMDH777TdWrlx51a9ZCFGHqUIIUUc8+OCDqkajUT08PCy3ESNGqH369FE7d+5cZn9A/emnn1RVVdXPPvtM9fT0VM+dO1fusadOnap26tTpqsf4/PPP1QYNGqjZ2dmW+3///XfVyclJTUtLs9QYEBCgGgwGyz4jR45UR40aVamvsWPHjur06dMtn0+ZMkXt0qWL5XN/f3914cKFpR7z5ptvqj169FBVVVWTk5NVQN29e7eqqqr6f//3f2rbtm1Vk8lk2f/TTz9V69WrpxqNRjUrK0t1cXFR582bV249Vx5v/fr1KqBmZmaW2u+JJ55QBw8ebPl89uzZanBwcKnnFUKIkmQ6gRCiTunXrx979uyx3D7++GMAoqOjr/q4PXv2EBERgY+PT5WfOyEhgU6dOuHh4WHZ1rNnT0wmE4cOHbJsCwsLQ6PRWD738/MjPT29Us8xduxYvvvuOwBUVWXRokWMHTsWgLNnz3LixAnGjRtHvXr1LLe33nqLxMTECmvu0aMHiqKUqjk7O5uTJ0+SkJBAfn4+MTExlf9GlOPRRx9l9erVnDp1CjBPeSi6EE8IIcoj0wmEEHWKh4cHISEh5W6/Gjc3t+t+blVVKwxlJbfrdLoy95lMpko9x5gxY5g8eTJxcXFcvnyZEydOcO+99wJYjjFv3jy6detW6nElQ/O1alYLp1soimKT7wtAREQEnTp14uuvv2bQoEH8888//PrrrzY5thCidpKRWCGEqISOHTuyZ88ezp8/X+79zs7OGI3Gqx4jNDSUPXv2kJOTY9m2ZcsWnJycaNOmjU3qbNGiBTfffDPfffcd3333HQMGDMDX1xcAX19fmjdvTlJSEiEhIaVuQUFBFda8devWUvOEt27diqenJ82bN6d169a4ubkRGxtbqfqcnZ0Byv1ejR8/nvnz5/Pll18yYMAA/P39rf3yhRB1iIRYIYSohNGjR9O0aVOGDh3Kli1bSEpKYunSpWzbtg2AwMBAkpOT2bNnDxkZGWWutAfzW/2urq48+OCD7N+/n/Xr1/PMM89w//33W4KmLYwdO5bvv/+eH3/8kfvuu6/UfdOmTWPGjBl89NFHHD58mH/++Yf58+cza9asco/15JNPcuLECZ555hkOHjzI8uXLmTp1KpMmTcLJyQlXV1defvllXnrpJb7++msSExPZvn07X3zxRbnHCwgIQFEUfvvtN86ePVuqM8PYsWM5deoU8+bN45FHHrHZ90MIUTtJiBVCiEpwdnZm9erVNGnShNtuu40OHTrw7rvvWt6GHz58OLfeeiv9+vWjcePGLFq0qMwx3N3dWbVqFefPn6dLly6MGDGCmJgYPvnkE5vWOnLkSM6dO0dubi5Dhw4tdd/48eP53//+x4IFC+jQoQN9+vRhwYIFFY7ENm/enBUrVrBjxw46derEhAkTGDduHK+++qpln9dee40XXniB119/nfbt2zNq1KgK5/A2b96cN954g8mTJ+Pr68vTTz9tuc/Ly4vhw4dTr169MnULIcSVFFUtp5eMEEIIYQe33HIL7du3t1xwJ4QQFZEQK4QQwu7Onz/P6tWrGTt2LPHx8bRt29beJQkhajjpTiCEEA5i06ZNDB48uML7S84vdTSRkZFkZmYyc+ZMCbBCiEqRkVghhHAQly9ftvRRLU95rcOEEKK2khArhBBCCCEcjnQnEEIIIYQQDkdCrBBCCCGEcDh17sIuk8nE6dOn8fT0lDW5hRBCCCFqGFVVuXTpEs2aNcPJqeLx1joXYk+fPi1LGQohhBBC1HAnTpygRYsWFd5f50Ksp6cnYP7GeHl52bkaIYQQQghRUlZWFv7+/pbMVpE6F2KLphB4eXlJiBVCCCGEqKGuNe1TLuwSQgghhBAOR0KsEEIIIYRwOBJihRBCCCGEw5EQK4QQQgghHI6EWCGEEEII4XAkxAohhBBCCIcjIVYIIYQQQjgcCbFCCCGEEMLh1LnFDoQQojJyCgwYVdXeZQghhN0cTIjnmwULyMnJYc7cubhqNfYuqRQJsUIIcYWM3AL+PHHO3mUIIcQNdzknhy1/LGfdkkUc2rMLAI1WS++Hn+H+7mFonWrOm/gSYoUQ4gp6k8neJQghxA2lL8jnf2++wubfl5OXmwOAk0ZDVN8BDBgxhnre9TGaQFtzMqyEWCGEEEKIuig/7zIurm4A6JxdSI7fT15uDn4BwcSMuJe+Q++hQeMmdq6yYhJihRBCCCHqCJPJxL6tf7J2ySL2btnIf9ftwMPTC4D7X3wVJ42W0OhuKIpi50qvTUKsEEIIIUQtd/b0SdYvW0zssu/JOH3Ksn33n+vodftQADp072Wn6qpGQqwQQgghRC11MvEI82dMZe+WjaiFHVc8vLy5+c67iRkxmqD24XausOokxAohhBBC1CIl57q61/Nk39Y/UVWVDt17ETP8XrreMthyvyOTECuEEEII4eAuZ2ezZeUvxP64CFcPd6Z+uRgAH9+mPPXOh7SL7ELTloH2LdLGJMQKIYQQQjggVVU5vGcXsUsXsWXFcvJycwHQ6nRkZZ7Dq0FDAPoOHWnPMquNhFghhBBCCAezdeWvLP7kA04ePWzZ1iwwmJgRo+kzZKQlwNZmEmKFEEIIIWo4k8mE0aBH5+wCQF5ODiePHsbZ1ZWbbr2LmBGjaR/V1SFaY9mKhFghhBBCiBqqZGusOx96nDseGA/ATYPvwqDX0/P2IZY+r3WNhFghhBBCiBpEX5DP3+tWE1u4IEFRa6ztq36zhFhXd3cG3nu/Pcu0OwmxQgghhBA1xLcfvEPskoVkZZ63bCvZGksUq3KILSgoID09HZPJVGp7y5Ytr7soIYQQQoi6oGRPV4DU48lkZZ7Hp0lT+t09iv53j6p1rbFsxcnaBxw5coTevXvj5uZGQEAAQUFBBAUFERgYSFBQkNUFzJkzh6CgIFxdXYmKimLTpk0V7rthwwYURSlzO3jwoNXPK4QQQghhD6qqcmj3Tj59ZRKP3NSR08mJlvuGPfo0//ffr/nvuh2Mef5lCbBXYfVI7EMPPYRWq+W3337Dz8/vuq6CW7x4Mc8//zxz5syhZ8+efPbZZwwePJj4+PirjugeOnQIL6/iScyNGzeucg1CCCGEEDfCxfPn2Lh8CbFLFnIy8Yhl+/bVK7j78WcACOnQyV7lORyrQ+yePXvYtWsX7dq1u+4nnzVrFuPGjWP8ePMk5dmzZ7Nq1Srmzp3LjBkzKnxckyZNqF+//nU/vxBCCCFEdctMP8MXb7/G3+tWYdDrAcq0xhLWszrEhoaGkpGRcd1PXFBQwK5du5g8eXKp7QMHDmTr1q1XfWxERAR5eXmEhoby6quv0q9fv+uuRwghhBDCVkrOdXX38mLftk0Y9HpahXdiwIgxdbo1lq1YHWJnzpzJSy+9xDvvvEOHDh3Q6XSl7i/5Nv/VZGRkYDQa8fX1LbXd19eXtLS0ch/j5+fH559/TlRUFPn5+XzzzTfExMSwYcMGbr755nIfk5+fT35+vuXzrKysStUnhBBCCGENfUE+O2JXEbtkEWdPn+TjFX+iKAourm48Mf09/AKDCGwXZu8yaw2rQ+yAAQMAiImJKbVdVVUURcFoNFp1vCvn1BYdpzxt27albdu2ls979OjBiRMneP/99ysMsTNmzOCNN96wqiYhhBBCiMpKOXyQ2KWL2Lh8CZcuZFq2Hzt4gKD24QD0uPUOe5VXa1kdYtevX2+TJ27UqBEajabMqGt6enqZ0dmr6d69O99++22F90+ZMoVJkyZZPs/KysLf39/6goUQQgghStj/11a+mzWDw3t3Wbb5+PrR/+5R9Lt7FE39A+xYXe1ndYjt06ePTZ7Y2dmZqKgo1qxZw7Bhwyzb16xZw5AhQyp9nN27d+Pn51fh/S4uLri4uFxXrUIIIYQQqqpSkJ9nmeuqqiqH9+5Co9US3e8WYkaMoXOvvmg0GjtXWjdUabGDCxcu8MUXX5CQkICiKISGhvLII4/g7e1t1XEmTZrE/fffT3R0ND169ODzzz8nJSWFCRMmAOZR1FOnTvH1118D5u4FgYGBhIWFUVBQwLfffsvSpUtZunRpVb4MIYQQQohrunj+HBt//pHYpYvo3KsvD08xT1MM69qD8a+9TY9Bd1C/kbT7vNGsDrE7d+5k0KBBuLm50bVrV1RVZdasWbz99tusXr2ayMjISh9r1KhRnDt3junTp5Oamkp4eDgrVqwgIMA8/J6amkpKSopl/4KCAv71r39x6tQp3NzcCAsL4/fff+e2226z9ssQQgghhKiQ0Whk39Y/WfvjQnauX21pjZWXm8ODL0/FyckJJycnBo992M6V1l2KqqqqNQ/o3bs3ISEhzJs3D63WnIENBgPjx48nKSmJP//8s1oKtZWsrCy8vb25ePFipTspCCEcUE4O1Ktn/jg7Gzw8Kv3Q1Ow8tp3KvPaOQoha6bev5vHrgs/ISD1t2RbSoTMxI8bQ6/YhuNfztGN19nN7K19ctFYv9mq1yma1Ko3ElgywAFqtlpdeeono6OiqVSuEEEIIYSf6gnw0Wh1OTuaAdi7tNBmpp6nnXZ+b7xpOzIjRBLYNtXOV4kpWh1gvLy9SUlLKrNh14sQJPD3r5v9MhBBCCOF4SrbGmvjBHDr1NF+8Pmj0g7QK70TXAbfi7OJq5ypFRawOsaNGjWLcuHG8//773HTTTSiKwubNm3nxxRcZPXp0ddQohBBCCGETl7Oz2fLHctYuWcSRvXGW7dtW/W4JsU1bBtK0ZaCdKhSVZXWIff/991EUhQceeACDwQCATqfjiSee4N1337V5gUIIIYQQ1ysvN5cv3n6VrX/8Ql5uLkCZ1ljCsVgdYp2dnfnoo4+YMWMGiYmJqKpKSEgI7u7u1VGfEEIIG9Lk5jIkMgSA5XFHMcprt6jFCvLzLNMBXNzcOLxnF3m5uTQLakXMiNH0HTJSWmM5sCr1iQVwd3enQ4cOtqxFCCGEEOK6lGyNFf/3Nv67bgcubu4oisJDk9/A1d2NdpFdK1ziXjiOSoXYu+++mwULFuDl5cXdd9991X2XLVtmk8KEEEIIISor/eQJ1i37nvU/LS7VGmvftk106T8IgIjefe1UnagOlQqx3t7elv+xeHl5yf9ehBBCCFEjHDsUz9czp7Nv2yaKWt/X827AzXfdLa2xarlKhdj58+dbPl6wYEF11SKEEEIIcU0l57q6urmzd6t5oaWON/UmZvhoaY1VR1g9J7Z///4sW7aM+vXrl9qelZXF0KFDWbduna1qE0IIIYQAIDf7EltW/ELskoXUb9yEyZ+aB9iatgzkibfep0P3Xvi2aGnnKsWNZHWI3bBhAwUFBWW25+XlsWnTJpsUJYQQQgihqiqHdv9N7JJFbPnjF/IvXwbA2dWV3OxLluVfB4wYY88yhZ1UOsTu27fP8nF8fDxpaWmWz41GIytXrqR58+a2rU4IIYQQddKmX5fx49zZnEo6atnWPDiEmOGj6TNkhCXAirqr0iG2c+fOKIqCoij079+/zP1ubm785z//sWlxQgghhKgbjEYjJqMRnbMzANlZFzmVdBQXNzd6Dr6LmBGjaRvRRS4uFxaVDrHJycmoqkpwcDA7duygcePi5sDOzs40adIEjUZTLUUKIYQQonY6czLF3Bpr2WJGPjmJW+4ZC0DvO4ah0erodfsQGXUV5ap0iA0ICADAZDJVWzFCCCHEjSQrmNlHQX4eO9auJHbpIvZtLb6eZtuq3ywhtp53fQaOus9eJQoHUOUVu+Lj40lJSSlzkdddd9113UUJIYQQovZRVZWvZk5n/U8/kH0x07K90003EzPC3BpLiMqyOsQmJSUxbNgw/vnnHxRFsTQWLpqjYjQabVuhEEIIIRxWyZ6uiqJwMukI2RczadjUj/5330v/u++lSQt/O1cpHJGTtQ947rnnCAoK4syZM7i7u3PgwAH+/PNPoqOj2bBhQzWUKIQQQghHoqoqB+N28On/TeSRmzqSkXrKct/IJ57n1XnfMTd2B/c++6IEWFFlVo/Ebtu2jXXr1tG4cWOcnJxwcnKiV69ezJgxg2effZbdu3dXR51CCCGEqOEunstgw88/Ert0UanWWNvX/MEdD4wHoG1EtL3KE7WM1SHWaDRSr149ABo1asTp06dp27YtAQEBHDp0yOYFCiGEEKJmO3v6JPNnTGPn+tUYDQaAMq2xhLA1q0NseHg4+/btIzg4mG7duvHvf/8bZ2dnPv/8c4KDg6ujRiGEEELUMCXnunp4ebNn83qMBgOtO0YQM2IMPW+7S1pjiWpldYh99dVXycnJAeCtt97ijjvuoHfv3jRs2JDFixfbvEAhhBBC1AwlW2NdupDJe0tXoSgK7vU8eeLN92nZuh0Bbdvbu0xRR1gdYgcNGmT5ODg4mPj4eM6fP0+DBg1kFQ0hhBCiFjp+KIG1Sxby5y/LSrXGSj2WRLOgVoB5cQIhbiSrQ+xXX33FiBEj8PDwsGzz8fGxaVFCCCGEsL+9Wzay6KN/c2Rf8UXb0hpL1BRWh9h//etfPPnkk9x5553cd9993HrrrWi1VV4zQQghhBA1hKqq6AvyLXNd9QUFHNm3G61OR3S/gQwYOYaON90sy8yLGsHqPrGpqaksXrwYjUbDvffei5+fH08++SRbt26tjvqEEEIIUc0uZJzl5y/m8OxtN/PjnNmW7RG9+zHulTf5fMMuXvx4HhG9+0mAFTWG1UOoWq2WO+64gzvuuIPc3Fx++uknFi5cSL9+/WjRogWJiYnVUacQQgghbMhoNLJn8wZilyxk5/o1ltZY21b+xpjnX0ZRFDRaLbfdP87OlQpRvuuaB+Du7s6gQYPIzMzk+PHjJCQk2KouIYQ1cnKgsH8z2dlQYs66EEJc6ef/fcrv33zJ+TOplm2tO0UyYMRoeg4eIhdqC4dQpRBbNAL73XffsXbtWvz9/Rk9ejQ//vijresTQgghxHUqyM9D5+xiCadnTp7g/JlUPOs3oM+QEcQMH03LNu3sXKUQ1rE6xI4ePZpff/0Vd3d3Ro4cyYYNG7jpppuqozYhhBBCXIdjh+KJ/XEhf/66jClzv6JdpHnlrNvvH0d4t5voGjMInbOLnasUomqsDrGKorB48WIGDRokXQmEEEKIGibnUhZbfl/O2iULSdy/17J926rfLCG2RavWtGjV2l4lCmETVnUn0Ov1pKam0rp1a5sF2Dlz5hAUFISrqytRUVFs2rSpUo/bsmULWq2Wzp0726QOIYQQwpHlXMriP5OfZ3zvznw27WUS9+9Fq9PRY9AdvDrvOx546XV7lyiETVmVRHU6Hfv377fZhO/Fixfz/PPPM2fOHHr27Mlnn33G4MGDiY+Pp2XLlhU+7uLFizzwwAPExMRw5swZm9QihBBCOJqC/DxLT1c3j3oc2LGVgrw8WrRqTcyIMfQZMgJvn4aVPp4mN5chkSEALI87itHdvVrqFsIWrO4T+8ADD/DFF1/Y5MlnzZrFuHHjGD9+PO3bt2f27Nn4+/szd+7cqz7u8ccfZ8yYMfTo0cMmdQghhBCOwmg0smtjLP9+ZhxP3XIT+oICAJycnBj36lu8vXA5s3/bwF0PP25VgBXC0Vg9J6CgoID//e9/rFmzhujo6FLLz4I5mFb2OLt27WLy5Mmltg8cOPCqCyfMnz+fxMREvv32W956661rPk9+fj75+fmWz7OysipVnxBCCFGTnDmZwrql37Nu2eJSrbHi/95Gp559AOjSf6C9yhPihrM6xO7fv5/IyEgADh8+XOo+a6YZZGRkYDQa8fX1LbXd19eXtLS0ch9z5MgRJk+ezKZNmyo9J3fGjBm88cYbla5LCCGEqEkS9+/jmw/e4p9tmy3bpDWWEFUIsevXr7dpAVcGX1VVyw3DRqORMWPG8MYbb9CmTZtKH3/KlClMmjTJ8nlWVhb+/v5VL1gIIYSoZiXnuuqcnfln22YURaHjTTcTM2K0tMYS1c5ogFNJWpLidSTF6zAZ4fYF9q6qtCq3GDh69CiJiYncfPPNuLm5VRg+K9KoUSM0Gk2ZUdf09PQyo7MAly5dYufOnezevZunn34aAJPJhKqqaLVaVq9eTf/+/cs8zsXFBRcX+UUXQghRs+VmX2Lzbz+zdslCmgUG8/z7nwLQsk07Hp06g8je/WnSQgZhhO3pCyDlcHFgTY7XcfyQjoL84lzn6m7C9KUdiyyH1SH23Llz3HPPPaxfvx5FUThy5AjBwcGMHz+e+vXr88EHH1TqOM7OzkRFRbFmzRqGDRtm2b5mzRqGDBlSZn8vLy/++eefUtvmzJnDunXrWLJkCUFBQdZ+KUIIIYRdqapKwq4dxC5ZxLZVv5J/+TIAp5MTyc+7jIurGwC3jn7QnmWKWiQvV+HYQa0lrCbF6zhxVIvRUHYg0tXdRHConrbhRiIjFZxUVztUXDGrQ+zEiRPR6XSkpKTQvn17y/ZRo0YxceLESodYgEmTJnH//fcTHR1Njx49+Pzzz0lJSWHChAmAeSrAqVOn+Prrr3FyciI8PLzU45s0aYKrq2uZ7UIIIURNt/6nH1j22cecPpZk2dYipA0xw0fTZ8gIS4AVoqqyLyokJxSH1aR4HaeTNahq2cBaz9tEqzA97ToY6RwBXaIUOodqqe/qjMbJNq1Vbc3qELt69WpWrVpFixYtSm1v3bo1x48ft+pYo0aN4ty5c0yfPp3U1FTCw8NZsWIFAQEBAKSmppKSkmJtiUIIIUSNYzQYzFPgdDoALp47y+ljSbi6u9PztiHEDB9Nm85RNuvFLuqWCxlOhaOrxdMC0k+WH/N8mhgJDtXTvqOJyAjoFq0QGqLF08UZJwf6+bM6xObk5OBeTvPjjIyMKs09ffLJJ3nyySfLvW/BggVXfey0adOYNm2a1c8phBBC3ChpJ46zbun3rF+2mAdefJXed94NQN+h91DPuz49Bw/BrV49O1cpHIWqQkaqU6n5q8nxOs6na8rdv0kLAyFhBkI7moiMhG5RCm0CdHjoXBz+P0xWh9ibb76Zr7/+mjfffBMwdxcwmUy899579OvXz+YFCiGEEI6mID+Pv9b8QeySRfyzvbg11paVv1pCbP1GjRkwcqy9ShQOwGSCtBRNqekAyfE6Ll0ou1aVoqg0CzISEqanQyeViEjoHu1EYFMdblrHD6zlsTrEvvfee/Tt25edO3dSUFDASy+9xIEDBzh//jxbtmypjhqFEEIIh2A0Glnw7jT+/GUp2RcvAObBnk49+xAzYrQsRiAqdGVLq6R4LccSdFzOKRtYNVoV/xADrcMNdOhkIjpKoVukhmYNtbhq685caqtDbGhoKPv27WPu3LloNBpycnK4++67eeqpp/Dz86uOGoUQQogaq2RPV41Gw7GEA2RfvECjZs2Jufte+g4bRZPmLa5xFFGXFORDymEdyQnaCltaFXF2UQlop6dNmIFOnVWioxS6RGho4qXDWaOzQ/U1R5X6xDZt2lRWwRJCCFFnqapK/M6/WLdkETvWreKTlZvxbtgIgHuffZGC/Hw63tQbjab8eYqi7rico3D8kJakAzqSE67e0srNw0RQez1tOxjp1Fmla5RCZEctDT20aJ2c7VB9zWZ1iF25ciX16tWjV69eAHz66afMmzeP0NBQPv30Uxo0aGDzIoUQQoiaIPNsOht+/oF1S78v1RprR+wqbrnHPL81rGsPe5Un7KyopVXJwFpRSyvP+iaCw/S072Ckc2foEq3QqX3NbmlV01gdYl988UVmzpwJwD///MOkSZN44YUXWLduHZMmTWL+/Pk2L1IIIYSwp7QTx/lq5hvsXL8Gk9EIYGmNNWDEGFp3irRzheJGK2pplRSvI+mAluSEa7S0CtMT1tFERAR0jXLMllY1jdUhNjk5mdDQUACWLl3KnXfeyTvvvENcXBy33XabzQsUAoCcHChqQZOdDR4e9q1HCFHr6Qvy0TmbW0d61PMkbuM6TEYjbTpFETNyND1vvUtaY9UBZVpaFY6yVtTSytffQKtQA2GdTERGqnSLdqK1f+1oaVXTWB1inZ2dyc3NBWDt2rU88MADAPj4+JCVlWXb6oQQQogbqCA/j79WryB26fcY9AW89d3PAHg28OGJN98jOKwjLVu3tW+RotqYTJB2XGOZCmAeZdWRfbH8llbNg809WMM7qkRFQbcoJwJqcUurmsbqENurVy8mTZpEz5492bFjB4sXLwbg8OHDZVbxEkIIIRzBHuDzmW+w8Y9fyMm6CJhbY2WknqKRX3MA+g4dab8Chc0ZDXAysbA7QMLVW1pp0ePf1kTrDibC63BLq5rG6hD7ySef8OSTT7JkyRLmzp1L8+bmX+4//viDW2+91eYFCiGEENVl5+YNvAnsAlj8DUCp1lhFAVY4tqKWVknxWvMKVwnXbmnVNtxA59A8hr5yC+HsR9mRgbOXpx2qFxWxOsS2bNmS3377rcz2Dz/80CYFCSGEENVFVVUM+gLLXNe83Bx2ATqgyy2DiRl1Px16SGssR1aypVXRlICTiVdvadWug5FOESpdohSiOmjx8dCZW1rlqPBKnHlnTdkRWmFfVeoTazQa+emnn0hISEBRFNq1a8fQoUPRaqt0OCGEEKJalWyN1XfoPQyf8CwA3foO4CNgDLBl5n8wurvbtU5hnUsXzC2tSi7Lmnqs4pZWrcL1tAs3mjsERCt0bKelvpt0CHBUVqfO/fv3c9ddd3HmzBnatjVPbj98+DCNGzfml19+oUOHDjYvUgghhLCW0WBg96b1rF2ykF0b1lpaY2354xdLiNU5u/CsPYsUlZZ51ql4/uoB87SA9FMVtLTyNdIqVE9oJxMRnaFbtEL7Vlq8XJzlgqtaxOoQO378eMLDw9m1a5dlYYPMzEweeughHnvsMbZt22bzIoUQQghrLJk7m1WLvuZ8epplW9vOUfQfYW6NJWouVYWzpzUkxxcvyZoUryPz7FVaWoUZCO9oJCISukc7ESItreoEq0Ps3r172blzZ6mVuRo0aMDbb79Nly5dbFqcEEIIURkle7oCpB5L5nx6Gl4NfOgzZCQxI0bjH9LGjhWK8phMkHqsdEur5Phrt7Tq0EklMhK6RjkRKC2t6iyrQ2zbtm05c+YMYWFhpbanp6cTEhJis8KEEEKIa0lO2M/aHxey6befeOOrHwlqHw7AnQ8/RnS/W4juPxCds6w5XxMY9HAySWsZWTV3CdCSl1tOSyudin+IgdZhBjp2Nvdg7RqpobmPFhdpaSUKVSrEllzE4J133uHZZ59l2rRpdO/eHYDt27czffp0y3K0QgghRHXJybrIpt9/JvbHhSTF/2PZvvWPXy0hNrBdGIHtwio6hKhmlpZWB8xBNSne3NJKX1BOSytXlcC2etqEmwNrlyiF6M4afL106DQ6O1QvHEWlQmz9+vVLDdOrqso999xj2aaqKgB33nknxsKJ80IIIYQtXco8z/x3p7Ft5W8U5OcBoNXp6DrgVgaMGEOHHr3tXGHddDlb4ViJllbJCTpOHNViMpYNrO71SrS06qwSfWVLKyGsUKkQu379+uquQwghhCij5FxXt3qe7N2ykYL8PPxbt2XAiDHcfNfdeDVoaOcq646illZFy7Emx+tIPV5+SyuvBkaCwwy072Ckc2dpaSVsr1Ihtk+fPtVdhxBCCAGYW2PF/bmO2CULOX74IJ+s2oJGo0Gr0/Ho6zPw8W1K644RciFPNTt/VsPRYy7FPVgPaDl7upItrbo40T5YIy2tRLWq0uoEFy5c4IsvvrAsdhAaGsojjzyCt7e3resTQghRR6QeT2bd0u9Z/9MPZJ49Y9l+ZO8u2kV2BaD7wNvsVV6tpapw9pSGpHgdx/a68jm/EUckaYP8yt2/ZEurqEhzYA1pocNdWlqJG8zqELtz504GDRqEm5sbXbt2RVVVZs2axdtvv83q1auJjIysjjqFEELUUof37OLbWTM4sGOrZZtXAx/6Dh1JzIgxtGjV2o7V1S5FLa2SSnUIuLKl1e0AODmpNAs2EBJqbmkVFVXY0spXh6u0tBI1gNUhduLEidx1113MmzfPssyswWBg/PjxPP/88/z55582L1IIIUTtUqqvq6JwYMdWFEWhc6++xIwYQ3S/W6Q11nUqamlVNHc1KV7HsYNXaWnV2kCbtnnc+dNkIthN06O/0dy/Pi5a6RAgaqYqjcSWDLAAWq2Wl156iejoaJsWJ4QQovYoao21bskigkI78MSb7wHQumME4155ky4xg2jcrIWdq3RM+XnmllbmsGpuaZVy+Ootrdp2MI+wlmpplecE9eaYd2ziAtqygVeImsLqEOvl5UVKSgrt2rUrtf3EiRN4enrarDAhhBCOT1VV4v/eTuzSRWxb9RsFeebWWOmnTvDo6++g1elQFIXb7h9n50odx+VsheSDpZdkPZl4jZZWHY107qwSHakQKS2tRC1hdYgdNWoU48aN4/333+emm25CURQ2b97Miy++yOjRo6ujRiGEEA5ozQ/fsfyLuaQeT7JsK9kaS6uTt6mv5VKmQlKCrtQqV5VpaRURodK1ixMd2khLK1F7WR1i33//fRRF4YEHHsBgMACg0+l44oknePfdd21eoBBCCMdgNBhAUdBoNACcSztN6vEkXN096HX7EGJGjJHWWFeRme5kueAqqXBaQEYFLa0aNjW3tGrf0URkBHTrotAuSCstrUSdYnWIdXZ25qOPPmLGjBkkJiaiqiohISG4u7tXR31CCCFquJKtsR6bNoOuMbcCEDNiNI2bt+CmW+/CzcPDzlXWHKoK6ac0peavJsfruJChKXf/pi0NtArTE9bBJC2thCihSn1iAdzd3enQoYMtaxFCCOEg8vMu89eaP1j748JSrbG2rPjFEmIbN2tBzPC6Pc3MaITU4xqSD+hKTQvIySp7wVRRS6vWYQbCO5mIilToFuVEQFMdrhpXCazCPnJyoF4988fZ2VCD/kNa5RArhBCi7tEXFLDg3Wls+u0ncrIuApRpjVVXGfRwMtHc0iqpsP/qNVtahRno0FklOgq6Rmpo1kAnLa2EqCS7h9g5c+bw3nvvkZqaSlhYGLNnz6Z3797l7rt582ZefvllDh48SG5uLgEBATz++ONMnDjxBlcthBB1R8merjpnZ47sjSMn6yKNm7Wg//B76TfsnjrXGquopZV5OVYdyfFajh/WYdCX39IqqJ2eNuEGOnZW6RLlRJfOTjT21KHTSGAVoqrsGmIXL17M888/z5w5c+jZsyefffYZgwcPJj4+npYtW5bZ38PDg6effpqOHTvi4eHB5s2befzxx/Hw8OCxxx6zw1cghBC1k6qqHNixjdili9j95zo+XbMND08vAMZOmgJAhx69cXKq/X1Ec7MVjhW1tCocZT2ZVHFLq+BQPW3DjXSOUOkSrRAZrqWBu7S0EsLW7BpiZ82axbhx4xg/fjwAs2fPZtWqVcydO5cZM2aU2T8iIoKIiAjL54GBgSxbtoxNmzZJiBVCCBvITD/D+p9+IHbZ96QdT7Zs37l+DX3uGg5Ap5597FVetcvKVCxLsRaNsqYeL/9PpZdPcYeAzp2lpZUQN1qVQuzhw4fZsGED6enpmEymUve9/vrrlTpGQUEBu3btYvLkyaW2Dxw4kK1bt1bwqNJ2797N1q1beeuttyrcJz8/n/z8fMvnWVlZlTq2EELUJaeSjvLN+2+xa2MsJqMRoLA11lAGjBxDSIfO9i3QxlTV3NLq2G539vEqcUSy5baWnE0r/+39opZWYZ1MRERAt2iFdkE6PF2kQ4AQ9mJ1iJ03bx5PPPEEjRo1omnTpqV+eRVFqXSIzcjIwGg04uvrW2q7r68vaWlpV31sixYtOHv2LAaDgWnTpllGcsszY8YM3njjjUrVJIQQdYm+IB+nwvaIrh4e7NqwFpPJRLvILsQMH02PW++sFa2xilpaFV9wpb2ipdWb5n8K//Q0DTDQKlRPeEcTkZHQvYsTrZpLSyshahqrQ+xbb73F22+/zcsvv2yTAq58QVBV9ZovEps2bSI7O5vt27czefJkQkJCKlwtbMqUKUyaNMnyeVZWFv7+/tdfuBBCOKD8vDy+Bb4ALjz/OK8t+AGAhr5+PD7937SL7EKL4NZ2rfF6lGppFV/cJaCillYtgvTcnLiYCHbT6PtX6NbLg5a+Oty0bnaoXghhDatDbGZmJiNHjrzuJ27UqBEajabMqGt6enqZ0dkrBQUFAdChQwfOnDnDtGnTKgyxLi4uuLi4XHe9QgjhyJIO7CN26SL+/GUZJsAJMP29jYtn0/Fu3ASAASPG2LVGa13Z0iop3tzSKv9y+S2tWrY20CbcQHgnlS5R0CVSQzPnAlzqP2De6Y43wcP1Bn8VQoiqsjrEjhw5ktWrVzNhwoTremJnZ2eioqJYs2YNw4YNs2xfs2YNQ4YMqfRxVFUtNedVCCHqNKMRt7NncDt9CvfUU2T8uY6MP9fROvM8MUBLoGGJfendGdXJCZNWh6rVYNLqMGm1qBotqk5r3q4xb1d1WkwaLapWW2p/8+cltmu0mHRaVK0Ok0Zj/ldnPqZ5Px0mbeF2y+NK7K8rrqHoefONWk6fduVkihspx1w4nuTG8eNu5Bl06DHfDGhxQYerixb/tipBHRU6RUB0lBNdOlXQ0irHcGPPjxDCZqwOsSEhIbz22mts376dDh06oNOVfkF49tlnK32sSZMmcf/99xMdHU2PHj34/PPPSUlJsQTkKVOmcOrUKb7++msAPv30U1q2bEm7du0Ac9/Y999/n2eeecbaL0MIIcowmUykpKSQbzShqK6oNXD+o/ZSFu6pp3FLNYdU99OnLB+7nT6F25lUnAovzKosxWRCU5APBdVU9I2WD+wrvC3SgFYLOp35duXHmhJLvd5xBzRqBA0alL35+JT+3Nsb6kB7MSFqMqtD7Oeff069evXYuHEjGzduLHWfoihWhdhRo0Zx7tw5pk+fTmpqKuHh4axYsYKAgAAAUlNTSUlJsexvMpmYMmUKycnJaLVaWrVqxbvvvsvjjz9u7ZchhBDlys7ONn+gvfFvKyt6Pa7pZ8zhtDCUXvmxLvvSNY9jcHIiv2kzLjdrzqXGvhy4mEnDnn0xhbQhv0FD+t9zGwC/b4xD1elwMhhQDPrCfw3FnxuNKPrC7cbC7frC7aX216OUeKyTQY9iNOKkL9xuNOCkL7HdoEfRm7cbcw3kZRrJu2iiIMtAQbYRU56RovFVLQbLx85OBlx1Bbhq9Lg4GXDGgMakh8K6UNWy3wyj0XyrzDt2GzZYcbIUc5AtL/CWF3olAAthc4qqlvdbX3tlZWXh7e3NxYsX8fLysnc5orJq8NrNNYJ8f8qqwvdEVVUuXLjAhTw9uy8azEHFVlQV3cULZUKpW9Foatpp3NLPoFzRtrA8+d4NuNysGTlNm3HcZOLvkylsTzrKMVUlBfDqGMnbP/xW7mM1ubkMiQwBYHncUYyF3QmqW1FLq6K5q0VdAjJOlz+W0sjPSHD74pZW3bsotA3U4emiqfjiX6MRDAbQ68238j6+cltWFgwebH78F19Abi6cPw+ZmRXfcnOv75tRUQC+WvC9UQFYXktKk++HXb4Hlc1qdl92VgghagpVVc3t+0wqCp5Y8z98p4J83NJSzeE07bQlnFqCauoptJUIP0adM5f9mpHr15zLfs3JbdbM/G/T5lxu1pzcps0weniw+D/vs+aH78g8e8by2HaRXRhW2BrLnsq0tIo3r3Z18Zym3P2bBhgICdUT1tFEZKRC9y5K1VpaaTTmmzUX8+bkFH88alTl/kDn58OFC8Wh9lqh98oArKrmx1+4AMnJ13iyK1wZgCsTfGUEWNRSVQqxJ0+e5JdffiElJYWCgtKTqGbNmmWTwoQQwh4sr2klXx1VFefM86VDaYm5qO6pp3A9m16p4+c1bMTlps3IbVYYUgtvl5uZ/81v2KjcoKEvKEDnXLxsacqRQ2SePYOXT0P6Dh1JzPDRtGh141tjGY2QekxrCarXamnVvJWB1mEGOnQyERmh0C3aiZa+Olw1ro7Tg9XFBXx9zTdrFQVga4KvLQNw/fpXD7olR+b37YMWLaBhQ3Bzs+07E0LYgNUhNjY2lrvuuougoCAOHTpEeHg4x44dQ1VVIiMjq6NGIYSoXpcvw4kTKMePE5iQgP54CvWOnSx82/807mmn0eTnXfMwRhdXcv1KB1TzaGrhx039MLla13806cA+1i5ZxObff+bdxb/RLKgVAMMefYredwwjqu+AUuG2OukLCltaxetItqKlVcfOJqKjFKIjNDTz0eFyZYeAuuR6A7A1obdkUL58uXBOR+HnlXHTTaXrbtiw+Objc+3PfXzMF9AJUU2sDrFTpkzhhRdeYPr06Xh6erJ06VKaNGnC2LFjufXWW6ujRiGEuD5paZCRASkp5tuJE8Ufp6TA2bMAKEDhzC8alHOYy419LSOmuX7mt/kto6nNmlPQwMcmo1XZFy+w6befiF2ykOSEA5btW1f+yognngcgpEPnal0KNj8Pjh/SWQJrcryW44d1GPRlvz4XNxOB7cyBtXNnlehoJ6I7amjspUXnJCHGZlxcoGlT881alQ3AZ8/CihXmxzRpYg7CBoP58adPm2/W8PKqfOgt+tjbW0Z9RaVYHWITEhJYtGiR+cFaLZcvX6ZevXpMnz6dIUOG8MQTT9i8SCGEqLTUVFi3DlavLt4WEnLtx3l4oLZsSU7DhhT4+ZHmF0husxaWgJrn2xSTc/UunHIh4yxfzXyD7atXUFA48qvVOdPtlsHEjBhNh+69quV5c7MVkhOK564mx+s4maTFZCwbJNw9TQSH6mkXbqRTBHSNhogwLT7uOjRON2ZEWFRBZQNwyYt4kpLM0wuys+HcOfPt/Pnij6/2+YUL5pHfrCzzzZqpDxqNeWqDtSO/N+giRVFzWB1iPTw8LIsLNGvWjMTERMLCwgDIyMiwbXVCCHEt58/Dxo0QG2sOrwkJZfdxcoJmzaBly4pv9esDYMzKIitPz8HMghsyGlRyrqu7pydxf66jID+Plm3aM2DEaG6+8248G/jY7PmyMp1YwwDiiOTXl31JOuxK6vHy/xR4+RhpFaYntKOJTp1VundxokMbLV6uzjjJSFndoCjg6Wm+BQZW/nFGY/GUhopCb3n35eSYH5uRYb5Zw9XVutBb9K9WrnF3VFafue7du7NlyxZCQ0O5/fbbeeGFF/jnn39YtmwZ3bt3r44ahRCiWE4ObNpkDqzr1kFcXOn+oIoCERFw880we7Z527lzlpB6NarJxIkTJ8yH0fpY1Z3AGga9nrg/Y4ldsoi0E8eZ/et6FEXB2cWVx6bOwNc/gFbhna7rQidVhfPpTpa5q0UjrBmpGmCNeac1xfs38jPSKlRPaCcTkRHQLbqopZWVHQKEAPNoaqNG5ps18vKKw21lR33PnTNPecjLg1OnzDdreHtXHHKLRqUBDhyAVq3M98nvRI1gdYidNWuWpRn4tGnTyM7OZvHixYSEhPDhhx/avEAhRB1XUADbt5sDa2ws/PWXucdnSe3bQ//+5lvfvuY/Mjk5xSHWiotL3N3dKTCawLpFryrl9LEkYpcuYsPPP3KhRDeD5IT9BId2AKDnbZVfdruIqsKZkxqSD+hISrh2S6sQjhBJHA1fGEhEdxe6RysEN9fhrpXAKuzM1dX8rkmzZpV/jKrCpUvWhd6iKQ8AFy+ab9ea8tCtm/lfZ2fw8zPXWNG/zZpJ2L0BrA6xwcHBlo/d3d2ZM2eOTQsSQtRxRiPs3l0cWjdvLttcvmVLiIkx3/r1s+4P3jVotVoMGG0aYhN2/cXCD2cSv3O7ZZt3w0b0HTqS/sPvpUVw5VtjFbW0SorXknTA3M7qai2tWrQyEBJmoENnE1ERCt3a59GmTRvzDm9kg4fMIxQOTlHMF5B5eVVtysPVQu+ZM/DTT+b9fXzM2woK4Phx8+1qisLutQJvw4YSdquoShNBLly4wJIlS0hMTOTFF1/Ex8eHuLg4fH19ad68ua1rFELUZqpqnsdaFFo3bCgeISnSpEnxSGv//hAcXG0v+llZWeYPtFW/iEtVVQz6AnSFF4IZ9Abid27HycmJzr37MWDEGKL6DkB7jRHiki2tkg6YpwMcO1RxS6uANnpahxktLa26FLa0ci7Z0iqnTi3SKETFKjPloeSFbikp5vmzaWnmC0hPny7+t+THqanm+byVDbs63bWDrp+fOezKYhWlWB1i9+3bx4ABA/D29ubYsWM8+uij+Pj48NNPP3H8+HG+/vrr6qhTCFGbHDtWfCHWunXmPwoleXmZpwX0728ebQ0LuyEjFYqi4OfnR1a+HjXr2su/Xin74gX+/HUZ65YuIrRLDx75v+kAhHXtwcNT3qDHoNtp2LT8UeP8y4UtrRIKe7Ae0JFyRHvVllbtOhjp2Ml0RUsr6RAgRLVxcYGAAPPtagoKzK9rV4bbKwNvRoZ5elRRu7+r0enM3SUqmr5QcmS3joRdq0PspEmTeOihh/j3v/+Np6enZfvgwYMZM2aMTYsTQtQSaWmwfn3xaOuVc89cXaFXr+LQGhlplyuGVVUlMzMTvdGEQr1KXdhlMpk4sGMbsUsWsn31CvQF5u4tF8+d48GXp6LRaHBycuKOBx+1PCbnksKxhKLVrcwjracStZhMFbe0at/B3NKqS5S0tBKixnN2Lu58cjVFYffKoHtl4D171hx2T5ww365Gq63cNIZG5a8O6Eis/ivx999/89lnn5XZ3rx5c9KuHE0RQtRNFy6Ubnt14EDp+7Va6NrVHFj794cePaxb774a5eUVrsxViVfHlQsX8Mv8zzhzovjtwpZt2nPLyDH0vvNuNBoNF887lVmSNa2CllbeDY0Eh5pbWkVEqHSLdiKsjRZvaWklRO1kTdg9c6b8oFsy8J49a+7UUNmwW9HIbsl/a3D/XatDrKura/GcsRIOHTpE48aNbVKUEMLB5ObCli3FoXXXLjCVeDteUaBz5+I5rb17m/tO1jDF0wkMqFllr+wy6PU4FY6sApw5cZwzJ47j5lGPXrcPo0v/hzCZOpEc78yn/2cOrOaWVmU1amagVaiB0I6FLa26FLa0cpYOAUKIKzg7g7+/+XY1RWH3WiO76enmsHvypPl2NSXfFVNr1px6q0PskCFDmD59Oj/88ANgftFPSUlh8uTJDB8+3OYFCiFqoIIC2LGjeHrAtm1l2161bVs8PaBvX/M8rRpOURQaNmxIQXYeXCpeX75ka6xn3/2Ijjf14cwJDY2bTySyzyMYCsL5a60La34oP7D6BRgICdcT3kklIgJpaSWEqB6VDbt6/bVHdkuG3SI17PXK6hD7/vvvc9ttt9GkSRMuX75Mnz59SEtLo0ePHrz99tvVUaMQwt5MJtizpzi0btpkvmq3JH//4ukB/fpBixZ2KdVW8i/nsm31Ctb+8D0JuzKBSOAlPp7cgYI8X3IvOQFNSj3GSaPSIthA63AD4Z1MREUqdI9yokUTHW5aN3t8GUIIUZZOZ36NvtbrtF5vvoahbdsbU5eVrA6xXl5ebN68mXXr1hEXF4fJZCIyMpIBAwZUR321hqnwrVVFUSwjL6YSb7c6lZhcXd6+qqqiFg7j18l9C7epTk6oJhOYTNd93JLbq7rvtc6nNftW9HVUat+i749Wa5vvj6qiHD6Msn49xMaibtiAcv48pTRqhNqvH2q/figDBqCEhICiFB/XBufouvY1mcDNDafLlyt9XL1eYe/ec3yxYDMLv83AaIhCr38YKFq1RyU/27yvpaVVuJGISCNRkRDVSUszH2ecNboy5/7KGirzdVTba4RWi6rTmc8R2O64jrjvVX5OSh7D4V8jKvv9UdXi15Oi748tjuvI+yoKqqtrhb8vJY9RXT8nFdVW7TlCo8GpBrdOrfLlv/3796d///62rKVWi4+PB6Bdu3ZoC+eXZGRkkJ6eToMGDUr1101ISEBVVdq0aYNz4Zrq586dIy0tDW9vb/xLvE1w6NAhjEYjISEhuLq6ApCZmcnp06fx9PQkoEQbkCNHjqDX6wkODsa9cKL2xYsXOXnyJB4eHgQFBVn2TUxMJD8/n8DAQOoV9si7dOkSKSkpuLu7l1r0Ijk5mcuXLxMQEGDpWJGTk8OxY8dwdXUlJCTEsu+xY8fIzc3F398fb29vAHJzc0lOTsbZ2bm4CTuQkpJCdnY2zZs3p0Hh9yGvdWsSjx9Hq9XSrl07y74nT54kKysLPz8/Gha+bV1QUMCRI0dwcnIiNDTUsu/p06e5cOECvr6+lnncBoOBQ4cOARAeHm7ZNy0tjfPnz9O4cWN8fX0B8y98QkICAGFhYZZ909PTycjIoFGjRjRt2rTMuW/fvj0ajfnt5rNnz3L27Fl8fHxoVqJRf9G+bdu2RVfYQ/TcuXOcOXOG+vXr06LE/5oPHjyIyWSidevWFF0SdX7ECFKPH8fLy4uWJS4UOHz4MAaDgVatWuHmZh4RvHDhAqdOnaJevXoEBgaa27vExpL988+4bd+OLr14RSkFMHp4kNetGx533GEecQ0PJzEpiby8PAL9/KhX+OKXnZ3N8ePHcXNzo1WrVmXOfcuWLfHy8gKKf05cXFxo3bq44f/x48fJycmhRYsW1C9cLvby5cskJSWh0+loW2JU4MSJE1y6dIlmzZrh4+MDQH5+PkePH0ezciXt+/Sx7Hvq1CkuXrxI06ZNcXdvxL59cOCAnm7dDpOfr9CvXzu2bk3jmSdDaOEXzbBhF/j441y+/saNoFAjEV0K+L+njwHQ0L8NjTzNLa1SU1M5d+4cbqbGOGvMPyeqqlrOZ2hoqOWPQ9G5b9iwIX5+fmXO/Q15jRgyhNPTpuF59iwBJeYmO/RrRIMGgPnCvMTExMq/Rhw/jtPatYT27GnZt1a+RhReOHn+/HlSU1Mrfo1o1oyi9wwuZGdz6tix4teIQkePHqWgoICgoCA8PDwAc3/lEydOlDn3SUWvESV+TmrMa8TRo2g0Gtq3b2/Zt+RrRKPC/rF6Pz8Or1qFkpJS6nympqaSmZlJkyZNaNLE/K6M0Wjk4MGDQOmfkzNnznDu3LlSPyc1+jWiZI6wdungG6hKIXbHjh1s2LCB9PT0Uv8LAPOytEKImk85exavlStpEBdnnt+amAiAV+H9qosLSs+eEBNDdteuHGvUCHcvr1J/oBzFxYuwZ6d5Kq+fH8ycCbNmqZhMCs2awapV5sV7CgoUEhJccXY24NfiIgAPTzDw9iwjPu46VJMThX+f8POW9lZCCGFPilo0tlxJ77zzDq+++ipt27bF19e31NtkiqKwbt06mxdpS1lZWXh7e3Px4kXL//RuBJlOcJ375uZCvXrm6QQXLoCHh0wnKO/7o9Winj9f/vfn4kWUTZtQihYY+OcfStFooGvX4ikCPXuiFI7aOszPiaJw9izExans25nPnrd/5a/LESRiHulzdjah0ZinDRgMCpCGosTh6rqX2x/oSv+RHRjWzZum9Vxq71uFOTmo9eubpxOcOYNTiZHYmng+q33f7Gzw9TVPJ8jOBg+P2vkaUdnvT24uSuHPhHrpEmrhiLzDnE9b75uTg+rpaZ5OUMHvS8lj1IrXiCv3vXy5eNWywt+R6lbZrGb1SOxHH33El19+yUMPPXQ99dU5JX9grratou0lf7jq9L4mE4qTU5kGzTW2Xiv2rWi7VT8nBkPx9+fyZdi6FWJjcVq3DnbuNA83ltSpU3EHgd69wcsLBbiy4prw/blyX1WFU6cgLs6JuDjYvdscXk+eLPoKXIGRlv0bNM5DVXdy8dxqVHUXEId7vRx63T6UmBFjaBXeHkUxUvQUDnfuranNYEAxGGrl75HV+xb9rjhAvRVtt+nPSYn7LN8fWxzXkfdVVZTLl+36+1LR9hudI2oaq0Osk5MTPUvMHRJC1DAzZ8LmzeYAm59f+r7WrYs7CPTtCw7S21lVISkJ4uKKb7t3q5w9WyZuA9As0EBwm8sMXv0WXdlF6rp5XDKk8dTA3gC0j+5GzPDJ9Bh0B641uJG3EEKIilkdYidOnMinn37K7Nmzq6GcWign54YPw4s64uxZ+Osvc4/WLVuKt7/5ZvHHzZsXh9b+/a/dO7AGMBrh0KHSgXXPHpWLF8sGVieNSotWBlqF6gkM1RMcqscvIIu9W34jdvG3/M3f/B+wvL4JD/dAHpv2LuFdb6J5cEh5T42iqmSePkGOxonAwMAKRzmEEELYn9Uh9l//+he33347rVq1IjQ01HJ1ZJFly5bZrDghRCG9Hvbuhe3bi2+FF2KVMXQoDBpkDq2tW5d6e7Cmyc83r0hrngpgvu3dq3L5ctnAqtWpBLQ1B9XgUANBoXpattHj4mqev5W4fx+xSxex+befyM2+BEAicLHEUQbd+8A1azLk52G45l5CCCHszeoQ+8wzz7B+/Xr69etHw4YNHWLOhBAO59Sp0oF1507Iyyu7X2godO8OERHwzDPmbd9+WyNH/HNyYN8+Ssxfhf37VfT6soHV1d1EYDsDwaF6gkL1BIfpaRFsQKsre9ytK39l6X8/4tjBeMs2X/8ABtw5nJlzZuFtRY0q4NXEj/quOnltE0KIGs7qEPv111+zdOlSbr/99uqoR4i6Jy/PnOi2bzdPDdi+vfy1rBs0MAfWHj3M/3bpAoX9EcnJKQ6xNcCFC+YFvornr8LBg+aWVqUp1PM2EdReXxxYQ/U0DTCiKX8FV0wmEyajEW3hu0AXz2Vw7GA8OmcXug+8jZgRownrehO6vDyaz7Gy5Z+i4OJRDy8Pl2vvK4QQwq6sDrE+Pj6lmhMLIaygqnDsWHFY3b7dnPb0+tL7aTTQsaM5rBbdaujUgPT00tMBdu9WSUwsr06F+o2MBIfpC0OreaS1cXNjpb6sc2mnWf/TD8Qu/Z67H3uGW+4ZC0DvO4ahmkz0vvNuPOs3sO0XJ4QQosayOsROmzaNqVOnMn/+fMuKLkKICmRnw99/l54aUGIlLAtf3+IR1u7dITq6xk0JUFXzAHHJwBoXp3LqVPkdAho3MxAcVjgloHCktUETU9kDX4VBr2fXhrXELlnE7k3rLP0Mt6xYbgmx9bzrc9v946776wNAVSm4nEu2qsfDw0OmFAghRA1mdYj9+OOPSUxMxNfXl8DAwDIXdsXFxdmsOCEciskEhw+Xnhawf795e0k6HURGFgfWHj2gZcsaNcpqMhW3tCoOrSoZGVdpaRWqJyiscFpAOz2eDaxaR6UUVVX5btYM1i37novnMizbQ6O7EzNiND0GVc90JgW4mHaKi5ReBlIIIUTNY3WIHTp0aDWUIYQDysw0t7gqGmH96y/zZNArtWxZepS1c2coXJ+6JjAYSre02r3bPCUgK+vqLa2KLrgKbGvArV7VA2sRfUEBusI1vhVF4djBA1w8l4F3w0b0G3YP/e++t8LWWLak0TmjdZLwKoQQNZ3VIXbq1Kk2LWDOnDm89957pKamEhYWxuzZs+ndu3e5+y5btoy5c+eyZ88e8vPzCQsLY9q0aQwaNMimNQlRhsFg7gVVclrAwYNl93NzM19wVRRYu3WDZs1ufL0VKGppVTKwVtTSSudsbmllmb8apse/tbmlla2UbI219Y9f+ODnNTTyaw7A8AnPcsuo+4jqM8ByEVd1UxUFnxYB+MqFXUIIUeNZHWJtafHixTz//PPMmTOHnj178tlnnzF48GDi4+Np2bJlmf3//PNPbrnlFt555x3q16/P/PnzufPOO/nrr7+IiIiww1cgaq0zZ4pHWbdtM89rzckpu1/r1qWnBYSHm6cL1AAlW1oV3Q4cqLilVVB785SAwPZXb2llC5cuZLLp12XELl1UqjXW1j9+5a5HJgDQPqpb9Ty5EEKIWsGuIXbWrFmMGzeO8ePHAzB79mxWrVrF3LlzmTFjRpn9r1wl7J133mH58uX8+uuvEmJF1RUUmBcSKNkxIDm57H5eXuaR1aLQ2rUrNGp04+stx4ULsIc+xBFJ3DgX4vbBoUNXaWkVqrdMCQhqr8cv0HjlsuDV4tyZVL557y22r16BvsC8JO6VrbGEEEKIyrBbiC0oKGDXrl1Mnjy51PaBAweydevWSh3DZDJx6dIlfHx8qqNEUVudOFF6WsCuXeb32UtSFAgLK93iql07KmxeegOlp5e94CopyQPYYN5hcdGeCvUbGwtXuCrqw2qgcbPKtbSylZJzXd09PPl73Sr0BfkEtgslZsQYet8xrMa0xlJUlQupJ8nVOBEQECDLzgohRA1mtxCbkZGB0WjE19e31HZfX1/S0tIqdYwPPviAnJwc7rnnngr3yc/PJ79EQMnKyqpawcIxXb5sDqklQ+upU2X3a9iwdGDt2tU88mpHRS2tSs5fvVpLqwCOEUkcbk/2IbCTQnB761ta2UrJ1lgXMtKZueQPFEXBrV49Hp36Lv6t2hAc1qFGXv2vz7uM/tq7CSGEsDO7TicAyvwRU1W1Un/YFi1axLRp01i+fDlNmjSpcL8ZM2bwxhtvXHedwgGoqrkvVMkWV3v3mi/KKkmjgU6dSq9+1aqVXVtclWxpVTKwltfSSlFU/AKNtArVE1g4whoSmMV9/YIBWD7+KEY79XA+lXSU2KWL2PDzj6VaY51KPkqL4NYA9B0ywi61VYYKeDb2xdtFlp0VQoiarlIhdtKkSZU+4KxZlVvmsVGjRmg0mjKjrunp6WVGZ6+0ePFixo0bx48//siAAQOuuu+UKVNK1Z+VlYW/v3+lahQ13KVLsGNH6VHWjIyy+/n5lW5xFRUFdlyo48qWVnFxsGdPxS2t/EMMJaYDlN/SSpNrnxHXIv9s38Li/7xHwq4dlm31GzWm77B7iLn7XpoFOcgqf4qCaz0v6kt3AiGEqPEqFWJ3795dqYNZM3Lh7OxMVFQUa9asYdiwYZbta9asYciQIRU+btGiRTzyyCMsWrSI22+/dsNzFxcXXFzkD1Kt8vTT5ikC+/ebR19LcnY2h9SSUwP8/e02ynplS6u4ONi37+otrYrCanCogZZt9DjXwB9fVVUx6PWWua75l3NJ2LUDJycnIm7uz4CRY4i8OeaGtcYSQghR91QqxK5fv75annzSpEncf//9REdH06NHDz7//HNSUlKYMMHcYmfKlCmcOnWKr7/+GjAH2AceeICPPvqI7t27W0Zx3dzc8Pb2rpYahZ2pqnm0tWRnigULij8ODCzd4qpTJ7DTf1pycsyzF0ouy1qZllZBhaOszauxpZWtXLqQyZ+/LCV26fdE9R3A2InmCzMjevfjwZdep+ftQ2jo62fnKq+DqqLPzyNXMeLm5iZTCoQQogaz65zYUaNGce7cOaZPn05qairh4eGsWLGCgIAAAFJTU0lJSbHs/9lnn2EwGHjqqad46qmnLNsffPBBFpQMNsLxXb4MixfDp5/Czp2l73vhBejd29zuqmlTu5R34UJxWC3692otrYLD9AS3Lw6sTQNuTEsrWzCZTOz/awtrf1zIjrUrLa2x8nJzGPP8yyiKgkartfR3dWQKcOH0CS4gy84KIURNV6UQ+/fff/Pjjz+SkpJCQUFBqfuWLVtm1bGefPJJnnzyyXLvuzKYbtiwwapjCwd07Bj897/wv//BuXPmbS4uMHw4LFxo/vyNN8DD44aVVNTSquQFV0lJ5YUbhQaFLa2CLKH1xre0sqXfvprH7998QfrJ4v9MBrUPs7TGqo0hz0mrRVMLvy4hhKhtrA6x33//PQ888AADBw5kzZo1DBw4kCNHjpCWllZqbqsQlWYywdq15lHXX38tnufasiU88QSMG2e+EKsoxFYTa1taNWleOB0grPDf9noaNLbvBVbXy6DXo9FqLeH09LEk0k+m4O7pRe87hjFgxGiCwzraucrqoyoKDVsEybKzQghRxMOj7PUnNYTVIfadd97hww8/5KmnnsLT05OPPvqIoKAgHn/8cfz8HHgunLjxLl6Er74yh9fDh4u3DxhgvnjrjjuKFxcob8nX63BlSytzaL12S6ugUPOSrIHt9HjWr5m/1FVxMukIsUsWsXH5El76zxe0i+wCwOCxD9OmcxQ9Bt6Gi5v9OjoIIYQQV7I6xCYmJlq6Ari4uJCTk4OiKEycOJH+/ftLT1Zxbfv3m4PrN98Uh1NPT3joIXjySfPKWDZUXkur3btVLl0qG1g1WnNLq6D2hatchekJaGvAzaP2BNYiebm5bF35K7FLFnIw7m/L9s2//2wJsf4hbfAPaWOvEoUQQogKWR1ifXx8uHTpEgDNmzdn//79dOjQgQsXLpCbm2vzAkUtodfD8uXwySewcWPx9tBQ86jrffeZg+x1ys83Z+SSHQL27lXJyyu/pVVgO3NYDWxfs1ta2dLl7Gy++vd0Nv/+M5dzsgFw0miILGyNFdG7v50rtB9FVbl45jR5Gif8/f1l2VkhhKjBrA6xvXv3Zs2aNXTo0IF77rmH5557jnXr1rFmzRpiYmKqo0bhyNLSYN4888Vap0+bt2k0MHSoObz26VPlHq5FLa1KdgjYv1/FYKigpVVh79Wi+auO0NLKVgx6vaVnq4u7O3u3bORyTjZNWwYSM3w0fYeOxMfXPp0eapqC3BwKrr2bEEIIO7M6xH7yySfk5eUB5j6uOp2OzZs3c/fdd/Paa6/ZvEDhgFTVvOzrJ5/AkiXmUViAJk3gscfg8cehRQurDnnhAuymL3FEsnucC3H74OBBFVW9SkurolWu2jtWSytbMZlM/LN9M7FLFnFo9998smorOmdnnJyceGjKNNzreRHWtYeMNpagAvUaNsHLRVsrOy8IIURtUqXpBEWcnJx46aWXeOmll2xalHBQubmwaJE5vO7ZU7y9Rw/zqOvw4ZVaiODMmdLTAXbvVklK8gAKF91YXLSngk8TI0HtC1taFYbWRn4mh21pZQsZZ1KJXfkrsUsWkX7qhGX7/r+2ENG7HwDdBgy2V3k1m6Lg5uWNj3QnEEKIGq9KfWJNJhNHjx4lPT0dk6l0S6Gbb77ZJoUJB5KYCHPnwpdfQmameZurK4wZA089BZGR5T5MVeHEidKBNS5O5fTp8ltaBZFEBLtxe7IvgZ2VWtHSypb2AK8AK2/vY/m9rCutsYQQQtQ9VofY7du3M2bMGI4fP456Rd8wRVEwGo02K07UYCYTrFplHnX944/iHnJBQebero88Ag0blto9MbH0/NW4OJVz58pvadUsyFg8HSBUT0hgFmP7tgJg+fijGN2l3ROUnuuqAVYAmEyEdelB/xGjpTWWtVQVQ0E+eRoVFxcXmVIgRF1Xg3ukiiqE2AkTJhAdHc3vv/+On5+fvMjXNZmZMH8+zJljTqVFbr3VPOo6eDAGVcPBgxD3e8mlWa/e0qoorAaHlt/SSpMrI65FSrbGatLcn+fe+wSADsDHgPbntfi2C7VrjY5KATJPpZCJLDsrhBA1ndUh9siRIyxZsoSQkJDqqEfUVHv3mkddv/sOLl82b/P2xvDAwxzs9yTbMlqbQ+tbFbe0cnZRCWirLxVY/Vsban1LK1tQVZWj/+whdsmiUq2xjh08QP7lXIrGWp8BlrcMRN4PqTrFSYOTZFchhKjxrA6x3bp14+jRoxJi64KCAli2zLwwwebNls0ZzTrwe+DTzM0ay6657hj+UzawunmYzBdcFba0Cg41t7TSVGkWdt226ddlLJv3KSmHEyzbSrbGcnFzN19UJ66bqig0CgiWZWeFEMIBWB0pnnnmGV544QXS0tLo0KEDOl3pRpsdO8rFIw7v9Gkuz/4Mpy8+x+V8GgB6tCzjbj7haTaf7gUlLr7yrG+yrG5lDq56mrasey2tbMVkMqGaTGi05l/Pc2dSSTmcgLOLK90H3U7M8NGEdukurbGEEELUaVaH2OHDhwPwyCOPWLYpioKqqnJhl4M6cwbidqlk/LSJVn98QpdTP+GGAYBUmvIZj/M5j5FKM3yaGIkOzSeoxJSAut7SylYyUk+x/qcfWLf0e8Y8/zK977wbgL5D78HV3YPedwzDw8vbzlUKIYQQNYPVITY5Obk66hA3QFFLq+L+q3Bw5yX6py3kKT5lMP9Y9t1EL77xeYKEyNtpGa4wLsxAUPsz1G8kF1jZkr6ggJ3r1xC7dBF7Nq23dPzY9PvPlhBbv1Fjbh3zkB2rrDsUVSUrPY0CrRPNmzeX0W4hhKjBrA6xAQEB1VGHsLGSLa1KLhpQ1NKqNYd5kjl8wwLqcxGAPCc3toffw8ERD+M+qC23eqvcisy1rA4mk4lv3n+LDT//SNb5c5btYV1vImbEaLoPvM2O1dVt+TmXyAeaN29u71KEuPGkpZRwIFW6zCYxMZHZs2eTkJCAoii0b9+e5557jlatWtm6PlEJBgPmllYlAuuePWVbWjlhYojT70x0+5Q+Oast2y+1CCT5voc4Puwe9N71aQKYF+AUtlSyp6uTkxNH9+0h6/w56jduQv9ho+g//F78AoLsXGXdpgIePo3wdJZlZ4UQoqazOsSuWrWKu+66i86dO9OzZ09UVWXr1q2EhYXx66+/csstt1RHnaJQXh7s3196lat9+67S0qqdnk6t0hiTPZ9+e76kfnoK5Jivwk67OYak+x7mTM8+yFVY1UNVVY7s203skkVsX72Cj1dsxLthIwDuefoF8nJziLy5v+UiLmFnioK7dwMaSXcCIYSo8az+yzl58mQmTpzIu+++W2b7yy+/LCHWhrKzze1ZS65ydeCAisFQcUur4LDitlZhuXG0Xjwf/9+Xo8nPA6DAuz7Hht9L0ugHyfWXqSHVJSvzHH/+sozYJYtIOXLQsn37mhUMuvcBADp072mv8oQQQgiHZ3WITUhI4Icffiiz/ZFHHmH27Nm2qKlOyswsubqV+d9Dh1RUtWxg9axvIjis9KIBvv7mllZOBfk0X/U7wa/Op+HeXZZHXQgNJ3Hsw5y8bQhGWYa02qSfOsm3H7zFX2tWYtAXAODs4kqPW++wtMYSNZiqYtTrKShQ0Ol0MqVACCFqMKtDbOPGjdmzZw+tW7cutX3Pnj00adLEZoXVZmfOlL3gKjm5vD+WCj6+RstiAUWBtWHTsi2t3FJPEbT4WwJ/+BbXwguFTDodJwfdQdLYhznfOQrpg1U9Ss51dXN3twTYoNBwBowYI62xHIgCnD95jPPIsrNCCFHTWR1iH330UR577DGSkpK46aabUBSFzZs3M3PmTF544YXqqNGhnTqt8DdDiCOSuBEuxO1VSU0tO7oK4OtvKBFYDQS111+9pZWq0uivrbT6bj5+61bhVNij97KvH0n33s+xkWPJb9S4mr6yuq1ka6y83Bze+vYnADwb+PDo1HcIbh9OcJgs/OGQFAWJrkIIUfNZHWJfe+01PD09+eCDD5gyZQoAzZo1Y9q0aTz77LM2L9DRvTVTx3/52fzJSvM/Tk4qzYIMBIcaLKOrQe31eHhVriOANjublr8sIXjhAryOHrZsP9v1JhLHPkxq/4GoV6ykJmzjZOIRYpcsZMPyJaVaY6WfOkmT5i0AGDBijL3KE9dJVRQaB4bIsrNCCOEArA6xiqIwceJEJk6cyKVLlwDw9PS0eWG1RbcuJrZ/sZtI4tC+fBeBnRUC2hpwdbe+hVW9pCO0+m4BLX/+EV1ONgAGd3dShowkafSDZLVpZ+vyRaE9mzfw45wPORj3t2Vbg8a+9Bt2D/2H32sJsEIIIYS4Ma6rr4+E12t76D4DD02IBGD5qKMY3a27qEoxGGi6YQ2tvptPk22bLdsvBQaTOPZhUoaOxODpZdOahbk1ltFgsMx1zcm6yMG4v3HSaIjqE0PMiDHSGksIIYSwo0r9BY6MjCQ2NpYGDRoQERFx1Ysd4uLibFZcXeZ8/hyBPy4k+PuvcE89DYDq5ERqv1tIGvMQ6T16S2/XalCyNVav24cyfIJ5ikzXAbdy/4uv0ufO4TRo4mvnKkV1UVSVS2fPYLigwc/PT5adrQtkhSohHFalQuyQIUNwcXGxfCxX7FafBvt2E/zdfFqs+AVNYYum/PoNODZyLEn3PsBledva5kwmE/9s28TaJQvZsXaVpTXWpt9/soRYnbMLQ8c9ac8yxQ2Sl51FHuDn52fvUoQQQlxFpULs1KlTLR9Pmzatumqps5zy82ix4heCFy7A5589lu2Z4Z0Ke7vehcnF1X4F1mI/fzGHld8t4Ozpk5ZtwaEdiBk5ht63D7VfYcIuVMC9QUPq6TT2LkUIIcQ1WD2hLzg4mL///puGDRuW2n7hwgUiIyNJSkqyWXG1ndupkwR//xWBPy7E5UImAEadMydvu4uksQ+T2THCzhXWPiV7ugKcOHyIs6dP4u7pxc133k3MiNEEh3awY4XCrhQFj/o+NJHuBEIIUeNZHWKPHTuGsbAfaUn5+fmcPHmynEeIUlSVJlv/JHjhAvzWr0ExmfvA5vo1I+neBzk2cgwFPg2vcRBhrRNHDxO7ZBEbl//I619+T1D7cADueOhROvXqQ7dbBuPi6mbnKoUQQghRWZUOsb/88ovl41WrVuHtXbwCkdFoJDY2lqCgIKsLmDNnDu+99x6pqamEhYUxe/ZsevfuXe6+qampvPDCC+zatYsjR47w7LPPOtRSt8GLviJwyUI8kxMt29J79CJx7MOk9b0FVa50t6nLOTlsXfkLsT8u5NCe4iV4N//+syXEBrUPt3wsBKqKyWjAYNCg0Whk/r8QQtRglU5NQ4cOBcx9Yh988MFS9+l0OgIDA/nggw+sevLFixfz/PPPM2fOHHr27Mlnn33G4MGDiY+Pp2XLlmX2z8/Pp3Hjxrzyyit8+OGHVj2X3cTHWz7s8N6bAOg96pEydCRJYx7iUqvWFT1SVFH2xQt88/5bbP59OXm5OQDm1lh9BzBgxBgievezc4WiplKAcynJnEOWnRVCiJqu0iHWVPi2d1BQEH///TeNGjW67iefNWsW48aNY/z48QDMnj2bVatWMXfuXGbMmFFm/8DAQD766CMAvvzyy+t+/huixEjxpaBWJN4/jpS7RmCoV89+NdVCJee6urp7sHP9GvJyc/ALCCZmxL30HXoPDRo3sXOVQtQA0lJKCFFLWP3+dXJysk2euKCggF27djF58uRS2wcOHMjWrVtt8hw1wuOPw8KFAKxbshKjh4edC6o9TCYT+7b+ydoli0hO2M/HK/5Eo9Gg1el45JU3qd+oCaHR3WQ0TVSaqig0Dmoty84KIYQDqFSI/fjjj3nsscdwdXXl448/vuq+zz77bKWeOCMjA6PRiK9v6cbxvr6+pKWlVeoYlZGfn09+fr7l86ysLJsdu1Kiooo/ljBlE2dTT7P2j+WsW7a4VGusg3F/E9alOwA9B99lr/KEEEIIcQNUKsR++OGHjB07FldX16vORVUUpdIhtuRjSlJV1aYjZzNmzOCNN96w2fGE/ewEXgNW3dEHtfDtUA8vb3rfMUxaYwkhhBB1TKVCbMkpBLaaTtCoUSM0Gk2ZUdf09PQyo7PXY8qUKUyaNMnyeVZWFv7+/jY7vqheJee6moCVAKpKeLeexIwYLa2xhBBCiDrKbj2dnJ2diYqKYs2aNQwbNsyyfc2aNQwZMsRmz+Pi4mJZMlc4hpKtsfxbt+OJN98DoAvwAeC+PJYmbdvbtUYhhBBC2FelQmzJkcxrmTVrVqX3nTRpEvfffz/R0dH06NGDzz//nJSUFCZMmACYR1FPnTrF119/bXnMnj17AMjOzubs2bPs2bMHZ2dnQkNDK/28ouZRVZUje+OIXbqoVGusU8mJjH/tbTSY2x9NApb7B1B2uQ0hhBBC1CWVCrG7d+8u9fmuXbswGo20bdsWgMOHD6PRaIgqeRFTJYwaNYpz584xffp0UlNTCQ8PZ8WKFQQEBADmxQ1SUlJKPSYiongp1l27drFw4UICAgI4duyYVc8tao4NP//Iz1/M4cSRQ5ZtJVtj6ZydwWCwY4VCCCGEqGkqFWLXr19v+XjWrFl4enry1Vdf0aBBAwAyMzN5+OGHK1xp62qefPJJnnzyyXLvW7BgQZltqvQ3dHgmkwlVVdFoNACkpRzjxJFDOLu60mPQHcSMGCOtsYQQQghxVVbPif3ggw9YvXq1JcACNGjQgLfeeouBAwfywgsv2LRAUXucPX2S9csWE7vse8a98iZdY24FIGbEaOo3bkLv24fi4eV9jaMIIYQQQlQhxGZlZXHmzBnCwsJKbU9PT+fSpUs2K0zUDvqCfP5et5rYJYvYu2WjZSR9028/WUJs42YtuHX0g1c7jBBCCCFEKVaH2GHDhvHwww/zwQcf0L27ubH89u3befHFF7n77rttXqBwTAa9nm8/eIeNy38kK/O8ZXt4t54MGDGarrcMtmN1QgghhHB0VofY//73v/zrX//ivvvuQ6/Xmw+i1TJu3Djee+89mxcoHEfJnq5anY74v7eRlXkenyZN6TvsHmKG30vTloH2LVIIIYQQtYLVIdbd3Z05c+bw3nvvkZiYiKqqhISE4OHhUR31iRquqDXW2iUL+Xvdaj5ZtQUPTy8ARj8/GaNBT0Tvfmi0dmtJLIQQQohaqMrJwsPDg44dO9qyFuFAsjLPsXH5UtYuWcjJo4ct2/+OXUXfoSMBiOjd107VCSGEEKK2szrE5uTk8O677xIbG0t6ejomk6nU/UlJSTYrTtQ8aSnH+HbWDP6OXYmhcDqJs6srN916FzEjRtM+qqudKxRCCCFEXWB1iB0/fjwbN27k/vvvx8/PT3p51gEl57o6u7jy1+rfMZlMtArvRMyI0fS6fahlCoEQQgghxI1gdYj9448/+P333+nZs2d11CNqCH1BPjtiVxG7ZBGKovDa/xYC4OPblEdfn0GbzpEEtgu7xlGEEEIIIaqH1SG2QYMG+Pj4VEctogZIOXyQ2KWL2Lh8CZcuZALg5OTEhYyz1G/UGICB995vzxKFEEIIIawPsW+++Savv/46X331Fe7u7tVRk7CDXRvWsmTuRxzeu8uyzadJU/rdPYr+d4+yBFghhBBCiJqgSsvOJiYm4uvrS2BgILrCuZJF4uLibFacqD6qqmIyGi2try6ey+Dw3l1otFqi+g4gZvhoaY0lhBBCiBrL6oQydOjQaihD3CglW2PdMnIsdzz4KAA9br2TrAvn6XPXCBo0bmLnKoUQQgghrs7qEDt16tTqqENUI6PRyL6tm4hdspC/162ytMba9NtPlhDr5uHB0HFP2rNMIWzK6O7OsoOn7V2GEEKIalLl94p37dpFQkICiqIQGhpKRESELesSNrL0vx+zevHXZKQW/zEv2RpLCCGEEMIRWR1i09PTuffee9mwYQP169dHVVUuXrxIv379+P7772ncWC4AsiejwVBqHmtS/D9kpJ6mnnd9br7zbmJGjJbWWEIIIYRweE7WPuCZZ54hKyuLAwcOcP78eTIzM9m/fz9ZWVk8++yz1VGjqISUwweZP2Mq43t35nRyomX7kHFP8Pz7nzLvzzjGvfqWBFghhBBC1ApWj8SuXLmStWvX0r59e8u20NBQPv30UwYOHGjT4sTVXc7OZssfy1m7ZBFH9hZ3hdj8+8/c8/QLALTpFEmbTpH2KlEIIYQQolpYHWJNJlOZtloAOp0Ok8lkk6LE1V08f45vP3ibrX/8Ql5uLgAarZbofrcQM2IMnXv1tW+BQgghhBDVzOoQ279/f5577jkWLVpEs2bNADh16hQTJ04kJibG5gUKs5JzXd08PNixdiV5ubk0CwwmZuQY+g4ZKQsSCCGEEKLOsDrEfvLJJwwZMoTAwED8/f1RFIWUlBQ6dOjAt99+Wx011lnm1lh/ErtkESeTjvDhL+tQFAVnF1fGvfoWjZs1p11kVxRFsXepws6knZQQQoi6xuoQ6+/vT1xcHGvWrOHgwYOoqkpoaCgDBgyojvrqpPSTJ1i37HvW/7S4VGusxP17CenQGYCb77zbTtUJIYQQQthflfvE3nLLLdxyyy22rKXOO7R7J4v/8z77tm1CVVUAc2usu4abW2O1DbVzhUIIIYQQNUOlW2ytW7eO0NBQsrKyytx38eJFwsLC2LRpk02LqwuMBoPl44L8fPZu/RNVVenQoxcTP5hjbo31ypsSYIUQQgghSqj0SOzs2bN59NFH8fLyKnOft7c3jz/+OLNmzaJ37942LbA2upydzeYVy4lduog2nSJ55P+mAxDWtQf3/+sVug+6g6b+AXauUgghhBCi5qp0iN27dy8zZ86s8P6BAwfy/vvv26So2kgFDu6NY/WvS9m68ldLa6yzp0/y4MtT0Wg0ODk5MXT8U/YtVAghhBDCAVQ6xJ45c6bc/rCWA2m1nD171iZF1Tb/Az4ADj58j2VbydZYGo3GbrUJIYQQQjiiSofY5s2b888//xASElLu/fv27cPPz89mhdUmBwtvzq6u3HTrXQwYOVpaYwkhhBBCXIdKh9jbbruN119/ncGDB+Pq6lrqvsuXLzN16lTuuOMOmxdYGzwOtAY8V23D1dfX3uUIIYQQQji8SofYV199lWXLltGmTRuefvpp2rZti6IoJCQk8Omnn2I0GnnllVeqs1aH1brwttzTE6O9ixFCCCGEqAUq3WLL19eXrVu3Eh4ezpQpUxg2bBhDhw7l//7v/wgPD2fLli34VmGUcc6cOQQFBeHq6kpUVNQ123Rt3LiRqKgoXF1dCQ4O5r///a/VzykcT9GKVMsOnsbo7m7vcoQQQghhZ1YtdhAQEMCKFSvIzMzk6NGjqKpK69atadCgQZWefPHixTz//PPMmTOHnj178tlnnzF48GDi4+Np2bJlmf2Tk5O57bbbePTRR/n222/ZsmULTz75JI0bN2b48OFVqkEIIYQQQjgeRS1aGsoOunXrRmRkJHPnzrVsa9++PUOHDmXGjBll9n/55Zf55ZdfSEhIsGybMGECe/fuZdu2bZV6zqysLLy9vbl48WK5PW9tLicH6tUDYHncURlFFKKG69nCB18PF3uXIYQQdVZls1qlpxPYWkFBAbt27WLgwIGltg8cOJCtW7eW+5ht27aV2X/QoEHs3LkTvV5fbbUKIYQQQoiaxarpBLaUkZGB0WgsM4/W19eXtLS0ch+TlpZW7v4Gg4GMjIxyW3zl5+eTn59v+by8ZXOFEEIIIYRjsdtIbJEre6WqqnrV/qnl7V/e9iIzZszA29vbcvP397/OioUQQgghhL3ZLcQ2atQIjUZTZtQ1PT29wi4HTZs2LXd/rVZLw4YNy33MlClTuHjxouV24sQJ23wBQgghhBDCbuwWYp2dnYmKimLNmjWltq9Zs4abbrqp3Mf06NGjzP6rV68mOjq6wiVxXVxc8PLyKnUTQgghhBCOza7TCSZNmsT//vc/vvzySxISEpg4cSIpKSlMmDABMI+iPvDAA5b9J0yYwPHjx5k0aRIJCQl8+eWXfPHFF/zrX/+y15cghBBCCCHswG4XdgGMGjWKc+fOMX36dFJTUwkPD2fFihUEBAQAkJqaSkpKimX/oKAgVqxYwcSJE/n0009p1qwZH3/8sfSIFUIIIYSoY+zaJ9YepE+sEOJqpE+sEELYV43vEyuEEEIIIURVSYgVQgghhBAOx65zYusEDw92ns4kJeuyvSsRQlSC1qniPtVCCCFqDgmxN0CnJl4E15e5sELUdE6KgreLvCwKIYQjkFfrG0CnccLHzdneZQghhBBC1BoyJ1YIIYQQQjgcCbFCCCGEEMLhSIgVQgghhBAOR0KsEEIIIYRwOBJihRBCCCGEw5EQK4QQQgghHI6EWCGEEEII4XAkxAohhBBCCIdT5xY7UFUVgKysLDtXIoQQQgghrlSU0YoyW0XqXIi9dOkSAP7+/nauRAghhBBCVOTSpUt4e3tXeL+iXivm1jImk4nTp0/j6emJoigV7peVlYW/vz8nTpzAy8vrBlYorCHnyTHIeXIMcp4cg5wnxyDnqepUVeXSpUs0a9YMJ6eKZ77WuZFYJycnWrRoUen9vby85IfPAch5cgxynhyDnCfHIOfJMch5qpqrjcAWkQu7hBBCCCGEw5EQK4QQQgghHI6E2Aq4uLgwdepUXFxc7F2KuAo5T45BzpNjkPPkGOQ8OQY5T9Wvzl3YJYQQQgghHJ+MxAohhBBCCIcjIVYIIYQQQjgcCbFCCCGEEMLh1NkQO2fOHIKCgnB1dSUqKopNmzZddf+NGzcSFRWFq6srwcHB/Pe//71BlQprzlVqaipjxoyhbdu2ODk58fzzz9+4Qus4a87TsmXLuOWWW2jcuDFeXl706NGDVatW3cBq6y5rztPmzZvp2bMnDRs2xM3NjXbt2vHhhx/ewGrrLmv/RhXZsmULWq2Wzp07V2+BArDuPG3YsAFFUcrcDh48eAMrrmXUOuj7779XdTqdOm/ePDU+Pl597rnnVA8PD/X48ePl7p+UlKS6u7urzz33nBofH6/OmzdP1el06pIlS25w5XWPtecqOTlZffbZZ9WvvvpK7dy5s/rcc8/d2ILrKGvP03PPPafOnDlT3bFjh3r48GF1ypQpqk6nU+Pi4m5w5XWLtecpLi5OXbhwobp//341OTlZ/eabb1R3d3f1s88+u8GV1y3WnqciFy5cUIODg9WBAweqnTp1ujHF1mHWnqf169ergHro0CE1NTXVcjMYDDe48tqjTobYrl27qhMmTCi1rV27durkyZPL3f+ll15S27VrV2rb448/rnbv3r3aahRm1p6rkvr06SMh9ga5nvNUJDQ0VH3jjTdsXZoowRbnadiwYep9991n69JECVU9T6NGjVJfffVVderUqRJibwBrz1NRiM3MzLwB1dUNdW46QUFBAbt27WLgwIGltg8cOJCtW7eW+5ht27aV2X/QoEHs3LkTvV5fbbXWdVU5V+LGs8V5MplMXLp0CR8fn+ooUWCb87R79262bt1Knz59qqNEQdXP0/z580lMTGTq1KnVXaLg+n6fIiIi8PPzIyYmhvXr11dnmbWe1t4F3GgZGRkYjUZ8fX1Lbff19SUtLa3cx6SlpZW7v8FgICMjAz8/v2qrty6ryrkSN54tztMHH3xATk4O99xzT3WUKLi+89SiRQvOnj2LwWBg2rRpjB8/vjpLrdOqcp6OHDnC5MmT2bRpE1ptnfuzbhdVOU9+fn58/vnnREVFkZ+fzzfffENMTAwbNmzg5ptvvhFl1zp19qddUZRSn6uqWmbbtfYvb7uwPWvPlbCPqp6nRYsWMW3aNJYvX06TJk2qqzxRqCrnadOmTWRnZ7N9+3YmT55MSEgIo0ePrs4y67zKniej0ciYMWN44403aNOmzY0qTxSy5vepbdu2tG3b1vJ5jx49OHHiBO+//76E2CqqcyG2UaNGaDSaMv9TSk9PL/M/qiJNmzYtd3+tVkvDhg2rrda6rirnStx413OeFi9ezLhx4/jxxx8ZMGBAdZZZ513PeQoKCgKgQ4cOnDlzhmnTpkmIrSbWnqdLly6xc+dOdu/ezdNPPw2Yp+eoqopWq2X16tX079//htRel9jq71P37t359ttvbV1enVHn5sQ6OzsTFRXFmjVrSm1fs2YNN910U7mP6dGjR5n9V69eTXR0NDqdrtpqreuqcq7EjVfV87Ro0SIeeughFi5cyO23317dZdZ5tvp9UlWV/Px8W5cnCll7nry8vPjnn3/Ys2eP5TZhwgTatm3Lnj176Nat240qvU6x1e/T7t27ZUri9bDbJWV2VNQW44svvlDj4+PV559/XvXw8FCPHTumqqqqTp48Wb3//vst+xe12Jo4caIaHx+vfvHFF9Ji6wax9lypqqru3r1b3b17txoVFaWOGTNG3b17t3rgwAF7lF9nWHueFi5cqGq1WvXTTz8t1WrmwoUL9voS6gRrz9Mnn3yi/vLLL+rhw4fVw4cPq19++aXq5eWlvvLKK/b6EuqEqrzulSTdCW4Ma8/Thx9+qP7000/q4cOH1f3796uTJ09WAXXp0qX2+hIcXp0Msaqqqp9++qkaEBCgOjs7q5GRkerGjRst9z344INqnz59Su2/YcMGNSIiQnV2dlYDAwPVuXPn3uCK6y5rzxVQ5hYQEHBji66DrDlPffr0Kfc8Pfjggze+8DrGmvP08ccfq2FhYaq7u7vq5eWlRkREqHPmzFGNRqMdKq9brH3dK0lC7I1jzXmaOXOm2qpVK9XV1VVt0KCB2qtXL/X333+3Q9W1h6KqhVcoCSGEEEII4SDq3JxYIYQQQgjh+CTECiGEEEIIhyMhVgghhBBCOBwJsUIIIYQQwuFIiBVCCCGEEA5HQqwQQgghhHA4EmKFEEIIIYTDkRArhBBCCCEcjoRYIYRwANOmTaNz586Wzx966CGGDh16Xce0xTGEEMJeJMQKIcR1eOihh1AUBUVR0Ol0BAcH869//YucnJxqfd6PPvqIBQsWVGrfY8eOoSgKe/bsqfIxhBCiptHauwAhhHB0t956K/Pnz0ev17Np0ybGjx9PTk4Oc+fOLbWfXq9Hp9PZ5Dm9vb1rxDGEEMJeZCRWCCGuk4uLC02bNsXf358xY8YwduxYfv75Z8sUgC+//JLg4GBcXFxQVZWLFy/y2GOP0aRJE7y8vOjfvz979+4tdcx3330XX19fPD09GTduHHl5eaXuv3IqgMlkYubMmYSEhODi4kLLli15++23AQgKCgIgIiICRVHo27dvucfIz8/n2WefpUmTJri6utKrVy/+/vtvy/0bNmxAURRiY2OJjo7G3d2dm266iUOHDtnwuymEEJUjIVYIIWzMzc0NvV4PwNGjR/nhhx9YunSp5e3822+/nbS0NFasWMGuXbuIjIwkJiaG8+fPA/DDDz8wdepU3n77bXbu3Imfnx9z5sy56nNOmTKFmTNn8tprrxEfH8/ChQvx9fUFYMeOHQCsXbuW1NRUli1bVu4xXnrpJZYuXcpXX31FXFwcISEhDBo0yFJXkVdeeYUPPviAnTt3otVqeeSRR6r8vRJCiCpThRBCVNmDDz6oDhkyxPL5X3/9pTZs2FC955571KlTp6o6nU5NT0+33B8bG6t6eXmpeXl5pY7TqlUr9bPPPlNVVVV79OihTpgwodT93bp1Uzt16lTu82ZlZakuLi7qvHnzyq0xOTlZBdTdu3dXWHt2draq0+nU7777znJ/QUGB2qxZM/Xf//63qqqqun79ehVQ165da9nn999/VwH18uXLFX+ThBCiGshIrBBCXKfffvuNevXq4erqSo8ePbj55pv5z3/+A0BAQACNGze27Ltr1y6ys7Np2LAh9erVs9ySk5NJTEwEICEhgR49epR6jis/LykhIYH8/HxiYmKq/DUkJiai1+vp2bOnZZtOp6Nr164kJCSU2rdjx46Wj/38/ABIT0+v8nMLIURVyIVdQghxnfr168fcuXPR6XQ0a9as1MVbHh4epfY1mUz4+fmxYcOGMsepX79+lZ7fzc2tSo8rSVVVABRFKbP9ym0lv76i+0wm03XXIIQQ1pCRWCGEuE4eHh6EhIQQEBBwze4DkZGRpKWlodVqCQkJKXVr1KgRAO3bt2f79u2lHnfl5yW1bt0aNzc3YmNjy73f2dkZAKPRWOExQkJCcHZ2ZvPmzZZter2enTt30r59+6t+TUIIYQ8yEiuEEDfQgAED6NGjB0OHDmXmzJm0bduW06dPs2LFCoYOHUp0dDTPPfccDz74INHR0fTq1YvvvvuOAwcOEBwcXO4xXV1defnll3nppZdwdnamZ8+enD17lgMHDjBu3DiaNGmCm5sbK1eupEWLFri6upZpr+Xh4cETTzzBiy++iI+PDy1btuTf//43ubm5jBs37kZ8a4QQwioSYoUQ4gZSFIUVK1bwyiuv8Mgjj3D27FmaNm3KzTffbOkmMGrUKBITE3n55ZfJy8tj+PDhPPHEE6xatarC47722mtotVpef/11Tp8+jZ+fHxMmTABAq9Xy8ccfM336dF5//XV69+5d7nSGd999F5PJxP3338+lS5eIjo5m1apVNGjQoFq+F0IIcT0UtWgilBBCCCGEEA5C5sQKIYQQQgiHIyFWCCGEEEI4HAmxQgghhBDC4UiIFUIIIYQQDkdCrBBCCCGEcDgSYoUQQgghhMORECuEEEIIIRyOhFghhBBCCOFwJMQKIYQQQgiHIyFWCCGEEEI4HAmxQgghhBDC4UiIFUIIIYQQDuf/AT2F0AkkrgitAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQXUlEQVR4nO3deVhUZfsH8O+wLwpuCIiIuOOu4IL+zHxVzKWy15TczaVMW8zKJDPXslUxU8sVLbfKJUtfFc19TYRywSXF3EDEBUQUBJ7fH0+zwYAMzMyZge/nus41Z86cOeeecXg893k2lRBCgIiIiIiIiIhKxE7pAIiIiIiIiIhKAybYRERERERERCbABJuIiIiIiIjIBJhgExEREREREZkAE2wiIiIiIiIiE2CCTURERERERGQCTLCJiIiIiIiITIAJNhEREREREZEJOCgdgKXl5ubixo0bKF++PFQqldLhEJEChBC4f/8+qlWrBjs73mdUY/lIRCwfDWP5SERFLR/LXIJ948YN+Pv7Kx0GEVmBq1evonr16kqHYTVYPhKRGstHfSwfiUjtSeVjmUuwy5cvD0B+MR4eHgpHQ0RKSEtLg7+/v6Y8IInlIxGxfDSM5SMRFbV8LHMJtrpZj4eHBwtIojKOzfz0sXwkIjWWj/pYPhKR2pPKR3auISIiIiIiIjIBJthEREREREREJsAEm4iIiIiIiMgEylwf7KLKycnB48ePlQ6DyiBHR0fY29srHQYREREZidePpAReO1oXJth5CCGQlJSEe/fuKR0KlWEVKlSAj48PB5khIiKyAbx+JKXx2tF6MMHOQ104Vq1aFW5ubvyRkkUJIZCRkYHk5GQAgK+vr8IRERER0ZPw+pGUwmtH68MEW0dOTo6mcKxcubLS4VAZ5erqCgBITk5G1apV2eSHiIjIivH6kZTGa0frwkHOdKj7zLi5uSkcCZV16t8g+3ERERFZN14/kjXgtaP1YIJtAJv1kNL4GzTSo0fADz8A/zaPItIQQrt+7x6wYQOwZg2QlQXk5ACXLwPbtgGnTwP//AM8eJD//Q8fyv2JiArB/7tJSaXi93f7NrBiBXDuHLBqFZCdrXRExcIm4kRk+z78EPjqK6BOHeDCBaWjISWcOgWcOAEcPw4sWQI0bQocPVr84/XpAyQkyGMCgEoF1KsH1KgBLF4MuLkBf/0F1K0rtxEREZHxHjwAypUz/NqgQcCWLUCPHpaNqYRYg11GqVQqbNq0SfFjWNLly5ehUqkQFxdnlcejEti4UT7+/beycZBl5ObK2uctW4ABAwAfH6BJE2DoUGDePFnjbExy/W/fNT3r12uTa0DWZJ87B0RHAzVrAlWrAl26AAEBMvlWL5Mns7abiEotXj9a3/FsmhAFJ9dqPXsCqalASoplYjIB1mCXEsOGDcOKFSvybb9w4QLq1KmTb3tiYiIqVqxYpGNPnToVmzZtylcQGHOM0sjf3x+JiYmoUqUKAGDPnj3o1KkT7t69iwoVKigbXFmj2wyYSp9Hj4BffwUOHZLNuS9fBh4/lkm2rnLlgOefB5KSgEaNZC123bqyyVlaGpCYCIwfL++WHz0qE+JOnQAnJ5m0Z2cDhw8DixYBGRlASAjQrh3g4SGT6+++A44cKTyBnjlTJvmtWwNPPw1ERMjzEBFZIV4/Wh6vH3UMG1a0/XS/l4QEeaPbijHBLkWeeeYZLF++XG+bl5eX3vOsrCw4OTnBx8enxOczxTFsmb29fZn/DqwGE2zbJ4TsA717t0yAY2OBixeBO3dky4SHD/O/x80NGDxYJsmdOwP/Xqw8kZMT8Mwz+tvs7OT2jh3lkldwsKwtB2SCn5oK1K4NXL0q/7PPzAQ2bwaiouRr0dFymTQJaNtWJtvVqwP16wNPPSXPRURkBXj9aFll9vrxiy+ACRMKfv3TT4GJE+UN8Nat5XWBnYHG1oGBcsydPL9Ra8Im4qWIs7MzfHx89JbOnTvj9ddfx/jx41GlShV07doVQP7mOdeuXcNLL72ESpUqwd3dHSEhITh69CiioqIwbdo0/Pnnn1CpVFCpVIiKijJ4jJMnT+I///kPXF1dUblyZbzyyitIT0/XvD5s2DD07t0bX375JXx9fVG5cmWMHTu2SKMdRkREoG3btvm2N23aFFOmTNE8X758OYKCguDi4oIGDRpgwYIFhR537969aN26NZydneHr64uJEyciW2dAhdzcXHz22WeoU6cOnJ2dUaNGDXz88ccA9Jv4XL58GZ06dQIAVKxYESqVCsOGDcPKlStRuXJlZGZm6p23T58+GDJkyBM/N1Gp9fgxcPIkMGcO0K0b4Okp/9McPhx44w1g2TJg7165z8OHgK+vbAI+bRpw8CBw5YpMZL/9FggPL3pybQo1awLNmska86Ag2TfshReA5ctl7fns2UCLFtr9jxyRFw6vvw507So/yxdf8MYQEVkFXj/y+tFsEhK0XagKS64PHQLef1/+v9i6tdxWWOuvqlVNG6eJsQb7SYSQTQWV4OZmkqaFK1aswGuvvYaDBw9CGLigS09PR8eOHeHn54fNmzfDx8cHJ06cQG5uLsLDw3Hq1Cls27YNO3fuBAB4enrmO0ZGRgaeeeYZtG3bFn/88QeSk5MxcuRIvP7665oCFQB2794NX19f7N69G3///TfCw8PRvHlzjBo1qtDPMHDgQHz66ae4ePEiateuDQA4ffo0Tp48iZ9//hkAsHjxYkyZMgXffPMNWrRogdjYWIwaNQru7u4YOnRovmNev34dPXr00BRkZ8+exahRo+Di4oKpU6cCkAXz4sWLMWfOHPzf//0fEhMTcfbs2XzH8vf3x/r169GnTx+cO3cOHh4ecHV1hZOTE958801s3rwZffv2BQCkpKTgt99+w7Zt2wr9zGQEJiq24e5dYOFCYN8+ueStlXZwAOztgcaNZa1vs2ayDGzTRm6zhabW3t7A22/LZdcu4L33ABcX2fRc7c4deaHx+edAxYqyL/cHH8gabiKyfaXg2hHg9SOvH4tJCPkbFAKoVevJ+zdvDoSGGn4tLU120wKAs2eBBg20r8XHy5vc1kiUMampqQKASE1Nzffaw4cPxZkzZ8TDhw+1G9PThZA/Ecsv6elF/lxDhw4V9vb2wt3dXbO8+OKLomPHjqJ58+b59gcgNm7cKIQQ4rvvvhPly5cXt2/fNnjsKVOmiGbNmhV6jEWLFomKFSuKdJ2Yt2zZIuzs7ERSUpImxoCAAJGdna3Zp2/fviI8PLxIn7Fp06Zi+vTpmucRERGiVatWmuf+/v5i9erVeu+ZMWOGCA0NFUIIkZCQIACI2NhYIYQQH3zwgahfv77Izc3V7D9//nxRrlw5kZOTI9LS0oSzs7NYvHixwXjyHm/37t0CgLh7967efq+99pro3r275nlkZKSoVauW3nnzMvhbpIIFBGj/boqgsHKgLDPb93LypBAjRwrh4qJfxjk6ChEWJsTs2UL8+acQWVmmPa81Uf+9p6YKYWdXcLk/ebIQOTnKxkplGstHw4y6frSRa0cheP0oROm5flT82jE3V4iHD4Vwcyv493nihBB79wqRlCTEtm3a/xuL6ocf9I9nYUUtH9lEvBTp1KkT4uLiNMvXX38NAAgJCSn0fXFxcWjRogUqVapU7HPHx8ejWbNmcHd312xr3749cnNzce7cOc22Ro0awd7eXvPc19cXyUWcu3jgwIFYtWoVAEAIgTVr1mDgwIEAgFu3buHq1asYMWIEypUrp1lmzpyJixcvFhhzaGio3ryB7du3R3p6Oq5du4b4+HhkZmaic+fORf8iDBg1ahR27NiB69evA5DNkIYNG1Y65iu0FqzBtk6nT8sm0U2ayKmzHj2Sg499+aWcTuvhQ2D7dlnb27Qp4OiodMTmo/579/CQg7PduQNs2iRrm3TNmCFr8Rcs4JRzRGQRvH7k9WOJ5ebKVliurvlbb9SqpU2JW7SQ45B4e8vuYcZ+loEDgbFjtc8/+qjksZsBm4g/iZsboNMPxOLnNoK7u7vBER91Cy1DXA1NUWMkIUSBf/C62x3zXECrVCrk5uYW6RwDBgzAxIkTceLECTx8+BBXr17FSy+9BACaYyxevBht2rTRe59ugfykmMW/iZpKpTLJ9wIALVq0QLNmzbBy5Up069YNJ0+exK+//mqSY9O/mGBblzt3gLlzZb/jrCw5SMl//wuMGydH5bbGiwNLq1hRjnj+4IF8vn+/vOhQU19AuLsD338P3LwJdO8u+29zgDQi62ZD144Arx8BXj8WW79+wE8/Fb7P8eOmPefkycD8+XJ9xgxg+nTTHt8EmGA/iUolL3BKsaZNm2LJkiW4c+eOwbuQTk5OyMk7HU4eDRs2xIoVK/DgwQNNgXzw4EHY2dmhXr16JomzevXqeOqpp7Bq1So8fPgQXbp0gbe3NwDA29sbfn5+uHTpkuau5JM0bNgQ69ev1ysoDx06hPLly8PPzw9eXl5wdXXFrl27MHLkyCcez+nfi15D39XIkSMxZ84cXL9+HV26dIG/v39RPzaR7cjNBb7+GpgyRfabAoBeveS0VVY+pYbiOnSQN4qWLZO11zExcvuDB/LmRF7168s+a88+K/uu9+pleLRVIrK8MnDtCPD6sUxfPxY0wjcgZ8+YMsV8rdK8vWXf6/h4+fzqVcBavpd/8X9jQv/+/eHj44PevXvj4MGDuHTpEtavX4/D/w7KU7NmTSQkJCAuLg4pKSn5RjQEZPMbFxcXDB06FKdOncLu3bvxxhtvYPDgwZpCzBQGDhyItWvX4qeffsKgQYP0Xps6dSpmzZqFuXPn4vz58zh58iSWL1+O2bNnGzzWmDFjcPXqVbzxxhs4e/YsfvnlF0yZMgXjx4+HnZ0dXFxc8P7772PChAlYuXIlLl68iCNHjmDp0qUGjxcQEACVSoXffvsNt27d0hsBc+DAgbh+/ToWL16M4cOHm+z7oH+xBlt5sbEy4Xv7bZlcN2kC/PijnLqKyXXRDR8u7/bn5MimbwVdwJw7J6cE69NH1oTb22tHalWpgHfekYPKERGZCa8fy+j1Y26u4f+bpk6V12MzZ5q/y9eZM9r1GjXMe65iYIJNcHJywo4dO1C1alX06NEDTZo0waeffqppGtOnTx8888wz6NSpE7y8vLBmzZp8x3Bzc8P27dtx584dtGrVCi+++CI6d+6Mb775xqSx9u3bF7dv30ZGRgZ69+6t99rIkSOxZMkSREVFoUmTJujYsSOioqIQGBho8Fh+fn7YunUrjh07hmbNmmH06NEYMWIEPvzwQ80+kydPxjvvvIOPPvoIQUFBCA8PL7DPj5+fH6ZNm4aJEyfC29sbr7/+uuY1Dw8P9OnTB+XKlcsXN5FNu3lTTp/VsiVw7BhQvrycOisuDujbl83Bi8vOTk5JlpMjm9lnZ8s+7EUZkRWQU4VVqiS//xdekKOyN28OXLtm1rCJqOzg9WMZvX6sUEH/+d27MrHWmfbMInx9tet//23Zcz+BSoiyVfWTlpYGT09PpKamwkM97Pu/Hj16hISEBAQGBsLFxUWhCKm06tq1K4KCgjSDhxSGv0UjVa8O/DsISFFqswsrB8oyo76Xe/dkE62kJO228HCZ2FWrZtY4SUd2NnDgALBlixw8rihiY2ULgwL6F1LZxvLRMF4/klKKev1okd/hq68CixZpn6enK9cdIjtbv6b89m15Y9mMilo+sgabyMzu3LmDtWvX4vfff8dY3ZEPyXTK1n1C6xAfr02uGzYEduwA1q5lcm1pDg7A008DX3yhPxlKbi7wxx+yFvzzz/Xf06KFfJ9KBSxdCty/r0joRERUMKu7fjx6VJtc+/nJ/2uUHGvAwUG/qfq/85pbAw5yRlZh//796N69e4Gvpys1GqcJtGzZEnfv3sVnn32G+vXrKx0OkWnUqwd8/DGQmAhERrI21NqoVEBIiFwA4L335KirOk0PAQAjR8oFAN59V47GaqIRcImIzI3XjxaSt7vXvn3KxJHX3buAp6dc//134JVXlI3nX0ywySqEhIQgLi5O6TDM4vLly0qHQGR6lSsDH3ygdBRkjLFjgZdfBlJSZP/4Y8f0X//yS7n07w+sWsX+80Rk9Xj9aGbVqskb6brWrCn6eCDm5uEhbxx/8w2wbh3w1Veydl1hijcRX7BggaavQHBwMPbv31/o/qtWrUKzZs3g5uYGX19fvPzyy7h9+7aFoiVzcXV1RZ06dQpciIjIBNzc5IirR4/K5n2ZmXLE8f/7P+0+a9bIZnfqEckTEpSLl4ioELx+NBMhZOumvMn1hg3Av3OIW43QUO169erKxaFD0QR73bp1GDduHCZNmoTY2Fh06NAB3bt3x5UrVwzuf+DAAQwZMgQjRozA6dOn8dNPP+GPP/4o0hxzxihj476RFeJv0Ej8voiKx8lJ1lrv3y8HiDGkVi2ZaKvnHCUig/h/NynJpL+/Z56RY3SozZ0rr7VeeMF05zCV/v2VjiAfRRPs2bNnY8SIERg5ciSCgoIQGRkJf39/LFy40OD+R44cQc2aNfHmm28iMDAQ//d//4dXX30Vx48fN0k8jv+ORJeRkWGS4xEVl/o36GjueQRLCyu7qDGmZU5iYiIGDBiA+vXrw87ODuPGjcu3z9NPPw2VSpVv6dmzp2afqVOn5nvdx8fHHB+PSqtKleTf0l9/AZMnA1Wq6L/esCEwZgxQwFQzRGUVrx/JGpjs2nHPHjlwqdqVK8Cbb5bsmOakUgE7d2qfP3qkXCz/UqwPdlZWFmJiYjBx4kS97WFhYTh06JDB97Rr1w6TJk3C1q1b0b17dyQnJ+Pnn3/Wu8gsCXt7e1SoUEEzT52bmxtU7INGFiSEQEZGBpKTk1GhQgXNXJJkO9QtcxYsWID27dvju+++Q/fu3XHmzBnUqFEj3/6ZmZnw8vLCpEmTMGfOHIPH3LBhA7KysjTPb9++jWbNmqFv3756+zVq1Ag7df6T4e+HiqVJE7lMny4T7unTgalT5WsLF8oFANLS5LznRGUcrx9JSSa/dtS9tliyBPD3L9nxLOE//9Gur1sHDB2qXCxQMMFOSUlBTk4OvL299bZ7e3sjSXdeVR3t2rXDqlWrEB4ejkePHiE7OxvPPfcc5s2bV+B5MjMzkZmZqXmelpZWaFzqGp+CJoMnsoQKFSqw9tEYVlSDrdsyBwAiIyOxfft2LFy4ELNmzcq3f82aNTF37lwAwLJlywwes1KeeR3Xrl0LNze3fAm2g4MDfzdkWioVMGWK7Kc9bZr+XNseHsDbb8ttdooP6UKkKF4/ktJKfO14967+PNJ79gAdO5Y4LovQvaEVGVl2E2y1vHf4hBAF3vU7c+YM3nzzTXz00Ufo1q0bEhMT8d5772H06NFYqttPQMesWbMwbdo0o+Lx9fVF1apV8fjx46J/ECITcXR0ZM2jjSpOy5ziWLp0KV566SW455l/8sKFC6hWrRqcnZ3Rpk0bfPLJJ6hVyEifxt6ApDKsXDk51/bMmbJG+5NP5PY5c+QgaBs2cNRxKtN4/UhKKvG1oxBAq1ba5y+/bDvJdV5WMKq8Ygl2lSpVYG9vn6+2Ojk5OV+tttqsWbPQvn17vPfeewCApk2bwt3dHR06dMDMmTPh6+ub7z0REREYP3685nlaWhr8i9DUwd7enkkOka2wkhrs4rTMMdaxY8dw6tSpfDcV27Rpg5UrV6JevXq4efMmZs6ciXbt2uH06dOoXLmywWMZewOSCM7Ocv7zd94BRo8GfvoJ2LRJ1mC7uMiB0tzclI6SSDG8fiSbFBUFXLwo1wMCgAJa1Fm1998HPvtMrt+8CRSQT1qCYm26nJycEBwcjOjoaL3t0dHRaNeuncH3ZGRkwC5PMzR1IVbQyHnOzs7w8PDQW4iolLGSBFvNmJY5xlq6dCkaN26M1q1b623v3r07+vTpgyZNmqBLly7YsmULAGDFihUFHisiIgKpqama5erVqyaJkcqASpWAH3+UF2Vqjx4B7u5ymi8iIrINV64Aw4fL9c8/B6xh/u3ieOst7brCUzgr2mlq/PjxWLJkCZYtW4b4+Hi8/fbbuHLlCkaPHg1AXvwNGTJEs/+zzz6LDRs2YOHChbh06RIOHjyIN998E61bt0a1atWU+hhERACK1zLHGBkZGVi7dm2RpiZ0d3dHkyZNcOHChQL34Q1IKrGhQ4G83R8GDAAGDgTYTJaIyLplZckaazXdJNXW6LZk1hkYVgmKJtjh4eGIjIzE9OnT0bx5c+zbtw9bt25FwL//0ImJiXpzYg8bNgyzZ8/GN998g8aNG6Nv376oX78+NmzYoNRHICJrYCU12MVpmWOMH3/8EZmZmRg0aNAT983MzER8fLzBrjNEJhUaKv8GExO121avlnNs9+kDZGcrFxsRERm2dq3s9qO2caMst0uDAqZ8thTFh/0cM2YMLl++jMzMTMTExOCpp57SvBYVFYU9e/bo7f/GG2/g9OnTyMjIwI0bN/DDDz/Az8/PwlETERlmbMscAIiLi0NcXBzS09Nx69YtxMXF4cyZM/mOvXTpUvTu3dtgn+p3330Xe/fuRUJCAo4ePYoXX3wRaWlpGKrwSJpUhvj4AHfuAG3aaLdt2AA4OgJnzyoXF9mcBQsWIDAwEC4uLggODsb+/fsL3HfDhg3o2rUrvLy84OHhgdDQUGzfvl1vn6ioKKhUqnzLIyuYL5dIEUuXAv37a59XqgT07q1YOCa3aJGip1d8FHEiohKzkhpsQLbMuX37NqZPn47ExEQ0bty40JY5ANCiRQvNekxMDFavXo2AgABc1ukHdf78eRw4cAA7duwweN5r166hf//+SElJgZeXF9q2bYsjR45ozktkERUrAkeOAFu3As8+C+Tmyu1BQfLx3j3A01Ox8Mj6rVu3DuPGjcOCBQvQvn17fPfdd+jevTvOnDmDGjVq5Nt/37596Nq1Kz755BNUqFABy5cvx7PPPoujR4/qla0eHh44d+6c3ntdXFzM/nmIrM6hQ4BuV7NXXgG++065eEohlShodLBSKi0tDZ6enkhNTWV/Q6LSonJlWXMGFCnZZjlgGL8XMrmvv87fp+/UKaBRI2XioSdSuhxo06YNWrZsiYU6TTyDgoLQu3dvzJo1q0jHaNSoEcLDw/HRRx8BkDXY48aNw71794odl9LfC5FJPHggp11UO3cOqFdPuXhMbckSYNQouZ6RAbi6mvTwRS0HFG8iTkRERKXUm28CKSn6tdaNG8s5swsZ4Z7KpqysLMTExCAsLExve1hYGA7lHUyvALm5ubh//z4qVaqktz09PR0BAQGoXr06evXqhdjYWJPFTWQzdMdwSUgoXck1IAfYVJs8WbEwmGATERGR+VSuLJuG5x10ZtgwYMwYJSIiK5WSkoKcnJx8sy54e3vnm52hIF999RUePHiAfv36abY1aNAAUVFR2Lx5M9asWQMXFxe0b9++0FkWMjMzkZaWprcQ2bTDh4FNm+R6ZCRQs6aCwZiJbo21gnN5M8EmIiIi8xs9WjZP7NNHu23hQtkX8M8/lYuLrI5KpdJ7LoTIt82QNWvWYOrUqVi3bh2qVq2q2d62bVsMGjQIzZo1Q4cOHfDjjz+iXr16mDdvXoHHmjVrFjw9PTWLv79/8T8QkdI2bQJ0ZzOx5em4iuruXcVOzQSbiGxf2RpKgsh2ubkBP/8s/2bVU8gtXQo0bw706gXk5CgaHimrSpUqsLe3z1dbnZycnK9WO69169ZhxIgR+PHHH9GlS5dC97Wzs0OrVq0KrcGOiIhAamqqZrl69WrRPwiRNZk/H3jhBe3zbduUi8USPvlE6QiYYBNRKcAEm8j27Nql/3zLFsDBAWBT3DLLyckJwcHBiI6O1tseHR2Ndrq1b3msWbMGw4YNw+rVq9GzZ88nnkcIgbi4OPiqb/IY4OzsDA8PD72FyObs3g28/rr+tm7dlInFUsLD5aOrq2LXh5ymi4iIiCwvKEhe/CQnA7q1k56ecpuXl3KxkWLGjx+PwYMHIyQkBKGhoVi0aBGuXLmC0aNHA5A1y9evX8fKlSsByOR6yJAhmDt3Ltq2baup/XZ1dYXnv4PrTZs2DW3btkXdunWRlpaGr7/+GnFxcZg/f74yH5LIEm7cAP7zH+3zsjKDg/r/k4cP5SCbCvxfwgSbiGwfa7CJbFfVqvJvWLePbdWqQNu2clAeKlPCw8Nx+/ZtTJ8+HYmJiWjcuDG2bt2KgIAAAEBiYiKuXLmi2f+7775DdnY2xo4di7Fjx2q2Dx06FFFRUQCAe/fu4ZVXXkFSUhI8PT3RokUL7Nu3D61bt7boZyOyGCHkTUy1a9cAPz/l4rEkd3ft+sWLiiTYnAebiGyfp6e2WSnnwS42fi+kuFmzgA8+0N+WlgaUL69MPGUQywHD+L2QTRk7FliwQK7/8QcQEqJsPJbm7i7nwf7vf4H16012WM6DTURERLYlIgI4f15/m4cH4O8PPH6sTExERLbk/Hltct2vX9lLrgGZXAPAhg2KnJ4JNhHZvrLVEIeodKtbV/5N6w5Wde2abObHUcaJiAp2/z5Qv772+b/dJMqcGjW06wr8v8EEm4iIiKzPb7/p1z6kpspRxtPTlYuJiMhapabKFj9qixbJkbTLIt1ZKv7+2+KnZ4JNRLaPNdhEpdMLL8i/7z59tNvKlwf++Ue5mIiIrE12NlChgva5uzswapRi4SiuTh3t+v37Fj89E2wisn1MsIlKtzVr9EeCrVlTjjr+00+KhUREZDUcHbXr77zDlj4A0Ly5fLx1y+KnZoJNRLaPCTZR6eboKOfGVg/co9avH9CxozIxEREpLTtbf4rDHj2AL79ULh5ror4pm5xs8VMzwSYi28cEm6hseO01YN8+/W379gFLligTDxGRUpKT9WuunZ3l2BUkVa0qH1mDTURUDEywicqODh3klF26c5uOGgXMnq1cTEREliQEMHCg/rYHD/Rrs8s61mATEZVAbq7SERCRJTk4AP/9L7Bpk3bbO+9wGi8iKv1+/BGwswN27pTPv/pKJtz29srGZW1Yg01EVAJMsInKpuefB27f1j53cABGjlQuHiIic8nKkjXU4eHabZMmAePHKxeTNVPXYDPBJiIqBibYRGVXpUrAu+9qny9dKi9Cs7OVi4mIyJSEAFxc9Ld98AEwc6Yy8dgCNhEnIioB9sEmKttmzcq/zdGRg58Rke27fFk2Cde91nn4EPj4Y8VCsgnqJuJ//AHcu2fRUzPBJiLbxwSbqGxzcJDlQGam/vZRo4CbN5WJiYiopFJSgMBA7fMhQwzXZlN+6hpsAFi1yqKnZoJNREREpYOTkxzobMgQ7TYfH+1gQEREtkIIIDhY+3zMGGDFCuXisTXqGmwAiI+36KmZYBMREVHpYWcnL0KPHtVu69oVWLxYuZiIiIzVrx9w5Ypc/+ILYP58ZeOxNeXLa9crVLDoqZlgExERUenTujUwerT2+SuvKBcLEZExqlUDfv5Zrn/8sf5AjlQ0KhUwaJBc37rVoqdWPMFesGABAgMD4eLiguDgYOzfv7/AfYcNGwaVSpVvadSokQUjJiIiIpuwcCHw66/a5wcOKBcLEdGTpKfLxDAxUbstIkK5eGzdjz/Kx9hYi55W0QR73bp1GDduHCZNmoTY2Fh06NAB3bt3xxV1c4g85s6di8TERM1y9epVVKpUCX379rVw5EREBTPmxmFiYiIGDBiA+vXrw87ODuPGjcu3T1RUlMGbi48ePSr2eYnKjF69AFdXud6hg7KxEBEV5Phx/WbNdevKaUhVKuVisnUKTWOmaII9e/ZsjBgxAiNHjkRQUBAiIyPh7++PhQsXGtzf09MTPj4+muX48eO4e/cuXn75ZQtHTkRkmLE3DjMzM+Hl5YVJkyahWbNmBR7Xw8ND7wZjYmIiXHRGETX2vERlSkyMdn3cOM6RTUTWQwhgzhygVSvttrZtgXPnmFyXVGiofKxTx6KnVSzBzsrKQkxMDMLCwvS2h4WF4dChQ0U6xtKlS9GlSxcEBASYI0QiIqMZe+OwZs2amDt3LoYMGQJPT88Cj6tSqfRuMPr4+JTovERlSlCQdn3uXDlHNhGR0nJzgWHDgPHjtdt++w04fJjJtSlUqiQf//7boqdVLMFOSUlBTk4OvL299bZ7e3sjKSnpie9PTEzE//73P4wcObLQ/TIzM5GWlqa3EBGZgyluHBYkPT0dAQEBqF69Onr16oVYnf5ExT0vy0cqU6ZN03++ZIkycRARAbLm+sUXgZUrtdtu3gR69lQuptJGt8n9P/9Y7LSKD3KmynN3RgiRb5shUVFRqFChAnr37l3ofrNmzYKnp6dm8ff3L0m4REQFKumNw4I0aNAAUVFR2Lx5M9asWQMXFxe0b98eFy5cKNF5WT5SmfLRR3KObLVRo4Ddu5WLh4jKtq5dgY0b5frAgbI2W3fuZiq56tW16xbsGqRYgl2lShXY29vnu/hLTk7Od5GYlxACy5Ytw+DBg+Hk5FTovhEREUhNTdUsV69eLXHsRESFKe6Nw4K0bdsWgwYNQrNmzdChQwf8+OOPqFevHubNm1ei87J8pDLHzg44c0b7/D//ARISlIuHiMqmbduAXbvk+qJFwA8/sEm4OahU2psWGRkWO61iCbaTkxOCg4MRHR2ttz06Ohrt2rUr9L179+7F33//jREjRjzxPM7OzvDw8NBbiIjMoSQ3Do1hZ2eHVq1aaWqwi3telo9UJgUFAfPna583b65YKERUxiQkyKSve3f5XKUCntDdlUpIPYvEw4cWO6WiTcTHjx+PJUuWYNmyZYiPj8fbb7+NK1euYPTo0QBk7cqQIUPyvW/p0qVo06YNGjdubOmQiYgKVJIbh8YQQiAuLg6+vr4WPS9RqTFmjGyeCQBpacDjx8rGQ0Sl32+/AbVqaZ83bqyd95rMx81NPj54YLFTOljsTAaEh4fj9u3bmD59OhITE9G4cWNs3bpVMyp4YmJivilmUlNTsX79esydO1eJkImICjV+/HgMHjwYISEhCA0NxaJFi/LdOLx+/TpW6gxqEhcXB0AOZHbr1i3ExcXByckJDRs2BABMmzYNbdu2Rd26dZGWloavv/4acXFxmK9TC/ek8xJRHps3a2s2PvwQ+OwzZeMhotLrhx+AwYO1z+vWBXbs0CZ/ZD7qgc7u37fYKRVNsAFgzJgxGDNmjMHXoqKi8m3z9PREhgXb0BMRGaM4Nw5btGihWY+JicHq1asREBCAy5cvAwDu3buHV155BUlJSfD09ESLFi2wb98+tG7dusjnJaI8dOaRx7JlTLCJyPQePwYmT9YvX65dA/z8lIuprFFPy2jBmVJUQghhsbNZgbS0NHh6eiI1NZX9DYlKC93mVUUo0lgOGMbvhcqcvLVKZeuSyCCWA4bxeyGjxMUBOjfPAQDDhwOLF8vBFsly1NeIQUH6g1wWQ1HLAf4LExERUdmUd6rPmTMVCYOISoHHj4Fx42RClze5Xr8eWLqUybWSLHhjjP/KREREVDaVKwecPKl9Pnkya7GJyHgxMYCTE2BojKi//gL++1/Lx0RS587y8ehRi52SCTYRERGVXY0bA4cOaZ//9ZdysRCRbbl7V9ZYh4Tob/f0lINqCQE0aaJMbCSp5xu3ICbYREREVLaFhmrXn35asTCIyEZkZMgRwCtV0t9++rRMqu/dky1kSHlhYRY/JRNsIiIiol695OO9e0Cekf6JiAAAWVmyxtrdHXj4ULu9WjVZY/3v9JpkRb74wuKnZIJNRERE9Ouv2nVOb0dEeS1YkL9WumVLIDMTuH6dNdbWytdXu56dbZFTMsEmotKDo3MSUUl89JF2fc8excIgIity756stR47Vo4UrnbnjnZwM7Jenp7a9fXrLXJKXo0SUenh6Kh0BERky6ZO1a536qRYGERkJRYtAipW1D4PCQGuXZP9rHW3k/XSvQFy+7ZFTskEm4hKDybYRFQSKpV+kr10qWKhEJFCHjwAOnaU5cGrr2q3v/wy8McfgJ+fcrFRyVio+w8TbCIqPZhgE1FJjRunXR85UrEwiMhCbt2S81erVHIpVw7Yt09/n7//BpYtUyY+KjlXV/kYF2eR0zHBJqLSg/2giKikPD2BFSu0z3XnyCai0mXUKKBqVf0ba2qBgcCRI7I5eO3aFg+NTEg94vuHH1rkdEywici2JSdr11mDTUSmMGSIdr19e+XiICLzSEwEmjYFlizJ/9qWLUBuLnDpEtCmjeVjI5vHBJuIbFtSknY9N1e5OIiodHn5Ze16erpycRCR6aSkyGbg1aoBJ0/KbeXLA48eyZpqIYAePeQ+VHr07i0fdfvUmxETbCKybbpJ9Y0bysVBRKXLggXa9fLllYuDiEzjyhXAy0v7PCBAdgdJSwOcnZWLi8yvUSP5aKGuhEywici25eRo11u1Ui4OIipdXFy0A+MAbCFDZMumTNEfQfr994Fz5/S7g1Dp5eIiHx89ssjpmGATkW3Tvei1Y5FGRCaUkqJdnz5duTiIqHgSE2Vzb92/30OHgE8/Za11WWIowRYCmDfPLANZ8mqUiGybbg02EZEpublp16dNY3lDZCtOnABat5Z9rdWqVpXjKYSGKhcXKcNQgr15M/Dmm2YZyJIJNhHZNt0LXiGUi4OISqft27Xr0dHKxUFETxYdDdSrBwQHA3/8od3+1ltyUFR3d+ViI+UYSrDPnjXb6ZhgE5Fty87WrjPBJiJTCwvTrnfvrlwcRGTYw4dARIRsCh4WBly4ILe7ugJjxwKZmUBkJEcGL8sKaiJuJkywici2sQabiMxtxgztOpuXElmPkydl0+9PP9Vuq1gRWL0ayMgAvvnGYiNHkxXjIGdEREbQrcEmIjKHCRO060eOKBcHEUnHjwONGwNNm2rnqa9ZEzh9GrhzB+jfX9HwyMqwBpuIyAi6NdicRoeIzMHJCTh1SvucfbHNasGCBQgMDISLiwuCg4Oxf//+AvfdsGEDunbtCi8vL3h4eCA0NBTbdfvN/2v9+vVo2LAhnJ2d0bBhQ2zcuNGcH4HM4dYtYOFCwM9PTst5+rTc3qCBnOM6IQFo2FDZGMk6sQabiMgIbCJORJbQqJF2XbdfNpnUunXrMG7cOEyaNAmxsbHo0KEDunfvjitXrhjcf9++fejatSu2bt2KmJgYdOrUCc8++yxiY2M1+xw+fBjh4eEYPHgw/vzzTwwePBj9+vXD0aNHLfWxqDiuXZMJtUoll6pVgTFjgBs3tPv07w+cOQP4+ysXJ1k/V1f5yBpsIqIi0J37ulIl5eIgotLvpZe061evKhdHKTZ79myMGDECI0eORFBQECIjI+Hv74+FCxca3D8yMhITJkxAq1atULduXXzyySeoW7cufv31V719unbtioiICDRo0AARERHo3LkzIiMjLfSpqMhiY+UNrJAQmTSPGaP/uq8v8MEHwP37stXa6tUcvIyejDXYRERG0P2P1dNTuTiIqPRbvVq73ratcnGUUllZWYiJiUFYnhYCYWFhOHToUJGOkZubi/v376OSzg3Xw4cP5ztmt27dinxMMrPLl4GPP5ZJdcuWsgtGTIx8LSBANgkfPRo4dkzWXn/8MVCuHBNrKrqy1gfbmH42AJCZmYlJkyYhICAAzs7OqF27NpYtW2ahaInI6ljhIGfGlGuJiYkYMGAA6tevDzs7O4wbNy7fPosXL0aHDh1QsWJFVKxYEV26dMGxY8f09pk6dSpUKpXe4uPjY+qPRlS2qVTAs8/Kdd1mqmQSKSkpyMnJgbe3t952b29vJCUlFekYX331FR48eIB+/fpptiUlJRl9zMzMTKSlpektZAJCyIECFy3SNv0ODAQ+/FCbVAPArFnApUsy+VY3FW/VSrGwycapE+xbtyzSnVDRBNvYfjYA0K9fP+zatQtLly7FuXPnsGbNGjRo0MCCURORVbGyBNvYci0zMxNeXl6YNGkSmjVrZnCfPXv2oH///ti9ezcOHz6MGjVqICwsDNevX9fbr1GjRkhMTNQsJ0+eNPnnIyrzFi3SrrOZuFmo8tRMCiHybTNkzZo1mDp1KtatW4eqVauW6JizZs2Cp6enZvFnH9+SiYsD/vMf2a0rNBR49dX8+4weDfz+u0yAJk6UiTeRKTg6ate3bZOPZky0Hcx25CLQ7WcDyD4y27dvx8KFCzFr1qx8+2/btg179+7FpUuXNE1/atasacmQicjaWFmCbWy5VrNmTcydOxcACmyNs2rVKr3nixcvxs8//4xdu3ZhyJAhmu0ODg6stSYyN92/sREjgB07lIullKlSpQrs7e3z1SwnJyfnq4HOa926dRgxYgR++ukndOnSRe81Hx8fo48ZERGB8ePHa56npaUxyTbWzZvA/v3Apk3AmjX6M30EBQHNmskm4X36yGSaTb7JXHTH6+nRw+y12IrVYBenn83mzZsREhKCzz//HH5+fqhXrx7effddPHz4sMDzsIkPUSlnRQm2KfoPFkVGRgYeP36s18cQAC5cuIBq1aohMDAQL730Ei5dulTocVg+EhVTuXLykdN1mZSTkxOCg4MRned7jY6ORrt27Qp835o1azBs2DCsXr0aPXv2zPd6aGhovmPu2LGj0GM6OzvDw8NDb6EiuHJFjk/g6wtUqwb07QusWqVNrlu3lrXZZ87IpPu994BatZhck3lVr55/W2mswS5OP5tLly7hwIEDcHFxwcaNG5GSkoIxY8bgzp07Bdb8zJo1C9OmTTN5/ERkJQoYWVYJpug/WBQTJ06En5+fXi1NmzZtsHLlStSrVw83b97EzJkz0a5dO5w+fRqVK1c2eByWj0TFdOmSnDIIkHPvsimryYwfPx6DBw9GSEgIQkNDsWjRIly5cgWjR48GIGuWr1+/jpUrVwKQyfWQIUMwd+5ctG3bVlPWurq6wvPfgS/feustPPXUU/jss8/w/PPP45dffsHOnTtx4MABZT5kaSOErKX++GP9ftSAnJe6eXPZ/LtDByWiI7I4xQc5M6ZPTG5uLlQqFVatWoXWrVujR48emD17NqKiogqsxY6IiEBqaqpmucr+UkSlyxMGRlRCcfsPFsXnn3+ONWvWYMOGDXBRD9oBoHv37ujTpw+aNGmCLl26YMuWLQCAFStWFHgslo9ExeTlpV2vVUu5OEqh8PBwREZGYvr06WjevDn27duHrVu3IiAgAIAcGFJ3TIvvvvsO2dnZGDt2LHx9fTXLW2+9pdmnXbt2WLt2LZYvX46mTZsiKioK69atQ5s2bSz++UoNIYBff5V9qUNCgP/+Vz+5fuMN4O+/gdOnZQ02k2sqQxSrwS5OPxtfX1/4+flp7kgCQFBQEIQQuHbtGurWrZvvPc7OznB2djZt8EREBpSk/2BRfPnll/jkk0+wc+dONG3atNB93d3d0aRJE1y4cKHAfVg+EpVAWJi2//WNG7I5LJnEmDFjMCbv/Mf/ioqK0nu+Z8+eIh3zxRdfxIsvvljCyAhJScCkScAPPwBZWdrtbm5A3brA7NlyMDMiazN5MjBjhkVOpVgNdnH62bRv3x43btxAenq6Ztv58+dhZ2eH6oba1hMRWVBx+w8WxRdffIEZM2Zg27ZtCAkJeeL+mZmZiI+Ph6+vb4nOS0QFUI9ECwAGptcjKlXOnwfefBOoVw9Ytkw/uX7tNeDCBe1I4UTW6I8/9J+Xxj7YgPH9bAYMGIAZM2bg5ZdfxrRp05CSkoL33nsPw4cPh6urq5IfhYgIgPHlGgDExcUBANLT03Hr1i3ExcXByckJDRs2BCCbhU+ePBmrV69GzZo1NTXk5cqVQ7l/B1t699138eyzz6JGjRpITk7GzJkzkZaWhqFDh1rw0xOVISqVnPrl8WOr7KpCVCIZGcAvv8hWGlu2yPmD1Zo1k4OTPfsswMHfyFZYMFdUNMEODw/H7du3MX36dCQmJqJx48aF9rMpV64coqOj8cYbbyAkJASVK1dGv379MHPmTKU+AhEprUkTwIrmeza2XAOAFi1aaNZjYmKwevVqBAQE4PLlywCABQsWICsrK1/zxilTpmDq1KkAgGvXrqF///5ISUmBl5cX2rZtiyNHjmjOS0Rm8McfcgCnBw+AnBzA3l7piIiKLydHzkO9bBmwdm3+13v1AgYPltNq8bdOtmbIEGDjRrn+6JFZa7BVQph5IjArk5aWBk9PT6SmpnLKBaLSoF492TQNAF54Adiw4YlvYTlgGL8XIiPl5AAVKgDp6cCffwJPGBvBFrAcMKzUfi9CALt2AVOmAPHxwN272td8fYHevYEaNeQgZvXqKRYmUYnl5mpvDF27BixZAvxbSVHUZLuo5YCiNdhERCWWmal0BERUVtnbA23ayARl6VJg7lylIyIqun/+AV5/Hfjtt/yvvfkm8OWXshsEUWlgpzP02MWLZq3BVnyaLiKiEmGCTURKqlRJPn79tbJxFGTzZlkLmZKidCRkLQ4eBPr2lfO3q5PrypWB+fO1TWfnzmVyTaWXmftjswabiGwbE2wiUtIrrwA//STXb93SnyPbGjz/vHysUkU2iaSy6/BhYNAg4NIl7banngK+/RYIClIuLiJLqVdPjohv5j7YrMEmItvGBJuIlNSli3ZdPYCONbp5U+kISAk5OcB33wF16gDt2mmT6yFDgAMHgD17mFxT2eHiIh8fPTLraViDTUS2Swgm2ERkPV59VdZoE5mCEHLgsYsX5bzTzs5AYiJw/77c1q8f4OkJpKUB2dlyULLAQG0SceQIMHy4PIZaWBjw6aeAzuwVRGWGboJdWufBJiIqkexsOSokEZGS+vcH1qyR66mpMukhMpYQwIkTQEwMsHevnDIrKang/RcsKNpxnZxk0/Dp0wE/P9PESmSLWINNRPQErL0mImsQGalNsNesAUaPVjQcg1QqpSMgQ+7eBXbuBHbvBn78Ebh9W/91FxegcWNZS+3kBPj4AFeuAFWrAsnJciRwV1egYkWZjD98qP/+vn2BhQvlIGZEZZ06wc7MZA02EZFBTLCJyBpUrSqngMnNBV57TQ6k85//KB0VWauUFDkw3qZNsqZa9/8yV1c59VuHDvI3FBoqm4YXhRAyQb92TR7z8WPg//7PLB+ByCap/5ZYg01EVAAm2ERkLT79FJgwQa537ixrE729lY2JrIcQwL59csCx9etln2q1oCA5WF5YmPztFHcKIZVKjhZfpYppYiYqbe7elY979sjxCsyEo4gTke1igk1E1uK99/Sfz5mjTBwFYRNxZWRlAUuXAo0aAU8/LbsQZGXJQcY+/hj46y/g9Gk5j3qvXmafn5eoTDtwQD6uWmXW07AGm4hsFxNsIrImWVmynywAfPYZMHWqts8flS1CyD7VH3ygnRqrXDlgwAA50nxwsLLxEZV1nAebiMgAJthEZE0cHYGZM7XPjx9XLhZSTlIS8NxzwEsvyeTa2xv44gvg+nXZRJzJNVGpxgSbiGyXmQepICIy2vvva9dXrFAujrzYRNxyIiKA336TrRmmTpVzVr/7LuDhoXRkRGXbK69o162lBvvYsWPIycnRPBd5AsvMzMSPP/5omsiIiJ5Etwa7enVOQ0JEynNw0CbZv/yibCykjC++ALp1k/NZT5kCuLsrHRERAUC/fvKxcWOznsaoBDs0NBS3debn8/T0xCV1vxIA9+7dQ//+/U0XHRFRYdQJdtOmwNWrwOLFysZDRAQAvXvLx1u32NKmLKpSBdi2zewX8URkJPU0XWaeB9uoBDtvjXXe5wVtIyIyC3WCXdQ5QomILKFNG+16VJRiYehhE3EiKuvUg1DqTpNnBibvg61iAU5ElvL33/Lxjz+UjYOISJfutdBrrykXBxERaVljDTYRkVX5+GOlIyAiMmzyZO06W/cRESlPXYNt5llojE6wz5w5g7/++gt//fUXhBA4e/as5vnp06fNESMRkWGjRsnHSpWUjYOIKK+JE7XrKSnKxUFERJK6Bjsry6w3Ph2MfUPnzp31+ln36tULgGwaLoRgE3Eishx1QakeFZKIyFq4uWnXq1ZlLTYRkdJ0m4ibkVEJdkJCgrniICIy3oMH8rFcOWXjICJ6EiE40BgRkZLUTcSzs4HcXLOdxqgEOyAg4In7xMXFFWk/IqISS0+Xj5xjlIis0YULQN26cr13b86LTUSkJHt77frx42Y7jUkGOUtNTcWCBQvQsmVLBAcHm+KQRERPlpEhH5lgE5E1qlVLu755s3JxAKw9JyKqUEG7fuuW2U5TogT7999/x6BBg+Dr64t58+ahR48eOG7GuwFERHrUCbZuX0ciImthZwe8/LL2eU6OcrEQEZV1djqpb/Xq5juNsW+4du0aZs6ciVq1aqF///6oWLEiHj9+jPXr12PmzJlo0aKFOeIkIsqPCTYRWbvFi7XrO3YoFwcREQH+/vIxK8tspzAqwe7RowcaNmyIM2fOYN68ebhx4wbmzZtXogAWLFiAwMBAuLi4IDg4GPv37y9w3z179kClUuVbzp49W6IYiMhGqQc5s7IE25hyLTExEQMGDED9+vVhZ2eHcePGGdxv/fr1aNiwIZydndGwYUNs3LixROclIgvR7fM3bJhiYbCJOBERAEdH+WgtCfaOHTswcuRITJs2DT179oS97n8axbBu3TqMGzcOkyZNQmxsLDp06IDu3bvjypUrhb7v3LlzSExM1Cx11QOIEFHZYoU12MaWa5mZmfDy8sKkSZPQrFkzg/scPnwY4eHhGDx4MP78808MHjwY/fr1w9GjR4t9XiKyIB8f+ZicrGwcRERlnXokcWtJsPfv34/79+8jJCQEbdq0wTfffINbJeggPnv2bIwYMQIjR45EUFAQIiMj4e/vj4ULFxb6vqpVq8LHx0ezlDTRJyIbZYWDnBlbrtWsWRNz587FkCFD4OnpaXCfyMhIdO3aFREREWjQoAEiIiLQuXNnREZGFvu8RGRBun+H2dnKxUFEVNZZWw12aGgoFi9ejMTERLz66qtYu3Yt/Pz8kJubi+joaNy/f7/Ix8rKykJMTAzCwsL0toeFheHQoUOFvrdFixbw9fVF586dsXv3bmM+AhGVJlbWRLwk5VphDh8+nO+Y3bp10xyzuOfNzMxEWlqa3kJEZtC1q3b9mWeUiYFNxImIrK8GW83NzQ3Dhw/HgQMHcPLkSbzzzjv49NNPUbVqVTz33HNFOkZKSgpycnLg7e2tt93b2xtJSUkG3+Pr64tFixZh/fr12LBhA+rXr4/OnTtj3759BZ6HF5BEpZi6+bOVJNjFKdeKIikpqdBjFve8s2bNgqenp2bxVw/8QUSmpdvKZtcu5eIgIirrrDXB1lW/fn18/vnnuHbtGtauXQuVkXdI8+4vhCjwGPXr18eoUaPQsmVLhIaGYsGCBejZsye+/PLLAo/PC0iiUurxY+2UNw4OysaShzHlmimPaex5IyIikJqaqlmuXr1aohiJqBArVmjXhVAuDiKisswCTcSNuiodPnz4E/epXLlykY5VpUoV2Nvb56tdSU5OzlcLU5i2bdvihx9+KPD1iIgIjB8/XvM8LS2NSTZRaXDnjnb98WPl4tBhqnItLx8fn0KPWdzzOjs7w9nZudhxEZERnn9eu756NTBwoGXPzybiRETaGuzMTLOdwqga7KioKOzevRv37t3D3bt3DS737t0r0rGcnJwQHByM6Ohove3R0dFo165dkWOKjY2Fr69vga87OzvDw8NDbyGiUiA3V7ter55ycegwVbmWV2hoaL5j7tixQ3NMc52XiExIdxDDQYOUi4OIqCxT12CbMcE2qgZ79OjRWLt2LS5duoThw4dj0KBBqFSpUrFPPn78eAwePBghISEIDQ3FokWLcOXKFYwePRqArH2+fv06Vq5cCUCOpFuzZk00atQIWVlZ+OGHH7B+/XqsX7++2DEQkY16+FC77uqqXBx5GFuuAUBcXBwAID09Hbdu3UJcXBycnJzQsGFDAMBbb72Fp556Cp999hmef/55/PLLL9i5cycOHDhQ5PMSkRVwc9POfkBERJanrsF+9MhspzAqwV6wYAHmzJmDDRs2YNmyZYiIiEDPnj0xYsQIhIWFGd3HMDw8HLdv38b06dORmJiIxo0bY+vWrQgICAAAJCYm6s3hmpWVhXfffRfXr1+Hq6srGjVqhC1btqBHjx5GnZeISgH1RWrVqsrGkYex5RogZ0ZQi4mJwerVqxEQEIDLly8DANq1a4e1a9fiww8/xOTJk1G7dm2sW7cObdq0KfJ5icgKHDwIqP/es7OtbvwIIqJSzwI12Cohij/Sxj///IOoqCisXLkSjx8/xpkzZ1CuXDlTxmdyaWlp8PT0RGpqKpuLE9myY8eANm2AgADg30S0qFgOGMbvhcjMcnMBe3u5fukSEBho/nOqKz/69gV+/PGJu7McMIzfC1EpMXCgHAdDVxHT4aKWAyUaRVylUkGlUkEIgVzd/pBEROamrsG2kim6iIieyE7nsmvTJsXCICIqs9RNxM3I6AQ7MzMTa9asQdeuXVG/fn2cPHkS33zzDa5cuWL1tddEVIowwSYiW6YzwwkREVlIWprZT2FU558xY8Zg7dq1qFGjBl5++WWsXbu2yNNyERGZFBNsIrJFHTsCe/fK9XPngPr1lY2HiKgsSUw0+ymMSrC//fZb1KhRA4GBgdi7dy/2qv+DyGPDhg0mCY6IqEBMsInIFkVHa5soRkQAvGYiIrIcIwflLg6jEuwhQ4YYPVI4EZFZMMEmIlvk6Ah4eQG3bgEbN8rBdXhtRURkGXYlGoKsSIxKsKOioswUBhGRkZhgE5Gt+uYbIDxcru/aBXTpYv5zMoknIpKzOZiZ+VN4IiJzYIJNRLbqxRe169u3KxcHEVFZc+iQ2U/BBJuIbJM6wXZ1VTYOIiJj2dnJZuIAsGyZsrEQEZFJMcEmItuknmbBw0PZOIiIiuOVV+Sjv79lzscm4kREFsEEm4hsU2qqfGSCTUS2qFUr+ejiomwcRERlSQGzYJkSE2wisk3qGmxPT2XjICIqjqpV5ePRo0BOjrKxWJkFCxYgMDAQLi4uCA4Oxv79+wvcNzExEQMGDED9+vVhZ2eHcePG5dsnKioKKpUq3/Lo0SMzfgoiskpNm5r9FEywicg2qWuwmWATkS2qXVu7/sYb5j+fjTQRX7duHcaNG4dJkyYhNjYWHTp0QPfu3XHlyhWD+2dmZsLLywuTJk1Cs2bNCjyuh4cHEhMT9RYXth4gKnssUBYywSYi26Ru4sMm4kRki9Q12ACwcKFycViZ2bNnY8SIERg5ciSCgoIQGRkJf39/LCzgO6pZsybmzp2LIUOGwLOQG64qlQo+Pj56CxGVQUywiYgMSE/XrguhXBxERCUREaFdz8pSLg4rkZWVhZiYGISFheltDwsLw6ESTq2Tnp6OgIAAVK9eHb169UJsbGyh+2dmZiItLU1vISIqCibYRGR77t/XrtuxGCMiG1WnjnZdN9k2BxtoIp6SkoKcnBx4e3vrbff29kZSUlKxj9ugQQNERUVh8+bNWLNmDVxcXNC+fXtcuHChwPfMmjULnp6emsXfUqO9E5F5sQabiMgA3RpsCwxWQURkFr17a9dnz1YsDGujynMBLITIt80Ybdu2xaBBg9CsWTN06NABP/74I+rVq4d58+YV+J6IiAikpqZqlqtXrxb7/ERkRZhgExEZoJtgV6umXBxERCVRqRIwY4b2uXrwxjKqSpUqsLe3z1dbnZycnK9WuyTs7OzQqlWrQmuwnZ2d4eHhobcQUSnABJuIyIAHD+Rj3brKxkFEVFIffqhdP3VKuTisgJOTE4KDgxEdHa23PTo6Gu3atTPZeYQQiIuLg6+vr8mOSUQ2wgIJtoPZz0BEZGrqGuxy5ZSNg4jIFBo3lsn12rVA+/ZKR6Oo8ePHY/DgwQgJCUFoaCgWLVqEK1euYPTo0QBk0+3r169j5cqVmvfExcUBkAOZ3bp1C3FxcXByckLDhg0BANOmTUPbtm1Rt25dpKWl4euvv0ZcXBzmz59v8c9HRApjgk1EZIC6BtvdXdk4iIhMITdXPt67p2gY1iA8PBy3b9/G9OnTkZiYiMaNG2Pr1q0ICAgAACQmJuabE7tFixaa9ZiYGKxevRoBAQG4fPkyAODevXt45ZVXkJSUBE9PT7Ro0QL79u1D69atLfa5iMhKWGD2GZUQZWuOm7S0NHh6eiI1NZX9aYhs1WuvAd9+K9eLUYSxHDCM3wuRQt59F/jqK7lu6ssydW1N//7A6tVP3J3lgGH8XohKifR0oHx5/W1FLHeLWg6wDzYR2Z7ly5WOgIjIdGrV0q6bq97DBqbpIiIyO1dXs5+CCTYR2Z5eveTjwIHKxkFEZArdumnX//nHPOdggk1EBNjbm/0UTLCJyPasXy8f9+5VNg4iIlOoXVu7fu2aec5hx0s+IiJLYGlLRLZLt1klEVFp8MMP5jkua7CJiCyCCTYR2a6lS5WOwKAFCxYgMDAQLi4uCA4Oxv79+wvdf+/evQgODoaLiwtq1aqFb9UDuP3r6aefhkqlyrf07NlTs8/UqVPzve7j42OWz0dEZvTdd+Y5LhNsIiKLUDzBNvZCVO3gwYNwcHBA8+bNzRsgEVmX7GztesWKysVRgHXr1mHcuHGYNGkSYmNj0aFDB3Tv3j3ftDJqCQkJ6NGjBzp06IDY2Fh88MEHePPNN7Fe3QwewIYNG5CYmKhZTp06BXt7e/Tt21fvWI0aNdLb7+TJk2b9rERkQuHh2nXdcs5UmGATEVmEogm2sReiaqmpqRgyZAg6d+5soUiJyGrozhPr6alYGAWZPXs2RowYgZEjRyIoKAiRkZHw9/fHwoULDe7/7bffokaNGoiMjERQUBBGjhyJ4cOH48svv9TsU6lSJfj4+GiW6OhouLm55UuwHRwc9Pbz8vIy62clIhPSbRp+65bpj88Em4hIMnMOqWiCbeyFqNqrr76KAQMGIDQ01EKREpHVUCfY5csDDg6KhpJXVlYWYmJiEBYWprc9LCwMhw4dMview4cP59u/W7duOH78OB4/fmzwPUuXLsVLL70Ed3d3ve0XLlxAtWrVEBgYiJdeegmXLl0qNN7MzEykpaXpLUSkEAcHoGpVuZ6cbPrjM8EmIpJ27TLr4RVLsItzIQoAy5cvx8WLFzFlypQinYcXkESlzN278tEKm4enpKQgJycH3t7eetu9vb2RlJRk8D1JSUkG98/OzkZKSkq+/Y8dO4ZTp05h5MiRetvbtGmDlStXYvv27Vi8eDGSkpLQrl073L59u8B4Z82aBU9PT83i7+9f1I9KROagTqzbtTP9sZlgExFZhGIJdnEuRC9cuICJEydi1apVcChizRUvIIlKmcuX5aMF5jEsLlWeC1khRL5tT9rf0HZA1l43btwYrVu31tvevXt39OnTB02aNEGXLl2wZcsWAMCKFSsKPG9ERARSU1M1y9WrVwv/YERkGRkZwHPPAQ8fmu6YTLCJiCxC8UHOinohmpOTgwEDBmDatGmoV69ekY/PC0iiUmbQIPmYkKBsHAZUqVIF9vb2+W4SJicn57uZqObj42NwfwcHB1SuXFlve0ZGBtauXZuv9toQd3d3NGnSBBcuXChwH2dnZ3h4eOgtRKSgefO067/+CjRsaLpjM8EmIpLMPIaPYgm2sRei9+/fx/Hjx/H666/DwcEBDg4OmD59Ov788084ODjg999/N3geXkASlTJZWUpHUCAnJycEBwcjOjpab3t0dDTaFdDkMzQ0NN/+O3bsQEhICBwdHfW2//jjj8jMzMQg9U2GQmRmZiI+Ph6+vr5GfgoiUszYsfrP1S12TIEJNhGR1LKlWQ+vWIJt7IWoh4cHTp48ibi4OM0yevRo1K9fH3FxcWjTpo2lQicia+DmpnQEBo0fPx5LlizBsmXLEB8fj7fffhtXrlzB6NGjAchWNUOGDNHsP3r0aPzzzz8YP3484uPjsWzZMixduhTvvvtuvmMvXboUvXv3zlezDQDvvvsu9u7di4SEBBw9ehQvvvgi0tLSMHToUPN9WCIyLZVK3kT089Nu05lRoMTHJiIis5eHig7BO378eAwePBghISEIDQ3FokWL8l2IXr9+HStXroSdnR0aN26s9/6qVavCxcUl33YiKgNeeEHpCAwKDw/H7du3MX36dCQmJqJx48bYunUrAgICAACJiYl6UxEGBgZi69atePvttzF//nxUq1YNX3/9Nfr06aN33PPnz+PAgQPYsWOHwfNeu3YN/fv3R0pKCry8vNC2bVscOXJEc14ishGOjsDVq4Ddv3Ug770HGLjhZjQm2ERE0r9j3QAAzHCdpGiCbeyFKBGVcdnZ2vVZs5SL4wnGjBmDMWPGGHwtKioq37aOHTvixIkThR6zXr16msHPDFm7dq1RMRKRFTNHMswEm4hImjcPMGMFrUoUdsVWCqWlpcHT0xOpqansj01ka65eBWrUkOvZ2cUeSZzlgGH8XoisyJ49QKdOcv3hQ8DFpXjHUSfWY8YA8+c/cXeWA4bxeyEqZY4eBdq2letFTIeLWg4oPoo4EVGR/fyzdt2Kp+kiIiox3an4Jk4s+fFYg01EpHX3rnZdt4WkCTDBJiLbUaWK0hEQEVmG7kCO27aV/HhMsImItHQT7Jwckx6aCTYR2Y6jR+VjYKCycRARWULnzvKxZ8+SH4sJNhGRYSYuH5lgE5HtuHRJPj56pGwcRESWEBQkH2fPLnIfwQIxwSYisggm2ERkO65fl4+vvaZsHERElqB7M/H770t2LCbYRERaZhznmwk2EdmOv/6SjxcuKBsHEZElTJlieL04mGATERnGJuJEVOa99JLSERARmV/16oCrq1y/fLlkx2KCTURkmIlrs5lgE5FtyMrSrrdpo1wcRESWNG2adj03t/jHYYJNRGQRTLCJyDYkJ8tHR0egYkVlYyEispRRo7Tr7doV/zhMsImILIIJNhHZhsRE+ejtDdix6CKiMqJCBe26eqrC4mC5SURkGJuIE1GZpJ6iy89P2TiIiCytfv2SH4M12EREWufPm+3QTLCJyDaoC0L1vLBERGXFyJElPwYTbCIiLfXUr2bABJuIbMPff8vHunWVjYOIyNL699eu37xZvGMwwSYi0mrRQrvOJuJEVCZdvSofAwKUjYOIyNKqVdOud+tWvGMwwSYi0nJwMNuhmWATkW1QJ9j+/srGQURkabrJ8Z9/lvwYRERkNkywicj6CQFcuybXmWATUVnk5qZdf/TI+PczwSYi0tJtFs4m4kRU5qSkaC8odZtKEhGVFTt3atddXY1/PxNsIiKLYIJNRNZP3Tzc2xtwdlY2FiIiJYSG6j9fu1aZOIiIqFBMsInI+rH/NRERMGWKdr1/f+OaNbIGm4hIi03EiahMY4JNRARMnapfDsbHF/29TLCJiCyCCTYRWT8m2ERE0sWL2vWzZ4v+Pjte8hERWQJLWyKyfkywiYgkR0ftep8+RX8fa7CJiAxjE3EiKnOYYBMRlQwTbCIii2CCTUTWj3NgExFpzZ4tH595pujvYYJNRGQRTLCJyLrl5gLXr8t1G0mwFyxYgMDAQLi4uCA4OBj79+8vdP+9e/ciODgYLi4uqFWrFr799lu916OioqBSqfItj9RzgxfzvERko6pVk4/37xf9PUywiYi0SvMo4sZcEB44cADt27dH5cqV4erqigYNGmDOnDkWjJaILO7mTeDxY7nu66tsLEWwbt06jBs3DpMmTUJsbCw6dOiA7t2748qVKwb3T0hIQI8ePdChQwfExsbigw8+wJtvvon169fr7efh4YHExES9xcXFpdjnJSIbpi4TDx4s+nuYYBMRWYSiCbaxF4Tu7u54/fXXsW/fPsTHx+PDDz/Ehx9+iEWLFlk4ciKymPff1647OCgXRxHNnj0bI0aMwMiRIxEUFITIyEj4+/tj4cKFBvf/9ttvUaNGDURGRiIoKAgjR47E8OHD8eWXX+rtp1Kp4OPjo7eU5LxEZMPc3bXr2dmyJvtJNTBMsImILELRBNvYC8IWLVqgf//+aNSoEWrWrIlBgwahW7dubAZJVJp5eCgdQZFlZWUhJiYGYWFhetvDwsJw6NAhg+85fPhwvv27deuG48eP47G6lgpAeno6AgICUL16dfTq1QuxsbElOi8R2TDdv3VHR1lO5rkplw8TbCIirdLYRNwUF4SxsbE4dOgQOnbsaI4QicgaqKekefddZeMogpSUFOTk5MDb21tvu7e3N5KSkgy+JykpyeD+2dnZSElJAQA0aNAAUVFR2Lx5M9asWQMXFxe0b98eFy5cKPZ5ASAzMxNpaWl6CxHZADe3/NsmTCj8PUywiYgsQrH2lsW9IASA6tWr49atW8jOzsbUqVMxcuTIAvfNzMxEZmam5jkvIIlszM6d8rFGDWXjMIIqz4WsECLftiftr7u9bdu2aNu2reb19u3bo2XLlpg3bx6+/vrrYp931qxZmDZt2hM+DRFZnaImy7q1MnaKD7tDRFQmKF7aGntBCAD79+/H8ePH8e233yIyMhJr1qwpcN9Zs2bB09NTs/jbyCjERPSvU6fko5eXsnEUQZUqVWBvb5/vJmFycnK+m4lqPj4+Bvd3cHBA5cqVDb7Hzs4OrVq10tRgF+e8ABAREYHU1FTNclU93zgRWb9ffsm/TT2loVpOjnZd3RqIiIhKZxPx4l4QAkBgYCCaNGmCUaNG4e2338bUqVML3JcXkEQ2THcKmpAQ5eIoIicnJwQHByM6Olpve3R0NNq1a2fwPaGhofn237FjB0JCQuBYwAWxEAJxcXHw/XdU9eKcFwCcnZ3h4eGhtxCRjXjuOSAmRr82O+/MKjrjONjCIJFERKWBYgl2cS8I8xJC6DUBz4sXkEQ2THc8hjp1lIvDCOPHj8eSJUuwbNkyxMfH4+2338aVK1cwevRoAPKm35AhQzT7jx49Gv/88w/Gjx+P+Ph4LFu2DEuXLsW7On3Op02bhu3bt+PSpUuIi4vDiBEjEBcXpzlmUc5LRKVQy5b6tdR5ZhdAdrZ2nQk2EZFFKNpE3NgL0fnz5+PXX3/FhQsXcOHCBSxfvhxffvklBg0apNRHICJzOndO6QiMFh4ejsjISEyfPh3NmzfHvn37sHXrVgQEBAAAEhMT9aYiDAwMxNatW7Fnzx40b94cM2bMwNdff40+ffpo9rl37x5eeeUVBAUFISwsDNevX8e+ffvQunXrIp+XiEoplQoYMECu502idRNse3vLxVRCCxYsQGBgIFxcXBAcHFzobDGJiYkYMGAA6tevDzs7O4wbN87gfuvXr0fDhg3h7OyMhg0bYuPGjWaKnohsghmbiCt6OzM8PBy3b9/G9OnTkZiYiMaNGxd6IZqbm4uIiAgkJCTAwcEBtWvXxqeffopXX31VqY9AROakTrB158K2AWPGjMGYMWMMvhYVFZVvW8eOHXHixIkCjzdnzhzMydv008jzElEplpsrH8ePB95+W7vdBhPsdevWYdy4cViwYAHat2+P7777Dt27d8eZM2dQw8Bgl5mZmfDy8sKkSZMKLCcPHz6M8PBwzJgxAy+88AI2btyIfv364cCBA2jTpo25PxIRlTEqIUycslu5tLQ0eHp6IjU1lc3Fiaxdx47Avn3A998DJmypwnLAMH4vRDZKtx/2vXuAp6dc37QJeOEFub58OTBs2BMPpXQ50KZNG7Rs2RILFy7UbAsKCkLv3r0xa9asQt/79NNPo3nz5oiMjNTbHh4ejrS0NPzvf//TbHvmmWdQsWLFQgfK1aX090JEJrZ1K9Czp1zXLTcLUdRyQPFRxImIDBJCO4J4o0bKxkJEZM10p9urUAF48ECuJyQoEk5xZWVlISYmBmFhYXrbw8LCcEh3TA4jHT58ON8xu3XrVugxMzMzkZaWprcQUSnSubN2vbSMIk5EVKikJODOHTl3a4MGSkdDRGS9Jk40/NzGys6UlBTk5OTkm03G29s736wzxkhKSjL6mJzmlaiUe8K00CXBBJuIrJO69rpOHcDVVdlYiIismZOT/vNvvpGP5cpZPhYTUOW58BVC5Ntm7mNymleiUs6MCTbnbCAi63TypHxk83AiouK5fFnpCIxSpUoV2Nvb56tZTk5OzlcDbQwfHx+jj+ns7AxnZ+din5OIbAibiBNRmRAXJx9btFA0DCIim6A7E0G1avJRZ6pTW+Dk5ITg4GBER0frbY+Ojka7du2KfdzQ0NB8x9yxY0eJjklEVBDWYBORdTp9Wj42aaJsHEREtqBFC9k0/PXXgRs3gEuXlI6oWMaPH4/BgwcjJCQEoaGhWLRoEa5cuYLRo0cDkE23r1+/jpUrV2reE/fvDdn09HTcunULcXFxcHJyQsOGDQEAb731Fp566il89tlneP755/HLL79g586dOHDggMU/HxFZCTYRJ6IyJTcXOHtWrv97gURERE9w7552ff9+xcIoifDwcNy+fRvTp09HYmIiGjdujK1btyIgIAAAkJiYiCtXrui9p4VOS6eYmBisXr0aAQEBuPxvE/l27dph7dq1+PDDDzF58mTUrl0b69at4xzYRCSZuIk4E2wisj6//gpkZMj1WrWUjYWIyFa88ALw4YdyXT1QpA0aM2YMxowZY/C1qKiofNtEES6OX3zxRbz44oslDY2I6InYB5uIrE/v3tp1B94HJCIqEt0WP19+qVwcRETWjtN0EVGZoVsTsWSJcnEQERERUenHUcSJqFT7+2/t+qBBysVBRERERGQkJthEZF02bZKP7dsDnIOUiIiIiGwIE2wisi4TJshHd3dl4yAiskXvvad0BERE1k+3DzabiBNRqXXjhnY9PFy5OIiIbNWnnyodARFRmcYEm4isx9692vWXX1YuDiIiW2Vnpz+WBRERWRQTbCKyHvv2ycdx48w6fQIRUalWu3b+bSZuAklEZNPYRJyIyoTFi+XjU08pGwcRka2LjJS12e3bKx0JEVGZwgSbiKxDQgKQkyPXO3RQNhYiIlv31luyTK1QQelIiIjKFCbYRGQdGjXSrlepolwcRERERFS6sYk4EZVqGRnAw4dyvU8fZWMhIiIiIiomJthEpLz//U+7vm6dcnEQEREREZUAE2wiUt7KlfJxwgTA3l7ZWIiIiIio7DBxE3EHkx6NiMhYaWnaGuyhQ5WNhZ5ICIHs7GzkqAekI7IgR0dH2PMmHBERWTEm2FQyubnArVtAUpLsQ5uZCTx4IJf0dPmo7l/76JF2vUIFwNERcHMDKlYEnJwAV1fg8WPA3V0OcmVnB5QrB3h6yqVSJbktI0O+j/Mklw7R0fLfvW5doGFDpaOhQmRlZSExMREZGRlKh0JllEqlQvXq1VGuXDmlQyEiIjKICTYVTAjgxg3gwgW5/P03kJwst928Kddv3QKysy0Tj0oFODjIZKx8ecDLS25zcQGqVZPbAgKAqlWB2rWBBg2A6tVlMs9k3Hp9/718fP55ZeMwoQULFuCLL75AYmIiGjVqhMjISHQoZOqxvXv3Yvz48Th9+jSqVauGCRMmYPTo0ZrXFy9ejJUrV+LUqVMAgODgYHzyySdo3bq1Zp+pU6di2rRpesf19vZGUlKSST5Tbm4uEhISYG9vj2rVqsHJyQkq/l2RBQkhcOvWLVy7dg1169ZlTTYREZWMSiXzHTYRJ5MSAkhJkQn0+fPaZPr8eZlQP3jw5GOoVDLZdXeXNdHlysl1d3e57uoqa5xdXOS6iwtw965MlB89kuuZmXLdyQm4f1/GJIRcv3dP1loLId8DyO3372tjOH264PicnGTCXbs20KwZ0Ly5fAwMlAk7KefMGeCXX+T6sGGKhmIq69atw7hx47BgwQK0b98e3333Hbp3744zZ86gRo0a+fZPSEhAjx49MGrUKPzwww84ePAgxowZAy8vL/T5d0T1PXv2oH///mjXrh1cXFzw+eefIywsDKdPn4afn5/mWI0aNcLOnTs1z02ZgGRlZSE3Nxf+/v5wc3Mz2XGJjOHl5YXLly/j8ePHTLCJiMgqKZ5dGFPTs2HDBixcuBBxcXHIzMxEo0aNMHXqVHTr1s3CUdug+/dlMvPPP8DZs8C5c9pEOjW14PfZ28tEtG5duVStKmuFvb3lunpxcjJv/I8fA3fuyES8QgXg+nWZmAMy+b52Tfbl/ecfWbN+4YL8jPfuAVlZQHy8XH77TXtMJyegXj1Z012nDtC0KRAcDNSqxcTbUv7v/7TruvNg27DZs2djxIgRGDlyJAAgMjIS27dvx8KFCzFr1qx8+3/77beoUaMGIiMjAQBBQUE4fvw4vvzyS02CvWrVKr33LF68GD///DN27dqFIUOGaLY7ODjAx8fHTJ9MsrPj2JikHLaaICIia6doFmFsTc++ffvQtWtXfPLJJ6hQoQKWL1+OZ599FkePHkWLFi0U+ARW6u5d4Ngx4OBBICZG1u7+80/h76lRQ5tE16unfQwMlH2lleboKJN6NQ+PJ79HCJmQ37gBXLwoE+4//wROnJA3Gx49Ak6dkkvec9WpIz9/lSpA48ZyadNGNkMn07h0SXuT5IMPlI3FRLKyshATE4OJEyfqbQ8LC8OhQ4cMvufw4cMICwvT29atWzcsXboUjx8/hqOBv7+MjAw8fvwYlSpV0tt+4cIFVKtWDc7OzmjTpg0++eQT1KpVq4SfioiIiKgUKo1NxI2t6VHX8Kh98skn+OWXX/Drr7+WzQQ7N1cmjmfPAkePysTxzz9lQmmIr6+2qXRQkDaJrl1bNt0ubdT9s2vVkkvXrtrXcnPlTQd1zfaZM8DJkzLZfvhQu12XnZ1MtLt1A1q0kEvNmvIcZLwZM+Rjt27Axx8rG4uJpKSkICcnB966N4NQeF/opKQkg/tnZ2cjJSUFvr6++d4zceJE+Pn5oUuXLpptbdq0wcqVK1GvXj3cvHkTM2fORLt27XD69GlUrlzZ4LkzMzORmZmpeZ6Wllbkz1qaqVQqbNy4Eb1791b0GJZ0+fJlBAYGIjY2Fs2bN7e64xEREdkKxRLs4tT05JWbm4v79+/nq8XRVWouIHNyZLPn48dlTeyxY3K5d8/w/rVqAe3by1rXpk1l89tCvqcyx85O1s4HBgI9emi35+bK5uZnz8rv+8YN+X3/8Qdw5Qrw119y0VW3rvyemzSR6/7+ct3Z2bKfyZacPasd3CzPwFylQd5mrEKIQpu2Gtrf0HYA+Pzzz7FmzRrs2bMHLjo3d7p3765Zb9KkCUJDQ1G7dm2sWLEC48ePN3jeWbNm5RsYrTQaNmwYVqxYkW/7hQsXUKdOnXzbExMTUbFixSIde+rUqdi0aRPi4uKKfYzSyN/fH4mJiahSpQoAOY5Ap06dcPfuXVSoUEHZ4IiIiMxIsQS7ODU9eX311Vd48OAB+vXrV+A+NncBmZ0t+xefOwccOSJrUc+dk32lDQ045uIimzO3bg2EhMgBvBo2lNNakfHs7GRz+Ro1gDzNdnHjBrBzJ7B/PxAbK5PEBw+0A8PpcnUF/vMf4JlngO7d5Q0P9h2UhAAGDJA3jXr1kjcnSokqVarA3t4+XxmWnJycr6xT8/HxMbi/g4NDvprnL7/8Ep988gl27tyJpk2bFhqLu7s7mjRpggt5f5s6IiIi9JLvtLQ0+Pv7F3pcW/XMM89g+fLletu8vLz0nmdlZcHJyckk/djN3Rfe2tnb25f574CIiKyc+trcxE3EFR+txtiaHrU1a9Zg6tSpWLduHapWrVrgfhEREUhNTdUsV69eLXHMJvHokawJXbcOmDIF6NdP1nq6u8tmx926ye1r18pk7sEDORJ3aCgwciSwYIHsX52WJps2L10KvPaafJ3JtXlUqwYMGQIsXixbEty/L2u1f/tN1sL26iVvdJQvL5uZb9kCvPGGvAHi5iZryt94A/j22yf3iS/NJk+Wv2kAmD9f2VhMzMnJCcHBwYiOjtbbHh0djXbt2hl8T2hoaL79d+zYgZCQEL3+11988QVmzJiBbdu2ISQk5ImxZGZmIj4+3mATczVnZ2d4eHjoLaWVs7MzfHx89JbOnTvj9ddfx/jx41GlShV0/bcbiUqlwqZNmzTvvXbtGl566SVUqlQJ7u7uCAkJwdGjRxEVFYVp06bhzz//hEqlgkqlQlRUlMFjnDx5Ev/5z3/g6uqKypUr45VXXkF6errm9WHDhqF379748ssv4evri8qVK2Ps2LF4rJ45oRARERFo27Ztvu1NmzbFlClTNM+XL1+OoKAguLi4oEGDBliwYEGhx927dy9at24NZ2dn+Pr6YuLEicjWmZYxNzcXn332GerUqQNnZ2fUqFEDH//b3ePy5ctQqVSIi4vD5cuX0alTJwBAxYoVoVKpMGzYMKxcuRKVK1fWa2UGAH369NEbvI+IiMiWKFaDXZyaHrV169ZhxIgR+Omnn/T6IBri7OwMZyWb6qalafvz6vb3TUiQzZENcXKSNaht2sjppOrXl0udOnJUb7IOKpVsDu7vD/Tsqd0uhLzp8b//Ab/+KpvyP3okn+tq1Ej2C3/qKZmY60y3VGrt26ftb/3qq/J3XsqMHz8egwcPRkhICEJDQ7Fo0SJcuXJFM691REQErl+/jpUrVwIARo8ejW+++Qbjx4/HqFGjcPjwYSxduhRr1qzRHPPzzz/H5MmTsXr1atSsWVNTbpYrVw7lypUDALz77rt49tlnUaNGDSQnJ2PmzJlIS0vD0KFDzfdhhZCj+Fuam5vJWoSsWLECr732Gg4ePKhpmq8rPT0dHTt2hJ+fHzZv3gwfHx+cOHECubm5CA8Px6lTp7Bt2zbN9GieBm5wZmRk4JlnnkHbtm3xxx9/IDk5GSNHjsTrr7+uScgBYPfu3fD19cXu3bvx999/Izw8HM2bN8eoUaMK/QwDBw7Ep59+iosXL6J27doAgNOnT+PkyZP4+eefAciR56dMmYJvvvkGLVq0QGxsLEaNGgV3d3eDv5Hr16+jR48emkT47NmzGDVqFFxcXDB16lQA8re8ePFizJkzB//3f/+HxMREnD17Nt+x/P39sX79evTp0wfnzp2Dh4cHXF1d4eTkhDfffBObN29G3759AcjWbb/99hu2bdtW6GemYjBxDQ0RERVAKKh169bitdde09sWFBQkJk6cWOB7Vq9eLVxcXMTGjRuLdc7U1FQBQKSmphbr/YW6elWItWuFmDBBiJ49hahRQz0uneGlQgUhQkOFGD5ciC+/FGLLFiEuXRIiJ8f0sZFyMjOFiIsTYs4c+dvo0MHw76FlSyHef1+I//1PiHv3lI7a9G7f1n7WF18UIjdXsVDMWg4IIebPny8CAgKEk5OTaNmypdi7d6/mtaFDh4qOHTvq7b9nzx7RokUL4eTkJGrWrCkWLlyo93pAQIAAkG+ZMmWKZp/w8HDh6+srHB0dRbVq1cR///tfcfr0aaPiLux7efjwoThz5ox4+PChdmN6euFlnLmW9HSjPtfQoUOFvb29cHd31ywvvvii6Nixo2jevHm+/QFo/o/57rvvRPny5cXt27cNHnvKlCmiWbNmhR5j0aJFomLFiiJdJ+4tW7YIOzs7kZSUpIkxICBAZGdna/bp27evCA8PL9JnbNq0qZg+fbrmeUREhGjVqpXmub+/v1i9erXee2bMmCFCQ0OFEEIkJCQIACI2NlYIIcQHH3wg6tevL3J1/k7nz58vypUrJ3JyckRaWppwdnYWixcvNhhP3uPt3r1bABB3797V2++1114T3bt31zyPjIwUtWrV0juvLoO/Qypcr17y72bJkiLtbu7y0VbxeyEqhdTXFX/8UaTdi1oOKDqKuLE1PWvWrMGQIUMwd+5ctG3bVlOL4+rqarDWwKwePZK1lMeOAYcOAQcOyObChvj4yH7RQUHapWFDOe0U++WWfk5OsiVCs2babcnJwO+/A3v3yj7d8fFyFPgTJ4DPPpP7tGkDjBol32frg6YJAYwYoX0eGVmqf/tjxozBmDFjDL6mW2Op1rFjR5w4caLA412+fPmJ51y7dm1RwyuTOnXqhIULF2qeu7u7o3///k9sbh8XF4cWLVoUOpjmk8THx6NZs2Zwd3fXbGvfvj1yc3Nx7tw5TautRo0awV6nlZKvry9OnjxZpHMMHDgQy5Ytw+TJkyGEwJo1azBu3DgAwK1bt3D16lWMGDFCrzY8Ozu7wP874+PjERoaqtdlq3379khPT8e1a9eQlJSEzMxMdO7cucjfgyGjRo1Cq1atcP36dfj5+WH58uUYNmwY57s2JTP1MSQiKjXu3zfp4RRNsMPDw3H79m1Mnz4diYmJaNy4MbZu3YqAgAAAchTWKzpJ63fffYfs7GyMHTsWY8eO1WwfOnSowYtWkxFCDjR26JB29O6TJ+WAZLrs7WUy1KaNdu7kJk2AMjySLBWgalXgpZfkAgC3bsk+2/v2Abt3A5cvy6nXjh6Vr3t6Ar17y99Wv35AAdMuWa133wU2bZJ/I8eOlY3m8GWBmxug04/Youc1kru7u8ERw3WTXkNcTTCFoShkbBHd7XnnPFepVMgtqCtRHgMGDMDEiRNx4sQJPHz4EFevXsVL/5Yv6mMsXrwYbfIMKmhfQLcjQzELndHtTfG9AECLFi3QrFkzrFy5Et26dcPJkyfx66+/muTYlAcTbCIiw0x8U1fRBBswrqZnz5495g9IV0aGTIAOHgTu3Mn/euXKsu9smzbA//2ffPy3PySRUby8gGHD5ALIEcuXLJG13CdPyt/fihVyeecd+Xvr2lUuTZvK0c+tkRCytnr2bPn8q6+Ali0VDYlMSKWSAzOWYk2bNsWSJUtw584dg7XYTk5OyMnJKfQYDRs2xIoVK/DgwQNNQn/w4EHY2dmhXr16JomzevXqeOqpp7Bq1So8fPgQXbp00dSMe3t7w8/PD5cuXcLAgQOLdLyGDRti/fr1eon2oUOHUL58efj5+cHLywuurq7YtWsXRo4c+cTjOTk5AYDB72rkyJGYM2cOrl+/ji5dupTakewVwxpsIqLCmTjBttKrcivh5gb8+adMblxc5GBU770H/PyzHAX61i1g61Y52nfnzkyuyXSqVQM++gjYs0f+zn7/HfjwQ9lC4uFDIDoamDABaNFCdkHo108m3tu3A3lG5FWMEDIm9TRQL7wAvPWWsjERGal///7w8fFB7969cfDgQVy6dAnr16/H4cOHAQA1a9ZEQkIC4uLikJKSkm9EbEA233ZxccHQoUNx6tQp7N69G2+88QYGDx78xEE9jTFw4ECsXbsWP/30EwYNGqT32tSpUzFr1izMnTsX58+fx8mTJ7F8+XLMVt/8ymPMmDG4evUq3njjDZw9exa//PILpkyZgvHjx8POzg4uLi54//33MWHCBKxcuRIXL17EkSNHsHTpUoPHCwgIgEqlwm+//YZbt27pjaA+cOBAXL9+HYsXL8bw4cNN9n3Qv5hgExFZFBPsJ1m4UDbTTU2V/WU//xzo00eOfsw+YmQJdnZAp07AjBlyequ//pK1wj17ytrDW7eAn36StcTPPCNbVjz3HDBvnrwBpMTUdImJMqGeM0c+//xzYP16y8dBVEJOTk7YsWMHqlatih49eqBJkyb49NNPNU2r+/Tpg2eeeQadOnWCl5eX3ujvam5ubti+fTvu3LmDVq1a4cUXX0Tnzp3xzTffmDTWvn374vbt28jIyEDv3r31Xhs5ciSWLFmCqKgoNGnSBB07dkRUVBQCAwMNHsvPzw9bt27FsWPH0KxZM4wePRojRozAhx9+qNln8uTJeOedd/DRRx8hKCgI4eHhSE5OLvB406ZNw8SJE+Ht7Y3XX39d85qHhwf69OmDcuXK5YubTIAJNhFR4Uyc06mEKFslblpaGjw9PZGamlqq53ylMiIrCzhyRN4EOnUK2LEDyDP1HQCgdm3g6afldG9+frLWOyQEMNXfgBAygV69Wta2p6ZqX5s7F3jzTdOcx0RYDhhW2Pfy6NEjJCQkIDAwEC4uLgpFSKVV165dERQUhK+//rrQ/fg7LIb//hfYuFFWGPw7iGxhWD4axu+FqBRSJ9b79gEdOjxx96KWA4r3wSaiEnBykl0XnnpKPs/Nld0a/vc/OXZAfLzsznDxolzyathQHqNSJSA4WD7v1EkORubrK+dsd3KSNeXu7jKhr1QJuHZNjlGQkwNs2wZ88ol+Ug3IZH7KFKB/f/N/D0Rkk+7cuYMdO3bg999/N3mNPv2LNdhERBbFBJuoNLGzk/2yW7TQbktLk1OB7dkDXL8um4wfPy6nmjtzRrvf77+X/PwBAUBEhBwc0NJT5xGVUvv370f37t0LfD1diZHcTaRly5a4e/cuPvvsM9SvX1/pcEonJthERIUrbaOIE5GZeXjI/to9e2q3CSGT7n/+kdPN3bgB/P23TLxPnSr6sR0dgY4d5ZzukyfLWmsiMqmQkBDExcUpHYZZFGWOdzIRJthERPo8PGRFVLNmJj0sE2yiskil0jYrzystDXB2Bs6fB+rUkSPoA3I0fScn+Vi5snZ6Jg72R2RWrq6uBufwJiqSL7+UN0D9/JSOhIjIuty8Kbs/li9v0sMywSYifepBG5o00d9eubJ8NHEhREREZlSzptIREBFZJxcXbUWSCXGaLiIiKrIyNvEEWRn+/oiIyNoxwSYioidydHQEAGRkZCgcCZVlWVlZAKCZh5yIiMjasIk4ERE9kb29PSpUqIDk5GQAgJubG1Tsf08WlJubi1u3bsHNzQ0ODrx8ISIi68T/oYiIqEh8fHwAQJNkE1manZ0datSowZs7RERktZhgExFRkahUKvj6+qJq1ap4/Pix0uFQGeTk5AQ7O/ZuIyIi68UEm4iIjGJvb88+sEREREQG8DYwERERERERkQkwwSYiIiIiIiIyASbYRERERERERCZQ5vpgCyEAAGlpaQpHQkRKUf/9q8sDklg+EhHLR8NYPhJRUcvHMpdg379/HwDg7++vcCREpLT79+/D09NT6TCsBstHIlJj+aiP5SMRqT2pfFSJMnaLMjc3Fzdu3ED58uWLNI9mWloa/P39cfXqVXh4eFggQtNh7Mpg7MowJnYhBO7fv49q1apxyh8dLB9tA2O3PFuNGzA+dpaPhrF8tH62GjfA2JVirvKxzNVg29nZoXr16ka/z8PDw+Z+NGqMXRmMXRlFjZ01M/mxfLQtjN3ybDVuwLjYWT7mx/LRdthq3ABjV4qpy0femiQiIiIiIiIyASbYRERERERERCbABPsJnJ2dMWXKFDg7OysditEYuzIYuzJsOXZbZcvfOWNXhq3GbqtxA7Yduy2z5e/dVmO31bgBxq4Uc8Ve5gY5IyIiIiIiIjIH1mATERERERERmQATbCIiIiIiIiITYIJNREREREREZAJMsAEsWLAAgYGBcHFxQXBwMPbv31/o/nv37kVwcDBcXFxQq1YtfPvttxaKND9jYt+wYQO6du0KLy8veHh4IDQ0FNu3b7dgtPqM/d7VDh48CAcHBzRv3ty8ARbC2NgzMzMxadIkBAQEwNnZGbVr18ayZcssFK0+Y2NftWoVmjVrBjc3N/j6+uLll1/G7du3LRSttG/fPjz77LOoVq0aVCoVNm3a9MT3WNPfqS1j+Wh5LBtZNhqD5aMyWDYqg+Ujy0djKFY+ijJu7dq1wtHRUSxevFicOXNGvPXWW8Ld3V38888/Bve/dOmScHNzE2+99ZY4c+aMWLx4sXB0dBQ///yzhSM3Pva33npLfPbZZ+LYsWPi/PnzIiIiQjg6OooTJ05YOHLjY1e7d++eqFWrlggLCxPNmjWzTLB5FCf25557TrRp00ZER0eLhIQEcfToUXHw4EELRi0ZG/v+/fuFnZ2dmDt3rrh06ZLYv3+/aNSokejdu7dF4966dauYNGmSWL9+vQAgNm7cWOj+1vR3astYPlq+fGTZyLLRWCwfLY9lI68djcXysWyVj2U+wW7durUYPXq03rYGDRqIiRMnGtx/woQJokGDBnrbXn31VdG2bVuzxVgQY2M3pGHDhmLatGmmDu2Jiht7eHi4+PDDD8WUKVMUKySNjf1///uf8PT0FLdv37ZEeIUyNvYvvvhC1KpVS2/b119/LapXr262GJ+kKAWkNf2d2jKWj5YvH1k2KqM0lI1CsHy0FJaNvHY0FsvHslU+lukm4llZWYiJiUFYWJje9rCwMBw6dMjgew4fPpxv/27duuH48eN4/Pix2WLNqzix55Wbm4v79++jUqVK5gixQMWNffny5bh48SKmTJli7hALVJzYN2/ejJCQEHz++efw8/NDvXr18O677+Lhw4eWCFmjOLG3a9cO165dw9atWyGEwM2bN/Hzzz+jZ8+elgi52Kzl79SWsXy0fPnIspFloyVYy9+prWLZyGtHY7F8LHvlo4OpA7MlKSkpyMnJgbe3t952b29vJCUlGXxPUlKSwf2zs7ORkpICX19fs8Wrqzix5/XVV1/hwYMH6NevnzlCLFBxYr9w4QImTpyI/fv3w8FBuZ9tcWK/dOkSDhw4ABcXF2zcuBEpKSkYM2YM7ty5Y9G+NMWJvV27dli1ahXCw8Px6NEjZGdn47nnnsO8efMsEXKxWcvfqS1j+Wj58pFlI8tGS7CWv1NbxbKR147GYvlY9srHMl2DraZSqfSeCyHybXvS/oa2W4KxsautWbMGU6dOxbp161C1alVzhVeoosaek5ODAQMGYNq0aahXr56lwiuUMd97bm4uVCoVVq1ahdatW6NHjx6YPXs2oqKiLH4nEjAu9jNnzuDNN9/ERx99hJiYGGzbtg0JCQkYPXq0JUItEWv6O7VlLB8tXz6ybGTZaG7W9Hdqq1g28trRWCwfy075WKZrsKtUqQJ7e/t8d2CSk5Pz3b1Q8/HxMbi/g4MDKleubLZY8ypO7Grr1q3DiBEj8NNPP6FLly7mDNMgY2O/f/8+jh8/jtjYWLz++usAZMEjhICDgwN27NiB//znP1YZOwD4+vrCz88Pnp6emm1BQUEQQuDatWuoW7euWWNWK07ss2bNQvv27fHee+8BAJo2bQp3d3d06NABM2fOtNqaDmv5O7VlLB8tXz6ybGTZaAnW8ndqq1g28trR3LEDLB+VYqq/1TJdg+3k5ITg4GBER0frbY+Ojka7du0Mvic0NDTf/jt27EBISAgcHR3NFmtexYkdkHcfhw0bhtWrVyvWF8LY2D08PHDy5EnExcVpltGjR6N+/fqIi4tDmzZtLBV6sb739u3b48aNG0hPT9dsO3/+POzs7FC9enWzxqurOLFnZGTAzk6/mLC3twegvaNnjazl79SWsXy0fPnIspFloyVYy9+prWLZyGtHY7F8LIPlo1FDopVC6qHnly5dKs6cOSPGjRsn3N3dxeXLl4UQQkycOFEMHjxYs796+Pa3335bnDlzRixdulTxqRaKGvvq1auFg4ODmD9/vkhMTNQs9+7ds/rY81JyJEhjY79//76oXr26ePHFF8Xp06fF3r17Rd26dcXIkSOtPvbly5cLBwcHsWDBAnHx4kVx4MABERISIlq3bm3RuO/fvy9iY2NFbGysACBmz54tYmNjNVNEWPPfqS1j+Wj58pFlI8tGY7F8tDyWjbx2NBbLx7JVPpb5BFsIIebPny8CAgKEk5OTaNmypdi7d6/mtaFDh4qOHTvq7b9nzx7RokUL4eTkJGrWrCkWLlxo4Yi1jIm9Y8eOAkC+ZejQoZYPXBj/vetSspAUwvjY4+PjRZcuXYSrq6uoXr26GD9+vMjIyLBw1JKxsX/99deiYcOGwtXVVfj6+oqBAweKa9euWTTm3bt3F/rbtfa/U1vG8nGoVcedF8vG4rPFslEIlo9KYdk41PKBC5aPLB+No1T5qBLCyuvqiYiIiIiIiGxAme6DTURERERERGQqTLCJiIiIiIiITIAJNhEREREREZEJMMEmIiIiIiIiMgEm2EREREREREQmwASbiIiIiIiIyASYYBMRERERERGZABNsIiIiIiIiIhNggm3lhBB45ZVXUKlSJahUKsTFxeHpp5/GuHHjCn1fzZo1ERkZaZEYSZ9KpcKmTZsAAJcvX9b8u5XU4MGD8cknnxj1nqioKFSoUKHE5zanYcOGoXfv3kXaNzk5GV5eXrh+/bp5gyKrxTLR9lhTmfgke/bsgUqlwr1790x6XFMoyu9c7eTJk6hevToePHhg3qCo1GEZa3tsqYw1lu5ns6lrQEHFkpiYKF5//XURGBgonJycRPXq1UWvXr3Ezp07TXqerVu3CkdHR3Hw4EGRmJgoHj9+LG7fvi3S0tIKfV9AQICYM2eOSWMhfVOmTBHNmjXLtz0xMVE8evRICCFEQkKCACBiY2NLdK4///xTVKxY0eC/+6pVq4SdnZ149dVX8722fPly4enpWaJzm/uY9+7dE3fv3i3y/m+//bYYMWKEyc5PpsEykZQuEzt27CgA5FsMlY0FyczMFImJiSI3N/eJ++7evVsAMKr8Komi/M51vfDCC2LGjBlmjIgsiWUsKVXGqo9Z2DJlypQCj1WSmACIjRs3ap7byjWgg4Xz+VLh8uXLaN++PSpUqIDPP/8cTZs2xePHj7F9+3aMHTsWZ8+eNdm5Ll68CF9fX7Rr106zrVKlSiY7fmmUlZUFJycnxc7v4+Nj8mN+88036Nu3L8qXL5/vtWXLlmHChAlYuHAhZs+eDTc3N5Of3xxycnKgUqng6elp1PtefvlltG7dGl988QUqVqxopujIGCwTrVtZKhNHjRqF6dOn620zpkx0cnIyS7ymYOzv/OWXX8bo0aMREREBe3t7M0VFlsAy1rqV9jLWzc0NiYmJmte+/PJLbNu2DTt37tRsK1eunMljMMRmrgGVzvBtUffu3YWfn59IT0/P95runex//vlHPPfcc8Ld3V2UL19e9O3bVyQlJWleV9+JWrlypQgICBAeHh4iPDxcc5dw6NCheneHAgIChBDyLv1bb72lOc7NmzdFr169hIuLi6hZs6b44Ycf8t1JvHfvnhg1apTw8vIS5cuXF506dRJxcXFFjkUIIXJycsSnn34qateuLZycnIS/v7+YOXOm5vVr166Jfv36iQoVKohKlSqJ5557TiQkJBT4Parv/v/222+iadOmwtnZWbRu3Vr89ddfevsdPHhQdOjQQbi4uIjq1auLN954Q++7DwgIEDNmzBBDhw4VHh4eYsiQIUIIIQ4cOCCeeuop4erqKipUqCDCwsLEnTt3hBBC5Obmis8++0wEBgYKFxcX0bRpU/HTTz/li23nzp0iODhYuLq6itDQUHH27FkhhKzFRZ67d8uXLxdC6N9tM3TX7vTp06J79+7C3d1dVK1aVQwaNEjcunWrwO8pJydHVKhQQfz222/5XktISBCurq7i3r17ok2bNmLFihV6rxuqbd68ebNo2bKlcHZ2FoGBgWLq1Kni8ePHmte/+uor0bhxY+Hm5iaqV68uXnvtNXH//n297wUG7lreuXNHDB48WFSoUEG4urqKZ555Rpw/fz5fLL/++qsICgoS9vb24tKlS2Lo0KHi+eef1/u8hf3OhBCiZs2aYunSpQV+Z2RZLBNZJlpDmZj3d5CX+txr1qwRoaGhwtnZWTRs2FDs3r073+dU/24vX74sevXqJSpUqCDc3NxEw4YNxZYtWwzW6AwdOtSo73Lbtm2iefPmwsXFRXTq1EncvHlTbN26VTRo0ECUL19evPTSS+LBgwcFfr5Hjx6J9957T1SvXl04OTmJOnXqiCVLlmhez8zMFM7OzmLXrl0FfidkG1jGsoy1hjJWLW9Nek5Ojpg2bZrw8/MTTk5OolmzZuJ///uf5vW8cXfs2FEIIcSxY8dEly5dROXKlYWHh4d46qmnRExMjN65dD+bmi1cAzLBNtLt27eFSqUSn3zySaH75ebmihYtWoj/+7//E8ePHxdHjhwRLVu21PyohJA/0HLlyon//ve/4uTJk2Lfvn3Cx8dHfPDBB0IIWThNnz5dVK9eXSQmJork5GQhRP6Crnv37qJx48bi0KFD4vjx46Jdu3bC1dVVU9Dl5uaK9u3bi2effVb88ccf4vz58+Kdd94RlStXFrdv3y5SLEIIMWHCBFGxYkURFRUl/v77b7F//36xePFiIYQQDx48EHXr1hXDhw8Xf/31lzhz5owYMGCAqF+/vsjMzDT4HakLk6CgILFjxw7x119/iV69eomaNWuKrKwsIYQQf/31lyhXrpyYM2eOOH/+vDh48KBo0aKFGDZsmOY46oL5iy++EBcuXBAXLlwQsbGxwtnZWbz22msiLi5OnDp1SsybN09ToHzwwQeiQYMGYtu2beLixYti+fLlwtnZWezZs0cvtjZt2og9e/aI06dPiw4dOoh27doJIYTIyMgQ77zzjmjUqJFITEwUiYmJIiMjQwhReEF348YNUaVKFRERESHi4+PFiRMnRNeuXUWnTp0K/C3FxsYKAHr/SapNnjxZvPjii0IIIebNmyeeeuopvdfzJtjbtm0THh4eIioqSly8eFHs2LFD1KxZU0ydOlWzz5w5c8Tvv/8uLl26JHbt2iXq168vXnvtNSGEvGCLjIwUHh4ems+tTr6fe+45ERQUJPbt2yfi4uJEt27dRJ06dTT/lsuXLxeOjo6iXbt24uDBg+Ls2bMiPT09X4Jd2O9MrV+/fnq/AVIOy0SWiUJYR5lY1AS7evXq4ueffxZnzpwRI0eOFOXLlxcpKSl6n1OdtPTs2VN07dpV/PXXX+LixYvi119/FXv37hXZ2dli/fr1AoA4d+6cSExMFPfu3TPqu2zbtq04cOCAOHHihKhTp47o2LGjCAsLEydOnBD79u0TlStXFp9++mmBn69fv37C399fbNiwQVy8eFHs3LlTrF27Vu8zt27dWq98J9vDMpZlrBDWUcbq/o50E+zZs2cLDw8PsWbNGnH27FkxYcIE4ejoqKlkOXbsmObmQWJiouY3sGvXLvH999+LM2fOiDNnzogRI0YIb29vvZsshhJsW7gGZIJtpKNHjwoAYsOGDYXut2PHDmFvby+uXLmi2Xb69GkBQBw7dkwIIX+gbm5uej+k9957T7Rp00bzfM6cOZo7iGq6Bd25c+cEAHHkyBHN6/Hx8QKApqDbtWuX8PDw0PTPUKtdu7b47rvvihRLWlqacHZ2zpfoqC1dulTUr19fr99aZmamcHV1Fdu3bzf4HnVhontBcPv2beHq6irWrVsnhBBi8ODB4pVXXtF73/79+4WdnZ14+PChEEIWdL1799bbp3///qJ9+/YGz5ueni5cXFzEoUOH9LaPGDFC9O/fXy823b5NW7ZsEQA05y2oL0xhBd3kyZNFWFiY3v5Xr17VXKQZsnHjRmFvb5+vT2BOTo7w9/cXmzZtEkIIcevWLeHo6CguXLig2Sdvgt2hQ4d8/0l///33wtfX1+C5hRDixx9/FJUrVy7wmEIIcf78eQFAHDx4ULMtJSVFuLq6ih9//FHzPgB6d7CFEHoJ9pN+Z2pvv/22ePrppwvdhyyDZSLLRGspEzt27CgcHR2Fu7u73hIVFaV3bt2k9fHjx6J69eris88+0/uc6gS7SZMmBSaohvpgF/e7nDVrlgAgLl68qNn26quvim7duul9vry/8+joaIOxqb3wwgtWfyFKhWMZyzLWWspYtbxxVKtWTXz88cd6+7Rq1UqMGTPGYEwFyc7OFuXLlxe//vqrwc+mZgvXgOyDbSQhBAA5ql1h4uPj4e/vD39/f822hg0bokKFCoiPj0erVq0AyFEXdfuQ+fr6Ijk5ucjxxMfHw8HBASEhIZptDRo00Bs5OiYmBunp6ahcubLeex8+fIiLFy9qnhcWS3x8PDIzM9G5c2eDccTExODvv//O1x/u0aNHeucwJDQ0VLNeqVIl1K9fH/Hx8XrHXbVqlWYfIQRyc3ORkJCAoKAgAND7/AAQFxeHvn37GjzfmTNn8OjRI3Tt2lVve1ZWFlq0aKG3rWnTppp1X19fAHIUwxo1ahT6mQoSExOD3bt3G+yrcvHiRdSrVy/f9ocPH8LZ2Tnfb27Hjh148OABunfvDgCoUqUKwsLCsGzZsgJHfYyJicEff/yBjz/+WLMtJycHjx49QkZGBtzc3LB792588sknOHPmDNLS0pCdnY1Hjx7hwYMHcHd3N3hc9e+wTZs2mm2VK1fW+7cEZP9G3e/U0HEK+52pubq6IiMjo9B9yDJYJrJMtJYyEQAGDhyISZMm6W2rWrWq3nPd71f9W9Etp3S9+eabeO2117Bjxw506dIFffr0KbQMK+536e3tDTc3N9SqVUtv27FjxwyeJy4uDvb29ujYsWOBsQAsK0sDlrEsY62pjM0rLS0NN27cQPv27fW2t2/fHn/++Weh701OTsZHH32E33//HTdv3kROTg4yMjJw5cqVQt9nC+UaE2wj1a1bFyqVCvHx8YVOLSSEMPjDzLvd0dFR73WVSoXc3Nwix1OUgjc3Nxe+vr7Ys2dPvtd0C8TCYnF1dS00jtzcXAQHB+sVSGpeXl6FvtcQ9efJzc3Fq6++ijfffDPfPrqFTd7Er7B41Z9py5Yt8PPz03vN2dlZ77nud6IbU3Hl5ubi2WefxWeffZbvNXVBmleVKlWQkZGRbxCNZcuW4c6dO3oD+OTm5iI2NhYzZswwOKhNbm4upk2bhv/+97/5XnNxccE///yDHj16YPTo0ZgxYwYqVaqEAwcOYMSIEXj8+HGBn0v9OzS0Xfe36erqWuhv9Um/M7U7d+4U63dFpscyseBzsEx8MlOWiQDg6emJOnXqGB1HQb+XkSNHolu3btiyZQt27NiBWbNm4auvvsIbb7xhcP+SfJfG/PaNKStr165dpH3JOrGMLfgcLGOfzNRlbEHy/h4K+j3qGjZsGG7duoXIyEgEBATA2dkZoaGhyMrKKvR9tnANyHmwjVSpUiV069YN8+fPNzi/pHruzIYNG+LKlSu4evWq5rUzZ84gNTVVc/fLFIKCgpCdnY3jx49rtp07d05vDs+WLVsiKSkJDg4OqFOnjt5SpUqVIp2nbt26cHV1xa5duwy+3rJlS1y4cAFVq1bNd44njRJ95MgRzfrdu3dx/vx5NGjQQHPc06dP5ztmnTp1Cv2jb9q0aYGxNmzYEM7Ozrhy5Uq+Y+re+X0SJycn5OTkFHl/3c9Ts2bNfOcuqHa4efPmAOTvR+327dv45ZdfsHbtWsTFxekt6enp+N///lfg+c+dO2fw+7Szs8Px48eRnZ2Nr776Cm3btkW9evVw48aNJ37uhg0bIjs7G0ePHtWL8fz580b93p/0O1M7depUvru+pAyWiSwT1ZQsE42h+/1mZ2cjJiZG8/0a4u/vj9GjR2PDhg145513sHjxYgDQfN+6n9lU3+WTNGnSBLm5udi7d2+h+7GstH0sY1nGqlljGevh4YFq1arhwIEDetsPHTqk+d0ZKisBYP/+/XjzzTfRo0cPNGrUCM7OzkhJSXniOW2hXGOCXQwLFixATk4OWrdujfXr1+PChQuIj4/H119/rWl20qVLFzRt2hQDBw7EiRMncOzYMQwZMgQdO3bM16ykJOrXr49nnnkGo0aNwtGjRxETE4ORI0fq3Unr0qULQkND0bt3b2zfvh2XL1/GoUOH8OGHH+oVkIVxcXHB+++/jwkTJmDlypW4ePEijhw5gqVLlwKQzfKqVKmC559/Hvv370dCQgL27t2Lt956C9euXSv02NOnT8euXbtw6tQpDBs2DFWqVNHcpX3//fdx+PBhjB07FnFxcbhw4QI2b95cYO2BWkREBP744w+MGTMGf/31F86ePYuFCxciJSUF5cuXx7vvvou3334bK1aswMWLFxEbG4v58+djxYoVRfo+ANm0KSEhAXFxcUhJSUFmZuYT3zN27FjcuXMH/fv3x7Fjx3Dp0iXs2LEDw4cPL7DQ9PLyQsuWLfUKr++//x6VK1dG37590bhxY83StGlT9OrVS/PvktdHH32ElStXYurUqTh9+jTi4+Oxbt06fPjhhwCA2rVrIzs7G/PmzcOlS5fw/fff49tvv833udPT07Fr1y6kpKQgIyMDdevWxfPPP49Ro0bhwIED+PPPPzFo0CD4+fnh+eefL+pX+sTfGQBkZGQgJiYGYWFhRT4umRfLRJaJgLJlolpGRgaSkpL0lrt37+rtM3/+fGzcuBFnz57F2LFjcffuXQwfPtzgucaNG4ft27cjISEBJ06cwO+//665aAwICIBKpcJvv/2GW7duIT093WTf5ZPUrFkTQ4cOxfDhw7Fp0yYkJCRgz549+PHHHzX7XL58GdevX0eXLl1Mdl5SBstYlrGAdZSxhrz33nv47LPPsG7dOpw7dw4TJ05EXFwc3nrrLQCym46rqyu2bduGmzdvIjU1FQBQp04dfP/994iPj8fRo0cxcODAJ7ZcsJlrQEt3+i4tbty4IcaOHSsCAgKEk5OT8PPzE88995zedB9FnS5BV97BJZ402IQQcoL5nj17CmdnZ1GjRg3NlAe60yWkpaWJN954Q1SrVk04OjoKf39/MXDgQM1gGEWJJScnR8ycOVMEBAQIR0dHUaNGDb0BsxITE8WQIUNElSpVhLOzs6hVq5YYNWqUSE1NNfgdqgd0+PXXX0WjRo2Ek5OTaNWqVb5BsI4dOya6du0qypUrJ9zd3UXTpk31BlPI+1nV9uzZI9q1ayecnZ1FhQoVRLdu3TSD0eTm5oq5c+eK+vXrC0dHR+Hl5SW6desm9u7dqxeb7uA16lEV1VNAPHr0SPTp00dUqFDBqOkSzp8/L1544QXNdFYNGjQQ48aNK3AwCSGE+Pbbb0Xbtm01z5s0aaIZPCKv9evXCwcHB5GUlGRwQLJt27ZpRvz08PAQrVu3FosWLdK8Pnv2bOHr6ytcXV1Ft27dxMqVK/N9F6NHjxaVK1c2OE2Xp6en5r2GpunKy9A0XYX9zlavXi3q169f4HdFymCZyDJRyTJRCPk7QJ7pYABoBgpTn3v16tWiTZs2wsnJSQQFBelNY5X3c77++uuidu3awtnZWXh5eYnBgwdrRhwXQojp06cLHx8foVKp9KbpMva7NFQ+5v0N5v2dP3z4ULz99tvC19dXM03XsmXLNK9/8skneoOkkW1jGcsyVukyVq2wabocHR3zTdMlhBCLFy8W/v7+ws7OTjOy/YkTJ0RISIhwdnYWdevWFT/99FO+71b3swlhO9eAKiEK6DxJZGZ79uxBp06dcPfuXb0+OZTfo0ePUL9+faxdu1ZvcI6yqHXr1hg3bhwGDBigdChEJsUyseiKUyZevnwZgYGBiI2N1TSBLK0yMzNRt25drFmzJt/gQ0RlFcvYorPW605buQZkE3EiG+Di4oKVK1cWqW9KaZacnIwXX3wR/fv3VzoUIlIQy8TC/fPPP5g0aRKTayIqFmssY23pGpCjiBPZiCdNx1IWVK1aFRMmTFA6DCKyAiwTC1avXj2D0+8QERWVtZWxtnQNyCbiRERERERERCbAJuJEREREREREJsAEm4iIiIiIiMgEmGATERERERERmQATbCIiIiIiIiITYIJNREREREREZAJMsImIiIiIiIhMgAk2ERERERERkQkwwSYiIiIiIiIyASbYRERERERERCbw/8c8yZFnUENDAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/scipy/stats/_distn_infrastructure.py:2168: RuntimeWarning: divide by zero encountered in divide\n", - " x = np.asarray((x - loc)/scale, dtype=dtyp)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQmElEQVR4nOzdd1QU198G8GfpqIASRcGKvRAVwYK9xILGxK7RiGBXwEJs2LFhFys2itijApqfxmgiRewiiC1W7Nii0lTqvH/kdeO4gMsKzC48n3P2JPudubsP63LZuzNzr0wQBAFERERERERElOe0pA5AREREREREVFhx0E1ERERERESUTzjoJiIiIiIiIsonHHQTERERERER5RMOuomIiIiIiIjyCQfdRERERERERPmEg24iIiIiIiKifMJBNxEREREREVE+4aCbiIiIiIiIKJ9w0E1ERERERESUTzjo/grh4eHo3r07LCwsIJPJEBwcXKiej4joU+zziKioYH9HRHmJg+6vkJycjAYNGmDdunWF8vmIiD7FPo+Iigr2d0SUl3SkDqDJ7O3tYW9vn+321NRUzJw5Ezt37sTbt29hZWWFJUuWoG3btvnyfERE+Yl9HhEVFezviCgvcdCdj5ycnHD//n3s2bMHFhYWCAoKQpcuXXDlyhXUqFFD6nhERHmKfR4RFRXs74goN3h6eT65e/cudu/ejX379qFVq1aoVq0aJk2ahJYtW8LPz0/qeEREeYp9HhEVFezviCi3OOjOJ5cuXYIgCKhZsyZKlCghv4WFheHu3bsAgPv370Mmk+V4c3FxkfgnISL6MvZ5RFRUsL8jotzi6eX5JDMzE9ra2oiMjIS2trZoW4kSJQAA5cuXx40bN3J8nFKlSuVbRiKivMI+j4iKCvZ3RJRbHHTnE2tra2RkZODFixdo1apVlvvo6uqidu3aBZyMiCjvsc8joqKC/R0R5RYH3V8hKSkJd+7ckd+PjY1FdHQ0TE1NUbNmTQwaNAgODg5YsWIFrK2t8erVK5w4cQLffvstunbtmqfPV6lSpTz5mYiIssM+j4iKCvZ3RJSnBFJZSEiIAEDhNmTIEEEQBCE1NVWYPXu2UKVKFUFXV1coV66c0LNnTyEmJiZfno+IKD+xzyOiooL9HRHlJZkgCEJBDO6JiIiIiIiIihrOXk5ERERERESUTzjoJiIiIiIiIsonnEhNBZmZmXj69CmMjIwgk8mkjkNEak4QBCQmJsLCwgJaWpr1XSf7OyLKLU3t89jfEVFuKdvfcdCtgqdPn6JixYpSxyDSONra2jh8+DA6d+4sqvv6+mLYsGESpSo4jx49QoUKFaSOkSvs74hIVZrW57G/IyJVfam/46BbBUZGRv//f1oA+E0okbIWLVqsMOA+e/Ycxo51BaANAHgd763SY5uajPnaePlIAJD5Sd+hOdjfESnnta+hSu1Mh77P4yTqQDP7PPZ3pImaN2+O06dPAwAO2nyf6/Y/Rv4vryMVMcr1dxx0q+C/U45kYKdMpJz+/fthypRJolpcXBx69+6HlJRUfPxdMjYupuIzqP/voiaersj+jkg5xsVU/f0ovL9Xmtbnsb8jTTN8+DBs2bIR/v4BmDDBDcV1dFV4FL7X88KX+jvNudCGiDRaTMwV3Lp1S34/NTUVvXv3x9OnTyVMRURE6sjT0xONGzeGkZERzMzM0KNHD9y8efOL7Xbu3IkGDRqgWLFiMDc3h5OTE/75558CSExUsCpXroyVK5cBABwdHXDlShRK2VhJnIqyw0E3ERWIGzduoEmT5jh8+AgAwNl5HM6cOSNxKiIiUkdhYWFwdnbG2bNncfz4caSnp6NTp05ITk7Otk1ERAQcHBwwbNgwXLt2Dfv27cOFCxcwfPjwAkxOlP9kMhl8fDaLTmmuWLEiZLo8iVld8V+GiApMfHw8fvihJ77/vhsOHfpN6jhERKSmjh49Krrv5+cHMzMzREZGonXr1lm2OXv2LKpUqYJx48YBACwtLTFq1CgsXbo03/MSFaQxY0ajQ4f2otqWLT6oejZamkD0RTzSTUQFKjMzkwNuIiLKlfj4eACAqalptvs0b94cjx8/xpEjRyAIAp4/f479+/ejW7duBRWTKN9VrVoVS5d6imoPHjzAL79MligRKYODbiIiIiJSW4IgwM3NDS1btoSVVfbXrDZv3hw7d+5E//79oaenh3LlyqFkyZJYu3ZtlvunpKQgISFBdCNSZzKZDH5+W1G8eHFRfdiwkUhMTJQoFSmDg24iynO2trZYtmwJtLW1pY5SaKgyqVBoaChkMpnC7e+//y6g1EREX8/FxQUxMTHYvXt3jvtdv34d48aNw+zZsxEZGYmjR48iNjYWo0ePznJ/T09PmJiYyG9co5vU3bhxrmjdupWotmHDRvz11wmJEpGyZIIgCFKH0DQJCQkwMTHBv+sKc5p9ok/9e83dOVSoUAF//XUC/fsPzNXMsemCv0rPqyNzVKldwRAAZCA+Ph7GxsYqPUKXLl0wYMAANG7cGOnp6ZgxYwauXLmC69evK3zj/VFoaCjatWuHmzdvip63TJkySn8hwv6OSDnpe1Rbp1tnQGFdp/vr+ryPXF1dERwcjPDwcFhaWua47+DBg/Hhwwfs27dPXouIiECrVq3w9OlTmJubi/ZPSUlBSkqK/H5CQsL/D7zZ35H6qVmzJqKjL8LQ8L++5t69e6hfv5F8gsE/m/bI9eN+dy44jxIWVcr1d5xIjYjyjK6uLvbv34sKFSoAADp0aI+LF8+iTZsOePjwocTpNJsqkwp9ZGZmhpIlS+ZjOiKivCUIAlxdXREUFITQ0NAvDrgB4N27d9DREX+0/fgFY1bHmPT19aGvr583gYnykZaWFvz9fUQDbgBwchqe44z+pD54ejkR5Rkvr5Vo1aqlqBYbe59rcecDZSYV+sja2hrm5ubo0KEDQkJCctyX1zgSkTpwdnbGjh07sGvXLhgZGeHZs2d49uwZ3r//78wAd3d3ODg4yO93794dgYGB8Pb2xr1793Dq1CmMGzcOTZo0gYWFhRQ/BlGe+OWXibCzayaqeXmtQXj4SYkSUW5x0E1EeWL48GEYO1Z83dyDBw/Qr99PSE9PlyhV4aTspELm5ubYvHkzDhw4gMDAQNSqVQsdOnRAeHh4tm14jSMRqQNvb2/Ex8ejbdu2MDc3l9/27t0r3ycuLk50FpWjoyNWrlyJdevWwcrKCn379kWtWrUQGBgoxY9AlCfq1KmD+fM9RLVbt25h+vSZEiUiVfCabhXwGkciMTs7O4SG/gk9PT157d27d2jRog2io6OlC6Y28u76RuDfI0CHDx9GRESE/FR+ZXXv3h0ymQyHDh3KcrumXuP4IdIm121Szevmuo3W+9e5bgMAJaodznUbVec3SLu6NddttP9R8WwUndxfpSZLUm2GXVlqypd3+ozOD6r9exWkpAe9ct2mRGV1H0TmbZ9XUPj5jtSNtrY2zpyJQOPGtvJaZmYmWrZsizNnzkiYjP6jXH/HI91E9FXMzc1x4MBe0YAbAIYPH8UBdz5wdXXFoUOHEBISkusBNwA0a9YMt2/fzna7vr4+jI2NRTciIiIqeBUrVoSpaSlRbcWKVRxwayAOuolIZXp6eggM3KcwI+yyZSuwe/ceiVIVToIgwMXFBYGBgThx4oRSkwplJSoqSuHfi4iIiNTP/fv3Ub9+I6xbtwEAcOPGDcyaNUfiVKQKzl5ORCrbsGEdmjVrKqodO3Yc7u4zJEpUeDk7O2PXrl04ePCgfFIhADAxMZHPZuru7o4nT54gICAAAODl5YUqVaqgXr16SE1NxY4dO3DgwAEcOHBAsp+DiIiIlPfu3Tu4uo5HYGAQEhISRZeAkebgoJuIVDJmzGgMG+Ykqt29excDBgxCRkaGRKkKL29vbwBA27ZtRXU/Pz84OjoCUJxUKDU1FZMmTcKTJ09gaGiIevXq4fDhw+jatWtBxSYiIqI8EBISKnUE+gocdBNRrrVq1RKrV68U1ZKTk9GjRx+8efNGolSFmzJzXvr7+4vuT5kyBVOmTMmnRERERESkDF7TTUS5UqFCBezfvxe6urqi+pAhQ3H16lWJUhERERFpNh0dHchknDm/MOKgm4hypXTp0khLSxPVFi70xIED6r6EDREREZH6mjdvLk6cOK7yZKmkvjR60O3p6YnGjRvDyMgIZmZm6NGjB27evPnFdikpKZgxYwYqV64MfX19VKtWDb6+vgWQmEjzRUdHw9a2GU6f/ne5isOHj2D27LnShiIiIiLSYE2aNMGUKZPQtm0bxMRcwqhRI6WORHlIowfdYWFhcHZ2xtmzZ3H8+HGkp6ejU6dOSE5OzrFdv3798Ndff8HHxwc3b97E7t27Ubt27QJKTaT5nj17hnbtvsO8eQswaJADMjMzpY5EREREpJEMDAzg778V2traAIASJUpgzZpVqF69usTJKK9o9ERqR48eFd338/ODmZkZIiMj0bp162zbhIWF4d69ezA1NQUAVKlSJb+jEhU6qampmDPHQ+oYRERERBpt/nwP1KlTR1Tz8JiPO3fuSJSI8ppGH+n+XHx8PADIB9NZOXToEGxtbbF06VKUL18eNWvWxKRJk/D+/fuCiklERERERITmzZvDzW2CqHbhwkUsWbJMmkCULzT6SPenBEGAm5sbWrZsCSsrq2z3u3fvHiIiImBgYICgoCC8evUKY8eOxevXr7O9rjslJUW0EH1CQkKe5ydSR8WKFcPPPw/C5s1bpI5CREREVKgUK1YM/v5boaX133HQlJQUDBkyFBkZGRImo7xWaAbdLi4uiImJQURERI77ZWZmQiaTYefOnTAxMQEArFy5En369MH69ethaGio0MbT0xMeHjyNlooeH5/NGDCgPzp27ABHx2FfnC8hLyS5l1apXQnPV3mchKSQ5qOtUjtdm0gVWqnSpuDoyByljkAFoETl3K/8kC74q/RcfE8RqZdFixagRo0aotqsWXNw48YNlR7vbs8muW5TLei8Ss9FuVMoTi93dXXFoUOHEBISggoVKuS4r7m5OcqXLy8fcANAnTp1IAgCHj9+nGUbd3d3xMfHy2+PHj3K0/xE6mjy5F8wYEB/AECfPr1x5kwEqlatKnEqIiIiIs3XunUrjB/vKqqdOXMWK1askigR5SeNHnQLggAXFxcEBgbixIkTSq1p16JFCzx9+hRJSUny2q1bt6ClpZXtgF1fXx/GxsaiG1Fh1rlzJyxevEhUq1ixgnxWTSIiIiJSTfHixeHnt1VUe//+PRwdh3FFmEJKowfdzs7O2LFjB3bt2gUjIyM8e/YMz549E02K5u7uDgcHB/n9gQMH4ptvvoGTkxOuX7+O8PBwTJ48GUOHDs3y1HKioqZatWrYvXuH6PqizMxMDBw4GLdv35YwGREREZHmW7p0scLZg9Onz8KtW7ckSkT5TaMH3d7e3oiPj0fbtm1hbm4uv+3du1e+T1xcHB4+fCi/X6JECRw/fhxv376Fra0tBg0ahO7du2PNmjVS/AhEaqVEiRIIDt6PUqVKieozZszC778fzaYVERERESmjQ4f2GDt2tKgWHn4Sq1dzLFKYafREaoIgfHEff39/hVrt2rVx/PjxfEhEpLlkMhm2bfNVmP1/3779WLx4qUSpiIiIiAoHIyMj+PqKV4RJTk6Gk9NwpcY1pLk0+kg3EeWd6dOnoVevnqJaTMwVODkNlygRERERUeExduxoVKpUSVSbMsUd9+7dkygRFRQOuokI3bp1xbx5c0W1169fo0eP3gWyTBgRERFRYbds2Qr88stkfPjwAQBw4kQIvL03SpyKCgIH3URFXK1atbBzZ4Bo4rSMjAz07z8QsbGxEiYjIiIiKjwyMzOxcqUXGja0xZ9//oWhQ0fwtPIiQqOv6Sair2NsbIzg4P2idesBYMqUafjzz78kSkVERERUeN28eRMdO3aROgYVIB7pJiqiZDIZduzYhtq1a4vqO3fuxsqVXtKEIiIiIiIqZDjoJiqiqlevjhYtmotqly5FYcSIURIlIiIiIiIqfDjoJiqibt++jcaN7XDlylUAwMuXL9GzZx+8f/9e4mREREREmm/RogVo1qyZ1DFIDcgEXr2fawkJCf9/Daw2AJnUcYi+SvHixbF16yZs3LgZYWHhUscppAQAGYiPj4exsbHUYXLla/q7+Inlc/18Jque5LoNEakbzezz+PmO8lLv3r2wf/9eZGRkYPnylZgzxwMpKSlSx6I8p1x/x4nUiIq45ORk/PTTz1LHICIiIioUypQpA2/vdQAAbW1tTJ06GS1aNEerVm2lDUaS4enlREREREREeWTDhrUoU6aMqLZx42aJ0pA64KCbqIho3Lix1BGIiIiICrUBA/qjT5/eolpQUDB27twlUSJSBxx0ExUB/fr1xfnzp7Fx4wbo6upKHYeIiIio0ClXrhzWr18jqr169QqjRztLlIjUBQfdRIVc/fr14ee3FQAwatQIhIT8iXLlykmcioiIiKhw2bRpA0xNTUW1sWNd8eLFC4kSkbrgoJuoEPvmm28QHLwfxYoVk9datGgOe/suEqYiIiIiKlwGD/4ZP/zQXVTbu/dX7Nu3X6JEpE446CYqpLS1tbF37y5YWlqK6ps3b4Wfn780oYiIiIgKmfLly2PNmlWi2vPnz+HsPE6iRKRuOOgmKqSWLl2MDh3ai2qnT5+Bq+t4iRIREREpx9PTE40bN4aRkRHMzMzQo0cP3Lx584vtUlJSMGPGDFSuXBn6+vqoVq0afH19CyAxFWVbtmxEyZIlRbXRo53xzz//SBOI1A7X6SYqhH7+eRDc3CaIak+fPkXv3v2QmpoqTSgiIiIlhYWFwdnZGY0bN0Z6ejpmzJiBTp064fr16yhevHi27fr164fnz5/Dx8cH1atXx4sXL5Cenl6AyamoGTZsqMJlezt27EJw8EGJEpE64qCbqJCxsbHBli0bRbWUlBT06tUPz549kygVERGR8o4ePSq67+fnBzMzM0RGRqJ169bZtgkLC8O9e/fkk1lVqVIlv6NSEVapUiWsXLlMVHv69CnGjZsgTSBSWzy9nKgQMTMzQ1DQPhgYGIjqY8a44Ny5cxKlIiIi+jrx8fEAoDAz9KcOHToEW1tbLF26FOXLl0fNmjUxadIkvH//vqBiUhHj47MZxsbGotqIEaPx5s0biRKRuuKRbqJCQkdHB/v27UHFihVF9XXrNnDiNCIi0liCIMDNzQ0tW7aElZVVtvvdu3cPERERMDAwQFBQEF69eoWxY8fi9evXWV7XnZKSgpSUFPn9hISEfMlPhdeGDRtRv/63MDMzAwD4+vrjyJHfJU5F6kgmCIIgdQhNk5CQABMTEwDaAGRSxyECAKxduxouLmNFtbCwcHz3XWfJrmdL89HOdRvdYRn5kERqAoAMxMfHK3wjru7Y3xFR7uVtn+fs7IzDhw8jIiICFSpUyHa/Tp064eTJk3j27Nn/91tAYGAg+vTpg+TkZBgaGor2nzt3Ljw8PLJ4JPZ3pLzSpUtj/fo1sLNrBiurhvzypshRrr/j6eVEhYCTk6PCgPvRo0fo23cAJ5AhIiKN5erqikOHDiEkJCTHATcAmJubo3z58vIBNwDUqVMHgiDg8ePHCvu7u7sjPj5efnv06FGe56fC79WrV+jffyBsbJpywE3Z4qCbSMMZGRlhxYqlotr79+/Ro0cfvHz5UqJUREREqhMEAS4uLggMDMSJEydgaWn5xTYtWrTA06dPkZSUJK/dunULWlpaWQ7Y9fX1YWxsLLoRqYqfuSgnHHQTabjExES0a9cR9+/fl9dGjhyDS5cuSReKiIjoKzg7O2PHjh3YtWsXjIyM8OzZMzx79kw0KZq7uzscHBzk9wcOHIhvvvkGTk5OuH79OsLDwzF58mQMHTpU4dRyIqKCxEE3USFw+fJl2No2w4kTIVi50gs7duyUOhIREZHKvL29ER8fj7Zt28Lc3Fx+27t3r3yfuLg4PHz4UH6/RIkSOH78ON6+fQtbW1sMGjQI3bt3x5o1a6T4EaiQ0dLSQufOnaSOQRpKoydS8/T0RGBgIP7++28YGhqiefPmWLJkCWrVqqVU+1OnTqFNmzawsrJCdHS00s/LiYVIXWlr/ztxWUaGekxGxonUPuJEakRUlGhmn8f+jnLi5jYBK1Ysw6+/7oOz8zi8evVK6kikForARGphYWFwdnbG2bNncfz4caSnp6NTp05ITk7+Ytv4+Hg4ODigQ4cOBZCUqGBkZGSozYCbiIiIqDCoVasWFi6cDwDo168vrl27zKPelCsavU730aNHRff9/PxgZmaGyMhItG7dOse2o0aNwsCBA6GtrY3g4OB8TEmUt0xMTBAfHy91DCIiIqJCT1tbG9u2+cLAwEBeK126tFIH+Yg+0ugj3Z/7OBAxNTXNcT8/Pz/cvXsXc+bMUepxU1JSkJCQILoRSaF8+fK4ceMK5s/3gEzGU9+IiIiI8tOkSW5o2rSJqObltQYREackSkSaqNAMugVBgJubG1q2bAkrK6ts97t9+zamTZuGnTt3QkdHuQP9np6eMDExkd8qVqyYV7GJlKavr4/AwH0wNzfHzJnTcehQkGgtUiIiIiLKO/Xq1YOHh/gg3c2bNzFjxiyJEpGmKjSDbhcXF8TExGD37t3Z7pORkYGBAwfCw8MDNWvWVPqx3d3dER8fL789evQoLyIT5crGjRvQpElj+f3vv+8GT8+FEiaiguTp6YnGjRvDyMgIZmZm6NGjB27evPnFdmFhYbCxsYGBgQGqVq2KjRs3FkBaIiIizaajo4Nt23yhr68vr2VkZGDIkGH48OGDhMlIExWKQberqysOHTqEkJAQVKhQIdv9EhMTcfHiRbi4uEBHRwc6OjqYN28eLl++DB0dHZw4cSLLdvr6+jA2NhbdiAqSi4szHB0dRLXbt29j+vSZEiWigqbKxJGxsbHo2rUrWrVqhaioKEyfPh3jxo3DgQMHCjA5ERGR5nF3nwobm0ai2rJlK3Du3DmJEpEm0+glwwRBgKurK4KCghAaGooaNWrkuH9mZiauX78uqm3YsAEnTpzA/v37YWlpieLFi3/xebmkBBWkNm1a488//xBdDpGYmIhmzVoqvJ/VDZcM+yjvl895+fIlzMzMEBYWlu3EkVOnTsWhQ4dw48YNeW306NG4fPkyzpw5o9TzsL8jotzjkmGk2Ro0aIALF85AV1dXXrt27RpsbJoiJSVFwmSkfpTr7zR69nJnZ2fs2rULBw8ehJGREZ49ewbg39mdDQ0NAfx7aviTJ08QEBAALS0theu9zczMYGBgkON14ERSqVSpEvbt26Mw/4CDg5PaD7gpfykzceSZM2fQqZN4SZPOnTvDx8cHaWlpog8TREREBOjq6mLbNl/R38j09HQMGTKMA25SmUYPur29vQEAbdu2FdX9/Pzg6OgIAIiLi8PDhw8LOBnR1zM0NERQ0H6UKVNGVPfwmI/g4IMSpcqdwnnUWnrKThz57NkzlC1bVlQrW7Ys0tPT8erVK5ibmyu0SUlJEX2o4GoNRIXHh0ibXLcRfv/y3BGfS/ggoOwCLm1JmmnWrBlo0KC+qObpuQSRkZESJaLCQKMH3cqcGe/v75/j9rlz52Lu3Ll5E4goD23ZsgmNGlmLaocO/QYPj/kSJSJ18XHiyIiIiC/u+/nSch/7zeyWnPP09ISHh8fXhyQiItIwtra2cHefKqpdvhyD+fM5cS19nUIxkRpRYePmNgGDBv0kqv39998YPNhRqS+bqPBSduJIAChXrpz8spuPXrx4AR0dHXzzzTdZtuFqDUREVBTp6+vD33+r6JK+tLQ0DBkyFGlpaRImo8JAo490ExVGHTt+h6VLF4tq8fHx+PHH3jzVtwj7fOJIS0vLL7axs7PDb7/9JqodO3YMtra22V7Pra+vL1oehYiIqCgoV66cQm3+/IW4fPmyBGmosOGRbiI1UrVqVezZsxPa2v/N+p2ZmYlBgxxw69YtCZOR1JydnbFjxw7s2rVLPnHks2fP8P79e/k+7u7ucHD4b2m50aNH48GDB3Bzc8ONGzfg6+sLHx8fTJo0SYofgYiISG09ePAANjZNsXjxUmRkZCAy8hI8PZdIHYsKCR7pJlITMpkM+/btUZiNevbsuTh8+IhEqUhdqDJxpKWlJY4cOYKJEydi/fr1sLCwwJo1a9C7d++Cik1ERKQxUlJS4O4+AwcP/oaEhASkp6dLHYkKCY1ep1sqXMeR8kvr1q2wf/9e+YzlBw4Eom/fAbyOW+Np5pq1APs7osKkoGcv17Q+j/0dEeVeEVinm6iwCQ8/CRubpggOPgA9PV04Og7jgJuIiIiISINx0E2kZh49eoQWLVrjm2++QVJSktRxiIiIckXHvD6Ak1LHIMqRgYEB0tLSkJGRIXUUKgI4kRqRGvrw4QOePHkidQwiIiLlybSh3eIXlBr1l9RJiL5o2bIlOHUqHLVr15Y6ChUBHHQTERER0VeRmVaH3pCj0G07EzLtrJckJFIX7du3g4vLWDRt2gRRURfwyy8ToaXFYRHlH767iCTwcaby8ePHSR2FiIjoK8ig3XgU9IaHQ6u8rdRhiL7IyMgIvr5b5PcNDAwwb95cVKpUSbJMVPipPOh2dHREeHh4XmYhKjJmzZqBPn16w8trBfz9fWFgYCB1JCIiotwxrgjdQcHQ7bQYMl1DqdMQKWXZsiWoXLmyqDZt2gzcv39fmkBUJKg8kVpiYiI6deqEihUrwsnJCUOGDEH58uXzMhtRofTDD93h4TFHfn/IkMEwMyuDrl27S5iKKGcnWrZHCZ3cnTLaJPRYPqUhIlUY2ETm2WM5Og7B6tUrYZDFEjk3b+Z+mTGigtCpU0eMGjVCVAsJCcW6deslSkRFhcpHug8cOIAnT57AxcUF+/btQ5UqVWBvb4/9+/cjLS0tLzMSFRp16tTBjh3bRLX09HQsX75SokRERETKK1u2LA4eDISf39Ys16RdvXotrK15mjmpHxMTE/j4bBbVkpKSMHToCC7PSvnuq67p/uabbzB+/HhERUXh/PnzqF69OgYPHgwLCwtMnDgRt2/fzqucRBrPxMQEBw8egJGRkag+adJUnDgRIlEqIiIi5fTu3QtXr0bjhx8Uz8x68OAB2rfviAkT3PD+/XsJ0hHlbNWqFahQoYKoNmnSVJ5WTgUiTyZSi4uLw7Fjx3Ds2DFoa2uja9euuHbtGurWrYtVq1blxVMQaTQtLS3s2rUdNWrUENUDAnZg9eo1EqUiIiL6spIlS2L79m3Yv38vSpcurbDdz28b6tdvhJCQ0IIPR6SEbt26wslpiKh2/Pif2LRpczYtiPKWyoPutLQ0HDhwAN9//z0qV66Mffv2YeLEiYiLi8O2bdtw7NgxbN++HfPmzcvLvEQaaf58D3Ttai+qXbwYiVGjxkiUiIiISDmDBg3Ezz8PVKg/f/4cP/zQE0OHDkdCQoIEyYi+rFSpUti82VtUi4+Px7BhIyVKREWRyhOpmZubIzMzEz/99BPOnz+Phg0bKuzTuXNnlCxZ8iviEWm+vn37YPr0aaLaixcv0LNnH3z48EGiVERERMrx9t6Ifv36oHXrVvLa/v0HMGaMC169eiVhMqIvW7PGCxYWFqLaxImT8OjRI4kSUVGk8qB71apV6Nu3b45LHZUqVQqxsbGqPgWRxvv222/h57dVVEtLS0OfPv3x+PFjiVIREREpLzMzE46OwxATcwlpaWlwcRmPXbt2Sx2L6It69PhR4SyNw4ePwM/PX5pAVGSpfHp5SEhIlrOUJycnY+jQoV8ViqgwMDU1RXDwfhQvXlxUHz/eDSdPRkiUioiIKGsymSzbbbGxsejX7yd8+601B9ykEUqXLo1NmzaIam/evMHIkby0jwqeyoPubdu2ZTk75fv37xEQEPBVoYg0nba2Nvbs2YmqVauK6lu3+sLbe6NEqYiIiLLWoEEDXLp0Ac2aNct2n99/P4onT54UYCoi1Q0fPhRmZmai2rhxE/H06VOJElFRlutBd0JCAuLj4yEIAhITE5GQkCC/vXnzBkeOHFF4gxMVNYsXL0LHjt+JamfOnIWzs6tEiYiIiBRpa2tj+vRpOH/+NBo2bICAAF8UK1ZM6lhEX23x4qUYNWoskpKSAADBwQexY8dOiVNRUZXrQXfJkiVhamoKmUyGmjVrolSpUvJb6dKlMXToUDg7O+dHViKNcerUaSQmJsrvP336FL1790NqaqqEqYiIiP5Ts2ZNRESEYeHC+dDT0wMA1KhRA0uWeEqcjChvbN68Bd9+a40DBwIxejTHJySdXE+kFhISAkEQ0L59exw4cACmpqbybXp6eqhcubLCDIFERU1w8EE0a9YSwcH7UalSJfTq1Q9xcXFSxyIiIoJMJoOLizMWL16Y5VHt5s3tYGBgwBU2qFC4f/8++vTpL3UMKuJyPehu06YNgH8n1KhUqVKOk25kJT4+HkFBQTh58iTu37+Pd+/eoUyZMrC2tkbnzp3RvHnz3EYiUkvXr19HkybN0axZU5w7d07qOERERKhYsSL8/LaiQ4f2CtsyMjLg6bkE8+YtyHKy3ILk6emJwMBA/P333zA0NETz5s2xZMkS1KpVS6n2p06dQps2bWBlZYXo6Oj8DUtE9AUyQRAEZXeOiYmBlZUVtLS0EBMTk+O+9evXF92Pi4vD7NmzsXPnTpQrVw5NmjRB+fLlYWhoiNevX+Pq1auIjIxE5cqVMWfOHPTv/+VvpFTpkAMDA+Ht7Y3o6GikpKSgXr16mDt3Ljp37qzci4B/r2s3MTEBoA0gd186EFFRJADIQHx8PIyNjaUOkyvs74gKjyFDHLB69cr//50Wu3nzJhwchuL8+fN58Exf3+d16dIFAwYMQOPGjZGeno4ZM2bgypUruH79usKqIJ+Lj49Ho0aNUL16dTx//lzpQTf7OyLKPeX6u1wNurW0tPDs2TOYmZlBS0sLMpkMWTWXyWTIyMgQ1czMzODg4ABHR0dYWVll+fjv379HcHAwvLy80LdvX0yaNCnHPKp0yBMmTICFhQXatWuHkiVLws/PD8uXL8e5c+dgbW2t1OvATpmIcoeDbiKSjpmZGTZv9saPP/6Q5fY1a9Zh2rTpWa5Ko5q87/NevnwJMzMzhIWFoXXr1jnuO2DAANSoUQPa2toIDg7moLuI8PZej3379uPEiRCpo1CRkg+D7gcPHshPKX/w4EGO+1auXFl0/+XLlyhTpoyyT5Xr/T+2UbZD/lS9evXQv39/zJ49W6n92SnTpwYP/hkZGRlct5RywEE3EUmjV6+e2LhxfZafqR4+fAgnp+H5MEjJ+z7vzp07qFGjBq5cuZLtwRsA8PPzw4YNG3DmzBksWLCAg+4iwtFxCPz8tgIA1q/3xtSp7khOTpY4FRUNyvV3ubqm+9OB9OeD6i/J7QA6t/sD/55OBEA0uduXZGZmIjExMVdtiD5q0qQJtmzZCH19fTRqZI2pU90VzvIgIiKSwqpVKzBhwrgst/n5bcOECW5ISEgo4FS5JwgC3Nzc0LJlyxwH3Ldv38a0adNw8uRJ6Oh8+SNuSkoKUlJS5Pc14bUgRRUqVICX1wr5fWfnMWjQoD5atWorXSiiz+R6ybCPPD094evrq1D39fXFkiVLsmwzdux/a+UBwPbt20X33759i65du6qUR9kO+XMrVqxAcnIy+vXrl+0+KSkpovXI2SkTAJQtWxaBgb9CX18fAPDLLxNx9Ohh6OrqSpyMiIgICAsLV6g9f/4cP/7YC0OHDteYzzMuLi6IiYnB7t3Zn1GWkZGBgQMHwsPDAzVr1lTqcT09PWFiYiK/VaxYMa8iUwHaunWTwjwFS5culygNUdZUHnRv2rQJtWvXVqjXq1cPGzduzLbNu3fv5PednZ3x4sUL+f2UlBT88ccfKuVRpkP+3O7duzF37lzs3bsXZmZm2e7HTpk+p6uriwMHfkX58uVF9atXr0k+4ysRERHw7/KVAQE75PcPHAiElVVDHDr0m4SpcsfV1RWHDh1CSEgIKlSokO1+iYmJuHjxIlxcXKCjowMdHR3MmzcPly9fho6ODk6cOKHQxt3dHfHx8fLbo0eP8vNHoXwwYsRwdO7cSVTbtm07fvvtfxIlIsparpcM++jZs2cwNzdXqJcpUybb9Yg/v3w8F5eT5+hjhxweHp5jh/ypvXv3YtiwYdi3bx++++67HPd1d3eHm5ub/H5CQgIH3kXcmjVeaNFCvLzdiRMhmDx5qkSJiIiIFI0bNwENGzbA0qXLsXPnLqnjKE0QBLi6uiIoKAihoaGwtLTMcX9jY2NcuXJFVNuwYQNOnDiB/fv3Z9leX19ffrYaaZ7KlStjxYqlotqTJ08wfvxEiRIRZU/lQXfFihVx6tQphU7s1KlTsLCw+Opgyshth/zR7t27MXToUOzevRvdunX74v7slOlTI0eOwOjRI0W1+/fvo3//gUhPT5coFRERFUV6enro06d3tpN5xsfHo2FDmzw70FFQnJ2dsWvXLhw8eBBGRkZ49uwZAMDExASGhoYA/j0o8uTJEwQEBEBLS0vh8kIzMzMYGBjk6rJD0gwymQy+vltgZGQkqg8bNlI+xxOROlF50D18+HBMmDABaWlpaN++PQDgr7/+wpQpU/DLL7/kWcCc5LZDBv4dcDs4OGD16tVo1qyZvI2hoWGW61YSfap58+ZYu9ZLVHv37h169uyLV69eSROKiIiKpAYNGiAgwA/163+LjIwM7N37a5b7adqAGwC8vb0BAG3bthXV/fz84OjoCACIi4vDw4cPCzgZqYOxY8egfft2otqWLT74449jEiUiylmulgz7lCAImDZtGtasWYPU1FQAgIGBAaZOnZrt0ltaWloYOXIkihUrBgBYv349fv75Z/lg9927d9iyZYvSsz/LZFkv5/Bph+zo6Ij79+8jNDQUwL+dd1hYmEKbIUOGwN/fX6nn5ZISRZOFhQUiI8+hXLlyovpPP/2MPXv2SpSKNAOXDCOivKOtrY2pUydjzpxZ0NPTAwC8fv0aVlYNs73Er2BpZp/H/k4zVKtWDZcvR6J48eLy2oMHD/Dtt9ZITEyUMBkVTfmwTndWkpKScOPGDRgaGqJGjRo5nobdtm3bbAfKnwoJUe9F7dkpFz36+voICzuBpk2biOpLly7H1KnuEqUizaGZH0AB9ndE6qZGjRoICPBDs2ZNFbYFBx9Ez559JEj1Oc3s89jfqT8tLS2Ehv6FVq1aiurffdcZf/2lOFkeUf7Lh3W6s1KiRAmYm5tDJpN98brnj0ebiTSNt/d6hQH3H38cg7v7DIkSERFRUSKTyeDsPBZLliySnzH4qejoy5g1a27BByMqQOPGuSoMuDds2MgBN6k9lZcMy8zMxLx582BiYoLKlSujUqVKKFmyJObPn4/MzMxcPVZ6erpovW4ideLsPBZOTkNEtTt37uCnn37O9XudiIgotypWrIjjx49i7VovhQF3RkYGFi70RJMmdrh69apECYnyX82aNbFo0XxR7d69e5gyZZpEiYiUp/KR7hkzZsDHxweLFy9GixYtIAgCTp06hblz5+LDhw9YuHChQpsjR47gn3/+weDBg+W1hQsXYv78+UhPT0f79u2xd+9elCpVStVYRHmqTZvW8PJaIaolJSWhR48+ePPmjUSpiIioqHBwGIw1a1ZlOdnrrVu34OAwFOfOnZMgGVHB8vf3kU+U/JGT03AkJydLlKhweDWqqkrtSm+6l8dJ8la94r1Vanct+UAeJ/mXyke6t23bhq1bt2LMmDGoX78+GjRogLFjx2LLli3ZTki2fPlyJCQkyO+fPn0as2fPxqxZs/Drr7/i0aNHmD9/fpZtiaRQvnx5hYn9HByccO3aNYkSERFRUVCmTBkEBe3Htm2+WQ6416xZh4YNbTngpiJj7tx5ePz4sfz+6tVrER5+UsJERMpTedD9+vVr1K5dW6Feu3ZtvH79Oss2V69eRfPmzeX39+/fj44dO2LGjBno1asXVqxYgd9++03VSER5bteu3Wjb9js8ffoUADB//kIEBQVLG4qIiAq1nj174Nq1y+jR40eFbQ8fPkSHDp0wfvxEvH//XoJ0RNI4duw4rKwaws9vG27dusV5dUijqDzobtCgAdatW6dQX7duHRo0aJBlm8TERHzzzTfy+xEREfI1vgGgXr168sENkbo4e/YsbG2bYdGixZgzx0PqOEREVIjp6Ohg/vy5KFOmjMI2f/8AfPutNU6cUO9VXojyS3x8PIYOHY7Gje34pRNpFJWv6V66dCm6deuGP//8E3Z2dpDJZDh9+jQePXqEI0eOZNnGwsICN27cQKVKlZCUlITLly9j1apV8u3//PNPljNyEkktLi4OM2bMkjoGEREVcunp6XBwGIqzZyOgq6sLAHjx4gVGjhyDgwcPSZyOSD18erkqkSZQ+Uh3mzZtcOvWLfTs2RNv377F69ev0atXL9y8eROtWrXKsk2fPn0wYcIEbN++HSNGjEC5cuXQrFkz+faLFy+iVq1aqkYiIiIi0niXLl3C/Pn/TkgbGBgEK6uGHHATEWmwr1qn28LCIstZyrMzZ84cPH36FOPGjUO5cuWwY8cOaGtry7fv3r0b3bt3/5pIRCqztLREzZo18Mcfx6SOQkRERYCOjg7S09Oz3ObpuQSXL8fg0CHOdUNFj66uLnr0+BH79u2XOgpRnsjVoDsmJkbpfevXr69QK1asGLZv355tm5AQXqNE0ihWrBiCgw/Ayqoepk+fiSVLlkkdiYiICik9PT3MnTsbbdq0RuvW7RRWyQD+Pc2cA24qqmbMcMecObNw5IgDRowYzTmfSOPlatDdsGFDyGQyCIKQ434ymSzLPyBE6srPbyvq1/8WALB48SI0amQNJ6fhePfuncTJiIioMKlfvz4CAvzQoMG/ByemTZuChQs9JU5FpD4aNWqEGTPcAQBdu9rj2rXLGDzYEf/732GJkxGpLleD7tjY2K96sk9nKs/JiRMnvup5iHJj6tTJ6Nevr6hWr15daGmpPOUBERGRiLa2NiZP/gUeHnOgp6cnr8+ZMwuHD/+O6Oho6cIRqQk9PT1s2+YDHZ3/hijFixfHkyc80k2aLVeD7sqVK3/Vk4WGhqJy5cro1q2bfEZOIil16dIZixYtENXevHmDH3/sjaSkJIlSERFRYVK9enUEBPjBzq6ZwjZBENCwYQMOuokAzJ07G1ZWVqLawoWeiIqKkigRUd74qonUtm/fjo0bNyI2NhZnzpxB5cqV4eXlBUtLS/z4448K+y9evBj+/v7Yt28fBg0ahKFDhyr8YhEVlOrVq2P37h2iI9qZmZn46aefcffuXQmTERFRYSCTyTB27BgsXeqZ5ZKoly/HwMHBKVdz5hAVVk2aNMGUKZNEtaioaF5+QYWCyufPent7w83NDV27dsXbt2/l13CXLFkSXl5eWbaZMmUKrl+/juDgYCQmJqJFixZo0qQJNm7cyPX2qECVKFECBw8eQMmSJUV1d/cZnL2c1FZ4eDi6d+8OCwsLyGQyBAcH57h/aGgoZDKZwu3vv/8umMBERViFChXwxx9HsG7daoUBd0ZGBhYtWowmTew44CYCYGBgAH//raJVjVJTU+Hg4JTtDP9EmkTlI91r167Fli1b0KNHDyxevFhet7W1xaRJk3JoCdjZ2cHOzg6rV6/Gvn37sH79ekyaNAlPnz6FsbGxqpGIlCKTyRAQ4Ie6deuK6nv3/oqlS5dLlKpwutj+u1y3iX9XXKXn6nD2oErtNElycjIaNGgAJycn9O7dW+l2N2/eFPWtZcqUyY94RPT/Bg/+GWvWrFL4YhcAbt++DQeHoTh79mzBByNSU/Pne6BOnTqi2ty583D16lWJEhUdpTfdkzpCvkiTpUodQUTlQXdsbCysra0V6vr6+khOTlbqMS5duoSwsDDcuHEDVlZWvM6bCsTMmdPRs2cPUe3y5RgMHTpCmkBESrK3t4e9vX2u25mZmWX54Z+I8laZMmWwadMGhb8xH61dux7Tpk3nyhhEn2jevDnc3CaIahcuXOSBECpUVD693NLSMstJP37//XeFI4ifevr0KRYtWoSaNWuiT58+MDU1xblz53D27FkYGhqqGodIKd27f4958+aKav/88w969OjND0FUaFlbW8Pc3BwdOnRASEiI1HGICqUqVarg6tXoLAfcjx49wnffdca4cRP4t4boE8WKFYO//1bR/DofPnzAkCFDufwwFSoqH+mePHkynJ2d8eHDBwiCgPPnz2P37t3w9PTE1q1bs2zTtWtXhISEoFOnTli2bBm6desmWhKAKD/VqlULO3ZsE9UyMjLQr99PuH//vjShiPKRubk5Nm/eDBsbG6SkpGD79u3o0KEDQkND0bp16yzbpKSkICUlRX6f820QKef+/fuIiopG586dRPVt27Zj/PiJiI+PlygZkfpatGgBatSoIarNmjUHN27ckCgRUf6QCYIgqNp4y5YtWLBgAR49egQAKF++PObOnYthw4Zlub+WlhbMzc1hZmYGmUyW7eNeunRJ1UgFIiEhASYmJgC0AWT/c5D6MDY2xvnzp1GrVi1RfeLESfDyWi1RqsKP13R/JADIQHx8fJ7NWyGTyRAUFIQePXrkql337t0hk8lw6NChLLfPnTsXHh4eWWxhf0f0JeXLl8fVq9EoWbIkXrx4gVGjxiI4WJ37pvyS931eQeDnu4LVpk1rhIb+JaqdPn0GrVq1RWZmpkSpqLCoWaK7Su1uJf2WyxbK9XdfdZh5xIgRGDFiBF69eoXMzEyYmZnluP+cOXO+5umIVPbddx0Uvkndvn0nB9xU5DRr1gw7duzIdru7uzvc3Nzk9xMSElCxYsWCiEak8Z48eQIXl/Ho1asHRo92xsuXL6WORKSWihcvDj8/8Zmx79+/h6PjMA64qVBSedDt4eGBn3/+GdWqVUPp0qWVasNBN0klMDAI3br9gF27tqNUqVKIjLyEkSNHSx2LqMBFRUXB3Nw82+36+vrQ19cvwEREmqVZs2bQ1tbGqVOnsty+c+cu7Ny5q4BTEWmW0qVL4/XrN7C0tJTX3N1n4vbt2xKmIso/Kk+kduDAAdSsWRPNmjXDunXr8uTb3A8fPmD5cs5USPnj6NE/0KRJc4SEhKJnzz748OGD1JGIciUpKQnR0dHySSxjY2MRHR2Nhw8fAvj3KLWDg4N8fy8vLwQHB+P27du4du0a3N3dceDAAbi4uEgRn0ij6enpYeHC+YiICMXOnds06rRpInXz4MEDNGvWArNnz0VaWhrCw09izZq1UsciyjcqD7pjYmIQExOD9u3bY+XKlShfvjy6du2KXbt25Tgz56tXr3D48GEcO3ZMPithWloaVq9ejSpVqojW/CbKa3fu3EH79h3l8xAQaZKLFy/C2tpavlyjm5sbrK2tMXv2bABAXFycfAAOAKmpqZg0aRLq16+PVq1aISIiAocPH0avXr0kyU+kqb799lucP38G06dPg7a2NipXrgwvr5VSxyLSaOnp6Zg/fyEaN7aDo+MwfMU0U0Rq76smUvvUqVOnsGvXLuzbtw8fPnzIcsbb06dPo1u3boiPj4dMJoOtrS38/PzQo0cPZGZmYsKECRg6dCiKFSuWF5HyDSfaIFIOJ1L7SDMnFQLY31HRpq2tjcmTf4GHxxzo6ekpbO/QoRNOnOAyfIo0s89jf0dUeKjbRGoqH+n+XPHixWFoaAg9PT2kpaVluc+sWbPQuXNnxMTEYPz48bhw4QK+//57zJz57zUcLi4uuRpwe3p6onHjxjAyMoKZmRl69OiBmzdvfrFdWFgYbGxsYGBggKpVq2Ljxo1KPyepP21tbXz77bdSxyAiIg1WvXp1hIeHwNNzocKAOzU1FdOnz0RYWLhE6YiISJN81aA7NjYWCxcuRN26dWFra4tLly5h7ty5ePbsWZb7X758GbNmzYKVlRUWLFgAmUyGJUuWwMHBIcclxLITFhYGZ2dnnD17FsePH0d6ejo6deqE5OTkHDN37doVrVq1QlRUFKZPn45x48bhwIEDuX5+Uk+LFi3AxYtnMWzYUKmjEBGRhpHJZBg7dgyioy+ieXM7he0xMVfQuLEdPD2XyC+TI6KclShRIsuzRYiKCpVnL7ezs8P58+fx7bffwsnJCQMHDkT58uVzbPP69WuUKVMGAFCsWDEUK1ZMfm2iKo4ePSq67+fnBzMzM0RGRqJ169ZZttm4cSMqVaoELy8vAECdOnVw8eJFLF++HL1791Y5C6mHAQP6Y8qUSQCArVs3oVEja0yY4Jbt2RdEREQfVahQAb6+W9Cxo+KlMRkZGVi6dDnmzp2H1NRUCdIRaa7169eiYcMGGDJkqHwyUKKiROVBd7t27bB161bUq1dP6TYymQyJiYkwMDCAIAiQyWR49+6dwvXfql7/Ex8fDwAwNTXNdp8zZ86gU6dOolrnzp3h4+ODtLQ06OrqKrRJSUlBSkqK/H5W16uT9Bo2bAgfn82i2vDhQ7Fliw87eInYnvhT6ghEREoZPPhnrFmzCiVLllTYdvv2bQwZMgxnzpwp+GBEGu6HH7rDweFnAMD586exYMEiLFq0GOnp6RIno8Is99dm5y+VTy9ftGiRUgNuY2Nj3Lt3DwAgCAJq1qyJUqVKwdTUFElJSbC2tkapUqVQqlQplCxZEqVKlVIpjyAIcHNzQ8uWLWFlZZXtfs+ePUPZsmVFtbJlyyI9PR2vXr3Kso2npydMTEzkt4oVK6qUkfJP6dKlERy8X2FOAGfncRxwExFRtsqUKYPAwH0ICPDLcsC9bt0GNGxoywE3kQpMTU2xadMG+X1dXV24uU2AmZmZhKmICp7KR7qV9enk6CEh+TfDp4uLC2JiYhAREfHFfT+/fvxjxuyuK3d3d4ebm5v8fkJCAgfeakRHRwd79+5C5cqVRXVv703YutVHolRERKQJGjZsgJ49eyjUHz9+DCen4fjzz78KPhRRIbFu3WqUK1dOVBs/3g1Pnz6VKBGRNPJ90P2pNm3a5Mvjurq64tChQwgPD0eFChVy3LdcuXIKE729ePECOjo6+Oabb7Jso6+vD319/TzLS3lr2bIlaN++nagWEXEK48dPlCgRERFpiuPH/4S39yaMGTNKXgsI2IFx4ybIL1sjotzr3bsXfvppgKj222//w7ZtARIlIpJOni0Z9iU5zSiu6v6CIMDFxQWBgYE4ceIELC0tv9jGzs4Ox48fF9WOHTsGW1vbLK/nJvXm4DAYEyaME9UeP36MPn36c/I0IiJSyuTJU3H37l28fPkSvXr1xZAhThxwS0yVZWEDAwPRsWNHlClTBsbGxrCzs8Mff/xRQInpU2XKlIG39zpR7fXr1xg5coxEiYikVWCD7urVq2PRokU5nk4iCAKOHz8Oe3t7rFmz5ouP6ezsjB07dmDXrl0wMjLCs2fP8OzZM7x//16+j7u7OxwcHOT3R48ejQcPHsDNzQ03btyAr68vfHx8MGnSpK/7AanA2draiq4TAoAPHz6gV69+eP78uUSpiIhIHRkYGGS7LTk5GT179oWVVUMEBQUXXCjKlirLwoaHh6Njx444cuQIIiMj0a5dO3Tv3h1RUVEFmJwAYMOGtfIViz5ycRmf7bLCRIWdTPj0out8YGxsjOjoaKSlpWHmzJk4dOgQGjZsCFtbW1hYWMDAwABv3rzB9evXcebMGejq6sLd3R0jR46EtrZ2zuGzuQbbz88Pjo6OAABHR0fcv38foaGh8u1hYWGYOHEirl27BgsLC0ydOhWjR49W+mdKSEiAiYkJAG0AuV9fnL7ev0vDnVO4nMDJaTj8/bdJlIooOwKADMTHx6u8OoNU2N9RYdCsWTMEBPhiyZLl8PHxlTpOEZD3fd7Lly9hZmaGsLCwbJeFzUq9evXQv39/zJ49+4v7sr/LGwMG9Mfu3TtEtcDAIPTu3U+iRET5Sbn+rsAmUqtVqxb27duHx48fY9++fQgPD8fp06fx/v17lC5dGtbW1tiyZQu6du0KLS3lDsAr832Bv7+/Qq1Nmza4dOlSrn4OUh+6urrYv3+vwoB7zZp1HHATEZGcnp4e5syZhalTJ0NbWxurVi3HX3+dwP3796WORrmkzLKwn8vMzERiYmKu2tDXKVeuHNavF5+t+vLlS4we7SxRIiL1kO+D7t9//x3ly5eX369QoQImTpyIiRM5yRWpxstrJVq1aimqhYaG4ZdfJkuUiIiI1M23336L7dv90aBBfXnNyMgIfn5b0b59R6W+uCf1oOyysJ9bsWIFkpOT0a9f1kdYU1JSkJKSIr+fkJDw1VmLuk2bNih8yTF2rCtevnwpUSIi9aDyoDsjIwP+/v7466+/8OLFC2RmZoq2nzhxAgDQsmXLrJoTqaRJkyYYO1Z8KcCDBw/Qt+8ApKenS5SKiIjUhba2NiZP/gUeHnOgp6ensN3AwACmpqb4559/JEhHqsjNsrAf7d69G3PnzsXBgwezXRPa09MTHh4eeRWzyBs8+Gf88EN3UW3Pnr3Yv/+ARImI1IfK13S7uLjA398f3bp1g7m5ucL11atWrcqTgOqI1/xIa+DAn7B16yYYGhri/fv3aNGiDSdJITXHa7qJCkL16tWxbZsvmje3U9iWmpqKuXPnYenS5cjIyJAgXVGSd32eq6srgoODER4ertQqNQCwd+9eODk5Yd++fejWrVu2+2V1pLtixYpgf5d75cuXx9Wr0ShZsqS89vz5c9Sr14BfcFEhl8/XdO/Zswe//vorunbtqupDEKlk167duHHjbwQF7cP06bM44CYiKuJkMhnGjBmNpUs9Ubx4cYXtMTFXMHiwI2JiYiRIR6oQBAGurq4ICgpCaGio0gPu3bt3Y+jQodi9e3eOA24A0NfXh76+fl7ELfIGDx4kGnADwMiRYzjgJvp/Kg+69fT0UL169bzMQqS0qKgo1K1bH+/evZM6ChERSahChQrw9d2Cjh2/U9iWkZGBpUuXY+7ceUhNTZUgHanK2dkZu3btwsGDB+XLwgKAiYkJDA0NAfy7LOyTJ08QEBAA4N8Bt4ODA1avXo1mzZrJ2xgaGv7/GTuUXxYvXoqHDx9h3brVKFWqFLZv34lDh36TOhaR2lD59PIVK1bg3r17WLduXbZLdxVWPN2SiHKHp5cT5Yeffx6EtWu9FI6wAcCdO3fg4DAUZ86cKfhgRd7X93mqLAvbtm1bhIWFKbQZMmRIlqvZfI793dczNzfHokULMHHiL3j79q3UcUgJ7+ep9jtqOLtwTjxYqUS7XO2fKaTjcXJI/p1eHhERgZCQEPz++++oV68edHV1RdsDAwNF93NzSlf9+vW/vBMVCSVKlEBSUpLUMYiISM0sWDAPM2a4Z7lt/XpvTJkyjWdDaTBVloX9OPgm6cTFxcHJaZjUMYjUjsqD7pIlS6Jnz55K79+wYUPIZLJsO9GP22QyGSc4IQBAy5YtcPBgIIYNG4ng4INSxyEiIjWya9ce/PLLRBgYGMhrjx8/xtChI3D8+J8SJiMiIhJTedDt5+eXq/1jY2NVfSoqgipUqID9+/fC1NQUQUH74eExHx4e87muKhERAQCuX7+OmTNnY/nypQCA7dt3Yty4CTyllYiI1I7Kg+6PXr58iZs3b0Imk6FmzZooU6ZMlvtVrlz5a5+KiggDAwMEBe1H2bJl5bU5c2bh3r1YBARslzAZERGpk1WrVsPOrhl27tyNoKBgqeMQFQkymQy7dm3Hzp278b//HZY6DpFGUHnQnZycDFdXVwQEBCAzMxMAoK2tDQcHB6xduxbFihUT7X/o0CGlH/uHH35QNRYVAhs3boCtrY2oduTI79ixY6dEiYiISAqGhoaYMGEcVqxYleXs45mZmejTp78EyYiKLhcXZwwY0B8DBvSHv38AJkxwQ3x8vNSxiNSayoNuNzc3hIWF4bfffkOLFi0A/Du52rhx4/DLL7/A29tbtH+PHj2Uelxe0120jRvniiFDBotqt2/fxqBBDvIvd4iIqPBr2rQptm3zQa1atWBkZITp02dKHYmoyKtRowYWL14ov+/o6IBq1aqidevczfhMVNRoqdrwwIED8PHxgb29PYyNjWFsbIyuXbtiy5Yt2L9/v8L+mZmZSt044C662rVrixUrlopqiYmJ+PHH3rxGj4ioiNDV1cWCBfNw6lQYatWqBQCYMmUS7OzsJE5GVLRpaWnBz2+rwtmss2fPlSYQkQZRedD97t070TW3H5mZmXGJDsq1ypUr49dfd0NHR3zyxeDBjrhx44ZEqYiIqCB9++23OH/+DGbMcIe2tra8rq2tDW/vdRImI6KJE8ejRYvmotratesRGqq4NjoRial8ermdnR3mzJmDgIAA+XId79+/h4eHR5bfRq9ZswYjR46EgYEB1qxZk+Njjxs3TtVYpIEMDQ0RHHwApUuXFtXnzp2HgweVnwuAiIg0k5aWFiZNcsP8+R7Q09NT2H7u3Hk4ODhJkIyIAKB27dpYsGCeqHbnzh1MmzZdokREmkXlQffq1avRpUsXVKhQAQ0aNIBMJkN0dDQMDAzwxx9/KOy/atUqDBo0CAYGBli1alW2jyuTyTjoLmJ8fDajYcMGotrBg4cwb94CiRIREVFBqVatGrZt81U4ggYAaWlpmDt3HpYsWcbLz4gkoq2tjW3bfOUH2YB/Lxt1chrOs1uJlKTyoNvKygq3b9/Gjh078Pfff0MQBAwYMACDBg2CoaGhwv6frtPNNbvpo0mT3PDTTwNEtRs3bmDwYEeuyU1EVMiNGTMay5YtRvHixRW2XblyFQ4OToiOji74YEQkN3nyL2jSpLGo5uW1BhERpyRKRKR5vmqdbkNDQ4wYMSLX7WJiYlC/fv0stwUHBys90zlptk6dOmLx4kWiWnx8PH78sTcSExMlSkVERPmtfPny8PHZjM6dOylsy8zMxLJlKzB79twslwkjooJjZWUFD485otrNmzcxY8YsiRIRaaZcDboPHToEe3t76OrqfnHd7ZzW2u7cuTNOnTqFqlWriuoHDhyAg4MDkpOTcxOLNFDZsmWxZ89O0UQ5mZmZGDhwMG7fvi1hMiIiyk+DBg3EunWrUbJkSYVtd+7cwZAhw3D69OmCD0ZEIjo6Oti2zVc0z0JGRgaGDBmGDx8+SJiM8pLh7ASV2qUL/rlu82v9P1V6roFXdqjUThVpSMnV/plIV2q/XA26e/TogWfPnsHMzCzHo9FfWmt7zJgx6NChA06fPg1zc3MAwN69ezF06FD4+/vnJhJpqOfPn2POnHlYuXKZfMbymTNn48iR3yVORkRE+alXrx5ZDrg3bNiIKVOm8Yt3IjUxffo0NGpkLaotW7YC586dkygRkebK1aA7MzMzy//PrdmzZ+Off/7Bd999h5MnT+Lo0aMYPnw4tm/fjt69e6v8uKRZ1q5dhytXruDXX3cjNDQMnp5LpI5ERET5bPRoZ7Rs2QJmZmYAgCdPnmDo0BE4duy4xMmI6KOGDRti5kzxzOTXrl3D3LnzsmlBRDlReZ3ugIAApKQoHn5PTU1FQEDAF9uvXr0ajRo1QrNmzTBixAjs3r2bA+4iKDQ0DLa2zeDkNFzqKEREVABevnyJUaPGAgB27NgFK6uGHHATqRGZTAZf3y3Q1dWV19LT0zFkyLAsP/sT0ZfJBBWniNbW1kZcXJz8m+qP/vnnH5iZmSmcXp7VNeBpaWmYOHEiOnXqJLoGPKfrwdVBQkICTExMAGgDkEkdh4jUngAgA/Hx8TA2NpY6TK6wvyNVmZiYID4+PtvtjRs3xoULFwowERUczezz2N/9p2XLFvDz24rq1asDAObPX4jZs+dKG4rUSmG9ptu8hOLylTnJFNLxPPn0F/s7lWcvFwQBMplih/T48eP/77DEcroG3NfXF76+vgC+fD04ERERqS9DQ0MsXrwIffr0Qv36jfDPP/9kuR8H3ETqKyLiFBo0sMHixYvQqlVLzJ+/UOpIRBot16eXW1tbo1GjRpDJZOjQoQMaNWokvzVo0ACtWrXCd999p9AuMzNTqVtuBtzh4eHo3r07LCwsIJPJEBwc/MU2O3fuRIMGDVCsWDGYm5vDyckp2w8ElDeMjY0RHh6Ctm3bSB2FiIjyUZMmTRAVdQHjxrnAwsICGzaslToSEano3bt3GDduAuzsWiItLU3qOEQaLddHuj8esY6Ojkbnzp1RokQJ+TY9PT1UqVKlwK7NTk5ORoMGDeDk5KTUc0ZERMDBwQGrVq1C9+7d8eTJE4wePRrDhw9HUFBQASQuemQyGbZv90erVi1x/PhRuLlNxtq166SORUREeUhXVxezZ8+Eu/tU0VKQ/fr1RVDQQezZs1fCdET0Nbg8GNHXy/Wge86cOQCAKlWqYMCAAdDX11e67blz5/D69WvY29vLawEBAZgzZw6Sk5PRo0cPrF27VunHtLe3Fz3Wl5w9exZVqlTBuHHjAACWlpYYNWoUli5dqvRjUO7MmTMLP/zQHcC/6z2uWbMKxsZGWLjQU+JkRESUF6ysrBAQ4Adr64YK296/f4/ixYsXfCgiIiI1ovLs5XXr1kV0dLRC/dy5c7h48WKWbebOnYuYmBj5/StXrmDYsGH47rvvMG3aNPz222/w9My/wVjz5s3x+PFjHDlyBIIg4Pnz59i/fz+6deuWb89ZlPXo8SPmzJklqr18+RLbt++UKBEREeUVLS0tTJkyCRcvns1ywH3u3Hk0bGgLHx/fgg9HREozNDTE0KFOWc7VRER5Q+VBt7OzMx49eqRQf/LkCZydnbNsEx0djQ4dOsjv79mzB02bNsWWLVvg5uaGNWvW4Ndff1U10hc1b94cO3fuRP/+/aGnp4dy5cqhZMmSWLs252vOUlJSkJCQILpRzurWrYuAAD9RLT09Hf36/YSHDx9KlIqIiPJCtWrVEB4egiVLPBXOTktLS8OMGbPQokVr3Lp1S6KERKSshQvnw8dnM0JC/oSlpaXUcYgKJZUH3devX0ejRo0U6tbW1rh+/XqWbd68eYOyZcvK74eFhaFLly7y+40bN85yIJ9Xrl+/jnHjxmH27NmIjIzE0aNHERsbi9GjR+fYztPTEyYmJvJbxYoV8y1jYVCyZEkEB++HkZGRqO7mNhmhoWESpSIiorwwZsxoXL4ciRYtFJdVuXLlKpo0aY5FixZzJRIiDdCqVUuMH+8KAGjTpjViYi6hR48fJU5FVPioPOjW19fH8+fPFepxcXHQ0cn6UvGyZcsiNjYWAJCamopLly7Bzs5Ovj0xMRG6urqqRvoiT09PtGjRApMnT0b9+vXRuXNnbNiwAb6+voiLi8u2nbu7O+Lj4+W3/PxiQNNpaWlh167tqFGjhqju7x/ACdSIiDRY+fLlcfToYWzYsFbhOu3MzEwsWbIMtrZNs7z0jIjUT/HixeHntxVaWv8NB7S1tXHjxt8SpiIqnFRep7tjx45wd3fHwYMH5etyv337FtOnT0fHjh2zbNOlSxdMmzYNS5YsQXBwMIoVK4ZWrVrJt8fExKBatWqqRvqid+/eKXwh8HGWVUEQsm2nr6+fqwnjirIFC+bB3r6LqHb+/AWMHj1WokRUVCy0HJXrNjNiN+VDEqLCp2TJkrh8ORLffPONwrY7d+5gyJBhOH36tATJiEhVixcvUvjcPWPGbNy8eVOiRCSFqO/aq9ROR+aYt0HURFxSbv+WZT+G/JTKR7pXrFiBR48eoXLlymjXrh3atWsHS0tLPHv2DCtWrMiyzYIFC6CtrY02bdpgy5Yt2LJlC/T09OTbfX190alTJ6UzJCUlITo6Wv6temxsLKKjo+XXDLu7u8PBwUG+f/fu3REYGAhvb2/cu3cPp06dwrhx49CkSRNYWFio8CrQp/r27QN396mi2vPnz9GrV1+kpKRIlIqIiL7W27dv4ee3TaG+YcNGNGxoywE3kYZp374dXFzEB0QiIk5h9eo1EiUiKtxUHnSXL18eMTExWLp0KerWrQsbGxusXr0aV65cyfaa5zJlyuDkyZN48+YN3rx5g549e4q279u3T74kmTIuXrwIa2trWFtbAwDc3NxgbW2N2bNnA/j3VPdPJ+1ydHTEypUrsW7dOlhZWaFv376oVasWAgMDc/vj02fq168PP7+tolpaWhp69+6PJ0+eSJSKqHAJDw9H9+7dYWFhAZlMhuDg4C+2CQsLg42NDQwMDFC1alVs3Lgx/4NSoTRz5mxcu3YNwL+Tpnbu3BXOzq5ITk6WOBkR5YaRkRF8fbeIau/evYOj4zBkZmZKlIqocFP59HLg32tBRo4cmet2H09H/5ypqWmuHqdt27Y5nhbu7++vUHN1dYWrq2uunodyZmpqiuDg/QrX+Lm6TsCpU6ckSkVU+CQnJ6NBgwZwcnJC7969v7h/bGwsunbtihEjRmDHjh04deoUxo4dizJlyijVnuhTKSkpGDzYCePHu2LCBDe8fftW6khEpILly5eicuXKotrUqdNx9+5diRIRFX65GnQfOnQI9vb20NXVxaFDh3Lc94cffviqYKQZtLW1sXfvLoUlJjZv3opNmzZLlIqocLK3t4e9vb3S+2/cuBGVKlWCl5cXAKBOnTq4ePEili9fzkE3Zaldu7aoWLEiAgK2Z7k9KioKjo5DCzQTEeWdTp06YuTI4aJaSEgo1q/fIFEioqIhV4PuHj164NmzZzAzM0OPHj2y3U8mk3GpkCIiMzMTp0+fwXff/bf++unTZ+DqOl7CVEQEAGfOnFGYJ6Nz587w8fFBWlpalqtFpKSkiOZgSEhIyPecJD1DQ0N4ei7E+PGueP/+Pc6dO8/JlIgKGRMTE/j4iA+IJCYmYujQETmeOUpEXy9X13RnZmbCzMxM/v/Z3TjgLjoEQcCcOR7o1asvkpKS8PTpU/Tu3Q+pqalSRyMq8p49e4ayZcuKamXLlkV6ejpevXqVZRtPT0+YmJjIb9nN0UGFR5MmTRAVdUG+Vq+hoSG2bfOVr+5BRIXDqlUrUKFCBVFt0qSpuH//vjSBiIoQlSZSS0tLQ7t27XDr1q28zkMaKigoGM2atcSPP/bGs2fPpI5DRP9PJpOJ7n88mvF5/SN3d3fEx8fLb48ePcr3jCQNXV1dzJ/vgdOnw1GrVi3RtqZNm+DnnwdJlIyI8lq3bl3h5DREVDt27Dg2b96STQsiyksqTaSmq6uLq1evZvuhjYqmj7PaEpF6KFeunMKXYC9evICOjk6W6y0DgL6+PvT19QsiHknIysoKAQF+sLZuqLDt/fv3mDp1erbXdRORZilVqhS2bBGvXBEfH49hw3I/GTIRqUblJcMcHBzg4+OTl1mIiCgP2dnZ4fjx46LasWPHYGtrm+X13FT4aWlpYfLkX3Dx4tksB9znz1+AtXVjrF27jtd4kqQ8PT3RuHFjGBkZyecSUmaeAS6TqKh48eK4c0c8M/nEiZPw+PFjiRIRFT0qLxmWmpqKrVu34vjx47C1tVVYLmrlypVfHY7Uz8yZ0/G//x1BdHS01FGIipykpCTcuXNHfj82NhbR0dEwNTVFpUqV4O7ujidPniAgIAAAMHr0aKxbtw5ubm4YMWIEzpw5Ax8fH+zevVuqH4EkVLVqVWzb5ouWLVsobEtLS4OHx3wsXryU87KQWggLC4OzszMaN26M9PR0zJgxA506dcL169cVPnN+xGUSs/b48WO0bdsB48ePw8KF83DiRAj8/PyljkVUpMiEXH6Vfe/ePVSpUgUdOnTIdh+ZTIYTJ058dTh1lZCQ8P9rjWsDKDqn2Ds5OcLXdwvevXuH4cNHYffuPVJHIpJbaDkq121mxG7KhyRZEQBkID4+HsbGxio/SmhoKNq1a6dQHzJkCPz9/eHo6Ij79+8jNDRUvi0sLAwTJ07EtWvXYGFhgalTp2L06NFKP2dR7e8Km1GjRmL58iUoUaKEwrarV6/CwWEooqKiJEhGhVPe9HmfevnyJczMzBAWFobWrVtnuc/UqVNx6NAh3LhxQ14bPXo0Ll++jDNnznzxOYpCf1ezZk0kJiYiLi5O6iikJqK+a69SO+s/C+9YL3eU6+9yfaS7Ro0aiIuLQ0hICACgf//+WLNmjcIMuVS4NGnSBN7e6wAAxYoVw65d21GvXl3MnDlb4mRERUfbtm1zPOXX399fodamTRtcunQpH1OROjM3N4ev7xZ06dJZYVtmZiZWrFiFWbPmiJaJI1JH8fHxAABTU9Ns98ntMolFcYlEToJMJI1cD7o//8D3+++/Izk5Oc8CkfopV64cAgN/VZhc6e+/uYZrUbG4qmqTrUy7t/nLO+WR2KSCW97ItFj9XO0vCBl48/5yPqUhyl6xYsXQqlVLhfrdu3fh6DgMERGnJEhFlDuCIMDNzQ0tW7aElZVVtvt9aZlEc3Nz0TZPT094eHjkS2YiTVGQR6zDmn+vWrunFb6802dm31ev+RxUnkjtI060Urjp6enhwIFfUb58eVF95Uov7NixU6JURESkjLt372LSpKmimrf3JjRoYMMBN2kMFxcXxMTEKDUfRW6WSSysSySWKlUKhoaGUscgok/ketAtk8kUOi4uHVZ4rVnjhebN7US1v/46gSlTpkmUiIiIcmPjxk34449jePLkCbp06YaxY114hhppDFdXVxw6dAghISGoUCHno125XSZRX18fxsbGolth4OOzGdHRF2FnZ/flnYmoQKh0ermjo6P8VOMPHz5g9OjRCjNJBgYG5k1CkszIkSMwatQIUS02Nhb9+w/k7LZERGrEyMgI6enpeP/+fZbbhwwZipSUFLx9+7ZggxGpSBAEuLq6IigoCKGhobC0tPxiGzs7O/z222+iWlFbJnHgwJ/Qs2cPAMDJkyFYsWIVZs+ey3kbiCSW6yPdQ4YMgZmZGUxMTGBiYoKff/4ZFhYW8vsfb6TZWrRogbVrvUS1d+/eoUePPvjnn3+kCUVERAratm2DK1ei4Om5MNt9nj9/zgE3aRRnZ2fs2LEDu3btgpGREZ49e4Znz56Jvlhyd3eHg4OD/P7o0aPx4MEDuLm54caNG/D19YWPjw8mTZokxY9Q4MzNzbFu3Wr5fW1tbTg6OsDIyEjCVEQEqHCk28/PLz9ykBopX7489u/fAz09PVHdyWk4YmJiJEpFRESfMjQ0hKfnQowf7woAGD/eFYcO/YYTJ0IkTkb09by9vQH8u2rDp/z8/ODo6AgAiIuLw8OHD+XbLC0tceTIEUycOBHr16+HhYUF1qxZU2TW6N682RulSpUS1UaPdsarV68kSkREH+V60E2Fm76+PgID96FcuXKi+uLFS/Hrr/skSkVERJ9q3LgxAgJ8Ubt2bVHdz28rvv3WukgsfUSFmzIT9XKZxP84Og7B9993E9V27tyNoKBgaQIRkchXz15OhcvGjRvQpEljUe3o0T8wY8YsiRIREdFHurq6mDdvLk6fDlcYcAPA3bv3FOZYIaLCrUKFCvDyWiGqxcXFwdV1vESJiOhzPNJNci4uznB0dBDV7ty5g59++hmZmZkSpSIiIgCoV68eAgL80KiRtcK29+/fY9q0GVi7dh2X8iQqYrZu3aQwn9LIkWPw5s0biRIR0ed4pJvkatSoLrqflJSEH3/szcl3iIgkpKWlhUmT3BAZeS7LAff58xdgbd0Ya9as5YCbqIgZMWI4OnfuJKr5+wfgf/87LFEiIsoKB90kN378RIwYMRqpqakAAAcHJ1y/fl3iVERERVfVqlURGvoXli1bIl+q86O0tDTMmjUHzZu3ws2bNyVKSERSqVy5MlasWCqqPX78GBMmuEmUiIiyw9PLSWTrVh9cu3YddnZNOfkGEZGERo0aieXLl6BEiRIK265du4bBg50QFRUlQTIikppMJoOv7xaF5cCGDx+F+Ph4iVIRUXY46CYFZ86cwZkzZ6SOQURUZP3yy0QsX75UoZ6ZmYkVK1Zh1qw5SElJkSAZEamDsWPHoH37dqLa5s1b8ccfxyRKREQ5kQm8ACzXEhIS/n/CCm0AMqnjEOW770uMUqnd/5I25XGSvFW7+I8qtfs7+WAuWwgAMhAfHw9jY2OVnlMq7O+kUbJkSVy5EoUKFSrIa/fu3cOQIUMREXFKwmREytDMPk9T+rtq1arh8uVI0UoFDx48wLffWiMxMVHCZEQ522n1s0rtBl3dkcdJ8pJy/R2v6S6iWrVqierVq395RyIiKnBv377FsGEj5fc3bdqCBg1sOOAmIvTu3VNhacChQ0dwwE2kxjjoLoIsLS0RHHwA58+fVpjxkoiI1MOxY8fh4TEf9vbfY/TosUhKSpI6EhGpgaVLl6Nnzz54/vw5AGD9em+cOBEicSoiyolGD7rDw8PRvXt3WFhYQCaTITg4+IttUlJSMGPGDFSuXBn6+vqoVq0afH198z+smihevDiCgw/A1NQUpUqVwpEjv2HKlElSxyIiKnKMjIywevUqlCtXLtt95s6dh6NH/yjAVESkCYKDD8LKqiHWrFmHqVPdpY5DRF+g0ROpJScno0GDBnByckLv3r2VatOvXz88f/4cPj4+qF69Ol68eIH09PR8Tqo+/Py2on79b+X3tbS00KRJY8hkMq7vSkRUQNq0aQ1/fx9UqVIFVataonv3HlJHIiIN8+rVK4wfP1HqGESkBI0edNvb28Pe3l7p/Y8ePYqwsDDcu3cPpqamAIAqVarkUzr1M23aFPTt20dUu3r1Khwdh3HATURUAAwMDLBo0QJMnDheXvv++24YNmwofHyKzllXRERERYlGn16eW4cOHYKtrS2WLl2K8uXLo2bNmpg0aRLev38vdbR8Z2/fBQsXzhfV3rx5gx49+vA6QSKiAmBra4tLl86LBtwfeXjMhp6engSpiIiIKL8VqUH3vXv3EBERgatXryIoKAheXl7Yv38/nJ2dc2yXkpKChIQE0U2T1KhRA7t2bYeW1n//3BkZGRgwYBDu3r0rYTIiosJPR0cHHh5zcObMSdSpU0dhe2hoGFq0aIPU1FQJ0hGROtPR0cHRo4cxYEB/qaMQ0VcoUoPuzMxMyGQy7Ny5E02aNEHXrl2xcuVK+Pv753i029PTEyYmJvJbxYoVCzD11zEyMkJw8H6ULFlSVHd3n4Fjx45LE4qIqIioW7cuzp49hdmzZ0JHR3xF1/v37zFhwi9o374jHjx4IFFCIlJnU6dORufOnbB79w7s27cHZcqUkToSEamgSA26zc3NUb58eZiYmMhrderUgSAIePz4cbbt3N3dER8fL789evSoIOJ+NZlMhoAAP9StW1dU37NnL5YtWyFRKiKiwk9LSwu//DIRkZHnYGPTSGH7hQsX0ahRE6xevYZzahBRlurXr4/Zs2fK7/fp0xv79u2RMBERqapIDbpbtGiBp0+fiq5hvnXrFrS0tFChQoVs2+nr68PY2Fh00wSzZs1Ajx4/imrR0ZcxbNhIiRIRERV+lpaWCAn5E8uXL4WBgYFoW1paGmbPnovmzVvh77//lighEak7XV1dbNvmK5rrISMjA5MnT5MwFRGpSqMH3UlJSYiOjkZ0dDQAIDY2FtHR0Xj48CGAf49QOzg4yPcfOHAgvvnmGzg5OeH69esIDw/H5MmTMXToUBgaGkrxI+SbH3/8AR4ec0S1V69eoUeP3nj37p1EqYiICrehQ50QE3MJrVu3Uth27do1NGvWEvPnLyxSS1USUe7NnDkdDRs2ENUWL16KCxcuSJSIiL6GRg+6L168CGtra1hbWwMA3NzcYG1tjdmzZwMA4uLi5ANwAChRogSOHz+Ot2/fwtbWFoMGDUL37t2xZs0aSfLnlzp16mD7dn9RLT09Hf37D+R1g0RE+ahSpYooUaKEqJaZmYlly1bAxqYpLl26JFEyItIUjRo1wvTp4iPaMTFXMG/eAokSEdHXkgm8mCzXEhIS/v+6cG0AMqnjKFi2bAkmTXIT1SZM+AWrVxeuLxeIvpZrubEqtdufFJ2r/TOFdDxPPo34+HiNuTzlI3Xv79SNjo4Ozp49Jb+O+969exgyZCgiIk5JnIyoIAkAMjSuz1OH/k5PTw+RkedgZWUlr6WlpaFp0xaIioqSJBMR5US5/k6jj3RT1iZPngp39xnIzMwEAAQE7OCAm4ioAKSnp8PBwQkfPnzApk1b0KCBDQfcRKS0uXNniwbcALBwoScH3EQaTufLu5AmWrx4KS5fjoGb2wSMGjVG6jhERIVKlSpVcP/+/Sy3Xb9+HTVr1tWYlS6ISD00bdoUU6ZMEtWioqKxcKGnRImIKK/wSHch9vvvR9GxYxd8+PBB6ihERIWCkZERtmzZhJs3r6F+/frZ7scBNxHlhoGBAfz9t0JbW1teS01NhYODEydeJCoEOOgmIiJSQuvWrXD5ciSGDx8KPT09bN/uL1rOh4hIVQsWzEPt2rVFtblz5+Hq1asSJSKivMRBt4YrVaoUypUrJ3UMIqJCy8DAACtWLENIyJ+wtLSU1+vX/xZz586WMBkRFQYtWrTAxInjRbXz5y9g6dLlEiUiorzGQbcG09bWxp49OxEZeQ5NmzaVOg4RUaFjY2ODyMhzcHObAC0t8Z/MxMRE3L59R6JkRFQYaGlpYcsWb1H/8uHDBzg6DkNGRoaEyYgoL3HQrcE8PReiU6eOsLCwQFjYXxg61EnqSEREhYKOjg7mzJmFs2cjULduXYXtoaFhqF+/Efz8/As+HBEVGpmZmfj5Z0fRaeSzZs3BjRs3JExFRHmNg24N9dNPAzB58i/y+/r6+liwwEOj1sMkIlJHderUwZkzEZg7dzZ0dMSLfHz48AETJ05C+/Yds529nIgoNy5dugQbm6bw9FyC8PCTWLnSS+pIRJTHuGSYBrK2toaPz2ZRLTU1Fb169UNCQoJEqYiINJuWlhYmTBiHhQvnw8DAQGH7hQsX4eDghL///luCdERUmKWmpmL69JnQ1tZGZmam1HGIKI9x0K1hSpcujaCgfTA0NBTVx451xdmzZyVKRUSk2SwtLeHv74PWrVspbEtLS8OCBYuwaNFiLt1DRPmK13ETFU4cdGsQHR0d/PrrblSuXFlU37BhI3x8fCVKRUSk2XR1dREW9hcqVqyosO3atWtwcBiKS5cuSZCMiIiICgNe061Bli9finbt2opqJ09GYMIENyniEBEVCmlpaZgxQ7z0V2ZmJpYvXwkbm6YccBNRnjE2Nsb48eOgra0tdRQiKkAyQRAEqUNomoSEBJiYmADQBiArkOccMsQB/v4+otrjx49hY9MUL168KJAMROqsfbHhuW5z4t3WfEiSFQFABuLj4zVuskMp+jupBAbuQ8+ePRAbG4shQ4bi5MkIqSMRaSjN7PMKor/bsmUThg8finPnzsPRcRjniCBSgleN3H/Gm3BbvT7j8Ui3BmjcuDE2blwvqn348AE9e/blgJuIKI+MGjUWK1d6oX79RhxwE0ksPDwc3bt3h4WFBWQyGYKDg7/YZufOnWjQoAGKFSsGc3NzODk54Z9//sn/sEqyt++C4cOHAgCaNm2CqKgL6N27l8SpiKggcNCt5sqWLYvAwF8VZtIdOXIMLl68KFEqIiLNY2/fBYsWLch2+8uXL/HLL5ORlJRUgKmIKCvJyclo0KAB1q1bp9T+ERERcHBwwLBhw3Dt2jXs27cPFy5cwPDhuT9Clh9KliyJLVs2imppaWm4cIGf5YiKAk6kpsZ0dXWxf/9eVKhQQVT38lqD7dt3SJSKiEizlChRAitXLseIEcMAAKdOncbhw0ckTkVEObG3t4e9vb3S+589exZVqlTBuHHjAPy7IsGoUaOwdOnS/IqYK6tXr0L58uVFNTe3yXj48KFEiYioIPFItxobM2Y0WrZsIar99dcJTJo0RaJERCS1DRs2wNLSEgYGBrCxscHJkyez3Tc0NBQymUzhVpSuIWzduhViYi7JB9wAsHXrJnzzzTcSpiKivNa8eXM8fvwYR44cgSAIeP78Ofbv349u3bpl2yYlJQUJCQmiW3744YfucHD4WVQ7evQPbN3qk00LIipsOOhWY+vXb8CKFavk9+/fv4/+/QdyDUeiImrv3r2YMGECZsyYgaioKLRq1Qr29vZfPFJy8+ZNxMXFyW81atQooMTSMTAwwIoVyxAS8icsLS1F28qVK4dhw5wkSkZE+aF58+bYuXMn+vfvDz09PZQrVw4lS5bE2rVrs23j6ekJExMT+S2rZQO/lqmpKTZt2iCqvX37FsOHj8rz5yIi9cVBtxrLyMjApElT8PPPQ/DPP/+gZ8++ajUhCBEVrJUrV2LYsGEYPnw46tSpAy8vL1SsWBHe3t45tjMzM0O5cuXkt8K+VI2NjQ0iI8/BzW0CtLTEf+YSExMxYsRoLF26XKJ0RJQfrl+/jnHjxmH27NmIjIzE0aNHERsbi9GjR2fbxt3dHfHx8fLbo0eP8jzXunWrUa5cOVFtwoRf8OTJkzx/LiJSXxx0a4CdO3ehSpXqiI6OljoKEUkkNTUVkZGR6NSpk6jeqVMnnD59Ose21tbWMDc3R4cOHRASEpKfMSWlo6ODuXNn4+zZCNStW1dhe1hYOOrXb8RTOokKIU9PT7Ro0QKTJ09G/fr10blzZ2zYsAG+vr6Ii4vLso2+vj6MjY1Ft7zUu3cv/PTTAFHtt9/+h23bAvL0eYhI/XEiNQ3B2XSJirZXr14hIyMDZcuWFdXLli2LZ8+eZdnG3Nwcmzdvho2NDVJSUrB9+3Z06NABoaGhaN26dZZtUlJSkJKSIr+fX9c45rW6desiIMAPNjaNFLZ9+PAB06fPgpfXagiCIEE6Ispv7969g46O+GPtx7N6pPi9L1OmDLy9xTOvv379GiNHjinwLEQkPQ661UixYsXw7t07qWMQkRqTyWSi+4IgKNQ+qlWrFmrVqiW/b2dnh0ePHmH58uXZDro9PT3h4eGRd4HzmZaWFiZMGIeFC+crLK0IAJGRlzB4sCNu3LghQToiUlVSUhLu3Lkjvx8bG4vo6GiYmpqiUqVKcHd3x5MnTxAQ8O9R4+7du2PEiBHw9vZG586dERcXhwkTJqBJkyawsLAo8Pze3utQpkwZUc3FZXy2X5ISUeHG08vVhLPzWERFXUCdOnWkjkJEaqh06dLQ1tZW+MD24sULhaPfOWnWrBlu376d7faCuMYxr5ibmyMk5E+sWLFMYcCdnp6OuXPnoVmzFhxwE2mgixcvwtraGtbW1gAANzc3WFtbY/bs2QCAuLg40SSSjo6OWLlyJdatWwcrKyv07dsXtWrVQmBgYIFnHzCgP3r37iWqHTgQiN279xR4FiJSDzzSrQZat26FVauWQ1dXF+fOncLgwY44ePCQ1LGISI3o6enBxsYGx48fR8+ePeX148eP48cff1T6caKiomBubp7tdn19fejr639V1oKSmJiIChXKK9SvX78OB4ehiIyMlCAVEeWFtm3b5nhauL+/v0LN1dUVrq6u+Zjqy8qVK4f169eIai9fvsSYMS4SJSIidcAj3RKrWLEi9u3bA11dXQCAkZERAgP3iU4JJSIC/j3Ss3XrVvj6+uLGjRuYOHEiHj58KJ+d193dHQ4ODvL9vby8EBwcjNu3b+PatWtwd3fHgQMH4OJSOD78JSUlYciQocjMzAQAZGZmYuVKL9jYNOWAm4gkIZPJcOHCRVFt7FhXvHz5UqJERKQONHrQHR4eju7du8PCwgIymQzBwcFKtz116hR0dHTQsGHDfMv3JQYGBggK2g8zMzNRfdGixbh586ZEqYhIXfXv3x9eXl6YN28eGjZsiPDwcBw5cgSVK1cGoHi6ZWpqKiZNmoT69eujVatWiIiIwOHDh9GrV6/snkLjREScwooVqxAbG4t27b7DL79MxocPH6SORURFVFxcHLp06YaRI8cgMTERe/bsxf79B6SORUQSkwkaPJXr77//jlOnTqFRo0bo3bs3goKC0KNHjy+2i4+PR6NGjVC9enU8f/4810txJSQkwMTEBIA2gKwnMFJGQIA/Bg8eJKr973+H8eOPveRHbohI/bQydMrV/ulCKs582Ib4+Pg8X5Imv+VVf/c1TE1NYWBggKdPn2a5XV9fH7q6ulzlgUhtCAAyNK7Py+v+rnLlykhKSsI///zz1Y9FRAWjWokuudo/U0hDbPIfX+zvNPqabnt7e9jb2+e63ahRozBw4EBoa2vn6uh4XpowYbzCgPvmzZv4+echHHATEf0/e/su8PHZjL//vokOHTpleY3n58ucERGpgwcPHkgdgYjUhEafXq4KPz8/3L17F3PmzFG6TUpKChISEkS3r9GhQ3ssX75EVEtISECPHn0QHx//VY9NRFQYlChRAps3b8SRI7/B3Nwc7dq1hatr4bgWnYiIiIqWIjXovn37NqZNm4adO3dCR0f5g/yenp4wMTGR3ypWrKhyhipVqmDv3l3Q1tYW1X/+eQj+/vtvlR+XiKiwaNWqJWJiLmHEiGGi+uLFCznJJBGplXLlysHIyEjqGESk5orMoDsjIwMDBw6Eh4cHatasmau2ebVubbFixRAcfADffPONqD579lz89tv/VHpMIqLCQl9fH8uXL0Vo6F+wtLRU2B4SEvrVZxoREeUVmUyG7dv9cfVqNDp0aC91HCJSYxp9TXduJCYm4uLFi4iKipIvl5OZmQlBEKCjo4Njx46hffusO8y8WrfW13cLGjSoL6oFBQVjwYJFX/3YRESazMbGBgEBvqhbt67CtsTERLi5TcbWrT4SJCMiytqoUSPx3XcdAAB//vkHNmzYiClTpiE5OVniZESkborMkW5jY2NcuXIF0dHR8tvo0aNRq1YtREdHo2nTpvn6/FOmTEL//v1EtWvXrsHBwSnLiYGIiIoCHR0dzJkzC2fPRmQ54A4LC0f9+o044CYitWJpaYllyxaLat9/31Xh8kEiIkDDj3QnJSXhzp078vuxsbGIjo6GqakpKlWqBHd3dzx58gQBAQHQ0tKClZWVqL2ZmRkMDAwU6nmtdetW8PRcKKq9ffsWPXr04RI3RFRk1alTBwEBfrC1tVHY9uHDB0yfPgteXqv5xSQRqRWZTAY/v60oUaKEqD5s2EheAkNEWdLoI90XL16EtbU1rK2tAQBubm6wtrbG7NmzAQBxcXF4+PChlBEBAOfPX8DOnbvl9zMzM/HTTz+LvjAgIioqZDIZJk6cgEuXzmc54I6MvIRGjZpg1SovDriJSO24urqgTZvWopq39yb8+edfEiUiInUnE/iJJtcSEhJgYmICQBuATOl248ePw/LlSzBz5mwsWbIs3/IRUf5qZeiUq/3ThVSc+bAN8fHxMDY2zqdU+UPV/i4ngwYNxI4d2xTq6enpWLBgERYu9ER6enqePBcRSUEAkKFxfZ4y/V2NGjUQHX0RxYoVk9diY2NRv34jnr1IVAhUK9ElV/tnCmmITf7ji/2dRh/p1jSrV6+BjU1TDriJqEjbvXsPIiJOiWrXr19Hs2Yt4eExnwNuIlJLWlpa8PPbKhpwA4CT03AOuIkoRxx0F7CYmBipIxARSSozMxOOjsOQnJyMzMxMrFzpBRubpoiMjJQ6GhFRtiZOHI8WLZqLamvWrENYWLhEiYhIU2j0RGpERKSZ7t69ixEjRuPp06f8wEpEaq927dpYsGCeqHb79m24u8+QKBERaRIOuvNYrVq1sGHDWjg6DsOjR4+kjkNE+eDke79ctih6U2eYmppizRovrFmzDufPn89yn9279xRwKiKi3NPW1sa2bb4wMDCQ1zIzM+HkNALv3r2TMBkR5bW7SUdz2UK5z3g8vTwPGRsb4+DBA2jfvh0uXjyL1q1bSR2JiKjA2dt3wdWr0Rg06CcEBPjC0NBQ6khERCqbPPkXNGnSWFRbtWo1Tp06lU0LIiIxDrrziEwmw86dAahVqxaAf9cA//PPP9Cx43cSJyMiKhglSpTApk3eOHLkN5ibmwP49+yfxYsXSZyMiEg1VlZW8PCYI6r9/fffmDlztkSJiEgTcdCdRzw85uD777uJajExV3DyZIREiYiICk6rVi1x+XIkRo4crrBt0KCfYGpqKkEqIqKv06VLJ+jp6cnvZ2RkwNFxOD58+CBhKiLSNBx054FevXpi1izxRBovXrxAz5592CkTUaGmr6+P5cuXIjT0L1StWlVh+++/H8W331rj9evXEqQjIvo6y5evRKdO9vJ5epYtW4Fz585JnIqINA0nUvtK9erVw7ZtvqJaeno6+vYdwInUiKhQs7GxQUCAL+rWrauwLSkpCW5uk7Fly1YJkhER5Z3jx/+ElVVDTJ78C+bPXyh1HCLSQDzS/RVKlSqFgwcPoESJEqL6hAm/IDz8pESpiIjyl46ODubMmYWzZyOyHHCHh59E/fqNOOAmokIjISEBs2bNQWpqqtRRiEgD8Ui3irS0tLB7905Uq1ZNVPf19cf69RskSkVElL/q1KmDgAA/2NraKGxLSUnBjBmzsGrVamRmZkqQjoiIiEj9cNCtokWLFqFz506i2rlz5zF2rItEiYiI8tfw4cOwdq2XaK3ajyIjL8HBwQnXr1+XIBkRERGR+uLp5SqaOnWq6P6zZ8/Qq1dfpKSkSJSIiCh/vX79WmHAnZ6eDg+P+WjWrAUH3ESk8c6cOYNhw4ZKHYOIChkOuvNAamoqevfuj6dPn0odhYgo3wQGBmHHjl3y+zdu3ICdXSvMnTsP6enpEiYjIsobzZo1w9atm3HkyG8oX7681HGIqJDgoDsPuLiMx+nTp6WOQUSU71xdx+Phw4dYudILjRo1wcWLF6WORESU5+ztuyisTkNEpCpe060CQRDk/79p02Zs2bJFwjREpP7+7TM+7Ts0xX+Z//3v27dvUK9efSQlJUkXiojUnGb2eZ/mTUlJwfjxE/HxZyEiyppy/R0H3SpITExEyZIlpY5BRBomMTERJiYmUsfIlcTExP//v/9mI09KipcmDBFpFE3r8/j5johU9aX+TiZo2teQaiAzMxNPnz6FkZERZDJZgT9/QkICKlasiEePHsHY2LjAn1/d8fXJHl+bnOXX6yMIAhITE2FhYQEtLc26qkfq/k4VfJ9/Hb5+X4evn+b2eZrY330J34/K4eukHL5OipTt73ikWwVaWlqoUKGC1DFgbGzMN3wO+Ppkj69NzvLj9dGkoz2fUpf+ThV8n38dvn5fp6i/fprY52lyf/clRf39qCy+Tsrh6ySmTH+nOV8/EhEREREREWkYDrqJiIiIiIiI8gkH3RpIX18fc+bMgb6+vtRR1BJfn+zxtckZX5/Cgf+OX4ev39fh60fqhO9H5fB1Ug5fJ9VxIjUiIiIiIiKifMIj3URERERERET5hINuIiIiIiIionzCQTcRERERERFRPuGgWw2Fh4eje/fusLCwgEwmQ3BwcI77h4aGQiaTKdz+/vvvgglcgDw9PdG4cWMYGRnBzMwMPXr0wM2bN7/YLiwsDDY2NjAwMEDVqlWxcePGAkhbsFR5bYrSe8fb2xv169eXry1pZ2eH33//Pcc2ReF9o6k2bNgAS0tLGBgYwMbGBidPnsx236L0PldGbv/GAPxd+Ih/n0md8DORcvj5SDn8nJS/OOhWQ8nJyWjQoAHWrVuXq3Y3b95EXFyc/FajRo18SiidsLAwODs74+zZszh+/DjS09PRqVMnJCcnZ9smNjYWXbt2RatWrRAVFYXp06dj3LhxOHDgQAEmz3+qvDYfFYX3ToUKFbB48WJcvHgRFy9eRPv27fHjjz/i2rVrWe5fVN43mmjv3r2YMGECZsyYgaioKLRq1Qr29vZ4+PBhju2KwvtcGbn9G8Pfhf/w7zOpE34mUg4/HymHn5PymUBqDYAQFBSU4z4hISECAOHNmzcFkkmdvHjxQgAghIWFZbvPlClThNq1a4tqo0aNEpo1a5bf8SSlzGtTlN87giAIpUqVErZu3ZrltqL6vtEETZo0EUaPHi2q1a5dW5g2bVqW+xf193lOlPkbw9+FrPHvM6kbfiZSDj8fKY+fk/IOj3QXItbW1jA3N0eHDh0QEhIidZwCER8fDwAwNTXNdp8zZ86gU6dOolrnzp1x8eJFpKWl5Ws+KSnz2nxU1N47GRkZ2LNnD5KTk2FnZ5flPkX1faPuUlNTERkZqfBv06lTJ5w+fTrHtkXtfZ5X+Lvw9fjeo4LAz0TK4eejL+PnpLzHQXchYG5ujs2bN+PAgQMIDAxErVq10KFDB4SHh0sdLV8JggA3Nze0bNkSVlZW2e737NkzlC1bVlQrW7Ys0tPT8erVq/yOKQllX5ui9t65cuUKSpQoAX19fYwePRpBQUGoW7dulvsWxfeNJnj16hUyMjKy/Ld59uxZlm2K2vs8r/F3QXV871FB4Wci5fDzUc74OSn/6EgdgL5erVq1UKtWLfl9Ozs7PHr0CMuXL0fr1q0lTJa/XFxcEBMTg4iIiC/uK5PJRPcFQciyXlgo+9oUtfdOrVq1EB0djbdv3+LAgQMYMmQIwsLCsv2DUtTeN5okq3+b7P5ditr7PD/wd0E1fO9RQeFnIuXw81HO+Dkp//BIdyHVrFkz3L59W+oY+cbV1RWHDh1CSEgIKlSokOO+5cqVUzgC9uLFC+jo6OCbb77Jz5iSyM1rk5XC/N7R09ND9erVYWtrC09PTzRo0ACrV6/Oct+i9r7RFKVLl4a2tnaW/zaff+Oek8L8Ps9r/F3IW3zvUV7jZyLl8PPRl/FzUv7hoLuQioqKgrm5udQx8pwgCHBxcUFgYCBOnDgBS0vLL7axs7PD8ePHRbVjx47B1tYWurq6+RW1wKny2mSlsL53siIIAlJSUrLcVlTeN5pGT08PNjY2Cv82x48fR/PmzZV+nKL0Pv9a/F3IW3zvUV7hZyLl8POR6vg5KQ8V/Nxt9CWJiYlCVFSUEBUVJQAQVq5cKURFRQkPHjwQBEEQpk2bJgwePFi+/6pVq4SgoCDh1q1bwtWrV4Vp06YJAIQDBw5I9SPkmzFjxggmJiZCaGioEBcXJ7+9e/dOvs/nr8+9e/eEYsWKCRMnThSuX78u+Pj4CLq6usL+/ful+BHyjSqvTVF677i7uwvh4eFCbGysEBMTI0yfPl3Q0tISjh07JghC0X3faKI9e/YIurq6go+Pj3D9+nVhwoQJQvHixYX79+8LglC03+fKyO3fGP4u/Id/n0md8DORcvj5SDn8nJS/OOhWQx+XKfj8NmTIEEEQBGHIkCFCmzZt5PsvWbJEqFatmmBgYCCUKlVKaNmypXD48GFpwuezrF4XAIKfn598n89fH0EQhNDQUMHa2lrQ09MTqlSpInh7exds8AKgymtTlN47Q4cOFSpXrizo6ekJZcqUETp06CD/QyIIRfd9o6nWr18v//ds1KiRaOmXovw+V0Zu/8YIAn8XPuLfZ1In/EykHH4+Ug4/J+UvmSD8/xXvRERERERERJSneE03ERERERERUT7hoJuIiIiIiIgon3DQTURERERERJRPOOgmIiIiIiIiyiccdBMRERERERHlEw66iYiIiIiIiPIJB91ERERERERE+YSDbiIiIiIiIqJ8wkE30f+bO3cuGjZs+MX9Zs2ahZEjR+bqsUNDQyGTyfD27VvVwhUAZX9+AEhJSUGlSpUQGRmZv6G+Qnh4OLp37w4LCwvIZDIEBwcXqucjUkV+9nNfcv/+fchkMkRHR+fp4+YFR0dH9OjRQ6l9X7x4gTJlyuDJkyf5GyoX2N8R5R8p+83cqlKlCry8vABoxmc1VWlin8dBN+WLFy9eYNSoUahUqRL09fVRrlw5dO7cGWfOnJE62ld5/vw5Vq9ejenTpytsO336NLS1tdGlS5cCyZLXA/lJkybhr7/+UmpffX19TJo0CVOnTs2T584PycnJaNCgAdatW1con4+kV5T6OUdHR8hkMoVbbvq7ihUrIi4uDlZWVl/ct6AH6KtXr4a/v79S+5qZmWHw4MGYM2dO/obKBfZ3pCmKSr+ZVX/56c3R0THHx8uLgaQmfFZTlSb2eTp5mIdIrnfv3khLS8O2bdtQtWpVPH/+HH/99Rdev379VY+blpYGXV3dPEqZez4+PrCzs0OVKlUUtvn6+sLV1RVbt27Fw4cPUalSpYIPqAJBEJCRkYESJUqgRIkSSrcbNGgQJk+ejBs3bqBOnTr5mFA19vb2sLe3z3Z7amoqZs6ciZ07d+Lt27ewsrLCkiVL0LZt23x5Pip8ilo/16VLF/j5+Ylq+vr6Sj+utrY2ypUrlxcR85yJiUmu9ndyckKTJk2wbNkylCpVKp9SKY/9HWmKotJvxsXFybft3bsXs2fPxs2bN+U1Q0PDAsml7p/VVKWJfR6PdFOee/v2LSIiIrBkyRK0a9cOlStXRpMmTeDu7o5u3brJ95PJZPD29oa9vT0MDQ1haWmJffv2ybd/PNLx66+/om3btjAwMMCOHTsAAH5+fqhTpw4MDAxQu3ZtbNiwQZRh6tSpqFmzJooVK4aqVati1qxZSEtLE+2zePFilC1bFkZGRhg2bBg+fPjwxZ9tz549+OGHHxTqycnJ+PXXXzFmzBh8//33Sh0xOX36NFq3bg1DQ0NUrFgR48aNQ3Jysnz7jh07YGtrCyMjI5QrVw4DBw7Eixcv5K9Nu3btAAClSpUSfWuakpKCcePGwczMDAYGBmjZsiUuXLggf9yPR8j/+OMP2NraQl9fHydPnszy9ClfX1/Uq1cP+vr6MDc3h4uLi3zbN998g+bNm2P37t1f/FnVkZOTE06dOoU9e/YgJiYGffv2RZcuXXD79m2po5EGKIr93MejUp/ePh1wKvuzfjx6/ebNGwwaNAhlypSBoaEhatSoIR/UW1paAgCsra0hk8lEH5Ryel0+fT1btWoFQ0NDNG7cGLdu3cKFCxdga2uLEiVKoEuXLnj58qW83eenl2dmZmLJkiWoXr069PX1UalSJSxcuFC+/dtvv0W5cuUQFBT0xddTHbC/I3VQlPrNT/tJExMTyGQyUW3Xrl2oVq0a9PT0UKtWLWzfvl3e9uPAvWfPnpDJZPL7d+/exY8//oiyZcuiRIkSaNy4Mf78888cc2n6ZzVVqWWfJxDlsbS0NKFEiRLChAkThA8fPmS7HwDhm2++EbZs2SLcvHlTmDlzpqCtrS1cv35dEARBiI2NFQAIVapUEQ4cOCDcu3dPePLkibB582bB3NxcXjtw4IBgamoq+Pv7yx97/vz5wqlTp4TY2Fjh0KFDQtmyZYUlS5bIt+/du1fQ09MTtmzZIvz999/CjBkzBCMjI6FBgwbZ5n39+rUgk8mEs2fPKmzz8fERbG1tBUEQhN9++02oUqWKkJmZKd8eEhIiABDevHkjCIIgxMTECCVKlBBWrVol3Lp1Szh16pRgbW0tODo6ih7zyJEjwt27d4UzZ84IzZo1E+zt7QVBEIT09HThwIEDAgDh5s2bQlxcnPD27VtBEARh3LhxgoWFhXDkyBHh2rVrwpAhQ4RSpUoJ//zzjyhL/fr1hWPHjgl37twRXr16JcyZM0f082/YsEEwMDAQvLy8hJs3bwrnz58XVq1aJfq5p0yZIrRt2zbb10xdABCCgoLk9+/cuSPIZDLhyZMnov06dOgguLu75/nzUeFT1Pq5IUOGCD/++GOOr4myP2tUVJQgCILg7OwsNGzYULhw4YIQGxsrHD9+XDh06JAgCIJw/vx5AYDw559/CnFxcfL+60uvy8fnqF27tnD06FHh+vXrQrNmzYRGjRoJbdu2FSIiIoRLly4J1atXF0aPHp3tzzdlyhShVKlSgr+/v3Dnzh3h5MmTwpYtW0Q/b79+/UR9trpgf0fqqqj1mx/5+fkJJiYm8vuBgYGCrq6usH79euHmzZvCihUrBG1tbeHEiROCIAjCixcvBACCn5+fEBcXJ7x48UIQBEGIjo4WNm7cKMTExAi3bt0SZsyYIRgYGAgPHjyQP3blypU19rOaqjSlz+Ogm/LF/v37hVKlSgkGBgZC8+bNBXd3d+Hy5cuifQCIPvQIgiA0bdpUGDNmjCAI/3WqXl5eon0qVqwo7Nq1S1SbP3++YGdnl22epUuXCjY2NvL7dnZ2WT53Tp1qVFSUAEB4+PChwrbmzZvLc6alpQmlS5cWjh8/Lt/++aB78ODBwsiRI0WPcfLkSUFLS0t4//59ls//8UNoYmJilo8pCIKQlJQk6OrqCjt37pTXUlNTBQsLC2Hp0qWidsHBwaLH/3zQbWFhIcyYMSPb10MQBGH16tVClSpVctxHHXzeQf76668CAKF48eKim46OjtCvXz9BEP57/+V0c3Z2Vur5qHAqSv3ckCFDBG1tbYXfmXnz5uX6Z/046O7evbvg5OSUZY7P9/3oS6/Lx3Zbt26Vb9+9e7cAQPjrr7/kNU9PT6FWrVqin+/joDshIUHQ19dXGGR/buLEiWr5QZb9HamzotRvfvT5oLt58+bCiBEjRPv07dtX6Nq1q/y+sr9XdevWFdauXSu/n9WgW1M+q6lKU/o8XtNN+aJ3797o1q0bTp48iTNnzuDo0aNYunQptm7dKpo8ws7OTtTOzs5OYeIcW1tb+f+/fPkSjx49wrBhwzBixAh5PT09XXRN3v79++Hl5YU7d+4gKSkJ6enpMDY2lm+/ceMGRo8erfDcISEh2f5M79+/BwAYGBiI6jdv3sT58+cRGBgIANDR0UH//v3h6+uL7777LsvHioyMxJ07d7Bz5055TRAEZGZmIjY2FnXq1EFUVBTmzp2L6OhovH79GpmZmQCAhw8fom7dulk+7t27d5GWloYWLVrIa7q6umjSpAlu3Lgh2vfT1/VzL168wNOnT9GhQ4ds9wH+vSbp3bt3Oe6jjjIzM6GtrY3IyEhoa2uLtn28rr18+fIKr9nn1OFaTpJOUernAKBdu3bw9vYW1UxNTRUe/0s/60djxoxB7969cenSJXTq1Ak9evRA8+bNs82m7OsCAPXr15f/f9myZQH8e0r4p7WPl+t87saNG0hJSSk0/R/7O1InRa3fzMqNGzcUZjlv0aIFVq9enWO75ORkeHh44H//+x+ePn2K9PR0vH//Hg8fPsyxnab0VXlFXfs8Drop3xgYGKBjx47o2LEjZs+ejeHDh2POnDlKzdj4qeLFi8v//+PAc8uWLWjatKlov4+/WGfPnsWAAQPg4eGBzp07w8TEBHv27MGKFSu+6ucpXbo0gH+vQyxTpoy87uPjg/T0dJQvX15eEwQBurq6ePPmTZa/tJmZmRg1ahTGjRunsK1SpUpITk5Gp06d0KlTJ+zYsQNlypTBw4cP0blzZ6Smpmab8d8v4BRfQ0EQcnxdP6fsBB+vX78WvRaawtraGhkZGXjx4gVatWqV5T66urqoXbt2AScjTVNU+rmPGatXr57rx/z8Z/3I3t4eDx48wOHDh/Hnn3+iQ4cOcHZ2xvLly7PcX5nX5aNPJ1T6+Pyf1z4+3ucKW//H/o7UTVHqN7OjzOe0z02ePBl//PEHli9fjurVq8PQ0BB9+vTJ8XMhoDl9VV5R1z6PE6lRgalbt65oojDg3w7w8/s5/RKULVsW5cuXx71791C9enXR7ePEO6dOnULlypUxY8YM2NraokaNGnjw4IHocerUqZPlc+ekWrVqMDY2xvXr1+W19PR0BAQEYMWKFYiOjpbfLl++jMqVK4uOZH+qUaNGuHbtmsLPUL16dejp6eHvv//Gq1evsHjxYrRq1Qq1/6+9uwtp6o3jAP474tk8NSltkRW2ETnzpmYXUgiJF0IXRhlGVJDiXZFohBFiEqVBF5GGUiiFlS/RhVMvrLugosAcvmAXLdOQwNDoqld0fP8X+3vw6HIuXNvc9wO7cOccz/M8wy/Pz+15tnPnondlTCaTiIh4vV79ubnrX758qT83MzMj/f39Qe1amZiYKHa7PeBXiI2MjEhmZuayf++/9O3bN/31EBEZHx+XwcFBmZiYEIfDISdPnpRTp05JZ2enjI+Py5s3b+T69evS29u74vej2LEacy4YwfZ148aNUlxcLK2trVJXVydNTU0i4j/fljMuKyEtLU00TYuq/GPeUTSLtdzMyMgwzNNEfJvrzp+nqapqyD8RkRcvXkhxcbEUFBTomzl+/Pgx4P0iKatWSlRmXtAfSCcK4MuXL8jNzcXDhw8xNDSEsbExPH78GJs2bUJJSYl+nojAarXi7t27ePfuHaqrqxEXF4e3b98C+POavubmZmiapm/wNTw8jHv37uHGjRsAgK6uLsTHx6OjowOjo6Oor69HcnKyYT3No0ePYDabDfcOtFEGABw5cgTnz5/Xf3a5XDCZTPomZvNVVlbC6XQCWLz+emhoCJqm4cyZMxgYGIDH40F3dzfOnj0LwLeJhslkQkVFBT58+IDu7m44HA7DeHz69AmKoqClpQVTU1P6Wu+ysjJs2bIFT548MWyk9vXrV79tmbNwTXdLSwsSEhJQX18Pj8cDt9uNW7duGa6x2Wx48ODBkmMWLnP9XPgoKioC4FvrXl1dDbvdDlVVkZKSgoKCAgwPD4fkfrS6xFLOAb41zwcOHMDk5KThMT09/dd9vXTpErq6uvD+/XuMjIwgPz8fWVlZAHx7Y2iahpqaGnz+/FnP2EDj4m88/WXewjWWCzdSu3z5MpKSknD//n2Mjo7i9evXhnXi379/h6ZpeP78+ZJj+a8w7ygaxFpuzlmYNy6XC6qq4vbt2/B4PPpGas+ePdPPSUtLw+nTpzE5OanP3w4fPgyn04mBgQEMDg7i4MGDSExMRFlZmX6dvzXdkTxX+1vRmHksumnF/fr1CxcvXsSePXuwbt06rFmzBunp6aiqqsKPHz/080QEjY2NyMvLg9lshs1mQ0dHh378T6EKAG1tbXA6nTCZTEhKSsL+/fvR2dmpH6+oqMCGDRtgsVhw7Ngx3Lx50xB4AFBbWwur1QqLxYKioiJcuHAhYKg+ffoUW7duhdfrBQDk5+cbNr6Yz+12Q0Tgdrv9Tvr6+vqQl5cHi8WCtWvXYteuXaitrdWPt7e3w263w2w2Y9++fejp6Vk0HleuXEFKSgoURdH/8H/+/InS0lJYrVaYzWZkZ2ejr69Pv2a5RTcA3LlzB+np6VBVFZs3b0Zpaal+7NWrV1i/fr3hNSWKFbGUc4CvKPU34Zi/GVmwfb169SoyMjKgaRqSk5Nx6NAhjI2N6ec3NzcjNTUVcXFxyMnJWda4rFTR7fV6UVNTA5vNBlVVsW3bNly7dk0/3t7ebug7EQUWa7k5Z2HeAL5viNm+fTtUVYXD4VhUFPf09GDHjh2Ij4+HzWbT+52bmwtN05CamoqGhgbk5OQsWXRzrhY5FOD/RaBE/5iiKOJyuQzfjRrpAMjevXulvLxcjh8/Hu7mhNXRo0clMzNTKisrw90UoogVSzkXjX39W1lZWVJeXi4nTpwId1OIVp1ozJJInR9yrhY5uKabKAiKokhTU5PMzs6Guylh9fv3b9m9e7ecO3cu3E0hohXGnFva1NSUFBYWRtTEmojCKxJzk3O1yMJ3uilsovE/mUREwYilnIulvhJR6DBLaDVi0U1EREREREQUIvx4OREREREREVGIsOgmIiIiIiIiChEW3UREREREREQhwqKbiIiIiIiIKERYdBMRERERERGFCItuIiIiIiIiohBh0U1EREREREQUIiy6iYiIiIiIiEKERTcRERERERFRiPwHw4OjOa3Bz9oAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHj0lEQVR4nO3de1zO9+M//sfV4bquRA2lK1RymEoOKXQQM9SyGZtDTtFbseSUtpmYQ2ziPVI55PCmZnPIPhgzQ8yhFkPK24gdsCxX7+SUmFK9vn/4ef12uSpFdfWqx/12e91uXs/X83q+ns+eOzw8e16vl0wQBAFERERERBKip+sOEBERERFVFkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBFRBclkMnz77bc6b6MmXb9+HTKZDOnp6bWyPSKqvxhiiaje8vf3h0wm0zp+//33Uuur1Wr4+PhUqO0FCxagS5cur9RGXWRlZQW1Wg1HR0cAwLFjxyCTyXDv3j3ddoyIJMdA1x0gItKlt956C3FxcRpl5ubmGueFhYWQy+VQqVSvfL+qaEPK9PX16/3PgIiqBldiiaheUygUUKlUGkffvn0xZcoUhIaGwszMDP379wegvRXgr7/+wogRI9CkSRMYGxvDxcUFP//8M+Lj4xEeHo7z58+Lq7vx8fGltnHhwgW8+eabMDIyQtOmTTFx4kTk5+eL1/39/TF48GAsW7YMlpaWaNq0KSZPnownT568cGxhYWFwdXXVKu/UqRPmz58vnsfFxcHe3h5KpRJ2dnZYs2ZNue0eP34c3bt3h0KhgKWlJWbNmoWioiLxeklJCZYuXYq2bdtCoVDA2toan3/+OQDN7QTXr19Hnz59AACNGzeGTCaDv78/Nm/ejKZNm6KgoEDjvkOGDMHYsWNfOG4iqh+4EktEVIovv/wSkyZNwk8//QRBELSu5+fno3fv3mjRogX27t0LlUqFc+fOoaSkBL6+vvjll19w4MABHD58GABgamqq1cajR4/w1ltvwdXVFWfOnEFOTg4CAwMxZcoUMfQCwNGjR2FpaYmjR4/i999/h6+vL7p06YIJEyaUO4bRo0djyZIl+OOPP9CmTRsAwMWLF3HhwgX83//9HwBgw4YNmD9/PlatWgUnJyekpaVhwoQJMDY2xrhx47TazMrKwoABA8SwefnyZUyYMAFKpRILFiwA8DQ8b9iwAStWrEDPnj2hVqtx+fJlrbasrKywc+dODBkyBFeuXIGJiQmMjIwgl8sxbdo07N27F8OGDQMA5ObmYt++fThw4EC5YyaiekQgIqqnxo0bJ+jr6wvGxsbiMXToUKF3795Cly5dtOoDEHbv3i0IgiCsW7dOaNSokXD79u1S254/f77QuXPncttYv3690LhxYyE/P1+8/v333wt6enpCdna22EcbGxuhqKhIrDNs2DDB19e3QmPs1KmTsHDhQvE8LCxM6Natm3huZWUlbN26VeMzixYtEtzc3ARBEIRr164JAIS0tDRBEARh9uzZQvv27YWSkhKx/urVq4WGDRsKxcXFQl5enqBQKIQNGzaU2p/n2zt69KgAQLh7965GvUmTJgk+Pj7ieVRUlNC6dWuN+xJR/cbtBERUr/Xp0wfp6eniERMTAwBwcXEp93Pp6elwcnJCkyZNXvreGRkZ6Ny5M4yNjcUyDw8PlJSU4MqVK2JZhw4doK+vL55bWloiJyenQvcYPXo0tmzZAgAQBAHbtm3D6NGjAQC3bt3CjRs3EBAQgIYNG4rHZ599hj/++KPMPru5uUEmk2n0OT8/H3/99RcyMjJQUFCAvn37VvwHUYoJEybg0KFDyMrKAvB0y8OzL+IREQHcTkBE9ZyxsTHatm1banl5jIyMXvnegiCUGcr+WW5oaKh1raSkpEL3GDVqFGbNmoVz587h77//xo0bNzBixAgAENvYsGEDevToofG5f4bmF/VZ+P+2W8hksir5uQCAk5MTOnfujM2bN8Pb2xsXLlzAd999VyVtE1HdwJVYIqKX0KlTJ6Snp+POnTulXpfL5SguLi63DQcHB6Snp+Phw4di2U8//QQ9PT28/vrrVdLPli1bolevXtiyZQu2bNmCfv36wcLCAgBgYWGBFi1a4OrVq2jbtq3GYWtrW2afU1JSNPYJp6SkoFGjRmjRogXatWsHIyMjHDlypEL9k8vlAFDqzyowMBBxcXHYtGkT+vXrBysrq8oOn4jqMIZYIqKXMHLkSKhUKgwePBg//fQTrl69ip07d+LkyZMAgFatWuHatWtIT09Hbm6u1jftgae/6lcqlRg3bhx++eUXHD16FFOnToWfn58YNKvC6NGjsX37dnzzzTcYM2aMxrUFCxYgIiIC0dHR+PXXX3HhwgXExcUhMjKy1LaCg4Nx48YNTJ06FZcvX8aePXswf/58hIaGQk9PD0qlEp988glmzpyJzZs3448//sCpU6ewcePGUtuzsbGBTCbDvn37cOvWLY0nM4wePRpZWVnYsGEDxo8fX2U/DyKqGxhiiYheglwux6FDh9CsWTMMGDAAHTt2xJIlS8Rfww8ZMgRvvfUW+vTpA3Nzc2zbtk2rjQYNGuDgwYO4c+cOunXrhqFDh6Jv375YtWpVlfZ12LBhuH37Nh49eoTBgwdrXAsMDMR//vMfxMfHo2PHjujduzfi4+PLXIlt0aIF9u/fj9OnT6Nz584ICgpCQEAAPv30U7HO3Llz8eGHH2LevHmwt7eHr69vmXt4W7RogfDwcMyaNQsWFhaYMmWKeM3ExARDhgxBw4YNtfpNRCQThFKeHUNERFQL9O/fH/b29uIX7oiInmGIJSKiWufOnTs4dOgQRo8ejUuXLqF9+/a67hIR1TJ8OgERkUQlJSXBx8enzOv/3F8qNV27dsXdu3exdOlSBlgiKhVXYomIJOrvv/8Wn6NamtIeHUZEVFcwxBIRERGR5Oj86QRr1qyBra0tlEolnJ2dkZSUVGbd5ORkeHh4oGnTpjAyMoKdnR1WrFihUSc+Ph4ymUzrePz4cXUPhYiIiIhqiE73xCYkJCAkJARr1qyBh4cH1q1bBx8fH1y6dAnW1tZa9Y2NjTFlyhR06tQJxsbGSE5OxgcffABjY2NMnDhRrGdiYqLxykYAUCqV1T4eIiIiIqoZOt1O0KNHD3Tt2hWxsbFimb29PQYPHoyIiIgKtfH+++/D2NgYX331FYCnK7EhISG4d+/eS/erpKQEN2/eRKNGjfiebiIiIqIaJAgCHjx4gObNm0NPr+xNAzpbiS0sLERqaipmzZqlUe7l5YWUlJQKtZGWloaUlBR89tlnGuX5+fmwsbFBcXExunTpgkWLFsHJyanCfbt58yZfb0hERESkQzdu3EDLli3LvK6zEJubm4vi4mKtVytaWFggOzu73M+2bNkSt27dQlFRERYsWIDAwEDxmp2dnfjmmby8PERHR8PDwwPnz59Hu3btSm2voKBA45WQzxanb9y4ARMTk5cdIhERERFVUl5eHqysrNCoUaNy6+n8ObHP/7peEIQX/go/KSkJ+fn5OHXqFGbNmoW2bdti5MiRAABXV1e4urqKdT08PNC1a1esXLmyzDe+REREIDw8XKvcxMSEIZaIiIhIB16UB3UWYs3MzKCvr6+16pqTk6O1Ovu8Z+/07tixI/73v/9hwYIFYoh9np6eHrp164bffvutzPbCwsIQGhoqnj/7GwARERER1U46e8SWXC6Hs7MzEhMTNcoTExPh7u5e4XYEQdDYClDa9fT0dFhaWpZZR6FQiKuuXH0lIiIiqv10up0gNDQUfn5+cHFxgZubG9avX4/MzEwEBQUBeLpCmpWVhc2bNwMAVq9eDWtra9jZ2QF4+tzYZcuWYerUqWKb4eHhcHV1Rbt27ZCXl4eYmBikp6dj9erVNT9AIiIiIqoWOg2xvr6+uH37NhYuXAi1Wg1HR0fs378fNjY2AAC1Wo3MzEyxfklJCcLCwnDt2jUYGBigTZs2WLJkCT744AOxzr179zBx4kRkZ2fD1NQUTk5OOHHiBLp3717l/S8uLsaTJ0+qvF2qWYaGhtDX19d1N4iIiKgS+NrZUuTl5cHU1BT3798vdWuBIAjIzs5+pWfRUu3y2muvQaVS8bnAREREOvaiHPaMzp9OIEXPAmyzZs3QoEEDBh8JEwQBjx49Qk5ODgCUu3eaiIiIag+G2EoqLi4WA2zTpk113R2qAkZGRgCePhmjWbNm3FpAREQkATp7OoFUPdsD26BBAx33hKrSs/nkHmciIiJpYIh9SdxCULdwPomIiKSFIZaIiIiIJId7YqnCrl+/DltbW6SlpaFLly667o4Gf39/3Lt3D99++62uu0JERFQrpA2o2Hd3nPbfruaeVA+G2CpUkCGv0fsp7AsrVd/f3x9ffvmlVrm3tzcOHDjwws9bWVlBrVbDzMzshXVrOvBGR0eDT4sjIiKqPxhi65m33noLcXFxGmUKhaJCn9XX14dKpaqObr0yU1NTXXeBiIiIahD3xNYzCoUCKpVK42jcuDGAp19uio2NhY+PD4yMjGBra4tvvvlG/Oz169chk8mQnp4OALh79y5Gjx4Nc3NzGBkZoV27dmJAtrW1BQA4OTlBJpPhjTfeENuJi4uDvb09lEol7OzssGbNGq177NixA56enjAyMkK3bt3w66+/4syZM3BxcUHDhg3x1ltv4datW+Ln/P39MXjwYPG8pKQES5cuRdu2baFQKGBtbY3PP/+8qn+cREREpCNciSUNc+fOxZIlSxAdHY2vvvoKI0eOhKOjI+zt7Uute+nSJfzwww8wMzPD77//jr///hsAcPr0aXTv3h2HDx9Ghw4dIJc/3WqxYcMGzJ8/H6tWrYKTkxPS0tIwYcIEGBsbY9y4cWLb8+fPR1RUFKytrTF+/HiMHDkSJiYmiI6ORoMGDTB8+HDMmzcPsbGxpY4jLCwMGzZswIoVK9CzZ0+o1Wpcvny5Gn5iREREpAsMsfXMvn370LBhQ42yTz75BHPnzgUADBs2DIGBgQCARYsWITExEStXrtRYLX0mMzMTTk5OcHFxAQC0atVKvGZubg4AaNq0qcYWhEWLFmH58uV4//33ATxdsb106RLWrVunEWI/+ugjeHt7AwCmT5+OkSNH4siRI/Dw8AAABAQEID4+vtQxPnjwANHR0Vi1apXYZps2bdCzZ8+K/ZCIiIio1mOIrWf69OmjtXrZpEkT8c9ubm4a19zc3MTtA8+bNGkShgwZgnPnzsHLywuDBw+Gu7t7mfe+desWbty4gYCAAEyYMEEsLyoq0trT2qlTJ/HPFhYWAICOHTtqlD17VezzMjIyUFBQgL59+5bZFyIiIpI2hth6xtjYGG3btq3UZ8p6EYCPjw/+/PNPfP/99zh8+DD69u2LyZMnY9myZaXWLykpAfB0S0GPHj00rj3/qldDQ0Ot+z9f9qy95z17jSwRERHVXfxiF2k4deqU1rmdnV2Z9c3NzeHv74+vv/4aUVFRWL9+PQCIe2CLi4vFuhYWFmjRogWuXr2Ktm3bahzPvghWFdq1awcjIyMcOXKkytokIiKi2oUrsfVMQUEBsrOzNcoMDAzEZ79+8803cHFxQc+ePbFlyxacPn0aGzduLLWtefPmwdnZGR06dEBBQQH27dsnfgGsWbNmMDIywoEDB9CyZUsolUqYmppiwYIFmDZtGkxMTODj44OCggKcPXsWd+/eRWhoaJWMUalU4pNPPsHMmTMhl8vh4eGBW7du4eLFiwgICKiSexAREZFuMcTWMwcOHIClpaVGWfv27cVv7oeHh2P79u0IDg6GSqXCli1b4ODgUGpbcrkcYWFhuH79OoyMjODp6Ynt27cDeBqMY2JisHDhQsybNw+enp44duwYAgMD0aBBA3zxxReYOXMmjI2N0bFjR4SEhFTpOOfOnQsDAwPMmzcPN2/ehKWlJYKCgqr0HkRERKQ7MoGvOdKSl5cHU1NT3L9/HyYmJhrXHj9+jGvXrsHW1hZKpVJHPaweMpkMu3fv1njean1Rl+eViIjqJ6m+dra8HPZP3BNLRERERJLDEEtEREREksM9sSTizhIiIiKSCq7EEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5Og8xK5Zs0Z8S5KzszOSkpLKrJucnAwPDw80bdoURkZGsLOzw4oVK7Tq7dy5Ew4ODlAoFHBwcMDu3burcwh1xrFjxyCTyXDv3j1dd6VMCxYsQJcuXXTdDSIiItIxnT4nNiEhASEhIVizZg08PDywbt06+Pj44NKlS7C2ttaqb2xsjClTpqBTp04wNjZGcnIyPvjgAxgbG2PixIkAgJMnT8LX1xeLFi3Ce++9h927d2P48OFITk5Gjx49qnU8FX29W1V52dfEpaSkwNPTE/3798eBAwequFeajh07hj59+uDu3bt47bXXXrm9jz76CFOnTn31jhEREZGk6XQlNjIyEgEBAQgMDIS9vT2ioqJgZWWF2NjYUus7OTlh5MiR6NChA1q1aoUxY8bA29tbY/U2KioK/fv3R1hYGOzs7BAWFoa+ffsiKiqqhkZV+23atAlTp05FcnIyMjMzdd2dChEEAUVFRWjYsCGaNq3ZvywQERFR7aOzEFtYWIjU1FR4eXlplHt5eSElJaVCbaSlpSElJQW9e/cWy06ePKnVpre3d7ltFhQUIC8vT+Ooqx4+fIgdO3Zg0qRJeOeddxAfH19u/ZSUFPTq1QtGRkawsrLCtGnT8PDhQ/H6119/DRcXFzRq1AgqlQqjRo1CTk4OAOD69evo06cPAKBx48aQyWTw9/cH8PRnPm3aNDRr1gxKpRI9e/bEmTNnxHafbW04ePAgXFxcoFAokJSUVOp2gk2bNqFDhw5QKBSwtLTElClTXv0HRURERLWazkJsbm4uiouLYWFhoVFuYWGB7Ozscj/bsmVLKBQKuLi4YPLkyQgMDBSvZWdnV7rNiIgImJqaioeVldVLjEgaEhIS0L59e7Rv3x5jxoxBXFxcma+bvXDhAry9vfH+++/jv//9LxISEpCcnKwREgsLC7Fo0SKcP38e3377La5duyYGVSsrK+zcuRMAcOXKFajVakRHRwMAZs6ciZ07d+LLL7/EuXPn0LZtW3h7e+POnTsafZg5cyYiIiKQkZGBTp06afUxNjYWkydPxsSJE3HhwgXs3bsXbdu2rYofFREREdViOt0TCwAymUzjXBAErbLnJSUlIT8/H6dOncKsWbPQtm1bjBw58qXbDAsLQ2hoqHiel5dXZ4Psxo0bMWbMGADAW2+9hfz8fBw5cgT9+vXTqvvFF19g1KhRCAkJAQC0a9cOMTEx6N27N2JjY6FUKjF+/HixfuvWrRETE4Pu3bsjPz8fDRs2RJMmTQAAzZo1E/fEPnz4ELGxsYiPj4ePjw8AYMOGDUhMTMTGjRvx8ccfi20uXLgQ/fv3L3M8n332GT788ENMnz5dLOvWrdvL/XCIiIh0yLBj6IsrAXhyIbKaeyINOguxZmZm0NfX11ohzcnJ0VpJfZ6trS0AoGPHjvjf//6HBQsWiCFWpVJVuk2FQgGFQvEyw5CUK1eu4PTp09i1axcAwMDAAL6+vti0aVOpITY1NRW///47tmzZIpYJgoCSkhJcu3YN9vb2SEtLw4IFC5Ceno47d+6gpKQEAJCZmQkHB4dS+/HHH3/gyZMn8PDwEMsMDQ3RvXt3ZGRkaNR1cXEpczw5OTm4efMm+vbtW/EfAhEREdUJOguxcrkczs7OSExMxHvvvSeWJyYmYtCgQRVuRxAEFBQUiOdubm5ITEzEjBkzxLJDhw7B3d29ajouYRs3bkRRURFatGghlgmCAENDQ9y9e1erfklJCT744ANMmzZN65q1tTUePnwILy8veHl54euvv4a5uTkyMzPh7e2NwsLCMvvxbPtCRVbMjY2Ny2zHyMiozGtERERUt+l0O0FoaCj8/Pzg4uICNzc3rF+/HpmZmQgKCgLw9Nf8WVlZ2Lx5MwBg9erVsLa2hp2dHYCnz41dtmyZxiOXpk+fjl69emHp0qUYNGgQ9uzZg8OHDyM5ObnmB1iLFBUVYfPmzVi+fLnWF9+GDBmCLVu2wNHRUaO8a9euuHjxYpl7TC9cuIDc3FwsWbJE3H5x9uxZjTpyuRwAUFxcLJa1bdsWcrkcycnJGDVqFADgyZMnOHv2rLh1oSIaNWqEVq1a4ciRI+IXyIiIiKoCf7Vf++k0xPr6+uL27dtYuHAh1Go1HB0dsX//ftjY2AAA1Gq1xiOgSkpKEBYWhmvXrsHAwABt2rTBkiVL8MEHH4h13N3dsX37dnz66aeYO3cu2rRpg4SEhGp/Rmxtt2/fPty9excBAQEwNTXVuDZ06FBs3LhR68URn3zyCVxdXTF58mRMmDABxsbGyMjIQGJiIlauXAlra2vI5XKsXLkSQUFB+OWXX7Bo0SKNNmxsbCCTybBv3z4MGDAARkZGaNiwISZNmoSPP/4YTZo0gbW1Nf7973/j0aNHCAgIqNS4FixYgKCgIDRr1gw+Pj548OABfvrpJz5LloiIqI7T+Re7goODERwcXOq15x//NHXq1AqFk6FDh2Lo0KFV0b06Y+PGjejXr59WgAWersQuXrwY586d0yjv1KkTjh8/jjlz5sDT0xOCIKBNmzbw9fUFAJibmyM+Ph6zZ89GTEwMunbtimXLluHdd98V22jRogXCw8Mxa9Ys/Otf/8LYsWMRHx+PJUuWoKSkBH5+fnjw4AFcXFxw8OBBNG7cuFLjGjduHB4/fowVK1bgo48+gpmZGeeeiKiO4aoolUYmlPV8pXosLy8PpqamuH//PkxMTDSuPX78GNeuXRNflUt1A+eViKj20kWIrQv3rOibRF/2DaDVpbwc9k86X4klIiIiIt2pSHiujavcOn3tLBERERHRy2CIJSIiIiLJ4XYCIiIiqjB+yYpqC67EEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxFK1atWqFaKionTdDSIiIqpj+IitKlTRx45Ulco8vkQmk5V7fdy4cYiPjy/387t378bgwYMrfE8iIqpeUn3TElFVYIitJ9RqtfjnhIQEzJs3D1euXBHLjIyMdNEtIiIiopfC7QT1hEqlEg9TU1PIZDKNsq1bt6JNmzaQy+Vo3749vvrqK/GzrVq1AgC89957kMlk4vkff/yBQYMGwcLCAg0bNkS3bt1w+PBhHYyOiIiI6huGWMLu3bsxffp0fPjhh/jll1/wwQcf4F//+heOHj0KADhz5gwAIC4uDmq1WjzPz8/HgAEDcPjwYaSlpcHb2xsDBw5EZmamzsZCRERE9QO3ExCWLVsGf39/BAcHAwBCQ0Nx6tQpLFu2DH369IG5uTkA4LXXXoNKpRI/17lzZ3Tu3Fk8/+yzz7B7927s3bsXU6ZMqdlBEBERUb3CEEvIyMjAxIkTNco8PDwQHR1d7ucePnyI8PBw7Nu3Dzdv3kRRURH+/vtvrsQSUb3EL1kR1SyGWAKg/fQCQRBe+ESDjz/+GAcPHsSyZcvQtm1bGBkZYejQoSgsLKzOrhIRERFxTywB9vb2SE5O1ihLSUmBvb29eG5oaIji4mKNOklJSfD398d7772Hjh07QqVS4fr16zXRZSIiIqrnuBJL+PjjjzF8+HB07doVffv2xXfffYddu3ZpPGmgVatWOHLkCDw8PKBQKNC4cWO0bdsWu3btwsCBAyGTyTB37lyUlJTocCRERERUX3AlljB48GBER0fjiy++QIcOHbBu3TrExcXhjTfeEOssX74ciYmJsLKygpOTEwBgxYoVaNy4Mdzd3TFw4EB4e3uja9euOhoFERER1Sdcia1CUtmw7+/vD39/f42ySZMmYdKkSWV+ZuDAgRg4cKBGWatWrfDjjz9qlE2ePFnjnNsLiKimVfTtiVL5bzYRlY4rsUREREQkOVyJJSIiIqpmaQOaVqDWuGrvR13ClVgiIiIikhydh9g1a9bA1tYWSqUSzs7OSEpKKrPurl270L9/f5ibm8PExARubm44ePCgRp34+HjIZDKt4/Hjx9U9FCIiIiKqITrdTpCQkICQkBCsWbMGHh4eWLduHXx8fHDp0iVYW1tr1T9x4gT69++PxYsX47XXXkNcXBwGDhyIn3/+WfzGPACYmJjgypUrGp9VKpXVPh4iItLEL1kRUXXRaYiNjIxEQEAAAgMDAQBRUVE4ePAgYmNjERERoVU/KipK43zx4sXYs2cPvvvuO40QK5PJoFKpqrXvfB5q3cL5JCIikhadhdjCwkKkpqZi1qxZGuVeXl5ISUmpUBslJSV48OABmjRpolGen58PGxsbFBcXo0uXLli0aJFGyH0Vcrkcenp6uHnzJszNzSGXy1/4elaqvQRBQGFhIW7dugU9PT3I5XJdd4mo2nBVlIjqEp2F2NzcXBQXF8PCwkKj3MLCAtnZ2RVqY/ny5Xj48CGGDx8ultnZ2SE+Ph4dO3ZEXl4eoqOj4eHhgfPnz6Ndu3altlNQUICCggLxPC8vr8x76unpwdbWFmq1Gjdv3qxQP6n2a9CgAaytraGnp/Nt4kRERFQBOn/E1vOrmIIgVGhlc9u2bViwYAH27NmDZs2aieWurq5wdXUVzz08PNC1a1esXLkSMTExpbYVERGB8PDwCvdZLpfD2toaRUVFKC4urvDnqHbS19eHgYEBV9SrWUUeL+O0/3aN37M67ktERNVPZyHWzMwM+vr6WquuOTk5Wquzz0tISEBAQAC++eYb9OvXr9y6enp66NatG3777bcy64SFhSE09P//NVteXh6srKzKbVcmk8HQ0BCGhobl1iOqjXQRKOuLigbn7jcq9jxI/mqfiKh0OvvdqVwuh7OzMxITEzXKExMT4e7uXubntm3bBn9/f2zduhVvv/32C+8jCALS09NhaWlZZh2FQgETExONg4iIiIhqL51uJwgNDYWfnx9cXFzg5uaG9evXIzMzE0FBQQCerpBmZWVh8+bNAJ4G2LFjxyI6Ohqurq7iKq6RkRFMTU0BAOHh4XB1dUW7du2Ql5eHmJgYpKenY/Xq1boZJBFRNavo6i/fBkREdYlOQ6yvry9u376NhQsXQq1Ww9HREfv374eNjQ0AQK1WIzMzU6y/bt06FBUVYfLkyZg8ebJYPm7cOMTHxwMA7t27h4kTJyI7OxumpqZwcnLCiRMn0L179xodG1FFcM9m7VCRb+3z1/pERLWLzr/YFRwcjODg4FKvPQumzxw7duyF7a1YsQIrVqyogp4RERERUW2l8xBLVFtwVVT3+BxT6eAWBiLSNT4Uk4iIiIgkhyuxRFQqrooSEVFtxpVYIiIiIpIcrsRSrcT9qZq4Kkr0VMX+28B9uET1AVdiiYiIiEhyuBJLL8RVUU1cFSUiItI9hliqUQUZ8grWbKSD+0r/nkRERPUFQ2w9pqtAWZUquiqav6OaO1JL1IU5Japt+ExcotqJIVZiKvIfU139Wr8igbK+hEkiIqqd+JeSuoMhtpaoyhU0rk5STeLqLxER6QKfTkBEREREksOVWCKSHK7+EhERQywRUQUwOFNN4r5NohfjdgIiIiIikhyuxBIR1WJ83jDVZVxxplfBEEtERBoYnOsnBkqSGm4nICIiIiLJYYglIiIiIsnhdgIiItI5Pv2BiCqLK7FEREREJDlciSUionqJq79E0saVWCIiIiKSHIZYIiIiIpIchlgiIiIikhzuiSUiIqoh3IdLVHV0vhK7Zs0a2NraQqlUwtnZGUlJSWXW3bVrF/r37w9zc3OYmJjAzc0NBw8e1Kq3c+dOODg4QKFQwMHBAbt3767OIRARERFRDdNpiE1ISEBISAjmzJmDtLQ0eHp6wsfHB5mZmaXWP3HiBPr374/9+/cjNTUVffr0wcCBA5GWlibWOXnyJHx9feHn54fz58/Dz88Pw4cPx88//1xTwyIiIiKiaqbTEBsZGYmAgAAEBgbC3t4eUVFRsLKyQmxsbKn1o6KiMHPmTHTr1g3t2rXD4sWL0a5dO3z33Xcadfr374+wsDDY2dkhLCwMffv2RVRUVA2NioiIiIiqm85CbGFhIVJTU+Hl5aVR7uXlhZSUlAq1UVJSggcPHqBJkyZi2cmTJ7Xa9Pb2LrfNgoIC5OXlaRxEREREVHvp7Itdubm5KC4uhoWFhUa5hYUFsrOzK9TG8uXL8fDhQwwfPlwsy87OrnSbERERCA8Pr0TviYiIpIFfJqO6Sudf7JLJZBrngiBolZVm27ZtWLBgARISEtCsWbNXajMsLAz3798Xjxs3blRiBERERERU0yoVYk+fPo3i4mLxXBAEjesFBQXYsWNHhdoyMzODvr6+1gppTk6O1krq8xISEhAQEIAdO3agX79+GtdUKlWl21QoFDAxMdE4iIiIiKj2qlSIdXNzw+3bt8VzU1NTXL16VTy/d+8eRo4cWaG25HI5nJ2dkZiYqFGemJgId3f3Mj+3bds2+Pv7Y+vWrXj77bdL7ePzbR46dKjcNomIiIhIWiq1J/b5ldfnz8sqK0toaCj8/Pzg4uICNzc3rF+/HpmZmQgKCgLw9Nf8WVlZ2Lx5M4CnAXbs2LGIjo6Gq6uruOJqZGQEU1NTAMD06dPRq1cvLF26FIMGDcKePXtw+PBhJCcnV2aoRERERFSLVfme2IrsZ33G19cXUVFRWLhwIbp06YITJ05g//79sLGxAQCo1WqNZ8auW7cORUVFmDx5MiwtLcVj+vTpYh13d3ds374dcXFx6NSpE+Lj45GQkIAePXpU3SCJiIiISKd0/trZ4OBgBAcHl3otPj5e4/zYsWMVanPo0KEYOnToK/aMiIiIiGqrSofYS5cuib/GFwQBly9fRn5+PoCnj80iIiIiIqpulQ6xffv21dj3+s477wB4uo2goo/HIiIiIiJ6FZUKsdeuXauufhARERERVVilQuyzL1wREREREelSpULsnTt38OjRI7Rs2VIsu3jxIpYtW4aHDx9i8ODBGDVqVJV3koiIiKSlYq+75atu6eVV6hFbkydPRmRkpHiek5MDT09PnDlzBgUFBfD398dXX31V5Z0kIiIiIvqnSoXYU6dO4d133xXPN2/ejCZNmiA9PR179uzB4sWLsXr16irvJBERERHRP1UqxGZnZ8PW1lY8//HHH/Hee+/BwODproR3330Xv/32W9X2kIiIiIjoOZUKsSYmJrh37554fvr0abi6uornMpkMBQUFVdY5IiIiIqLSVCrEdu/eHTExMSgpKcH//d//4cGDB3jzzTfF67/++iusrKyqvJNERERERP9UqacTLFq0CP369cPXX3+NoqIizJ49G40bNxavb9++Hb17967yThIRERER/VOlQmyXLl2QkZGBlJQUqFQq9OjRQ+P6iBEj4ODgUKUdJCIiIiJ6XqVfO2tubo5BgwaVeu3tt99+5Q4REREREb1IpULs5s2bK1Rv7NixL9UZIiIiIqKKqFSI9ff3R8OGDWFgYABBEEqtI5PJGGKJiIiIqFpVKsTa29vjf//7H8aMGYPx48ejU6dO1dUvIiIiIqIyVeoRWxcvXsT333+Pv//+G7169YKLiwtiY2ORl5dXXf0jIiIiItJSqRALAD169MC6deugVqsxbdo07NixA5aWlhg9ejRfdEBERERENaLSTyd4xsjICGPHjkWrVq0wf/58bN++HatWrYJCoajK/hERERFVSEGGvAK1GlV7P6hmVHolFgCysrKwePFitGvXDiNGjEC3bt1w8eJFjRcfEBERERFVl0qtxO7YsQNxcXE4fvw4vL29sXz5crz99tvQ19evrv4REREREWmpVIgdMWIErK2tMWPGDFhYWOD69etYvXq1Vr1p06ZVWQeJiIiIiJ5XqRBrbW0NmUyGrVu3lllHJpMxxBIRERFRtapUiL1+/foL62RlZb1sX4iIiIiIKuSlvthVmuzsbEybNg1t27atqiaJiIiIiEpVqRB77949jB49Gubm5mjevDliYmJQUlKCefPmoXXr1jh58iQ2bdpUqQ6sWbMGtra2UCqVcHZ2RlJSUpl11Wo1Ro0ahfbt20NPTw8hISFadeLj4yGTybSOx48fV6pfRERERFR7VSrEzp49GydOnMC4cePQpEkTzJgxA++88w6Sk5Pxww8/4MyZMxg5cmSF20tISEBISAjmzJmDtLQ0eHp6wsfHB5mZmaXWLygogLm5OebMmYPOnTuX2a6JiQnUarXGoVQqKzNUIiIiIqrFKhViv//+e8TFxWHZsmXYu3cvBEHA66+/jh9//BG9e/eu9M0jIyMREBCAwMBA2NvbIyoqClZWVoiNjS21fqtWrRAdHY2xY8fC1NS0zHZlMhlUKpXGQURERER1R6VC7M2bN+Hg4AAAaN26NZRKJQIDA1/qxoWFhUhNTYWXl5dGuZeXF1JSUl6qzWfy8/NhY2ODli1b4p133kFaWtortUdEREREtUulQmxJSQkMDQ3Fc319fRgbG7/UjXNzc1FcXAwLCwuNcgsLC2RnZ79UmwBgZ2eH+Ph47N27F9u2bYNSqYSHhwd+++23Mj9TUFCAvLw8jYOIiIiIaq9KPWJLEAT4+/tDoVAAAB4/foygoCCtILtr164KtymTybTu8XxZZbi6usLV1VU89/DwQNeuXbFy5UrExMSU+pmIiAiEh4e/9D2JiIiIqGZVKsSOGzdO43zMmDEvfWMzMzPo6+trrbrm5ORorc6+Cj09PXTr1q3cldiwsDCEhoaK53l5ebCysqqyPhARERFR1apUiI2Li6uyG8vlcjg7OyMxMRHvvfeeWJ6YmIhBgwZV2X0EQUB6ejo6duxYZh2FQiGuLhMRERFR7VepEFvVQkND4efnBxcXF7i5uWH9+vXIzMxEUFAQgKcrpFlZWdi8ebP4mfT0dABPv7x169YtpKenQy6Xi184Cw8Ph6urK9q1a4e8vDzExMQgPT0dq1evrvHxEREREVH10GmI9fX1xe3bt7Fw4UKo1Wo4Ojpi//79sLGxAfD05QbPPzPWyclJ/HNqaiq2bt0KGxsb8ZW49+7dw8SJE5GdnQ1TU1M4OTnhxIkT6N69e42Ni4iIiIiql05DLAAEBwcjODi41Gvx8fFaZYIglNveihUrsGLFiqroGhERERHVUpV6xBYRERERUW3AEEtEREREksMQS0RERESSwxBLRERERJKj8y92EREREUlVQYa8gjUbVWs/6iOuxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeQwxBIRERGR5DDEEhEREZHkMMQSERERkeToPMSuWbMGtra2UCqVcHZ2RlJSUpl11Wo1Ro0ahfbt20NPTw8hISGl1tu5cyccHBygUCjg4OCA3bt3V1PviYiIiEgXdBpiExISEBISgjlz5iAtLQ2enp7w8fFBZmZmqfULCgpgbm6OOXPmoHPnzqXWOXnyJHx9feHn54fz58/Dz88Pw4cPx88//1ydQyEiIiKiGqTTEBsZGYmAgAAEBgbC3t4eUVFRsLKyQmxsbKn1W7VqhejoaIwdOxampqal1omKikL//v0RFhYGOzs7hIWFoW/fvoiKiqrGkRARERFRTdJZiC0sLERqaiq8vLw0yr28vJCSkvLS7Z48eVKrTW9v71dqk4iIiIhqFwNd3Tg3NxfFxcWwsLDQKLewsEB2dvZLt5udnV3pNgsKClBQUCCe5+XlvfT9iYiIiKj66fyLXTKZTONcEAStsupuMyIiAqampuJhZWX1SvcnIiIiouqls5VYMzMz6Ovra62Q5uTkaK2kVoZKpap0m2FhYQgNDRXP8/LyGGSJiIioVirIkFewZqNq7Yeu6WwlVi6Xw9nZGYmJiRrliYmJcHd3f+l23dzctNo8dOhQuW0qFAqYmJhoHERERERUe+lsJRYAQkND4efnBxcXF7i5uWH9+vXIzMxEUFAQgKcrpFlZWdi8ebP4mfT0dABAfn4+bt26hfT0dMjlcjg4OAAApk+fjl69emHp0qUYNGgQ9uzZg8OHDyM5ObnGx0dERERE1UOnIdbX1xe3b9/GwoULoVar4ejoiP3798PGxgbA05cbPP/MWCcnJ/HPqamp2Lp1K2xsbHD9+nUAgLu7O7Zv345PP/0Uc+fORZs2bZCQkIAePXrU2LiIiIiIqHrpNMQCQHBwMIKDg0u9Fh8fr1UmCMIL2xw6dCiGDh36ql0jIiIiolpK508nICIiIiKqLIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIcnYfYNWvWwNbWFkqlEs7OzkhKSiq3/vHjx+Hs7AylUonWrVtj7dq1Gtfj4+Mhk8m0jsePH1fnMIiIiIioBuk0xCYkJCAkJARz5sxBWloaPD094ePjg8zMzFLrX7t2DQMGDICnpyfS0tIwe/ZsTJs2DTt37tSoZ2JiArVarXEolcqaGBIRERER1QADXd48MjISAQEBCAwMBABERUXh4MGDiI2NRUREhFb9tWvXwtraGlFRUQAAe3t7nD17FsuWLcOQIUPEejKZDCqVqkbGQEREREQ1T2crsYWFhUhNTYWXl5dGuZeXF1JSUkr9zMmTJ7Xqe3t74+zZs3jy5IlYlp+fDxsbG7Rs2RLvvPMO0tLSyu1LQUEB8vLyNA4iIiIiqr10FmJzc3NRXFwMCwsLjXILCwtkZ2eX+pns7OxS6xcVFSE3NxcAYGdnh/j4eOzduxfbtm2DUqmEh4cHfvvttzL7EhERAVNTU/GwsrJ6xdERERERUXXS+Re7ZDKZxrkgCFplL6r/z3JXV1eMGTMGnTt3hqenJ3bs2IHXX38dK1euLLPNsLAw3L9/Xzxu3LjxssMhIiIiohqgsz2xZmZm0NfX11p1zcnJ0VptfUalUpVa38DAAE2bNi31M3p6eujWrVu5K7EKhQIKhaKSIyAiIiIiXdHZSqxcLoezszMSExM1yhMTE+Hu7l7qZ9zc3LTqHzp0CC4uLjA0NCz1M4IgID09HZaWllXTcSIiIiLSOZ1uJwgNDcV//vMfbNq0CRkZGZgxYwYyMzMRFBQE4Omv+ceOHSvWDwoKwp9//onQ0FBkZGRg06ZN2LhxIz766COxTnh4OA4ePIirV68iPT0dAQEBSE9PF9skIiIiIunT6SO2fH19cfv2bSxcuBBqtRqOjo7Yv38/bGxsAABqtVrjmbG2trbYv38/ZsyYgdWrV6N58+aIiYnReLzWvXv3MHHiRGRnZ8PU1BROTk44ceIEunfvXuPjIyIiIqLqodMQCwDBwcEIDg4u9Vp8fLxWWe/evXHu3Lky21uxYgVWrFhRVd0jIiIiolpI508nICIiIiKqLIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHIZYIiIiIpIchlgiIiIikhyGWCIiIiKSHJ2H2DVr1sDW1hZKpRLOzs5ISkoqt/7x48fh7OwMpVKJ1q1bY+3atVp1du7cCQcHBygUCjg4OGD37t3V1X0iIiIi0gGdhtiEhASEhIRgzpw5SEtLg6enJ3x8fJCZmVlq/WvXrmHAgAHw9PREWloaZs+ejWnTpmHnzp1inZMnT8LX1xd+fn44f/48/Pz8MHz4cPz88881NSwiIiIiqmY6DbGRkZEICAhAYGAg7O3tERUVBSsrK8TGxpZaf+3atbC2tkZUVBTs7e0RGBiI8ePHY9myZWKdqKgo9O/fH2FhYbCzs0NYWBj69u2LqKioGhoVEREREVU3nYXYwsJCpKamwsvLS6Pcy8sLKSkppX7m5MmTWvW9vb1x9uxZPHnypNw6ZbVJRERERNJjoKsb5+bmori4GBYWFhrlFhYWyM7OLvUz2dnZpdYvKipCbm4uLC0ty6xTVpsAUFBQgIKCAvH8/v37AIC8vLxKjelVFOQLFaqX/+TF9YTighfWAYC8KrxnRe+ri3tW9L715Z4VvW99uWdF78t/dnV/z4rel/8c6f6eFb1vfblnRe9bq//ZrcFM9OxegvCC/gs6kpWVJQAQUlJSNMo/++wzoX379qV+pl27dsLixYs1ypKTkwUAglqtFgRBEAwNDYWtW7dq1Pn6668FhUJRZl/mz58vAODBgwcPHjx48OBRS44bN26UmyV1thJrZmYGfX19rRXSnJwcrZXUZ1QqVan1DQwM0LRp03LrlNUmAISFhSE0NFQ8LykpwZ07d9C0aVPIZDLk5eXBysoKN27cgImJSaXGSbUP57Pu4ZzWPZzTuoXzWfdU55wKgoAHDx6gefPm5dbTWYiVy+VwdnZGYmIi3nvvPbE8MTERgwYNKvUzbm5u+O677zTKDh06BBcXFxgaGop1EhMTMWPGDI067u7uZfZFoVBAoVBolL322mta9UxMTPgvXx3C+ax7OKd1D+e0buF81j3VNaempqYvrKOzEAsAoaGh8PPzg4uLC9zc3LB+/XpkZmYiKCgIwNMV0qysLGzevBkAEBQUhFWrViE0NBQTJkzAyZMnsXHjRmzbtk1sc/r06ejVqxeWLl2KQYMGYc+ePTh8+DCSk5N1MkYiIiIiqno6DbG+vr64ffs2Fi5cCLVaDUdHR+zfvx82NjYAALVarfHMWFtbW+zfvx8zZszA6tWr0bx5c8TExGDIkCFiHXd3d2zfvh2ffvop5s6dizZt2iAhIQE9evSo8fERERERUfXQaYgFgODgYAQHB5d6LT4+Xqusd+/eOHfuXLltDh06FEOHDq2K7gF4ut1g/vz5WlsOSJo4n3UP57Tu4ZzWLZzPuqc2zKlMEF70/AIiIiIiotpFp2/sIiIiIiJ6GQyxRERERCQ5DLFEREREJDkMsS+wZs0a2NraQqlUwtnZGUlJSbruElVAREQEunXrhkaNGqFZs2YYPHgwrly5olFHEAQsWLAAzZs3h5GREd544w1cvHhRRz2myoqIiIBMJkNISIhYxjmVnqysLIwZMwZNmzZFgwYN0KVLF6SmporXOafSUlRUhE8//RS2trYwMjJC69atsXDhQpSUlIh1OKe114kTJzBw4EA0b94cMpkM3377rcb1isxdQUEBpk6dCjMzMxgbG+Pdd9/FX3/9VS39ZYgtR0JCAkJCQjBnzhykpaXB09MTPj4+Go/9otrp+PHjmDx5Mk6dOoXExEQUFRXBy8sLDx8+FOv8+9//RmRkJFatWoUzZ85ApVKhf//+ePDggQ57ThVx5swZrF+/Hp06ddIo55xKy927d+Hh4QFDQ0P88MMPuHTpEpYvX67xshnOqbQsXboUa9euxapVq5CRkYF///vf+OKLL7By5UqxDue09nr48CE6d+6MVatWlXq9InMXEhKC3bt3Y/v27UhOTkZ+fj7eeecdFBcXV32Hy30pbT3XvXt3ISgoSKPMzs5OmDVrlo56RC8rJydHACAcP35cEARBKCkpEVQqlbBkyRKxzuPHjwVTU1Nh7dq1uuomVcCDBw+Edu3aCYmJiULv3r2F6dOnC4LAOZWiTz75ROjZs2eZ1zmn0vP2228L48eP1yh7//33hTFjxgiCwDmVEgDC7t27xfOKzN29e/cEQ0NDYfv27WKdrKwsQU9PTzhw4ECV95ErsWUoLCxEamoqvLy8NMq9vLyQkpKio17Ry7p//z4AoEmTJgCAa9euITs7W2N+FQoFevfuzfmt5SZPnoy3334b/fr10yjnnErP3r174eLigmHDhqFZs2ZwcnLChg0bxOucU+np2bMnjhw5gl9//RUAcP78eSQnJ2PAgAEAOKdSVpG5S01NxZMnTzTqNG/eHI6OjtUyvzp/2UFtlZubi+LiYlhYWGiUW1hYIDs7W0e9opchCAJCQ0PRs2dPODo6AoA4h6XN759//lnjfaSK2b59O86dO4czZ85oXeOcSs/Vq1cRGxuL0NBQzJ49G6dPn8a0adOgUCgwduxYzqkEffLJJ7h//z7s7Oygr6+P4uJifP755xg5ciQA/nsqZRWZu+zsbMjlcjRu3FirTnVkJ4bYF5DJZBrngiBolVHtNmXKFPz3v/9FcnKy1jXOr3TcuHED06dPx6FDh6BUKsusxzmVjpKSEri4uGDx4sUAACcnJ1y8eBGxsbEYO3asWI9zKh0JCQn4+uuvsXXrVnTo0AHp6ekICQlB8+bNMW7cOLEe51S6Xmbuqmt+uZ2gDGZmZtDX19f6m0NOTo7W30Ko9po6dSr27t2Lo0ePomXLlmK5SqUCAM6vhKSmpiInJwfOzs4wMDCAgYEBjh8/jpiYGBgYGIjzxjmVDktLSzg4OGiU2dvbi1+e5b+n0vPxxx9j1qxZGDFiBDp27Ag/Pz/MmDEDERERADinUlaRuVOpVCgsLMTdu3fLrFOVGGLLIJfL4ezsjMTERI3yxMREuLu766hXVFGCIGDKlCnYtWsXfvzxR9ja2mpct7W1hUql0pjfwsJCHD9+nPNbS/Xt2xcXLlxAenq6eLi4uGD06NFIT09H69atOacS4+HhofXou19//RU2NjYA+O+pFD169Ah6eprRQl9fX3zEFudUuioyd87OzjA0NNSoo1ar8csvv1TP/Fb5V8XqkO3btwuGhobCxo0bhUuXLgkhISGCsbGxcP36dV13jV5g0qRJgqmpqXDs2DFBrVaLx6NHj8Q6S5YsEUxNTYVdu3YJFy5cEEaOHClYWloKeXl5Ouw5VcY/n04gCJxTqTl9+rRgYGAgfP7558Jvv/0mbNmyRWjQoIHw9ddfi3U4p9Iybtw4oUWLFsK+ffuEa9euCbt27RLMzMyEmTNninU4p7XXgwcPhLS0NCEtLU0AIERGRgppaWnCn3/+KQhCxeYuKChIaNmypXD48GHh3Llzwptvvil07txZKCoqqvL+MsS+wOrVqwUbGxtBLpcLXbt2FR/RRLUbgFKPuLg4sU5JSYkwf/58QaVSCQqFQujVq5dw4cIF3XWaKu35EMs5lZ7vvvtOcHR0FBQKhWBnZyesX79e4zrnVFry8vKE6dOnC9bW1oJSqRRat24tzJkzRygoKBDrcE5rr6NHj5b6/85x48YJglCxufv777+FKVOmCE2aNBGMjIyEd955R8jMzKyW/soEQRCqfn2XiIiIiKj6cE8sEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBERERFJDkMsEREREUkOQywRERERSQ5DLBFRDTp27BhkMhnu3bun667UCTKZDN9++62uu0FEOsAQS0T1gr+/P2Qymdbx+++/V9s933jjDYSEhGiUubu7Q61Ww9TUtNruS0RUHxjougNERDXlrbfeQlxcnEaZubm5Vr3CwkLI5fJq6YNcLodKpaqWtstTnWMiItIFrsQSUb2hUCigUqk0Dn19fbzxxhuYMmUKQkNDYWZmhv79+wMAIiMj0bFjRxgbG8PKygrBwcHIz8/XaPOnn35C79690aBBAzRu3Bje3t64e/cu/P39cfz4cURHR4urvtevXy91O8HOnTvRoUMHKBQKtGrVCsuXL9e4R6tWrbB48WKMHz8ejRo1grW1NdavX1/uWMsa06VLlzBgwAA0bNgQFhYW8PPzQ25ursbnpk6dipCQEDRu3BgWFhZYv349Hj58iH/9619o1KgR2rRpgx9++EHjfsePH0f37t2hUChgaWmJWbNmoaioCACwbt06tGjRAiUlJRqfeffddzFu3Djx/LvvvoOzszOUSiVat26N8PBwsQ0A+O2339CrVy8olUo4ODggMTGx3J8BEdVtDLFERAC+/PJLGBgY4KeffsK6desAAHp6eoiJicEvv/yCL7/8Ej/++CNmzpwpfiY9PR19+/ZFhw4dcPLkSSQnJ2PgwIEoLi5GdHQ03NzcMGHCBKjVaqjValhZWWndNzU1FcOHD8eIESNw4cIFLFiwAHPnzkV8fLxGveXLl8PFxQVpaWkIDg7GpEmTcPny5UqNSa1Wo3fv3ujSpQvOnj2LAwcO4H//+x+GDx+u9TkzMzOcPn0aU6dOxaRJkzBs2DC4u7vj3Llz8Pb2hp+fHx49egQAyMrKwoABA9CtWzecP38esbGx2LhxIz777DMAwLBhw5Cbm4ujR4+K97h79y4OHjyI0aNHAwAOHjyIMWPGYNq0abh06RLWrVuH+Ph4fP755wCAkpISvP/++9DX18epU6ewdu1afPLJJxWZWiKqqwQionpg3Lhxgr6+vmBsbCweQ4cOFQRBEHr37i106dLlhW3s2LFDaNq0qXg+cuRIwcPDo8z6vXv3FqZPn65RdvToUQGAcPfuXUEQBGHUqFFC//79Nep8/PHHgoODg3huY2MjjBkzRjwvKSkRmjVrJsTGxpZ77+fHNHfuXMHLy0uj7MaNGwIA4cqVK+LnevbsKV4vKioSjI2NBT8/P7FMrVYLAISTJ08KgiAIs2fPFtq3by+UlJSIdVavXi00bNhQKC4uFgRBEN59911h/Pjx4vV169YJKpVKKCoqEgRBEDw9PYXFixdr9O2rr74SLC0tBUEQhIMHDwr6+vrCjRs3xOs//PCDAEDYvXt3mT8HIqq7uCeWiOqNPn36IDY2Vjw3NjYW/+zi4qJV/+jRo1i8eDEuXbqEvLw8FBUV4fHjx3j48CGMjY2Rnp6OYcOGvVKfMjIyMGjQII0yDw8PREVFobi4GPr6+gCATp06iddlMhlUKhVycnLKbfv5MaWmpuLo0aNo2LChVt0//vgDr7/+uta99PX10bRpU3Ts2FEss7CwAADx/hkZGXBzc4NMJtMYQ35+Pv766y9YW1tj9OjRmDhxItasWQOFQoEtW7ZgxIgR4vhSU1Nx5swZceUVAIqLi/H48WM8evQIGRkZsLa2RsuWLcXrbm5u5Y6fiOo2hlgiqjeMjY3Rtm3bMq/9059//okBAwYgKCgIixYtQpMmTZCcnIyAgAA8efIEAGBkZPTKfRIEQSP8PSt7nqGhoca5TCbT2mP6vOfHVFJSgoEDB2Lp0qVadS0tLcu91z/LnvX32f3LG8Oz8oEDB6KkpATff/89unXrhqSkJERGRmr0LTw8HO+//75W35RKZak/k+fvSUT1C0MsEVEpzp49i6KiIixfvhx6ek+/PrBjxw6NOp06dcKRI0cQHh5eahtyuRzFxcXl3sfBwQHJyckaZSkpKXj99dfFVcqq0rVrV+zcuROtWrWCgUHV/effwcEBO3fu1AizKSkpaNSoEVq0aAHgaeB///33sWXLFvz+++94/fXX4ezsrNG3K1eulPmXDAcHB2RmZuLmzZto3rw5AODkyZNVNgYikh5+sYuIqBRt2rRBUVERVq5ciatXr+Krr77C2rVrNeqEhYXhzJkzCA4Oxn//+19cvnwZsbGx4rf9W7VqhZ9//hnXr19Hbm5uqSunH374IY4cOYJFixbh119/xZdffolVq1bho48+qvIxTZ48GXfu3MHIkSNx+vRpXL16FYcOHcL48eNfGLbLExwcjBs3bmDq1Km4fPky9uzZg/nz5yM0NFT8CwAAjB49Gt9//z02bdqEMWPGaLQxb948bN68GQsWLMDFixeRkZGBhIQEfPrppwCAfv36oX379hg7dizOnz+PpKQkzJkz56X7TETSxxBLRFSKLl26IDIyEkuXLoWjoyO2bNmCiIgIjTqvv/46Dh06hPPnz6N79+5wc3PDnj17xFXOjz76CPr6+nBwcIC5uTkyMzO17tO1a1fs2LED27dvh6OjI+bNm4eFCxfC39+/ysfUvHlz/PTTTyguLoa3tzccHR0xffp0mJqaaoTNymrRogX279+P06dPo3PnzggKCkJAQIAYQJ9588030aRJE1y5cgWjRo3SuObt7Y19+/YhMTER3bp1g6urKyIjI2FjYwPg6ZMidu/ejYKCAnTv3h2BgYEa+2eJqP6RCaVtNCIiIiIiqsW4EktEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLDEEtEREREksMQS0RERESSwxBLRERERJLz/wDXsIDoN8uPlgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgIUlEQVR4nO3deXhU5fn/8c8s2SEBJIRgQtglyGqCEihYFUGwFql+oaKAFlREK0tdoEgFaUVbl6AVRFQoVZC6b1iMrUgUN2KCC5s/CaVAUhKWBAIkmZnz+yPMkGEmkAkzk0zyfl1Xrovceeac555kbs59VpNhGIYAAAAAAMA5Mdf3BAAAAAAAaAxosAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLDRYKxfv14mk0mHDx+u76nUaN68eerbt299TwMAtGvXLplMJuXl5dX3VDzcfPPNuvbaa+t7GgAQdB06dFBmZmZ9TwP1iAYbQbdx40ZZLBZdddVVAV+Xv5v2e+65R//617/8siwATdvNN98sk8nk8VXb2picnKyCggL17NnzrGOD3YwvWrRIK1asCMq6AMAbb/W1+tfNN9981te/9dZbQZkrGhdrfU8ATc+LL76o3/72t3r++ee1e/dutW/fvr6ndFaGYchut6tZs2Zq1qxZfU8HQCNx1VVXafny5W6xiIiIWr3WYrGobdu2gZjWOYuLi6vvKQBo4goKClz/XrNmjf7whz9o+/btrlhUVFR9TAtNAEewEVRlZWX6xz/+oTvuuEO/+MUvznqEY+PGjRoyZIiioqKUnJysu+++W2VlZa6fv/TSS0pPT1fz5s3Vtm1bjRs3Tvv375dUdcTmsssukyS1bNnSbW9leXm57r77brVp00aRkZH62c9+pq+//tq1XOeR73Xr1ik9PV0RERHKzs72eor4iy++qAsvvFARERFKTEzUXXfdde5vFIAmISIiQm3btnX7atmypaSqoydLlizRiBEjFBUVpY4dO+rVV191vfb0o9KHDh3SjTfeqPj4eEVFRalr166u5r1jx46SpH79+slkMunnP/+5aznLly9XamqqIiMj1b17dy1evNhjHf/4xz80ePBgRUVFqX///tqxY4e+/vprpaenq1mzZrrqqqtUVFTket3pp4g7HA49+uij6tKliyIiItS+fXv96U9/8vfbCQAu1etqXFycTCaTW2zVqlXq3LmzwsPDdcEFF+jvf/+767UdOnSQJI0ePVomk8n1/U8//aRRo0YpISFBzZo1U//+/fXRRx/VQ3ZoyGiwEVRr1qzRBRdcoAsuuEA33XSTli9fLsMwvI797rvvNHz4cP3qV7/St99+qzVr1ujTTz91a2ArKiq0YMECbd68WW+99Zby8/NdTXRycrJef/11SdL27dtVUFCgRYsWSZLuu+8+vf766/rb3/6mb775Rl26dNHw4cN18OBBtzncd999WrhwobZu3arevXt7zHHJkiW68847ddttt+m7777TO++8oy5duvjjrQIAzZ07V9ddd502b96sm266STfccIO2bt1a49gtW7bogw8+0NatW7VkyRK1bt1akvTVV19Jkj766CMVFBTojTfekCQtW7ZMc+bM0Z/+9Cdt3bpVDz/8sObOnau//e1vbst+8MEH9cADD+ibb76R1WrVDTfcoPvuu0+LFi1Sdna2fvrpJ/3hD3+oMY/Zs2fr0Ucfdc1x1apVSkhI8MdbBAA+e/PNNzVt2jT97ne/0/fff6/bb79dt9xyiz7++GNJch10Wb58uQoKClzfHz16VCNHjtRHH32k3NxcDR8+XNdcc412795db7mgATKAIBo4cKCRmZlpGIZhVFZWGq1btzaysrIMwzCMjz/+2JBkHDp0yDAMwxg/frxx2223ub0+OzvbMJvNxvHjx70u/6uvvjIkGUeOHPG6TMMwjKNHjxphYWHGyy+/7IpVVFQY7dq1M/785z+7ve6tt95yW/6DDz5o9OnTx/V9u3btjDlz5vj+RgBo8iZOnGhYLBYjJibG7euhhx4yDMMwJBlTpkxxe80ll1xi3HHHHYZhGEZ+fr4hycjNzTUMwzCuueYa45ZbbvG6rtPHOiUnJxurVq1yiy1YsMDIyMhwe93zzz/v+vnq1asNSca//vUvV2zhwoXGBRdc4JbbqFGjDMMwjNLSUiMiIsJYtmxZLd8ZAPCv5cuXG3Fxca7vBw4caNx6661uY/7v//7PGDlypOt7Scabb7551mX36NHDePrpp13fp6SkGE8++eS5ThkhjGuwETTbt2/XV1995TpyYrVaNXbsWL344osaOnSox/icnBz9v//3//Tyyy+7YoZhyOFwKD8/X6mpqcrNzdW8efOUl5engwcPyuFwSJJ2796tHj16eJ3HTz/9pMrKSg0aNMgVCwsL08UXX+xxZCg9Pb3GfPbv3699+/bpiiuuqP2bAADVXHbZZVqyZIlbrFWrVq5/Z2RkuP0sIyOjxhuV3XHHHbruuuv0zTffaNiwYbr22ms1cODAGtddVFSk//73v5o0aZJuvfVWV9xms3lcQ139DB7nkedevXq5xZyX55xu69atKi8vp1YCaDC2bt2q2267zS02aNAg15mONSkrK9P8+fP13nvvad++fbLZbDp+/DhHsOGGBhtB88ILL8hms+n88893xQzDUFhYmA4dOuQx3uFw6Pbbb9fdd9/t8bP27durrKxMw4YN07Bhw/TSSy8pPj5eu3fv1vDhw1VRUVHjPIyTp6SbTCaP+OmxmJiYGpfDzTEAnKuYmBifLys5vU45jRgxQv/5z3/0/vvv66OPPtIVV1yhO++8U4899pjX8c4dksuWLdMll1zi9jOLxeL2fVhYmMf6T485l3c6aiWAhqg224Gnu/fee7Vu3To99thj6tKli6KionT99defcbsTTQ/XYCMobDabVq5cqccff1x5eXmur82bNyslJcXtKLXTRRddpB9++EFdunTx+AoPD9e2bdtUXFysRx55RIMHD1b37t09jqCEh4dLkux2uyvmfP2nn37qilVWVmrTpk1KTU2tdU7NmzdXhw4deGwXgID54osvPL7v3r17jePj4+N1880366WXXlJmZqaee+45Sd5rYUJCgs4//3zt3LnTo8Y6b4rmD127dlVUVBS1EkCDkZqa6rYdKFXdWLf6dmBYWJhbzZSk7Oxs3XzzzRo9erR69eqltm3bateuXcGYMkIIR7ARFO+9954OHTqkSZMmeZx6eP311+uFF17Qk08+6Ra///77NWDAAN1555269dZbFRMTo61btyorK0tPP/202rdvr/DwcD399NOaMmWKvv/+ey1YsMBtGSkpKTKZTHrvvfc0cuRIRUVFqVmzZrrjjjt07733qlWrVmrfvr3+/Oc/69ixY5o0aZJPec2bN09TpkxRmzZtNGLECB05ckSfffaZfvvb39btjQLQpJSXl6uwsNAtZrVaXTcne/XVV5Wenq6f/exnevnll/XVV1/phRde8LqsP/zhD0pLS9OFF16o8vJyvffee66NxTZt2igqKkr//Oc/lZSUpMjISMXFxWnevHm6++67FRsbqxEjRqi8vFybNm3SoUOHNHPmTL/kGBkZqfvvv1/33XefwsPDNWjQIBUVFemHH37wueYCgD/ce++9GjNmjC666CJdccUVevfdd/XGG2+43RHceRBl0KBBioiIUMuWLdWlSxe98cYbuuaaa2QymTR37twaz95B08URbATFCy+8oKFDh3p9Nup1112nvLw8ffPNN27x3r1765NPPtGPP/6owYMHq1+/fpo7d64SExMlVR2pWbFihV599VX16NFDjzzyiMepkOeff77mz5+vWbNmKSEhwXUH8kceeUTXXXedxo8fr4suukj/7//9P61bt871eJzamjhxojIzM7V48WJdeOGF+sUvfqEff/zRp2UAaLr++c9/KjEx0e3rZz/7mevn8+fP1yuvvKLevXvrb3/7m15++eUa7y8RHh6u2bNnq3fv3hoyZIgsFoteeeUVSVVN+1NPPaWlS5eqXbt2GjVqlCRp8uTJev7557VixQr16tVLl156qVasWOHXI9hS1R3Of/e73+kPf/iDUlNTNXbs2Bqv2QaAQLv22mu1aNEi/eUvf9GFF16opUuXavny5W6PMHz88ceVlZWl5ORk9evXT5L05JNPqmXLlho4cKCuueYaDR8+XBdddFE9ZYGGymQYNTwjCQAA1BuTyaQ333zT7XnSAACgYeMINgAAAAAAfkCDDQAAAACAH3CTMwAAGiCu4AIAIPRwBBsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8INGcw22w+HQvn371Lx5c5lMpvqeDoAGyjAMHTlyRO3atZPZ3DT2MVIfAdRWU6uR1EcAtVXb+thoGux9+/YpOTm5vqcBIET897//VVJSUn1PIyiojwB81VRqJPURgK/OVh8bTYPdvHlzSVUJx8bG1vNsADRUpaWlSk5OdtWMpoD6CKC2mlqNpD4CqK3a1sdG02A7T+uJjY2lQAI4q6Z0KiD1EYCvmkqNpD4C8NXZ6mPjv7gGAAAAAIAgoMEGAAAAAMAPGs0p4oA3drtdlZWV9T0N1AOLxSKr1dpkTnMEfEV9bNrCwsJksVjqexpAg2QYhmw2m+x2e31PBfXgXOsjDTYaraNHj2rPnj0yDKO+p4J6Eh0drcTERIWHh9f3VIAGhfoIk8mkpKQkNWvWrL6nAjQoFRUVKigo0LFjx+p7Kqgn51ofabDRKNntdu3Zs0fR0dGKj4/nKGYTYxiGKioqVFRUpPz8fHXt2rVJPM8VqA3qIwzDUFFRkfbs2aOuXbtyJBs4yeFwKD8/XxaLRe3atVN4eDg1sonxR32kwUajVFlZKcMwFB8fr6ioqPqeDupBVFSUwsLC9J///EcVFRWKjIys7ykBDQL1EZIUHx+vXbt2qbKykgYbOKmiokIOh0PJycmKjo6u7+mgnpxrfeSQDho19jo2bRy1BmpGfWza+P0DNWP7oWk71/rIEWw0CQsWLFBBQUFAlp2YmKi5c+cGZNkAEGiBrI8SNRJAaGMbEr6iwUaTUFBQoPe/3KLouNZ+Xe6xkmJdfUntxnbo0EGRkZGuU5UHDBigZ5991m3M5MmTNXHiRA0ePLjG5axfv14VFRUaNmyYJGnfvn268cYb9fHHH9ctCT/btWuX0tPTVVxcXKfXn57PvHnz9Pvf/54blQEBEqj6KFEjvaFGAqGFbcjgaSz1kQY7CAJ9dOB07A3zLjqutQZOuN+vy9y48lGfxr/22mvq2bOn15/Z7XY9//zzZ13G+vXrdfToUVdxbNeuXYMpjP5wej7z58/XPffcw8ZjEFGzmp5A1EeJGhkI1MimhXrcMLANGRoaSn2kwQ6CQB4dOJ0ve8NQv1asWKFXXnlFbdq00ZYtW/T0009r9uzZuueee/SLX/xCJSUl+t3vfqcvv/xSZrNZaWlpuvvuu/Xss8/K4XDoo48+0q9+9StNmDDBbW/fP//5T/3+97+XzWZTy5YttWTJEvXo0UPr16/X9OnTNXDgQH322Wey2Wz629/+pvT0dK/z2717t9LT07Vnzx5XYZo4caJrHl9//bXuv/9+lZaWyuFwaM6cObruuus8llPTfCRp+fLlWrRokQzDUFhYmF577TVJcuUzZcoUSdLAgQNlNpv1zjvvqH///srPz3fdfOSGG27QkCFDdMcdd/j3F9SEUbPQEFAjqZGgHsM76mPDro802EESqKMDp/N1bxiC6/rrr3ed3jNx4kR9+umnys3NVdeuXT3GTp8+Xc2aNdPmzZtlNptVVFSk+Ph4TZkyRUePHtVjjz0mqep0Gqf9+/frpptu0scff6xevXrp5Zdf1pgxY/T9999Lkn744Qc9//zzWrx4sZ599lnNmTNH69at8zrX9u3bq2/fvnrnnXd0/fXX6+jRo3r33Xf1xBNP6PDhw7r99tv1/vvvKzExUcXFxUpLS9OgQYPclnGm+axfv15/+tOflJ2drcTERNfzJvfv3+96/bPPPqulS5dq48aNrmcRDh06VKtWrdLkyZNVWFiojz76SMuWLavjbwQ1oWahPlAjqZHwRD2GRH0MpfrILfKAIHrttdeUl5envLw8tWzZUj/72c+8FkZJeu+993Tvvfe67mQZHx9/1uV/+eWX6tu3r3r16iVJuvHGG7Vnzx7X6WUXXHCBa29jRkaGfvrppzMu75ZbbtGKFSskSf/4xz90+eWX67zzztPGjRu1c+dOjRgxQn379tXQoUNlGIa2b99e6/m8//77mjBhghITEyVJ0dHRtXokxrRp0/TMM89IkpYuXapx48a5CieA0EaNpEYC8I76GDr1kSPYQD3y94faMAyvjxZwxqo/C9pischms51xeaNHj9bdd9+twsJCLV++XLNnz3atp3fv3tqwYYPHa6rvDT3bfOri4osvVmRkpD755BMtW7ZM//73v+u8LAANGzXSd9RIoGmgPvouWPWRBhtNxrGSYr+f/nSspFhSG78u0+mXv/yl/vKXv2jRokVup/fExsZq7969Xl+TkZGhSZMmaevWrUpNTdUrr7yipKQktW3bVtu2bfN5DpGRkfq///s/Pfjgg9q5c6eGDx8uqep6lh9//FH//ve/dfnll0uS8vLyXNfF1GY+11xzjX7zm9/otttuU9u2bV2n95yuefPmKikpcfuPZNq0abrpppt04YUXqlu3bj7nBcBdIOqjc7nUSGokEOrYhqQ++oIGG01CYmJigG7c0cZ1eoq/Pfnkk5oxY4Z69uyp8PBw9e/fX8uWLdPo0aP197//XX379nXdoMIpPj5ef//733XjjTfKbrerRYsW+sc//nFO87jlllt08cUX6/7775fFYpEktWzZUu+++67uvfdezZgxQ5WVlWrfvr3eeustt9eeaT5DhgzRAw88oGHDhslkMik8PNx1g4rqfve73+nyyy9XVFSUPvzwQ7Vp00bXX3+97rjjDt11113nlBuAQNZHiRpJjQRCHduQdddU66PJMAwjYEsPotLSUsXFxamkpESxsbH1PR03U6dO1cfb9gftBhWXdW+jxYsXB3xdDdmJEyeUn5+vjh07up3Sgsbhq6++0k033aRt27a5ri/yxtvfQUOuFYHia87UrMaN+tj41aZG1vR30NRqZEPPl3ocXNTHxi8Y9ZEj2ABCyuTJk/Xhhx/q+eefP2NzDQBNETUSALwLVn2kwQaauLy8PN18880e8YkTJ2rGjBnBn9BZPP/88/U9BQBNCDUSALyjPnpHgw00cX379lVeXl59TwMAGiRqJAB4R330jnOH0Kg1klsMoI74/QM14/PRtPH7B2rG56NpO9ffPw02GiXnnQorKirqeSaoT87HNoSFhdXzTICGg/oI6dTv3/n3AODU9kJNj31C03Cu9ZFTxNEoWa1WRUdHq6ioSGFhYdzopYkxDEPHjh3T/v371aJFCzYggWqoj3A4HCoqKlJ0dLSsVjYFASeLxaIWLVpo//79kqTo6GiZTKZ6nhWCyR/1kaqKRslkMikxMVH5+fn6z3/+U9/TQT1p0aKF2rZtW9/TABoU6iMkyWw2q3379jQPwGmc2w3OJhtNz7nWRxpsNFrh4eHq2rUrp0E2UWFhYRy5BmpAfUR4eDhnLwBeOHdCtmnTRpWVlfU9HdSDc62PNNho1Mxms9sD4gEAVaiPAFAzi8XCjnrUCbsuASDIFi9erI4dOyoyMlJpaWnKzs6u1es+++wzWa1W9e3bN7ATBAAAQJ3QYANAEK1Zs0bTp0/XnDlzlJubq8GDB2vEiBHavXv3GV9XUlKiCRMm6IorrgjSTAEAAOArGmwACKInnnhCkyZN0uTJk5WamqrMzEwlJydryZIlZ3zd7bffrnHjxikjIyNIMwUAAICvaLABIEgqKiqUk5OjYcOGucWHDRumjRs31vi65cuX66efftKDDz4Y6CkCAADgHHCTMwAIkuLiYtntdiUkJLjFExISVFhY6PU1P/74o2bNmqXs7OxaP4+xvLxc5eXlru9LS0slSTabTTabTVLVDa7MZrMcDoccDodrrPOumVaLWRadijtkkiGTzDJkkuGK22WSZHIbeyouWaqN9RYPs1pc6zQMQ3a73TXWZDLJYrF4zLGm+JlyMpvNstvtMgzjrHGLxSKTyeR6r6rHJbnN8Uxxq9VKTuQUcjmdvm4AgG9osAEgyE5/rqJhGF6ftWi32zVu3DjNnz9f3bp1q/XyFy5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDuTUX3XaQgrLS1VXFycSkpKFBsbW9/TcTN16lR9vG2/Bk64P+Dr2rjyUV3WvY0WL14c8HUBoag+a0VFRYWio6P16quvavTo0a74tGnTlJeXp08++cRt/OHDh9WyZUu3x4Q4HA4ZhiGLxaIPP/xQl19+ucd6vB3BTk5O1oEDB1w5n+mI21133aXsH4uVcePvTq03QEewv1j1hIZ0i9df//pXjiKSEzk1gJxKS0t13nnnNcjtqUBoyNuPEtuQQENS23rBEWwACJLw8HClpaUpKyvLrcHOysrSqFGjPMbHxsbqu+++c4stXrxY//73v/Xaa6+pY8eOXtcTERGhiIgIj7jVavU4zdy5oX86m90hu5fbdDhONtSn8za2Ku45tnq80mZ3beybTCavp8HXNEdf4zU9z7SmeE2n5PsSJydykkIrp9peigIA8I4qCgBBNHPmTI0fP17p6enKyMjQc889p927d2vKlCmSpNmzZ2vv3r1auXKlzGazevbs6fb6Nm3aKDIy0iMOAACA+keDDQBBNHbsWB04cEAPPfSQCgoK1LNnT61du1YpKSmSpIKCgrM+ExsAAAANEw02AATZ1KlTNXXqVK8/W7FixRlfO2/ePM2bN8//kwIAAMA54znYAAAAAAD4AQ02AAAAAAB+QIMNAACAoFi8eLE6duyoyMhIpaWlKTs7u8axb7zxhq688krFx8crNjZWGRkZWrdunce4119/XT169FBERIR69OihN998M5ApAMAZ0WADAAAg4NasWaPp06drzpw5ys3N1eDBgzVixIgab+y4YcMGXXnllVq7dq1ycnJ02WWX6ZprrlFubq5rzOeff66xY8dq/Pjx2rx5s8aPH68xY8boyy+/DFZaAOCGBhsAAAAB98QTT2jSpEmaPHmyUlNTlZmZqeTkZC1ZssTr+MzMTN13333q37+/unbtqocfflhdu3bVu+++6zbmyiuv1OzZs9W9e3fNnj1bV1xxhTIzM4OUFQC4q1ODzek9AAAAqK2Kigrl5ORo2LBhbvFhw4Zp48aNtVqGw+HQkSNH1KpVK1fs888/91jm8OHDa71MAPA3nx/T5Ty9Z/HixRo0aJCWLl2qESNGaMuWLWrfvr3HeOfpPQ8//LBatGih5cuX65prrtGXX36pfv36STp1es+CBQs0evRovfnmmxozZow+/fRTXXLJJeeeJQAAAOpNcXGx7Ha7EhIS3OIJCQkqLCys1TIef/xxlZWVacyYMa5YYWGhT8ssLy9XeXm56/vS0lJJks1mk81mkySZzWaZzWY5HA45HA7XWGfcbrfLMIyzxi0Wi0wmk2u51eOSZLfbzxo3m53HwgxZdGrZhkxyyCSTDJlrEXfIJOMMcbMMhVktMpvNstlsAc1JkqxWqwzDcIubTCZZLBaP972meG1/T4888ogKCwtlGIYMw6j2np58D06+1l/xdu3aadasWQHN6WzxUPw9hUJOp6+7Jj432NVP75GqTs1Zt26dlixZooULF3qMP/0UnYcfflhvv/223n33XVeDXf30HkmaPXu2PvnkE2VmZmr16tW+ThEAAAANkMlkcvveMAyPmDerV6/WvHnz9Pbbb6tNmzZ1XubChQs1f/58j3hubq5iYmIkSfHx8ercubPy8/NVVFTkGpOUlKSkpCTt2LFDJSUlrninTp3Upk0bff/99zp+/Lgr3r17d7Vo0UK5ubluG/O9e/dWeHi4Nm3a5DaH9PR0VVRU6Ntvv3XFevXqpX9tKVScpVIXRB5xxY87LPrueAu1tparY0SZK15iD9P2E7FqF3Zc54efmkuRLUL55c3UIaJM8dZTOxj2VkRpb2W0ukYeUecRQ3Res6p5BTIni8Wi/v37q6SkRNu2bXPFo6Ki1KdPHxUXF2vnzp2ueFxcnFJTU7Vv3z7t2bPHFa/t7ykhIUGmiBh9+cNO/bi7QKMuu1gtmsW4xmd9sVn7ig5q3IjBCrOeao3eWv+ljh0v17gRQ9xyWvXBBkVHRejan586CFhps2nVB9lqFWVWv379XO9DoHJyaky/p1DIqaysTLXhU4PtPL3HuVfGyR+n98yYMcNt3PDhw894/Uwo7YE0m80Ks1pO/jSweyCtFrNr72Mgc3JizxY5hVpOtd37CADwn9atW8tisXgcWd6/f7/HEejTrVmzRpMmTdKrr76qoUOHuv2sbdu2Pi1z9uzZmjlzpuv70tJSJScnq1+/foqNjZV06shkx44dlZKS4hrrjHfr1s3j/ztJ6tmzp8f/d5JcB5ROj6enp3vEo6Ki3OIvvfSSpKrGOaespStuqGoHQrEtQgdt4R7xfZVRKqyMdMUdJ+O7ymO0uzzaI/7jieb68oMNGtItXrfccktAc3KKi4tzizt3irRu3dqtT3DG27Vrp7Zt27ritf09vfTSS9qwo0gXj/ud4mXSARk6WG0busOI/uogk/6rU9sNknTh6P6SpJ3VxkpS/3He4wMnDNTnf/+zNm/erFtuuSWgOZ0ebwy/p1DIydlvno1PDXZDOb1HCq09kH369FFCyjHtkgK+B/Ky/r3Uq2Nb15wa8l4gp4byeyKnppHT9u3bBQAIrvDwcKWlpSkrK0ujR492xbOysjRq1KgaX7d69Wr95je/0erVq3X11Vd7/DwjI0NZWVluB2o+/PBDDRw40OvyIiIiFBER4RG3Wq2yWt03i507ik/n3KCvbfz05foSP7Wz2CS7PI/KG36KO2RSpc0uh8Phtv5A5ORkMpm8xmt6332NO+fucDhUabO7dj5U7VTwfA/sNdyaytv7VVPcMAyP97Auc28If3tOwfo91TZenznVtA6PddZqlJdJVRfs03uk0NoD6dxz1n/cwIDvgfz46+/kKP2fa89ZQ94L5NRQfk/k1DRyio6OFgAg+GbOnKnx48crPT1dGRkZeu6557R7925NmTJFUtW23d69e7Vy5UpJVduNEyZM0KJFizRgwADXgZeoqCjFxcVJkqZNm6YhQ4bo0Ucf1ahRo/T222/ro48+0qefflo/SQJo8nxqsBvK6T1SaO2BdO45qxLYPZA2u8PrnrOGuBeotvFQ2rNV2zg51V9Otd37CADwr7Fjx+rAgQN66KGHVFBQoJ49e2rt2rWunbYFBQVuz8ReunSpbDab7rzzTt15552u+MSJE7VixQpJ0sCBA/XKK6/ogQce0Ny5c9W5c2etWbOGm+QCqDc+bWk2lNN7AAAAEHqmTp2qqVOnev2Zs2l2Wr9+fa2Wef311+v6668/x5kBgH/4fCiH03sAAAAAAPDk/Wr+Mxg7dqwyMzP10EMPqW/fvtqwYUOtT+9JTEx0fU2bNs01xnl6z/Lly9W7d2+tWLGC03sAAAAAACGlThcjcnoPAAAAAADufD6CDQAAAAAAPNFgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPhBnZ6DDQTbggULVFBQELT1JSYmau7cuUFbHwAAAIDQR4ONkFBQUKD3v9yi6LjWAV/XsZJiXX1JwFcDAAAAoJGhwUbIiI5rrYET7g/4ejaufDTg6wAAAADQ+HANNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAEGSLFy9Wx44dFRkZqbS0NGVnZ9c49tNPP9WgQYN03nnnKSoqSt27d9eTTz4ZxNkCAACgtqz1PQEAaErWrFmj6dOna/HixRo0aJCWLl2qESNGaMuWLWrfvr3H+JiYGN11113q3bu3YmJi9Omnn+r2229XTEyMbrvttnrIAAAAADWhwQaAIHriiSc0adIkTZ48WZKUmZmpdevWacmSJVq4cKHH+H79+qlfv36u7zt06KA33nhD2dnZNNgAAL8p3rVVG/Zv09SpU4OyvsTERM2dOzco6wKCiQYbAIKkoqJCOTk5mjVrllt82LBh2rhxY62WkZubq40bN+qPf/xjIKYIAGiibOUntNccp4+37Q/4uo6VFOvqSwK+GqBe0GADQJAUFxfLbrcrISHBLZ6QkKDCwsIzvjYpKUlFRUWy2WyaN2+e6wi4N+Xl5SovL3d9X1paKkmy2Wyy2WySJLPZLLPZLIfDIYfD4RprNlfdmsNqMcuiU3GHTDJkklmGTDJccbtMkkxuY0/FJUu1sd7iYVaLa52GYchut7vGmkwmWSwWjznWFD9TTmazWXa7XYZhnDVusVhkMplc71X1uCS3OZ4pbrVayYmcQi6n09eNpiWsWZwGTrg/4OvZuPLRgK8DqC802AAQZCaTye17wzA8YqfLzs7W0aNH9cUXX2jWrFnq0qWLbrjhBq9jFy5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDsabAAIktatW8tisXgcrd6/f7/HUe3TdezYUZLUq1cv/e9//9O8efNqbLBnz56tmTNnur4vLS1VcnKy+vXrp9jYWEmnjlR37NhRKSkprrHO+Mdff6cT3Ya54o6TR55/OB7n5Qi2lFfWwm0OznhOWUuP+HHD4op/8cEGDekWL6lqQz89Pd011rnToXXr1mrVqpVHvF27dmrbtq3H3GvKqVu3bh5HESWpZ8+eHkcRJbld+149Xn2OznhUVJRHnJzIKRRzcp7xAgCoGxpsAAiS8PBwpaWlKSsrS6NHj3bFs7KyNGrUqFovxzAMt1PATxcREaGIiAiPuNVqldXqXvadp6qezmZ3yO7lSY6Ok6eEn87b2Kq49yPzznilze46XdVkMnnM70xz9DXubFJqG/c2F1/j5EROUmjlVNM6AAC1QxUFgCCaOXOmxo8fr/T0dGVkZOi5557T7t27NWXKFElVR5/37t2rlStXSpKeeeYZtW/fXt27d5dU9Vzsxx57TL/97W/rLQcAAAB4R4MNAEE0duxYHThwQA899JAKCgrUs2dPrV271nVaaUFBgXbv3u0a73A4NHv2bOXn58tqtapz58565JFHdPvtt9dXCgAAAKiB93P6AAABM3XqVO3atUvl5eXKycnRkCFDXD9bsWKF1q9f7/r+t7/9rb7//nuVlZWppKRE33zzje644w6vp3gCQEO3ePFidezYUZGRkUpLS1N2dnaNYwsKCjRu3DhdcMEFMpvNmj59useYFStWyGQyeXydOHEigFkAQM3YQgMAAEDArVmzRtOnT9ecOXOUm5urwYMHa8SIEW5n7VRXXl6u+Ph4zZkzR3369KlxubGxsSooKHD7ioyMDFQaAHBGdWqw2fsIAAAAXzzxxBOaNGmSJk+erNTUVGVmZio5OVlLlizxOr5Dhw5atGiRJkyYoLi4uBqXazKZ1LZtW7cvAKgvPl+D7dz7uHjxYg0aNEhLly7ViBEjtGXLFrVv395jfPW9j08++WSNy42NjdX27dvdYux9BAAACH0VFRXKycnRrFmz3OLDhg3Txo0bz2nZR48eVUpKiux2u/r27asFCxZ4POrMqby83O0pDM7HktlsNtlsNkmn7qjucDhcTzmoHrfb7R6PXfMWt1gsMplMruVWj0tye9Z5TfFTlwMZslR7RKIhkxwyySRD5lrEHTLJOEPcLEPhYWEKC7PKIodb3PPRjCZZdOp9ORWX2xzPFHeq/t6YTCZZLBaP972meG1/T2azWWFWi0wyApqTXWaZTCaZzWZXXoHK6Wxxf/ztSVVPKDAMwy3elHM6fd018bnBrr73UZIyMzO1bt06LVmyRAsXLvQY79z7KEkvvvhijct17n0EAABA41JcXCy73a6EhAS3eEJCggoLC+u83O7du2vFihXq1auXSktLtWjRIg0aNEibN29W165dPcYvXLhQ8+fP94jn5uYqJiZGkhQfH6/OnTsrPz9fRUVFrjFJSUlKSkrSjh07VFJS4op36tRJbdq00ffff6/jx4+7za1FixbKzc1125jv3bu3wsPDtWnTJrc5pKenq6KiQt9++60r1qtXL/1rS6HiLJW6IPKIK37cYdF3x1uotbVcHSPKXPESe5i2n4hVu7DjOj/81FyKbBHKL2+mDhFliree2sGwtyJKeyuj1TXyiKZOniBTeJQSYg4pvzxGRbZIXRhVoijzqblvP9FcJfZw9Y057NZgfncsThWGWWkxh9xyyilrqXCTQ72iT71fdpmULal58+Zu70FUVJT69Omj4uJi7dy50xWPi4tTamqq9u3bpz179rjitf099enTR0mdK3TYWh7QnHLKWimxdUv16dPHlVegcnIK5N+exWJR//79VVJSom3btgX89xQKOZWVlak2fGqwG8reRym09kA695xVCeweyMN7ftTnh37SXXfdVbUcw3DtvavO+X6cazwhIUEPPPBAwPdsOd/DxrZX9WzxhrC3rrHlVNu9jwAA/zOZTG7fG4bhEfPFgAEDNGDAANf3gwYN0kUXXaSnn35aTz31lMf42bNna+bMma7vS0tLlZycrH79+ik2NlbSqW2djh07up7wUD3erVs3j//vJKlnz54e/99J8tiedcbT09M94lFRUW7xl156SVJV45xT1tIVN05uwxTbInTQFu4R31cZpcLKU2eCOk7Gd5XHaHd5tEf8xxPN9c7zKxUWn6yRdw50xX84HudlW0vKK2vhNndnvPocnfHjhsUjLklHjhxxy9X5d9C6dWu1atXKI96uXTu3g3G1/T299NJL2rCjSBeP6x/wnAqKD2nz5s265ZZbAprT6fFA/O05xcXFBeX3FAo5OfvNs/GpwW4oex+l0NoD2adPHyWkHNMuKeB7IEdc9jOlpKQoIqrqPdi4eZt+3F2gUZddrBbNYlzjs77YrH1FBzVuxGCFWU/9Gby1/ksdO16ucSNO3dVYklZ9sEHRURG69ueXuGInjh9TwZ78oOzZcu59bNnI9qo6NeS9dY0tp9MvRQEABF7r1q1lsVg8thf379/vsV15Lsxms/r3768ff/zR688jIiIUERHhEbdarbJa3TeLnTuKT+fcoK9t/PTl+hI/tbPY5Gr4qjP8FHfIpIrKShmVNtmr3aLJcfLgxensNdzGyduyzxT39h7U9L77Gnf+PhwOhyptdtfOh0DmZBiGHA5Hrf+W6ppTbePn8rfnZDKZgvJ7qm28PnOqaR0e66zVKC+Tqi7Yex+l0NoD6dxz1n/cwIDvgXzvnx8pvE17jbzzj5KkNj/vr3iZdECGDlZrOjuM6K8OMum/px3tvXB01d69nacd1e0/zjP+xQdP6GddzgvKnq1nnnlGG3YUacC49Ea1V/X0eEPcW9fYcoqOjhYAILjCw8OVlpamrKwsjR492hXPysrSqFGj/LYewzCUl5enXr16+W2ZAOALnxrshrL3UQqtPZDOPWdVArsHstJmk07b+ygFZm+dM6dg7NlyvoeNba9qbePsgfRfTrXd+wgA8K+ZM2dq/PjxSk9PV0ZGhp577jnt3r1bU6ZMkVR18GTv3r1auXKl6zV5eXmSqi4lLCoqUl5ensLDw9WjRw9J0vz58zVgwAB17dpVpaWleuqpp5SXl6dnnnkm6PkBgORjg83eRwAAANTF2LFjdeDAAT300EMqKChQz549tXbtWtdZUQUFBR7PxK5+tlNOTo5WrVqllJQU7dq1S5J0+PBh3XbbbSosLFRcXJz69eunDRs26OKLLw5aXgBQnc+Hctj7CAAAgLqYOnWqpk6d6vVnK1as8IhVv8TImyeffPKMj4EFgGDzucFm7yMAAAAAAJ7qdDEiex8BAAAAAHDn/W5QAAAAAADAJzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB9Y63sCAAAAAJqO4l1btWH/Nk2dOjXg69qwYYMORyQGfD2AEw02AAAAgKCxlZ/QXnOcPt62P+Dr2vO/Q4o6Pz7g6wGcaLABAAAABFVYszgNnHB/wNfzxpxfB3wdQHVcgw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5gre8JIHQV79qqDfu3aerUqQFf14YNG3Q4IjHg6wEAAACAuqLBRp3Zyk9orzlOH2/bH/B17fnfIUWdHx/w9QAAAABAXdFg45yENYvTwAn3B3w9b8z5dcDXAQAAAADngmuwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQaAIFu8eLE6duyoyMhIpaWlKTs7u8axb7zxhq688krFx8crNjZWGRkZWrduXRBnCwAAgNqiwQaAIFqzZo2mT5+uOXPmKDc3V4MHD9aIESO0e/dur+M3bNigK6+8UmvXrlVOTo4uu+wyXXPNNcrNzQ3yzAEAAHA2NNgAEERPPPGEJk2apMmTJys1NVWZmZlKTk7WkiVLvI7PzMzUfffdp/79+6tr1656+OGH1bVrV7377rtBnjkAAADOhgYbAIKkoqJCOTk5GjZsmFt82LBh2rhxY62W4XA4dOTIEbVq1SoQUwQAAMA5sNb3BACgqSguLpbdbldCQoJbPCEhQYWFhbVaxuOPP66ysjKNGTOmxjHl5eUqLy93fV9aWipJstlsstlskiSz2Syz2SyHwyGHw+EaazZX7Xe1Wsyy6FTcIZMMmWSWIZMMV9wukyST29hTcclSbay3eJjV4lqnYRiy2+2usSaTSRaLxWOONcXPlJPZbJbdbpdhGGeNWywWmUwm13tVPS7JbY5nilutVnIip5DL6fR1AwB8Q4MNAEFmMpncvjcMwyPmzerVqzVv3jy9/fbbatOmTY3jFi5cqPnz53vEc3NzFRMTI0mKj49X586dlZ+fr6KiIteYpKQkSdJl/XvpwphDrnh+eYyKbJG6MKpEUeZTG+3bTzRXiT1cfWMOuzXT3x2LU4VhVlq1ZUhSTllLhZsc6hVdIknqNGKIWkZX/VdUUlKibdu2ucZGRUWpT58+Ki4u1s6dO13xuLg4paamat++fdqzZ48rfqackpKStGPHDpWUlLjinTp1Ups2bfT999/r+PHjrnj37t3VokUL5ebmujUovXv3Vnh4uDZt2uSWU3p6uioqKvTtt9+6YhaLRf379ycncgq5nMrKygQAqDsabAAIktatW8tisXgcrd6/f7/HUe3TrVmzRpMmTdKrr76qoUOHnnHs7NmzNXPmTNf3paWlSk5OVr9+/RQbGyvp1JHqjh07KiUlxTXWGf/46+90otupU9kdJ488/3A8zssRbCmvrIXbHJzxnLKWHvHjhsUV/+KDDRrSLV5S1YZ+enq6a6xzp0Pr1q3dTol3xtu1a6e2bdt6zL2mnLp16+ZxFFGSevbs6XEUUZL69evnNndnvPocnfGoqCiPODmRUyjm5DzjBQBQN1yDDQBBEh4errS0NGVlZbnFs7KyNHDgwBpft3r1at18881atWqVrr766rOuJyIiQrGxsW5fUtVpo84v5wa+2Wz2GrfZHbLL7PoyTjbMDpnc4joZrx47FTedNV5ps7tOVzWZTG5zcTYVp8+xpvjZcrJYLLWKOxuO6jFn/PQ5nilOTuQUqjkFki+PKSwoKNC4ceN0wQUXyGw2a/r06V7Hvf766+rRo4ciIiLUo0cPvfnmmwGaPQCcXZ0abIojANTNzJkz9fzzz+vFF1/U1q1bNWPGDO3evVtTpkyRVHX0ecKECa7xq1ev1oQJE/T4449rwIABKiwsVGFhodvppgAQCnx9TGF5ebni4+M1Z84c9enTx+uYzz//XGPHjtX48eO1efNmjR8/XmPGjNGXX34ZyFQAoEY+N9gURwCou7FjxyozM1MPPfSQ+vbtqw0bNmjt2rWu00oLCgrc6unSpUtls9l05513KjEx0fU1bdq0+koBAOrE18cUdujQQYsWLdKECRMUFxfndUxmZqauvPJKzZ49W927d9fs2bN1xRVXKDMzM4CZAEDNfD4PqHpxlKoK27p167RkyRItXLjQY7yzOErSiy++6HWZ1YujVHUE55NPPlFmZqZWr17t6xQBoEGbOnWqpk6d6vVnK1ascPt+/fr1gZ8QAASY8zGFs2bNcov78phCbz7//HPNmDHDLTZ8+PAaG+xzfcpCsO8K77ycQDLcbiRpyCSHTDLJkLkWceeTIGqKm2UoPCxMYWFWWeQI2JMjqjOZ3JcTiJxM1fIyyQhoTnaZZTKZZDabXb/zpvxEgsaYU22fsuBTg91QiqMUWgXSbDYrzGo5+dPAFsgwq1XhJ4tj9Xggikl4WNjJ7xpf0Zfk9vtuysWkseXEI2gAIPj88ZhCbwoLC31a5rk+ZSHYd4Xv1auX/rWlUHGWSl0QecQVP+6w6LvjLdTaWq6OEafu/F5iD9P2E7FqF3Zc54efmkuRLUL55c3UIaJM8dZT2897K6K0tzJaXSOPaOrkCTKFRykh5lDAnhwhVW1/vSopuW1rt/GByCnOUqnzT+Z1zFoe0JxyylopsXVL9enTx/W7bcpPJGiMOdX2KQs+NdgNpThKoVUg+/Tpo4SUY9olBbxA/uKqoerQuYsSThaDQBbI+Ak3aNk76xtd0c+W1Lx5c7ffa1MuJo0tp+3btwsAUD/q+phCfy3TH09ZCOZd4V966SVJVdtQ1Z/K4LzxZLEtQgdt4R7xfZVRKqyMdMWdT4LYVR6j3eXRHvEfTzTXO8+vVFh8skbeOTBgT46o7r+FxQHPySRDb5/M66o7BwU8p4LiQ9q8ebNuueUWSU37iQSNMafaPmWhTreKrO/iKIVWgXzppZe0YUeR+o8bGPAC+d4/P1J4mx0aeedAt3ggisnbK1dLLRIbZdE/cuQIxaSR5hQdHS0AQHCdy2MKz6Rt27Y+LTMiIkIREREecW93UHeeiXU65/9XtY3XdGf22sRPnY1lcm3PVGf4Ke6QSRWVlTIqbSef+HAqLi/j7TXcxsnbsmuKG4bhdTn+zEnV8qr+NIxA5uRwOGr9t+RrPJh/e07OJxLUdo6NOafaPmXBpwa7oRRHKbQKpMPhUKXNeaQusAWy0maTTiuOUmCKSUVlpcIkNcaiL3n/vTbFYlLbeKjkFOhH0AAAPFV/TOHo0aNd8aysLI0aNarOy83IyFBWVpbbpYYffvjhGR99CACB5NNdxOv6DNezcRbH6iiOAAAAjYevjymUpLy8POXl5eno0aMqKipSXl6etmzZ4vr5tGnT9OGHH+rRRx/Vtm3b9Oijj+qjjz6q8bGwABBoPh/KmTlzpsaPH6/09HRlZGToueee8yiOe/fu1cqVK12vycvLkyS34hgeHq4ePXpIqiqOQ4YM0aOPPqpRo0bp7bff1kcffaRPP/3UDykCAACgvo0dO1YHDhzQQw89pIKCAvXs2fOMjymU3C8nysnJ0apVq5SSkqJdu3ZJkgYOHKhXXnlFDzzwgObOnavOnTtrzZo1uuSSS4KWFwBU53ODTXEEAABAXfjymEJJbvfwqMn111+v66+//lynBgB+UaeLESmOAAAAAAC48+kabAAAAAAA4B0NNgAAAAAAfkCDDQAAAACAHzTZB8IuWLBABQUFQVnXhg0bdDgiMSjrAgAADVcwtz8kKTExUXPnzg3a+oCmrHjXVm3Yv63Ge1X5G5/vhqnJNtgFBQV6/8stio5rHfB17fnfIUWdHx/w9QAAgIYtmNsfx0qKdTUPZAGCxlZ+QnvNcfp42/6Ar4vPd8PVZBtsSYqOa62BE+4P+HremPPrgK8DAACEhmBtf2xc+WjA1wHAXVizOD7fTRzXYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+0KSfgw14U7xrqzbs36apU6cGZX2JiYmaO3duUNYFAAAAIHBosIHT2MpPaK85Th9v2x/wdR0rKdbVlwR8NQAAAACCgAYb8CKsWZwGTrg/4OvZuPLRgK8DAAAAQHBwDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4Ac02AAAAAAA+AENNgAAAAAAfkCDDQAAAACAH9BgAwAAAADgBzTYAAAAAAD4AQ02AAAAAAB+QIMNAAAAAIAf0GADAAAAAOAHNNgAAAAAAPgBDTYAAAAAAH5Agw0AAAAAgB/QYAMAAAAA4AfW+p4AAAAAECoWLFiggoKCoKxrw4YNOhyRGJR1AfAPGmwAAACglgoKCvT+l1sUHdc64Ova879Dijo/PuDrAeA/NNgAAACAD6LjWmvghPsDvp435vw64OtAaCretVUb9m/T1KlTg7K+xMREzZ07NyjrCnU02EA9ojgCAADAV7byE9prjtPH2/YHfF3HSop19SUBX02jQYMN1COKIwAAAOoirFlcUM6k2Ljy0YCvozGhwQbqGcURAAAAaBx4TBcABNnixYvVsWNHRUZGKi0tTdnZ2TWOLSgo0Lhx43TBBRfIbDZr+vTpwZsoAAAAfEKDDQBBtGbNGk2fPl1z5sxRbm6uBg8erBEjRmj37t1ex5eXlys+Pl5z5sxRnz59gjxbAAAA+IIGGwCC6IknntCkSZM0efJkpaamKjMzU8nJyVqyZInX8R06dNCiRYs0YcIExcXFBXm2AAAA8AUNNgAESUVFhXJycjRs2DC3+LBhw7Rx48Z6mhUABI8vl8hI0ieffKK0tDRFRkaqU6dOevbZZ91+vmLFCplMJo+vEydOBDINAKhRnRpsiiMA+K64uFh2u10JCQlu8YSEBBUWFvptPeXl5SotLXX7kiSbzeb6cjgckiSHw+E1brWYZZHD9WWSIUkyy3CL62S8euxU3DhrPMxqkdlc9V+RYRhuc7Hb7V7nWFP8bDnZ7fZaxQ3D8Hi/nPHT53imODmRk7e5m81mmU2mgHyeTsUlyXB9vnzNKVB8vUQmPz9fI0eO1ODBg5Wbm6vf//73uvvuu/X666+7jYuNjVVBQYHbV2RkZMDyAIAz8fku4s7iuHjxYg0aNEhLly7ViBEjtGXLFrVv395jvLM43nrrrXrppZf02WefaerUqYqPj9d1113nGhcbG6vt27e7vZbiCKAxMp3cuHYyDMMjdi4WLlyo+fPne8Rzc3MVExMjSYqPj1fnzp2Vn5+voqIi15ikpCRJ0mX9e+nCmEOueH55jIpskbowqkRRZrsrvv1Ec5XYw9U35rAsJ5sDSfruWJwqDLPSqi1DknLKWirc5FCv6BJJUqcRQ9Qyuuq/opKSEm3bts01NioqSn369FFxcbF27tzpisfFxSk1NVX79u3Tnj17XPEz5ZSUlKQdO3aopKTEFe/UqZPatGmj77//XsePH3fFu3fvrhYtWig3N9fVfEhS7969FR4erk2bNrnllJ6eroqKCn377beumMViUf/+/cmJnDxy6tOnj3YfrZqDvz9PkmSXSTllrRRnqdS4EUN0XrOq96K2OZWVlSlQql8iI0mZmZlat26dlixZooULF3qMf/bZZ9W+fXtlZmZKklJTU7Vp0yY99thjbtuQJpNJbdu2Ddi8AcAXPjfYFEcAqJvWrVvLYrF4HK3ev3+/x1HtczF79mzNnDnT9X1paamSk5PVr18/xcbGSpLrqHHHjh2VkpLiGuuMf/z1dzrR7dSp7A5V7QD44Xic62i2VLUxL0l5ZS3c5uCM55S19IgfNyyu+BcfbNCQbvGSqjb009PTXWOdOx1at26tVq1aecTbtWvn9v/G2XLq1q2b66hn9XjPnj3d4haLRZLUr18/t7k749Xn6IxHRUV5xMmJnLzl9NJLL+mn//5P8fL/56m6EnuYPjr5+brllltqnZPzjBd/c14iM2vWLLf4mS6R+fzzzz0uqRk+fLheeOEFVVZWKiwsTJJ09OhRpaSkyG63q2/fvlqwYIHH3wUABItPDTbFEQDqLjw8XGlpacrKytLo0aNd8aysLI0aNcpv64mIiFBERIRH3Gq1ymp1L/tms9nVBFRnsztk93IVUVWj7Xm03dvYqrj3I/POeKXN7jqN1mQyeczvTHP0Ne5svGob9zYXX+PkRE6S+9wdDoccJ5ttf3+e3Jlcn6/quZ1t7jW9b+eqLpfIFBYWeh1vs9lUXFysxMREde/eXStWrFCvXr1UWlqqRYsWadCgQdq8ebO6du3qsczy8nKVl5e7vj/9Ehrp1HvhcDhc9al63Gw2K8xqcZ2OX3URjUlmGV52mJiqnbZfPS63sxRqioeHhZ38znCLGzLJIZNMMmSuRdw5x5riZhkKDwtTWJhVFjkCmpOTyeS+nEDkZKqWl0lGQHOyyyyTyaTwk+9hIHOSqv42TOZTl5sEKqfTLzcxmUyyWCwen4+a4mf7PNntdo+dqt7iFotFJpPJ4zIWZ32tfibTmeJWq1WGYbjFa5tTbS+h8amKNpTiKJ17gZROXWPoFKhi4vxgVwlsgQyzWt0+2BR9in5VvKroO4ujK8cmWCADeX1hbcycOVPjx49Xenq6MjIy9Nxzz2n37t2aMmWKpKqjz3v37tXKlStdr8nLy5NUtSOyqKhIeXl5Cg8PV48ePeojBQCoM18vkfE2vnp8wIABGjBggOvngwYN0kUXXaSnn35aTz31lMfyzvUSmqSkJHXq1ElJnVPV8uQp+4G6hEaS4ifcoGXvrFecpVIXRB5xxY87LPrueAu1tparY8Sp0/pL7GHafiJW7cKO6/zwU5dUFNkilF/eTB0iyhRvPbX9vLciSnsro9U18oimTp4gU3iUEmIOBTQnu0x6VVJy29Zu4wORU5ylUuefzOuYtTygOeWUtVL7pHb61a9GKuHkawKVkySdP3mCPs6tury2IV5u4tSYLguq7SU0ddpNWd/FUQqtawzPnzxBNlOY9kkBL5C/uGqoOnTu4vpgU/Qp+s4Cmdi6pfr06eMqQE21QJ5+r4dgGzt2rA4cOKCHHnpIBQUF6tmzp9auXes6rbSgoMDjhj/Vz+bJycnRqlWrlJKSol27dgVz6gBQZ3W5RKZt27Zex1utVp133nleX2M2m9W/f3/9+OOPXn/uj0todu7cqQ07ijRgXNVlBYG6hEaS3l65WmqRqBJ7mFvcOLmMYluEDtrCPeL7KqNUWHnqXkbOOe4qj9Hu8miP+I8nmuud51cqLD5ZI+8cGNCcnP5bWBzwnEwy9PbJvK66c1DAc9q9Z5+ee3WtRt45MKA5SdLbz6+UqVU7dQ5wTnW93MSpMV0WVNtLaHxqsBtKcZRC6xpD5wd7+J0/D3iBfO+fHym8zQ7XB5uiT9F3Kig+pM2bN+uWW26R1HSvm4yOjlZ9mzp1qqZOner1ZytWrPCIVX//ACAU1eUSmYyMDL377rtusQ8//FDp6emuSwxPZxiG8vLy1KtXL68/98clNA6HQ5U2u8ep/IE45b+islJVmZq8jjf8FHfIpIrKShmVNrf5BvIyBsMwvC7HnzmpWl7ObbZA51Rx2ntYl7mfLSfp5N+Go+FeblLbeChdFlTbS2h8arAbSnGUQusaQ+cHu0pgC2SlzSZ5+WBT9Cn6hmF4FEep6RXIQF1fCAA4M18vkZkyZYr++te/aubMmbr11lv1+eef64UXXtDq1atdy5w/f74GDBigrl27qrS0VE899ZTy8vL0zDPP1EuOAODzlibFEQAAAL7y9RKZjh07au3atZoxY4aeeeYZtWvXTk899ZTbU2gOHz6s2267TYWFhYqLi1O/fv20YcMGXXzxxUHPDwCkOjTYFEcAgL8U79qqDfu31XjKvL8lJiZq7ty5QVkXAE++XiJz6aWX6ptvvqlxeU8++aSefPJJf00PAM5Znc6VpDgCAPzBVn5Ce81x+njb/oCv61hJsa6+JOCrAQAATRgXIwIA6lVYszgNnHB/wNezceWjAV8HAABo2miwgSaCU3EBAACAwKLBBpoITsUFAAAAAosGG2hCOBUXAAAAvuAsSN/QYAMAAAAAvOIsSN/QYAMAAAAAasRZkLVnru8JAAAAAADQGNBgAwAAAADgB5wiDsDvuBkGAAAAmiIabAB+x80wAAAA0BTRYAMICG6GAQAAgKaGa7ABAAAAAPADjmADAJoE7g0AAAACjQYbANAkBPPeAAXbcpTUKkYFBQUBX5dEMw8AQENBgw0AaDKCdW+AN+b8WntPhHOjPwAAmhgabAAAAoAb/QEA0PTQYAMAEMK4tvzcLViwIGin82/YsEGHIxKDsi4AQPDRYAMAEMIa63Png930FlRGqc35KQFf157/HVLU+fEBXw8AoH7QYAMAEOIa4+noBQUFev/LLYqOax3wdTmb3mBdnw8AaLxosAEAQIMUHdeaphcAEFJosAEAQK0E83pvrlUGgKanMdxXhAYbAADUSjCv9+ZaZQBoehrDfUVosAEAQK0F81niAICmJ9TvK2IOyFIBAAAAAGhiaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8IM6NdiLFy9Wx44dFRkZqbS0NGVnZ59x/CeffKK0tDRFRkaqU6dOevbZZz3GvP766+rRo4ciIiLUo0cPvfnmm3WZGgA0eIGooQAQCtiGBNDY+dxgr1mzRtOnT9ecOXOUm5urwYMHa8SIEdq9e7fX8fn5+Ro5cqQGDx6s3Nxc/f73v9fdd9+t119/3TXm888/19ixYzV+/Hht3rxZ48eP15gxY/Tll1/WPTMAaIACUUMBIBSwDQmgKfC5wX7iiSc0adIkTZ48WampqcrMzFRycrKWLFnidfyzzz6r9u3bKzMzU6mpqZo8ebJ+85vf6LHHHnONyczM1JVXXqnZs2ere/fumj17tq644gplZmbWOTEAaIgCUUMBIBSwDQmgKfCpwa6oqFBOTo6GDRvmFh82bJg2btzo9TWff/65x/jhw4dr06ZNqqysPOOYmpYJAKEoUDUUABo6tiEBNBVWXwYXFxfLbrcrISHBLZ6QkKDCwkKvryksLPQ63mazqbi4WImJiTWOqWmZklReXq7y8nLX9yUlJZKkgwcPymazSZLMZrPMZrMcDoccDodrrNlsVkVFhU6UFOmLlQtdcbvdIYdhyGoxy2QyueI2u0OGYSjManGbg81mlyF5xCttdpkkWU/GTY5KGcdKlf3iH2UymWS1nNqvYRiGbHaHzCaTLN7iZpMs5lNxh8OQ3eGQxWyW2XxqjnaHQw6HIdkqZBwrdeUVqJyceVWUHtSny/8U0JysFrPrPfxi5cKA5iRJlSeOSUcOuf1tBCQnk8mV12fL/xTYnGx22cqPy1rtbyNQOUlVfxu2I4eU/eIfA5qTyWRSZdlh2WytdPDgQZlMJlksFo/PfPX44cOHXXkGW6Bq6Omoj9RH6iP1sS710eFwqLS01JWrPzWUbchzrY9ms1k2m03lpcXUkjrmJFFLQq2WVP/bCGROkmSvOCGj9KA+/9vDAc3JajGrvPSgbLZWOnTokF/ro08NdvWVVWcYhkfsbONPj/u6zIULF2r+/Pke8Y4dO9Y88fpU+F8V//hNcNa1f0/w1qX/qiT/2+CsKpjv4cFCHd65OTjrCmJeRw8UBPVv41CQ3sNlOZ9o2bJlPr3myJEjiouLC9CMziwQNbQ66uMZUB/PHfXRDxp2fZQCVyPrexsy5OqjJGqJH1BLzl0w/zaK9wXtbz4Q25A+NditW7eWxWLx2Cu4f/9+j72HTm3btvU63mq16rzzzjvjmJqWKUmzZ8/WzJkzXd87HA4dPHhQ55133hkLtVNpaamSk5P13//+V7GxsWcd3xCFeg6hPn8p9HMI9flLvudgGIaOHDmidu3aBWF27gJVQ09HfQz9HEJ9/hI5NAR1mX+gamRD2YY81/ooNc2/i4Ym1HMI9flLTTOH2tZHnxrs8PBwpaWlKSsrS6NHj3bFs7KyNGrUKK+vycjI0LvvvusW+/DDD5Wenq6wsDDXmKysLM2YMcNtzMCBA2ucS0REhCIiItxiLVq08CUdSVJsbGzI/lE4hXoOoT5/KfRzCPX5S77lUF9HrgNVQ09HfTwl1HMI9flL5NAQ+Dr/QNTIhrIN6a/6KDW9v4uGKNRzCPX5S00vh1rVR8NHr7zyihEWFma88MILxpYtW4zp06cbMTExxq5duwzDMIxZs2YZ48ePd43fuXOnER0dbcyYMcPYsmWL8cILLxhhYWHGa6+95hrz2WefGRaLxXjkkUeMrVu3Go888ohhtVqNL774wtfp1VpJSYkhySgpKQnYOgIt1HMI9fkbRujnEOrzN4zQyyEQNdTfQu099SbUcwj1+RsGOTQEDW3+bEM2DKE+f8MI/RxCff6GQQ5n4vM12GPHjtWBAwf00EMPqaCgQD179tTatWuVkpIiSSooKHB7nmHHjh21du1azZgxQ88884zatWunp556Stddd51rzMCBA/XKK6/ogQce0Ny5c9W5c2etWbNGl1xyia/TA4AGLRA1FABCAduQAJoEv7brIeTEiRPGgw8+aJw4caK+p1JnoZ5DqM/fMEI/h1Cfv2E0jhwamsbwnoZ6DqE+f8Mgh4Yg1OffUIX6+xrq8zeM0M8h1OdvGORwJibDqIdn1QAAAAAA0MiYzz4EAAAAAACcDQ02AAAAAAB+QIMNAAAAAIAfNOoGe/HixerYsaMiIyOVlpam7OzsM47/5JNPlJaWpsjISHXq1EnPPvtskGbqnS/zf+ONN3TllVcqPj5esbGxysjI0Lp164I4W+98/R04ffbZZ7Jarerbt29gJ1gLvuZQXl6uOXPmKCUlRREREercubNefPHFIM3Wk6/zf/nll9WnTx9FR0crMTFRt9xyiw4cOBCk2XrasGGDrrnmGrVr104mk0lvvfXWWV/T0D7LDVGo10cp9Gsk9bH+66MU2jWS+hgY1Mf6r49S6NdI6mMTro9+vWVaA+J81uKyZcuMLVu2GNOmTTNiYmKM//znP17HO5+1OG3aNGPLli3GsmXLAv6s2TPxdf7Tpk0zHn30UeOrr74yduzYYcyePdsICwszvvnmmyDP/BRfc3A6fPiw0alTJ2PYsGFGnz59gjPZGtQlh1/+8pfGJZdcYmRlZRn5+fnGl19+aXz22WdBnPUpvs4/OzvbMJvNxqJFi4ydO3ca2dnZxoUXXmhce+21QZ75KWvXrjXmzJljvP7664Yk48033zzj+Ib2WW6IQr0+Gkbo10jqY/3XR8MI/RpJffQ/6mP910fDCP0aSX1s2vWx0TbYF198sTFlyhS3WPfu3Y1Zs2Z5HX/fffcZ3bt3d4vdfvvtxoABAwI2xzPxdf7e9OjRw5g/f76/p1Zrdc1h7NixxgMPPGA8+OCD9b4B6WsOH3zwgREXF2ccOHAgGNM7K1/n/5e//MXo1KmTW+ypp54ykpKSAjZHX9SmQDa0z3JDFOr10TBCv0ZSHxuGxlQjqY/+QX2swjbkuaE+Vmmq9bFRniJeUVGhnJwcDRs2zC0+bNgwbdy40etrPv/8c4/xw4cP16ZNm1RZWRmwuXpTl/mfzuFw6MiRI2rVqlUgpnhWdc1h+fLl+umnn/Tggw8GeopnVZcc3nnnHaWnp+vPf/6zzj//fHXr1k333HOPjh8/Howpu6nL/AcOHKg9e/Zo7dq1MgxD//vf//Taa6/p6quvDsaU/aIhfZYbolCvj1Lo10jqY/3XR6lp1siG9lluaKiPVdiGPDfUR+qj1Z8TayiKi4tlt9uVkJDgFk9ISFBhYaHX1xQWFnodb7PZVFxcrMTExIDN93R1mf/pHn/8cZWVlWnMmDGBmOJZ1SWHH3/8UbNmzVJ2dras1vr/06xLDjt37tSnn36qyMhIvfnmmyouLtbUqVN18ODBoF9HU5f5Dxw4UC+//LLGjh2rEydOyGaz6Ze//KWefvrpYEzZLxrSZ7khCvX6KIV+jaQ+1n99lJpmjWxon+WGhvpYhW3Ic0N9pD42yiPYTiaTye17wzA8Ymcb7y0eLL7O32n16tWaN2+e1qxZozZt2gRqerVS2xzsdrvGjRun+fPnq1u3bsGaXq348ntwOBwymUx6+eWXdfHFF2vkyJF64okntGLFinrbC+nL/Lds2aK7775bf/jDH5STk6N//vOfys/P15QpU4IxVb9paJ/lhijU66O3dYdajaQ+1n99lJpejWyIn+WGhvpY//VRCv0aSX1suvWx/neDB0Dr1q1lsVg89rDs37/fY8+EU9u2bb2Ot1qtOu+88wI2V2/qMn+nNWvWaNKkSXr11Vc1dOjQQE7zjHzN4ciRI9q0aZNyc3N11113SaoqNoZhyGq16sMPP9Tll18elLk71eX3kJiYqPPPP19xcXGuWGpqqgzD0J49e9S1a9eAzrm6usx/4cKFGjRokO69915JUu/evRUTE6PBgwfrj3/8Y0gc3WhIn+WGKNTroxT6NZL6WP/1UWqaNbKhfZYbGupj/ddHKfRrJPWR+tgoj2CHh4crLS1NWVlZbvGsrCwNHDjQ62syMjI8xn/44YdKT09XWFhYwObqTV3mL1Xtdbz55pu1atWqer/ewdccYmNj9d133ykvL8/1NWXKFF1wwQXKy8vTJZdcEqypu9Tl9zBo0CDt27dPR48edcV27Nghs9mspKSkgM73dHWZ/7Fjx2Q2u5cFi8Ui6dRevIauIX2WG6JQr49S6NdI6mP910epadbIhvZZbmioj/VfH6XQr5HUx1OabH30+bZoIcJ5a/kXXnjB2LJlizF9+nQjJibG2LVrl2EYhjFr1ixj/PjxrvHOW7PPmDHD2LJli/HCCy80iMd01Xb+q1atMqxWq/HMM88YBQUFrq/Dhw/Xy/wNw/ccTlffd4A0DN9zOHLkiJGUlGRcf/31xg8//GB88sknRteuXY3JkyeHxPyXL19uWK1WY/HixcZPP/1kfPrpp0Z6erpx8cUX18v8DaPqPc3NzTVyc3MNScYTTzxh5Obmuh4T0dA/yw1RqNdHwwj9Gkl9rP/6aBihXyOpj/5Hfaz/+mgYoV8jqY9Nuz422gbbMAzjmWeeMVJSUozw8HDjoosuMj755BPXzyZOnGhceumlbuPXr19v9OvXzwgPDzc6dOhgLFmyJMgzdufL/C+99FJDksfXxIkTgz/xanz9HVRX38XRydcctm7dagwdOtSIiooykpKSjJkzZxrHjh0L8qxP8XX+Tz31lNGjRw8jKirKSExMNG688UZjz549QZ71KR9//PEZ/7ZD4bPcEIV6fTSM0K+R1Mf6r4+GEdo1kvoYGNTH+q+PhhH6NZL62HTro8kwQuCYPQAAAAAADVyjvAYbAAAAAIBgo8EGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA9osAEAAAAA8AMabAAAAAAA/IAGGwAAAAAAP6DBBs7Bz3/+c02fPt31fYcOHZSZmVlv8wGAhoL6CADeUR8bNxps+OTmm2+WyWSSyWRSWFiYOnXqpHvuuUdlZWWSpF27dslkMikvL0/z5s1zja3pa9euXTWu629/+5suvvhixcTEqHnz5hoyZIjee++9IGXqbv369TKZTDp8+LBb/I033tCCBQvqZU4AGhbq42G3OPURgBP18bBbnPrYuNFgw2dXXXWVCgoKtHPnTv3xj3/U4sWLdc8993iMu+eee1RQUOD6SkpK0kMPPeQWS05O9rqOe+65R7fffrvGjBmjzZs366uvvtLgwYM1atQo/fWvfw10irXWqlUrNW/evL6nAaCBoD6eQn0EUB318RTqYyNnAD6YOHGiMWrUKLfY5MmTjbZt2xqGYRj5+fmGJCM3N9fjtSkpKcaTTz551nV8/vnnhiTjqaee8vjZzJkzjbCwMGP37t2GYRjGgw8+aPTp08dtzJNPPmmkpKS4vv/qq6+MoUOHGuedd54RGxtrDBkyxMjJyXF7jSRj2bJlxrXXXmtERUUZXbp0Md5++223nKp/TZw40TAMw7j00kuNadOm1Zjj4cOHjVtvvdWIj483mjdvblx22WVGXl6e6+d5eXnGz3/+c6NZs2ZG8+bNjYsuusj4+uuvz/oeAWh4qI/URwDeUR+pj00JR7BxzqKiolRZWem35a1evVrNmjXT7bff7vGz3/3ud6qsrNTrr79e6+UdOXJEEydOVHZ2tr744gt17dpVI0eO1JEjR9zGzZ8/X2PGjNG3336rkSNH6sYbb9TBgweVnJzsWt/27dtVUFCgRYsWnXW9hmHo6quvVmFhodauXaucnBxddNFFuuKKK3Tw4EFJ0o033qikpCR9/fXXysnJ0axZsxQWFlbr3AA0bNRH76iPAKiP3lEfQ5+1vieA0PbVV19p1apVuuKKK/y2zB07dqhz584KDw/3+Fm7du0UFxenHTt21Hp5l19+udv3S5cuVcuWLfXJJ5/oF7/4hSt+880364YbbpAkPfzww3r66af11Vdf6aqrrlKrVq0kSW3atFGLFi1qtd6PP/5Y3333nfbv36+IiAhJ0mOPPaa33npLr732mm677Tbt3r1b9957r7p37y5J6tq1a63zAtCwUR9rRn0EmjbqY82oj6GPI9jw2XvvvadmzZopMjJSGRkZGjJkiJ5++umgrd8wDK/Fsyb79+/XlClT1K1bN8XFxSkuLk5Hjx7V7t273cb17t3b9W/njTH2799f53nm5OTo6NGjOu+889SsWTPXV35+vn766SdJ0syZMzV58mQNHTpUjzzyiCsOIDRRH2uH+gg0PdTH2qE+hj6OYMNnl112mZYsWaKwsDC1a9fO76ekdO3aVZ9++qkqKio8CuG+fftUWlqqbt26SZLMZrMMw3Abc/rpRjfffLOKioqUmZmplJQURUREKCMjQxUVFW7jTs/DZDLJ4XDUOQ+Hw6HExEStX7/e42fOvZjz5s3TuHHj9P777+uDDz7Qgw8+qFdeeUWjR4+u83oB1B/qY+1QH4Gmh/pYO9TH0McRbPgsJiZGXbp0UUpKSkCu97jhhht09OhRLV261ONnjz32mCIjIzV27FhJUnx8vAoLC92KZF5enttrsrOzdffdd2vkyJG68MILFRERoeLiYp/m5CzUdru91q+56KKLVFhYKKvVqi5durh9tW7d2jWuW7dumjFjhj788EP96le/0vLly32aG4CGg/pYO9RHoOmhPtYO9TH00WCjwcnIyNC0adN077336vHHH9dPP/2kbdu26YEHHtBTTz2lZcuW6bzzzpMk/fznP1dRUZH+/Oc/66efftIzzzyjDz74wG15Xbp00d///ndt3bpVX375pW688UZFRUX5NKeUlBSZTCa99957Kioq0tGjR8/6mqFDhyojI0PXXnut1q1bp127dmnjxo164IEHtGnTJh0/flx33XWX1q9fr//85z/67LPP9PXXXys1NdWnuQFoOqiP1EcA3lEfqY8NBQ02GqTMzEwtXrxYq1evVs+ePZWamqq//OUv+ve//62bbrrJNS41NVWLFy/WM888oz59+uirr77yeKbiiy++qEOHDqlfv34aP3687r77brVp08an+Zx//vmaP3++Zs2apYSEBN11111nfY3JZNLatWs1ZMgQ/eY3v1G3bt3061//Wrt27VJCQoIsFosOHDigCRMmqFu3bhozZoxGjBih+fPn+zQ3AE0L9REAvKM+oiEwGadfgAA0QLt27dKll16qjIwMvfzyy7JYLPU9JQBoEKiPAOAd9RH1gSPYCAkdOnTQ+vXr1b17d49rZACgKaM+AoB31EfUB45gAwAAAADgBxzBBgAAAADAD2iwAQAAAADwAxpsAAAAAAD8gAYbAAAAAAA/oMEGAAAAAMAPaLABAAAAAPADGmwAAAAAAPyABhsAAAAAAD+gwQYAAAAAwA/+P4sOvQJi1wWsAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "compute_results(test_data, output_cols, np.mean(ensemble_mu, axis=0), np.sqrt(aleatoric), np.sqrt(epistemic))" ] @@ -1110,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1121,7 +698,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ From 47af4abbdfae88faa6c441aa036783acb9bfdbcf Mon Sep 17 00:00:00 2001 From: John Schreck Date: Thu, 21 Sep 2023 14:50:56 -0600 Subject: [PATCH 09/11] Updated importing of ptype --- applications/train_classifier_ptype.py | 11 +- notebooks/regression_example.ipynb | 605 +++++++++++++++++++++---- 2 files changed, 523 insertions(+), 93 deletions(-) diff --git a/applications/train_classifier_ptype.py b/applications/train_classifier_ptype.py index dfc8427..d077b27 100644 --- a/applications/train_classifier_ptype.py +++ b/applications/train_classifier_ptype.py @@ -15,10 +15,15 @@ from tensorflow.keras import backend as K from argparse import ArgumentParser -from ptype.callbacks import MetricsCallback -from ptype.data import load_ptype_uq, preprocess_data -from sklearn.model_selection import GroupShuffleSplit +try: + from ptype.callbacks import MetricsCallback +except ImportError: + import subprocess + subprocess.run(['pip', 'install', 'git+https://github.com/ai2es/ptype-physical.git'], check=True) + from ptype.callbacks import MetricsCallback + from ptype.data import load_ptype_uq, preprocess_data +from sklearn.model_selection import GroupShuffleSplit from evml.keras.callbacks import get_callbacks, ReportEpoch from evml.keras.models import CategoricalDNN from evml.pbs import launch_pbs_jobs diff --git a/notebooks/regression_example.ipynb b/notebooks/regression_example.ipynb index 78c0b2e..26aa0f5 100644 --- a/notebooks/regression_example.ipynb +++ b/notebooks/regression_example.ipynb @@ -9,12 +9,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 14:32:35.010768: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\n", + "2023-09-21 14:38:27.875912: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-09-21 14:32:35.183614: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", - "2023-09-21 14:32:35.969632: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-21 14:32:35.969762: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", - "2023-09-21 14:32:35.969772: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" + "2023-09-21 14:38:28.130703: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2023-09-21 14:38:33.194409: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-21 14:38:33.194550: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/nvidia/cudnn/lib:/glade/work/schreck/miniconda3/envs/evidential/lib/python3.10/site-packages/tensorrt_libs:/glade/work/schreck/miniconda3/envs/evidential/lib/:/glade/u/apps/dav/opt/cuda/11.4.0/extras/CUPTI/lib64:/glade/u/apps/dav/opt/cuda/11.4.0/lib64:/glade/u/apps/dav/opt/openmpi/4.1.1/intel/19.1.1/lib:/glade/u/apps/dav/opt/ucx/1.11.0/lib:/glade/u/apps/opt/intel/2020u1/compilers_and_libraries/linux/lib/intel64\n", + "2023-09-21 14:38:33.194560: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" ] } ], @@ -155,14 +155,18 @@ "metadata": {}, "outputs": [ { - "ename": "SyntaxError", - "evalue": "invalid syntax (models.py, line 376)", - "output_type": "error", - "traceback": [ - "Traceback \u001b[0;36m(most recent call last)\u001b[0m:\n", - "\u001b[0m File \u001b[1;32m/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3505\u001b[0m in \u001b[1;35mrun_code\u001b[0m\n exec(code_obj, self.user_global_ns, self.user_ns)\u001b[0m\n", - "\u001b[0;36m Cell \u001b[0;32mIn[9], line 1\u001b[0;36m\n\u001b[0;31m from evml.keras.models import BaseRegressor as RegressorDNN\u001b[0;36m\n", - "\u001b[0;36m File \u001b[0;32m/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/keras/models.py:376\u001b[0;36m\u001b[0m\n\u001b[0;31m self.ensemble_weights[0].replace\".h5\", \"_training_var.txt\"\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + "name": "stderr", + "output_type": "stream", + "text": [ + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: \n", + "\n", + "TensorFlow Addons (TFA) has ended development and introduction of new features.\n", + "TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.\n", + "Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). \n", + "\n", + "For more information see: https://github.com/tensorflow/addons/issues/2807 \n", + "\n", + " warnings.warn(\n" ] } ], @@ -174,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -184,9 +188,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-09-21 14:38:40.093470: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\n" + ] + } + ], "source": [ "model = RegressorDNN(**conf[\"model\"])\n", "model.build_neural_network(x_train.shape[-1], y_train.shape[-1])" @@ -194,9 +206,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 500) 2500 \n", + " \n", + " dropout_h_00 (Dropout) (None, 500) 0 \n", + " \n", + " dense_last (Dense) (None, 1) 501 \n", + " \n", + "=================================================================\n", + "Total params: 3,001\n", + "Trainable params: 3,001\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "20/20 [==============================] - 1s 35ms/step - loss: 0.0649 - mae: 0.1535 - val_loss: 0.0067 - val_mae: 0.0472 - lr: 4.7274e-04\n" + ] + } + ], "source": [ "model.fit(\n", " x_train,\n", @@ -215,16 +252,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 3ms/step\n" + ] + } + ], "source": [ "y_pred = model.predict(x_test, y_scaler)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -233,9 +278,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.06648637263594172" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mae" ] @@ -249,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +323,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -277,18 +333,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(7188, 1)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mu_ensemble.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(7188, 1)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "var_ensemble.shape" ] @@ -302,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -326,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -336,9 +414,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 342) 1710 \n", + " \n", + " dropout_h_00 (Dropout) (None, 342) 0 \n", + " \n", + " dense_01 (Dense) (None, 342) 117306 \n", + " \n", + " dropout_h_01 (Dropout) (None, 342) 0 \n", + " \n", + " DenseNormal (DenseNormal) (None, 2) 688 \n", + " \n", + "=================================================================\n", + "Total params: 119,704\n", + "Trainable params: 119,702\n", + "Non-trainable params: 2\n", + "_________________________________________________________________\n", + "18/18 [==============================] - 2s 65ms/step - loss: 260.7134 - mae: 0.1640 - val_loss: 0.2490 - val_mae: 0.1324 - lr: 0.0024\n" + ] + } + ], "source": [ "gauss_model.fit(\n", " x_train,\n", @@ -350,16 +457,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 8ms/step\n" + ] + } + ], "source": [ "mu, var = gauss_model.predict_uncertainty(x_test, y_scaler)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -369,9 +484,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.19325995681756414 0.07666676486741564\n" + ] + } + ], "source": [ "mae = np.mean(np.abs(mu[:, 0]-test_data[output_cols[0]]))\n", "print(mae, np.mean(var) ** (1/2))" @@ -379,9 +502,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJNCAYAAAB5m6IGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrdklEQVR4nOy9e5hkVX3u/661d1V198x0IzQzjDgzDpFIO0SR4aDow/HECz6jj/GSE/FwRPFIImIuBI2BQ5SLGo5GyWhOBhkVeQjq4YdoHpJDYuYkJ4aLUTPiEQJCEi5DcEbsQabn0l1Ve6/1+2PttWvXrn1Zu6eqqy/v53lmurtq7bW/e1V1rbe/e633K7TWGoQQQgghZEGRww6AEEIIIWQlQhFGCCGEEDIEKMIIIYQQQoYARRghhBBCyBCgCCOEEEIIGQIUYYQQQgghQ4AijBBCCCFkCFCEEUIIIYQMAYowQgghhJAhQBFGCCGEEDIEKMIIIYQQQoYARRghhBBCyBDwhx3Acuet73gn9v7smczn1h9/LL75v25Z4IgIIYQQshigCBswe3/2DJ5/7kcyn3v81o8tcDSEEEIIWSzwdiQhhBBCyBCgCCOEEEIIGQIUYYQQQgghQ4AijBBCCCFkCHBhPpkX3PVJCCGEHB0UYaSQPLH1r48+htdefmPmMdz1SQghhJRDEUYKybPYeOiadw0hGkIIIWT5QBFG+s6/PvIIXv6aN2Q+x1uVhBBCiIEijBSu7/rXRx/D8yv219aCBrWEEEJICRRhpNDVn7cdCSGEkMFAiwpCCCGEkCHATBhZULhejBBCCDFQhK0Q+r3ua75wvRghhBBioAhbISyFdV95WTJmyAghhCxHKMLIoiEvS8YMGSGEkOUIRdgQ4fooQgghZOVCETZEuD6KEEIIWbnQooIQQgghZAgwE7aMWCw7IAkhhBBSDkXYImU+68WWwg5IQgghhBgowhYpRevF/s/Hzs8UaMx2EUIIIUsHirAlSJ5AY7aLEEIIWTpwYT4hhBBCyBCgCCOEEEIIGQK8HUkWPTS1JYQQshyhCCOLHpraEkIIWY5QhJElTVGW7MknHsOGTZszn2MGjRBCyLChCCNLmqIs2UPXvIsZNEIIIYsWLswnhBBCCBkCFGGEEEIIIUOAIowQQgghZAhQhBFCCCGEDAGKMEIIIYSQIcDdkWRFQgNYQgghw4YijKxIaABLCCFk2PB2JCGEEELIEKAII4QQQggZAhRhhBBCCCFDgCKMEEIIIWQIcGE+ISnydk5y1yQhhJB+QhFGSIq8nZP/52Pn09aCEEJI36AII8QR2loQQgjpJ1wTRgghhBAyBJgJI6QP0IGfEEJIVSjCCOkDvFVJCCGkKrwdSQghhBAyBCjCCCGEEEKGAEUYIYQQQsgQoAgjhBBCCBkCFGGEEEIIIUOAIowQQgghZAjQooKQAUMPMUIIIVlQhBEyYOghRgghJAvejiSEEEIIGQLMhPWJt77jndj7s2d6Hv/XRx/D8xc+HLJEyLtVWXSbMu+9VnYcIYSQxQVFWJ/Y+7NnMm85PXTNu4YQDVkq5N2qLLpNmfdeKzuOEELI4oK3IwkhhBBChgAzYYQsQop2VPIWNyGELA8owghZhBTtqCy6xU07DEIIWTpQhBGyjKAdBiGELB0owghZIcxnJyYhhJDBQRFGyAphPjsxCSGEDA7ujiSEEEIIGQLMhBGywuFifkIIGQ4UYYSscIoW8/+fj51PgUYIIQOCIowQkku/BVpRyaUnn3gMGzZtrtQfIYQsZSjCCCHzYj4C7V8ffQyvvfzGzGMeuuZdtNcghKwoKMIIIX0nT6DNt5Zq0bq1vAwai6ATQhY7K06Eaa1x8ODBvvcbBG20Zw/3nk+pzMcH8RzPtXzi4Lm6aYUaJ/7KpZnPPfjJ92U+938/9Rs441Wvyzzm0cefwC9fuiPzuaLjnnryCZy4YZPz4wBwwuSx+OqXv5D5HCELyZo1ayCEGHYYJIHQWuthB7GQzMzMYGJiYthhEEIIIQvKgQMHMD4+PuwwSIIVJ8L6nQmbmZnBhg0b8OSTT67YNzfHgGMAcAwAjgHAMQAW7xgwE7b4WHG3I4UQA/mlGB8fX1S/bMOAY8AxADgGAMcA4BgAHANSDh3zCSGEEEKGAEUYIYQQQsgQoAg7ShqNBq688ko0Go1hhzI0OAYcA4BjAHAMAI4BwDEg7qy4hfmEEEIIIYsBZsIIIYQQQoYARRghhBBCyBCgCCOEEEIIGQIUYYQQQgghQ4AijBBCCCFkCFCEEUIIIYQMAYowQgghhJAhsOJEmNYaMzMzoD0aIYQQUg7nzcGx4kTYwYMHMTExgYMHDw47FEIIIWTRw3lzcKw4EUYIIYQQshigCCOEEEIIGQIUYYQQQgghQ4AijBBCCCFkCFCEEUIIIYQMAYowQgghhJAhQBFGCCGEEDIEKMIIIYQQQoYARRghhBBCyBCgCCOEEEIIGQIUYYQQQgghQ4AijBBCCCFkCPjDDoAsH5TWCBSgAXjC/BNC5LZtBhptBdQkMOKL3LZaaygNKA0IAJ7M7zfZHgBk1KyoPSGEEDIMKMLIUaO1RqiBUHceCyPR5EsNmRBAWhvhNRd0GrcV0G5pjPhGkCUFk9IaoUqcC0CgACk0ZErkJcVX53jzVUJTiBFCCFlUUISReWNFT6BznocRWBIavjTCbC7oFUqWuUCjJYAR32TRwiirloXNjHmi0yKvrW0vtIYoyM4RQgghCwlFGJkXNqNVJHwsCsDhdr746mobCbV6yS1HSxjdonTRVRqmLSGEELIY4MJ8Mm9cBFjctkJjr6JSqpLYYhaMEELIYoEijBBCCCFkCPB2JCGEEEJK+eEPf4jVq1fP+/jJyUls3LixjxEtfSjCCCGEEFLKq171qqM6fnR0DD/+8UMUYgkowgghhBBSytZ3XoZjN71wXsfO7H0c373xakxPT1OEJaAIIzE6Wj3vunjdLrZ32pmotdmd6NBYaw0FwKvQVjrHXO0aXRlUv4QQslgYP2Ejjt04PxFGsqEIIwC6jU7L/LS01miFid2ROl+Iaa1xpK1xuKUgAIzWJGo52x+11pgLNH4+G0Jp4LgxD88ZkblxBErjYDNEWwGjvsCahswVYzbmQBsX/VEf8GR/BFMYVQoAjG9ZUaUAQgghxEIRtsLJcpnXMFkuAR15cIm4baiNAWt2+24x1gwUDjZV3L8GcKSt4IfAiC+7RFA7NOKrmbDdnz4S4sBciLWrfKyqdzbyKm1E3WzCJXY20JgLQqyuS4zVRFfMgQJaiZiVNr5lNakLyyWVkeWVZisH+FI7ZfIIIYSsXCjCVij29mCRf5fWRmBIGKFWZs6qo/9CpXGoFaIVZrcLFHCopdDwBGoecLCpcbClMtu2FfDUwQCragKTYx6UNsdmxaEBHGwpHGkD4w0JXwo0w/yYi8olFZFVpinrGsOoUoDrrVJCCCErC4qwFYqLe72lFRrXexeaocLMnFvruUBh+oh2Mn093NbAkTD3VmaSUAOH2ibL5UI71Kg53prUWiNHL/a2RSRyqcEIIYRkQLNWUkoVZ/wgJ/uVhdLV+vYrvFs9IeLF8mVUWRpWJd6qfRNCCFlZUIQRQgghhAwBijBCCCGEkCFAEUYIIYQQMgQowgghhBBChgBFGCGEEELIEKAIWybYjYCOGwKr9u7csRBVAqgWrLF8cDvGtZ1pazzCnI6Jx9kxjoqxEEIIWTlQhC1xkvO7qiDEXKwTtNbRP+O9ZX/OawuYN5Rr34BwegPa8x6YU7FHV5Gw0do46DdDXRizVVRtpTEblQEo7tc8Fyodi6sygZU0dKUWI4QQkoRmrUsYO6knjVd16ps8s3YhBGTUqKdskdYQQiDUQDPomKkqAJ4nIBJtbHulgSPNEO2oM4HsPJcVLc1Q5zrqp9urRIwzTYW6BFbXJSR0j8u90p22s22NZqAxVpOoeb0xR2cAALRCjXao0fAF6l5njIpilsJ4lyX7tQggriGZLOukC+psEkIIWVlQhC1R4tuPec+j3KjdCgeJ7hJGGsBcW/WU5dEAglBDCh3XfdTaZJHmgu7GQnRERyx3olqLSWFXhIrKA6VpKeCZOYVRX2BVzd5KzDZ/tWWOahIYq8tYQGahAcwFGq1QY7QmYQ3382JW2lQT8CW6BKEnsksVpQueU5ARQsjKhiJsCeJackjH/xVP9kKY7FZLKbRDU/C67PxBoBAocyuv6DabiFJiRyJR5xJ7fLuvpN1soBEqjdV1r7RtWwEH5hSOGSm/Aao0cLilTJYLojTmQAF1T8S3YstqUFqBTAFGCFlKTD/xCNqB4wSU4tDTewAADz30UD9DymRychIbN24c+Hn6gdArbNXwzMwMJiYmcODAAYyPjw87nHlRpe6jneddJvxWqDDbdutcaY0jjm0BcxvRNe5QaedalTUJrLb3Dx1wEWFJXIt61z1RqQg4yxkRQpYKdt48evIWqvSX0dEx/PjHDy0JIcZMGCGEEEJKmdp2AcbXb5r38bWxNRidOK6PEfUys/dxfPfGqzE9PU0RRgghhJDlwQlbzsTak08bdhjLClpUEEIIIYQMAYqwZY6Ll1XcFuU7KpP9hsq970BpKMe2odIIsrZF5sQROMahtbGscI1Dafe2eh5t3WLu/COEELK84O3IJYgU3dYPWaQn+FDp3J171ucLEGjURCyC8vpvhcY4ta2MaBvxjU1DVt+B0njmSIBD0SL+UV9ixBeZbZXWmGkqPDsXRm0FJka82A4j6/qaCmiGIfxogb6fs+I9UBpH2grPNhU8ARw76mFVLT+OVqARRNtL655A3ctua2kr888TCg1fZFtUaDOmYbT1UwDwpc5sa9qnXmOHna6EEEKWDhRhSxg7Fycn6qLsitKAgI7sEUT0mLGkSB4lBVD3BUJlxIslVEYkzSa2KGsYqwhPGDGW9A870FT4+WzY1fdsoNAMgbGaRN2TcdvZQGP/kaDLF2w20Jg7FGC8IbGqLnvMYZMECnh2LkTDE1hVl7GwUZGPWSux3TLUwM+OhJjxBCbHPNS9Tr9tZURmko6Rq8wVm8m+j7Q16h66dkvqyPOs67WCEW4SuqvfPIGd9hkjhBCytKEIW6LYSVjrTmbM5XaYneBFJAqyrCBi01FpTFnbgcJMS+NgU+Vmx0INHG5r1D1zm3L/bJjrN9YxUFWoSYlnm2GP2WscL4ADTYVDLYVjRj3UpSjMADZDjdZsiFFfQErRJRiz2j51MMB4XWJNXaCt8rOLxsjVZNEavszMziUxwg2o++aef5HlhoIxoPWEjqwryn3GrAM/xRghhCxdKMKWOB0xVm3RkIvFly1qfSASYC4cbCocbLm1bYYa+2cDp7b2Fp7KKBGURgOYDTWko9nYXKDQ8N28xlQset3iUFGNTJfFduYlcVdVdN0nhJClDRfmLxMGNRELIZwXyQPILDOUR9XF5l4FM9QqwyGlcBaxIlpXVykOx2CKSioVxUMIIWRpMnQRtmPHDmzevBkjIyPYunUr7rrrrsL2zWYTV1xxBTZt2oRGo4Ff+IVfwI033rhA0RJCCCGE9Ieh3o689dZbcckll2DHjh145StfiRtuuAHbtm3Dgw8+mOt0+/a3vx0//elP8aUvfQkveMEL8PTTTyMI3G5pEUIIIYQsFoYqwq677jq8973vxYUXXggA2L59O771rW/h+uuvx7XXXtvT/q//+q/x7W9/G48++iiOPfZYAMDzn//8hQyZEEIIIaQvDO12ZKvVwu7du3HOOed0PX7OOefg3nvvzTzmjjvuwBlnnIFPfepTOPHEE/GLv/iL+NCHPoTZ2dnc8zSbTczMzHT9I4QQQkg2nDcXjqGJsOnpaYRhiHXr1nU9vm7dOuzbty/zmEcffRR33303HnjgAXzzm9/E9u3b8fWvfx0f+MAHcs9z7bXXYmJiIv63YcOGvl4HIYQQspzgvLlwDH1hfnqXWdHWf6UUhBD4yle+gjPPPBNveMMbcN111+Gmm27KzYZdfvnlOHDgQPzvySef7Ps1LDWqbMDTWsP33LfgldhnpXuv0hihct89WKXnUOnYjqMMFZVIci2TpFEtZtc4OudwbkoIIU5w3lw4hrYmbHJyEp7n9WS9nn766Z7smGX9+vU48cQTMTExET82NTUFrTX+/d//HSeffHLPMY1GA41Go7/BL0KEEJDodZJPUtVTyoqIhge0fZFrqGrbAoCAgC9Fl9N+HkoLuMglG8e+yD1/vGH+dsgrwaQBzLU1BATG6qKrQkBWzDNNjQNzIU5Y7aPhi8w/BOxjLQX85GAbx4z4WFXPbpuMY2ZOoe4LjEa/aUXWFloDodbuPmT0CCOEDICVMm8uBoYmwur1OrZu3Ypdu3bhrW99a/z4rl278OY3vznzmFe+8pW47bbbcOjQIaxevRoA8Mgjj0BKiec973kLEvdixgoxAD1izGZM0qVzeholMjFzgcaRlnHJr3sCvgSagSntkzoEgTLmq8bMVKAmTQxhKlVjskimJFGZp5iNI1Cd63l2zrjnHzvqYbTWEUG2bSs0cZufNFqzGqM1gZGECLLHtJXG4aaK43j05208Z0Ti+FU+JDoiyJZJOtwM42v/2eEAB5sCx4158GV33yaOzjjNtk3h8FU1ibqfLbAEOnZiyoorK2yFFaui05biixCywEw/8QjaBX+MLwYOPb0HAPDQQw8tyPkmJydz3RxcELqqO2QfufXWW3H++efj85//PM466yzs3LkTX/jCF/DP//zP2LRpEy6//HI89dRTuPnmmwEAhw4dwtTUFF7+8pfj6quvxvT0NC688EK86lWvwhe+8AWnc87MzGBiYgIHDhzA+Pj4IC9vqNhMjIqc5jWKS+fYY4QQaIWqS5ykCZWp9ai0uT03F+rcEkVaawRKxyWVmqFGKyyPA1Hsef0CpsD3sWNenHk70s7PBHoCGKsL1D2JUGkcbqmeGpHJtsev8nHMiFFXR9q6MAu4piHxnFEPUgi0Q41WQfHzmgRW1Ttlj5LiK4tO0XWT2QMowAghC4udN5cObndZ+sHo6Bh+/OOH5i3EhmpRce6552L//v245pprsHfvXpx66qm48847sWnTJgDA3r17sWfPnrj96tWrsWvXLvzWb/0WzjjjDBx33HF4+9vfjo9//OPDuoRFixBmyg61LhVflmaoMdsKSzNUnhQY8TSePqIKb3/aOGqewLOzQXEWLkEy81XEbKDx00MB1jS80vahNrcGPZEvLpNt9x0KEIQevJJalYAp1aQUMFoTpQqprYDDLYWJEVMmqUxPKQ34ke0+xRchZJhMbbsA4+s3DTuMUmpjazA6cdzAzzOz93F890aTEFqSIgwALr74Ylx88cWZz9100009j51yyinYtWvXgKNaubiWHRJCOAklS5SQGwhV4qhSVklp950r9vpcdVIVPUXxRQhZDJyw5UysPfm0YYexrBj67khCCCGEkJUIRRghhBBCyBCgCCOEEEIIGQIUYSsA1yVFOvKockFpHRuXuvRbtgswiUA109fQMQ7A7Hx07TpQ2snvDDDj0Q5dxwOYC1S8Y7S4bffu0rK2oXZrSwghZPgMfWE+GQw62onoCaM6lM735dLa2CoECqh5Ipr4sxe8a61xqKXxzGwY219IoRNWCt2ESmMuUPCkgBf9XGYzYx36ldYIwvwF/Z4wYq0dBVqTyI3DE+barJdXoDrHpREAfA9oKo2m0vAlMOpLyJwV8p4wC/5nA41mqDFak/ALVGSggYMtDQGN1XWBRhRXEmsxEsb/Ab7UqMnetkA0VqozVgIaNVlsDksIIWS4UIQtM2wSJC0vBIzVgUJHXNksSzPo9rUSEKh5xgMsObE3A439RwI0Uz5fSpt/ntSxO73SGs1A9fh8SQHUI9FStlNRCoGap3v8wqRAl0Gqpa3M+WseYsFkf/YS7YQQ8KWGLwVaYbc49TOEXKCAgy2FhtctmKTozdgpbSwoahIYqeULN8CM68GWxqzQWF2XqHkdc9gsO49Amexc3YsyelZQ6gxzXgAtBXhCx20JIYQsLijClhE6Y+K2xMIhuuXYDjWOBDk+X8IeYwRMK9T42eEQh1rFqilUJggFnWuEauPwYMRBq8TEzFYBqHumfykAWZBl0jDxSqEx5kv4Odkg+1jDFyY7pzS8DGGXpBkZsa6qSTR8Udi2rYB2U2HEF6hnZLqSBBp4tqnQ8ICxmiy18miFGhImW+fieRZqk0XzKMQIIWRRQRG2TCgSYEls9uRwW5W2t8Jh+nBQKsAsgYbTOqoqhaptHL7n1BwAMBKVWXLJAAkB5yLlQhjhJiID1TKKbkumkVEG0SVmhWqeZxJu9SgJIYQsHBRhKxAhyl3gk1SZ7KswyOXjQhRnn+bdL6rd2hMVbgVWCbfqlVF8EULI4oO7IwkhhBBChgBFGCGEEELIEKAII4QQQggZAhRhhBBCCCFDgCKMLFv0QJf+E0IIIUcHd0cuE6rIDa01fIFS53rbdlVd4kg7LG+MauWGBrlfz5iauv2NIeA+fqE2rv+e44WaOISTPYSNubSt1tAJiw8nSwutK+/sJISQJNNPPIK2y8SxAvB9H7PP/OTo++lDLGSIVCkTaCf3ZqjRUuZYqyXSc7Nt21ZAqDVGasI46xeUPgKq2Vn4UqDumVhaJRpv1Bd4zohEMwR+Phdmm8zG/QITDVM6qBlolPjBouFLCNEp3VTEWE3Ck8JZuDUDDaUV6p4ASsSVimpK1qSAad7b3o6zUhptbUox5bVN0lbGZd+Du3AjhJAk99+2fdghLDpGR8cwOTk57+MpwpYoWneEU5EYSGZLQgUcbAVoJ4RGaIWYNj1ZE1Wtjdg50rZ1CwW8mpnMW6m/hGyZHSvA7ASfZ8ZqSwmZdgIjEqhJjbmgt76lL4FjRz2MRnWKah4wVhN4dk7hYMpuXwA4ZkRiVU3GMYzWTLmfZoY69GWnniQgMCpNNmouUD1is+4JrGl4XearWutcMZgsfdQpNyRQk70iyNbAFMIIsWao4aUyaLH4SpUoaofG7b/mRcKwQIzF7vkCTsKNEEKSTG27AOPrNw07jKFzeHovHrhjJ2655RacffbZ2Lhx47z7oghbgliB4GBMHwu0g80QczlpZNuPACBhCnTPNHsd9YUQqHumUPZcoBGEZtVVsr5kun1aiNVkdtkhTwqsqgu0Q1MEW2sjqNbUZY9QkELg2FEPa+oS+2dDNEONVTWBiYbXc5tQCFMH05dG3ARR6aO6JzLj8KXAqppEW2m0Ag0hgPGGl1l6SIhOFioeQ5Fv6NoKNdohMOKb4wQQufr3jp0tCF6Tps6lRlQWKgOtjTD2hIbvcOsz0EAYmgLfFGKEEFdO2HIm1p582rDDGDrP7HkYD9yxE1NTU0clwACKsCVJlTvyh1oqV3ylOdLWONAsu3lnBEbDR5wlK2sLAL7QTu7xNU9gTd0UypayeE1XzRNYO2ZusJX1a2IWqDmsozJiU2B1zYhDl76l420+DVNofCQufVRMW2m4rp4LNeDp4tqayThCbTJihBBChgNFGFkQTBmhKm1dS/1UUxHVSg4NMo5KzQkhhCxDaFFBCCGEEDIEKMIIIYQQQoYARRghhBBCyBCgCFtiGPuIzr+ytnYnoAutUCNU5f0CxnIhUArKoa3SGodaCkfayqlvX7qvH7PX59JcAGhEvlou2B2MZWitoZT72AkAQaidxg4wu1ddmmqt0Q41WmH5OOvI6iJQ+VYi3TG4Xx8hhBA3uDB/iaC1sSlIz4F5FgNKGzsGY3EANHyBubaOdtt1EyiNn892LCyUBqTQXV5XyX4PtRQORx5dxoldR8Kp11i0GWocbnXsLg5LYGLEyxSGvgRW140Xl53stc6xv4DZHWktGWqeQDs0QjKLumesKgBjztoOjS9ZVmtfGhsJYzVhYsgzoTXiJPkz4OXsBLX+aDUpjGdXaNp6Mnthv4AVgRoawnjDIdtY1+52NOoKaAmNEV92+Zp12nd2RwJAEBqfNi8jZh1dn738ovcGIYSQalCELQGKTEHt80DHlytQ6LjEiyhLpDXG6hKB0phtq8j0U+NgU2Emw5bCmoJ6UsfZoLlAY6bZ61ZvbRc6pqPG7+tQK+wRL20FTB8JMeoLjDeM+7wUxol+xJc9pXiE6L1+a7LauUTzfc0zPlmtoON870UCNO3dZQRfVD0gcuuXwoivtHARwhicJo1S0+IkiRFDZuykjU2af1ltwxDwZbewsU17RBHQJcasUW46Dq2B2baCJ4CRmoQUIlfQAuZ1CaIx9KL3UdoY1hK/NxxtRwghhGRDEbaIKRNf3W1NeaG8jI2dKD0BrK5LPDMb4qeHgtL+Q2VqJR5qhV1O+5lttXFvTwqbPGYDjbkgxInjPp4z4vXEmY5dwkz41hk+r50AMFITCKMLy6vxaI9veEDdM9fpl9ycFzDj1w7zxzlJqAAhNcZq+TFbAmWEV91HJNyK/cFUVNWgLIxQA4dbCo1YXOb3qWHKR0mhndYpWLHpSxq+EkLIfKAIW8RUWX2TvL1UhJ0s9x0MnPt3EWCWVlheB9JS9wSOHXV7C1q3fvt9Ga6FxIUQzkLClBVyE2AWFwFm8bvWtpWbvrqGYZz5ZSeFVtbe3R+2UsF2Qggh3VCELWYGuAZ6MSyvns8EPgjzVNN0cGpi0WSJBhDHIrkyQghZknB3JCGEEELIEKAII4QQQggZAhRhhBBCCCFDgGvCCCGEEFLK9BOPoB0shhXFw2V2/1N964sijBCSosL2SELIiuH+27YPO4RFw8jIKCYnJ4+6H4qwRUqV8jBaaxhzAzt5Fk+iWmscMyLx7Fy574TWGg1PZDrtZ+FLY1Hh0nou0JhrK4xkuZhmEGpjmjpMBMyuTlf/tlYINLxy+wutNYJQw4sMa4vam9fbxuDQN4AgVPA9t74VAIlu09w8jGlrfuWGTr+d6gOWxbJplBDixtS2CzC+ftOwwxgqh6f34oE7duLrX78NGzduPOr+KMIWGcnJzGWet2ItULYEjz2qd1K05W2eORJirq1Rk1HtwOyeAQgz0QuBsRrQDIo9sjwBrGp4OGYExom/lS/yahLYdEwdx4xIKIjcckPJvl1rPlbBlj8SMCIvKFFXNSlQlxqBFphtZ5c9sjQ8869QnEQxKA00Q+BIoDBWExjxRYaw6Ri0tkIdCyBPZgumznvDvHY1T2OsJiPj2+y2oQKayrj32zqbZQJLRQLLKqxk26ToSg6tbU4hRsjS4YQtZ2LtyacNO4yh8syeh/HAHTuxfv36vvRHEbaIsBOhUsWTezJLFhbUNUy2E0LgUEth+nAQl/SRQqAmzWSevs2vNNAOOzUfpRAYrQnjiJ+quShgyv3UEvUjJ0Y8rKpL/HyuU5PStl2/xseJa2qxm71E5ESvOuWGku1rJUJmvvhSdNVL9EUnjrQWsyLQtBWowwjJuUCjGab7BUZ9kevWb0RNp4ZjS3ULlMNtjWYQYlVdwhfdr2N6jDpljzoZqa7nEm3bocaBMMSILzCayD4KYcR2EHZeV6VNVQNfalPnMyXE0jUs7bXYS+7EITLfy8lcrW1KQUYIWWlQhC0C4mLV6C3Qndk++pcWLFm0QpM9+dnhdpcYsghhhIjUOhIDGqHKz3j5UsCrmVqD7dAUzh7xeot327bHj/mYDVRcOuf5x9QxklEfyDjiC/hSoxWJPF8CcgCW7J5AZsHxZByh0nFWzJeIa0Cm247WBOqexmxghNuoL7rqWmZhX+dA5QvoQAMHmgoNT2CsJhAqFN4SDqLyUr5nTpCf4TTCsRUakecJgXaocm+vBspkBxtRAXR7ZXmCSWlARCLTXmseyTqYhBCyEqEIWyS4rjEC4FxCCAB+PhviYEaB7jSm7qIqvS1o29Y9YLSs2GLEqC/x/Ik6fIf7iVII1P3BOfpnCcAsbGFx17ar6+5SQmuT/XKhGWrnODSAtmPJKKVNge9ajhhNEyiNhuOCvFhcVa5aQAghKwv6hBFCCCGEDAGKMEIIIYSQIUARRgghhBAyBCjCCCGEEEKGAEXYIkEKt11iqoKJq4pMPUd8Udp3ZAeGEV86+3EpHVkTlIQkI9uHVqicTGg9YewiBrFWOwjN7s+yOKqZ5ZqxUA5jAQCeBFbVBFz2CJidnIPxSPOlyNz1mYUQZkOIyzXqyPIk1G7j3FYa7dClbWesK7w8hBCyaOHuyEWAEMaYU0rzNWunpNa60BMs3XY20Dgc7YqsSaBWF2iFZrddT/vonyfMjsCa56Edqh4/sK6YkTKUzTHeHPUFGr6A0hpaGZ+xuocuf65On+jaCShFsQ9aFSSicUZnIvek7hEhVcUX0L2TM2m7kB4PAcD3ACmMc33Nk2iHHXuLdFtjf2HeExDmGgJ19ALEl+Y1ie0mEnGnsWa2UgpoGJNaAfPBkb4+rQEFdHmNKQAessdZobMr2PqleUL3vDeqjjMhhCwVKMIWCclJx5ORaNGIRZlrzdRWqHGwGXaZdNq+657x9ZoLdOwj1dWt6EzMvhTw68bJPm1bkZVXS0+Kdc94aAn0iq1WaDJ0dQ+xoamZeDtniMcCZlIOdDUbj2RPorvLmFABChrePPLB1pw09/n4P3NdvjTXakVebBArgTV1gWaI2Met4ZnsZXwNsemWTniYVY9ZCqDhS/gyw40/ZSALAH7kmN+hI7zbGpC6k6HTMIIri1CbrGyybZ6wtqK7FgnkquNMCCFLCYqwRYadGE12QqNdYLqZRGuNmTmVmelK9z1WEzjSVoVeVR3hZibvZqwCi2c6IYA1dVnqCaZhsnKjAoXmpjaOWo6TfRFWW5WVDQpUWgQWxF0iCtJ9e8I4/lt6sn/Rzw0vcqYHMoVrsq0UJrtZxS/OmK1mCLuun3XkF6djcVxYrghGGLv4mGm4/yEBmGvzhPVIK38v2W8oxAghSwmKsEWKECbj4TpvtVX2rcaefqOvrmahQggEoUbZRGipe8I5syRLBFiaygJMZGft0gxy3nYtuSQS1a3L2psyQ+6DIQDUnUxqo6ykgwBLHjGoGpCu69VsHIQQstSgCCPLFhcBtpgYRH3M+bKYYnFlCYZMCFnhcHckIYQQQsgQGHombMeOHfijP/oj7N27F1u2bMH27dtx9tlnZ7b9+7//e/zyL/9yz+MPPfQQTjnllEGHSgghhKxYpp94BO0qizuXML7vo9ao9zw+s/fx/p6nr71V5NZbb8Ull1yCHTt24JWvfCVuuOEGbNu2DQ8++CA2btyYe9zDDz+M8fHx+Ofjjz9+IcIlhBBCViz337Z92CEsCkZHxzA5OdmXvoYqwq677jq8973vxYUXXggA2L59O771rW/h+uuvx7XXXpt73Nq1a3HMMccsUJSEEEIImdp2AcbXbxp2GAPn8PRePHDHTtxyyy2YmprqeX5ycrIwUVSFoYmwVquF3bt347LLLut6/JxzzsG9995beOxLX/pSzM3N4UUvehH+4A/+IPMWpaXZbKLZbMY/z8zMHF3gZOkwqG17K4AeH7FFj45e7qUUMyGLk7x584QtZ2LtyacNKaqF45k9D+OBO3ZiamoKp59++kDPNbSF+dPT0wjDEOvWret6fN26ddi3b1/mMevXr8fOnTtx++234xvf+AZe+MIX4jWveQ3+4R/+Ifc81157LSYmJuJ/GzZs6Ot1DAqdMLd0aesLDb/C/NNwfOW11lF5nR5r10yaGe7veSiNuFyNi1N9leuzzu0u/Wq4eV1Zqkzz4TxMVV1wLXMFWC+0CuWulLt2tb2WlzLqfp2LXhf7XKBU6XvDPhc777OeESFHzVKdN5ciQ1+Yn/7Ltegv8Be+8IV44QtfGP981lln4cknn8SnP/1p/Mf/+B8zj7n88stx6aWXxj/PzMws6jdUclIJtIAUOrekjB2rdqhxsKVKy/tobfpqKwBCoC6N83qWTrBx9Drma3QsRbupSVNqBwCU0vFEnmk8ClPCR0Xx+LJcVHhSQOr8mJN9p69F5Jh+1j1gVU1CCGPaOttWBaWagLpv6i0qrdEKdG4cybJDQLnRrBSmbBRgXvuwREwIIVDzomoKBYPhCWB1w0PNMzEHYbGU9iVig9QqprTJb7qN+HVcLsoKUhFVKchy7bd9hdFghdDwpXHuT7ePf1ciPz1rHCvh5rdGCMlmqc2bS5mhibDJyUl4nteT9Xr66ad7smNFvPzlL8ctt9yS+3yj0UCj0Zh3nAtFcrIKEi75IiolpKPbLcnsjtLAobmw0KQ1mRkIVLdruZnITUmZuIxRFEegdG7tyLR1qxTGhd9PpJPiMkaRm2dSBNmJ3k6SVhjKRDYvbwLNirnreWSLufSdSU8Aq+qyyyy25gG+lGiGOlEhAFHMoqumoRQCDd+U2EmXdWr4AqO+6LqGeiSC2mH3mIqo766yVcKUBApKzHqFMDFJEdUVTZaqgrm+RiIOWSDcPGEKiyfjsEasVcSYPSZ5VJC6ZvseTwqm+LnU+cx7QyPURowl/xrJ+uPEFlL3pI1lqd1WJWT4LJV5czkwtNuR9XodW7duxa5du7oe37VrF17xilc493Pfffdh/fr1/Q5vQbHFjNsqv0yREKaIshTGGf9IW2P/kWIBBtisCtAM88vGSCFQizITgQKOtELMFRTvjqKGL02B7jX1bgHWfW0mBgEjGGy9yKyJUWnj5O9yG9HGbDWUQFSkuzBkjZoEVtUFJkZkplu/EAIjvsSahjTCRJiSP2mhZNv60giuumcygeMNibGazLw+KUxmzI+EtS8Fal52WyM2pdMtaRtH3TPjO+ILPGfMw0hGHEIIeFFbT9qqBaZOZHYc1W6/2pvW9nXPEsqW+PlIeKkCwacisRsqHfdd9BYJlRF/FGCEkMXMUG9HXnrppTj//PNxxhln4KyzzsLOnTuxZ88eXHTRRQBMSvSpp57CzTffDMDsnnz+85+PLVu2oNVq4ZZbbsHtt9+O22+/fZiX0RdcCzILIXCoqZzXXdmCyC79AhpzFSpDr667a3hfAtJx4ZXrenohBGSUIXRlfMQrbwQrmNJ5mvw4Gl53pqyorScB6ShtpBCltyaTfY/WZK4gTrd1XWMXvTWcM2KA23vOYkS6e1tb47IMrg4jhCx2hirCzj33XOzfvx/XXHMN9u7di1NPPRV33nknNm0yW2D37t2LPXv2xO1brRY+9KEP4amnnsLo6Ci2bNmC//2//zfe8IY3DOsSCCGEEELmhdArbDvRzMwMJiYmcODAgS7D12GitXYuqA0APz3Yds6EtULtnJWYCxQOOQYiABzjmFUCzC0y10yYL7rXjBWhtHbegSgAHLfK/e+OVukt2Q5edGvUKUNTZZ2V1mhX2NnomgmrSpWYgc7CehcE3HdjSri/N4BqBeIJIdnYefOXP7RjxVhU7PrEe7B79+7la1FBCCGEELKSoQgjhBBCCBkCFGFDxt7msbfgitsaz66aJ1DzROliZg1ASrP7rezujfWQqkU7MMsY9UXCU6oYu8vQ5cZQfGvK8XaT2WXoMHYw3mLTRwLMNEOokrvwgdJoRh5pZW0tZsdeufGsL4GGV24+a/py2PWZYK6tcLgVOt0OlAC8Cn27tpMw11cbwKdL1c2O7XhH5YpadUEIWSIM3ax1pWLnhMhWEkIAUmtIYXaWpaeMUGkcaSsEqrMrsO4LsxU/NeFqdI6X0c62uicQKt2zC9MIO8RWF0IIeNFxYYZPVd0TWF2X8foniUTMqcYCxjPLl8L4NaViTGPFmj3WBWs/ZtcKhRmWCMnx0BqYCzSaQYhVddnj56W0xlxbd9l5tBXgCZ255it2ro9MsuxLITN28EmBLh80ITW8qP+0ZtK6Y+4qhPHHEqlrycLaQxxpKyP2fAmZjgPd4+tFcZctrbO7JIHsGETUl7Xz8gTgeb3+dMn2VdeCmTiqKbGOd5iOzsl1YoSQxQFF2BDIW+QshIjKBBljT+ucPtfWPX5gdiLxpIYnjWt+mDlBdlJQMvLpssaegdKYyygzZA1iZSTcwkgcrqlLNHzZZYBpv/rCCBgViaC6J7oyIXF7JEw90YmrzKQ1lzgO86PvdRbrFwkWDeBQS2G2DaxpeKhJRJmv7PbW6sMXZiykEAlR0NteaUBEJrVS2Kyh6B07rdGIxtmIsWxn/XhcIjHmshchUEDQUmj4Ispwijj1nY5ZwGTFbMaw9/yJr5GFSPJ9bAW0FeLJ19HPEJtVRLY33/dGilBF/Un6hxFCFgcUYQtM2S6zpFhRWmNmLr+MTqe9uUUZluzmi4UbNI4ECs0cwZFECmDElxirdSatvAlMCgEvcRsq1/U+8dWLxEk/ETBx55nTJgk1cGAuRMMXcJEGgQZGpIm7DHOb2dw6trfDssxTAVu2qDdTmca+3tIhc2VpBhq1uohFUtZwx4/pboGcHUTnWwl0Gcpm921OXJeRGa+jD5wneoXr0aJhxBiFGCFkMcA1YQuM68oUIQRaoatFgih0G8/q20WA2bb1yE3dZdKqcsvIiKX+T4RCCGcLD6Bz+8ypbxjHf1f8EkEa9ytEBYNT97qOgPklr8nujGF+HFXeRyjMBna3FYnbq2792/dGv8UStRchZLHATBghhBBCSpl+4hG0XW4xLGJ830etUS9sM7P38YUJBhRhhBBCCHHg/tu2DzuEBWN0dAyTk5MDPw9FGCGEEEJKmdp2AcbXbxp2GPPm8PRePHDHTtxyyy2YmpoqbDs5OYmNGzcOPCaKMEIIIYSUcsKWM5d02aJn9jyMB+7YiampqYGXI3KFC/MJIYQQQoYARdgiZrFs4jIGoG6LMass2Rzo8s6BD577eAzbrb1jVOtcNtx9u2gVKr4mwx43E8OwIyCELGcowhYYl3nIlr4Z8QXqnlu/UnRsCFz6blS4ET0bOfXb44v7r2YpYErKuE12sTu9A77o9q8qo+bYWANoV4jZ2owUlTOyj9Y8t5JRQKdckwsa5jUEil+/+Lmk3UnJRbp6lQG9nmJlDEr/uNqX2EtX0WtNQUYI6TdcE7bAlJV+sROh+SKwpu6hrTQOt1Shj5QQAjXPmIgm3fOT/Qoh0FbAoWZxX8k4bJyHWgo1CYzVpXFtzxBa1iXfOv+XGY9KEbVFZBCaY+IpAdR9ERt3BsoIoTysOzxgXONng3zD2zV1iVV1aXy6EqWhsvAEOtdXEnPy+kzZI+so3z12Ni4F03akZuJoFRjv1jxTCsrG3AzyX08j1gQUBI4EQF0aB3ugI5ZtTBrmvWO7so7/ea+3LX/kqrmFEEYca1MdIO/6ZHSN9n1UZnBcBVN6qvgPhaTY0omvIvE8vcYIIf2AImwIJN3JI8nVVUsy/Rd3TQpMNCSaocaRdrGBqxQCDT+ayBNZGKWBQ80wtyxPjM7vv62AA3MKI77AiN9dssiKpM41CvjSXFdaIMiMSVAnvkk+VfdEV83GIrHpS9FT37HmAb40Y5cs/TTiC4w3vC7jVU+auphtBRxpdYSbgCn3lDaWzYtZCCtOOg92yh6ZupJxQ/QKDE8KjNSMgGwnYpYZ4+xJgdGaRKiAuZTY9KXoibmlzOvY8DqiEDCitqd+JRKCwwoyRCWtMH8hYgyATUmupOC1gjH5mhiT4O5amvNBiuz3XZKkuMr8A8m2QbI80/xjIoQQirAhYidr63ZfdLtDCBHdntT4+Vz5TSBPCowI4Nm5EO0QmHUw2HNdgzMXaLSVxnGjXs+kmY5ZCJNRsVoiLU56YkCnCHRN5rv0W7EZKI1Q6TgzlBeHHTsNoOEJ1HPu5VmBUBuRONwy45xVuDsdsy16VJZlCTQgNeB7xa73Vmz6kdj0SsbZ94BVUmK2bXotEhwawFwI+MrUwSx7N9m3ha092S/h4QkBKSNxJXoFdBJbLL6qEHMRX5ay38FkO2ovQkg/oAhbBCT/si5DClFe28/2G5XCcRFgVdEaaDguShKJwtEuSNG5rVmGJwSk40IjKYS5neqAEKbodZWRKxNgFo1qJabqvtv1meyje99hJP5dRVWV9VyuiBLxlW4rElljF6qUmCKEkIWGC/MJIYQQQoYARRghhBBCyBCgCCOEEEIIGQIUYcudAXobFXlf9bZdHD5LVWIm3VQZtsX0eg+kX7j/ai2WsSCELD64MH/IaK0ROjpeaq3RCjsLpO3C6vy25tkx31gTFPl2GRsGYxZa5sMlAIzWJI4EZudZw9M9VgidOFITVsnWfl8CDV/EmxXK5i4pOxsbyrzPAGC2bXYE1j1A5izatnYIyd2rRXiiE3PoEIes8KdP7C8G87qUXWItMvcNVHHcAsbmwxUhgBCA0MX2FFqb3Zb21J6rp5aj+ZbdgeqykzF+7bQu3i16FD5kZVYVyb6tvQVtLQghFoqwIWEnepct99agdC4y8BSR46svBJTuNWYNlMahZhiLLiEE6lKjJoFm2HvOmuwIO+vv5UuBtuo1XG34AmO1zuytNDAbGAPQempHY9b15XlrSQGM+BI1TyQMTXWuCLICycZsxiP7nGmUNmPpSY26J1Ixd0Sx7deLTEPT/YpoPHzZidmDhhcJ2bTmtXYJLkhhPMXiOLR5/ZQ2Nhd52J2zNc+8N4Iwy4cMsfGtNUTN7S8xzoj6DmFsNpKCwoqN9DWXCbf4/BWEiR2P6EvP9WV1pXTHfLZjUtu5pvmS937OE3Y6cRDFGCGEImwIJCf6MkKlMRf0Ci071QiYyVrBiK8jLYW5jFlaRNYWo75p1wqtF1fn+WRbwGTGfGkyalIIrKrL3IxCEGXa6p6GB0CVzKpJ48vRmkDd6z1/lghKTvy9MWtImOsKHbJGoQJmlTbmr6Lj19ZN5xwykYGx1QGyYtZad0SQMl14GTFnIWCygUmRlDxOQqMuCjJu0ets+6p5kXBTvSIwPc5AR5DljbPFvn0j8/1Cr7Es4ZYUf1XKXKXHWcpugdwR5tlxaG3GUHe1PnqSmbkyC5k84UYIWXlQhC0wQVjseJ+kHepSj6/4r/pQ4edHQqe+PQGM+PYOUPEsIAWwqi5R82RPyZ3smAFIt8lFABgfkSUGrt0iKCkYstpad3WbJXEhCDV0iS9Z/JzWGK2JwphjoYCovmNKUOVhDWqLxIkVHy5zdycOIzSLX+9OzBC9IjCPKrUjFTrZvWR88yV5vOy8PKXvvViwDUgAcfkXWa5MP/EI2gPwnewnvu+j1qhnPjez9/GFDcYBirAFpsrbN6ywmrdofVgaM5G7TkKd0jcuk2YVb0wpeksB5UbR1a4kmyQEdAVr9SqTsRS9pYAK40h8X9o34CR8RBWFCcBYnDpeZzKT1meVUiy2j6Lfrqxa37snhETcf9v2YYdw1IyOjmFycnLYYcRQhBFCCCGklKltF2B8/aZhh5HL4em9eOCOnbjlllswNTWV2WZychIbN25c4MjyoQgjhBBCSCknbDkTa08+bdhh5PLMnofxwB07MTU1hdNPP33Y4ThBnzBCCCGEkCFAEUYIIYQQMgQowgghhBBChgBF2AJTZfNWlbZVdiXOB+fyRHDfAafhXkbItnEuQ1NhPAYVc1UW08bvQZbZGcjrXen8VdoOLo6qsRBClh8UYQuMJ8v1gf3Ad3NY11G/Aqvr0nmLft1zF24icoF3QWtAqUiklMwwWgNzbVUqbOzjzUDFBqVlk2JdRh5dTkFXm2Rbyl2MVdHG1oDVZSyqkHa97zeufdsxKxO89hoD1fHUKxqPKvVLbRyqwjgPSohRfxFCuDtygRFCwPc6pYiSxB/2MIJD6cigFNlu7rZ9WykEygixNXWJZqjRzDHU86UpaSOEQC1y7m8G2QayxtRVwIvUmtLFfmR+SjSaEi06EobdE68XlUrSQmAu0CYu2W0Q2rk+xHUw20rDExoNX0R9d/crAPgeIIVEDUYQzgW9JYeScVT1r1LalH/yhKk4UCQsBDoO6i6TbqhN/54EPCB7PEJdySQViPyzEiIktx3cvba8RFutjSt+bltRPs72+hQ6hqpmPMwfAemxcM5eJjzxkr8WSnfiyhrnLNFVaKQLdJkE92ucCSHLF4qwIWFrNKYLT2fVaxQiEiyJtlbEpQttCyEw4gvUPY25tkI76ssUrRZdRautIPSkcbq3QkfAiC8/5SIfC0J0x+yJ8qLO9jkp0NMvYMsemVqO1lXdiJ1eARVq4Ejb1FKse52+TLmfVMxSYLSGHrFps4xHYx4aaiAMo9qbKBYFyWfKxJiGrT2pY5GooxqhLkXKc2OwQWQI6SqiQGa0F8J8mCjd7aJvy0i5jLNG9vVpGPEkBSAzxFJuf4n3Xd4fD0mR59JnFlljYQM/mnEmhCx/KMKGiBBRmZ1QYzZxqy2/vck+HGmrnDqHHaQQGKt7aAbmdl/RRCiEQN03GSStskVSOgYJM9kWia8knnRzyG+FplalQLngaCsAQmNVTZRen8mOaTSDTu3CftFWgJaA7yjEXKd5BUApU+uwauarCHt7Mqk3XIYjS3z1tBGAiN6bruIrjG47lo2Lfc/LOLtajkslCSvyvAr92l6L3s/zHWdCyMqBImwRIIR7hkOIvELT2XhSOLeVQkB67nE4No36di9RVKHiEADEt0vLEEJALoJVkIk7g070U4B1xVFREDivIXS49ZjE9VbtfBhUv1WGjsKLEJLHIpiSCCGEEEJWHhRhhBBCCCFDgCKMEEIIIWQIUIQtArQenNlqNR8ljbBC+0GudanSdexL1ud+q15elfVHK2GZ0KAMTqswqHF2sMHraevSvkpbQsjShwvzh4zSZufbiC+htNkZmLcwXWmNtgJ8z/hpKZ2/iF1r3WV3IazdQYZysvYH7cjoSQJo+Dp3Ib0QxtNLRr5e7YKYBYC6L1DzhDFyLdlU4AljtCqEQKB0bLGR17YmEO+mrPnli//rvojtPYo2AFi7C8DYWxRtnPAiuwsIAYWON1hReyGEee1LxqOKz5jdvYiobdGC/qR1hIpe/6IY5vvXWpGvVmxKbH9GSczCeNEJ0Xn/F+FJwI+uL1Dl7zsZ9VuETr1eWuncXaCZfmE6/4+XdN9FbQkhywOKsCGhI6PU5Ieu8eeSCJURYzrRNtDo8g8TQkDCTADJfqygaqVmVes9JUX3pKG0RivojkMBmA0AX+pYEFl8T8CXncnKiCwTcxB2m77WPONN1om5M+GmxYdEx+Hens8TgOdFHmLJbf4AGl608zNhcNsKNKTQsRltmuRjNS+anMPuODxhJu+uOKSGF41fcuKXItvsNf2aJtsL0T12vswWQenoi8RYUiQlPao8mNcyHU+6+oGAETdpjy+gI9aONjOTZYYan98hZiOKu0WSFNaFPxVzxjjXPYEwwyBZil6BKTLEWJ4Bq/1DyBO6y/qkR1B1LtH4lyWuu0pbQobJ9BOPoJ1jBL7Q+L6PWqPe9djM3seHE8xRUFmEnXTSSfj+97+P4447ruvxZ599FqeffjoeffTRvgW3HCnKYNkPcCmMWWo71GiGGq2c9ICIbND9SFC0w+JMGtCZNKTQpRkeY6AK1KVxqK91CSphv4ljrvsiEoQaDU9k+nHZHz1rtaETEyw0BHrP4UciqK2MWEiWI0r3r7QxZfUlcjN/9jEBIxRtJQA/UVIqeZydlGuegIqyi57siMDMLEjie2ty23P+RBxJERTH0NNr9+Ma3TYhacNQrRMmv+jO9qSvDzB+ZBJmLNLZvH6IgNISTxkx+6JbbKfHzlZksF13j0F3WwmTZY2rEojudlnfm9v55VnIMFLHntRwuQmaJR7L2lKMkWFz/23bhx1CKaOjY5icnBx2GM5UFmGPP/44wrC3QEmz2cRTTz3Vl6CWM+nsVxZxlgr5AizRGoCZ4OYq/IXSKqoxk6LmidzsUhxFQjD5nnQqK2MzHJ2fs9uLaJYd8Yzo7JfRalJ8FAmqZFshjHBLP56HFWAuYwetS2/7JQVYVLkpd2JOPu5niJOsOHRcImg4E37ynPUCsZ18XGsd3xp3GWeTQXZ7vV0EWBIzbm5CrCoUYGTYTG27AOPrNw07DBye3osH7tiJW265BVNTU13PTU5OYuPGjUOKrDrOIuyOO+6Iv//Wt76FiYmJ+OcwDPG3f/u3eP7zn9/X4JYjVT7Qq5iW6soWoO5IWSzAkphJ0c2os4pzfU8GxKFvV6r0XVUAlgmwdFvXV7CTsXNoW3GcdSXn+MEwv5hdg3YX88ksm2ssg0BgeMKYEMsJW87E2pNPG3YYeGbPw3jgjp2YmprC6aefPuxwjgpnEfaWt7wFgPmQefe73931XK1Ww/Of/3x85jOf6WtwhBDiQnXxQzVDCBk+ziJMKXNfbPPmzfj+97+/pO65EkIIIYQsNiqvCXvsscfi7+fm5jAyMtLXgAghhBBCVgKV7X+UUvjYxz6GE088EatXr453Q37kIx/Bl770pcoB7NixA5s3b8bIyAi2bt2Ku+66y+m4e+65B77v47TTTqt8TkIIIYSQYVNZhH384x/HTTfdhE996lOo1zseHb/0S7+EL37xi5X6uvXWW3HJJZfgiiuuwH333Yezzz4b27Ztw549ewqPO3DgAN71rnfhNa95TdXwCSFkkbA4/JYIIcOjsgi7+eabsXPnTvzX//pf4XmdvfovfvGL8eMf/7hSX9dddx3e+9734sILL8TU1BS2b9+ODRs24Prrry887n3vex/OO+88nHXWWVXDHzpVlgNXKWUkBviBHlbZpolqO7gGVdrG7tAcdukc4/FUHkOyTVVLBLd2WTavxXH0m+rle9zLUQ2Kqqd3jdm0Ee7twZ2RhCxHKouwp556Ci94wQt6HldKod1uO/fTarWwe/dunHPOOV2Pn3POObj33ntzj/vyl7+Mf/u3f8OVV17pdJ5ms4mZmZmuf8PEk+Xiyn4w1zyBsVqee1anLWAsKmrSTeRJAYw3BEZ8hy36sCambrORRuSF5jDZCpSXGepqX2ESCpRGO7JH7+dELmAMUl1DCSMD1qLJ1j4eomP66RJyUhuXjrUAyqIepCC2flth6vGstkBUASFRoaAfsVWr92jNYav94aQT8Za93l3Cu8zIFtUFISHzZbHNm8uZyiJsy5Ytmeu2brvtNrz0pS917md6ehphGGLdunVdj69btw779u3LPOZf/uVfcNlll+ErX/kKfN9tT8G1116LiYmJ+N+GDRucYxwEQgh4UnS5s1uSJXiCyNXblwKr6wKNdK0ZmA95DWAuUKZMkRCRk3v++Ud9gdV1iZonsaouMTEiuwxTk4zVBCZXSYzWJDwpTM1Dh2vU6LiS5018vhSoeRJSmvEoEqZCdErRVPGOUhBohSaWfmRVPGHiltKUbup5SXJQ2rye9uzJSdhWULCCwwoV65JeFrJGUqj0Pi+F/Sd6nPttREczNkWvSbLLEJ2SSLHYTLWx31vhCphxS5fwqkrXOUrb9gojK8SKXm77fNZQpF9v1/N39S2YCSMLx2KbN5czlXdHXnnllTj//PPx1FNPQSmFb3zjG3j44Ydx88034y//8i8rB5D+AM8zXQzDEOeddx6uvvpq/OIv/qJz/5dffjkuvfTS+OeZmZlF8YYSQsD3TO3GMOGKHyjdM1EIIdDwjVP7XBAVI9boKtCdbCsACNldHqnumcxXemx9KTDekGiFwJGWggJQ94A1DQk/pYyESJSUcbmlBNMuOfl7Vgz0lDMytTCt+LDktc2bzDLfO8pM6r6c30Rm6wum+5ZCQMAUYHe5Y2uEqY7FmwZyC0vblzVZlLuItEd7LByyykYlsk3zJes1AXpFRKizz2PFpkwEopFdwFvDlKySQsMheds5LmFuWsn4OEsIJUoV9Px+Iv99VUU0drc1JbwovMgwWKzz5nKksgh705vehFtvvRV/+Id/CCEEPvrRj+L000/HX/zFX+B1r3udcz+Tk5PwPK8n6/X000/3ZMcA4ODBg/inf/on3HffffjN3/xNAOYWqNYavu/jb/7mb/DqV7+657hGo4FGo1HxKhcOKQS0MDUiXdqO1QR+djgoFUFCmEzNiLSFpvPTY1bkNaIUWl7NxU57QOrsCTMLpYFaVB+yrKyM0Qg6/rmoLdA9cRW1txN5o0Lu1xavLovDi+JwmW5tHJ2rLEbBPV1thVh5zFF7Pb/Mksvr0nZUPa7vISCq8QnAq1C66mjFVxorbrNqVR5t3/E5ov8pwMiwWOzz5nKisggDgNe//vV4/etff1Qnrtfr2Lp1K3bt2oW3vvWt8eO7du3Cm9/85p724+PjuP/++7se27FjB/7u7/4OX//617F58+ajimeYVP2wrTJtClF8qy/dtuhWZnfbaoFUvZVYpd9BUal0DiouqJ9XRA5xVIi5et9UBZZBDgWHmZCVw7xEWL+49NJLcf755+OMM87AWWedhZ07d2LPnj246KKLAJiU6FNPPYWbb74ZUkqceuqpXcevXbsWIyMjPY8TQgghhCx2Kouw5zznOZl/EQshMDIyghe84AW44IIL8J73vKe0r3PPPRf79+/HNddcg7179+LUU0/FnXfeiU2bNgEA9u7dW+oZRgghhBCyFKkswj760Y/iE5/4BLZt24YzzzwTWmt8//vfx1//9V/jAx/4AB577DG8//3vRxAE+PVf//XS/i6++GJcfPHFmc/ddNNNhcdeddVVuOqqq6peAiGEEELI0Kkswu6++258/OMfj28ZWm644Qb8zd/8DW6//Xa8+MUvxuc+9zknEUbs1nXzfdl6EK11vB3eaWF3ZNBUttgeAEKtEQRmd2RZ26rruVV0gIsvWGIjWt+psnZLa0BBO8VsfbAAtzU9Eu6L0iuvN9ODWVfUsWwo71yK7jEpYpCvN5kfdqNJ1g5bQkj/qCzCvvWtb+GTn/xkz+Ovec1r8MEPfhAA8IY3vAGXXXbZ0Ue3zNHaWEw0uxwszZesz71AaRxpa9Si1fOB0ghKtn9ZCwupNOp+tgjS2uzObEVxHGkDq+pmR2OvhUi+lUAenkBkl6EhoOHL/EX6ngBktJNAaQ2VY+FQFV8amw4Z2Vu42EpEmxhjW4msmO1r2DUeBSJIAFFfHauPvLGUsLYaIp4Ui8SvGTYRt8v3rUoKxupVBcrEmABQk6bfsMDORMBcn31PhpFdS140vijf+Zmmkhh0HItkDNbnrR99J1+vPKueQWP/IIx92QBIh93KZGUw/cQjaAfD+XPJ933UGqZU4szex4cSwyCoLMKOPfZY/MVf/AV+93d/t+vxv/iLv8Cxxx4LADh8+DDWrFnTnwiXKaEywif9Aa4T33Q8jjRm2zqyNujgCcDzBAKlSy0rFIzHmCc06p6IJ4VAmce7HYqAQy0NXwJjNcR+Ya7+YBZrFJq+vrYyoiY5mWW1FQB8T0A5XF9RDA3PGMImxYPUGlLk+1ilYw60mYysX1iRwMgSQQIdq4nkXObLyHohKYzQESddgkfrWLwlT5vn6p6OI+lG3zmT7WN+Yiw5MafPY+w7zGttzYctnkCP2a0EICV6xlUKxP5g1XbOJr63MZceU+RBlz3OUqBQIHeNUU7/9nehSraxnxSJfPu6yQrWIGR5cv9t24cdQszo6BgmJyeHHcZRU1mEfeQjH8H73/9+/N//+39x5plnQgiB733ve7jzzjvx+c9/HoCxmXjVq17V92CXA0prtAKNsj8mNAClTHYqz0PMfiD60pTSaYfl3lOhBmYjMdZWxdmgQAEzTY2Gp9Hw7U3QcqxXVXEcRsTUvY7IyzMAFdEkXJQlyaLumVJO6f7s91qbrFyotFNmT0VZK6HdRKGO/rOCM32bMCnQarIjPLyuNr0xSynijIVwECdlGbSjmVh1JAxFl6Dr7ltrjZoUJrOpO9eX93pb4WaNfq0YnW+cSV80KcozoCJxvvj2f0nMaYEsMmLO3tCUIbYXGNdsntLmvT9IGxSyuJnadgHG129a8PMent6LB+7YiVtuuQVTU1MAjNfoxo0bFzyWfiP0PNwa77nnHvzP//k/8fDDD0NrjVNOOQW/9Vu/hVe84hWDiLGvzMzMYGJiAgcOHMD4+PiCn3+2rZyzOs3AzcQVAEKlejJlRaSd9osY9UV8W6wMK8BcPqMFgLG65zbB6t5MYBENzz1mVxEWhVFJCPoi/7ZgHi4xd4mEPk+IlYxF4+vrb8yDvL6qBq42i1oWh1n36B6zWAS3+VwFmEXmiFGyvLHz5i9/aAfWnnzagp//mT0PY9cn3oPdu3fj9NNPX/DzD5JKmbB2u43f+I3fwEc+8hF87WtfG1RMy5pKC6wrtBZV3VMrMKi/fF2yON2Nq4kD98aVuq5EVQHm3G+cJVw6k2GVmBfL9VWKOZJVi8VseFAsxZgJWaxUKuBdq9XwzW9+c1CxEELICoJihpCVTiURBgBvfetb8ed//ucDCIUQQgghZOVQeWH+C17wAnzsYx/Dvffei61bt2LVqlVdz//2b/9234IjhBBCCFmuVBZhX/ziF3HMMcdg9+7d2L17d9dzQgiKMEIIIYQQByqLsMcee2wQcawcaAtOCCGEEMxjTRiZP9anyK2tjv2znDsfENaV38W6IGrp1Na66Dv1W/H6QtWxOCjrNzbyHMAQVqkssCSxBrBlvne6+98wqbocfjHEvFjgOBDSXypnwgDg3//933HHHXdgz549aLVaXc9dd911fQlsOZE01az7Ep7SaBUYq1rhoLRGTRpPr/K27k4L1kUdju1bofEhG/GFcc0GenwXbByBAloaqPvGI6vIM0kKIAiND1NuaZTE4HmRM7mLr1GgAB0o1KQwx2XEYWMOdWf8UqfsQQhARF5hZWFIdJcocsF1+/98XDVcj7G2Gi7jHL1qhWOXduoXiceG4XZg3U5cxyI+xrFfoPprMyyEML97ZYa+nfYDD4mQFUVlEfa3f/u3+JVf+RVs3rwZDz/8ME499VQ8/vjj0FovOxO1o8FORvaDratkixQYEUYotBNPJEWBzT4JAdQ8c3yXwWp0AqVN1gdAV2HvrM/T7pqB9kG3CSPUwOG2EYUjRl11ZZpCbRztLc0AaAuNhmdOki5vk6wfqSIR5Ek7QetuwaA7Y2GvUeXEnZw0lTbVBjxlSjXprJgTndiJKG+esee2DbQGwpx2NWle507f3TX5MvuvIMCSJXSK+u3xKStpCwAiittlco5rKKIzdun3vn0+/X06A7mQE7yLYJqPx5vL71UVYbcQCCGi37f892gVU15CiDuVb0defvnl+OAHP4gHHngAIyMjuP322/Hkk0/iVa96FX7t135tEDEuWXpr9XUQQqDmCYz6IippY5yrW2F2UW4poondtgXQDlQswLr6Tvyzt1JyRYuIHO4dr6mtTF3JturE3A67BZhFaWA2QFwYHDDiq+bJzA/zUJnMGFAmVoxgS9cejMVJ6nFbqilQnRp5bZVfBzPOtllxAPOLko7YllNK/hL5Emh43QLMtBWQUmTejhYiv6B5+vqyqhEkxWmybZaIyHq9k23TJYekqBazHdLkez83i4tq7vX9xl5v1ti5Vn0o6jvr9yrvPboYyHqP2rGQju9RQkg1Kouwhx56CO9+97sBmKrms7OzWL16Na655hp88pOf7HuASxmXW1ZCCNSkQDPUaKtij3wrPoJQIyipE5mcWJxuu1T4fNUwRb9bYfGtUkugzButJs2kXta3clyDI0RHHLlMmm2l0VJGgLnO/ekJOgspgJoAGtJcY9FkZYWN/d5VfJVlZdKComyir9a2Wswabu/9dDzDImvs+to3+iPsFgoRCW8pAFnyfiaEHB2VRdiqVavQbDYBAM997nPxb//2b/Fz09PT/YuMLDiD/Kh1FRzV+x3cxOYiwOYbR7XSNu59D6qtab+8J+NBvZcWa+ariEH9vhJCunEWYddccw0OHz6Ml7/85bjnnnsAAG984xvxwQ9+EJ/4xCfw3/7bf8PLX/7ygQVKCCGEELKccBZhV199NQ4fPozrrrsOL3vZywAAV111FV73utfh1ltvxaZNm/ClL31pYIESQgghhCwnnHdH2h1lJ510UvzY2NgYduzY0f+oCCGEELKomH7iEbSDweym8X0ftUY987mZvY8P5JyLgUoWFVwjUA0Bt8XJKjJmDUsW5ltqnogsK8pbe1GuM3BwDa1J0/dsoEt3rUkB1D2BQJW3BaqtN7Pb5CXK19LYhdSuMXgif6dodwxmB2pnsXb5Fejov7KmdocmHPu1Hmbl/Xb/3O9fV9f3c9W2iwH7nrNDxo86Qnq5/7btQzv36OgYJicnh3b+QVFJhL3mNa+B7xcf8oMf/OCoAlouWJ+koslIa7MjMlBGHPi+RKh0l3dYFnXPLJoNlcZcoDIFiNlJ2THRrEljf5FlyyAFsKomYy+tUV/gSKBxpJ0dx5gvjFcYgLon0Q7zzWfrnsBoTVQTYdHXUHd2P2ZNiiLavaW1hhQdv7EsalLAjwSpLwVCrTOFadJhXyWC8aBzd3aaXW/mldaJY3pNS3sFqz2f047DHDGWa4XiIAhdSb6fM8+VbBt9laLYwyzZtsggd5Ckx67jTUchRkiaqW0XYHz9pr73e3h6Lx64YyduueUWTE1NZbaZnJzExo0b+37uYVNJhL3+9a/H6tWrBxXLskOkZqyOh5IRQ62EIrKTsBRAI8owpQVTLGWiL1IAYzVprBeCjgjypfH76Z7ZNBqRyEsKplHfeJWl4xjzgRFP4FBbxT5fdU9gVSSokqLBl+acrdD4hwFGVI7VJXzZMUmdDyoWQZ1LSQuReOxgxFiYsLjwhMnupWOWAOqy27C1qMSRcdXXkQO+tWsw/kmd48zj6YncZr6KbDfmK8aKRE6RcJsPto+8Py7yskhZwi0Z/7DEzkKOHSHLgRO2nIm1J5/W936f2fMwHrhjJ6amplac6XslEfZ7v/d7WLt27aBiWbbYyUYKRNmr/NuOdhL2JSDjW47Z+TTbtiYBv2ZEULfrZNcPAEwMNos14veKk2TfEhoTDS8Wi3mCyv5c94y7v4Apz+QqLFywWTGbzcqL2dbcVFrDFwJeScweNCSMf1gZGkCgAV9oeIn+8q5PA1AV3UhdBWuZqMtq208xZt/PSbf7LEGVFm5ZfS00Zdm5rrbRfxRihJBB4CzCuB7s6LDD1ywxWe20F9CxAAOyp7BOW6V1XG6mrF8AGPG6fy5q68vkZFvcXkLHbvH9fs8UCbBkDADgi47zd1n7rKoDue0B+HLp1b1PCqZ+kHd7uKj9MLNeSaoOw2KImRCyPHGeTYpu1ZDhM5+Jwl0kuRs3Dlqsu8dRqdP5BbPEGLYR6QoZZkIIccZZhD322GM4/vjjBxkLIYQQQsiKwfl25KZN/d8RQQghhBCyUll6i1sIIYQQQpYBFGGEEEIIIUOAImyh4f4GQgghhMBxTdiPfvQj5w5f/OIXzzuY5Y7WgO+JLpPWIqQEwtCtbwH3UjFaawRKoOaV+1LZXbEuFhXWhFZ6R2fQmofSxny1SluX63Nw9ui0h/H+kkdpQpvHoHYQWnuIxWITMUxcf08sLmOX3DzOcSaEuOIkwk477bTYCLNs0gldVcMKIvkB7UvjX9UKXeozCtQ9jVAhs9xQEt8T8KVGqAWaeY0TNQvbSiPU2pRAQq9YsT8nnf1rUhQKGw0TZxDoqExQsVlrTZpUrAJip/086p5ATXbOUYRAb4o37/rM94AvTBxlr4nxudWdcjclvxMyKmfkYkVmxKBw85FLfO8kvJFwul/hAiF6SSoZthaNXU/po0Tb+HyEEJKBkwh77LHH4u/vu+8+fOhDH8Lv/d7v4ayzzgIAfOc738FnPvMZfOpTnxpMlEuQ9Adw8gNfClN7MV1CKAshBHwPkFojCHsnDikStQuFiF3lkyWEbGni9LFKA3OBhid0XDfSnlNpoB1216U0dS41al6v82eYmtRsTcyaJ+CnhJsvTIydckOAJ0z7IBWkJ4CGL+K6jSK6kjwxlixvFF99Itau2pCqu5C2B1P6KH0tNo5kyaKs/oWwEabd6Y2JbZ7LvUz1ayfwrPdFbN2bUmGVHOC7vlmZIkGI4nHOIq5dkXFA+qH4fQWKMUJIPk4iLGlP8Wu/9mv43Oc+hze84Q3xYy9+8YuxYcMGfOQjH8Fb3vKWvge5lCnKgHhSYER0BEsRUgjUfVP2KFDmw92T2aJACIGGL1DTpgi3trVXcgg1MBtlrzwJtAKVm23SMALPEyarV5Q9sm0DpTHiS0iYskZZhbCFMLdHPR2JRw3UfQE/416hECIWY1YwFRX6tiilza0i5LvHC2FEo0oU2/Zldszdx0Vfc2KwMesoi6bREQLZryF6ao7m9z1/QbHSyRrnIpKvhcsxHGdCSBGVakcCwP3334/Nmzf3PL5582Y8+OCDfQlqueBansiXtkZkOZ4Uzn9RSyHgC42248zcVrr0tqAl1HCe8ZU2xbI9h8VXJkuYL06SmOxVtZ0OrhWKpBBR5su97zIRCERirKLDvHNdg94EZSEUCIZkfUtXKq0pA8eZEJJN5d2RU1NT+PjHP465ubn4sWaziY9//OOYmprqa3CEEEIIIcuVypmwz3/+83jTm96EDRs24CUveQkA4P/9v/8HIQT+8i//su8BEkIIIWT4TD/xCNrphbtHge/7qDXqmNn7eN/6XGoIPY/K3EeOHMEtt9yCH//4x9Ba40UvehHOO+88rFq1ahAx9pWZmRlMTEzgwIEDGB8fH9h5qqzPUVpjrsIb2/WWGgDMtRXaVQ6ogMvtRcsxDencvmitVJoqb98qrwngdnsxblsh5kFS9aWuco3LnQH9mgDgOJOljZ03B8no6Bh+/OOHsHHjxoGeZ7FRORMGAGNjY/iN3/iNfsdCCCGEkEXK1LYLML5+U3lDBw5P78UDd+zELbfcgqmpKUxOTq44AQbMU4T92Z/9GW644QY8+uij+M53voNNmzbhj//4j3HSSSfhzW9+c79jXLK4mEJqbXbLedL8JV6W2AmVxpG2ghftgCwzIhWRHUTZ7ktj4GosIlwW0cuoX6XLMwhSdPy9JMozAjZjJVFutBrvNHToF6hm1Jn0h3Lp225CLWqb9JTKtJs4Slx37cXxRP8xS1Nt7KqOMyHLgRO2nIm1J5/Wl76e2fMwHrhjJ6ampnD66af3pc+lSOWF+ddffz0uvfRSbNu2DT//+c9jc9bnPOc52L59e7/jW/JIkb8zyjrMK5g2fmQRkdVeaY0jLYWZpkKggGaocbCp0ApVzy05rTVCpdGOLBmkAOqeEXpZhEpjNgBaKvIOC41/mMpQhAJAwxMdywlpTFTzrnHEF1hdl7CbKUO4iU1E7ZTSmbccdWQhYZ/RDv122UiUn75zLkTCsKDvpLjKi8MKxmTMRXYZR0PV63N9TVYCZWMncr7Pa0t9SwjJo7II+5M/+RN84QtfwBVXXAHf7yTSzjjjDNx///19DW4pI1L2Bl3empFIChIiwmZ8BIz7vS3Po7VGM1CYmVM9TvgawGxb43BLIYzSUUrr2A0fib5FZLlQ9xCX6bFr0eYyTGCNd5jx+bIiqCaNyaw9PhlzPTJltdQ8gTUNaRz5RXfGTsGIMZdJ3woEpXWU+TJjV+RNViQokq9LkUDO6jdLMMVjILqn26Rw01G2MO9y+ymCktc3CLG5nCl7b9jxtO3if8hu2/k9YaaREJJN5duRjz32GF760pf2PN5oNHD48OG+BLXciD+AIzFRtAa/M6kDQmvMNPONUy2hBg61FBoeIAtuI9q+ax5wpK0wF5TH3o6MYdc0RIGxqHlMCqAugLpvFuGXlfQJAUgNp9qNVRfVl91mm++kaGOQorvCQFHbSn336dZg0vuq6i1Y+81KFQ5ZfzwV1YO0z8kMn7aVOoaEEDcqZ8I2b96MH/7whz2P/9Vf/RVe9KIX9SOmZYsQ5XUPO20FmqF7eymKBVgaFwFmGa1JZ/NU3+vNlBVRpXh2FVy7tZmMKsQllPo8ww5iKOYTInWDIZntsj8Xtc06hhBCiqicCfu93/s9fOADH8Dc3By01vje976Hr33ta7j22mvxxS9+cRAxrljm4R4yMIZtvUAWFr7chBAyeCqLsPe85z0IggAf/vCHceTIEZx33nk48cQT8dnPfhbveMc7BhEjIYQQQsiyY14WFb/+67+OX//1X8f09DSUUli7dm2/4yKEEEIIWdZUXhP26le/Gs8++ywAYHJyMhZgMzMzePWrX93X4AghhBBCliuVRdjf//3fo9Vq9Tw+NzeHu+66qy9BEUIIIYQsd5xF2I9+9CP86Ec/AgA8+OCD8c8/+tGPcN999+FLX/oSTjzxxMoB7NixA5s3b8bIyAi2bt1aKOTuvvtuvPKVr8Rxxx2H0dFRnHLKKfjjP/7jyuck1TD+UcPfJLAIQqiM9TZzattl5TpcluJYE0LIUsN5Tdhpp50Wm25m3XYcHR3Fn/zJn1Q6+a233opLLrkEO3bswCtf+UrccMMN2LZtGx588MHMGlKrVq3Cb/7mb+LFL34xVq1ahbvvvhvve9/7sGrVqkVfy9JOxJ5AoU9Ysv2IL9AMtJNNRaiAINTwvXJ/LgAYqwkcabvNtM1AoV530+uhMuWMDMniPNmoyMcKhZUFIi8m2yVKSgPBlj3K93ZK9m3bC7hEbLzeOv5ROR5hqdeg7DXpeI6Vtx00LmNACCHk6BHa8c/0J554AlprnHTSSfje976H448/Pn6uXq9j7dq18Dyv0slf9rKX4fTTT8f1118fPzY1NYW3vOUtuPbaa536eNvb3oZVq1bhz/7sz5za22rwBw4cwPj4eKV454sd4njCj0oVZQ28bau0qfeoIwf8ubbOd1xPGJl2ShSJXAFiNZLSwOG2QjPMj311TWCs1vEEL3qz2HqSaQGRJyis+3j8fUYb++5MjpdExxgz2bVOfbX92uvtahsdq6LXItk++bUIKcy1ZQmuIsrado1LH8WYi+Ft0pyUEEKAzrz5yx/a0dfakbs+8R7s3r17RdeOdM6Ebdq0CQCgVEklaEdarRZ2796Nyy67rOvxc845B/fee69TH/fddx/uvfdefPzjH89t02w20Ww2459nZmbmF3BFkpNrutyNEIAXPRYm2gshoAEEiTJCQgjUPYGaNCWGWmFH0Nm+kyhtjFh9qVH3rNiIzEXtv+hnTwDjDQ/tUONgq9uZf8QDVtdlbyHvjIlcAPC9jolp1lgIe+HInuiT2ajkCTS6RRKin5U2Y4jkceiNTSNy5o/aJIVbVkYy69ryUNpUNbDZqyoUZbvs+8UayZY587siEtb5WdEmxR8hZOUyrHlzJVJ5Yf61116LG2+8sefxG2+8EZ/85Ced+5menkYYhli3bl3X4+vWrcO+ffsKj33e856HRqOBM844Ax/4wAdw4YUXFsY7MTER/9uwYYNzjEeDFRVldQx9AQiYWojtUKOdUcfRtBUYrUlTDDtxCy2PQAFH2oC9cWayRyJzIq95As8ZkVhdE2h4wHNGJCZGvF4BFsVs6+oJmMxXrUCAdQ7sfClyFNeJfyF6BViSEJ2KAnmZRYsC4lqdYUL85lGlzE9eHcvcY+LMaPGBWpvi6unam0dDVr1DAZvV68spCCFLnGHNmyuRyj5hN9xwA7761a/2PL5lyxa84x3vwO///u9X6i89ubish7nrrrtw6NAh/OM//iMuu+wyvOAFL8B/+S//JbPt5ZdfjksvvTT+eWZmZuGEmGuJIhjR5EKWMCqLwd42K4xBCIzWBFY5di+EEW+uVMmyVMm1Vl3K3p88bkYcDmvVFhPJ28CEEJIkb96cfuIRtF0WNTtw6Ok9AIC9e/f2pb+lSmURtm/fPqxfv77n8eOPP77SYE5OTsLzvJ6s19NPP92THUuzefNmAMAv/dIv4ac//SmuuuqqXBHWaDTQaDSc4yKEEEJWMnnz5v23be/zmQR+9Vf/Mx555OHMzXgrgcoibMOGDbjnnntiIWS555578NznPte5n3q9jq1bt2LXrl1461vfGj++a9cuvPnNb3buR2vdde+aEEIIIf1natsFGF+/qW/9NQ8dwA//v+2Ynp6mCHPlwgsvxCWXXIJ2ux1bVfzt3/4tPvzhD+ODH/xgpb4uvfRSnH/++TjjjDNw1llnYefOndizZw8uuugiACYl+tRTT+Hmm28GAPzpn/4pNm7ciFNOOQWA8Q379Kc/jd/6rd+qehmEEEIIqcAJW87s2+5IwOyQXOlUFmEf/vCH8cwzz+Diiy+OnfNHRkbw+7//+7j88ssr9XXuuedi//79uOaaa7B3716ceuqpuPPOO+OdmHv37sWePXvi9kopXH755Xjsscfg+z5+4Rd+Af/jf/wPvO9976t6GYQQQgghQ8XZJyzNoUOH8NBDD2F0dBQnn3zykll3tVA+YWlvsKJ2LeW2MF9rY9zaDBSUNsaoZS+eL83i67onChf1a23sL5Q2C+5rGX5faYQQzjvrOm2KG7p4WWXGEsdU3EYi2/Yiq63dd+Cy+9HVXyvpEWdtM8pidvUM01rHsbpsxiCEEBcG4RMG0CsMmEcmzLJ69Wr8h//wH/oZy7JEStE1OVqsoGrlWFKkUQmRJISAhIb0IruFDEVhbSQA038z1JBKo+6JLjsJrTUCBbQTAbYiq4yGD/gluzGt5UOeoEgamhYJsPmKr2Qc9pt0DEnDVvuzh3xbC08Yyw0rpKXo9XpL9hV/XzBU9vqSL5X9XkY7WNN0j11R373vLxUFTDFGCCGLFycR9ra3vQ033XQTxsfH8ba3va2w7Te+8Y2+BLbUSU98nhRQWptMiNZohm4ZFuuYn86UxYar0PA8k0mzJYBknDnpPsYYuWr4UqMmBZQ2gisrDA3T1hMaDb8j3ETs+Nndub0WD91eVHnj0bm+zvn6QWx0GsWR666vE5UDouOkSIm11AFCdIvFKtmvIl+ypPmsHbukCCwqjZQnDuO+tfGhS5r0EkIIWRw4ibCJiYn4A3xiYmKgAS1Hko71baULywQlCZVGs6RwpO3blzo2hi2bawMFBI4OozZbN+InRVX+CZQGarI7tjyONvtVhM12xT+ns2OiE0PS7iy3xFJcniiRYXQY67DCNWq4xWLO3Zv9ym+7dPzLCCFkJeEkwr785S9nfk+qIYTouu1XRjiP5XqDmGxrnrtjeycLN9xZPy8bmEY4ih77fPLWoMslVnkFq4xd1XfGsF8PQgghvVQuW0SODk6FhBBCCAEcM2EvfelLnf+S/sEPfnBUARFCCCGErAScRNhb3vKW+Pu5uTns2LEDL3rRi3DWWWcBAP7xH/8R//zP/4yLL754IEESQgghhCw3nETYlVdeGX9/4YUX4rd/+7fxsY99rKfNk08+2d/oCCGEEEKWKZXXhN12221417ve1fP4O9/5Ttx+++19CYoQQgghZLlTWYSNjo7i7rvv7nn87rvvxsjISF+CIosLrVFqGBq3HXAsrlSJY55FI5YUWusVcZ2ELAe07v5Hli+VHfMvueQSvP/978fu3bvx8pe/HIBZE3bjjTfiox/9aN8DXC4YjykBXwJhiU9Y7NSe+L6o5I+OTGA1EKuPfjoShEqh5rnp9QoOHLC+r66HWJtYF0LdMYwt8smyhqfGLLXYHNU+V0XMeCg2ak3HXFKgoBNH9LWKBxl35hKyuEl+VnX9btPrb9lSWYRddtllOOmkk/DZz34WX/3qVwEAU1NTuOmmm/D2t7+97wEudeyErTQw11Yo8V6N2zcD3eUpJtH7S5jsOyl++vW7KgUwVpOoeaJTdqcgfk8as1HXnbTW3T9ZTzGvnSkl1GlbNI727AodZ/xex3zTQahtXxohTJkmT3REc2b/jkJMCkBIAS8yVg0KDvGlfY0dx06IyMG/3LSVpYsIWfzYj5Ss3+d0JRCyfJhX7ci3v/3tFFwOxIIq1GgVpEOSE3pbabSC3lJCSgMicmwHIiGA7LqR/fiFHfUFGn7HpNVmlWw2KvlBIUVUKLyC+ErXXPSQXd7HF93XYdtKGFGTHKesMkIapk8BQCbKAGWJIg0z/qE2ZZ3KhBiQfSszHqtEqSdPmPMHqrt+pCeqCdesOCQ6YjwJxRchi58qpdvs3Y5h/VpPP/EI2kV/TVbA933MPvOTvvS1lJmXCHv22Wfx9a9/HY8++ig+9KEP4dhjj8UPfvADrFu3DieeeGK/Y1yStEMzmbcdCnTrqH2girMayTqBWmXXfEy3r/IL60mgJkVXrcg0STEGAFIit23PsamvWX17iQ8kT+THLgRQE0aEWpFVWEAbRnQJAKpk7JQ2wrnuidKsYlzOKBFXkXCreaZ2qNJHJ77S/QKAROe6WCuSkMVPv2vnDpr7b9ve9z5HR8cwOTnZ936XCpVF2I9+9CO89rWvxcTEBB5//HFceOGFOPbYY/HNb34TTzzxBG6++eZBxLnk0EBh9itNq+w+ZYIq666qIIXAaM1t7ZcQpii5K+nsV1G/WRmtovZVdpdUGGZnhBCVYpZCOK/9mm8chJClwVIRYAAwte0CjK/fdNT9HJ7eiwfu2IlbbrkFZ599NjZu3NiH6JYmlUXYpZdeigsuuACf+tSnsGbNmvjxbdu24bzzzutrcIQQQghZHJyw5UysPfm0o+7nmT0P44E7dmJqampFCzBgHhYV3//+9/G+972v5/ETTzwR+/bt60tQhBBCCCHLncoibGRkBDMzMz2PP/zwwzj++OP7EhQhhBBCyHKnsgh785vfjGuuuQbtdhuAWYeyZ88eXHbZZfjVX/3Vvge4UqiylmeQxptV+q0Sh8Zg1j4M0sywqkntYljbUWU8Bj92g+mbEEKWC5VF2Kc//Wn87Gc/w9q1azE7O4tXvepVeMELXoA1a9bgE5/4xCBiXJL4ElhTF2h45fKq5gkct8rHeEOiqLnWZgdlENkrqJJZzhPAiG9iKAtDRlYJrdDs1CwSH1qbXYmmbXkc8XHor1hRkaWFtcwoC0PAWF44vCRmFyU64+wsxoYkPmJ3bXR20RbFkWzrMnZV4lCpOAgh+UhR7Y9wsryovDB/fHwcd999N/7u7/4OP/jBD6CUwumnn47Xvva1g4hvyWItAuqesTqYCzTaKU8vTxhbCEvNEzhm1MNsoDHbUrFY0VobQZA6PowEQtrqQACoewJe7HUVmZACmTYY9ZRIU9oILF/qLq+pLMNWY68BeELDc/AKy/L1Sv4sRLHDvY0j1N1+W3Hf0QnSx4voQRF14AtzfNZO0/TOxTCytvCQ7xvWFUNBHIMgrpaQE0e3SW22CC4aO9cYus6b6Jcmk4SUYz0Yy9qQ5UUlERYEAUZGRvDDH/4Qr371q/HqV796UHEteZJGnVprjNYk6kpjLjJi9WV3u+T3oz4w4ns43FKYbSsEKv+X0/pfSW0EU92Tcd/dcQDQGnVPIlQmo2Z9wdJxWAIVZY88DUAUWmOE2pRjSgu3PGymRKA3HZtfYqjcLT8tPrK8yWJfrWjMVNSvjTvLpDU9zlXE2KDER56gSsfhfHsy8U2VmF3jWEhhSshSIGlCDSD+Hcn6feIfMsuTSrcjfd/Hpk2bEJYVPyRdxJO+MFmnmpcvfOzjAkYgtQsEWBINYLQmY+f6rL6TcYz4AjUpCs1Fbb9B6O5NVtWHy74BRYExqyXQ1fqP+855PilQk5nAovGw2bdhF8N2ET4LQZU4OpndQUVDyNLGfvQks/EC9g/EoYREBkzlNWF/8Ad/gMsvvxzPPPPMIOJZ1thSQ/b7srZVDFylMCagLi7ppo2Iv5a3dw6j8hvKRXxZqszdUeLPyfFeREFUq9vIT0SguhCs8noTshKJs2P2H39fljWV14R97nOfw7/+67/iuc99LjZt2oRVq1Z1Pf+DH/ygb8ERQgghKxGKr5VBZRH25je/mVkAQgghhJCjpLIIu+qqqwYQBiGEEELIysJ5Cc+RI0fwgQ98ACeeeCLWrl2L8847D9PT04OMjRBCCCFk2eIswq688krcdNNNeOMb34h3vOMd2LVrF97//vcPMjZCCCGEkGWL8+3Ib3zjG/jSl76Ed7zjHQCAd77znXjlK1+JMAzhed7AAlzJpE1Di0gau7qu2SszRU32LWJXL4e2Fc7f2S3qdMiiwBrgulonuo7zYmKQMS/F8SCEkEHgLMKefPJJnH322fHPZ555Jnzfx09+8hNs2LBhIMEtJ6yvlIsrshVSdQ8Y8QTmHKwqtAbmghB1TwIOQsxNUhm8yP7CxTHD1lssPX/UV6BNKSH7c9FhNWHau9oiVJnoXV6X7n6HryKqxDzIGIAKXmEUYIQsWaafeATtYH6fOr7vo9aoAwBm9j7ex6iWNs4iLAxD1Ov17oN9H0EQ9D2o5YQVJFllh7LaAsYYtdkOEWqg7gv4HtDMKHtk8YXNmhlvMU9kO/L3nA/dXlrppp4AGr6AjJ5QWptakTn91SQgS9J3WeVt2trcF/dKShZJKVAHEGqdO5YCZjxsH2VmotYI0bZVyG/vRaauxlW/9zqy+h6U4Eg6bJfFYNsPIub5xEEIWZrcf9v2vvU1OjqGycnJvvW3VHEWYVprXHDBBWg0GvFjc3NzuOiii7q8wr7xjW/0N8IlihVfpraiLpygkpkjI7a6W0shMFoTqCuN2aBT+1EKKzi6ZzZTQkijJssLdwOJW4KJrw1fwE8JKhnVwlQaaCVEkCfRU78y+zq7z5fE1nH0BCBTQizdrycEpNTmOhOd+aJXRIhEuih53ixRIATgRXEma0JIIK5EgPRxGeJjIQ0WbWmmLLGZORbAQGKuEgchZGkyte0CjK/fVPm4w9N78cAdO3HLLbdgamoKADA5OYmNGzf2O8Qlh7MIe/e7393z2Dvf+c6+BrOcUBpQSudmjZJoAHNthVAVizVPCqyqAbOBjjI4xTNbO+rPRSABHfFV1F4I83xDGBHkUkcRqFb2qKvmY0EcvgBkNMYS+RN9ui5b12M57T0bhyge56T4cOl7UCTFZlkMg4y5ShyEkKXFCVvOxNqTT6t83DN7HsYDd+zE1NQUTj/99P4HtoRxFmFf/vKXBxnHssRFgFkCR5ViRdAgEAI92a9hxJE8R3kbk71y66/Kud0FZtW+B0XVGAZ+q5QQQkghlWtHEkIIIYSQo4cijBBCCCFkCFCEEUIIIYQMAYqwAeK6NEZrx1XrC4DS2ike4wfWvbibEEIIIe5QhA0IKYC6J1CTxWIsVBpzbUC4uNFrjbaLY2qEL+1OR7d4pQDayvxTBeoq6adlvcbKxJgUbqJUImEA6iAIpTC7Rl32EyTbljUXsR8YVSYhhJDB4Lw7klTD7qoTMCamaU8rpTWagUaY2EJpj0gbVWgdeWI5breUAqhFqqRsd58A4HvGhsEKDg0jxCR0lz9WnpmpTnxTZo2Q5dkVxyES7ZL922oDSZ8uWAPSzmNSdERh+rzpsKQ015velNrrrcWtfoQQQgYDRdiAsZO4B+Nk31YazQBoZWa0OsLNiAkjEsqc9pNH1zzrcF9emMiX3fUp04JDwZiyesLUStQl/SUd+As9u3THwV2j4/hfVtJGa93j2SVi4SZsoy53+J7nU98nhVvRWBBCCCH9hiJsgbC3tpqBRissbQ2B4vI8vUeY25/dj+RT86xYcjBahXGxd13kVtpl4vlal/ApPsyIpOK6lHacXbJZSeFmM2MUX4QQQhYKirAFRAjhfEsRqL7ovYqAcBVgtm0VB07XIs3Wkb4Kbgau9vapm6jqCDcKMEIIIQsHF+YvMJznF45KopQvDCGEkAWGIowQQgghZAhQhBFCCCGEDAGKMEIIIYSQIcCF+QsMvT8XjiqL7bkwnxBCipl+4hG0g+qT2Oz+pwYQzfKAImwB0dqYn4alFhWGpLlpad9AwprBwX3fBOQkPCq4UxgvL0e7B607trTlbU0Qrv0KIZx3Pdo2FGKEEJLP/bdtn/exIyOjmJyc7F8wy4Shi7AdO3bgj/7oj7B3715s2bIF27dvx9lnn53Z9hvf+Aauv/56/PCHP0Sz2cSWLVtw1VVX4fWvf/0CR10dKzh8CShtHOkLWkPDlNgR0CVtDZ3yRA6WDIjuQzsKDl8ICNHt+N8TcZTiUxoIAwXf6zimpoVNUuy0lBkTD9kCK2l3EaiovBKy+03GEURW+F6BcEvGrJWGJ3vjI4QQYpjadgHG12+qdMzh6b144I6d+PrXb8PGjRsHFNnSZagi7NZbb8Ull1yCHTt24JWvfCVuuOEGbNu2DQ8++GDmi/UP//APeN3rXoc//MM/xDHHHIMvf/nLeNOb3oTvfve7eOlLXzqEK8gnmV0BjIBoK5PO8T3AkxrtMC1szPPJh6QUqIv8skXWpNVL2L1bJ/osap4VbKK0rS9N+aPY9V9rBBpdpX4619kRPgDQCoyo8ZNZsUTmK0y0DRQQRiWSksLN3rpNnk9F5/eimpzpcVap+ALdK9ziY9A9poEChNCFwo0QQlYqJ2w5E2tPPq3SMc/seRgP3LET69evH0xQSxyhh1ih+GUvexlOP/10XH/99fFjU1NTeMtb3oJrr73WqY8tW7bg3HPPxUc/+lGn9jMzM5iYmMCBAwcwPj4+r7hdsJN4oEzR7bxBVlqjFdhi2MUvhY4c9K3IqEnRVduxu230NfrZk6aGpUtbW3w8XSIoGXOgOrdAA6UL17r5UiSyTMV3WD1h/hlEYVuBSIwJAaV1qRGuJzs1MkNVHIctaA7QQ4wQsrKx8+Yvf2jHvETYrk+8B7t378bpp58+mACXMEPLhLVaLezevRuXXXZZ1+PnnHMO7r33Xqc+lFI4ePAgjj322Nw2zWYTzWYz/nlmZmZ+AVck1EA7UKVLuqQQqHkazaJ7fRFCCNTMfTtIIQrFgX3K1mWUsrythKk9WeamL4WAJzRm2+XXB3QyZC5iJoxEmkT53VINW1fT7e+IMMq4uaCi26B5QpQQQpYrw5o3VyJDs6iYnp5GGIZYt25d1+Pr1q3Dvn37nPr4zGc+g8OHD+Ptb397bptrr70WExMT8b8NGzYcVdxVcE0xVp3nywRYum/X/q3ocCv14359hBBClg7DnDdXGkP3CStatF3E1772NVx11VW49dZbsXbt2tx2l19+OQ4cOBD/e/LJJ486ZkIIIWS5wnlz4Rja7cjJyUl4nteT9Xr66ad7smNpbr31Vrz3ve/Fbbfdhte+9rWFbRuNBhqNxlHHSwghhKwEOG8uHEPLhNXrdWzduhW7du3qenzXrl14xStekXvc1772NVxwwQX46le/ije+8Y2DDpMQQgghZCAM1aLi0ksvxfnnn48zzjgDZ511Fnbu3Ik9e/bgoosuAmBSok899RRuvvlmAEaAvetd78JnP/tZvPzlL4+zaKOjo5iYmBjadeQhRbddQhG+FAhV2f5Is7swhLFccFk0rjWgovZlt3mrLE3Tutr12X0BLs3NxgDHOFLHufQ97LVs1jOubAMEWZykdwLzJSSEzJehirBzzz0X+/fvxzXXXIO9e/fi1FNPxZ133olNm4wZ3N69e7Fnz564/Q033IAgCPCBD3wAH/jAB+LH3/3ud+Omm25a6PAzsRYMxr9LQmuNttKFYkUKgYZvrBPaoY78xHpJemCF2girPIsKS2i8LyAA+F6+cOvYXViRkN1Oa3MtgQb86PrCguuTAmgkfMxCZbzGshAwuzP9qK3SGirHSiK6rNx+sh4TouMTZuw18o+Xsv87I9Pnta5wFGNLh0yLFU0hRgiZH0N3zL/44otx8cUXZz6XFlZ///d/P/iA5knaays5qdY9acRHRqZLJGoTWQsK3xNoBSo2ctWR+Eofq2Ac573IYLRoItcA2iEgRbdw8yJPsO6YBaTonXCS/mDJ+L3I8T7pF2ZNZGtex0gViDzIIvf9pCuHNYbtGhuYsVBKd8YC3V/T15g8NnnOpKGrNY4VGdfoRXYe/bTPSxrJ9j5nLTloDruYKfK3s8K6SgaXEEKARSDClgNFH9B2YrUGqIECwoSDfNSqu73WGKl5aIcKc0FxFg3oCJqaLL9FqTTQCoG6pzHiS3gZdR6TXVhX+rYyoi/vGrXWqHkSSmkI6FjYJccg+b0HIxyVNkIrKxtkfxbC+J2FBTEksVkyT3SLsXQcyTqXQOeWabrt0WAzh2WoaCa3gpEsDtJ/XBW2TTTkS0gIcYEi7Cgpc4C3xGWCkhmPnE9q+3yo3NdcCdjbZ/ZmaDGjNRm3ypv07cOtsFz8xOJK2lqTJevPIhFU92WpLUk8HhVWc1kB5tKvuf04mALerq+fiaevpyZ9YthrCAkhyxeKsGWHo4kr3DMuVSYhUWF5fyfTNWT1IQYjwMjKg28hQkgVhm7WShY/K2NeWRlXSQghZPFAEUYIIYQQMgR4O5IQQgghpUw/8QjaeR5DOczuf2pA0SwPKMIIIYQQUsr9t22f13EjI6OYnJzsbzDLBIowUsrK2B3mtquUEEJWKlPbLsD4+k3O7Q9P78UDd+zE179+GzZu3DjAyJYuFGELiNY6LptTthtPaw1fCjRDNwlk+wTcdhsGCqh5bnF4Arku91lxVKFKzFVKDmntZjuRfL7fOyQr+71SBy55NH3CyDLmhC1nYu3Jpzm3f2bPw3jgjp1Yv3794IJa4nBh/lEirB9VQZukY3pbaQSRsNJaZ87UtrxNqDR84TYvd+o4itLJXwoTRysZR07M1vjUdU6RFScfWwlAa13qUl+TxrTVBWsyaym6xkBptBKebEfrlj/fw21ZJbJ4EI6/f+ljCCHEBWbC+kD8odtl3BpVBowEVTNQCBKOp4EygkUatdBVVidQQDvsZIh8YUoGZSXFBNBVsihuklHPztZmlLaOowbC0IgbL1E6ycaRrHmZqK6UmY2ScRz545RHXLpH2J+zs2NCCFNWKBqLrPGQ6C0fEwvK1DgrdJupBhoIw6isU0EcedeQpDNunSxbHrGQ5+y9KLGvT2FlDFB8EUKqQxHWR5If1iqqYdJWiDNOaWxBbilM7cBQA+2gt74kYNzwBXSXcPBEfpFpW8/OChvfE7n1JdsKCGDEmI0jU/BliE0Bk53qxwSULN1ThBWmMlHLUiASYCXHxlnGnNlUw4yHFNo565Y+Pi9me/4kLFO0dMj6Q0QknyOEkIpQhA0AEdU5nHNcSBUqjaZDUUQhBDwYoWR/LsMTppSQLFE2GqYYuMvtRCs2PQxm8nG9/SmFgC9Mts4lDq2B0DEGpQFdIHJ7+nbst1MqiQ79S5HkHyJdPxNCyDygCFuCVJm8hRADmygWwwQ0nzU7iwEKsKUNXz5CSD/gwnxCCCGEkCFAEUYIIYQQMgQowgghhBBChgBF2ADQ2qxTqnvCab2S0hqB0lAOBlNaazQDhXaonPysNKJF5kfpfdUbh7HSUA7d2t2iKtsWLbNt6Bhzp61b3HIAa8j6PLSEEEJWCFyY32esl5AnBaTWqEmBVmisKnrb6q7nQm12Pvqyd+G21hptpdFM7LiUQmPEl/AytjQKmF2RWmsoCCgNeELnGoLGPkclWxOTXklW4AmdbVNh26Yv3cvZzRjvXoxOEGrAFzrTxsGMRyeWECaOIpuK2I9LilzfNcAINWtPUe64X61KgB1nOqsTQgihCOsTWZOxnbzrnikR1Ax0nOEJFDJLEikYqwhP6NjXK1Am+5XOOikNHGkr+BJo+DK2U/CksVZIC4gwsr/3pU5YJaSDzr8+IFtwaABtjcg+oyMy8uwg0oJJa3PdWX0HVuRJHV9Tno+ZjvqWOts8MzkW1t8s6bsmAPg5Y9dzroriy/bfiaXiwYQQQpYdFGF9oGxCFpHSGK1JzAUKM01dehsv1KacjlIqN2NjCRQQtBRW1yVqXkJo5Mz0gTUjlQBQbmHhKjjCSHi53OO2gkk49G0NVAWyjWzT2Mybj04FgCz3fcAYvtpEYjKh2O/sl+mzwkGEEEKWPRRhR4nrhGwn9cOt3oxWHion45OFJ4G6777EzzZ1Mjl17jVq72ieWrXvKm09R0FlBbJr3UYKMEIIIf2CImwRU2Ux/XzmeBqGRgx4HDjMhBBCsqAII4QQQkgp0088grZjOT4AOPT0HgDAQw89hMnJSWzcuHFQoS1ZhO63d8EiZ2ZmBhMTEzhw4ADGx8ePur+qt6f2Hwkyd0pmEYTuty59CYyPuGvquueeCXONwZK1KH6h8exOSMdAXGOe725IQghZqth5c36Ybfejo2P48Y8fohBLwUwYIYQQQkqZ2nYBxtdvqnRMbWwN2kcO4rs3Xo3p6WmKsBQUYYQQQggp5YQtZ2LtyadVPu6ZPQ/3P5hlAh3zF5gVde+XEEIIIblQhB0lVdb7aK0x5rsfIDOc8PMIFBBWWLxlrS9cVgQuxSVNKr6+/sneTl/auW+NaB0Z1TchhJAUFGF9oKweodba1HwMzb+aLBc2tvbkqrpAzSs//5qGhOfQbzJeV80mSq6vqy0Wz0J0lSyxVKCCXGK2x5vXsvvnMpItKMYIIYRYuCasT8R1F+MvOjItFQgUcKQdxtknIUwZIxUVwU7jiUgoCQAQaPgCNanjskdJxmoSozXRvQswZwefrSeZbGszNWWmolaI5e0OXCympALdglFrIEy44uvImBUQpTEnBZYdp6J2tt/MNuiMM+tGEkIIASjC+ko8qUbiSgOYa4do5djeSwHUZMcZX4rIWiFjcpZSYLQuEIQa7VDDk8CqupddvDtDMNl6knlouGW7esXm4sh+idTXNKbQuI5v8VaJ2TVj6FIpwI7zsMeLEELI8KEIGwBCmOzLoVa5IZiIhFfJHccY3xNYVZdO/ldCdG49OpXkQQUh5th2IXC9p67RXR+yjKr+aK64jjMhhJDlDdeEEUIIIYQMAYowQgghhJAhQBFGCCGEEDIEKMIIIYQQQoYARdgAsJYFo76E5+A/FYQasy2FdqhLfae0BpqBRitUDm01wtD03+867QLmzeO0kB+AH21AcMETpr2T5xncF9tXXQwvcnaq5rWtsuifEEII4e7IPqK1hoKxpxBCwJMaY56HdqjQDHSPv5ZSGnOBjnfhhYFGWwANHz3WE0m7CQ1AKSBQGnXP2lokvL+07vG1aocaUmh4UmTulKyiH6zw0brzNcxp66XElyeAQGfvPJSR+Er+HGr0eKPZeLv6lcKMf47WtBYdHU8vh92l9qso9kdLdpVwKcnt0/ZHmwpCCFnZUIT1CaV17A1msRO9LwX8ukAr1GhFWalWqNHOUC5KA7NtDV9q1H0RW4rmTeqtUEMCqPsdkZEnRJQGVOQxJiPhVkUUpDNfyfa+iPq3bROCKi0Qa1J0jZcA4CdEUrK9B90j3IyZbW9be96kAJWpDJWL+Eq3tQav6SoDdgzTccSmrMm+0BlngAKMEEIIRVhfCFSvk30SO0HXPSPWnp0tvzUYKCBsaYzUyoWDAjAXaNSkLjRktYRKQ0grTiLz0oLD7K3HvHZJ3zAPgMwRVKZtxyy17hkxVpShsiLHCrdkdi+vb0SiyYqvKsIri6QYsxk3URhzd5Yw/RwhhBACUIQdNVoXC7AkQggcbpYbuFq8Civ2BIod8Xv7zr4tmdc3UC4gbLao0z7/APucjdmlbVm7ZBsB99uOrohUrMUxZ39PCCFLleknHkE7qL6++NDTewAAe/fu7XdISx6h+71ie5EzMzODiYkJHDhwAOPj40fdn9YaDsb4MdOH25m3IbOoeQK+dBQeMJklVxq+uwiruvhdiP6KH0sVB3tX4UgIIaQYO28eHQKNRgOPPPIwNm7c2Je4lgPMhBFCCCGklKltF2B8/aZ5Hds8dAA//P+2Y3p6miIsAUUYIYQQQko5YcuZWHvyafM69pk9D/c3mGUCfcIIIYQQQoYARRghhBBCyBCgCFtoKiwuX0x7JlxDWTwRV2NQY621+9gRQghZWVCEHSVCCKdyPFobk9bRuuxxs89sD+MVZncElpYogvEgcyVQ7qWMXDd/WsERO/sX9G/HQ0Vfi9s6BpA8xrWdPX/i59K284iZQowQQkgaLszvA74U8CIH+CzBYif5Z2cVDkZ+Fp4AZI57up2vFYDZIHLP90RkQppdcqjmiS7T0yJMWzcbCeuSX9Q0eUoNIFSAgnHm73WTj4xOo3YWT0Yu8xnu80D/7SnseZQ2bvwAIKHhF8ScjsPadrjELBKP0zaDEEIIsAgyYTt27MDmzZsxMjKCrVu34q677sptu3fvXpx33nl44QtfCCklLrnkkoULtAQhBGqeQE0m6gdG2ZJDLYWnZoJYgAGmHmI7VQ/SftXozuQECjjS1mgr9GRgalKgHgkwG0cevhRo+MLJqDV2vxf5oiEtvpIxJzN56cxRoHSXAAOMIAsi1dJp39tvGR2fsryYdRxfK9RI+g4qAC1lXpt0zEr1loNS2lQfSMds++86b+oxZsYIIYQMVYTdeuutuOSSS3DFFVfgvvvuw9lnn41t27Zhz549me2bzSaOP/54XHHFFXjJS16ywNG6IYURYq1Q4UhbY9+hAM/MqtxMTqCBdiRIFIoFRyvUONI2ZX58KdDwsgWVEJ3HbO3Ehi/ge+7iyysQMkB3tqcoZqWNGNO6+/u8Pm09yfmIryLBaPo3QqqtIkGb0y7URoxZEehyjUnBWNTW9sdsGCGEkKGKsOuuuw7vfe97ceGFF2Jqagrbt2/Hhg0bcP3112e2f/7zn4/PfvazeNe73tUH997BIYRAqIDpIyFaDu74VQSHRlQQ3CWbJYxIqzmILyASYCVCJh2LK6F2v6VoRY0rZeIrSTCgOFzW+RFCCCFJhrYmrNVqYffu3bjsssu6Hj/nnHNw77339u08zWYTzWYz/nlmZqZvfRNCCCHLDc6bC8fQMmHT09MIwxDr1q3renzdunXYt29f385z7bXXYmJiIv63YcOGvvVNCCGELDc4by4cQ1+Yn75Nlt5pdrRcfvnlOHDgQPzvySef7FvfhBBCyHKD8+bCMbTbkZOTk/A8ryfr9fTTT/dkx46GRqOBRqPRt/4IIYSQ5QznzYVjaJmwer2OrVu3YteuXV2P79q1C694xSuGFFV/UFpDADh+zMOo75bVC5SxaXBZ3H2gGeLAXBDbI+RhdwxWId7p5xCH64J4AcCXxgvMBbuTsswQ1fZdhboEXF4Sici7zPEEdheqK1XGmRBCyPJkqGatl156Kc4//3ycccYZOOuss7Bz507s2bMHF110EQCTEn3qqadw8803x8f88Ic/BAAcOnQIP/vZz/DDH/4Q9XodL3rRi4ZxCV1ordEKgWZobqlKaEyMeBgLNWaaYWxFkXs8zC7CMoNUFYmUn8+FGPUFRmsy9gmz+LIjClx3RibjsN/kHSqs2avWiL5k7pb0JGITWSvGlOMORdtGIt+ktgoiikMKoC7MWIcZcfgS8BIxC5G/+1GI7jhkwVik0alvaFtBCCEri6GKsHPPPRf79+/HNddcg7179+LUU0/FnXfeiU2bNgEw5qxpz7CXvvSl8fe7d+/GV7/6VWzatAmPP/74QobeQzvUmAt01+RrhYMvgePGfMy2jWN+mQCxz3son5hnA425IMSquox9w3zZff4iROprEis8koLQChnbdyxspIh9uIDezFAyFgkjhELHTJDSgIjEnhCiK9aqwsXGobU2VQtEx5vME+gqQdU1fimxmR6TnvPYwxxichG9hBAybKafeATtwOVTrZdDT2f7f650hF5MVaIXgJmZGUxMTODAgQMYHx8/6v601pgNTMkil7ZH2goHW+5D7urbJQAcv8p3FmAi+mcFRWlbh6yaFWcikhVlbQE4jZtFCsCTwgjDPomVuIySdos5KULLNpG4ZsSSlJWIIoSQhcbOm0eNELj3nntw1llnHX1fywTWjuwDrkJCCIHZCn9FVFljVPOMKWtVXI6Ibz2WthOZ3+e1rVJwHEjeXq10WGkcWd8XtU1/zW9fbc0XtRchZDEzte0CjK/fNK9jD0/vxQN37OSC/xQUYQvMyphol95V9tMWhRBCliMnbDkTa08+bV7HPrPnYTxwx87+BrQMGLpPGCGEEELISoQijBBCCCFkCFCEEUIIIYQMAYowQgghhJAhQBG2wFRZ/m121rltr5uP0YjrMcYvbABOJvOKuf9xuDjzd9p2fyWEEELmC0XYUSKEwKgvSsWVneTHatJ50JXWUWmb8hk/UBpzgSoVFLZUjnIQE/YplfC7qiJWCvuOzE/teVx6DVW1GFywfVmhWTZ2gOPYzaMkEXUdIYSsLGhR0QdqnnGptyWLkthJXWlgth0iVEDdM27xmWWMdLfrfhgpFE/qntJElrGawOq6KV2kdKeUTpeZaMKV1fYfRg/JjLI5sQBLxKEil/lSk9Loa+wanzBXTY5H0jJNZByXxJqYKm2fLzdXLSIWX0mBiY4XWfIak2Iq2VYknutcH7rEpStx5QI6ZRBCyIqBIqxPCCHQ8IGaB8y1NYJEBmsu0GglxJkQAr4APGGc9oOoPlDRpB0qQAkdOeibmbomgfGG12PSqjUQRjUSzc9GMmRlZjSMGLP1KqOmmbFomFglTOkhcy1A3k3WZNmj2GUenTJB6bZZPWWJk7jfhNg0bYoVTLJdXi1IFT0hU2IzbzySMaYzZa7QJZ8QQlYmFGF9RgqBsbrAwaaKxVfenCyEQM0DpNJohuV96yh7dMyIccdveKJQeNiai+ZkxX2rqL2LS79tW3O09NdR+2RtyaK2yXqWReLEik2vQmkBHWX0yrAZNxc9lSfoyqD4IoSQlQ1F2IAQovfWZFHbKozVpLPwSIqaYeI4FDGDEihVwhjk2FUpSUUIIWR5woX5hBBCCCFDgCKMEEIIIWQIUIQRQgghhAwBirABUdXLSlU0DB2IeeoioYp5KiGEELJU4cL8AdAONdohMOoLBApoF2wJDJTG/iMBDrc16p6xnPALVm2vrksoAFoVe4cB3YvbyySNAOBL89Xufiyi44rhtny9Hsn9QHW8x9JY4WUX8Xuq25Ijiyxfr7y+q1hHdMZOQztcX2xT4di3iYm7IwkhS4fpJx5BO5jfH8iHnt4DAHjooYcwOTmJjRs39jO0JYvQKyzlMDMzg4mJCRw4cADj4+N97VtpjcMthVbCbsIObyvUXTsEldY4MKfw7FzYM3EnzVctDU9gvCEhU6JEAPBkr1Cx7bTWEBBdJqNpfNERM/YYE2OvYJLoblsmwpI+X1YoKa17vMKKRJIvAS91fdYjrBNHNjryX6vyLk+PhfmaPXZWrFlBFZc1ymmbjJ8QQpYCdt48esycMTo6hh//+CEKMTAT1he01pgLNI60e6deK1QavoTSGs1A4VBLY/pIkGvbcKStMdsOsaYhsaYuMN7w0PBlZrbHmp9KYQxGpRSpyd78ZI1Ypei4xHuik9HqEnaR+JDCiK44M5XRNk+ApcVJOpaaNP0GSucKHEuggBA6FmPp/vKomv3qEq421pTgBbJlZyem3nFOHkvxRQhZqkxtuwDj6zfN+/ja2Bq0jxzEd2+8GtPT0xRhoAg7anSU0Sr2weqIjwNzCtOz5c6sNnszOdZ5icqMWa1zfl675MM1WZxJ6pTs0fHt0bJbfvGxOedM9y21chZJpqSQgJTCKQ5bd9OV5B3g7PGI4tDlgir5eJYYJYSQpcgJW87E2pNPO6o+ntnzcH+CWSZQhPUBVyNSIQQOZxaMzGZVtJDKSfiUrJ3qaevcr4hWRRW782edowzt7Elv6L4NWtJ3xfVfrv1WEVLJ25MUYIQQQtJwd+QiZzEs2BMOC9NJNhRfhBBC8qAII4QQQggZAhRhhBBCCCFDgCKMEEIIIWQIUIQRB6quTFsMK9kIIYSQxQ1FWB+osvbarzDigYr2D7ps9bMmoRW2BQ6kTFJsburSvppYM7YdgxF41pC1NAbd/ZUQQgiZLxRhR4kQAuMjslRcKa2htEYr1DjcCp3qIx5qKcw0lZP40ABCZWxEXQRCmDASzevbxqhgnPOLYo5d9tEp01TWrxACBRWaemiHOiGC8vru9vJyQQNQccw5bXTnuaS3GcUYIYSQ+UKfsD7gS1NSqBUCh1uqpxyPEAI/Oxzg4ekmZqO6W4dbChMjHhp+b+kfTyB6TmIuBJpHFNbUBUaiVyvtZ+VJ0XF7j09s2/bGK9Bx0A8jZ/ykAWpcqgfdHmgqik0k2yRUSKB0fP6WjsohRY8k+waAQBsxI4SARHFpIVsqSQiBUAMq1PBkOuZUnUwhnLOIcR+JcUmOXVYpIhuvbU8rCkIIIVWhCOsTQgg0fKDuScy2NY60FYQQONLWeOhns9ifcslvK2D6SIhR34gxL3KwX9OQGKvJLqGlAcy0NI4EGuN1iZpnHpfCCLAsk9HM0joZjwGRGIqOsn0lBVWSUJusnie6j8+yoA00IHSnMLgtI5Su/yqsYEJ3mSEBZBbw7pRqMiLPloZSOtv5v0iIZfVtz531eJqkcKMQI4QQUgWKsD4jhMBYXWDfoTYe/XkbPzscFK58mg00wtkQJx/XQMMzZXnyCBTwzJzC+tUepBRdBb6z0DAiyMRVfItOI7rNprPFV7qtEVhubdsKcQnxovZCCCPuon4lyks1KW0KmBcWEU9l4ZKPFcXtvAwOFGKEEEKqQxE2IJQGnj4cOLcfrbkvzzNrqSqUEIL7GqkqS5wG1dZmxvqtZ6qUXSKEEEIGDRfmE0IIIYQMAYowQgghhJAhwNuRhBBCCCll+olH0E7vrKrIoaf3AAAeeuihfoS0qJicnMTGjRsrHSP0oNwvFykzMzOYmJjAgQMHMD4+PrDzPDI9h/+3rxl7ZhVRk8BJxzawqi6d1nqtX+3l7opMIxGtCXNYDqUiTzDTvvwAa67hgn2bOa3Lijp18RDTWkNK4RzzwIg2E3hVjM8IIWQJYOfN/lFl9lg6jI6O4cc/fqiSEGMmrM9orfHTQyGmjyisX1PDXKDw89kwV4wpDRxpA/f/tIm6J3DSc2p4zqiXKSikANbUpdkVGHllWf+sLDzRfb8512YhwzrClzq3XxHFIiP7h6Txa1bfoeo8L4XOjTntx6W13SGZ3W/sYxaaygI1D4Ui1opRXRBvVttkTFlxKHQMXFWojSUHNwEQQpYZU9suwPj6TUfdT21sDUYnjutDRIuHmb2P47s3Xo3p6WmKsGEx0wzxb/tbONzuTNkNT+CE1T4OtRSenQu7BEaguif3Vqjx4+kWJhoSm4+tYyyxY3JVTWBVrXtiD5VGCOPDlbS2kEDs45U0HM3620Np3RMHYGITMEIvKSi8hPiy+FJARWLMYoVdWnt2bCV0nL3KEzoaQAhA6u5snta6x2tMw4yfFBq1VJYwSw7JAjGWbG+FWN7YhenrA9BSgCd0pscZIYQsVU7YcibWnnzasMNYVlCE9YFWqPH4z1t4+nDY85ydhFfXJVbVJJ6ZDXCw1Tt5JznQVPjh3jk8d42PFxxXxzENWZjxCpSGUBo1T8CP3PPTnlVJMQF0xFeWyaqlY4pqsjteUthE38dfYRzyw0iYhEUdwzwvAEiZZSvbje1KRAayRVkspYFmlI3yRTLOTpuu7xPXKjKetz9r3RFuqiT7B5gMXahNRrHM74wQQsjKhCLsKNFa476fzKJdIjqEEBDCZHCKBFgSXwLHjXpd5XmKMIkzIycyyxUlsmLtjOxXHl5koloUQ2yIqnSpALPEpX9EuRADigVjTzzoXG9e2MnxyBKu2W17s3BlcRBCCCFZUIQdJdYR3g2Bdm+yLJexmoTS2mmxvqhw60uIaksii7JwGb2jSu+DyhCVCbB0W2e3+4rrSYe+YYAQQsiihT5hhIDlhgghhCw8FGGEEEIIIUOAIowQQgghZAhQhBFCCCGEDAGKsKNEVS44sPxcgpcDK6xwBCGEkEUARdhRMH04wD88fgSh0k6TuFIKdc8Ynbq0P9RSPcaoeWgN53611pWsE6zhqkvfoqLINH32XwCZ3Y6uY6ed21Zdv69BgUcIISQbWlTMgyNthX9+eg77Dhm/CQGNEV+g4ZnnsywJVBji5/t/hh0f+31g9Bj859/8COqjY/C87JdAwBia7j3YxuSYD18W116UwviPWUPVLMuFWGygmtOCMXbV8CKhkl1yKIpPCnhw8wqTwhiqKkfp5kfWGi4+a22lobSORW9RzKEGlIrKDQGFvmxCCNRludGtRUWvidVh3IVJCCHEQhFWgVBp/OszLfzL/lbX4xrAbKDRDDXGfImaZx8VCIMASit85frr8JXrP4O52SMAgO/9zTfwtov/AP/pbe+G0qpLjB0zInHimhoavkArBH5yMMCahsQxIxJICQQBoO6JuHB0bICKbiFmBYcRJ+ZAieI6iqY+JGLhFkSmpjJRjDsp7Kw4kkJAyOyyRTbmmuwUu/aAntqVSWwNTHvdntZOZrOhNq9LTYouEWtjVkBXXcu2rQ4gyoVYzcsv+RSPHTpjZ68bqOBJRgghZFnD25EVeGi6iUf2t3JL5ygNHGorHGqFmJtrAgC+83//Gv/11S/Fl677WCzAAODQs8/g5j+8FFf91/+EJx++H4CpM3nysTWc9Jw6Gn73LH2wqfDUTIDDrc6Za1JgxO8IsCQ2RnuLMtSmpmFaFAkRGYomH4Nx6/dSNRjtNQYp4Rao3jJMQpi4bHapEzPQ8NATsxRATXRqXgLmzWkf6y47JFD3TN8utJXGXKC7rr0dZgsoFY1T6HB7VwqBWlQeKY4N5mdP9I6dRvf48y4lIYSsbIYuwnbs2IHNmzdjZGQEW7duxV133VXY/tvf/ja2bt2KkZERnHTSSfj85z+/QJECTcd6NW0F/MXt/wvnvfo0XP7r52Lvk4/ntt3z8P344n//b5iarONFx9exxt7TzEBpYP9sCF8Ao75Azeud6LNisaIiDxGJHAkjvnyHfkNtxE1akPX2LeB7Ag0JjHim2Hd+hskIrlr0z5fFGSNbTskFDVNTshVqI0ZL2tvakGXjEIvN6NZq0fUlYzHHusVOCCFkeTJUEXbrrbfikksuwRVXXIH77rsPZ599NrZt24Y9e/Zktn/sscfwhje8AWeffTbuu+8+/Pf//t/x27/927j99tsXOPJywjDEk4/+i3P70ZqsUHaofKKfD1VKH1Xv2z1mIdwFStVwB5V8GtRrQgghZPky1DVh1113Hd773vfiwgsvBABs374d3/rWt3D99dfj2muv7Wn/+c9/Hhs3bsT27dsBAFNTU/inf/onfPrTn8av/uqvZp6j2Wyi2WzGP8/MzPT/QgghhJBlQt68ObNvD/zG6LDCWtTM7H18XscNTYS1Wi3s3r0bl112Wdfj55xzDu69997MY77zne/gnHPO6Xrs9a9/Pb70pS+h3W6jVqv1HHPttdfi6quv7l/ghBBCyDImb97cfcv/GEI0S4fR0TFMTk5WOmZoImx6ehphGGLdunVdj69btw779u3LPGbfvn2Z7YMgwPT0NNavX99zzOWXX45LL700/nlmZgYbNmzowxUQQgghy4+8efPb3/42Vq9ePcTIFjeTk5PYuHFjpWOGblHRs4OswBogr33W45ZGo4FGo3GUURJCCCErg7x587TTTsP4+PgQIlq+DG1h/uTkJDzP68l6Pf300z3ZLssJJ5yQ2d73fRx33HEDi9VyzEj+zsU0m085FZ7nw/fLde6zz+zH9E/3OXsWzAYuNqGGKmvFB+nuPrAF8RXbV7m+KkNRPQ5aVBBCyEpnaCKsXq9j69at2LVrV9fju3btwite8YrMY84666ye9n/zN3+DM844I3M9WL/5hWPreNnzRrGqVpCpg/G8evOrX4EH/vmf8brXvQ4AIGXvUHueEXX/+VffhlPWjWByVblgG60JjNakszVDXQrUPTeRUJMCdSmc2iY9vMqwY1Jlx6OrqPGEqVTgEocU5hpdY64iYKvEnDyGEELIymWoFhWXXnopvvjFL+LGG2/EQw89hN/93d/Fnj17cNFFFwEw96Xf9a53xe0vuugiPPHEE7j00kvx0EMP4cYbb8SXvvQlfOhDH1qwmNeu8vGfNq/Ci45vGBPR6HH79blrfLx68yq84LgGTnnhL+LOO+/EX/7lX2Ljxo3xLVP79SUveQn+8R//ETfddBOee8IJeO54Db84Wceqeu/s7Elgw0QNLzi2jrGahIyMUDN8WgFEJYEkonYSI75ALaexJ2Ce9wSkNEaotZx3hnW7t219adrm6QlfdNzxpRBGjOW0tWJNCtN3mXCTwlyfJyUavkTDyxaQAsYId8SXkYGsQN0hZllRJWUZ32bFUkWQEkIIWb4MdU3Yueeei/379+Oaa67B3r17ceqpp+LOO+/Epk2bAAB79+7t8gzbvHkz7rzzTvzu7/4u/vRP/xTPfe5z8bnPfS7XnmJQSCHwC8fW8bxxHw/9rIknZwKsrkv80roGjhvrHdI3vvGNeO1rX4vt27fjqquuwtjYGD796U/j3e9+d0+GbMSXOOk5dcw0FX4y00ZbAcev8rB2ld/jMi8is1KpdVx+R8AItvQaOVtqx5dAKzQO9+mSR+lrrEvTzhq9+okyRj1tPSCMyvgARth5GW2Nn5a5LZh0j8/qVwgR1bjUXeWVstoCRuiNCCBQxkgWQFSyKLvvelR6qB3FbM1qj8bvKz40ZWIr0s8TQghZ8Qg9qEVAi5SZmRlMTEzgwIEDfVtg2AwU6g4u8wBw8OBBeJ6HsbGx0rZKG/GRJZLSlG1QOJr2g267WOIYhNkqC3cTQpY6g5g3iWHouyOXAw3XIoYA1qxZ49xWVlhoVFVAVGm/GNoupjiqQPFFCCEkj6HXjiSEEEIIWYlQhBFCCCGEDAGKMEIIIYSQIUARRgghhBAyBCjCCCGEEEKGAEUYIYQQQsgQoAgjhBBCCBkCFGGEEEIIIUOAIowQQgghZAhQhBFCCCGEDIEVV7bI1gmcmZkZciSEEELIwrFmzZqBlmkj1VlxIuzgwYMAgA0bNgw5EkIIIWThYAHuxYfQNjW0QlBK4Sc/+Unf/iKYmZnBhg0b8OSTT67YNzfHgGMAcAwAjgHAMQAW7xjMd97TWuPgwYPMpA2AFZcJk1Liec97Xt/7HR8fX1S/bMOAY8AxADgGAMcA4BgAy2cMhBDL4joWI1yYTwghhBAyBCjCCCGEEEKGAEXYUdJoNHDllVei0WgMO5ShwTHgGAAcA4BjAHAMAI4BcWfFLcwnhBBCCFkMMBNGCCGEEDIEKMIIIYQQQoYARRghhBBCyBCgCCOEEEIIGQIUYQ7s2LEDmzdvxsjICLZu3Yq77rqrsP23v/1tbN26FSMjIzjppJPw+c9/foEiHRxVxuAb3/gGXve61+H444/H+Pg4zjrrLHzrW99awGgHQ9X3geWee+6B7/s47bTTBhvgAlB1DJrNJq644gps2rQJjUYDv/ALv4Abb7xxgaIdDFXH4Ctf+Qpe8pKXYGxsDOvXr8d73vMe7N+/f4Gi7T//8A//gDe96U147nOfCyEE/vzP/7z0mOX2mVh1DJbrZyLpA5oU8r/+1//StVpNf+ELX9APPvig/p3f+R29atUq/cQTT2S2f/TRR/XY2Jj+nd/5Hf3ggw/qL3zhC7pWq+mvf/3rCxx5/6g6Br/zO7+jP/nJT+rvfe97+pFHHtGXX365rtVq+gc/+MECR94/qo6B5dlnn9UnnXSSPuecc/RLXvKShQl2QMxnDH7lV35Fv+xlL9O7du3Sjz32mP7ud7+r77nnngWMur9UHYO77rpLSyn1Zz/7Wf3oo4/qu+66S2/ZskW/5S1vWeDI+8edd96pr7jiCn377bdrAPqb3/xmYfvl+JlYdQyW42ci6Q8UYSWceeaZ+qKLLup67JRTTtGXXXZZZvsPf/jD+pRTTul67H3ve59++ctfPrAYB03VMcjiRS96kb766qv7HdqCMd8xOPfcc/Uf/MEf6CuvvHLJi7CqY/BXf/VXemJiQu/fv38hwlsQqo7BH/3RH+mTTjqp67HPfe5z+nnPe97AYlxIXATIcvxMTOIyBlks9c9E0h94O7KAVquF3bt345xzzul6/JxzzsG9996becx3vvOdnvavf/3r8U//9E9ot9sDi3VQzGcM0iilcPDgQRx77LGDCHHgzHcMvvzlL+Pf/u3fcOWVVw46xIEznzG44447cMYZZ+BTn/oUTjzxRPziL/4iPvShD2F2dnYhQu478xmDV7ziFfj3f/933HnnndBa46c//Sm+/vWv441vfONChLwoWG6fif1gqX8mkv6x4gp4V2F6ehphGGLdunVdj69btw779u3LPGbfvn2Z7YMgwPT0NNavXz+weAfBfMYgzWc+8xkcPnwYb3/72wcR4sCZzxj8y7/8Cy677DLcdddd8P2l/2s2nzF49NFHcffdd2NkZATf/OY3MT09jYsvvhjPPPPMklwXNp8xeMUrXoGvfOUrOPfcczE3N4cgCPArv/Ir+JM/+ZOFCHlRsNw+E/vBUv9MJP2DmTAHhBBdP2utex4ra5/1+FKi6hhYvva1r+Gqq67CrbfeirVr1w4qvAXBdQzCMMR5552Hq6++Gv9/O/cX0tT7xwH8PZ2rNchAg0nLFmm1QMG/UWJaGEJdJOFdmULRhEymERqlF6IUVCaBmheSXmiswgupCL2olRqBspGp6QqNNCOijKWkoM/3Ijq/37JvfY9uOzrfLzjgeXzO2ef5cHz4nMdztnXrVl+F5xNyroO5uTmoVCo0NTUhMTERBw4cQGVlJRoaGpbtahggLwf9/f3Iz89HaWkpenp68PDhQwwPDyM3N9cXoS4Z/jgnLpQ/zYm0eMv/Ft2LQkNDERgYOO8u9+PHj/Pu7H7S6/W/7a9WqxESEuK1WL1lITn4yWq14vjx47hz5w7S0tK8GaZXyc2By+VCd3c37HY78vLyAPwoSIQQUKvVaGtrw759+3wSu6cs5DoICwvDhg0bEBwcLLWZTCYIITA6OorIyEivxuxpC8nBxYsXkZSUhLNnzwIAoqOjodPpkJycjPLy8hWxCuRvc+Ji+MucSJ7DlbA/0Gg0iIuLQ3t7u1t7e3s7du/e/dtjdu3aNa9/W1sb4uPjERQU5LVYvWUhOQB+3O3l5OSgubl52T//IjcHa9euRW9vLxwOh7Tl5uZi27ZtcDgc2Llzp69C95iFXAdJSUl4//49vn37JrUNDQ0hICAABoPBq/F6w0JyMDU1hYAA92k2MDAQwP9Wg/ydv82JC+VPcyJ5kEIvBCwbP19Jr6+vF/39/cJisQidTidGRkaEEEIUFxeLrKwsqf/P17ELCgpEf3+/qK+vX/avY8vNQXNzs1Cr1aK6ulqMj49L28TEhFJDWDS5OfiVP7wdKTcHLpdLGAwGkZmZKfr6+oTNZhORkZHixIkTSg1h0eTm4ObNm0KtVouamhrx5s0b0dHRIeLj40ViYqJSQ1g0l8sl7Ha7sNvtAoCorKwUdrtd+pqOlTAnys2BP86J5Bkswv6D6upqsWnTJqHRaERsbKyw2WzS77Kzs0VKSopb/8ePH4uYmBih0WiE0WgUtbW1Po7Y8+TkICUlRQCYt2VnZ/s+cA+Sex38P38owoSQn4OBgQGRlpYmtFqtMBgMorCwUExNTfk4as+Sm4Pr16+LHTt2CK1WK8LCwsSRI0fE6Oioj6P2nEePHv3x73slzIlyc+CvcyItnkqIFbImTkRERLSE8JkwIiIiIgWwCCMiIiJSAIswIiIiIgWwCCMiIiJSAIswIiIiIgWwCCMiIiJSAIswIiIiIgWwCCMiIiJSAIswIiIiIgWwCCOi31KpVH/ccnJyFIvNaDSiqqpKsc8nIvIEtdIBENHSND4+Lv1stVpRWlqKwcFBqU2r1co638zMDDQajcfiIyJa7rgSRkS/pdfrpS04OBgqlUraDwoKQm5uLgwGA9asWYOoqCjcunXL7fjU1FTk5eWhsLAQoaGh2L9/PwCgtbUVkZGR0Gq12Lt3LxobG6FSqTAxMSEd29XVhT179kCr1WLjxo3Iz8/H5OSkdN63b9+ioKBAWpUjIlqOWIQRkWzfv39HXFwc7t27h5cvX+LkyZPIysrC8+fP3fo1NjZCrVajs7MTdXV1GBkZQWZmJjIyMuBwOGA2m3H+/Hm3Y3p7e5Geno7Dhw/jxYsXsFqt6OjoQF5eHgCgpaUFBoMBZWVlGB8fd1uxIyJaTlRCCKF0EES0tDU0NMBisbitVv3q4MGDMJlMuHLlCoAfK1Zfv36F3W6X+hQXF+P+/fvo7e2V2i5cuICKigp8+fIF69atw7Fjx6DValFXVyf16ejoQEpKCiYnJ7F69WoYjUZYLBZYLBaPj5WIyFf4TBgRyTY7O4tLly7BarVibGwM09PTmJ6ehk6nc+sXHx/vtj84OIiEhAS3tsTERLf9np4evH79Gk1NTVKbEAJzc3MYHh6GyWTy8GiIiJTBIoyIZLt69SquXbuGqqoqREVFQafTwWKxYGZmxq3fr0WZEGLeM1y/LsbPzc3BbDYjPz9/3ueGh4d7aARERMpjEUZEsj19+hSHDh3C0aNHAfwonJxO519XqbZv344HDx64tXV3d7vtx8bGoq+vDxEREf96Ho1Gg9nZ2QVGT0S0NPDBfCKSLSIiAu3t7ejq6sLAwADMZjM+fPjw1+PMZjNevXqFoqIiDA0N4fbt22hoaAAAaYWsqKgIz549w6lTp+BwOOB0OtHa2orTp09L5zEajXjy5AnGxsbw6dMnr4yRiMjbWIQRkWwlJSWIjY1Feno6UlNTodfrkZGR8dfjNm/ejLt376KlpQXR0dGora2V3o5ctWoVACA6Oho2mw1OpxPJycmIiYlBSUkJwsLCpPOUlZVhZGQEW7Zswfr1670yRiIib+PbkUSkqIqKCty4cQPv3r1TOhQiIp/iM2FE5FM1NTVISEhASEgIOjs7cfnyZek7wIiIVhIWYUTkU06nE+Xl5fj8+TPCw8Nx5swZnDt3TumwiIh8jv+OJCIiIlIAH8wnIiIiUgCLMCIiIiIFsAgjIiIiUgCLMCIiIiIFsAgjIiIiUgCLMCIiIiIFsAgjIiIiUgCLMCIiIiIF/AMZJ+PC5L3KrgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import seaborn as sns\n", "sns.jointplot(x = test_data[output_cols[0]], y = mu[:, 0], kind = 'hex')\n", @@ -392,9 +526,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJhCAYAAADxFZy8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYXklEQVR4nOy9ebxkZX3n/3mes1XV3fve7tsLvbE30GwNIihuiSg4KmpGDcqMGklw+SVIEhHRiTJkSIxBNBGNE3wl6sRlBjPqDMnYMUoUGBkREKGhWXqjud1997q3trM8z++Pp07Vqaqzdtftu/T3/Xo13Fv3qae+59Spcz71nOf5fJiUUoIgCIIgCIJYcvDFLoAgCIIgCIIIh4QaQRAEQRDEEoWEGkEQBEEQxBKFhBpBEARBEMQShYQaQRAEQRDEEoWEGkEQBEEQxBKFhBpBEARBEMQShYQaQRAEQRDEEoWEGkEQBEEQxBKFhBpBEARBEMQShYQaQRAEQRDEEkVf7AJOJPbv34+JiYlj7mdkZASbNm3qQkUEQRAEQSxlSKgdJ/bv348zz9yGSqV8zH3l8wU89dQuEmsEQRAEscIhoXacmJiYQKVSxiXv+xP0r9ty1P0Ux/bi51/9NCYmJkioEQRBEMQKh4TacaZ/3Ras2nTGYpdBEARxQkBTTojlDgk1giAIYkVCU06IlQAJNYIgCGJJ0a1RsF27dtGUE2LZQ0KNIAiCWDJ0cxTMJ79qPU05IZYtJNQIgiCIrtCNkbBujYIBwNjjD+LX3/8KXNc9pn4IYjEhoUYQBEEcM90eCevGKFhxbG9XaiGIxYSEGkEQBHHMdMuCiEbBCKIVEmoEQRBE1zhWCyIaBSOIVijrkyAIgiAIYolCQo0gCIIgCGKJQrc+CYIgTmC66VlGEET3IaFGEARxgrIQnmVOze5aXwRBkFAjCII4YenWSk2AVmsSxEJBQo0gCOIE51hXagK0WpMgFgpaTEAQBEEQBLFEIaFGEARBEASxRCGhRhAEQRAEsUQhoUYQBEEQBLFEIaFGEARBEASxRCGhRhAEQRAEsUQhew6CIIhlSDcSBShNgCCWPiTUCIIglhndThSgNAGCWLqQUCMIglhmdCtRgNIECGLpQ0KNIAhimXKsiQKUJkAQSx9aTEAQBEEQBLFEIaFGEARBEASxRCGhRhAEQRAEsUQhoUYQBEEQBLFEocUEBEEQBJGCbvjOjYyMYNOmTV2ohjhRIKFGEARxHCGj2uVHZXYSAMO73/3uY+4rny/gqad2kVgjUkNCjSAI4jhBRrXLE6c8B0Di/GtuwuqtZx51P8Wxvfj5Vz+NiYkJEmpEakioEQRBHCfIqHZ507tm0zH51hHE0UBCjSAI4jhDRrUEQaSFVn0SBEEQBEEsUUioEQRBEARBLFHo1idBEEQC3VipCdBqTYIgskNCjSAIIoZur9QEaLUmQRDpIaFGEAQRQ7dWagK0WpMgiOyQUCMIYsXSTXPZY12pCdBqTYIgskNCjSCIFQmZyxIEsRIgoUYQxIqEzGUJglgJkFAjCGJFQ+ayBEEsZ8hHjSAIgiAIYolCQo0gCIIgCGKJQkKNIAiCIAhiiUJCjSAIgiAIYolCQo0gCIIgCGKJQqs+CYJYUlCuJkEQRBMSagRBLBkoV5MgCKIVEmoEcQLTrdErABgZGcGmTZuOqQ/K1SQIgmiFhBpBnKB0e/TKsnK4557/gXXr1h11H5SrSRAE0QoJNYJYhnQrbLxbo1fjzzyGR7/zefy7f/fvjqkfH7pdSRAEoSChtkzpxkTpbtyqIo4/3R4Jy69a36XRK4nzr7kJq7eeedT90O1KgiCIVkioLTMqs5MAGN797ncfc1/5fAFPPbWLxNoyYymHjfeu2US5mgRBEF2EhNoywynPoRsjF8Wxvfj5Vz+Nn/70p9i2bdsx11Wr1WBZ1jH3Q6N86aGwcYJYnnTLOobOlycGJNSWKcc6ctHNkTkAAGOAlMfcTTcmpPssxZNYt+aWEQSx/Oj2eZfuipwYkFA7QenWyBzQvIV2rH11e0J6t05i3bKwGBsbw2/91r9HtVo55r4AmnBPEMuNbp53/bsiExMTJNRWOCTUTnCOdWQOaN5C6878pO6exI711m63xRUA7Lj241i16bSjr4km3BPEsqYb513ixIGEGrHk6MZJrNu3GI5VXAFNgZUf3kBzywiCIIhUkFAjViTdusXQLXEFkMAiCIIgskNCjVjRkF0EQRAEsZzhi10AQRAEQRAEEQ4JNYIgCIIgiCUKCTWCIAiCIIglCgk1giAIgiCIJQoJNYIgCIIgiCUKCTWCIAiCIIglCgk1giAIgiCIJQoJNYIgCIIgiCUKCTWCIAiCIIglCgk1giAIgiCIJQpFSIUgpcTc3FxX+5yfnwcATO17Gm6tctT9FMf2AQBmDz4DQ2eL3g/VtHxrWsnbRjUd336opuPbDwAUD+0HoK4txWLxmPoK0tfXB8aOrTaiuzAppVzsIpYaxWIRAwMDi10GQRAEQRxXZmdn0d/fv9hlEAFIqIXQ7RG1YrGIjRs34sCBAyfUB4C2+8TabuDE3XbabtrulQKNqC096NZnCIyxBfnw9ff3r7gPdRpou088TtRtp+0+sThRt5s4vtBiAoIgCIIgiCUKCTWCIAiCIIglCgm144BlWfiTP/kTWJa12KUcV2i7T6ztBk7cbaftpu0miIWCFhMQBEEQBEEsUWhEjSAIgiAIYolCQo0gCIIgCGKJQkKNIAiCIAhiiUJCjSAIgiAIYolCQo0gCIIgCGKJQkKNIAiCIAhiiUJCjSAIgiAIYolCQo0gCIIgCGKJQkItBCklisUiyAuYIAiCIJKh6+bCQUIthLm5OQwMDGBubm6xSyEIgiCIJQ9dNxcOEmoEQRAEQRBLFBJqBEEQBEEQSxQSagRBEARBEEsUEmoEQRAEQRBLFBJqBEEQBEEQSxQSagRBEARBEEsUEmoEQRAEQRBLlEUXanfddRe2bt2KXC6HHTt24Kc//Wlk27GxMVxzzTU444wzwDnHDTfc0NHmiSeewNve9jZs2bIFjDHceeedC1c8QRAEQRDEArKoQu3b3/42brjhBtxyyy145JFHcPnll+PKK6/E/v37Q9vXajWsXr0at9xyC84777zQNuVyGSeffDL+7M/+DGvXrl3I8gmCIAiCIBYUJhcx7+GSSy7BhRdeiC996UuNx7Zt24arr74at99+e+xzX/WqV+H888+PHTHbsmULbrjhhtCRtziKxSIGBgYwOzuL/v7+TM8lCIIgiBMNum4uHPpivbBt23j44YfxsY99rOXxK664Ag888MBxraVWq6FWqzV+LxaLx/X1CYIgCGI5QdfN48ei3fqcmJiA53kYHR1teXx0dBSHDh06rrXcfvvtGBgYaPzbuHHjcX19giAIglhO0HXz+LHoiwkYYy2/Syk7Hltobr75ZszOzjb+HThwoGt9Synx1HgN/+OJWfzqUBVi8e40EwRBEERXWMjrJtHKot36HBkZgaZpHaNnR44c6RhlW2gsy4JlWV3vd7Ls4r69ZRyadwEAR0pl7Bqv4VVbezDau2i7niAIgiCOiYW6bhKdLNqImmma2LFjB3bu3Nny+M6dO3HZZZctUlXdwfEkHthfxnd+XcThukjzmap4uOfJIn6yZx5VRyxShQRBEARBLAcWdVjnxhtvxLXXXouLLroIl156Kb7yla9g//79uP766wGoodWDBw/ia1/7WuM5jz76KABgfn4e4+PjePTRR2GaJs466ywAapHCk08+2fj54MGDePTRR9Hb24tTTz11wbfphaKDnc/No+pIhN3k9B/bNW5jbM7FW7b1I2cs+h1ogiAIgiCWIItqzwEow9vPfOYzGBsbwznnnIPPfe5zeMUrXgEAeM973oO9e/fiJz/5SaN92Py1zZs3Y+/evQCAvXv3YuvWrR1tXvnKV7b0E8exLDO+54lZHC55qdpevCGPHetz4Md5Th5BEARBdBOy51g4Fl2oLUWO5YD777+exXg5nVC75KQ8zl+bg8ZJqBEEQRDLFxJqCwfdcyMIgiAIglii0NJDgiAIgiC6wiOPPILe3l4AwPbt22Ga5iJXtPwhoUYQBEEQRFf49A+egG7lURzbiy9+CNixY8dil7TsIaFGEARBEERXGNp4Oox8z2KXsaKgOWqLyOF5Fw8dLMP2ktdzzNc8PD9tk/caQRAEQZxA0Ihal9k8aGC87IEBoT5qAOAJibmah4dKygz3gf0VvOGMPpw50uny7AqJPVM29s06AIC90zZOHjKxadAgWw+CIAhiSXHw6UfRN7AKc4f3ATh3sctZEZA9RwjHusz4wKyD+/aWUKy1jn5JKVF2JEpto2K+qDtt2MRVp/VhKK9BSokjJQ9PT9RCR9wKBsO21TkM5bXM9REEQRBEN/Gvm9te/x/w8Xe9Ftu2baPFBF2CRtQWgI0DBn57+wAeOVTFLw5WICVQ8wTmagJhdzn9h56dtPHXU5N4xeYCek2O6Wr0bc6yI/HwixWs79Nw+kgOOnmxEQRBEIvM2rMvwbZt22gRQRehOWoLhMYZLlqfxzXnDmBtr46ZarhICyIBeBKYqYpYkRakx9SgkUYjCIIgiBUJCbUFpt/ScPnmfKbnGBnuZhqk0giCIIglwvi+3di1axds217sUlYMJNSOBzTpnyAIgjgBsKwcvrDzKTz++OOLXcqKgeaoEQRBEATRFTZf/JuYO3JgsctYUdCIGkEQBEEQxBKFRtQIgiAIgugKB59+FNWZcTjOtsUuZcVAI2oEQRAEQXQFtzgBb35qsctYUdCI2nEgr3NoTNlviBT2wrYrYaZc+Vlz0/sVSynBGGv8nyAIgiC6iT9HzTCMxS5lxUAjaseBHpPj/TuGsK43XhczAJbGMNqnY3VPOqX2wqyDA7MOhJSICpnwHy85AofmHLgCkW0JgiAI4mg5+PSjKL64d7HLWFHQiNpxYl2fgd/ZMYRHx6r4P8/Ow/ZkI5HAj5A6d20Or9zSg7yh9PPaXg/PTtZQCRk10xiQNzg0znC45GG6KrBpwGjET/kjZlJKuAI4XHJQspWJbrFmY7igYVU9fopG1wiCIIhuUNzzOD7+rtdi+/bti13KioGE2nGEM4YL1+dxxoiFf3l+Ho+MVQEAwwUNrz+tDxv6W4eK+3Mazl+fx9ici/0zNoRUoi5nMBictQgs25N4dsrGgMWxedCApatbnFMVD5NlryUgXgKYKHso1gRGe3QUTBJqBEEQxLHjR0hRxmf3IKG2CPSYHG8+sx/njeYwWfFw5moLPGJUizOGDf0G8gbD3ikbhsZiR8BmawKPH65hQ7+OqitDA919bE/iQNHBlgEDlkF3wQmCIAhiqUFX50VkQ7+Bs9bkIkVaEFNjMHWe6jalBFCsiViRFiRlM4IgCIKIpTi2f7FLWHGQUCMIgiAIoiv83qtOoflpXYaEGkEQBEEQXeH000+n+WldhoQaQRAEQRDEEoWEGkEQBEEQXWH37t2wbXuxy1hRkFBbRDQOWJryREui1+C4YG0O6/t0JDUfKWjYNGBgTY+W2HfJFrh/fwk/3jOPqYob29YTErNVF1MVF1VXkGkuQRAE0cKX/3U3Hn/88cUuY0VB9hyLiK+hTI3BExKOANqlj8YA5ZyhbDnW9+kYKWjYO+OgWBMtbQsGw8Z+A3mDQ0qJHoOjMMAxVfE62jqexOF5F3N1E1zmSPzb3jK2DKqVqGZA4UkpUXElyk6zj3lboMqBXlODzsmHjSAIggAGNmxd7BJWHCTUFpGg1QZnanTNlYArlIgzNEBry+ZkjMHUgDNGLExVPByYdeAJiXV9OobzWmffUmI4r6Hf4hgveai6AtMVD0dKnSa4ALBvxsHBooNzRnPYNGDAERLztgjNKHUFMFP1kNcZCkY66xCCIAiCINJDQm2J4IscHRKahpbbm+0CyP99KMcxYFlwPAnOwqOg/McMrm6JPnCghrITfctSAnAE8MhYFY4nMZhPzhytuBISAj0k1giCIE5oxvfthuNcuNhlrChojtoSgzEG5v8/QfQwxiCBSJHW3na87MWKtCCmxlKJNJ98SjNegiAIYuXizU8vdgkrDhJqS5CsgocEEkEQBLEUWHv2JTAMI7khkRoSagRBEARBEEsUEmoEQRAEQXQFyvrsPiTUCIIgCILoCpT12X1IqBEEQRAE0RUo67P7kFAjFgVKNSAIgiCIZEioLWOkRGKcVJCRvIa8nu4ZticxU/FS1qFSC6SUEAkCTErZEGlJYs3/s5TNnwmCIIily+7du/Hwww9T3mcXIaG2DAmKFsYY0iY4FUyO15zcizNHLOXVFtGOM2DzoIEek8MT0ULJF10zVYFfHa7ikbEq5uuRVO0izP/d9iSOlFwcmncbnm5hgs1/SEhlwitBgo0gCGKp89+erOBDX/w+5X12EUomWCZICTDWKmB8GGPQGOojWp3PZQwNE12NAaePWNjQb+DxwxUcKbWOmg3nNWweMhtZnxKAJ5V4UzlTsvGaNVdibN5F1VWPlRyBxw5VMdqr4+RBExpX0Vd+XbMVFxW3WeBM1UPZERjMadADbX0J2b4pzb809wNZyBEEQSwdhrechbkjBxa7jBUFCbVlRONWYMTfGWPgkI3RJyA6taDH5LjkpAIOzbt47FAVnAFbh0wM5MLTCHwBKOuibXzewXRVhLY9PO9isuzilCELq3s0lGyBYk2E1u2PsPWYHAMWj90+/29Zb/kSBEEQxHKFhNoyIs1dPz+CKo2SYYxhXZ+BnM7ghGuuDqYrHiZTzF1zBbB3xoYj0jlUl2yBPjNbDBWNphEEQSwtpvY9jcrMEQDnLnYpKwYSagRBEARBdIVrtpm48MI3kZdaFyGhRhAEQRBEVzj99NOxY8eOxS5jRUGrPgmCIAiCIJYoiy7U7rrrLmzduhW5XA47duzAT3/608i2Y2NjuOaaa3DGGWeAc44bbrghtN0999yDs846C5Zl4ayzzsI//uM/LlD1BEEQBEH47N69mzzUusyiCrVvf/vbuOGGG3DLLbfgkUceweWXX44rr7wS+/eHh7rWajWsXr0at9xyC84777zQNg8++CDe8Y534Nprr8Vjjz2Ga6+9Fm9/+9vx85//fCE3ZcFZSPswnQNGyiPB1BiG8uErQ9vhTPWdBiklijUPNTfdqoaZqpfakNcVElVXUBoCQRDEAvPlf91NHmpdhslFvHpdcskluPDCC/GlL32p8di2bdtw9dVX4/bbb4997qte9Sqcf/75uPPOO1sef8c73oFisYh/+qd/ajz2+te/HkNDQ/jmN7+Zqq5isYiBgQHMzs6iv78//QYtAEmWHMeK8ldTP1ccgTlbhHqxAUCPwVEwGBhjmK95eHbKRiliuehQjmNdnwGdMwgpYXsSURrM8SRKtoBXf901PTpGejTwkGWdNVdg92QN43X/tzU9Gs4YsWCFKEIpJeZtgVLdWFfnQL+lNTziCIIgiO7gXzdf/YdfxF/89iU0T62LLNqImm3bePjhh3HFFVe0PH7FFVfggQceOOp+H3zwwY4+X/e618X2WavVUCwWW/4tBWTAlX8haJcrOZ1hpNAZM2VqDMN5rSHSAOXDdt7aHLYOmQjqHktjOGXIxMaB5uMMQE7nyOms5TWFlJiveSjWmiINAI6UXDwzUcNczWtpu3/GxoMHypgImPQeKXm4f38Z+2bslviqmiswXvYaIg1QliFTFQ+zVS8x6oogCIKIZqleN1ciiybUJiYm4HkeRkdHWx4fHR3FoUOHjrrfQ4cOZe7z9ttvx8DAQOPfxo0bj/r1u4GUzeikhcCPj2Ks1YvM92AbyGkYzmswNWDA4hjMaR3GuYwp0bauV8eO9QWsKWhY16vj9GETBYM12gT/rzGgYDAYHKi6AjMVgVrE3UtHAPtmHOyfsTFecvHQC2U8O2WH7hchgWcmbfz8QAXTZRfTFRfT1eiRwYorMV7yGvmkBEEQRDairpvj+3Zj165dNE+tiyz6YoJ2g1MpZSbT0270efPNN2N2drbx78CBxY2/WEjp4OeCRu2OhqjiwGCueZswav8xxqBzYEO/gZGC1hBwUW0ZY6i6EiVbptrOybKHxw9XG7mgcZQdgZIrI8VfEAmkzkglCIIgWom6blpWDl/Y+RTNU+sii+ajNjIyAk3TOka6jhw50jEiloW1a9dm7tOyLFiWddSvudxIo4MZmMrWTJlwIGS0mGsn5XoBAICXYcSLMUDPoL60GFFJEARBRBN13dx88W9S1meXWbQRNdM0sWPHDuzcubPl8Z07d+Kyyy476n4vvfTSjj5/+MMfHlOfBEEQBEEQi8GiJhPceOONuPbaa3HRRRfh0ksvxVe+8hXs378f119/PQA1tHrw4EF87Wtfazzn0UcfBQDMz89jfHwcjz76KEzTxFlnnQUA+IM/+AO84hWvwJ//+Z/jzW9+M773ve/hX/7lX/Czn/3suG8fQRAEQZxIHHz6UaAyB8r67B6LKtTe8Y53YHJyErfeeivGxsZwzjnn4N5778XmzZsBKIPbdk+1Cy64oPHzww8/jH/4h3/A5s2bsXfvXgDAZZddhm9961v4xCc+gU9+8pM45ZRT8O1vfxuXXHLJcdsugiAIgjgRKe55HB9/12sp67OLLKqP2lJlsX3UolYrdoO0U7hkxlWn8zUvdfvJsod5O91EtaorUKyla8sZcNaaXMoqgOG8BoM81QiCII4Z8lFbOBZ91SdBLBfoOw1BEARxvCGhRnSFLIsns9hiZGmr/OdkakElM7ZNX4fM/ByCIIiVwPi+3XAcZ7HLWFGQUFuCLOTNuLTagbF0dfhix9JZalE1lOcYsNIdegWdYUO/kbrv6Yq6BRsnkvyax8tuw58tqr3/eNVVcVRJ4k5KCU82bwWTWCMI4kTCm59e7BJWHIu6mIAIhzE0JojFXeaDOZ1Jc8p8nZNl5MuvI6zfoImwkMp3zdIATwK2F12JqTFojKHQr2HIERibc1GLaD9c0DCYV5mf6/t07Jm2MVEOd7PtMRmGCzp0rgx1g0Hzfp1+zZ5UuaZCAvO2g16TY7RXh4ZWY2QpJYQEJkpuI9N0tiYwUtCQ01nLPvAF2ZwtMFefUzdnC/RbGnpM1hUjZ4IgiKXO2rMvgWEYi13GioKE2hKlcU2PEEpBkdZoHyHu2ttmrYOhVQj6okSI1nQBxhh0pqKiHNEawq6EU6vBbN7g2DpkYKYqcKTkNhZRFAyGNb1Gy0R/U+c4Y3UOo1UPz03WUHWbQeure3TkjdYROlcAnpB1YdisueKIDiE5bwuUpm2M5DUM5bXG48WawFSldZGE7Um8OOeiz+RYldfA6+Ku5knMVD14gW0WEpipqqiqwZwGncvGfiIIgiCINJBQW+K0C6U40dUu7o5FoIX27c8BQ/wtVMYYTI1B5xKukNA5A4+JlRrKa+izOCbLHiydodfSQtsCKtbqgvV5PD9ZgyuBfotHCh8JoOZJME+AMQbbjY6tkhIYL3uYrQkM5TXM252CLsicLVByBFblNDhCNoRjGLYncaTkYnWPBoNyqwiCWMGoOWoXLnYZKwoSasuEtHPGsrbNWgNk+nluvC7Y0qBzhuGedIcjZwyrCnrkLdN2XKEEZhpsT2KqkiIsFGrErFjzMkVnGTQrlCCIFQzNUes+dNkgCIIgCKIr0By17kNCjSAIgiAIYolCQo0gCIIgiK4wvm83du3aBdu2F7uUFQMJNYIgCIIguoJl5fCFnU/h8ccfX+xSVgy0mOAEJ2i7kWaVKKvbbwiRnAXKmWovUi5AMLhqm2aNQI/JkZfAXM2Lbc8ADOU0mBrDdNWLXZ0JAHmdoWBw1DyZuFhBY4ChMUigxZYjDE9IHJpzwBmwrs+ApUd/RxJSLWgoOxLDeQ09ZnRbKdWK07IjkNM5CgYj+w+CIBaNzRf/JuaOHFjsMlYUJNROUMIMcmXjPzEWIPX/6xqDEDJSJGlcrc6UUtlzCCkjxQxjzbZaXQi6AojTPv5q0pyuK6uMkJD3vM4wlNMaqQbr+wzM1TxMVTrFnc6BfksJOiklDI0jJ1QaQXtbBsDSWaMtAGiav7q0tW1TSDX/UKzZGO3VsbpH67AtmbeVp5zvQXdwzkWvybCmR5n5BnGFxGzVQ92LF44tUHGb20EQBEEsf0ionYDEpRjIwA9hYi04WsMYoDM1AuaPmHHWms/pt2dQYkjIppjpNO1tuvwbGoMnW01zo+roMzkKBsds1YPtKbE3lNOQN3hHIkCvydFjKs+2OVuA1R8rGKyjb40BAxZH1ZOoOMqDzeBATu9sCwCGpkyA3fpoo+Mpodcu3gDg8LyLqbKLkwYM9FkanLrXWsnpbDxvS5RsByMFDYM5DgmgZIvQtq4Apioe8jpDn8Uj/esIgiAWgoNPPwpU5gCcu9ilrBhIqJ1AJMVMtbStt4832G0dMWOBx8PaAqg7+df7ZuHRSs22gMGAED3S0V6DxHBBh+sJWFq4kGr8LiVW9+joMwXcet1xNec0wOQMrpDgPD4OijFA5xLTFYFagh2bI4A90w56zPjbt4B6P8bLHoo1DzmdJ76PFVfC9jwMFzpH7QiCIBaK4p7H8fF3vRbbt29f7FJWDLSYgIjEn2MWR3DELPh7YnuW3J4xBplSYzREla6SCpL6BZT4UduYXLMEwDlr/B7X1hZIFGlB3LAhtwg0zlKL7ZzOFsT4mCAIIoq1Z1+Cbdu2wTTNxS5lxUAjakRXyDaBfSnJh3S1BKJUk0mvu1TfGfZdpr1MI2kEQRDLHhpRIwiCIAiiK6isT2exy1hRkFAjCIIgCKIrUNZn9yGhRhAEQRBEV6Csz+5DQo0gCIIgCGKJQosJCILITJxFCUEQJy4q67MfALB9+3Za/dkFaESNiESmjH7KSqaVixlfP229UkrwDIVk0SSGls0WQ2Sw53DqbWXChkopYXvp2vpt/H9p2ob9TBAEYVk5/N2vK/jQF79PeZ9dgkbUTiBY3WMiy6V1IQZN0tThC4CECM0WOOqpCCxasPkjQRLKvoJDhiYHtNQLoGBoYJAouyIyLcHH0Bg29GuYqQrM2/Gd9xgMgzkOWwBzCW0BlSladYWKiIoY1ZJSbdMLszb2zwBbhkwM5rTQUTB/P4+XVLTW6h4Nq/Ka2u6QtowxVF2JOVsZC/dZPLIOgiBOPDZf/Jsw8j3gGsmLbkF78gSDsbonWIxQShPO3o06/AKCdfhiQEggIT+92RdUPFXQgV+GCDBflDii+TdfrEXtD1NTmZ5KiDD0cQbbUyHo7e0ZVOwUY8opeLjA0WsKTJabeZw+OgeGCxpy9XB2XQMsTQmgMLNczprvi5BA1ZXQuYq08rfD375iTWCm4jXqe2q8hlV5DVuGTBhctiRClGyJF+cdOPXXPDTvYaYqsK5PR8FotpNS5boW6zFdgEo/qLoe+ize0pYgCILoHiTUTlDChBIL/u141VAvQEVWyUZGZtpRPz/EPSwqSg061YPj66NMYeJPJRk0R6L8fi2dQ+Od/Vo6g6ExVByBWl20aAyhUU2WzrGuj2HeFpiuKLU2kOPot3hHzRpnGMxpsD2J2ZrKCGWITohwBeAJlYuqM6DmSSUKQ/KopioeZqoVnNRvYF2fDlcAY/MO5mqdw4NVV2LPtIPBHMfaXh0cKrM0LFtUQgnDiiMwkNOgM5q/RhAnMgeffhS6lYc7cwSU99kdSKidwASFUsvvi1AHA1DJELsUJdA6+2aQQnaMaEW11SCRM3hk/qcPZww9pgav6jaeG9dvn6Whx+SAbEZRRWFqDL0GUHKS3xMJoOwIzFaS80KFBPbPOpipegCSo6hmqgKucFR2akIhjgDmbYHBnEYijSBOYNziBErFSdz09ldS3meXIKFGLJpAOxZYCpF2dP2yTCHmWWrgviJN2S/LsJIiSaS1t027kELW/y3DQ4QgiEVg88W/ibkjByjvs4vQqk+CIAiCIIglCo2oEQRBEATRFQ4+/SiqM+PYtUulE5CX2rFDI2oEQRAEQXQFtziBXI681LoJjagRmZALuPAgsBB1UfsWUiYuJjiafrOicyR6tvlYGmusQE0ii9EvoN7zNO+3kGp1aI/BEvedlBI1T8LU0s0JzPKeEASxePg+agDIS61L0F4kUiHbrDyk7L7fWk5XXlyOiJ8crzE1FJzWBsLUlE2GKyRqbrz1B2NqBaPyZpORIsK38sgbvJECEFdzcF/V3UJia+i1NPQzhqojUKxFr+jkDBiwNAznddiuwOGSi2qEAR1nQJ+loVCvuebJWCFocFWsIwBNSmg8WijN1TwcmnfhCmAox3H6iIWCET5gX3MFDs2rOg0OjPYaakVsCFKq98zfJFNTdZFgIwjiRIGEGpFIlBmsbPynu4LN1Bi8uqVG8HU51CiTer10o10skFKgMaBgKMPadruO9gWZEkqgcChjWf/1fK+3dqFl6RyeUIKtfV/5I1iNmqVsGNe2o3MGzpvmtZbOsFrXMWcLlOzWonN1M14fQ2PYOGCiWPUwUXZbxF3B4OizeItXXq5ec81rNQdWHnKsZQTLk4Dn+eK1+bjtSRyac1o81qarAg+9UMHmQQObBoyGF52QEhNlD9MBHxZHAC8UHfSZHGt6dOhacz+7Ah2jhLYn4XqApaPD444giMXH91HL5/KYO7wP5KV27JBQIyKJSy9otAn80A2x5gsAzgBLUwa1rlACTWPp3O/b/+q39//vj8pUPdlyWy+sXwHAFoDOZORtzmDNOZ3BFSr9gPkmuG33DlndbdjfHiGV6Ajqjvaa+0yOgsExW/UgpXqd9luBjbYWR69lYqLkolQ3ojU13rbvmjXndQZHKKNhU1NmvlH72a2PNnIuMFMRmCh7kSJ+74yDsXkXp68yYOkch+fdyJHBOVtg3rYx0qNhwOKoeeFCFlDvScWV0LmEpSXfZiUI4vjh+6hd//ZXYttvvYm81LoACTUilDQibSHxL74aJDQtODcunUiLa+YLJZ2zRmpBksr0pBppSlUzkxCBUbHwvltHwoLPj+pbg0SvyeGJ+Nu+rC4OVxV0FAJRV2Ht/ccMLmHwTtEXhgSwf8ZNNSeu5krsnXFVJmgCEkCxKmDwdOLLFUrMUxICQSwdgj5qO3bsWOxyVgQk1IglDYMfoJ6yfQZDWZFhZQRD+kn1sj70lur2LEs/IsQYg6gPM6VJZPA8ATCWyqw2q9BJu3ABAAwtfb9GkhoOELwFSxAEsVIhoUYQy4jgnDuCIIilBvmodR/yUSMIgiAIoiuQj1r3oRE1giAIgiC6AvmodR8aUSMIgiAIgliikNwlCIIgCKIr+D5qADB/eD8cZ9siV7T8IaG2zFnISKespF4VmaHmrPPmZd2FdzFXA2Z9Zd/Go9s1+zYkC0HWntNaaCzkOoks+3mh3hOCWOm4xQnAtAAA3vzUIlezMlj0W5933XUXtm7dilwuhx07duCnP/1pbPv77rsPO3bsQC6Xw8knn4wvf/nLLX93HAe33norTjnlFORyOZx33nn453/+54XchEWjffVft1YDHk0/wWipLH3Htc9Sh5Sybh4rG78nYWjpRZVABusPJHuuAc2aPZFcs/83PYvVBVfmvgvBmh49dWZo2RZIu6crtoDjpdsfnpAo215jP8a1BYDpigdHpGvrBWLM0hxLBEEoNl/8m9jy0tdjy0tfj3XbL4NhGItd0rJnUYXat7/9bdxwww245ZZb8Mgjj+Dyyy/HlVdeif3794e237NnD6666ipcfvnleOSRR/Dxj38cv//7v4977rmn0eYTn/gE/uZv/gZ/9Vd/hSeffBLXX3893vKWt+CRRx45Xpu14EjZNKT1/wnZ/Nux9Nv4+Wie31Zfe99pa84q0HyEVP9cEcgmjelMYwyW1oylikLnQK7eTkvxiWGMQedMZVKGF63+B8DxANsDKo6EJ8Jr9n93PQEh6lmnCbrH1IB+i2OkoGNVnie215if/pC8fRoDBnIcWwcNDMQY2TIAgzkNqwp6KpFragy9FoctgErdqDdqX3gSKDsSRVvFUtkR4k5KiYoj8fDBCn45VsX9+8o4MOu0iPr2vudtgdmawGxVYN4Or4MgCOJ4weQinoEuueQSXHjhhfjSl77UeGzbtm24+uqrcfvtt3e0v+mmm/D9738fu3btajx2/fXX47HHHsODDz4IAFi/fj1uueUWfOhDH2q0ufrqq9Hb24tvfOMbqeoqFosYGBjA7Ows+vv7j3bzuo5/azEuNaAzPildv42fj7a4kDqC6UlZak5TR/CwjeqboVVYxd3GElLC8dTImQ+HGnVrD2b3Y5+iIo7C2rptwtEV4c/nTAmW4EsKicaoW2vfneH1Wj3Gqj0HU0pZj2lqfQIPEX3+/mx/Sc5aw+V9qq7A4XmvxQS3YDD0W1poHe1oTIXbh2V3qlHB5uMSKu0gzG/X0hj6raYoFRJ4ftrG/hmn4/joNTm2rbYwkNMat2WrrkDZ7sxqZQAKJkNOb4/hIgjCx79uXvKBv2iZo/bl338LXvrSly5ydcubRZujZts2Hn74YXzsYx9refyKK67AAw88EPqcBx98EFdccUXLY6973etw9913w3EcGIaBWq2GXC7X0iafz+NnP/tZZC21Wg21Wq3xe7FYzLo5C45/fUsSB/6fjyavupuKvZHMhPQ1Z5n3lOZWq4QSRBpLFqycMVi6EkR+tmiU8z1jTI1q1YPD4wi29bNF454jJFB1ZX30TiURRApcBuisuZ8NjbUEyLfX0W9pKBgS4yWvEUIftl8af0PzveMx+zCnc2waYJiuepi3JfpMDjNimDIYTK9xVXNcZJQjAFeoDFIJNEbOwqh5anTNF8fPT9uouuHt522B/3ewglOGDKzvN1F1vcj3RQIo2RK266E/t0D3kglimRF13aQ5at1n0W59TkxMwPM8jI6Otjw+OjqKQ4cOhT7n0KFDoe1d18XExAQAJdzuuOMOPPPMMxBCYOfOnfje976HsbGxyFpuv/12DAwMNP5t3LjxGLduYViooU//VuRC9b0gbUNur3ajX40zWPURqTQxTWlhjCWKtCCeAFwvWqQF4QwomBxGioBy/5ZsnPBq1qxGJDWepq0SgsMFPVKktbfvMVVYfFLNEkqExYm0YNsX51w8OV6LFGlBJsoe5m2R6n1J+94RxIlA1HWT5qh1n0VfTNB+kk66tRDWPvj45z//eZx22mk488wzYZomPvzhD+O9730vNC36m/DNN9+M2dnZxr8DBw4c7eYQBEEQxIqHrpvHj0W79TkyMgJN0zpGz44cOdIxauazdu3a0Pa6rmN4eBgAsHr1avzP//k/Ua1WMTk5ifXr1+NjH/sYtm7dGlmLZVmwLOsYt4ggCIIgTgyirptBHzV35giAc49zZSuPRRtRM00TO3bswM6dO1se37lzJy677LLQ51x66aUd7X/4wx/ioosu6hhezeVy2LBhA1zXxT333IM3v/nN3d0AgiAIgiBacIsTcGePYPa5R/Hh3zgN27dvX+ySlj2Lanh744034tprr8VFF12ESy+9FF/5ylewf/9+XH/99QDU0OrBgwfxta99DYBa4fnXf/3XuPHGG3HdddfhwQcfxN13341vfvObjT5//vOf4+DBgzj//PNx8OBBfOpTn4IQAh/96EcXZRsJgiAI4kTBz/qc2vcUtm3bBtM0F7ukZc+iCrV3vOMdmJycxK233oqxsTGcc845uPfee7F582YAwNjYWIun2tatW3HvvffiIx/5CL74xS9i/fr1+MIXvoC3ve1tjTbVahWf+MQn8Pzzz6O3txdXXXUVvv71r2NwcPB4b14s/so0IHp1YUv7Bawlq8v8QvndZ+k3aMGQBln/TzedFRpJDDHWI0HM+qrMNJPcTY3B0NQqx6RtzLJNQkq1UEKGW1wcC6bGkNMZSk7y5HyDA3mdwRHJK2eB+vstW+1TouizOHI6w+GS2/CmiyKnMziegMZZhw1LOzVPYM+0h4GchqFc/CIIx5N4cc6BzhnW9emxfUspUXXV+5w3kusgiKWMf+tz/vB+7NplYPv27STWjpFF9VFbqiy0j5qQsuMC4vtZdS6WyC6iGj+nPN+n9VELeqMltc2KX2qS51qzbbOFJ6LbN/epBMBaXudoCW6/v/glKLyj6mg8H8qs1QlRShoDeuorOP2PZs2TqEWIOyX+WOIiHCklbA91rzPZ2MdOypWlcXAG5HUOPVDzvC0bZrFBGJRZbq+pZl0wxuB4EhVXhK7i5ei0mvFifPNUW/VXIYEXiy4mK15HW4MDa3t19FrNRUbK9Ldz5ayQEtMVD7O15oe23+LYPGgg17bCVUplf7Jvxm4IYUtjOHmViYEQaw/HU/speOwUDCV4ya+NWE74180d77oJet2eQ3gevvT7b8GOHTsWubrlDWV9HkdkXaCFXWR8A1WNS/C6lQNwdCIt6/k9YG0FHiKUIk10uyDYompue4nGY00T3bpckxK6xjrEr+8F1t5jo7+jHF3r2DeBTjhr+scFH/OFXNBDrNfkcDyJstO8SPsX6Pa+LQ0wOUPFbY5UaazVCDbuou6K5ohNvXV9JFDC0jlcIeGmHZpsw9IZrJA6ek2gYGiYrYnGCGLBYBjMaR1fSHQO9JkcNVc2THN90dVhNgwJndXf77b93BR06gcOiY2DBoYLGg7MOqi4EgzAcEHDcEHrOK49CXiebNiXAEDJkZgoux0ivFgT+PXhGtb16Y0Rs5It8PxUDSWntXHNk9g1XsOqvIYtQwZMjUNIiZItYHdqSJQdJcx9wU4Qywn/1icATO17apGrWRmQUDtOCJHuVpMnAAEJzoG0+YitAuboaww+tzkG1fm3YHtf3GW9zsfVHBSOYZvTUmf9FwZ1wQ/WETvCFOg/bXpD7ChfoOiw7QrW4v+sczUy43iykUYQZVYLSPSYGhxPZVxqKUfRqq6EE3H7z3+uxgDOlbls2rdR5ypNgCG6Zg6JVXkNNVfU/enCnf0bglRX/TZGD8OOOQTe7/pxF7UL/H7zBsPpIyamK16iwS4AOELt46DIDMP3bBsvOSgYGqZCRu6CTFU8zFQ9bB40oPP4dVyeVGIwr9f3M42uEcQJCwm144DMOB8oi+g6mludaV7f7zupjqN5zbQ1Z9oP9VFI9Zx0MT9ZSk/79vmjZzxFNERToCghltY/0L/GJ22j7SFSpHXUjGy3QAtG89ZlXL8AkKsLujTtU7939ZrTJHD4/fWYWur+iwkiLUjNA6puvEjz4QyJIi2IlcI8mCCWEkF7jvnD++E42xa5ouUPCbUlylL5Br3YZRyVEMyUGJC9/26+frOGDDWnbJtNevljqBmekXI7o0bdIjrNXEcW0taxUBVkXSgQNcpKEEsVipDqPiTUCIIgCILoCu1z1ChC6tihcXWCIAiCIIglCo2oEQRBEATRFShCqvuQUCMIgiAIoiv4c9RKEy/ipre/kiKkugAJNYJITdCwhCCWHmlXtRLEQkERUt2H5qgtUdIGRkgs/srMrNkWWWqWUjb+LQTpu1UibSHqkDJdHVG+clFoWVa/ZugXyOabl2ntaUbPFLXvkl9BSlm3m0lXTRZXjCwlu3WPtrQ1eyL99gFNi5M07dN+rhb6M0gQRDw0onYcYIxB59GpBFHPSdUOx250eywczbk7Tc3+RaGZ2IDGhTZq32TJ3QRaUwoaz4+ow/EkPKmMabEAoxZJ3cm2GtPsd1Nn4AyouMl5oabG0GtxzNUE7ATTP52jYdCbJqdTZ6ptGi9BnTMwHbDdaHMR/xiouhIlR6DH5Mjp4ceG2k/Kx7DqKbFm8KaoiaLf4jC4xEwtPNoqiKExcKgEgqT9LCRwYNbGSI+O3hhfN9+s+JmDFazu0XHyKrVyLszew/dp3DNVgyskTlllwuDh2+cfzyVboOIIDOQ1mFq4f53/mJDKj0/nymSYRu2IONqzPn0o8/PoIaF2nGCMQdfCcz6bbbJ5TqV11V8IjjbvM6nm4EUgKGw9AQgmoSVcKPx9mCUjNXhDs90015PKKd/vq+pKGFwJb/V6R/8GNE1gY2oLbISsv57So8nZoowxmDqDoamLfpiBK2fKvNaPKlqVZ6i5ErM1r6N/BhV4Xgg45etcwnZlaFi6ztGSAqBJFcCepO00zpAzlAhsz0P1RUmx6jUE5WxVoKIpccUDxsG+KCk7ErWAH60rVCxXVDqT2nccvRZQMDlmKl5HLBSgbkcoMVzfPi7hiOhcVv89EQCOlDzM1QRGCjp03lqzBHCw6OLwvAsJYLZm48U5B2ettjDSo7fkyzKmwuf3TtsNc+PpSgWbB02s71On92Bbx5OYrnoNgT1e8lAwJAZyvOULSDBn1j8OHAF4UkVsLcSXFWJl4M9Ry+Vy+LtfV8B3/QrFsb344odAmZ9HCQm14wxnDIzLxkhR8/HlI9AaozoZnpelZk+EixApAbceWcURL5SCvqlp6mxGStVvcQKoOiJ0FMgRSnCYGksUjlEkC9b4/cxY87XbjyP/78G2eYPB1FS2qH+RzusMVlv4N2MMOUMJvHlboGSrxjmdod/SoLVFAXDGYOlqtMwO5HRaAQET7Nuof1lJSkzw22pcja6J+i3OeVuEiibbAybKAj0mQ4+hnm97SqS1t5YAqh6gCQlLa+6rsM8gZwyrCjp6XIHpiteo23/v2/edqSkRXwvksvrvdXvfFVfiQNHBYI7XM1AZZqoC+2edjlHNsiPxixerGO3VcNZqC5bOUHYknp2qolhr3ZmeBJ6ftnF43sWpwyb6LQ0SwEzFRTlk35Udgaor0G9p6DGVqHNl+GipkCqJQWdoEZgE4RP0USO6Awm1RcC/yPpX2CwCTbVfmLrSkmV+UpaaXS+dl76f75jk8p7lNqGPJwHHDRdoQSTUaEP+KJzj08QeAen2s5+pGfw9Co0z9FkaXCHBgdiYK86UMCsYHFIiNhycMQadqREqIZO/dHDGYDCJEM0Q2jZnMLxYtOF4ybdPS7Ya0dI5S2zrScAWQF5vbkcUls6xugeYLItU25c3NJRtrzEKGsdMVeDIvAp+DxOhQQ7Pe5gulzHSq2G2Gq92S47AY4eqOHPEghvx5cdHSGCmqurVOUv8HLoSgCCxRhDHAxJqi8jRRQ0tL7LUvFBTlQODa6nIksuatY4F6TfjgaGnVYoZ2za+gKRqi0xviivSvy9CZnsPU39RYqxjRLEb/QLqtmLabFFPIlGkBUmacxhEZJgyQBBhBH3UfMhP7dggoUYQBEEQRFcIZn0CID+1LkBCjSAIgiCIrtA+R4381I4d8lEjCIIgCIJYotCI2iISNKlM1z6bUWyWvheKhfRcSrs/lsqcmyzvSdaaF+r9zlTzEjnmlgpZ50ZmbZ8WUTf7TfO+eEJC48kLdYCmIa+ecmKi6jv9uQ5YnvNyT3Ta56iRn9qxQ0JtkRABWwWGdCfSpoVE9AnMt2vw+16IVVlpLiiybsEgoaw0TC15+3w3+CRjYAZVgGQSkKrP6P2RUGgbnAG9Jodb98OKe7rBm55Tcdvmvyf+XHEDssPa4Whr7rDnQHfe76DhMJB8jArZ9FPTuWzxTwvrO8meI9i26kr0GMp4teLKWJPdnM4wmOPQGDBnS1RiJuhrDOgzOQxeX+2bZBkCYFWewxXKMDZujn7eYFjdo0NIYKLsoRKzmjOvM5zUb0LnrMU/LarmwRyHpXPYnkA1wRjYE8DTEzZyOsO6Ph25iMgFKSVeKLp4ZrIGnTPs2JDHSf1G5Hs4VXbx5JEqKq7EGSMWTl1lRoow25MYm3Mwb0sMWByjvXrkKuIO/8MMX06JpUH7HDXyUzt2SKgdZxqxMC2PNQVN6tGWtm+cvlFmu5muKwDOZCaftiTiPMp8Q9LgRUxA+VYZPF6g+MacGkeHz5yPvx2NSKDGC7ee0LMY3jZeP/BfjQEFg8H2OkUFZ3VnfvjbEv1Kom7yGmzhCMAFYGqyZeQik0lv/f1uF3VCphf+cX237/uoY1SJrlbx5AoVlWTWTWWDJqpBwZqE40mUbK9ux6JsSHpNDtuTqLT5o/kCJm/whsjsMxnyOsOcLTrew16DoWD4Ip9Bg4Sm+aau4fUETX4HchxVV3b4khlcmQL7ekhjwNpeHSVbYKritewnjQHDBa0loeCkfh0jBQ17ZxzM261F95kcvSYLvBaDYTJUXPUe+DT2c+DpVVdiz7SDVXkNI4VWP7xi1cMT4zXM1f3YXCFx/74y1vbq2LEhjz5La7StuQJPT9QwNuc2Hts1XsO+GRvnr8tjTU/zkiKkxGTZw3jJa7xXszWBYs3GaK+OVXkeODbqtbft8zRfTomlBfmodR8SaseJ9pGuMET9rJRGVMmWH+LjqRoxTEyGGm9mwX+qcu9XosW/iCcZmfoCxdBkZA5lw3wUaj94snmLk4W08wmKlqO55dS5feoHU1MX36onG35iOm+P3OncljDB2l5vzVPvic4BhmTvqmDfccdRVuEf7DdM/AXxj1EGCQEWa/1ge7IuatXv7YI1+jUkynZnlJW/LQYHDEtFSNU8Jcj6Ld7RDlCialVeQ9kRmLeVeOwzecdnTIl/VasnJRwvulb/eTkdsDSGeUfA9YBei9V95zr3e8FgKBg6pqsCs1WBAYtjKK8FfAabojGnA9tWW5gouzgw60BjDAP1UcL2mv2+XSFRcQVcIeHG1D5V8TBb9bC2V0dOZ3hu2sGBWSfUOubwvIt7n57D2aM5nDli4sU5F7snaqHHXtmReGB/Gev7dGwfzcGTwItFJ/R8IAEcmncxXWFY368jr/PE4yLsyylBnCiQUDsOSBl/u6ajPdJ7bomEi3YQT3Y3qy/YhetJeNFNG0jUR/kSbsk2RtcYg2SyLtZSzm9J1UrhC82orv0Rs7zOIQIKJulWp53y/fYkwGR0nFE7QqQzBQbq5rNpR2kzHEeASgIQKSoRUkVwxZnrBnGFRLEafyQFhdKqfKfoCmub19XoWjBOqbOt+j+H+pwkGfL6x0a/pUFj8ceG/9hQjmMo1ynQwtoO5zVwqNu9SZ9ZjamaKyk+hJ4E9s44GC+5jS8SYZvqP/brw1UcmLVTzVsbm3PheBUM5pMvLTVPYrzk4aT+6Nvk7fUwZJurSxx/wnzUfPz5ajRPLRsk1JYgWc5BWeYzHetoWly/aUSaT3pTVFbfPrYgJ+bmxTK5DtG4OCQXkkGTA0Dk6GIYmUYKF/BilmUbs9TRnu0Zh8bTG9D6As3/Oamtl3JP+9mraY9R1T59zb4Jbpqa7QwfwponU5sCc5ZucQGgjs9eU0ts59NrZjMeIIG29GmfoxYkl8vhCzufwrZtj9M8tQyQUCO6QtbbjcsTukosZ2g1KkEsPElz1Kb2PXUcq1kZkI8aQRAEQRDEEoVG1AiCIAiC6Apxc9TyuTzmDu8D5X5mg4QaQRAEQRBdIWqOWmniRVz/9ldi22+9iXI/M0JCjSAIgiCIrhA1R83P/KRFBNmhOWoLjJQSe6bthet/wXrOxlKpIyvpV81KpN1KmrLeicyyPHnByFDDUigXy3OVY7ZdtzR2tJTZU0wI4nhBI2oLyFTFw317Sxibc/HyTRLbVlsQUiYudZd1d8dE09t2d/4EpETj9eO8iHzPJpnaNwwwUvhO+bgC0FKs4A8asMb5Xx0taX2Z/P2Q9n1hyLYK1hXxiQ1BOIs3TQ6SOgs1wxXKfw+y1CEkoKX4SiilhMmBWsq+hcyWH+mnNgDJPngaBzwvnTVGFqNiZfXifwajjyX/PekxOOZSmvIVDA5XeIm2G1JK5DQV2ZbG31FIwPEEjDRvIoDJsos1vXpiOoaUEhNlD5bGkTfi2/oehnM1gYGclrjvlF2JhFEvOen8Ffx5OYrjpUTUHLX2zE+Acj/TQkJtAXA8iYdfrOCRsWrjsZ/tL+OZyRou39yDwZw6e0SZbqY5wQFZxngUvO4DJmS0QPH7dj3ZEDKc++3b44PQqINzBrNu7Bt37teYcpZP2j7GWGskVj2xYaHEWv0l2mKofMHaTBhgjWdFbwOvu8t7Itn4VmfIFO/FGQNn8UkUzbbpjiMgnTDy2zsivTmuxnzfPAaBiJqDO56xRkxUNSZrijMgb/BGSkRUPX7Nnmy+tsaC7yPraFvz0HhtjQNawvutRHZkqY2+JdS5QdYFo6Ept+WOlI1622JVoJQyFFXnQI/JMZDnmKl4mKlGP88VQMUFcrrKtE3az32WyhYV9fi7JOZsgfKMjdUFHX1Wp6jyfx8veXihaENK4JzRHM5dm6u/Zmfbw3MufrSnhMmyh9OHTbz65B7k9E5/Nz8R5PCcg5IjYWkMo70acnqnMA6LrYo6FxDpiZqjFsz8BEC5nxkgodZlDhYd/Mtz8yiFDC8dLnm458kizl5j4eINeeUaj0BsUsyFtX3UI4uLfJj4C44mBU9V7TFXvliSrCmUEOir5STHGAwtPEqKATC0eHPX4Da6QobnWDaLTm1Am0Rj1A6d+9kXrO1t/UEcdfJXdbQb6GqcIceUeG2/FvoCJq1AYwheOBj0+n4Ou3BmEWhJ+aLtYi5tTieDEg/BC6lWf72GL6ts7lsROOgYY7B0BkOTqDqdOZ05nams1UDsEkdr/FWL2G+r2auPLCsB2TyePamikILHv1f/4qFrnUcaZ+3vSxuB7fPaMkQlVMSWxoBgTjpjDBVHYrbmpfqMcwZYetP4lwFYVdDRa0lMlNyGCPPFX8VpfjbV55VB5xJVV3SMrhUMhh6TB85PDIwnR+H523to3kWx5mFNj96yjRVXYu90rSXL9LFDVTw/beOlJxWwvt9o1Gu7Ev+2r4Rd47VG292TNvbOOLh0Yx4XrMu1yO3pqsBkuWlXXPMk9s+6GLA4RgoaeJvobt+M1nNB83ESbemhrM/uQ0Kty/zfA+VQkeYjAfz6SA3PT9u48rQ+rMprmUZUki6sQfyLSKT4a/s97ttyMy9U9Rl3ouaMweSyfkFUF6K0oiQ4ehX1d4nk6Kejwdes/valyWX17wZFXbB98apJ2XCObxcwcbSLvyDtF840o7E+QVGT1A5In9PJoN7rqGOaMUCTKn7KH2GLqoMzhoKpqRxLRzRG0cL2nZ8QICHh1WO2/P9HbZcvOjlU2HiUs78aCQM4U6NgDP72Re8HQAk8KeNvL3pS3WL1j5/ZqhebnwrUjwkGmBpTObEhhZgaw7o+HfO2wKE5tz6KFt4vYwx5Q1MjwJ7az72WBj3kljJjTL2/KWPxyo7EvhkH/RZHn6XhSMnF4Xk3tO1cTWDnc/PYPGhg+2gOB4suHjhQRi2kbtuTuG9vGU8cqeGNZ/bB4AzjZTfyPZytCczbAuv7VMZpktD0/5zyrjpBLCgk1LpM2pGusiNxYNbBqryWWqRlGUVLO28HiBdoYTXEjiLUYYw1buulJUseqv8a3cYfQUxdQ8o6OGPIkKwT6DuhDWPgKdoFyXIceQmCNQhngJHiDWcM4BlG53TO0Gel23lqFC19PJIrJGrhuqED/0tHWuLC0duZt0XsLcggnAH5FNFLrH4bec5O16/GGQYNLVUuK6vfgk91yxzARNnD3hknVR37Zhw8dqiW3LDe7xNHaljdk3wp86S6LWtqGo2QLSBxPmpBaM5aekioEQRBEATRFeKyPoPQnLX0kFAjCIIgCKIr0By17kM+agRBEARBEEsUGlEjCIIgCKIrpJ2j1o4/Z43mqXVCQm0RGS+5+OVYBeevzStPpRgW0jW74R3U5X59T6M0q1qllHCFsgBJuyIyLaLus7UQprK+iWq3a/btCdRCgeR9J5BuYYOUalUkS7mf/RWOafYHQ3qj34Y9TIq2WfFXnqZdUGDwdKtaGdT7kWatSdbPa9kRqDgSBYMlvoeekCjZArmALUd0HRIDOY6qI1FLsUN6TWWaWE7hXm1wZXwctZo0CGPK563iiFTHku+ll7QCVkqJF2YdFGsCJw8Ziftu/4yNXUckXnJSHlbCypBizcOeaRunrDLRn7CYxRMSR0ouegyO/lx8Wymb1kNxq/KXK2nnqLWTy+XwhZ1PYdu2x2meWhsk1LrMxgED42Uv9iLkn2h/8aJaS/5/D1Rw5Wm9OHW48+D2P9SpLTkYGv5Qvllr0nP9VV5xxqF+376jehztNQuprA3CBJusL/O3635lngQ4ZKTtAJDeINbv27+wehLQI+oI9u3/P41flLLpUHYTWoKRb9N7Lfo9aX8PlMCUoSd0v63fXgJgMrwtUDfg9X3h6gIzyXzYN5SVLF7MGJw1VkT6HlRhbf3HBZp2ImmtQtKia1ylC0Ct6ox7D3XGAA0wNeW5FbXy2NSAvF73E6vXH22yq4614Oclqq3tSbxYdBorM+dtYCDHkQsREVJKOMKvUaJkK0GTDxF3Uko4nkTFlRjOcyAPFGsCU5VwoZTXlZ2H709XdQUmy26Hhx2g3rOCwWFqatsKhlpNGSWqdM5g1b+I9pkcc7VoI1+dKw89/0vHvC0wWw33lHM8iTnbw3hZnUefPKLhZZsKWFXovKyVbYEHD5Tx3JSK8/vJnhKu3taPc0atjn3nCYlfHa7ikbEKhAQefrGCC9flcd7aXIcwllJiquJh77Td2FfDBQ2bB02YIV++/XNS8wFA59018V5sjmWO2tS+p7pczcqAyaURwrekKBaLGBgYwOzsLPr7+zM/f9+Mjfv2llsMHQH1Ia26suPbqn+xOn3YxBWn9mKg/o0sSTi1o/HmhaFh6Bi4iCfRkngQeELQJiLV6E7Mi2kBDzFR3x9R7dtd+/0Le1Idfg1RX/QZOr3MwvzKGq72KT3EANRHBJPqC/wceK0kwRIUr0ku8cEahFQCLWo/pzHf9Y8pT8iW/arV/byAgImobEaQtZgny4DZbVvfqs7o7TkagjU7EZ37NsXBtrXAvtIYkDdYQ7AGtxFoTTyQddHc/kphnyshVXzSkXkv9NjKacBAToNWf11PIlIIaRzot7TGqLxX951rb+6/H5NlryEMNQas6dExmNdCt69YE5ipNmu0NNYQrO3vd80VmLObQjBo19KeTOAJYLbW9IxTxr28w7vN/1zMVLyGP6WQMtTOxD+PnrXGwgXr8jA1Fdf15JEaHnqh3PI59tueNmziLdv6MVK393ih6OD+faXQ2K4+k+PyLT04qV9ZSlQcgT3TNoq1zracAZsGDIz26i2fhahjnAGJX/SWOv5186137jwmoXb7W8+lEbU2SKiFcKxCDVDf5H/5YgW/HKtC1k+y83b8sL/vdP7aU3px/rpc6tfyxQEQ/kH3jWHTZ0Q2L5zB82YacZTyBSCA0G/r7TC0JhoknchE/RtrmlJ8V/i47NPgBfxoRHMcwYt22r6z3Kb2b4mm8acLE69RfQL10UnOGkIi/LhrHkdBQRPRMcAYRIxJ7dHSiL7y/FvE/mU6umZH+CJUPR5+3Kk+fPGaaKIaED8Hi06kOWuQfotDZ+lut6o0B2XOG1eDSj8QqHkSw3k9MRHFk8B0xYXGWKr0lHlbpRzE3Zb16yjZAjVPhAq6dmqOh4NzLmaqIvYYYVD74swRC89N2ZiqRO8Q/5z7ii090Dmwb9aJvBviP37ykIGTh0yMl8JFdpCCwXDqKjN1TqpvKL4cBZt/3bzkA39xVHPUADVP7Y+u2o5t27bRXLUAi77q86677sLWrVuRy+WwY8cO/PSnP41tf99992HHjh3I5XI4+eST8eUvf7mjzZ133okzzjgD+XweGzduxEc+8hFUq9WQ3hYOnTO85KQC3rl9AGt6NBRryXMz/Avahn498faiT3AEJ+rDnfUz7/ejBU6eyQIpff+uTCfS1GsDOo/ORg2ibg2lH/1qZj5G76OjOWEypLtFzFj2UdP6ndZUeDKbiTBXBcW28feHqbHYLwf+4340U2LNC3hhasYFsYA0i685V78dGn/sN0etU83hYwyOAPZMpxNpqm+ZSqQB6suhk2De629LwWBY02Mkjv6qxAcJU+OJIz7+vmIsee6c34/OAVPjqc4xVU9iOkGkAahHZQn8v4MVTMeINKB5zn12qoZ9s07j+VH9AkDJFjg876ZM6mCpRRqwoB+D44ZbnIA7e+So/vneah/64vfx+OOPL/amLBkWdY7at7/9bdxwww2466678LKXvQx/8zd/gyuvvBJPPvkkNm3a1NF+z549uOqqq3DdddfhG9/4Bu6//3588IMfxOrVq/G2t70NAPDf/tt/w8c+9jF89atfxWWXXYbdu3fjPe95DwDgc5/73PHcPADAYE7DK7f04MlxO/VzCgZPLRCyfK6jvimGtk05gnU0ZBkxSXOr82hZ6G+uafpmWd6U40Gqmhfu2FioFQassaNT1sxY+otmhpq9jPd3s+xi1vhPmn7Tv4dxI5BhZLlHk2VvZEkMydp/Bi2VKfVFz5pGsgKUWjd81LhG0+eDHNXeeOGFF/D9738f+/fvh223CpA77rgjdT933HEHfud3fgfvf//7AaiRsP/zf/4PvvSlL+H222/vaP/lL38ZmzZtwp133gkA2LZtG37xi1/gs5/9bEOoPfjgg3jZy16Ga665BgCwZcsW/PZv/zYeeuiho9nUrrACPnsEQRAEQSwCmYXaj370I7zpTW/C1q1b8fTTT+Occ87B3r17IaXEhRdemLof27bx8MMP42Mf+1jL41dccQUeeOCB0Oc8+OCDuOKKK1oee93rXoe7774bjuPAMAy8/OUvxze+8Q089NBDeMlLXoLnn38e9957L/7jf/yPkbXUajXUas1suWKxmHo7CIIgCOJEI+q6ebQ+akHac0BP9PlqmYXazTffjD/8wz/Erbfeir6+Ptxzzz1Ys2YN3vWud+H1r3996n4mJibgeR5GR0dbHh8dHcWhQ4dCn3Po0KHQ9q7rYmJiAuvWrcM73/lOjI+P4+Uvf7laCu26+MAHPtAhCIPcfvvt+PSnP526doIgCII4kYm6bh6tj1qQYA4oZYAehVDbtWsXvvnNb6on6zoqlQp6e3tx66234s1vfjM+8IEPZOovzP8nacJqe/vg4z/5yU/wp3/6p7jrrrtwySWX4Nlnn8Uf/MEfYN26dfjkJz8Z2ufNN9+MG2+8sfF7sVjExo0bM20HQRAEQZwoRF03Keuz+2QWaj09PY3hzvXr1+O5557D2WefDUCNkqVlZGQEmqZ1jJ4dOXKkY9TMZ+3ataHtdV3H8PAwAOCTn/wkrr322sa8t+3bt6NUKuF3f/d3ccstt4DzzlmjlmXBso7tG0AcotsGUQRBEMQJTfsgxfFmoa+bRJPMQu2lL30p7r//fpx11ll4wxvegD/8wz/E448/ju9+97t46Utfmrof0zSxY8cO7Ny5E295y1saj+/cuRNvfvObQ59z6aWX4gc/+EHLYz/84Q9x0UUXwTDU/exyudwhxjRNq7vlH3/B9Nhjj+HDH/kjvObmvwPnPNVqljlbIG+wVBE/GdaxQdZbJ41aAq2mpWnaZiHLaSVoCJtcR+CHVMkFap90+0Sn9kfafXc0fWc9OScfJZlrZunek2D/qdrK9O2Dx13atmnr8I1Wu72fE5LiQupI7LLl1dNvX6Yqmk9Kdd5QX07TrShNT0Li0zHheoCRMiHASZtNBsBx0x93rdFS6fZMyZFgSBc9drzoxhy1IO3z1ZJYifPZMgu1O+64A/Pz8wCAT33qU5ifn8e3v/1tnHrqqZntL2688UZce+21uOiii3DppZfiK1/5Cvbv34/rr78egBpaPXjwIL72ta8BAK6//nr89V//NW688UZcd911ePDBB3H33Xc3bsUCwBvf+EbccccduOCCCxq3Pj/5yU/iTW96EzQt41rpY6BYLOJP/uRP8PnPfx6apuG5g1fhzX94B9affm7kh5ZBLRPfPVlDj5FDn6VFtvU/0G7dlFbn0Rdwvw9XADXXQ97gQMyJw79IuV49FgnRJ5osIi1ogCrqeZNRNfsICVRdodzvE2oGA2R99JKpB2MvLK6om7wibt81ExGSbMb8fSSgfJwsPalm9ZocyV5q/r6brQlorJ7JGFlzMz6suZ+j6qgLNKTdz+r/jlDHqobkY8N3yS/Uz7VxNQupLCw0ntyvf4zqfs2q89D2/vZpTJnCJvVti7pbvpbuc2U3TFsTjlEAgzmeyleRM8DUGTjS+Q4KATDu58PGt2UsXYarMrxlsF0BzlVaSFxbKYF52wPAUDCSzZBdATieaCQSxJ0LTI1jVZ5jppq87zTO0GsylB2RyrNuquJhFTTkjbodSUgZfs3PTtmYKHnYtsZKzCaergo89EIZ56zJqb5jjg3bk3h20sbaPh2rCnrivpuzRSPlpuyoJIuw2KrjTTfmqAUJzldLYqXOZ1v0ZIK77roLn/nMZzA2NoZzzjkHn/vc5/CKV7wCAPCe97wHe/fuxU9+8pNG+/vuuw8f+chH8MQTT2D9+vW46aabGsIOAFzXxZ/+6Z/i61//Og4ePIjVq1fjjW98I/70T/8Ug4ODqWo6lmQCKSW+853v4P/7//4/TE5OQojmGZZxjh1veDeu+L0/gZnLN0bXfJeirYMGzl2Xa+T85XSGkbzWEh3kf8GWsjWOh0GFS7c7xfsnz1LbCSuvq0w9AC1tAWUAGfzSyFnzBN0eGyMC3wLj9kkwyke09c18BZRwdWnJk2yr2RVoiQnyhVWwbfBvwYsZA8Db4reC2xTcvCiD2kYdbeanBg+LWOrsOypGya+n7KgoH/99MTgwlNNg6bzz/QY6IqMYCxjatu072WZIq/PO6B+/ZolWl3wOhL4nvvv9dNVr+F9pHOiztEZGZEfNbXFiKimhs29AmbsGj1GVMhF+PFdcla3rN9cZkDd4S4h9U3RJ1NxmOgJn6rNihNQs6p+roIiKOkYlgOmKh9mqaDzmCHTEIPn0mQyrCnrDs8vxBEoxySbtxrXBtJIgDICp80ZkWFS0UfCLwVwgIsng6rzUvn2MMcxWPYyX3OYxqjEMWlqoUa6f0+kbMrN6+7AIKSHVvqsERqdKjogMju8xeGOESUqJiiNbYrCC6FwdC77YMjjQZ/GOrGFfSB0peajV68jpDOeO5nDSgBF6bMzWmjVypuKqTh8267+3HhsHZh3sn3Ua78Noj44zRkwYGuvYz1VXRAr9nM7Qb/FUd2O6TTcipI6VlRpBdUxCbX5+vkWIADjqyKWlxLEItRtuuAGf//znGyeJMHoGR3DF730SF7z+twGomJiLNuSxuid8gHPA4hjK8eYoCaKNHDkDTN48CYdliwbbFgzezAiU0aHUQGv2ZhpH/eDt02aYdHTdaW+VmFrT+bwlaDysfWM0TLXnCL+A+TUEt0/G3JgJbr//c1y2qKU3L0Ltwqi9XylVrJQvHKarXuQFvcdgGMxpDZGZZT/Hiez2C2f7F4N2gnmhnpAtF9Z2cjpDb/1iIqUKD4+qmUGZhvoXnrjcTkAJpaa4aRUD7ViaCgv3v3DYMXUYHI3pCFKqsPOo7Ws/RudrHibLXkf2JtDMu/Vf1+DA6h4dOSM8lL3qqhzPxmu1Hd/tdaj32++btVz42/sObnvZEZiphNfsH8/+FxDbFTg070bujx6Do8/ijf0cltPpw5mfeqH2swplD08jcIXEXM1rCGWj/kWgXewBaj/PVr0W4ZTXuRqNDSFvqBE5Xq95suRhNiTTEwDW9Gi4YF0ePSavi0gZWXOPwXDu2hzW1M/1MxUPu6dqqIScozUGnLLKxMYBo/G5mq2JyMxXHwZgpKBlMubtBiTUFo7Mtz737NmDD3/4w/jJT37SEsvUGDXxUmajrFB+9rOfAYi/JViamcA//vkf4JRVFn7j6ndiy6pc7Deg2ZqA40mM9OiJTttCAlUP8DzRMeoQ1nbeFs1vnwl9uxLgEuAsnbZXt7FEqhgjIdUtyMR5HABqnoRWz4RMFot+np8ER7zbvD+yoFzK4+vwb1nWPBkrvPyaq66EpSULUhWlA5RrAhVXXVji+i45EjXPxXBeSxUeLyTAZHKeZnBUjgeHJyPwpLrF6XgyseaqK2G7HvpzPLFmCZVdyZhI3M+AGlUtO2q0oZZwQat5SiQaGks8Rh0B2FUBQ2Mdo8JhNdc8iXJFhY5HiRJACdBCPfRd4+qWdtTxwRiri0UlpKIEWrAOTwIFXYnGuHMMYww6V4KkVh9VjOu36qpRKk/I0FDyICVHoOIKFAyOqht/bKipDhJVR+27uFu+OldfUnzhYkaIUEDt56G8DlMTqLkiUrD6VByJsi3AmYqMijuUjpQ87HxuHi/fXIAn4m9TlxyJBw9UsGlAh8EZJmMirjwJ7J60UbIF1vXpqKaNHas/9/hN9Gml23PUksjn8mB1UVoc2wvg3OP22seLzELtXe96FwDgq1/9KkZHR5fMBMbliDt7GBv7tVTD1KnyEgMkXaTa+047tUEi1V3KBlmyJrOQYfMApJu3kxV/hCAtWUqWUCf1NAiZbT9nrUMi3aRvdSswXe8S2WrOlCUr4i/wLf1mrCPL56rspPuSAiiRkU85IZyzdAuNfNJmTTLGUPNk6m10PDXilQYhETniFkba44ix5hSONBia+sqWBv+LbNq2JVumHsWaKHup55P5o7fL5Vrb7TlqcZQmXsT1b38ltm3bVn/kXGzfvv24vPbxJLNQ+9WvfoWHH34YZ5xxxkLUQxAEQRDEMuV4+qhN7XsK27ZtW3G3OtvJvOD54osvxoEDBxaiFoIgCIIgCCJA5hG1v/3bv8X111+PgwcP4pxzzmn4l/mce+7Kuz9MEARBEEQyx3OOWpTH2krzUsss1MbHx/Hcc8/hve99b+OxoDHqib6YgCAIgiBOVI7nHLUwj7WV6KWWWai9733vwwUXXIBvfvObtJggBMuywDnvsC1pRx9aj/vZWfj5f3sc73/5FrzslFWR+9LxJJ48UsXBooNz1+Zwwbp85KRVKdWKraqrViwZPH6CsuNJzNY8cIb6qqjotq6QKFY9uEJiIKehoEf3LaRafVd1JXQevyJLmWqqSd2cSVh6/GRpISXc+veBoHVDVN9VTy2AsHS1hD/OzFWgbvQbsJuI6tcVEp5oLvePXYEnJaqOMp+1dB5qIRBsa2oM63p1FGte7MRqKSVcCRwpucr2woz2UPJtRBzh22/E7ztPqMniUipvKTPGGl5IiZqrzHhFioUvnKkVmr5dSvzqxfST0F1PomSr7TQ0xE7ulvVVvi7Svd/luneXqQGFmP0MqBWwvhWEzuP3M6DMeKsu0GPy2M+KkOozWHYETL1pLxJV85wtsH/WRp/JsaHfbFjxhDFecvHEeBUMwPo+QxljR+B4yu7CqZtGx+07wLd6ATwRvxBISmVHc3jehakx9FvxNhO+7xkAFGvxizccT+LIvIOaJ9FnacjHnL/897viSugMHb5q7W3Hyx6++stpjPbqePXWHvRZ0WsuXyza+NGzRUgAb9o2gC1D0aKm7Ag8eKCMI/Murji1Fzs25FMtJFnMqzJlfXafzD5qPT09eOyxx3DqqacuVE2LzrH4qD300EN497vfjWeffTbUooNpBgZefg0GX/4uMMbBuAYJYMemQXzoVSdj/WCu0VZKiRfnXDx+uNrindNvcbxqay82DrQO+bpColTr9D7SOes4kQqpTEDbFzX1mhwDudaLkKy3nWtrbGkMQzmt5eTvG0POtZlztnuJBeuwvc4Lu6mxDlHlez21rwDkISdSX/x5bdunMeXj1X7yF7LVyNVHbzi9N9t7QomS9v0c5mkV5TencyXY2vezv6rW/50xhpqrjGPbVzIKKTu2jzN1fLRfwIWUcLzObdTrbvPtNVddiVrb4LilKf+z4L7zvxiU24qTMvyC7Puite8nLWzfZRBo6nju9AzkrFOQ+jYf7e8LQ7iocjyJYtvnigEomJ1CyRUSU+VOD7kkIRjE4EBvm0DxhcN0xeswjA7zA6u5AuNlr+W8wRmwoc/AcEFrqaPqCjxxuIqDc25LH8N5DWt69I46ZqrqeAzCES78NabSFYDmnRdAfVloPz1WHIEXi07LvmNQQqxgtNqWqMcZ8gZvOc9WXIn5WuuR44u/qXKr6a3BgYGc3iFea64IPX/5huJBSrbAc1M2ivVzI4Myz75sYwEXtn2hrjgC9+0p4rGxSsOQW0hgx4YCrjy9Hz1mU9wJKfHUeA2PjFVbvvhsHDDwW2f3Y11fdKRSj8FibV4WiqXgowasTC+1zELtjW98I97znvfgbW9720LVtOgci1ADANu28bnPfQ6f+tSn4LouXFedAPOnXIyRN9wIbWANGGvLI62fxN958Ul4+44NsD2Jxw5XMVnuvJXMoD64p64y8fLNPcgbygU+zvtIjaAwMCiLgbhRGs6AwZyGgsFg1785x30L7jM5+i0OKYG5mtch/tq309JVHa6INon1a87prBF1k2R14DvZS6jsvrgD29SU8ABYrJGrX4c/uGB7MtFw0j83B0VXFJbOGikAURYU/kd03haYrYmGQIvdPg705zRoLN1+Nrg/yqU8pOL67jU58gaDJxH6xaBZd6sg0kOSM9rRGTINB0ipBOVcQiSTzv0EBZZo7eKnLUgA8zWBaswTfO8zjakRnSij02Ad7cI/ioKh9rMrgKmyG2ubYXAgZ6jP4FTF6/hSFSSvM2waNJHTGfZO29g1XoscBdUYsK7PwIDFUXElJspuoim2L3bNkC9EQby6ObMnJI6U3NBzXaNf7kckceR1hl6LhfrI+V925mq+2bfAkXk31iS5x+ToNevnL9uLjZzyBamUwP5ZBwfn3Mb5uJ2hnIbXntKLDf06Hj9cwb8+V4Qd4iPHoMTsVacP4KKTCpgoe3jwQLmRYtHy+ky99ss3F/DaU3sbKTaALzzDDX+PB/5185IP/MVx9VFrZ/7wfvzRVdsDlh3Lf85aZqH2la98Bbfddhve9773Yfv27R2LCd70pjd1tcDF4FiFms++ffvw+7//+/j+93+ANW/7JHrOfjUg64F8ETAALz1tDS7YuibyBBBsu6ZXw6u29KQLcK/fBkzrSZUlBFln8beZ2snSVuf1/L0u49+STWOwpm63ZjRvS4kZEp0Thn8rayLmghaEs3gD1fa+w0Yro/AzYJP7bY4yAOkESsq3pDG6kybLEVD7I42ZMaBG0SpOvOjyEfVRxbSHh5HiVqiPK5K/GPj4vmZpnL+S0iPaKRjpFXROVya+DIh/I6XKBX12yu4YGQ5DYyqGKSy1oaNrKbF7wsZ4hs9K2hGosi3w7FQt0auPQR0bFlfxX2k4eTgHS9dSnfsLJsd7LxjE5kET/RZHLuZW7vHAv27ueNdN0I/THLUoetec1IhoVHPW3rSsR9gyz1HzczVvvfXWjr/RYoJWNm/ejO9973v46v/437jt8fpQcIxIA9SH84z1Q42fk9puHTRTS5j2HMpukuX8wBhiR1Va2mJhRBpQz4ZMWbhYqB3n15ECxhiK7fcjY4ibj9RO2K3AxCek6J6xzrzO2PYZSlBh6OnbqzrSvYLtpRNpfh1pRRpDepGm6kj/plQ9mUqkAYiNwGqHBf6bhtSCgUFFa6Usus/iqUQaoEaG04q0rExW3FSGympEXaYWaWr+qtZ4blLfZVvgl2MVXJRy3trxguaodZ/MPmpCiMh/JNLCedWrXp3xGdk+dAsnIdKT9TSxhM4ry4qFEq0LDS06OnHIfC5YkCqysRxrVrnOixPAThxfMo+oEQRBEARBhHG8sz6TiPJai2IpzmfLLNS+8IUvhD7OGEMul8Opp56KV7ziFdC0xYqEJQiCIAhiMTiePmppCPNai2KperBlFmqf+9znMD4+jnK5jKGhITWhd2YGhUIBvb29OHLkCE4++WT8+Mc/xsaNGxeiZoIgCIIgliA0R637ZJ6j9l/+y3/BxRdfjGeeeQaTk5OYmprC7t27cckll+Dzn/889u/fj7Vr1+IjH/nIQtRLEARBEARxwpB5RO0Tn/gE7rnnHpxyyimNx0499VR89rOfxdve9jY8//zz+MxnPrOifday8kLRyfiMbMsDluNUUilpQcHRkMUEliAWg6xH6FI4olMuYg60z/qM7rMU9lsYS22OWhaWanZoZqE2NjbWMHAN4rouDh06BABYv3495ubmjr26ZU7JFvjHXUX8ZG8Jg715zMxXEp/DGfDMoVmct3kklZfO/lkHmweNVKeMDG4NDUf9tCuKPAlo9WqTVvj5Ii3JokPWGwqhopeS+22+fpq+HQGYKawjVF+AFMnb57+ukDLUkDOsve0JmBpPVXOfqWGykry6WkoJx5UwuQYguV+G5v5DQt1SKhsILeV+FmgO3ad5vyWU+2pSW503zZ/T1OEJBl1L11bnDE7dNyJNHb6RaeL7DeWNpicY//p9Z9k+g6Nhep3UNldPC0hjkyOkhO0KmHq6Y7TsCPSaPLEOISUGchzjJTdVzfO2QLnmIm9qiTXrTKJH81DytMSahRAQUkDXdUBKMB59o0kIDwMWx+GiC9STZWKKVuciIQCWbFkiJVC2XRTM5MuyHw/4kpOWniBaanPUsrBUs0MzC7VXv/rV+L3f+z387d/+LS644AIAwCOPPIIPfOADeM1rXgMAePzxx7F169buVrqMEFLi/x6o4DtPzKLiSHDGsOP0kzA2NYfdB47ADTEO8t3333DOKP7jZZtgC+CxsWqsw/jqHg0XrM0liqlmJBGDyevRSgku+K6QqLmAziVMPdwFPIhX92jTUxqhCtmMXAr7PusLxdmqi5or0W9xDNTz88LcyAGg7Co3cpMrt3GEnKCbQkoJ6SoDCqZWdxtvbe//7oh6OoNQxp85Pfwi69c8VxOoeRIFnaG3/iUsquaJsofJsod+i2PToBGaRdqIkvIkHCFRMBiqbng0ld/eFcC07eFI2cNwQceAFX7h9GueLHuYtwV6DI7+XPS+A4CqK1FxBUyNoc/k4CFC0K/Z9lReIQPQa3FYCfuu6qhoroLBYGnhosPfvmembIzNuRjKaVjbq0fWAQBlR6LseDA0hsGcBp1H1zxbE9g/Y0NIiTU9OnrM8Iu9rCdETFdVVFNOZ/BTgKIc82eqyvy0z+QYKWixNR+e9/BC0YGlM2zo02Hp0cfGdFXgqYkaXE9iQ7+BwXx0zVVX4snxGqbKHkYKGoYL0Z8rIYG90zZenHOxrk/HmautyGMUAA7MOnh2soY+S8MlG/MYyuuRn6uDszb++alpzNU8nLGmB2v7rciaK7aD+585iP8+M4fLz1yHV5+9AQwMvM2D0BMCwhO498c/w30P/gLrNm3FBZe+ElYu15EGI4UA4xz7nnkSv3roZyj09OLiV/wmhtesi6x58oU9uP9/fAXFmSmsu/ztWHX25YAQTUfn4L5zHUwffB6V2Sn0DI+id/VJoYJNnVuBHRt6cP66AqarHp6ZtEM99HzhfslJefz2uYMYzC29RXs0R637ZE4mOHToEK699lr86Ec/aqQSuK6L3/iN38DXv/51jI6O4sc//jEcx8EVV1yxIEUvNMeSTDA25+DvH53B89Phtzsd18OzBydwcGK2ZcTslNU9+IPXnILTR3sbbYWU2DvtYNd4M++NQTnZX7g+h80DRsK30Pr/0WlmKuoXu+bDqndPSDghJwhTYzAiLkLtcFaPAkrR1m/vt/UPx5ItVCB4oJ3GVHB8IZDvp8SARMnpjBAq6KwxcuD3LaEc3Nu30NQYCiZvCFK/bbHmodIWt6VzoMfgHSOUZVflTQZbc6Yitnxx59cybwscmnNajDMZA9b16ljbq7fU7NXFXzAGxxcrwVghv+aSLTrMTC2NYU2vjpzemo1YrIXnRw7ktI797HgifD8bDD1GUwj6F/iSLTqMQf28UN8J3u+/5skO81qNqdxCXWvddweLDp6dsluijDQGrO3VG8KgWXNnTiegEhv6rdaaHSGxf8bBTFuOZY/B65mXrTUXa+oYDcIZkDd4w8TYv8CXbIGZaud+Hs5rjTr8WuZtgT3Tdkdu6XBBw9pereUYdYTE0xM2jpRaa+6zODb2qxzL4PH8/JSNvTNOSx2mxrC2V0eP2fp+j8+7eH66VTDoHDh12MKmtpzheVvlhc7WmvuDATh12MT56/LQ6mkMKsVB4F92z+KJw+WWPoYKOs4a7UW+nusp6hlkT71wBE/tPwwvUPSqHgtv3LEFp68bVNsmJTjn+NWu3fjuP/0IM7PNOzq6buCsC16C084+T9XF1XbOzUzhFz/9F0wefrGljpPPOAfnX/pK6IYBzjmE8ODWqnjoB1/DM7+4ryUXrrDhdJz0m++BNbROnevq+3lu/EUUDx+AFM33hesm+tduRq5/CIAEA4MEsHHAxOVb+tAfEF2ekNg36+DArNNynRjt0fDeC4dw1ppmJvRSYalkfXabpZAdmlmo+Tz11FPYvXs3pJQ488wzccYZZ3S7tkXjWITaZ++fwDOTduL8gdlSFfvHjqBYdvA7L9uMK88ZjYxVqroCTx6p4mDRxWnDJraP5lT0UQz1c1ys27x/W8oXLq4XPUoDqAtLzkgeXfPJEivlf6t0PInZmhebJ5jXGVbllZgpOZ1iIIjGmlmMroiP+WEA8gaDpatcw7maF7s/chprZDHO2SK2ZlMDeuti5vC8GztSamkMW4cMFAyOkiM6LthB/BESV0jU/AihmJoHLI6Rgg5HSIyXvFjne1NjGMpr4EyNisW19QWpqTHleh9TM4Ma8fT3XTUk/7C1DuV2X3UEdk3YKNai913BYDip34DOleCpxrjva6wZ+H1o3sXYnBO57xiAVXkNQ3kNVTc5/9bg6kuCJ4Hpiheb02lpDCMFDYbGsH/WwXgpPvNytFfHUI7jwKwSUlFdMwBrejSM9umYqnjYdaQWm0bQZ3GM9mhwBfDsZA0zIVmTwbZnr8mhx+R4ZqKG/bPR83BzOsO5ay2cvMrCIwdL+LfnZyNziRkDNg/lcPJwHpPFMn75zAuYq9Qi+z5rwxD+3fknwXMd/Pf/tRO7nnk+sm3/0DB2vOxVGBgawa8ffgDP/vpRSBm+jWYuh3MvuhQnbzsPz/y/H+Phe/8BtfJ8eMdcw8j5r8Xal/97ONUSpl94Dk61HN4WgNU7gNEtp0PXNFy+pQ9bhszI82nZFjhQdDBZdnH1Wf248rS+RcvyTGKpZH12m7Ds0CS6PaftqIXaSuZYhNqf3jeOfTEnrSAv31TAxRvyqcQMZ0qgpCUpwDzIfEywdjuGpi7gaeOAkgRlkCOlzrmPUVg6T33C0rkKKU9Ts6jPXUtL1v2cNhKox1AiKU3NjidxIMOClbSh4IB6v1NHXCFbPFLaOCAAeOJINfW+6zVVcHeabaw6AtPV9IkqhQw1J4nmIKUEURmk5oqWkas4pJSZopRmKvGh60dL1fFwpJg8R7dRx+EX0ve971fwStOp2krhqbzlFIhqCbUXfp26jsFXvgdMS2es+vZX78C2zWtTHaPbVlu4dGN+yad7LKWsz24TzA5NYiGyRVO98o033oj//J//M3p6enDjjTfGtr3jjju6UhhBEARBEMsLmqPWfVIJtUceeQSO4zR+jmKpK36CIAiCIIjlRCqh9uMf/zj0Z4IgCIIgCJ/l7KPWDeKyRY927toxh7IXi0X867/+K84880yceeaZx9odQRAEQRDLlOXso9YNorJFj8WPLbNQe/vb345XvOIV+PCHP4xKpYKLLroIe/fuhZQS3/rWtyiRIAMMwFzNw0Au3aRxIZurI5PQ6r5saaYnc5a8QjTYr8EZUs57zkROV3YKaeaM61zVkqatmuSe3slb5+kXCZga4Il0dRiammyfZtI4r6+YTfOeiIzrgfy1AWme5VsipF1Q4PsBpsETsmHTEYeUEhpL/347nrJrKNRtHpJqyFKH7UroWvKiCWVRIuvmzukW3qQ97oJGuGnI8rnKcig5noDrCeSM5POXELLF+iO+Bt+IKF0xZu8QPI3DLk4mthV2GaI6D613OLkO14ZXmgHP98Ub20Jt0/Yta3G4WMH4bPSKT5+NQzms7tEwUU5+w60sTuVLAJqj1n0yC7V/+7d/wy233AIA+Md//MdGKPvf//3f47bbbjvhhdr6fj1x1afGgC1DBgwN2DPjoMfwsGnAiFwF5/uS+RdAjubFth0GNC4kyvU++eRfqLt02q6ItEpgAPpzHAMWb/hTlermpFHbaAY8nOIu3n7Nq3uUB9ZsTWAuYlUbZ8BgTlOGtlBO7GUn2t4hp6OxAlBICdeLPv1zBlha08Op6soW77L27esxOIy6x1fJUf+itq9gMKzKq+HwuZqHibIy0A1jKKdMSP06wnzffEq2wEQ53WpZtX0MWt0V3xXRx4b/d/VnCZ0ro90ogaJzJeDT7Gcf369P19T+DLtwOp7EVMVFweDI6+o9KUcIXd+qZLaq/l4wGFb3GKErj6WUmLMFpstew59Q57LDQNVH+QsC1foe6TEYrIiVpZ6QLR5ynEULQVkXc6amVjK7ntq+sMNOfZ7V3zXlSRz7ZYwBMHSG1YYOISVmq52+b601p1v9LaREsWKjWFHnOUvnGOqxYOqdYkZKiVLNwdR8tUMEhu0P17FRmSsCXKt7DAlEbSHnGnoGVsHasAUAMP/is5je/TCEU+2sQ3hwjuyBffg5ABI83w9z/ZnQ8n2hNduHn0P5qZ9BOlUwTYcxfBJ4YTC05pNPOQUf+vDv45RTT4PrCfzg50/h3l88E2psPtKXwyeuvhBvu+RkAMBzUzZ+fqAcapvCGXDOaA7nr8vR/O8TnMz2HPl8Hrt378bGjRvxH/7Df8D69evxZ3/2Z9i/fz/OOusszM9HeM0sI47FnsMTEj/ZW8I/7pqDKzpPuKsLGs4YMUMtLkZ7dIz26g27Dv9bdtTFUV3cmr/rHI2LsN+3fyGoeckjHf6hUHFbTW9zOsNwQWu5mAZd6oMXTt+SQ22Dfwls9t9eg9q++nMDfbui03+q1+QYyPEWH7eg83zNa+23x2AtF0i/rZCtAkXt59aa/X3oCuXC79fte63l6hf/YN9CAkVbtBi3Wppq316zhEoDmA14VeV1hjU9TZNSv61fhxvYeY4nMVl2I0VLO6bG4H8PaN8fduDY8LcjqtuczmBpzT64L8jReeH1hEw9MumLCv9YF1KiWPU6PNOCpr6+5vCNX6sRgt33P/P7rrkCE2Uv1NiZs3q6RmAf2RGfHY0pPzhDa7aN85DzP69B09z2ftXD6lgOjry6MUJKyM5+/HNBa9/q/ZiqNG1ipFT1llN60pRtF9OlWov5rE9fzsBAwWzsZ9v1MDlXRc0NtwdhAZd+IQSqpTnY1TYLD1m/jSBaBVuupx89/YMtTv9SCkjPw/Qzv8D8C8802rvFcdQOPglpB/qum9PqwyfBXHMKWN16wSvNoPzUT+FMHUT7qB7P9ynBZiiz2UKhgGvefS2uesMb1aivptXrkJgolvH3//Ionth/RD2XMbzrZafh41dfiJyhQdfUh1HU0y1+cbCCXeO1xqut69Pxsk0F9FvJo8JLhZXqo9YtfD+2t7/97ZnnqWUWaqeffjpuu+02vOENb8DWrVvxrW99C695zWvw2GOP4Td+4zcwMTGRqYClyLEINZ+Zqofv/HoWv3ixCgbA0hnOHDExXOiMVAlicOVUvSqvNZzv4z6o/mibHpMa0IhCCnF/70QJFVeofL/BnIaCGZ3xF7xwSjDobWKgva36vzpPJrX1Hd1LjqqjXWi0t3WFRNmWsHQWGVUUrMMV6gQat5+DzvkSSvyFiZJgHVVXXfjyBovNdPRHSCbLHvosDf1WdC6hX4fjCUxW0nt/aUwde1E1+3hCouYqD7mkEwJnKvWhYPLE7VM1p79Np3ElQqcryaM7dj11oGRHj+z66BwYKeiouTJyVCmIr3HSCE1LAwyNoezEjxwD6W/D+5+reVs0Isni2zdj2VSMG4vNcpu3BcZLLuYSjHt9XE9gulRDxYk/7jTGMFAwYbseihU7uWMATq2KamkOiZciKaAbBvoGh8F1o/4ltW0j6ycXuziJ8Uf+BXO7H4Q3e7ghzMJgmgFj9BQ4UwdR3ftIs5/OlgAk9MG1eM2b3oHrrv8Aenp6GwItiBBqdPYXuw/ikWcO4JNvuRDnbFwVGZEFqC+m/+9gBaeuMnHKsAUhZSZfwsVmJfuodQvhefjS778l8zy1zLc+b7jhBrzrXe9Cb28vNm/ejFe96lUA1C3R7du3Z+1uxTKY0/C7F63C5eM1fPNXMzhztdUxchSGI9SoRdStoHY0pkYi4vD7SfeRZ41+1/bpjedE1eLHppgahxcjQIN9cCYTTX79tgWDoWCEZxG2t1VO86zj8aj2hsorT1VzXu8crYxqa3JAs1rjeKLamxqwvt9oXLnj+1bmpWnNTnUO5PS0Bq0SKfQLACUICiZP/CLROO6YTD33qWSL2OSBlv4hU7d1BTBRclOPTmQxfa15SBRSPv5c0KQyGGP1OazJIk21V1/Yom7dtiOEwEwlndgXQmJsppxuTqOUmJhLb2xbq5RQK5dStdXNHAZH1jS/6YVRf1zP9aD4q50Qdn2+WMwBKD0H87/+EWQtaW6Z6uMNb3gDPvjRj0EIAR4R4O6/D5eftQE3vf50CBF9LvAfG8xreN1pfY05p8tJpAWhOWrRTO176qiel1moffCDH8Qll1yC/fv347WvfW3jQD355JNx2223HVURK5ltqy3ccOkwdj6f7mQEKKGW9oKidFK8QPLJMnTKWfR8pM4aGGRIuHRs+xQXK79tWo7mFkH2mtMUjUQBGOw3afQj2HFaQQA05ymmOzZab/MkkfaLBJBtgnrUvL3QttnWUCwZshymUXMkwzvO0G/6sAK1KCJ980wIL30hXGvcNkju16lB1NKfc+GlT/ZYt3ELXMeBbiSnEPSaaq6plmJBgH++Xa4CjVg4jsqeY8eOHR1Dd294wxu6UtBKxFhmq3aOB7RHCIIgVh4r1Uctn8uDHWPOanFsL4BzMz/vmH3UCIIgCIIggJXpo1aaeBHXv/2VmYLZwzn3qKaIkVAjCIIgCKIrrMQ5alP7nsK2bdu6GrSeBRJqBEEQBEF0heV46zPptubR3rLsFiTUiEWh1WGNIAiCWAkst1uf6W5rHt0ty26RSqj96le/Sm5U59xzF091LkWqrsDjhzudsuPwBCB591dyZl1MlDbypbWaFDVLGe6BdIz4K0nTrnSsPytVHZlqDpjHpnsPJdIaqGRZl9KM4uk+C9Uzy3BEnwir4zj8dIgUSKRefZ3WxgPIft7IQpaV2lKmXxLMdB3g9fiGNMuOGW8xIo6jWp5vrkBNwA2YMi8X49pjZbnd+lzs25ppSCXUzj///MZBnJidl2G59UpGSonnpx08frgKT2Q74R4uuTip34CyR4u/JNZcCakxWHryyUBjypyzlvAWSSjfq3lbomBy8Jh+G2IO6fyhACVEBVM+ZmmOqTTGEU2XfalyKVP2mxb/veMJ4lVKCQ9A2RbIGd2sQx0Ha/sMHJpzIuOqguicodfkqdoanGFVnmGmKlKZtgoB6Hq6XM+coS5YaSwhTI1B99IlGuR0hlOGDOybdVK17zE5HE8ijQl/TlOWJWnsUExNxYlNV9N9wtNmlkopsaqgY6riptq+qqu+TOSN5CNqKMfh9us4WFTxY1HlMKiIqIs29uHJQyVUHBHbVgI4eTiP2YqLyXKy5cXgQD8cU8d0cS72cy6lhF2aw2x1Dv1rN9cTCcI9zKSU4EYeq3/zdzH503+AqMxF9qxxDk8IvPHt/wEHnv4VHvnFzyMFm//4i7seQR+roIRkMVJ2BOZtD71mOmFHEGGkEmp79uxp/PzII4/gj/7oj/DHf/zHuPTSSwEADz74IP7yL/8Sn/nMZxamymXGVMXDL1+sYCZw4maMgdf9iKJORnmdYW2vjpzOUbIFDI0hr6vTV/BiH3TWF1BeSzVPqsikiG/UnKkRCFNjsHSVjxmd86hqtAVgVwXyOkNeb26HX4PKdVRmn42IpcbIE6Jrrrd1hYSpIb5mNE+Qnuzcd81UAgRySiUsjcHUokWVxnyfsaYJacd+aHs1IdX+1kJsz/ztK9YEZqvqYsZrQL/FUTDDv+QwNP3I0tUhYWoMGwcMzNkCh+bc0As+Z8D6Ph1DOeXh5EcmRYkOZSrMwRnDUE5ivOyiWAtv22MosWhqfpasjAyZ5wzI6xx6fRiw5iqX/c7YJPVA1ZWwhTJDZiw+L7Tf4liV18A5w0kDJp6dqjVERzt5nWFNrw5TUybEczWB6YoX2rfGgIGcBqtuFFx1lTFs2K5jUFE/fi7rGlfgYNHBvB1etc7RyAeVUsW0RX0GPdHcr0M5DdV6okLY8S8kMGeLxhewkiMxmOORXncaU+bNJw2YGOnRsXfabjlX+dsmAZzUr+OsNTlYOseFG3rwiwPzeOTgPMA6B6pWFXRcsrkfQwUDUko8N1HBLw4U4YZk1WqcYXV/Hr2WDsb6MV8ewL4Xj6Baa0szkBISEt7sEXhzE7AhUTmyDwObtiG/am2b+a36MlMrz2N+ZhJs6CQMX3UDSrv+DeVd/1Zv0rqdp556Cj758Ztx9lnbIKXE//6f9+C//MnHUZydgRDNtpxzrFo1hDs/+xd459t/C4wxzFY97BqvdSRd+NVsGTKwZdBMNPdeaSz1OWrt89EWe/5ZGjJHSL3kJS/Bpz71KVx11VUtj99777345Cc/iYcffrirBS4GxxIhtXuihl8driV+Owx+tDlTOZ8DIbluDGrkwNSbTveejP5G7oeQA01387jAaz/QvJE9GFFzewg5oARa1IWGtYkZT0abmepcjUoArPG8qJqFL9gCcVQVV0YKlpyuYpyCj/niL4gfwdOUevFwtGaUVh2ByYoXuj9MjakLZyBD0heK7cjAe5tkMyqkxETJw2TAYX4ox7Guz2jZZtWvutBPVryGUNI50G9pHW0BoOIIHC65jcgxnQNre3X0mp3HqJASFUe0bLulM1ghebZSqsDysiMb4tX2REBkt7Ztz2U1NYbVPU0hFaT9wqkxYHVPeM2ukJgquygHRht7TR7a1g9wnwukIAxYHOv7jQ6PRCklZmsCLxabo3ycqf0RdsEWQoldETimoz5Xoi4ya55stC05MnLEtNdk6DN5w1CZQUXUhX2upiou9kzbjVHPXpPjvLU5DBc6v8tPlh385NkZjM2pETNDY9hxUh9OHu4MD6+5Ar88UMSzE820gsGCieHeXMftVykljkzN4MXDk0okMQZRKcKZfjHUkNYaGMHglnOgmSp7U3gu5qaOwKl1TjVxi+OYf/j7sI/sAWMM+Xwef/DhD+Ftb3lzRwRUcXYWf/WXf4Z/+Lu/bTz24Q9cj0//p1swMDDQUfMLRRfPTtYan9uhHMeZq3PoMdOmgqwMlkOEVGniRdwUMh9t+/btmfM3jydHFcr+y1/+smNDd+3ahQsvvBCVSvr4kKXKsQi1f3luvuPbaRhSSvSYHKYGDOf1xG9d6ts4r4uJeBiA4TwHixAD7XXM1kc50hwIOU3leaa5feRPkRIp8iMZgB6zHqKO+LkrKvxa5TsmZ5cq4Wpq6WK5hFC3LtNStgXsuuBNYk2PBlNrDYqPwhMy9a3ymqtilwYsLfHi4AmJibILzlhiAoZ/bEgJrCpoiceSGiFSo5lJc6BqrsCReReOCBfZ7XXk618S+kKEVHvbZyZtzNsqHzbpc1WyPZTrt/jDBGsQFTIv0Wdx9Fnxt7I8IfH8tA0hW0Peo2ou2Uro2inuic5UPUxXPVSc5H2n1UdXGVM5nEk1z1Y9WDrH5kEj9v2WUuLXh8uYLLk4c7QQKpyD7J2u4vEXS+jPm7CM+H1nOy4eefghyFoZolKMbQvG0b/lXDDdQGV+NraplBLnG2M4SZ/Hu975DgwPr4pt/8wTv8K//q978O5r3okLLzg/tm3NFTgw66DP0rCmRzth5qMF8a+bb71z55Kdoza17ync/tZzl/R8tDAyr/rctm0bbrvtNtx9993I5dQ3mVqthttuu60LZnAnDowx5HWOVfn4C4+PiBlFa0cCqYfbGWP1Cfjp+naErM9FS9d/2kggifSxRP6tzjRiEVDblr5vZFqh4d/mTIOQSCXSstZh6RzrU86B0ThDr6ml6poxhqG8Vh85TK7Z0FjqFA6NM1RTHtCMMQzkwkf+wtqOFHRYerqDI6dzpI1D1bm6hZoGjTPkDZ5KePnHQ5q2gBJcUbdX2/EkUu03QNV8yior1XvIGMOpI3mcNJiujlUFA6v7090OMw1dBamnOSlJgfLMOHguWRgwxnDa+S/F+y4/BVpERmeQc849D//ulRenKRmWznHq8NIcRSKWP5mF2pe//GW88Y1vxMaNG3HeeecBAB577DEwxvC//tf/6nqBBEEQBEEsD5bKHLUwb7TlMB8tjMxC7SUveQn27NmDb3zjG3jqqacgpcQ73vEOXHPNNejpyT7cedddd+Ev/uIvMDY2hrPPPht33nknLr/88sj29913H2688UY88cQTWL9+PT760Y/i+uuvb/z9Va96Fe67776O51111VX43//7f2eujyAIgiCIdCwFH7Vob7TF9UM7Wo7K8LZQKOB3f/d3j/nFv/3tb+OGG27AXXfdhZe97GX4m7/5G1x55ZV48sknsWnTpo72e/bswVVXXYXrrrsO3/jGN3D//ffjgx/8IFavXo23ve1tAIDvfve7sO3myqHJyUmcd955+Pf//t8fc70EQRAEQUSzFHzUloM3WhaOalnK17/+dbz85S/H+vXrsW/fPgDA5z73OXzve9/L1M8dd9yB3/md38H73/9+bNu2DXfeeSc2btyIL33pS6Htv/zlL2PTpk248847sW3bNrz//e/H+973Pnz2s59ttFm1ahXWrl3b+Ldz504UCgUSagRBEARBLDsyj6h96Utfwn/6T/8JN9xwA2677baGwe3Q0BDuvPNOvPnNb07Vj23bePjhh/Gxj32s5fErrrgCDzzwQOhzHnzwQVxxxRUtj73uda/D3XffDcdxYBhGx3PuvvtuvPOd74y9LVur1VCr1Rq/F4sJK41iSLvWx18qX3MlTD15dWbeYCgYDFU32bBT58rSoLmCMr6OQUuDJ4HZmhdrYMoAFAw1+boWYYkRxOBAjjPYKUxGOQNcqQxl00y4z+kMlgTKrkw0XdW46luDTNzPjAEmZ/BSrEYEgKE8hyOA+Vr8ogLO1KRuTwIa4t8TKZU9gyd9/7v4Gvw2vhdbHG7dDkKtAkxejVhzATBllBy3QEVK5eXnehKWzmMnpKvtU15fNVeiEuHD5mNwBr1uNZNm6nq/xdFnckxU3MRVwaamPlcVRyQeo3ldtVX7MLmOVXlN2YBU4j9XnAGbBgxonGHvtJ1oULx1yMCODXk8OlbFc9N2bNsN/Tou3pDDZNnDnhkndn6+pTGs7dUgwTBTja9ZSpWmYWnq8x1XsZQSeycrODBZxmDBRG/OiD3uXCGx6dxLUZmdwsT+3ZAi+o3ZMNyHW951CVxw/MX/eRqHi7XItnlDw5Vnj2LTgInJihfp/+fTe4LZa2Ql6rp5POeoRWV0Lte5aFFkFmp/9Vd/hf/6X/8rrr76avzZn/1Z4/GLLroIf/RHf5S6n4mJCXieh9HR0ZbHR0dHcejQodDnHDp0KLS967qYmJjAunXrWv720EMP4de//jXuvvvu2Fpuv/12fPrTn05dexzbVlt46GBFxUBFtMnryleLM+VbVnUldC5h8E67BIMDA3mtYTDaZyl39ZLTKVAYlCGpVfdcE3XZGPT8CqJzdRH0KRg6Zmuiw8ARUCfkXpM3+tFNFml2yplqr3FVs6GpmisRosrU0PBnE3UT3SRR5ddtagxlN7wOnStB5/fiSeVFFSVQlEDkjZq1uilp3Onc0hksAAVDw2xVhNbRY3L0W7wRE+XJupcbOgWbJySCu1/5a/m1tbZlUOLP38+8/v+wfay8zmRzpWV9FbHOOoWxLxQbdUjfnFiGeqO5nrJL8V+37AjoHpCvm+i21CFUW1eo99AwGXI6MGd3etAxKPPZvsAF0xdrYe8JZ4BeF9oA0GMamK4KTJY7zW05U1Yzfnn9OQ22K1FyOg15NQYMF5T1iZQSmsZgcPW5jRPzys+QodfgmKx4mAv5XPVbHKM9eiMabDifxwtFF/tm7I6++y2OM0eshgXLSf192Ddj48d7SpittfZdMBhetrGAU4dNlXCQ13BSv4FfH6lhqtKqMhmUce+6Pr3xWekxdUxXOs8FDW+7+spvjUnkGquwO3fGZMnBz/fONlIKDs1WkK/YWNOfh6m3rlT2j1FHAL2Dq9EzuBqDazdhbPejmJ860tLW0Dh+9/U7cOObL2ms4Lzy7HX4y51P4+8f3AevrZYrzhrFf37z2Vjda4ExoNfSMFP1MF5yO95vU2MY7dVRMPgJFf2Ulajr5vGaoxaf0bk856JFkVmo7dmzBxdccEHH45ZloVQqZS4gzFwy7oMR1j7scUCNpp1zzjl4yUteElvDzTffjBtvvLHxe7FYxMaNGxNrD2N9v4ErCxoeP1zD3hmnZRRA58oMUQmp1guvK5pO/b4Zan+OoxCIg/G3UefAgMVQddEYjcjVRwba2wKdF3vO1Mmow69MSgxavB6H48H2lKjpNXlD/AXb+wKr6sjGSdqsX8TCau4zGWoeGmKmaXTbWXOSqAo+VtCVMCzVTVcZlEDzxV+LCEFzdM3f/nZzXr89q2+PVxcqYfhtOSRWFTRUHZVM4Enf6FZr2D+0vyfqef5omBqlCRs7kPX9ERR3OmctuZ/Bvjmrixnp96uEfdgWuBJgEtC5EsaeiK7D9pRXWk5X73uY0W2jXwHM1YQya/aTCTyJWkDINo8NiVV5HRVHNNz38zrDqrweOrrK0GoarQRr+Kj0UI6j3+Q4XHIbI1VWhI2IoQGDGkfZaQr/AYtjMM8bx0fw/e4xlf1GLcSsN9gWkFjdo6PPUgkRtqcSJtZFiIGT+nWM9mp4ZtLGRNmDzoFTVllY36e39QtsHDBw7XmDeOhgBQ+/WIGQwDmjFi7ZkIfWdtzlDeAlJ+UxNufgqXEbNU+i3+LYMqiSJoL9Mihx2mdxTNZrFnUB37qtrH48qug221Pi1XYFHj04h6ePlDvuMlRsD/sm5jHUY2FVrwUGdWy1jKzWR1ANK49N516G4viLOPTs43BrFVy27ST8+X/8TWxeM9DynusacMtV2/COizbi4//4azy8fxobh/K49c1n49VnrIEQssXfb8Di6DNNHCm5KNbU19qRgoahvBYog0RaFFHXzeM1R22lzUOLI7NQ27p1Kx599FFs3ry55fF/+qd/wllnnZW6n5GREWia1jF6duTIkY5RM5+1a9eGttd1HcPDwy2Pl8tlfOtb38Ktt96aWItlWbCs7n0DsHSOizbksWXIwMMHq5izRf12TFBIhT/X9iR6TeW+HnUL0H8sp8u64GItLvlh+Bf7vBYuYILPNbjEaI+OsiNaRuJC20tlFuoK2bgdElezpamRQ1fWR8zqprhRNae5ZckYgwaJAUtDzRUt+zZqf/i3FY2Y/dZIEYAE50DIgEjn9ukMa3o1uB4aaRJxJ3tRF4FpbrP6PmxWmMhuqwNSQkCiaIcLqSAS6kLZnpgR1bbiStTqhsNJVN2mOItq3jyeGSxdg8ZY6BeD1ucAPMWtYcYYNC6xod/AdMVDOeb+pv9aBUONTOfrt/nj9rPBAd0ASk7y9lkaw4Y+HZ5A5Jcq/3eDA2evyaFki9g6eP1bxktPyuOc1RZqQjRGIKM+36O9OlYXNBya95BPGDUyOLC2V8PYvIv5mLusweN/z2QF9z03DTvhfZ8u1VCqORjsLdS/NoV2DADoG1mL4dVr8cHzDbzhvI3whAg9JzDGcPLqHvz36y/FYy/M4Ox1/Y3jo92EmTEVubeuz8CqvIDG05liE4puXzeJaDILtT/+4z/Ghz70IVSrVUgp8dBDD+Gb3/wmbr/9dvzt3/5tcgd1TNPEjh07sHPnTrzlLW9pPL5z587IeW6XXnopfvCDH7Q89sMf/hAXXXRRx/y073znO6jVanj3u9+dYeu6y0hBx2tP7cHT47WOWxNxDBfCRxLaUQKl+XMSOkdjJCFp1FJKmco0Nzj65H8LTmovZUB4JTyBIXn+Xku/GXL1fCPQNPs5akQtrC0AmHq6vv0M07TEibT2OmoRo11RZGiaqea0TRlj0Fna90WN5Gg8pkmgX8APLU93LOV1lpgo4Ld1RHLcl9+WAciZ6T9XfVa46AprnzMYTJlsoM0Zgy1U2kNS34wxOJ5MbbALAA/unW0ZOY3DNIy6gXZ8O8Y4Xrq5gDectwYAYg1r/b9dsHEw8fUbn9cU50UiHcdjjlo+l8fc4X1YSfPQ4sgs1N773vfCdV189KMfRblcxjXXXIMNGzbg85//PN75zndm6uvGG2/Etddei4suugiXXnopvvKVr2D//v0NX7Sbb74ZBw8exNe+9jUAwPXXX4+//uu/xo033ojrrrsODz74IO6++25885vf7Oj77rvvxtVXX90x0na84Yxhy5CJxw515s9FwbJ8q2OJWifYdEHJUkeG6/yCshxPzGlrXir7eKmQdX8slWMjbR1qcC39eWOhENlSCRNFms9Chpsvlfd6JbDQc9Qac9N+600rah5aHEflo3bdddfhuuuuw8TEBIQQWLNmzVG9+Dve8Q5MTk7i1ltvxdjYGM455xzce++9jduqY2Nj2L9/f6P91q1bce+99+IjH/kIvvjFL2L9+vX4whe+0PBQ89m9ezd+9rOf4Yc//OFR1UUQBEEQRHYWeo7aiTQ3zSezUHvNa16D7373uxgcHMTIyEjj8WKxiKuvvhr/+q//mqm/D37wg/jgBz8Y+re/+7u/63jsla98JX75y1/G9nn66ac3FhkQBEEQBEEsVzILtZ/85Cctzv8+1WoVP/3pT7tSFEEQBEEQy49uzFGL8kcDVp5HWhpSC7Vf/epXjZ+ffPLJltWXnufhn//5n7Fhw4buVkcQBEEQxLLhWOeoxfujASvNIy0NqYXa+eefX/ecYnjNa17T8fd8Po+/+qu/6mpxK4V280WCIJY+ZHZKENk51jlqJ+IctCRSC7U9e/ZASomTTz4ZDz30EFavXt34m2maWLNmDTRNi+nhxENKibmawFTFg8bSWxpUbIG+XPf3pSfjDYKD+FP8FuJixTIs+5TIXnNafF+yNNvIGYOX4QVkwxmqu/vOj6BKqllKWU9vWF5fErJ+p2k3jo7D0oBaiugnAPCkhMHSRQjFpGV14B/PWVbupl9Nne79lnUjaf/n5GNfwuBIjNjy2TCQw+7xcmI7zgDH9ZC3TJXSklD6s5M11FwBq574kIT/cSWtTSx3Ugs1fyWmiMldI5pUXYGpsgdHKIGxukfHvB0ezxQkrzPkjHQXCAD12CnA9dJdkiuOhKkrv6qwk7Qvilyp8jw1Bmg8XihxAJbBICRDzY3PvATqrvpAYjwTgEQjX1Vz/WRcN+BNizLpVf5ySRcsrb6f09bMJCDBYtrWL8GsLryQTqR4QsJBfM1NYauMW5OijgBlwGppQMmRqLjxbS0N6DU4ah4aSQJR6BzotzRIKVGsxZvkMqi4LYMrA940Nefr25fk26VzYPOAgaItcSQkNiiIwYHhvA6dM8zbXmLNwwUNaznD4ZKb6DfWb3EM5jhKtkw8FxiaSgXxJFC24487zoCeuudasRZdsx8BNV7yMF0VGLA48ka4AXazPcOaHg3FmsBcwvb1GAzXv3QNfn2ojO88NoFSxPHBAKzpMXDLb6zH2j4LdzwwiWenwh111TmI4Q2n99V9INMrLxJpx5+sc9Ta56OdiHPQkmAy4/LI22+/HaOjo3jf+97X8vhXv/pVjI+P46abbupqgYtBsVjEwMAAZmdn0d/fn+m5npCYrniRwcqukJitxzMF0RiwukdHr9k0rIw7NettLtqNDL6Qc78yjW09abXHSPmHgZDhGYY6RyNTsjVGqrOOmqcyMsPqYG1to+KZGJJDw1Uf6v/tL5fKgDRwwtd4c2QkaaRKyPBcw7CapQzWpsRZVG1S1uO+Qv7GWT1CikXX7L+H7fvUz+6shkQd6VyJrqBHleOFJxpwBvSbvD6iofCEGjWuhrzffaaKQAu+3yUnXKBYGkOP2cwG9Y+NsHgmX/zpgaEsV0iUbA9eSF5o3mgNiXeFxJF5t8OEmgEYymsYsHhLzRVXhiYa5HWGgZzWsu/mah4Ozbsd+87SGEYKGiy9+SXM8SRmQs4FjCmj22CuqpASZVuEjgjmdCWy22sO7mf/cztd6azP0hgGcrzj2BVCwhat2bF+ze11aAw4qd/AYK657yqOhx88OY2fPDcLVh8x83XW71y8Br9z8Wrk6vvDExL37p7DVx6eRq2eCeyPsr18cwEfeskqrO5pjivIiM8J0DzPEMcX/7q54103QU85R6008SJuCpmPtn37dpimuRBlLksyC7UtW7bgH/7hH3DZZZe1PP7zn/8c73znO7Fnz56uFrgYHItQOzzvhgZzB5FSZQkWax6EBAZzGlbltUhDx+ClikGlC0S59fsX5UaWJIuP2AkGs1ddGXt7gzMlEBlTJ9z2fMAgnpCoBoK645IWpFRZoX5bP+s0Dv+ojRI2jXYhf40yBWWoZ0amMNYMq9kXvWG1qhGzNPJRbZPfb5JgZagLNq6yN+NG/HwRbXv10SuDRb6HzYu96q/HYOgxot/vmisaI2aWxtBv8cjj2RUSxaoHW6CeJauFZm/6ddieOi4Z6gJGj67Z9iRKdYFiaSyyLaDC48fmHNieGp0bKeiNVIR2vLoQtIU6RgZzraIriJASE2UPk2UPnAGr8ipYPm4/z1RUcHzBYCiYnWH2Pq6nBJhXHwnO6yxyP3tCYt5WoqrmChwsupFfIAGg12SN+ClHyMhUC79mP9N2pKBhXa8eWceBmRq++cg49kzXcPFJPfjEb2zAlqHwC/l0xcN//cUUfvhcCaO9Om64dBgXbwgfnWlMz6j/7r86ibTFwb9uvvXOnannqE3tewq3v/Vcmo+WQGZ7jkOHDmHdunUdj69evRpjY2NdKWo5k8aVmzF1y6bPUt9ijYQcHH/uiZEiPogxBkNTJ3T1e3wtrggftQjDj3rJaQCPiXABlHCwNIZao474mk2Nwa0Ph6SZv5N2vh8LjGAlubZLqP1hpowlSlszq4u4tPOvOGtedBIFK/yLavJ7yBhDTmco6CrCK+k9KRgMOV2mqsPSOUY0pkZNEoSuzhmG8jpsTyZGpTGmxFafpgR0UuarVb+tL1LUXDA4Ng8YqLqIFIo+Gmfoz+mNUcy4mjljWNOjo9fgYAlfOvz9bPD6/MOkfacx9FsMroj/8uPX3GdpeGxfOSRMvZN5W4JBJNbg1zyU47A0DjNCsPpsHLTw6ddtxHBew4Z+I7bmobyGj16+Gu+5cAiDVnzfjW5oLhqxwsks1DZu3Ij7778fW7dubXn8/vvvx/r167tW2IkAZypPMA2MxV+kOtunryPLkGqSUGytgWWqY6FW2KWO1Tmavheq5ozdZnkPk0Rae9u0MMYyTazPEgmUJNLa60g7y9P/YpOWqBG3qLZp3xc/XD0NKmg+dRmpFwEA2Y+jJIEbbHvSQPpbWWt60l+aSKAtLdLMUfPnpdF8tHRkFmrvf//7ccMNN8BxnIZNx49+9CN89KMfxR/+4R92vUCCIAiCIJYHST5qrT5pJ54n2tGQWah99KMfxdTUFD74wQ82EgpyuRxuuukm3HzzzV0vkCAIgiCI5UGSjxr5pGUns1BjjOHP//zP8clPfhK7du1CPp/HaaedBss6eidigiAIgiAIopPMQs2nt7cXF198cTdrIWLwV3OmsaxQ7dX/08zfaJuTm1iHWmafbmVkWrNav460c2Sy1Jy17ywsVL9+36nbsuyGv1nqWIiu05ic+qiVswuTFLAUjg2G9Psj67kgy37O6WouYLtlSBg6ByydwU5pIkycGCTNUXNnjoDmpWUjlVB761vfir/7u79Df38/3vrWt8a2/e53v9uVwpYrWkrbfWWLkXKFo5B1DywJnStT0KhJzVJKOAHzW454ew6DM+TrR4Fv3RAFg1qZVnYkdO7B0qNtBJo1+3XEX2R1BmgGb1gsxF0nfFuCNDVrvGkj4noy9gLEAOgZJpabGoNucAipDFfD/OCCfZv1iddR3nE+nPlGxgxejE0CoASapSkrDE9I2J6IvSibGoOhqf3stXlktRO0bnFFuHdcsA69XrMQyfvCqttK+MdJ0vsN1Fcd1xMf0qyylUgWr4bGYOr1fZew+jmDD7V6XwxVo+PFv4emxpDPcTAAFVdGmsQCymZjtqoMbQ0O9Fla5Lmg5gq8UHQwlNfq9iIicmGBxoHtozmctdqClMDTEzXsmbYj69g4YOCcNTkYGsPheRf7ZuzIbew1OU5dpRYSUCzXyidujprvm0bz0rKRSqgNDAw0PlwDAwMLWtByZ6SgYbrqRTqUc6b8nXzz2DikLwACzVwBzFaFslloMxP1JDoMP31PLvXtu/m4sgVptfuwNHXyD7twtj/fFYBrqzgXX1T4dVTdTrNUIQEmZYvhrd9v+8IxS+d10dF64Ww36fVrNrm6wAVrZgBMvXU/axzIcxZ64QyaxyYRFDD+a+UNDldI1NxOodSerqBBQtNYiw+b34/OW2tW26ze1/b3xNBaVw1zBuQNDY4nOgSpzllDKDYe05TI9FLsZ51LaPV912mGzMADNbP6sRUmBA3eWXOPyWF7ssMmRvn2tT7f96SLE/7qYTXE6I80tn/SfNuM4H7OGcr2ot2sWTnjh75U52uj+TnxTYj998n2WveHxoBC/UuXL2DyOpDTNczbosWP0RPKdzH4mCOAqYqHgsHQYzR92oSUGC8pY1u/tbIX0WC7EiWn9Rg9qd/AS07KI+97zv3/7d15eBR1mgfw76+qr3AkyBVOI4hKHB2FZMTIMjgeuMrsyD7OIy6DqAvORt1HjuUZQFQQl2H1cTxQLpHIqIuj4zGyO5mVrKssShwHCI4DWRnldEyE4JBw5eiu3/5RXdVXdXdVpzvdSb6f5wkklV9Xv1XdSb35VdX7CqB4gBfnFrjxx2+a8e3Z0F9Cvb0KLiv0oW8Pl7nvBvZU0a9HHg7+tRVHT4fGuhSgqI8Hhb1cjmbWqXNLdI2acX0ai9k647jgbXfQnoK3hha/huPBFlIGjyrMv8qTVb/3azBrkMUjYMyu6QfyZC+kUd3e4xIRB4fo5xbBUx8tfmnOTugxx1+vV9VLESQr9musR0EoUdSXxcYBBBNCzTjYJY65LaDPzrjCEph465USZjITb6zVdrrDEql4624NztyZNbQsGlIajw9oeuFcVYRKP8QrjCqhtwpThP4aJhprxKFJCU9wxi1RzJrUkwGPjf1sJNFChEpsJIrDr8mI1zvR2Ga//t53qaFEKlGx3+jE32LFQHA9+oxcZCJlFYcEzNk1Oz+vBrOuWYLX25jVzXPrdQat1h3+M9jU7MfJVg0nWxK36lKE3gmiJSDxVZM/7syxsZ/1WXGB7w3Nw9B8t+V+1qReb+9IYyv2NbRgxDkenN/XoyfKcWI+2RLAl9+2opdHwXnneGyfnqXOz07BWxa4TU3K16hRYl6XgsG9BU61avjrWQ157uTFag12ejMCCCZGmtmGxY48d9hMkEUs5gyKkAgooSK3iWhSn9GyS4G+fxIehMNmcsJP7SSKWVWAPI8IHicTr9coIAzYOx1jdGKwE4dLkQjIsBnTBGONJDfeOiPGSwmvWyRPYILfN/axnZgVSDP5SzpWAG5X4v0cEYeqQBGJ93MoZgFFC+9XmuAPGgRPcSZ6/cKWh2Y2gXhXABr72RPcPrun6iLOPiZ5j/YJZn/J3qNuBcH+mskLoWkS+PpkbFuseOse1EtB2fCeCZNWIxkbmu/GuQVuc5xV1Mbje3kUXDbIZ76eTNK6n0TXqPH6tNTYStTGjBlj+wdu165d7QqoKxFCrwzuVUXSZsbh7F74C+jXxNn9hejor1shghdv24/FrmSJRmQY9gMwDiF2HmLOfNh8DuOgZS8eAdi88N3R9on4M5Dx1psoKYlZt+23hgieVnS2fXZiDmjOTpGle5wxVnMQh93XBHBWbFgIYdljNB47NwAYCnzxWz5FUxy+N3ias3uLd40ar09Lna1EbcqUKebnzc3NWL16NS6++GKUlZUBAD7++GPs2bMH9957b0aC7Oz0X4g8w0zZkKmDJQ/CZI0JWvcW7xo1Xp+WOluJ2pIlS8zPZ82ahfvvvx+PPvpozJgjR46kNzoiIiKibszxNWq//vWvsWPHjpjl06dPR2lpKSoqKtISGBEREXUu0deosa9n+zlO1PLy8vDhhx/iggsuiFj+4YcfwufzpS0wIiIi6lzCr1FjX8/0cJyozZkzB/fccw927tyJK6+8EoB+jVpFRQUefvjhtAdIREREnUP4NWrs65kejhO1hQsXYuTIkXjmmWewadMmAEBxcTE2btyIW2+9Ne0BdnZSSkd3bmWSk9sZeDlw7uqMZQ8sSovltFy5/UdkKBCN5TOJOo2U6qjdeuutTMpsaPFraGrREJCRrZySHWTz3AJn/dJW70a9GKy9OmpG8dh4BU0N4dXa7ZYKcXI88Wt6IU01SW0tp4QAFAkkS4vDn9NuKQFjv9lhVNRP1DYonJN9p8nELcHas24nFCTfzwYNgN3OXGrwPeekR2ZG+nSGqrckZVUA1nJcsJjuiWYN+V4lYV1F4z06qJcbX59ss/Vz2DdPxYnmAE63JS+U3XDGjzNtGnrY7IsVXSyYKJ7wa9RYNy09UkrUTpw4gTfeeAP79+/H/Pnz0bdvX+zatQuFhYUYOnRoumPsdPR2L1pEZwENYa2cAITKdUbSuwYo6OGRONOq4UyCX7o93AK+YJFSTSZODIzkISABLaD3DI2uhWUcHLRg1X67B0CPKsz2S202elMKAH4JaJqEK0myZlR7NyrLJ6IImBX4/Zp1ImEkZi1+zWy3pbcIip+wGS2jnNS/0iv8x7ZFihiH4L4Lxpysx6mx7+zE4RKRPTIT1UzVuwaE6tvZSTAVAYhgUpywYj6cHeD1fQcEksShCr1fqCIEtGB/20RhG38oSRsxG3EokEn7hRqFkIURh0UQxvv7dJuGuiY/WgJ6B4hzC9wo8Kkx738p9T/STrUGoAiBIb3daGwOxC18KwD07+lC3zw9Hf76pB9fHG+JeS8ZSe3QfBeKB3jhURXL9lpW62eCRnYZ16ixblr6OE7U/vjHP+K6665DQUEBDh48iFmzZqFv3754++23cejQIbz00kuZiLPTaPZrONEc/5ARkPppBz2xCf2CdinBFjtm9XeBXl4VPpfe4y/8oOUONmYPL1ipCkARwQQlun+kGvkXv4TeJ1AVet/JcC1+zVZXBDPmqATGSFCi+xrq2xSZZGgSaJV6UqEgMlGKHpvowBmdwAgh4FYRceAMb0kV3csxIIFAQN+v4Qcko+elndkSK4oQ8Ln09UcXIzV6XobH7HUJyx6nVvsjHj35i3y9VQH4gu+N6AYSHgUR7yMh9NdPytjeojHPJfSZMimBQPT3EEzSUjzAq0JAUYL9a6Pez16XiCjerAgBj6qPjU6UohPFRDHHbp8IJjex7+XwJNt8LiHgCYvZeM8FJFDX1IrGsN8LrQGJL75tRR+fgnMLPHApoSdo9suIVmyKEDgnz4WeHg3fng1EvJd6eRQU9nKbXTYAvZPAgJ4ufHm8BXWn/Obynh4Flxb6zITO2B/Gmy365RbhY4hsMq5RY9209HGcqM2bNw933nknHn/8cfTu3dtcfuONN2LatGlpDa4zOmWj3YuEfsB0K8Ls2xgvGXCpAufkqWhu05s0+9xKTHNtQ3iC4g8AipK4G4FxQFGDMw1tNs6vGMelRAmMIgS8qn66sE1LfsrXL/XZGX1mIv6skdWBM1ECYxw4W4IzVW2BxKeT2zRADbYPcikiLX0KhRBwCX0fGwdYd4J9pyoCvuDYgLSfoCkINZaPt+/cqr59bZo+PjxRjB4rBCBszq4JAajBmRnjNGc6Du7GvlOCs6lms/g4Mev7WaI1YDRujx+HEbPd2TXjND2gJ5GJ9p1L6Pv5+FkNLX6Jo6f9cWeDTzRraGppxog+HuS5BZr98WeOPaqCwp56t4Jmv8Q5PVT08lifVPaoAsUDfRiSH8CRxlb07+FCUR+35fvOXBQ2u8ZZNKLc4ThR+8Mf/oB169bFLB86dCjq6+vTElR3oSh6n0c7rXV8bgUem6+WIoTtsYCz1jNGY3I7MauK/euYJBzMGonQqVY7YwGJVge9SJ30TrXLmDGzO1Y/NW1z3YDtdRtJtN04hLB3raSRYKd/zxkzZvbfGy4l+Wlyfaz+B4Lt6+FEqJG6nbFHT/lt9cDVJPDX5gA0qdj6uertVTGgl709XeBTMahXD5sx8yYiaj/jGrVT3xxGba0bl156KWfV2snx71Wfz4empqaY5Z9//jkGDBiQlqCIiIio8/E3NcDfeBQ+nw8rq/4Pn332WbZD6vQcz6jdfPPNWLZsGV5//XUA+l94hw8fxsKFC3HLLbekPUAiIiLqHKLrqFH7OZ5Re+KJJ3Ds2DEMHDgQZ8+excSJEzFq1Cj07t0by5cvz0SMRERERN2S4xm1/Px8fPjhh/if//kf7Nq1C5qmYezYsbjuuusyER8RERF1EsY1anm+PJz85hBYR639HCVqfr8fPp8Pu3fvxjXXXINrrrkmU3F1eTJY+ymgSeS5laQlIDQpoWnBC35tXVSNiLu40jUW0G8QUGxUmrdbLDd8vIC0XSvMLkXAvKMu2YXxitDru9nZz1Lqd2YKJL8Rwih2CmnvNRQCcAu9nIidOld2C5KG16Ozc/OGsU5bF+c7GGs8v506Xk4Yr68Q9grWCujlYQI24ghoEo1tGrwukfSGEykl+vhU5AUkvj2brBAIkO9V0MOt6O/RJGP1sjj23xtEHcnf1IDTTcf1Hp8//hHrqKWBo0TN5XKhqKgIgUDyXzzdVQ+3gqaWxPc6GgdLLWAUXw2gh1uB1xV7N6VegDSUYEipl02Id7CPqBml2CsUK4L/GAf8eGPUYFkJCYkAgskaYpODRAVnragiVCIEMEorxC+CG7002cFKL+wp4VX1jg8tFnfiGXdOelQBDfrdgJDSMpkxErSI+l4ScCnSMuGOfg2kjK0bFx2L0T1CVWFZ/8zgEkbCo2eAMsFrosnI11eTeqHfRH8kGKVVFCOZiROHqoQK5hodLeK9lxQRVrJF0QvFBuK8WUTwvWFsQ+JkOFhGOviHh5GsxXt/KCL0M2Jsn9UN0FJKnA2WxACAM22AV9WQ71NjulUY743WgESBT0/m+vgU1J/yWxav7ulRcF4fN/KCd+363AJn2qzfo4qA+XvCeG9Y1Y4zuBQkLShNlG5F37sOJ48eYY/PNHJ8jdqDDz6IRYsW4dtvv81EPJ1eD7eCfnkqrDqzSCkR0KwTpzNtGpqaA/AHjxTGWKvaXxLGgVCatZ0AY4bEKKsgYpbHY4wX0Ot4RbcoUhUBlyrCEiT9Mw160dBQEqnH3GozSRPQZwZUM+bQ9zSpz2yFb58xc6XHHNomxUZZAWMb81wC+V4F4RMibgXo5RHmaxa+ruj9bBTRjT6gS+gHTH9YzIlebyORid6+8Oc2YnYpgFeNbB2lCL1YrWLxegdzTPN10WRsIWRDQAP8gcj9bLXfAD15jO5WZnS8EFHjo5fr39OXRcesJ6axrbFUBWYiFL2N4aSxL0PPFCqGa/F+Dn8fha9bNfapuV6JVr+GE2cDEQVoAaAlIHHstB+nWgIR740WvzTL3Rjr9agCRX08GNLbZSadqgKc18eNiwd4kRf8A834GezlUVDgVSJK0PhcAn18CoyyaeEx+1REjFWE/n5xWbw3iKjzcXyN2sqVK/HFF19gyJAhKCoqQs+ePSO+v2vXrrQF11m5VYG+eSqa/XorKT2xSn7aLSCBppYAvKqIqDQejzFb4AqbzYj+pWx+bSQPiVYYldwBoar1iX7ZBwAgmJDYPY3lEqF2T3EPwMGw1ajZNRFxkA37HPZbA/X2qmjxa2Zymrj3aTCxQvLTUsasjEvY2xOa1Au6Koq+BVYhiODUkFcV8AezrXivtxkzgqdbbZwek9Bn7VQhocRpJBqdVIX3HI1X+FVKCZcqzAbgyd6jCqR5OjTyNU4+i5YoZv25I5u2JYrZrQq0BjScbAnEna0ynGzVcKZNQ29vdI+P2DjyvQp6eTw469fQv0coaYvuwAHoiVyBT0FrQEJNUHzZiNmj6l0t9Mcmfm8QZdJfPt+N5hPH0NZWnO1QuoyUynPwF0ByQgjkufUip43NAZxps/9YVYk9WMUfKxIefMLjiTdrYjUWsN9EHkjebiicKuyvWwBxk4eIccJ+E+3wGSK7TdntVLBPlWLM5CWZ9QRC13WFL4tHwlnMio0DvJlI2DilFp7cRS+LN14mOK0fze71bdF/rNiJ+XSrljRJMyjB07e2ikBDYlAvt+19Fz6Dlmxs9CwhUTb4mxoQOMUzbunkOFFbunRpBsLouhQh0Muj4kybP/ngMBn5PWtnyikihsz8ss+lQ0gmttHpGp3GYHu8k9fa4bqdztjYHevkDwqn9BBsbp+T9ToYq9iYoY5Zfw7sOyK7jGvU3G53tkPpMmxfo3bmzBncd999GDp0KAYOHIhp06ahoaEhk7ERUYzcSHMzkWikOt7BmjO03szJnX1HRNliO1FbsmQJNm7ciMmTJ+O2225DVVUV7rnnnkzGRkRERJ3IXz7fjaavD2Y7jC7F9qnPt956Cxs2bMBtt90GAJg+fTrGjx+PQCAAVbXZ5ZmIiIi6rKYDn+GBn1zP+mlpZHtG7ciRI5gwYYL59RVXXAGXy4Wvv/46I4ERERFR5zLoO+NQXFwMj8eT7VC6DNuJWiAQiNnxLpcLfr+zi+SjrV69GiNGjIDP50NJSQm2bduWcPzWrVtRUlICn8+HkSNHYu3atTFjTpw4gfvuuw+DBw+Gz+dDcXExKisr2xVn+/ACX0oXvpeIiLoT26c+pZS488474fV6zWXNzc0oLy+PqKX21ltv2X7y1157DXPmzMHq1asxfvx4rFu3DjfeeCP27t2Lc889N2b8gQMHcNNNN+Huu+/GK6+8go8++gj33nsvBgwYgFtuuQUA0Nraiuuvvx4DBw7EG2+8gWHDhuHIkSPo3bu37bjSySgA64TZSslWiQIJoSj27sILK0xre90O7pSzS68eb//uO7slNIwqZ3ppk/TG7OSGWaP+m+2bM+1un9Qrgdkd7yRoJ/u5q5NSwqUItNjceXppDnt/84YXOe7u+5m6pmOH9qGtbWy2w+hSbCdqd9xxR8yy6dOnt+vJn3zyScycOROzZs0CADz99NN49913sWbNGqxYsSJm/Nq1a3Huuefi6aefBgAUFxdjx44deOKJJ8xEraKiAt9++y22b99u3h5cVFTUrjhToQV7eWrQS3T08ak43aahLUnBMbtlEoy78PUq+Ro8avwaWMaBISD1TgfuYJeBRAmbgFGXSdg6XBkFRe1UB1CCFdjtJj56cVU9TqsEKHw7AkY/VCRPSFUR6vKQjKroLbPitXIKpyC0P+yyl6Tp76tQe6TE22e0+7Lbp9NOHLlEBN9E6ZxjNPazzyUAKDjTqiVdv8+lwKsCrYHksRjvuWS9fYk6q8Cpv2Y7hC7HdqL24osvpvWJW1tbsXPnTixcuDBi+aRJk7B9+3bLx1RXV2PSpEkRy2644QZs2LABbW1tcLvd2Lx5M8rKynDffffhnXfewYABAzBt2jQsWLAg7k0PLS0taGlpMb9uampKebuklPBLvdJ7OEUR6O1V0RrQcKZVszx4elS9jZGt2S6EEoyABpzV9ATMpYT+WjcO5JoEWgOh52wNSKhCmgVfo5/P6B9pLNer8icmzOQrfmKgCH0bQ0mXTN6L0RgLmH0sw5M148Aa3Q81II0q99bJjAAggjWtlGCvyaRxiOBYaV3gVyDUJcLcPsRPXpWo/WwllKBFJpTGPkiacAc7MSSKQ1U6b+JgJGtA/NdPhI+FdaHc8J8VPRnXi1W7VYEzrZrZFiqcWwXO8bnMLiIuRW8vZjVWQO8lG6/DAFFnE++4Oeg741hDLc0c9/pMl4aGBgQCARQWFkYsLywsRH19veVj6uvrLcf7/X6zptv+/fvxxhtvIBAIoLKyEg8++CB+8YtfYPny5XFjWbFiBQoKCsyP4cOHp7xdrVpskhbOoyoo8KnIC2sGqgqgh1vvCZiojZHxfyBO38a2gESzPzJRavFraPbHJoYBqfcrDF9u9DpUldheoSrsvVmMPo8RVdIBeFUBn0uJSAiEENa9GBMkMOGbYTQa92vWSYh+mim2n2Z071Mh9F6mVn0so/eFEAIuJZhQh41Vhd4zNGb7gvsjfKyR0EWvO2I7w1p+xevTqb8XIvaI5brC44jePlcnTtIMQoSS1pjvhX0/YjyM8aH93BqQMTOmihDo5VWR71VDLZ8A9PGpGNDDFdHqzejr2cMtInpvuhX959uV4PUm6mzSedykxLKWqBmif3HZba0SPj58uaZpGDhwIJ5//nmUlJTgtttuw+LFi7FmzZq461y0aBEaGxvNjyNHjqS6ObZO/entpRT08uhNwn0ukfRgKaEnaIEkp3qkBFr8EmfbAjjTppm9IeNp0yQU6AeTRAcSM3lKvGnBsaGG0XqCJsyeofHGG8md/pH4gCahJ6XxEpjoscZnxkE7HiUYs52ZLkXoyZpb0ZPbxPtOT0hVoSd0rgQJuRmt1JulB2xc3xjaB4nXaexnVSRPFDuj8PeoVUIePVY/fawnaG1JeqK6VIF8n4p+PVQU9nKhp0eJu++U4M93nktP2ryu+GOJOqt4x039GjUHPRMpKcctpNKlf//+UFU1Zvbs6NGjMbNmhkGDBlmOd7lc6NevHwBg8ODBcLvdEac5i4uLUV9fj9bWVstbhr1eb8RNEh1FEcJRquzkWhw71yUZhLA/qxJ2psnGehMnaNFjMylZkpZKHMbpXifjncjE/Z1GzF05b3C6bU7ez/q1a/bYfe8TdUbxjpu8Ri39sjaj5vF4UFJSgqqqqojlVVVVuOqqqywfU1ZWFjN+y5YtKC0tNc+Jjx8/Hl988QU0LTQVsW/fPgwePJh1XYiIiDKI16ilX1ZPfc6bNw8vvPACKioqUFtbi7lz5+Lw4cMoLy8HoE+tzpgxwxxfXl6OQ4cOYd68eaitrUVFRQU2bNiA+fPnm2PuueceHD9+HLNnz8a+ffvw29/+Fj//+c9x3333dfj2EREREbVH1k59AsDUqVNx/PhxLFu2DHV1dbjkkktQWVlpltOoq6vD4cOHzfEjRoxAZWUl5s6di1WrVmHIkCFYuXKlWZoDAIYPH44tW7Zg7ty5+O53v4uhQ4di9uzZWLBgQYdvHxERUXfSVHcYwLhsh9GlCCntXP7evTQ1NaGgoACNjY3Iz8939Nhmv7R9zYs/YF2mw0p0eYZk7EcB9HQrUIWwdW2PnVIdBgG9HEcmBBzsDDs3BxgSlQtpr+gyEYlomrQsARKPk+uhOuM1asZvqXTH7bQgdZ6Da9SIuhPjuPn888/jjjvu4KVGaZTVGbWuyMnF9p5g4dk2TSYs6SGgF+B0KQKtAYmWJMmgqgCqEObdkQnvZlP0cQFIKDL5heau4MnyeLXEIuIw1yOR9I7EsM8T39XqJAXVOb2mWxGZTdjsEEKvZ2cnQTfuVNX3jb2NddI5IZvMsjTmgvTGrQjAp+rv5bYkCZtbYVcBomQuvPBCJmlpxkQtzdwqzI4E8ZiV66X+C18vjaGXCYg+KLsUwB2WabgVwO0RaPbLmAOLURcLCB5IpIRHFQhIxJTpEALwqgpUxWhJJMyYVYuDoXFnqFE+RYVeUNZvUdbAKEMR9ugEeyNypskoagtYFyV1MqsYXs/N7oE1ot6WRQypMJJfp3PXRrFaRcCyIK+w2M+JYo7ez7nOsjAtQu+RdOVKxvtZVY1OH5HfN2rkGWN5EoKIOhITtTRThIBHlZZ/oQtE3r1hJA9GUuVzKfBrEq0BaVbxF4hMMowDRZ5bgVsLFbg16mKF16Ez/tcPQgJtmj7WrYqI5C86iQlAb5dkVYsqOmaPKhDQ9EKhAnoc0THHE57AGMPDq8cbSUeyDgYx6w1LYFKd+UiWNNpeT9Q67T9/aD9LKeFSBTQZqqtmdBOIfL0jgzViTrSfc5Gd11qa/7RvW6L3s/F+Nn523Ql+rogolt/vz3YIXQ4TtQwQQsAlAFVI8y90FcGDJeJUUDeSKqFfByNE/N6d0WPbwqaZ4o3XD0KK7RkmDaFK+8niUATgEUgYc8xjI9Zj8X0zUXJ6rVbimJ2wShptPzZqHe2LQ5jrdCnW34tcpsdszNqGL891ThJy42cpXadxw9/PXtX6e0REHS3rnQm6MqOljEcJm8mw8Rirz+ON1YL/2xkrbI41GEVw7azbbsyA/STGSGydsBuzE6nEYVS+T6fwGZ3kr4n1511NpvYzZ8+IUuNycf4n3ZiodQCnF7N3xoNDZ4y5M3K6n/mypI7vaSLKBUzUiIiIiHIUEzUiIiJKi+985zvZDqHLYaJGREREacEaaunHRI2IiIgoRzFRyzCnRVr1x2QmlkxiEVAiImptbc12CF0OE7UMksECpY56dMrQ/3ZyHyetNGX4E9hg9NNMloQZbZ30wrTJ1++0HpmTe+8CmjQL5KZLKusKfx0pc7h/iXLLnj17sh1Cl8OCJxlgzKKlkqBpCCUyCpIX9FSEgEeRSXtvhroG6L09k/WhVoLPG9Ck2UcSiCxZYCwzepUK6F0PXMHx8cobOGn/I4SAquiJV7LCt2aB2mArJaB9xVDb9Vjj8e1cT3cjwioLJ/vxcfI+IiLqrJiopVl4m59kjOTMKKga/TAtOMZImuIdlIxOCIqUlr03XcJoBRWqcC9kZFJorgvBBDHsubSw3orhCVtARjZ9l9D7lfo1vRUPzGRNryGf6oFVL0AKiDgJsLHeiCQSkYkSbD63sZ/NxLmdMzbh1fPNeJlcJBTeCstq96ez6wMRUa5jopZmdpM0IHQQDyRomyMR7L2J5KcAFSHgVvRkxh9M8FxK/DZDKoKzZsFlRpureHGEJzytfi3uDJcmgWa/1BvIq8Kc32rvgVUIATUsIQUiE9B4cTt9WidtjGytL/g/8wpnhAgludF9S4koN7HXZ/oxUcsiO6cgw8faYSQzavKhwfHO3gR+zX7vzYAEvBk4qOqnQ+2Pd5qs8bKn3GIkbERE3RFvJiAiIqK0YK/P9GOiRkRERJSjmKgRERFRWrCFVPoxUSMiIqK0YAup9GOilkWalNBsFokV0O9wtMvJxddOLtZWhH4nabpjyBW8kYCIiHIJr/pLs7B6nXHJYHkJ445PCUBB/AKxLkWvhSaEgJKkmG54TbFQx4D4saiKXtYDSF4DThWAO3i7pSYlWvzx7wB1K9BrqSFx8dtUGUlrslIadss5pFLhPnzd6YqDiIgoHBO1NHOpIm7CI2X8DgJaMKMKrwumCD3h0Q/yoaO8EixgG4gqbquEJWgwHiOlWcA1emz0DJ3RvSA6EYw3Ns+twK/pCZsxXBWA1yUiYk53khYtrD6q5fJknNZNCxX/jV2eagxERERWmKhlgCIEhBI586XF6RoQTZP67JpHFXApImY2yvhcSgk1mFRF1wmLHi+lhKKEZtiM/qDRCZSZIEKaiaCqhNZhFYcqgB5ugdaA1AvuqrFjMyl8RivUAyGUSCUKI5XCtpH7OfJzKRFstxX5mnAmjYiIUsVELUMiqugHJNocdCzwqsKcwYrbL9NsByWNuv8JYzFYJX9W46WUcKlRs3MJ1u1RY5d1pOhEyViWSCpJWqJ1hn9PsZEoEhERJcObCTJMCAHF4V6O7luZZLSjWML/T9fY6MdkixCR/6d13TkSBxERdS9M1DpA5hOY7GcE2U7SiIiIuiImakREREQ5iokaERERUY5iokZERESUo5iodYBUiqk6fIZMPwERERFlARO1DEslSZMSttpKBUentH5yhruMiIiygYlahkgZVoxWCHhVYfvezJZAqDVTvIRNBnuESgloWuhrO3HxBk0ddwMREeU6Jmppps+Gxc7AqIqAzyXgTtJZ3WgD1abpCZveWSq0NuNzCej9QoPPFd7yySphE0hesLW7EcHWWMl2iYDxunREVERERCHsTJBmCRtzCwG3qvfTbA1ENjRXLIrcahJoCegN2V1KqJtAQJOWTdnD+4WGohFM0JIQYU06w3crW0AREVG2MVHLAiEEvC6B1oCGgIxtuh7NLwEtoCdrVglaNE3qyR0gmGTYZO4nabGMiIgoS5ioZZEihO2L1KNPbybDJCM13G9ERJRLeI0aERERUY5iokZERESUo5ioEREREeUoJmpEREREOYqJWhYpAnAr9l4EVdHLeiQpwwZAvyDebgFcIiIiyl286zPNwkpy2RoLAG5VICAl/FrsGEUAnmAmJ4SAAr1OWkCzfh5VCd5NyiSNiIio08v6jNrq1asxYsQI+Hw+lJSUYNu2bQnHb926FSUlJfD5fBg5ciTWrl0b8f2NGzdCCBHz0dzcnMnNMAkR6gKQfKww66cp0BMyNfhAEfzaG1xgjDP+d6nCHAvoCZ1LCS/SKhLWZiMiIqLcl9VE7bXXXsOcOXOwePFi1NTUYMKECbjxxhtx+PBhy/EHDhzATTfdhAkTJqCmpgYPPPAA7r//frz55psR4/Lz81FXVxfx4fP5OmKTAASTNRutiSIfoydWqjAStNBpzuiEK5S06cmZcUqUyRkREVHXImQWz5GNGzcOY8eOxZo1a8xlxcXFmDJlClasWBEzfsGCBdi8eTNqa2vNZeXl5fj0009RXV0NQJ9RmzNnDk6cOJFyXE1NTSgoKEBjYyPy8/NTXg9g3fczGQFpO+EyXj4maERElC3pPG5SpKzNqLW2tmLnzp2YNGlSxPJJkyZh+/btlo+prq6OGX/DDTdgx44daGtrM5edOnUKRUVFGDZsGH74wx+ipqYmYSwtLS1oamqK+EgXpzNrwUc5WD9n0YiIqGNl8rhJkbKWqDU0NCAQCKCwsDBieWFhIerr6y0fU19fbzne7/ejoaEBADB69Ghs3LgRmzdvxquvvgqfz4fx48fjz3/+c9xYVqxYgYKCAvNj+PDh7dw6IiKirovHzY6T9ZsJomeDpEx82s9qfPjyK6+8EtOnT8dll12GCRMm4PXXX8eFF16IZ599Nu46Fy1ahMbGRvPjyJEjqW4OERFRl8fjZsfJWnmO/v37Q1XVmNmzo0ePxsyaGQYNGmQ53uVyoV+/fpaPURQF3/ve9xLOqHm9Xni9XodbQERE1D3xuNlxsjaj5vF4UFJSgqqqqojlVVVVuOqqqywfU1ZWFjN+y5YtKC0thdvttnyMlBK7d+/G4MGD0xM4ERERUQfJ6qnPefPm4YUXXkBFRQVqa2sxd+5cHD58GOXl5QD0qdUZM2aY48vLy3Ho0CHMmzcPtbW1qKiowIYNGzB//nxzzCOPPIJ3330X+/fvx+7duzFz5kzs3r3bXGc2sPQsERERpSKrnQmmTp2K48ePY9myZairq8Mll1yCyspKFBUVAQDq6uoiaqqNGDEClZWVmDt3LlatWoUhQ4Zg5cqVuOWWW8wxJ06cwE9/+lPU19ejoKAAY8aMwf/+7//iiiuu6PDtS6U0BxEREZEhq3XUclV768EYezTVHSugl/UgIiLqDFhHLXPY6zPN2jOLxgSNiIiIwjFRS7NUkrRQf850RkJERESdHRO1HMAEjYiIiKwwUcsi5mdERESUSNY7ExARERGRNSZqRERERDmKiRoRERFRjmKilkXS+GAlOyIiIrLARC0HMFkjIiIiK0zU0kwgtbs5JQBNMmEjIiKiECZqaSZE8CPFx3N2jYiIiAxM1DJECEBpT8LGZI2IiKjbY6KWYal2HWC3AiIiImKi1gGYcxEREVEqmKgRERER5SgmakREREQ5iokaERERUY5iokZERESUo5io5SiW5yAiIiImah3AaQFc5mhEREQEAK5sB9BdCAFAJk/CBFhDjYiIiHRM1DqQMbMmLRI2ETaGiIiICGCilhXG7BqC/3EWjYiIiKwwUcsSIzFjfkZERETx8GYCIiIiohzFRI2IiIgoRzFRIyIiIspRTNSIiIiIchQTNSIiIqIcxUSNiIiIKEcxUSMiIiLKUUzUiIiIiHIUEzUiIiKiHMVEjYiIiChHMVEjIiIiylFM1IiIiIhyFBM1IiIiohzFRI2IiIgoRzFRIyIiIspRTNSIiIiIchQTNSIiIqIcxUSNiIiIKEcxUSMiIiLKUVlP1FavXo0RI0bA5/OhpKQE27ZtSzh+69atKCkpgc/nw8iRI7F27dq4Y3/1q19BCIEpU6akOWoiIiKizMtqovbaa69hzpw5WLx4MWpqajBhwgTceOONOHz4sOX4AwcO4KabbsKECRNQU1ODBx54APfffz/efPPNmLGHDh3C/PnzMWHChExvBhEREVFGCCmlzNaTjxs3DmPHjsWaNWvMZcXFxZgyZQpWrFgRM37BggXYvHkzamtrzWXl5eX49NNPUV1dbS4LBAKYOHEi7rrrLmzbtg0nTpzAb37zG9txNTU1oaCgAI2NjcjPz09t44iIiLoJHjczJ2szaq2trdi5cycmTZoUsXzSpEnYvn275WOqq6tjxt9www3YsWMH2trazGXLli3DgAEDMHPmTFuxtLS0oKmpKeKDiIiIrPG42XGylqg1NDQgEAigsLAwYnlhYSHq6+stH1NfX2853u/3o6GhAQDw0UcfYcOGDVi/fr3tWFasWIGCggLzY/jw4Q63hoiIqPvgcbPjZP1mAiFExNdSyphlycYby0+ePInp06dj/fr16N+/v+0YFi1ahMbGRvPjyJEjDraAiIioe+Fxs+O4svXE/fv3h6qqMbNnR48ejZk1MwwaNMhyvMvlQr9+/bBnzx4cPHgQf/d3f2d+X9M0AIDL5cLnn3+O888/P2a9Xq8XXq+3vZtERETULfC42XGyNqPm8XhQUlKCqqqqiOVVVVW46qqrLB9TVlYWM37Lli0oLS2F2+3G6NGj8dlnn2H37t3mx49+9CP84Ac/wO7duzk1S0RERJ1K1mbUAGDevHm4/fbbUVpairKyMjz//PM4fPgwysvLAehTq3/5y1/w0ksvAdDv8Hzuuecwb9483H333aiursaGDRvw6quvAgB8Ph8uueSSiOfo06cPAMQsJyIiIsp1WU3Upk6diuPHj2PZsmWoq6vDJZdcgsrKShQVFQEA6urqImqqjRgxApWVlZg7dy5WrVqFIUOGYOXKlbjllluytQlEREREGZPVOmq5ivVgiIiI7ONxM3OyftcnEREREVljokZERESUo5ioEREREeUoJmpEREREOYqJGhEREVGOYqKWg6TUP4iIiKh7Y6KWQ6KTMyZrRERE3VtWC95SiJGUaWHJmQhbnqBPPREREXVRTNSyKGYGLfr7wf+NHE1KJmxERETdCRO1HJDsDKeEnqQpTNKIiIi6FSZqWcRL0IiIiCgR3kxARERElKOYqBERERHlKCZqRERERDmKiRoRERFRjmKilmW8kZOIiIjiYaKWRUa5jWTJmgiOZWspIiKi7oWJWpYZBWwVYZ2wiaixLHhLRETUfbCOWg4IT76iEzN2IyAiIuq+OKOWQ6xmzJikERERdV9M1HIUEzQiIiJiopaDmKQRERERwESNiIiIKGcxUSMiIiLKUUzUiIiIiHIUE7UOwCK1RERElArWUcswKQEJBP/hjQJERERkH2fUMkRKQJNmfgYZ9T0iIiKiZJiopZnRj9MqF5PQkzdjHBEREVEiTNTSTMI6SYseAzBZIyIiosSYqGUJkzUiIiJKhokaERERUY5iokZERESUo5ioEREREeUoJmpEREREOYqJGhEREVGOYqKWRbzhk4iIiBJhopZm7BBFRERE6cJen2kmBMypskQzZkZCx96fREREFA8TtQwwk684raQEmKARERFRckzUMkgIPSkzen8yQSMiIiInmKh1ACNhIyIiInKCNxMQERER5SgmakREREQ5KuuJ2urVqzFixAj4fD6UlJRg27ZtCcdv3boVJSUl8Pl8GDlyJNauXRvx/bfeegulpaXo06cPevbsicsvvxwvv/xyJjeBiIiIKCOymqi99tprmDNnDhYvXoyamhpMmDABN954Iw4fPmw5/sCBA7jpppswYcIE1NTU4IEHHsD999+PN9980xzTt29fLF68GNXV1fjjH/+Iu+66C3fddRfefffdjtosIiIiorQQUsqsFcgfN24cxo4dizVr1pjLiouLMWXKFKxYsSJm/IIFC7B582bU1taay8rLy/Hpp5+iuro67vOMHTsWkydPxqOPPmorrqamJhQUFKCxsRH5+fkOtoiIiKj74XEzc7I2o9ba2oqdO3di0qRJEcsnTZqE7du3Wz6muro6ZvwNN9yAHTt2oK2tLWa8lBLvvfcePv/8c3z/+9+PG0tLSwuampoiPoiIiMgaj5sdJ2uJWkNDAwKBAAoLCyOWFxYWor6+3vIx9fX1luP9fj8aGhrMZY2NjejVqxc8Hg8mT56MZ599Ftdff33cWFasWIGCggLzY/jw4e3YMiIioq6Nx82Ok/WbCURUBVgpZcyyZOOjl/fu3Ru7d+/GH/7wByxfvhzz5s3DBx98EHedixYtQmNjo/lx5MiRFLaEiIioe+Bxs+NkreBt//79oapqzOzZ0aNHY2bNDIMGDbIc73K50K9fP3OZoigYNWoUAODyyy9HbW0tVqxYgauvvtpyvV6vF16vtx1bQ0RE1H3wuNlxsjaj5vF4UFJSgqqqqojlVVVVuOqqqywfU1ZWFjN+y5YtKC0thdvtjvtcUkq0tLS0P2giIiKiDpTVFlLz5s3D7bffjtLSUpSVleH555/H4cOHUV5eDkCfWv3LX/6Cl156CYB+h+dzzz2HefPm4e6770Z1dTU2bNiAV1991VznihUrUFpaivPPPx+tra2orKzESy+9FHFnKREREVFnkNVEberUqTh+/DiWLVuGuro6XHLJJaisrERRUREAoK6uLqKm2ogRI1BZWYm5c+di1apVGDJkCFauXIlbbrnFHHP69Gnce++9+Oqrr5CXl4fRo0fjlVdewdSpU23HZVz3xrtYiIioO+ndu3fC68Sp42W1jlqu+uqrr3gHCxERdTup1kFjHbXMYaJmQdM0fP3112n7y6KpqQnDhw/HkSNHutUbmNvdvbYb6L7bzu3mdncVqR73pJQ4efIkZ+QyIKunPnOVoigYNmxY2tebn5/f5X6o7eB2dz/dddu53d1Ld91uK0II7osMyXodNSIiIiKyxkSNiIiIKEcxUesAXq8XS5Ys6XbFAbnd3Wu7ge677dxubjdRpvBmAiIiIqIcxRk1IiIiohzFRI2IiIgoRzFRIyIiIspRTNSIiIiIchQTtTRZvXo1RowYAZ/Ph5KSEmzbti3h+K1bt6KkpAQ+nw8jR47E2rVrOyjS9HKy3XV1dZg2bRouuugiKIqCOXPmdFygaeZku9966y1cf/31GDBgAPLz81FWVoZ33323A6NNLyfb/uGHH2L8+PHo16+f2Xv3qaee6sBo08fpz7jho48+gsvlwuWXX57ZADPEyXZ/8MEHEELEfPzf//1fB0acHk5f75aWFixevBhFRUXwer04//zzUVFR0UHRUpcmqd1+9atfSbfbLdevXy/37t0rZ8+eLXv27CkPHTpkOX7//v2yR48ecvbs2XLv3r1y/fr10u12yzfeeKODI28fp9t94MABef/998tf/vKX8vLLL5ezZ8/u2IDTxOl2z549Wz722GPyk08+kfv27ZOLFi2Sbrdb7tq1q4Mjbz+n275r1y65adMm+ac//UkeOHBAvvzyy7JHjx5y3bp1HRx5+zjdbsOJEyfkyJEj5aRJk+Rll13WMcGmkdPtfv/99yUA+fnnn8u6ujrzw+/3d3Dk7ZPK6/2jH/1Ijhs3TlZVVckDBw7I3//+9/Kjjz7qwKipq2KilgZXXHGFLC8vj1g2evRouXDhQsvxP/vZz+To0aMjlv3TP/2TvPLKKzMWYyY43e5wEydO7LSJWnu223DxxRfLRx55JN2hZVw6tv3v//7v5fTp09MdWkalut1Tp06VDz74oFyyZEmnTNScbreRqP31r3/tgOgyx+l2/+53v5MFBQXy+PHjHREedTM89dlOra2t2LlzJyZNmhSxfNKkSdi+fbvlY6qrq2PG33DDDdixYwfa2toyFms6pbLdXUE6tlvTNJw8eRJ9+/bNRIgZk45tr6mpwfbt2zFx4sRMhJgRqW73iy++iC+//BJLlizJdIgZ0Z7Xe8yYMRg8eDCuvfZavP/++5kMM+1S2e7NmzejtLQUjz/+OIYOHYoLL7wQ8+fPx9mzZzsiZOri2JS9nRoaGhAIBFBYWBixvLCwEPX19ZaPqa+vtxzv9/vR0NCAwYMHZyzedEllu7uCdGz3L37xC5w+fRq33nprJkLMmPZs+7Bhw3Ds2DH4/X4sXboUs2bNymSoaZXKdv/5z3/GwoULsW3bNrhcnfPXbCrbPXjwYDz//PMoKSlBS0sLXn75ZVx77bX44IMP8P3vf78jwm63VLZ7//79+PDDD+Hz+fD222+joaEB9957L7799ltep0bt1jl/g+QgIUTE11LKmGXJxlstz3VOt7urSHW7X331VSxduhTvvPMOBg4cmKnwMiqVbd+2bRtOnTqFjz/+GAsXLsSoUaPwD//wD5kMM+3sbncgEMC0adPwyCOP4MILL+yo8DLGyet90UUX4aKLLjK/Lisrw5EjR/DEE090mkTN4GS7NU2DEAL//u//joKCAgDAk08+iR//+MdYtWoV8vLyMh4vdV1M1Nqpf//+UFU15i+to0ePxvxFZhg0aJDleJfLhX79+mUs1nRKZbu7gvZs92uvvYaZM2fi17/+Na677rpMhpkR7dn2ESNGAAAuvfRSfPPNN1i6dGmnSdScbvfJkyexY8cO1NTU4J//+Z8B6AdyKSVcLhe2bNmCa665pkNib490/YxfeeWVeOWVV9IdXsakst2DBw/G0KFDzSQNAIqLiyGlxFdffYULLrggozFT18Zr1NrJ4/GgpKQEVVVVEcurqqpw1VVXWT6mrKwsZvyWLVtQWloKt9udsVjTKZXt7gpS3e5XX30Vd955JzZt2oTJkydnOsyMSNdrLqVES0tLusPLGKfbnZ+fj88++wy7d+82P8rLy3HRRRdh9+7dGDduXEeF3i7per1ramo6xeUchlS2e/z48fj6669x6tQpc9m+ffugKAqGDRuW0XipG8jSTQxdinEr94YNG+TevXvlnDlzZM+ePeXBgwellFIuXLhQ3n777eZ4ozzH3Llz5d69e+WGDRs6dXkOu9stpZQ1NTWypqZGlpSUyGnTpsmamhq5Z8+ebISfMqfbvWnTJulyueSqVasiShacOHEiW5uQMqfb/txzz8nNmzfLffv2yX379smKigqZn58vFy9enK1NSEkq7/VwnfWuT6fb/dRTT8m3335b7tu3T/7pT3+SCxculADkm2++ma1NSInT7T558qQcNmyY/PGPfyz37Nkjt27dKi+44AI5a9asbG0CdSFM1NJk1apVsqioSHo8Hjl27Fi5detW83t33HGHnDhxYsT4Dz74QI4ZM0Z6PB553nnnyTVr1nRwxOnhdLsBxHwUFRV1bNBp4GS7J06caLndd9xxR8cHngZOtn3lypXyO9/5juzRo4fMz8+XY8aMkatXr5aBQCALkbeP0/d6uM6aqEnpbLsfe+wxef7550ufzyfPOecc+Td/8zfyt7/9bRaibj+nr3dtba287rrrZF5enhw2bJicN2+ePHPmTAdHTV2RkDJ4FTsRERER5RReo0ZERESUo5ioEREREeUoJmpEREREOYqJGhEREVGOYqJGRERElKOYqBERERHlKCZqRERERDmKiRoRERFRjmKiRkRpsXTpUlx++eXm13feeSemTJnS4XEcPHgQQgjs3r27w5+biCjdmKgRdWF33nknhBAQQsDtdmPkyJGYP38+Tp8+nfHnfuaZZ7Bx40ZbY5lcERFZc2U7ACLKrL/927/Fiy++iLa2Nmzbtg2zZs3C6dOnsWbNmpixbW1tcLvdaXnegoKCtKyHiKg744waURfn9XoxaNAgDB8+HNOmTcNPfvIT/OY3vwEQOl1ZUVGBkSNHwuv1QkqJxsZG/PSnP8XAgQORn5+Pa665Bp9++mnEev/t3/4NhYWF6N27N2bOnInm5uaI70ef+tQ0DY899hhGjRoFr9eLc889F8uXLwcAjBgxAgAwZswYCCFw9dVXm4978cUXUVxcDJ/Ph9GjR2P16tURz/PJJ59gzJgx8Pl8KC0tRU1NTdJ9ct555+Ff//VfMWPGDPTq1QtFRUV45513cOzYMdx8883o1asXLr30UuzYscN8TPSpXQB4+umncd555yV9PiKiVDFRI+pm8vLy0NbWZn79xRdf4PXXX8ebb75pnnqcPHky6uvrUVlZiZ07d2Ls2LG49tpr8e233wIAXn/9dSxZsgTLly/Hjh07MHjw4JgEKtqiRYvw2GOP4aGHHsLevXuxadMmFBYWAtCTLQD47//+b9TV1eGtt94CAKxfvx6LFy/G8uXLUVtbi5///Od46KGH8Mtf/hIAcPr0afzwhz/ERRddhJ07d2Lp0qWYP3++rf3w1FNPYfz48aipqcHkyZNx++23Y8aMGZg+fTp27dqFUaNGYcaMGZBS2t+5RETpJomoy7rjjjvkzTffbH79+9//Xvbr10/eeuutUkoplyxZIt1utzx69Kg55r333pP5+fmyubk5Yl3nn3++XLdunZRSyrKyMlleXh7x/XHjxsnLLrvM8rmbmpqk1+uV69evt4zzwIEDEoCsqamJWD58+HC5adOmiGWPPvqoLCsrk1JKuW7dOtm3b195+vRp8/tr1qyxXFe4oqIiOX36dPPruro6CUA+9NBD5rLq6moJQNbV1Ukp9X0Vvn1SSvnUU0/JoqKiuM9DRNRevEaNqIv7z//8T/Tq1Qt+vx9tbW24+eab8eyzz5rfLyoqwoABA8yvd+7ciVOnTqFfv34R6zl79iy+/PJLAEBtbS3Ky8sjvl9WVob333/fMoba2lq0tLTg2muvtR33sWPHcOTIEcycORN33323udzv95vXv9XW1uKyyy5Djx49IuKw47vf/a75uTGzd+mll8YsO3r0KAYNGmQ7biKidGKiRtTF/eAHP8CaNWvgdrsxZMiQmJsFevbsGfG1pmkYPHgwPvjgg5h19enTJ6UY8vLyHD9G0zQA+unPcePGRXxPVVUAaNdpyfD9IISIu8yIQ1GUmOcLP4VMRJQJTNSIuriePXti1KhRtsePHTsW9fX1cLlccS+ULy4uxscff4wZM2aYyz7++OO467zggguQl5eH9957D7NmzYr5vsfjAQAEAgFzWWFhIYYOHYr9+/fjJz/5ieV6L774Yrz88ss4e/asmQwmiqM9BgwYgPr6ekgpzSSO5USIKNN4MwERRbjuuutQVlaGKVOm4N1338XBgwexfft2PPjgg+ZdkLNnz0ZFRQUqKiqwb98+LFmyBHv27Im7Tp/PhwULFuBnP/sZXnrpJXz55Zf4+OOPsWHDBgDAwIEDkZeXh//6r//CN998g8bGRgD6nZYrVqzAM888g3379uGzzz7Diy++iCeffBIAMG3aNCiKgpkzZ2Lv3r2orKzEE088kZH9cvXVV+PYsWN4/PHH8eWXX2LVqlX43e9+l5HnIiIyMFEjoghCCFRWVuL73/8+/vEf/xEXXnghbrvtNhw8eNC8bmvq1Kl4+OGHsWDBApSUlODQoUO45557Eq73oYcewr/8y7/g4YcfRnFxMaZOnYqjR48CAFwuF1auXIl169ZhyJAhuPnmmwEAs2bNwgsvvICNGzfi0ksvxcSJE7Fx40aznEevXr3wH//xH9i7dy/GjBmDxYsX47HHHsvIfikuLsbq1auxatUqXHbZZfjkk09s32FKRJQqIdtzkQcRERERZQxn1IiIiIhyFBM1IiIiohzFRI2IiIgoRzFRIyIiIspRTNSIiIiIchQTNSIiIqIcxUSNiIiIKEcxUSMiIiLKUUzUiIiIiHIUEzUiIiKiHMVEjYiIiChH/T+DVVkKsFqy6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot(x = mu[:, 0], y = np.sqrt(var)[:, 0], kind = 'hex')\n", "plt.xlabel('Predicted mu')\n", @@ -411,7 +556,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -420,7 +565,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -429,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -442,7 +587,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -452,9 +597,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model_2\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input (InputLayer) [(None, 4)] 0 \n", + " \n", + " dense_00 (Dense) (None, 295) 1475 \n", + " \n", + " dropout_h_00 (Dropout) (None, 295) 0 \n", + " \n", + " DenseNormalGamma (DenseNorm (None, 4) 1188 \n", + " alGamma) \n", + " \n", + "=================================================================\n", + "Total params: 2,663\n", + "Trainable params: 2,659\n", + "Non-trainable params: 4\n", + "_________________________________________________________________\n", + "Epoch 1/5\n", + "12/12 [==============================] - 1s 46ms/step - loss: 9.5752 - mae: 0.1164 - val_loss: 5.4485 - val_mae: 0.0799 - lr: 0.0056\n", + "Epoch 2/5\n", + "12/12 [==============================] - 0s 30ms/step - loss: 3.5940 - mae: 0.0436 - val_loss: 2.4466 - val_mae: 0.0265 - lr: 0.0056\n", + "Epoch 3/5\n", + "12/12 [==============================] - 0s 28ms/step - loss: 2.4552 - mae: 0.0262 - val_loss: 2.3862 - val_mae: 0.0272 - lr: 0.0056\n", + "Epoch 4/5\n", + "12/12 [==============================] - 0s 30ms/step - loss: 2.2196 - mae: 0.0241 - val_loss: 2.0943 - val_mae: 0.0243 - lr: 0.0056\n", + "Epoch 5/5\n", + "12/12 [==============================] - 0s 27ms/step - loss: 2.1780 - mae: 0.0248 - val_loss: 2.1751 - val_mae: 0.0270 - lr: 0.0056\n" + ] + } + ], "source": [ "ev_model.fit(\n", " x_train,\n", @@ -466,9 +646,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2/2 [==============================] - 0s 5ms/step\n" + ] + } + ], "source": [ "result = ev_model.predict_uncertainty(x_test, scaler=y_scaler)\n", "mu, aleatoric, epistemic = result" @@ -476,9 +664,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.037156561226457434 0.05741469920663505 0.08447113752378002\n" + ] + } + ], "source": [ "mae = np.mean(np.abs(mu[:, 0]-test_data[output_cols[0]]))\n", "print(mae, np.mean(aleatoric) ** (1/2), np.mean(epistemic) ** (1/2))" @@ -486,7 +682,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -495,9 +691,88 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/regression_uq.py:819: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + " plt.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFUCAYAAAAAmsQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3y0lEQVR4nO3de1hU5d4+8HsNhwEUSFBOiqhp4hFJLCnNDM/ljmu71XxN8VBvmoeM3KX92lutDL2uDlqWbknh9fWYGzFNc2sqkKdMBTNPeaBEwlctBYUCYb6/P5TFDAzIwAIWzP25rqmZZz3rWc+zZha3a9ZhFBEREBERke4Y6roDREREZB1DmoiISKcY0kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmqiOKIqCzZs313kbtennn3+GoihIS0vTZXtEesOQJtLIuHHjoChKmcf58+et1s/KysLgwYMr1fbcuXPRrVu3arXREAUGBiIrKwudO3cGACQlJUFRFNy8ebNuO0akEce67gBRQzJo0CDExcVZlDVr1szidUFBAZydneHn51ft5WnRRn3m4OBg9+uAGjbuSRNpyGg0ws/Pz+IRERGBqVOnIjo6Gk2bNkX//v0BlP2q+vLly3juuefg5eWFRo0aISwsDN999x3i4+Mxb948HD9+XN07j4+Pt9rGiRMn8NRTT8HV1RXe3t747//+b9y+fVudPm7cOERGRuL999+Hv78/vL29MWXKFNy5c+e+Y5s9ezZ69uxZprxr166YM2eO+jouLg4dOnSAi4sLgoOD8dlnn1XYbnJyMh555BEYjUb4+/tj1qxZKCwsVKebTCYsXLgQbdu2hdFoRMuWLTF//nwAll93//zzz+jbty8AoEmTJlAUBePGjcOqVavg7e2N/Px8i+UOGzYMY8eOve+4ieqUEJEmoqKi5Nlnny1T3qdPH2ncuLH8/e9/lzNnzsjp06dFRASAJCYmiojIrVu3pE2bNtK7d2/59ttv5dy5c7JhwwY5cOCA5OXlyWuvvSadOnWSrKwsycrKkry8vDJt5ObmSkBAgPz1r3+VEydOyO7du6V169YSFRVl0UcPDw+ZNGmSnD59WrZu3Spubm6yfPny+47vxIkTAkDOnz+vlv34448CQM6ePSsiIsuXLxd/f39JSEiQixcvSkJCgnh5eUl8fLyIiKSnpwsASU1NFRGRy5cvi5ubm7z88sty+vRpSUxMlKZNm8qcOXPUZbz++uvSpEkTiY+Pl/Pnz8u3334rsbGxZdorLCyUhIQEtT9ZWVly8+ZNycvLE09PT/niiy/UNq9duybOzs6yZ8+e+46bqC7ZdUgnJyfLM888I/7+/hZ/7BrK8qh2RUVFiYODgzRq1Eh9/O1vf5M+ffpIt27dytQ3/wz861//End3d/ntt9+stj1nzhwJCQmpsI3ly5dLkyZN5Pbt2+r0bdu2icFgkCtXrqh9DAoKksLCQrXO8OHDZeTIkZUaY9euXeXtt99WX8+ePVt69Oihvg4MDJS1a9dazPPOO+9IeHi4iJQN6TfffFPat28vJpNJrf/pp59K48aNpaioSHJycsRoNKqhXFrp9vbu3SsA5MaNGxb1Jk+eLIMHD1ZfL1q0SNq0aWOxXCI9suuvu3NzcxESEoIlS5Y0yOVR7evbty/S0tLUx8cffwwACAsLq3C+tLQ0hIaGwsvLq8rLPn36NEJCQtCoUSO17PHHH4fJZMLZs2fVsk6dOsHBwUF97e/vj6tXr1ZqGaNHj8aaNWsAACKCdevWYfTo0QCAa9euISMjAxMnTkTjxo3Vx7vvvosLFy6U2+fw8HAoimLR59u3b+Py5cs4ffo08vPzERERUfkVYcWLL76InTt3IjMzE8Ddr+SLT/Qj0jO7PnFs8ODBFZ4ZW1BQgLfeegtr1qzBzZs30blzZyxcuBBPPvlkjSyP6r9GjRqhbdu2Vssr4urqWu1li0i5oWNe7uTkVGaayWSq1DL+67/+C7NmzcKxY8fwxx9/ICMjA8899xwAqG3Exsbi0UcftZjP/B8F9+uziKj90mK9AEBoaChCQkKwatUqDBw4ECdOnMDWrVs1aZuoJtn1nvT9jB8/Hvv378f69evxww8/YPjw4Rg0aBDOnTtX112jBqZr165IS0vD77//bnW6s7MzioqKKmyjY8eOSEtLQ25urlq2f/9+GAwGPPTQQ5r0s0WLFnjiiSewZs0arFmzBv369YOvry8AwNfXF82bN8fFixfRtm1bi0fr1q3L7fOBAwfUYAaAAwcOwN3dHc2bN0e7du3g6uqK3bt3V6p/zs7OAGB1Xb3wwguIi4vDypUr0a9fPwQGBto6fKJax5Aux4ULF7Bu3Tps3LgRvXv3xoMPPoiZM2eiV69eZS6xIaquUaNGwc/PD5GRkdi/fz8uXryIhIQEHDx4EADQqlUrpKenIy0tDdevXy9zpjJw96toFxcXREVF4ccff8TevXsxbdo0jBkzRg1SLYwePRrr16/Hxo0b8fzzz1tMmzt3LmJiYrB48WL89NNPOHHiBOLi4vDhhx9abevll19GRkYGpk2bhjNnzuDLL7/EnDlzEB0dDYPBABcXF7zxxht4/fXXsWrVKly4cAGHDh3CihUrrLYXFBQERVHw1Vdf4dq1axZnto8ePRqZmZmIjY3FhAkTNFsfRDWJIV2OY8eOQUTw0EMPWRxfS05OVo+vFV/+UdFj6tSpdTwSqg+cnZ2xc+dO+Pj4YMiQIejSpQsWLFigfk08bNgwDBo0CH379kWzZs2wbt26Mm24ubnhP//5D37//Xf06NEDf/vb3xAREaH5ORDDhw/Hb7/9hry8PERGRlpMe+GFF/D5558jPj4eXbp0QZ8+fRAfH1/unnTz5s2xfft2HD58GCEhIZg0aRImTpyIt956S63zj3/8A6+99hr++c9/okOHDhg5cmS5x9CbN2+OefPmYdasWfD19bXY/jw8PDBs2DA0bty4TL+J9EoR8++Z7JiiKEhMTFQ33g0bNmD06NE4efJkmeNpjRs3hp+fH+7cuVPuCTHFmjRpYnUvpvTyiKjm9e/fHx06dFBP6CPSO7s+cawioaGhKCoqwtWrV9G7d2+rdZycnBAcHFzLPSMiW/3+++/YuXMn9uzZw6srqF6x65C+ffu2xX2Vi4/5eXl54aGHHsLo0aMxduxYfPDBBwgNDcX169exZ88edOnSBUOGDNF0eS1bttRkTERV9e2331Z49YH58d365uGHH8aNGzewcOFCtG/fvq67Q1Rpdv11d1JSknobQXNRUVGIj4/HnTt38O6772LVqlXIzMyEt7c3wsPDMW/ePHTp0kXz5RHVpT/++EO9jtgaa5eWEVHNsuuQJiIi0jOe3U1ERKRTDGkiIiKdsrsTx0wmE3799Ve4u7vzvr1ERKQZEcGtW7cQEBAAg0GbfWC7C+lff/2VtwMkIqIak5GRgRYtWmjSlt2FtLu7+71nBgDckyYiqi/8Gz2meZsnfx2jWVs5OX+gVeArZjlTfXYX0iVfcStgSBMR1R8GRfvI8vBw07xNLQ+l8sQxIiIinWJIExER6RRDmoiISKcY0kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkU3Z3MxMiIqod7i7tNG3v8w4+mrYHAJ8Hp2jW1h9FBZq1VYx70kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKcY0kRERDrFO44REREAwMnRW9P2nvfor2l7V3JzNW0PACadXalha6JhW3dxT5qIiEinGNJEREQ6xZAmIiLSqToN6ZiYGPTo0QPu7u7w8fFBZGQkzp49W+E8SUlJUBSlzOPMmTO11GsiIqLaUachnZycjClTpuDQoUPYtWsXCgsLMWDAAORW4uSAs2fPIisrS320a6ftT6IRERHVtTo9u3vHjh0Wr+Pi4uDj44OjR4/iiSeeqHBeHx8fPPDAAzXYOyIiorqlq2PS2dnZAAAvL6/71g0NDYW/vz8iIiKwd+/ecuvl5+cjJyfH4kFERFQf6CakRQTR0dHo1asXOnfuXG49f39/LF++HAkJCdi0aRPat2+PiIgIpKSkWK0fExMDT09P9REYGFhTQyAiItKUIiLaX31dBVOmTMG2bduwb98+tGjRwqZ5hw4dCkVRsGXLljLT8vPzkZ+fr77Oycm5F9QOAJRq9pqIqOHQ+mYmL3iN1LS9R5pqfzOT8af+R8PWBEARsrOz4eHhoUmLurjj2LRp07BlyxakpKTYHNAA0LNnT6xevdrqNKPRCKPRWN0uEhHpisHgpnmboU5DNG3Pw1nbfcApF8o/tNlQ1WlIiwimTZuGxMREJCUloXXr1lVqJzU1Ff7+/hr3joiIqG7VaUhPmTIFa9euxZdffgl3d3dcuXIFAODp6QlXV1cAwOzZs5GZmYlVq1YBABYtWoRWrVqhU6dOKCgowOrVq5GQkICEhIQ6GwcREVFNqNOQXrp0KQDgySeftCiPi4vDuHHjAABZWVm4dOmSOq2goAAzZ85EZmYmXF1d0alTJ2zbtg1Dhmj7NQ0REVFd082JY7UlJycHnp6e4IljRFSf1cQx6TDjME3b6+vdWNP2Prm2TdP2ACAv/9L9K1Wa9ieO6eYSLCIiIrLEkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIindLFbUGJiBo6g+KsaXsPufbXtD0AaO7QSNP2vrh5QdP2tL1cqn7gnjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKcY0kRERDrFkCYiItIphjQREZFO8Y5jRESlKIr2+y8BjcI1bc9BtP/z/VPRNU3bS8/dqWl79oh70kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKcY0kRERDrFO44RUb2nQNG0vaZuoZq2BwBFuKNxe4WatgcAZ3K/1LxNqh7uSRMREekUQ5qIiEinGNJEREQ6xZAmIiLSKYY0ERGRTjGkiYiIdIohTUREpFMMaSIiIp1iSBMREekUQ5qIiEineFtQIqr3mjZ6WNP2ikTbW3gCgKBI0/Z+yvta0/ZIn7gnTUREpFMMaSIiIp2yOaSnT5+Ojz/+uEz5kiVLMGPGDC36RERERKhCSCckJODxxx8vU/7YY4/h3//+tyadIiIioiqE9G+//QZPT88y5R4eHrh+/bpNbcXExKBHjx5wd3eHj48PIiMjcfbs2fvOl5ycjO7du8PFxQVt2rTBsmXLbFouERFRfWBzSLdt2xY7duwoU/7111+jTZs2NrWVnJyMKVOm4NChQ9i1axcKCwsxYMAA5ObmljtPeno6hgwZgt69eyM1NRVvvvkmpk+fjoSEBFuHQkREpGs2X4IVHR2NqVOn4tq1a3jqqacAALt378YHH3yARYsW2dRW6bCPi4uDj48Pjh49iieeeMLqPMuWLUPLli3VZXXo0AFHjhzB+++/j2HDhtk6HCIiIt2yOaQnTJiA/Px8zJ8/H++88w4AoFWrVli6dCnGjh1brc5kZ2cDALy8vMqtc/DgQQwYMMCibODAgVixYgXu3LkDJycni2n5+fnIz89XX+fk5FSrj0RERLWlSpdgTZ48GZcvX8b//d//IScnBxcvXqx2QIsIoqOj0atXL3Tu3LnceleuXIGvr69Fma+vLwoLC60eE4+JiYGnp6f6CAwMrFY/iYiIaku17jjWrFkzrfqBqVOn4ocffsC+ffvuW1dRFIvXImK1HABmz56N6Oho9XVOTg6DmqiONXEr/x/iVZFTcFnT9pwdPDRtDwBy83/RtD2TFGjaHulTpUL64Ycfxu7du9GkSROEhoZaDcNix44ds7kT06ZNw5YtW5CSkoIWLVpUWNfPzw9XrlyxKLt69SocHR3h7e1dpr7RaITRaLS5T0RERHWtUiH97LPPqkEXGRmp2cJFBNOmTUNiYiKSkpLQunXr+84THh6OrVu3WpTt3LkTYWFhZY5HExER1WeKFH9XXAlFRUXYt28funbtiiZNmlR74S+//DLWrl2LL7/8Eu3bt1fLPT094erqCuDu19WZmZlYtWoVgLuXYHXu3BkvvfQSXnzxRRw8eBCTJk3CunXrKnV2d05Ozr3rvB0AlP+NABHVHK2/7s67c03T9vh1N1WNAChCdnY2PDy0+QzZdOKYg4MDBg4ciJs3b2qy8KVLlyI7OxtPPvkk/P391ceGDRvUOllZWbh06ZL6unXr1ti+fTuSkpLQrVs3vPPOO/j44495+RURETU4Np841qVLF1y8eLFSX03fT2V24uPj48uU9enTp0rHvomIiOoTmy/Bmj9/PmbOnImvvvoKWVlZyMnJsXgQERGRNmw6Jg0ABkNJrpuf5S0iUBQFRUXa/rC51nhMmqju8Zh09fGYtB5pf0za5q+79+7dq8mCiYiIqGI2h3SfPn1qoh9ERERUSpXuOHbz5k2sWLECp0+fhqIo6NixIyZMmGD1JyyJqH5r7GLbr9tVxh93ftO0PQeDtjcsyi3I0LQ9gF9PU9XYfOLYkSNH8OCDD+Kjjz7C77//juvXr+PDDz/Egw8+yDOuiYiINGTziWO9e/dG27ZtERsbC0fHuzvihYWFeOGFF3Dx4kWkpKTUSEe1whPHiGxTE3vShUV/aNqewaDt3Qb/vHNV0/YAwGT6U/M2SW+0P3HM5pB2dXVFamoqgoODLcpPnTqFsLAw5OXladKxmsKQJrINQ1obDGl7UMd3HAMADw8PizuAFcvIyIC7u7smnSIiIqIqhPTIkSMxceJEbNiwARkZGbh8+TLWr1+PF154AaNGjaqJPhIREdklm8/ufv/996EoCsaOHYvCwkIAgJOTEyZPnowFCxZo3kEiIiJ7ZfMx6WJ5eXm4cOECRARt27aFm5ub1n2rETwmTWQbHpPWBo9J2wMdHJOeMGECbt26BTc3N3Tp0gVdu3aFm5sbcnNzMWHCBE06RURERFXYk3ZwcEBWVhZ8fHwsyq9fvw4/Pz/1K3C94p40kW24J60N7knbgzq8d3dOTg5EBCKCW7duwcXFRZ1WVFSE7du3lwluIiIiqrpKh/QDDzwARVGgKAoeeuihMtMVRcG8efM07RwR2c7ZsZmm7RWZ8jVtDwBMou03bgUF2t5mlLfwJL2odEjv3bsXIoKnnnoKCQkJ8PLyUqc5OzsjKCgIAQEBNdJJIiIie1TpkC7+9av09HQEBgZa/K40ERERac/m66SDgoIA3L0E69KlSygosPxaqGvXrtr0jIiIyM7ZHNLXrl3D+PHj8fXXX1udXlRUVO1OERERURWuk54xYwZu3LiBQ4cOwdXVFTt27MD//M//oF27dtiyZUtN9JGIiMgu2bwnvWfPHnz55Zfo0aMHDAYDgoKC0L9/f3h4eCAmJgZPP/10TfSTiIjI7ti8J52bm6teD+3l5YVr164BALp06YJjx45p2zsiIiI7ZnNIt2/fHmfPngUAdOvWDf/617+QmZmJZcuWwd/fX/MOEhER2Subv+6eMWMGsrKyAABz5szBwIEDsWbNGjg7OyM+Pl7r/hEREdmtKv8KVrG8vDycOXMGLVu2RNOmTbXqV43hvbtJT1ydm2vepohJ0/YKTbmatgcARabbmran9ZiJqkYHv4JVrKCgAGfPnoWzszMefvjhehHQRERE9YnNIZ2Xl4eJEyfCzc0NnTp1wqVLlwAA06dPx4IFCzTvIBERkb2yOaRnz56N48ePIykpyeKXsPr164cNGzZo2jkiIiJ7ZvOJY5s3b8aGDRvQs2dPKErJMd2OHTviwoULmnaOiIjIntm8J33t2jWrvxudm5trEdpERERUPTaHdI8ePbBt2zb1dXEwx8bGIjw8XLueERER2Tmbv+6OiYnBoEGDcOrUKRQWFmLx4sU4efIkDh48iOTk5JroIxERkV2yeU/6sccew/79+5GXl4cHH3wQO3fuhK+vLw4ePIju3bvXRB+JiIjsUrVvZlLf8GYmpCe8mYk2eDMT0gftb2ZSqa+7c3JyKt2gVh0j0iNnx2aatnenSP8BCNH+N+IFdrVvQFRllQrpBx544L5nbosIFEVBUZH2GzQREZE9qlRI7927t1KNpaamVqszREREVKLax6Szs7OxZs0afP755zh+/Lju96R5TJqqQ+uvu01yR9P2AH7dTVR3dPQDG3v27MHzzz8Pf39/fPLJJxgyZAiOHDmiSaeIiIjIxuukL1++jPj4eKxcuRK5ubkYMWIE7ty5g4SEBHTs2LGm+khERGSXKr0nPWTIEHTs2BGnTp3CJ598gl9//RWffPJJtRaekpKCoUOHIiAgAIqiYPPmzRXWT0pKgqIoZR5nzpypVj+IiIj0qNJ70jt37sT06dMxefJktGvXTpOF5+bmIiQkBOPHj8ewYcMqPd/Zs2ctvu9v1kzb44RERER6UOmQ/vbbb7Fy5UqEhYUhODgYY8aMwciRI6u18MGDB2Pw4ME2z+fj44MHHnigWssmIiLSu0p/3R0eHo7Y2FhkZWXhpZdewvr169G8eXOYTCbs2rULt27dqsl+WggNDYW/vz8iIiIqfXkYERFRfWPz2d1ubm6YMGEC9u3bhxMnTuC1117DggUL4OPjg7/85S810UeVv78/li9fjoSEBGzatAnt27dHREQEUlJSyp0nPz8fOTk5Fg8iIqL6QJN7dxcVFWHr1q1YuXIltmzZUrWOKAoSExMRGRlp03xDhw6FoijlLnfu3LmYN2+elSm8TtoeGAxumrbnYHDVtL2iIu2/gRKNr73mNc1ElaWj66TNOTg4IDIyssoBXR09e/bEuXPnyp0+e/ZsZGdnq4+MjIxa7B0REVHV2fx70nqTmpoKf3//cqcbjUYYjcZa7BEREZE26jSkb9++jfPnz6uv09PTkZaWBi8vL7Rs2RKzZ89GZmYmVq1aBQBYtGgRWrVqhU6dOqGgoACrV69GQkICEhIS6moIRERENaZOQ/rIkSPo27ev+jo6OhoAEBUVhfj4eGRlZeHSpUvq9IKCAsycOROZmZlwdXVFp06dsG3bNgwZMqTW+05ERFTTNDlxrD7hD2zYF544pkF7PHGMqJJ0euIYERERaY8hTUREpFMMaSIiIp1iSBMREelUvb9OmhoOR4cHNG9TpFDT9gqLbmjaHmrgvE2e6EXUcHBPmoiISKcY0kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKd4xzGqMq1/BlLru4MBgMmUq3mbWuLdwYioItyTJiIi0imGNBERkU4xpImIiHSKIU1ERKRTDGkiIiKdYkgTERHpFEOaiIhIpxjSREREOsWQJiIi0imGNBERkU7xtqB2xMnRW9P2TKZ8jdvT/haevO0mEdVn3JMmIiLSKYY0ERGRTjGkiYiIdIohTUREpFMMaSIiIp1iSBMREekUQ5qIiEinGNJEREQ6xZAmIiLSKd5xTKcMBjfN2yzS+I5eovEdx3h3MCIiS9yTJiIi0imGNBERkU4xpImIiHSKIU1ERKRTDGkiIiKdYkgTERHpVJ2GdEpKCoYOHYqAgAAoioLNmzffd57k5GR0794dLi4uaNOmDZYtW1bzHSUiIqoDdRrSubm5CAkJwZIlSypVPz09HUOGDEHv3r2RmpqKN998E9OnT0dCQkIN95SIiKj2KSKiiztIKIqCxMREREZGllvnjTfewJYtW3D69Gm1bNKkSTh+/DgOHjxYqeXk5OTA09MTgAMApXqdrkE1cTMTwKRpa7yZCRGROQFQhOzsbHh4eGjSYr2649jBgwcxYMAAi7KBAwdixYoVuHPnDpycnGxoTYGiYUgrBlfN2rpL20AFGKpERPVNvQrpK1euwNfX16LM19cXhYWFuH79Ovz9/cvMk5+fj/z8knDKycmp8X4SERFpod6d3a0olnu/xd/Wly4vFhMTA09PT/URGBhY430kIiLSQr0KaT8/P1y5csWi7OrVq3B0dIS3t7fVeWbPno3s7Gz1kZGRURtdJSIiqrZ69XV3eHg4tm7dalG2c+dOhIWFlXs82mg0wmg01kb3iIiINFWne9K3b99GWloa0tLSANy9xCotLQ2XLl0CcHcveOzYsWr9SZMm4ZdffkF0dDROnz6NlStXYsWKFZg5c2ZddJ+IiKhG1eme9JEjR9C3b1/1dXR0NAAgKioK8fHxyMrKUgMbAFq3bo3t27fj1VdfxaeffoqAgAB8/PHHGDZsWK33nYiIqKbp5jrp2lJynbQjL8Gqbnu8BIuIyIz210nXqxPHiIiI7AlDmoiISKcY0kRERDpVry7B0pKDwQOKot2/UYpMGt/JrAZOFeAxZCKi+oV70kRERDrFkCYiItIphjQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKfs7mYmxb8ncvf/2v2Ihfa/U1ITNx7hzUyIiGqOeb5ow+5C+tatWwAAk9xgZhERkeZu3bp179cWq8/ufqrSZDLh119/hbu7OxTF+k9V5uTkIDAwEBkZGZr93Fht4xj0oyGMg2PQj4YwjoY6BhHBrVu3EBAQAINBm6PJdrcnbTAY0KJFi0rV9fDwqLcfoGIcg340hHFwDPrREMbREMeg1R50MZ44RkREpFMMaSIiIp1iSFthNBoxZ84cGI3Guu5KlXEM+tEQxsEx6EdDGAfHUHl2d+IYERFRfcE9aSIiIp1iSBMREekUQ5qIiEinGNJEREQ61eBDOiUlBUOHDkVAQAAURcHmzZsrrL9p0yb0798fzZo1g4eHB8LDw/Gf//zHok58fDwURSnz+PPPP3UxhqSkJKv9O3PmjEW9hIQEdOzYEUajER07dkRiYmKN9L8qYxg3bpzVMXTq1EmtU9vvQ0xMDHr06AF3d3f4+PggMjISZ8+eve98ycnJ6N69O1xcXNCmTRssW7asTJ3afC+qMg69bRdVGYPetouqjEGP28XSpUvRtWtX9aYe4eHh+PrrryucR2/bhK1jqM3tocGHdG5uLkJCQrBkyZJK1U9JSUH//v2xfft2HD16FH379sXQoUORmppqUc/DwwNZWVkWDxcXl5oYgs1jKHb27FmL/rVr106ddvDgQYwcORJjxozB8ePHMWbMGIwYMQLfffed1t0HYPsYFi9ebNH3jIwMeHl5Yfjw4Rb1avN9SE5OxpQpU3Do0CHs2rULhYWFGDBgAHJzc8udJz09HUOGDEHv3r2RmpqKN998E9OnT0dCQoJap7bfi6qMQ2/bRVXGUEwv20VVxqDH7aJFixZYsGABjhw5giNHjuCpp57Cs88+i5MnT1qtr8dtwtYx1Or2IHYEgCQmJto8X8eOHWXevHnq67i4OPH09NSuYzaozBj27t0rAOTGjRvl1hkxYoQMGjTIomzgwIHy3HPPadDLilXlfUhMTBRFUeTnn39Wy+ryfRARuXr1qgCQ5OTkcuu8/vrrEhwcbFH20ksvSc+ePdXXdfleiFRuHNboabuozBj0vl1U5X3Q43YhItKkSRP5/PPPrU6rD9uESMVjsKamtocGvyddXSaTCbdu3YKXl5dF+e3btxEUFIQWLVrgmWeeKfMvKD0IDQ2Fv78/IiIisHfvXotpBw8exIABAyzKBg4ciAMHDtRmFyttxYoV6NevH4KCgizK6/J9yM7OBoAynw1z5a3nI0eO4M6dOxXWqa33ojLjKE1v24UtY9DrdlGV90Fv20VRURHWr1+P3NxchIeHW62j922iMmMorSa3B4b0fXzwwQfIzc3FiBEj1LLg4GDEx8djy5YtWLduHVxcXPD444/j3LlzddjTEv7+/li+fDkSEhKwadMmtG/fHhEREUhJSVHrXLlyBb6+vhbz+fr64sqVK7Xd3fvKysrC119/jRdeeMGivC7fBxFBdHQ0evXqhc6dO5dbr7z1XFhYiOvXr1dYpzbei8qOozQ9bReVHYOet4uqvA962i5OnDiBxo0bw2g0YtKkSUhMTETHjh2t1tXrNmHLGEqr0e2h2vvi9Qhs/Jp17dq14ubmJrt27aqwXlFRkYSEhMi0adOq2cP7s3UMxZ555hkZOnSo+trJyUnWrl1rUWf16tViNBqr28X7snUM7733nnh7e0t+fn6F9WrzfXj55ZclKChIMjIyKqzXrl07ee+99yzK9u3bJwAkKytLROr2vajsOMzpbbuoyhiK6WW7qMoY9LRd5Ofny7lz5+T777+XWbNmSdOmTeXkyZNW6+p1m7BlDOZqenvgnnQ5NmzYgIkTJ+KLL75Av379KqxrMBjQo0cP3exJW9OzZ0+L/vn5+ZX5V+nVq1fL/Ou1rokIVq5ciTFjxsDZ2bnCurX1PkybNg1btmzB3r177/uzp+WtZ0dHR3h7e1dYp6bfC1vGUUxv20VVxmBOD9tFVcagt+3C2dkZbdu2RVhYGGJiYhASEoLFixdbravXbcKWMRSrje2BIW3FunXrMG7cOKxduxZPP/30feuLCNLS0uDv718Lvaua1NRUi/6Fh4dj165dFnV27tyJxx57rLa7VqHk5GScP38eEydOvG/dmn4fRARTp07Fpk2bsGfPHrRu3fq+85S3nsPCwuDk5FRhnZp6L6oyDkBf20VVx1BaXW4X1RmDnraL8paZn59vdZoetwlrKhoDUIvbg0373fXQrVu3JDU1VVJTUwWAfPjhh5Kamiq//PKLiIjMmjVLxowZo9Zfu3atODo6yqeffipZWVnq4+bNm2qduXPnyo4dO+TChQuSmpoq48ePF0dHR/nuu+90MYaPPvpIEhMT5aeffpIff/xRZs2aJQAkISFBrbN//35xcHCQBQsWyOnTp2XBggXi6Ogohw4d0sUYij3//PPy6KOPWm2ztt+HyZMni6enpyQlJVl8NvLy8tQ6pcdx8eJFcXNzk1dffVVOnTolK1asECcnJ/n3v/+t1qnt96Iq49DbdlGVMehtu6jKGIrpabuYPXu2pKSkSHp6uvzwww/y5ptvisFgkJ07d1odgx63CVvHUJvbQ4MP6eLLLko/oqKiREQkKipK+vTpo9bv06dPhfVFRGbMmCEtW7YUZ2dnadasmQwYMEAOHDigmzEsXLhQHnzwQXFxcZEmTZpIr169ZNu2bWXa3bhxo7Rv316cnJwkODjY4o9VXY9BROTmzZvi6uoqy5cvt9pmbb8P1voPQOLi4tQ61saRlJQkoaGh4uzsLK1atZKlS5eWabs234uqjENv20VVxqC37aKqnye9bRcTJkyQoKAgdXkRERFquJU3Br1tE7aOoTa3B/5UJRERkU7xmDQREZFOMaSJiIh0iiFNRESkUwxpIiIinWJIExER6RRDmoiISKcY0kRERDrFkCZq4H7++WcoioK0tLS67koZ48aNQ2RkZF13g+qxlJQUDB06FAEBAVAUBZs3b25Qy2NIE+ncuHHjoChKmcegQYMqNX9gYCCysrIq9ROItR3oixcvRnx8fK0sixqm3NxchISEYMmSJQ1yeY61shQiqpZBgwYhLi7OosxoNFZqXgcHB/j5+dVEt6rN09OzrrtA9dzgwYMxePDgcqcXFBTgrbfewpo1a3Dz5k107twZCxcuxJNPPlkjy9Ma96SJ6gGj0Qg/Pz+LR5MmTQAAiqJg6dKlGDx4MFxdXdG6dWts3LhRnbf03vGNGzcwevRoNGvWDK6urmjXrp36D4DiX2IKDQ2FoigWf8ji4uLQoUMHuLi4IDg4GJ999lmZZXzxxRfo3bs3XF1d0aNHD/z000/4/vvvERYWhsaNG2PQoEG4du2aOl/pr7tNJhMWLlyItm3bwmg0omXLlpg/f77Wq5PsyPjx47F//36sX78eP/zwA4YPH45Bgwbp+qeFzXFPmqgB+Mc//oEFCxZg8eLF+N///V+MGjUKnTt3RocOHazWPXXqFL7++ms0bdoU58+fxx9//AEAOHz4MB555BF888036NSpk/pbxbGxsZgzZw6WLFmC0NBQpKam4sUXX0SjRo0QFRWltj1nzhwsWrQILVu2xIQJEzBq1Ch4eHhg8eLFcHNzw4gRI/DPf/4TS5cutTqO2bNnIzY2Fh999BF69eqFrKwsnDlzpgbWGNmDCxcuYN26dbh8+TICAgIAADNnzsSOHTsQFxeH9957r457WAlV/90QIqoNUVFR4uDgII0aNbJ4vP322yJy99eUJk2aZDHPo48+KpMnTxYRkfT0dAEgqampIiIydOhQGT9+vNVlla5bLDAwUNauXWtR9s4770h4eLjFfJ9//rk6fd26dQJAdu/erZbFxMRI+/btLcb27LPPiohITk6OGI1GiY2NreSaIbIEQBITE9XXX3zxhQAos+04OjrKiBEjRKTks1vRY8qUKZVaXk3gnjRRPdC3b98ye59eXl7q8/DwcItp4eHh5Z78NXnyZAwbNgzHjh3DgAEDEBkZiccee6zcZV+7dg0ZGRmYOHEiXnzxRbW8sLCwzDHlrl27qs99fX0BAF26dLEou3r1qtXlnD59Gvn5+YiIiCi3L0S2MJlMcHBwwNGjR+Hg4GAxrXHjxgCA5s2b4/Tp0xW2U3xoqS4wpInqgUaNGqFt27Y2zaMoitXywYMH45dffsG2bdvwzTffICIiAlOmTMH7779vtb7JZAJw9yvvRx991GJa6T98Tk5OZZZfuqy4vdJcXV3vMyIi24SGhqKoqAhXr15F7969rdZxcnJCcHBwLfes8njiGFEDcOjQoTKvK/rD06xZM4wbNw6rV6/GokWLsHz5cgBQj0EXFRWpdX19fdG8eXNcvHgRbdu2tXgUn2imhXbt2sHV1RW7d+/WrE1q+G7fvo20tDT1m6P09HSkpaXh0qVLeOihhzB69GiMHTsWmzZtQnp6Or7//nssXLgQ27dv13x5NYF70kT1QH5+Pq5cuWJR5ujoiKZNmwIANm7ciLCwMPTq1Qtr1qzB4cOHsWLFCqtt/fOf/0T37t3RqVMn5Ofn46uvvlJPMPPx8YGrqyt27NiBFi1awMXFBZ6enpg7dy6mT58ODw8PDB48GPn5+Thy5Ahu3LiB6OhoTcbo4uKCN954A6+//jqcnZ3x+OOP49q1azh58iQmTpyoyTKo4Tly5Aj69u2rvi7+PEZFRSE+Ph5xcXF499138dprryEzMxPe3t4IDw/HkCFDamR5mqvRI95EVG1RUVFWT2YpPgELgHz66afSv39/MRqNEhQUJOvWrVPnL30y2DvvvCMdOnQQV1dX8fLykmeffVYuXryo1o+NjZXAwEAxGAzSp08ftXzNmjXSrVs3cXZ2liZNmsgTTzwhmzZtsroMEZG9e/cKALlx44ZaFhcXJ56enhZjKz5xTESkqKhI3n33XQkKChInJydp2bKlvPfee9VfiUT1lCIion30E1FtURQFiYmJvL0mUQPEY9JEREQ6xZAmIiLSKZ44RlTP8YgVUcPFPWkiIiKdYkgTERHpFEOaiIhIpxjSREREOsWQJiIi0imGNBERkU4xpImIiHSKIU1ERKRTDGkiIiKdYkgTERHpFEOaiIhIpxjSREREOsWQJiIi0imGNBERkU4xpImIiHTKLn9P+s8//0RBQUFdd4OIiBoYZ2dnuLi4aNae3YX0n3/+CVdX17ruBhERNUB+fn5IT0/XLKjtLqRL9qAdACj3niso/uZfgQFQio8ClJQpapkCRXEoqQtAUQyWz82mK4py77mDOt2g1nWwmE+d516ZwWy6ASVtqvPDAYZ7YzAvU+cRs7bM/m+Q4ucwm66o5QoU9f8l7StquUEpKTNbK2q5ulYVs+lmzw2K+Txm74BivtYBRbn7UKejZHpxeXnzW5uuWJtutqz79cUAUSuUTBez6cV1xWysoq6PkvbFbB1Z1i1ZvlR6umLWh5JlirrMkvlKypR7ZQaYPVcEUMvNl2/23Gy5xW1a9LX0dEVKPS81FrPphlJ1S9o0WW0LBinVlqlkugFl2zIIlPLaKj3dUDK9eDmKYjJ7frfO3RdmbRaXGUwW7cJQUsdqmVm/S88P87rqMkvGrxhK5i/+sNwtQ0lZqY1PMZQ8v/eBQMmEe2WG4ucGy7rm5QDEYADu/c27W9fKdIu27taV4mUpDiVlBsXseXGbDqWem81XXM/gaDa9+LkBohQ/L/m/Oh0OFuUAoCiOls/vza+oZQ53ywEYFMeSv/X3ym7fzkerwFdQUFDAkNZCcejc/YCWBJP6gTUrU5SST7x5oN6dvXRIlw1385AuqWsWqGb1bAtpyxAuXWY1pM2C2SKkzZ4Xj7sqIW0tmCsX0qXnty2EqzTdYllita463TyQqxPSZtO1CGmDzSFtFoywDOmScuvBW5WQLi+QrZVZC87yQlqpMKTLC2HF5uklwayoy7QMZFgtswzkkjpWy8wD9+6gYPYnxzJc7654s0AueW5RZktIl3w4y5ZZPK9MCJee7lBxSBvMQ9pserkhXfK8pH1rIe1QcUibBbJlSDuVPC8T0o4VhrSheJwa4oljREREOsWQJiIi0imGNBERkU4xpImIiHSKIU1ERKRTDGkiIiKdsutLsKT4uldR/3Pv/+bPS5eZUHJtQ3nMp0upaVKyXLPppuJLXiBmFzZZPr87veR6iruX1JhfZwEoMKH4oh0xu05azP4vYlBbLJmuqOWm+12CZfZ/i0uw1PnMy8o+t1ZW+jro4jKLK9nNrnjhddK8TrphXyddavmlL9Gq8nXSxdNLlakfSLN2DObLL65rKtOWlN6grE230pYUL0sxr1uyjsVsHsvnpnvzmcrMA4PJrG4R5F6d4nV9d/q95ygCDEVqXQBQlCKz51W7TlprdhfSIoLGjRvj9u3b1qer/6m4jIiIqDQ/Pz84Oztr1p7dhbSiKLh9+zYyMjLg4eFR192pt3JychAYGMj1WE1cj9rhutQG12P18N7dGvHw8OAHUANcj9rgetQO16U2uB71gSeOERER6RRDmoiISKfsLqSNRiPmzJkDo9FY112p17getcH1qB2uS21wPeqLIiI8b5mIiEiH7G5PmoiIqL5gSBMREekUQ5qIiEinGNJEREQ6ZXch/dlnn6F169ZwcXFB9+7d8e2339Z1l3QjJiYGPXr0gLu7O3x8fBAZGYmzZ89a1BERzJ07FwEBAXB1dcWTTz6JkydPWtTJz8/HtGnT0LRpUzRq1Ah/+ctfcPny5dociq7ExMRAURTMmDFDLeN6rJzMzEw8//zz8Pb2hpubG7p164ajR4+q07ke76+wsBBvvfUWWrduDVdXV7Rp0wZvv/02TCaTWofrUcfEjqxfv16cnJwkNjZWTp06Ja+88oo0atRIfvnll7rumi4MHDhQ4uLi5Mcff5S0tDR5+umnpWXLlnL79m21zoIFC8Td3V0SEhLkxIkTMnLkSPH395ecnBy1zqRJk6R58+aya9cuOXbsmPTt21dCQkKksLCwLoZVpw4fPiytWrWSrl27yiuvvKKWcz3e3++//y5BQUEybtw4+e677yQ9PV2++eYbOX/+vFqH6/H+3n33XfH29pavvvpK0tPTZePGjdK4cWNZtGiRWofrUb/sKqQfeeQRmTRpkkVZcHCwzJo1q456pG9Xr14VAJKcnCwiIiaTSfz8/GTBggVqnT///FM8PT1l2bJlIiJy8+ZNcXJykvXr16t1MjMzxWAwyI4dO2p3AHXs1q1b0q5dO9m1a5f06dNHDWmux8p54403pFevXuVO53qsnKefflomTJhgUfbXv/5Vnn/+eRHhetQ7u/m6u6CgAEePHsWAAQMsygcMGIADBw7UUa/0LTs7GwDg5eUFAEhPT8eVK1cs1qHRaESfPn3UdXj06FHcuXPHok5AQAA6d+5sd+t5ypQpePrpp9GvXz+Lcq7HytmyZQvCwsIwfPhw+Pj4IDQ0FLGxsep0rsfK6dWrF3bv3o2ffvoJAHD8+HHs27cPQ4YMAcD1qHd28wMb169fR1FREXx9fS3KfX19ceXKlTrqlX6JCKKjo9GrVy907twZANT1ZG0d/vLLL2odZ2dnNGnSpEwde1rP69evx7Fjx/D999+Xmcb1WDkXL17E0qVLER0djTfffBOHDx/G9OnTYTQaMXbsWK7HSnrjjTeQnZ2N4OBgODg4oKioCPPnz8eoUaMA8POod3YT0sWU4h8nv0dEypQRMHXqVPzwww/Yt29fmWlVWYf2tJ4zMjLwyiuvYOfOnRX+ZB3XY8VMJhPCwsLw3nvvAQBCQ0Nx8uRJLF26FGPHjlXrcT1WbMOGDVi9ejXWrl2LTp06IS0tDTNmzEBAQACioqLUelyP+mQ3X3c3bdoUDg4OZf7Vd/Xq1TL/grR306ZNw5YtW7B37160aNFCLffz8wOACtehn58fCgoKcOPGjXLrNHRHjx7F1atX0b17dzg6OsLR0RHJycn4+OOP4ejoqK4HrseK+fv7o2PHjhZlHTp0wKVLlwDw81hZf//73zFr1iw899xz6NKlC8aMGYNXX30VMTExALge9c5uQtrZ2Rndu3fHrl27LMp37dqFxx57rI56pS8igqlTp2LTpk3Ys2cPWrdubTG9devW8PPzs1iHBQUFSE5OVtdh9+7d4eTkZFEnKysLP/74o92s54iICJw4cQJpaWnqIywsDKNHj0ZaWhratGnD9VgJjz/+eJlLAH/66ScEBQUB4OexsvLy8mAwWP6pd3BwUC/B4nrUuTo6Ya1OFF+CtWLFCjl16pTMmDFDGjVqJD///HNdd00XJk+eLJ6enpKUlCRZWVnqIy8vT62zYMEC8fT0lE2bNsmJEydk1KhRVi/VaNGihXzzzTdy7Ngxeeqpp+z+Ug3zs7tFuB4r4/Dhw+Lo6Cjz58+Xc+fOyZo1a8TNzU1Wr16t1uF6vL+oqChp3ry5egnWpk2bpGnTpvL666+rdbge9cuuQlpE5NNPP5WgoCBxdnaWhx9+WL28iEQAWH3ExcWpdUwmk8yZM0f8/PzEaDTKE088ISdOnLBo548//pCpU6eKl5eXuLq6yjPPPCOXLl2q5dHoS+mQ5nqsnK1bt0rnzp3FaDRKcHCwLF++3GI61+P95eTkyCuvvCItW7YUFxcXadOmjfy///f/JD8/X63D9ahf/KlKIiIinbKbY9JERET1DUOaiIhIpxjSREREOsWQJiIi0imGNBERkU4xpImIiHSKIU1ERKRTDGkiIiKdYkgTERHpFEOaiIhIpxjSREREOsWQJiIi0qn/D+rNxY7FjTTWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVf7/8dedmcxMOmmkQBq9hd4RCyIrsvaCFVSwfHFX0W266q7tK6tr/yooFspvV8HdtayKInYUFER6LwnppJFM6iSZub8/kGhMgCSEDCTvp4/7eDDnnnvuZ0KCuZ8553MM0zRNRERERERERETaEYuvAxARERERERERaW1KeIiIiIiIiIhIu6OEh4iIiIiIiIi0O0p4iIiIiIiIiEi7o4SHiIiIiIiIiLQ7SniIiIiIiIiISLujhIeIiIiIiIiItDtKeIiIiIiIiIhIu6OEh4iIiIiIiIi0O0p4iIiInGQMw+Cdd97x+RhtKS0tDcMw2LBhw0k5noiIiJx6lPAQERE5wa6//noMw2hw7Nmzp9H+OTk5TJ48uUljP/DAAwwePPi4xmiP4uPjycnJYcCAAQB88cUXGIZBcXGxbwMTERGRNmPzdQAiIiIdwbnnnsuCBQvqtUVFRdV7XV1djd1uJyYm5rjv1xpjnMqsVmuH/xqIiIh0dJrhISIi0gYcDgcxMTH1jrPPPpvf/OY33HXXXURGRnLOOecADZejZGZmcuWVVxIeHk5gYCDDhw/nu+++Y+HChTz44INs3LixbtbIwoULGx1j8+bNTJgwAX9/fyIiIrj55pspKyurO3/99ddz0UUX8cQTTxAbG0tERAS33XYbNTU1x3xv99xzD6NHj27QPnDgQP7617/WvV6wYAF9+/bF6XTSp08f5s6de9Rxv/zyS0aOHInD4SA2Npa7776b2trauvNer5fHHnuMHj164HA4SEhI4H//93+B+kta0tLSOOusswAICwvDMAyuv/56Fi9eTEREBG63u959L730UqZNm3bM9y0iIiInN83wEBER8aFFixbxP//zP3zzzTeYptngfFlZGWeccQZdunThv//9LzExMfzwww94vV6mTp3Kli1b+Oijj/jkk08ACA0NbTBGRUUF5557LqNHj2bt2rXk5eUxc+ZMfvOb39QlSAA+//xzYmNj+fzzz9mzZw9Tp05l8ODB3HTTTUd9D9dccw1/+9vf2Lt3L927dwdg69atbN68mX//+98AvPzyy/z1r3/l+eefZ8iQIaxfv56bbrqJwMBApk+f3mDMrKwszjvvvLrExI4dO7jppptwOp088MADwKFEy8svv8zTTz/NaaedRk5ODjt27GgwVnx8PP/5z3+49NJL2blzJyEhIfj7+2O327n99tv573//y+WXXw5AQUEB77//Ph999NFR37OIiIic/JTwEBERaQPvv/8+QUFBda8P19fo0aMHjz/++BGve/3118nPz2ft2rWEh4fXXXNYUFAQNpvtqMs3/vnPf1JZWcnixYsJDAwE4Pnnn+f888/nscceIzo6Gjg0++H555/HarXSp08fpkyZwqeffnrMhMeAAQMYOHAgr7/+Ovfff3/dPUeMGEGvXr0AePjhh3nyySe55JJLAEhOTmbbtm289NJLjSY85s6dS3x8PM8//zyGYdCnTx+ys7P505/+xF/+8hfKy8t59tlnef755+uu7969O6eddlqDsaxWa93XrnPnznTq1Knu3NVXX82CBQvqEh7//Oc/6dq1K2eeeeZR37OIiEhbqaqqorq6ukXX2u12nE5nK0d06lDCQ0REpA2cddZZzJs3r+51YGAgV111FcOHDz/qdRs2bGDIkCF1D+wtsX37dgYNGlSX7AAYN24cXq+XnTt31iU8+vfvj9VqresTGxvL5s2bm3SPa665htdee437778f0zR54403mD17NgD5+flkZGQwY8aMesmT2traRmekHI55zJgxGIZRL+aysjIyMzPJzc3F7XZz9tlnN/nr0JibbrqJESNGkJWVRZcuXViwYEFdkVkRERFfq6qqIjkpmtwDrhZdHxMTQ2pqaodNeijhISIi0gYCAwPrzcz4efvR+Pv7H/e9TdM84gP8z9v9/PwanPN6vU26x9VXX83dd9/NDz/8QGVlJRkZGVx55ZUAdWO8/PLLjBo1qt51P0+wHCvmw0t+DMNola8LwJAhQxg0aBCLFy/mV7/6FZs3b+a9995rlbFFRESOV3V1NbkHXOzf/iAhwc1LWrhKq0js+1eqq6uV8BAREZGTz8CBA3nllVcoKipqdJaH3W7H4/EcdYx+/fqxaNEiysvL6xIs33zzDRaLpW7JyfHq2rUrp59+et3ymYkTJ9bNHImOjqZLly7s27ePa665pknj9evXj//85z/1Eh+rVq0iODiYLl26EBUVhb+/P59++ikzZ8485nh2ux2g0a/VzJkzefrpp8nKymLixInEx8c39W2LiIi0ieBgB8EhjmZdY9KwNlhHo11aRERETmJXXXUVMTExXHTRRXzzzTfs27eP//znP6xevRqApKQkUlNT2bBhAwUFBQ12HIFDy02cTifTp09ny5YtfP755/z2t7/luuuuq0tKtIZrrrmGJUuW8K9//Ytrr7223rkHHniAOXPm8Oyzz7Jr1y42b97MggULeOqppxoda9asWWRkZPDb3/6WHTt28O677/LXv/6Vu+66C4vFgtPp5E9/+hN//OMfWbx4MXv37uXbb7/l1VdfbXS8xMREDMPg/fffJz8/v94ONddccw1ZWVm8/PLL3Hjjja329RARERHfUsJDRETkJGa32/n444/p3Lkz5513HikpKfztb3+rWwpy6aWXcu6553LWWWcRFRXFG2+80WCMgIAAli9fTlFRESNGjOCyyy7j7LPP5vnnn2/VWC+//HIKCwupqKjgoosuqndu5syZvPLKKyxcuJCUlBTOOOMMFi5cSHJycqNjdenShWXLlrFmzRoGDRrErbfeyowZM7jvvvvq+tx///387ne/4y9/+Qt9+/Zl6tSp5OXlHXG8Bx98kLvvvpvo6Gh+85vf1J0LCQnh0ksvJSgoqEHcIiIicuoyzMb2wBMRERHpQM455xz69u3Lc8895+tQRERE6rhcLkJDQynMnENISDNreLiqiOh6DyUlJYSEhJygCE9uquEhIiIiHVZRUREff/wxn332WavPeBERERHfUsJDREREjmrlypVMnjz5iOd/Xg/jVDN06FAOHjzIY489Ru/evX0djoiISKPMH4/mXtPRKeEhIiIiRzV8+HA2bNjg6zBOiLS0NF+HICIiIieIEh4iIiJyVP7+/vTo0cPXYYiIiMhJrrS0lAkTJlBTU4PH4+H222/npptu8lk8SniIiIiIiIiInMTMH/9r7jVtLSAggC+//JKAgAAqKioYMGAAl1xyCREREW0eC2hbWhERERERERFpBVarlYCAAACqqqrweDz4cmNYzfBoIa/XS3Z2NsHBwRiG4etwREREREREpA2ZpklpaSlxcXFYLCd2LoHXNPE2M3HQ3P4AX331FX//+99Zt24dOTk5vP3221x00UX1+sydO5e///3v5OTk0L9/f5555hnGjx9fd764uJgzzjiD3bt38/e//53IyMhmx9FalPBooezsbOLj430dhoiIiIiIiPhQRkYGXbt29XUYraK8vJxBgwZxww03cOmllzY4v3TpUmbPns3cuXMZN24cL730EpMnT2bbtm0kJCQA0KlTJzZu3MiBAwe45JJLuOyyy4iOjm7rtwIo4dFiwcHBwKFv7pCQEB9HIyIi0jHU1NTwxBNP8Pjjj+P1eomMjOTZZ5/l17/+ta9DExGRDsblchEfH1/3bHgiHc+2tC6Xq167w+HA4XA0es3kyZOPuhX9U089xYwZM5g5cyYAzzzzDMuXL2fevHnMmTOnXt/o6GgGDhzIV199xeWXX97M6FuHEh4tdHgZS0hIiBIeIiIibWT+/Pn87W9/A+Cyyy5j7ty5REVF+TgqERHpyE72Ege/XJnw17/+lQceeKDZ41RXV7Nu3Truvvvueu2TJk1i1apVABw4cAB/f39CQkJwuVx89dVX/M///E+LYz9eSniIiIjIKePGG2/knXfeYdq0aUydOvWk/yVTRETE1365KuFIszuOpaCgAI/H02B5SnR0NLm5uQBkZmYyY8YMTNPENE1+85vfMHDgwJYHf5yU8BAREZGT1q5du3j00Ud58cUXcTqd2Gw2li1b5uuwRERE2tTxbEvb2qsSfvlhg2madW3Dhg1jw4YNrXav46VtaUVEROSk4/V6efbZZxk0aBCLFi3ikUce8XVIIiIiHVpkZCRWq7VuNsdheXl5PitKeixKeIiIiMhJJTU1lQkTJjB79myqqqo455xzuOWWW3wdloiIiM+YLTxak91uZ9iwYaxYsaJe+4oVKxg7dmwr3611aEmLiIiInBRM02T+/Pn87ne/o7y8nMDAQJ544gluueUW1eoQERFpA2VlZezZs6fudWpqKhs2bCA8PJyEhATuuusurrvuOoYPH86YMWOYP38+6enp3HrrrT6M+siU8BAREZGTwv3338///u//AnD66aezYMECunXr5uOoREREOo7vv/+es846q+71XXfdBcD06dNZuHAhU6dOpbCwkIceeoicnBwGDBjAsmXLSExM9FXIR2WYptnaM106BJfLRWhoKCUlJdqWVkREpBWkpaUxatQo7r77bu644w4sFq28FRGRk1dbPBMevkdmxsOEhDibeW0VXePv79DPrJrhISIiIj6Rm5vLe++9x0033QRAUlISqampBAQE+DgyERERaQ+U8BCf8Xq9ZO/JZe+GNMpKygnqFETPocnEdovWWm0RkXZu6dKlzJo1i6KiIpKTk5k4cSKAkh0iIiKNaEkRUi3lUMJDfKS2ppZP/7mSDZ9tobK8CpvNiqfWw7fvf8+wcwZx1pXjsNqsvg5TRERaWUFBAbNmzeJf//oXAEOGDCEmJsbHUYmIiLRfI0aMwGq1ctttt3Hbbbf5Opw2pYSH+MS3H6zj2/fXEREXTkxyZwzDwDRNXIWlrHp3LcHhQYw6b6ivwxQRkVb0zjvvcMstt5CXl4fNZuPee+/l3nvvxc/Pz9ehiYiInNSOZ4bH2rVrO2wND1UDkzZXWVbJhs+2EhQaSEh4UN3yFcMwCI0MwT/QyfpPN1NdVe3jSEVEpLXMnj2biy++mLy8PPr378+3337LAw88oGSHiIiInDBKeEiby03LpzivmLCY0EbPh8WEUpRzkAP789s4MhEROVFGjx6NxWLhj3/8I99//z3Dhg3zdUgiIiLSzmlJi7Q502tiek2MI2w3aFgsmKaJ16syOyIip6rS0lJ27dpVl9iYOnUqgwcPpk+fPj6OTERE5NTjNQ8dzb2mo/P5DI+5c+eSnJyM0+lk2LBhrFy58oh933rrLc455xyioqIICQlhzJgxLF++vF6fl19+mfHjxxMWFkZYWBgTJ05kzZo19fo88MADGIZR71DBtLYT2SWcoLBAXAWuRs+7ClwEhwcRGRfWxpGJiEhr+Pzzz0lJSeG8886joKAAOLRsUckOERERaUs+TXgsXbqU2bNnc++997J+/XrGjx/P5MmTSU9Pb7T/V199xTnnnMOyZctYt24dZ511Fueffz7r16+v6/PFF19w1VVX8fnnn7N69WoSEhKYNGkSWVlZ9cbq378/OTk5dcfmzZtP6HuVn4REBNN/bG8OHijBXVm/TkdVhZuSglIGnNaHwNBAH0UoIiItUV5ezu23386ECRPYv38/AQEBDf7/KyIiIs1ntvDo6AzTNH32dRg1ahRDhw5l3rx5dW19+/bloosuYs6cOU0ao3///kydOpW//OUvjZ73eDyEhYXx/PPPM23aNODQDI933nmHDRs2tDh2l8tFaGgoJSUlHbbi7fEod1Xw/osfs/P7vVitVhwBdqrK3Zhek76jezLllnPwD3T6OkwREWmiVatWMX36dPbs2QPALbfcwt///neCg4N9HJmIiMiJ0RbPhIfvkZr+MCEhzXs+crmqSE64v0M/s/qshkd1dTXr1q3j7rvvrtc+adIkVq1a1aQxvF4vpaWlhIeHH7FPRUUFNTU1Dfrs3r2buLg4HA4Ho0aN4tFHH6Vbt25HHMftduN2u+teu1yNL8eQpgkMCeCi305m1/f72LZ6J67CUhL7dqHvmN70GtYNu9Pu6xBFRKQJTNPkT3/6E0888QSmadK1a1deffVVJk2a5OvQREREpIPzWcKjoKAAj8dDdHR0vfbo6Ghyc3ObNMaTTz5JeXk5V1xxxRH73H333XTp0oWJEyfWtY0aNYrFixfTq1cvDhw4wCOPPMLYsWPZunUrERERjY4zZ84cHnzwwSbFJU3j8HeQMr4vKeP7+joUERFpIcMwKCgowDRNpk+fzjPPPEOnTp18HZaIiEi7oyUqzefzoqWGYdR7bZpmg7bGvPHGGzzwwAMsXbqUzp07N9rn8ccf54033uCtt97C6fxp+s/kyZO59NJLSUlJYeLEiXzwwQcALFq06Ij3u+eeeygpKak7MjIymvL2RERE2p3q6mqKiorqXj/99NO8//77LFy4UMkOERGRk8yIESPo168fL7zwgq9DaXM+m+ERGRmJ1WptMJsjLy+vwayPX1q6dCkzZszgX//6V72ZGz/3xBNP8Oijj/LJJ58wcODAo44XGBhISkoKu3fvPmIfh8OBw+E46jgiIiLt3aZNm5g+fTrR0dF8+OGHGIZBaGgoU6ZM8XVoIiIi7VZLipAe7r927doOW8PDZzM87HY7w4YNY8WKFfXaV6xYwdixY4943RtvvMH111/P66+/fsRfrv7+97/z8MMP89FHHzF8+PBjxuJ2u9m+fTuxsbHNexMiIiIdRG1tLY8++ijDhw9nw4YNfP/996Smpvo6LBEREZEj8tkMD4C77rqL6667juHDhzNmzBjmz59Peno6t956K3BoGUlWVhaLFy8GDiU7pk2bxrPPPsvo0aPrZof4+/sTGhoKHFrGcv/99/P666+TlJRU1ycoKIigoCAAfv/733P++eeTkJBAXl4ejzzyCC6Xi+nTp7f1l0BEROSkt2PHDqZPn86aNWsAuOCCC3jppZeIiYnxcWQiIiIiR+bTGh5Tp07lmWee4aGHHmLw4MF89dVXLFu2jMTERABycnJIT0+v6//SSy9RW1vLbbfdRmxsbN1xxx131PWZO3cu1dXVXHbZZfX6PPHEE3V9MjMzueqqq+jduzeXXHIJdrudb7/9tu6+IiIicmg3tKeffpohQ4awZs0aQkNDWbRoEe+8846SHSIiIm3Ii9Gio6MzTNNUsdcWaIs9l0VERHypoqKCwYMHs3v3biZNmsSrr75K165dfR2WiIjISaEtngkP32NP+iMEhziPfcHPlLqq6JFwX4d+ZvXpkhYRERE5uXi9XgAsFgsBAQEsXryYTZs2cdNNNzVpFzURERFpfcdTtLQj8/m2tCIiInJySE9P51e/+hXPPvtsXdvo0aO5+eablewQERGRU44SHiIiIh2caZq89tprpKSk8Mknn/DII49QVlbm67BERETkR6ZptOjo6JTwEBER6cBycnI4//zzmTFjBi6XizFjxrB69eq6nc1ERERETlVKeIiIiHRApmny+uuv079/fz744APsdjuPPfYYK1eupFevXr4OT0REROS4KeEhIiLSAaWlpXH99ddz8OBBhg0bxg8//MAf//hHrFarr0MTERGRX/C28AAYMWIE/fr144UXXmjrsH1Ou7SIiIh0QMnJyTz88MO43W7uuece/Pz8fB2SiIiInABr167VtrQiIiLSfh08eJDZs2dzxx13MHToUAD+9Kc/+TgqERERaQoTA5PmFSFtbv/2SAkPERGRdm7ZsmXMnDmTnJwcNm3axLp167BYtKpVRERE2jf9tiMiItJOuVwuZs6cyZQpU8jJyaF3797MmzdPyQ4RERHpEPQbj4iISDv06aefkpKSwquvvophGNx5552sX7+e0aNH+zo0ERERaabDS1qae3R0WtIiIiLSznzxxRdMnDgROFScdOHChZx++uk+jkpERESkbSnhISIi0s6cfvrpnHXWWfTp04fHH3+coKAgX4ckIiIix+Hn28w255qOTgkPERGRU1xlZSVPPfUUs2fPJjAwEIvFwkcffYTdbvd1aCIiIiI+o4SHiIjIKWzNmjVMnz6dHTt2kJOTw/PPPw+gZIeIiEg7YpoGptnMbWmb2b89UtFSERGRU5Db7ebee+9lzJgx7Nixg5iYGM4991xfhyUiIiJy0tAMDxERkVPMhg0bmD59Ops2bQLgqquu4v/+7/+IiIjwcWQiIiIiJw8lPERERE4h//rXv7j66qupra0lMjKSF198kUsvvdTXYYmIiMgJ1JJtZrUtrRIeIiIip5TTTjuN4OBgzjzzTF588UU6d+7s65BERERETkqq4SEiInIS83g8LFu2rO51bGws69ev5z//+Y+SHSIiIh3EoW1pjWYeh4wYMYJ+/frxwgsv+PIt+IRmeIiIiJyk9uzZw/XXX88333zDO++8w4UXXghAYmKijyMTERGRU8XatWsJCQnxdRg+oRkeIiIiJxmv18vzzz/PoEGD+OabbwgODqa8vNzXYYmIiIicUjTDQ0RE5CSyf/9+brzxRj777DMAJkyYwGuvvaZZHSIiIh2Yipa2jM9neMydO5fk5GScTifDhg1j5cqVR+z71ltvcc455xAVFUVISAhjxoxh+fLlDfr95z//oV+/fjgcDvr168fbb799XPcVERFpC2+88QYpKSl89tlnBAQE8Pzzz7NixQolO0RERERawKcJj6VLlzJ79mzuvfde1q9fz/jx45k8eTLp6emN9v/qq68455xzWLZsGevWreOss87i/PPPZ/369XV9Vq9ezdSpU7nuuuvYuHEj1113HVdccQXfffddi+8rIiLSFoKDgyktLWXcuHFs3LiR2267DYvF559NiIiIiI+ZLTw6OsM0TZ99HUaNGsXQoUOZN29eXVvfvn256KKLmDNnTpPG6N+/P1OnTuUvf/kLAFOnTsXlcvHhhx/W9Tn33HMJCwvjjTfeaLX7ulwuQkNDKSkp6bAFYERE5PiYpkl6enq9GRwffvghkyZNwmq1+jAyEREROZa2eCY8fI8f0h4nOMS/WdeWuioZmvTHDv3M6rOPjaqrq1m3bh2TJk2q1z5p0iRWrVrVpDG8Xi+lpaWEh4fXta1evbrBmL/61a/qxmyN+4qIiByvvLw8Lr30UgYPHkx2dnZd++TJk5XsEBERkXrMZm9J2/yaH+2RzxIeBQUFeDweoqOj67VHR0eTm5vbpDGefPJJysvLueKKK+racnNzjzpmS+/rdrtxuVz1jvasuqqajJ1Z7N+WQenBMl+HIyLSrvz73/+mf//+vP3225SXl/P111/7OiQRERGRdsfnu7QYRv2sk2maDdoa88Ybb/DAAw/w7rvv0rlz52aP2dz7zpkzhwcffPCYcZ3qPB4P6z7exA+fbKIw5yCm10tQWBADxvZm7EUjCQhu3jQqERH5SWFhIb/5zW9YsmQJAAMHDmTx4sUMGjTIx5GJiIiItD8+m+ERGRmJ1WptMKsiLy+vweyLX1q6dCkzZszgzTffZOLEifXOxcTEHHXMlt73nnvuoaSkpO7IyMg45ns81ZimyZdvruKjBZ9RWlhGdEIkcd1j8NZ6+eo/3/LevOVUVbh9HaaIyCnp/fffZ8CAASxZsgSr1cp9993H2rVrlewQERGRYzJNo0VHR+ezhIfdbmfYsGGsWLGiXvuKFSsYO3bsEa974403uP7663n99deZMmVKg/NjxoxpMObHH39cN2ZL7+twOAgJCal3tDcH9uez7uNNdIoMoXNiJGUVtezdW0hqVikFFSZffriJle9+7+swRUROSR9//DG5ubn06dOH1atX8/DDD2O3230dloiIiEi75dMlLXfddRfXXXcdw4cPZ8yYMcyfP5/09HRuvfVW4NCsiqysLBYvXgwcSnZMmzaNZ599ltGjR9fN0vD39yc0NBSAO+64g9NPP53HHnuMCy+8kHfffZdPPvmk3vroY923o9q7IY3yknKi4iPIyiwmPf0gXo8Xu8OGxWqh+GAt7y7+huhuMQwc1d3X4YqInPSqq6vrkhpz5swhOjqau+66C39/LQ8UERGRpjNbUIRURUt9nPCYOnUqhYWFPPTQQ+Tk5DBgwACWLVtWtz1fTk4O6enpdf1feuklamtrue2227jtttvq2qdPn87ChQsBGDt2LEuWLOG+++7j/vvvp3v37ixdupRRo0Y1+b4dVVlJORarlbKyajIyDmKzWfAPdtSdN0OduCtr+OK99XRJiiQiOtSH0YqInLzKysr4wx/+wPbt2/nss8+wWCwEBgZy7733+jo0ERERkQ7DME3T9HUQp6K22HO5rX3zzho+XvwlRmAAWVkldOpU/xNIV2EpoZEhBEWHc84lwxgzsb+PIhUROXl9+eWX3HDDDaSmpgLw6aefMmHCBB9HJSIiIq2tLZ4JD99jbeqTBIU0b4ZomauSEcm/a1fPrM3lsxoecvLpNiiRwBB/CvNKsdnqf2t4ar14PF46J0TiZ7eQn1PsmyBFRE5SlZWV3HnnnZx11lmkpqaSkJDAJ598omSHiIiIHDcvRouOjk4JD6kTk9SZoRMH4q5wU1FahafWi9drUllWRUmhi4i4cCK7RuD1mNj8fL6jsYjISePbb79l8ODBPPPMM5imyYwZM9i8eTNnn322r0MTERGRDm7EiBH069ePF154wdehtDk9tUodwzA468px5Oa4+PS/6yk9WAaA3WknvncXEvp04fAKqOTeMb4MVUTkpGGaJrNmzWLXrl3ExsbyyiuvcN555/k6LBEREWlHjqdo6dq1azvskhYlPKQeq83KhTdPoMztJX1XDpHRIYRGBOMIsFNVWU32vgK69YmlW984X4cqInJSMAyD1157jaeffpqnn36a8PBwX4ckIiIiIijhIY0IDg3g4utP46M315CVVkBFZhGmCX5+Vnr278KvrhiFw+nn6zBFRHyipqaGRx99FLvdzj333APA4MGDWbRokY8jExERkfbKxMA0tS1tcynhIY2K7hrO1b+ZSOrOHPJzSjAMiOkaTmLPaKw2q6/DExHxia1btzJ9+nTWrVuHzWbjiiuuoHv37r4OS0REREQaoYSHHJGf3UavlHh6pcT7OhQREZ/yeDw8+eST3H///VRXVxMWFsYLL7xAt27dfB2aiIiIiByBEh4iIiJHsWvXLq6//npWr14NwJQpU5g/fz5xcaplJCIiIm2jJdvMaltaJTxERESOqLy8nLFjx1JYWEhISAjPPPMM119/PYahXyBERERETnZKeIiIiBxBYGAg9913Hx988AGvvvoqCQkJvg5JREREOiDzx6O513R0Fl8HICIicrIwTZP58+ezatWqurbbb7+djz/+WMkOERERkVOMZniIiIgAmZmZzJw5k+XLl9OjRw82btxIQEAAFos+GxARERE5Fem3OBER6dBM02Tx4sUMGDCA5cuX43Q6mTVrFk6n09ehiYiIiABgYrTo6Og0w0NERDqs3Nxcbr31Vt59910ARo4cyaJFi+jTp4+PIxMRERGR46WEh4iIdEipqamMGDGCwsJC/Pz8ePDBB/nDH/6Azab/NYqIiMjJxWsaeM1mbkvbzP7tkX6rExGRDikpKYmRI0eSm5vLokWLSElJ8XVIIiIiItKKlPAQEZEO44MPPmDcuHF06tQJwzD4xz/+QVBQEHa73dehiYiIiBxRS2pyqIaHipaKiEgHUFxczPTp0/n1r3/NnXfeWdceHh6uZIeIiIhIO6UZHiIi0q4tX76cGTNmkJWVhWEYREVF4fV6td2siIiISDunhIeIiLRLpaWl/P73v2f+/PkA9OjRg0WLFjF27FgfRyYiIiLSPFrS0jL6eEtERNqdTZs2MXDgwLpkx+23387GjRuV7BAREZEOZ8SIEfTr148XXnjB16G0Oc3wkHahttZDZWUNfn5WnE4/X4cjIj7WpUsXKisrSUxMZMGCBZx11lm+DklERESkxbwYeJs5Y+Nw/7Vr1xISEnIiwjrpKeEhp7TKymrWr9/Ppk3plJa5sdks9Okdy5ChScREh/o6PBFpQzt27KB3794YhkFERATLli2jR48eHfZ/8CIiIiIdnZa0yCmrosLN2++s46PlmykuqcTp9MPrNVn97R7efPM70jMKfR2iiLSBqqoq/vSnP9G/f3+WLFlS1z506FAlO0REREQ6MJ8nPObOnUtycjJOp5Nhw4axcuXKI/bNycnh6quvpnfv3lgsFmbPnt2gz5lnnolhGA2OKVOm1PV54IEHGpyPiYk5EW9PTqB169LYsSOHrl3DiIkJJTjYSUREEMnJURwsKueTT7bi8Xh9HaaInEDr1q1j2LBhPP7443i9Xr799ltfhyQiIiLS+kwwm3lg+jpo3/NpwmPp0qXMnj2be++9l/Xr1zN+/HgmT55Menp6o/3dbjdRUVHce++9DBo0qNE+b731Fjk5OXXHli1bsFqtXH755fX69e/fv16/zZs3t/r7kxOnurqWTZsyCApyYLfXX5llGAbRMaFkZR1k//4CH0UoIidSdXU1f/3rXxk1ahTbtm2jc+fOvPPOOzz77LO+Dk1EREREThI+reHx1FNPMWPGDGbOnAnAM888w/Lly5k3bx5z5sxp0D8pKanul9nXXnut0THDw8PrvV6yZAkBAQENEh42m02zOk5hZWVVlJVVERzibPS80+mHp9ZLSUllG0cmIifali1bmDZtGuvXrwfg8ssvZ+7cuURGRvo4MhEREZETQ9vStozPEh7V1dWsW7eOu+++u177pEmTWLVqVavd59VXX+XKK68kMDCwXvvu3buJi4vD4XAwatQoHn30Ubp163bEcdxuN263u+61y+VqtRhPFWXlbnbtyaXoYDlWm5X4LmEkJURis7b9RCGbzYrVZqGmxtPoea/XC5j42a1tG5iInHB5eXmsX7+e8PBw5s6dy9SpU30dkoiIiIichHyW8CgoKMDj8RAdHV2vPTo6mtzc3Fa5x5o1a9iyZQuvvvpqvfZRo0axePFievXqxYEDB3jkkUcYO3YsW7duJSIiotGx5syZw4MPPtgqcZ2Kdu7JZflnW8kvKAUDTC/4+VnpkdyZ888dSEiwf5vGExzsJDkpik2bMwgJ8ccw6mcvi4rKCQ0NICG+8b9PETm1VFRUEBAQAMCECRN45ZVXmDJlimbqiYiISIegGR4t4/Oipb98UDVNs0FbS7366qsMGDCAkSNH1mufPHkyl156KSkpKUycOJEPPvgAgEWLFh1xrHvuuYeSkpK6IyMjo1ViPBXk5Bbz3kcbKS6pIDE+gm6JUXRPjqJzZDDbd2Xz/vJNbV4c1DAMhg9PJjjYn6ysg3UzPbxek8LCMsrK3AwblkxISNsmYkSkdXm9Xp555hmSkpLYt29fXfuMGTOU7BARERGRo/JZwiMyMhKr1dpgNkdeXl6DWR8tUVFRwZIlS+rqgxxNYGAgKSkp7N69+4h9HA4HISEh9Y6OYuO2LIpLKugaF4b1Z8tXnE4/4mI6sSc1j/TMojaPKzExkgvOH0JkRBDZ2cWkpeazP60ATDjzjD6MG9ezzWMSkdazb98+zjrrLO68807y8/N5+eWXfR2SiIiIiJxCfLakxW63M2zYMFasWMHFF19c175ixQouvPDC4x7/zTffxO12c+211x6zr9vtZvv27YwfP/6479veeL0mO3fnEhLccNkIgL+/neqaWjKyi0hObPuCgb16xZCYGMG+1HxKXVXY7VaSkqLo1CmgzWMRkdZhmiYvvfQSv//97ykvLycwMJAnn3ySm2++2dehiYiIiPiEFwNvM5eoNLd/e+TTXVruuusurrvuOoYPH86YMWOYP38+6enp3HrrrcChZSRZWVksXry47poNGzYAUFZWRn5+Phs2bMBut9OvX796Y7/66qtcdNFFjdbk+P3vf8/5559PQkICeXl5PPLII7hcLqZPn37i3uwpymuaeL1eLEcpTGoYFrxe323y7HD40bdPnM/uLyKtJyMjgxkzZrBixQoAzjjjDF577bWjFpUWEREREWmMTxMeU6dOpbCwkIceeoicnBwGDBjAsmXLSExMBCAnJ4f09PR61wwZMqTuz+vWreP1118nMTGRtLS0uvZdu3bx9ddf8/HHHzd638zMTK666ioKCgqIiopi9OjRfPvtt3X3lZ/YrBa6xHRi664cIsICG5yvrfVgAJHhQW0fnIi0O6+88gorVqzA6XTyt7/9jd/+9rdYLD4vNyUiIiLiU6ZpYJrNLFrazP7tkWGapu8+mj+FuVwuQkNDKSkpaff1PHbszuXNd9YSHOykU8hPS0W8XpOMrCI6RwVz49Wn4XT6+TBKEWkP3G43t956K3fffTe9e/f2dTgiIiIiR9QWz4SH7/HRnvkENnNnzPLSSs7tcXOHeGY9En1sJsfUq3s040b1oKzMTVp6AQWFpeTmlZC6v4BOnQI4b2KKkh0i0mymabJkyRImT55MbW0tcKhA9IIFC5TsEBEREZHj5tMlLXJqsFgMzjqtD/Fx4Wzankl2TjFBflZGD+9OSt8uREZoOYuINE9+fj6zZs3i3//+N3Co7tItt9zi46hERERETk7mj0dzr+nolPCQJrFYDHr1iKZXj2hM02x0xxYRkaZ4++23ufXWW8nLy8Nms3H//fdz4403+josEREREWlnlPCQZlOyQ0Ra4uDBg9x+++384x//AGDAgAEsWrSIoUOH+jgyERERkZPboRkezSxaemJCOaWohoeIiLSJG2+8kX/84x9YLBbuvvtuvv/+eyU7REREROSE0QwPERFpE3PmzCE1NZUXX3yR0aNH+zocEREREWnnlPAQEZET4vPPP+eHH37gd7/7HQB9+vRh/fr1WhYnIiIi0kxe08BrNu93qOb2b4+U8BARkVZVXl7O3XffzfPPP4/FYmHcuHF1MzqU7BARERGRtqKEh4iItJpvvvmG66+/nj179gBw00030b9/fx9HJSIiInJqMzFaULRUHzSpaKmIiBy3qqoq/vCHPzB+/Hj27NlD165dWb58OS+++CLBwcG+Dk9EREREOiAlPERE5LiYpsmZZ57JE088gWmaTJ8+nc2bNzNp0iRfhyYiIiLSLhye4dHcA2DEiBH069ePF154wcfvou1pSYuIiBwXwzCYOXMmaWlpzJ8/nwsuuMDXIYmIiIjIj9auXUtISIivw/AJJTw6CK/XS86+A1SWVuEMchLbrTNWq9XXYYnIKWrjxo2UlZUxbtw4AGbMmMFll11Gp06dfBuYiIiIiMiPlPDoAFK3pPPN29+RuSuH6qpq/Jx2uvaMYdxFo+g2MNHX4YnIKaS2tpbHH3+cBx54gJiYGDZv3kxoaCiGYSjZISIiInKCmOaho7nXdHRKeLRz+7dl8M7/fUjZwXKi4iPwD3JSVe5m/9ZM8jOLuOg3k5X0EJEm2b59O9OnT2ft2rUADB06lJqaGh9HJSIiIiLSOBUtbce8Xi+r/ruW0qIyEvp2ISDYH8Mw8A9yEt+nC+XFFax6dw1er9fXoYrISczj8fDkk08yZMgQ1q5dS6dOnfh//+//8fbbbxMZGenr8ERERETaPS9Gi46OTjM82rH8jELSt2cR1TUCw6j/zW4YBlHxEWTuziE3NY+47jE+ilJETmZlZWVMnjyZr7/+GoBzzz2XV155hS5duvg4MhERERGRo9MMj3assqyKGncNzkBHo+edAQ6qq2qoLKtq48hE5FQRGBhIbGwsQUFBvPzyyyxbtkzJDhERERE5JWiGRzsWEOKP3WmnsqyKoE6BDc5Xllfh8LcTEOLvg+hE5GS1f/9+AgMDiYyMxDAM5s6dS1lZGUlJSb4OTURERKRDMjEwm7lEpbn92yPN8GjHorpGkNi/K/mZhZi/KNFrmiZ56QXE9+lCdGKUjyIUkZOJaZq89tprpKSkMGvWrLr2yMhIJTtERERE5JSjGR7tmGEYjLtoFAf2F5C2JZ3IrpH4BzmoKneTn1lIp86hnHbxKCwW5b1EOrrs7Gxuuukmli1bBkBWVhZlZWUEBQX5ODIRERER0QyPltGTbjvXtWcsl9wxhX5je1PhqiBn3wHKSsrpM6onl9xxHgl9tBZfpCMzTZN//vOfDBgwgGXLluFwOHj88cf56quvlOwQERERkVOaZnh0AF17xnLZXedTkFVERWklAcH+RHYJb7Bzi4h0LIWFhdx888289dZbAAwfPpxFixbRr18/H0cmIiIiIj9nmoeO5l7T0fl8hsfcuXNJTk7G6XQybNgwVq5cecS+OTk5XH311fTu3RuLxcLs2bMb9Fm4cCGGYTQ4qqrq70TSnPu2B4ZhHKrp0bdro9vUikjHY7PZWLt2LX5+fjz88MOsXr1ayQ4RERERaTd8mvBYunQps2fP5t5772X9+vWMHz+eyZMnk56e3mh/t9tNVFQU9957L4MGDTriuCEhIeTk5NQ7nE5ni+8rItJelJSU1BUxDg0N5Y033mDNmjXcd9992Gya9CciIiIi7YdPEx5PPfUUM2bMYObMmfTt25dnnnmG+Ph45s2b12j/pKQknn32WaZNm0ZoaOgRxzUMg5iYmHrH8dxXRKQ9WLZsGX379uWVV16paxs3bhyDBw/2XVAiIiIi0gRGXeHSph6oaKnvEh7V1dWsW7eOSZMm1WufNGkSq1atOq6xy8rKSExMpGvXrvz6179m/fr1bXLfk5HX6yVzXx7rVu7k+692sn/3ATwer6/DEpE25HK5mDFjBlOmTCEnJ4eXX34Zr1f/DoiIiIhI++az+csFBQV4PB6io6PrtUdHR5Obm9vicfv06cPChQtJSUnB5XLx7LPPMm7cODZu3EjPnj1bfF+3243b7a577XK5WhxjWykpKufj/6wldUcO7qoaDAP87DYSe0Yz6bKRhEcF+zrEOjU1HlL3HCArvZDaWi+RUcH06BNLcIi/r0MTOaV9+umn3HjjjaSnp2MYBnfeeSePPPKItqMWEREROYWYpoFpNnNb2mb2b498vmD7l8UzTdM8roKao0ePZvTo0XWvx40bx9ChQ/m///s/nnvuuRbfd86cOTz44IMtjqutVbtr+OD11ezZlkVM1zACgg7VMKksd7N7cybuqlquuPlM/AMdPo4Uig+W88Fb60jbm0dtrRfDOFRROLJzMJN+PZiefWJ9HaLIKaesrIw//elPzJ07F4Bu3bqxcOFCxo8f7+PIRERERETaRrM+4luzZg0ej6futfmLfW7cbjdvvvlmk8aKjIzEarU2mFWRl5fXYPbF8bBYLIwYMYLdu3cf133vueceSkpK6o6MjIxWi/FE2Lstm9SdOXRNjqpLdgD4BzqI796ZjL0H2L0l04cRHuKp9bLs7R/YvSOHzjGhJPfoTFL3ziQkR+IqrmTZ2+vIzS72dZgip5ytW7fy4osvAjBr1iw2btyoZIeIiIiIdCjNSniMGTOGwsLCutehoaHs27ev7nVxcTFXXXVVk8ay2+0MGzaMFStW1GtfsWIFY8eObU5YR2WaJhs2bCA2Nva47utwOAgJCal3nMxSd2QDYHc0nMRj87NitVnYvSWrrcNqIG1fHql78+gSH47D6VfXbrVaiIsPo/hgBVs3avcckab4eRJ61KhRPP7446xYsYIXXniBoKAgH0YmIiIiIsfD28Kjo2vWkpZfzuj45esjtR3JXXfdxXXXXcfw4cMZM2YM8+fPJz09nVtvvRU4NKsiKyuLxYsX112zYcMG4NB07fz8fDZs2IDdbqdfv34APPjgg4wePZqePXvicrl47rnn2LBhAy+88EKT79seVFXVYLNZj3jez8+Gu6q6DSNqXFZGEbU1nnrJjsMMwyAo2Mmu7dlMODfluJY6ibR3a9as4ZZbbuGNN96gT58+APzud7/zcVQiIiIiIr7T6jU8mvNQOnXqVAoLC3nooYfIyclhwIABLFu2jMTERABycnJIT6//6f6QIUPq/rxu3Tpef/11EhMTSUtLAw7NMrn55pvJzc0lNDSUIUOG8NVXXzFy5Mgm37c9iIwOZas79Yi1SaoqqomK6dT2gf2C12sedbcki8XA4/FimqB8h0hDbrebhx9+mDlz5uD1evnTn/7Eu+++6+uwRERERKQV/bTVbPOu6eh8XrR01qxZzJo1q9FzCxcubNB2rBkkTz/9NE8//fRx3bc96JUSz/df7aQor5SI6PrLb4oLy3AE2OkzOKFFY5dVuNmReoADhS5sFgvxseH0SIjE7tf8b6fIqGAMw6C21tPojJSy0ipShiZiseiHVeSXNmzYwLRp09i8eTMAV199Nf/3f//n46hERERERE4OzX5C3bZtW13BT9M02bFjB2VlZcChrWbl5BDdNYxxkwbw5QcbSd+TR2h4IACug+UYFoNxv0qha7coANyVborzXFisFsJjO2G1HnkpzO79ebz/xRYOFJViYAAmFouF5C4RXDxxEBGdApsVZ/feMUTHhJKTeZAuCRH1EhsHi8rxs1tJaWFiRqS9qqmp4W9/+xsPPfQQtbW1REVF8eKLL3LJJZf4OjQREREROQG0LW3LNDvhcfbZZ9ebZfHrX/8aOLSU5Xi3lJXWYxgGI8/qS1hUMJu+3Uf2/nxMoFvfOAaO6k7vQfFUV1Wz9qMNbPpqO65CFxaLheikzgybmEL/cX0a/F0eKHTx9qebKCuvIrlLBFbLoZq31TW17EnP5+1PNjLtwpHNmunh72/n3AuG8P5/vidtbx4BgQ6sNgvlpW7sDhvjzuxLt56tt2uPSHuwYMEC/vKXvwBwySWXMG/ePDp37uzjqERERERETi7NSnikpqaeqDjkBDAMg14p8fQc0JXKcjemCQFBDgzDoNpdw/vzV7D5q+0EhQYSHh2Gx+Mha1c2WbuzKSuuYPSvh9Ubb9PObAqLy+kRH1kvGWL3sxEfE0ZqViF7Mwro2y2mWXEmdoviyutPY9vmDHZuy6a21kvvvnH0GxhPco/OSqKJ/MKNN97IW2+9xbRp07jqqqv0MyIiIiIi0ohmJTzaU1HPjsQwDAKCnPXadq7Zw7ZvdhLbLRr/wJ/OBYYEUJBVxKp319BzWDciYsPqzu1IPUBQgKPRhyuH3YbH4yUj92CzEx4AEVHBjJ/Qj/ET+jX7WpH2bvfu3cyZM4d58+bhcDiw2Wx8+OGHSnSIiIiIdBDmj0dzr+noLM3pXFRURGZmZr22rVu3csMNN3DFFVfw+uuvt2pwcuJs+WY7Fqu1XrLjsIi4MFyFZez5YV+9dq/Xi/UoxUMNw8Dj0Y+VSGvxer0899xzDBo0iAULFvDII4/UnVOyQ0RERETk6JqV8Ljtttt46qmn6l7n5eUxfvx41q5di9vt5vrrr+f//b//1+pBSusrzCkmILhhsgMOPUgZFoPSg+X12hPiwimtcDd6jcfjBSA6Irh1AxXpoNLS0jj77LO54447qKys5Oyzz2bmzJm+DktEREREfODwtrTNPTq6ZiU8vv32Wy644IK614sXLyY8PJwNGzbw7rvv8uijj/LCCy+0epDS+oJCA3BXVjd6zjRNTK+JM9BRr31gry447TYKDpY16J954CDRkcH0TlLhRJHjYZomL7/8MikpKXzxxRcEBATwwgsv8PHHH2tZoYiIiIhIMzQr4ZGbm0tycnLd688++4yLL74Ym+1QKZALLriA3bt3t26EckL0H9ubqgo3tTW1Dc6VHSzHP9hJckr97WC7dY3g7FG9qa71sCejgAOFpeTkl7Ano4DQ4AB+fcYAAgMcDcYTkaa7//77ufnmmykrK+O0005j48aNzJo1C4ulWf9ci4iIiIh0eM36DTokJITi4uK612vWrGH06NF1rw3DwO1ufMmDnFz6jelF8oAE9m/PovRgGaZp4vV4Kcw5SEFWIQNP70dc9/rFRw3DYNzQblx7/gjGDEoiONBBRKdAJo3tw7QLR9IjIcpH76ZpysvdbNmaydrvU9m2LYvKI8xwEfGlmTNnEhUVxZNPPskXX3xBjx49fB2SiIiIiPiYaRotOjq6Zu3SMnLkSJ577jlefvll3nrrLUpLS5kwYULd+V27dhEfH9/qQUrLuKtqML0mDn+/BgUOA0MDueC2c/ns9ZXs3ZhGQVYRAKFRIZx+2RjGXTKq0aKIhmHQrWsk3bpGtsl7aA2mabJuXRqrVu2m6Gd1SSIjghl/ei8GpsSrAKT4zIEDB/jggw+48cYbAUhKSiI1NZXAwEAfRyYiIiIicmprVsLj4YcfZuLEifzjH/+gtraWP//5z4SF/bRt6ZIlSzjjjDNaPUhpnrRduWz6bi/7dx/A9JpEdw0jZWQ3+gxOqDctPqxzKJfcMYW89AIKs4uwWC3E9YghJLx9FR7dtCmD5cs3Y/OzEB8fjtVqobbWQ35+KcuWbcTuZ6Nv3zhfhykd0L/+9S/+53/+h8LCQhITEzn77LMBlOwQERERkXq0LW3LNCvhMXjwYLZv386qVauIiYlh1KhR9c5feeWV9OvXr1UDlObZ9N1eVrz1PZXl1YSGB2C1Wdi3I4d9O3I4kHWQM6YMqpf0MAyD6MQoohNP7uUoLVVdXcu33+3FsBhER4fWtdtsVmJjO5GRUch33+2lV68YrFbVSJC2UVhYyG9+8xuWLFkCwMCBA4mKap8/gyIiIiLiWyNGjMBqtXLbbbdx2223+TqcNtWshAdAVFQUF154YaPnpkyZctwBScsdLCjli/c3AJDUK7quPTQ8ENfBctZ8vp2E7tF079dxZjNkZxeTl+ciOjqk0fORkcFk5xzqExvbqW2Dkw7pvffe4+abbyY3Nxer1co999zD/fffj91u93VoIiIiInKSask2s4f7r127lpCQxp+H2rtmJTwWL17cpH7Tpk1rUTByfHZvyaSksIzEXjENzoWEBXKwoIzt69M6VMKjttaDp9aLzWZt9LzNZsXj8VJT42njyKQjuvPOO3nmmWcA6Nu3L4sWLWLEiBG+DUpEREREpJ1qVsLj+uuvJygoCJvNhmk2viLIMAwlPHykKK8Uq82CxdJ45i8gyMGBrINtHJVvhYT44x/gR3m5m+BgZ4Pz5eVu/P39CAnx90F00tGMHDkSwzD43e9+x8MPP4zT2fB7UkREREREWkezEh59+/blwIEDXHvttdx4440MHDjwRMUlLWB32PB6jlyaprbGg93h14YR+V5UVDDdunVmy+ZMAgPt9eqXeDxeigrLGDGiG506BfgwSmmvysrK2LVrF0OHDgUO1TkaNGiQah2JiIiISLOY5qGjudd0dM2q0rh161Y++OADKisrOf300xk+fDjz5s3D5XKdqPikGRJ6RGO1WamqrG5wzuPxUlVRTe+BHWvbYMMwOPOMPsTGhpKaWkBBQSllZVXk55eSllZAQkIE48b18nWY0g59+eWXDBw4kMmTJ1NQUAAc+n5UskNEREREpG00e1uKUaNG8dJLL5GTk8Ptt9/Om2++SWxsLNdccw1ut/tExChNlNQrhu7948hOK6SirKqu3V1VQ8bePGITI+kzOMGHEfpGVFQIV1wxitNP742fzUZFRTVOhx8TzurH5ZePJDxcW4BK66msrOTOO+/krLPOIjU1FafTSWZmpq/DEhEREZFT2OGipc09Orpm79JymL+/P9OmTSMpKYm//vWvLFmyhOeffx6Hw9Ga8Ukz2PysTJ46CqvVwt5t2eRlFYMBVquFhB7R/OqyEYSEdcyH+/DwIM6ZOIDxp/XG7a7B6fTD0cGW98iJ9+233zJ9+nR27doFwMyZM3nyySc7bFVsERERERFfalHCIysri0WLFrFgwQLKy8u59tprmTdvHmFhYa0dnzRTcGgAF98wnuz9hWTvL8D0mkTGdCKxZzQ2v8Z3KulInE4/nE4lOqR1mabJn//8Zx5//HG8Xi9xcXG88sorTJ482dehiYiIiIh0WM1KeLz55pssWLCAL7/8kl/96lc8+eSTTJkyBatVD9InE4vFQtfkKLomR/k6lHoqyt2k7c3DXVVDYJCTpO6dsTtaPMlI5KRhGAa5ubl4vV6uvfZannvuOSWARURERKTVmKaBaTZviUpz+7dHhnmk/WUbYbFYSEhI4JprriE6OvqI/W6//fZWCe5k5nK5CA0NpaSkRNPVj8E0TX5Ys4/VX+3iYGEZpgkWi0HnmFDGn92XvgO6+jpEkWarqamhrKysLrFRUlLCl19+yQUXXODjyERERESkLbTFM+HheyzYspSA4ObtLFlRWsENA6Z26GfWZn28npCQgGEYvP7660fsYxhGh0h4SNNt+D6N5e9twG630TUhAqvNQk2Nh7zcEpa9vQ673Ub3XjG+DlOkybZu3cq0adOIjo7mgw8+wDAMQkNDlewQERERkRPC/PFo7jUdXbMSHmlpacfsk5WV1dJYpB1yV9Ww5pvd2GwWOseE1rX7+VmJ6xpGemoBa1btoVvPaAxDU67k5ObxeHjiiSf4y1/+QnV1NeHh4aSmptKtWzdfhyYiIiIiIr/Q7G1pjyQ3N5fbb7+dHj16NOu6uXPnkpycjNPpZNiwYaxcufKIfXNycrj66qvp3bs3FouF2bNnN+jz8ssvM378eMLCwggLC2PixImsWbOmXp8HHngAwzDqHTExmmFwImSmF5Kf5yIiquEUKsMwiIgKJnN/AYX5pT6ITqTpdu3axWmnncbdd99NdXU1v/71r9myZYuSHSIiIiJywmlb2pZpVsKjuLiYa665hqioKOLi4njuuefwer385S9/oVu3bqxevZrXXnutyeMtXbqU2bNnc++997J+/XrGjx/P5MmTSU9Pb7S/2+0mKiqKe++9l0GDBjXa54svvuCqq67i888/Z/Xq1SQkJDBp0qQGM0/69+9PTk5O3bF58+amfyGkyWpqPHg9XvyOsEOM3W6jttZLdXVtG0cm0jRer5dnn32WQYMG8e233xISEsKCBQv473//S2xsrK/DExERERGRI2jWkpY///nPfPXVV0yfPp2PPvqIO++8k48++oiqqio+/PBDzjjjjGbd/KmnnmLGjBnMnDkTgGeeeYbly5czb9485syZ06B/UlISzz77LMAREyv//Oc/671++eWX+fe//82nn37KtGnT6tptNptmdbSB4BB/HE4/KsrdBAQ6GpwvL6vC399OcIi/D6ITObaqqiqef/55qqqqmDhxIq+99hrx8fG+DktERERERI6hWTM8PvjgAxYsWMATTzzBf//7X0zTpFevXnz22WfNTnZUV1ezbt06Jk2aVK990qRJrFq1qlljHU1FRQU1NTWEh4fXa9+9ezdxcXEkJydz5ZVXsm/fvqOO43a7cblc9Y6OpLiwjL3bskndkUNFWVWTr4vtEkZCUiR5uSV4vfXL5nhqvRQVltM3pYsSHnJSMU0Tr9cLQEBAAIsWLWLu3Ll8/PHHSnaIiIiISJszzZYdHV2zZnhkZ2fTr18/ALp164bT6aybndFcBQUFeDyeBtvbRkdHk5ub26IxG3P33XfTpUsXJk6cWNc2atQoFi9eTK9evThw4ACPPPIIY8eOZevWrURERDQ6zpw5c3jwwQdbLa5TRZmrkpUfbmLnpgzKSiqwWCx0ighi0JjujDqrH7YjLFU5zGIxOOOc/hwsKidtbx5h4YHYnX5UlrspKa4kqXsUo07r1UbvRuTYMjIymDlzJpMnT66rEzR27FjGjh3r28BERERERKRZmjXDw+v14ufnV/faarUSGBh4XAH8cmcO0zRbbbeOxx9/nDfeeIO33noLp9NZ1z558mQuvfRSUlJSmDhxIh988AEAixYtOuJY99xzDyUlJXVHRkZGq8R4MquqqOa9f6xi7Rc7sNksJPToTFxiBO6qaj7/73o+/+96zCakDeO6hnPZtWMYPf5QYqO8tAq7w48zzunHJVeNplPY8X0PibQG0zRZuHAhAwYM4OOPP+ahhx6itFTFdEVERETE91S0tGWaNcPDNE2uv/56HI5DtRiqqqq49dZbGyQ93nrrrWOOFRkZidVqbTCbIy8vr8Gsj5Z44oknePTRR/nkk08YOHDgUfsGBgaSkpLC7t27j9jH4XDUve+OYuemdPZuy6JrtyjsjkPfKhYLRMV2wuFfwcZv99B/eDJxiY3Pivm5ztGhnHvBEE4/ux/uqhr8Ax04nX7HvE6kLeTm5nLzzTfz3nvvAYdmgS1atIjg4GAfRyYiIiIiIi3VrBke06dPp3PnzoSGhhIaGsq1115LXFxc3evDR1PY7XaGDRvGihUr6rWvWLHiuKeO//3vf+fhhx/mo48+Yvjw4cfs73a72b59u3Zc+IVtP+zH5metS3b8XHCoP5XlblJ3ZDdrzIBAB2ERQUp2yElj6dKl9O/fn/feew+73c6cOXP4+uuv6d27t69DExERERGR49CsGR4LFixo1ZvfddddXHfddQwfPpwxY8Ywf/580tPTufXWW4FDy0iysrJYvHhx3TUbNmwAoKysjPz8fDZs2IDdbq+rLfL4449z//338/rrr5OUlFQ3gyQoKIigoCAAfv/733P++eeTkJBAXl4ejzzyCC6Xi+nTp7fq+zvVlRZX4PS3N3rOMAwsVgvlpU0vYHqYq6SSXduzyc4swsCga2IEvfrGERjUsWbQiO+lpqZy7bXXUltby5AhQ1i0aBEpKSm+DktEREREpJ6WFCFV0dJmJjxa29SpUyksLOShhx4iJyeHAQMGsGzZMhITEwHIyckhPT293jVDhgyp+/O6det4/fXXSUxMJC0tDYC5c+dSXV3NZZddVu+6v/71rzzwwAMAZGZmctVVV1FQUEBUVBSjR4/m22+/rbuvHBIaEUhRXuO70ZimidfjJSi0eburpO45wIfvrCc/z4XVZgHTZP3aVGLiOjHl4qF0STj28hiR1pKcnMzDDz9MVVUV9957b70aRSIiIiIicmozzKZUnZQGXC4XoaGhlJSUEBIS4utwTogta1N5d/HXxHQNw/GLmR7FhWW4q2q49vZJRHcJa9J4BwvLeP21lRQXV9AlPgyL5dCKKo/HS2Z6IdExnbhmxngCg5zHGEmkZQ4ePMhdd93F7bffXi95KiIiIiLSXG3xTHj4HvM3/Rv/4IBmXVtZWsHNAy9r18+sx9KsGh5yajpaTquyvIryknI8Hk+Dc70GdqX3oASy9hdSeKCEmupa3JXV5GYUUXKwnOGn96ZzXKcmx7F9Syb5eS66xIfXJTsArFYLXRMiyM0+yK5tzasJItJUH330EQMGDGDhwoXceOONeL1eX4ckIiIiIiInkE+XtMiJU1Ndw841e9jy9Q4KsosICPan/9je9Bvbm+CwIPZvz2TD51tI3bQfr8dLeGwYA8/oT8r4PvjZD03rtzv8mHLVaCJjQtnyfSoHMg9iWAwiokMZMrYng8f2aNYWwml783H6+2GxNLzGarVgsVjISC9kyMhurfZ1ECktLeV3v/sdL7/8MgA9e/Zk7ty59ZJuIiIiIiInM/PHo7nXdHRKeLRD1VXVLHvlUzZ/tR2L1UJAsJP84go+fPUztq7aSd/RvVj17lrKisvpFBWK3d+PnH15pO/IImt3DpNnTMDmd+hbwz/QwZm/HsyIM/pwMN+FxWohMqZTozu3HIvXax41QWJYwOvRj+XJyjRN9u8vZNv2LHJzSnA4/ejdK4Y+fWIJOkmXIX3++efceOONdTV+br/9dubMmUNAQPOmA4qIiIiIyKlHCY92aP2nm9n4xVZikjrj/7MHUU+th72b9rPxy23EJEWR1D++LgEREh5EhauSDZ9vIal/PCnj+9YbMzDYSWDw8T3UJiRFsndXLqbZMPHh9ZrU1njpkhB+XPeQE8PrNflq5U5WrdpNtbsWp78ftbUedu7MYf2G/Vx04VCiok6udYFffPEFEyZMACApKYkFCxZw5pln+jYoERERERFpM5rT3c5Uu2vY8MVW/IOc9ZIdAFabFbvDj4LMQgJCAxokHQJC/LFYLGxeue2ExNYnpQshnfzJzS6uV1fENE2yM4uI7BxMr75xJ+Tecnx27szh65U7CQiwk5QcSUxMKF27hpOYGEFmZhHLlm3C4zm5amKcfvrpnHHGGdxyyy1s2rRJyQ4REREROWUd2pbWaObh66h9TwmPdsZVWEpJvouQiOAj9vHUeqiurG70XGBoAAVZRdTW1LZ6bJ2jQ5n068HYHTZS9+SRk3WQnMyDpO7NIyjYn3MvGEJoJy01ONmYpsmGDfvxmiadfvH3Y7VaiI3tRHpGIWlpBT6K8JCqqirmzJlDeXk5ABaLheXLl/Piiy8SHHzknwcREREREWmftKSlnTlU/NPAU9v4p+0W69GLjNZW1xLYKQCrzXoiwqP/wHiiOoewfUsm6fsKMCyQ3KMzfQZ0JSLSNw+l7ppatu8/wObUXFzlVYQF+TOgWyx9Ezrjd4K+DqeSqqoacnKKCQnxb/S803loeUt+vovu3Tu3cXSHfP/990yfPp1t27aRk5PDc889B4DD4fBJPCIiIiIirUlFS1tGCY92JjQqhNjuMaRtTic4LLDBeYvFgiPAgc2v4YO81+ulrLiMEZMHN2v3lebqHBNK55jQEzZ+c5RXVfPvLzeyJe0AFsPAabeRnlfMxn05DOoRxyWnpeC0d+wfE8MwMAzjqNsb/9ixbQL6merqah555BEeffRRPB4P0dHRTJw4sc3jEBERERGRk4+WtLQzFouFoRMHYrFZyM8oxOs99JBqmialB8txV1XTf2xvSvJLcRWW1j3EuiurSd+eRVRCJANO63u0W7Q50zSprfUc+4G7BT79YTeb9uXQJTKU5NhwYiNCSI4NJzo8iHU7M/lq075Wv+epxuGwkZAQQUlJZaPnKyqqsdttxMV2atO4Nm/ezKhRo3j44YfxeDxMnTqVrVu3csEFF7RpHCIiIiIicnLq2B9dt1N9RvZg4nVn8PVb35K2NR2LYcE0vTgDnYw4dwinXzqKlW99x7bVuyjMLsJrQnmVB9PPDwd23n/jO/oPT6bvkMTj3pnleNTUeNi2LYuNmzIoKirD7mejf/8upKTEEx7ecPZKcxWXVbJxbzbhIQENZnEEOOyEBjpYvzuTcQOSCHTaj/t+pyrDMBg8OIFdu3PJy3MRFRVcNwOourqWnJxi+vfvQteubbfDzr///W+uvvpqampqiIiIYO7cuVxxxRVtdn8RERERkbZ0uBBpc6/p6JTwaIcMw2DErwbTY3ASu39IpbSoDEeAneSUBOK6x2AYBufNnMiIc4ewZ0Maqz7bgTu/lE5RIfgHOcjLPkj6kgPs3JjO+deOJaSRpTEnWnV1LR8s28imTelYrRYCAhyUllXxyadb2bYti4suGkbscc4oyDtYhquiiuSYxh/UOwX5k1PoIr+4jMAj9OkounXrzKRzUvj8i22k7svH5mfF6/FiWCz07hXD5HMHYrG03T+oY8eOJSgoiNNPP52XXnqJ6OjoNru3iIiIiIicGpTwaMfCojsxcvKQRs8ZhkHn+Eg2rU2jospDr0GJ2B0/fTvUVNeyd1sWXy/fwnlXjmrS/bxeL9lpBaTtOoC7qpqQsEB69O9CWAuKkW7YkM7GDfvpHB1KQMBPsyuiooJITy9i+cdbuO7asVitx7EqywCLYeA1G1/bZZo/1a/o6AzDYNiwJBISwtm5M5eCglLsdhvJ3aLo3q0z9hNc58Tr9fLxxx9z7rnnAhAXF8cPP/xAYmKi/n5EREREpN1T0dKWUcKjAystqWDbD/vpFBlUL9kB4Ge3EREdwq5N6YyZ2O+YSYuqymo+eet7tv2wH3dlDYYFTK9JSHggp/1qIENP69nkB9PaWg8bN6Zjd/jVS3bAoRolMTGhZGYUkp5eSHJyVPPe9M/ERYQQFhRAkauCzmFBDc4XlVYQERpIdJi2ND0sKiqEqKiQNr3n3r17ueGGG1i5ciXvvvtuXY2OpKSkNo1DREREREROLSpa2oEVF5RRXlZFSKeARs8HhwZQXlrFwfzSY4711QcbWf/NbkLCAkjuE0NSrxgSe8Xg9Xj59J117Nqc2eS4ysvdHCwuJySk8fohh7ZB9VJUVN7kMRsT5O9gWO+uuMqrKK1w17WbpklJWSXlVdWM7B3f4Xdp8RWv18vcuXMZNGgQK1euJDAwEJfL5euwRERERETkFKEnuQ7MYjWwWAw8tZ5Gt6n1eLxYLAZW29HzYkX5pWz7IY2wqGCCQvx/Gt9iEBXbiYy9eWxYtZueA7pgsRw7x2a1WrBYLHg83kbPm6aJ1zSxWo0G7Zk5xWzZlU1GdhE2q5Ve3TrTv1csYaGN1yE5Y2A3SsurWLc7iwMHS7FZLdTUeghw+HHmoO6M6Z90zHil9aWnpzNjxgw++eQTAM444wwWLFhAcnKyjyMTEREREWl7JgYmzSxa2sz+7ZESHh1Y57gwImNCKcpzEZsQ0eD8wfxSwjuHEH2M3Tey9xdQ5qokoUfjhSM7RQaRvb8A18EKOkU0XDryS4GBDpKSItmyJZPQ0IazT0pKKgkOdhIf/1PMpmny3YY0PvtmB2UVbgL97Xi8JnvS8vh+czoXTRpEUteG79HuZ+Oi01IY3LMLO9LzKK1w0ynInz4JnUno3En1IXxg6dKl3HzzzbhcLvz9/fnb3/7Gb37zmyYly0RERERERA5TwqMD87PbGHpaLz5auoaifBdhkYe2GzVNk+LCciorqjlt8kCc/kffktX740yMI+UGrFYLXo+J19u0sjmGYTB0SCL79uaRnV1MdHQIVqsF0zQpK6uiqKicMaN7EPGz5Mn+rCI++Xo7NquF7ok/1fXwek0ysot4/5NN3Dh1HAGNvBeLxaBbbATdYhsmRKTt+fv743K5GD16NIsWLaJXr16+DklERERExKdM89DR3Gs6On1k2sENGt2d06cMxFNrkrYzl7RduaTtzKWmupbTzk1h2PjexxwjvHMIdocfleXuRs+7DlbQKTKI4FD/Rs83plu3zpx33iACAxykpxeSmppPamo+ZWVuRo5IZsKEvvX6b96RRWVVDVER9QuMWiwGXWI6kZvvYte+A02+v7Qd0zRJT0+ve33BBRfw/vvv8/XXXyvZISIiIiIiLaYZHh2cxWJh3KQU+gxKYO/2bCrL3fgHOEjuE0tkTGiTlnTEJUaQ2DOaXZszSegehdX2Uz2QijI37soaBo7qjl8zi38OGNCVpKRIdu8+gMtViZ+flaSkKGJjG8aVmlFIUICj0XFsNismkFd47OKr0rby8vKYNWsWn332GVu2bCEuLg6AKVOm+DgyEREREZGTifHj0dxrOjYlPASAiOhQIqJDW3StxWJh4sXDqChzs39PHv4BduwOGxVlbkxg0JjuDBrdo0VjBwU5GTIksQkxHFqKc0Qmqsdxknnrrbe49dZbyc/Px2azsXLlSqZOnerrsEREREREpJ1QwkNaRUR0KJfddAbb1+9n+w/7qSx30yUpin7DkuiVEt/oLjAtZZom+fml7NyVQ0lxBQ6nH50CnWTlFtM50myQ2Kiuqa1b2iK+V1RUxG9/+1tef/11AAYMGMDixYsZMmSIjyMTEREREZH2RAkPaTXBoQGMPLMvI8/se+zOLWSaJqu/3cPXX++irMz9Y0FULzVeLwer3aRbLcR3CcdiOZT0qKn1kJldTFJ8RL1ipuIby5YtY+bMmeTk5GCxWPjTn/7EX//6VxyOxpcjiYiIiIiIipa2lBIectyK8kvZvn4/+7Zn4/F4ie8WRd8hicQlRrb6vbZuy+Kzz7bj7+9HcnJk3WyOiopqKvYdoPhgBbVe74+7uhy6JrFrBBdOGoSjmTVEpPUtW7aMnJwcevfuzaJFixg1apSvQxIRERERkXbK57u0zJ07l+TkZJxOJ8OGDWPlypVH7JuTk8PVV19N7969sVgszJ49u9F+//nPf+jXrx8Oh4N+/frx9ttvH9d95cjSduWyZO6nfPbOOnIzCik8UMKqj7eyZN5nrF+1u1Xv5fWa/PBDGqZpEhERVG/pSkCAnaSuEXQODOCsUb0YNiCBUYOTmPrrYUy7dBSdf7F7i7Sdmpqauj8/9thjPPTQQ6xfv17JDhERERGRJjIxWnR0dD5NeCxdupTZs2dz7733sn79esaPH8/kyZPrbVH5c263m6ioKO69914GDRrUaJ/Vq1czdepUrrvuOjZu3Mh1113HFVdcwXfffdfi+0rjyksrWf6vNZQcLCepdwyxCRFEdwkjqXc0hgGf/3c9GfvyyMw+yLqN+1m3cT/ZucVHLy56FMXFFeTmlBAWFtDo+dBQf2qqa4kJD+aiXw3m/IkDSenTBafD73jeprRQeXk5v/nNb5g0aRJerxeAwMBA7r//fvz9m75FsYiIiIiISEsYZkufPlvBqFGjGDp0KPPmzatr69u3LxdddBFz5sw56rVnnnkmgwcP5plnnqnXPnXqVFwuFx9++GFd27nnnktYWBhvvPHGcd/3MJfLRWhoKCUlJYSEhDTpmvZmw+o9vPePVST06IzV2jB3tnNbNn6xwViCnLirD33K7+/wo0f3aM6d0J+Q4OY99BYVlfHyy18QFOwkMLBhzQfTNElLK+CSS4YzaGBCy96UtIpvvvmG6dOns3fvXgA+/fRTJkyY4OOoRERERERaT1s8Ex6+x7M/vIN/cGCzrq0sLeeOoRd16GdWn83wqK6uZt26dUyaNKle+6RJk1i1alWLx129enWDMX/1q1/VjdnS+7rdblwuV72jozuQWYTFYjSa7KjxeDjgdrM7NZ9Oof4kJ0SSnBBJUJCTjVsy+O9HG6muqW1wnWmapKfm8+G763nxmY+Z/+wKPv1oM7nZxYSE+BMeHkRJSWWj8ZSXu3E6/YiK7Jg/zCeDqqoqfv/73zN+/Hj27t1LfHw8K1asULJDREREROQ4mPxUuLTJh6+DPgn4LOFRUFCAx+MhOjq6Xnt0dDS5ubktHjc3N/eoY7b0vnPmzCE0NLTuiI+Pb3GM7YXFYhxxeUpBSSWuqhpCAxwEBjgwDAPDMAgOchLfJZzde/PYm5rf4Lp13+1j6eJvWLNqN+WlVbhKKvj6s+0sWfg1e3flMnhIItXVtZSVuetdV1PjIS+vlO7dOxMbG3pC3q8c3dq1axk6dChPPvkkpmlyww03sHnzZiZOnOjr0EREREREpAPyedHSnxeehEOf8P+y7USM2dz73nPPPZSUlNQdGRkZxxVje9AlOQrDMKit8TQ4l++qwOvxEhndcLaFw27DNE1278ur156VXsgXH2/BarWQ3L0zUdEhdI4JJal7FJWV1Xz83ka6JUUyYng3DhaVsz+tgLw8F5mZRWRmFJGcHMU5Ewc0+funvLSK/bsPkL7nAJXl7mNfIEdkmia33HIL27dvJyYmhvfee4/XXnuN0FAln0RERERExDd8tk9nZGQkVqu1wayKvLy8BrMvmiMmJuaoY7b0vg6HA4ejYd2Ijqxb3zi6JEWSsS+f+G5R2PysAHg9XooKynA4/YiM6dTotTabhaqqmnpt27dkUVHmJrF7VL12wzCI7RLG/n357N2Vy7nnptCjR2e2bsuioKCUAH8HffvG0bdvLAEBx/47clfV8O2n29j6/T5KisrBMOgUHsTA0d0YcUZf7A5tX9tchmHw6quv8uSTT/Lss88SERHh65BERERERKSD89kMD7vdzrBhw1ixYkW99hUrVjB27NgWjztmzJgGY3788cd1Y56o+3ZETn875101mq7JUWSlFdTNlti/+wBhof5ExnUiMNjZ4DrTNKmuriUyIqhee2Z6Ic4Ae6MzNCwWA6vNwoHsEqxWC717x3LJxcO5+aazuPbasQwbltSkZEdtjYfl/1rDVx9soNpdS0x8ODFdw6iqdPPZu+v55K3v8Xi8Lf+idBC1tbU88sgjPPbYY3VtQ4YM4R//+IeSHSIiIiIirexU2ZY2IyODM888k379+jFw4ED+9a9/tXkMP+fTj7LvuusurrvuOoYPH86YMWOYP38+6enp3HrrrcChZSRZWVksXry47poNGzYAUFZWRn5+Phs2bMBut9OvXz8A7rjjDk4//XQee+wxLrzwQt59910++eQTvv766ybfV5quc1wYV806mz3bssjcl4/X6yW6SzjO8ADe/mgDxa4KOoXU30a2qLiCwEAHvXvUn1Fjs1kwvUcurWN6Tay248vRpe7MYev3qcTEh+P/s51eomI7ERBUxeY1++g7NJHk3rHHdZ/2bPv27UyfPp21a9fi5+fH5ZdfTrdu3XwdloiIiIiI+JjNZuOZZ55h8ODB5OXlMXToUM477zwCA5u3w0yrxeOTu/5o6tSpFBYW8tBDD5GTk8OAAQNYtmwZiYmJAOTk5JCenl7vmiFDhtT9ed26dbz++uskJiaSlpYGwNixY1myZAn33Xcf999/P927d2fp0qWMGjWqyfeV5nEG2BkwPJkBw5Pr2kzTJLeglK+/20NpaRWhIQGASXFJBYZhcNZpfYj7xXKX7r1j2LsrF6/XxGKpn408XCckMTnyuGLduSkDr9esl+w4LDDYSX5OMbu3ZCrh0QiPx8PTTz/Nfffdh9vtplOnTjz//PMkJycf+2IREREREWn3YmNjiY099CzVuXNnwsPDKSoq8lnCw+dFS2fNmkVaWhput5t169Zx+umn151buHAhX3zxRb3+pmk2OA4nOw677LLL2LFjB9XV1Wzfvp1LLrmkWfeV42cYBmeN78NFU4aQ2DWCKnc1bnct3ZM6c8n5QzltdI8GS1f69O9KVHQomfsLqK39qRBqdXUtGfsL6ZoYQffjTES4ispxOP2OeN7PbqP0YMVx3aM92rNnD2eccQZ/+MMfcLvdnHvuuWzZsoVrrrnmuIsMi4iIiIjI0TV7S9ofj+b66quvOP/884mLi8MwDN55550GfebOnUtycjJOp5Nhw4axcuXKRsf6/vvv8Xq9Pt3hVNUZ5YSxWAwG9e9KSt8ulJVXARAU6Gwwe+OwsPBAfn3pcD585wey0ot+TGiB1WohsVsUUy4ehvMoyYqmCAkLIHVnzRHP11R7CA4LOOL59qaqupYtabls3JdNcXklYUH+DEyOY0BSDE77oX8eysvLGT16NIWFhQQHB/PUU08xY8YMJTpERERERNqZ8vJyBg0axA033MCll17a4PzSpUuZPXs2c+fOZdy4cbz00ktMnjyZbdu2kZCQUNevsLCQadOm8corr7Rl+A0o4SEnnMViEBLs36S+CUmRTLv5THbvyCEvtwSLxSC2axjde8a0yu4pvQbGs+m7fVSWuxssaykvrcLmZ6Fn/67HfZ9TQVmlm3+t3MTWtFxsVgv+dj8KSsrYln6AAWkxXH76IAKddgIDA/nzn//MBx98wGuvvaalXyIiIiIibawlRUhbUrR08uTJTJ48+YjnD3/4OXPmTACeeeYZli9fzrx585gzZw4Abrebiy++mHvuucfnG4Mo4SEnHf8AOwOHnpiH6m594ug/PIlN3+4lJCyQ0PBDa8mKC8soLalk6LheJPRs+bbIp5LPN+5hU2oOSZ3DcPj99E9BVXUNr/9jMQXpY/j9zKsBmD17NrNnz8Zi8fkqOBERERERaQaXy1XvtcPhwOE49g6Xv1RdXc26deu4++6767VPmjSJVatWAYdKUFx//fVMmDCB6667ruVBtxI9vUiHYvOz8qvLRzL+vEFYbRay9xeSnV6I3eHHmecP5pxLh2O1tv8fi5LyKjbuyyEyOKBesqO4MJ9XHr2bFf/vef523x/ILSgCwGKxKNkhIiIiInIKio+PJzQ0tO44PBOjuQoKCvB4PERH1/+AODo6mtzcXAC++eYbli5dyjvvvMPgwYMZPHgwmzdvPu730FKa4SEdjtPfzpm/HsyIM3qTn1OCYRzeltbp69DaTH5JGa6KKhKiwoBDmdg1Xyxn6UtPU1leis3PTsr4c3FV1hDj41hFRERERDo888ejudcAGRkZhISE1DW3ZHbHz/2ylp9pmnVtp512Gl6v97jGb01KeEiHFRjsT2ATa4u0N4ZhYBgGXtPEVVzEG3P/zobVXwKQ2KMPV/32z5iB4fj5HV+RWBERERER8a2QkJB6CY+WioyMxGq11s3mOCwvL6/BrI+Theaoi3RAcREhRIYEsnfvXh6+7Vo2rP4Sq83G+dfexB+emI9fp85EhgQSG378/zCKiIiIiMjxMVt4tCa73c6wYcNYsWJFvfYVK1b4vDjpkWiGh7RbxYVlbF+/n12bM6it8RCXGEnfIYkk9ow+JbZU9Xi8pGcXUVBUjtVi0DUujKjwoFaJ3d/ux8je8eQWlRLXrRflxUVMv/M+uib3pLi8ikp3DecM6Vm3Na2IiIiIiLR/ZWVl7Nmzp+51amoqGzZsIDw8nISEBO666y6uu+46hg8fzpgxY5g/fz7p6enceuutPoz6yPQ0I+1S5r483n99NXnZJQQE2rFYLeSkF7JlbSpjJ/Vn7DkDTuqkR26+i4++2Mr+zEJqaj2YJgQGOhjQK5ZzxvfF32lv8dgffvghY8eOZVz/ZEor3TDzd9RipdruYHd2AUFOO2cO6s6Yfkmt94ZERERERKTlTOPQ0dxrmun777/nrLPOqnt91113ATB9+nQWLlzI1KlTKSws5KGHHiInJ4cBAwawbNkyEhNPzC6bx0sJDzkl1NR42Lk1i60bMyjIdxEQ6KD/oHj6pcQTFFy/2GhVZTXL/72WorxSknpFY7H89IN+sKCUb5ZvIaZrBN37xTX5/mVlVRw4UAJA586hBAefuAKnJaWV/OfD9WTnFhMbHYK/045pmrhKq/h2fSo1NR4uPndIvffVpHFLSrjzzjtZsGABN9xwA6+99hpTRvZlcPc4dmbkU1rpJtjfQe/4KLpEhJ7UCSEREREREWl9Z555JqZ59MUws2bNYtasWW0U0fFRwkNanafWw54NaWxbvZOCzEL8g/3pO6onfUb1JDAkoNnjVbtrWfbOD2zZkI5hMfAPsFPmqiI9tYCtGzO48PKRhEcG1fXftz2b3IwiuiRFNkgKhEUG4zp4gK3rUpuU8HC7a/jmm91s3JSBq6QCEwgN8WdASldOG9cLf/+Wz7Q4ks07ssnKOUhSfETdFrmGYRAa4o/VZmHrrhyGD0wksWtEk8dcsWIFM2bMICMjA8MwCA8Px+v1YrFY6BrZia6RnVr9fYiIiIiIiPiSEh7Sqmpralmx+Et++GQTXo+Jf5CTgswi9qxPY9NX27jwtnMJjwlr1pjrvtvLxnVpxMR1wj/gpwRDba2H9H35fPrRJi67ZkzdjITCAy5Mr4nNz9roeEGh/mTszat74D8Sj8fLhx9t4ocf9hMa6k/X+HAAiosrWPnVTkpKKrnwgqH4HeE+LbV1Vzb+/va6ZEe92AMcHMh3kZpR2KSER1lZGX/84x+ZN28eAN27d2fhwoWcdtpprRqzyM+ZpklOcSm7cguoqq4h2N9Jvy6dCQvsmLsiiYiIiByv49iVtkNTwkNa1cYvtvL98o1ExIUR1Cmwrr22xsP+rZms+H9fccXvL2jycolqdy2bfthPQKC9XrIDwGazEhUTSuqePHKzi4ntciiRcqyxTa+JxWocs19qaj6bN2cSExNCQMBPe1VHRAQREGBn29YsBvTvSp8+sU16L01VUVmN/ShJFMMwqK6pPeY4mzZt4uKLL2bfvn0A3HbbbTz22GMEBgYe40qRlquu9fDhxp2s2ZtBaZUbi2FgmhAW6M/EAT0Y1ytRy6VERERE2tCIESOwWq3cdttt3Hbbbb4Op00p4SGtxlPrYeMXW/Fz2OolOwBsflaiE6NI25xO9t5cuvRoWpKgpLiCkuIKQjs1vhQmMMhBQZ6LwvzSuoRHbEIEVj8r7spqHL9YcmKaJqXFFfQf1v+YD127dudSW+utl+w4zN//UF2NnTuzm5TwME2TUlcVtTUegoKd2B1H/tGLjgxmx94DRIY3POf1mpimSWjwsT8pj4uLo6ysjISEBF577TXOPvvsY14jcrw+37aXz7ftJTI4kNhOwRiGgddrcsBVxn9/2EaQ087gxKbXzxERERERMM1DR3OvAVi7di0hISGtH9QpQAkPaTWuojIKcw4SGtn4D1NAiD95GQUUZBY1OeFxeCaG1+tt9PyhH2Kj3vKPxJ7RJPWKYc+WTLokR2J3+AHg9XrJzThIcFgg/YcnH/W+pmmSl+fC6/Xi8XgbXV7iZ7fhclUd8z3s35fPuu/2krY3D4/HS1CwPwOHJjB0ZPcGs1YABvbtyo69ByivcBP4i2RLXmEpYSEB9OoW3ei9du7cSa9evTAMg8jISD744AN69erVYf+Bk7blqqziu70ZhAY46y1fsVgMYjsFk5pfxKrd6aTEx2A9ynIyEREREZHWoN84pdVYLEdPThxmNGN3kbDwIGK7hFFUWN7o+ZKD5QSHOomL/2k6hM3PyuSpo+jWL47cjIOk7cxl/+4D7N+VR2Cwk8lXjCQusfH6F6ZpsmtXLm8s+ZYfftjP7t25/PDDfjLSC/HU1n9f1dW1dDrCzJPDdm7L4j+vr2bLxgz87DaCQ/wpL6tixbJNvPuvNVRWVje4pk/3aIalJJBXUEpWbjGl5VWUuCpJyyjE9JpMGNeHsND693W73fz5z3+mX79+LF26tK59+PDhSnZIm9lfUExReQURQY3/XEQGB5JZWExBaUUbRyYiIiIiHZFmeEirCQ4PIq57NKmb0gkOC2pw3lVYRmBoAHHdG5+d0BiLxWDoyGQy9hdQkOciIurQFHnTNCkvq6K4uILTzuzTYMlLp4ggLr/pLNJ25ZC+Nw9PjYfImFB6DuhKSNiRa1hs2JDOR8s3UVPjITo6hJKSCsrLq9izt4rSsip6947FarVQUeHGarEcdTlLVVUNn3+8laqqGhKTI+uW0AQEOujkDmTntmw2rUtj1Gm96l1ns1mZMmEAcdGhrN+SQWFxOYZh0L9XLMNSEumRFFWv//r165k+fTqbN28G4JtvvuHKK69s8tdYpLV4vF5MEyxHWC5ms1jwmiaeYyRFRUREROSXjB+P5l7TsSnhIa3GYrEw5OyB7N+WSUFWERFxYXUP+RWllRRkFzLy3CFEdmn6dqoAfVO6UlZaxTdf7CBtb96hWSQm+Pv7MXx0d8ZP6NfodXaHjV4p8fRKiW/SfVyuSr74YjuGYZCQEIHXa1Je7iY7+yBWq0FubgnBQf44/W2UlroZNiyJbt06H3G81N0HyM8toUtCeIN6IXaHDX9/Pzb9sJ/ho3tgtdWfbGWzWRkxKIkhAxIoK6/CYrEQHOioN05NTQ1z5szh4Ycfpra2lqioKF588UUuueSSJr1fkdYWGRxIgN2Psqpqgv0b1r4pqagi5BfLXUREREREThQlPKRV9RnZgwlXncbXb68hdXM6Vj8rnloPdocfA8/ox4Srm78dqmEYjBzXkx69Y9mzM4dSVyUOpx/J3TsTF98wmdBSu3cf4GBxBUlJhxIyFotB9+6dcTr9OHCghMLCMlLT8hkyJJHRo3owalT3Rmt7HFbqqsQ0DyUvGhMY6KS0tIqqqmoCg5yN9rFZLXQKabg8YNu2bUybNo1169YBcOmllzJv3jyioqIa9P254tJKcgpcmJjERoQQ1sjYIi3VJSyE3rFR/JCWRXd7BLaf/XxU1dRSUlnF+D7J+Nv9fBiliIiIyKnneIqWdmRKeEirMgyDUVOG0W1QErvX7eNgfgnOAAfdUhJI6NsV6xEe/psiPDKIkZE9WzHa+krLqjCMQzNVDrNaLSQkRBAX14ns7GIsFoMbrh9P0BESFD/nZ7cBJl6viaWRuiXV1bX42az4+TX/xzA7O5t169YRFhbGCy+8wJVXXnnUxE+lu4bP1u5i4+5sSsqqAJOQQCcpPeI4e0QvAv0bFk8VaS7DMJgyuDcHyyvZm1dIkMOOw89Gubua6loPQ5LiOK13kq/DFBEREZEOQgkPOSGiukYQ1bV5S1d8zWG3/Zg5NRskD2w2K3a7jU6dAggMbDhVvzFJ3aIIDvGn+GA54RH1a5p4vSaukgrGntHnqFvU/lxlZSX+/oeWAkycOJH58+czZcoU4uKOvsVnba2Hd7/czLrtGYSHBpAcFw7GodkeK9fvxVVWxRXnDMbegsTL0Xi8Xnbuz2Pz7hxyi1z4O/xI6R5L/+6xhAQeO2Ekp6aokCBuOGM469Oy+CEtmwp3NQmRYQxP7sLgxDicrfx9JiIiIiJyJPrNU+RHycmRBAbYcbkqCf3FLigej5eKcjfjxvVs8hKasIgghoxIZuVn2zG9JmERgVgsFqoqq8nNKSEqOpRBw5OOOY7X6+X555/nf//3f/nuu+9ISjp0zU033dSkOPZmFbJpdzZdOocS4PxpJkd4SAABDj+27stld3o+/bs3bavgpqj1eFn2zTa+27Ifr9ckwN+PwuJy9mQU8MOOTC6fOJjO4cHNHtfj9XKwtBLTNOkU5I/fccwYkhOnU4CTs/p158y+3fB4zXpLW0RERERE2ooSHiI/io4OZdCgBFZ/u4faWi9hYYFYLAYVFW4OHHDRpWs4A5tYAPWw0yb0xWK1sH7NPtJTCwADm5+FxOQozj43hc7RoUe9Pi0tjRtuuIEvvvgCgBdffJG//e1vzYphR9oBPF6zXrLjMKfDDzDZlprbqgmP9TszWb0pjchOAQT/bDZHrcdLWnYR73+9jet/PbLRpT6NMU2TjXuz+W5HBtkFJZimSURoIMN7xTOybzx+ViU+TkaGYWCzqjq4iIiIiC+NGDECq9XKbbfdxm233ebrcNqUzz92mzt3LsnJyTidToYNG8bKlSuP2v/LL79k2LBhOJ1OunXrxosvvljv/JlnnolhGA2OKVOm1PV54IEHGpyPiYk5Ie9PTh2GYTBhQj/OOL0PAOn7C0hNLaC4uJJevWK4+KJhDWZ+HIvNZuX0s/txw6yzufSaMVx4xQiuumE81844na6JR17yY5om8+fPJyUlhS+++ILAwEDmzp3LnDlzmv2+Ssvd2P2O/KNu97PhKnc3e9wj8Xi9rNuegc1m1Et2wKEirHFRIaRmFbI/t6hJ45mmyZcb97L0i42k5RYR5O8gNNCfgpJy3vlmC+99s5Vaj7Y5FREREZH2zMBs5nF4W9q1a9eybdu2DpfsAB/P8Fi6dCmzZ89m7ty5jBs3jpdeeonJkyezbds2EhISGvRPTU3lvPPO46abbuIf//gH33zzDbNmzSIqKopLL70UgLfeeovq6uq6awoLCxk0aBCXX355vbH69+/PJ598Uvfaqk+IBbDbbUyY0I9hw5LJzCzC4zk006NLl7Amz0ZoTEioP/0HNm12SGZmJjNnzmT58uUAjB8/ngULFtC9e/cW3TssJIDqas8Rz7urawlvxd1aSivc5BeX0Smo8a1HA5x2cmpd5B8sIznu2HVecg+W8sXGvQQ67USGBta1B/rbKat0s2ZnBn0SOtMvqeVJy/KqQ0U1g5x2LZMREREREWknfJrweOqpp5gxYwYzZ84E4JlnnmH58uXMmzev0U+yX3zxRRISEnjmmWcA6Nu3L99//z1PPPFEXcIjPDy83jVLliwhICCgQcLDZrNpVoccUWioP6GhXXxy7/nz57N8+XKcTiePPvood9xxR72dY5qrb3I0321Jw1Ve1aBYaFmFG5vV0qrLWSyGgQUD7xH2wTJ/bG9qLZTt+w/gqnDTs0tkg3NB/g7yisvYuC+nRQmP/fkH+W5XOjsy86j1eAkJcDK8R1dG9kwgwKGtU0VERETkJGH+eDT3mg7OZ0taqqurWbduHZMmTarXPmnSJFatWtXoNatXr27Q/1e/+hXff/89NTU1jV7z6quvcuWVVxIYGFivfffu3cTFxZGcnMyVV17Jvn37juPdiLSee++9l2nTprF+/XruvPPOBsmOWo+Xsgo3VdWNf8//UlJsOCP7J1JwsJzs/BIq3TVUuWvIKXBxoKiM4f3i6d6KO+oEBziIjw3joKuy0fOucjeBTjsJ0WFNGu9gaSV+VusREyQBDjt5xWXUerzklZRxoLiMGs+RZ7QctjMrn8Wfr2P1jv1YDQtBTgcl5VW8+91WlqzcQIW7aV9fERERERE5OflshkdBQQEej4fo6Oh67dHR0eTm5jZ6TW5ubqP9a2trKSgoIDa2/qfUa9asYcuWLbz66qv12keNGsXixYvp1asXBw4c4JFHHmHs2LFs3bqViIjGH/zcbjdu9091DlwuV5Pfq8jRvPnmmyxatIh3330Xm82Gw+Fg0aJFDfpVVdewfnsm67dlUlxagc1qoU+3GIb3TyCu85GLn1osBueO7Ut4SABrt6dTWFwOQHhoABOG92R0ShLW45hBcphpmtR4PFgtFkb0TWBvRgEHCkvpHB5Ul6yoqKomr6iUUQMS6RwedIwRD/F3+B21Roe7uoaDFTBv+Wpyi0uBQ1ujjuwZz8ge8Y3uEOKuqWXZuu2UVrrpGRtZF1+wvwN3TS2b9+fSPTaDM/p3a+6XQUREREREThI+36Xll5/amqZ51KnujfVvrB0Oze4YMGAAI0eOrNc+efLkuj+npKQwZswYunfvzqJFi7jrrrsave+cOXN48MEHj/5mRJqhoKCA2267jTfffBM49P16yy23NNq3qrqGtz/ZyKad2TgdNoIDHNTUelm1fh87Ug9w6TmD6R7fcMnHYTarhbGDkhneL5784nIwTSI7BeGwH/8/ATUeDxvTcvh+byb5JeX42SykJMQwelASP2zLYE9GATarBY/XxO5nZUifrkwe26/JS1p6do1i5eZUyquqCfzFTjPVNbWkF5VgD/CjCg/hQQEYwIGSUv69ejN5JWVcMLxfg/ore3IKyC4qpWtESIM4HH42Ah1+rNuTydg+idoBRkRERETkFOWzhEdkZCRWq7XBbI68vLwGszgOi4mJabS/zWZrMDOjoqKCJUuW8NBDDx0zlsDAQFJSUti9e/cR+9xzzz31kiEul4v4+OZtUSpy2Lvvvsstt9zCgQMHsFqt/PnPf+aGG244Yv/12zLZtDObLp1Df9xK9pDw0AD25xzko5XbuOnysdj9jv4jbfez0SXq6FvhNkdNrYe3vtvCmj0Z2CyHloVUuGv4eONuYjoFc+74flSUV3OwpByH3Y/uXSNIiotodNbFkXSLDWdgt1i+35lJZGhAXTHUsko3e3MLqTI99OwcRefQn2aMBDrtuCqqWL1zP/26RtMrrn4yqLi8Cq/Xi93W+Ncr2N+Bq6KKiqoaQgNPXMKjtMrNtuw8CssrsFksdI8KJzky/LgK5IqIiIiIyCE+S3jY7XaGDRvGihUruPjii+vaV6xYwYUXXtjoNWPGjOG9996r1/bxxx8zfPhw/PzqFxh88803cbvdXHvttceMxe12s337dsaPH3/EPg6HA4fDccyxRI6muLiYO+64g8WLFwPQr18/Fi1axPDhw494Ta3Hyw/bM/B3+NVLdsChmU1xUSFk57vYl1FIn27R1Hq8bE8/wMY92eQUunA6/BjYLZaB3eMIO8LOKS21bl8W3+3OIKZTMEE/m33ROTSI1LwiVu5M47ZzxzS684nXNCmprAIgxOk44rIaq8XCReMG4G+3sWlfDnuzCzE4tNQlLDQAi7+tXrLjsJAAJ3mucjan5zRIeNhtVswfY7A0MtOkutaDzWo5oTu2bMrM5b8btpNXWgYcmq3m9LMxoEsMlw7tT5BT/96IiIiIyCGmeeho7jUdnU+XtNx1111cd911DB8+nDFjxjB//nzS09O59dZbgUOzKrKysuoeDm+99Vaef/557rrrLm666SZWr17Nq6++yhtvvNFg7FdffZWLLrqo0Zocv//97zn//PNJSEggLy+PRx55BJfLxfTp00/sG5Z2wV1dy979+RQVl2OxGMTHhtMlplOTPpW/4YYbeOeddzAMgz/84Q88+OCDOJ3Oo15TWVVNSWklQQGNPwDb/Wx4vV4OllZQ4/HwwertfLt9P6Z5aOtWV6Wb/67ayvrdWVxx1mDiIkJa9L5/yeP18v3eTPyslnrJDji0U0vX8FAyC0vYlVNA//ifZm2Zpsn6zBy+TU0n86ALMIkNDWFUUjzDEuIaTXz4O/y46LQUTkvpRmZ+MV7TJDosmBWbd7M9M++IMTr9bOS7yhu0d4uJIDTASVFpBZEh9Qsam6ZJUVkF4/sln7CdWlILDvKv7zdTVVNL96jwuvdc5q5mbWomFsPg2tGDm7zsRzq25u58JCIiItJR+DThMXXqVAoLC3nooYfIyclhwIABLFu2jMTERABycnJIT0+v65+cnMyyZcu48847eeGFF4iLi+O5556r25L2sF27dvH111/z8ccfN3rfzMxMrrrqKgoKCoiKimL06NF8++23dfcVOZL0rCKWfb6FrNxiTNPENMHpsNG7ezTnnZVCUODRP5V/9NFH2bt3Ly+++CJjx45t0j1tVitWq4Wa2sZ3Hjkch5/NyvrdWazamkZUpyCCf5Yg8Xi9pOYU8d6qrcw4b1SzlpQcSWV1DQWuckIDGk/YOPxseEwvhaUV9WJdsWMPy7ftxjRNwgMP1dxIKzzIvvwicl2l/DqlT6OzLgAiQwOJDP0pQRHk7zjqjizVtbWNzpSICA5gVK8EVmzcBUB4UAAWi4G7ppasIheRIYGM7JXQlC9Di6xNzaCksoqenSPqPaQGOezEdQpmS9YBMg6WkBDe6YTFIKe+fUVFrMnKYkdBPgC9IiIY0aUrPcLDlfwQERFpd4wfj+Ze07H5vGjprFmzmDVrVqPnFi5c2KDtjDPO4IcffjjqmL169ar7xKsxS5YsaVaMIgAFB8t466MNFB4sIy4mFLufDdM0Ka+oZv3WTLxeuHzKUKw/SyZ88cUXddvLAvTt25eNGzc262HE3+lH76TOfLsxjfDQgAbXHnRVEhzoICE2jP98vRmb1VIv2QGHloV0iQwl7cBBUnOL6NnlyAVOm8pqsWCxGNR6G99BxTRNMKmXXMksLuHznfsIctiJDPopcRHi76S4opKVe9LoExNFr85Ni69vlyi+3ZlOZXUN/vb6szHcNbV4TRgQ33hNoLMH9cAw4Ltd6ew9UIhhGIdmpkSEMmV4H7pGtF6tk5+rrq1le04+YQH+jX4fBDsd5JSUkVZwUAkPOaLvMjP4z9ZtlFa7CXU6MYCV+/ezPieHC/r0ZbwS+CIiIiK+T3iInCo2bcsir8BFckJk3fIVwzAICnQQZwll595c0rOLSOoawd592dx3330sXbIQi8XCyFGjGTd2TN01zTV8QCI70/JI///s3Xd0XNW1+PHvnd40o1GXrGq59yZXDHYA0wmQUB8dJyFxisPLS0yABPjlPUiBAKHzIA7Jw5ie5sQ2JIDBxlXuTbYlq1i9zYw0fe7vD9kCIclW9ajsz1p3Lc8t5+7x1ZXm7jlnn/J6UhMdGPRaVFWlwe2l3tXEebNGYTLqqW7wtBb1/DKzUU8oFKa6wdMnCQ+zQc+4EUlsOnSceFv7RExjsw+ryUBOkrN13Z4Tlbj9fsY42p8/1mKm2tPErtKKLic8xqQmMikzmfzCEyQ5bMSe7G3S2OyjstHDpMxkxqcndXisXqvlouljmT06k2OVtQRCYWKtZkalxPdr7Y5QRCWiqp3WLGlJvLT0yjnbmv1B6jzNaBSFRIdVZqgZoMrdbt47cAAVlbEJn98ryTYb5W43fzt0kOzYWDIc/ZO0E0IIIcTgkpeXh1arZdmyZSxbtiza4ZxVkvAQogtUVWV/wQmsVmOHtTosZgPlVY0cPlrJa6/9md/+5mfU1pwAYHrehew+6GH0aBdJiT2rn5GeHMs1F0zln58coKyqpYaFqqrEWEycMz2XkZmJ7D1aToPbS2wM2K3th5mc6vWk7eIMIJGIiqfZj0ZRsFoMHSZqZo/KYH9JJcU1DYyIc6DTalBVFbfXT1Wjh3PGZ5MSG9O6f5Xbg1Gn6zTpY9brqXK7uxQftAzj+fq8yViNBvYUV3CkshZUsJkNzB2TyaUzxmE8w8w1TpuZmbb0TrdHIipNXj8ajQaLSd/roQJmvY4Uh42jVbXEWdsnp/yhUEvCIcbawdH9wxcI8cnBQrYeLaWxyYeiQEpsDPPGZDErN11mjRlgdlVUUO/1MTahfY2qFJuNw7W17Cwvl4SHEEIIMZSoJ5fuHgNs3boVu71v6vgNNpLwEKKLAsHwaWtfBP0BfvHQz/n0o3dR1QhOZyK3f+MnjB47kxMVDbz793xu+vocYmynL1LamdFZSWSmxnGkuJpGtxe9XovJqGfzvuN8tqYYfzDEiVoXR0prmJCdQmaKs82DqqvZj8VkIDPZeZqztDzg7zlURv7eEiqqXSgKpKc4mTk5k7G5yW0e+LOTnFw7fzJ/3XaQwuo6oKUatMWoZ97YLC6bOb7N/la9gdBpam4Ew2EsBkOn2ztiMxm5dv4Uzps4khN1LlRUUp12kh22XiUnQuEIuw6Xsf1gCdV1HhSNQk5aPLPGZzA6M7HH7SqKQl52OocranB5fdjNn/88RFSVkrqW2h1jknvfC6crAqEQb322h21HS7GbjSTZrURUlfJ6N29u2k1js48LpoySmhADSKnLhVGn7fCaKIqCWafjeGPD2Q9MCCGEEGKAkYSHEF2gKAppyQ72F5STENd+CtRQKMyfXrifirICAOadcxE33foDrNaWTGpWRjxFJbXsO3iCubNG9jgOo0HHxFGpAFTWufnTmm1U1XtITYjBYjJgjzGxraCUvcfKCUci5Ka3PDQ3eQNU1ruZNyGLFGdMp+1HIioffHqQT7YeQVEUHDEmVBUOHavgyPFqLlw4jvkzc9scMzEjhezEOA6eqKLe40Wv1TIyJY70OEe7B7JxKYl8eqwYXzCE6Us9LwLhMKFIhImpHdfcOJMkh63D6Wl7IhyJ8I9P97NpTxEajYLDZiYSibCroIzDxVVcfs5EZo7P6HH70zLSKK5r4JOC41R7mrGbWoqvunx+Uh12rp4xEYPu7Px63ldSSX5hGelxjjaz0mQaDdS4m/j4wDEmZ6ac9udG9A2P38+hqhqaA0FsRgNjkhKwdpAANGg1hE9TpyqkqhhkOJIQQggxpPSig8ewJgkPIbpo8rh0DhypxO3xtemloaoqFdUuJk5bhKuhiru+uYLpsxa2OVar1WAy6jhwuLxXCY8v2ra/hIpaF7kZCa2zmiTF2piWm8aeogoOHK8iEAqj02kwGXTMGpPBZXPGn/ab+sKSGjZuP4YjxozD/vlwC4fdTHWdh48+K2BkZiIpXxqaYzUZmDmy82Ehp4xNSWRiahI7S8tJdcRgPzmDiscf4ESDi/GpSYxKjOdAaRWBYAi7xURmYmyn9S76y6GiKj7be5x4h4WYLwwPctotlNe4WLf5ECNHxOO0W3rUvk6r4avTJjAyMZ4dRWWUNbiwGPScOyaHGVlpJMX0TeKmK3YWlqNRlA6n4I23WThcXsP+sqp+SXgEwmEKqmooqKrFHwqRFGNjYmrSWX3/A4GqqmwsLOb9w0ep8ZyaRlkhKcbKReNGk5c5os19OzYhgc9KSglFIui+dG+EIhGC4TATEjuuXSOEEEIIMZxIwkOILhqXm8zc6dl8ll9IfWMznsZyvM1NOJNGYreZuPa6/2DGzEWMH9vx7Ag6nRafP9gnsfgDIfYeLcdpN7ebwjUtzk6sxcSewgpGj4hnXFYyI9PiyUp2njFxsO/wCYLBEA57bLttCU4rx4prOHS0ol3Co6sMWi3Xz5qMSa9jX3kVlW4PqGAx6JmekUZmjJ2X122mqtFD5OS31FlJTi6ePpbs5LgenbMndhWcIKKqbZIdpyTHxXC0tJaDRZXMm5LT43NoNRqmZaQyLSOVSERFUXpW0La3atxNWAztkx3QEo9Oo6Gxydfn5230+nhjxx72lVcRjkTQajSEwmH+dcjMpZPGMjc7Y9gMo9laXMbbu/Zh0GoZGR938v8iQrnLzZs792LUaZk6IrV1/0lJyeQ4nRypqyMnNhbjyd5AgXCYovoGMh2xTEnuWU8pIQYCfzhIU8iHUavHquvZMFAhhBACJOEhRJdptRqWnDuB5MQYHnnkUd5942Vi7E6ef/ld5s8eT0lpHSWl9aiq2uGDWrM3wNhRKX0SSyAYIhQKYzR2fAtbTAYSY6xMzx3Bgqld71FSVevBZOr84Vev01Jd5+lRzKfYTSZunj2NskYXpfUuANIcMZRVNfLeln3oNRoy4mPR67Q0+wMcKa/lNc9Obl00g/SE2F6du6sqal1YO/l/0GgUNBqoczX32fmiWRTUbjZS42rqcJuqqoTUSKf/Fz0VUVXe2bWPnaXlZMXFYtbrW89X7nLz3q79OC1mxiX3vFbKYBEIhfiwoBCNopDm+DyRqNNqyHA6KKyt48MjhUxKTW5NWFoNBv5j6lRe37ObY3X1LTP6KKBVNIx0Orlh8mTsJnlIFIOPO+hlW91hdjcU0hzyo9NoGWNPJy9uNGnm9kV6hRBiWJExLT0iCQ8huuHIkQK+s/Q2Nm/eDMCCebM5/5wxJCQ4sZj1fLrlCFU1bpK/1APC5fai02qZOC6tdZ27yYfL7UOv15LgtHXrodds1GO1GGn0eDuckSUUCoPS8Wwtp2My6giGOi8qGg5HMBp6/2tDURTSYx2kx7bMItHsD7BqXz4GrZa0uM//7yxGAyOT4ygor2HjoeNcd5YSHiaDjgaPt9PtEVXFoB8aNRKmZqdxsKyaYCjcbjpet9ePxaBnbFrfJh6K6xrYX17FCIe9NdkBJ2vlOOwUVNeypaiUsUkJQ76XR3F9I+UuV5tkxxclxdgoqW+krNFFpjO2dX1aTAzLZs/hUE0NpS5X67rxiYmtPT6EGEzcQS9vlWzgiKecGJ0Zm95MIBJiS+0hjrnLuTpjPtlW6bkkhBCie+RTkRBdEIlEePLJJ/npT3+Kz+fD4XDw5JNPcuutt7Y+kMU7bXxl4TjW/msfhcU1OB0WFEXB5fYSUVXmzcplVE4SLreXT7cfY++hEzR7/Wi1GtJTncydnsO43K71ANHptMwcl85fPt5HIBjC8IUCoKqqUl7rIjkuhtEZ3XtQHZebwoGCCkKhMLovPfz6/UEUjcLo7L6vDXC0oo5qVxNZie1nkFEUhQS7lQMlVbiafdgt/f/N9aRRaRR+vLd1qMUXNfsCGPU6Ro44O7Oo9LcpWSnkF57g4Ikqku02HBYTEVWlztNMfZOPheOzyYiP7dNzFtc34g2GyIjteEaeOIuZI9W1eIOhTofbDBWnivXqOykyatBqT9bliLTbZtTpmJKSwpSUvuk5JkQ0bak9yBH3CTKtSeg1LX/TrECs3srxpirer8jn9pwL0WmGRrJZCCG6Tzm5dPeY4U0SHkKcgcfj4bLLLuPjjz8GYMmSJbz88sukp7cv0jljSiYOu5kdu4spLqkloqpkpcczbUomk8al4Wn28+bft3PkeEtCJDE+hmAozLHiGkrL67nigilMHX/m4p8AM8ZlUFBSw4HCChw2EzaLkWAoQm1DE1azgQvnjMXUQSHK0xk/KoX89HgKS2tITXJgMRtQVZWm5gAV1S4mjE4lN6vvhxn4gyFU6HTaX6NehzfgxRcMcTZmEJ88KpX8g6UUnahjRKIDk1GPqqq4m/1U1rqZPjad7LSzV1OkP1mMBm48Zyr/yD/EgdIqqipq0SgKTpuZi6aN4fzJuX0+5EZV1ZY/2Z303tAoCuFIhMhpZiIZKpxmM1aDAbfPj8PcPpnn8vmxGgw4O9gmxEDSHPJzyFVBQ6AZvUbLSFsSqeb2s3V1xBsOsKexCLvB2prsOEVRFFLMTsqaaylurmakTRJ8Qgghuk4SHkKcgdVqJTExEavVymOPPcY3v/nNTj/AKYrCqJwkcrMT8XqDRFQVi9nQ+sCYv7eYo8dryEqPax0+YDTosFmMlFU08O9NhxmTk4TZ1PE3323iMhu47sJpfLa7iJ2HT9Dg9qLVaJg0KpW5k7IY1c3eHQBWi5FrLpnO3/+1h8KSWiqqXKC0DKGZNiGdSxZPQt8PQzlizEa0GgV/MIRR3/7XUpMvgNmgx9aF/5cvq2z0sOd4OUXV9Wg0CqNSEpicmYLTau70mFibmWsvmMbfNuzjeHkdwXDLMB+L0cDsiZlcsmDCWZ85pj/FWs3ceM40Khs8VLs8KIpCRoIDez89ZCfbbei0GrzBYJshLafUe72MTUrAOsR7dwCk2G2MTU5kW3EpNqOhzc9VKBKh2tPEubnZxFl7NiOQEGfD/sYy/la6i0pfIwCqCladgenOLC5Nn4pJe/p72RP00hTy49BbO9xu0hoIqWFcwb6rnSSEEIOO1PDoEUl4CNGBkpISzGYzCQktNQSee+453G43I0d2rQCooihYLG0fzoPBMLsOlGKzGdvVSgBIToihpLyBo8drmDQ2rd32jtjMRi6YM5Zzpo2kscmHXqfFGWPuVd2DeKeVm6+eQ8mJOipr3C11FZIdpCV37Zu6nhiZHMeIOAcn6hrJSnS2OU8oHKG+ycuFU0djMXYv4bHreDl/3rqPOk8zJn1LL43dxyta6oHMm8zI5M6L4KUm2LnjyjkUnailut6DRqMhIzmW1AR7l/4ffMEQe8sq2F1SQUOzlzirhakZqUwckYRhgNZYSI61kRzb/1PCjkqMZ2R8HIerashNiGvzkF/f7EVBYXYHs7RUu5uoa2pGp9GQEecYsP+P3aEoCpeMH02V20NBdS1OixmzXkdzIEiDz8eoxDguHDcq2mGKYSAYCROKhDFqdWiUrid0j3tqePP4VryhANnWBHQaLaqq4gp6+aTmMBqNwlUZM0/bhkGrQ6doCUZCgLHd9rDaMqTLoBn897wQQoizS/5yCPEFqqryhz/8gR/84AdcfPHFrF69GoDExEQSE3s3lMPrD9LsDWLppJeCVqsh6AtSXl7P6KxEjN2YGcNk1Hd7+MrpaDQKWenxZKWfnar4ep2WJdPH8MYnuzhSUUuSw4ZRp8XjC1DraSY3OY7547K71WZ5vYv3tuzFFwwxOuXz4peRiEpRdT1vfraHby+Ze9peDDqthlEZid3uLePx+Vm9ZTd7SivRahRMeh2l9S52l5QzLTONa/MmYx4GvRc6o9No+Nr0iby2dRdHamox6fTotRqaAgH0Wi1fGTOSaemfT8Na62lm3d4C9p2opMkfQKsoJDtiOGdMNnNyMqI6y01fSLHHcOfcmWwqLCa/tJzmQBCzQc85uVnMzc4kztJ5byQheqvK52JbbRG760oIRMI4jRZmxWczPS7rjD0zALbUHqMx0MyomOTW37OKouAwWIigkl9XzLzE0SSbOh+QaNdZGGlLYVfDMex6S7tkZ63fRZwhhixr39eQEkIIMbRJwkOIk8rLy/nmN7/J3/72NwCKi4txu93ExMT0SftGvRa9Xos/EOLLLbpqmzhRWEPZ8Vr+VeujYHsJk6ZmMnNuLlZb+2+7hqLx6UncvGgGnx4o4kh5DY3NESwGPYsmjeTciSNx2rr30LfreDl1TV7GpLSd6UOjUchKjOVoZR37S6uYOzqzr98K6/YVsLO4nKwEJ6YvDNHxBoJsKyolMcbKJVPG9vl5B5M0h51vLMhjV1kFu8sq8AWDTBmRwvT0NMYkJ6A5ec0amn38aVM+R6pqSYqxkRhjJRSOUO1u4q2te/AFgiwenxvld9N7iTYrV04ez5Jxo/EGg1gMepltRfS74qZaXi/cwglvPQ69GYNGx4nmBt50b6PAVcm1WXmYdZ33rPOGAhxsLCfOaOuw51us3sJRfxVFnurTJjwURWF2/FiKmiopaa4mxezEoNETViPU+l14w37OTZyEVSe1bIQQw1dvRrTk5eWh1WpZtmwZy5Yt6+PIBjb5NCWGPVVVWb16NcuWLaOurg6DwcDDDz/Mj370I7SdzJzQE0ajnklj0vjws8PExVrQnOzGX1fp4sjOUjxuHyaLgdRUJ97mAP9au4eS4lquum72sEl65KbEMzI5jlp3M/5giBizscezshytrMVqNHT4IVyr0aDVKBTXNPR5wqO+ycuu4nLiYyxtkh0AZoMeh8XMtqIyFo7JxmYaHte1Mw6ziXNHZXPuqOxO99leVMqRqlpyE+Nbi9pqNRrS4xxUNrr58OAxpmWmnbYmy2Bi0uva/dwI0R9CkTB/LdlJpa+RUTFJrcNYnEYr3nCA/LpismwJnJfceXI2qIaJqBGMmo6TIqd+/4Yi7WcZ+rIsaxJXpc/jg8qdlHvrUFUVFYg1WFmYOIM5CeO6/yaFEEIAsHXrVuz2s1H6f+CRT1ViWKurq+Nb3/oWb731FgDTp0/nD3/4A5MnT+6X882cksnhwkqKSupISozBpNdSuL8cj8ePwWogNzuJ2NiW4oQOp4WCgyfYua2QBYuGzwe9U9PQ9okoFGqqdHlo9PrJ6WCKXQCnxUxZfSPV7qZhn/A4k1A4wraiMmKMxg5n8EmMsXG0upZDFdXMze37njqid1RVpaLJgycQwKzTkRZjb+25I6Kv0FPD8aZa0iyx7Wp2mLUGLDoD22qLmJ+Y227mlFOsOiNOo40KbyMOQ/ukoz8cRKtoiDN27Xf66JgRZFmTKWqqxB1sxqDRk2NLxqYbGglNIYToFSla2iOS8BDDmlarZfPmzeh0Ou6//35++tOfou9g1oi+kuC0ce2lM3j/00MUltRwrLyRuio3zgQbGenxjEiObd3XYNBhtRrZu7OY2QtG98vsKEPZ6JQEDpfXtEyB+qWHrHAkQjiikpUQ2+fnVZSWpbMZVSOqikZR+q0A7FASCIdb61l0pKV2h0KTP3h2A+uGcCRCKBLBoNUOq2t+vLGBdUePcKi2Bl8oiEGrJdcZxwUjRzE2PiHa4QmgLtBESI1g1nbcO8OhN9Pgb8IV9BFv7LiYsVbRMCs+h3eKt9Ec8mPRfZ7EjagqZd56MizxjIrpeu0Ng0bHmJgR3Xsz/SgQCVLgLuagqxB3qAmH3sbYmBxGx2Sg1wzfWkxCCDFYSMJDDDsul4uYmJiWomoOB//3f/+HxWJh5szTV5HvKylJDv7jqjxOVDby2aeH2eIJM3ZCWoffYFttRjxuH97mAHqHfMPVHVOyUtl8pITimgYyEmJbv1kORyIUVdeTHm9nYkZyn5833ekg3mah1tNEsqN9/ZdaTzMJMVZSO9gm2jLqtFiNeuqbfB0OWQlHIqCqWPuwYG9fqfR42FJayo6KcoLhMElWK7NHpDMjLQ1DHw6V666IqlLc2EBTMIBFbyDT7ujzKZaLGxv4/c7tVDQ1kWqzkWKz4g2F2FddRanLxa1TpzM+oXdFoDtT7W2i1ndyJh+bA6O2ax9zVFWlxNNIja8JvUZLjt2JTT+0e2DpFA2q+nkS9suCahitokGvnP7ndVZcNsVNNWyrLUKn0WDXmQmoIRoDXpJNdq5In9ZpD5GBrjnk4x/ln1DgOY4GBaPWSJWvlkPuIsbGZHNx6jmYtUP750QIIQa7wfkXSIge+sc//sHSpUt56KGHWLp0KQALFy4863EoisKIlFhG5ySzb0tRp928A4EwOr0WvUF6d3RXSmwM18yeyLtb9nGkogaDToeqqoQiEVKdMXx97pR+GVJiNRqYnZPB33cfxGTQ4zg5C4yqqjQ0+/AGglwyeQxGqdNwRlqNhplZI/hz/n6C4TD6LyUKqt1NOK1mxqX2z8NzTxXW1/PHXTs54XbhMJowaLUcravjUG0NBXU1XDdxclQKkh6ureGfRws41lCPPxTCqNOS5XByUe4oJiT0zewXqqryfuFRKjwexsZ/XjA4xqDFFmfgaH0d/zxawJi4+D5NtNT6mvln8SF211TgCfrRKhpSrTGclzaSuSmZpx1KU97k4s+FBzhcX01zKIiiKCSarSxMzWZxei66Pk4IDRTZtgQcBjN1gSYSvtSDQ1VVav1NTHdmEaM/fR0lg1bHNRmzyLUlsa2ukFq/B5NGT17qSGbFZZNsdvTn2+iQqqpU+uo51lR2sueJiVG2ESQaY7vV0+qz2t0cdBWSZk7E+IWeMP5wgP2uYzgNDhYlzeqPtyCEEB1QTi7dPWZ4k0/cYlhwuVz853/+J//7v/8LwAsvvMCdd97ZWjg0WrJHJmJ3WKiv9RCf2PYbf1VVaahvYt7CMZjNnVfJF52bmJFCcmwM+0oqKaquR6sojEyJZ2J6Mo4eFkPtikXjRuLy+dl6rITKRg86rYZQuGXWmcXjRzJ/VFa/nXuoyctJZ/+JKg5V1JAYY8VhNhGKhKlyNRFRVa6cNo7YATRtazAc5p39+6ls8jAm/vPZZuItFpoCATaVlJIdG8fCrLP7M1BQV8vK3Tto9PlJs8Vg0etpDgU5Wl/Lq7vd3Dplep8kPaqbmzhYU02Krf2sHYqikBZj53hDPccbGxjpjOv1+QAa/T5WHtjOoYZqks02smPiCEUiVDV7eK1gJ95QkPMzRnV4bI23id8f2M5xdz1pVgfpNgdhVaXa6+HdY/vwR8Jcnj00ayjFG23kxWfzfvkBtCjEGlqmgw1FwpR7G7HpjMxNHNmlBIFBqyMvYSSz4nPwR0ItPUM00UnUhyNhPqzeyY66QzSFfSgoqKrKRp2ZvPhxnJM4Fa1y5r/97mAT+11HiTXEtEl2ABi1Bhx6G/tdR8mLm4hVaowIIcSAJQkPMeT961//4o477qC4uBhFUfjBD37Af//3f0c92QFgj7Uwc24uH67bi6qqOONtaLUafL4gleUNJCbamTYrJ9phDmoJMVbOmzCS887iOQ06LdfMmMjMrDT2n6jC7QvgMBuZMCKZzDhHVGo5hCMRPP4AWkXpdPaagchuNnHzvOm8v/8Ie0orKK5tQKtRSI21s3BMNrOyB85Yf4CC2lqKGuvJsDva9SqwGgwYtVo2l5YwLyPjrPUciKgq7xceocHnY7QzvvXaW/UGcmPjONpQx/pjRxgbl9DrXheeQABfKESCpeMilWadDn84jCcQ6NV5vmhzZTGHGqoZ5YhvfcjWaTRkxsRS0ezm/dIjTE9MI85k6eDYEopc9YyJ/fy96xSFVKudaq+HDWWFzE5OJ8nccQ2Lwe7C1ImE1Ajbaoo46q7i1DeBSaYYLkmfwmh794b9KYqCSRvdIWZb6w7yac0eYnU2koxOFKUl4dEQ9PBx9W6sOjOz4s6cxKoNNOIJeRlh7rgHmV1no9xXTa2/QRIeQggxgEnCQwxZTU1NrFixgqeffhqAnJwcVq5cybnnnhvlyNqaf+5YNBqF7ZuPUnK8FgXQ6jRkZifylYsnkZwaG+0QRQ9oNAo5iXHkJPbNt9g9FQyH2X68jC1FpVS6PGg0CrkJ8cwbmcHYlIE1FKQzTquZa/Mmc/6EXOqavOg0GkY47e2GuAwENc3NhCMRTJ0MWXGYTNQ0N9MUCOAw9V8voy864XZzpK6OVGtMh70uUq0xFDU0UOJqJDu249mFusqqN2DU6WgOBjusVeINhTBotVj7qDh0OBJha1UpMXpjhz0Kksw2ChprOFBfxYLU7DbbQpEI26vKcBhNHSZ64k1WChpqOFRffcaER0RV8YdD6DTR6dkQjISp8TUBkGCydjkGg1bHlenTmJMwkiPuKoKREHa9mXGOVKy6wVebwhcOsKP+MBaNkVjD59dMURSchhj8kQA76g4zJXYUhjPUFVFQUGi5ttoO8sMqETT0vAC1erKy9WBJPgshxGAlCQ8xZO3du5dnn30WgG9961v85je/wWYbeN/SaXUaFiwax9SZ2RQXVhMKhYlxWMjMSkCri34vFDF4hcIR3tt5gE+OFKHXaoi1mAlHVPJLTnCwooqrp09kTk5GtMPssjirhThr+2/pzxZVVSlpbKSqqQmtopDtdOI0t/1mt+XBWelwdiBoeUDXKspZrQvhDQXxh0OYO6kbY9br8XtCNId6P9tNktXKuPgEtp4ow2E0tvk/UFWVcreLHGccWb1MrJwSiITxBANYdJ3M5KO0PLR6gu17lAQjYbyhIKZOCpu2zKbUkqTpjC8cYltVKZsri6nxNWHQaJmWkMbc5ExSrfYevafuCEUifFZVxMbKIqq8HqAlyTM/OZu5Sdld+jlTFIUUs4OUKNTa6GsVvlrqAi5STfEdbnfq7VQH6qny1ZFuOf0QrmRTHLGGGBqCbhKN7X9e6wNuYg12Eo3dS2pX+qo47C6gqKkYFZU0cypjY0aTbh4hyQ8hhOgHkvAQQ8oXHzLmzJnDo48+ypQpU7jooouiHNmZ2WJMTJgyeB4+xcC3r7ySjceOk2S3Yf9CgdY4q5myBhdr9h5idFJ8VJMIg0V1UxPv7T/AoepqvMEgoBBrNjEnI52LRo9uLUKaG+fEZjBQ7/MR96VkiKqq1Hq9zM/IwGo4e3V5rHo9ppO9LuzG9t/8NwUDmHQ6Ygy9/0ZfURS+kpNLUWMDh+tqSbPFYDUY8AaDVHjcWAwGLsod1WcJH4NGi01voM7npaPHzoiqogI2ffv/b6NWh8NoorLZ0+Fwl3AkgqrS6f+LLxzitcP5bK0qxaDVYtcb8YVD/LP4MLtqyrll7AxyHR0/ePeFiKry1+J9fFBWgFGrJc5oQUGh0uvm9aP5VHo9XJ09+bQFW4eaiKqenHWm458vjaIQUVXCnc0b/gUmrZEpjjF8WLUVt8aATWdpHR7jDjXjDfuZnzAVUyfT+nbkiOcYH1VtwBPyYNFa0Cga9jce4Ij7GHPiZzEtdookPYQQnVNPLt09ZpiL+tfHzz77LDk5OZhMJmbOnMmGDRtOu/9HH33EzJkzMZlMjBw5kueff77N9pUrV6IoSrvF5/P16rxi4Nu6dSuzZs3i4MGDrev+67/+a1AkO4ToDzuKT6CqtEl2nJJqj6GuqZl95VVRiKx/NQeC7CwpZ0NBEVuLSmn0+s580Gm4fD5e3ZHPjrIyHCYTo+PjGRUfhwL883AB7+0/0No9PdlqY1baCKqbmmjw+VrXhyIRjjc2YDcamZeR2du32C2pthjGxCVwwuNujeeUll4XbnKd8YyI6ZseCTmxTm6fOoMpSck0+HwcqaulurmZUXHx3DZlOhMT+246aK1GQ15SOu6gn2Ak3G57ldeD02hmvLP9t/kaRWFOckZrD5gvK292k2i2MiGu454An1UUs7WqhHSbnewYJ3EmCymWGMbEJlDl9fDOsb0dxtRXjrpq2FB+lESTlUxbyzS6Vr2BTJuTRLONTyqOccRV02/nH4jiDHZsOjOuYFOH213BZmL0FuIMXZsWPC9uEnlxk2gKeTneXE5JcwVFTSdoDnmZEz+JGc4JXY7NFXTzSfVGApEA6eYRxBvjcBpiSbeMQK/RsaVuG+W+ii63118CET+Fnn18Uv1n3q9YxZbadZR7C4mo/fezLIQQ/SmqPTxWr17N8uXLefbZZ1mwYAEvvPACl1xyCfv37yczs/0HwsLCQi699FK+8Y1v8Kc//YlPP/2U73znOyQmJvK1r32tdT+73c6hQ4faHGv6wljp7p5XDGyBQID/9//+H4888gjhcJgf//jH/OUvf4l2WEL02vGaBvKPl3GoohqAMckJTM8aQXZi14YDnGhwYzN2/O2jRtMyQr3O4+2zeAeC/JIT/GPvYSpdnpNfaqjEWcycOzqHRWNGotG0//Y0EmmZrliv1XT47eqOE+Ucqa1jVFw8Om3L9wQKkGi1otdq2VJaypyMdLKdLQUSrxw3llAkzI7yE1R6PCfbVEm2xXDVuHHkxp3dui6KorBk5CjK3C4O1dWSarVh0evxhoKUN3mIt1i4OHdUn/YEyHXGcffM2ZS6XLgDfix6PRl2R59ORXvKnJRM9tZVcrC+iiRzDA5Dy0w+ld4mwmqEq3ImdNiDA2B2cgb766rYVVOO02Q+eWyEKq8HvUbLJVljcRja11oJRSJ8VlmMSavHomt7j2kUhQybg+PuBg431DAxru8SPF+0u+4EvnCILGP7gpmxBjOVzW52151gjGNw1OrpC7EGG+PtWXxWuw+rztymTkcgEqQh6GZh4hRi9F3r1abTaPlK8mzG20dyrKkET8iLTWcm15ZBqimxW70xCpuKaAg2ktHB0BWnIZaS5lKOuI+SZk7tcptwsudYoAZfuBm9xkiiManTHi5n0hxys7n2n5T7itCgQafoqfKVUujZy6iYaUxznodW6X6NmlDET5XvKI2BckAlxpBEkmk0Bo0UexVC9L+oJjwef/xx7rrrLpYuXQrAE088wdq1a3nuued45JFH2u3//PPPk5mZyRNPPAHA+PHj2bZtG7/5zW/aJDwURSElJaXPzisGrt27d3Prrbeya9cuAG644YbWIqVCDGbbC0t5b8d+XF4/MSYjigIfHjzG9qIyrpwxgdkjzzz8yWLQ4fJ13rshgopRP/AKf/bUgfIq3ti2h1AkQlZ8LHqtlnAkQrWnib/sPohOo+HcMZ/PelTX1Mz242VsLz6BLxgizmomLzud6RlpmL5Q72J7WRkWva412fFFDqORCreHQzU1ZDtbElEmnZ4bJ09hYVY2BXW1BMJh4kxmJiQlYTuLQ1m+KDvWyR1TZ7C+8CiHamuo8TZj1GmZnpzK+Tm55PbRFLFfpCgKGY7+rwvhMJi4fdzM1qEkRe46tIqGVKud80bkMC+58y8yrHoDt46bwb9Lj7KtqpSqZg9ajYaxsYmcOyKHKfEdf5bwBP3U+ZpxGDsuPGvS6QmrEWp9zX3yHjtS42vC1EntklMxnKrrMZwsTJxKXcDFEU8ZBo0Oo8aALxwgpIYYb89iXsLkbrWnUTSMsCQx4gw1P86kxl+HVtF2miQxa81U+rrX467SV0F+/VbKfWUEIgH0ip4EYxJTY2eQZe3eDG+qqrKz4SNOeI+SYBiBTvP5z5Y37OGwazsOfTyjYqZ2q11XsJLd9X+nIVDWpoeZw5DCpNhLiDPKUF4hRP+KWsIjEAiwfft2VqxY0Wb9kiVL2LhxY4fHbNq0iSVLlrRZd9FFF/Hyyy8TDAbRn6z67vF4yMrKIhwOM23aNP7f//t/TJ8+vcfnBfD7/fj9/tbXLper629W9LlQKMSvfvUrHnzwQYLBIPHx8Tz33HNce+210Q5NiF6raHTzl/wDhMMRRid/Po1oiiOGE/Uu/pZ/kPQ4B2mxpx+CMDUjlaM79rUUyvzSN+sef0vdhlGJXa8xEI5EOHqilv3FlTQ2+XBYTUzITCY3Lb5fvrnvDlVV+bigCG8gSG7S5+9Jq9GQYo/hRIOLj48UMSs7HYtBT3mjmz9tzud4bQMxJiMGnZbjdQ0cqa7lYHk1N+RNwWzQo6oqnkCgtUbHlymKgkZR8AVD7dZnOBxn5YG/q7JjnSydNpPKJg9NwQAWvYEUq21I1AyIM1m4acw0lmSMps7fjE6jJd3q6HCmmC+LMRi5cuQEvpKRS73fh17RkGSxnbbHi06jQasonQ5ZUVUVFbVfi9PG6I0EOhiKc0ogEsKuH3wzrfSWTW/mmozzOOA6zt6GY7hCzSSZnExy5DDOntWtmht9Sato2g0p+6KIGkF7hpljvqjaX8W/qtbSGGwgzhBPnMZEMBKk0l/Oh9Xvcx7nk20d2eX2GoLVnGguxKFPaJPsADBrbTSHPBzz7CHHNhGt0rU4AxEvu+v/Tn2gBKchHa2iP/leQ9QHytjd8DfmxN+EWTdwfk8KMaBJDY8eiVrCo6amhnA4THJy266eycnJVFR0PIaxoqKiw/1DoRA1NTWkpqYybtw4Vq5cyeTJk3G5XDz55JMsWLCAXbt2MXr06B6dF+CRRx7hoYce6uG7FX3t97//Pffddx8AV111Fc8//3y7aypEf4pEVIqr6zlcVk2TP4jDYmJcRhKpzvZTf3bXnpIK6pu8jElJaNdWamwMhytq2VNcccaEx/T0NLYdL+NodR0ZTkfrA3yj10+ly83s7AxyEro2PMYfDPGXTfvYXlBKKBzBoNMSCEXYfLCYmaPTuXLuBAydzAJyNlS5myiqrSfR3vFMTEkxNo7X1VNYU8f4lCT+uusAxXWNjEr6PFmTYLPiDQTZXnyCjDgHF4wfhaIoJNmsHKzuuBbCqSKJHdVJGYgURSHF1rX6BYNRgtlKgtnao2NteiO2LiYIbHoj451JbKosJt5oaXef1vm92PUmRvVj0dKJzhQ2VR3HGwpi/lJPD18oCKrCpLjuDY8YKsxaIzOcY5jhHBPtUFqNMKexp3EfwUgI/ZcSGxE1gi/iJ8ea1aW2VFVld8MOGoP1pJkyWn/+jFojKdo0Kn3l7GzYRoYls8vJicZgDf6Il1h9QofbrTo7rmA9TSEXdn3XeoRVeQuo95cSZ8xA84U4NIqOOEMGtf4iKnyHyLHN7lJ7QgjRE1GfpeXLHxI6m8rvdPt/cf3cuXOZO3du6/YFCxYwY8YMfve73/HUU0/1+Lz33nsv99xzT+trl8tFRoZ0w4uWO+64gzfffJNbbrmFm2++eUh8QykGj0AwxF+3HGD7kVJ8gRBajUIoEuHDPUdZOCGH86eN7rBWRFeV1DVi0us6/LlWFAWzQUdxXcMZ23FazfzH7Gm8m7+Pwpp6guFwy4wVRgMLcrO4cur4LvfM2LCnkM8OFpPqjMFm/vyh0OP1s2n/cWJtZi6YPrqrb7HPBcNhQpFIp9/o67QaIqpKMByhuL6Bgupa0mLt7d6/2aAnxmRga1Ep54zKxqTXMWvECPZVVtEcDGLRt32wrPJ4cJpNTBrCCdfSxkZ2VVRwvKEBg1bL+MREpqSkEGMcHEme/jI/NZt99ZUUuevJsDnQabSoqkqD30uNt4kLMkaTZO6/qdDHx6YwJS6V7TVlJJttOA0t9RDqA14qvW5mJKQzPnbo/lwONlnWDNLMKZQ0l5FiSsKgaelpEoqEqPRXkWiMJ9fWtR4Z7pCLMm8Jsfq4Dv9OxBniqfFXU+mrIM2c3sUIz/Q36+Tn7TPu97la//GTveDaP24oigatxkiV94gkPIQ4C/Ly8tBqtSxbtoxly5ZFO5yzKmoJj4SEBLRabbteFVVVVZ1+U5+SktLh/jqdjvj4jr9F0Wg05OXlUVBQ0OPzAhiNRozD/MNdNB05coRHH32UZ555BqPRiE6nY+3atZLoEFHxr91H2XigiKRYGxmJLWP4VVWlzt3M+p0FxNrM5I3peUJUr9WcdtrEcCSCrgtd9QFGxNr59nlzOFpdR5W7Ca1GISsullRH13uiNPkCbCsowW4xtkl2ANjMRuyWANsOlzB/fBYWU3S6i8eaTdgMBtw+f5v6G6ecGsLjtJip9njwB0NYDR3XP3CYTdQ3e2n0+jDpbUxJSWHWiBFsKS3FZjDgNJkIqyrVTU0oisJVE8aTaO1Zr4KB7tPjx/nrwYM0+v2YdTrCkQg7Tpxgw/Hj3Dx1KukDaMjO2TbKEc9No6fz58J9HHPVA6CiYtMZWTwil8uzx/fr+Q1aLTfkzsCmN7Kr9gQFrmpUwK43cW5KLldkTsCojfr3WuIkg8bA+UmL+FfVx5zwniCkhlEABQ1JpkTOSzwHu75rva/8ET/BSBCbruP99RoDYTWMP9L1GaqchiRMWgvNYTdWXfveg55QIwnGtA63dSZCGOU0E0Jq0BChd7O/NIeqcQdb6oNYdInE6NsXhRVCtMxmabf3zWxsg03U/hIaDAZmzpzJ+vXrufrqq1vXr1+/nq9+9asdHjNv3jz++te/tlm3bt06Zs2a1Vq/48tUVWXnzp1Mnjy5x+cV0ROJRHj++ef5r//6L5qbm0lLS+Phhx8G2vfSEeJscDX72FZQisNqwm75vGChoijE2600+4NsOnicablp6LuYlPiy0ckJbCss67D2RjgSIRiOMDal427HHdFqNIxJTmBMcteP+aKKOhf1bi/pCR0/3MbFWCitaaS83k1uav914T8dm8nItIxU1h04QqzF1Ob/PhJRKW9wMSEtiQyng/pmLygtw1G0HfweCUciaBUF7cleOkadjhumTGaE3c6W0lJqvF40isKo+AQWZGcyPXVoDhs4UlvLewcOoFUUxsZ/XksmFIlwrL6e1/fs4Xtz53Za32Q4mJqQyihHPAfqq6jzN2PQ6BgTm0CqpfdD27oiRm/kxtwZnJ82mtKmRgBGWB0km4fusKXBLNYQy5Vpl1LiLaXKV4NKhDhDHFmWDIzarn+pZtKY0GsM+CN+9Jr2SeZAxI9W0WLsxiwoDn086ZbRFLjz0WsMGDSfJ/Obwo2oqIy0TUbTjVlaHPpUStRdqGoE5Uszx6iqSiDiw2kY0eX2vigYaabQtZ5q3z4CkZbivDqNCacxl9yYSzDrel+IOaIGCUbcKGjRa+zyuVOIQSqqn1LuuecebrnlFmbNmsW8efN48cUXKS4u5u677wZahpGUlZXx6quvAnD33Xfz9NNPc8899/CNb3yDTZs28fLLL7Nq1arWNh966CHmzp3L6NGjcblcPPXUU+zcuZNnnnmmy+cVA0NxcTF33nknH3zwAQCLFi3izjvvjHJUYrgrrWmkoclLdnLHtS/i7RYqG9xUNXgYEd+zb78npieTGR/Lseo6suOd6HUtHzCD4TBFNQ1kxDmYlB6FruoD/LPeorEjKalv5GBFNTEmIzajAV8oRH2TlxGxdi6fPA6NRiErPpZYs5m6Ji+JMe17ZlR7mpiQkkS89fOpK016PReOHsW5OdnUNnvRaRQSrNY+ncp1oNlaVkZTIMDYhLaJMp1GQ3ZsLEUNDRyormbaEE34dJVVb2BWUleHDfSPJHMMSZLkGBR0Gh051mxyrNk9biNGbyfTksVB136s2raFh1VVpS5QS5IxhWRT5zMWdmRq7EKCYR+l3iNE1DBaRUdIDWLUmJnomEeWtXu9lpLNYyj0bKYxWIFDn9omTneoGpM2hlRz93tCRdQQBY1/o8K7A4sugVhdy4w0wUgT1d49BMPNTIq7Cb2mZz3vwhE/Nb4t1Hi34Q/Xo6AlxjCSRPMcHMaBUxdGDEOq0rJ095hhLqoJj+uvv57a2loefvhhysvLmTRpEmvWrCErq6VoU3l5OcXFxa375+TksGbNGn74wx/yzDPPkJaWxlNPPdVmStqGhga++c1vUlFRgcPhYPr06Xz88cfMnj27y+cV0aWqKr///e/54Q9/iMvlwmw288tf/pJly5ahifJMEEJEVBVVVTt90NUoCqrKaavxn0mMycgNc6fw5pY9HK9pIHKyLY3S8rD+9dmTsJs7ng6zPyQ5Y4i1mah3e0mKbV+ToN7jxWkzk9zBtrPJYTZx69zpfFZYwvbjZXj8AYw6LReOH8XckZkknyxo6rSYmZuTwT/2HUan0RBrMaEoCuFIhAqXB6NOx7zczA6/zTPqdKTZh/6DpaqqHK6pwWHq+OfMoNUSiUQoc7mGfcJDiGiY7JhOpa+CE75SYvVOTFozgUiAhkAtZq2F6c5ZaLvRGwPApLUwL/EyKrzHqfAV4Q/7sOkdjDCPIs6Q3O0eDladkwmxF7K3/p/U+Iswaq0oKPjDTRi0VsY5FuMwdP/3R2PgONW+vcTo09BrPk9MG7Q2dJpsGgKF1PgOkGqZ1e22w2qAItdb1Pp2oFPM6LV2VDVMvX83rkABWfariTdN73a7XxRRffiCRwmrPnRKDCb9SJQuFpcVQnSfovbmU/kw5nK5cDgcNDY2DtvxUP3lgQce4Be/+AUA8+fPZ+XKlYweHb1iiEJ8UVWjh2f+thGTXkesrX134Yp6Nxajnu9feQ7mTmpEdJUvGOLgiSrK6lu6qqc5HYxLTex1uz2xdtsh1m4/RHqCA4vx8y7UTb4AZbWNXDxrHEtmDpxvvgKhMN5gEKNO12FNj0AozN/2HGRrUSluf6C180q81cLFk8YwJzt9WHdfVlWVh//9b3yhECm2jhNZB2tquGLcOC4dM3CuuxDDSY2/ip0N2ylrLiEQCaDT6Eg2pTLFMZ10S2a0w2vVGKjghHcfNb5jqKjEGbMYYZ6I09iznlFHXWsp9nyI05jb4XZXoASHMYepcbd3u+1q71YKG1dj0aWi+0IyBaApWIpOa2OCcxl6bfc/+6uqise/hXrvegLhclAjKOgw6rOIs1yOxTCu222K6Dsbz4SnzvE/H67FZOtezyWfp4mfLrpoWD+zSjpRDDh33HEHzz33HCtWrOCHP/wh2h7WQRCiPyQ5bEzISOazQ8exmAwYdJ//fHr9QdzNPs6dmNMnSQmTXse0rDSmZaX1uq3eOm9KLnXuZnYePUFEVTHqdfiDITQahdljMzl3ctdmFzhbDDptm2vT0farp01gbk4Gh6tq8AVDOMwmxqckEWs5e71nBipFURiXmMhHhYUdJjz8oRA6jYb0Yfrhqa+FIhF84SAGjRaDFBoVXZRgTOL8pItpCNbjDXsxaAzEGeLRKAOrN6zDkILDkAKO8/ukvXDEi3Ka3itaxUAo3NztdlVVpda3HY2ia5fsALDoUnEHC2kIHCLRnNft9j3+LVR5WobhG7WZaBQD4YgXX6iQSvcfSLHfhVk/qtvtRouqhoEQYBjWXxCIgU/+qoqoq6qqYs2aNdx+++0AjBw5kqKiImydfKsoRLRdPHMsjc1eDpVWo9dpMep1eP0BVGDm6AwWTMiJdoh9zmTQ8fVzpzA1N429RRU0NvlwWE1Myk5h9IiEHhdojSZFUUiLtZMWKw/tHZk1YgQ7TpygzOUiLSamTdHSooYGRsXHt6vvIbrHE/Sztfo4W2qO4wr4MWq1TItPZ25ittTkEF2iKApOQxwdV5UamoxaJ6oaRlXVDh+0gxEvcabu9zxTCeEP1aLXdPz5syXJohAMN3a77Yjqo8H7PgAm3edD6LUaMyYlF1/oMI3ef2PS5fY6eaCqIYKhQlS1CUWxotfl9OmQGTVcjRrYCsEdoAZAEw+GPDDMRFFkRksx8EjCQ0TVO++8w9133011dTVZWVksXrwYQJIdYkBzWE3cvHgGe4sq2FVUjrvZz8iUOKbmpDExM7m1yGh/U1WVsjoXu4vLOVHnwqDTMjYtkYkZydhMff+hQ6/VMiEzmQmZUSiYKs663Lg4rp4wgb8cOMCh2lpMWi1hVSWkquQ4ndwwefKwnqGltzxBP68e2cK++nKsOiM2vRF/OMja0gPsrS/nllF5ZFiH02OsEF2TYBpHadOneMO1WHRtk66BsAdFUUg0Tep2uwpaNIqBYMTd4faWKgARNB3MjHMmvmAh/tAJjLr2U9YrioJem0xz8DChSDV6bVK32z/FH9hHk/fvBENFqPhRMKLXZWM1X4LRMLnH7Z6ihopRm/8E4VJQHKAYIFSMGjoCwUNgvRFFkV6S/UY9uXT3mGFOPqmIqKirq+N73/ser732GgBTpkwhLq73U4gJcbZYjAZmj81k9tjojJNWVZVPDxWxdtdh3F4/ZoOeUDhCftEJshKd3DB/Kimx8g2x6J25GRlkxcayu6KCksZG9FotYxMSmJScjM3Q/Q/9Z+ILBdlfXc2hmmr84TBpMTFMSU4hxTb0fpY/rjjC3vpyRtrivzCMxUyiKYYj7mr+VryPb41bMKRnAhKiJyy6JDJt51LoXk9joBiT1omiaPCHGwhH/KRZ5xJn7H7tN0XREGeaRplnDaqa1G7YTDDSiE5jxa7vuHbI6URULyphNJ30gNAoJkKRBsKqj54OiA0ED9Do+T2q6karGYGimFFVL8HQURo9K3HY7sRomNjD1luGsKi+P0O4HLRj4NTQKU08qF4IbgN/NpgW9/gcQvQHSXiIs27NmjUsXbqU8vJyNBoNK1as4Gc/+xlGo3SDE6KrCipqWZN/CL1Ww+iUhM+HG4QjFFbX8fZne/jmBXPOWm8TMXSlxsSQGtP/CYfq5ib+b/cuCupqAAWtovBZaZh/FxVyxZhxzM8YOEUYe6spFGBbTTFOg7ldzQ6NopBmdnDUVc1xTx05MfFRilKIgUlRFNKtCzBqHZQ3b8cTLENFxaJLJsU8nVTLTDQ9HMIRb5pBvX837mAhFt0IdBozqhohEKnHH64j2bIQs677dbW0GjsaxUg40oy2g/og4YgHjWJBp/RsiKWqRmhq/ieq2ohOO6b1M4GiWFCUUYTCBTR712LQj0fpaY2X0DEIFoJ2xOfJjlMUMyhW1MAWMC5AUfo+IS5ET0nCQ5xVP/rRj3jssccAGDduHH/4wx/aTBkshOia7cdK8QWCpKe07c6r02rIjI+lsLqegooaJqTL8BMx8IUiEd7Yu4cDNdXkOuMwnKwJo6oq5R437x7YR4LFwpj4oVEzpDHgxR30k2DsuNq+TW+k3NtInb9ZEh5CdEBRFJLMk0k0TcQXbgBUjFpHjxMdp5h08eTYb6DE/Vc8wSIi4RCoKnqNnRTrYkZYl/SoxoZJl4NJl403WIBJGdWmDVUNE4xU4zB/BZ02tkdxh8KlBELH0GrS2sWnKApaTRqB0DFC4WL0uuwenYNILRAEpX3CpuVEDojUQ8QF2qHxu1oMDZLwEGfV9OnTURSF5cuX89///d+Yze2n9RRCnF4oHOFoRS0OS8f3j1GvIxyJcKLeJQkPMSgcqavlcG0NWY7Y1mQHnCwsG2OnoK6GLWWlQybhoddo0SoagpEwHd3F4UgEUNBrpIeWEKejKBrMur4dEm3Vj2Cs8xu4g4X4w3UoaLHpszHpep58VBQtcdbLqXT/AW/oMAZNEopiIqJ6CEZqMOmyiTV/pcftq2oz4EdROv5c0DK8JUAk0v3Zaz5v5OTvIzXSvocH0DJjixb6sECqEH1BfiJFv/J4PBw5coRp06YBcNNNNzFt2jQmTuz5GEIhBJzpCyZVBQUZ+y8Gh1JXI4FIGIu+49HrsUYzh2prCITDbRIig1WC0crImHj2NpRjN7R/QKnyeVr3EUKcfYqixW7o2ylizfrRpMTcRYP333iDB4lEXGgUM7Hm83GYF2PoRbFSjRKDgpmI2oRWcbTbrqpNaBQTGk0vhidqR4LGDmodKB0knyO1oJ/e0tND9A8pWtojkvAQ/WbDhg3cfvvtNDU1sW/fPuLj41EURZIdQvSSTqthVEoCnxUUk2hv3yXeHwyh12pIi5PpVsXgcKYEnaK0DG9pmSVh8FMUhXNScjnmrqHYU0+axY5OoyWiqtT4PDSF/ZyfNgabXmpbCTGUmPQ5JOuyCUXqiKjNaDV2dJreJwi02jQMhrH4/NvRKPYvDZlRCYXLMBmmo9Om9/gcijYe1TAHfOto6ckRe/KXcxgiJ0CxoBjn93paXQBfuJEq30Hq/YWoqorDkEGyeTyWXvSyEYPDyJEj2bp1K/Hxba91Q0MDM2bM4NixY91uUxIeos95vV7uv/9+fvvb36KqKhkZGRQXF7f7wRVC9NyMnBHsPl5ORYObZIet9QNGMBzmeE0Do1PjGZUi95wYHFJjYtBqNPhDoQ6num3w+ZiRmjakpsGdEJvCtTkzWFOyj0JPLdCS+Ik1mLk0fSKL07o/y4QQYuBrmYY2Hui7v9GKomA1X0ooVEowdACtNhWNYiGiNhMOV6DTJmM1X9rrZIRiuhhVDUJgK0SqAKVl0SaimC5D0Y/t9Xup9xexv+GveEKVaBUDCgqVvn2UNm9hnONSEk3jen0OMXAVFRURDofbrff7/ZSVlfWozaHzyUEMCFu2bOG2227j4MGDANx55508/vjjOBzSvU2IvjQqJZ7LZ47nHzsPcbiiBpNeRzisElYjjEx28vW5U9APga7/YngYG59ATqyTgroacp3x6DSfjw+vbmpCr9Ewe0TPv5kcqGYmZDAuNpmDDZW4gj5MWh1jHUnEdVLMVAghOqPXZeOI+RZN3nUEgvsJRepQFBMm4xys5iU9L1b6BYpiAPM1YJwHoQJQ/aCJBd0EFI2t1+37w272N/yV5lAtcYac1hllVFXFFSzjYMPfscTHY9Un9vpcYmD5y1/+0vrvtWvXtnl2DIfDfPDBB2RnZ/eobUl4iD6hqioPPPAAjzzyCJFIhNTUVF566SUuu+yyaIcmxJCkKArzxmSRleBkb0kFpXUuDDotY9MSmZiehMUoU8KJwUOv1XL9xMn8ac9OjtbXYtDq0Gk0NAcDWPUGLh09lomJPR/fPpBZdQZmJmREOwwhxBCg12XhsC0lHKlGjXhQNFa0mqQ+GWZyiqIooE1rWfpYte8QnlAVTkNWm+lzFUXBrh9Bnf8Yld4DjJSEx5Bz1VVXAS3X+rbbbmuzTa/Xk52d3TrTZ3dJwkP0CUVRKC0tJRKJcNNNN/G73/2OuLi+rZothGgvLc4utTrEkDDCbufbs2azq7KCvVWV+ENh0u12ZqSmkRPr7NMP7EIIMVQpioJOmwS9KIIaLQ2BEjRo0Sjte6gqioJeY6YucIyRnBuF6AaAIVy0NBKJAJCTk8PWrVtJSOi7Wdkk4SF6LBgM4vF4cDqdADzxxBNcddVVrRk6IYQQojvsRhMLM7NZmJkd7VCEEEKIISMvLw+tVsuyZctYtmxZtMPpVGFhYZ+3KQmPHjpVKd7lckU5kug4ePAg3/rWt0hKSuKNN95AURQ0Gg1f+cpXhu3/iRBCCCGEEKJntD4nbnczOn9TmyEt0PLs1eBvID5m+oB61jgVy9mZRexkkdhuHwNbt27Fbh8cPYI/+OADPvjgA6qqqlp7fpzyyiuvdLs9SXj0kNvtBiAjQ8bdxsbGRjsEIYQQQgghxJD3m2gH0CG32y2TNPSBhx56iIcffphZs2aRmpraJ8NZJeHRQ2lpaZSUlBATEyPjiqPE5XKRkZFBSUnJoMlYDgdyXQYmuS4Dj1yTgUmuy8Ak12Vgkusy8Mg1ObtUVcXtdpOW1vdFXL9MAZRudiQZbE+pzz//PCtXruSWW27pszYl4dFDGo2G9PShN0XeYGS32+UX+gAk12Vgkusy8Mg1GZjkugxMcl0GJrkuA49ck7NHenb0nUAgwPz58/u0Tc2ZdxFCCCGEEEIIIYToP0uXLuW1117r0zalh4cQQgghhBBCCCGiyufz8eKLL/L+++8zZcoU9Hp9m+2PP/54t9uUhIcYtIxGIz//+c8xGo3RDkV8gVyXgUmuy8Aj12RgkusyMMl1GZjkugw8ck3EYLZ7926mTZsGwN69e9ts62ndTEU9O3PoCCGEEEIIIYQQohtcLhcOh4NHPliHyWrt1rG+pibuPX8JjY2Nw7ami9TwEEIIIYQQQgghxJAjQ1qEEEIIIYQQQggRVYsXLz7t0JV//etf3W5TEh5CCCGEEEIIIcRApp5cunvMIHKqfscpwWCQnTt3snfvXm677bYetSkJDyGEEEIIIYQQQkTVb3/72w7XP/jgg3g8nh61KTU8xIDx7LPPkpOTg8lkYubMmWzYsOG0+3/00UfMnDkTk8nEyJEjef7559tsX7lyJYqitFt8Pl9/vo0hpzvXpby8nJtuuomxY8ei0WhYvnx5h/u9/fbbTJgwAaPRyIQJE3j33Xf7Kfqhq6+vi9wvfaM71+Wdd97hwgsvJDExEbvdzrx581i7dm27/eR+6b2+vi5yv/Red67JJ598woIFC4iPj8dsNjNu3LgOPxTLvdJ7fX1d5F7pG939jHzKp59+ik6na/etOcj9IgaXm2++mVdeeaVHx0rCQwwIq1evZvny5dx3333k5+ezcOFCLrnkEoqLizvcv7CwkEsvvZSFCxeSn5/PT3/6U77//e/z9ttvt9nPbrdTXl7eZjGZTGfjLQ0J3b0ufr+fxMRE7rvvPqZOndrhPps2beL666/nlltuYdeuXdxyyy1cd911bN68uT/fypDSH9cF5H7pre5el48//pgLL7yQNWvWsH37dhYvXswVV1xBfn5+6z5yv/Ref1wXkPulN7p7TaxWK9/97nf5+OOPOXDgAPfffz/3338/L774Yus+cq/0Xn9cF5B7pbe6e11OaWxs5NZbb+X8889vt03uFzHYbNq0qce/N2RaWjEgzJkzhxkzZvDcc8+1rhs/fjxXXXUVjzzySLv9f/KTn/CXv/yFAwcOtK67++672bVrF5s2bQJavlVYvnw5DQ0N/R7/UNXd6/JFixYtYtq0aTzxxBNt1l9//fW4XC7+8Y9/tK67+OKLcTqdrFq1qk/jH6r647rI/dJ7vbkup0ycOJHrr7+en/3sZ4DcL32hP66L3C+90xfX5JprrsFqtfLHP/4RkHulL/THdZF7pfd6el1uuOEGRo8ejVar5b333mPnzp2t2+R+GVxap6Vd38NpaS8cPNPSXnPNNW1eq6pKeXk527Zt44EHHuDnP/95t9uUHh4i6gKBANu3b2fJkiVt1i9ZsoSNGzd2eMymTZva7X/RRRexbds2gsFg6zqPx0NWVhbp6elcfvnl7b6hE53ryXXpis6uXW/aHE7667qA3C+90RfXJRKJ4Ha7iYuLa10n90vv9Nd1Ablfeqovrkl+fj4bN27kvPPOa10n90rv9Nd1AblXeqOn1+X3v/89R48e7fThUO4XMVA5HI42S1xcHIsWLWLNmjU9SnaAFC0VA0BNTQ3hcJjk5OQ265OTk6moqOjwmIqKig73D4VC1NTUkJqayrhx41i5ciWTJ0/G5XLx5JNPsmDBAnbt2sXo0aP77f0MFT25Ll3R2bXrTZvDSX9dF7lfeqcvrstjjz1GU1MT1113Xes6uV96p7+ui9wvPdeba5Kenk51dTWhUIgHH3yQpUuXtm6Te6V3+uu6yL3SOz25LgUFBaxYsYINGzag03X8qCf3ixiofv/73/d5m5LwEAPGl+dcVlX1tPMwd7T/F9fPnTuXuXPntm5fsGABM2bM4He/+x1PPfVUX4U95HX3ukSrzeGmr/8P5X7pGz29LqtWreLBBx/kz3/+M0lJSX3SpvhcX18XuV96ryfXZMOGDXg8Hj777DNWrFjBqFGjuPHGG3vVpmirr6+L3Ct9o6vXJRwOc9NNN/HQQw8xZsyYPmlTiGjYvn07Bw4cQFEUJkyYwPTp03vcliQ8RNQlJCSg1WrbZZWrqqraZZ9PSUlJ6XB/nU5HfHx8h8doNBry8vIoKCjom8CHuJ5cl67o7Nr1ps3hpL+uy5fJ/dI9vbkuq1ev5q677uLNN9/kggsuaLNN7pfe6a/r8mVyv3Rdb65JTk4OAJMnT6ayspIHH3yw9cFa7pXe6a/r8mVyr3RPd6+L2+1m27Zt5Ofn893vfhdoGZanqio6nY5169bxla98Re4XMWBVVVVxww038OGHHxIbG4uqqjQ2NrJ48WJef/11EhMTu92m1PAQUWcwGJg5cybr169vs379+vXMnz+/w2PmzZvXbv9169Yxa9Ys9Hp9h8eoqsrOnTtJTU3tm8CHuJ5cl67o7Nr1ps3hpL+uy5fJ/dI9Pb0uq1at4vbbb+e1117jsssua7dd7pfe6a/r8mVyv3RdX/0OU1UVv9/f+lruld7pr+vS0Xa5V7quu9fFbrezZ88edu7c2brcfffdjB07lp07dzJnzhxA7pfBSlF7tgwm3/ve93C5XOzbt4+6ujrq6+vZu3cvLpeL73//+z1rVBViAHj99ddVvV6vvvzyy+r+/fvV5cuXq1arVS0qKlJVVVVXrFih3nLLLa37Hzt2TLVYLOoPf/hDdf/+/erLL7+s6vV69a233mrd58EHH1T/+c9/qkePHlXz8/PVO+64Q9XpdOrmzZvP+vsbrLp7XVRVVfPz89X8/Hx15syZ6k033aTm5+er+/bta93+6aefqlqtVn300UfVAwcOqI8++qiq0+nUzz777Ky+t8GsP66L3C+9193r8tprr6k6nU595pln1PLy8taloaGhdR+5X3qvP66L3C+9091r8vTTT6t/+ctf1MOHD6uHDx9WX3nlFdVut6v33Xdf6z5yr/Ref1wXuVd6ryd/87/o5z//uTp16tQ26+R+GVwaGxtVQH103Tr1iU8/7dby6Lp1KqA2NjZG+210id1uV7ds2dJu/ebNm1WHw9GjNiXhIQaMZ555Rs3KylINBoM6Y8YM9aOPPmrddtttt6nnnXdem/0//PBDdfr06arBYFCzs7PV5557rs325cuXq5mZmarBYFATExPVJUuWqBs3bjwbb2VI6e51AdotWVlZbfZ588031bFjx6p6vV4dN26c+vbbb5+FdzK09PV1kfulb3Tnupx33nkdXpfbbrutTZtyv/ReX18XuV96rzvX5KmnnlInTpyoWiwW1W63q9OnT1efffZZNRwOt2lT7pXe6+vrIvdK3+ju3/wv6ijhoapyvwwmwynhYbPZ1Pz8/Hbrd+zYocbExPSoTUVV1UHW0UUIIYQQQgghhBj6XC4XDoeDR9etw2S1dutYX1MTK5YsobGxEbvd3k8R9p2vfvWrNDQ0sGrVKtLS0gAoKyvjP/7jP3A6nbz77rvdblNqeAghhBBCCCGEECKqnn76adxuN9nZ2eTm5jJq1ChycnJwu9387ne/61GbMkuLEEIIIYQQQggxkJ0aZNndY4C8vDy0Wi3Lli1j2bJlfR1Zn8nIyGDHjh2sX7+egwcPoqoqEyZMOONsaacjCQ8hhBBCCCGEEGKI2rp164Ae0vKvf/2L7373u3z22WfY7XYuvPBCLrzwQgAaGxuZOHEizz//PAsXLux22zKkRQghhBBCCCGEEFHxxBNP8I1vfKPDpIzD4eBb3/oWjz/+eI/aloSHEEIIIYQQQgghomLXrl1cfPHFnW5fsmQJ27dv71HbkvAQQgghhBBCCCFEVFRWVqLX6zvdrtPpqK6u7lHbkvAQQgghhBBCCCEGMlXp2TIIjBgxgj179nS6fffu3aSmpvaobUl4CCGEEEIIIYQQIiouvfRSfvazn+Hz+dpt83q9/PznP+fyyy/vUdsyS4sQQgghhBBCCCGi4v777+edd95hzJgxfPe732Xs2LEoisKBAwd45plnCIfD3HfffT1qWxIeQgghhBBCCCGEiIrk5GQ2btzIt7/9be69915UVQVAURQuuuginn32WZKTk3vUtiQ8hBBCCCGEEEIIETVZWVmsWbOG+vp6jhw5gqqqjB49GqfT2at2JeEhhBBCCCGEEEIMYIrasnT3mMHG6XSSl5fXZ+1J0VIhhBBCCCGEEEIMOZLwEEIIIYQQQgghxJAjCQ8hhBBCCCGEEEIMOVLDQwghhBBCCCGEGMjUk0t3jxnmJOHRQ5FIhBMnThATE4OiKNEORwghhBBCCCHEWaSqKm63m7S0NDQaGTwxEEnCo4dOnDhBRkZGtMMQQgghhBBCCBFFJSUlpKenRzsM0QFJePRQTEwM0PLDbbfboxyNEEII0V55eTm33347n332GQDf//73+fnPf45OJ3/+hRBCiN5yuVxkZGS0PhuKgUc+8fTQqWEsdrtdEh5CCCEGnA8//JDrr7+eqqoq7HY7K1eu5Oqrr452WEIIIcSQIyUOBi5JeAghhBBDUEFBAVVVVUyZMoW33nqL0aNHRzskIYQQQvSUFC3tEUl4CCGEEEPQ0qVL0Wq13HDDDVgslmiHI4QQQghx1kkpWSGEEGIIyM/P54ILLqCurg5o6V575513SrJDCCGEEMOWJDyEEEKIQe6VV15h3rx5fPDBB6xYsSLa4QghhBCiHyjdXIQkPIQQQohBy+v1ctddd3HXXXfh9/u57LLLePTRR6MdlhBCCCHEgCAJDyGEEGIQOnbsGPPnz+eVV15Bo9Hw3//93/zlL38hLi4u2qEJIYQQQgwIUrRUCCGEGGQ2btzIpZdeSmNjI4mJiaxatYrzzz8/2mEJIYQQQgwokvAQQgghBplx48bhdDqZOHEib7zxBiNGjIh2SEIIIYQQA44kPETUqKpKTVkdx3YV4fX4MMeYyZ2WTUKadMcWQogva2xsxG63oygKcXFx/Otf/2LEiBEYDIZohyaEEEKI/qaeXLp7zDAnCQ8RFeFwmI/f+ozt63bhqW9CURRUVSUmzsacy2Yw/6t5aDRSYkYIIQA++eQTrrvuOh5++GGWLl0KQE5OTpSjEkIIIYQY2OSJUkTFtrW72PD2Z+gNenImZ7YuWq2GD1d/ys5/74t2iEIIEXWqqvLb3/6WRYsWUV5eznPPPUc4HI52WEIIIYQQg4IkPMRZ52v2s339bsxWE85kB4rSMku0oijEpTrRG/RsX7eTYCAY5UiFECJ6XC4X1113Hffccw/hcJgbb7yRjz76CK1WG+3QhBBCCCEGBUl4iLOuorCKuvJ64lJiO9wel+qkurSOyuM1ZzcwIYQYIPbs2UNeXh5vvfUWer2ep59+mv/7v//DZrNFOzQhhBBCRIPaw2WYkxoe4qyLhCNEIhG0uo6/pdRoNaiRCOGQdNsWQgw/1dXVzJ8/H4/HQ0ZGBm+++SZz5syJdlhCCCGEEINO1Ht4PPvss+Tk5GAymZg5cyYbNmzodN933nmHCy+8kMTEROx2O/PmzWPt2rXt9nv77beZMGECRqORCRMm8O677/bqvKJvOVNisTosuOo8HW5313mwOiyd9gARQoihLDExkZ/85CcsWbKEHTt2SLJDCCGEEKKHoprwWL16NcuXL+e+++4jPz+fhQsXcskll1BcXNzh/h9//DEXXngha9asYfv27SxevJgrrriC/Pz81n02bdrE9ddfzy233MKuXbu45ZZbuO6669i8eXOPzyv6ljPJwbjZo6g9UUcwEGqzLeAPUl/ZwIT5Y4lxStdtIcTwcPz4cY4dO9b6+qc//Slr1qwhISEhilEJIYQQQgxuiqqqURvZM2fOHGbMmMFzzz3Xum78+PFcddVVPPLII11qY+LEiVx//fX87Gc/A+D666/H5XLxj3/8o3Wfiy++GKfTyapVq/rsvC6XC4fDQWNjI3a7vUvHiM+56tz8+el/cmxXEUaLEZPFiLfJT8AXYPSMHL667GKsDmu0wxRCiH73j3/8g5tvvpmMjAw2bdqE2WyOdkhCCCGE6IKz8Ux46hy//Ot6zNbuPR95m5r4yRUXDutn1qj18AgEAmzfvp0lS5a0Wb9kyRI2btzYpTYikQhut5u4uLjWdZs2bWrX5kUXXdTaZl+cV/SePS6Ga5ZfxqXfvJDk7EQ0ei1puclc/q0Lufr7l0qyQwgx5IXDYX72s59x2WWXUVdXh16vp6GhIdphCSGEEGIAUtSeLQB5eXlMmDCBZ555JrpvIgqiVrS0pqaGcDhMcnJym/XJyclUVFR0qY3HHnuMpqYmrrvuutZ1FRUVp22zp+f1+/34/f7W1y6Xq0sxis5Z7RbyLppG3kXTCIfDMtWiEGLYqKmp4aabbmL9+vUAfPvb3+a3v/0tRqMxypEJIYQQYqjZunWr9PCIFkVR2rxWVbXduo6sWrWKBx98kNWrV5OUlNTtNrt73kceeQSHw9G6ZGRknDFG0XWS7BBCDBebN29mxowZrF+/HrPZzB//+EeeffZZSXYIIYQQQvSxqCU8EhIS0Gq17XpVVFVVtet98WWrV6/mrrvu4o033uCCCy5osy0lJeW0bfb0vPfeey+NjY2tS0lJyRnfoxBCCPFFqqry4x//mJKSEsaMGcOWLVu4+eabox2WEEIIIcSQFLWEh8FgYObMma3deU9Zv3498+fP7/S4VatWcfvtt/Paa69x2WWXtds+b968dm2uW7eutc2entdoNGK329ssQgghRHcoisKf/vQnli5dytatW5k0aVK0QxJCCCGEGLKiVsMD4J577uGWW25h1qxZzJs3jxdffJHi4mLuvvtuoKVXRVlZGa+++irQkuy49dZbefLJJ5k7d25rLw2z2YzD4QDgBz/4Aeeeey6//OUv+epXv8qf//xn3n//fT755JMun1cIIYToKwcPHmTdunV8//vfByAjI4OXXnopylEJIYQQYlBRTy7dPWaYi2rC4/rrr6e2tpaHH36Y8vJyJk2axJo1a8jKygKgvLyc4uLi1v1feOEFQqEQy5YtY9myZa3rb7vtNlauXAnA/Pnzef3117n//vt54IEHyM3NZfXq1cyZM6fL5xVCCCH6whtvvMFdd92Fx+Nh5MiRXH755dEOSQghhBBi2FBUVZW8Tw+cjTmXhRBCDE6BQID/+q//4qmnngJg8eLFrFq16ow1qoQQQggxeJyNZ8JT5/jVn9djtlq7day3qYkff/XCYf3MGvVZWoQQQoihpLS0lEWLFrUmO1asWMG6desk2SGEEEIIcZZFdUiLEEIIMZR88MEH3HDDDdTU1OBwOHj11Ve58sorox2WEEIIIcSwJAkPIYQQoo9UVlZSU1PDtGnTeOutt8jNzY12SEIIIYQYCqRoaY9IwkMIIYToBVVVURQFgJtuuglFUbjqqqswm81RjkwIIYQQYniTGh5CCCFED23fvp1zzjmHysrK1nU33nijJDuEEEII0aeUHi7DnSQ8hBBCiG5SVZUXX3yR+fPns3HjRn7yk59EOyQhhBBCCPElMqRFCCGE6Ibm5ma+853v8Ic//AGAK6+8kieeeCK6QQkhhBBCiHYk4SGEEEJ0UUFBAV//+tfZvXs3Go2G//mf/+G//uu/0Gikw6QQQggh+pEULe0RSXgIIYQQXbBp0yYuvvhiXC4XSUlJvP766yxevDjaYQkhhBBCiE5IwkMIIYTogokTJ5KamsrkyZN54403SEtLi3ZIQgghhBDiNCThIYQQQnSitraWuLg4FEUhJiaG999/n+TkZPR6fbRDE0IIIYQQZyCDjoUQQogOfPTRR0ycOLFNQdL09HRJdgghhBDi7FN7uAxzkvAQQgghvkBVVX79619z/vnnU1lZyR//+EdCoRCKIrPZCyGEEEIMJpLwEEIIIU5qbGzkmmuu4cc//jHhcJhbbrmFDRs2oNPJCFAhhBBCiMFGPsEJIYQQwK5du/j617/OkSNHMBgMPPXUU3zzm9+Unh1CCCGEEIOUJDyEEEIMe3V1dSxcuBC3201WVhZvvfUWs2bNinZYQgghhBCiFyThIYQQYtiLi4vj4YcfZt26dfzxj38kPj4+2iEJIYQQQrRS1Jalu8cMd1LDQwghxLBUWFjIgQMHWl//4Ac/4G9/+5skO4QQQgghhghJeAghhBh2/v73vzNjxgyuuuoqXC4XAIqioNHIn0UhhBBCiKFCPtkJIYQYNsLhMPfddx+XX345DQ0NOJ1Ompqaoh2WEEIIIYToB1LDQwghxLBQVVXFTTfdxAcffADA9773PX7zm99gMBiiHJkQQgghhOgPkvAQQggx5G3cuJHrrruOsrIyrFYr//u//8sNN9wQ7bCEEEIIIbpGPbl095hhThIeop2AP0jh7uOUFZQTCoVJTI9nzMyRWB3WaIcmhBA98tBDD1FWVsa4ceN4++23mTBhQrRDEkIIIYQQ/UwSHqKNuop6/vbCeo7vLyUSCoOiAJAwIo6L7/wKuVOzoxugEEL0wKuvvsrDDz/Mo48+SkxMTLTDEUIIIYQQZ4EULRWtAv4gf3thPcd2Hyc1J5mcyVnkTMokc3w6DVUu/v7ieqpLa6MdphBCnNH+/ft59NFHW18nJyfzzDPPSLJDCCGEEGIYkYSHaFW4p5jj+0tJH52GwaQHIBKJEAiEiM9IoPZEPfs3HYpylEIIcXqvvfYaeXl53HvvvbzxxhvRDkcIIYQQQkSJDGkRrcoOnyASCmMw6YlEVCorXVRVuvE2B0EBNRhi4z93s/Brc9FoJFcmhBhY/H4///mf/8kzzzwDwPnnn8+iRYuiG5QQQgghhIgaeWoVrcLhCCgKkYhKYWENRwuqaW4KYDBq0eu1eH0hjh6p4dN1e1FVKfkrhBg4iouLOffcc1uTHffffz9r164lKSkpypEJIYQQQohokR4eolViejwAdbUeKspdmC16DIbPf0R0GpXYxBi2/PsAoyaMIDUzPlqhCiFEq/Xr13PjjTdSW1uL0+nkj3/8I5dddlm0wxJCCCGE6DMKoHTzO2elXyIZXKLew+PZZ58lJycHk8nEzJkz2bBhQ6f7lpeXc9NNNzF27Fg0Gg3Lly9vt8+iRYtQFKXd8sUPvw8++GC77SkpKf3x9gaV0TNHkpgRz7GDFUQiaptkh9ftQ6fXkTU2jSa3j4K9pVGMVAghPtfc3ExtbS0zZ85kx44dkuwQQgghhBBAlBMeq1evZvny5dx3333k5+ezcOFCLrnkEoqLizvc3+/3k5iYyH333cfUqVM73Oedd96hvLy8ddm7dy9arZZrr722zX4TJ05ss9+ePXv6/P0NNla7hYvv+AqKTovP7cXT0ExTo5f6qkZCoTBZE9KJTXJgMOhoqPFEO1whxDD2xWF1X/3qV3n33Xf55JNPyM7Ojl5QQgghhBBiQIlqwuPxxx/nrrvuYunSpYwfP54nnniCjIwMnnvuuQ73z87O5sknn+TWW2/F4XB0uE9cXBwpKSmty/r167FYLO0SHjqdrs1+iYmJff7+BqORU7KYtWQqCRnxmG0mDGY9abkpTFowjvQxaSgKhEIRTFZDtEMVQgxTW7duJS8vr01y/KqrrsJkMkUxKiGEEEIIMdBELeERCATYvn07S5YsabN+yZIlbNy4sc/O8/LLL3PDDTdgtVrbrC8oKCAtLY2cnBxuuOEGjh07dtp2/H4/LperzTJUTT9nDPFp8Uw+dzyzlkxlzMyRxCbZURTwNQfQ6jSMHJcW7TCFEMOMqqo899xznHPOOWzfvp0VK1ZEOyQhhBBCCDGARS3hUVNTQzgcJjk5uc365ORkKioq+uQcW7ZsYe/evSxdurTN+jlz5vDqq6+ydu1aXnrpJSoqKpg/fz61tbWdtvXII4/gcDhal4yMjD6JcSAaMzmDnHEplByrxt3YjKqqqKpKY10TJ4prGTs5g+wxUvNECHH2NDU1ceutt/Kd73yHQCDA1Vdf3WlvQCGEEEKIIUft4TLMRb1oqaK0rR2rqmq7dT318ssvM2nSJGbPnt1m/SWXXMLXvvY1Jk+ezAUXXMDf//53AP7whz902ta9995LY2Nj61JSUtInMQ5EJouBK/5jPpPzRtLs9nO8oJKiw5UE/EFmnTuWi6+fjU6vjXaYQohh4tChQ8yZM4c//elPaLVafv3rX/P22293OrRRCCGEEEIIiOK0tAkJCWi12na9Oaqqqtr1+uiJ5uZmXn/9dR5++OEz7mu1Wpk8eTIFBQWd7mM0GjEajb2Oa7CwO61cdfs5VJXVU13eCAqkZsQRnywPGEKIs2fz5s1ccMEFeDweUlJSWL16Neeee260wxJCCCGEEINA1Hp4GAwGZs6cyfr169usX79+PfPnz+91+2+88QZ+v5+bb775jPv6/X4OHDhAampqr887lCiKQnJ6HJPycpg0K0eSHUKIs27y5Mnk5uZy7rnnkp+fL8kOIYQQQgjRZVHr4QFwzz33cMsttzBr1izmzZvHiy++SHFxMXfffTfQMoykrKyMV199tfWYnTt3AuDxeKiurmbnzp0YDAYmTJjQpu2XX36Zq666ivj4+Hbn/dGPfsQVV1xBZmYmVVVV/OIXv8DlcnHbbbf135sVQgjRJVVVVSQkJKDRaLBYLKxdu5b4+Hh0uqj+yRJCCCGEEINMVD89Xn/99dTW1vLwww9TXl7OpEmTWLNmDVlZWQCUl5e3mXYQYPr06a3/3r59O6+99hpZWVkUFRW1rj98+DCffPIJ69at6/C8paWl3HjjjdTU1JCYmMjcuXP57LPPWs8rhBAiOv79739zww038N3vfpcHHngAoE+GOQohhBBCDGo9KUIqRUtRVFWV/4YecLlcOBwOGhsbsdvt0Q5HCCEGtUgkwq9+9Svuu+8+IpEI06dP57PPPsNgMEQ7NCGEEEKIDp2NZ8JT53jsjfWYLdZuHettbuI/r7twWD+zRn2WFiGEEMNbfX09V111Fffeey+RSIQ77riDTz/9VJIdQgghhBAnKT1chjsZEC2EECJq8vPz+drXvkZhYSFGo5FnnnmGu+66K9phCSGEEEKIIUASHkIIIaKisbGRr3zlKzQ0NJCTk8Nbb73FjBkzoh2WEEIIIYQYImRIixBCiKhwOBz86le/4oorrmD79u2S7BBCCCGE6Izaw2WYk4SHEEKIs+bo0aPs2rWr9fXSpUv585//jNPpjGJUQgghhBBiKJKEhxBCiLPiz3/+MzNnzuSrX/0qdXV1ACiKgqJISS0hhBBCCNH3JOEhhBCiX4VCIVasWMFVV11FY2MjI0aMwO/3RzssIYQQQgjRD66++mqcTidf//rXox2KJDyEEEL0n8rKSi688EJ++ctfArB8+XI+/PBDUlNToxyZEEIIIcQgMohqeHz/+9/n1Vdfjc7Jv0QSHkIIIfrFJ598wvTp0/nwww+x2WysXr2a3/72t+j1+miHJoQQQggh+snixYuJiYmJdhiAJDyEEEL0k9/85jeUl5czYcIEtm7dynXXXRftkIQQQgghxGl8/PHHXHHFFaSlpaEoCu+99167fZ599llycnIwmUzMnDmTDRs2nP1Au0gSHkIIIfrFK6+8wg9/+EM2b97MuHHjoh2OEEIIIYQ4g6amJqZOncrTTz/d4fbVq1ezfPly7rvvPvLz81m4cCGXXHIJxcXFZznSrpGEhxBCiD6xZ88eHnjgAVS1ZcBoXFwcjz/+ODabLcqRCSGEEEIMXy6Xq81yuuLxl1xyCb/4xS+45pprOtz++OOPc9ddd7F06VLGjx/PE088QUZGBs8991x/hd8rkvAQQgjRa3/84x+ZM2cOv/jFLwZMkSohhBBCiKFCUXu2AGRkZOBwOFqXRx55pEcxBAIBtm/fzpIlS9qsX7JkCRs3buztW+wXumgHIIQQYvDy+/0sX76c559/HoCLLrqIyy67LMpRCSGEEEKIU0pKSrDb7a2vjUZjj9qpqakhHA6TnJzcZn1ycjIVFRWtry+66CJ27NhBU1MT6enpvPvuu+Tl5fUs+F6ShIcQQogeKSoq4tprr2Xbtm0oisLPf/5z7r//frRabbRDE0IIIYQQJ9nt9jYJj95SFKXNa1VV26xbu3Ztn52rtyThIYQQotvWrVvHjTfeSF1dHXFxcbz22mtcdNFF0Q5LCCGEEEL0k4SEBLRabZveHABVVVXten0MFFLDQwghRLcpikJ9fT2zZ88mPz9fkh1CCCGEEEOcwWBg5syZrF+/vs369evXM3/+/ChFdXrSw0MIIUSXRCIRNJqWPPmFF17ImjVrWLx4cY/HgQohhBBCiC5S1Zalu8d0k8fj4ciRI62vCwsL2blzJ3FxcWRmZnLPPfdwyy23MGvWLObNm8eLL75IcXExd999d7fPdTZIwkMIIcQZffbZZyxdupT33nuPUaNGAXDxxRdHOSohhBBCCNGXtm3bxuLFi1tf33PPPQDcdtttrFy5kuuvv57a2loefvhhysvLmTRpEmvWrCErKytaIZ+WJDyEEEJ0SlVVnn76af7zP/+TYDDIihUreOutt6IdlhBCCCGE6AeLFi1CPUPPkO985zt85zvfOUsR9Y4kPIQQQnTI4/HwjW98g9dffx2Aa6+9lpdffjnKUQkhhBBCCNE1UrRUCCFEOwcOHGD27Nm8/vrr6HQ6fvvb37J69WpiYmKiHZoQQgghhOiGvLw8JkyYwDPPPBPtUM466eEhhBCijW3btrFo0SKamppIS0vjjTfeYMGCBdEOSwghhBBi2FLUlqW7xwBs3boVu93e90ENApLwEEII0caUKVOYNGkSVquVVatWkZSUFO2QhBBCCCGE6DZJeAghhKC8vJzExER0Oh0Gg4G///3vxMbGotVqox2aEEIIIYQQPSI1PIQQYph7//33mTJlCvfff3/ruvj4eEl2CCGEEEKIQU0SHkIIMUxFIhF+8YtfsGTJEmpqali/fj0+ny/aYQkhhBBCCNEnJOEhhBDDUF1dHVdccQUPPPAAqqqydOlSPv30U0wmU7RDE0IIIYQQX6b2cBnmop7wePbZZ8nJycFkMjFz5kw2bNjQ6b7l5eXcdNNNjB07Fo1Gw/Lly9vts3LlShRFabd8+VvL7pxXCCGGkm3btjFjxgzWrFmDyWTilVde4aWXXpJkhxBCCCGEGFKimvBYvXo1y5cv57777iM/P5+FCxdyySWXUFxc3OH+fr+fxMRE7rvvPqZOndppu3a7nfLy8jbLFz/Id/e8QggxVHg8Hi666CKOHz9Obm4umzZt4o477oh2WEIIIYQQQvS5qCY8Hn/8ce666y6WLl3K+PHjeeKJJ8jIyOC5557rcP/s7GyefPJJbr31VhwOR6ftKopCSkpKm6U35xVCiKHCZrPx9NNPc9VVV7Ft2zamTZsW7ZCEEEIIIYToF1FLeAQCAbZv386SJUvarF+yZAkbN27sVdsej4esrCzS09O5/PLLyc/P7/V5/X4/LperzSKEEINBQUEBmzdvbn1944038s477xAbGxu9oIQQQgghxFmRl5fHhAkTeOaZZ6Idylmni9aJa2pqCIfDJCcnt1mfnJxMRUVFj9sdN24cK1euZPLkybhcLp588kkWLFjArl27GD16dI/P+8gjj/DQQw/1OK6hwO3xcehIBbV1Teh0GjJGxDEyKwGdTqauFGKgeuedd7jjjjuwWq3s2LGjtceboihRjkwIIYQQQnSVorYs3T0GYOvWrdjt9r4PahCIWsLjlC9/6FZVtVcfxOfOncvcuXNbXy9YsIAZM2bwu9/9jqeeeqrH57333nu55557Wl+7XC4yMjJ6HOdgc+BwOf/81z7q6jygKKiqik6nYVR2EpdfNIVYhyXaIQohviAYDHLvvffy2GOPATB16lRUVUp1CyGEEEKI4SNqCY+EhAS0Wm27XhVVVVXtel/0hkajIS8vj4KCgl6d12g0YjQa+yyuweRERQN/W7cbny9IdmY8Gk3LSCifP8jBgnJQ4MZrZqPVRn3SHyEELTNaXX/99a2zT/3oRz/if/7nf9Dr9VGOTAghhBBCiLMnak+oBoOBmTNnsn79+jbr169fz/z58/vsPKqqsnPnTlJTU8/qeYeSXXtLaHR5GZEa25rsADAZ9aSlxnKsqJrjpbVRjFAIccpHH33E9OnT2bBhAzExMbz99tv8+te/lmSHEEIIIYQYdqI6pOWee+7hlltuYdasWcybN48XX3yR4uJi7r77bqBlGElZWRmvvvpq6zE7d+4EWgqTVldXs3PnTgwGAxMmTADgoYceYu7cuYwePRqXy8VTTz3Fzp072xRoOdN5xeciEZXDRyuxx5g6HPJjNhkIBMOUnqhnZFZiFCIUQnzRCy+8QGVlJZMnT+att95izJgx0Q5JCCGEEEL0lnpy6e4xw1xUEx7XX389tbW1PPzww5SXlzNp0iTWrFlDVlYW0NItu7i4uM0x06dPb/339u3bee2118jKyqKoqAiAhoYGvvnNb1JRUYHD4WD69Ol8/PHHzJ49u8vnFZ+LqCqRiIrmNPVNFEUhEpG7SYiB4IUXXiArK4sHHngAi0Vq6wghhBBCiOFLUaWKXY+4XC4cDgeNjY0DvuKtr9nPwc0F7P30II3VLhwJMUyYP47xc0djtprOePwbf97GvgNlZGcmtNsWDLX07rjuqllMGjeiP8IXQpzGrl27+MMf/sBjjz0mM68IIYQQQpxFZ+OZ8NQ5nnx1HWaLtVvHepub+MGtSwbFM2t/ifosLaJ/Nbma+cuzazm87Sh6gw6T1UTJwRMc3XWcg1sKuPLbF2GLPf2NM3ViOocKKmhobG4zG0skolJ2ooHUJAejc5L6+60IIb5k5cqVfPvb38bn8zFmzBgZlieEEEIIIcQXSMJjiNv0560c2nKE9DGpGEyG1vUBX5BDW47wSbKDi+88/7RtjB6ZzII5o/h08xHqG5qxWY2EwhGavQGSEmK49MLJGI1SEFGIs8Xn8/G9732P//3f/wXgkksu4brrrotyVEIIIYQQQgwskvAYwtz1HvZuPERsor1NsgPAYNITl+LkwOYC5l2ZhyOh8y5OGo3C4nPGkpkex979ZZSW16PXaTlnzigmjksjPs7W329FCHHSsWPH+PrXv05+fj6KovDwww/z05/+tM0MSkIIIYQQYmhR1Jalu8cMd5LwGMLqyuvx1DeRlpvc4XZ7vI3SwyeoPVF/2oQHtBQmHZWTxCgZuiJE1Kxdu5YbbriBhoYGEhISWLVqFRdccEG0wxJCCCGEEGJAkq8EhzCNVoNGoxAJRzrcHglHWvbRyo+BEIOBzWbD4/Ewb9488vPzJdkhhBBCCCHOKC8vjwkTJvDMM89EO5SzTnp4DGHJWYnEpzmpq2ggJbt9z4y6igacKU5SpNeGEANWOBxGq9UCsGDBAtavX8/8+fMxGAxnOFIIIYQQQgjYunXrsJ2lRb7aH8IMJgMzLpiCvzlAfVUjp2YgVlWVhmoXXo+PGedPxmQxRjlSIURHPv30U8aPH8/evXtb1y1atEiSHUIIIYQQQnSBJDyGuBkXTuGca2YT8AUo3FNM4d5iCvccx9fsY8HVs8m7eFq0QxRCfImqqjzxxBMsWrSIgoIC7r///miHJIQQQgghoknt4TLMyZCWIU6r1bLo+gVMnD+WIzuLaGpsxmq3kDstm6TMBBRFiXaIQogvcLvd3HXXXbz55psA3HDDDbz00ktRjkoIIYQQQojBRxIew4CiKCRlJpKUmRjtUIQQp7Fv3z6+9rWvcejQIfR6PY899hjf/e53JTEphBBCCDHc9aTHhvTwkISHEEIMBPn5+Zxzzjk0NzeTnp7Om2++ydy5c6MdlhBCCCGEEIOWJDyEEGIAmDx5MnPmzEGr1fLaa6+RmCg9soQQQgghhOgNSXgIIUSUlJSUkJSUhNFoRKfT8e6772Kz2VqnoRVCCCGEEAJAObl095jhTmZpEUKIKPjnP//JtGnTuOeee1rXORwOSXYIIYQQQgjRRyThIYQQZ1EkEuGhhx7i0ksvpa6uji1bttDc3BztsIQQQgghxECmqj1bhjkZ0jLEuRubOby7lNJjVaiqyoicRMZMzsARZ412aEIMOzU1Ndx8882sXbsWgLvvvpsnnngCo9EY5ciEEEIIIYQYeiThMYSVHK1izeubqTpRj06nQVEU9mw5xraPDnLRtbMZOT4t2iEKMWxs2bKFa6+9luLiYsxmMy+88AK33HJLtMMSQgghhBBiyJIhLUOUu7GZNa9vpraigaxRSWTkJpE+MpGsMck01jXxzze2UF/jjnaYQgwLXq+XK664guLiYkaPHs3mzZsl2SGEEEIIIc6KvLw8JkyYwDPPPBPtUM466eExRB3eXUpVWR1Zo5PRaD/Pa2k0GtKyEzh+uIJDu0qYe/6EKEYpxPBgNpt56aWXePXVV3nllVew2+3RDkkIIYQQQgwTW7duHbafP6WHxxBVeqwKnV7bJtlxikajYDTrOV5QEYXIhBgeDh06xEcffdT6+sorr+Stt94atn9shBBCCCFEL6g9XIa5biU8Nm/ezD/+8Y8261599VVycnJISkrim9/8Jn6/v08DFD2jqiqKcrqZlxUiEbkDhOgPb731FrNmzeJrX/saxcXF0Q5HCCGEEEKIYalbCY8HH3yQ3bt3t77es2cPd911FxdccAErVqzgr3/9K4888kifBym6b0ROIsFAiEgk0m6bqqr4vAEyc5OiEJkQQ1cwGOSHP/wh1157LR6Ph8mTJ8sMLEIIIYQQoteUHi7DXbcSHjt37uT8889vff36668zZ84cXnrpJe655x6eeuop3njjjT4PUnTfmMkZJKQ4OFFU26Ynh6qqlBfX4kyIYdy0zChGKMTQUlZWxqJFi3jiiScA+MlPfsL69etJTk6ObmBCCCGEEEIMU90qWlpfX9/mw/tHH33ExRdf3Po6Ly+PkpKSvotO9JgjzspF187mn29s4fjhCoxmPYqi4G0O4EyIYcnX84hPdkQ7TCGGhA8++IAbb7yR6upqHA4Hr776KldeeWW0wxJCCCGEEGJY61bCIzk5mcLCQjIyMggEAuzYsYOHHnqodbvb7Uav1/d5kKJnRo5P48Zl53NwZzHHCypRVZXM3CTGTcuUZIcQfWjVqlVUV1czdepU3n77bXJzc6MdkhBCCCGEGEp6UoRUSjZ2L+Fx8cUXs2LFCn75y1/y3nvvYbFYWLhwYev23bt3ywf9AcaZEMO8CyYy74KJ0Q6l34RCYY4fr8Xt9mIw6MjKSsBqlboJ4uz53e9+R0ZGBj/+8Y8xm83RDkcIIYQQQghBNxMev/jFL7jmmms477zzsNlsrFy5EoPB0Lr9lVdeYcmSJX0epBCdKSyq5l8f7OfEiXrC4ZYUpjPOypzZI8nLG4m2g2l5heitHTt28MILL/Dcc8+h0Wgwm838/Oc/j3ZYQgghhBBCiC/oVsIjMTGRDRs20NjYiM1mQ6vVttn+5ptvYrPZ+jRA0b/c9R4Kth+jurQWrV5Lxpg0cqZkYTAO/KFJZWX1vPfeDtwuL8kpdoxGPeFwhNpaD+vW7UVVYd68UdEOUwwhqqry8ssv893vfhe/38+4ceP44Q9/GO2whBBCCCGEEB3o9tffx48f54033uDFF19k3759bbbFxcW16fHRFc8++yw5OTmYTCZmzpzJhg0bOt23vLycm266ibFjx6LRaFi+fHm7fV566SUWLlyI0+nE6XRywQUXsGXLljb7PPjggyiK0mZJSUnpVtxDwZH8Ql79+Wr+8tw6Nv99B5++u4U3fvMXXn/0Xeoq6qMd3hlt215IfX0TGZlxGE8maLRaDUlJdswWPZu3HMXj8UU5SjFUNDc3c+edd/KNb3wDv9/PFVdcwe233x7tsIQQQgghhBCd6FbC4+OPP2bixIl861vfYtmyZUyfPp1Vq1b1+OSrV69m+fLl3HfffeTn57Nw4UIuueQSiouLO9zf7/eTmJjIfffdx9SpUzvc58MPP+TGG2/k3//+N5s2bSIzM5MlS5ZQVlbWZr+JEydSXl7euuzZs6fH72Mwqiqu5u8vrcdV6yF7QjrZEzPImZRJak4yx3Yf528vrCcYCEY7zE55PD6OFFQSF2dFUdrPMB0XZ6Ohvpnjx2ujEJ0Yao4cOcL8+fNZuXIlGo2GRx55hPfeew+n0xnt0IQQQgghxHCg9nAZ5rqV8HjggQdYvHgxpaWl1NbWcuedd/LjH/+4xyd//PHHueuuu1i6dCnjx4/niSeeICMjg+eee67D/bOzs3nyySe59dZbcTg6nmXk//7v//jOd77DtGnTGDduHC+99BKRSIQPPvigzX46nY6UlJTWJTExscfvYzDa++lB6isaSRuVguYLdS4MJj3po1MpPlBK4Z6OE08DQSAQIhQKYzBoO9yu1WpAadlPiN5Yu3Yts2bNYteuXSQlJfH++++zYsUKNBqpDyOEEEIIIcRA1q1P7Hv27OGRRx4hLS0Np9PJY489xokTJ6iv7/7wh0AgwPbt29sVOV2yZAkbN27sdnudaW5uJhgMEhcX12Z9QUEBaWlp5OTkcMMNN3Ds2LE+O+dgULCjEFtsx70jDCYDoWCYE0cqohBZ11gsRiwWI01NgQ63+/0hNBoFu910liMTQ01SUhI+n48FCxawY8cOFi9eHO2QhBBCCCHEMKP0cBnuupXwaGhoICkpqfW11WrFYrHQ0NDQ7RPX1NQQDodJTk5usz45OZmKir570F6xYgUjRozgggsuaF03Z84cXn31VdauXctLL71ERUUF8+fPp7a28+EPfr8fl8vVZhnIVFXF3dBMY10T4VC43fZwKIyi6fwWUFAIhyL9GWKvmEx6Jk9Ox+XyEgy2fX+qqlJZ2UhqaixZWQlRilAMZsHg58O5pk+fzocffsi///1vRowYEcWohBBCCCGEEN3RrVlaAPbv398mIaGqKgcOHMDtdreumzJlSpfb+3IPA1VVO+x10BO/+tWvWLVqFR9++CEm0+ff9F9yySWt/548eTLz5s0jNzeXP/zhD9xzzz0dtvXII4/w0EMP9Ulc/UlVVQr2lrJz0xFOFNWgqipxSQ6mzs1lcl4OWl3LEJDMcSPY8f4eEtPj27URDoVRFIWE9Lh22waSWbNyOH68liNHK7HbzVitBgKBMHV1TThjLZz/lQnodB0PeRGiMxs2bODWW2/lzTffZNasWQDMnTs3ylEJIYQQQohhTVVblu4eA+Tl5aHValm2bBnLli3rh+AGrm4nPM4//3zUL/1HX3755SiK0pqsCIfb9yj4soSEBLRabbveHFVVVe16ffTEb37zG/7nf/6H999//4wJGKvVyuTJkykoKOh0n3vvvbdNMsTlcpGRkdHrOPvajk8O88F7OwgFw8Qm2NAoCpWltaxZVUVVWT3nXz0TrVbDxPlj2ffpIerK64lL/bzwoqqqlB2pIDEzntEzRkbxnZyZzWbia1+bxdathezZW4LL5UOn0zJ9ehazZuaQkTGwEzZiYFFVlccee4wVK1YQDod58MEH+dvf/hbtsIQQQgghhOiVrVu3Yrfbox1GVHQr4VFYWNhnJzYYDMycOZP169dz9dVXt65fv349X/3qV3vV9q9//Wt+8YtftBYbPBO/38+BAwdYuHBhp/sYjUaMRmOv4upvtZWNbPjHbgxGHWlZn/fcsDnMeFxednxymJxxqYyelE72pEwWfn0uG97+jMK9xVgdFiKhCM1uLwkjnFx851ewxJij+G66xmYzsXjxeObNG0VTkx+9XovdPvDjFgNLY2Mjd955J++88w4AN998M88//3yUoxJCCCGEEEL0RrcSHllZWX168nvuuYdbbrmFWbNmMW/ePF588UWKi4u5++67gZZeFWVlZbz66qutx+zcuRMAj8dDdXU1O3fuxGAwMGHCBKBlGMsDDzzAa6+9RnZ2dmsPEpvNhs1mA+BHP/oRV1zx/9m77/BIzirR/9+q6pyDcpZmpMk5e5xtHEiO2GAwCxh2DV6Sd/cuYX8sy2Xhshe4JhkD68UYFts4sMbYOBvnMDknjXJWK3WOVb8/ZGusUWtmNEkTzud5+rHVVfXW2z0KXafOe84HqKqqoq+vj29/+9uEw2H+5m/+5ri+vpNt3/ZOwsNxameVTNjm8tgZ6A2za2Mr9fMrUBSFNR9YTtmMEna8vofOPV1oZhNrls9g7poGgqWnV7tNm82MzWae7mmI09DWrVu57rrraGxsxGw286Mf/Yhbb731uC2tE0IIIYQQ4riQNrNTNuUlLYfyyCOP8M1vfpOtW7ce0f433ngjAwMDfOtb36K7u5v58+fzxBNPjAVWuru7aWsb3xp1yZIlY/+/YcMGfv/731NdXU1LSwsAd955J+l0muuvv37ccf/6r//KN7/5TQA6Ojr4yEc+QigUorCwkNWrV/PGG28c94DOyTYcimAyqZNeqDlcVvp7hse+VhSFmnmV1Mw79ZbmCHEybN26ldWrV5NIJKisrOShhx5i5cqV0z0tIYQQQgghxHEw5YDHr371K55++mnMZjNf/OIXWbVqFc8//zz/8A//wJ49e7j55punNN7nPvc5Pve5z+Xdds8990x47uD6IQd7J/BxKPfff/+RTO20Y3VYyOUmf38y6Sw2u+UkzkiIU9v8+fO55JJLyGQy/O53v6OgQLr6CCGEEEIIcaaYUlva73//+9x22200Nzfz6KOPcvHFF/Od73yHG264gauvvpq2tjZ+8YtfnKi5isOoqS/BbNZIxFITtuWyOVLJLLMXV03DzIQ4dbS2thKPxwFQVZX77ruPxx9/XIIdQgghhBBCnGGmFPC4++67ueuuu1i/fj2PP/44iUSC559/nsbGRv71X/9VLhimWdXMIhoWVtLdPkhkOD6WDZOIpWjf309lXSGzFh17wEPXDdq6B9m4s53NuzsYGI4d85hCnAxPPPEES5Ys4dZbbx37+XC5XGiatC8WQgghhBDiTDOldzQAWwAAiipJREFUJS2tra1ceumlAFx44YWYzWb+/d//HZ/PdyLmJqZIM2lcccNKLDYze7e0M9AXBhQsVhMz55fznmuX4zrGDib9Q1H+8tIOmjoGSGWyYBi4nTYWNJTxnjWzsVmlcKg49bzTZvbb3/42AHv27CEajeJ2u6d5ZkIIIYQQQhwBg6kXLZUip1MLeCSTSWw229jXFouFwsLC4z4pcfQcLhvv+8hqVl00h67WELpuUFDspby2AFWdUkLPBOFokgef2kRb9yClBR6cdiuGYTAcSfDqxiZS6SzXXroYVZXuFuLU0d/fz0033cSzzz4LwG233cYPfvCDU77NtBBCCCGEEOLYTLlo6X/+53+OtXfNZrPcc889E5ayfOELXzg+sxNHRVEUCkt9FJb6juu42/d10dY1SE15EJOmjp3L73FgNmls29fF8nlV1JQHj+t5hThar7/+OjfccAMdHR04HA5+9atfcdNNN033tIQQQgghhJgS5e3HVI85200p4FFVVcWvfvWrsa9LSkr47W9/O24fRVEk4HGG2r6vC7vVPBbseDeXw0pPKExTx4AEPMQpIZlMcv3119PV1cWsWbN4+OGHmTdv3nRPSwghhBBCCHGSTCngcSQtX8WZK5bMYDFPXtxRVRWSqcxJnJEQk7PZbNx7773853/+J7/85S+lXocQQgghhDh9SQ2PozKlog7PP/88c+fOJRwOT9g2MjLCvHnzePnll4/b5MSppTjgIpZM592mGwa6buBzH1tRVCGOxa5du3jqqafGvr7kkku47777JNghhBBCCCHEWWhKAY877riDz3zmM3g8ngnbvF4vf/d3f8cPf/jD4zY5cWpZ0FAOQCyRmrCtfzCK121nVm3xyZ6WEADcd999rFixghtuuIF9+/ZN93SEEEIIIYQQ02xKAY8tW7ZwxRVXTLr9sssuY8OGDcc8KXFqmlNXzNI5lfQMROjsGyYaTxGOJmnpGiCTzXHxqgaCPud0T1OcZdLpNJ///Oe56aabiMViLF++HK/XO93TEkIIIYQQ4jgyjvJxdptSDY/e3l7MZvPkg5lM9Pf3H/OkxKnJZNL4wEULKCvysXFnGwMjcVRFoaG6iOXzq5lTJ9kd4uRqb2/nhhtu4I033gDg61//Ov/2b/+Gpk1ea0YIIYQQQghxdphSwKO8vJxt27Yxc+bMvNu3bt1KaWnpcZmYODWZTRqrF9WwfF4lI9Ekqqrgc9tRFGl6JE6uZ555hptuuolQKITP5+O3v/0t73//+6d7WkIIIYQQQhx/UrT0qExpSct73/tevvGNb5BMJidsSyQS/Ou//qtccJwlTCaNoM+J3+OQYIeYFo8//jihUIilS5eyceNG+d0jhBBCCCGEGGdKGR7/8i//wiOPPEJDQwN///d/z6xZs1AUhV27dvGzn/2MXC7H17/+9RM1VyGEGPMf//EflJaW8sUvfhGbzTbd0xFCCCGEEOKUtGLFCjRN47bbbuO2226b7umcVFMKeBQXF/Paa6/x2c9+lq9+9asYxmiOjKIoXH755dx5550UF0sdByHE8bd+/Xp+9KMf8etf/xqTyYTFYuGf//mfp3taQgghhBBCnHCKMfqY6jEA69aty9tp9WwwpYAHQHV1NU888QRDQ0M0NjZiGAb19fX4/f4TMT8hxFnOMAx++ctf8oUvfIF0Os3cuXP56le/Ot3TEkIIIYQQQpziphzweIff72fFihXHcy5CCDFOPB7n1ltv5be//S0AV199NZ/97GeneVZCCCGEEEKI08GUipYKIcTJsnfvXlatWsVvf/tbNE3jP/7jP3jkkUfw+XzTPTUhhBBCCCHEaeCoMzyEON5yOZ2BUIRcVscXcGK3W6Z7SmKaPPnkk9xwww1EIhGKi4t54IEHuOCCC6Z7WkIIIYQQQojTiAQ8xLQzDIMdW9rZ8OZ+ertH0HUdt8fBgsVVrFg7UwIfZ6Gqqip0Xee8887jgQceoLS0dLqnJIQQQgghxPQxjNHHVI85y0nAQ0y7t17dx/NPbsfAIBB0oWkq4XCC55/aRm/PMB+8fgVWm3m6pylOsGQyOdZedu7cubz00kssWLAAs1n+7YUQQgghhBBTJzU8xLQaGojy2ot7sNpMVFQFcTitWG1mCos8lFcG2L29k13bO6Z7muIE++tf/8rMmTN56aWXxp5bunSpBDuEEEIIIYQQR00CHmJaNe7tITySIFDgnrDNajOjmVS2b26fhpmJk8EwDL73ve9xySWX0NnZyXe+853pnpIQQgghhBDiDCFLWsQRM95eA6YoynEbMxpJoiigqvnHdDisDA1G0XVj0n3E6Wl4eJhPfOITPProowB8/OMf5+c///k0z0oIIYQQQohTkPH2Y6rHnOUk4HGGyuVyNG1pZdebexnoGsLpcTBrxUwaVszA7rQd8TiGYdC8u5sdG1pob+pD01Tq51cwb1kNxRWBY56nzWZ+u/6OkTeQkkplKPR6JNhxhtm8eTPXX389+/fvx2Kx8JOf/ITPfOYzxzWYJoQQQgghhDi7ScDjDJTNZHnm3hfZ+Nw2cpkcdpeNrmQvu9/aR+2Caj74ucvxFngOO45hGLz2zHZefWo7mXQWl8dGSjd49altbF/fzJU3rqJ+fsUxzbV2ZjEOp4XwSAKvzzH+dWRzJOMZ5i+uOqZziFPLrl27WLNmDclkkurqah566CGWL18+3dMSQgghhBBCnGEk4HEG2vzCDtY9tZmCsgAun3Ps+Uwqw/7NLTz73y9x7Rfed9i76a37ennt6e3YHRbKqoNjzxeUeOlqGeDZR9ZTUhnA7XUcYpRDKy71smhZDW+8vJdMJoc/4ERVFaKRJKG+MNV1RcxdWHnU44tTz+zZs7nqqquIRCL89re/JRA49kwhIYQQQghxZjAMg0imm3CmGzBwmYvwmitQlLO7/KRijD6meszZTgIeZ5hsJsvmF7ZjtVnGBTsAzFYzhZVB9m9uobOxh2Q0SfueLnLZLIESP/XL6nD7XWP779zYSiqZpbQqOG4cRVEorQrQ2thH4/ZOlqytP+y8dN2gvSXE/n09xGNpPF479bNLKSnzcdHlC7DZLWxe30xH6wCGAXaHhQVLqrnosvm43Ee+BEecmpqamggGg3i9XhRF4de//jVWqxVVPbv/cAkhhBBCiANSuQh7R56iP7WXjJ5AATTFSsBayyzvlThMcqNMTM20X23ceeed1NbWYrPZWLZsGS+//PKk+3Z3d3PTTTcxa9YsVFXlS1/6Ut79Hn74YebOnYvVamXu3Ln88Y9/PKbznk6G+8MMdg9NumTF5XMSDkV48PuP8sB//A8vPvgar/7POv7086e55xsPsGdd49i+nc39ON3WvOOomoqiQKh35LBzSqeyPPE/G/j9r1/m5ed3sXldM88/uY3f/eeLvPjMDlRV4fxL5nLLbZdw49+s5UM3r+Fv/u5CrvnwKvxB12HHF6e2xx57jGXLlvGpT31qrPCt3W6XYIcQQgghxGnIMAwMfRAj14Ohx47buDkjw87hx+iKb8KqughYaglY67BrPvoSu9gx9EfSevy4ne/0Yxzl4+w2rVccDzzwAF/60pf4+te/zqZNmzjvvPO48soraWtry7t/KpWisLCQr3/96yxatCjvPq+//jo33ngjN998M1u2bOHmm2/mhhtu4M033zzq855OVFVBUZSxC8uD6bpBT0sf7bs7KaosoG5BNbXzq6iZW0F0MMoT//ks3U29AJjMGnpOn/RchgGa6fDfQq/+dTcb3mjC63NQO6OIqtoCamcWYbWZeeWF3Wzd0AKA02WjYU4Zc+ZXUFTilQKWp7lsNsvXvvY1PvjBDzI8PExXVxfhcHi6pyWEEEIIIY6Skd2PEfsNRvj7GJEfYkS+j554DEM//E3QwxlM7SeU2oPXUolVc49dC1g0J35rNYPpFvqTu4/5POLsMq0Bjx/+8IfccsstfPrTn2bOnDnccccdVFZWTtqasqamhh/96Ed8/OMfx+v15t3njjvu4D3veQ9f/epXmT17Nl/96le55JJLuOOOO476vKcTb6GHoupChnqH827v2tdNKp6mal4lVseB7A1VUymbWcJIKMq2l3cCUD+/glgkha5PDJ6kUxk0TaWitvCQ84mEE2zd1IrHZx+3NEVRFHx+J2azxoa3mshkckfxasWpqre3l8suu4zvfve7AHzhC1/gxRdfnPTnVgghhBBCnNqMzE6M2K8hsx4UKyh+MNKQ/AtG/N5jDnqEkvsxDAOTOjHDXFVMaIqJ/oQEPMTUTFvAI51Os2HDBi677LJxz1922WW89tprRz3u66+/PmHMyy+/fGzME3XeU4WmaSy9ZAGGYTDYMzwu0yMRTdLd0ofL5yRQ5JtwrKIoeAIu9m5oQtd15i6tpqDES2dzP9nsgYBEKpmhszlEdUMxtbNKDzmf7s4hRobj+APOvNt9AScD/REG+iNH94LFKeeVV15hyZIlvPDCCzidTu6//35+9KMfYbFYpntqQgghhBDiKBhGGiP5BBhR0OpB9YPqBK0YtBmQ2YWRevWYzpE1EqjK5CUmNcVMxkge0zlOa7Ki5ahMW9HSUChELpejuLh43PPFxcX09PQc9bg9PT2HHPNoz5tKpUilUmNfn8qp+fPWzmK4f4Q3/ryB5m1tmK0mspkcJrNG1ZxyokOTr7VTNRU9p2PoBoEiD++7aQ1PP/QWnc2hsUwPk0lj5rxyrvzwasyWQ38LGYYBBpMuT1HV0eU3ky3BEaeXdDrNzTffTHd3N3PmzOHhhx9mzpw50z0tIYQQQghxLLKNkGsHtQIO/lyvmEHxQWYDhu1iFOXoGg44tQJyRhrDMPJeO2T0BC7TobPLhTjYtHdpOfibebJv8OM95lTP+93vfpd/+7d/O6Z5nSyqqnLuNauYuaSWvRuaGO4dwe6yMWNxDfFIgj/+6Aky6WzeYEVkKMrcNQ1oJg2A6vpiPvaFy9i/s4uBvhFUVaW0KkhNQwkms3bYuRQUeXC6rIRHEnh9E9vXjgzH8fqcUpz0DGGxWPjv//5v7rrrLu68805cLvl3FUIIIYQ4GQzDIJtrIZXejq4Po6perOb5mEy1x14bTx8BQx9dypKP4gI9DHoEtKMLeBTaZ9MWe4N4bgCnqWDctmRuBE2xUGSfe1Rji7PXtAU8CgoK0DRtQlZFX1/fhOyLqSgpKTnkmEd73q9+9avcfvvtY1+Hw2EqKyuPep4nmqIolNYWU1o7/jWlEilKagvpauyhcnY5qnrgl99wfxjNpDH/3PF35O1OK/NX1B7VPIIFbmbNK2f9643YHRYs7wqyJOJpYtEUa86fhc1mPqrxxfTbvn07jY2NXH311QCcc845nHPOOdM7KSGEEEKIs4hhZInG/0gi+TK6EQXMQIa48gx227m4HNeiKMfwefudrA0jB0q+m56ptzM9ji7YAeAyFVPjOo/9kecZSrViN/lQUEjkRjDQqXGuJWA5umsScfaathoeFouFZcuW8cwzz4x7/plnnjmmi6U1a9ZMGPPpp58eG/Noz2u1WvF4POMepyOr3coVn7qEQKmPlu1t9LT00d8xQMuOdmIjMc65ajn1S4/vL5ILLp1Lw5wyutoHaW8doK9nhLaWEP29YRYvr2HFmpnH9Xzi5Pnv//5vVq1axU033cS2bdumezpCCCGEEGelePIFYomnUFQXZtMcLOZ6zKY5KKqHWOIZ4onnj+0EppmgBkHvm7jNMEAPgXkeiuo+6lMoikK16xwW+K+nwFZPVk+T0ZP4LFXM813DDM/FKMq09tyYXoZxdI+z3LQuabn99tu5+eabWb58OWvWrOGXv/wlbW1t3HrrrcBoVkVnZyf33nvv2DGbN28GIBqN0t/fz+bNm7FYLMydO5re9MUvfpHzzz+f733ve1x11VU8+uijPPvss7zyyitHfN4zXdXscj78lWvY+fpe9qxrJJPKMHNpLfPOmcWMRTXHvR2s22Pn2ptWs3dnJ7u2dRKJJPAHXMxdUMHM2aWYj2BpjDi1pFIpvvzlL491NrrssssoLT10AVshhBBCCHH86XqcRPJlVMWFpgbGnlcUBU3xY+hxEqlXsNvOQ1UnLjE/EorqxrBeCMn/gVw3qIWgmMBIQK4T1CIUy7Fn+CqKQpF9DoW22aT1KAYGVtV1dgc6xDGZ1oDHjTfeyMDAAN/61rfo7u5m/vz5PPHEE1RXVwPQ3d1NW1vbuGOWLFky9v8bNmzg97//PdXV1bS0tACj6fT3338///Iv/8L/9//9f8yYMYMHHniAVatWHfF5zwbBUj/nXbuK865ddfidjwObzczCpTUsXFpzUs4nTpzW1lY+9KEPsW7dOgC+8Y1v8I1vfANNk8CVEEIIIcRkDCNLIrOPeHoHOT2CSQvitCzAajq2G47ZXCc5vQ+Tln+5vaYVks21ks21Y1FnHfV5FOv5o00/0i9BroXRFiAmMM1Asb8PxVR11GNPOJeiYNWOPltEiHcohrTHOCrhcBiv18vIyMhpu7zlHZl0lsYdnezZ0sbwYAy318HsxVXUzy/HYpXaGuKAJ598ko9+9KMMDg4SCAT43e9+x5VXXjnd0xJCCCGEOKXl9ASh6B+IpNZjkEHFjE4aTXHitV9AwPF+lLy1MQ4vndnDUPiHmLSavHU6DCNLJttEwHs7FvPsY30pGHoUsvuB9Gh3FlMtyiHayZ7JTsY14TvnuOuOP2O3O6d0bCIR49YvvZ+GhgY0TeO2227jtttuOyHzPFWdnd+ZYkwykebJB95k56ZWMMBmN9PdGmL35lZmLarivR9ehcN19MWHxJnl5ZdfZnBwkOXLl/Pggw9SU1Mz3VMSQgghhDjlDcWfIJx6DatWgaaOdrEzDIOsPsRQ/ClMWhCv7dyjGlvTSlBVHzl9EJM2sQlDTh9EU31oebYdDUV1gWXRcRlLnBzr1q077W/SHy0JeJzl3nx+J1vfaqKsKojNYRl7PpXMsHNjC76Ak0uvXT6NMxSnkm9961sUFRVx6623YrVO0pZMCCGEEEKMyeQGiaTWY1aDY8EOGF22YdYC5IwI4cQruK0rURXLIUbKT1O92CwriCWeQFc9qIp9bJtuJND1EE77lWiq/7i8HjE9lLcfUz3mbCfVX85i8WiSHeub8fod44IdAFabGX/Qxc6NrUSG49M0QzHd3nzzTa677jpSqRQAmqbxxS9+UYIdQgghhDhjxbPddEafoXH4NzSN3E8osYGsfvSfh1PZdnL6ECY1mHe7WS0gneslk8vTAeUIOe1XYrOuIJtrI5NtJJvrHP1vthWbZRlOuyxBFmcnyfA4iw30hgkPxSmuyB/t9QScdDT10989jNt3dBWdxenJMAzuvPNOvvzlL5PJZPjOd77Dv/3bv033tIQQQgghThjDMOhPvEln9Cky+jCqYsMgRyixDpelllrPh7CbjmZZiIFxyPvzCqMFQI++tKKqOvG4PoktvZRkegO53ACqFsBmWYbVshhVkSXq4uwkAY+zmKIqoIz+cs/H0A0URRnd7zgyDIPuziH6ekZQFIWSMh9FJd7j3g5XHJ1oNMrf/u3fct999wFw7bXX8g//8A/TPCshhBBCiBMrktlPR/RxFFTc5vqxz6a6kSGSbqI1/Eca/Leg5ikMeigWUxkm1U1WH8KsBSZsz+qDmLUCzFrhMc1fVWzYrKuwWU9OF0ZxkhnG6GOqx5zlJOBxFiss9eEvcDMcilJUPjHLY3ggii/oojjPtqM1PBTjmce30Lyvl2QyA4DdYaF+ThmXXrkQl1uiz9Np9+7dXHfddezcuRNN0/iP//gPvvzlL0swSgghhBBnvIHERrJ6HI9l5rjnVcWMy1RJJNNEOL0fn3VqnU4sWhFOyyJGki+iqU5U5cDS4JweIWfE8FuvlCwMIU4ACXicxaw2M4vXzOTZP24gMhwft2wlGk4QGUlw0QdnHbcuLYlEmj89uI6mxj6KSzwUl/lGzxVJsnldM6lkhms/shqz+ehacolj8+STT/KhD32IaDRKaWkpDzzwAOedd950T0sIIYQQYoJYpo/+5DYGUvswjBw+Sw2F9vl4zFVHdaNGN7KE041YVG/e7Zpqw8jmiGe7phzwAAg4309WHyGe3g6KiooV3UigKCpe23l47edPeUwhxOFJwOMst+y8WUSG42x6bR+h3jAms0ouo2OxmVl+/ixWXjj3uJ1r364uWvb3UVkdHBfUcHvsWCwm9u3qpnlfLw1zy47bOcWRa2howGQyceGFF3LfffdRUlIy3VMSQgghhJhgMLWXvSOPEs8OYFGdgEJ7rIOexCbq3JdR5lx5DKOfmKxWk+qlxP0pYultxNJbyOojo5kf1sU4zHNQFLksE+JEkJ+ss5zJrHHx1UuZvaSaxh0dRIYTOD12Zs4to6KuEFU9fo189uzsRtPUvBkcVpsZ3TDYLwGPkyoWi+F0OgGoq6vjlVdeYdasWZhM8qtBCCGEEKeeVC7MvpE/k8pF8VtmjMvmiGX7aIo8jctcisdSOaVxVcWE21JHKLEeGwUTtuf0FIqi4TCVHvXcVdWG27YCt23FUY8hzmJHU9dWSnhIwEOAqqpU1BZSUXtshZJgtO5H674e0qksbq+D2tmlWG2jhZ2S8TRmy+TfciaTSjKePuY5iCPz3HPP8dGPfpR77rmHK664AoB58+ZN86yEEEIIcSbJGVkGUq2E090YgNtcSIG1FpNqOarxBpK7iWf78VlqJyxdcZqKGErtpy+5bcoBD4CgbSlDqe0ksn3YtMJ3FS3NEsu24bbMnFDfQwhxapOAhzguctkcrz69nY2v7iMyHB/t7qKMFka98AOLaVhQSbDITfP+3rzHG4ZBJp3FX+A6YXOMRJI0NfeRTGRwOCzU1RXhdFoPf+AZRtd1vvvd7/KNb3wDXdf5wQ9+wOWXXy6FSYUQQghxXEUzA2wf/gsDqVZ0IwuAqmj4LOXM912J1zL15bPRbA+KoqIo+bOQzaqTkXTrUc3XY6mnwnkFnbFniGQa0RQ7Bll0I4vLXEON59opd2gRQkwvCXiI4+L153bw8l+24vbZqa4vRlUVspkcPR2DPHHfG1htFubML2fLhhbCIwk8Xvu444cHYzicNmadgOUshmHw1ltNvPZ6I8PDsdELe8MgEHBx3nmzWLz46IpbnY6Ghoa4+eabefzxxwG45ZZb+MlPfnLWvH4hhBBCnBwZPcnW4T8TSjbjs5RjVkdvMmX1NIPpdrYMPcbKgg9j09xTGldBxThEq00DHZWjW5KtKApFjrW4LDUMJbcRy3aiKRa81tn4rHMxqyfuxpwQhyVtaY+KBDzEMYsMx9n0aiMuj41AoWfseZNZo7ymgNZ9vWx6dS8fuHktK9fM5PWX9xIJJ/D6HBiGwchQHBS44NJ5lLzdueV42rS5laef2Y7VaqKqKoimqeRyOv39Ef7y5FYsFhPz5pUf9/OeajZs2MD1119PS0sLNpuNn/3sZ3zqU5+a7mkJIYQQ4gzUl9zPQKqVgLUS7V1ZESbVQsBSyUCqjZ7EHmpcy6c0rtdSTWfsdXJGZty48HbGsB4ncBRdVN6hKApOcwVOc8VRjyGEOHVIwEMcs/amPkYGY1TNmFgDRFEUAoVuWvb2EAsnuPDy+RQUe9iyoYX+3hFAoXpGEYuX1zB3QcVxzzRIp7O89WYTJpNKUdGBYIymqZSUeOnoGOStt/Yze3Ypmnb8CrSeavbt28fatWtJpVLU1dXx0EMPsWTJkumelhBCCCFOIWk9RWe8kc5EI8lcHI85SKWjnmJbFaoysej8oQykmlFQJgQlYHRZi0k105fcN+WAR8Baj8dSxUi6BY+lamx83cgRyXTgNBVSaJeaZEKIURLwEMcsm8kBoE4SMDCZNRKxNNlMDk1TWbSshvmLq4hGkiiAy2NHVU/MkoqurmH6+8MUl+TvqR4MuujuGaG3N0zZCcguOVXU19fz0Y9+lFAoxG9+8xt8Pt90T0kIIYQQp5B4NsKbA0/SnWxGRcOkmOlLdtAc3c5M92IW+y9Am0LQI6dnUA6xtETFRO7tuh5TYVJtzPJezZ6R/yGcaRu3vMVpKqLe+wEcpoldVoQQZycJeIhj5vE7RzusJNLY7BMrbkfDSVxeO07Pgbodmqbi9TlO+Nyy2Ry5nIHJlP8PtMmkkcvpZLO5Ez6Xk62xsRG/308wGATg5z//OSaT6bi2GhZCCCHE6c8wDDYPv0hXYj8FlnJM6oGsjEQuyt7wBrzmIDPdi454TLe5mFx8C4ZhTMjgNQyDtJHAaz66Fq9OczELA59gMLWXcKYdw9BxmUsIWmdj0aTOhhDiALnyEcessq6Q8tpCetuH0PXxhXHSqQyxcIL5y2vH2tOeTF6vHbvDQiyWzLs9Gk3isFvwHlRE9XT3P//zPyxbtoyPfvSj5HKjwRyLxSLBDiGEEOIMYhgGQ+lBuhKdhFL96IZ+VOMMZ/rpijfjNReMC3YA2DUXmmKmKbptShkZJfZZ2DUvkWzfhG2x3CBW1UGp/ehrbZhUK0X2Bcz0vJd67/spdSyXYIc4s71TtHSqj7OcZHiIY6aZNC764BIe++1rtOzpwRt0YrGaiEWSJKIpGhZWsmRt/bTMraDAzYwZRWzd2o7DYR1XpyObzTE4GGP1qpl4vSc+2+RkyGazfO1rX+P//t//C0A0GiUSicgSFiGEEOIME0r1s3l4A52JNtJ6GpNiosRWykLfUsrtlVMaayQTIq0n8JnzLwVxmjyEM0PEsmE85sARjekyB5njvYQdI08TSrVgU90oikIyF0FTLMzyXIjPcuYXjRdCTC8JeIjjoqK2kOs/cwGbX2tkz9Y2UokMvoCL865YyMJVM7A7rUc1bjabo7U1xEg4gcVsorq6ALfbdsTHK4rChRfMZmAgSktLCI/Hjs1mIpHIEIkkqa0tZO00BWOOt+7ubj784Q/z0ksvAXD77bfzf/7P/8Fsln7xQgghxJlkIBXiud4nGcoM4jP78Zr9pPU07fFWQql+Lix6D5WO6imMqHDo+8DG23tNreZahXMhDpOPjvg2QskmDKDcsYAKxwIKrHXHvVi9EEIcTAIe4rgpLPXxnuuWc/77FpFJZ7HZLZjMU6vo/W7NLf0899xOuruGyeZ0FEaXqCxfXss559QfcVeVggI3N3xoJZs3t7F9RwepVAanw8rqVTNYvLgaj+f0X87y0ksvceONN9LT04Pb7ea//uu/uP7666d7WkIIIYQ4iGEYxHNxdMPAaXKgKlNfbrptZBND6UHK7Ac63Nk1OzZbOb2pbjYOraPMXnHERUb9liJsmoN4LoLT5JmwPZodocBalnfb4QSsVQSsVejG20Xup9jtRQghjoUEPMRxZ7WZj7leR1fXMI/+z0bC4QTFJV6sVhO6rjM4GOP5F3YBcN55s454PL/fyUUXzWHt2nrS6SxWqxnzMQRjTiXZbJbPfOYz9PT0MH/+fB5++GEaGhqme1pCCCGEeBfDMGiOtbAzvJueZC+GAQGrn7meWcxyNxxx4COSCdMWb8Vr8U3IkFAUhYAlSH+ql95kD2X2I1sy4jUHqXDU0xjZhFm1YFFtY3OO5UYwMKhzLTimYIUEOoQ4RgYcJhUr/zFnOQl4iFPShg3NDA5Fqa0tHPtjrqoqBQVuIMK6dU0sWlQ15ewMi8WExXJmfdubTCbuv/9+fvrTn/LjH/8Yp9M53VMSQgghxEG2DG/j9YE3yRo5PCY3qqrQm+ylO9FNKDXI2oLVRxT0SOpJMnoalyl/gU6LaiVn5EjpiSnNb7HvfDK5JB2JRnQjh6aYyBoZrKqDed41VDvnTGk8IYQ4FZxZV37ijBCPp9i3rwe/35l3bWcg4KS1dYCWlhALF06tKNeZYuvWrezYsYOPfOQjACxZsoS77757mmclhBBCnHmG0xGaY50kcynsmpVaZzlei3tKYwymBlk/uBGzaqbYUjT2vNPkJJqNsW14O1WOCqqdVYcdy6paMatm0noas2qZsD2jp9EUDat65DXPAKyanTWF76Mn0UpPsoVULonL7KXcPpOApVjqbQghTksS8BCnnHQ6Rzan47BO/CMOo5keCgqZTO4kz+zU8Jvf/IbPfvaz5HI56uvrWb58+XRPSQghhDjj6IbOuoHtvDW4g0g2hoKCgYHH7GRlYAHLA3OPeBlKU6yVaDZGpWPiEhOXyclweoTG6P4jCni4TR7K7ZXsi+7GoU28OTSYHqDAWkixreTIXui7aIqJcscMyh0zpnysEOLEUgwDZYptZqe6/5lo6lWShDjBHA4LTqeNWCydd3s6nUVRlSl1azkTJJNJ/u7v/o5PfOITJBIJLr74Ympra6d7WkIIIcQZaevwXl7s3wAYVDlKqXaWUuUowTAM/tq3ju0jjUc81khmGJOqTZolYdOsDKSGjmgsRVFY6FuC1+ynO9lJIhfHMAxSuRQ9yS7MqoXFvuVoitzXFEIICXiIU47FYmLhwgpi0STpdHbcNsMw6OkZobTUS01N/l7xZ6Lm5mbWrl3LL3/5SxRF4Vvf+haPP/44wWBwuqcmhBBCnJJ0Qyedy6Ab+pSPzegZNgztwqSaCFp9qO/UE1NUglYfmqKxYXAnGT17mJFGWVQLuUPMI2tksWrWI55fobWYi4sup9pRQywbpTvZyUhmiGJrKRcWXkqNs+6IxxJCiDOZhH7FKWnZ0hpaWwfYu6cbl9uG02klk8kxNBTD63VwycVzz7jio5N54okn+NjHPsbQ0BDBYJDf//73XHbZZdM9LSGEEOKEyBk6qVwGs6phVqf+tz6aSbBtZD/bRpqIZ5M4TXYW+uqY752B03Rk2aE9yQEGU8MU2gJ5twcsHgbSw/QlByl3FOXd590qHZVsGd5OKpeaENjIGTkyeoYZrqllbRbbSri85AMMpEMkcnEsqpVCa9FRtbkVQogz1dlxxShOuFw2x2B/BF038AVdx9yW1uGwcs3Vy9i4sYWtW9uJRlOYNJUlS6pZtrSWysr8H0DORJs3b2ZoaIiVK1fy4IMPUlV1+PW9QgghxOkmkUuzZaiJzcP7iWQSmFWNed5qlvhnUGD1HtEYw+koj3a+TFOsG6dmw6ZaGEyF+Uv3m+wNd3BVxbl4zIfvZpY1cuQMHW2SVqqaopEzdLLGkdUTq7CXUeuqYV+kkYDFj1NzoCgKiVySUCpEub2MGc6pL1NVFIUCa+GUjxNCiLOFBDzEMdF1ne3rmtn02j76u4YxDAOP38nCVTNYdl4DmkmjvXOQ3v4IigIlRV4qyvyo6uErfTudVs47bxarVs0gGk1hsWi4XGdX3Q6Ar3zlKwQCAT75yU9itR55uqsQQghxuohnU/yx4zV2hduwaRacmo1ULstfe7eyO9zBdZVrKbMffhnny/1baI52U+0oxqSOBit8uMjoWRqjHbzav40ry1Yfdhyf2Y3DZCeajeM1T2z/Gs3GcWg2fEfYrcWkmrio8DzMionmWCtD6WEALKqZWmct5xeeg91kP6KxhBBnKcMYfUz1mLPctOe83XnnndTW1mKz2Vi2bBkvv/zyIfd/8cUXWbZsGTabjbq6Ou66665x2y+88EIURZnweN/73je2zze/+c0J20tKpl7J+mxnGAavPbOdx+97g96OQTx+J/5CN7Fwgmf/uIGHf/MKv/vD6/z2D2/w56e28NiTW7j3gdd44I/rGB6JH/F5LBYTgYDzrAl2vP7667z3ve8lFosBo11pbr31Vgl2CCGEOGOtG9zLznAb5fYCyuxBvBYnhTYvta4SepPDPN2z8ZA1MAAGU2H2RtoJWj1jwY53mFUTAYuH3ZFWwpnYYefjt3iY6a5kMD1CVh+fxZHVswylR2hw1+QNhkzGYXLwnuKLubbig1xafBGXFF/I1eUf4P1lV+Cz+I54HCGEEEduWjM8HnjgAb70pS9x5513snbtWn7xi19w5ZVXsnPnzrxp+83Nzbz3ve/lM5/5DL/73e949dVX+dznPkdhYSHXXXcdAI888gjp9IHuHgMDAyxatIgPfehD48aaN28ezz777NjXmpY/ZVFMrq9rmLde2I3LbcNfeOAOh63cQjic4OmXd+Ep9dEwqxSHfbTFbCyeYsfuTtKZLB++diXWs6QOx5EwDIOf/OQn/MM//APZbJZvf/vbfPe7353uaQkhhBBHZDAVZSgdx6xqlNl9E4IOk0nlMmwZbsJtsmPVxi+JVRWVEpuftlg/7fF+apzFk44zlIkQyyYJTlJTw21y0JUMMZSOHtGylrXBxQymwrTFu7BrNmyahWQuTTyXpNZVwZqCRUf0+t5NURQKrQUUWs+ewutCiONIEjambFqvNn/4wx9yyy238OlPfxqAO+64g6eeeoqf//zneS/07rrrLqqqqrjjjjsAmDNnDuvXr+f73//+WMAjEBhf2+H+++/H4XBMCHiYTCbJ6jhGjTs6iYYT1M6a+D5Gszmi6SyBnD4W7ABwOqxUlgdoaumnsamPebPLTuaUT1mRSIRPf/rT/OEPfwDghhtu4Gtf+9o0z0oIIYQ4vIFUlOd7drJzuJNYLo1JUSlz+FlbWM9if9WkrVjfEcnGiWQSeCcJQjhMVnqTQwynY3CIOIVJ0dAUhayRw5KncGfWyKEpKtoRFvX0WtxcXXERO0f2s32kkUQuhc/sZm3BEuZ5Z+CUJShCCHHKm7aARzqdZsOGDXzlK18Z9/xll13Ga6+9lveY119/fUJ3issvv5y7776bTCaD2TyxUObdd9/Nhz/8YZzO8X8h9+3bR1lZGVarlVWrVvGd73yHurrJW3ilUilSqdTY1+Fw+LCv8UwXGYphMql5P8iEInFMJo10IjNhm8ViwgAamyXgAbBz506uu+46du/ejclk4gc/+AGf//znD/sBUQghhJhuw+k4v29+naZoP4U2N5VWFxk9R2d8iAdb3yKj51hZcOgWqaOBCnXSAqDvtJU1qYcOVJTaghRYvQymw5TYJtb7GEyHKbT6KLb5j/DVgcvkYGVwAcsD88joWcyqSbqgCCGmicHUUzwkJWTafmOHQiFyuRzFxeNTE4uLi+np6cl7TE9PT979s9ksoVBowv5vvfUW27dvH8sgeceqVau49957eeqpp/jVr35FT08P55xzDgMDA5PO97vf/S5er3fsUVlZeaQv9Yxld1nJ5fL/EGWzOugGFmv+mJpJU0mljqx3/ZnsqaeeYuXKlezevZvy8nJefPFFvvCFL0iwQwghxEllGMaEWhVH4q3QfpqifdS5CvFbnJhUDbvJQpUziKaoPNezk2gmecgxvGYn1c4iBlP5byYNpiP4LE6qD9P+1aKZWR6YQ1rPMpAaQX+7WJ9u6PSnhsmhsyIw56ha3aqKilWzSLBDCCFOM9P+W/vgCzvDMA55sZdv/3zPw2h2x/z581m5cuW456+88kquu+46FixYwKWXXsrjjz8OwG9+85tJz/vVr36VkZGRsUd7e/uhX9hZoHZWKVabmVhk4gcZu1kjm9MpKPFN2GYYBul0lsLgkRf6OlPNmzcPh8PBJZdcwsaNGznnnHOme0pCCCHOIgOpKM927eQHO5/ie9uf4Jd7/8r6gRYy+uFvSqRzWTYPteExO/LW6yi2eQmlIuyL9B5yHEVRWBlowG6y0hkfGAu8GIbBYDpCJJNgWaAet9lx2Dkt8ddzUdFSDKA13k1LrJvWeC+qonBJ0TIW+mYcdgwhhBBnjmlb0lJQUICmaROyOfr6+iZkcbyjpKQk7/4mk4lgcHzqYjwe5/777+db3/rWYefidDpZsGAB+/btm3Qfq9UqXTIOUlFXyLxlNWx8ZS/eoAtf0ImiKERGEmRHknh9DjTbxG+xgcEYLpeN2Q2lecc1DIOujiFCfeHRVrblfgqLPEeU9RCJJdmzv5feUARNU6kq8zOzphCL+dQpjhoOh/F4PABUVFTw6quvUldXJ4VzhRBCnFRd8WF+3/wGHfFBXCYbFlWjMdLPnnAv+8K9XFe1DIs2+d/PpJ4hnk3jMFnybtdUFQWFWDaVd/u7zXCX8f6yVTzfu5n2eD8ABgZuk50LihZwbsG8I3pNqqKytnABc7017I92ksilcWpW6lzl+Cxyo0UIcRo7hhUtK1asQNM0brvtNm677bbjPbNT2rRdBVosFpYtW8YzzzzDNddcM/b8M888w1VXXZX3mDVr1vDYY4+Ne+7pp59m+fLlE+p3/OEPfyCVSvGxj33ssHNJpVLs2rWL88477yheydlLVVXec91y7E4r29c109bYB4DDZeOc82ZhKfawbmsrrR0DeD12MGA4nMCkqVxy/mxKijwTxhwajPHs41tobuwlkcygAA6nlVlzy7n4igU4XVYMw6CvL8zevT0MD8ex2czU1RWRNnSeenEH/QNRUEYDJ5qqUlMZ5KrLFlHgn/4POk8//TQf/ehH+cUvfsG1114LQH19/TTPSgghxNkmZ+g81rGZzvgQM9xFY4U8C4B4NsW6UDMVDj/nFTdMOoZNNWPXzCSyaTzmiQU8c4aOgTFpQORgC3w1zHCV0hjtIpJJYNVM1DpLCFonfl44HL/FzfLA7CkfJ4QQZ6J169aN3XA920zrbe/bb7+dm2++meXLl7NmzRp++ctf0tbWxq233gqMLiPp7Ozk3nvvBeDWW2/lpz/9Kbfffjuf+cxneP3117n77ru57777Jox99913c/XVV0/I/AD4x3/8Rz7wgQ9QVVVFX18f3/72twmHw/zN3/zNiX3BZyCL1czFVy1l+fmz6G4fxNANgsUeCkq8GAZUVRewaVsb3T0jKArMqS9h8YIqZs0snpCxEY+leOyhdTTt66W41EtxmQ+ASDjJhjf3k0pluOqGFby1rplXX91LJJLEbNbIZXVeeHk3Q6kUBYVuqisCaNroB7d0OktjSz+PPr2Fm69dNW2ZHrqu8+1vf5tvfvObGIbBT3/6U6655hqp1SGEEGJatERDNEf6KXf4J3QtcZis2Exm1g+0sLpwBuZJ2staNBOLAlU81bWNAqsb7aCion3JMEGri3r3kXfFc5isLPTVTv0FCSHEmc4wRh9TPeYsN60BjxtvvJGBgQG+9a1v0d3dzfz583niiSeorq4GoLu7m7a2trH9a2treeKJJ/jyl7/Mz372M8rKyvjxj3881pL2HXv37uWVV17h6aefznvejo4OPvKRjxAKhSgsLGT16tW88cYbY+cVU+fxO/H4x3fCURSYN7uMubNKiSfSKCjY7eZJL/L37OyiZX8/VTUFmMwHPlx5vHYsFo09Ozp5/lkn6zY0Y3dYqKsrHBtrV1MP3b0juJ3WsWAHjHaEqSrz09IxQFNriNkzT34r4oGBAW6++Wb+8pe/APC3f/u3/OhHPzptgx0jI3GGh0e78BQXezCZZCmOEEJMp0g6SVd8tOBnmcOD22I77DGhVJS0nps0+8JrtjOYihHOJAhaJ8+QXBmcwe6RHpqifRTZPLjMNrJ6jr5kBAODK8oW4jYffj5CCCHEiTDthQ0+97nP8bnPfS7vtnvuuWfCcxdccAEbN2485JgNDQ1jxUzzuf/++6c0R3FsFEXB6Th8/ZO9O7swmdVxwY532OwWstkcr726D5PNRPCggqfhRBqnw8JAKEq8Mo3DceADnMViIpczaO8eOukBj3Xr1nH99dfT1taGzWbjrrvuOm0ziUZG4rz8yl527+4mHk+haSrFxV5WrqhjwYKK0zaAI4QQp6tkNsMznXtZ19/GUCoBgN9qZ0VhFe8pb8BmMk96rKaoGBjohoGa5/d3ztBRFQXTYbqSBKxOPlq7hme6t7Mn3E0oFcWkqJTYvZxb1MCyQM0xvUYhhBDiWEx7wEOId8TjKcx5gh3vyBkGg4NRZs8rm7DNMAysFhPpVJZoJDku4AGj2Sa6fnJTupqbmzn33HNJp9PMnDmThx9+mIULF57UORwvkUiSRx7ZQFNzH4GAk7IyH9msTm/vCH96bCOpdJYVyyUFWQghTpasrvOHps283teK32qnxh0AYDAV44n2nQym4tw0c+mky1FqnEE8ZjvD6TgBq3PC9oFUlIX+yry1OQ5WaHPzkZrV9KciDKfjmFWNCof/qNq/CiGEmMwxVC09i8lfInHKKCj00NE6kHebYRjksjoWi5Y3k8DnstHRP4LCaFX3d8vldBSYtA2urhu09A6yp62PSDKN12FjdlURVUW+Y8paqK2t5dZbb6W9vZ1f//rXeL3eox5rum3Z0kZTcx/V1cGxJSwmk0Z5uZ++vjCvvLKX2bNKcbslbVkIIU6GPSN9rA91UOn04TQfCPIX2d04TVY2hNpZVlDB/ED+jmgFNjdLA9X8tXc3mqLiMdtQFIWcodOTGMGuWVhVUHfEfwcVRaHI5qHIdnYWxRNCCHFqkoCHOGXMWVDOts2tRCMJXO7xd5QGB6L4fA4KPTZGRhI4neOXyBQF3LT3DpPTDRzvWj5jGAYdPcMUFXiYVTex3XE6k+XxN3axfm8HqUwGk6aRyeZ4ZVsTq+ZUc8XK2Zi0Q6fzvtvevXtxu92Ulo5+wPzBD36ApuUP0pwucjmdrVvbcbmseet1FBS4aGsdoKmpj0WLqqZhhkIIcfbZNthNztDHBTve4TRbyMUNtg11TxrwALi8fD4ZPcemoVZ6kyOoKBhAgdXF5eULmO2d/FghhBAnmSR4HBUJeIhTRu3MYpavnsFbrzYSHk7g8TkwDIPhoTiqonDhZfMw2c08/sQWotEULteBwIbLZsFjtZJRDfoHo8RTGXRdJ57IUOB38v5L5uetI/Li1iZe3d5CccCF2+EDRoMkI7EkL25pwuu0cd7CuiOa/0MPPcSnPvUpFi9ezHPPPYfZbMZkOv1/xFKpDIlkGrs9f2E7VVUBhVgsdXInJoQQpwjDMEjrOUyKOqFTyeFkdZ3mSIhwJoVNM1HnLsB+iNob7xhOj7ZtnYxVM43V9ZiMTTNzXfUyVhXW0RjpI6Nn8ZjtzPGW4rU4pvQ6hBBCiFPR6X81Js4YmqZyyRULKSzysHlDCwP9ERRFoWZGEUuW1zBnQQW5nE5fX4SNG1sYCEWw2S1kMlkymRwrF1azdGUtbd1DtHUOopk0ZtcVM39WGQWBictZookUG/Z24HHacDsOLMVQFAWfy048lWHdnnZWzK7CZpn8RyWTyfDP//zP/L//9//Gjo9EIgQCgeP/Jk0Di8WEzWYmFkvh8Uxcy63rBoZhTBoQEUKIM1Uql2VDfydv9bbTn4hi0UwsLSxjZVElxQ73YY/fO9LHE+07aI0OkTVyKCgU291cXNbA6sKaQ2YHBiwOUrnMIecWsB4+aKEoCpXOAJXOM+NvlhBCnLEMjqIt7QmZyWlFAh7ilKKZVJasrGPh0hrC4QSKAh6vA1Ud/dBnMmlcccUC6uuL2bmzk/7+CHaHhblzypg9uxSHw8qieZVHdK6ugTBDkTiVRf6824NuB71DEfqGIlQV59+ns7OTG2+8kVdffRWAf/qnf+I73/nOGZHZ8Q6TSWPB/AqefXYHwaBrXNtfgIGBKF6vnbq6ommaoRBCnHypXJb79m3mrd52TKqK22IllknxWMsuNvZ38fFZS6n1TB5EaI4M8Lv96xhJJyiz+7CbzGT0HL2JMA82bwZgTdHkxaAXBEp5tbeZSCaF2zw+gzGSSWFSVBYeYjmLEEIIcTY4c67KxBlFM6n4AxOrxsNoJkhDQwkNDcfYYtbg7XZ8+Tcrymiasj5JJPWFF17gwx/+MH19fXg8Hu655x6uueaaY5vTKWrRomr27u2htSVEQaEbl8tGNptjYCBKNqNz6aXz8HoPX8lfCCFONbphsHuon419HbRGR7BrJhYVlLKksIyAbfIMiTd623ijt40Kp3dcHY1ih5vGkQEeadrOFxauzdslxTAMXuxpZDAZp95TOJbJYVY1Kpx+OmJDvNC9j8WBikmXtzR4C1lVVM0rPU14LLaxbI7BVJxwOsnakloavBKIFkIIcXaTgIc47gzDoLOxh73rGxnoGsLusjFzSS11i2qwWA+/LvlkKfS78DhsDEUTBD0TgyvD0QQ+l51C38TlMLlcji984Qv09fWxcOFCHnroIerr60/GtKeF12vn2muX8+KLe9jX2MPgYAxNUyksdLNyRR2LF1dP9xSFEGLKdMPgz827eK6jkYw+WgA0pOvsGe7njZ42bp69lCq3b8JxWV3njZ42bJp5QtFQVVGocnlpDg+ybzjE3MDEgtlD6Th7R/oosrvzLlsptntojQ3SFAkxz58/S0NTVa6rXUjQ5uDNvjY6YyMABGwOLiqbyYWlMzFNsZ6IEEIIcaaRgIc4rnRd5+VH3uTNP28gHklgtVnIpLNsen47DcvqeN/fvgeXL3/mxsmmZXRKbXbWNXVhqVRxv6szTCKVYSSW5PIVs3HaJtam0DSNP/zhD/zoRz/ihz/8IQ7HmV/cLRBwcc01ywiFIoyMxNE0jbIyH5ZD1DcRQoiTZTiVYPtA71gtjRneIDO9wUNe9G8OdfFseyNeq21cNkfO0Nk/PMgD+7byxUVrsWjjszSimRQDyTg+a/5W3DaTmZxhEErG825P5rJk9Bxec/7jzaqGYRgkc9lDvmarZuLyitmcV1JHTzwCQLHdnbdzixBCCHE2kisVcVztfG0PrzzyJi6fk+LqA2m6qUSana/vxeqwctVtV0xrm9ZELMWrT21j58YWBoZiJPQkr3UO4Qs4qagMks7pGBgsq6/gvIUH1k9v2rSJTZs28alPfQqAOXPmcNddd03Xy5g2BQVuCgoOX4xPCCFOlo39nfxP0w764lFQFAwMLKqJeYFiPtKwCK9lYmDBMAze6u1Ax5iwdEVTVKo9PlojQ+wZ7mdBsGTCdk1RyOp63vkYxmgx58mCLW6zFZtmJppNYzdNDE4kshnMiobHPLG7WD4Ok4U6T/CI9hVCCHGaMoyjKFoqVUsl4CGOm1wux6bnt4EB/iLvuG1Wu4WiygL2bWiiry1EcXXhtMwxk87yl/vfZPuGZvxBFzNmFlOl6zT1DdHeE2FEM7Fy1UwWzixnTlURZtPoXb27776b2267jWw2S0NDA+eee+60zF8IIcR4+0cGuH/fFtK5HDN9BWjKaJAhlkmzsb8Tk6ryqTnLUQ8KtKdyWdoiw3mDITCaPZHTdXpikQkBD5fZwmx/EW/0tBKw2icE8QdTCTwWGzMmKVrqNttYEqzg2a7dBCyOca1sDcOgKzFCnTtIrbtgyu+HEEIIIQ6QxZ3iuIkMRultDeE7KNjxDpffSTySoKel7yTP7ICmXV3s3tJGWXUQf6EbVVOxmk3MKS/k3KpySgdyrKkoY2FdKWaTRiKR4JZbbuHTn/40qVSKK664gnnz5k3b/IUQQoz3Zm874XSKKpdvLNgB4DRbqHB62T7QQ0tkaMJxiqKgAsYhevYZMCFQ8s6xa0urcVtstEaHxzI9DMNgKJWgPxFjeVHFIVvTXlAykzp3AfvC/fQnoySyaYZScfZF+vFZbFxZMVdqcAghhBDHSP6SiuPGeLs39GFXq0xjZtWere0YhoHNPjGF2OGyksvq7NveAcD+/fs555xz+K//+i9UVeXf//3f+dOf/oTfn79FrRBCiPFyuk4ik5l06cexSudy7BzsxZ8nywLAbbGSzGVpCU8MeFg1E7MDRQwmExh5Un6jmRQ2zUS1J//v/JneAj5Svxi/1U5TeJA9w/3sGQ4Ry6S5sLyOD9bMOeTcgzYnn6xfzaXls1CAUCpGSs+yoqCKT9Svlg4rQgghxHEgS1rEceMJuiisLKCrsSdvYdLYSBy7y0ZR9fSl6EbDCay2yTvFmC0asXCCxx57jJtvvpmRkREKCwu57777uOSSS07iTIUQ4vQVSadY19nJm13tRFNp7GYTy0vLWVleQcB+/Io864aObjAusyOfyQIuq4sr2RLqpiM6QrnLO5bNkchmaI+MsLyonLpJlqUALCksY6Y3yM6hXoZSCSyqRr2vgAqn94hqVQVtTq6tWcR7ymcReTvA4rc4prXOlRBCCHEmkYCHOG40TWPxRfNp39NFeCCCJ3gglTedytDbFmLh+XMoqZm+u1a+gJPm3d2Tbs+ksniDTna1bGVkZIRzzjmHBx54gIqKipM4SyGEOH2NJJPcu3UTO/r7cFosOM1mRlIp/rhnF1v7evnEoiUUOSe2+4bRJSEd4TD7hwbJ6jkKHE7mFBRiNeX/uGLVTFS4POwc6iNomxhISeWyaIpCiSP/+Wb6CvjQzAX8T9NO9g71o6kq+tvFRhcXlnJD/cK8S1rezW2xsqq46jDvyqG5zTbck3RsEUIIIQApWnqUJOAhjqv5582mv3OAdU9uZqB7CJvDSiadRc/p1C+t5T03X3DS7lwZhkGoZ4TOlhC5rE6g0M3MeRVsfbOJeDSJwzX+w2V0JIHZaqJ+fiWXXL0Mr9fLRz7yEczmyTNChBBiuvTHYmzt6WHvwAAGBjMDQRaXlFDkyn9xf7I827yf7X19zAgExrVzLXbqNA4O8NjePXxq8dIJfwvimQx/3LWDTT3dxDJpFEVBQaHC4+HaOfOYFZyYHagoCquKK9k12MdwKoHPeqC9uG4YtEWHqXb7mOWfvFD2yuJKZniDbA1105eIYlFN1PsKmOUvwKxqkx4nhBBCiFOfBDzEcaVpGhd/5FxmLq5l91v7CHUO4nDbaVhWx8ylddgcR9ZiL5/wcJzGvT1Ew0ksVhO1M4soKsmfNpxMpHnhT5vYtamVeCQJCphMGqXVQarqi9m/swun24Y3MLr0ZtOW9Tz+1/v54XfupHLGaDvdj3/840c9VyGEOJF29fdz/7Zt9EYj2MxmFGBrTw8vt7bwoXnzWVhSctgxToRwKsmmni6CDse4YAeASVUpcbnZFeqnOxqhzO0Z22YYBo/s2s4rbW2UutyUuz0oikI6l6M9PMJ/b9vC3y1bQfm7jnnH4oIyLqoY5q+dTfQnY7jNVrK6TiSTosLl4YaZC7Fqh/64E7Q5uKhixvF5E4QQQghxypCAhzjuVFWlZl4lNfMqj8t4hmGweV0zLz23k5Hh+NvPgcNpZdGyai66fAFm84EP1rqu8+wj69n46j4Kij0Ulo4GRZKJNO37+wmWeFh18Ryad3fT3z3MKxv/wl9euQ9d13lp85+45m8uOi7zFkKIE2EwkeCB7dsYSiRoKCgYW3JhGAatw8M8uGM7JS5X3kwPwzDoi8WIZtI4zWaKna7DZt0ZhkFXJEJfNIqmqtT4fHhs+ZdfDCQSRFJpyjz5u5N4rVZ6Y1EGEolxAY+2kRE29XRT6nbjtR4Y26Jp1Pn87BkI8VZHB9fMmTthTE1VubpuHvW+Atb3ddAWGcaqmbissp6lReUU2ifWlBJCCCFOO7Kk5ahIwEOc8vbu6uLpx7egaSpVtYWoqoJhGIRHErzx8l4sVjMXvudAq9jutgF2bWqjqMyHy3Mgvdlmt1A1s5CWPb0sXFHHNZ8+h09+4pM88dKfAbjpppv43//7f5/01yeEEMlMlm3dPWzp6GEokSDodLC4vJT5pUVYDqpfsaWnm55IlIaC4Lj6EoqiUO3zsSc0wOaeHi6bOXPcca0jwzzb1MjugRDJXBarZqIhEOTS2hnU+fMX5gzFYjy6eze7+/uJZTIoQNBuZ3VVFZfOmDEhi8OsqmiqQjanY82zGiSr66iKMqHd6v6hQeLpDBXuiW3NFUXBZ7OxpbebD8yanbdVq6ooLAiWsCA4PZktQgghhDg1SVtacUrTdYMNbzaRzegUlXhR1dEP94qi4PU5cHvtbNnQQngkMXZMW2MfyUQKp3viHUhVVXF6bDz9xF8597xzeOLJP2M2m/npT3/K7373O1zTvPZdCHH2iaZS3LtuE/e+tZntPb0MxhJs6ezmnrc28vsNW0lkMuP2bxocwmLS8hbTVBQFm9lE4+DAuOdbhof4r80bWNfdhdNsodLtxW2xsLGni19v2cj+oYEJY4WTSe7dtIn1HR24LRYaAgFm+P1kdZ0/79nDY7t3T2jnWuJyU+Hx0huL5X2tffEYxU4nNV7fuOczem60Zsck2SZmVSOr6+ROUHtbIYQQQpyZJMNDnNKGB2N0tQ/iD+ZPSfYHnLS1DNDZNoBnwWgnlUw6i8LkH5z3t2/nPx/8DzLZNJWVlTz44IOsWrXqhL0GIc42kUSKzW3dbG7pJJJMU+B2srSmjIVVJROyFQQ8uWsfWzq7qfb7sZkPvD+JdIZ1bR0UuZ28d+6ssedVRTl0iqphoKC860uDp5sa6YvFmBUIjv1utGgaHouVfYMDPLW/kVuXBcYFUTZ0dbFvcJCZweBYVoWmKBS7XFg0jTfa21lVUUGF90BWhklVuaC6hraRzXRGwpQ4XWOdT0LxGIlMhvfNbMB+UDHooH20FWsml8OsTUwNCaeT1AcKJmSUCCGEEEIcimR4iFNaLqej53Q0Lf+3qvL2B/9c7sBdP4/fifH2sfkEXKW4XR4uu+wyNm7ceNYHOwzDYCAco71/mIFwbMIdWyGmYiAa59cvreehN7fRMRQmlc2yt7uf/35tM/e/sZVkJjvdUzylDMYTbO7sJuh0jgt2ANgtZnx2O+vaOommUmPPzwgEyEyS7aAbBslsjoaCAx1NemJR9g6GKHFNrNehKAqlbjeNQwN0RsLjtq3v7MRpNuddQuKz2Yim0+wOhSZsW1pSxnVz5mHVTDQODrJnIMS+wRC6Ae9vmM15VTUTjplbWESpy0V7eGTC76BIOkXOMFhZXnHSunwJIYQQp5x3anhM9XGWk1tt4pTm8dpxex1EwgnsDsuE7fF4GqvNjD94YCnKjLllBArd9HUOUVIZQFEUorEwLqdntB2t3cPvf/MIl77vHLSz/G5hR2iYl7c1s6ejn1Qmi9VsYlZFIecvqKO8YOJaeiEOxTAM/rxpN409A9QVBw7cqfdAPJ1hQ1MnZT43l86vn96JnkJ6I1FGEknqgvlraPjtdjpHRuiLxnBZR7tcLSwp5q8tblqGh6nx+dDeDkjohkHL0DAlLheL3tWlJZpOk8xmKXHmX7LnNFvojkaIpA8EVXTDIJpOY50kI2e0ZSwksxMDWIqicF5VDQuLStgZ6iOSTuMwmZldUEiBw5F3PIfZzLVz5vH7bVvYMxgiYLNjUlVGkilyhs45lVUsKSnNe6wQQgghxGQk4CFOaVabmYVLq3j2ia2kkg6stgNp0LmcTl/3CLPnl1NW4R973u11cOEHlvDUg2/R1thH5+Ae7v3jj3j/BTezYOYaFq+ZySVXrjziYEdPzzA7dnTS1NSPgUFtbSHz5lZQVuY73i/3pGrvH+b3z2+ibzhCodeF32Unkcqwbm87bX3D3HTxEioLfdM9TXEa6R6OsKe7nxKfe8KyBIfFjNtuYX1zJ+fOqp2QzXAmGkkmaRwcJJPL4bPbmBkITsiWUBhdojLZDRjdMFAUZdxSE5/NzkcWLOT+bVtpHBjEpKkoQCanU+x2ceP8BeMCC3aTGatmIpHJ4s5TSTSRzWDRTDhMB36/qopCgdPJ/oEBcE5cUqgbBgbgtkwMRL/Da7OxpqJq0u0Hm1tYxN8uW8GbHe1s6+slp+vU+f2sqqhkWWlZ3qUuQgghhBCHcuZ/4hSnvWWrZ9LdMczObR2YzCpOp5V0OksslqKiKsjFly+YkOY8b1kNNoeZr37l6zz0p3sxMNi89xX+6WtfZOGqGZjMR/bBeefOTv7y5FZGRhI4naMf7Ds6htiyuY3LLlvAwoXHp/XuyWYYBs9t2kffSJSZZQVj75/VbMLjtLG/e4AXtuzn5kuWSgq5OGJ94SixVJoyX/6WpD6HnVAkxmA0Tpnfk3efM0FW13muaT+vtLYykBgtqGxWVap9Pq6ePYe6wIFsjgqfl6DTQSgWoyRPK9eBWJxCl5PSg7bVB4N8fvVqtvb0sn9wEN0wmBEIsLCkhIDdPm7fMrebOn+Anf19uCyWcT/ThmHQHY1QHwhS6Rmf1bW8rIzd/f0kMpkJNTf6olH8NhvzioqO7k2aRJXXR5XXx1Wz55LTdWwmk/wOEkIIIRj9mz3VpeeyVF0CHuI0YLOZ+cD1y5kxq4Rtm1oZHorh9Tk554LZzF9chdc3MUU6FArx2S9+kmeeeQaAT9/yt/zoR/8PhzN/OvXB0uksu/d088c/rscwoLb2QFDAMAx6e8M888x2Skq8FBWdfhduPUMRmroHKPG7J1xMqIpCsc9FY2eI3qEoJYH8F69CHExVVRQUdMNAy3ORmtP1CdkKZ6KnGxt5fN8ePBYrM/x+NFUlkcnQNDTEvVs285llyyn3jP7ecFktrKqu5M87dmNPmPHaR7tLGYbBcCJJIpPhvbUNeZeW+Gx2zq+p4fyamkPOR1UU3lM7g87wCI1DA5S5PThMZhLZLF3RMC6LhffUzRxbGvOOJaWl7OjrY0NXF16rFZ/NRs4w6H+7A8vVc+ZQkCf743iwaBpIRocQQgghjpEEPMRpwWozs2RFLYuX15B7u4jpZHf93nzzTT70oQ/R3t6Ow+Hgl7/8JR/96EeP6Dy6brBxYwvr1zezc1cn3d0j+HwO0uks1dUFWK2jdxuLiz00N/ezc1fXaRnwiCbSJNJZiv3mvNudVguhcIxoMgVIwEMcmaqgD7/TxmA0QaFn4oVwKBqnusCfd9vpIp7OMBCPo6kKRS7XhCUqA/E4r7S14rXaKHpXMMBuNjPD72fPwACvtbfxoXnzx7Zd1FBHOJnizdZ2eiJRTKpKVtdxWsxcMmsGa+uqj3neDcEC/mbRUp7cv5fm4WFS2QxWk4kZ/iCX181kbsHETA2b2cxNixZR7vGwrrOTvlgMVVGo8fs5t7qaZWVlxzwvIYQQQhwh4+3HVI85y0nAQ5xWFEXBZJr8rl97ezvnn38+6XSahoYGHn74YebPnz/p/gd79dW9vPDCLixWDZNJw+WyomkKnZ1DJBJp5s4px2zRUBQFm81MZ+fgEY070B+htbmfbCaH1++gdkYxFuuhf/x6+sPs3NdNZ88wJk1lZk0hs2eW4Hbajvj1TMZmMWExaaQyWRzWiWvwk5ksFpOGzSK/IsSR8zlsrKir5Kmte7GYNDx2K4qiYBgGfeEYGLBmZtWETILTQTyd4a/Nzazr6GQ4mUBVFMrdbs6tqWFFRflYAHbfwADDyQQzA8EJYyiKQsBuZ0tPD+9vmDW2TMSiaVy3eB7LqsrY1dNPJJnCa7cxt6SIKr/3uC3pmBUsYKY/QFt4hFg6jcNsptrrO+S/h8Ns5sqGBi6orWUwHkdVVYqdztPy31AIIYQQZ59p/8Ry5513Ultbi81mY9myZbz88suH3P/FF19k2bJl2Gw26urquOuuu8Ztv+eee0arxx/0SCaTx3RecXqorKzkH//xH7n++utZt27dlIIdAwNR3nxzP06XlZISH+a363zYbBa8XjuDgzH6+g+0bdR147Af+tPpLM88voV77nqBPz+0nicf28SDv32d3/zyBZobeyc9buP2Nu558HWeeXkXze0hdjf18MentnDvQ2/Q2TN8xK9pMmVBD5VFPnqHIhPW9hmGQe9whKoiP2UB6dQipubS+TM4b3YtkWSKvT0h9vWE2Nsz2rr0fUtms7TmQFaAYRh0j0R4ubGFF/Y2saWj+5RsW5vKZvn9li08tms3iUyaYqeToN1O+8gI/71lC8/t339g31wWhcmX7Vg1jayeI53LjXteVRTqggHeN28WH162kCvnNlAd8B33+hWaqlLr8zO/qJg6f+CIAxcOs5kKr5cyt1uCHUIIIYQ4bUzr7dsHHniAL33pS9x5552sXbuWX/ziF1x55ZXs3LmTqqqJld2bm5t573vfy2c+8xl+97vf8eqrr/K5z32OwsJCrrvuurH9PB4Pe/bsGXeszXbgrvhUzytObbt27cLhcFBdPZr2/a1vfWu0lsAULxT27+8jEklSU1sAgM/noLd3BF03UFUVk0mjt3eE8jI/uqGTTueoqzt0wb4Xn9nBay/twR9wUj2jEEVRyKSz9HQN86eH1nPDzedQWu4fd0xb1yBPvrgTwzCYUX2gdkgup9PaOchjz27lkx9ag9WafznKkdBUlYsWzqB3KEJr3xAlfjc2i5lkOkPPUASnzcIFC2egqmd2rQVx/FlMJq5bMY+VMyrY2x0imcngtlmZW15EoedAW9RkJstj23ezsa2TSCqNqoCCQpnPw1UL5jC7pHDcuNFkip1dfQzE4phVjbqiADVB/zF9j6azWXb3hNjZ3Uc0labQ5WBBeQm1Bf5xvz82d3ezqaubap93XPFOp8VCXzTKc/ubWFBSQrHLhc9mQ1EgncuN1qE4SCSdJmC34zAf/c+vEEIIIc5GsqblaExrwOOHP/wht9xyC5/+9KcBuOOOO3jqqaf4+c9/zne/+90J+991111UVVVxxx13ADBnzhzWr1/P97///XEBD0VRKCkpOW7nFaeuBx54gFtuuYU5c+bwyiuvYLVaj7jd7MHiiTS8nREEEAy6cLlshMMJPB4bZrNKOp0jk83R2TlEcbGXWbNKJx0v1Bdm68ZW/AEnPv+Btfxmi4mK6iAtTf1sXt8yIeCxbVcnsViKuuqCcc9rmkplmZ+O7mH2tfQzf9axrZ+fVVnEDecv4vnNjXSERkhnc1hMGpWFPi5ZUs+sisLDDyLOOO9k/BxLZoGiKFQFfVQFfZOe48/bd/PiviaKXC5KPaPFc9O5HB3DI9y3YQufPmc5lf7R47d39PCnzbvoDUfBGP3TbTObmF9ezLXL5uGyWceNr+sGbUPDRJIpbGYT1QE/loOWwkWSKR5Yv5XtXX0YhoFZ09iSzfLq/lbOq6/hvfNnjWUyrO/sxKSqEzqVABQ6newJDbCzt49il4tZBQWUuT10RiLUeMcvR0lls0TTaa6sr5cWq0IIIYQQJ8G0BTzS6TQbNmzgK1/5yrjnL7vsMl577bW8x7z++utcdtll4567/PLLufvuu8lkMpjf/jAajUaprq4ml8uxePFi/vf//t8sWbLkqM8LkEqlSKVSY1+Hw+FJ9xUnXjqd5h//8R/5yU9+AoDb7SYWi2G1Wg9z5OQcdgu83e5JURQsFhOzZpWyd28P4XCSZDKN1WKmo2OQ0lIf73vvYrxe+6TjtbWEiEWSVM+YGDhQFAWv18G+XV1cfPl8rLYDF1L720K4XPlfh9mkoes63X3DxxzwAJhTVUx9eSGtfUMkUhkcVjNVRX5MmqSsn00Mw2BPVz8bmzpp6R9CU1TmVhaxtK6c8hOwrKknHGVDWydFLhd+x4GfIYumURvws7c/xBstHVT6fbQODPOHddtIpDPUFR5YghFNpljX0oGqKHx0zeKxwEJT/yBP7thL88AQyUwWs6ZS7vNy8ew6FleUjtUU+fPW3Wxu76Y66MP2rkDGUDzB87v3U+h2sbq2EsMwCMXiOC35MzJGl01C+O2/DzaTmQ/Mms3vt25h3+AgBQ4HFk0jnEoRTqVYWFzMqorTs521EEIIIaaRYYw+pnrMWW7armpCoRC5XI7i4uJxzxcXF9PT05P3mJ6enrz7Z7NZQqHRNeKzZ8/mnnvu4U9/+hP33XcfNpuNtWvXsm/fvqM+L8B3v/tdvF7v2KOyUj6wTpeOjg4uuOCCsWDHV77yFZ5++mkCgcAxjTtzZhFut43BwdjYc263jYULK2loKMbrdbBq1QyuvWY5H795LZWVhz5fNpMDdfI75WazRi6nk83mJm48xO8mBQVFOX4/uiZNZUZpkPk1JdSVBiXYcZYxDIPntjVyzwsbWL+/k3QmRyyV5tltjfzns2+xo33y34tHqyk0SCSVxmefWIBXURQCDgc7unpJZbO81dTOcDxJVXB8cU2XzUqZ18P2zl7aB0cAaB0Y5rdvbmJPb4ig00F9UZAyr4eukTD3r9vKpvZuAPoiMbZ19VDkcY0LdgD4HXY0VeONpjayudE2uh6rlWQ2f20RwzAwDMZlfywoLuaWZctYUV5OJpdjJJnEbbFw9ew5fHzxElyWiYWChRBCCCHE8TftLRgOvhh85+76VPZ/9/OrV69m9erVY9vXrl3L0qVL+clPfsKPf/zjoz7vV7/6VW6//faxr8PhsAQ9psFzzz3Hhz/8YUKhEF6vl3vvvZcPfvCDx2XsQMDFqlUzeOGFXaTTWYJBF5qmEo0mSSQyrD2nnuuuW4HTeWRZJF6/A1VRyaSzmPN0O4lEEhSVeLHZx1/8zKwu4JX1TRQGXRO+JzOZHKqqUHIatsIVp6Z93QM8t60Rp9VMVYFv7Plir4u20DCPvrWTiqAPr+PYuwO9I5PLoTJ5MNCkqqRzOeLpNLu6+/A77Xn3ddksdI+EaQ4NURnw8uLeZkLROPVFwbH9rWYTNUE/rQNDPL97P/PLiugcHiGSTFPiyd9yOei00xOOMhCLU+xxsbS8jL0DA2RyuQlLUYaTSZwWM7MLxy9BmxkIMsMfYCSVJJPT8VitWE3T/idXCCGEEKcrKeFxVKbt01dBQQGapk3Iqujr65uQffGOkpKSvPubTCaCwYktAAFUVWXFihVjGR5Hc14Aq9V6TMslxLHTdZ2vfOUrhEIhFi9ezMMPP0xdXd1xPcfatQ04HFbWrW+irzdMTjdwOa2sWT2Tc89tOOJgB0DtjGKKS730dI1QUR0Yd8GWTKRJp3IsXFKNdlBGxYLZFWzZ1UlPf5iSQs+4oqXt3UNUlQWorzl0sdTJZHM6w5EEYOBzO054NodhGHT1jzASTWIxa1QW+7EeZavbTC5HY2eIjv4RDMOgyOdiVlUR9kmWGhzp/HqHo+zvGb2Y9TntNJQV4jiGgrBHStcNdnX3sbGti46hEWxmEwvKS1hSVUbQ5Tjh53/H5pYuUpkclQfV21AUhYqgl/29g+zs6GVNQ/VxO2fA6UBRlbG6MQcLJ1OU+zyYVe3tbkj5AyPvdOHK6TqDsQR7evspcjvzBkdKvG46h0aDI6PHHmKCijIuBXRpWRkbO7vYEwpR6nLjtVnRDYNQPM5wMsnFdXVUeicu/VEUBZ9t8mVvQgghhBDixJq2gIfFYmHZsmU888wzXHPNNWPPP/PMM1x11VV5j1mzZg2PPfbYuOeefvppli9fPla/42CGYbB582YWLFhw1OcVpwZVVXnggQe44447+N73vofdfvwvJFRVYdmyGhYsqKCnd4RcVicQcOL1Tv0C1GI1ccmVC3ns4fW07O/H63dgNmlEIgnSqSzzF1excGnNhOMqy/y896L5PPniDppaQ1isJnTdIJfTqSjx8cH3LJxy0EDXDTbt6WD9rjZ6BiIAFAVcLJtdxbI5FSekzWRX/wjPvrmHpq4BEskMmqZSFHCxdlEdy+dUTqkoZmgkxiMvb6Ope4BMVkdRRq9Jywu8XL12PjUlU1/OlMpk+cvG3Wzc30kkkXq724dCsc/F+5fPYW7l5AHQY5XTdf68ZTcv72shm9Nx2SyMJJI09e9kQ2snH1m1iKqA74Sd/93aQsO4bPmXWGiqiqpA30j0uJ5zVnEB5V4P7cMj1AXHd0SJpdOkczlW1VTgtFoo8bpp7A0RcE78GUxnc6iKQoHLSSKTIZ3L4XPk/71gNZnIGTrxTIZSrweXZfQ9z7f/YCxOmddNwDm6zW218vGlS/jz7j3s7O2jLxYFRSFot/P+2bO5dOaM494+VgghhBBCHLtpza+9/fbbufnmm1m+fDlr1qzhl7/8JW1tbdx6663A6DKSzs5O7r33XgBuvfVWfvrTn3L77bfzmc98htdff527776b++67b2zMf/u3f2P16tXU19cTDof58Y9/zObNm/nZz352xOcVp44NGzbw+uuv8/d///cA1NXVjVuadKJYLCaqKvNnDU1FXX0xN9x8DpvXt7BvVxfpdJaiEi8Ll1SzcGkNFmv+H8FFcysoLfaya183nb0jo3U2qguZPaMYp2NqmUaGYfDsuj38dX0jmqrg94xeOHb3h/lj9xZCw1GuWDPnuLag7RuM8MAzm+gOhSkJuikt8JDJ6oSGozz6121kczprFtQc0VipTJaHX9rK3o5+Kov82N4O9mSyOTr6h3nwxa3ccuVKAp6pBaWe2rSHl3Y0U+B2UuIb7RKSyeXoGgzz4Ktb+ZuLllFTfGx1YSazpb2bF/c2E3A68L1rqUhO12nqH+KRjTv43IWr82Y/HG8mTSWn65Nu1w2Oe0DMajJx9aK5/H7dFvb2hfA77Jg1jXAySTqns6K6nOVV5SiKwvLacvb29BNOJPG8q+aHbhi0Dw5T4fcyq6SAeCaDzWQilk5jM0/8uUqkM5hVDbfVSonHxbyyYl5vasNmNo/bfzieJJ3NsbquatzylaDDwceXLKY7EqU/FkVVVGr8PtyS+SeEEEKIk0GKlh6VaQ143HjjjQwMDPCtb32L7u5u5s+fzxNPPEF19WjqdHd3N21tbWP719bW8sQTT/DlL3+Zn/3sZ5SVlfHjH/94XEva4eFh/vZv/5aenh68Xi9LlizhpZdeYuXKlUd8XjH9DMPgV7/6FZ///OfJZDLMnj2bSy+9dLqndVRKy/2Ulvu5+PL5ZLM5bHbLhGUs+RQF3RQF89cYmIq23mFe3dyM123H7z5wN9vlsDISTfLGthZmVRcxo6LgEKNMzVs72+jqH2FGRcFYIMVi1igr9NIzEOblTftZMLMUl/3wF4t7O/rZ3zVAdbEfy7suTM0mjeriAPu7Qmxr7mZ+XSldg2EMDEr9bgo9rknH7BuJsmF/J0G3A7/rwHti1jSqCnw09gzw5r72ExLwMAyDdS0dKDAu2AGjgYWqgJfWgWH29YWYV3biskzeMb+ymMd6B9ENA/WgLIVUJotJVaktmvg+HK7u0eE0FBVwyznLeau1nW2dvWRyOSr9vrFgh+XteheLK8toDQ3zamMroWgcj81KJqcTSSYp9rq5Ztk8rGYT1rfb1L68rwWf3TYuSGMYBl0jYWqCfmrezij5wMLZxFJpdnb3gaJg0VSSmSxWk4mLZtWxsqZiwpwVRaHM46ZsktofQgghhBDi1KIYhoR9jkY4HMbr9TIyMoLHIwUkj6d4PM5nP/vZscyeD37wg/zmN7/B5/NN78ROU395bRcvrN/HzMr8AY2mjgHOWVTLB8+ff8zn0nWDZDrDj+9/Cd0wKPA5J+yTy+m0dg9x0xXLWFh/+Na6f3ptBy9tbWJmef75t/QMEdfT+H1OwvEkAG67lQVVJVyxZBbuPEGVN/e28cArW5hZEsx70T4QiWMYBrdfdR7haIr+oSiqqlBR7MPnOralVPF0hu/95UU0Vcm7TANgb2+Ia5bM5aLZM47pXEeiPxzlP59dx0AkTlWBb6yuSzKdoTU0zJyKIm65eAVmk0YilWFLcxeb93cxHE3gc9lZMqOchbWl2I+h7kk6myWj69jN5glBFxjNfNnW0cOGlk66hsOYNY1FlaUsrS6n2HsgsNUbjnLP6xtoHxyhyO3CaTWTzGTpi8Tw2K18bOViZpUcaBOdymTZ2dPHzq4+IqkUhS4nCytKmFEQPK4ZT0IIIYQ4M52Ma8J3zvGLf/ktdtvUMpoTyTh/9+2bz+prVikZL04p+/bt4/rrr2fr1q2oqsp3vvMd/umf/gn1BNSYOB2NRBPsae5jJJLAbNKoKQ9QVRo45MXZwHAMq2XypRFWi4nQ8NHXaMjmdLa39bChuZOeoTBGDjr6Bqks9OXd/53slkQqc8TjT/b6crpO2/Aw4XSKVQE3M0qCKMBwLMkru1sIJ1J87PwlWA9a4jDabvQQLYM1leFIgj88s5m2niHiyQxg4HXZWTKrgouX1x918VVNUVAVBX2SWLNhGBgYx+173jAM9vcPsqm9i+bQEGZNZW5pMUuqSilyuyj0uLhx7UIefmM7zf1DYBgYjC51mVdZzHWrF4zWnokneeClLexu68Ni0rBbzbT1DrGvM8T2lm5uuGBx3uDSkbCYTByqUaumqiyuKmNxVRk5XUd9u1jpwYo9Lv5m9VJe2NPEju5eRkaSWDSNBeXFXNhQx8yi8cvUrGYTSyrLWFJ5+MCbEEIIIYQ4/UjAQ5wyHn30UT7+8Y8TDocpLi7m/vvv58ILL5zuaZ0ytuzu4OnXdjM4EgNFwdANrFYT82aU8v4L5+OYpPCkw24hm528RkMmk8NpO7oL1Uwux5/W7eSNvW0YgNtmJZnO0DUUYTAaZ0VDFV7n+GUbmWwOFLBZTfSGRwMtfqcdi5Y/KFPsd5PL6ei6MSHwMRhL0B+JMaMkSNB9IOLtd9mxW83s7OhlV2cfi2vGX9AG3KMtg1OZ7IRgCMBgJE5/T4TsSIaSoJuSoBvDgKFwnBfW7yORSnP1BQsPmwWQzem0DgyRSGdwWi1UBX1YzSZmlRTw2v42gk7HhAv3aCqN3Wym+qCuKUfDMAxe2NPEUzv3kUhncNms5HSd/f2DvNXSzodXLKS+qIC64iC3XXEOuzv76AtHURWFqgIfM0qCY3Usnt/cyM7WXmqKxi8tSmWy7Gjt5fnN+7hqzbFnCR3O4eqJlHjdfGTlIgZjcSLJ0Xoek3VuEUIIIYQQZzYJeIhTxuDgIOFwmHPPPZcHHniAsrJT865rLJ5iT1MvA0MxNE2lssxPbWXBCW3x2tQR4rG/bkfXDWrLg2N3/6PxFBt3tmPSVK65dNG4i7pMNkcsmaa61M+6nW0k0xlsB7VwTWey6BjMqT26WhGbmrp4bU8rRR7XuLv7meoM2/d1s6ujj5X1leMCA92hMFkbPNPSRP/2GACFbiera6tYXVuJ6aAL2rk1xby81UlnaISKQu+419jUO4CqKlQWTWwJOlqIUmFHe++EgMfMkiCVBV7aQsPUFgXGLaNIpDL0hSKoOagtC2B6u3CookDQ58Ri1tiyt4tlc6qoLvFP+t7s6Ozl2Z2NtA+OkM7msJo0qgv8XDavnhU1FWzr7KVjKEy5zzP2/sTTGTqHwyyvLqfK7zvMu394+/oGeGrnPqwmExX+A++RYRg0h4Z4eON2/v6ic3BZLTisZpbWlecdZziaYGtzN0G3Y1ywA0azJIJuB1uburlgwYxjXvJzvAScjkmXDAkhhBBCnHaMtx9TPeYsJwEPMa3eXfjwk5/8JE6nk2uuuWbSNsPTbV9LH088v52+0GhrVwMDs0ljRnUhH3zPQnxT7BRyJAzDYP32NuLJNHUHFRZ1OawUBVzs2N/DOUvqKCnwkEhlWLennQ172gnHUygKZHWdva39VJf68bydcRGJp+gdjDK3tpiG6sJ8pz4kXTdYt78Dk6pOWMpQVuojNBSjuz9Ms3uAykIf6UyO/sEoPXocbBpEoqMZDkBfJMaDG7fRG45w9aK54+7i+1123rdmLv/zynYaO0N4nDZURSEcT5LIZCgNuie9yLaaNCKJ1ITnzSaND6yYy/0vb6axO4TPOdolJJJIkc5lcWoWvH7LWLDj4Pe8dyDK/vb+SQMeOzt7ue+NLcQzGcp8bqwmE4lMlv19A/x3OMrHzlnCdUvn8ectu9nXN4CqjBbRNptUllSWcu3SecelhsSm9i4Smey4YAeMLuWpCvhoHhhkZ3df3gKd7xYKx4gkUlQV5n+9Xqedtv4hBsKxUybgIYQQQgghhAQ8xLR58cUX+V//63/x+OOPU1AweiF/ww03TPOsJtfTH+bRp7YQiaeorgiM1aJIpjLsauwB4KarV2LoBk2t/XR2D6PrBoUFburrinDYD1WlYHLxZIamjtBYO9mDuZ02+oeitHUP4XXb+cNfN7O1qQenzYzbYSWT1cmgk8xl6R2MEhqOgTG61GX57EquXDtnQubHEc0rnaY/HMV7UKcRAJvVzMI55azf2UY8laVnIIJJUwkUuxhKZSkNeAk4D1wYO60WwskkrzW1UV9YgF01kcxk8TpsVAS9LKgtxe+ys7mxi11tfei6zvKGShoyRezo7EUhf3AgkclQ4BktnPpOfeZ3Amy1xQE+eckK1jW2s721h0xOpzzoYfnMCl5+az+pdP4aI4qioKgQn6QGSTan89yu/cQzGWoL/GPnc1jM1BUG2N83yF93N/Hp81dQWxhgZ1cfoUgMi0mjrjDAjMLgWLZQ70iUre3d7OsNATCzqICFVSWUeI+sS8j+/kHckyx1MmkqhgG9I5HDjqO+XXckp+t5M5neqashtXaEEEIIIU4QaUt7VCTgIU46wzD4v//3//K1r32NXC7HN7/5TX76059O97QOa+uuDgaHY9RVF4xbVmGzmqko8bG/tZ8tO9rZur2D1vaB0cKYAIpCSZGH9122kJrK4KTjT0bXR+tXWEyT3/FPpLPs7wyxv2+QTY1d1JQEsL2rqKbfbaelexCf086lS+sxaSqlBR6KA+68tQ26+0bYvqeL1o4BUBTqawqZ11BGQeBARwxNVccugvOxWk0UlXp435I5zC4twGIy8VZnB227IvjzBEncVit72vv46eOv4rXayOk6NrOJ2uIAly1poLrQT0Whj/etngOMBh6aegdp6h9kOJbA5xyfWRBOJDGpKl67jQde20JT7yCKojC7vJBlteVUFvgo8bv5wIq5XLF0Fpns6PlUVWFvYx+7W3rzvi7DMDD00QKm+XQMjdA2MEyJd+J7qygKxV4XTf2DdI9EKPN5WDszfzvsHZ29PLxuO6FIDIfFDIrC7q5+Xm9s5drl81lQWTK2bzKTZTiWwKSqBFyOsewQTVXQ9UP/oTuSTJKyoJcCr4uBcJyy4MQK3wPhGIU+V95tQgghhBBCTBcJeIiTanh4mE984hM8+uijAHzsYx/je9/73jTP6vAMw2D3/l5cLlveAIHNZiaVzvLoXzaj5wwqyvxjXTyy2Rwd3cP86S+b+eiHVhH0uyYcfygOu4VCv4uO3mE8B11kR+Ipdrf20jMYIWXk6InEUBQFp8VMRbFvbK6KolBe6KUzFMbpsDC3piTfqQDYsrODv/x1B+FIAofDgmFAU2s/67e28sH3LKK+tggAu8VMQ2khb+5rI+CaWHwznEjhtFqZW1VEeWB0ScXAvjgWkyl/kCUUpq8visNqZl5ZMRaTRiyZZndHH6FwjI9ftIzy4PgaHjWFfs6ZVc0L25uIJtME3n5/hmIJYqk0JT43z+9oHM0WsdvQDYO/7mhiU3MX166az6LqUgDMmjZWnBNgUX0Zu5p7iCfTE4rBhoZjeFw2ZlXlXwYUT2fI5HJv1xCZyGY2EYrkSEySQQIQisR4ZN12IskUDSUHAmyGYdA+OMIfN+ygxOvCabXy+t4W1jd1MhJPoioK1QU+zplVzdyKYuaVFvPkjn3jlo69I5XJoqkqVQHfpPMYm7PFxOrZlTz6+k4GwnECbjuKomAYBoORBIlMlstmVeUtACuEEEIIIY6dYRhjGctTOeZsJ/nH4qTZsmULy5cv59FHH8VisXDXXXdx77334nQ6p3tqRySbzaEd4m54LJqiPxShstw/rmWpyaRRVR6gtz/Mzt3dUz6vpqosmVtJNqcTjR+oRxFPptnW1EVH/whBj5NZ1UVYLSYUBfa29dPWMzRuHIvZhGHoDMeSk56ru2+EJ1/cQTaXo666gNIiL2XFXuqqC4jEUvz5uW2MRBJj+6+sr8Btt9IxMDIu0yOaTNEzHGFBVQll/gN3/Z0WK9ncxIyQTDZHa/cQOgaFXheWt2tnOG0WZpQE6RuJ8vqe1gnHqarClUtmc/2aBRR5XQxGEwxE4wRcDs6dU0s4mcJqMlFfUkCR10WJz019SZB0Nsuf1u9kIBLP+z7MrSthcUMFXf1hukNh4sk00XiKtp4hEqkMFyydSVEg/7ISt82C1WwiPklAI57KYDObcB+iM872jl76IzGqgr5xgQpFUagMeAlFYqxv7uQPr2/hsQ27RoM9Tjsum4U93SF+9/Im3mpsZ2lVGQUuB60Dw+P+fVLZLK0Dw8wsDDCr+Mjqt6yZW8OlS+pJZ7M0doXGHulslksX17Nmbv5MFSGEEEIIIaaL3I4TJ8Vzzz3H+9//fpLJJNXV1Tz00EMsX758uqd1xBRFobLMz9ZdneOWdbwjm9NJJNPYTeYJXSxg9MLcYbewp7GH89bUT/n8i2eV09EzxPod7YSGY7jsFpp7BukZiFASdDNvRglmk4amKmgW82gmQM8QJUE31rfrc+iGgW4wFkzIZ8febkYiCeqqCiZcaJeX+GhuH2B3Yw+rltQCUFcc5NrV83liw26aegeB0UiyzWJmZX0lH1wxZ9w4c0sLea2plXg6M7pM423DkQSRRAqL2USxe3wATFEUCtxOdrb3Eo4n8Ry0HMakqZwzq5oVMyoIRWIYBhR4HDyxaQ/xVIaK0okFO8sDXhp7BtjR0cv5c2onvA9mk8bVFy6gtMDNxt0dDIUTo61aS/ysnFfNovrRri+ZXI7WviGS6Sxuu5WKAi/lPi91hQF2dfUxoyg47vXrhkFvOMKymgoK3ZMH+lpCg1jNpnHdY949f5vZxOv72ojEklQFfeNqsHjsNrqGwjy1ZS9ffO+53LB8AY9s2sH+/sGxrAxNVZlVUsCNyxce8vvh3TRV5bJlDSysK2VvRz+xZBqnzcKsiiKK/S5p+yqEEEIIIU45EvAQJ8WyZcsoKytj1qxZ/Pa3vyUYnHoti+m2cE4FO/f1MDwSx+c9UEDUMAw6e4ZxO23jLuIPpmlq3uyGI2Eyabz/wgXMqCxky54OOntHiKcy1JYX0FBdiN02et4ir4vW/mH8Thsj0SSD4TilBaMX/EOROF6njbrSyd/71s4B7DZL3otXVVUwaQodPUOs4kCQYHFNGXXFAXZ19DEUTWDWNOpKAlQX+CfUh2goKmBheQkbWjspdLvGankMv70EpbbYT6F7YkDJajExHEuQzGSZrEqE2aRR+q5skvaBEVzW/AU7VUXBpKl0DYUnfS+sFhPnL53Jqvk1DEXiqIpC0OdEU1UMw2Brczd/3bqfzsERsjkdq9lEdZGfSxfXc9m8enpHouzrHaDY48JuGc346B2JUurzcMmcGYcMEKhvByYmoxsGXQMjBF2OvAVni70umvoG2dXZx+r6Ksp9HnZ09dI9EsWkqtQW+JldMlpXZSoURaE04KE0ILU6hBBCCCFOLulLezQk4CFOmN7eXoqKilAUBZ/Px0svvURpaelp28mhobaI81bO5OW3GhkKJ3A5rehvLzMp8LtYNreSdRtb0HU972uMxVIsmFOOrhs0t4fYvreLvlAEm9XE7BmlzK0vwemYfJmDSVNZ0FDGgoYywtEEP3ngZaxW01iwA6A86KE/HGMkkSKn62SzowVPByNxRqIJLllWT+AQrXNV9dAX2oYBmjoxI8Bjt7GqvmrS495h1jQ+tHQBLouFzZ3dNPYNgAI5DApdThqKCjDlee/iqQx2ixnnJAGMvOdSVbKTFFSF0WKw5iP4XrRaTJQcVIxzW0sPD76ylUwuR2nAg8WkkUhn2NcVIhSO8bGLlvLxtUt5YXcTjb0hhuIJbCYTK+squWh2HRUB7yRnG1VXFGR9Syc5XR/Xond03gapTBaLpuGy5v9+eeeYcHx0+ZLXbuOcGbLkRAghhBBCnHh//vOf+Yd/+Ad0Xeef//mf+fSnPz1tc5GAhzghHn/8cT72sY/xne98h89+9rMAlJeXT/Osjo2iKFy0poGKEh9bd3fS3jWE2aGxakktC2aXYzWbaGoJ0dUzQnnp+NoLA4NR7HYLcxpKee7V3by2oYlMJovdZiaT1dnd2MumHQGuvWJJ3iUzB3PYLDjtFsKxJB7ngSUeHoeN+VXF7O7spzcepX8kRiqXw+u0cemyBi5eOvOQ486oKmRfcx+6bkzIzsjmRoMnVeX+Kb5z47msFj60bAEXNNTSMTyaYVHgdPDwK9voGQ7jtlrHvXc5XWcwGueShTNxTtJiNZ+5FUXs7urP+1oy2RwoCjNKpp5plMnmeGFrI5lcjuqiA++Fw2qhriTA/u4BXtrexMcuWson1i6lPxIjns7gtFooyFPcNZ/5FSW8ureF5tAQtQX+sQBGTtdpDQ1T6vOQy+ikMtm8x79T1GqywqlCCCGEEOI0c5okeGSzWW6//XZeeOEFPB4PS5cu5dprryUQCJz8ySABD3Gc5XI5/vVf/5V///d/B+D+++/n7/7u707brI6DKYpCQ10xDXXFeTtfXHnJfP781BaaWkO4nFZUVSEaTWG1mrjo3FlE4kleWdeI123H6/GNHZfN5mhuD/HQYxu46tKF+PxO7I7JL+5NJo3Fsyp4/JUdBLM5zO+qwxBwO6jweSj3e7hs9WxcDit1pQH87skzO94xr6GMDdvaaO8eorLUN/bvls3ptHUOUl7iY/aMyTu8TEWR20XRu5avXL6kgT+8soWm3gGKvO6xLi39kRg1RX7OmV0zpfEXVJfyxr42mvoHqS7wjXVhSWWytIaGmFlSwOzyoinPu7VviK7BcN5lHYqiUOh10dg9mulR6HVR5JlaVx4An8PGh1Yu5MF1W9nfN4imqihAVtcp8br50MoFtPYN8qcNu/JmgQzHkrhsVupLC6Z8biGEEEIIIY7WW2+9xbx588Zudr/3ve/lqaee4iMf+ci0zEcCHuK46evr46abbuK5554D4POf/zzf//73z5hgx8Hy3amfXV+C12Nn284O9u7vRdcNGmaUsGBuOTWVQX77xzdRFAWvZ3x72ehQgnhXhFc2ddK5rZuiIg/zFlWy8px6XG7bhPMALJ9TSWN7P3ta+/B77LgcNrLZHKGhGFariasuWMDihqll1QT9Tj74noX8+blttLQPomoKhjGaMVBe7OOqyxbhsB95lsVUzK0s5qMXLOXlnU009w2RyeZwWM2cP7eWC+bXETyCgM27+Z12bjxnEQ+/uZ3W0DC6PhoWN2kaDWWFXL9qwVFlQCTS2bGaHfnYLCZGYgmS6fzZF0eqrijAZy9ezY7OXlpCw2AY/3979x4U9XnvcfyzsCzLxVVwCWoQ1BpFhIDiDa0HiVVjarROZryN1Dpmppw0tSR/OEx1imn/aGYySWwuppqksdNpjEmsaXpqk3jaEzESzREXo6D12uMl4DUqCILCc/5I3GYFEvfGkt33a2b/2Of37I/n58cvwtffRRnOJI1MS1XvOLv6JsZr3//V69jZSxqQ1EsJsTa1G6NLjU263HRdRSO/o359On+SDAAAANCZiooKPfXUU6qqqlJdXZ22bNmiH/zgBx5z1q5dq6eeekp1dXUaOXKk1qxZo8mTJ0uSPvvsM48z+9PS0nTmzJnuPAQPNDwQEJWVlZo3b57OnDmjhIQEvfLKK1qwYEGolxUS/VN7q39qb02bkiXp342RhmvXdfb8VTlua2BcrLuiY5+e0Y3Wm1KURdZYq27caFPFf9fqs1OXNHfBeCUkdmx6JMbHat60Udq577g+PfKZLnzeqOjoKN2TkaKCnEHKHJTq0/q/k5GipfMm6p/H6nWm/oosUVL6gGQNH5IatGbHLfcMcGpo/746d+WaWm/elCPOrt4JnTd87kRGSpL+c/oE/fOz86q/3CCLxaK0vr01rJ/T46wYbyTabV/cs6PlhuJiO94wtKnlhuw2q1eX33TFEWdXwdAMFQzteP+NpIQ4Lfpunv5r70Edq7+oussNkixKTrBrRu4wTc0eypNTAAAAwob54oZ63n7GS9euXVNubq6WLl2qhx56qMP2TZs2qbS0VGvXrtWkSZO0bt06zZw5U7W1tUpPT+/0foCh/JmUhgf8VldXp/vuu08tLS0aMWKE3n77bWVlZYV6WSF3e2HfesToV78H3LzRppOHzqrtZrt6JcXrytXrirVb5Uzppd594nX0n/Vy/e8JfbdoRKdfw5Fg18yJWZo86ju60nhdMdFRcvZJ7HDPCm85Eu0amztIY3P92o1PLBaLUvt4fxlIV+JsMcobNCBg+0u/q4/S70rSifpLGpSa5PnY2Xaj81caNTEzQ8lenpHii359emlZ0VidunhFFxuuKToqShkpSeod73uTCAAAAD1Pc0uzz5+5etXzyYSxsbGK7eLm9zNnztTMmTO73OczzzyjZcuWuW9EumbNGr3//vt66aWX9Otf/1p33323xxkdp0+f1vjx471ee6DQ8IDf+vfvr/Lycu3bt0+vvPKKEhMD98tqOImPs2nggCQdOlqvPl9e0nLlQqOaG68rsU+8bt5sl9UapV5fntEQExOtxF527a8+qXGT7pHN1nW5JsbFKjGu6ye8IHCio6I0Le8ebdxerWN1F3VXn0TFxljV1HJD56806u6+Dk3OHtJt67FYLEp39lG6s0+3fU0AAAB0D5vNpn79+umxZx/x6fOJiYkaOHCgx1h5eblWr17t9b5aW1tVVVWlsrIyj/Hp06ersrJSkjRu3DgdOHBAZ86ckcPh0NatW/WLX/zCp7UHAg0P+KSmpkYxMTEaNmyYJLn/0nMKfdcsFotGZ6fr6InzOn+xQc7kRLW23JQxUrsxamxqUarToV5fuXwlPsGmpsYWXW9q/dqGB7rX0AFOLS4arYoDx3Ws/qI+b2xWnM2qCcMzVJgzRP2SuHcGAAAA/Ge323XixAm1trb69PnOHrTQ1dkd3+TChQtqa2tTaqrnpfOpqamqr6+XJFmtVj399NMqKipSe3u7VqxYob59vX8yYqDwGxS8tnHjRj388MMaMmSIdu3apYSEBBodd2j4kFRN/48R+p9dh3X85EU1fd6kxqZWtcdYlJLcS/cM9nxqSEvLTcXERMtm73ivCITW4H7JGpSapPNXr6m55YZ6xcV2y2UsAAAAiCx2u112e8+5ZPn23/1ub6rMnj1bs2fP7u5ldYqGh49u3Yzl9uuhwllLS4tWrlypl19+WZLkdDp1/vx5tbW1hXhl3y5ZQ51yJtl0+MQ5nTnzuW5euqqEOJsGpfdWe1uLmptbJH1xP4hz9Rc07rv3qLW1Wa2t3l+3h+CzWyS7PVoyNyPq+wEAAECku/WzX2c36gxHTqdT0dHR7rM5bjl37lyHsz56ChoePmpoaJCkDtdDRZIPP/xQgwcPDvUywt/zoV4AAAAAgK40NDSod+/eoV5G0NlsNuXn52vbtm2aO3eue3zbtm2aM2dOCFfWNRoePhowYIBOnTqlXr16cTlHiFy9elUDBw7UqVOn5HA4Qr0cfIlceiZy6XnIpGcil56JXHomcul5yKR7GWPU0NCgAQMC90TAUGtsbNTRo0fd70+cOKHq6molJycrPT1djz/+uIqLizVmzBgVFBRo/fr1OnnypEpKSkK46q7R8PBRVFSU0tLSQr0MSHI4HHxD74HIpWcil56HTHomcumZyKVnIpeeh0y6T7id2bFnzx4VFRW53z/++OOSpCVLlmjDhg2aP3++Ll68qF/+8peqq6tTdna2tm7dqoyMjFAt+WvR8AAAAAAAAJoyZco33pPkkUce0SOP+PaY3O4WFeoFAAAAAAAABBoND3xrxcbGqry83OfnSCM4yKVnIpeeh0x6JnLpmcilZyKXnodMAE8WEynP0AEAAAAAABGDMzwAAAAAAEDYoeEBAAAAAADCDg0PAAAAAAAQdmh4AAAAAACAsEPDAz3G2rVrNXjwYNntduXn52vHjh1fO3/79u3Kz8+X3W7XkCFD9Nvf/tZj+4YNG2SxWDq8rl+/HszDCDve5FJXV6dFixZp+PDhioqKUmlpaafzNm/erKysLMXGxiorK0tbtmwJ0urDV6BzoV4Cw5tc/vSnP2natGlKSUmRw+FQQUGB3n///Q7zqBf/BToX6sV/3mTy0UcfadKkSerbt6/i4uKUmZmpZ599tsM8asV/gc6FWgkMb39GvmXnzp2yWq3Ky8vrsI16QaSg4YEeYdOmTSotLdXKlSvlcrk0efJkzZw5UydPnux0/okTJ/TAAw9o8uTJcrlc+vnPf67ly5dr8+bNHvMcDofq6uo8Xna7vTsOKSx4m0tLS4tSUlK0cuVK5ebmdjrn448/1vz581VcXKx9+/apuLhY8+bN0+7du4N5KGElGLlI1Iu/vM2loqJC06ZN09atW1VVVaWioiI9+OCDcrlc7jnUi/+CkYtEvfjD20wSEhL06KOPqqKiQgcPHtSqVau0atUqrV+/3j2HWvFfMHKRqBV/eZvLLVeuXNEPf/hDTZ06tcM26gURxQA9wLhx40xJSYnHWGZmpikrK+t0/ooVK0xmZqbH2I9//GMzYcIE9/vXXnvN9O7dO+BrjSTe5vJVhYWF5mc/+1mH8Xnz5pn777/fY2zGjBlmwYIFfq01kgQjF+rFf/7kcktWVpZ54okn3O+pF/8FIxfqxT+ByGTu3Llm8eLF7vfUiv+CkQu14j9fc5k/f75ZtWqVKS8vN7m5uR7bqBdEEs7wQMi1traqqqpK06dP9xifPn26KisrO/3Mxx9/3GH+jBkztGfPHt24ccM91tjYqIyMDKWlpWnWrFkd/ocOXfMllzvRVXb+7DOSBCsXiXrxRyByaW9vV0NDg5KTk91j1It/gpWLRL34KhCZuFwuVVZWqrCw0D1GrfgnWLlI1Io/fM3ltdde07Fjx1ReXt7pduoFkYSGB0LuwoULamtrU2pqqsd4amqq6uvrO/1MfX19p/Nv3rypCxcuSJIyMzO1YcMGvfvuu9q4caPsdrsmTZqkI0eOBOdAwowvudyJrrLzZ5+RJFi5UC/+CUQuTz/9tK5du6Z58+a5x6gX/wQrF+rFd/5kkpaWptjYWI0ZM0Y/+clP9PDDD7u3USv+CVYu1Ip/fMnlyJEjKisr0x//+EdZrdZO51AviCSdVwEQAhaLxeO9MabD2DfN/+r4hAkTNGHCBPf2SZMmafTo0Xr++ef13HPPBWrZYc/bXEK1z0gT6D9D6iUwfM1l48aNWr16tf785z/rrrvuCsg+8W+BzoV68Z8vmezYsUONjY3atWuXysrKNHToUC1cuNCvfcJToHOhVgLjTnNpa2vTokWL9MQTT2jYsGEB2SfwbUfDAyHndDoVHR3doat87ty5Dt3nW/r169fpfKvVqr59+3b6maioKI0dO5b/VbhDvuRyJ7rKzp99RpJg5XI76sU7/uSyadMmLVu2TG+99Za+973veWyjXvwTrFxuR73cOX8yGTx4sCQpJydHZ8+e1erVq92/WFMr/glWLrejVrzjbS4NDQ3as2ePXC6XHn30UUlfXJZnjJHVatUHH3yg++67j3pBROGSFoSczWZTfn6+tm3b5jG+bds2TZw4sdPPFBQUdJj/wQcfaMyYMYqJien0M8YYVVdXq3///oFZeJjzJZc70VV2/uwzkgQrl9tRL97xNZeNGzfqRz/6kV5//XV9//vf77CdevFPsHK5HfVy5wL1PcwYo5aWFvd7asU/wcqls+3Uyp3zNheHw6H9+/erurra/SopKdHw4cNVXV2t8ePHS6JeEGG69x6pQOfeeOMNExMTY1599VVTW1trSktLTUJCgvnXv/5ljDGmrKzMFBcXu+cfP37cxMfHm8cee8zU1taaV1991cTExJi3337bPWf16tXmvffeM8eOHTMul8ssXbrUWK1Ws3v37m4/vm8rb3MxxhiXy2VcLpfJz883ixYtMi6Xy9TU1Li379y500RHR5snn3zSHDx40Dz55JPGarWaXbt2deuxfZsFIxfqxX/e5vL6668bq9VqXnzxRVNXV+d+Xb582T2HevFfMHKhXvzjbSYvvPCCeffdd83hw4fN4cOHze9+9zvjcDjMypUr3XOoFf8FIxdqxX++/Jv/VZ09pYV6QSSh4YEe48UXXzQZGRnGZrOZ0aNHm+3bt7u3LVmyxBQWFnrM//DDD82oUaOMzWYzgwYNMi+99JLH9tLSUpOenm5sNptJSUkx06dPN5WVld1xKGHF21wkdXhlZGR4zHnrrbfM8OHDTUxMjMnMzDSbN2/uhiMJL4HOhXoJDG9yKSws7DSXJUuWeOyTevFfoHOhXvznTSbPPfecGTlypImPjzcOh8OMGjXKrF271rS1tXnsk1rxX6BzoVYCw9t/87+qs4aHMdQLIofFmC/v9AgAAAAAABAmuIcHAAAAAAAIOzQ8AAAAAABA2KHhAQAAAAAAwg4NDwAAAAAAEHZoeAAAAAAAgLBDwwMAAAAAAIQdGh4AAAAAACDs0PAAAAAAAABhh4YHAAAAAAAIOzQ8AACIcLt27dLUqVPldDplsVg8XpcvXw718gAAAHxCwwMAgAi2b98+TZkyRbm5uaqoqNB7772n5ORkFRUVadOmTerTp0+olwgAAOATGh4AAESw5cuXa86cOXrmmWeUlZWlGTNmaOHChWpoaNClS5eUl5en7OxsxcbGKi8vT3l5eVq3bl2X+zt+/Lj+8pe/fOPXfeedd1RaWhrAIwEAAPBkDfUCAABAaJw9e1YfffSR/vGPf3iMJyQkyGKxqKSkRCUlJdq7d69++tOfaufOnd+4z7/97W9qamrSgw8++LXzPv30U917771+rR8AAODrcIYHAAARqqqqSu3t7crNze0wPmbMGPf7mpoajRw50mPO/v37VVBQoOzsbD300ENqbW3V9u3btWrVKr388ssaNWqUmpub9Yc//EHjx49XTk6OZs+erdbWVkk0PAAAQPDR8AAAIEK1t7dLkpqbm91j+/fvV0VFhRYvXuweO3DggEfD4/r161q4cKF+//vf68CBA3I6nXrjjTdUWFio7Oxs/f3vf5fL5VJcXJweeOAB7d69W/v375fT6dSOHTskdd5EAQAACCQaHgAARKjx48crLi5OK1as0KFDh/TXv/5Vc+bMUUlJiSZOnOieV1NTo+zsbPf7d955R/fff7+GDRsmScrMzNT58+clSadPn9bAgQMlScYYrV+/XmPHjlVubq62bNkiu92upqYmRUVFKS4urhuPFgAARBoaHgAARKiUlBS9+eab+uSTT3Tvvfdq+fLlKikp0Zo1azzm3X6Gx8GDBzVixAj3+5qaGmVlZen06dO6++673eMbNmzQ0aNHVVFRoX379snhcCgrK6vD/gAAAIKBm5YCABDBZs2apVmzZnW5vbGxUdeuXVO/fv3cY/3799ehQ4ckSXv37tUnn3yidevWqbKyUgMGDHDPq6mp0cSJExUXF6ff/OY3am9vV1JSEvfvAAAA3YIzPAAAQJdqa2uVlZXlMVZcXKza2lrl5OSotLRUb775pqKjo5Wdna0jR44oJydHhw4dUnFxsX71q1+psLBQFy9eVE5OjqQv7hNCwwMAAASbxRhjQr0IAAAAAACAQOIMDwAAAAAAEHZoeAAAAAAAgLBDwwMAAAAAAIQdGh4AAAAAACDs0PAAAAAAAABhh4YHAAAAAAAIOzQ8AAAAAABA2KHhAQAAAAAAwg4NDwAAAAAAEHZoeAAAAAAAgLBDwwMAAAAAAIQdGh4AAAAAACDs/D/qZhbp/OYQBAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/G0lEQVR4nO3dd3hUZfr/8fe09AIJENIICaGFHkJvQui9VwWkKHbFVfG3a10VK6uuwioqyldApFfpRYqIVJFQk0B6QgghvczM+f0xyZCYBDIhldyv68pF8sw5Z+7JgXDnzHM+j0pRFAUhhBBCCCFqGHVVFyCEEEIIIURZSCMrhBBCCCFqJGlkhRBCCCFEjSSNrBBCCCGEqJGkkRVCCCGEEDWSNLJCCCGEEKJGkkZWCCGEEELUSNLICiGEEEKIGkkaWSGEEEIIUSNJIyuEECVQqVRs3Lixyo9Rma5du4ZKpeLMmTPV8nhCCFGQNLJCiFpj5syZqFSqIh9Xr14tdvvY2FiGDBlSqmO/+eabtG/f/r6O8SDy9vYmNjaW1q1bA3DgwAFUKhXJyclVW5gQ4oGgreoChBCiMg0ePJhly5YVGqtfv36hr3NycrCysqJhw4b3/XzlcYyaTKPR1PrvgRCi4sgVWSFErWJtbU3Dhg0LfQQHB/P0008zf/586tWrx4ABA4Ci0wKioqKYPHkyLi4u2NvbExQUxO+//87333/PW2+9xdmzZ81Xeb///vtij3Hu3Dn69euHra0trq6uPPbYY6SlpZkfnzlzJqNHj+bjjz/G3d0dV1dXnnrqKXJzc+/52l599VW6du1aZLxt27a88cYb5q+XLVtGy5YtsbGxoUWLFixevPiuxz148CCdO3fG2toad3d3FixYgF6vNz9uNBr54IMP8Pf3x9ramkaNGvHuu+8ChacWXLt2jb59+wJQt25dVCoVM2fOZPny5bi6upKdnV3oeceNG8f06dPv+bqFELWXXJEVQgjghx9+4IknnuDIkSMoilLk8bS0NPr06YOnpyebN2+mYcOGnDp1CqPRyKRJk/jrr7/YsWMHe/bsAcDZ2bnIMTIyMhg8eDBdu3bljz/+ICEhgTlz5vD000+bG1+A/fv34+7uzv79+7l69SqTJk2iffv2zJ07966vYdq0abz//vuEhobSpEkTAM6fP8+5c+dYu3YtAEuXLuWNN97giy++oEOHDpw+fZq5c+dib2/PjBkzihwzOjqaoUOHmhvOixcvMnfuXGxsbHjzzTcBUwO9dOlS/vOf/9CzZ09iY2O5ePFikWN5e3uzbt06xo0bx6VLl3BycsLW1hYrKyueffZZNm/ezIQJEwBITExk69at7Nix466vWQhRyylCCFFLzJgxQ9FoNIq9vb35Y/z48UqfPn2U9u3bF9keUDZs2KAoiqJ89dVXiqOjo3Lz5s1ij/3GG28o7dq1u+sxvv76a6Vu3bpKWlqa+fFt27YparVaiYuLM9fo4+Oj6PV68zYTJkxQJk2aVKrX2LZtW+Xtt982f/3qq68qnTp1Mn/t7e2trFy5stA+//73v5Vu3bopiqIo4eHhCqCcPn1aURRF+X//7/8pzZs3V4xGo3n7L7/8UnFwcFAMBoOSkpKiWFtbK0uXLi22nr8fb//+/Qqg3Lp1q9B2TzzxhDJkyBDz159++qni5+dX6HmFEOLvZGqBEKJW6du3L2fOnDF/fP755wAEBQXddb8zZ87QoUMHXFxcyvzcFy5coF27dtjb25vHevTogdFo5NKlS+axVq1aodFozF+7u7uTkJBQqueYNm0aK1asAEBRFFatWsW0adMAuHHjBpGRkcyePRsHBwfzxzvvvENoaGiJNXfr1g2VSlWo5rS0NKKiorhw4QLZ2dkEBweX/htRjLlz57Jr1y6io6MB0/SH/JvzhBCiJDK1QAhRq9jb2+Pv71/s+N3Y2tre93MrilJiY1ZwXKfTFXnMaDSW6jmmTp3KggULOHXqFJmZmURGRjJ58mQA8zGWLl1Kly5dCu1XsHG+V81K3tQLlUpVLt8XgA4dOtCuXTuWL1/OoEGDOHfuHFu2bCmXYwshHlxyRVYIIUqhbdu2nDlzhqSkpGIft7KywmAw3PUYAQEBnDlzhvT0dPPYkSNHUKvVNGvWrFzq9PLyonfv3qxYsYIVK1bQv39/3NzcAHBzc8PT05OwsDD8/f0Lffj6+pZY89GjRwvNGz569CiOjo54enrStGlTbG1t2bt3b6nqs7KyAij2ezVnzhyWLVvGd999R//+/fH29rb05QshahlpZIUQohSmTJlCw4YNGT16NEeOHCEsLIx169bx22+/AdC4cWPCw8M5c+YMiYmJRe7AB9Pb/jY2NsyYMYO//vqL/fv388wzz/DII4+Ym83yMG3aNH766SfWrFnDww8/XOixN998k4ULF/LZZ59x+fJlzp07x7Jly1i0aFGxx3ryySeJjIzkmWee4eLFi2zatIk33niD+fPno1arsbGx4ZVXXuHll19m+fLlhIaGcuzYMb799ttij+fj44NKpWLr1q3cuHGjUGLDtGnTiI6OZunSpcyaNavcvh9CiAeXNLJCCFEKVlZW7Nq1iwYNGjB06FDatGnD+++/b35Lfty4cQwePJi+fftSv359Vq1aVeQYdnZ27Ny5k6SkJDp16sT48eMJDg7miy++KNdaJ0yYwM2bN8nIyGD06NGFHpszZw7ffPMN33//PW3atKFPnz58//33JV6R9fT0ZPv27Rw/fpx27doxb948Zs+ezb/+9S/zNq+99hovvvgir7/+Oi1btmTSpEklzun19PTkrbfeYsGCBbi5ufH000+bH3NycmLcuHE4ODgUqVsIIYqjUpRicmaEEEKIKjBgwABatmxpvglPCCHuRhpZIYQQVS4pKYldu3Yxbdo0QkJCaN68eVWXJISoASS1QAghaohDhw4xZMiQEh8vON+0pgkMDOTWrVt88MEH0sQKIUpNrsgKIUQNkZmZac5ZLU5xsWJCCPEgk0ZWCCGEEELUSJJaIIQQQgghaiRpZIUQQgghRI1U6272MhqNxMTE4OjoKGt4CyGEEEJUM4qikJqaioeHB2r13a+51rpGNiYmRpY9FEIIIYSo5iIjI/Hy8rrrNrWukXV0dARM3xwnJ6cqrkYIIYQQQhSUkpKCt7e3uWe7m1rXyOZPJ3BycpJGVgghhBCimirNFFC52UsIIYQQQtRI0sgKIYQQQogaSRpZIYQQQghRI0kjK4QQQgghaiRpZIUQQgghRI0kjawQQgghhKiRpJEVQgghhBA1kjSyQgghhBCiRqp1CyIIIUR1l5FrQG80VnUZQghhZqVRY6PVVHUZRUgjK4QQ1Uhqjp7d4TequgwhhABAk5HBqEB/APQpKWhLsWxsZZKpBUIIUY3kGuRKrBCieqqOP56kkRVCCCGEEDWSNLJCCCGEEKJGkkZWCCGEEELUSNLICiGEEEKIGkkaWSGEEEIIUSNJIyuEEEIIIWokaWSFEEIIIUSNJI2sEEIIIYSokaSRFUIIIYQQNZI0skIIIYQQokaSRlYIIYQQQtRI0sgKIYQQQogaSVvWHXNyckhISMBoNBYab9So0X0XJYQQQgghqlZOdhbHf9nMdeDZqi6mBBY3sleuXGHWrFkcPXq00LiiKKhUKgwGQ7kVJ4QQQgghKte1i+fZs2Ylh7ZuIO12Mo7AbO7j6mcFsrimmTNnotVq2bp1K+7u7qhUqoqoSwghhBBCVJKc7CwObFjDnrUrCf3rrHm8fkMPnoqLQc8D0sieOXOGkydP0qJFi4qoRwghhBBCVDKVSs2qzz8kJekmWp2OTsGD6T9+Cu3bdWRsp+YAZFdxjcWxuJENCAggMTGxImoRQgghhBAVLDnxBgc2reHPo4f419IVqNVqdFZWjJv3HIrRSO+R43B2cQVAk5FRxdXencWN7AcffMDLL7/Me++9R5s2bdDpdIUed3JyKrfihBBCCCHE/TPo9Zw5fIC961ZxYv9uDHo9AOd+O0S7Hn0AGD59TlWWWCYWN7L9+/cHIDg4uNC43OwlhBBCCFG93IyPZddP/8e+9atJio81jzdr15Hg8ZNp1q5jFVZ3/yxuZPfv318RdQghhBBCiHJ2IzqKtUs+BcCxTl36jJpA8PgpNGravGoLKycWN7J9+vSpiDqEEEIIIe6bJiODUYH+AGw6dRWDnV0VV1R5rl0KYe+aldjY2TNt/qsANO8QRP8JU2nbvTedgwehs7Ku4irLV5mSFJKTk/n222+5cOECKpWKgIAAZs2ahbOzc3nXJ4QQQgghSpCRlsrhrRsLxWbZOTgy/onnsLa1Q6VS8cS/P7b4uHaR12n46z4aHthT3iWXK4sb2RMnTjBo0CBsbW3p3LkziqKwaNEi3n33XXbt2kVgYGBF1CmEEA8so9HItWvXAHB286jaYoQQNcKVP0+zY+UP/LZzC9mZmQCm2Kx+gwgePxWthVde1VmZ1Pvjdxoe2ofbr/twvBZWdKOUFHB2LI/yy43FjewLL7zAyJEjWbp0KVqtaXe9Xs+cOXN4/vnn+fXXX8u9SCGEeJCp1Wr8/PwASMrMqeJqhBA1wfG9Ozmw8WcAvJo0JXj8VPqMGm+OzSoN++vhuP26j4aH9lPv+FG0WVnmx4waDTc7dOJGt54E/Dfvim41TKYq0xXZgk0sgFar5eWXXyYoKKhcixNCCCGEqM0MBoMpNmvtSvpPmEZg734ABI+bTHJiAsHjptC8Q1CpVlrVZGZQ7/hvNPx1H26HD+BwPbzQ45lu7sT17kt8r34kdOuJ3tEJTUbGnUa2GrK4kXVyciIiIqLIyl6RkZE4Olavy81CCCGEEDVRfFQE+9b9VCg2S1EUcyPbsFFjnnp30d0Poig4hIfidmh/3lXX39Dk3Fmfy6jTkRjYmfjefYnv2ZeUZi2gFA1xdWJxIztp0iRmz57Nxx9/TPfu3VGpVBw+fJiXXnqJKVOmVESNQgjxQDMajYSHm66M1GnoWcXVCCGqitFo5Ogvm9m7bhV/Hj1kHjfFZo0neNy9+yxNRgb1fz+C26F9NPx1P/ZREYUez3D3IL5XP+J69+VG117oHRzK/XVUJosb2Y8//hiVSsX06dPR560KodPpeOKJJ3j//ffLvUAhhKgNMvNu1pDsFyFqL5VKxYalX3DtYggqlYq23XoRPGHq3WOzFAXHsKu4/boPt0P7qPfH72hy78y1N+p0JAZ1Ia5XP+J79yO1SdMad9X1bixuZK2srPjss89YuHAhoaGhKIqCv78/drUop00IIcqTSqXCx8cHgJwH6D8YIUTJMtJSObxtE4e3bmDBku+xc3BEpVIxctYTxF4Lo9/YyTTw8i52X016Og2OHcLt1/24HdqPfUxUocfTPb2J792PuF59udGlBwZ7+8p4SVWiTDmyAHZ2drRp0+a+C1i8eDEfffQRsbGxtGrVik8//ZRevXqVuP2KFSv48MMPuXLlCs7OzgwePJiPP/4YV9fS36UnhBDViUqlMt9jIKkFQjy4FEXh0uk/2LNmJUd33InNOrJ9MwMmTgOgz8hxxe2I05VLuB3ah9uhA9Q7+Tvq3FzzwwYraxI7dSW+V1/ievclzdf/gbrqejelamTHjh3L999/j5OTE2PHjr3rtuvXry/1k69evZrnn3+exYsX06NHD7766iuGDBlCSEgIjRo1KrL94cOHmT59Ov/5z38YMWIE0dHRzJs3jzlz5rBhw4ZSP68QQgghRGVJT7nN3rWr2LN2JdFhV83jnn7+9B9vmjrwd9q0VBr8dtg0ZeDwfuxiYwo9nubtQ3yvvsT37seNzt1r1QpmBZWqkXV2djbHOjg5OZUq4qE0Fi1axOzZs5kzZw4An376KTt37mTJkiUsXLiwyPbHjh2jcePGPPvsswD4+vry+OOP8+GHH5ZLPUIIURUURSE9Pd30uVpXxdUIIcpbZnoayz/6N4qiYG1rS48hIwkeP7VwbJai4HT5gika69f9uJ7+A3XevUgABmsbbnTulnfVtR/pPr615qrr3ZSqkV22bJn58++//75cnjgnJ4eTJ0+yYMGCQuMDBw7k6NGjxe7TvXt3/vnPf7J9+3aGDBlCQkICa9euZdiwYSU+T3Z2NtnZd6ImUlJSyqV+IYQoL4qimFf2aujrX7XFCCHuS3xUBPvW/8SthHiefOcTAOq5ezJi5mN4+PrTY+hI7BxMU4l0Kbepf/SQaTWtQwewTYgrdKxUHz9TNFbvftzo1BWjjW1lv5xqz+I5sv369WP9+vXUqVOn0HhKSgqjR49m3759pTpOYmIiBoMBNze3QuNubm7ExcUVu0/37t1ZsWIFkyZNIisrC71ez8iRI/nvf/9b4vMsXLiQt956q1Q1CSFEVbGxsQFArq8IUfPk5mRzfM8O9qxdaY7NUqlUTHxqPvXcTZF6M155AxQF5wt/0fDX/bgd3o/L6ROoDQbzcfQ2Ntzo0pP4Xg8R37sf6Y0aV8XLqVEsbmQPHDhATk7RmxGysrI4dOhQMXvc3d+nKSiKUuLUhZCQEJ599llef/11Bg0aRGxsLC+99BLz5s3j22+/LXafV199lfnz55u/TklJwdu7+LsAhRCiKqjVavz9TVdi5WYvIWqO6LCr7PxpOQc3rSPt9i3zeNvuveg/firOrvXQ3U6mwdFfzatp2dxIKHSMVN8mxPXuR3yvviR26orR2qayX0aNVupG9s8//zR/HhISUuiqqcFgYMeOHXh6lj7Iu169emg0miJXXxMSEopcpc23cOFCevTowUsvvQRA27Ztsbe3p1evXrzzzju4u7sX2cfa2hpr6xKy14QQQgghyijkxO9sW/4NAC5u7vQbN4l+oyfSPCXFtCDBjAm4nD2Fymg076O3teVG157m5jXDq+jN7aL0St3Itm/fHpVKhUqlol+/fkUet7W1vetb/H9nZWVFx44d2b17N2PGjDGP7969m1GjRhW7T0ZGBlpt4ZI1Gg1gupIrhBBCCFHe8mOz9q5dRfPATvQfPxWAnkNHce7YIYb0H0KwXo/7kYO4TRmJzc3EQvun+DcjLi9h4GbHzhhLWtxAWKzUjWx4eDiKouDn58fx48epX7+++TErKysaNGhgbipLa/78+TzyyCMEBQXRrVs3vv76ayIiIpg3bx5gmhYQHR3N8uXLARgxYgRz585lyZIl5qkFzz//PJ07d8bDw8Oi5xZCiOrCaDSab/ZydpOfZUJUF7dvJnJw09pCsVnhF/6i/9jJ1P3rLC0O7WdTdDQu/3iq0FXXXDt7bnTvRXzPvsT16kump1dVvYQHXqkb2fxVZ4wFTtT9mjRpEjdv3uTtt98mNjaW1q1bs337dvNzxcbGEhFxZ43gmTNnkpqayhdffMGLL75InTp16NevHx988EG51SSEEFUhIyMDAKcqrkMIAWcOH2D3zyv4Y99ODHkRWJ42NjzRuh2jrG1o2qMt1reSCu1zu2kL4nv3Ja5XP24GdkKxsqqK0msdlVLG9+RDQkKIiIgocuPXyJEjy6WwipKSkoKzszO3b9/GyUn+yxBCVD1FUczRgHqdDQcjk+6xhxCiJJqMDEYFmm6e3HTqapkWCnj/qUc5uXcnnYBpDdwYobPCJyYKVYGWKdfBkYRuvUzxWL36ktnwwXw3peD3Mzs5BWtnxwp/Tkt6NYtTC8LCwhgzZgznzp1DpVKZ56bmJw0YCsRICCGEuDeVSoWzszMgqQVCVKbcnGyO793J3jUreezN9/Gxs8ft8AG+SUvFx9oa5+xsSIg3b5/cIoD4Xv2I692PpPYdUXSygElVs7iRfe655/D19WXPnj3m+bI3b97kxRdf5OOPP66IGoUQQgghyk3E5YvsXbeKwxvXEHA7mXHAwKmj8U8sHI2V4+hEQvfepquuPfuS5dawagoWJbK4kf3tt9/Yt28f9evXR61Wo1ar6dmzJwsXLuTZZ5/l9OnTFVGnEEI8sBRFMc+RVVQW/1gWQpRCTnYWBzet4+xPy2kWco6HgR8Al/wN8prY5IDWxPXqR3zvviS164iilX+T1ZnFZ8dgMODg4ACYsmBjYmJo3rw5Pj4+XLp0qdwLFEKIB52iKISHhwOyRK0Q5U2l1+Ny5iT19u2k5fdf0+5vN63nODkT37MP8b36Ed/zIbLrN6iiSkVZWNzItm7dmj///BM/Pz+6dOnChx9+iJWVFV9//TV+fn4VUaMQQjzwrOQOZyHKzU3gJOA4qDs9s7KwSk0p9PiNFq1I7DeA+J59udW2g1x1rcEsPnP/+te/SE9PB+Cdd95h+PDh9OrVC1dXV1avXl3uBQohxINOrVbTrFkzQG72EqKsDHo9ycu/oemyr6gDDATIWw42u05dEnr0Ia53PxJ6PkS2a70qrFSUpzLHbxWUlJRE3bp1zckF1ZnEbwkhqrOkzBwORNys6jKEqDGSoiNIX/gWvQ/uoUNurnn8L+B6z76o5zxBZqduYOGiTaKoYU3csNaqK/x5KjR+64cffmD8+PHY29ubx1xcXO6yhxBCCCFE+dLdTsb35x/x/u5/OOctTpAFHGzSlMahV2gNhH6+tEw5sqLmsLiR/cc//sGTTz7JiBEjePjhhxk8eDBamVsihBBlZjQazasYOtaXeB8hShJx5RIXvl3CuLAr9LtyEW1mJgA3ra053ncAWa+8gdq5Ls0D5abJ2sLiDjQ2NpYdO3awatUqJk+ejK2tLRMmTODhhx+me/fuFVGjEEI88NLS0gBwqF/FhQhRzWSmpXFk+0bSv1/K+LArPF/gseQWAVyd8RhRw0ZhtLI2DeZF2YnaweJGVqvVMnz4cIYPH05GRgYbNmxg5cqV9O3bFy8vL0JDQyuiTiGEeGCpVCo8PT0BMNaAew2EqAxXz51h34pleG/fxNM5ObTLGzcCl9p2IP75BSR16wnyb6ZWu685AXZ2dgwaNIhbt25x/fp1Lly4UF51CSFEraFSqahbty4gqQVCAFjfTMTjnX/x/dlT5E+2ydbpCB0xlsjHniG9scR9CpMyNbL5V2JXrFjBnj178Pb2ZsqUKaxZs6a86xNCCCHEA8xoNPLn0V/Zs3YV03v3Y/Cp43hvXo8mJxuAFBdXrj86j2sTp5HrXKdqixXVjsWN7JQpU9iyZQt2dnZMmDCBAwcOyNxYIYS4D4qikJWVlfd5xUfbCFEd3IiJYv/61exbt4qOsTG8CQzcscX8eFLbDlydMZfogcNQdLoqq1NUbxY3siqVitWrVzNo0CBJKxBCiHKgKIr5/gJZolZYSpORwai8u/Q3nbpareOmjEYjx3ZtY+/aVVw+fICHgYNAy/zH1WpiBgzl6oy5JHUIkvmv4p4s6kRzc3OJjY2ladOm0sQKIUQ5kp+pojZQqVTs+/hdxkdF8DiQv75Wrr0D18ZPJfSRWWR4NarKEkUNY9FPTp1Ox19//VUjVvASQoiaQq1W06JFC0Bu9hIPjsy0NI7s2MzRX7bwypff4RZ6Bf8flnI8NtrcfKR7NeLqI7O5Pm4yegfHKq1X1EwWXwKYPn063377Le+//35F1COEEEKIGkpRFK6cPcWetSs5sn0TORkZjAA6jR2Ef9hV83aJHTtzdcZjxAQPkqVjxX2xuJHNycnhm2++Yffu3QQFBRVaqhZg0aJF5VacEEIIIaq/tNvJ7N/wM3vWriTq6mUcgLnAC1otvno9hF3FqNUSNXgEV2c8RnKbdvc6pBClYnEj+9dffxEYGAjA5cuXCz0mUw6EEMJyRqORqKgoAOxdG1RxNUJYLiXpJt+//yaNgEUaDXNVahz0uaDXk+Nch/CJDxM2bSaZDT2qulTxgLG4kd2/f39F1CGEELVaSkoKAHbSyIpqLj82K/V2MrP/+W8AWiff4qC3Dz2iItEYDICB1MZ+XJ0xl4hRE6p1koKo2cp8m+zVq1cJDQ2ld+/e2NraoiiKXJEVQogyUKlUuLu7539RtcUIUYzcnBxO7NvFnrUrOXvkIIqiYK3V8pJ/c9qu/wmXs6fM2yZ068nVGY8R17sfqCUXWVQsixvZmzdvMnHiRPbv349KpeLKlSv4+fkxZ84c6tSpwyeffFIRdQohxANLpVLh6uoKSGqBqF5iwkPZtfpHDm5aQ8qtJACcgde8fZiVmkLdN14GwKCzInLEGK7OmEtK84AqrFjUNhb/qvTCCy+g0+mIiIjArsBbBZMmTWLHjh3lWpwQQgghqs6pX/ex5fuvSLmVREeXemxr1ZYbNra8GHmdusm3yHJx5cJT89mx/w9OvfcfaWJFpbP4iuyuXbvYuXMnXl5ehcabNm3K9evXy60wIYSoLRRFIScnJ+/zKi5G1Er5sVl7162idZce9Bo+BoDeI8Zgs2s7T+fm0PLcGVRJiQDcbtqCqzPnEjl8DEZrm6osXdRyFjey6enpha7E5ktMTMTa2rpcihJCiNpEURSuXLkCyBK1onKl3LrJr5vXs2ftSiKvXAIg8upleg8chvf2TfgvX8rMkL/M28f17seVmY9xo1svmc8tqgWLG9nevXuzfPly/v1v052KKpUKo9HIRx99RN++fcu9QCGEqA3UclOMqERnj/7KnjUrOL5nJ/pc07sBVjY2DH5oAM/bO9AtuDM2NxIA0NvYEDFqAqHT55DapGlVli1EERY3sh999BEPPfQQJ06cICcnh5dffpnz58+TlJTEkSNHKqJGIYR4oKnVagICTHML5WYvURk2fbOYs0d/BaBJq7ZM7RPMw7HRNNm+GU12FgCZ9d0Im/Yo4ZMeJqeuS1WWK0SJLG5kAwIC+PPPP1myZAkajYb09HTGjh3LU089dSc+RgghhBBVLj82a+/6n3ji3x/h6mb6f3rIw4/i7uPLrKbN6bV/Nw0X/8e8z62ANlyd+RhRg0egWFlVVelClEqZcmQbNmzIW2+9Vd61CCGEEKIcRIVeYe/alRzYtJaUpJsAHNiwhnHznkWdlcmEm4ksOHEM51U/AKCoVMQGD+LKjMe4GdRF5r8KM0WBpHg1t25ooElVV1OUxY3sjh07cHBwoGfPngB8+eWXLF26lICAAL788kvq1q1b7kUKIcSDzGg0EhMTA4CtS70qrkbUVJnA3k1r2bV5LZdOnzCP163vRt8xE+nftQctP/8Qv1XLsc7LhM21s+f6uMmEPjKb9EaNq6ZwUW0oCsRHaggP0REWoiMsREtYiI6UJA0NvPQ8N7qqKyzK4kb2pZde4oMPPgDg3LlzzJ8/nxdffJF9+/Yxf/58li1bVu5FCiHEgy45ORkAm7rSyIqyyQa++uBNcrKyUGs0dOwTTPD4qfRt0JDmP36H1yPj0OTd2JXh4cnVh2dzffwUcp2cq7bwcmaws2P9xZiqLqPaMxggJlxL+AUtYedNjWv4BR0ZqUVvPFVrFGztFHJzVFiXeU3YimFxOeHh4eabEtatW8eIESN47733OHXqFEOHDi33AoUQojZwc3MDkKW+Ramk3kri4Jb1hJ47w/y3PgSgDjBq2iysnJ3pO3I8LUPO4f/DUhr8fudG7JvtO3J15mPE9B+Coq1mHYmoMLk5EHlVS/gFHWHndYSH6Lh2SUt2ZtGmVatT8GmeS9NWBtq1NxLUUUWnDhrc6+qw0lS/n08W/y22srIiIyMDgD179jB9+nQAXFxcSElJKd/qhBCiFlCr1dSvXx+Q1AJRMqPRyLljh9m7diW/795hjs0aPXWmeZvpjz6O186tNJkxAcfrYab9NBqiBw3j6ozHuNUusCpKF5UoOxOuX9IRdsHUsIad1xFxRYs+t2gTamNnpHELPc1bG2jb3kinIDVBbTXUc9SiU9eMG/0sbmR79uzJ/Pnz6dGjB8ePH2f16tUAXL58uchqX0IIIYS4P0nxcexdt4p9634iITrSPO4b0Jr+46fi5uFtHhs4pBdWqaaLSjmOTlybMJXQh2eR6SH/Pz+I0lNVXLugM00PyJvXGh2qxWgs2rTaOxnxC8ilRRsD7dtD5yAV7QI0uNjp0NSQprU4FjeyX3zxBU8++SRr165lyZIleHp6AvDLL78wePDgci9QCCEedIqioNfrzZ8LUdCVc6f56fOPALBzdKL3iDEEj5uCX6u21D1zkqbv/su8rVVqCmmNGnP1kdlcHzsZg719VZUtylnKLZVpWsAFnblpjbtefBvn7GqgSatcAtoaad9eoUuQmtbNtDjZWKF+wKYvqZQq/qm5ePFiPvroI2JjY2nVqhWffvopvXr1KnH77Oxs3n77bX788Ufi4uLw8vLin//8J7NmzSrV86WkpODs7Mzt27dxcnIqr5chhBBlZjQaCQkJAUxL1P4adauKKxJVJSrsCnvXrsLVzZ3hM+YCoM/NZdH8eXQZMJSuA4dio9HiuWsb/su/weXsqUL7/75oCdGDhoNGUxXli3KgKJCUoC7UtIaH6EiMLf6c1vPQ0yRAT6u2Rjp0gC6dVDRvrMPRSlNj59xb0quVaaa3wWBgw4YNXLhwAZVKRYsWLRg9ejRaCyeOr169mueff57FixfTo0cPvvrqK4YMGUJISAiNGjUqdp+JEycSHx/Pt99+i7+/PwkJCeYrGUIIIURNk5WRwdFfNrN33SounvoDgHruHgx5eBYajQatTsfL//0Wq1tJNP7hG5qs/B7b+FgADDorogePoNGWdQDEPTRAmtgaRFEgPkpD+Pn8Oa2mKQK3bxZ/Dt199Pi3zqV1O4UO7aFrJzV+nlrstNY1tmm9XxZfkf3rr78YOXIk8fHxNG/eHDDNj61fvz6bN2+mTZs2pT5Wly5dCAwMZMmSJeaxli1bMnr0aBYuXFhk+x07djB58mTCwsJwcSnbcnlyRVYIUZ0lZeZwIOJmVZchKsHVc2fZ/fOPHNm+icz0NIACsVlTCOzTH41Gg+PVy/gv/wbvzWvRZpmWj81yrUfYlBmET56O3s6eUYH+AGw6dRWDnV2VvSZRMoMBYq9pCQvRmnNawy/oSE8pJu5KreDVRE/T1npatzPSMVBF145qvBrosNU++L+oVOgV2Tlz5tC6dWtOnjxpXvzg1q1bzJw5k8cee4zffvutVMfJycnh5MmTLFiwoND4wIEDOXr0aLH7bN68maCgID788EP+7//+D3t7e0aOHMm///1vbG1tLX0pQgghRJXZ/fOP7FmzAoCGPr4Ej5tM39ETqdvADYxG3A4fwP+HpbgdOWjeJ7llK67OeIyooSMxWlkDoMlLEhLVR24ORIVqzdMCwkJ0XLt4l7irZrk0bV1c3JWuCqqvWSxuZM+ePcuJEycKreBVt25d3n33XTp16lTq4yQmJmIwGMzZifnc3NyIi4srdp+wsDAOHz6MjY0NGzZsIDExkSeffJKkpCS+++67YvfJzs4mOzvb/LVEhAkhhKhMd2KzVjHy0cfxb9MegAETp5GTnUX/8VMJ6NQVlUqFJiODRqt+wH/5NziGhwKm5WNj+g/m6vS5snxsNZSdZYq7upPRquX6ZV2xcVfWtnlxV230tGuv0ClITcc2Guo71Zy4q+rG4ka2efPmxMfH06pVq0LjCQkJ+Pv7W1zA3+d0KIpS4jwPo9GISqVixYoVODubViJZtGgR48eP58svvyz2quzChQt56623LK5LCCEqi9FoNP8Cb12nbNOmRPVzMy6GfetXF4rNsrV3MDey/m3a89yH/zWNx0Tht/J7fH9egVXKbQBy7R24Nn4qoQ8/Soa3T5W8BlFYRpqK8Ly4q/C81bCiwrQYDUX7FjtHU9xVyzYG2nWAzkHQPkBb4+OuqptSNbIFr2K+9957PPvss7z55pt07doVgGPHjvH222+bl64tjXr16qHRaIpcfU1ISChylTafu7s7np6e5iYWTHNqFUUhKiqKpk2bFtnn1VdfZf78+YVei7e3d5HthBCiKiUlJQHQ0Fka2ZrMYDDwx96d7Fm7krOHD2A0GoE7sVn9J0y7s7Gi4HLmJP7Ll+KxaztqgwGAtEaNCX14FtfHTkLv4FgVL0NgirsKDykQd3VeR+xd4q78AkxxVx06PNhxV9VNqRrZOnXqFLpKqigKEydONI/l3y82YsQIDHn/EO/FysqKjh07snv3bsaMGWMe3717N6NGjSp2nx49erBmzRrS0tJwcHAATDeaqdXqEhdjsLa2xtraulQ1CSFEVclf2au23nn8IPnuvde4GWdKFWjVqRvBE6bSdcAQrG1NN2GpcnLw3LnVFJ917ox5v4QuPQidMYfYPv0leaASKQrcSlCbb74yZbRqSYwpvkWq56GnSUs9Ae2MBObHXfnocLSuvckBValUjez+/fsr5Mnnz5/PI488QlBQEN26dePrr78mIiKCefPmAaarqdHR0SxfvhyAqVOn8u9//5tHH32Ut956i8TERF566SVmzZolN3sJIWostVptfidKlqitObIyMji6YwvH9+7gH59+jVanQ6PRMHLWEyTfSKDfuMl4NPYzb2916ya+q1fgt/J7bBNM70YarKyJHDGGq9PnkNI8oKpeSq2hKJAQrcnLaL1zM1ZyYslxV00CcmndzkhgoIqunVT4eeiw00nTWl2UqpHt06dPhTz5pEmTuHnzJm+//TaxsbG0bt2a7du34+NjmgsUGxtLRESEeXsHBwd2797NM888Q1BQEK6urkycOJF33nmnQuoTQgghClIUhdC/zrJnzUoOb9tojs069eteOgebVrccPn1OoX0cr1zCf/k3NNq8Dk12XnxWvfqETZ1J+KRHyHatV7kvopYwGCD2esGMVtPV1rvFXfm30tMmL+6qS5Aa7wY6bLVyoaw6K9PKXsnJyXz77bfmBRECAgKYNWtWobmr1ZXkyAohqhtFUcxzKZOz9RyMTKriisTfpafc5sDGNexZu4qIyxfM4w0bNabf2Mn0GzvJFJuVz2jE7dB+U3zW0V/Nw8kBrbky4zGih4wwx2fdL01GRq3PkdXn5sVdFVgN69pFLVkZd4m7amWgbcG4Kxcd1pqi24vKV6E5sidOnGDQoEHY2trSuXNnFEVh0aJFvPvuu+zatYvAwMAyFy6EELWRoihcuGBqjhr6Wp7+IirejZgovnvvdQB0VtZ0GzSMfuOm0KpzN9TqO82PJj0dn01raLL8GxyvhQGgqNXEBA/m6oy53OzYWeKz7lN2FkRczl+61TQ94Pqle8ddtW2n0KmjmqB2Guo7atFpJDngQWBxI/vCCy8wcuRIli5dal6SVq/XM2fOHJ5//nl+/fXXexxBCCGEqL5uxsWwf8PPZGdlMe0F06I9jVu04qFRE/Bv255ew8fg4Fyn0D62MVE0WbGMxmtW3onPcnC8E5/lVfyy6+LuMtNUhF/Mm8uaN0UgKvTucVctWhto116hcycVHVpJ3NWDzuKpBba2tpw+fZoWLVoUGg8JCSEoKIiMar7CiEwtEEJUNwV/DCdl5sjUgiqgz83l5IE97F27itOH9mE0GrGyseGbQ2ewdyzh/wpFweX0H/j/8A0ee365E5/l48vVR2YTMXoi+ryEnYr0oEwtSL2lKjSXNTxER+x1DYpStGl1cjHQpJUp7qpde4UundS0aabF2UYrcVcPgAqdWuDk5ERERESRRjYyMhJHR8m7E0IISxW8+1nuhK5cMdfC2LNmBQc2ruH2zUTzeEBQV4LHT0FnVfRKnionB6+dW/H/YSl1/zprHk/o1pOr0+cS1ycY1DLX8m7y467CQu5MEbhRUtyVu4EmAbkEtDPQob0pOaB5Y4m7EiYWN7KTJk1i9uzZfPzxx3Tv3h2VSsXhw4d56aWXmDJlSkXUKIQQohaqjCuNv+3YyqZvlwBQp159HhozkeCxk/HwbVJkW1N81o/4rfge2xvxQF581sixXH1kDinNW5Z7fTWdosCNaI05m/VecVcNffT458VddegAXTupaeIpcVeiZBY3sh9//DEqlYrp06ej1+sB0Ol0PPHEE7z//vvlXqAQQjzojEYjCQkJAOic6lZxNQ8mU2zWn+xdu5IOvfuao7L6jpnI5bMnCR4/hcDewWh1uiL7Ol2+SJP/+4ZGm9ffic+q34DQvPisHBfXSn0t1ZXRCLHXNAWuspoSBNJuFx935ZkXd9W2nZHADqa4q0ZuOmw0NtK0ilKzuJG1srLis88+Y+HChYSGhqIoCv7+/tjV0Dk5QghRHSQmmt7WbuhYp2oLecCkJt/i0Jb17Fm7iuuXQgCIj7xubmRd3Bry6pIfiu5oNNLw1300Wb4Ut6OHzMO3WrXl6oy5RA0egVLMtIPaQp8LUWF5cVch9467atRUT7PWetq0N2W0dg7U4FFXh7W26C8OQljC4kY2n52dHW3atCnPWoQQotaqV88Uii9XosrHuWOH2bNmJb/v/oXcnGzAFJvVdeBQgsdPLXE/TXo6Pht/psnyb3G8fic+K3rAUK7OmENSh061Lj4rJzsv7ur8nekBEZd15OYU/T5Y2Sj4tsilWRs97dorBHVU08kcdyVNqyh/ZW5khRBClA+1Wk3Dhg0BWaK2vPz0+UdcPPUHAI1bBBA8fiq9ho/BsU7xUzfsoiLxW/Edjdeuwio1BYAcRyeuTZhK2NRHyfDyrrTaq1Jmmoprl7R5Tavpo8S4KwdT3FXzNgbad1DoFKgisI2WunY6tBJ3JSqJNLJCCCFqrPzYrP0bVvPUu4twrOsCwJBpj9KoWUv6j5+KX6s2xV/pVhRcTx03x2ep8lZXS/XxI3T6bK6PnojB3r4yX06lSk1WmVfByp8icNe4q4BcWrY10r6DQucgU9xVHVsribsSVUoaWSGEqGIFc2TLsGp4rRQTHsredavYv+Fnc2zWwS3rGT59DgA9h42m57DRxe6rysnBa8cWU3zW+T/N4/HdexE6fS5xvfvVqPgsg50d6y/G3HWbWwnqQhmtYedLjrtybWhqWlu1M9C+g4ouHVW08NPiJHFXohqSRlYIIaqYoiiEhJhuRJIlakuWnZXJbzu2smftSi6c+N08XqdefR4aPYGOfYLvur9V0k18V/8fTVZ+j80NU0qEwdqGiJFjCX1kDinNWtx1/5ogP+4q/IK2UE5r8o0S4q4a6WnSKpfWbY0EBkrclah5ytTIXr58mQMHDpCQkIAx762YfK+//nq5FCaEEEIUlJWezpLX/oE+Nxe1Wk2H3v0IHj+Fjn36Fxublc/p0gX8/+8bvDevR5N341dmfTfCpj1K+KRp5NStmfFZ+XFX5ukBeZFXJcVdefjpadpKT+t2RoIC8+KuGuiw0Urclai5LG5kly5dyhNPPEG9evVo2LBhkRVppJEVQgjLqFQqWrY0heknZ+uruJrqIe12MofX/cR24Ku8MWfXegyeOhPHui70HTMRVzf3kg9gNNLw4F78ly+lwW+HzcO3Wrfjyoy5RA8aXqPis/LjrsILZbSWHHfl3dTUtLZtrxDUkby4Ky3WWtsqqF6IiqNSLJyQ5ePjw5NPPskrr7xSUTVVKEvW7xVCiMqWlJnDgYibVV1GlTAajZw/fpS9a1dxbNd2c2zWJeBCKVf20qal0Wjjz/j/37c4XA8H8uKzBg7j6vQ5JHUIqvbxWea4q5A7jev1SyXHXTVuboq7atvOdBNWUHs1DRx16DQ1Z56vEAVZ0qtZfEX21q1bTJgwoczFCSGEEAXdSohn3/rV7F23ivjI6+bxxs1a8uLlC7gBF+5xDLuoSJr8+B2N165El5YKQI6TM9cmTCV06qNkenpV3Au4D5npKq5dvNOw5sddGfTFx135tsylRX7cVUcVHVprcbGXuCtRe1ncyE6YMIFdu3Yxb968iqhHCCFqHaPRyI0bNwDQ1sKVvf76/QgrPzUtcW7n4EjP4WPoP34qTX2bMLpj05J3VBRcTx7H/4eleOzdcSc+q7EfodPncH3UhGoVn5Ufd1WwaY29VkLcVV0Dfq30tGxjoEN+3FVzibsS4u8sbmT9/f157bXXOHbsGG3atEH3twn2zz77bLkVJ4QQtUV+I9vQwbmKK6lYMdfC2LtuFW6ejRg4+REAugwcSoct/egxZCTdBg3HJm8KgSojo9hjqHJy8Pplsyk+K+SceTy+Rx+uzphLfM+Hqjw+69YNtWku6wVT1FV4iI6E6OL/y3VxM8VdBbQzEtgBOgepaemnwcnaSm7CEuIeLJ4j6+vrW/LBVCrCwsLuu6iKJHNkhRDVjdFoJC4uDgDrOi4cjLxVxRWVr+zMDH7btZ29a1YScuIYAO4+fvx3x6G7NmqajAxGBZriyDaduoo2MwPf1f+H36ofCsdnjRrP1Udmk9q0ecW/mL9RFLgRoyE8RGvKac1bEetWCXFXbt56mrTS07qt4U7clZcOe51GmlYh8lToHNnw8PAyFyaEEKIotVqNh4cH8GAtURsWco49a1ZyaMt6MvLmrarVajr0MsVmKYpS6uat/VsL8Pply534rAYNCZ32KNcmTq20+CyjEeKua+5cac1bEau4uCuVSsHTT49/Kz1t2il07AidO6rxcdNhq5WMViHKiyyIIIQQokJs/u5/HNq6AYAGXo0IHjfZFJvV0OOe+6qzMvHattH8tc+mtQAktWnP1fz4rLtkx94vgx6iQrUFmlbT9IDi4q40WoVGBeKuAgOhS0cNni4SdyVERStTIxsVFcXmzZuJiIggJ6fw1YNFixaVS2FCCCFqBlNs1m/sW7eKMXOfplHeClkDJj2C0Wik/4SptO7SA3Up5q06Xb5I4zUraLR5HVa3k83j0QOGcmXWPJLadyz3+KxCcVd5N2Ndv6QjJ7uYuCtrBZ8WuTRvnZfRGqiiUwcNbk46dJqKa6yFEMWzuJHdu3cvI0eOxNfXl0uXLtG6dWuuXbuGoigEBgZWRI1CCPFAMxqNNXKJ2qT4OA5sXMPedauIi7gGgJOLK4+++hYArTp1pVWnrvc8jiYzA89ftuC7ZgWup0+YxzPcPbGLjQbgxAeflypH9l4y01Vcv6Ql7Pyd6QGRV4uPu7K1vxN31a6DQqdAFR3bStyVENWJxY3sq6++yosvvsjbb7+No6Mj69ato0GDBkybNo3BgwdXRI1CCCGqCYPBwKmDe9izZiWnft2H0WAAwNbegZ7DRtNn5LhSH8v54nka/7wC7y3rsUpNAcCo1RLbdyDXJk4jsX0QozqV/QautNuqvNSAO01rTHjxcVeOdYz4tcqlZRsD7dtD5yAV7VpK3JUQ1Z3FjeyFCxdYtWqVaWetlszMTBwcHHj77bcZNWoUTzzxRLkXKYQQDzKVSkXz5qaGLSXXWMXV3J3RYGDxv/5BSpJp9bGWHTvTb9wUug8eYY7NuhtNejpev2zC9+cVuPx52jye5u3DtQlTuT5mEtn1G5i2LSF+qzjJiWpzNmt4iGlua0JUCXFXDQz4tcqlVVsj7dtDlyAVAf5aHK2laRWiprG4kbW3tyc723TXqIeHB6GhobRq1QqAxMTE8q1OCCFqAZVKZc7kVumrT2pBfmzWqYN7ef7jL1Gr1eisrBg+fS5pKckEj5+Cl99dFiwooM75P01XX7duQJeeBoBRpyMmeDDhE6dxo2vPUmW/KgokxhZsWk0fSQnFx1018DIlB7RqZ6RDB+jSUUUzHx32OkkOEOJBYHEj27VrV44cOUJAQADDhg3jxRdf5Ny5c6xfv56uXe89F0oIIUT1Fnb+T/asXcWhrRvIyHvLP3j8FNp17w3AuHmlW/hGm5aK99aNNP75x0ILF6T5+BI+cRoRoyeS7VqvxP2NRriCP6cIZPVnLoRdsSMsREdqcvFxVx6+Bvxb5dK6rUJgR+jaUU1jd4m7EuJBZnEju2jRItLSTL9Nv/nmm6SlpbF69Wr8/f35z3/+U+4FCiHEg85oNHLzpumterV91SzUkp5ym1+3rGfv2pWEXzhvHm/g6U3w+Ck08i/lXFVFoe65MzReswLvbRvR5k0PMOisiBk4lPCJD5PYuVuR5AGDHqLDtIWmB4RfcCOTK6YNfrizrUar4O2vp2lrPW3aKgR1NMVdebhqsZG4KyFqFYsbWT8/P/PndnZ2LF68uFwLEkKI2ig+Ph6Ahr6OVfL8kVcv882//wmAVmdFlwFDLIrN0qam0GjLehr//CN1LoaYx1P8/Lk2YRoRo8ebFy7IzYGIywWa1gs6rl8sPu7Kmiza8iduE1vQpqOGoI55cVfOOqwk7kqIWq9MObLJycmsXbuW0NBQXnrpJVxcXDh16hRubm54enqWd41CCPHAq1OnDlDuEanFupUQz/6NP2M0Ghk/7zkAmncIouvAYQQEdaH3iLE41nW594EUBZczJ/H9+Uc8f9mMNisLAIOVNdGDhxM+8WGiW3bh2iUdYdvy5rNe0BFxpfi4Kxs7I34BuTRvbYq76twyi/4DG6JDD9+lgb19uX4fhBA1n0pRFMWSHf7880/69++Ps7Mz165d49KlS/j5+fHaa69x/fp1li9fXlG1lgtL1u8VQojKlpSZw4GIm+V+XINez6lf9xaKzbJzcOSbQ6extrUsn1V3O5lGm9bSeM0KnK9cMo8n+zXnt24z2OoyhXPhboRf0BIdpi027srB2UiTVqaM1vYdoFNHFe0DtNSx0aJR522fng4ODqbP06SRFaK2sKRXs/iK7Pz585k5cyYffvghjo533gIbMmQIU6dOtbxaIYQQFSb2ejh7165i/8afSb6RYB5vEdiJ4PFTUZVi2gAAioLryeM0XrMCrx1b0WSbrr5ma23Z3WAcS3IfY3tYTwgr2rTWrW+gSatcWra9kxwQ0FSLk8RdCSHuk8WN7B9//MFXX31VZNzT05O4uLhyKUoIIUT52L/hZzYs/QIwrbr10OgJFsVm6ZKSqPfjOpqs+5EG8VfM42dpy1c8zkr9VG7H1DGPN/DU0+RvcVfNG0vclRCiYljcyNrY2JCSklJk/NKlS9SvX79cihJCiNrEaDRy8eJFABr4+N1j65KFhZxj79qVdA4eTLsefQDoN24yYSHn6D9+Kh0f6o/OquSlVY1GiI/UEHZei+3e3+nx+/f0S9yINaZs2zTsWcUUljKXEwTh7mukXatc2rTLIDAQunRU4+shcVdCiMpjcSM7atQo3n77bX7++WfAFOQdERHBggULGDeu9EsTCiGEuMNoLNuKXukptzm0dQN71q4kPOQvAJIS4s2NbENvH/719Y9F9jPoITpce2clrPM60kJuMTHjBx5nKc24c/X1JIGsc5vN+S7j8A9y4LlAFV065uBVTydxV0KIKmVxI/vxxx8zdOhQGjRoQGZmJn369CEuLo5u3brx7rvvVkSNQgjx4EpPR+XoSFNvbzh7lrRSXMlUFIWQP46xZ+1Kju3cRk7efFVTbNZg+k+YVmj73ByIvHIn7ios5E7clQoj/djHG3zNaDZiRS4AGVoHznWcSNr0WTSbHMSbzjqsNKWcTyuEEJXE4kbWycmJw4cPs2/fPk6dOoXRaCQwMJD+/ftXRH1CCPHAUykK1hERoNORXsq35JctfN28cEGjpi0InjCVPiPGorN25folLb+suLOEa+RVLfrcwsd1I465uu+Yq/qGRjnh5vGcjp3QPD4XuylT6JKfGCCEENVUmXJkAfr160e/fv3uu4DFixfz0UcfERsbS6tWrfj000/p1avXPfc7cuQIffr0oXXr1pw5c+a+6xBCiOrIFJu1j4Ob1/HUO59g6+CASqViyMOzOH/8Is3azyInqyWh56zYvVpLTLgWo7GEuKuW2Uysu4txsctoem4b6ly96UEnJ3j4YZg7F6v27Sv3BQohxH0oUyN7/PhxDhw4QEJCQpF5XYsWLSr1cVavXs3zzz/P4sWL6dGjB1999RVDhgwhJCSERo0albjf7du3mT59OsHBwebVcIQQoqZStFqSxo+HlBRwNi1EEHs9nH3rfmL/hp+5dSMeqI9Lg7PUcR2YNz3gWeIjtRzcVPR4deobaBKQS0BbIx0CoadXDK0Pr8Dm+2Wojl2/s2G3bvDYYzBhQvXMaLW3B8uizoUQtYzFCyK89957/Otf/6J58+a4ubkVujNVpVKxb9++Uh+rS5cuBAYGsmTJEvNYy5YtGT16NAsXLixxv8mTJ9O0aVM0Gg0bN2606IqsLIgghKhW0tMx1q9PyPHjABw9cZpPPl3P5bNGoAMQiEoVhKJ4FLt7fY87cVem5IC8uCs1qHbuhK+/hm3bwGAw7VCnDkyfDnPnQuvWlfIShRDCEhW6IMJnn33Gd999x8yZM8taHwA5OTmcPHmSBQsWFBofOHAgR48eLXG/ZcuWERoayo8//sg777xzz+fJzs4mOzvb/HVx0WGVIf/KtUqlMjf/Ba9mF1zLvLhtFUUh/3cO2bZ8ti04XtZt73U+Ldm2pNchf08e3L8noCYsVMVpwyjs98aS5NKEZx4fSE7OIwBotUZ0OtDrQa9XcPcx4N9KT/uOejq0h6AOGvw8rbDVWpufk8hI1O8tg+++g8hI8zMpvXqhmjsXxo9HsbExbWs0Vtvve3XYtuC4/IyQbUvatuB4Rf09Kam2yj731ZHFjaxaraZHjx73/cSJiYkYDAbc3NwKjbu5uZW4sMKVK1dYsGABhw4dQqstXekLFy7krbfeuu9671dISAgALVq0MNeemJhIQkICdevWxdPT07zthQsXUBSFZs2aYZWX+Xjz5k3i4uJwdnbG29vbvO2lS5cwGAz4+/tjY2MDwK1bt4iJicHR0REfHx/ztleuXCE3Nxc/Pz/s7ExLUt6+fZuoqCjs7e3x9fU1bxsaGkp2djaNGzfGIe+Gj9TUVCIiIrCzs8PP707WZXh4OJmZmfj4+JhXe0tPT+fatWvY2Njg7+9v3vbatWtkZGTg7e2Ns7MzABkZGYSHh2NlZUWzZs3M20ZERJCWloanpyd169YFICsri9DQULRaLS1atDBvGxUVRUpKCu7u7ri6ugKmX5auXLmCWq0mICDAvG1MTAzJycm4ubmZs4/1ej2XLpmW2mxd4CpVXFwcSUlJ1K9f3/x31Wg0cuHCBQBatWpl3jYhIYHExETq1atHw4YNi5z7li1botFoALhx4wY3btzAxcUFDw+PIts2b94cnU4HmM59fHw8derUwcvLy7ztxYsXMRqNNG3aFGtrUyOTlJREbGwsTk5OhabnXL58Gb1eT5MmTbC1NcUlJScnEx0djYODA40bNzZve/XqVXJycvD19cU+7+3mlJQUIiMji5z7sLAwsrKyCv09SUtL4/r169ja2tKkSRPztvnnvlGjRubfsPP/nlhbW9O06Z2A/uvXr5Oeno6Xlxd16tQBIDMzk7CwMHQ6Hc2bNzdvGxkZSWpqKh4eHri4mN6Wz87O5urVq2g0Glq2bGneNjo6mtu3b9OwYUPq1asHQG5uLpcvX0alUhU6n7Gxsdy6dYsGDRrQoEEDAAwGgznvteDfk/j4eG7evFno74miKObzGRAQgMGg4tIliI29QcOGN9i7ty4LFtQjK8sOWMW54L9oRAb29o3IzTXg4ZvNM88mMyw4iZupjng2dsOrvg4brQ3nz583/YzwaIaVTgN6PSmrVsE33+B4+LApEBbAxYWbI0aQNHYs3gMH3vkZkZQkPyOQnxHyM6J6/YzIbyLzz72rqyvu7u5Fzn1V9hHVkcVt9gsvvMCXX35ZbgX8PTRbUZRig7QNBgNTp07lrbfeKvSD7F5effVVbt++bf6ILHCFQgghKkJ2NhSc8dS3Lzg5KbRuDZs3m8ZiYtRkZVkDWbTlD/O2O3dCTJKRsMs2PDrF9J+VfyMt/u422Gg1hZ/o2jV47TXw8cFp+nScfv0VldEIDz0EK1dCdDQJr7xCdoHGQgghHiQWz5E1Go0MGzaMy5cvExAQYP6NMN/69etLdZycnBzs7OxYs2YNY8aMMY8/99xznDlzhoMHDxbaPjk5mbp165p/W82vRVEUNBoNu3btKlWKQlXNka0ObwnItoW3LTgubxvKtiVtW3C8uG0zMuDsWSNnz8KpU3DihJq//lLIzQVbW9O2mZkqQIVKlY5Gcwqd7ix6/Wlc3G8wZGx7Pv303zja2hJ99Rpe7vXvfu5zczFu2oRq6VLYvRtVXj1KvXowcybK7NmoC1yJrE7fy5q2bcFx+Rkh25a0bcFxmVpQPip0juwzzzzD/v376du3L66ursVePS0NKysrOnbsyO7duws1srt372bUqFFFtndycuLcuXOFxhYvXsy+fftYu3Ztobe8qqPi/iKU9JejuPGCf8Fk2wdz25LG5e9J9dk2JUXF6dMqTp82Na2nTsHFiwpG49+3VeHgbMQ3IBe/lrmkpRxg79oXUZSraK1s6TFsFMHjp9K0bQe0mZk4/u8jLm/ZguFWIkrDeuZ6CtUQGgrffAPLlqEumNbSvz889hiqUaPAyoq/v5Lq+r2UbS3ftqRx+Rnx4G9b0nhln/vqyOJGdvny5axbt45hw4bd95PPnz+fRx55hKCgILp168bXX39NREQE8+bNA0zTAqKjo1m+fDlqtbrQfBOABg0aYGNjU2RcCCHu140bpkb1TtOqEBpa3A92FXXqGfBrlYtvy1zq1o8m8upPNGtfj4dGmZbtzkxrTkJUA3qNeJzug0di+/eoK5UKvZsbKMbC4zk5sHEjLF0Ke/bcGXdzg0cfhTlzoMAcQyGEqG0sbmRdXFwKTc6+H5MmTeLmzZu8/fbbxMbG0rp1a7Zv326eWBwbG0tERES5PJcQQhRHUSA6mkJXWU+dUoiK+nvTavq6vocev1Z6/AJMjatfQC52Tun8vvsX9qxZyfnjptSVS6cD6DNyLCqVClsHB978/ucSa1BlZ9Nk/Hjid+83XQW5fNl09fX7700dNYBKBQMHmnJfR4yAv03rEkKI2sjiObLLli1jx44dLFu2zHxXa00iObJC1F6KAmFhRZvWGzeKfwvNo3Few5p3tdWvZS6Ode/8yLx28Tx71qzk1y3rSU+5DZjekmvf8yGCx02h66Bh93x7TpORwahA0137N7/8Ctc1q+DAgTsbuLvD7NmmjwJ3jgshxIOqQufIfv7554SGhuLm5kbjxo2L3Ox16tQpSw8phBDlzmCAS5cKN62nTyvcvl30Sqtao+DVRE+TgFx88z4at9Bj53D33/NXf/EJx/fsAKCehyfB46bQd8xE6nt43XU/M0Wh7tk7PzNdn3rc9IlaDUOGmK6+Dh0KpYwbFEKI2sbin46jR4+ugDKEEKLscnLg/PnCTevZswoZGUWbVq1Owae5aUqAX4Ae34BcGjXLxdqm5OMrikLIid/Zt3YVE556gYaNGgMwcNIjaLQ6+o+fQptuvQqlqtyN06ULeG/dgNf2TdhH34kE1Lu7o3nsMVSzZ0OBnEchhBDFs3hqQU0nUwuEqNkyMuDPPws3refOKeTmFn0L38bOSOMWedMDAkzNq1cTPdpSTi+9dSOBAxt/Zt+6n4i5FgbAuHnPMfX5Vyyu2y7yOt7bNuG1bQPOVy6Zx/V29miys7j+3/+S1r07AW3aVPuVdIQQoiJV6NQCIYSoLCkppoUF7sxnhQsXFIzGolda7Z2MeVdZ70wPcPcxUMqLpGYGg4Ezh/azZ+1KTuzfjdFgAMDGzp6ew0bRpf+QUh/L+kYCXr9sxmvbJlzPnrzzHDor4vv0I3L4GG506s7Qvh1BUdDa1Lz7DoQQoipJIyuEqBYSE4vehHX16l3irsxXWU1XXOt7GiiP2EN9Tjaf/uMpMtJSAWjeviPBE6YWH5tVDF3KbTx2/4LXtg00OHbEtNIWoKjV3OjSncjhY4gZMJRcJ9Pyq5qMDNQ5OTR+6imiYm7I1VghhLCANLJCiEqlKBATU7RpjYwsPu6qnofe3Kzmf9RtYCx64DLIyc7i913b+fO3Qzz57iJUKhXWtnYMnvYoudnZBI+fgrf/vZfEVmdl4n5gD17bNtLwwF40uTnmx5LaBRI5bDTRg0eQ1cCtXOoWQghhIo2sEKLCKAqEhxdtWhMSim9a3X30+LW6Mz3g73FX5eXaxfPsXbuKX7esJ+12MgDB46fSIrATANNeWHDPY6hyc2lw7DBeWzfgsWcHuvQ082Mp/s2IHD6GqKGjSM+7MUwIIUT5k0ZWCFEuDAZTjv/f466Sk0uIu/K7k9HqV8q4q/uRkZbK4a0b2bN2JaF/nTWP1/PwJHjsZNy8Gt37IEYjLmdOmBIHftmC9a2kO8f38CRy2Ggih48hpVlLLJnnYLSx4eratehv3cDo5iLTC4QQopRK1cjOnz+/1AdctGhRmYsRQtQMOTkQElJ4CdczZ+4Sd9XMNJe1cUAuTVrdO+6qIlw5e4qv3jSlDWh1OjoFDyZ43BTadr9HbJai4HwpBK+tG/Devgm7mGjzQ1kurkQPHkHk8NEktQ8y5b+WhUpFjo8PGA1l218IIWqpUjWyp0+fLtXB7rWCjRCi5snMNMVdFWxaz51TyMkp2rRa296Ju/ILyMWvVS6efnp0VpVbc3LiDQ5s/BmNVseImY8B0KZbLzr06ku7Hn3oPXIczi6udz2GfcQ1vLZtxHvrBpxCr5jHc+0diOk/xJQ40K0nSjksVqDKzsb3kUe4sWmb/BwVQggLSI6sEMKsYNxVftN64YKCwVC0ubJ3MpqWbc2PvGpVtrir8mLQ6zlz+AB71q7k5IE9GPR6nFxc+frASXRWpeukbRLi8fxlM97bNuLy551f4A1W1sT1CSZy2GjiHgrGaGNbbnUXXKI2KuYGXu71yu3YQghRE0mOrBDingrGXeX/eeVKcVuqcHY1FFoJy69VLg3KKe7qfsVFXmffup/Yv+FnkuJjzePN2nUkeMIU4O6/q+tuJ+OxezveWzdS//jRQnFZCV175sVlDUHvKL/4CiFEdVOmRvaPP/5gzZo1REREkJOTU+ix9evXl0thQojyoSgQG1t4UYHTpxUiIorvQut56PFrqTevhJUfd1UdmtbibP+/b9m2/BsAHOvUpc+oCQSPn0Kjps1L3EeTmUHDA3vw3roBt1/3F4rLutm+oykua8hIsuvVr/D6ARSNhpTgYHKys1AURaYXCCFEKVncyP70009Mnz6dgQMHsnv3bgYOHMiVK1eIi4tjzJgxFVGjEKKUFAWuXSvatMbHlxx3VbBh9Q3IxakC4q7Ky7VLIexds5LuQ0bQsmMXAPqPn0pU6BWCx0+hc/AgdFbWxe6rys2lwdFf8d62Efc9O9BlpJsfu920hSkua9goMkqTXlDOFCsrIj/5BNKSURQPaWSFEKKULG5k33vvPf7zn//w1FNP4ejoyGeffYavry+PP/447u7uFVGjEKIYBoNpKsDfm9Zi467UCl5N7jStvgF6fFvmVmjc1d8VnAu66dRVDHalW441PTWFI9s2FYrNSrudbG5kGzVrwevfrip+Z6MR11N/4L11A547tmCdfOvOcT29iRo2mshho0lp3vI+Xlk5MBqx++MPsrt1r9o6hBCihrG4kQ0NDWXYsGEAWFtbk56ejkql4oUXXqBfv3689dZb5V6kELVdbu6duKv8j7NnFdLTS4678g2407j6NMvFuvzuT6pwiqJw4eRx9q5dxdEdm8nJygLyYrP6DeKhMRPvtjPOF/7Ce9tGvLZvwi42xvxQlmu9vLisMSS172hR1mtFUmdn4zdrlixRK4QQFrK4kXVxcSE11bQGuaenJ3/99Rdt2rQhOTmZjIyMci9QiNomMxPOnSvctN4z7qrlnYUFvJpUftxVRVj8zxeJvR4GgFeTpgSPn0qfUeNLjM2yvxZmal63bcQp7Kp5PNfBkZgBQ4gcNpobXcsnLqs8GezsWH/R1Gx3srev4mqEEKJmsfgneq9evdi9ezdt2rRh4sSJPPfcc+zbt4/du3cTHBxcETUK8cBKSYGzZws3rcXHXamwczSapgW0zM1bxlWPe2N9lcVdlReDwcCZwwc4vHUD8/79EdY2tqhUKoY+/CjhF8/Tf/xUmrXvWOy8UZv4OLx+2Yz31g3ULbBal8HKmti+A4gaNpq4Pv0wVvbqC0IIISqFxY3sF198QVbe23yvvvoqOp2Ow4cPM3bsWF577bVyL1CIB8XNm4WXb71b3JWTi4EmrXLxbXlnGVc3r+oRd1Ve4qMi2LfuJ/atX22OzQrs3Y9eI8YCMPSR2cXup0u+heeu7Xhty4vLyovCNmo03OjWi8hho01xWQ6OlfNCyoFKUfDW3yY1NhWjg79MLxBCiFIq09SCfGq1mpdffpmXX365XIsSoibLj7sq3LTeJe7K3WC+0pqf0epSjeOu7kcWsBFYOG86fx4/ah53cK7LQ6PH06R1u2L302Rk4L5/lyku6/AB1Lm55sdudggicvgYogePINu15i4mYIMBY64sUSuEEJYo02Qxo9HI1atXSUhIwJgXHp6vd+/e5VKYEDVBftzV35vWkuKuGvro70wPyEsPcHYxFjnugyoCmAJw/CgqlYq23XuXGJulysnB7chBvLZtxGPfTrQF5uAnNw8gatgoooaOJsPLu1JfQ0VQgCiNI81cHCR6SwghLGBxI3vs2DGmTp3K9evX+fvqtiqVCoNBriiIB1N+3NXfm9aS4q48/PQ0yWtW/QJyadwyF3vH6pvRWt4y0lI5vG0TN+NimPKc6V2bZsBUwDD3aR6a9AgN/t6EGo3UO/E73ls34LFzG9a3C8RleTUicvgYIoeNJvUuix3USCoVGSordLZ20sgKIYQFLG5k582bR1BQENu2bcPd3V1+6IoHUn7cVcGm9cyZkuOuGjXV49fqzpVWn+Y1K+6qvCiKwsVT+bFZW8jOzESr0zH04Vm42JpyY1cAm554/k6OrKJQ5/w5vLZtwHv7ZmwLLDObVa8+UUNGEjl8DLfadqg2cVlCCCGqB4sb2StXrrB27Vr8/f0roh4hKl1+3FXBpvXcOYXs7KJNq5WNgm8LU7PaOC+j1dv/wYi7uh/JiTc4sGkNe9euIiY81Dzu6edP//FT0VoV/QY5hF01x2U5Xgszj+c4OhEzcCiRw0aT2Ll7tYvLqhCKgr2SS25mOoqjjVwgEEKIUrL4f4guXbpw9epVaWRFjZSaCmfOFG5aQ0JKiLtyMBZaCcsvIBcP35ofd1URDm/fxP999A4A1ra29BgykuDxU2neIehOU1ZgjmufqaOoc/G8+WuDtQ2xfQcQOXw08b37YSxhmdkHlQrwNKSScSMVpb6LNLJCCFFKFjeyzzzzDC+++CJxcXG0adMGnU5X6PG2bduWW3FC3I+kpOLirhQUpWjT6lTXYM5mzW9eG3gZkBSkouKjIti3/icaN29Ft0GmVf76jBjLsZ1b6TNqAj2GjsSuQPSVTUI8Hru24bVtk3mszsXzGDUaEnr0IXLYaGKDB6N3cKj011KdZKk02OtqwdVnIYQoRyrl73ds3UNx+YYqlQpFUWrEzV4pKSk4Oztz+/ZtnJycqrocUU6Ki7u6fr34q1quDU1xV6YrraY/XdwezLir8pKbk83xPTvYs3Ylfx49BEDzDkG8t2pzsdtb30w0Na+/bKHeH7+Zs17znX31LSJHjCWnhFW6aqtO7nXwdqqFk6uFEKIAS3o1i3/9Dw8PL3NhQtwvRYHr14s2rXFxJcRdNdKbG1bTjVh6nF1rT9zV/bp+6QJ7163i4KZ1pBVIEGjbvRf9x081/wILYHXrJh67fsFrx2bq/34UVYFovqR2gUQHD6bNovcAuDZh2p2bvYQQQogysriR9fHxqYg6hCjCaCw+7urWrXvHXfm2NDWu9k61J+6qIvzwwVucPforAK4N3ek7dhL9xk7GzasRYFply2PPL3j9soX6xw6jLvCOzK3W7YgaMpLoQcPJ8PJGk5FhbmSFEEKI8lCmCVmhoaF8+umnXLhwAZVKRcuWLXnuuedo0qRJedcnagm9Hi5cKDyf9cwZhbS04uOuvJvq70wPaJmLT3M9NnbStJaVoihcOn2CvWtXMvm5l3F1cwdgwKRHsHVwJHj8FNr16INGo0F3Oxn39avx2rGFBkd/Ra3Xm49zK6AN0UNGEDV4BBne8ktvaakUBS9DCmlx6Rgd/GSJWiGEKCWLG9mdO3cycuRI2rdvT48ePVAUhaNHj9KqVSu2bNnCgAEDKqJO8QDJyoK//irctP75Z8lxV42bm5Zt9Q3Ixa9lLt5NJe6qvNy+mcjBTWvZs3Yl0WFXAWjYyJdx854FoNugYXQbNAxtagruWzfg9ctm3I4cLLREbHKLAKIHjyRq8HDSG/tVyet4ENgqegw5+ntvKIQQwsziRnbBggW88MILvP/++0XGX3nlFWlkRSFpaXD2bOGmNSREQa8vIe4qf+nWVqbpAZ6+ejRyI3e5MhgMnD1ykL1rV/HHvp0Y8q6oWtva0n3wCNr16AOANi2Nhvt34bVjC26/7keTm2M+xu2mLfKuvA4nza9plbyOB4kCRGscaVrXXqK3hBDCAha3CBcuXODnn38uMj5r1iw+/fTT8qhJ1FC3bhWNu7p8ueS4K9+AvDmteStiuXlL3FVlyMpI56Nn55CTlQVA07Yd6DduCj2HjcJRpabhwT14ff05DQ/uQ5OTbd4vxc+f6CEjiRo84sFbIraqqVSkq6zQ2UkjK4QQlrC4ka1fvz5nzpyhadPCV2HOnDlDgwYNyq0wUb3FxRW9CevateL+A1bh4nYn7ip/GVfXhhJ3VRnyY7NCTvzO3NdNN1rZOzoxYOLDAASPm4JfIx/cDu7D658v0vDgHrR5DS5Aqo8f0UNNzWtKsxayRKwQQohqxeJGdu7cuTz22GOEhYXRvXt3VCoVhw8f5oMPPuDFF1+siBpFFVIUiIgo2rTGxhYfd+XmbZoS0CR/TqvEXVWJ4mKz+k+Yim/L1gDMmf8qDQ8dwPOrz3DfvxttZqZ537RGjYkePIKooSO53TxAmtfKoCjYKnr0WZmyRK0QQljA4kb2tddew9HRkU8++YRXX30VAA8PD958802effbZci9QVB6jEa5eLdq0JiUVbVpVKgVPP32hlbAk7qpqZaalcXj7JvauXcmVP0+bx13c3Ok3bhKuDk64792B5y9bcN+3C11GunmbdE9vooaMIHrISJID2kjzWslUgLchhfSEFJR6daSRFUKIUrK4kVWpVLzwwgu88MILpKamAuDo6HiPvUq2ePFiPvroI2JjY2nVqhWffvopvXr1Knbb9evXs2TJEs6cOUN2djatWrXizTffZNCgQWV+/toqP+6qYNN65oxCamoJcVf++kIrYUncVfXz57FD/O/1lwDQaLUE9R3IoDETGaAoeO/ahseYAejSUs3bZ3h4EjXY1Lzeat1Omtcqlo0GW51MEhdCCEvc1/3g99PAAqxevZrnn3+exYsX06NHD7766iuGDBlCSEgIjRo1KrL9r7/+yoABA3jvvfeoU6cOy5YtY8SIEfz+++906NDhvmp5kOXHXRVsWv/8UyErq/i4K5/muXfmtAZI3FV1lB+bZW1nx6DJ0wHo2Kc/AUFd6dK7H5PdPWl+9CDuC57DKuW2eb9MN3eiBo8gasgIbrULlOa1mlBUKq7r6tDJvY5kyAohhAVUiqLc87JaYGAge/fupW7dunTo0OGub3udOnWq1E/epUsXAgMDWbJkiXmsZcuWjB49moULF5bqGK1atWLSpEm8/vrrpdrekvV7a6L8uKuCTev588XFXYGtfV7cVSvTalh+ARJ3VV40GRmMCvQHYNOpq+WyHKvBYODPo7+yZ81KTuzfhT43F9eG7izZexytolD/2GG8dmzBffcOrAssJ5tZ343owcOJGjKCpPZBSDRE9dXJvQ7eTrZVXYYQQlQpS3q1UrUso0aNwtra2vx5eczfysnJ4eTJkyxYsKDQ+MCBAzl69GipjmE0GklNTcXFxeW+66mJ8uOuCjatly4VH3flWMd4JzUg70qrxF3VDAlRkexb/xP7N6wmMTbGPN68dTse79iZwDdexmvPDqyT7zSvWfXqEz1wGFFDRnIzsBNoNFVRuhBCCFGhStXIvvHGG+bP33zzzXJ54sTERAwGA25uboXG3dzciIuLK9UxPvnkE9LT05k4cWKJ22RnZ5OdXSALMyWlbAVXsfj4O82qqXFVCA+/S9yVeWEB058Sd1Vzrfvqc/asWQGAk5MzT3TpwWSthhbHf8Pmh6Xm7bJcXIkZOIyowSNI7NRVmtcaRKUoeBhSSU/IwOjgK9MLhBCilCx+E9nPz48//vgDV1fXQuPJyckEBgYSFhZm0fH+fnVXUZRSXfFdtWoVb775Jps2bbprfu3ChQt56623LKqpKikKREYWbVpjYkqOu8pPDPDLWw2rTj2Ju6qpIi5fZO+6VfQeMY4mrdsC0H/cZDxD/mR2HReCLoVgu3u7efvsOnWJGTCUqCEjSOzcHUUr80JqKnslF31W7r03FEIIYWbx/3rXrl3DYDAUGc/OziYqKqrUx6lXrx4ajabI1deEhIQiV2n/bvXq1cyePZs1a9bQv3//u2776quvMn/+fPPXKSkpeHt7l7rOimQ0Qmho0ab15s17xF21NE0P8G2Zi4OzJAfUdJlpaRz5ZRN71q7iylnTHPPs9HQ6jZ2E144tDNmxFduEO/9OcpzrENN/MFGDR3Kjaw8Una6qShflRAFiNQ741bGT6C0hhLBAqRvZzZs3mz/fuXMnzs7O5q8NBgN79+7F19e31E9sZWVFx44d2b17N2PGjDGP7969m1GjRpW436pVq5g1axarVq1i2LBh93wea2tr8/zeqqTXw8WLhZvW06eLj7vSaBUaNTVdaW3c8k7cla29NK0PCkVRuHzmJHvXreLI9k1kZWQA0E2j4WlPb4bu20mdtSvN2+c4OhEbPJiooSNJ6NoTxUpiJB4oKhWpKmus7B2lkRVCCAuUupEdPXo0YJoKMGPGjEKP6XQ6GjduzCeffGLRk8+fP59HHnmEoKAgunXrxtdff01ERATz5s0DTFdTo6OjWb58OWBqYqdPn85nn31G165dzVdzbW1tCzXW1clXX8GyZXD2bAlxV9YKPi3uLCjgF5BLo2YSd/WgMxqNLJo/j8TYGDoCs5ycmQDUT7kNEdcAyLV3IDZ4EFFDRpLQozdGq6r/hUwIIYSoTkrdyBqNpnmXvr6+/PHHH9SrV+++n3zSpEncvHmTt99+m9jYWFq3bs327dvx8fEBIDY2loiICPP2X331FXq9nqeeeoqnnnrKPD5jxgy+//77+66nIsTGwu+/A6gKx121zIu78pO4qwedwWDg9KEDHN2xmcff/ACtVovLpRC+9fKh4+3beGakQ17Wq97Ojti+A4kaOpL4ng9htLap2uJF5VAUrBUD+uwsFEWWqBVCiNIqVY7sg6Syc2TPn4cNh9Ko45tBw0YSd1VbaDIyaB/ozzLgy4buJMbF0gb4dOAwOl8KweF6uHlbva0tsX0HED14JHG9+2K0kRzR2kalKDTVJwEQEBAgqQVCiFqt3HNkP//8cx577DFsbGz4/PPP77rts88+W/pKa4FWrSC1Ti4xaUVvkBMPntycbP7Yt4u9P/0fZ4GWwDNxsUxWq2lmNMKubQDobWyI69Of6CEjiOsdXC4LJoiaLRc1VhppYIUQwhKluiLr6+vLiRMncHV1vesNXSqVyuL4rcpWFSt7HYu+RUxaVqU8l6ha4Rf+4ssxA5kCTAVaFXjMYGVNXJ9+RA8eQexDAzDY21dRlaK6kpW9hBCiAq7IhoeHF/u5ELVZZloaR3Zs5nZiIlMnTMVz+yb6bN3Ii3/bLrZPMFHDxxDbdwB6B8cqqVUIIYR4EMltRkJYoGBs1tltGxmSmckMtZr+//0IdV6+sqJWc6NzNxocOwLA8f98JVMHhBBCiApQqka24IIC97Jo0aIyFyNEdXU76SYHN63l0NoVtA69ylxgJGALppUtgKS2HYgcPoaoISPR2zswKtC/CisWNYlKUXA3pJJ+IxOjQ2O52UsIIUqpVI3s6dOnC3198uRJDAYDzZs3B+Dy5ctoNBo6duxY/hUKUdWMRqI/eY8e61bxH6BugYdSfZsQOWIskcNGk+5zZ/64Jm+BAyFKy0HJRZ8pS9QKIYQlStXI7t+/3/z5okWLcHR05IcffqBuXdN/6bdu3eLRRx+lV69eFVOlEJXoRkwU+9f9RK86dRkQE4X39s2MjY81P55RvwFRw8cQNXwMyQFtQDI/xX1SgHiNPY2dZYlaIYSwhMVzZD/55BN27dplbmIB6tatyzvvvMPAgQN58cW/3+oiRPWXH5t1+f++pf3J47yBKTorX46TM9GDhhE5fCyJQV1Ao6mqUsWDSKXitsoGKwcnaWSFEMICFjeyKSkpxMfH06pVq0LjCQkJpKamllthQlSGiCuXOPl/3+KxZT0TMjPoUuCxXK2O+AGDiRw+hvhefWWJWCGEEKKasbiRHTNmDI8++iiffPIJXbt2BeDYsWO89NJLjB07ttwLFKIiaFNT8Nj9C24L3+CZ1BTyr68aVCqiO3YmYfxUYvoPlrgsUTkUBSsMGHJyZIlaIYSwgMWN7P/+9z/+8Y9/8PDDD5Oba7oxQavVMnv2bD766KNyL1CI8qAoCmF/HCP9f58x09oa7yO/osnJNj8e4duExCkziB06iux69auwUlEbqYDG+tukxd1GcQmQRlYIIUrJ4kbWzs6OxYsX89FHHxEaGoqiKPj7+2MvqxSJaig1MYGEL/+D97aNzE25TZ0Cj6U0aWpOHMjw9qmqEoUAQI8KnVoaWCGEsESZF0Swt7enbdu25VmLEOXCaDCQuOoH6vz4HQOuheFR4LEEG1vCBw4lbdY8bjcPkMQBUS0oKhVhOhc6udeRDFkhhLCAxY1seno677//Pnv37iUhIQFjXhh8vrCwsHIrTghLOISH4r11Ax6b1+Eced08fkuj4c/2Hcma+zTpvftBJTQKBjs71l+MqfDnEUIIIWozixvZOXPmcPDgQR555BHc3d1lLpeoUproKFT//YiWhw/QNPGGeTxLo+GYVyNuTZsJk2egWFlVXZFCCCGEqBAWN7K//PIL27Zto0ePHhVRjxD3pEu5jc2Py6i/ZgVtY6PJv75qVGtI6NmHyBFjiek3CIPM2xY1hEpRcDOkkZGYjdGhkUwvEEKIUrK4ka1bty4uLi4VUYsQJVJnZ+GycxtO339NwIW/sFIU82PHtDr+7NId+1dex7ZZy7scRYjqy0nJITcjp6rLEEKIGsXiRvbf//43r7/+Oj/88AN2dnYVUZMQJgYDDY4dNs173f0LurQ7C278BRxs0pT0GY/hO3YS9bRlvm9RiCqnAAlqOxo52cp0LSGEsECZlqgNDQ3Fzc2Nxo0bo9PpCj1+6tSpcitO1DyajAxGBfoDsOnUVQyW/rKjKNQ9dwa3tavw3LYR5/Q080Pp7h78qDcQPng4Tec+jXsDt/IsXYiqo1KRrLGlqVMdaWSFEMICFjeyo0eProAyRG3nEHYFry3rcVv3E64J8ebxJLWaWxMfJmrEGG526ER9tRpZrkAIIYQQUIZG9o033qiIOkQtZBMfi9e2Tbhv+Jn6Vy6ax9OBjcA+bx+sps+h7+TpaP925V+IB4qioMWIUZ8rS9QKIYQFyjyx8OTJk1y4cAGVSkVAQAAdOnQoz7rEA0p3OxnPXdvw3rKBen/8hirvpq1cYAewzsaW5JFj6Tl5OsMC2lRprUJUFhXgp08mNSYZpY4sUSuEEKVlcSObkJDA5MmTOXDgAHXq1EFRFG7fvk3fvn356aefqF9f3vgVhamzMnHfvxvvrRtwO7gXjV5vfiwxqAvHAtry/rkzBE2dwaABQ7C2sa3CaoWoGkZALQ2sEEJYxOJG9plnniElJYXz58/TsqUp6igkJIQZM2bw7LPPsmrVqnIvUtRM9Y/+iufuX/DYvR1dRrp5/CxwKrATDT/+kkwPLwDmV1GNQlQHikrFVZ2rLFErhBAWsriR3bFjB3v27DE3sQABAQF8+eWXDBw4sFyLEzWEomCdeAOH6+E4XTbNdVWA7k/PMm8SDqwEVqvV2DzUn8FTZ+Kc18QKIYQQQpSFxY2s0WgsErkFoNPpMBqN5VKUqIYUBavkJByuheNwPe/jWigO18Oxv34NXYGYLDDN+UtUqfhJUVgJhDdqTPD4KTw3eiJ1JTZLCCGEEOXA4ka2X79+PPfcc6xatQoPDw8AoqOjeeGFFwgODi73AkXl0t1OLtCohmF//U7japVyu8T9jCoVCXb2qFq3w+33IwA88+jjxCTeYMj4qQR06io3sAhRApWi0MCQTsbNHIwO3jK9QAghSsniRvaLL75g1KhRNG7cGG9vb1QqFREREbRp04Yff/yxImoU5UyblobD9QJN6jVT0+pwPQzr5Ft33TfD3YM0Hz/SfHyJd3HhSGQEG4//xh8JceSkp/HmjLm8kdfITn76H5YviCBELeWsZJObnl3VZQghRI1icSPr7e3NqVOn2L17NxcvXkRRFAICAujfv39F1CfKSJORgUNEOPbmqQBh5iurNok37rpvZn030nx8SW/sS5qPr6lxbexHWiMfstUaTh7Yw561Kzm7ZoV5OomdoxP9RoyhvrtnZbw8IR4oCpCotsXTURI7hBDCEmXOkR0wYAADBgwoz1qEhdTZWdhHXL/TpBaYv2obH3vXfbNc65maVXOjmte0NvLFYG9f4n6hp/7go2fnmL9u1akbwROm0nXgUKxtbNFkZJTb6xOi1lCpSNLY0cRZUguEEMISpW5k9+3bx9NPP82xY8dwcnIq9Njt27fp3r07//vf/+jVq1e5F1mbqXJysI+KMM9ZLXh11TY2xrygQHGynesWuKpa8OqqL3pHpxL3y5eVkcHRHVvISE1h+Iy5ADTvEESbrj3xb9OefuMm49HYr9xeqxBCCCGEJUrdyH766afMnTu3SBML4OzszOOPP86iRYukkf279HS6erkAsOnU1WLnjKr0euyiI//WrIZjfz0c++hIVHdJg8hxdMq7qpr30djP/HlunboWl6soCqF/nWXPmpUc3raRzPQ07BwcGTBxGta2dqhUKt78/meLjyuEuAtFQYOC0WBAURS5MVIIIUqp1I3s2bNn+eCDD0p8fODAgXz88cflUtSDyjYmCrv42EINq/21cOyjI1AXWO3q7/R2dneuphZsWBv7kVPXBcrhP73U5Fv8unkde9auIuLyBfN4w0aNCR43BaNBotWEqCgqoIn+FqnRt1CcZYlaIYQorVI3svHx8cXmx5oPpNVy48bdbyKqlb74wvzpwOEPlbiZ3saG9Eb5TeqdaQDpPr5k1W9QLs3q3Wz5/mvW/e8zAKysbeg6aBjB46YQ0KmrRXP2DHZ2rL8YU1FlCiGEEEKYlbqR9fT05Ny5c/j7+xf7+J9//om7u3u5FfbASE01f2rQ6Uhv1Nh8VTU9/yarxn5kNmgIlXSTx824GPZv+JnmHTrRpmsPAPqNncSpX/cSPG4KvYaPwcG5TqXUIoQwLVF7WZaoFUIIi5W6kR06dCivv/46Q4YMwcbGptBjmZmZvPHGGwwfPrzcC6zxJkyAd98FYOvRvzA4OlZJGfrcXHNs1plD+zEajXTuP9jcyDZs1JiP1++qktqEEEIIIcqi1I3sv/71L9avX0+zZs14+umnad68OSqVigsXLvDll19iMBj45z//WZG11kwFr2BrNJX+9NFhV9m7bhUHNq7h9s1E83irTt3oPnhEpdcjhBBCCFFeSv0elpubG0ePHqV169a8+uqrjBkzhtGjR/P//t//o3Xr1hw5cgQ3NzeLC1i8eDG+vr7Y2NjQsWNHDh06dNftDx48SMeOHbGxscHPz4///e9/Fj9nbfKffzzJpm+XcPtmInXq1Wf03Kf47y+HePv/1tFr+JiqLk8IIYQQoswsWhDBx8eH7du3c+vWLa5evYqiKDRt2pS6dS2PeQJYvXo1zz//PIsXL6ZHjx589dVXDBkyhJCQEBo1alRk+/DwcIYOHcrcuXP58ccfOXLkCE8++ST169dn3LhxZaqhwtnbcywqiZi0rAp9mvzYrP0bVvPw/H9i6+AAwICJD3PywB76T5hKYO9gtHe5YU8IIYQQoiZRKcpdEvUrWJcuXQgMDGTJkiXmsZYtWzJ69GgWLlxYZPtXXnmFzZs3c+HCnXioefPmcfbsWX777bdSPWdKSgrOzs7cvn272EzcinAs+laFNbKpybc4tGU9e9au4vqlEACe+PdH9J8wrUKeTwhRcTq518HbSZapFULUbpb0amVeovZ+5eTkcPLkSRYsWFBofODAgRw9erTYfX777TcGDhxYaGzQoEF8++235ObmFhsPlp2dTXZ2tvnrlJSUcqi+ahmNRs4fP8qeNSv5ffcv5OaYXp/OypquA4fSuEWrKq5QCCGEEKLiVVkjm5iYiMFgKDKv1s3Njbi4uGL3iYuLK3Z7vV5PYmJisfFfCxcu5K233iq/wquBWwlxvPXoJPIvpjduEUDw+Kn0HjFWYrOEEEIIUWtUWSOb7+8r2Nxrecbiti9uPN+rr77K/PnzzV+npKTg7e1d1nIrXX5s1vVLIUx8+kUAXBt60H3ISOydnOk/fip+rdrISkBCCCGEqHWqrJGtV68eGo2myNXXhISEEtMPGjZsWOz2Wq0WV1fXYvextrbG2tq6fIquRH+PzVKpVPQbN5l67p4AzF+05B5HEEIIIYR4sFVZI2tlZUXHjh3ZvXs3Y8bciYHavXs3o0aNKnafbt26sWXLlkJju3btIigo6K7L59YUWRkZ/LZzK3vXruTCyePm8Tr16vPQmIlotDX/NQohhBBClJcqnVowf/58HnnkEYKCgujWrRtff/01ERERzJs3DzBNC4iOjmb58uWAKaHgiy++YP78+cydO5fffvuNb7/9llWrVlXlyyg3h7dtYMlrLwGgVqvp0LufxGYJIYQQQpSgShvZSZMmcfPmTd5++21iY2Np3bo127dvx8fHB4DY2FgiIiLM2/v6+rJ9+3ZeeOEFvvzySzw8PPj888+rb4bsXaTdTubXLeupU6++eYWtHkNGsf3HZfQYMpKHxkzA1a3ozWtCCCGEEMKkSnNkq0JV5sjmx2btXbuKY7u2k5uTTeMWAXy8YbfcrCWEkBxZIYSghuTI1iYJsTGsXfF/7Fv3E/GR183jjVsEEDxuCkajEY1GU4UVCiGEEELUPNLIVoJFry3g4I6tANg5ONJz+BiJzRJCCCGEuE/SyFaC0VMfJiHxBv3HT6XboGFY29pVdUlCiGpIo5ZfbIUQwhIyR7YS5BqMpOboK+W5hBA1k0qloo61Vt6lEULUejJHtprRadS42FpVdRlCCCGEEA8UdVUXIIQQQgghRFlIIyuEEEIIIWokaWSFEEIIIUSNJI2sEEIIIYSokaSRFUIIIYQQNZI0skIIIYQQokaSRlYIIYQQQtRI0sgKIYQQQogaqdYtiJC/kFlKSkoVVyKEEEIIIf4uv0crzeKzta6RTU1NBcDb27uKKxFCCCGEECVJTU3F2dn5rtuolNK0uw8Qo9FITEwMjo6ONX5N85SUFLy9vYmMjLznWsSi5pLzXDvIea495FzXDnKey05RFFJTU/Hw8ECtvvss2Fp3RVatVuPl5VXVZZQrJycn+UdSC8h5rh3kPNcecq5rBznPZXOvK7H55GYvIYQQQghRI0kjK4QQQgghaiRpZGswa2tr3njjDaytrau6FFGB5DzXDnKeaw8517WDnOfKUetu9hJCCCGEEA8GuSIrhBBCCCFqJGlkhRBCCCFEjSSNrBBCCCGEqJGkka3mFi9ejK+vLzY2NnTs2JFDhw7ddfuDBw/SsWNHbGxs8PPz43//+18lVSruhyXnef369QwYMID69evj5OREt27d2LlzZyVWK8rK0n/P+Y4cOYJWq6V9+/YVW6AoF5ae5+zsbP75z3/i4+ODtbU1TZo04bvvvqukasX9sPRcr1ixgnbt2mFnZ4e7uzuPPvooN2/erKRqH1CKqLZ++uknRafTKUuXLlVCQkKU5557TrG3t1euX79e7PZhYWGKnZ2d8txzzykhISHK0qVLFZ1Op6xdu7aSKxeWsPQ8P/fcc8oHH3ygHD9+XLl8+bLy6quvKjqdTjl16lQlVy4sYel5zpecnKz4+fkpAwcOVNq1a1c5xYoyK8t5HjlypNKlSxdl9+7dSnh4uPL7778rR44cqcSqRVlYeq4PHTqkqNVq5bPPPlPCwsKUQ4cOKa1atVJGjx5dyZU/WKSRrcY6d+6szJs3r9BYixYtlAULFhS7/csvv6y0aNGi0Njjjz+udO3atcJqFPfP0vNcnICAAOWtt94q79JEOSrreZ40aZLyr3/9S3njjTekka0BLD3Pv/zyi+Ls7KzcvHmzMsoT5cjSc/3RRx8pfn5+hcY+//xzxcvLq8JqrA1kakE1lZOTw8mTJxk4cGCh8YEDB3L06NFi9/ntt9+KbD9o0CBOnDhBbm5uhdUqyq4s5/nvjEYjqampuLi4VESJohyU9TwvW7aM0NBQ3njjjYouUZSDspznzZs3ExQUxIcffoinpyfNmjXjH//4B5mZmZVRsiijspzr7t27ExUVxfbt21EUhfj4eNauXcuwYcMqo+QHlraqCxDFS0xMxGAw4ObmVmjczc2NuLi4YveJi4srdnu9Xk9iYiLu7u4VVq8om7Kc57/75JNPSE9PZ+LEiRVRoigHZTnPV65cYcGCBRw6dAitVn5U1wRlOc9hYWEcPnwYGxsbNmzYQGJiIk8++SRJSUkyT7YaK8u57t69OytWrGDSpElkZWWh1+sZOXIk//3vfyuj5AeWXJGt5lQqVaGvFUUpMnav7YsbF9WLpec536pVq3jzzTdZvXo1DRo0qKjyRDkp7Xk2GAxMnTqVt956i2bNmlVWeaKcWPLv2Wg0olKpWLFiBZ07d2bo0KEsWrSI77//Xq7K1gCWnOuQkBCeffZZXn/9dU6ePMmOHTsIDw9n3rx5lVHqA0t+za+m6tWrh0ajKfKbXUJCQpHfAPM1bNiw2O21Wi2urq4VVqsou7Kc53yrV69m9uzZrFmzhv79+1dkmeI+WXqeU1NTOXHiBKdPn+bpp58GTA2PoihotVp27dpFv379KqV2UXpl+ffs7u6Op6cnzs7O5rGWLVuiKApRUVE0bdq0QmsWZVOWc71w4UJ69OjBSy+9BEDbtm2xt7enV69evPPOO/KuaRnJFdlqysrKio4dO7J79+5C47t376Z79+7F7tOtW7ci2+/atYugoCB0Ol2F1SrKriznGUxXYmfOnMnKlStlflUNYOl5dnJy4ty5c5w5c8b8MW/ePJo3b86ZM2fo0qVLZZUuLFCWf889evQgJiaGtLQ089jly5dRq9V4eXlVaL2i7MpyrjMyMlCrC7ddGo0GuPPuqSiDqrrLTNxbfrTHt99+q4SEhCjPP/+8Ym9vr1y7dk1RFEVZsGCB8sgjj5i3z4/feuGFF5SQkBDl22+/lfitGsDS87xy5UpFq9UqX375pRIbG2v+SE5OrqqXIErB0vP8d5JaUDNYep5TU1MVLy8vZfz48cr58+eVgwcPKk2bNlXmzJlTVS9BlJKl53rZsmWKVqtVFi9erISGhiqHDx9WgoKClM6dO1fVS3ggSCNbzX355ZeKj4+PYmVlpQQGBioHDx40PzZjxgylT58+hbY/cOCA0qFDB8XKykpp3LixsmTJkkquWJSFJee5T58+ClDkY8aMGZVfuLCIpf+eC5JGtuaw9DxfuHBB6d+/v2Jra6t4eXkp8+fPVzIyMiq5alEWlp7rzz//XAkICFBsbW0Vd3d3Zdq0aUpUVFQlV/1gUSmKXM8WQgghhBA1j8yRFUIIIYQQNZI0skIIIYQQokaSRlYIIYQQQtRI0sgKIYQQQogaSRpZIYQQQghRI0kjK4QQQgghaiRpZIUQQgghRI0kjawQQgghhKiRpJEVQoga4M0336R9+/bmr2fOnMno0aPv65jlcQwhhKhK0sgKIcR9mDlzJiqVCpVKhU6nw8/Pj3/84x+kp6dX6PN+9tlnfP/996Xa9tq1a6hUKs6cOVPmYwghRHWkreoChBCiphs8eDDLli0jNzeXQ4cOMWfOHNLT01myZEmh7XJzc9HpdOXynM7OztXiGEIIUZXkiqwQQtwna2trGjZsiLe3N1OnTmXatGls3LjRPB3gu+++w8/PD2traxRF4fbt2zz22GM0aNAAJycn+vXrx9mzZwsd8/3338fNzQ1HR0dmz55NVlZWocf/Pi3AaDTywQcf4O/vj7W1NY0aNeLdd98FwNfXF4AOHTqgUql46KGHij1GdnY2zz77LA0aNMDGxoaePXvyxx9/mB8/cOAAKpWKvXv3EhQUhJ2dHd27d+fSpUvl+N0UQojSk0ZWCCHKma2tLbm5uQBcvXqVn3/+mXXr1pnf2h82bBhxcXFs376dkydPEhgYSHBwMElJSQD8/PPPvPHGG7z77rucOHECd3d3Fi9efNfnfPXVV/nggw947bXXCAkJYeXKlbi5uQFw/PhxAPbs2UNsbCzr168v9hgvv/wy69at44cffuDUqVP4+/szaNAgc135/vnPf/LJJ59w4sQJtFots2bNKvP3Sggh7osihBCizGbMmKGMGjXK/PXvv/+uuLq6KhMnTlTeeOMNRafTKQkJCebH9+7dqzg5OSlZWVmFjtOkSRPlq6++UhRFUbp166bMmzev0ONdunRR2rVrV+zzpqSkKNbW1srSpUuLrTE8PFwBlNOnT5dYe1pamqLT6ZQVK1aYH8/JyVE8PDyUDz/8UFEURdm/f78CKHv27DFvs23bNgVQMjMzS/4mCSFEBZErskIIcZ+2bt2Kg4MDNjY2dOvWjd69e/Pf//4XAB8fH+rXr2/e9uTJk6SlpeHq6oqDg4P5Izw8nNDQUAAuXLhAt27dCj3H378u6MKFC2RnZxMcHFzm1xAaGkpubi49evQwj+l0Ojp37syFCxcKbdu2bVvz5+7u7gAkJCSU+bmFEKKs5GYvIYS4T3379mXJkiXodDo8PDwK3dBlb29faFuj0Yi7uzsHDhwocpw6deqU6fltbW3LtF9BiqIAoFKpioz/fazg68t/zGg03ncNQghhKbkiK4QQ98ne3h5/f398fHzumUoQGBhIXFwcWq0Wf3//Qh/16tUDoGXLlhw7dqzQfn//uqCmTZtia2vL3r17i33cysoKAIPBUOIx/P39sbKy4vDhw+ax3NxcTpw4QcuWLe/6moQQoqrIFVkhhKhE/fv3p1u3bowePZoPPviA5s2bExMTw/bt2xk9ejRBQUE899xzzJgxg6CgIHr27MmKFSs4f/48fn5+xR7TxsaGV155hZdffhkrKyt69OjBjRs3OH/+PLNnz6ZBgwbY2tqyY8cOvLy8sLGxKRK9ZW9vzxNPPMFLL72Ei4sLjRo14sMPPyQjI4PZs2dXxrdGCCEsJo2sEEJUIpVKxfbt2/nnP//JrFmzuHHjBg0bNqR3797mlIFJkyYRGhrKK6+8QlZWFuPGjeOJJ55g586dJR73tddeQ6vV8vrrrxMTE4O7uzvz5s0DQKvV8vnnn/P222/z+uuv06tXr2KnNrz//vsYjUYeeeQRUlNTCQoKYufOndStW7dCvhdCCHG/VEr+xCghhBBCCCFqEJkjK4QQQgghaiRpZIUQQgghRI0kjawQQgghhKiRpJEVQgghhBA1kjSyQgghhBCiRpJGVgghhBBC1EjSyAohhBBCiBpJGlkhhBBCCFEjSSMrhBBCCCFqJGlkhRBCCCFEjSSNrBBCCCGEqJGkkRVCCCGEEDXS/wdq7N1vLuhDOQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8DUlEQVR4nO3deVxU5f4H8A8gDLiAC4iICLiEoLlBGhp5uylmm3VbSM2l1JthKXK7JVfN1JJKM2zB0jSzXy63rK4VqWRqpqaJUCZuqYjLIIsKIjpsz++Pp5lhmAFZZubMMJ/36zWvOXPmzDnfofHb+Z7nOc/jJIQQICIiIiIiIqJGcVY6ACIiIiIiIqKmgAU2ERERERERkRmwwCYiIiIiIiIyAxbYRERERERERGbAApuIiIiIiIjIDFhgExEREREREZkBC2wiIiIiIiIiM2CBTURERERERGQGzZQOwBZVVlbiwoULaNWqFZycnJQOh4gUJoTA1atX0bFjRzg7O8Z1SeZBIqqKeZB5kMjR1TUPssA24cKFCwgICFA6DCKyMWfPnkWnTp2UDsMqmAeJyBTmQSJydDfLgyywTWjVqhUA+cfz9PRUOBoiUlpRURECAgJ0ucERMA8SUVXMg8yDRI6urnmQBbYJ2m5Anp6eTKhEpONIXQSZB4nIFOZBInJ0N8uDjnETDREREREREZGFscAmIiIiIiIiMgMW2ERERERERERmwHuwG6GiogJlZWVKh0EOyM3NzWGmSSHbxjxISmEeJFvBPEhKcHV1hYuLi9JhkAkssBtACIGcnBxcuXJF6VDIQTk7OyM4OBhubm5Kh0IOinmQlMY8SEpjHiSltW7dGh06dHCowQftAQvsBtAm0/bt26N58+b8UZNVVVZW4sKFC1Cr1ejcuTN/f6QI5kFSEvMg2QLmQVKKEAIlJSXIzc0FAPj5+SkcEVXFArueKioqdMm0Xbt2SodDDsrHxwcXLlxAeXk5XF1dlQ6HHAzzINkC5kFSEvMgKc3DwwMAkJubi/bt27O7uA1R/Oal5ORkBAcHw93dHeHh4di1a1eN26rVaowePRohISFwdnZGXFycye2uXLmCqVOnws/PD+7u7ggNDUVKSopZ4tXeY9O8eXOz7I+oIbRdIisqKhSOhBwR8yDZAuZBUhLzINkC7e+PYwDYFkUL7A0bNiAuLg6zZs1Ceno6oqKiMGLECGRnZ5vcXqPRwMfHB7NmzUKfPn1MblNaWophw4YhKysLX3zxBY4dO4YVK1bA39/frLGzGxApib+/RlCrgc8+A0pLlY7E7vF3SEri768RsrOBdesAXpxoNP4OSUn8/TXC2bMyD5aXm33XinYRX7JkCSZOnIhJkyYBAJKSkrBlyxYsW7YMiYmJRtsHBQVh6dKlAIBVq1aZ3OeqVatw6dIl7NmzR9dlLDAw0ELfgIjsTp8+QF4ecPIk8PLLSkdDRGR9XbrI4rqwEJgyReloiIisr1s32diSlwdMm2bWXSvWgl1aWoq0tDRER0cbrI+OjsaePXsavN9NmzYhMjISU6dOha+vL3r16oWFCxfW2oVMo9GgqKjI4EHyqtjXX3+t+D6sKSsrC05OTsjIyLDJ/ZEZ5OXJZzPdNkJNG/Og7e2PzEB7TvTjj8rGQXaBedD29kdmoO3J+MMPZt+1YgV2fn4+Kioq4Ovra7De19cXOTk5Dd7vqVOn8MUXX6CiogIpKSmYPXs23nrrLbz22ms1fiYxMRFeXl66R0BAQIOPb8smTJgAJycno8eff/5pcnu1Wo0RI0bUad+vvPIK+vbt26h9NEUBAQFQq9Xo1asXAGDHjh1wcnLilB62gN2qHBLzoPUxD9ow5kGHxDxofcyDNswCeVDxUcSr3zsghGjU/QSVlZVo3749li9fDhcXF4SHh+PChQtYtGgRXq6hO2hCQgLi4+N1r4uKippskX3PPffg448/Nljn4+Nj8Lq0tBRubm7o0KFDo49njn3YMxcXF4f/G9isX35ROgJSCPOgdTEP2jAW2A6LedC6mAdtmAXyoGIt2N7e3nBxcTFqrc7NzTVq1a4PPz8/3HLLLQZD1YeGhiInJwelNQxqpFKp4OnpafBoqlQqFTp06GDwuPvuu/Hcc88hPj4e3t7eGDZsGADj7jznzp3DE088gbZt26JFixaIiIjAvn37sHr1asybNw+//fab7iro6tWrTe7j0KFD+Pvf/w4PDw+0a9cO//znP1FcXKx7f8KECXjooYewePFi+Pn5oV27dpg6dWqdRkdMSEjA7bffbrS+d+/emDt3ru71xx9/jNDQULi7u6NHjx5ITk6udb87d+7EgAEDoFKp4Ofnh5kzZ6K8yoAIlZWVeOONN9CtWzeoVCp07txZ12OiapegrKws3HXXXQCANm3awMnJCRMmTMCaNWvQrl07aDQag+M+8sgjGDdu3E2/NxHVD/Mg8yD9ha1nDot5kHmQ/iKE2XepWAu2m5sbwsPDkZqaiocffli3PjU1FSNHjmzwfgcPHoy1a9eisrISzs7y+sHx48fh5+enm9LD7IQASkoss++bad7cLFdePvnkEzz77LPYvXs3hIkfWnFxMYYMGQJ/f39s2rQJHTp0wMGDB1FZWYmYmBj88ccf2Lx5M3746z4GLy8vo32UlJTgnnvuwe23345ff/0Vubm5mDRpEp577jldAgaA7du3w8/PD9u3b8eff/6JmJgY9O3bF5MnT671O4wZMwavv/46Tp48ia5duwIADh8+jEOHDuGLL74AAKxYsQJz587Fe++9h379+iE9PR2TJ09GixYtMH78eKN9nj9/Hvfee68u8R09ehSTJ0+Gu7s7XnnlFQAyka9YsQJvv/027rjjDqjVahw9etRoXwEBAdi4cSMeeeQRHDt2DJ6envDw8ICbmxumTZuGTZs24bHHHgMgb6H49ttvsXnz5lq/M5HNUCoPmikHAsyDzIMOaMsWpSNoOprAuSDAPMg86IA2bTL/PoWC1q9fL1xdXcXKlStFZmamiIuLEy1atBBZWVlCCCFmzpwpxo4da/CZ9PR0kZ6eLsLDw8Xo0aNFenq6OHz4sO797Oxs0bJlS/Hcc8+JY8eOiW+//Va0b99evPrqq3WOq7CwUAAQhYWFRu9dv35dZGZmiuvXr+tXFhcLIVOr9R/FxXX+XuPHjxcuLi6iRYsWusejjz4qhgwZIvr27Wu0PQDx1VdfCSGE+PDDD0WrVq1EQUGByX3PnTtX9OnTp9Z9LF++XLRp00YUV4n5u+++E87OziInJ0cXY2BgoCgvL9dt89hjj4mYmJg6fcfevXuL+fPn614nJCSI2267Tfc6ICBArF271uAzCxYsEJGRkUIIIU6fPi0AiPT0dCGEEP/5z39ESEiIqKys1G3//vvvi5YtW4qKigpRVFQkVCqVWLFihcl4qu9v+/btAoC4fPmywXbPPvusGDFihO51UlKS6NKli8FxqzL5O6S6qfrvp45qywlNld3kwXrkQCGYB4VgHiTBPFhH9cqDdnIuKATzoBDMgyQsmgcVvQc7JiYGBQUFmD9/vu7G/5SUFN20Wmq12mhO7H79+umW09LSsHbtWgQGBiIrKwuAvCq0detWzJgxA71794a/vz+mT5+Ol156yWrfy5bdddddWLZsme51ixYtMGrUKERERNT6uYyMDPTr1w9t27Zt8LGPHDmCPn36oEWLFrp1gwcPRmVlJY4dO6a7NaBnz54GXfz9/Pxw6NChOh1jzJgxWLVqFebMmQMhBNatW4e4uDgAQF5eHs6ePYuJEycaXP0sLy83eYVVG3NkZKTBuACDBw9GcXExzp07h5ycHGg0Gtx99911/juYMnnyZNx22204f/48/P398fHHH+sGISEi82IeZB4kcnTMg8yD9JeQELPvUvFBzmJjYxEbG2vyvardRLREHfrJR0ZG4hdrDmDUvDlQ5b4Rq2revF6bt2jRAt26dTO5vjYeHh71Oo4popYB7Kqu185fXvW9ysrKOh1j9OjRmDlzJg4ePIjr16/j7NmzeOKJJwBAt48VK1Zg4MCBBp+rmsBvFrP2N+jk5GSWvwsgLxz16dMHa9aswfDhw3Ho0CF88803Ztk3kVUolQfrmQMB5kGAeZDI7OzoXBBgHgSYB+kvf401YE6KF9hNgpMTcJOEZO969+6Njz76CJcuXTJ51dLNza3WucYBICwsDJ988gmuXbumS+C7d++Gs7MzbrnlFrPE2alTJ9x555347LPPcP36dQwdOlR3JdTX1xf+/v44deoUxowZU6f9hYWFYePGjQaJdc+ePWjVqhX8/f3h4+MDDw8PbNu2DZMmTbrp/rTjAJj6W02aNAlvv/02zp8/j6FDhzbZkezJWHJyMhYtWgS1Wo2ePXsiKSkJUVFRJrdVq9X417/+hbS0NJw4cQLTpk1DUlJSjftev349Ro0ahZEjR1p2DlLmQeZB5kFyZA6QAwHmQebBJqgOA+fVl2KjiJN9GTVqFDp06ICHHnoIu3fvxqlTp7Bx40bs3bsXABAUFITTp08jIyMD+fn5RiMgArK7jru7O8aPH48//vgD27dvx/PPP4+xY8c2auR4U8dZv349Pv/8czz55JMG773yyitITEzE0qVLcfz4cRw6dAgff/wxlixZYnJfsbGxOHv2LJ5//nkcPXoU//vf/zB37lzEx8fD2dkZ7u7ueOmll/Diiy9izZo1OHnyJH755ResXLnS5P4CAwPh5OSEb7/9Fnl5eQYjZo4ZMwbnz5/HihUr8PTTT5vt70G2bcOGDYiLi8OsWbOQnp6OqKgojBgxwuj2GC2NRgMfHx/MmjULffr0qXXfZ86cwQsvvFBjsU71wzzIPEjk6JgHmQebnA8/NPsuWWBTnbi5uWHr1q1o37497r33Xtx66614/fXXdV1pHnnkEdxzzz2466674OPjg3Xr1hnto3nz5tiyZQsuXbqE2267DY8++ijuvvtuvPfee2aN9bHHHkNBQQFKSkrw0EMPGbw3adIkfPTRR1i9ejVuvfVWDBkyBKtXr0ZwcLDJffn7+yMlJQX79+9Hnz59MGXKFEycOBGzZ8/WbTNnzhz861//wssvv4zQ0FDExMQgNze3xv3NmzcPM2fOhK+vL5577jnde56ennjkkUfQsmVLo7ip6VqyZAkmTpyISZMmITQ0FElJSQgICDC4N66qoKAgLF26FOPGjavxXjFAXhUfM2YM5s2bhy5dulgqfIfCPMg8SOTomAeZB+nmnERdbmp2MEVFRfDy8kJhYaHRnNg3btzA6dOnERwcDHd3d4UipKZq2LBhCA0NxTvvvFPrdvwdNpAQgLOz4es6qC0nNEZpaSmaN2+Ozz//3GC6wunTpyMjIwM7d+6s9fN/+9vf0LdvX5NdxOfOnYvff/8dX331FSZMmIArV67U2kVco9EYtDQUFRUhICCAeZCsjnnQCqreS6pwHrRlPB8kpTAPWoEF8yDvwSayAZcuXcLWrVvx448/mv0KLlVxk/vCrC0/Px8VFRVGXeJ8fX2Rk5PT4P3u3r0bK1euREZGRp0/k5iYiHnz5jX4mESNxTxIRI6OebBpYIFNdmPXrl0YMWJEje8XKzV6pxn0798fly9fxhtvvIEQC0wXQH+pXmBXVAA1jBhqTaZGJm3olBxXr17Fk08+iRUrVsDb27vOn0tISEB8fLzutbYFm2wL8yCZXVkZUG20ZiJbxjxIto4FNtmNiIiIerXI2RPtPO5kYdUL7KNHgZ49lYkFgLe3N1xcXIxaq3Nzcxs80MvJkyeRlZWFBx54QLdOOyVJs2bNcOzYMXTt2tXocyqVCiqVqkHHJOthHiSzu3YNaN1a6SiI6ox5kGwdC2yyGx4eHibnbCSqs/Jyw9cKt167ubkhPDwcqampBvdgp6amYuTIkQ3aZ48ePXDo0CGDdbNnz8bVq1exdOlStkrbOeZBMjsb6MVDVB/Mg9RoFh6CjAV2A3FsOFISf38NVL0F21n5iRTi4+MxduxYREREIDIyEsuXL0d2djamTJkCQHbdPn/+PNasWaP7jPbKfXFxMfLy8pCRkQE3NzeEhYXB3d0dvXr1MjhG679ap6qvbyz+DklJ/P2ZSQNvRyGJv0NSEn9/DfRXzz5LYYFdT65/3adUUlICDw8PhaMhR1VaWgoAumkxqI5ssMCOiYlBQUEB5s+fD7VajV69eiElJQWBgYEAALVabTQndr9+/XTLaWlpWLt2LQIDA63WtYx5kGwB8yApiXmQbEFJSQkA/e+R6sjCg96ywK4nFxcXtG7dWjevXfPmzRs8GBFRQ1RWViIvLw/NmzdHs2b8J1wv1ROqjZyYx8bGIjY21uR7q1evNlpX3yvWpvbRGMyDpDTmQTM6exYIDVU6CrvDPEhKEkKgpKQEubm5aN26NS801hcLbNvToUMHAKhx8ngiS3N2dkbnzp35P/P6qn4PNv9+DcY8SEpjHjST3FybKLCTk5OxaNEiqNVq9OzZE0lJSYiKijK5rVqtxr/+9S+kpaXhxIkTmDZtGpKSkmrc9/r16zFq1CiMHDkSX3/9tdliZh4kpbVu3Vr3O6R6qH4+aGYssBvAyckJfn5+aN++PcrKypQOhxyQm5sbnG2ge7PdqX7FkifmDcY8SEpjHmw6NmzYgLi4OCQnJ2Pw4MH48MMPMWLECGRmZqJz585G22s0Gvj4+GDWrFl4++23a933mTNn8MILL9RYrDcG8yApydXVlS3XDcUWbNvl4uLCHzaRPWGBbXbMg0TUWEuWLMHEiRMxadIkAEBSUhK2bNmCZcuWITEx0Wj7oKAgLF26FACwatWqGvdbUVGBMWPGYN68edi1axeuXLlikfiZB4nsjIULbF76JSLHUT2hcvRNInJ0CufB0tJSpKWlITo62mB9dHQ09uzZ06h9z58/Hz4+Ppg4cWKdttdoNCgqKjJ4EFETxAKbiMhMqt9zY+FpGoiIqHb5+fmoqKiAr6+vwXpfX1/k5OQ0eL+7d+/GypUrsWLFijp/JjExEV5eXrpHQEBAg49PRDaMBTYRkZmwBZuIyJCN3CpTfbA6IUSDB7C7evUqnnzySaxYsQLe3t51/lxCQgIKCwt1j7Nnzzbo+ERk43gPNhGRmbDAJiJHZ2M9d7y9veHi4mLUWp2bm2vUql1XJ0+eRFZWFh544AHdusq/vnezZs1w7NgxdO3a1ehzKpUKKpWqQcckIjvCFmwiIjNhgU1Ejs7CJ5b15ebmhvDwcKSmphqsT01NxaBBgxq0zx49euDQoUPIyMjQPR588EHcddddyMjIYNdvIkfHFmwiIjOpfg82C2wicjQWnv+1IeLj4zF27FhEREQgMjISy5cvR3Z2NqZMmQJAdt0+f/481qxZo/tMRkYGAKC4uBh5eXnIyMiAm5sbwsLC4O7ujl69ehkco3Xr1gBgtJ6IHBALbCIiM2ELNhE5uuoFtg3cgx0TE4OCggLMnz8farUavXr1QkpKCgIDAwEAarUa2dnZBp/p16+fbjktLQ1r165FYGAgsrKyrBk6EdkjFthERGbCApuIHF1ZmeFrG8mDsbGxiI2NNfne6tWrjdaJesZtah9E5KCqnw+WlwPNzFcW8x5sInIcLLCJyNHZYBdxIiKrqn4+aOaePCywichx8B5sInJ0LLCJyNFZ+FYZFthE5DiqX7G0selqiIgszgbvwSYisiq2YBMRmQm7iBORo6t+DzYRkaNhgU1EZCYssInI0bGLOBE5OguPIs4Cm4gcx/Xrhq9ZYBORo2GBTUSOjgU2EZGZnDlj+JonmkTkaDjYIxE5um+/tejuFS+wk5OTERwcDHd3d4SHh2PXrl01bqtWqzF69GiEhITA2dkZcXFxte57/fr1cHJywkMPPWTeoInIPrVpY/j6gw+UiYOISCl5eYavWWATkaNZtMiiu1e0wN6wYQPi4uIwa9YspKenIyoqCiNGjEB2drbJ7TUaDXx8fDBr1iz06dOn1n2fOXMGL7zwAqKioiwROhHZo+pdgvbtUyYOIiKlDBtm+JqzKRARmZWiBfaSJUswceJETJo0CaGhoUhKSkJAQACWLVtmcvugoCAsXboU48aNg5eXV437raiowJgxYzBv3jx06dLFUuETkb0pLTV8zZYbInJ0oaFKR0BE1KQoVmCXlpYiLS0N0dHRBuujo6OxZ8+eRu17/vz58PHxwcSJExu1HyJqYqpPT8MCm4gc2eHDgJ+f0lEQETUpzZQ6cH5+PioqKuDr62uw3tfXFzk5OQ3e7+7du7Fy5UpkZGTU+TMajQYajUb3uqioqMHHJyIbVr0Fm4jIkYWFKR0BEVGTo/ggZ07VJvYWQhitq6urV6/iySefxIoVK+Dt7V3nzyUmJsLLy0v3CAgIaNDxicjGsQWbiIiIiCxIsRZsb29vuLi4GLVW5+bmGrVq19XJkyeRlZWFBx54QLeu8q/BO5o1a4Zjx46ha9euRp9LSEhAfHy87nVRURGLbKKmiC3YRERERGRBihXYbm5uCA8PR2pqKh5++GHd+tTUVIwcObJB++zRowcOHTpksG727Nm4evUqli5dWmPRrFKpoFKpGnRMIrIjbMEmIpKGDFE6AiKiJkmxAhsA4uPjMXbsWERERCAyMhLLly9HdnY2pkyZAkC2LJ8/fx5r1qzRfUZ7b3VxcTHy8vKQkZEBNzc3hIWFwd3dHb169TI4RuvWrQHAaD0ROSC2YBORo4uMBPbuBaZNUzoSIqImSdECOyYmBgUFBZg/fz7UajV69eqFlJQUBAYGAgDUarXRnNj9+vXTLaelpWHt2rUIDAxEVlaWNUMnInvEApuIHF1FhXx2dVU2DiIipURFAbt2WWz3ihbYABAbG4vY2FiT761evdponahnl05T+yAiB1W9i3hmpjJxEBEpRZsHWWATkaOyYHEN2MAo4kREVvPBB0pHQESkLG1PHjc3ZeMgImqiWGATEREROQptCzYLbCIi4MEHzb5LxbuIExEREZGVaFuw2UWciBxR1duN9+0DbrvN7IdgCzYROY7hw5WOgIhIWewiTkSOrOr91+7ugJOT2Q/BApuIHEf1UcRHjlQmDiIipbCLOBE5ssuX9csWyoPsIk5EjuPGDfl8zz1AdjbwzjvKxkNEZG3sIk5EjqyyUr9soQKbLdhE5Dg0Gvk8bRpw+DDQubOy8fwlOTkZwcHBcHd3R3h4OHbVMn2EWq3G6NGjERISAmdnZ8TFxRlts2LFCkRFRaFNmzZo06YNhg4div3791vwGxCRXdBogMJCucwWbCJyRCywiYjMSNuCrVIpG0cVGzZsQFxcHGbNmoX09HRERUVhxIgRyM7ONrm9RqOBj48PZs2ahT59+pjcZseOHRg1ahS2b9+OvXv3onPnzoiOjsb58+ct+VWIyNYtXqxfZoFNRI6ookK/zAKbiKiRtC3Y7u7KxlHFkiVLMHHiREyaNAmhoaFISkpCQEAAli1bZnL7oKAgLF26FOPGjYOXl5fJbT777DPExsaib9++6NGjB1asWIHKykps27bNkl+FiGzdt9/ql9lFnIgcUXGxfpkFNhFRI9lYC3ZpaSnS0tIQHR1tsD46Ohp79uwx23FKSkpQVlaGtm3bmm2fRGSHfvlFv8wWbCJyROvX65c5yBkRUSNpW7BtpMDOz89HRUUFfH19Ddb7+voiJyfHbMeZOXMm/P39MXTo0Bq30Wg00Gj/PgCKiorMdnwiskEssInIEbm46JfZgk1E1Eg2VmBrOVWbg1EIYbSuod58802sW7cOX375Jdxr6RqfmJgILy8v3SMgIMAsxyciG8Uu4kTkiFq10i9XLbbNiAU2ETkOGyuwvb294eLiYtRanZuba9Sq3RCLFy/GwoULsXXrVvTu3bvWbRMSElBYWKh7nD17ttHHJyIbExGhX7bQiSURkU37/HP9spkaM6pjgU1EjkEI/fyvNlJgu7m5ITw8HKmpqQbrU1NTMWjQoEbte9GiRViwYAE2b96MiKon1TVQqVTw9PQ0eBBRE1M191noxJKIyNHxHmwicgza4hqwmQIbAOLj4zF27FhEREQgMjISy5cvR3Z2NqZMmQJAtiyfP38ea9as0X0mIyMDAFBcXIy8vDxkZGTAzc0NYWFhAGS38Dlz5mDt2rUICgrStZC3bNkSLVu2tO4XJCLb0bUrsHu30lEQETVpbMEmIsdQZQAvWyqwY2JikJSUhPnz56Nv37746aefkJKSgsDAQACAWq02mhO7X79+6NevH9LS0rB27Vr069cP9957r+795ORklJaW4tFHH4Wfn5/usbjqHLhE5HjatJHP48YpG4cJycnJCA4Ohru7O8LDw7Fr164at1Wr1Rg9ejRCQkLg7OyMuLg4o21WrFiBqKgotGnTBm3atMHQoUOxf/9+C34DIiKJLdhE5BhstMAGgNjYWMTGxpp8b/Xq1UbrhBC17i8rK8sMURFRk6OdqrBrV2XjqGbDhg2Ii4tDcnIyBg8ejA8//BAjRoxAZmYmOnfubLS9RqOBj48PZs2ahbffftvkPnfs2IFRo0Zh0KBBcHd3x5tvvono6GgcPnwY/v7+lv5KROTA2IJNRI5BW2A3awY4M/URkQOysYEetZYsWYKJEydi0qRJCA0NRVJSEgICArBs2TKT2wcFBWHp0qUYN24cvLy8TG7z2WefITY2Fn379kWPHj2wYsUKVFZWYtu2bZb8KkRELLCJyEHY6IklEZHVaFuwa5myz9pKS0uRlpaG6Ohog/XR0dHYs2eP2Y5TUlKCsrIytG3btsZtNBoNioqKDB5E1ES9+qrFds0Cm4gcAwtsInJ0NpgH8/PzUVFRYTQ1oa+vr9EUho0xc+ZM+Pv7Y+jQoTVuk5iYCC8vL90jICDAbMcnIhvh5yef77vPYodggU1EjsEGTyyJiKzKBluwtZyqTRsmhDBa11Bvvvkm1q1bhy+//BLutXz3hIQEFBYW6h5nz541y/GJyIZo86AFzwc5yBkROQYW2ETk6L7/Xj7bUB709vaGi4uLUWt1bm6uUat2QyxevBgLFy7EDz/8gN69e9e6rUqlgsqG/jZEZAHa80ELXmhkCzYROQYW2EREUi1TYFmbm5sbwsPDkZqaarA+NTUVgwYNatS+Fy1ahAULFmDz5s2IiIho1L6IqImwwvkgW7CJyDGUlspnFthE5OgKC5WOwEB8fDzGjh2LiIgIREZGYvny5cjOzsaUKVMAyK7b58+fx5o1a3SfycjIAAAUFxcjLy8PGRkZcHNzQ1hYGADZLXzOnDlYu3YtgoKCdC3kLVu2RMuWLa37BYnINpSXAxUVcpkFNhFRI7EFm4hI8vRUOgIDMTExKCgowPz586FWq9GrVy+kpKQgMDAQAKBWq5GdnW3wmX79+umW09LSsHbtWgQGBiIrKwsAkJycjNLSUjz66KMGn5s7dy5eeeUVi34fIrJR2nNBwKJdxFlgE5FjYIFNRI6sslK/3LevYmHUJDY2FrGxsSbfW716tdE6IUSt+9MW2kREOtev65c9PCx2GN6DTUSOgQU2ETky7ci5ADBqlHJxEBEppaREPru5Ac6WK4NZYBORY2CBTUSObP16/XLz5srFQUSkFG0LtoVzIAtsInIMLLCJyJEdPKhfbsY7BInIAWkLbAt2DwdYYBORo9AW2G5uysZBRKSEK1eUjoCISFnaLuJNvcBOTk5GcHAw3N3dER4ejl21zM2oVqsxevRohISEwNnZGXFxcUbbrFixAlFRUWjTpg3atGmDoUOHYv/+/Rb8BkRkF9iCTUSOzMam5iIisjpHaMHesGED4uLiMGvWLKSnpyMqKgojRowwmopBS6PRwMfHB7NmzUKfPn1MbrNjxw6MGjUK27dvx969e9G5c2dER0fj/PnzlvwqRGTrWGATkSOLjlY6AiIiZTlCgb1kyRJMnDgRkyZNQmhoKJKSkhAQEIBly5aZ3D4oKAhLly7FuHHj4OXlZXKbzz77DLGxsejbty969OiBFStWoLKyEtu2bbPkVyEiW8cCm4gcmYuLfH7kEWXjICJSinY2haZaYJeWliItLQ3R1a6oRkdHY8+ePWY7TklJCcrKytC2bVuz7ZOI7BALbCJyZNp7DzmCOBE5Kiu1YCs2jGR+fj4qKirg6+trsN7X1xc5OTlmO87MmTPh7++PoUOH1riNRqOBRnvyDaCoqMhsxyciG8ECm4gcGQtsInJ02hZsd3eLHkbxQc6cnJwMXgshjNY11Jtvvol169bhyy+/hHstf8jExER4eXnpHgEBAWY5PhHZEBbYROTIrNRyQ0Rks5r6Pdje3t5wcXExaq3Ozc01atVuiMWLF2PhwoXYunUrevfuXeu2CQkJKCws1D3Onj3b6OMTkY1hgU1Ejowt2ETk6Jp6C7abmxvCw8ORmppqsD41NRWDBg1q1L4XLVqEBQsWYPPmzYiIiLjp9iqVCp6engYPImpiWGATkSNjgU1Ejk7bgm3hAluxe7ABID4+HmPHjkVERAQiIyOxfPlyZGdnY8qUKQBky/L58+exZs0a3WcyMjIAAMXFxcjLy0NGRgbc3NwQFhYGQHYLnzNnDtauXYugoCBdC3nLli3RsmVL635BIrId2gLbwkmViMgmsYs4ETk6K11oVLTAjomJQUFBAebPnw+1Wo1evXohJSUFgYGBAAC1Wm00J3a/fv10y2lpaVi7di0CAwORlZUFAEhOTkZpaSkeffRRg8/NnTsXr7zyikW/DxHZMG1SbdFC2TiIiJTAFmwicnTXrslnC58LKlpgA0BsbCxiY2NNvrd69WqjdUKIWvenLbSJiAzw5JKIHBlzIBE5OisV2IqPIk5EZBXapMqTSyJyROwiTkSOjgU2EZEZsfWGiBwZcyAROTor3S7IApuIHANPLonIkTEHEpGjYws2EZEZ8eSSiBwZu4gTkaOz0u2CLLCJyDGwwCYiR8YcSESOji3YRERmIgRPLonIsTEHEpGjY4FNRGQmN27ol3lySUSOiF3EicjRscAmIjITbcsNwAKbiBxPWRlQXi6XmQOJyFFxFHEiIjPRJlSVCnBxUTYWIiJr40VGInJ0lZUssImIzIb3HhKRI9N2DwcANzfl4iAiUkrVPMhRxImIGslK0zIQEdmkM2f0y05OysVBRKQU7bkgwAKbiKjR2IJNRI7sf/9TOgIiImVpC2wPD8DZsiUwC2wiavpsvMBOTk5GcHAw3N3dER4ejl27dtW4rVqtxujRoxESEgJnZ2fExcWZ3G7jxo0ICwuDSqVCWFgYvvrqKwtFT0Q2LypK6QiIiJRlpRHEARbYROQIbLjA3rBhA+Li4jBr1iykp6cjKioKI0aMQHZ2tsntNRoNfHx8MGvWLPTp08fkNnv37kVMTAzGjh2L3377DWPHjsXjjz+Offv2WfKrEJGtKi6Wz3feqWwcRERKsdIAZwALbCJyBDZcYC9ZsgQTJ07EpEmTEBoaiqSkJAQEBGDZsmUmtw8KCsLSpUsxbtw4eHl5mdwmKSkJw4YNQ0JCAnr06IGEhATcfffdSEpKsuA3ISKbdfWqfG7VStk4iIiUYsXxeFhgE1HT98kn8nnbNmXjqKa0tBRpaWmIjo42WB8dHY09e/Y0eL979+412ufw4cNr3adGo0FRUZHBg4iaCO2/Z09PZeMgIlKKWi2f2YJNRGQGW7cqHYFJ+fn5qKiogK+vr8F6X19f5OTkNHi/OTk59d5nYmIivLy8dI+AgIAGH5+IbAxbsInI0WlvldE+WxALbCJq+qZMkc8jRigbRw2cqk2bI4QwWmfpfSYkJKCwsFD3OHv2bKOOT0Q2hC3YROToysrkc4cOFj8UC2wiavrc3ORz//7KxlGNt7c3XFxcjFqWc3NzjVqg66NDhw713qdKpYKnp6fBg4iaCG2BbcMt2JxNgYgsSttyHRRk8UOxwCaips9GBzlzc3NDeHg4UlNTDdanpqZi0KBBDd5vZGSk0T63bt3aqH0SkR3TdhG30QtnnE2BiCxOW2C3bGnxQ7HAJqKmz0YLbACIj4/HRx99hFWrVuHIkSOYMWMGsrOzMeWvbu0JCQkYN26cwWcyMjKQkZGB4uJi5OXlISMjA5mZmbr3p0+fjq1bt+KNN97A0aNH8cYbb+CHH36osZWHiJq4ggL53KaNsnHUgLMpEJHFWbHAbmbxIxARKc2GC+yYmBgUFBRg/vz5UKvV6NWrF1JSUhAYGAhAdoWs3orTr18/3XJaWhrWrl2LwMBAZGVlAQAGDRqE9evXY/bs2ZgzZw66du2KDRs2YODAgVb7XkRkQ7QFtre3snGYoJ1NYebMmQbrzTGbwowZMwzWDR8+nAU2kaPS3irDApuIyAxsuMAGgNjYWMTGxpp8b/Xq1UbrhBA33eejjz6KRx99tLGhEVFTcOWKfG7dWskoTLKl2RQ0Gg00Go3uNacrJGpCtHnQCj152EWciJo+7UmSFeY+JCKyOYWF8rmG7tS2wBZmU+B0hURNmBUvNNarwN6/fz8qKip0r6u3omg0Gvz3v/81T2REROaiLbBt+OSSiMgihLDpAtuWZlPgdIVETdjly/LZ1lqwIyMjUaC9jweAl5cXTp06pXt95coVjBo1ynzRERGZg413EScispjr1/Xzv9pgF3Fbmk2B0xUSNWFWbMGu1z3Y1VusTd0HWJd7A4mIrOqvwb/YRZyIHE7VVlwrDO7TEPHx8Rg7diwiIiIQGRmJ5cuXG82mcP78eaxZs0b3mYyMDAAwmE3Bzc0NYWFhAORsCnfeeSfeeOMNjBw5Ev/73//www8/4Oeff7b69yMiG3D6tHy2Qgu22Qc5a+z9MkREZlVaql/WzgVLROQo3nhDv2yj52icTYGILOr8ef2yrbVgExHZnYsX9cu3365cHERESti/X+kI6oSzKRCRxWhbrwHbLLAzMzN1g0YIIXD06FEU/zVxd35+vnmjIyJqLG2B7e8POHPiBCJyMH91pSYicliVlfpld3eLH67eZ5t33303+vbti759+6KkpAT3338/+vbti379+mHo0KH1DiA5ORnBwcFwd3dHeHg4du3aVeO2arUao0ePRkhICJydnREXF2dyu40bNyIsLAwqlQphYWH46quv6h0XETUR2gK7EaPREhEREZGd0g5wZqVbROrVgn26avO6GWzYsAFxcXFITk7G4MGD8eGHH2LEiBHIzMxE586djbbXaDTw8fHBrFmz8Pbbb5vc5969exETE4MFCxbg4YcfxldffYXHH38cP//8M++7IXJE2qRqhUEtiIhsikajX37qKeXiICJSknbWKyvNJuMkzDzsd0ZGBvr27VunbQcOHIj+/ftj2bJlunWhoaF46KGHkJiYWOtn//a3v6Fv375ISkoyWB8TE4OioiJ8//33unX33HMP2rRpg3Xr1tUprqKiInh5eaGwsJBTNBDZu9mzgddeAwYPBho4eqwj5gRH/M5ETc7580CnTnL58GHgrxG2G8IRc4IjfmeiJqnqAI+NKH3rmhPMckNiYWEhkpOT0b9/f4SHh9fpM6WlpUhLS0N0dLTB+ujoaOzZs6fBsezdu9don8OHD691nxqNBkVFRQYPImoiXntNPu/erWwcRETWVnVsnEYU10REVHeNKrB//PFHPPnkk/Dz88O7776Le++9FwcOHKjTZ/Pz81FRUQHfavdF+vr66gZRa4icnJx67zMxMRFeXl66R0BAQIOPT0Q2ykanpyEishhtgd2zp7JxEBEppWqLtS3egw0A586dw+rVq7Fq1Spcu3YNjz/+OMrKynQDi9VX9XmzhRCNnku7vvtMSEhAfHy87nVRURGLbKKmZv58pSMgIrIubYHt7a1sHERESjl6VL88YYJVDlmvFux7770XYWFhyMzMxLvvvosLFy7g3XffbdCBvb294eLiYtSynJuba9QCXR8dOnSo9z5VKhU8PT0NHkTUxJSXKx0BEZF1scAmIkd39qx+edQoqxyyXgX21q1bMWnSJMybNw/33XcfXFxcGnxgNzc3hIeHIzU11WB9amoqBg0a1OD9RkZGGu1z69atjdonETUBo0crHQERkXVpZ3/x8lI2DiIipWhnk7ntNqvlwnp1Ed+1axdWrVqFiIgI9OjRA2PHjkVMTEyDDx4fH4+xY8ciIiICkZGRWL58ObKzszFlyhQAsuv2+fPnsWbNGt1nMjIyAADFxcXIy8tDRkYG3NzcdN3Tp0+fjjvvvBNvvPEGRo4cif/973/44Ycf8HMDRw8mIjtWUaFfbt1asTCIiBSxdat89vBQNg4iIqUUFMhn7YwKVlCvAjsyMhKRkZFYunQp1q9fj1WrViE+Ph6VlZVITU1FQEAAWrVqVef9xcTEoKCgAPPnz4darUavXr2QkpKCwMBAAIBarUZ2drbBZ/r166dbTktLw9q1axEYGIisrCwAwKBBg7B+/XrMnj0bc+bMQdeuXbFhwwbOgU3kiKrOCMAWHCJyNNqu4bz1jYgclXYObCueBzZ6Huxjx45h5cqV+PTTT3HlyhUMGzYMmzZtMld8iuC8h0RNRFYWEBwsW29KShq8G0fMCY74nYmanNtuAw4cADZtAh54oFG7csSc4IjfmajJ0Q507exs2LOxAaw2D3ZISAjefPNNnDt3DuvXr2/0COBERGbz2Wfy+fp1ZeMgIlKCdtDXDh2UjYOISGl//7vVDlWvLuJPP/30Tbdp165dg4MhIjKr2bOVjoCISBlCABcvyuX27ZWNhYhIKYGBwJkzwIIFVjtkvQrs1atXIzAwEP369UNNPcvZgk1ERESksKtXgbIyuezjo2wsRERKEEKRnjz1KrCnTJmC9evX49SpU3j66afx5JNPom3btpaKjYjIPB57TOkIiIisa+NG/XLz5srFQUSklKIiQKORy76+Vjtsve7BTk5OhlqtxksvvYRvvvkGAQEBePzxx7Fly5YaW7SJiBRx44Z++Z57lIuDiEgJGzYoHQERkbJyc+Vzq1ZWna6w3oOcqVQqjBo1CqmpqcjMzETPnj0RGxuLwMBAFBcXWyJGIqL6O3RIvzxsmHJxEBEpYcsWpSMgIlKWtnu4lcehaNQo4k5OTnBycoIQApWVleaKiYio8X77Tb8cEKBcHERESrjjDvkcFaVsHERESlGr5XPHjlY9bL0LbI1Gg3Xr1mHYsGEICQnBoUOH8N577yE7OxstW7a0RIxERPU3ebLSERARKadVK/k8YYKiYRARKebCBfns52fVw9ZrkLPY2FisX78enTt3xlNPPYX169dzWi4iIiIiW/P99/KZc2ATkaPSFthWbsGuV4H9wQcfoHPnzggODsbOnTuxc+dOk9t9+eWXZgmOiKjB7r0XSEkBVqxQOhIiIusqLdUvOzfqbkAiIvulHeyxTRurHrZeBfa4ceM4zzUR2YeLF+WzFadlICKyCcuX65cHD1YuDiIipQgBZGfLZZXKqoeuV4G9evVqC4VBRGRm2gKb3SOJyNFU7Q6pvRebiMiRXLmiXx492qqHZr8hImp6Kir0UzOwwCYiR3P0qHweMkTZOIiIlKIdQdzFxeqzybDAJqKmJzcXKC+X9x5aeeRIIiLFzZoln2sYK4eIqMnTNrTccovVD80Cm4iaHm1S9fEBmtXrThgioqbD1VXpCIiIlHHsmHz29rb6oVlgE1HTc+mSfFYgqRIRKa59e/m8e7eycRARKSU2Vj7v2mX1Q7PAJqKm5/Rp+XztmrJxEBFZ29mz8jYZAOjRQ9lYiIgcEAtsImp6Xn9dPmdlKRpGXSUnJyM4OBju7u4IDw/Hrptcbd25cyfCw8Ph7u6OLl264IMPPjDaJikpCSEhIfDw8EBAQABmzJiBGzduWOorEJGtmDNHv8wRxInIUbm4yOdVq6x+aBbYRNT0nDwpn8PDlY2jDjZs2IC4uDjMmjUL6enpiIqKwogRI5CtnbuxmtOnT+Pee+9FVFQU0tPT8Z///AfTpk3Dxo0bddt89tlnmDlzJubOnYsjR45g5cqV2LBhAxISEqz1tYhIKdpxJ3x9lY2DiEgplZVyRhkAiIqy+uE5+g8RNV1XryodwU0tWbIEEydOxKRJkwDIluctW7Zg2bJlSExMNNr+gw8+QOfOnZGUlAQACA0NxYEDB7B48WI88sgjAIC9e/di8ODBGP3XvI9BQUEYNWoU9u/fb50vRUTK0XYPnztX2TiIiJSybp1+2cpTdAFswSaipqawUL+8ZYtycdRBaWkp0tLSEB0dbbA+Ojoae/bsMfmZvXv3Gm0/fPhwHDhwAGVlZQCAO+64A2lpabqC+tSpU0hJScF9991ngW9BRDbl3Dn53LmzsnEQESnlxAn9skpl9cOzBZuImhZt9/D27YGgIEVDuZn8/HxUVFTAt1pXTl9fX+RopxqrJicnx+T25eXlyM/Ph5+fH5544gnk5eXhjjvugBAC5eXlePbZZzFz5swaY9FoNNBoNLrXRUVFjfhmRKQYbe7w81M2DiIipcybp+jh2YJNRE3L0aPy+ZZblI2jHpycnAxeCyGM1t1s+6rrd+zYgddeew3Jyck4ePAgvvzyS3z77bdYsGBBjftMTEyEl5eX7hGgQJcqImqkigp9F/EOHZSNpZ442CMRmZ1CPfdYYBNR0/Lkk/K5hi7WtsTb2xsuLi5GrdW5ublGrdRaHTp0MLl9s2bN0K5dOwDAnDlzMHbsWEyaNAm33norHn74YSxcuBCJiYmorKw0ud+EhAQUFhbqHmfPnjXDNyQiq8rPl0W2kxPg46N0NHXGwR6JyKx69pTPM2YocngW2ETUtPzVmovISGXjqAM3NzeEh4cjNTXVYH1qaioGDRpk8jORkZFG22/duhURERFwdXUFAJSUlMDZ2TC9u7i4QAiha+2uTqVSwdPT0+BBRHZGe/91hw7AX/nAHlQd7DE0NBRJSUkICAjAsmXLTG5fdbDH0NBQTJo0CU8//TQWL16s26bqYI9BQUGIjo7GqFGjcODAAWt9LSJSyvnz8rljR0UOzwKbiJqWAQPk8wsvKBtHHcXHx+Ojjz7CqlWrcOTIEcyYMQPZ2dmYMmUKANmyPG7cON32U6ZMwZkzZxAfH48jR45g1apVWLlyJV6o8n0feOABLFu2DOvXr8fp06eRmpqKOXPm4MEHH4SLdl5IImp6tAV2p07KxlEPtjTYo0ajQVFRkcGDiOxMSQlw5YpcVqjA5iBnRNS0aK9a+vsrG0cdxcTEoKCgAPPnz4darUavXr2QkpKCwMBAAIBarTboJhkcHIyUlBTMmDED77//Pjp27Ih33nlHN0UXAMyePRtOTk6YPXs2zp8/Dx8fHzzwwAN47bXXrP79iMiKtLd22NEYCrY02GNiYiLmKTw4EhE1klotn5s3BxTqjccCm4iajooK/Qi6dtSCExsbi9jYWJPvrV692mjdkCFDcPDgwRr316xZM8ydOxdzOQ8ukWOxwxZsLUsO9jhw4ED8+eefmD59Ovz8/DBnzhyT+0xISEB8fLzudVFREQd8JLI3Fy7I544d5XgUCmCBTURNx/nzssh2dZXTdBEROZL16+WzHY0gbo3BHgHg1ltvxbVr1/DPf/4Ts2bNMhqnApBjUagUmDOXiMxIW2Ar2JNR8XuwOS0DEZnN6dPyOTAQ4L3GRORIhADOnJHLJSXKxlIPtjTYIxE1AU88IZ+107YqQNECm9MyEJFZjRkjn//8U9k4iIisrWqL7jPPKBdHA3CwRyIyu4sXFTu0ol3Eq07LAMiW5y1btmDZsmVITEw02r7qtAwAEBoaigMHDmDx4sW6AX6qTssAAEFBQRg1apRuFEkiasK0A5wRETmaQ4fkc4sWdncPNgd7JCKz+GsWAQDAzp2KhaFYga2dlqH6aI4NmZZh5cqVKCsrg6urK+644w783//9H/bv348BAwbopmUYP368xb4LEdmAql3+7rpLuTiIiJSwb598vuceZeNoIA72SESNtmGDfvmOOxQLQ7EC25amZdBoNNBoNLrXnPeQyA7l5uqXv/xSuTiIiJTw8svy+a9BvoiIHM6ECfplEwMZWovig5xZclqGgwcP4ssvv8S3336LBQsW1LjPxMREeHl56R6ckoHIDh07Jp+Dg4HWrRUNhYjIqkpL9csssInIUT3wgHz+a7BDpSjWgm1L0zJw3kOiJkA7WmRIiLJxEBFZ29mz+uVXXlEsDCIiRaWlyWcTs0xZk2It2LY0LYNKpYKnp6fBg4jszB9/yOcePZSNg4jI2rQDnHXrBri5KRsLEZEShNBfbOzYUdFQFO0izmkZiMhs1q2Tz717KxsHEZG1aaej6dBB2TiIiJRSdVquqCjl4oDC03RxWgYiMgshgPx8uczbO4jI0Zw5I5/79FE2DiIipWRlyeeAADldoYKcRE39ph1YUVERvLy8UFhYyO7iRPbg4kV9y83164C7u1l374g5wRG/M5HduuceYMsW4J13gOeft8ghHDEnOOJ3JrJbGzYATzwhW69/+skih6hrTlB8FHEiokbT3n8ImL24JiKyadeuyeIaAPr1UzYWIiKlaFuw/+oJrSQW2ERk/775Rj7XMAMBEVGT9dtv+uX+/ZWLg4hISadOyeegIEXDAFhgE1FTUF4un9u0UTYOIiJr+/VX+RwWBjRvrmwsRERKWb5cPvfsqWwcYIFNRE1BcrJ8rjLrABGRQ4iLk88cUoeIHFVmpn7ZBmaTYYFNRPatuFi/PGiQcnEQEVlb1aJa4WlpiIgU8/rr+uWQEOXi+AsLbCKyb99/r18eMkS5OIiIrO3vf9cvv/qqcnEQESnp00/l82OPAS4uysYCFthEZO8WL1Y6AiIiZezYoV/28VEsDCIixSQm6pctNE1hfbHAJiL7tn+/fGb3cCJyJGq1fnntWuXiICJS0n/+o1/u00e5OKpggU1E9svDQ7/8zDPKxUFEZG0dO+qXR41SLg4iIqVcu6ZfDg8HPD2Vi6UKFthEZL9u3NAvP/ywcnEQERERkXV9/bV++bvvFAujOhbYRGSfqo6ee9ddQKtWysVCRGRNGg3g5iaXT5xQNhYiIqU8+aR+2ddXuTiqYYFNRPZp1y79sg1dtSQisriMDKC0FPD2Brp2VToaIiJl+fkpHYEBFthEZJ+qTslV9V5sIqKmbu9e+Xz77YCTk7KxEBEp4epV/fJ//6tcHCawwCYi+xQcLJ+7dVM2DiIia9MW2JGRysZBRKSUnTv1y3fcoVwcJrDAJiL7IwRQWSmX339f2ViIiKytags2EZEjeust+dyvn7JxmMACm4jsz+HDwJkzcpAfzn9NRI5k40bg7Fm5fNttysZCRKSUI0fkc0SEsnGYwAKbiOzPjz/K5zvvBFq2VDYWIiJrevtt/TJnTyAiR/T778DFi3I5Lk7RUExhgU1E9mf6dPnM7pFE5Gi0A/u89JKycRARKeVvf5PPrVoBoaGKhmIKC2wisi9ff61f7tRJsTCIiKzu0iXg0CG5/NxzysZCRKSUy5fl89y5NjmTAgtsIrIf+/cDDz+sfz15snKxEBFZW48ecpDHjh15gZGIHJO2azgATJigWBi1YYFNRPZj4ED9cmIi4MwURkQOIi9PPgAgPFzZWIiIlNKhg365XTvl4qgFz06JyD4UFhq+njlTmTiIiJTw1Vf65Y8/Vi4OIiKlqNX65cBA5eK4CRbYRGQf7rpLvyyEcnEQEVmbRgM884xcnjHDZlttiIgspqhI3h6jdfq0crHcBAtsIrIP6enyOThY2TiIiKzN3V2/PHy4cnEQESnlH/8wfG2Dg5tpscAmItt38KB+ec8e5eKwkOTkZAQHB8Pd3R3h4eHYtWtXrdvv3LkT4eHhcHd3R5cuXfDBBx8YbXPlyhVMnToVfn5+cHd3R2hoKFJSUiz1FYjIUsrLDV9HRysTBxGRUoQAtm3Tv66eF20MC2wisn3akcNbtDAc3KIJ2LBhA+Li4jBr1iykp6cjKioKI0aMQHZ2tsntT58+jXvvvRdRUVFIT0/Hf/7zH0ybNg0bN27UbVNaWophw4YhKysLX3zxBY4dO4YVK1bA39/fWl+LiMxl6VL9cnm5TbfaEBFZRNWGhEuXABcX5WKpAxbYRGTbDh4EtMXm008rG4sFLFmyBBMnTsSkSZMQGhqKpKQkBAQEYNmyZSa3/+CDD9C5c2ckJSUhNDQUkyZNwtNPP43Fixfrtlm1ahUuXbqEr7/+GoMHD0ZgYCDuuOMO9OnTx1pfi4jM4eJF4IUX9K9t/KSyMdiTh4hqNHeufrlNG+XiqCMW2ERk26pOR/Pqq8rFYQGlpaVIS0tDdLUun9HR0dhTQ1f4vXv3Gm0/fPhwHDhwAGVlZQCATZs2ITIyElOnToWvry969eqFhQsXoqKiosZYNBoNioqKDB5EpCAhgLAw/euqhXYTw548RFSjpUv1UxRu2aJsLHXUTOkAiIhqNGuWfjk5GfD0VC4WC8jPz0dFRQV8fX0N1vv6+iInJ8fkZ3JyckxuX15ejvz8fPj5+eHUqVP48ccfMWbMGKSkpODEiROYOnUqysvL8fLLL5vcb2JiIubNm2eeL0ZEjbdhg+wKCQCTJgGLFikbjwVV7ckDAElJSdiyZQuWLVuGxMREo+2r9uQBgNDQUBw4cACLFy/GI488AkDfk2fPnj1wdXUFAATa8LQ+RFSDuDj98tChioVRH2zBJiLbtXChfvnZZ5WLw8Kcqt1TKYQwWnez7auur6ysRPv27bF8+XKEh4fjiSeewKxZs2rsdg4ACQkJKCws1D3Onj3b0K9DRObwV/EIAKjl3669Y08eIqrRqVP65YMHAWf7KF0Vj5L33BCRSfn5+mXtFF1NjLe3N1xcXIxaq3Nzc41aqbU6dOhgcvtmzZqh3V9z4/r5+eGWW26BS5X7NUNDQ5GTk4PS0lKT+1WpVPD09DR4EJFCfvgB2LdPLm/ZAjRruh0OLdGTBwBOnTqFL774AhUVFUhJScHs2bPx1ltv4bXXXqsxlsTERHh5eekeAQEBjfx2RNQoAwfK5+hooF8/ZWOpB0ULbN5zQ0Q1+vBD+eznB/Ttq2goluLm5obw8HCkpqYarE9NTcWgQYNMfiYyMtJo+61btyIiIkLXDXLw4MH4888/UVlZqdvm+PHj8PPzg5ubm5m/BRGZ3VtvyefmzR1mWi725CEiAx98oG9s+ec/lY2lnhS9JMp7bojIpB9/BGbPlsujRikbi4XFx8dj7NixiIiIQGRkJJYvX47s7GxMmTIFgDzhO3/+PNasWQMAmDJlCt577z3Ex8dj8uTJ2Lt3L1auXIl169bp9vnss8/i3XffxfTp0/H888/jxIkTWLhwIaZNm6bIdySietBogJ9/lsubNysbixVYsiePq6trjT15TF1sVKlUUKlUjf1KRGQOVceM0U7XaicUa8G2pXtuiMiG3LgB3H23/rWdXbWsr5iYGCQlJWH+/Pno27cvfvrpJ6SkpOguDKrVaoNePcHBwUhJScGOHTvQt29fLFiwAO+8847uIiMABAQEYOvWrfj111/Ru3dvTJs2DdOnT8fMmTOt/v2IqJ527waKi4EOHYA77lA6GotjTx4iMpKdrW+9zsiwm3uvtRRrwbal0XM1Gg00Go3uNQe1IFKQh4d+OSYGCAlRLhYriY2NRWxsrMn3Vq9ebbRuyJAhOHjwYK37jIyMxC+//GKO8IjImu6/Xz4PGQLU0kW6KWFPHiIycMcdcqrCv/0N6NNH6WjqTfFRMyx5z42LiwvCw8Nx4cIFLFq0iNPTENm6tm0Nl9evVy4WIiJrW7gQuH5dLo8erWwsVhQTE4OCggLMnz8farUavXr1qlNPnhkzZuD9999Hx44da+zJM2PGDPTu3Rv+/v6YPn06XnrpJat/PyKqh/37Ae34B08/rWwsDaRYgW1L99wkJCQgPj5e97qoqIgjRxJZ23vvAZcv618XFCgXCxGRtQkBzJqlf/3gg8rFogD25CEi/PmnfuRwAHjySeViaQTFOrTb0j03nJ6GSGF5ecDzz+tf8zYNInI0L76oX2ZRSESO5to1oHt3/etPP7Xb22QUvWM8Pj4eH330EVatWoUjR45gxowZRvfcjBs3Trf9lClTcObMGcTHx+PIkSNYtWoVVq5ciRdeeEG3zbPPPouCggJMnz4dx48fx3fffYeFCxdi6tSpVv9+RFRHHTvqlw8dAlq1Ui4WIiJr+89/gMWL9a+rtuAQETmCli0NX9tp6zWg8D3YvOeGiAyuTj7/PNCrl3KxEBFZW2EhUHVq0sxM5WIhIlLCpk365Xbt9COI2yknoR0ljHSKiorg5eWFwsJCdhcnsqSdO+UIkVplZUAzxcdeNOKIOcERvzOR1QlhOP3MI48AX3yhXDy1cMSc4Ijfmcjqrl4Fqv77qqiw2Wm56poTbDN6Imr6hACGDdO/zsmxyeKaiMhi4uL0yyNH2mxxTURkERqNYXF96pTNFtf1Yf/fgIjs04ABssUaANLTgRpmDyAiapL27AHeeUcut2kDfP21ouEQEVndhAn65Q0bgOBgxUIxJxbYRGR9X30FHDgglydPBvr2VTQcIiKrunABGDxY//rwYeViISJSwm+/AevX618//rhysZgZC2wisq6UFOAf/9C//vBD5WIhIlKCv79+eeNGwM9PuViIiJSgHYD6scfkbYNNCG94JCLrEAJo2xa4ckW/7to1u53jkIioQebP1y8nJhpecCQiauquXJG3xWg1wZmeWGATkeUJIQfzqVpcb98ONG+uVERERNY3Zgywdq3+9cyZysVCRKSE22/XL99yCxAerlwsFsIu4kTUeEIAO3bIASoAIC8PeOUV4ORJOYCFs7N+MB/t+1Wn5yIiaup++smwuC4sVC4WIiJr084ec+yYfl3V5SaELdhE1Dh5eUD79vrXTzyhX543z3j769cBd3fLx0VEZCvUamDIEP3ra9fYg4eIHIMQwPffA/fdZ7i+slKZeKyALdhEVH/79wNBQfL+6arF9c0UF7O4JiLHIQQwfDjQsaN+3a+/srgmoqapatFcWAiMGCF7MVYvrq9cadJj8LDAJqK6EQL46COZEAcOBM6cMXz/tdeAhx/Wv377bdk9PDtbflYIoEULq4ZMRKSoRx4Btm7Vv163DoiIUC4eIiJz+/NPICpKnh+6uMhnJyegdWtg82bDbR94QJ4PenkpEqq1sIs4EdVMCNnaMnCg8XvduwMnTgDPPAMsWcIWGSIirR9/BO6+23BdUpLhLTRERPbqnXeA6dPrvv0TTwCffAK4uVkuJhvCApuIjJWWAg8+CGzZYvxejx5yapmHHrJ6WERENufqVcDDQ/bq+eQTYMEC423KyoBmPOUiIjtWViYHKdu5s+6fSUmR3cQdDLM9EemVlgJvvSVbWnJzjd/ftg34+9+tHhYRkc3ZsUPmQyFq3ubOO2XeZHFNRPaoshL49lvZqGIq13XqBDz1lJw5xpl3Hmsx4xMRcPGinI919WrD9QMGyPuub71VkbCIiBRVUQEsXw589528t3DTJiAw0HgMiuqefBJYsYKDOhKR/Skqkjlvyxb5nJ9vvM3LL5ueKYYAsMAmclyXLgGLFgGvv2783gcfAKNGAZ6e1o+LiEhp6enA2LHA4cPG75kqrm+7TY5HMXAg0KuX5eMjIjKnS5fk+eC6dcC5c4bvNW8OBATIC4779gFt2yoTox1hgU3kCMrL5RXIffvkiLYlJcat1d26AePHy5NEHx9FwiQiUsyRI3LmgwMH6jY/68CBwO7dsmWbiMjeZGXJ3ov79wOnTxu/37Ur8OqrwD/+4TCDk5kLC2yipujiReC//wW++Qb4/Xf5uiZjxshuPsHBvH+GiBxDUZEcsKddO+DQIWDqVGDXLtPbHjwIBAUBGg3QoYNVwyQiMhshgO+/l92+9+0D0tKMt3nsMXk++PrrTXqeaktjgU3UVJSVAR9+CPzvf8APP9S+ba9ewJAhwLvvMoESUdNXWirvJ3z8ceDGjdq37dpVjgT+xBPMj0Rkf4qLZZfvP/6QPRhPnJAXEr//3vQAtqtWydHBO3WyfqxNFAtsInt2+TLw3ntAZqbsqnj2rP699u1ld8d77pHTyNx6K+Dry/mqichxZGXJHPnWW7VvN3iwvG2mWzdrREVEZD4aDfDFF8D27cDKlTfffuhQ2SvnnnuA++8HVCqLh+hoWGAT2YviYuDzz+XUMFevAl99Jad+KS/Xb9O2LRAbK6dT6N+frS9E1HRdvSoHIduxA8jLA5YskV24e/cGTp6UA/VoNPrt3d31rdcvvihH+j5xQvboueUWRb4CEVG9CAH8+afMb0eOyHPBgwdli3VNwsPlWBGxscADD3CQMitggU1ka4QAfv1VTo915Qrw00/AtWvyxLBqMQ3oXz/2mDxZHDYM8PCweshERBZTVibHkti2DUhJAY4fl7nx+nXjbXNy5KOqv/9djgj+wAPynuuqOAUhEdkiIWTvxJdflj0Py8pkYW3qvmkA8PeXY+qEhQH9+slZYIKCrBoy6bHAJlLS5cuya/exYzJxnjwp75OpfoKo1bUr8Oij8l7re+8FXnkF6N7dqiETEVnMlSvA+vXAb7/JQvqXX+SsB3X19NNAZCTQpo2cDaFrV3niSURki65eBY4elb0UMzPlxcSCAjnooqn7pbX8/eW0WRERQFwcEBXFkb5tCAtsImsqLZUnjKmpwKZNspgWwvS2t9wiuwBNnSrnpPbyklcjnZ1Nz11NRGQPhJAXE7dulb11Ll2SJ5SFhbLLt6mc6OoKDBoE3HmnLKBbtABCQuS4EkRE9qC0VN7a9+efskfO5s2yV0713olVqVTAs8/Ki4Z+fsBdd8nnFi2sFzfVGwtsInOqrASys+VJ4v798r6YkhLg/HnZSm1Kt25Ajx5A585A376yRToykoNOEFHTUVkJpKfL6WFWrpR5sjaPPSZbZm69FejZU45uy2kEicheCCHnlv7hBzmDwZEj8lGTNm1k1+5+/YBWrYABA+TtLTwXtEsssInqq7RUf+/f5cuyFWb3btkafezYzbsztmwJ/O1vQEwMcPfd8kokEZG9Ky2VvW7UatnV8bff9IOQmTJkCNCnDxAYKFuitSeVnGuaiOzBtWuyB86RI7JVOi8PuHhRNqps2lTz51QqORDt/ffLR69evIDYxLDAJqpNcbEcUOL0aZlA9++XXbxrm0fVxUW2Qt92GzBwoBytsVUrID9fnjyGhMhtiIjskXZe1bNngX37ZCGdmSlPMMvKav5cy5ZyIMboaDmGROfO1ouZiKixLl6UrdHbt8seOb//XvNtfoAsmm+/Xea93r1lbxxnZ3lRkfdLN2kssIkqKoAzZ2Trs/Zx/Lh8Pn/+5p/v31+OTturl0ygXbuygCaipuHMGXlhMS1N9tS5eFF27646/VV1vr4yF/btK7t4N2sGtG7N7o5EZPuEkIOLHTsGfPYZkJEhc9off8jGFlOCg+U5YMeOcqYCJyc5ivdzz8kRwMnhsMAmxyCEbEHOypJF8/Hj8srjsWMyadbWIt2pk7xHuls3OZfgoEGyhbqyUl6B5FzTRNQU5ObKQcd+/ll29f7zT9ljx5SWLWULdFiYHDOiZ08gIEDmSnZ1JCJbd+WK/hwwLU3mv8OHZc+ca9dMf8bJSV40HDFC3is9aJAczZs5j6phgU1Nx7VrMjnu2ydHqD17FrhwQY5Oe/r0zUdp7N5dnhyGhMhH165Aly68H5CI7F9hocyLRUVyWhhnZ3myePAgcOCAPME8d870Z/v1k60zd98tW2oCAmQXR55UEpEtEkL2tsnIkA0rZWXylr/du2UDy4ULNRfRWh06yClTExJkvuvSRQ682KaNNb4B2TkW2GR/hJBJ748/ZOvKL7/Ik8Sa5o6uyt9fPgIC5Aljz55ykB126yYFJScnY9GiRVCr1ejZsyeSkpIQFRVV4/Y7d+5EfHw8Dh8+jI4dO+LFF1/ElClTTG67fv16jBo1CiNHjsTXX39toW9AVieE7I1TUCBPHJ2dZYtMQYHskZOfLwcby87Wd22sqKh9n05OsqfOHXfIi4w+PsDw4ZxHmqyCeZDqpaxM9kT84w95cfD0aTnw7IkTsmW6tPTm++jYUea63r3lct++spgODATc3S3+FajpUrzAZkIlk65ckaMxnjkjrzYePy6vQp49K1thCgtNf87HRw4upp3WpVMneT9M585ytG4mTLIxGzZsQFxcHJKTkzF48GB8+OGHGDFiBDIzM9HZxCBQp0+fxr333ovJkyfj//7v/7B7927ExsbCx8cHjzzyiMG2Z86cwQsvvFBrTiUbJoQ8Ybx8WZ5AHj8uTyZPnZJduS9erN/+WrSQFxf//FO2zrRuLS8whofLh3Z6GCIrYx4kkwoLZcF86pS8YHj6tCyec3Lk+tpaoZ2cZPHs7w94eMjbWm67DQgNleeGQUHMd2QxTkLUNvydZW3YsAFjx441SKgfffRRrQm1V69emDx5Mp555hldQl23bp3JhDp48GB06dIFbdu2rVeBXVRUBC8vLxQWFsLT07OxX5NMKS+XrS9HjsgTx6ws2b378mVZQNfUVVHL2VkmxwED5P1/4eHyXkB23SELsGROGDhwIPr3749ly5bp1oWGhuKhhx5CYmKi0fYvvfQSNm3ahCNV5tOcMmUKfvvtN+zdu1e3rqKiAkOGDMFTTz2FXbt24cqVK8yDtkY7mE5WljxxPHVKFr+FhTIHHjtW88VEQA4e5ukpLxy6usoZC9q0kWNDeHnJC46dO8tujd26yeKaqIGYB5kHzaayUjakXLsmu2ufPauf5io3V+bCEyfk69q0bi3viQ4Olj0RW7eWXbl79pQXET08rPBlyJHUNSco2oK9ZMkSTJw4EZMmTQIAJCUlYcuWLVi2bJnJhPrBBx+gc+fOSEpKAiCT74EDB7B48WKDAruiogJjxozBvHnzdAmVrKi4WF5pPHtWniDm58tEeuqUTJx5eXL5Zt0VW7aUVx5DQoBbbpEFtbbrTkgIpzggu1daWoq0tDTMnDnTYH10dDT27Nlj8jN79+5FdHS0wbrhw4dj5cqVKCsrg6urKwBg/vz58PHxwcSJE7Fr166bxqLRaKCpMjJ0UVFRfb8OVXf5sjx5vHhRFtHa7ozHj8s8WNvgilWpVPJkMSRE3toSHCxnL+jXjyeQZPdsKQ+SmZSVyfO+P/+UjSdnzugHmS0okMt1/X+Mr68smv399YV0QIBcDgnhWBBkkxQrsG0poTr8iaX2SuKVK7LovXJFJsPiYuD6dflQqeTrK1fka+3fq7xcJsmLF2VRrVbLAXTqwsVFDioWGCiTZWioPIn095dXJL28LPN9iWxEfn4+Kioq4Ovra7De19cXOTWMKZCTk2Ny+/LycuTn58PPzw+7d+/GypUrkZGRUedYEhMTMW/evHp/B4chBFBSIvPfuXOydSUnRy7n5ekfFRWy1bmwUF5QvBknJ/2JY1CQbGn28pJdGENC5Gve2kJNmC3lQYc/H6yqrEye31VWyvO669fleWBxsVx/+bJ8LinRN6icPSvX1SX3AbIXTocO8hxQO6ist7fMh927y/zHngNkhxQrsG0poTbZE0shZKLLzpZXC7X3MJ8/L08ECwrkCeLFizdvTa6vFi3kCWK3bnLgiFatZML085PdGLXrObAYEZyqTfUmhDBad7PtteuvXr2KJ598EitWrIC3t3edY0hISEB8fLzudVFREQIcqUtxRYW8QKjtpq1W67tunz0rl+syaE51bdrIk0Y/P3m/8623youJvr6ycG7blnNDE8E28mCTPR8EZHfsixdlsVy1K/b587KnjbZ1+cYNuc3NRtmui3bt5H3PwcGyMaVTJ3nrip+f7JnIqU6piVJ8kDNbSKh2d2IphGwdyc6WJ3+nTwOXLulbUq5c0bcml5TUfb8eHvI+vhYtZDJs1Uouu7vLhNu8uUyWzZvLwtjFRV59bNlSniz6+cmi2c+PA0cQ1YG3tzdcXFyMLirm5uYaXUzU6tChg8ntmzVrhnbt2uHw4cPIysrCAw88oHu/srISANCsWTMcO3YMXbt2NdqvSqWCyt4KvYoK2Yri5CTzXn7+zR8FBfKzlZXyfj1nZ5krb9yofSq/qjw9Ze+bgAB5wti+vTxp9PGR77dpI1uhg4LkMYioRraUB+3qfFCjkQVzbq4skP/8U+a4wkLZuKIdKDYvTxbMDblAqNW8uX6gsFat5HObNvoxIAICZNftwEC5vmNHefGwmeJlBpEiFPvl21JCtYkTy/Jy2e3m8mXZWqJWy9blvDx5VTE7W76+elWeINancG7bVp7oBQXJAW+0VxDbtJGFsb+/7JKj9N+AyMG4ubkhPDwcqampePjhh3XrU1NTMXLkSJOfiYyMxDfffGOwbuvWrYiIiICrqyt69OiBQ4cOGbw/e/ZsXL16FUuXLrXdk8WqhJAF8/HjMv9pLxhqHzk58jk3VxbKDaUttrVcXGSO7NZN5kVt3tS2vGhnItDOIU1EjWZLedAmzgcrK+W5X36+HAj2yBF5bnjjhiycjx6VLc+XL9d/3+7usij28ZHnfdrzQj8/WSS3aycL6Vat5EVC7a16f92CSUR1o1iBbUsJ1Sq0o8VmZsoBH7Kz9VOvnDkjrzyWldVvn97eMjF27SqTorYlxdNTXj3UtiY3b26Z70REjRYfH4+xY8ciIiICkZGRWL58ObKzs3XTDyYkJOD8+fNYs2YNADlS7nvvvYf4+HhMnjwZe/fuxcqVK7Fu3ToAgLu7O3r16mVwjNZ/taJWX6+YsjJZOJ89Kx8XLsiiOTtbFtUnTtTvIiIge9t4e9/80a6dzMcuLjIHV1TIk01PT5kvedsKkdU5VB6sqNBPu3fihDwHzM6WOfHcOfmo6/mgq6s87/P1lRcGO3TQF8Zt2sjeiN7eMr9pW5yJyOIU7bvR5BLqtWtykIcTJ/Stztr5m8+dq9vgXyqVvIqoHexLWzh37CjXt2olk6SfnzyhJCK7FhMTg4KCAsyfPx9qtRq9evVCSkoKAgMDAQBqtRrZ2dm67YODg5GSkoIZM2bg/fffR8eOHfHOO+8YTVWomNJS2cqSk6Ofs1lbRGtnF7h4URa5N+PnJ1tY/PzkQ3svc9Vlb2/ZoszCmMhuNZk8ePGiLHhzc+Xte2q1zIPnzsmceOyYXH+z7tpOTvopp3r3lhcB3d3leV/XrvIWFT8/eT7I3jRENkfRebABIDk5GW+++aYuob799tu48847AQATJkxAVlYWduzYodt+586dmDFjBg4fPoyOHTvipZde0hXkpkyYMMHy8x527y4L6uvXa9/OyUleTezVSybN1q319/CFhMgTRqW7JhGREUecC7Ve3/ncOaBv3/rd5+fmJnOfNgf6+srn7t1lPuzUiVNQEdkQ5sGbfOcTJ+TAXc2b37wHjqurPB/s0UPfTdvfXz4CA2XxzG7ZRDanrjlB8QLbFtX7fyL+/rJ1BpCtKSEh+nudu3SR3XY6dZJJlNOtENkdnlje5DsXFMjcV5WXlxwtu0cPmf/8/fXTsQQEyBYZtrwQ2Q3mwZt85zVrgPHj5bKzsz7nhYbKc0EfH1mAd+0qzxHZ64bI7tQ1J3B4P3PYtUsmU09POaAYEZEjadNGji3RqpV+hFmOHktEjmTcOOCee+Qo3oGBspcOETkkngGZQ5cuSkdARKQcZ2cgLEzpKIiIlNW+vXwQkUNzVjoAIiIiIiIioqaABTYRERERERGRGbDAJiIiIiIiIjIDFthEREREREREZsACm4iIiIiIiMgMWGATERERERERmQELbCIiIiIiIiIzYIFNREREREREZAYssImIiIiIiIjMoJnSAdgiIQQAoKioSOFIiMgWaHOBNjc4AuZBIqqKeZCIHF1d8yALbBOuXr0KAAgICFA4EiKyJVevXoWXl5fSYVgF8yARmcI8SESO7mZ50Ek40qXIOqqsrMSFCxfQqlUrODk53XT7oqIiBAQE4OzZs/D09LRChOZlz/EzduXYc/z1jV0IgatXr6Jjx45wdnaMO2scKQ/ac+yAfcdvz7ED9h0/8+DNMQ/aD3uO355jB+w7fkvlQbZgm+Ds7IxOnTrV+3Oenp5298Oqyp7jZ+zKsef46xO7o7TYaDliHrTn2AH7jt+eYwfsO37mwZoxD9ofe47fnmMH7Dt+c+dBx7gESURERERERGRhLLCJiIiIiIiIzIAFthmoVCrMnTsXKpVK6VAaxJ7jZ+zKsef47Tl2W2XPf1N7jh2w7/jtOXbAvuO359htlT3/Te05dsC+47fn2AH7jt9SsXOQMyIiIiIiIiIzYAs2ERERERERkRmwwCYiIiIiIiIyAxbYRERERERERGbAAruOkpOTERwcDHd3d4SHh2PXrl21br9z506Eh4fD3d0dXbp0wQcffGClSI3VJ/Yvv/wSw4YNg4+PDzw9PREZGYktW7ZYMVpj9f3ba+3evRvNmjVD3759LRtgLeobu0ajwaxZsxAYGAiVSoWuXbti1apVVorWWH3j/+yzz9CnTx80b94cfn5+eOqpp1BQUGClaPV++uknPPDAA+jYsSOcnJzw9ddf3/QztvRv1lYxDyqHeZB5sL6YBy2DeVAZ9pwDAfvOg/aaAwEF86Cgm1q/fr1wdXUVK1asEJmZmWL69OmiRYsW4syZMya3P3XqlGjevLmYPn26yMzMFCtWrBCurq7iiy++sHLk9Y99+vTp4o033hD79+8Xx48fFwkJCcLV1VUcPHjQypFL9Y1f68qVK6JLly4iOjpa9OnTxzrBVtOQ2B988EExcOBAkZqaKk6fPi327dsndu/ebcWo9eob/65du4Szs7NYunSpOHXqlNi1a5fo2bOneOihh6wcuRApKSli1qxZYuPGjQKA+Oqrr2rd3pb+zdoq5kHmwYZgHmQebEqYB5XJg/acA4Ww7zxozzlQCOXyIAvsOhgwYICYMmWKwboePXqImTNnmtz+xRdfFD169DBY98wzz4jbb7/dYjHWpL6xmxIWFibmzZtn7tDqpKHxx8TEiNmzZ4u5c+cqllTrG/v3338vvLy8REFBgTXCu6n6xr9o0SLRpUsXg3XvvPOO6NSpk8VirIu6JFRb+jdrq5gHmQcbgnmQebApYR5UJg/acw4Uwr7zYFPJgUJYNw+yi/hNlJaWIi0tDdHR0Qbro6OjsWfPHpOf2bt3r9H2w4cPx4EDB1BWVmaxWKtrSOzVVVZW4urVq2jbtq0lQqxVQ+P/+OOPcfLkScydO9fSIdaoIbFv2rQJERERePPNN+Hv749bbrkFL7zwAq5fv26NkA00JP5Bgwbh3LlzSElJgRACFy9exBdffIH77rvPGiE3iq38m7VVzIPMgw3BPMg82JQwDyqTB+05BwL2nQcdLQcC5vs328zcgTU1+fn5qKiogK+vr8F6X19f5OTkmPxMTk6Oye3Ly8uRn58PPz8/i8VbVUNir+6tt97CtWvX8Pjjj1sixFo1JP4TJ05g5syZ2LVrF5o1U+7n3ZDYT506hZ9//hnu7u746quvkJ+fj9jYWFy6dMnq9900JP5Bgwbhs88+Q0xMDG7cuIHy8nI8+OCDePfdd60RcqPYyr9ZW8U8yDzYEMyDzINNCfOgMnnQnnMgYN950NFyIGC+f7Nswa4jJycng9dCCKN1N9ve1HprqG/sWuvWrcMrr7yCDRs2oH379pYK76bqGn9FRQVGjx6NefPm4ZZbbrFWeLWqz9++srISTk5O+OyzzzBgwADce++9WLJkCVavXq1I6w1Qv/gzMzMxbdo0vPzyy0hLS8PmzZtx+vRpTJkyxRqhNpot/Zu1VcyDzIMNwTzIPNiUMA8qkwftOQcC9p0HHSkHAub5N8sW7Jvw9vaGi4uL0ZWa3NxcoyscWh06dDC5fbNmzdCuXTuLxVpdQ2LX2rBhAyZOnIjPP/8cQ4cOtWSYNapv/FevXsWBAweQnp6O5557DoBMUkIINGvWDFu3bsXf//53m4wdAPz8/ODv7w8vLy/dutDQUAghcO7cOXTv3t2iMVfVkPgTExMxePBg/Pvf/wYA9O7dGy1atEBUVBReffVVm279sJV/s7aKeZB50BqxA8yDSrKVf7O2inlQmTxozzkQsO886Gg5EDDfv1m2YN+Em5sbwsPDkZqaarA+NTUVgwYNMvmZyMhIo+23bt2KiIgIuLq6WizW6hoSOyCvVE6YMAFr165V9J6J+sbv6emJQ4cOISMjQ/eYMmUKQkJCkJGRgYEDB1or9Ab97QcPHowLFy6guLhYt+748eNwdnZGp06dLBpvdQ2Jv6SkBM7OhinFxcUFgP7qn62ylX+ztop5kHmwIZgHJebBpoF5UJk8aM85ELDvPOhoORAw47/Zeg2J5qC0Q9SvXLlSZGZmiri4ONGiRQuRlZUlhBBi5syZYuzYsbrttUO8z5gxQ2RmZoqVK1cqPi1DXWNfu3ataNasmXj//feFWq3WPa5cuWL12BsSf3VKjhxZ39ivXr0qOnXqJB599FFx+PBhsXPnTtG9e3cxadIku4j/448/Fs2aNRPJycni5MmT4ueffxYRERFiwIABVo/96tWrIj09XaSnpwsAYsmSJSI9PV03rYQt/5u1VcyDzIMNwTzIPNiUMA8qkwftOQcKYd950J5zoBDK5UEW2HX0/vvvi8DAQOHm5ib69+8vdu7cqXtv/PjxYsiQIQbb79ixQ/Tr10+4ubmJoKAgsWzZMitHrFef2IcMGSIAGD3Gjx9v/cD/Ut+/fVVKJ9X6xn7kyBExdOhQ4eHhITp16iTi4+NFSUmJlaPWq2/877zzjggLCxMeHh7Cz89PjBkzRpw7d87KUQuxffv2Wn/Htv5v1lYxD463fuB/YR5kHqwv5kHLYB4cb/3AhX3nQCHsOw/aaw4UQrk86CSEHbTXExEREREREdk43oNNREREREREZAYssImIiIiIiIjMgAU2ERERERERkRmwwCYiIiIiIiIyAxbYRERERERERGbAApuIiIiIiIjIDFhgExEREREREZkBC2wiIiIiIiIiM2CB3UQIIfDPf/4Tbdu2hZOTEzIyMvC3v/0NcXFxtX4uKCgISUlJVomRDDk5OeHrr78GAGRlZen+uzXW2LFjsXDhwnp9ZvXq1WjdunWjj21JEyZMwEMPPVSnbXNzc+Hj44Pz589bNihSHHOf/bGl3HczO3bsgJOTE65cuWLW/ZpDXX7nWocOHUKnTp1w7do1ywZFdou51P7YUy6tr6rfzS7P6QRZlFqtFs8995wIDg4Wbm5uolOnTuL+++8XP/zwg1mPk5KSIlxdXcXu3buFWq0WZWVloqCgQBQVFdX6ucDAQPH222+bNRYyNHfuXNGnTx+j9Wq1Wty4cUMIIcTp06cFAJGent6oY/3222+iTZs2Jv+7f/bZZ8LZ2Vk888wzRu99/PHHwsvLq1HHtvQ+r1y5Ii5fvlzn7WfMmCEmTpxotuNT/TD3kdK5b8iQIQKA0cNUDqyJRqMRarVaVFZW3nTb7du3CwD1ylONUZffeVUPP/ywWLBggQUjIktgLiWlcql2n7U95s6dW+O+GhMTAPHVV1/pXtvbOV0zK9fzDiUrKwuDBw9G69at8eabb6J3794oKyvDli1bMHXqVBw9etRsxzp58iT8/PwwaNAg3bq2bduabf9NUWlpKdzc3BQ7focOHcy+z/feew+PPfYYWrVqZfTeqlWr8OKLL2LZsmVYsmQJmjdvbvbjW0JFRQWcnJzg5eVVr8899dRTGDBgABYtWoQ2bdpYKDoyhbnPtjlS7ps8eTLmz59vsK4+uc/Nzc0i8ZpDfX/nTz31FKZMmYKEhAS4uLhYKCoyJ+ZS29bUc2nz5s2hVqt17y1evBibN2/GDz/8oFvXsmVLs8dgit2d0yld4TdlI0aMEP7+/qK4uNjovapXuM+cOSMefPBB0aJFC9GqVSvx2GOPiZycHN372itXa9asEYGBgcLT01PExMToriqOHz/e4GpSYGCgEEJevZ8+fbpuPxcvXhT333+/cHd3F0FBQeL//u//jK48XrlyRUyePFn4+PiIVq1aibvuuktkZGTUORYhhKioqBCvv/666Nq1q3BzcxMBAQHi1Vdf1b1/7tw58fjjj4vWrVuLtm3bigcffFCcPn26xr+jtlXg22+/Fb179xYqlUoMGDBA/P777wbb7d69W0RFRQl3d3fRqVMn8fzzzxv87QMDA8WCBQvE+PHjhaenpxg3bpwQQoiff/5Z3HnnncLDw0O0bt1aREdHi0uXLgkhhKisrBRvvPGGCA4OFu7u7qJ3797i888/N4rthx9+EOHh4cLDw0NERkaKo0ePCiFkKy6qXe37+OOPhRCGV+dMXeU7fPiwGDFihGjRooVo3769ePLJJ0VeXl6Nf6eKigrRunVr8e233xq9d/r0aeHh4SGuXLkiBg4cKD755BOD9021Nm/atEn0799fqFQqERwcLF555RVRVlame/+tt94SvXr1Es2bNxedOnUSzz77rLh69arB3wUmrnJeunRJjB07VrRu3Vp4eHiIe+65Rxw/ftwolm+++UaEhoYKFxcXcerUKTF+/HgxcuRIg+9b2+9MCCGCgoLEypUra/ybkWUw9zH32ULuq/47qE577HXr1onIyEihUqlEWFiY2L59u9H31P5us7KyxP333y9at24tmjdvLsLCwsR3331nsqVn/Pjx9fpbbt68WfTt21e4u7uLu+66S1y8eFGkpKSIHj16iFatWoknnnhCXLt2rcbvd+PGDfHvf/9bdOrUSbi5uYlu3bqJjz76SPe+RqMRKpVKbNu2rca/CdkW5lLmUlvIpVrVW9IrKirEvHnzhL+/v3BzcxN9+vQR33//ve796nEPGTJECCHE/v37xdChQ0W7du2Ep6enuPPOO0VaWprBsap+Ny17OqdjgW0hBQUFwsnJSSxcuLDW7SorK0W/fv3EHXfcIQ4cOCB++eUX0b9/f92PUAj5g27ZsqX4xz/+IQ4dOiR++ukn0aFDB/Gf//xHCCGT2fz580WnTp2EWq0Wubm5QgjjxDhixAjRq1cvsWfPHnHgwAExaNAg4eHhoUuMlZWVYvDgweKBBx4Qv/76qzh+/Lj417/+Jdq1aycKCgrqFIsQQrz44ouiTZs2YvXq1eLPP/8Uu3btEitWrBBCCHHt2jXRvXt38fTTT4vff/9dZGZmitGjR4uQkBCh0WhM/o20ySc0NFRs3bpV/P777+L+++8XQUFBorS0VAghxO+//y5atmwp3n77bXH8+HGxe/du0a9fPzFhwgTdfrSJfNGiReLEiRPixIkTIj09XahUKvHss8+KjIwM8ccff4h3331Xl4D+85//iB49eojNmzeLkydPio8//lioVCqxY8cOg9gGDhwoduzYIQ4fPiyioqLEoEGDhBBClJSUiH/961+iZ8+eQq1WC7VaLUpKSoQQtSfGCxcuCG9vb5GQkCCOHDkiDh48KIYNGybuuuuuGn9L6enpAoDB/1S15syZIx599FEhhBDvvvuuuPPOOw3er15gb968WXh6eorVq1eLkydPiq1bt4qgoCDxyiuv6LZ5++23xY8//ihOnToltm3bJkJCQsSzzz4rhJAncklJScLT01P3vbXF94MPPihCQ0PFTz/9JDIyMsTw4cNFt27ddP8tP/74Y+Hq6ioGDRokdu/eLY4ePSqKi4uNCuzafmdajz/+uMFvgCyPuY+5TwjbyH11LbA7deokvvjiC5GZmSkmTZokWrVqJfLz8w2+p7aYue+++8SwYcPE77//Lk6ePCm++eYbsXPnTlFeXi42btwoAIhjx44JtVotrly5Uq+/5e233y5+/vlncfDgQdGtWzcxZMgQER0dLQ4ePCh++ukn0a5dO/H666/X+P0ef/xxERAQIL788ktx8uRJ8cMPP4j169cbfOcBAwYY5HGyXcylzKVC2EYurfo7qlpgL1myRHh6eop169aJo0ePihdffFG4urrqGk3279+vu3igVqt1v4Ft27aJTz/9VGRmZorMzEwxceJE4evra3CRxVSBbU/ndCywLWTfvn0CgPjyyy9r3W7r1q3CxcVFZGdn69YdPnxYABD79+8XQsgfdPPmzQ1+eP/+97/FwIEDda/ffvtt3RVHraqJ8dixYwKA+OWXX3TvHzlyRADQJcZt27YJT09P3f0cWl27dhUffvhhnWIpKioSKpXKqNDRWrlypQgJCTG4n02j0QgPDw+xZcsWk5/RJp+qJwoFBQXCw8NDbNiwQQghxNixY8U///lPg8/t2rVLODs7i+vXrwshZGJ86KGHDLYZNWqUGDx4sMnjFhcXC3d3d7Fnzx6D9RMnThSjRo0yiK3qvVDfffedAKA7bk33ztSWGOfMmSOio6MNtj979qzu5M2Ur776Sri4uBjdK1hRUSECAgLE119/LYQQIi8vT7i6uooTJ07otqleYEdFRRn9T/3TTz8Vfn5+Jo8thBD//e9/Rbt27WrcpxBCHD9+XAAQu3fv1q3Lz88XHh4e4r///a/ucwAMrngLIQwK7Jv9zrRmzJgh/va3v9W6DZkXcx9zn63kviFDhghXV1fRokULg8fq1asNjl21aC0rKxOdOnUSb7zxhsH31BbYt956a40Fqql7sBv6t0xMTBQAxMmTJ3XrnnnmGTF8+HCD71f9d56ammoyNq2HH37Ybk5QHR1zKXOpreRSrepxdOzYUbz22msG29x2220iNjbWZEw1KS8vF61atRLffPONye+mZU/ndLwH20KEEADkKHi1OXLkCAICAhAQEKBbFxYWhtatW+PIkSO47bbbAMhRGqveW+bn54fc3Nw6x3PkyBE0a9YMERERunU9evQwGDk6LS0NxcXFaNeuncFnr1+/jpMnT+pe1xbLkSNHoNFocPfdd5uMIy0tDX/++afRfXI3btwwOIYpkZGRuuW2bdsiJCQER44cMdjvZ599pttGCIHKykqcPn0aoaGhAGDw/QEgIyMDjz32mMnjZWZm4saNGxg2bJjB+tLSUvTr189gXe/evXXLfn5+AOSoh507d671O9UkLS0N27dvN3lvy8mTJ3HLLbcYrb9+/TpUKpXRb27r1q24du0aRowYAQDw9vZGdHQ0Vq1aVeMokWlpafj111/x2muv6dZVVFTgxo0bKCkpQfPmzbF9+3YsXLgQmZmZKCoqQnl5OW7cuIFr166hRYsWJver/R0OHDhQt65du3YG/y0Bed9j1b+pqf3U9jvT8vDwQElJSa3bkHkx9zH32UruA4AxY8Zg1qxZBuvat29v8Lrq31f7W6maj6qaNm0ann32WWzduhVDhw7FI488Umuuaujf0tfXF82bN0eXLl0M1u3fv9/kcTIyMuDi4oIhQ4bUGAvAnGhPmEuZS20pl1ZXVFSECxcuYPDgwQbrBw8ejN9++63Wz+bm5uLll1/Gjz/+iIsXL6KiogIlJSXIzs6u9XP2lL9YYFtI9+7d4eTkhCNHjtQ6tZAQwuQPufp6V1dXg/ednJxQWVlZ53jqkqgrKyvh5+eHHTt2GL1XNYHWFouHh0etcVRWViI8PNwggWn5+PjU+llTtN+nsrISzzzzDKZNm2a0TdXkVL3wqy1e7Xf67rvv4O/vb/CeSqUyeF31b1I1poaqrKzEAw88gDfeeMPoPW3irc7b2xslJSVGg26sWrUKly5dMhjYp7KyEunp6ViwYIHJwW4qKysxb948/OMf/zB6z93dHWfOnMG9996LKVOmYMGCBWjbti1+/vlnTJw4EWVlZTV+L+3v0NT6qr9NDw+PWn+rN/udaV26dKlBvytqOOa+mo/B3Hdz5sx9AODl5YVu3brVO46afi+TJk3C8OHD8d1332Hr1q1ITEzEW2+9heeff97k9o35W9bnt1+fnNi1a9c6bUvKYi6t+RjMpTdn7lxak+q/h5p+j1VNmDABeXl5SEpKQmBgIFQqFSIjI1FaWlrr5+zpnI7zYFtI27ZtMXz4cLz//vsm553UzqkZFhaG7OxsnD17VvdeZmYmCgsLdVfLzCE0NBTl5eU4cOCAbt2xY8cM5vbs378/cnJy0KxZM3Tr1s3g4e3tXafjdO/eHR4eHti2bZvJ9/v3748TJ06gffv2Rse42SjRv/zyi2758uXLOH78OHr06KHb7+HDh4322a1bt1qTRO/evWuMNSwsDCqVCtnZ2Ub7rHql+Gbc3NxQUVFR5+2rfp+goCCjY9fUOty3b18A8vejVVBQgP/9739Yv349MjIyDB7FxcX4/vvvazz+sWPHTP49nZ2dceDAAZSXl+Ott97C7bffjltuuQUXLly46fcOCwtDeXk59u3bZxDj8ePH6/V7v9nvTOuPP/4wukpMlsXcx9ynpWTuq4+qf9/y8nKkpaXp/r6mBAQEYMqUKfjyyy/xr3/9CytWrAAA3d+76nc219/yZm699VZUVlZi586dtW7HnGg/mEuZS7VsMZd6enqiY8eO+Pnnnw3W79mzR/e7M5UTAWDXrl2YNm0a7r33XvTs2RMqlQr5+fk3PaY95S8W2BaUnJyMiooKDBgwABs3bsSJEydw5MgRvPPOO7puKkOHDkXv3r0xZswYHDx4EPv378e4ceMwZMgQo24ojRESEoJ77rkHkydPxr59+5CWloZJkyYZXHkbOnQoIiMj8dBDD2HLli3IysrCnj17MHv2bIOEWht3d3e89NJLePHFF7FmzRqcPHkSv/zyC1auXAlAdtfz9vbGyJEjsWvXLpw+fRo7d+7E9OnTce7cuVr3PX/+fGzbtg1//PEHJkyYAG9vb91V3Zdeegl79+7F1KlTkZGRgRMnTmDTpk01tipoJSQk4Ndff0VsbCx+//13HD16FMuWLUN+fj5atWqFF154ATNmzMAnn3yCkydPIj09He+//z4++eSTOv09ANkV6vTp08jIyEB+fj40Gs1NPzN16lRcunQJo0aNwv79+3Hq1Cls3boVTz/9dI1J1sfHB/379zdIdp9++inatWuHxx57DL169dI9evfujfvvv1/336W6l19+GWvWrMErr7yCw4cP48iRI9iwYQNmz54NAOjatSvKy8vx7rvv4tSpU/j000/xwQcfGH3v4uJibNu2Dfn5+SgpKUH37t0xcuRITJ48GT///DN+++03PPnkk/D398fIkSPr+ie96e8MAEpKSpCWlobo6Og675fMg7mPuQ9QNvdplZSUICcnx+Bx+fJlg23ef/99fPXVVzh69CimTp2Ky5cv4+mnnzZ5rLi4OGzZsgWnT5/GwYMH8eOPP+pOJgMDA+Hk5IRvv/0WeXl5KC4uNtvf8maCgoIwfvx4PP300/j6669x+vRp7NixA//9739122RlZeH8+fMYOnSo2Y5LlsVcylwK2EYuNeXf//433njjDWzYsAHHjh3DzJkzkZGRgenTpwOQt+N4eHhg8+bNuHjxIgoLCwEA3bp1w6effoojR45g3759GDNmzE17LtjdOZ21b/p2NBcuXBBTp04VgYGBws3NTfj7+4sHH3zQYBqQuk6vUFX1wShuNjiFEHJC+vvuu0+oVCrRuXNn3RQJVadXKCoqEs8//7zo2LGjcHV1FQEBAWLMmDG6wTPqEktFRYV49dVXRWBgoHB1dRWdO3c2GDBLrVaLcePGCW9vb6FSqUSXLl3E5MmTRWFhocm/oXYAiG+++Ub07NlTuLm5idtuu81oEKz9+/eLYcOGiZYtW4oWLVqI3r17Gwy+UP27au3YsUMMGjRIqFQq0bp1azF8+HDdIDWVlZVi6dKlIiQkRLi6ugofHx8xfPhwsXPnToPYqg5qox2FUTtlxI0bN8QjjzwiWrduXa/pFY4fPy4efvhh3XRWPXr0EHFxcTUOPiGEEB988IG4/fbbda9vvfVW3WAT1W3cuFE0a9ZM5OTkmByQbPPmzboRQj09PcWAAQPE8uXLde8vWbJE+Pn5CQ8PDzF8+HCxZs0ao7/FlClTRLt27UxO0+Xl5aX7rKlpuqozNU1Xbb+ztWvXipCQkBr/VmRZzH3MfUrmPiHk7wDVpokBoBsoTHvstWvXioEDBwo3NzcRGhpqMI1V9e/53HPPia5duwqVSiV8fHzE2LFjdSOOCyHE/PnzRYcOHYSTk5PBNF31/VuayoPVf4PVf+fXr18XM2bMEH5+frppulatWqV7f+HChQaDpJF9YC5lLlU6l2rVNk2Xq6ur0TRdQgixYsUKERAQIJydnXUj2x88eFBEREQIlUolunfvLj7//HOjv23V7yaE/Z3TOQlRw02RRDZix44duOuuu3D58mWDe3jI2I0bNxASEoL169cbDObhiAYMGIC4uDiMHj1a6VCIGoS5r+4akvuysrIQHByM9PR0XdfIpkqj0aB79+5Yt26d0aBERE0dc2nd2ep5pL2d07GLOFET4u7ujjVr1tTpXpamLDc3F48++ihGjRqldChEZAXMfbU7c+YMZs2axeKaiGpli7nUHs/pOIo4URNzs2laHEH79u3x4osvKh0GEVkRc1/NbrnlFpPT8hARVWdrudQez+nYRZyIiIiIiIjIDNhFnIiIiIiIiMgMWGATERERERERmQELbCIiIiIiIiIzYIFNREREREREZAYssImIiIiIiIjMgAU2ERERERERkRmwwCYiIiIiIiIyAxbYRERERERERGbAApuIiIiIiIjIDP4fSE4hmIIZymQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAFUCAYAAADS2eS8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0BElEQVR4nO3dd3hUVf4/8PeQMgmkkl4g9BJaIi0JK8jSpAl2XRREFxdBpSyiscKCRPaHEhCFBYEQ0YAaQfwKS1ESpEmNIESKRCEhISRk0oBJO78/2IzcmUkyM5nJnfJ+Pc88j+fOOfd+7oQc55NTrkIIIUBEREREREREFtFM7gCIiIiIiIiI7BkTbyIiIiIiIiILYuJNREREREREZEFMvImIiIiIiIgsiIk3ERERERERkQUx8SYiIiIiIiKyICbeRERERERERBbExJuIiIiIiIjIgph4ExEREREREVkQE28iIiIiIiIiC2Li3Qj79u3D2LFjERoaCoVCga1bt1r0egkJCejbty88PT0RGBiI8ePH49y5cxa9JhGRPuz/iMgRse8jIlMx8W6E8vJy9OrVCytWrGiS66Wnp2P69Ok4fPgwdu/ejaqqKgwfPhzl5eVNcn0iolrs/4jIEbHvIyJTKYQQQu4g7IFCocCWLVswfvx4zbGKigq8+eab+Oyzz6BSqdC9e3csXrwY9913n1muef36dQQGBiI9PR0DBw40yzmJiIzF/o+IHBH7PiIyhrPcAdizyZMn4/fff8emTZsQGhqKLVu24P7778fp06fRsWPHRp+/uLgYANCyZctGn4uIyJzY/xGRI2LfR0R14Yi3mWj/1fO3335Dx44dkZ2djdDQUE29oUOHol+/fli0aFGjrieEwLhx41BUVIQff/yxUeciImoM9n9E5IjY9xGRMTjibSEnTpyAEAKdOnWSHFer1fDz8wMA/P7772jbtm2955k+fbredUQvvvgiTp06hf3795svaCIiM2D/R0SOiH0fEdWHibeF1NTUwMnJCcePH4eTk5PkPQ8PDwBAWFgYMjMz6z2Pr6+vzrGXXnoJ27Ztw759+xAeHm6+oImIzID9HxE5IvZ9RFQfJt4WEh0djerqauTn5+Pee+/VW8fFxQVdunQx+JxCCLz00kvYsmUL0tLSGvyLKRGRHNj/EZEjYt9HRPVh4t0IZWVluHjxoqaclZWFjIwMtGzZEp06dcKECRMwceJEvP/++4iOjkZBQQF++OEH9OjRA6NGjTL6etOnT8fnn3+Ob775Bp6ensjLywMAeHt7w93d3Wz3RUTUEPZ/ROSI2PcRkckEmWzv3r0CgM5r0qRJQgghKioqxNtvvy3atGkjXFxcRHBwsHjwwQfFqVOnTLqevmsBEOvXrzffTRERGYD9HxE5IvZ9RGQq7mpOREREREREZEHN5A6AiIiIiIiIyJ4x8SYiIiIiIiKyIG6uZoKamhpcvXoVnp6eUCgUcodDRFZCCIHS0lKEhoaiWTP7+7sm+z4iqos993/s+4ioLsb0fUy8TXD16lW0atXK4tfx8vLC8OHDkZOTg+zsbOTm5qKqqsri1yWixrly5YpdPmfVXH3f9OnTsWLFCk05PT0d9913X6PPS0Tys8f+rzF9X/PmzVFeXi451r59e1y6dMkcoRGRlTCk72PibQJPT8///VczAJb7y2dkZA98+eWXmnJ5eTk8PLwtci2nZl4mtauuKTFzJES2TACouauPsC/m6vv8/QMl5cLCGwCcTD6fPVMompvUToibZo6EqCH22/81pu/z8fHTOVZUVAL2edajuWuE0W1uVvxhgUjINhne9zHxNsGf04wUsGTiHRYWJinfeXajZa5n+tQpTrki0mavUxHN1ff5+Um/iN5JvO3zM2ssU/8tCcHPk+Rhj/1fY/o+Hx9fnWPFxSVGn4csR6EwZWkEf34kZUjfZ1+LcOyM9nSF7OwcmSIhIjIfP7+WknJhYaFMkRARWZaPj4+kXFxcjJqaGnmCISJZMfG2YuHh0hFvJt5EZA+0R7wLCgpkioSIyLJ8fX0kZZVKJUscRCQ/Jt5WLCwsVFLOyWHiTUS2z9/fX1K+M9WciMj+aI94q1TF8gRCRLLjGm8rxqnmRGSPONWciBxFcXExDh48BB8fb/j4+CA3N1fukIhIJky8rZj2iHd2drZMkRARmY/+zdWIiOzP//3fd/i///tO7jCIyAow8bZSCoVCZ1fznJyrMkVDRGQ+Dz74CPz8/P73aonffvtN7pCIiIiILIqJt5Xy9/eHUqmUHOOINxHZg++//0HuEIiIiIiaFDdXs1Lao91VVVX/e443ERERERER2RIm3lZK+1Fiubm5fO4jERERERGRDWLibaW0dzTn+m4iIiIiIiLbxDXeVqqpdzSvqi6x6PmJiMh4NTU35Q6BiBrhvfcWwcnJCSqVCipVMbZu/QY5OXw8rDUpV/8udwhm16f5BKPbHLv5mQUiobsx8bZSfIY3EdkjT09PAEBpaanMkRARWd7zz/8dvr6+mvKpU6eYeBM5KE41t1KBgQGSMjtpIrIH77zzFkpKbkCtLsfVq5exaNFCuUMiIrIIhUIBb29vybGiIpU8wRCR7DjibaVGj34APj4+CA8PR3h4GC5cuCh3SEREjebn5wcAcHV1RUhICNzc3GSOiIjIMry8vNCsmXSMS6VSyRMMEcmOibcVu7MeSIVffvlF7lCIiMzCz6+lpFxQUCBTJEREluXj46NzjIk3kePiVHMiImoytSPetQoLb8gUCRGRZWkn3lVVVSgrK5MnGCKSHRNvIiJqMv7+2ol3oUyREBFZlq+vj6TM0W4ix8bEm4iImozuiDcTbyKyT9oj3ky8iRwbE28iImoSzZo1kzxWBwAKCph4E5F90k68uaM5kWPj5mpWqH///mjduhWys3OQnZ2N3NxcVFVVyR0WEVGj+Pj46OzwyxFvIrJX2n9o5Ig3kWPjiLcVevbZZ/DFFyk4eHAfLl++hBUrlssdEhFRo2lPMweYeBOR/fLxkT7Dm4k3kWNj4m2FwsJCJeUrV67IFAkRkfn4+/tLyuXl5VCr1TJFQ0RkWZxqTkR3Y+JthcLDwyXlnJyrMkVCRHLIycnBU089BT8/PzRv3hxRUVE4fvx4vW3S09PRu3dvuLm5oV27dli1apVOndTUVERGRkKpVCIyMhJbtmyx1C3oxWd4E5Ej4VRzIrob13hbofDwMEk5Oztbpkga5uzkZXSbquoSC0RCZB+KioowYMAADB48GDt27EBgYCB+++03nZGTu2VlZWHUqFGYMmUKNm7ciAMHDmDatGkICAjAww8/DAA4dOgQHn/8cSxYsAAPPvggtmzZgsceewz79+9H//79m+Te+AxvInIknGpOcjl28zO5QyA9mHhbGTc3N50vp9nZOTJFQ0RNbfHixWjVqhXWr1+vOdamTZt626xatQqtW7dGYmIiAKBr1644duwYlixZokm8ExMTMWzYMMTHxwMA4uPjkZ6ejsTERKSkpFjkXrRpj3hzfTcR2TNONSeiu3GquZUJCwvTOWbNI95EZF7btm1Dnz598OijjyIwMBDR0dFYs2ZNvW0OHTqE4cOHS46NGDECx44dQ2VlZb11Dh48aN4bqAef4U1EjuSPPy7j7NmzuHr1Km7evMkRbyIHxxFvK6M9zbykpARlZWUyRUNETe3SpUtYuXIlZs+ejddffx1HjhzByy+/DKVSiYkTJ+ptk5eXh6CgIMmxoKAgVFVVoaCgACEhIXXWycvLqzMWtVot2fyspKRxy0S0N1fjM7yJyJ49/fQkuUMgIivCxNvKaI94c7SbyLHU1NSgT58+WLRoEQAgOjoaZ86cwcqVK+tMvAFAoVBIykIIneP66mgfu1tCQgLmz59v9D3UZcWKj7Fnz/fw8/ODv78fjh2rf8M4IiIiInvBxNvK6G6sxvXdRI4kJCQEkZGRkmNdu3ZFampqnW2Cg4N1Rq7z8/Ph7Oysmd5dVx3tUfC7xcfHY/bs2ZpySUkJWrVqZfC9aDt9+jROnz5tcnsiIiIiW8U13lZG+1FiTLyJHMuAAQNw7tw5ybHz588jIiKizjaxsbHYvXu35NiuXbvQp08fuLi41FsnLi6uzvMqlUp4eXlJXkRERERkPCbeViYsLFRSzslh4k3kSGbNmoXDhw9j0aJFuHjxIj7//HOsXr0a06dP19SJj4+XTDufOnUq/vjjD8yePRuZmZlYt24d1q5dizlz5mjqzJgxA7t27cLixYvx66+/YvHixdizZw9mzpzZlLdHRERE5JCYeFsZjngTOba+fftiy5YtSElJQffu3bFgwQIkJiZiwoQJmjq5ubm4fPmypty2bVts374daWlpiIqKwoIFC7B8+XLNo8QAIC4uDps2bcL69evRs2dPJCUlYfPmzU32DG8iIiIiR6YQtTvwkMFKSkrg7e0NwAlA3RsTmSIn5w+Ehv456j169APYvn2HWa9hTs5Oxk89rapu3M7IRNZLAKhGcXGxXU7LtmTfR0S2zn77P1P6vsjISEyePAkqlQpFRSpcvXoVW7d+Y9E4iUgOhvd93FzNijg7OyM4OFhyjCPeRGQPnJyc0KJFi0Y/koyIyBZ0794Nc+b8uTllZmYmE28iB8ep5lbE398ft27dkhzjGm8isge9evVCcXEhKipuIi8vGydPHpM7JCIii/Hx8ZGUVapieQIhIqvBxNuK5OXlwcPDBz4+/ujePQojRoxCYWGh3GERETWav/+dx5q5uLggKCgIwcF1P8aMiKg+OTk5eOqpp+Dn54fmzZsjKioKx48fr7dNeno6evfuDTc3N7Rr1w6rVq2yaIw+Pt6Sskqlsuj1iMj6caq5FSouLkZxcTHOnDkjdygN4nptIjJE7fPEa/GPimStAlv0NbqNm8LD6DaXy/Ya3YaAoqIiDBgwAIMHD8aOHTsQGBiI3377TWeE+W5ZWVkYNWoUpkyZgo0bN+LAgQOYNm0aAgICJJtQmpN2PEVFRRa5DhHZDibeRERkcdqJd0EBE28iMt7ixYvRqlUrrF+/XnOsTZs29bZZtWoVWrdujcTERABA165dcezYMSxZssRiibevr6+kzKnmRMSp5kREZHF+fi0lZY54E5Eptm3bhj59+uDRRx9FYGAgoqOjsWbNmnrbHDp0CMOHD5ccGzFiBI4dO4bKykqLxMmp5kSkjYk3ERFZnO5U8xsyRUJEtuzSpUtYuXIlOnbsiJ07d2Lq1Kl4+eWXkZycXGebvLw8BAVJ95UICgpCVVUVCgoKdOqr1WqUlJRIXsbiVHMi0sap5kREZHG1m6vV4og3EZmipqYGffr0waJFiwAA0dHROHPmDFauXImJEyfW2U6hkD5/Wwih9zgAJCQkYP78+Y2Kk1PNiUgbR7ytyJQpf8djjz2KAQMGICIiAk5OTnKHRERkFrprvHVHmYiIGhISEoLIyEjJsa5du+Ly5ct1tgkODkZeXp7kWH5+PpydnXX6JgCIj4/XbHRbXFyMK1euGB0np5oTkTaOeFsJhUKBFSuWwdXVVXOsf/8BOHLkiIxRERGZB6eaE5E5DBgwAOfOnZMcO3/+PCIiIupsExsbi2+//VZybNeuXejTpw9cXFx06iuVSiiVykbFyanmRKSNI95WIiAgQJJ0A0B2drZM0RARmRc3VyMic5g1axYOHz6MRYsW4eLFi/j888+xevVqTJ8+XVMnPj5eMu186tSp+OOPPzB79mxkZmZi3bp1WLt2LebMmWOxODnVnIi0MfG2EmFhYZJyVVWVzrQoIiJbxRFvIjKHvn37YsuWLUhJSUH37t2xYMECJCYmYsKECZo6ubm5kqnnbdu2xfbt25GWloaoqCgsWLAAy5cvt9ijxNzd3XUGUzjVnIg41dxKhIdLE++8vDzU1NTIFA0Rkfm4urrC09NTcoxrvInIVGPGjMGYMWPqfD8pKUnn2KBBg3DixAkLRvUn7WnmAKeaExFHvK1GeHi4pJydnSNTJERE5qVv8yJONScie6U9zRwAios51ZzI0dl84p2Tk4OnnnoKfn5+aN68OaKionD8+PF626Snp6N3795wc3NDu3btsGrVqiaKtm5hYaGSMtd3E5G90E68a2pqOPpDRHbLyckJZ8+exdWrV3Hr1i2Ulpaiurpa7rCISGY2PdW8qKgIAwYMwODBg7Fjxw4EBgbit99+0zvFp1ZWVhZGjRqFKVOmYOPGjThw4ACmTZuGgIAAi631MYT2iHdOzlWZIiEiMi/tjdVUKhWX0hCR3Tp9+jS6deulKWuv9yYix2TTiffixYvRqlUrrF+/XnOsTZs29bZZtWoVWrdujcTERAB3nv147NgxLFmyRObEW7rGmyPepE9rj8FGt7lcttcCkRAZ7uzZTDzyyOPw9/fXScLJejg7eRndpqq6xAKRyCu//KjcIZCdqaiokDsEIrICNp14b9u2DSNGjMCjjz6K9PR0hIWFYdq0aZgyZUqdbQ4dOoThw4dLjo0YMQJr165FZWWl3uc5NgXdqeZc401E9uH69etITf1a7jCIiIiIZGPTa7wvXbqElStXomPHjti5cyemTp2Kl19+GcnJyXW2ycvLQ1BQkORYUFAQqqqq6txlV61Wo6SkRPIyN92p5ky8iYiIiIiI7IFNj3jX1NSgT58+WLRoEQAgOjoaZ86cwcqVKzFx4sQ62ykUCklZCKH3eK2EhATMnz/fTFHr8vb2hoeHh+QYR7yJiIiIiIjsg02PeIeEhCAyMlJyrGvXrrh8+XKdbYKDg5GXlyc5lp+fD2dnZ72PvAGA+Ph4FBcXa15XrlxpfPB3CQsL0zl29So3VyMiIiIiIrIHNj3iPWDAAJw7d05y7Pz584iIiKizTWxsLL799lvJsV27dqFPnz51ru9WKpVQKpWND7gO2hurXb9+HWq12mLXIyIiIiLLmDjxabRqFQ6VqhhFRUU4evQYLly4IHdYRCQzmx7xnjVrFg4fPoxFixbh4sWL+Pzzz7F69WpMnz5dUyc+Pl4y7Xzq1Kn4448/MHv2bGRmZmLdunVYu3Yt5syZI8ctANBd381p5kSOa968eVAoFJJXcHBwnfWfeeYZnfoKhQLdunXT1ElKStJb5/bt201xS2jevHmTXIeIyBpMnPgUFi78F1asWIbPPkvGqFEj5Q6JiKyATSfeffv2xZYtW5CSkoLu3btjwYIFSExMxIQJEzR1cnNzJVPP27Zti+3btyMtLQ1RUVFYsGABli9fLuujxNzd3VFWVqYp81FiRI6tW7duyM3N1bxOnz5dZ91ly5ZJ6l65cgUtW7bEo48+Kqnn5eUlqZebmws3NzdL3woA4OTJo6isvIVr13Jw5szPuO++QU1yXSIiOfj4+EjKRUVF8gRCRFbFpqeaA8CYMWMwZsyYOt9PSkrSOTZo0CCcOHHCglEZ56OPPsZHH30MLy8vhIeHazZ7IyLH5OzsXO8o9928vb3h7e2tKW/duhVFRUWYPHmypF5DI+eW5OfnB2dnZwQGBiIwMLDOjSyJiOyBr6+PpKxSqWSJg4isi02PeNubkpISnD17FpmZmXKHQkQyunDhAkJDQ9G2bVs88cQTuHTpksFt165di6FDh+rsdVFWVoaIiAiEh4djzJgxOHnyZIPnMsejFJs1awZfX1/JsYKCQqPPQ0RkK7RHvJl4ExHAxJuIyKr0798fycnJ2LlzJ9asWYO8vDzExcWhsLDhZDU3Nxc7duzA3//+d8nxLl26ICkpCdu2bUNKSgrc3NwwYMCABjf7SUhI0Iyoe3t7o1WrVkbfj6+vL5o1k/6vxpB7ISKyRQqFQjILCQCKilTyBENEVkUhOK/ZaCUlJf/rVJ0AcMokNZ3WHoONbnO5bK8FIiH9BIBqFBcXw8vLyyxnLC8vR/v27TF37lzMnj273roJCQl4//33cfXqVbi6utZZr6amBvfccw8GDhyI5cuX11lPrVZLnrBQUlLyv+Tb8L6vU6dOOHfujOSYm5sHn9xghZydjP83W1Vt/CwIslfm7/+shTHf+zw9PVFSckNyrHXrdmZ/FC0RWQvD+z6bX+NNRGTPWrRogR49ejQ4Oi2EwLp16/D000/Xm3QDd6Z/9+3bt8FzmuNRin5+fpJyeXk5k24islvaS2sATjUnojs41ZyIyIqp1WpkZmYiJCSk3nrp6em4ePEinnvuuQbPKYRARkZGg+c0Bz+/lpIyp5kTkT3TXt9dXV0teXINETkujnjLrEOHDhg3biyys3OQnZ2Dy5cvyzIdyZQphkDTTTN0dvIxuk1VtcrscciN08bt35w5czB27Fi0bt0a+fn5WLhwIUpKSjBp0iQAQHx8PHJycpCcnCxpt3btWvTv3x/du3fXOef8+fMRExODjh07oqSkBMuXL0dGRgY++ugji9+P9oi3I2+s1qyZ8c8zr6m5aYFI9DOlP2ffTCTl4yNd361Sqfi0GrIJI1o8b3SbneWrLRCJ/WLiLbN+/fpiyZJ/a8pnz55Ft269ZIyIiOSUnZ2NJ598EgUFBQgICEBMTAwOHz6s2aU8NzcXly9flrQpLi5Gamoqli1bpvecKpUKzz//PPLy8uDt7Y3o6Gjs27cP/fr1s/j9+PtLE2+OeBORPdOeas5p5kRUi4m3zMLDwyTl7OwcmSIhImuwadOmet9PSkrSOebt7Y2bN+seGV26dCmWLl3a2NBMoj3izcSbiOyZ7qPEiuUJhIisDtd4yyw8PFxSZuJNRPZEN/G+UUdNIiLbp514FxUVyRMIEVkdJt4yCwsLlZRzcph4E5H94OZqRORIfH19JGVONSeiWky8ZcYRbyKyZ9xcjYgcCaeaE1FdmHjLTHeNd7ZMkRARmR83VyMiR3Lr1i1cvXoVt27dAsCp5kT0J26uJiNnZ2cEBwdLjuXkXJUpGiIi8+PmakTkSOLj30B8/BsAAKVSiWbNOMZFRHcw8ZZRcHCwTofMEW8isicvvPAigoKC4OfXEn5+fjh//oLcIRERNQm1Wi13CERkRZh4yygsTDrN/Pbt2xwNIiK78s032+QOgYiIiEh2nP8iI+313dzRnIiIiIiIyP4w8ZYRdzQnIiIiIiKyfyYn3s888wz27dtnzlgcjvYzvJl4ExERERER2R+T13iXlpZi+PDhaNWqFSZPnoxJkybprFmm+lnTVPOq6hLZrm2IqmqV3CEQETVKTc1NuUMwO/bNRH/y8PDAjBkvQaUqhkqlQlFREXbv3oPKykq5QyNq0M7y1XKHYPdMTrxTU1NRWFiIjRs3IikpCe+88w6GDh2K5557DuPGjYOLi4s547RLnGpORPbMxcUFVVVVEELIHQoRkcUFBQVh4cJ/SY65u3sy8SYiAI1c4+3n54cZM2bg5MmTOHLkCDp06ICnn34aoaGhmDVrFi5c4GNj6nPr1i2UlpZqynyUGBHZkzfeiEdFxU3k519FZuZpvPvuArlDIiKyGF9fX0lZrVbj9u3bMkVDRNbGLJur5ebmYteuXdi1axecnJwwatQonDlzBpGRkVi6dKk5LmGXRowYBS+vlvDyaonIyJ744Ye9codERGQ2fn5+cHZ2RkBAALp06YKAgAC5QyIishgfH29JWaVSyRMIEVklkxPvyspKpKamYsyYMYiIiMCXX36JWbNmITc3Fxs2bMCuXbvw6aef4l//+lfDJ3NwpaWlyMzMRHFxsdyhEBGZjZ9fS0m5sLBQpkiIiCzPx8dHUi4qKpInECKySiav8Q4JCUFNTQ2efPJJHDlyBFFRUTp1RowYodMJERGRY/Dz85OUmXgTkT3TnmquUnFAhYj+ZHLivXTpUjz66KNwc3Ors46vry+ysrJMvQQREdkw7cS7oICJNxHZL+2p5hzxJqK7mTzVfO/evXp3aSwvL8ezzz7bqKCIiMj2+ftzxJuIHIf2LE+u8Saiu5mceG/YsAG3bt3SOX7r1i0kJyc3KigiIrJ9ulPNb8gUCRGR5ekm3pxqTkR/MnqqeUlJCYQQEEKgtLRUMtW8uroa27dvR2BgoFmDtEd/+9uTCA0NQU7OVWRnZ+PXX8/h+vXrcodFRGQWrq6u8PDwkBzjiDcR2TNfXx9JmVPNiehuRifePj4+UCgUUCgU6NSpk877CoUC8+fPN0tw9mzy5EkYOnSIpvzKK69iyZIPZIyIiMh8tEe7ASbeRGTfONWciOpj9FTzvXv34vvvv4cQAl999RV++OEHzWv//v24fPky3njjDUvEalfCw8Mk5ezsHJkiISJrMm/ePM0fN2tfwcHBddZPS0vTqa9QKPDrr79K6qWmpiIyMhJKpRKRkZHYsmWLRe9DO/Guqanh6A8R2TVONSei+hg94j1o0CAAQFZWFlq3bg2FQmFU++LiYmzZsgU//vgjfv/9d9y8eRMBAQGIjo7GiBEjEBcXZ2xINik8PFxSzslh4k1Ed3Tr1g179uzRlJ2cnBpsc+7cOXh5eWnKAQEBmv8+dOgQHn/8cSxYsAAPPvggtmzZgsceewz79+9H//79zRv8/2hvrKZSqVBdXW2RaxERWQNONSei+hiVeJ86dQrdu3dHs2bNUFxcjNOnT9dZt2fPnpJybm4u3n77bXz22WcIDg5Gv379EBUVBXd3d9y4cQN79+7FkiVLEBERgXfeeQePP/64aXdkA7y8vHTWPjrSiLfSJcjoNurKaxaIhMg6OTs71zvKrU9gYKDOaEutxMREDBs2DPHx8QCA+Ph4pKenIzExESkpKY0NVy8+w5uIHA2nmhNRfYxKvKOiopCXl4fAwEBERUVBoVBACKFTT6FQ6Ixs9OrVCxMnTsSRI0fQvXt3vee/desWtm7dig8++ABXrlzBnDlzjAnPZmiPdgPA1atXZYiEiKzRhQsXEBoaCqVSif79+2PRokVo165dvW2io6Nx+/ZtREZG4s0338TgwYM17x06dAizZs2S1B8xYgQSExMtET4A7mhORI5HO/EuKlLJEgcRWSejEu+srCzN9MWsrCyjLnTmzBnJ1Ed93N3d8eSTT+LJJ5+06x2+tdd3X79+HWq1WqZoiMia9O/fH8nJyejUqROuXbuGhQsXIi4uDmfOnNG7YVlISAhWr16N3r17Q61W49NPP8WQIUOQlpaGgQMHAgDy8vIQFCSdaRIUFIS8vLx6Y1Gr1ZK+qaSkxOD78PNrKSlzxJuIzGHevHk6m/jW15+lpaVJ/hBZKzMzE126dDFbXK6urigqKoKPjw/c3d0BcMSbiKSMSrwjIiL0/rchGkq6G1vfloSFcWM1ItJv5MiRmv/u0aMHYmNj0b59e2zYsAGzZ8/Wqd+5c2d07txZU46NjcWVK1ewZMkSTeINQGc/DiFEg3t0JCQkmPyUCu0/EhQUMPEmIvMw9z4Y5lBRUYHQ0NYAAKVSCR8fHxQUFJj1GkRk24ze1bxWQkIC1q1bp3N83bp1WLx4sd4206ZNQ1lZmab86aefSsoqlQqjRo0yNSSbobujebZMkRCRtWvRogV69OiBCxcuGNwmJiZGUj84OFhnNCg/P19nFFxbfHw8iouLNa8rV64YHENKymZMmTIVr732OpYs+QA7dvzX4LZERPWp3Qej9mVIEh0YGChpY0iybiq1Wo1r165xQ0kikjA58f7Pf/6jd4pOt27dsGrVqjrb3Lx5U1OePn068vPzNWW1Wo2dO3eaGpLN0F7jzRFvIqqLWq1GZmYmQkJCDG5z8uRJSf3Y2Fjs3r1bUmfXrl0NPkVCqVTCy8tL8jLU8ePH8ckna7F48f/DK6+8is2bvzC4LRFRfWr3wWjbti2eeOIJXLp0qcE20dHRCAkJwZAhQ7B3794miJKISMrox4nVysvL0/tFMCAgALm5uXrbaG/Epm9jNkcQFhYqKfNRYkRUa86cORg7dixat26N/Px8LFy4ECUlJZg0aRKAO6PQOTk5SE5OBnBnx/I2bdqgW7duqKiowMaNG5GamorU1FTNOWfMmIGBAwdi8eLFGDduHL755hvs2bMH+/fvl+UeiYhMZYl9MLQ1Zn8LIqK6mJx4t2rVCgcOHEDbtm0lxw8cOIDQ0NA6WhHAEW8iqlt2djaefPJJFBQUICAgADExMTh8+LBmX43c3FxcvnxZU7+iogJz5sxBTk4O3N3d0a1bN3z33XeSZTtxcXHYtGkT3nzzTbz11lto3749Nm/ebLFneBMRWYql9sG4W2P2tyAiqovJifff//53zJw5E5WVlfjrX/8KAPj+++8xd+5c/POf/zRbgPaIa7yJqC6bNm2q9/2kpCRJee7cuZg7d26D533kkUfwyCOPNCY0IiKrY+o+GBs3bqzz/fj4eEkSX1JSglatWjUqTiIikxPvuXPn4saNG5g2bRoqKioAAG5ubnj11VcRHx9fZ7u3334bzZs3B3BnpObdd9+Ft7c3AEjWf9srNzc3nalQHPEmIiIiMl7tPhj33nuvwW2098HQplQqoVQqjYpjwIABiIrqhaKiIqhUKmRl/Y7MzEyjzkFE9s3kxFuhUGDx4sV46623kJmZCXd3d3Ts2LHejmrgwIE4d+6cphwXF6ezIUZd037shfajxACu8SYi+1L7mDJH3ceDiCzHEvtgmMP48Q9gzpw/R8mTkzdi0qTJZr0GEdk2kxPvWh4eHggJCYFCoWjwr4NpaWmNvZzNa9GiBc6ePYvw8HB4eXmhuLhY8kg1IiJb17FjR5w9ewpFRUUoLCxEQUEhBg36Kx+tQ0SNZol9MMzBx8dHUlapVGY9PxHZPpMT75qaGixcuBDvv/++JnH09PTEP//5T7zxxhto1szwJ5VVVVXh9u3b8PDwMDUcm3Hq1Cl069YLwJ3Py5BnTxIR2RI/Pz84OTnB398f/v7+CAsrY9JNRGZhqX0wGsvHx1tSLioqsvg1ici2mJx4v/HGG1i7di3ee+89DBgwAEIIHDhwAPPmzcPt27fx7rvv6rTZvn07CgsL8fTTT2uOvfvuu1iwYAGqqqrw17/+FZs3b4avr69BMcybN09n18mgoCDk5eXprZ+WlobBgwfrHM/MzNT7THJLKy0tRWlpaZNfV27qymtyh+BQ2noMN7pNVtkuC0RCjsLfX7qPRWFhoUyREBE1De3vripVsUyR2A+lS5DRbVycWhjdpux2w8+BtzUdPEYb3eZi2XdGt3ncZ5rRbTarPja6jb0wOfHesGEDPvnkEzzwwAOaY7169UJYWBimTZumN/FesmQJHn74YU354MGDePvtt/Gvf/0LXbt2xRtvvIEFCxbggw8+MDiObt26Yc+ePZqyk5NTg23OnTsHLy8vTZmjzkRE5qO9gWRh4Q2ZIiEiahqcak5EDTE58b5x44beUeIuXbrgxg39X7J++eUXvP/++5ryV199hWHDhuGNN94AcGfH7xkzZhiVeDs7OyM4ONio2AMDA3U6SCIiMg8/v5aSMke8icjecao5ETXE8IXYWnr16oUVK1boHF+xYgV69eqlt01paalkJGT//v2aZ4ADd0avr169alQcFy5cQGhoKNq2bYsnnnhCZ5d0faKjoxESEoIhQ4Zg7969Rl2PiIjqpzvizcSbiOyb7lRzlTyBEJHVMnnE+9///jdGjx6NPXv2IDY2FgqFAgcPHsSVK1ewfft2vW1CQ0ORmZmJ1q1bo6ysDD///DOWLl2qeb+wsFDzjG9D9O/fH8nJyejUqROuXbuGhQsXIi4uDmfOnNH54gcAISEhWL16NXr37g21Wo1PP/0UQ4YMQVpaWr2PMVOr1VCr1ZpySUmJwTESETka7f63oICJNxHZL4VCAW9v6Yg313gTkTaTE+9Bgwbh/Pnz+Oijj/Drr79CCIGHHnoI06ZNQ2hoqN42jzzyCGbOnInXX38d27dvR3BwMGJiYjTvHzt2DJ07dzY4hpEjR2r+u0ePHoiNjUX79u2xYcMGzJ49W6d+586dJeePjY3FlStXsGTJknoT74SEBJ1N3Ezh5OSEDz5YguzsbOTkXEV2djYOH/4JFRUVjT43EZG14OZqRORIPDw8dPYY4lRzItLWqOd4h4aG6t1ErS7vvPMOrl69ipdffhnBwcHYuHGjpKNKSUnB2LFjTY6nRYsW6NGjBy5cuGBwm5iYGGzcuLHeOvHx8ZJEvqSkBK1atTI6vpCQELz88ouSY/7+wfxSSkR2hZurEZEj0bdvEKeaE5E2oxLvU6dOGVy3Z8+eOseaN2+OTz/9tM42jV1vrVarkZmZiXvvvdfgNidPnkRISEi9dZRKJZRKZaNiA4CwsDBJ+fbt20y6icjucHM1InIk2uu7a2pqHPJxsURUP6MS76ioKCgUCggh6q2nUChQXV3dqMAMMWfOHIwdOxatW7dGfn4+Fi5ciJKSEkyaNAnAnZHqnJwcJCcnAwASExPRpk0bdOvWDRUVFdi4cSNSU1ORmppq8VgBIDxcmnjn5OQ0yXWJiJoSN1cjIkeivaN5cXFxg9+VicjxGJV4Z2VlNepid+9gXp8ffvjBoHrZ2dl48sknUVBQgICAAMTExODw4cOIiIgAAOTm5uLy5cua+hUVFZgzZw5ycnLg7u6Obt264bvvvsOoUaOMvxkThIeHa8XPxJuI7A83VyMiR6I91Zzru4lIH6MS79qE1lRpaWmIiIjA6NGj4eLi0qhzAcCmTZvqfT8pKUlSnjt3LubOndvo65pKe8SbiTcR2RsPDw+4urpKjnHEm4jsme6jxLijORHpatTmap9++ilWrVqFrKwsHDp0CBEREUhMTETbtm0xbtw4nfrvvfcekpKS8OWXX2LChAl49tln0b1798aEYFPCwqS7vXOqORHZG39/f51jTLyJyJ4plUrcunUL7u7uALixGhHp18zUhitXrsTs2bMxatQoqFQqzZpuHx8fJCYm6m0zd+5cnD17Flu3bkVpaSkGDBiAfv36YdWqVQ7xbGxONScie6c9zbyyspKbDBGRXVu9eg2aN/eCm5sHgoPD8fTTz8gdEhFZIYUwcfeHyMhILFq0COPHj4enpyd+/vlntGvXDr/88gvuu+8+FBQUNHiOmzdv4ssvv8RHH32Es2fP4urVq/Dy8jIlnCZVUlICb29vAE4AFAa3u3TpPNq2baspP/TQo9iyZavZ46M7lC5BRrdRmPi3qNuVuSa1I3sjAFSjuLjYJvoyYxnS9wUGBmLs2DHw82sJPz8/uLq6YtasfzZpnEQkB/vt/0z93kd3mPJ9DADUldfMHIm8QjziTGqXW3bQzJGQeRne95k81TwrKwvR0dE6x5VKJcrLyw06x4kTJ5Ceno7MzEx0797dLOu+rZVCodB5nFhOzlWZoiEisoz8/HysXbtO7jCIiIiIrIrJU83btm2LjIwMneM7duxAZGRkne2uXr2KRYsWoVOnTnjkkUfQsmVL/PTTTzh8+LBmbYw98vf319lwKDs7W6ZoiIiIiIiIqKmYPOL9yiuvYPr06bh9+zaEEDhy5AhSUlKQkJCATz75RG+bUaNGYe/evRg+fDj+3//7fxg9ejScnRu1v5vN0F7fXVVVhby8PJmiISIiIiIioqZictY7efJkVFVVYe7cubh58yb+9re/ISwsDMuWLcMTTzyht81///tfhISE4PLly5g/fz7mz5+vt96JEydMDctqaT9KLC8vDzU1NTJFQ0RERERERE2lUcPNU6ZMwZQpU1BQUICamhoEBgbWW/+dd95pzOVsmvb6bu5oTkT6zJs3T+ePkkFBQXXOkPn666+xcuVKZGRkQK1Wo1u3bpg3bx5GjBihqZOUlITJkyfrtL116xbc3NzMewNERA5m0qSJqKyshEqlQlGRCqdPn0ZZWZncYRGRlTE58Z4/fz6eeuoptG/fXu9zW/Vx5MRbe8Sb67uJqC7dunXDnj17NGUnJ6c66+7btw/Dhg3DokWL4OPjg/Xr12Ps2LH46aefJBtgenl54dy5c5K2TLqJiBpv+fKlkt2MBwwYhIMHuRM1EUmZvLlaamoqOnXqhJiYGKxYsQLXr19vdDC3b9/GkiVLGn0ea6RSqXDmzBmoVCoA3NGciOrm7OyM4OBgzSsgIKDOuomJiZg7dy769u2Ljh07YtGiRejYsSO+/fZbST2FQiE5Z3BwsEViP3LkEAoK8nDu3BkcPPgjhg4dYpHrEBFZAycnJ51HCBUVFckUDRFZM5MT71OnTuHUqVP461//ig8++ABhYWEYNWoUPv/8c9y8ebPOdgUFBfjuu++wa9cuVFdXAwAqKyuxbNkytGnTBu+9956pIVm1JUs+QPfuUfD1DYCnpy/mzfuX3CERkZW6cOECQkND0bZtWzzxxBO4dOmSwW1rampQWlqKli1bSo6XlZUhIiIC4eHhGDNmDE6ePNngudRqNUpKSiSvhgQGBsDPzw+dOnVCbGyMXT+tgojozvO9pWoHWYiI7mZy4g3cmQ65aNEiXLp0CXv37kXbtm0xc+bMOkdSDh48iI4dO2Ls2LEYOXIk4uLicPbsWXTr1g0ffvgh3nzzTVy+fLkxIdmEsrIydspEpFf//v2RnJyMnTt3Ys2aNcjLy0NcXBwKCwsNav/++++jvLwcjz32mOZYly5dkJSUhG3btiElJQVubm4YMGAALly4UO+5EhIS4O3trXm1atWqwev7+flJyoWFNwyKm4jIFvn4+Ogc43c8ItJHIYQQ5jhRRkYGNm7ciE2bNqGwsBC3bt3SqTNkyBAEBATgzTffxLp165CYmIg2bdpg3rx5ePrpp6FQKMwRisWVlJT87y+cTgBsI2ZHpHQJMrqNwsS/Rd2uzDWpHdkbAaAaxcXFOlMPTVVeXo727dtj7ty5mD17dr11U1JS8Pe//x3ffPMNhg4dWme9mpoa3HPPPRg4cCCWL19eZz21Wg21Wq0pl5SU/C/51t/3KZVK3L4t3VCoc+duOH/+fL1xE5E9MH//Zy3q+953zz334PjxnzRltVoNNzePpg3QypnyfQwA1JXXzByJvEI84kxql1vG/QKsm+F9X6NGvLOysvDuu+8iMjISffr0wYkTJzBv3rw6d9/9+eef8dZbb6F79+5YuHAhFAoFFi9ejIkTJ9pM0k1E1JRatGiBHj16NDg6vXnzZjz33HP44osv6k26AaBZs2bo27dvg+dUKpXw8vKSvOqjPdoNwOCReiIiW+Tr6yMpc7SbiOpi8q7msbGxOHLkCHr06IHJkydrnuNdnxs3bmg2CWrevDmaN28u2XWXiIik1Go1MjMzce+999ZZJyUlBc8++yxSUlIwevToBs8phEBGRgZ69OhhzlB1Eu+amhpuMkREdk17qjkTbyKqi8mJ9+DBg/HJJ5+gW7duBrdRKBQoLS2Fm5sbhBBQKBS4efOmzoY99jZFieRh7VOUWjbvaXSbGzdPWSASsiZz5szB2LFj0bp1a+Tn52PhwoUoKSnBpEmTAADx8fHIyclBcnIygDtJ98SJE7Fs2TLExMRoZhy5u7trNv2ZP38+YmJi0LFjR5SUlGD58uXIyMjARx99ZNbY/fykG7qpVCrU1NSY9RpEhvJt3t2kdkU3fzFzJPp1a/Gw0W3OlKdaIBJqDO3Eu6hIJUsc1szav4+ZwsOtndFtOGWcTE68Fy1aZFA9Ly8vZGRkoF27dhBCoFOnTpr3hBCSEe/aZLx2t3N78de/Dsb48eOQnZ2N7Owc/PrrOZw4cULusIjICmVnZ+PJJ59EQUEBAgICEBMTg8OHDyMiIgIAkJubK9mE8j//+Q+qqqowffp0TJ8+XXN80qRJSEpKAnAnAX7++eeRl5cHb29vREdHY9++fejXr59ZY9fdWI3TzInIvnGqOREZyuTE21B37922d+9eS1/OKg0YEIeXXvrzC/G33/4fHnjgQRkjIiJrtWnTpnrfr02ma6WlpTV4zqVLl2Lp0qWNiMow2ol3QQETbyKyb5xqTkSGsnjifbdBgwY15eWsRnh4uKScnZ0jUyRERJbj788RbyJyLLqJd7E8gRCR1WvUrubGKC8vt2h9axYWFiop5+Qw8SYi+8NneBORo9Fd480NJYlIvyZLvDt06IBFixbh6tWrddYRQmD37t0YOXJkvc+WtTUc8SYiR8A13kTkaLjGm4gMZfGp5rXP505LS8Obb76J+fPnIyoqCn369EFoaCjc3NxQVFSEs2fP4tChQ3BxcUF8fDyef/55S4fWZMLDpY9Zy87OlikSIiLL0d7VnIk3Edk7TjUnIkM12eZqnTt3xpdffons7Gx8+eWX2LdvHw4ePIhbt27B398f0dHRWLNmDUaNGoVmzZpsIN7i3NzcdEaBcnLqHvUnIrJVnGpORI6mefPmkjKnmhNRXSyeeO/YsQNhYX+O+IaHh2PWrFmYNWuWpS9tFe6+91oc8SYie6Q94l1QUCBTJERETSM6ug+USiV8fHzg6+uL3NxcuUMiIitlcuJdXV2NpKQkfP/998jPz0dNTY3k/R9++AEA8Je//KVxEdo47Y3ViouLUVZWJlM0RESWM2/eAoSHh8HPzw/+/v44d+683CEREVmcWq3GtWvXcO3aNblDISIrZnLiPWPGDCQlJWH06NHo3r27Zi03SWlvrMYdzYnIXqWk1P8MciIiIiJHZXLivWnTJnzxxRcYNWqUOeOxO7obqzHxJiIiIiIiciQm72Lm6uqKDh06mDMWu6S9xpuJNxERERERkWMxecT7n//8J5YtW4YVK1Zwmnk9tEe8OdXcPjVXtja6zY2bpywQCRFR03F28jK6TVV1idFtWijbGN2m6OYvRrdpSmfKU+UOgYhMVHb7ktwhkA0yOfHev38/9u7dix07dqBbt25wcXGRvP/1119LyqdOGZ5k9OzZ09SwrI72Gm+OeBMRERHZvtatW+MvfxmAoqIiqFTFuH79Oi5evCh3WERkpUxOvH18fPDggw8aXD8qKgoKhULzXG9tte8pFApUV1ebGpbV0d7VnI8SIyIiIrJ9cXGx+OyzZE35l19+QY8e0TJGRETWzOTEe/369UbVz8rKMvVSNi0j42cUFRUhLCwMvr6+yMm5KndIRERmN3v2TLzxRjwKCwtRWHgDu3fvwdtvz5M7LCIii/H19ZWUVapimSIhIltgcuJd6/r16zh37hwUCgU6deqEgIAAvfUiIiIaeymbNGbMOM1/N2/eHGq1WsZoiIgsIyAgAC1btkTLli3RsaPj/rGViByHj4+3pKxSqeQJhIhsgsmJd3l5OV566SUkJyejpqYGAODk5ISJEyfiww8/RPPmzSX1t23bZvC5H3jgAVPDsmo3b96UOwQiIovw8/OTlAsLb8gUCRFR0/Dx8ZGUi4pUssRBRLbB5MR79uzZSE9Px7fffosBAwYAuLPh2ssvv4x//vOfWLlypaT++PHjDTqvva3xJiJyBH5+LSXlwsJCmSIhImoaulPNVfIEQkQ2weTneKempmLt2rUYOXIkvLy84OXlhVGjRmHNmjX46quvdOrX1NQY9GLSTURkezjiTURNYd68eVAoFJJXcHBwvW3S09PRu3dvuLm5oV27dli1apVZYtGeal5UVGSW8xKRfTJ5xPvmzZsICgrSOR4YGMgp1UREDkZ7xLugoECmSIjI3nXr1g179uzRlJ2cnOqsm5WVhVGjRmHKlCnYuHEjDhw4gGnTpiEgIAAPP/xwo+LQnmrOzdWIqD4mJ96xsbF45513kJycDDc3NwDArVu3MH/+fMTGxurUX758OZ5//nm4ublh+fLl9Z775ZdfNjUsIiKSgb+/v6TMqeZEZCnOzs4NjnLXWrVqFVq3bo3ExEQAQNeuXXHs2DEsWbKk0Yk3p5oTkTFMTryXLVuG+++/H+Hh4ejVqxcUCgUyMjLg5uaGnTt36tRfunQpJkyYADc3NyxdurTO8yoUCrtJvBctWghPT0/k5OQgOzsHaWnpfI43EdklTjUnoqZy4cIFhIaGQqlUon///li0aBHatWunt+6hQ4cwfPhwybERI0Zg7dq1qKyshIuLi04btVoteQpNSUmJ3nNzqjkRGcPkNd7du3fHhQsXkJCQgKioKPTs2RPvvfceLly4gG7duunUz8rK0nwxy8rKqvN16dIl0+/GyjzxxGN48cVpSEh4F59+moR+/frKHRIRWTlLrV9MTU1FZGQklEolIiMjsWXLFrPF7OnpqfPllSPeRGQJ/fv3R3JyMnbu3Ik1a9YgLy8PcXFxdfY5eXl5Oksjg4KCUFVVVeeSmISEBHh7e2terVq10ltPd6q5yuj7ISLH0ajneLu7u2PKlClGtzt16hR69uyp972tW7cavAO6NVMoFAgLC5Mcy87OkSkaIrIl5l6/eOjQITz++ONYsGABHnzwQWzZsgWPPfYY9u/fj/79+zc6Xu3RboCJNxFZxsiRIzX/3aNHD8TGxqJ9+/bYsGEDZs+erbeNQqGQlIUQeo/Xio+Pl5yrpKREb/LNx4kRkTGMSry3bduGkSNHwsXFpcHnctf3LO4RI0bgwIEDOtOCUlNTMXHiRJSXlxsTllXy9/eHq6ur5Binmduvm+rLcodAdsTc6xcTExMxbNgwxMfHA7jzpTI9PR2JiYlISUlpdLzaiXdFRQVKS0sbfV6yflXV+qfgmlu5+vcmuQ7ZnhYtWqBHjx64cOGC3veDg4ORl5cnOZafnw9nZ2e9fzQEAKVSCaVSWe91PTw84Ows/RrNEW/b5OPe1eg2qluZFojEMazs/KzRbV44t84CkTQ9oxLv8ePHIy8vD4GBgfWOSjf0LO4XXngBQ4YMwcGDBxESEgIA2Lx5M5599lkkJSUZE5LVCg8Pl5Srqqp0On4iIn3MvX7x0KFDmDVrlk6d2mS9sfgMbyKSi1qtRmZmJu69916978fGxuLbb7+VHNu1axf69Omjd323obRHuwEm3kRUP6PWeNfU1CAwMFDz36Y+i/vtt9/GAw88gKFDh+LGjRv4/PPPMXnyZCQnJ+PRRx81/W6sSHi4dJp5Xl4eampqZIqGiGyFJdYv1lWnoT8GqtVqlJSUSF76cEdzImoqc+bMQXp6OrKysvDTTz/hkUceQUlJCSZNmgTgzoyeiRMnaupPnToVf/zxB2bPno3MzEysW7cOa9euxZw5cxoVh3biXVNTU2cfSUQENGJzteTkZMmOj7UqKiqQnJzcYPtly5bhnnvuQUxMDKZMmYKUlBSjH+tgqU2IzIHru4nIFCNHjsTDDz+MHj16YOjQofjuu+8AABs2bKizjSHrF/XVqWt9Yy1DNxjijuZE1FSys7Px5JNPonPnznjooYfg6uqKw4cPIyIiAgCQm5uLy5f/XP7Vtm1bbN++HWlpaYiKisKCBQuwfPlyMzzDW7qjeXFxsabvJSLSx+TN1SZPnoz7779fMwJeq7S0FJMnT5b8tRGA3jXh48ePR3p6Op588kkoFApNnfrWh2sz9yZE5qI94s313URkCnOsX6yrjvYouDZDNxjiVHMiaiqbNm2q9319SxYHDRqEEydOmDWO/fsPwM3NA76+vvDx8UHz5s3Nen4isj8mJ951jZZkZ2fD29tb53h9a8LXrVuHdevuLJpvaH24NnNvQmQu2mu8OeJNRKYwx/rF2NhY7N69W7LOe9euXYiLi6v32oZsMAQA//3vLpSVlcHPzw9+fn44ceJkg22IiGydWq1GXl4e9/AhIoMYnXhHR0drpnUPGTJEsqNjdXU1srKycP/99+u0s9T6ZnNvQmQuYWGhknJODhNvImrYnDlzMHbsWLRu3Rr5+flYuHChzvrFnJwczZKeqVOnYsWKFZg9ezamTJmCQ4cOYe3atZLdymfMmIGBAwdi8eLFGDduHL755hvs2bMH+/fvN0vMhw8fxuHDh81yLiIiIiJ7ZHTiXTtynZGRgREjRsDDw0PznqurK9q0aWP20eO61G5C1KlTJ1y7dg0LFy5EXFwczpw5o/cREQ1tQlS7w7o2tVotWc9uyOYZulPNmXgTUcNq1y8WFBQgICAAMTExBq1fnDVrFj766COEhobqrF+Mi4vDpk2b8Oabb+Ktt95C+/btsXnzZrM8w5uIiIiIGmZ04v3OO+8AANq0aYMnnnjCoGmItX766SfcuHEDI0eO1BxLTk7GO++8g/LycowfPx4ffvihwee8+zw9evRAbGws2rdvjw0bNkjWJd7NkE2ItCUkJGD+/PkGxVRLd6o513gTUcMstX7xkUcewSOPPNKY0IiIiIjIRCbvah4ZGYmMjAyd4z/99BOOHTumt828efNw6tQpTfn06dN47rnnMHToULz22mv49ttvkZCQYGpIZtmESJ/4+HgUFxdrXleuXKk3Di8vL8lMAADIyblq4F0QERERERGRPTE58Z4+fbreBDQnJwfTp0/X2yYjIwNDhgzRlDdt2oT+/ftjzZo1mD17NpYvX44vvvjC1JA0mxDVNWW8doOhu2lvQqSPUqmEl5eX5FUf7dFuALh6lYk3ERERkT24996/YOTI+xEbG4suXbrA09NT7pCIyMqZnHifPXsW99xzj87x6OhonD17Vm+boqIiyRrr9PR0yUZsffv2bXA0+W5z5sxBeno6srKy8NNPP+GRRx7R2YTo7seaTZ06FX/88Qdmz56NzMxMrFu3DmvXrsWcOXMMvqYhtNd35+fn633mORERERHZngUL5mP79m9x8OA+ZGaexqRJExtuREQOzeTEW6lU4tq1azrHc3NzJTud3y0oKAhZWVkAgIqKCpw4cQKxsbGa90tLS43aWbx2E6LOnTvjoYcegqurq0GbEKWlpSEqKgoLFizQ2YTIHMrLb2L79h04deo0bty4wY3ViMhuhYSE4MaNfFy4kInDhw/gu++2oUWLFnKHRURkUT4+PpKySqWSJQ4ish0mP8d72LBhiI+PxzfffKN5brdKpcLrr7+OYcOG6W1z//3347XXXsPixYuxdetWNG/eXPJs2lOnTqF9+/YGx2CpTYga68CBAxg9+gFN2ZyPKSOyVn9t/neT2vmZ8PvxZfFKk65F5ufv7w9fX1/4+vqiQ4c7j468deuW3GERWb1Y90lGt2mtNP6PWptVHxvdhhrm4+MtKRcVFckUCTWW6lam3CE4lBM33Ixus7PvQyZda8TRr01qZykmJ97vv/8+Bg4ciIiICERHRwO4s4Y7KCgIn376qd42CxcuxEMPPYRBgwbBw8MDGzZsgKurq+b9devW6Txn2x5UVlbKHQIRkUX4+bWUlIuKilBTUyNTNERETcPX11dSVqmKZYqEiGyFyYl3WFgYTp06hc8++ww///wz3N3dMXnyZDz55JN1jvAGBATgxx9/RHFxMTw8PODk5CR5/8svv9TZDZyIiKyXv7+/pFxYWChTJERETcPJyUlno11ONSeihpiceAN3Ht/1/PPPG92udmq6tpYtW+o9TkRE1kn7UYyFhTdkioSIqGnoe7oNp5oTUUOMSry3bduGkSNHwsXFBdu2bau37gMPPFDv+0REZPu0p5pzxJuI7J32NHOAI95E1DCjEu/x48cjLy8PgYGBGD9+fJ31FAoFqqurGxsbERFZOY54E5Gj0d7RvLKyEjdv3pQnGCKyGUYl3ndvmMPNc/QLDw/HihXLkJ2dg+zsbGRn5+Czzz6HEELu0IiIzE478S4oKJApEiKipsEdzYnIFCat8a6srMTw4cPxn//8B506dTJ3TDatXbu2GDfuz2n2xcXF2LjxMxkjIiKyHH9/7RFvTjUnIvumu6O5Sp5AiMimNDOlkYuLC3755RcoFApzx2PzwsPDJeWcnByZIiEisjxONSciR6M91ZyPEiMiQ5iUeAPAxIkTsXbtWnPGYhfCw8Mk5exsJt5EZL+4uRoRORpONSciU5j8OLGKigp88skn2L17N/r06YMWLVpI3v/ggw8aHZwt0h7xZuJNRPZMd8SbiTcR2TfdEW+VLHEQkW0xOvG+dOkS2rRpg19++QX33HMPAOD8+fOSOo48BT0sLFRS5lRzIrJXzZo10/kCyqnmRGTvdNd4c6o5ETXM6MS7Y8eOyM3Nxd69ewEAjz/+OJYvX46goCCzB2eLOOJNRI7C19cXzZpJVyxxV3Misncc8SYiUxideGs/FmvHjh0oLy83W0C2TneNd7ZMkRCZrk/zCUa3+eHmJxaIhKyZv7+/zjFONaeGuLmEGN3mdmWuBSKR16FbG0xoY4FAyGjPPTcFc+bMhY+PD3x9fXHt2jW5QyI71t7jfqPb/Fb2XwtEYh5rrn9sQhsLBCIDk9d41+Lzqf/k7OyM4OBgybGcnKsyRUNEZFk3btzAnDlz4efnBz8/P3h6eqCiokLusIiILEqtViMvLw95eXlyh0JENsToxFuhUOis4XbkNd13Cw4O1pl2yRFvIrJX169fx/vvL5U7DCIiIiKrZ9JU82eeeQZKpRIAcPv2bUydOlVnV/Ovv/7aPBHaEO313bdv3+a0SyIiIiIiIgdndOI9adIkSfmpp54yWzC2Tnt9N3c0JyIiIiIiIqMT7/Xr11siDrsQFqa9sRoTbyJqnISEBLz++uuYMWMGEhMT9dZ55plnsGGD7kZNkZGROHPmDAAgKSkJkydP1qlz69YtuLm5mTVmIiIiIpJq9OZq9CfdHc2ZeBOR6Y4ePYrVq1ejZ8+e9dZbtmwZ3nvvPU25qqoKvXr1wqOPPiqp5+XlhXPnzkmOMekmIjKcu7s77rtvEFSqYhQVFUGlUnGTNSIyCBNvM+JUcyIyl7KyMkyYMAFr1qzBwoUL663r7e0Nb29vTXnr1q0oKirSGeFWKBQ6T14gIiLDtWrVCtu3fys55uraHJWVlTJFRES2olnDVchQx4+fwPbtO3Dq1GkUFhZyxJuITDZ9+nSMHj0aQ4cONbrt2rVrMXToUEREREiOl5WVISIiAuHh4RgzZgxOnjxZ73nUajVKSkokr7t9++1WXLz4K3766SC2b/8Ww4YZHysRkS3x8fGRlMvLy5l0E5FBOOJtRkuWfIAlSz6QOwwisnGbNm3CiRMncPToUaPb5ubmYseOHfj8888lx7t06YKkpCT06NEDJSUlWLZsGQYMGICff/4ZHTt21HuuhIQEzJ8/v85rtW3bBu3bt0f79u0BAJ9++pnR8RIR2RJfXx9JWaVSyRIHEdkejngTEVmRK1euYMaMGdi4caNJ66+TkpLg4+OD8ePHS47HxMTgqaeeQq9evXDvvffiiy++QKdOnfDhhx/Wea74+HgUFxdrXleuXJG87+fnJynz8YlEZO+0R7yZeBORoTjiTURkRY4fP478/Hz07t1bc6y6uhr79u3DihUroFar4eTkpLetEALr1q3D008/DVdX13qv06xZM/Tt2xcXLlyos45SqYRSqazzfd3E+0a91yQisnXaiXdRkUqWOIjI9jDxJiKyIkOGDMHp06clxyZPnowuXbrg1VdfrTPpBoD09HRcvHgRzz33XIPXEUIgIyMDPXr0MClOT09PuLi4SI4VFBSYdC4iIlvBqeZEZCom3kSk49hNrtWVi6enJ7p37y451qJFC/j5+WmOx8fHIycnB8nJyZJ6a9euRf/+/XXaA8D8+fMRExODjh07oqSkBMuXL0dGRgY++ugjk+L09/fXOcap5mSI25W5TXKd5srWJrW7qb5s5kjInuhONS+WJxByGL+V/VfuEMhMmHgTEdmY3NxcXL4sTQ6Ki4uRmpqKZcuW6W2jUqnw/PPPIy8vD97e3oiOjsa+ffvQr18/k2LQnmZeUVGBsrIyk85FRGQrdKeaF8kTCBHZHCbeZjJ16j8wcuQIZGfnICcnBwcOHER6+j65wyIiO5CWliYpJyUl6dTx9vbGzZs36zzH0qVLsXTpUrPF5OfXUlLmaDcROQJONSciUzHxNpOYmP544IGxmnJi4nIm3kRkt7ijORE5Iu5qTkSm4uPEzCQsLFRSzs7OlikSIiLL0068CwqYeBOR/eOu5kRkKibeZhIeHiYp5+RclSkSIiLL41RzInJEnGpORKZi4m0m4eHhkjJHvInInmnvas5neBORI+BUcyIyFRNvM/Dy8oKHh4fkWHZ2jkzREBFZHke8icgRcao5EZmKibcZaI92A8DVq5xqTkT2i5urEZGjad68OVxcXCTHOOJNRIbiruZmoL2+Oz8/HxUVFTJFQ0RkebqJN6eaE5F9u3XrFkJCWsHHx+d/L2/k5ubKHRYR2Qgm3mYQFiZNvDnNnIjs3ccfr0K7dm3h5+cHP7+WOHfuvNwhERFZlBACeXl5yMvLkzsUIrJBTLzNQHdHcybeRGTf1q5dJ3cIROTgEhIS8Prrr2PGjBlITEzUWyctLQ2DBw/WOZ6ZmYkuXbpYOEIioj8x8TYD3R3NmXgTERERWcrRo0exevVq9OzZ06D6586dg5eXl6YcEBBgqdCIiPRi4m0GYWGhkjIfJUZkWdOCphnd5uNrH1sgEiLr5OzkY3SbqmqV2eOQ0031ZblDsAqzQozvL5fmWnd/WVZWhgkTJmDNmjVYuHChQW0CAwN1diQnImpK3NXcDLRHvHNyuKM5ERERkSVMnz4do0ePxtChQw1uEx0djZCQEAwZMgR79+6tt65arUZJSYnkRUTUWBzxNgPtNd4c8SYiIiIyv02bNuHEiRM4evSoQfVDQkKwevVq9O7dG2q1Gp9++imGDBmCtLQ0DBw4UG+bhIQEzJ8/X+d4+/btERAQCJVKBZVKhRs3bvApNkRkMCbejeTm5qbzWB2OeBMRERGZ15UrVzBjxgzs2rULbm5uBrXp3LkzOnfurCnHxsbiypUrWLJkSZ2Jd3x8PGbPnq0pl5SUoFWrVpg27QXMnj1Tc3z9+g149tm/m3YzRORwmHg3klKpxKpVqxEeHobw8HCEh4dxV3MismuTJk3E22+/icLCGygsLMThwz9h/vwFcodFRHbu+PHjyM/PR+/evTXHqqursW/fPqxYsQJqtRpOTk4NnicmJgYbN26s832lUgmlUqlz3NfXR1JWqVQGx05ExMS7kYqLi/HCC9PlDoOIqMmEhYWhXbt2aNeuHQCgsrJS5oiIyBEMGTIEp0+flhybPHkyunTpgldffdWgpBsATp48iZCQEKOvr705W1FRkdHnICLHZVebqyUkJEChUGDmzJl11klLS4NCodB5/frrr00XKBGRDfP395eUCwtvyBQJETkST09PdO/eXfJq0aIF/Pz80L17dwB3polPnDhR0yYxMRFbt27FhQsXcObMGcTHxyM1NRUvvvii0dfXTrxVquJG3Q8RORa7GfHm8xyJiJqGn19LSbmwsFCmSIiIpHJzc3H58p+PkquoqMCcOXOQk5MDd3d3dOvWDd999x1GjRpl9Lk51ZyIGsMuEm8+z5GIqOlobyjJxJuI5JKWliYpJyUlScpz587F3LlzzXItTjUnosawi6nmfJ4jEVHT0U28OdWciOyf7lRzlSxxEJFtsvkRbzmf50hE5Ii0p5oXFBTIFAkRUdNo1qwZ13gTUaPY9Ih37fMcN27caNTzHKdMmYJ77rkHsbGx+PjjjzF69GgsWbKkzjbx8fEoLi7WvK5cuaJ5b+fO7di2bQs+/ngFXn/9NYSFhTX6voiIaplz08jU1FRERkZCqVQiMjISW7ZsMSkmTjUnIkdz975AtTjVnIiMYdMj3nI/z9HZ2RlDhw5Bs2Z//v3iu+928DneRGQW5tw08tChQ3j88cexYMECPPjgg9iyZQsee+wx7N+/H/379zc4JicnJ7Rsqb25GqeaE5F907cvEKeaE5ExbDrxlvt5jiEhIZKkGwCys7ONPg8RGefjax/LHYLFmXvTyMTERAwbNgzx8fEA7szkSU9PR2JiIlJSUgyOy9fXV+cYR7ytT1W1Su4QyEoszbX//rIpaPd9lZWVKC8vlykaIjLEbw/2M7pNxKOnjKpfclOg5d8N6wtseqq53M9z1J5Wfvv2bX4BJSKzMPemkYcOHcLw4cMlx0aMGIGDBw8aFZf2NHOAiTcR2T9urEZEjWXTI96GsOTzHMPDpYk3p5gTkTlYYtPIvLw8BAUFSdoFBQUhLy+vzvOq1Wqo1WpNuaSkRCfxLisrQ0VFhaG3RkRkk5h4E1Fj2V3i3ZTPc9Qe8c7OZuJNRI1Tu2nkrl27jNo0snPnzppybGwsrly5giVLlkie1qBQKCTthBA6x+6m74kOY8eOlZS5ozkROQLtqeZFRSp5AiEim2XTU83lFh4eLilzxJuIGuvuTSOdnZ3h7OyM9PR0LF++HM7OzqiurjboPDExMbhw4YKmHBwcrDO6nZ+frzMKfjd9T3Tw9/eX1OHGakTkCDjiTUSNZXcj3k1Je6o5R7yJqLEstWlkbGwsdu/ejVmzZmmO7dq1C3FxcXWeQ98THfgoMSJyRGvWrMH27Tvh4+MLX18flJSUyh0SEdkYJt6NwKnmRGRutZtG3k3fppE5OTlITk4GcGfTyDZt2qBbt26oqKjAxo0bkZqaitTUVM05ZsyYgYEDB2Lx4sUYN24cvvnmG+zZswf79+83Kr5Dhw7h3XcT4OfnBz+/lvj5Z+N2/yQiskWlpaX49ddfAdS9PIeIqD5MvBuBm6sRkRxM2TQyLi4OmzZtwptvvom33noL7du3x+bNm416hjcAHDhwAAcOHAa/fBIREREZTiGEEHIHYWtKSkrg4+OD27dvw9XVVXO8f/8BOHLkiIyREZG8BIBqFBcXw8vLS+5gzK6kpATe3t4AnMDEm4ik7Lf/Y99HZJua8jnehvR93FzNRP7+/pKkGwCys7NlioaIiIiIiIisFRNvE2nvaF5dXY1r167JFA0RERERERFZK67xNpF24p2bm2vwY36IiIiIyHb07t0b5eW3UVSkgkqlglqtljskIrIxTLxNxB3NiYiIiBxDeno6WrRooSnHxPwFP/30k4wREZGtYeJtol9//RWrVv0H4eHhCAsLw5kzZ+UOiYjI4rKyslBYWIiCgkIUFhZi+vSXoVKp5A6LiMii7k66AbDfIyKjcVdzE3B3SyLb83qrF4xus+jKSiNb2O+uvsCdvk/7vjw9fVFWViZTRERkPey3/9PX9wUFhSE/P1+miIjIehje93FzNSIiMklFRQWTbiJySMXFxXKHQEQ2hok3ERGZpKCgQO4QiIia3K1bt7i5GhEZjYk3ERGZpLDwhtwhEBE1uaKiIrlDICIbxMSbiIhMUlhYKHcIRERNjhurEZEpmHgTEZFJmHgTkSNSqbi+m4iMx8eJmejkyZPIzs5BTs5VZGb+imXLlssdEhFRk+JUcyJyRJxqTkSmYOJtoqioKERFRQEATp7MYOJNRA6Hm6sRkSPiiDcRmYJTzc0gOztb7hCIiJocp5oTkSPiGm8iMgUTbzPIzs6ROwQioibHqeZE5Ig41ZyITMHE2wxycph4E5Hj4Yg3ETkijngTkSmYeJsBR7yJyBFxxJuIHBHXeBORKZh4mwHXeBORI+KINxE5Ik41JyJTcFdzM8jJuSp3CETUgEVXVhrdpkokGVW/pOQmWno/b/R1bBV3NSeyT8b2fYD9939xcXHw8fGDj48Pjhw5Knc4RGQhlvzux8TbDDjiTUSOYuXKlfDz80fLli25zpGIHMahQ4cAOAFQyB0KEdkoJt6NVFxcjLKyMrnDICJqEtOmTQO/fBIREREZh2u8G4k7mhMREREREVF9mHg3Enc0JyJLSkhIgEKhwMyZM+us8/XXX2PYsGEICAiAl5cXYmNjsXPnTkmdpKQkKBQKndft27ctfAdERERExMS7kZh4E5GlHD16FKtXr0bPnj3rrbdv3z4MGzYM27dvx/HjxzF48GCMHTsWJ0+elNTz8vJCbm6u5OXm5mbJWyAiIiIicI13o3GqORFZQllZGSZMmIA1a9Zg4cKF9dZNTEyUlBctWoRvvvkG3377LaKjozXHFQoFgoODLREuEZFdCwoKgkpVCrW6Qu5QiMhGccS7kTjiTUSWMH36dIwePRpDhw41um1NTQ1KS0vRsmVLyfGysjJEREQgPDwcY8aM0RkR16ZWq1FSUiJ5ERE5ory8PNy+XY4jRw7JHQoR2Sgm3ib69ttvceLECfz2229yh0JEdmbTpk04ceIEEhISTGr//vvvo7y8HI899pjmWJcuXZCUlIRt27YhJSUFbm5uGDBgAC5cuFDneRISEuDt7a15tWrVCjt37kRKymcYPnyYSbEREdmy8vJyuUMgIhvFqeYmeuCBB8BH6hCRuV25cgUzZszArl27TFp/nZKSgnnz5uGbb75BYGCg5nhMTAxiYmI05QEDBuCee+7Bhx9+iOXLl+s9V3x8PGbPnq0pl5SUIDw8HADwww9pRsdGRGTrVCqV3CEQkY1i4k1EZEWOHz+O/Px89O7dW3Osuroa+/btw4oVK6BWq+Hk5KS37ebNm/Hcc8/hyy+/bHCKerNmzdC3b996R7yVSiWUSqXe9woLCw24GyIi+1JUpJI7BCKyUUy8iYisyJAhQ3D69GnJscmTJ6NLly549dVX60y6U1JS8OyzzyIlJQWjR49u8DpCCGRkZKBHjx4mxcnEm4gcEUe8ichUTLxNIISo/S9Z4yAiyyopuWlk/VsA7u4jjOfp6Ynu3btLjrVo0QJ+fn6a4/Hx8cjJyUFycjKAO0n3xIkTsWzZMsTExCAvLw8A4O7uDm9vbwDA/PnzERMTg44dO6KkpATLly9HRkYGPvroI4Nju/u+7iTe7AOJ7JGxfd+dNo3v/6zV3fd0J/G2v3skojss+d2PibcJSktL//dfNbLGQUSW1dL7eZPalZaWahJeS8jNzcXly5c15f/85z+oqqrC9OnTMX36dM3xSZMmISkpCcCdL4vPP/888vLy4O3tjejoaOzbtw/9+vUz+LqlpaXw8fEx120QkZUyte8DLN//yYF9H5HjsOR3P4Wwxz9NWlhNTQ2uXr0KT09PKBR1b65WUlKCVq1a4cqVK/Dy8mrCCOXhSPfLe7VPjb1XIQRKS0sRGhqKZs3s76ERDfV9tv5vxdbjB3gP1sLW78GU+O25/zP0e581sPV/e5bGz6du/GzqV9fnY0zfxxFvEzRr1kyzs68hvLy8HOofsCPdL+/VPjXmXu1tpOduhvZ9tv5vxdbjB3gP1sLW78HY+O21/zP2e581sPV/e5bGz6du/Gzqp+/zMbTvs68/SRIRERERERFZGSbeRERERERERBbExNuClEol3nnnnTqfg2tvHOl+ea/2yZHu1RJs/fOz9fgB3oO1sPV7sPX4HRl/dvXj51M3fjb1M8fnw83ViIiIiIiIiCyII95EREREREREFsTEm4iIiIiIiMiCmHgTERERERERWRAT70b6+OOP0bZtW7i5uaF379748ccf66yblpYGhUKh8/r111+bMGLT7Nu3D2PHjkVoaCgUCgW2bt3aYJv09HT07t0bbm5uaNeuHVatWmX5QM3A2Hu15Z9rQkIC+vbtC09PTwQGBmL8+PE4d+5cg+1s8Wdryr3a8s/WUmy5z7OHfszW+yd76HNsvS9ZuXIlevbsqXkWbWxsLHbs2FFvG2v6/Ek/U/o3R2Fqv+MoTOkTHFVCQgIUCgVmzpxpUnsm3o2wefNmzJw5E2+88QZOnjyJe++9FyNHjsTly5frbXfu3Dnk5uZqXh07dmyiiE1XXl6OXr16YcWKFQbVz8rKwqhRo3Dvvffi5MmTeP311/Hyyy8jNTXVwpE2nrH3WssWf67p6emYPn06Dh8+jN27d6OqqgrDhw9HeXl5nW1s9Wdryr3WssWfrSXYep9nD/2YrfdP9tDn2HpfEh4ejvfeew/Hjh3DsWPH8Ne//hXjxo3DmTNn9Na3ts+f9DO1b3AEjfmddQTG9gmO6ujRo1i9ejV69uxp+kkEmaxfv35i6tSpkmNdunQRr732mt76e/fuFQBEUVFRE0RnOQDEli1b6q0zd+5c0aVLF8mxf/zjHyImJsaCkZmfIfdqLz9XIYTIz88XAER6enqddezlZ2vIvdrTz9Yc7KnPs4d+zB76J3voc+yhL/H19RWffPKJ3ves/fMnXYb0DY7MkN9ZR1dfn+CISktLRceOHcXu3bvFoEGDxIwZM0w6D0e8TVRRUYHjx49j+PDhkuPDhw/HwYMH620bHR2NkJAQDBkyBHv37rVkmLI5dOiQzmczYsQIHDt2DJWVlTJFZVn28HMtLi4GALRs2bLOOvbyszXkXmvZw8+2sRyxz7OXf+uA9f4M7KHPseW+pLq6Gps2bUJ5eTliY2P11rH2z5/IWMb8zjoaQ/oERzR9+nSMHj0aQ4cObdR5mHibqKCgANXV1QgKCpIcDwoKQl5ent42ISEhWL16NVJTU/H111+jc+fOGDJkCPbt29cUITepvLw8vZ9NVVUVCgoKZIrKMuzl5yqEwOzZs/GXv/wF3bt3r7OePfxsDb1Xe/nZmoMj9nn28G/dmn8G9tDn2Gpfcvr0aXh4eECpVGLq1KnYsmULIiMj9da15s+fyFiG/s46GmP6BEezadMmnDhxAgkJCY0+l7MZ4nFoCoVCUhZC6Byr1blzZ3Tu3FlTjo2NxZUrV7BkyRIMHDjQonHKQd9no++4rbOXn+uLL76IU6dOYf/+/Q3WtfWfraH3ai8/W3NytD7P1v+tW/PPwB76HFvtSzp37oyMjAyoVCqkpqZi0qRJSE9Pr/OLtrV+/kTGMqbfcSTG9gmO4sqVK5gxYwZ27doFNze3Rp+PI94m8vf3h5OTk85IT35+vs5fhusTExODCxcumDs82QUHB+v9bJydneHn5ydTVE3H1n6uL730ErZt24a9e/ciPDy83rq2/rM15l71sbWfrbk4Yp9n6//W62INPwN76HNsuS9xdXVFhw4d0KdPHyQkJKBXr15YtmyZ3rrW+vkTGauxv7P2zJg+wZEcP34c+fn56N27N5ydneHs7Iz09HQsX74czs7OqK6uNup8TLxN5Orqit69e2P37t2S47t370ZcXJzB5zl58iRCQkLMHZ7sYmNjdT6bXbt2oU+fPnBxcZEpqqZjKz9XIQRefPFFfP311/jhhx/Qtm3bBtvY6s/WlHvVx1Z+tubmiH2erf5bb4icPwN76HPssS8RQkCtVut9z9o+fyJjmet31pHU1yc4kiFDhuD06dPIyMjQvPr06YMJEyYgIyMDTk5Oxp2wERu8ObxNmzYJFxcXsXbtWnH27Fkxc+ZM0aJFC/H7778LIYR47bXXxNNPP62pv3TpUrFlyxZx/vx58csvv4jXXntNABCpqaly3YLBSktLxcmTJ8XJkycFAPHBBx+IkydPij/++EMIoXuvly5dEs2bNxezZs0SZ8+eFWvXrhUuLi7iq6++kusWDGbsvdryz/WFF14Q3t7eIi0tTeTm5mpeN2/e1NSxl5+tKfdqyz9bS7D1Ps8e+jFb75/soc+x9b4kPj5e7Nu3T2RlZYlTp06J119/XTRr1kzs2rVLb+zW9vmTfg31DY7MkN9ZR9ZQn0BSjdnVnIl3I3300UciIiJCuLq6invuuUfyaIJJkyaJQYMGacqLFy8W7du3F25ubsLX11f85S9/Ed99950MURuv9lEo2q9JkyYJIXTvVQgh0tLSRHR0tHB1dRVt2rQRK1eubPrATWDsvdryz1XffQIQ69ev19Sxl5+tKfdqyz9bS7HlPs8e+jFb75/soc+x9b7k2Wef1fwOBwQEiCFDhki+YFv750/6NdQ3ODJDfmcdWUN9Akk1JvFWCPG/HTKIiIiIiIiIyOy4xpuIiIiIiIjIgph4ExEREREREVkQE28iIiIiIiIiC2LiTURERERERGRBTLyJiIiIiIiILIiJNxEREREREZEFMfEmIiIiIiIisiAm3kREREREREQWxMSbHNq8efMQFRXVYL233noLzz//vFHnTktLg0KhgEqlMi24JmDo/QOAWq1G69atcfz4ccsGZaR9+/Zh7NixCA0NhUKhwNatW+3qekTmZMk+ryG///47FAoFMjIyzHpec3jmmWcwfvx4g+rm5+cjICAAOTk5lg2qAez7iJqenH2osdq0aYPExEQA1vsdzlS22v8x8Sazyc/Pxz/+8Q+0bt0aSqUSwcHBGDFiBA4dOiR3aI1y7do1LFu2DK+//rrOewcPHoSTkxPuv//+JonF3Mn8nDlz8P333xtUV6lUYs6cOXj11VfNcm1zKS8vR69evbBixQq7vB5ZL0fq85555hkoFAqdlzF9X6tWrZCbm4vu3bs3WLepk/Rly5YhKSnJoLqBgYF4+umn8c4771g2qAaw7yNb5yh9qL6+8+7XM888U+/5zJFYWut3OFPZav/nbKZ4iPDwww+jsrISGzZsQLt27XDt2jV8//33uHHjRqPOW1lZCRcXFzNFaby1a9ciNjYWbdq00Xlv3bp1eOmll/DJJ5/g8uXLaN26ddMHaAIhBKqrq+Hh4QEPDw+D202YMAGvvPIKMjMz0bVrVwtGaLiRI0di5MiRdb5fUVGBN998E5999hlUKhW6d++OxYsX47777rPI9chxOFqfd//992P9+vWSY0ql0uDzOjk5ITg42Bwhmp23t7dR9SdPnox+/frh//2//wdfX18LRVU/9n1k6xylD83NzdW8t3nzZrz99ts4d+6c5pi7u3uTxGWN3+FMZav9H0e8ySxUKhX279+PxYsXY/DgwYiIiEC/fv0QHx+P0aNHa+opFAqsXLkSI0eOhLu7O9q2bYsvv/xS837tKMcXX3yB++67D25ubti4cSMAYP369ejatSvc3NzQpUsXfPzxx5IYXn31VXTq1AnNmzdHu3bt8NZbb6GyslJS57333kNQUBA8PT3x3HPP4fbt2w3e26ZNm/DAAw/oHC8vL8cXX3yBF154AWPGjDFotOTgwYMYOHAg3N3d0apVK7z88ssoLy/XvL9x40b06dMHnp6eCA4Oxt/+9jfk5+drPpvBgwcDAHx9fSV/JVWr1Xj55ZcRGBgINzc3/OUvf8HRo0c1560dKd+5cyf69OkDpVKJH3/8Ue+UqXXr1qFbt25QKpUICQnBiy++qHnPz88PcXFxSElJafBercXkyZNx4MABbNq0CadOncKjjz6K+++/HxcuXJA7NLJhjtjn1Y5I3f26O+k09F5rR7GLioowYcIEBAQEwN3dHR07dtQk9m3btgUAREdHQ6FQSL4s1fe53P153nvvvXB3d0ffvn1x/vx5HD16FH369IGHhwfuv/9+XL9+XdNOe6p5TU0NFi9ejA4dOkCpVKJ169Z49913Ne/36NEDwcHB2LJlS4Ofp1zY95E1c6Q+9O4+09vbGwqFQnLs888/R/v27eHq6orOnTvj008/1bStTd4ffPBBKBQKTfm3337DuHHjEBQUBA8PD/Tt2xd79uypNy5b/A5nKqvt/wSRGVRWVgoPDw8xc+ZMcfv27TrrARB+fn5izZo14ty5c+LNN98UTk5O4uzZs0IIIbKysgQA0aZNG5GamiouXbokcnJyxOrVq0VISIjmWGpqqmjZsqVISkrSnHvBggXiwIEDIisrS2zbtk0EBQWJxYsXa97fvHmzcHV1FWvWrBG//vqreOONN4Snp6fo1atXnfHeuHFDKBQKcfjwYZ331q5dK/r06SOEEOLbb78Vbdq0ETU1NZr39+7dKwCIoqIiIYQQp06dEh4eHmLp0qXi/Pnz4sCBAyI6Olo888wzknNu375d/Pbbb+LQoUMiJiZGjBw5UgghRFVVlUhNTRUAxLlz50Rubq5QqVRCCCFefvllERoaKrZv3y7OnDkjJk2aJHx9fUVhYaEklp49e4pdu3aJixcvioKCAvHOO+9I7v/jjz8Wbm5uIjExUZw7d04cOXJELF26VHLfc+fOFffdd1+dn5mcAIgtW7ZoyhcvXhQKhULk5ORI6g0ZMkTEx8eb/XrkOBytz5s0aZIYN25cvZ+Jofd68uRJIYQQ06dPF1FRUeLo0aMiKytL7N69W2zbtk0IIcSRI0cEALFnzx6Rm5ur6csa+lxqr9GlSxfx3//+V5w9e1bExMSIe+65R9x3331i//794sSJE6JDhw5i6tSpdd7f3Llzha+vr0hKShIXL14UP/74o1izZo3kfh977DFJ/y0n9n1kaxytD621fv164e3trSl//fXXwsXFRXz00Ufi3Llz4v333xdOTk7ihx9+EEIIkZ+fLwCI9evXi9zcXJGfny+EECIjI0OsWrVKnDp1Spw/f1688cYbws3NTfzxxx+ac0dERNjUdzhT2VL/x8SbzOarr74Svr6+ws3NTcTFxYn4+Hjx888/S+oAkHzZEUKI/v37ixdeeEEI8WcHmpiYKKnTqlUr8fnnn0uOLViwQMTGxtYZz7///W/Ru3dvTTk2NlbvtevrQE+ePCkAiMuXL+u8FxcXp4mzsrJS+Pv7i927d2ve1068n376afH8889LzvHjjz+KZs2aiVu3bum9fu2Xz9LSUr3nFEKIsrIy4eLiIj777DPNsYqKChEaGir+/e9/S9pt3bpVcn7txDs0NFS88cYbdX4eQgixbNky0aZNm3rryEW7M/ziiy8EANGiRQvJy9nZWTz22GNCiD//zdX3mj59ukHXI8fiSH3epEmThJOTk87v0r/+9S+j77U28R47dqyYPHmy3ji069Zq6HOpbffJJ59o3k9JSREAxPfff685lpCQIDp37iy5v9rEu6SkRCiVSp1EW9usWbOs5gss+z6yRY7Uh9bSTrzj4uLElClTJHUeffRRMWrUKE3Z0N+3yMhI8eGHH2rK+hJva/4OZypb6v+4xpvM5uGHH8bo0aPx448/4tChQ/jvf/+Lf//73/jkk08kG0fExsZK2sXGxupsoNOnTx/Nf1+/fh1XrlzBc889hylTpmiOV1VVSdblffXVV0hMTMTFixdRVlaGqqoqeHl5ad7PzMzE1KlTda69d+/eOu/p1q1bAAA3NzfJ8XPnzuHIkSP4+uuvAQDOzs54/PHHsW7dOgwdOlTvuY4fP46LFy/is88+0xwTQqCmpgZZWVno2rUrTp48iXnz5iEjIwM3btxATU0NAODy5cuIjIzUe97ffvsNlZWVGDBggOaYi4sL+vXrh8zMTEnduz9Xbfn5+bh69SqGDBlSZx3gzlqkmzdv1lvHWtTU1MDJyQnHjx+Hk5OT5L3ate1hYWE6n5M2udZwknVzpD4PAAYPHoyVK1dKjrVs2VLn/A3da60XXngBDz/8ME6cOIHhw4dj/PjxiIuLqzM2Qz8XAOjZs6fmv4OCggDcmR5+97HaZTzaMjMzoVarbbovZN9HtsDR+lB9MjMzdXY/HzBgAJYtW1Zvu/LycsyfPx//93//h6tXr6Kqqgq3bt3C5cuX621nzf2WuVhz/8fEm8zKzc0Nw4YNw7Bhw/D222/j73//O9555x2Ddmy8W4sWLTT/XZt8rlmzBv3795fUq/2FOnz4MJ544gnMnz8fI0aMgLe3NzZt2oT333+/Uffj7+8P4M5axICAAM3xtWvXoqqqCmFhYZpjQgi4uLigqKhI7y9rTU0N/vGPf+Dll1/Wea9169YoLy/H8OHDMXz4cGzcuBEBAQG4fPkyRowYgYqKijpjvPPHN93PUAhR7+eqzdDNPW7cuCH5LKxZdHQ0qqurkZ+fj3vvvVdvHRcXF3Tp0qWJIyN74Sh9Xm2MHTp0MPqc2vdaa+TIkfjjjz/w3XffYc+ePRgyZAimT5+OJUuW6K1vyOdS6+6NlWqvr32s9nza7KEvZN9HtsKR+tC6GPL9Tdsrr7yCnTt3YsmSJejQoQPc3d3xyCOP1Pt9EbDufstcrLn/4+ZqZFGRkZGSzcOAO52ddrm+f/xBQUEICwvDpUuX0KFDB8mrdgOeAwcOICIiAm+88Qb69OmDjh074o8//pCcp2vXrnqvXZ/27dvDy8sLZ8+e1RyrqqpCcnIy3n//fWRkZGheP//8MyIiIiQj2ne75557cObMGZ176NChA1xdXfHrr7+ioKAA7733Hu6991506dJFZ0TG1dUVAFBdXa05Vtt+//79mmOVlZU4duyYUbtWenp6ok2bNg0+XuyXX35BdHS0wee1tLKyMs3PAACysrKQkZGBy5cvo1OnTpgwYQImTpyIr7/+GllZWTh69CgWL16M7du3m/16RPbY5xnD2HsNCAjAM888g40bNyIxMRGrV68GoL+vM+RzMYeOHTvC3d3d6vtC9n1kjxytD+3atavk+xtwZyPeu7+/ubi4SPpCAPjxxx/xzDPP4MEHH9Rs9vj77783eD25+y1zsdn+z6QJ6kRaCgoKxODBg8Wnn34qfv75Z3Hp0iXxxRdfiKCgIPHss89q6gEQ/v7+Yu3ateLcuXPi7bffFs2aNRNnzpwRQtS9rm/NmjXC3d1ds+nXqVOnxLp168T7778vhBBi69atwtnZWaSkpIiLFy+KZcuWiZYtW0rW0WzatEkolUrJtRvaJEMIIR566CHxz3/+U1PesmWLcHV11WxsdrfXX39dREVFCSF012P//PPPwt3dXUybNk2cPHlSnD9/XnzzzTfixRdfFELc2UDD1dVVvPLKK+K3334T33zzjejUqZPk88jOzhYKhUIkJSWJ/Px8zdrvGTNmiNDQULFjxw7J5mo3btzQG0st7TXeSUlJws3NTSxbtkycP39eHD9+XCxfvlzSJiIiQiQnJ9f7mTWl2nvTfk2aNEkIcWe9+9tvvy3atGkjXFxcRHBwsHjwwQfFqVOnLHI9cgyO1OcJcWcN9P333y9yc3Mlr+vXr5t8r2+99ZbYunWruHDhgvjll1/EmDFjRL9+/YQQd/bNcHd3FwsXLhR5eXma/rahz0Xf56mv/9NeZ6m9udq8efOEr6+v2LBhg7h48aI4dOiQZN14eXm5cHd3F/v27av3s7Qk9n1kyxytD62l3fds2bJFuLi4iJUrV4rz589rNlfbu3evpk7Hjh3FCy+8IHJzczXf68aPHy+ioqLEyZMnRUZGhhg7dqzw9PQUM2bM0LTTt8bb2r7DmcpW+z8m3mQWt2/fFq+99pq45557hLe3t2jevLno3LmzePPNN8XNmzc19QCIjz76SAwbNkwolUoREREhUlJSNO/X1YEKIcRnn30moqKihKurq/D19RUDBw4UX3/9teb9V155Rfj5+QkPDw/x+OOPi6VLl0o6NyGEePfdd4W/v7/w8PAQkyZNEnPnzm2wA/3vf/8rwsLCRHV1tRBCiDFjxkg2vbjb8ePHBQBx/PhxvV/2jhw5IoYNGyY8PDxEixYtRM+ePcW7776ref/zzz8Xbdq0EUqlUsTGxopt27bpfB7/+te/RHBwsFAoFJpf+Fu3bomXXnpJ+Pv7C6VSKQYMGCCOHDmiaWNo4i2EEKtWrRKdO3cWLi4uIiQkRLz00kua9w4ePCh8fHwkP1MiR+RIfZ4QdxJTfV867t6gzNh7XbBggejatatwd3cXLVu2FOPGjROXLl3S1F+zZo1o1aqVaNasmRg0aJBBn4u5Eu/q6mqxcOFCERERIVxcXETr1q3FokWLNO9//vnnknsnIuM4Wh9aS7vvEeLOE2XatWsnXFxcRKdOnXQS423btokOHToIZ2dnERERobnvwYMHC3d3d9GqVSuxYsUKMWjQoHoTb36Hk59CiP8tECVqAgqFAlu2bJE8L9XaCSEQExODmTNn4sknn5Q7HFk9+uijiI6Oxuuvvy53KEQ2wZH6PFu8V1P169cPM2fOxN/+9je5QyGya7bYr1jr90Z+h5Mf13gTNUChUGD16tWoqqqSOxRZqdVq9OrVC7NmzZI7FCKyIPZ59cvPz8cjjzxiVV+oich6WGMfyu9w1oEj3tSkbPEvl0REpnKkPs+R7pWImgb7FbInTLyJiIiIiIiILIhTzYmIiIiIiIgsiIk3ERERERERkQUx8SYiIiIiIiKyICbeRERERERERBbExJuIiIiIiIjIgph4ExEREREREVkQE28iIiIiIiIiC2LiTURERERERGRBTLyJiIiIiIiILOj/AxlUp+auQziiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBG0lEQVR4nO3deVxV1eL///eRWVRyBDRQzFIUp0C7pESmQlqmZeWcXsV7EWcqp3IubVAvmopDqJmW1jVLjVQ082rSdcKuKZqlhhl8DCccCgT27w9/nm8nQMHAw5bX8/HYj4d77bX3XuusvPftOmvvYzEMwxAAAABgIuXs3QAAAACgqAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAFBIFotFn376qd2vcSedPHlSFotFBw4cKJXXA1B2EWIBlFn9+vWTxWLJs/3www/51k9NTVWHDh0Kde1JkyapWbNmf+kadyMfHx+lpqYqICBAkvTVV1/JYrHowoUL9m0YANNxtHcDAMCeHn/8cS1dutSmrHr16jb7WVlZcnZ2lpeX11++X3Fcw8wcHBzK/GcAoHgwEwugTHNxcZGXl5fN1rZtWw0ZMkTR0dGqVq2a2rdvLynvUoCff/5Z3bt3V5UqVeTu7q6goCD997//1bJlyzR58mR9++231tndZcuW5XuNgwcP6rHHHpObm5uqVq2qf/zjH7p8+bL1eL9+/dSlSxfNmDFD3t7eqlq1qgYPHqxr167dsm9jx47V3/72tzzlTZo00cSJE637S5culb+/v1xdXdWgQQPNnz//ptfdvn27WrZsKRcXF3l7e2vMmDHKzs62Hs/NzdWbb76pevXqycXFRb6+vnr99dcl2S4nOHnypNq0aSNJqly5siwWi/r166fly5eratWqyszMtLlv165d9cILL9yy3wDKBmZiASAf7733ngYNGqSvv/5ahmHkOX758mWFhoaqVq1aWrdunby8vLR//37l5uaqW7du+u6777Rx40Zt2bJFkuTh4ZHnGlevXtXjjz+uv/3tb9qzZ4/OnDmjiIgIDRkyxBp6JWnbtm3y9vbWtm3b9MMPP6hbt25q1qyZBg4ceNM+9OrVS2+88YZ+/PFH3XfffZKkQ4cO6eDBg/r3v/8tSVq8eLEmTpyouXPnqnnz5kpKStLAgQPl7u6uvn375rnm6dOn1bFjR2vYPHLkiAYOHChXV1dNmjRJ0vXwvHjxYv3rX/9S69atlZqaqiNHjuS5lo+Pj9asWaOuXbvq6NGjqlSpktzc3OTs7Kxhw4Zp3bp1eu655yRJ6enp2rBhgzZu3HjTPgMoQwwAKKP69u1rODg4GO7u7tbt2WefNUJDQ41mzZrlqS/JWLt2rWEYhrFw4UKjYsWKxtmzZ/O99sSJE42mTZve9BqLFi0yKleubFy+fNl6/PPPPzfKlStnpKWlWdtYu3ZtIzs721rnueeeM7p161aoPjZp0sSYMmWKdX/s2LFGixYtrPs+Pj7GBx98YHPO1KlTjeDgYMMwDOPEiROGJCMpKckwDMMYN26cUb9+fSM3N9daf968eUaFChWMnJwcIyMjw3BxcTEWL16cb3v+fL1t27YZkozz58/b1Bs0aJDRoUMH635MTIxRt25dm/sCKNtYTgCgTGvTpo0OHDhg3ebMmSNJCgoKuul5Bw4cUPPmzVWlSpXbvndycrKaNm0qd3d3a1mrVq2Um5uro0ePWssaNWokBwcH6763t7fOnDlTqHv06tVLK1eulCQZhqEPP/xQvXr1kiT9+uuvOnXqlAYMGKAKFSpYt9dee00//vhjgW0ODg6WxWKxafPly5f1888/Kzk5WZmZmWrbtm3hP4h8DBw4UJs3b9bp06clXV/ycONBPACQWE4AoIxzd3dXvXr18i2/GTc3t798b8MwCgxlfyx3cnLKcyw3N7dQ9+jZs6fGjBmj/fv367ffftOpU6fUvXt3SbJeY/HixXrooYdszvtjaL5Vm43/f7mFxWIpls9Fkpo3b66mTZtq+fLlCg8P18GDB7V+/fpiuTaAuwMzsQBwG5o0aaIDBw7o3Llz+R53dnZWTk7OTa/RsGFDHThwQFeuXLGWff311ypXrpweeOCBYmnnvffeq0ceeUQrV67UypUr1a5dO3l6ekqSPD09VatWLR0/flz16tWz2fz8/Aps865du2zWCe/atUsVK1ZUrVq1dP/998vNzU1bt24tVPucnZ0lKd/PKiIiQkuXLtWSJUvUrl07+fj4FLX7AO5ihFgAuA09evSQl5eXunTpoq+//lrHjx/XmjVrlJiYKEmqU6eOTpw4oQMHDig9PT3Pk/bS9a/6XV1d1bdvX3333Xfatm2bhg4dqj59+liDZnHo1auXVq1apY8//li9e/e2OTZp0iRNnz5ds2fP1vfff6+DBw9q6dKlmjVrVr7XioqK0qlTpzR06FAdOXJEn332mSZOnKjo6GiVK1dOrq6uGj16tEaNGqXly5frxx9/1DfffKO4uLh8r1e7dm1ZLBZt2LBBv/76q82bGXr16qXTp09r8eLF6t+/f7F9HgDuDoRYALgNzs7O2rx5s2rUqKGOHTuqcePGeuONN6xfw3ft2lWPP/642rRpo+rVq+vDDz/Mc43y5ctr06ZNOnfunFq0aKFnn31Wbdu21dy5c4u1rc8995zOnj2rq1evqkuXLjbHIiIi9O6772rZsmVq3LixQkNDtWzZsgJnYmvVqqX4+Hjt3r1bTZs2VWRkpAYMGKBXX33VWmf8+PF68cUXNWHCBPn7+6tbt24FruGtVauWJk+erDFjxsjT01NDhgyxHqtUqZK6du2qChUq5Gk3AFgMI593xwAAUAq0b99e/v7+1gfuAOAGQiwAoNQ5d+6cNm/erF69eunw4cOqX7++vZsEoJTh7QQAYFI7duxQhw4dCjz+x/WlZvPggw/q/PnzevPNNwmwAPLFTCwAmNRvv/1mfY9qfvJ7dRgA3C0IsQAAADAd3k4AAAAA0yHEAgAAwHR4sCsfubm5+uWXX1SxYkV+pxsAAOAOMgxDly5dUs2aNVWuXMHzrYTYfPzyyy/8vCEAAIAdnTp1Svfee2+Bxwmx+ahYsaKk6x9epUqV7NwaAACAsiMjI0M+Pj7WPFYQQmw+biwhqFSpEiEWAADADm61pJMHuwAAAGA6hFgAAACYDiEWAAAApsOa2L8gJydH165ds3cz8Bc5OTnJwcHB3s0AAABFQIi9DYZhKC0tTRcuXLB3U1BM7rnnHnl5efFeYAAATIIQextuBNgaNWqofPnyBB8TMwxDV69e1ZkzZyRJ3t7edm4RAAAoDEJsEeXk5FgDbNWqVe3dHBQDNzc3SdKZM2dUo0YNlhYAAGACPNhVRDfWwJYvX97OLUFxujGerHEGAMAcCLG3iSUEdxfGEwAAcyHEAgAAwHRYE4tCO3nypPz8/JSUlKRmzZrZuzk2+vXrpwsXLujTTz+1d1MAACgVkjoW7tmd5vFnS7glJYMQW4wyk53v6P1c/LOKVL9fv35677338pSHh4dr48aNtzzfx8dHqampqlat2i3r3unAO3v2bBmGUeL3AQDgbuPUOPqWda4dnHUHWlI0hNgy5vHHH9fSpUttylxcXAp1roODg7y8vEqiWX+Zh4eHvZsAAADuINbEljEuLi7y8vKy2SpXrizp+sNNsbGx6tChg9zc3OTn56ePP/7Yeu7JkydlsVh04MABSdL58+fVq1cvVa9eXW5ubrr//vutAdnPz0+S1Lx5c1ksFj366KPW6yxdulT+/v5ydXVVgwYNNH/+/Dz3+OijjxQSEiI3Nze1aNFC33//vfbs2aOgoCBVqFBBjz/+uH799Vfref369VOXLl2s+7m5uXrzzTdVr149ubi4yNfXV6+//npxf5wAANxxmcnOhdrudszEwsb48eP1xhtvaPbs2Xr//ffVo0cPBQQEyN/fP9+6hw8f1hdffKFq1arphx9+0G+//SZJ2r17t1q2bKktW7aoUaNGcna+/pdp8eLFmjhxoubOnavmzZsrKSlJAwcOlLu7u/r27Wu99sSJExUTEyNfX1/1799fPXr0UKVKlTR79myVL19ezz//vCZMmKDY2Nh8+zF27FgtXrxY//rXv9S6dWulpqbqyJEjJfCJAQAAeyDEljEbNmxQhQoVbMpGjx6t8ePHS5Kee+45RURESJKmTp2qhIQEvfPOOzazpTekpKSoefPmCgoKkiTVqVPHeqx69eqSpKpVq9osQZg6dapmzpypZ555RtL1GdvDhw9r4cKFNiH2pZdeUnh4uCRp+PDh6tGjh7Zu3apWrVpJkgYMGKBly5bl28dLly5p9uzZmjt3rvWa9913n1q3bl24DwkAAJR6hNgypk2bNnlmL6tUqWL9c3BwsM2x4OBg6/KBPxs0aJC6du2q/fv3KywsTF26dNHDDz9c4L1//fVXnTp1SgMGDNDAgQOt5dnZ2XnWtDZp0sT6Z09PT0lS48aNbcpu/FTsnyUnJyszM1Nt27YtsC0AAMDcCLFljLu7u+rVq1ekcwr6IYAOHTrop59+0ueff64tW7aobdu2Gjx4sGbMmJFv/dzcXEnXlxQ89NBDNsf+/FOvTk5Oee7/57Ib1/uzGz8jCwAA7l482AUb33zzTZ79Bg0aFFi/evXq6tevn1asWKGYmBgtWrRIkqxrYHNycqx1PT09VatWLR0/flz16tWz2W48CFYc7r//frm5uWnr1q3Fdk0AAFC6MBNbxmRmZiotLc2mzNHR0fru148//lhBQUFq3bq1Vq5cqd27dysuLi7fa02YMEGBgYFq1KiRMjMztWHDBusDYDVq1JCbm5s2btyoe++9V66urvLw8NCkSZM0bNgwVapUSR06dFBmZqb27t2r8+fPKzr61u+pKwxXV1eNHj1ao0aNkrOzs1q1aqVff/1Vhw4d0oABA4rlHgAAwL4IsWXMxo0b5e3tbVNWv35965P7kydP1qpVqxQVFSUvLy+tXLlSDRs2zPdazs7OGjt2rE6ePCk3NzeFhIRo1apVkq4H4zlz5mjKlCmaMGGCQkJC9NVXXykiIkLly5fX22+/rVGjRsnd3V2NGzfWiBEjirWf48ePl6OjoyZMmKBffvlF3t7eioyMLNZ7AAAA+7EY/MxRHhkZGfLw8NDFixdVqVIlm2O///67Tpw4IT8/P7m6utqphSXDYrFo7dq1Nu9bLSvu5nEFANxdCvsO2MMvVixUvZan+t6yzp38xa6b5bA/Yk0sAAAATIcQCwAAANNhTSysWFkCAADMgplYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOnYPsfPnz7e+mzMwMFA7duy4af3t27crMDBQrq6uqlu3rhYsWJCnTkxMjOrXry83Nzf5+Pho5MiR+v3330uqCwAAALjD7BpiV69erREjRuiVV15RUlKSQkJC1KFDB6WkpORb/8SJE+rYsaNCQkKUlJSkcePGadiwYVqzZo21zsqVKzVmzBhNnDhRycnJiouL0+rVqzV27Ng71S0AAACUMLuG2FmzZmnAgAGKiIiQv7+/YmJi5OPjo9jY2HzrL1iwQL6+voqJiZG/v78iIiLUv39/zZgxw1onMTFRrVq1Us+ePVWnTh2FhYWpR48e2rt3753qlml99dVXslgsunDhgr2bUqBJkyapWbNm9m4GAACwM7u9JzYrK0v79u3TmDFjbMrDwsK0a9eufM9JTExUWFiYTVl4eLji4uJ07do1OTk5qXXr1lqxYoV2796tli1b6vjx44qPj1ffvrf+SbW/Kqlj1RK/xx81jz97W+ft2rVLISEhat++vTZu3FjMrbL11VdfqU2bNjp//rzuueeev3y9l156SUOHDv3rDQMAAKZmtxCbnp6unJwceXp62pR7enoqLS0t33PS0tLyrZ+dna309HR5e3ure/fu+vXXX9W6dWsZhqHs7GwNGjQoT1j+o8zMTGVmZlr3MzIy/kLPSr8lS5Zo6NChevfdd5WSkiJfX197N+mWDMNQTk6OKlSooAoVKti7OQAAwM7s/mCXxWKx2TcMI0/Zrer/sfyrr77S66+/rvnz52v//v365JNPtGHDBk2dOrXAa06fPl0eHh7WzcfH53a7U+pduXJFH330kQYNGqQnn3xSy5Ytu2n9Xbt26ZFHHrE+JDds2DBduXLFenzFihUKCgpSxYoV5eXlpZ49e+rMmTOSpJMnT6pNmzaSpMqVK8tisahfv36Srv/DYdiwYapRo4ZcXV3VunVr7dmzx3rdG0sbNm3apKCgILm4uGjHjh35LidYsmSJGjVqJBcXF3l7e2vIkCF//YMCAAClmt1CbLVq1eTg4JBn1vXMmTN5Zltv8PLyyre+o6Ojqla9/lX++PHj1adPH0VERKhx48Z6+umnNW3aNE2fPl25ubn5Xnfs2LG6ePGidTt16lQx9LB0Wr16terXr6/69eurd+/eWrp0aYE/N3vw4EGFh4frmWee0f/+9z+tXr1aO3futAmJWVlZmjp1qr799lt9+umnOnHihDWo+vj4WB+6O3r0qFJTUzV79mxJ0qhRo7RmzRq999572r9/v+rVq6fw8HCdO3fOpg2jRo3S9OnTlZycrCZNmuRpY2xsrAYPHqx//OMfOnjwoNatW6d69eoVx0cFAABKMbstJ3B2dlZgYKASEhL09NNPW8sTEhLUuXPnfM8JDg7W+vXrbco2b96soKAgOTk5SZKuXr2qcuVss7mDg4MMwygwrLm4uMjFxeWvdMc04uLi1Lt3b0nS448/rsuXL2vr1q1q165dnrpvv/22evbsqREjRkiS7r//fs2ZM0ehoaGKjY2Vq6ur+vfvb61ft25dzZkzRy1bttTly5dVoUIFValSRZJUo0YN65rYK1euKDY2VsuWLVOHDh0kSYsXL1ZCQoLi4uL08ssvW685ZcoUtW/fvsD+vPbaa3rxxRc1fPhwa1mLFi1u78MBAACmYdflBNHR0Xr33Xe1ZMkSJScna+TIkUpJSVFkZKSk6zOkL7zwgrV+ZGSkfvrpJ0VHRys5OVlLlixRXFycXnrpJWudTp06KTY2VqtWrdKJEyeUkJCg8ePH66mnnpKDg8Md72NpcvToUe3evVvdu3eXJDk6Oqpbt25asmRJvvX37dunZcuWWdehVqhQQeHh4crNzdWJEyckSUlJSercubNq166tihUr6tFHH5WkAl+TJkk//vijrl27platWlnLnJyc1LJlSyUnJ9vUDQoKKvA6Z86c0S+//KK2bdsWqv8AAODuYbeZWEnq1q2bzp49qylTpig1NVUBAQGKj49X7dq1JUmpqak2YcjPz0/x8fEaOXKk5s2bp5o1a2rOnDnq2rWrtc6rr74qi8WiV199VadPn1b16tXVqVMnvf7663e8f6VNXFycsrOzVatWLWuZYRhycnLS+fPn89TPzc3VP//5Tw0bNizPMV9fX125ckVhYWEKCwvTihUrVL16daWkpCg8PFxZWVkFtuPP65j/WP7nMnd39wKv4+bmVuAxAABwd7NriJWkqKgoRUVF5Xssv4eOQkNDtX///gKv5+joqIkTJ2rixInF1cS7QnZ2tpYvX66ZM2fmeU1Z165dtXLlSgUEBNiUP/jggzp06FCBa0wPHjyo9PR0vfHGG9aH4f78Pl5nZ2dJUk5OjrWsXr16cnZ21s6dO9WzZ09J0rVr17R3717r0oXCqFixourUqaOtW7daHyADAABlg93fToA7Y8OGDTp//rwGDBiggIAAm+3ZZ59VXFxcnnNGjx6txMREDR48WAcOHNCxY8e0bt0663tafX195ezsrHfeeUfHjx/XunXr8rwFonbt2rJYLNqwYYN+/fVXXb58We7u7ho0aJBefvllbdy4UYcPH9bAgQN19epVDRgwoEj9mjRpkmbOnKk5c+bo2LFj2r9/v955553b/6AAAIApEGLLiLi4OLVr104eHh55jnXt2lUHDhzIM8PdpEkTbd++XceOHVNISIiaN2+u8ePHy9vbW5JUvXp1LVu2TB9//LEaNmyoN954w+bX0ySpVq1amjx5ssaMGSNPT0/rmw3eeOMNde3aVX369NGDDz6oH374QZs2bVLlypWL1K++ffsqJiZG8+fPV6NGjfTkk0/q2LFjRboGAAAwH4tR0CP7ZVhGRoY8PDx08eJFVapUyebY77//rhMnTsjPz0+urq52aiGKG+MKADCLzGTnQtU7/GLFQtVreerWv2p67eCsQl2rONwsh/0RM7EAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB07P6eWAAAgLtdUseqt6zTPP7sHWjJ3YOZWAAAAJgOIRYAAACmw3ICAACA21TYd7ZKt35nq1Pj6EJd6fJHhbzlXY6ZWAAAAJgOIRYlqk6dOoqJibF3MwAAwF2G5QTFqLBfAxSXovwEnMViuenxvn37atmyZTc9f+3aterSpUuh7wkAAFBSCLFlRGpqqvXPq1ev1oQJE3T06FFrmZubmz2aBQAAcFtYTlBGeHl5WTcPDw9ZLBabsg8++ED33XefnJ2dVb9+fb3//vvWc+vUqSNJevrpp2WxWKz7P/74ozp37ixPT09VqFBBLVq00JYtW+zQOwAAUNYQYqG1a9dq+PDhevHFF/Xdd9/pn//8p/7+979r27ZtkqQ9e/ZIkpYuXarU1FTr/uXLl9WxY0dt2bJFSUlJCg8PV6dOnZSSkmK3vgAAgLKB5QTQjBkz1K9fP0VFRUmSoqOj9c0332jGjBlq06aNqlevLkm655575OXlZT2vadOmatq0qXX/tdde09q1a7Vu3ToNGTLkznYCAACUKczEQsnJyWrVqpVNWatWrZScnHzT865cuaJRo0apYcOGuueee1ShQgUdOXKEmVgAAFDimImFpLxvLzAM45ZvNHj55Ze1adMmzZgxQ/Xq1ZObm5ueffZZZWVllWRTAQAAmImF5O/vr507d9qU7dq1S/7+/tZ9Jycn5eTk2NTZsWOH+vXrp6efflqNGzeWl5eXTp48eSeaDAAAyjhmYqGXX35Zzz//vB588EG1bdtW69ev1yeffGLzpoE6depo69atatWqlVxcXFS5cmXVq1dPn3zyiTp16iSLxaLx48crNzfXjj0BAABlBTOxUJcuXTR79my9/fbbatSokRYuXKilS5fq0UcftdaZOXOmEhIS5OPjo+bNm0uS/vWvf6ly5cp6+OGH1alTJ4WHh+vBBx+0Uy8AAEBZYjEMw7B3I0qbjIwMeXh46OLFi6pUqZLNsd9//10nTpyQn5+fXF1d7dRCFDfGFQBwOzKTnQtV7/CLFW9Zp+WpvoW61uWP5hbbPQt736L8SuhfdbMc9kfMxAIAAMB0CLEAAAAwHR7sAgAAZUZSx6qFqtc8/mwJtwR/FTOxAAAAMB1CLAAAAEyH5QS3ifeh3l0YTwC48/hqH38FIbaInJ2dVa5cOf3yyy+qXr26nJ2db/nzrCi9DMNQVlaWfv31V5UrV07OzoV7VQoA4O7m1Di6UPUuf1TCDUGBCLFFVK5cOfn5+Sk1NVW//PKLvZuDYlK+fHn5+vqqXDlW2ACAWRXuna2Fe3cqSj9C7G1wdnaWr6+vsrOzlZOTY+/m4C9ycHCQo6MjM+oAAJgIIfY2WSwWOTk5ycnJyd5NAQAAKHMIsQAAoFRjfSrywwJAAAAAmA4zsQAAgNddwXSYiQUAAIDpMBMLAACKHa+7QkljJhYAAACmw0wsAAAoNN4UgNKCmVgAAACYDjOxAACUMsX5poDCrU2VWJ8Ks2EmFgAAAKZj9xA7f/58+fn5ydXVVYGBgdqxY8dN62/fvl2BgYFydXVV3bp1tWDBgjx1Lly4oMGDB8vb21uurq7y9/dXfHx8SXUBAAAAd5hdlxOsXr1aI0aM0Pz589WqVSstXLhQHTp00OHDh+Xr65un/okTJ9SxY0cNHDhQK1as0Ndff62oqChVr15dXbt2lSRlZWWpffv2qlGjhv7973/r3nvv1alTp1SxIl+TAADuLoV5yIoHrHC3smuInTVrlgYMGKCIiAhJUkxMjDZt2qTY2FhNnz49T/0FCxbI19dXMTExkiR/f3/t3btXM2bMsIbYJUuW6Ny5c9q1a5ecnJwkSbVr174zHQIAAMAdYbflBFlZWdq3b5/CwsJsysPCwrRr1658z0lMTMxTPzw8XHv37tW1a9ckSevWrVNwcLAGDx4sT09PBQQEaNq0acrJySmZjgAAAOCOs9tMbHp6unJycuTp6WlT7unpqbS0tHzPSUtLy7d+dna20tPT5e3trePHj+vLL79Ur169FB8fr2PHjmnw4MHKzs7WhAkT8r1uZmamMjMzrfsZGRl/sXcAgLsFbwoASie7P9hlsVhs9g3DyFN2q/p/LM/NzVWNGjW0aNEiBQYGqnv37nrllVcUGxtb4DWnT58uDw8P6+bj43O73QEAAMAdYLeZ2GrVqsnBwSHPrOuZM2fyzLbe4OXllW99R0dHVa16/V/K3t7ecnJykoODg7WOv7+/0tLSlJWVJWfnvP8KHjt2rKKj/9/i+IyMDIIsAKBIeMgKuLPsFmKdnZ0VGBiohIQEPf3009byhIQEde7cOd9zgoODtX79epuyzZs3KygoyPoQV6tWrfTBBx8oNzdX5cpdn2j+/vvv5e3tnW+AlSQXFxe5uLgUR7cAACbBV/uAudn17QTR0dHq06ePgoKCFBwcrEWLFiklJUWRkZGSrs+Qnj59WsuXL5ckRUZGau7cuYqOjtbAgQOVmJiouLg4ffjhh9ZrDho0SO+8846GDx+uoUOH6tixY5o2bZqGDRtmlz4CAIpPYdanFmZtKgDzs2uI7datm86ePaspU6YoNTVVAQEBio+Pt74SKzU1VSkpKdb6fn5+io+P18iRIzVv3jzVrFlTc+bMsb5eS5J8fHy0efNmjRw5Uk2aNFGtWrU0fPhwjR49+o73DwBw5xXma32Jr/YBs7NriJWkqKgoRUVF5Xts2bJlecpCQ0O1f//+m14zODhY33zzTXE0DwAAAKWQ3UMsAACsTwVQVIRYAECRFee7UwHgdhBiAQAlhvWpAEoKIRYAYKNwX+3ztT4A+yLEAoDJ8dU+gLLI7j87CwAAABQVM7EAUEawPhXA3YQQCwDFqLi/2md9KgDkjxALAHbArCgA/DWsiQUAAIDpMBML4K5VnF/t84tSAFC6EGIBlHmF+Wqfr/UBoHQhxAIwHWZFAQCEWAB3RGG+2m95qm+hrsWsKACAEAvgL2FWFABgD0UKsbt371ZgYKAcHBwkSYZhyGKxWI9nZmbqs88+0/PPP1+8rQRQrJgVBQCYXZFesRUcHKyzZ//fU7weHh46fvy4df/ChQvq0aNH8bUOQJFkJjsXagMAwOyKNBNrGMZN9wsqA5C/wr4CillRAABsFfua2D8uLwDMpPgD5dxC1GKdKAAAt4Nf7AIAAIDpFHkm9vDhw0pLS5N0fenAkSNHdPnyZUlSenp68bYOd53Crsc8/GLhZiiZFQUAoGwqcoht27atzbrXJ598UtL1ZQR/flsBAAAAUBKKFGJPnDhRUu2AHdhjVpQHjwAAQHEoUoitXbt2SbUDhVSYh4+ax5+9ZR0AAAAzK1KIPXfunK5evap7773XWnbo0CHNmDFDV65cUZcuXdSzZ89ib2RZUJy/euTUOLpQV2JWFAAAmFWR3k4wePBgzZo1y7p/5swZhYSEaM+ePcrMzFS/fv30/vvvF3sjAQAAgD8qUoj95ptv9NRTT1n3ly9fripVqujAgQP67LPPNG3aNM2bN6/YGwkAAAD8UZFCbFpamvz8/Kz7X375pZ5++mk5Ol5flfDUU0/p2LFjxdtCAAAA4E+KFGIrVaqkCxcuWPd3796tv/3tb9Z9i8WizMzMYmscAAAAkJ8ihdiWLVtqzpw5ys3N1b///W9dunRJjz32mPX4999/Lx8fn2JvJAAAAPBHRXo7wdSpU9WuXTutWLFC2dnZGjdunCpXrmw9vmrVKoWGhhZ7IwEAAIA/KlKIbdasmZKTk7Vr1y55eXnpoYcesjnevXt3NWzYsFgbCAAAAPxZkX92tnr16urcuXO+x5544om/3CAAAADgVooUYpcvX16oei+88MJtNQYAAAAojCKF2H79+qlChQpydHSUYRj51rFYLIRYAAAAlKgihVh/f3/93//9n3r37q3+/furSZMmJdUuAAAAoEBFesXWoUOH9Pnnn+u3337TI488oqCgIMXGxiojI6Ok2gcAAADkUaQQK0kPPfSQFi5cqNTUVA0bNkwfffSRvL291atXL37oAAAAAHdEkUPsDW5ubnrhhRc0efJktWzZUqtWrdLVq1eLs20AAABAvm4rxJ4+fVrTpk3T/fffr+7du6tFixY6dOiQzQ8fAAAAACWlSA92ffTRR1q6dKm2b9+u8PBwzZw5U0888YQcHBxKqn0AAABAHkUKsd27d5evr69GjhwpT09PnTx5UvPmzctTb9iwYcXWQAAAAODPihRifX19ZbFY9MEHHxRYx2KxEGIBAABQoooUYk+ePHnLOqdPn77dtgAAAACFcttvJ/iztLQ0DRs2TPXq1SuuSwIAAAD5KlKIvXDhgnr16qXq1aurZs2amjNnjnJzczVhwgTVrVtXiYmJWrJkSZEaMH/+fPn5+cnV1VWBgYHasWPHTetv375dgYGBcnV1Vd26dbVgwYIC665atUoWi0VdunQpUpsAAABQuhUpxI4bN07/+c9/1LdvX1WpUkUjR47Uk08+qZ07d+qLL77Qnj171KNHj0Jfb/Xq1RoxYoReeeUVJSUlKSQkRB06dFBKSkq+9U+cOKGOHTsqJCRESUlJGjdunIYNG6Y1a9bkqfvTTz/ppZdeUkhISFG6CAAAABMoUoj9/PPPtXTpUs2YMUPr1q2TYRh64IEH9OWXXyo0NLTIN581a5YGDBigiIgI+fv7KyYmRj4+PoqNjc23/oIFC+Tr66uYmBj5+/srIiJC/fv314wZM2zq5eTkqFevXpo8ebLq1q1b5HYBAACgdCtSiP3ll1/UsGFDSVLdunXl6uqqiIiI27pxVlaW9u3bp7CwMJvysLAw7dq1K99zEhMT89QPDw/X3r17de3aNWvZlClTVL16dQ0YMKBQbcnMzFRGRobNBgAAgNKrSCE2NzdXTk5O1n0HBwe5u7vf1o3T09OVk5MjT09Pm3JPT0+lpaXle05aWlq+9bOzs5Weni5J+vrrrxUXF6fFixcXui3Tp0+Xh4eHdfPx8SlibwAAAHAnFekVW4ZhqF+/fnJxcZEk/f7774qMjMwTZD/55JNCX9NiseS5x5/LblX/RvmlS5fUu3dvLV68WNWqVSt0G8aOHavo6GjrfkZGBkEWAACgFCtSiO3bt6/Nfu/evW/7xtWqVZODg0OeWdczZ87kmW29wcvLK9/6jo6Oqlq1qg4dOqSTJ0+qU6dO1uO5ubmSJEdHRx09elT33Xdfnuu6uLhYgzkAAABKvyKF2KVLlxbbjZ2dnRUYGKiEhAQ9/fTT1vKEhAR17tw533OCg4O1fv16m7LNmzcrKChITk5OatCggQ4ePGhz/NVXX9WlS5c0e/ZsZlcBAADuEkUKscUtOjpaffr0UVBQkIKDg7Vo0SKlpKQoMjJS0vWv+U+fPq3ly5dLkiIjIzV37lxFR0dr4MCBSkxMVFxcnD788ENJkqurqwICAmzucc8990hSnnIAAACYl11DbLdu3XT27FlNmTJFqampCggIUHx8vGrXri1JSk1NtXlnrJ+fn+Lj4zVy5EjNmzfP+oMLXbt2tVcXAAAAYAd2DbGSFBUVpaioqHyPLVu2LE9ZaGio9u/fX+jr53cNAAAAmFuRXrEFAAAAlAaEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6RBiAQAAYDqEWAAAAJgOIRYAAACmQ4gFAACA6dg9xM6fP19+fn5ydXVVYGCgduzYcdP627dvV2BgoFxdXVW3bl0tWLDA5vjixYsVEhKiypUrq3LlymrXrp12795dkl0AAADAHWbXELt69WqNGDFCr7zyipKSkhQSEqIOHTooJSUl3/onTpxQx44dFRISoqSkJI0bN07Dhg3TmjVrrHW++uor9ejRQ9u2bVNiYqJ8fX0VFham06dP36luAQAAoITZNcTOmjVLAwYMUEREhPz9/RUTEyMfHx/FxsbmW3/BggXy9fVVTEyM/P39FRERof79+2vGjBnWOitXrlRUVJSaNWumBg0aaPHixcrNzdXWrVvvVLcAAABQwuwWYrOysrRv3z6FhYXZlIeFhWnXrl35npOYmJinfnh4uPbu3atr167le87Vq1d17do1ValSpcC2ZGZmKiMjw2YDAABA6WW3EJuenq6cnBx5enralHt6eiotLS3fc9LS0vKtn52drfT09HzPGTNmjGrVqqV27doV2Jbp06fLw8PDuvn4+BSxNwAAALiT7P5gl8Visdk3DCNP2a3q51cuSW+99ZY+/PBDffLJJ3J1dS3wmmPHjtXFixet26lTp4rSBQAAANxhjva6cbVq1eTg4JBn1vXMmTN5Zltv8PLyyre+o6OjqlatalM+Y8YMTZs2TVu2bFGTJk1u2hYXFxe5uLjcRi8AAABgD3abiXV2dlZgYKASEhJsyhMSEvTwww/ne05wcHCe+ps3b1ZQUJCcnJysZW+//bamTp2qjRs3KigoqPgbDwAAALuy63KC6Ohovfvuu1qyZImSk5M1cuRIpaSkKDIyUtL1r/lfeOEFa/3IyEj99NNPio6OVnJyspYsWaK4uDi99NJL1jpvvfWWXn31VS1ZskR16tRRWlqa0tLSdPny5TvePwAAAJQMuy0nkKRu3brp7NmzmjJlilJTUxUQEKD4+HjVrl1bkpSammrzzlg/Pz/Fx8dr5MiRmjdvnmrWrKk5c+aoa9eu1jrz589XVlaWnn32WZt7TZw4UZMmTboj/QIAAEDJsmuIlaSoqChFRUXle2zZsmV5ykJDQ7V///4Cr3fy5MliahkAAABKK7u/nQAAAAAoKkIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB07B5i58+fLz8/P7m6uiowMFA7duy4af3t27crMDBQrq6uqlu3rhYsWJCnzpo1a9SwYUO5uLioYcOGWrt2bUk1HwAAAHZg1xC7evVqjRgxQq+88oqSkpIUEhKiDh06KCUlJd/6J06cUMeOHRUSEqKkpCSNGzdOw4YN05o1a6x1EhMT1a1bN/Xp00fffvut+vTpo+eff17//e9/71S3AAAAUMLsGmJnzZqlAQMGKCIiQv7+/oqJiZGPj49iY2Pzrb9gwQL5+voqJiZG/v7+ioiIUP/+/TVjxgxrnZiYGLVv315jx45VgwYNNHbsWLVt21YxMTF3qFcAAAAoaXYLsVlZWdq3b5/CwsJsysPCwrRr1658z0lMTMxTPzw8XHv37tW1a9duWqegawIAAMB8HO114/T0dOXk5MjT09Om3NPTU2lpafmek5aWlm/97Oxspaeny9vbu8A6BV1TkjIzM5WZmWndv3jxoiQpIyOjSH36KzIvG4Wqd/naresZOZm3rCNJGcV4z8Le1x73LOx9y8o9C3vfsnLPwt6X/3btf8/C3pf/jux/z8Let6zcs7D3LdX/7d7BTHTjXoZxi/YbdnL69GlDkrFr1y6b8tdee82oX79+vufcf//9xrRp02zKdu7caUgyUlNTDcMwDCcnJ+ODDz6wqbNixQrDxcWlwLZMnDjRkMTGxsbGxsbGxlZKtlOnTt00S9ptJrZatWpycHDIM0N65syZPDOpN3h5eeVb39HRUVWrVr1pnYKuKUljx45VdHS0dT83N1fnzp1T1apVZbFYlJGRIR8fH506dUqVKlUqUj9R+jCedx/G9O7DmN5dGM+7T0mOqWEYunTpkmrWrHnTenYLsc7OzgoMDFRCQoKefvppa3lCQoI6d+6c7znBwcFav369TdnmzZsVFBQkJycna52EhASNHDnSps7DDz9cYFtcXFzk4uJiU3bPPffkqVepUiX+8t1FGM+7D2N692FM7y6M592npMbUw8PjlnXsFmIlKTo6Wn369FFQUJCCg4O1aNEipaSkKDIyUtL1GdLTp09r+fLlkqTIyEjNnTtX0dHRGjhwoBITExUXF6cPP/zQes3hw4frkUce0ZtvvqnOnTvrs88+05YtW7Rz50679BEAAADFz64htlu3bjp79qymTJmi1NRUBQQEKD4+XrVr15Ykpaam2rwz1s/PT/Hx8Ro5cqTmzZunmjVras6cOeratau1zsMPP6xVq1bp1Vdf1fjx43Xfffdp9erVeuihh+54/wAAAFAy7BpiJSkqKkpRUVH5Hlu2bFmestDQUO3fv/+m13z22Wf17LPPFkfzJF1fbjBx4sQ8Sw5gTozn3YcxvfswpncXxvPuUxrG1GIYt3p/AQAAAFC62PUXuwAAAIDbQYgFAACA6RBiAQAAYDqE2FuYP3++/Pz85OrqqsDAQO3YscPeTUIhTJ8+XS1atFDFihVVo0YNdenSRUePHrWpYxiGJk2apJo1a8rNzU2PPvqoDh06ZKcWo6imT58ui8WiESNGWMsYU/M5ffq0evfurapVq6p8+fJq1qyZ9u3bZz3OmJpLdna2Xn31Vfn5+cnNzU1169bVlClTlJuba63DmJZe//nPf9SpUyfVrFlTFotFn376qc3xwoxdZmamhg4dqmrVqsnd3V1PPfWUfv755xJpLyH2JlavXq0RI0bolVdeUVJSkkJCQtShQweb136hdNq+fbsGDx6sb775RgkJCcrOzlZYWJiuXLlirfPWW29p1qxZmjt3rvbs2SMvLy+1b99ely5dsmPLURh79uzRokWL1KRJE5tyxtRczp8/r1atWsnJyUlffPGFDh8+rJkzZ9r82Axjai5vvvmmFixYoLlz5yo5OVlvvfWW3n77bb3zzjvWOoxp6XXlyhU1bdpUc+fOzfd4YcZuxIgRWrt2rVatWqWdO3fq8uXLevLJJ5WTk1P8Db7pj9KWcS1btjQiIyNtyho0aGCMGTPGTi3C7Tpz5owhydi+fbthGIaRm5treHl5GW+88Ya1zu+//254eHgYCxYssFczUQiXLl0y7r//fiMhIcEIDQ01hg8fbhgGY2pGo0ePNlq3bl3gccbUfJ544gmjf//+NmXPPPOM0bt3b8MwGFMzkWSsXbvWul+Ysbtw4YLh5ORkrFq1ylrn9OnTRrly5YyNGzcWexuZiS1AVlaW9u3bp7CwMJvysLAw7dq1y06twu26ePGiJKlKlSqSpBMnTigtLc1mfF1cXBQaGsr4lnKDBw/WE088oXbt2tmUM6bms27dOgUFBem5555TjRo11Lx5cy1evNh6nDE1n9atW2vr1q36/vvvJUnffvutdu7cqY4dO0piTM2sMGO3b98+Xbt2zaZOzZo1FRAQUCLja/cfOyit0tPTlZOTI09PT5tyT09PpaWl2alVuB2GYSg6OlqtW7dWQECAJFnHML/x/emnn+54G1E4q1at0v79+7Vnz548xxhT8zl+/LhiY2MVHR2tcePGaffu3Ro2bJhcXFz0wgsvMKYmNHr0aF28eFENGjSQg4ODcnJy9Prrr6tHjx6S+HtqZoUZu7S0NDk7O6ty5cp56pREdiLE3oLFYrHZNwwjTxlKtyFDhuh///ufdu7cmecY42sep06d0vDhw7V582a5uroWWI8xNY/c3FwFBQVp2rRpkqTmzZvr0KFDio2N1QsvvGCtx5iax+rVq7VixQp98MEHatSokQ4cOKARI0aoZs2a6tu3r7UeY2petzN2JTW+LCcoQLVq1eTg4JDnXw5nzpzJ868QlF5Dhw7VunXrtG3bNt17773Wci8vL0lifE1k3759OnPmjAIDA+Xo6ChHR0dt375dc+bMkaOjo3XcGFPz8Pb2VsOGDW3K/P39rQ/P8vfUfF5++WWNGTNG3bt3V+PGjdWnTx+NHDlS06dPl8SYmllhxs7Ly0tZWVk6f/58gXWKEyG2AM7OzgoMDFRCQoJNeUJCgh5++GE7tQqFZRiGhgwZok8++URffvml/Pz8bI77+fnJy8vLZnyzsrK0fft2xreUatu2rQ4ePKgDBw5Yt6CgIPXq1UsHDhxQ3bp1GVOTadWqVZ5X333//feqXbu2JP6emtHVq1dVrpxttHBwcLC+YosxNa/CjF1gYKCcnJxs6qSmpuq7774rmfEt9kfF7iKrVq0ynJycjLi4OOPw4cPGiBEjDHd3d+PkyZP2bhpuYdCgQYaHh4fx1VdfGampqdbt6tWr1jpvvPGG4eHhYXzyySfGwYMHjR49ehje3t5GRkaGHVuOovjj2wkMgzE1m927dxuOjo7G66+/bhw7dsxYuXKlUb58eWPFihXWOoypufTt29eoVauWsWHDBuPEiRPGJ598YlSrVs0YNWqUtQ5jWnpdunTJSEpKMpKSkgxJxqxZs4ykpCTjp59+MgyjcGMXGRlp3HvvvcaWLVuM/fv3G4899pjRtGlTIzs7u9jbS4i9hXnz5hm1a9c2nJ2djQcffND6iiaUbpLy3ZYuXWqtk5uba0ycONHw8vIyXFxcjEceecQ4ePCg/RqNIvtziGVMzWf9+vVGQECA4eLiYjRo0MBYtGiRzXHG1FwyMjKM4cOHG76+voarq6tRt25d45VXXjEyMzOtdRjT0mvbtm35/n9n3759DcMo3Nj99ttvxpAhQ4wqVaoYbm5uxpNPPmmkpKSUSHsthmEYxT+/CwAAAJQc1sQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCwB301VdfyWKx6MKFC/Zuyl3BYrHo008/tXczANgBIRZAmdCvXz9ZLJY82w8//FBi93z00Uc1YsQIm7KHH35Yqamp8vDwKLH7AkBZ4GjvBgDAnfL4449r6dKlNmXVq1fPUy8rK0vOzs4l0gZnZ2d5eXmVyLVvpiT7BAD2wEwsgDLDxcVFXl5eNpuDg4MeffRRDRkyRNHR0apWrZrat28vSZo1a5YaN24sd3d3+fj4KCoqSpcvX7a55tdff63Q0FCVL19elStXVnh4uM6fP69+/fpp+/btmj17tnXW9+TJk/kuJ1izZo0aNWokFxcX1alTRzNnzrS5R506dTRt2jT1799fFStWlK+vrxYtWnTTvhbUp8OHD6tjx46qUKGCPD091adPH6Wnp9ucN3ToUI0YMUKVK1eWp6enFi1apCtXrujvf/+7KlasqPvuu09ffPGFzf22b9+uli1bysXFRd7e3hozZoyys7MlSQsXLlStWrWUm5trc85TTz2lvn37WvfXr1+vwMBAubq6qm7dupo8ebL1GpJ07NgxPfLII3J1dVXDhg2VkJBw088AwN2NEAsAkt577z05Ojrq66+/1sKFCyVJ5cqV05w5c/Tdd9/pvffe05dffqlRo0ZZzzlw4IDatm2rRo0aKTExUTt37lSnTp2Uk5Oj2bNnKzg4WAMHDlRqaqpSU1Pl4+OT57779u3T888/r+7du+vgwYOaNGmSxo8fr2XLltnUmzlzpoKCgpSUlKSoqCgNGjRIR44cKVKfUlNTFRoaqmbNmmnv3r3auHGj/u///k/PP/98nvOqVaum3bt3a+jQoRo0aJCee+45Pfzww9q/f7/Cw8PVp08fXb16VZJ0+vRpdezYUS1atNC3336r2NhYxcXF6bXXXpMkPffcc0pPT9e2bdus9zh//rw2bdqkXr16SZI2bdqk3r17a9iwYTp8+LAWLlyoZcuW6fXXX5ck5ebm6plnnpGDg4O++eYbLViwQKNHjy7M0AK4WxkAUAb07dvXcHBwMNzd3a3bs88+axiGYYSGhhrNmjW75TU++ugjo2rVqtb9Hj16GK1atSqwfmhoqDF8+HCbsm3bthmSjPPnzxuGYRg9e/Y02rdvb1Pn5ZdfNho2bGjdr127ttG7d2/rfm5urlGjRg0jNjb2pvf+c5/Gjx9vhIWF2ZSdOnXKkGQcPXrUel7r1q2tx7Ozsw13d3ejT58+1rLU1FRDkpGYmGgYhmGMGzfOqF+/vpGbm2utM2/ePKNChQpGTk6OYRiG8dRTTxn9+/e3Hl+4cKHh5eVlZGdnG4ZhGCEhIca0adNs2vb+++8b3t7ehmEYxqZNmwwHBwfj1KlT1uNffPGFIclYu3ZtgZ8DgLsXa2IBlBlt2rRRbGysdd/d3d3656CgoDz1t23bpmnTpunw4cPKyMhQdna2fv/9d125ckXu7u46cOCAnnvuub/UpuTkZHXu3NmmrFWrVoqJiVFOTo4cHBwkSU2aNLEet1gs8vLy0pkzZ2567T/3ad++fdq2bZsqVKiQp+6PP/6oBx54IM+9HBwcVLVqVTVu3Nha5unpKUnW+ycnJys4OFgWi8WmD5cvX9bPP/8sX19f9erVS//4xz80f/58ubi4aOXKlerevbu1f/v27dOePXusM6+SlJOTo99//11Xr15VcnKyfH19de+991qPBwcH37T/AO5uhFgAZYa7u7vq1atX4LE/+umnn9SxY0dFRkZq6tSpqlKlinbu3KkBAwbo2rVrkiQ3N7e/3CbDMGzC342yP3NycrLZt1gsedaY/tmf+5Sbm6tOnTrpzTffzFPX29v7pvf6Y9mN9t64/836cKO8U6dOys3N1eeff64WLVpox44dmjVrlk3bJk+erGeeeSZP21xdXfP9TP58TwBlCyEWAPKxd+9eZWdna+bMmSpX7vrjAx999JFNnSZNmmjr1q2aPHlyvtdwdnZWTk7OTe/TsGFD7dy506Zs165deuCBB6yzlMXlwQcf1Jo1a1SnTh05Ohbf//w3bNhQa9assQmzu3btUsWKFVWrVi1J1wP/M888o5UrV+qHH37QAw88oMDAQJu2HT16tMB/ZDRs2FApKSn65ZdfVLNmTUlSYmJisfUBgPnwYBcA5OO+++5Tdna23nnnHR0/flzvv/++FixYYFNn7Nix2rNnj6KiovS///1PR44cUWxsrPVp/zp16ui///2vTp48qfT09HxnTl988UVt3bpVU6dO1ffff6/33ntPc+fO1UsvvVTsfRo8eLDOnTunHj16aPfu3Tp+/Lg2b96s/v373zJs30xUVJROnTqloUOH6siRI/rss880ceJERUdHW/8BIEm9evXS559/riVLlqh3794215gwYYKWL1+uSZMm6dChQ0pOTtbq1av16quvSpLatWun+vXr64UXXtC3336rHTt26JVXXrntNgMwP0IsAOSjWbNmmjVrlt58800FBARo5cqVmj59uk2dBx54QJs3b9a3336rli1bKjg4WJ999pl1lvOll16Sg4ODGjZsqOrVqyslJSXPfR588EF99NFHWrVqlQICAjRhwgRNmTJF/fr1K/Y+1axZU19//bVycnIUHh6ugIAADR8+XB4eHjZhs6hq1aql+Ph47d69W02bNlVkZKQGDBhgDaA3PPbYY6pSpYqOHj2qnj172hwLDw/Xhg0blJCQoBYtWuhvf/ubZs2apdq1a0u6/qaItWvXKjMzUy1btlRERITN+lkAZY/FyG+hEQAAAFCKMRMLAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABM5/8Du9EXM2eDS6sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByCklEQVR4nO3de1xUdf4/8NeZGWYYUcYLF1EuoqIQKBpjha62ZWHWuuZuq5vlpWSTJU0jM/1ZK1pmbaVYBmmlrpda16x2Kzdjv5uKUZkEqXkrwSVliIs6CCrDzJzfH8SRwwzI4MwwMK/n4zGPh/Pmc875vDnD2/OZz7kIoiiKICIiIiIiIqLromjvDhARERERERF1BhxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGBTu9izZw8EQcCFCxfauyvNSk9Px7Bhw9q7G0REAIDTp09DEAQUFBS0d1dszJw5E/fee297d4OIyK369euHjIyM9u4GeRgOsMmlcnNzoVQqcdddd7l8W84etC9YsAD/93//55R1ERHNnDkTgiDYvFpbH8PCwmAwGBAXF3fNtu4ejK9ZswabNm1yy7aIiJqyV1sbv2bOnHnN5T/88EO39JU6P1V7d4A6tw0bNmDu3Ll46623UFxcjPDw8Pbu0jWJogiLxYKuXbuia9eu7d0dIupE7rrrLmzcuFEW02g0rVpWqVSid+/erujWddPpdO3dBSLyYgaDQfr39u3b8Ze//AUnTpyQYlqttj26RV6KM9jkMjU1NfjHP/6BP//5z/jNb35zzdmN3NxcjBkzBlqtFmFhYXjsscdQU1Mj/Xzr1q3Q6/Xo1q0bevfujalTp6KsrAxA/WzNbbfdBgDo0aOH7NvK2tpaPPbYYwgKCoKvry9+9atf4ZtvvpHW2zDzvXv3buj1emg0GuTk5Ng9RXzDhg2IjY2FRqNBSEgI5syZc/2/KCLyGhqNBr1795a9evToAaB+BiUrKwvjx4+HVqtFZGQkduzYIS3bdFb6/PnzeOCBBxAYGAitVouoqChp8B4ZGQkAGD58OARBwK9//WtpPRs3bkRMTAx8fX0RHR2NzMxMm2384x//wOjRo6HVajFixAicPHkS33zzDfR6Pbp27Yq77roL5eXl0nJNTxG3Wq148cUXMXDgQGg0GoSHh2PFihXO/nUSEQGArKbqdDoIgiCLvfPOOxgwYADUajUGDx6MLVu2SMv269cPADBp0iQIgiC9P3XqFCZOnIjg4GB07doVI0aMwH/+8592yI46Gg6wyWW2b9+OwYMHY/DgwXjwwQexceNGiKJot+3hw4cxbtw4/O53v8OhQ4ewfft27N+/XzaANZlMePbZZ/Hdd9/hww8/RFFRkTSIDgsLw86dOwEAJ06cgMFgwJo1awAACxcuxM6dO/G3v/0N3377LQYOHIhx48bh3Llzsj4sXLgQK1euxLFjxzB06FCbPmZlZeHRRx/FI488gsOHD+Nf//oXBg4c6IxfFRERAOCZZ57B73//e3z33Xd48MEHcf/99+PYsWPNtj169Cj+/e9/49ixY8jKykJAQAAA4MCBAwCA//znPzAYDHj//fcBAG+++SaWLFmCFStW4NixY3j++efxzDPP4G9/+5ts3UuXLsXTTz+Nb7/9FiqVCvfffz8WLlyINWvWICcnB6dOncJf/vKXZvNYvHgxXnzxRamP77zzDoKDg53xKyIicsgHH3yAefPm4YknnsCRI0cwe/ZsPPTQQ/j8888BQJp02bhxIwwGg/S+uroad999N/7zn/8gPz8f48aNw4QJE1BcXNxuuVAHIRK5yMiRI8WMjAxRFEWxrq5ODAgIELOzs0VRFMXPP/9cBCCeP39eFEVRnDZtmvjII4/Ils/JyREVCoV4+fJlu+s/cOCACEC8ePGi3XWKoihWV1eLPj4+4rZt26SYyWQS+/TpI/71r3+VLffhhx/K1r906VIxPj5eet+nTx9xyZIljv8iiIhEUZwxY4aoVCpFPz8/2Wv58uWiKIoiADElJUW2zM033yz++c9/FkVRFIuKikQAYn5+viiKojhhwgTxoYcesrutpm0bhIWFie+8844s9uyzz4qJiYmy5d566y3p5++++64IQPy///s/KbZy5Upx8ODBstwmTpwoiqIoVlVViRqNRnzzzTdb+ZshInKejRs3ijqdTno/cuRI8U9/+pOszR/+8Afx7rvvlt4DED/44INrrvuGG24QX3vtNel9RESEuHr16uvtMnUyvAabXOLEiRM4cOCANGuiUqkwZcoUbNiwAXfccYdN+7y8PPz444/Ytm2bFBNFEVarFUVFRYiJiUF+fj7S09NRUFCAc+fOwWq1AgCKi4txww032O3HqVOnUFdXh1GjRkkxHx8f3HTTTTazQnq9vtl8ysrKUFJSgrFjx7b+l0BE1MRtt92GrKwsWaxnz57SvxMTE2U/S0xMbPZGZX/+85/x+9//Ht9++y2SkpJw7733YuTIkc1uu7y8HD/99BNmzZqFP/3pT1LcbDbbXEPd+CyehpnnIUOGyGINl+g0dezYMdTW1rJeEpFHOHbsGB555BFZbNSoUdKZjs2pqanBsmXL8PHHH6OkpARmsxmXL1/mDDZdEwfY5BJvv/02zGYz+vbtK8VEUYSPjw/Onz9v095qtWL27Nl47LHHbH4WHh6OmpoaJCUlISkpCVu3bkVgYCCKi4sxbtw4mEymZvsh/nJKuiAINvGmMT8/v2bXw5tjEJEz+Pn5OXxpSdNa1WD8+PH43//+h08++QT/+c9/MHbsWDz66KN4+eWX7bZv+FLyzTffxM033yz7mVKplL338fGx2X7TWMP6mmK9JCJP05rjwKaefPJJ7N69Gy+//DIGDhwIrVaL++67r8XjTiKA12CTC5jNZmzevBmvvPIKCgoKpNd3332HiIgI2Sx1gxtvvBHff/89Bg4caPNSq9U4fvw4Kioq8MILL2D06NGIjo62mT1Rq9UAAIvFIsUalt+/f78Uq6urw8GDBxETE9PqnLp164Z+/frxsV1E5FJfffWVzfvo6Ohm2wcGBmLmzJnYunUrMjIysH79egD262FwcDD69u2LwsJCmzrbcFM0Z4iKioJWq2W9JCKPEBMTIzsOBOpvrNv4ONDHx0dWLwEgJycHM2fOxKRJkzBkyBD07t0bp0+fdkeXqYPjDDY53ccff4zz589j1qxZNqcd3nfffXj77bexevVqWfypp57CLbfcgkcffRR/+tOf4Ofnh2PHjiE7OxuvvfYawsPDoVar8dprryElJQVHjhzBs88+K1tHREQEBEHAxx9/jLvvvhtarRZdu3bFn//8Zzz55JPo2bMnwsPD8de//hWXLl3CrFmzHMorPT0dKSkpCAoKwvjx43Hx4kV88cUXmDt3btt+UUTkdWpra1FaWiqLqVQq6eZkO3bsgF6vx69+9Sts27YNBw4cwNtvv213XX/5y1+QkJCA2NhY1NbW4uOPP5YOGIOCgqDVavHpp58iNDQUvr6+0Ol0SE9Px2OPPQZ/f3+MHz8etbW1OHjwIM6fP4+0tDSn5Ojr64unnnoKCxcuhFqtxqhRo1BeXo7vv//e4bpLRHS9nnzySUyePBk33ngjxo4di48++gjvv/++7I7gDZMoo0aNgkajQY8ePTBw4EC8//77mDBhAgRBwDPPPNPsmTtEjXEGm5zu7bffxh133GH3uai///3vUVBQgG+//VYWHzp0KPbu3YsffvgBo0ePxvDhw/HMM88gJCQEQP0szaZNm7Bjxw7ccMMNeOGFF2xOg+zbty+WLVuGRYsWITg4WLoD+QsvvIDf//73mDZtGm688Ub8+OOP2L17t/RonNaaMWMGMjIykJmZidjYWPzmN7/BDz/84NA6iMi7ffrppwgJCZG9fvWrX0k/X7ZsGf7+979j6NCh+Nvf/oZt27Y1e48JtVqNxYsXY+jQoRgzZgyUSiX+/ve/A6gftL/66qtYt24d+vTpg4kTJwIAkpOT8dZbb2HTpk0YMmQIbr31VmzatMmpM9hA/R3On3jiCfzlL39BTEwMpkyZ0uw120RErnTvvfdizZo1eOmllxAbG4t169Zh48aNsscXvvLKK8jOzkZYWBiGDx8OAFi9ejV69OiBkSNHYsKECRg3bhxuvPHGdsqCOhJBFJt5bhIRERG5jSAI+OCDD2TPkyYiIqKOhTPYRERERERERE7AATYRERERERGRE/AmZ0RERB6AV2wRERF1fJzBJiIiIiIiInICDrCJiIiIiIiInIADbCIiIiIiIiIn6BDXYFutVpSUlKBbt24QBKG9u0NEHZgoirh48SL69OkDhaLjf8fI+khEzsQaSURkX2vrY4cYYJeUlCAsLKy9u0FEnchPP/2E0NDQ9u7GdWN9JCJXYI0kIrLvWvWxQwywu3XrBqA+GX9//3buDRF1ZFVVVQgLC5PqSkfH+khEzsQaSURkX2vrY4cYYDec0uPv78/iSERO0VlOFWR9JCJXYI0kIrLvWvWx419cQ0REREREROQBOMAmIiIiIiIicoIOcYo4UVtZLBbU1dW1dzeoHSiVSqhUqk5zmiORs7E+ejcfHx8olcr27gaRRxJFEWazGRaLpb27Qu3geusjB9jUaVVXV+PMmTMQRbG9u0LtpEuXLggJCYFarW7vrhB5FNZHEgQBoaGh6Nq1a3t3hcijmEwmGAwGXLp0qb27Qu3keusjB9jUKVksFpw5cwZdunRBYGAgZzG9jCiKMJlMKC8vR1FREaKiojrF81yJnIH1kURRRHl5Oc6cOYOoqCjOZBP9wmq1oqioCEqlEn369IFarWaN9DLOqI8cYFOnVFdXB1EUERgYCK1W297doXag1Wrh4+OD//3vfzCZTPD19W3vLhF5BNZHAoDAwECcPn0adXV1HGAT/cJkMsFqtSIsLAxdunRp7+5QO7ne+sgpHerU+K2jd+OsNVHzWB+9G/c/UfN4/ODdrrc+cgabvMKzzz4Lg8HgknWHhITgmWeeccm6iYhczZX1EWCNJKKOjceQ5CgOsMkrGAwGfPL1UXTRBTh1vZeMFbjn5ta17devH3x9faVTlW+55Ra88cYbsjbJycmYMWMGRo8e3ex69uzZA5PJhKSkJABASUkJHnjgAXz++edtS8LJTp8+Db1ej4qKijYt3zSf9PR0/L//9/94ozIiF3FVfQRYI+1hjSTqWHgM6T6dpT5ygE0exxnfFOp0Otxzzz1Qq9VQqVS4ePEi1H7dMewPj9ltrxCENl2jm7v5RYfav/fee4iLi7P7M4vFgrfeeuua69izZw+qq6ul4tinTx+PKYzO0DSfZcuWYcGCBTx4JELHqo8Aa6QrsEYSNe96a2TT+giAx5AdiKfUR15gQB6n4ZvCz4+Xtfn1dWElas1W1JgsuHjFjDqLFVaIMFutti+LBdZ2eFTNpk2bcNddd2H69OnQ6/U4cOAAfv3rX+Pjjz8GABiNRiQnJ2PIkCGIj4/Hww8/jIKCArzxxhvYvHkzhg0bhuXLl+P06dMICLj6reqnn36KG2+8EUOHDsWtt96Ko0ePAqgvqsOGDUNqairi4+MRGxuLgwcPNtu/4uJiBAUFwWQySbEZM2bg1VdfBQB88803uP3226HX63HjjTdi586ddtfTXH8AYOPGjRg2bBji4+Oh1+tx+vRpWT4pKSkAgJEjR2LYsGEoLi5GcHCw7NEZ999/P7Kyshz63RN1VN5SHwHWSIA1kshR11sjm9ZHT62RrI+eXR85g00eqYsuACOnP9Xm5btrAI2fD/y6B0Dpo4GPbxcoFFeg8rH9htFcd+V6uuqQ++67T/qWc8aMGdi/fz/y8/MRFRVl03b+/Pno2rUrvvvuOygUCpSXlyMwMBApKSmorq7Gyy+/DKD+dJoGZWVlePDBB/H5559jyJAh2LZtGyZPnowjR44AAL7//nu89dZbyMzMxBtvvIElS5Zg9+7ddvsaHh6OYcOG4V//+hfuu+8+VFdX46OPPsKqVatw4cIFzJ49G5988glCQkJQUVGBhIQEjBo1SraOlvqzZ88erFixAjk5OQgJCZEKXllZmbT8G2+8gXXr1iE3N1d6FuEdd9yBd955B8nJySgtLcV//vMfvPnmm23cI0QdT2etjwBrJGsk0fW7nhrZtD4C8JgayfrYceojZ7CJ3Oi9995DQUEBCgoK0KNHD/zqV7+yWxgB4OOPP8aTTz4p3ckyMDDwmuv/+uuvMWzYMAwZMgQA8MADD+DMmTPS6VKDBw+GXq8HACQmJuLUqVMtru+hhx7Cpk2bAAD/+Mc/cPvtt6NXr17Izc1FYWEhxo8fj2HDhuGOO+6AKIo4ceJEq/vzySefYPr06QgJCQEAdOnSpVWPxJg3bx5ef/11AMC6deswdepUqXASUcfGGskaSUT2sT52nPrIATZRO3L2H7UoinYfLdAQa3yNkFKphNlsbnF9kyZNwtdff43S0lJs3LgRDz/8sLSdoUOHSoW+oKAAxcXFuPXWWx3qT1vcdNNN8PX1xd69e/Hmm2/i0UcfbfO6XCEzMxORkZHw9fVFQkICcnJyWmxfW1uLJUuWICIiAhqNBgMGDMCGDRvc1Fsiz8Ya6bjOVCNnzpwJQRBsXrGxsW7sMZFnYn10nLvqI08RJ69x2ViBg++8ZBO3Ws1QQJBuZuGIS8YKAEFO6J2t3/72t3jppZewZs0a2ek9/v7+OHv2rN1lEhMTMWvWLBw7dgwxMTH4+9//jtDQUPTu3RvHjx93uA++vr74wx/+gKVLl6KwsBDjxo0DUH89yw8//ID//ve/uP322wEABQUFuOGGG1rdnwkTJuDhhx/GI488gt69e8uuiWmsW7duMBqNsv9I5s2bhwcffBCxsbEYNGiQw3m5yvbt2zF//nxkZmZi1KhRWLduHcaPH4+jR48iPDzc7jKTJ0/Gzz//jLfffhsDBw5EWVnZNf/TInI2V9RHgDWSNVLO0Rq5Zs0avPDCC9J7s9mM+Ph4/OEPf3Bnt4l4DMn66BAOsMkrBAb3xm3D7f+s7sol+CgV6NatWxvWHCSdnuJsq1evxuOPP464uDio1WqMGDECb775JiZNmoQtW7Zg2LBh+N3vfofp06dLywQGBmLLli144IEHYLFY0L17d/zjH/+4rn489NBDuOmmm/DUU09BqVQCAHr06IGPPvoITz75JB5//HHU1dUhPDwcH374oWzZlvozZswYPP3000hKSoIgCFCr1Xjvvfdstv/EE0/g9ttvh1arxWeffYagoCDcd999+POf/4w5c+ZcV27OtmrVKsyaNQvJyckAgIyMDOzevRtZWVlYuXKlTftPP/0Ue/fuRWFhIXr27Amg/lEcRO7kuvoIsEayRjbmaI3U6XTQ6XTS+w8//BDnz5/HQw895LY+E/EYsu28tT4KothOtwd1QFVVFXQ6HYxGI/z9/du7O+Riqamp+Px42XXfxGfSQB+EhIZLN6loTnVlKbr5qhAREdHm7ZF7HThwAA8++CCOHz8uXV9kz5UrV1BUVCSdjgi4rp6YTCZ06dIFO3bswKRJk6T4vHnzUFBQgL1799osk5qaipMnT0Kv12PLli3w8/PDb3/7Wzz77LPQarWt2i7ro3dhfaTWaE2NtFcfAc+qkU1NmDABtbW1+Oyzz1q9XdZI73K9NdKR+giwRnZE7qiPnMEmog4lOTkZn332Gd56660WB9fuVlFRAYvFguDgYFk8ODgYpaWldpcpLCzE/v374evriw8++AAVFRVITU3FuXPnmr0Ou7a2FrW1tdL7qqoqAPWnTjacWq5QKKBQKGC1WmG1WqW2DXGLxYLG3602F1cqlRAEweaU9YZvoS0WS6viKpUKoijK4oIgQKlU2vSxuThzgvR5VykVUOJqewsEAIIsdjUOKNH0e/SG69fEX1724g19/yVi57t4QRDaJe6I9upje+aUnJyM7OxsvPnmm9K1is1tUxRFm9rhKm2pkY0ZDAb8+9//xjvvvNNiO9ZI784JuL4aqZS1aKl2NvT9l0gnrSeeEndES+ueNWuWrD42XOfdtH3De6vVKvtbaPw5bAkH2ERerqCgADNnzrSJz5gxA48//rj7O3QNb731Vnt3oUVNb77R3E06gPpCLQgCtm3bJp0GuWrVKtx33314/fXX7c5ir1y5EsuWLbOJ5+fnw8/PD0D9aVUDBgxAUVERysvLpTahoaEIDQ3FyZMnYTQapXj//v0RFBSEI0eO4PLly1I8Ojoa3bt3R35+vuwgaejQoVCr1TbPwNTr9TCZTDh06JAUUyqVGDFiBIxGo+waLq1Wi/j4eFRUVKCwsFCK63Q6xMTEoKSkBGfOnJHizKk+JwC4Z4wekX7npfiJK91gtKgxzO+C7EDx8CUdTKICCY3aAsApcw8IALSCFT6K+t+BCOCSVQWlIMJXuPp7UXX1g6WuFmazWTZoUSqV0Gq1qKurkz3nVKVSwdfXF7W1tbKDErVaDbVajStXrsh+7xqNBj4+Prh8+bLswMXX1xcqlQqXLl2SHfhotVooFArU1NTIcvLz84PVapXta0EQ4OfnB4vFgitXrj5KR6FQoEuXLq3O6fvvv8fs2bMhiqKsL9OmTcOTTz7pcTmtWbNGil+5cqXZ/QTUDzobHsED1H/2XD3L60iNbGzTpk3o3r077r333hbbsUZ6d07A9dVIXx8lgEAIEOGnuJo/a6T9nA4dOoQ///nP0iC1oS9Tp05FWlqax+X0xhtvSDnV1NQ0u58a+nvmzBmcO3dOije+ZKUlbTpFPDMzEy+99BIMBgNiY2ORkZGB0aNH2227Z88e3HbbbTbxY8eOITo6ulXb4+k93oWnQJKzePop4jNmzMAXX3yBH3/8UYodO3YMN9xwA06ePGn38Rv2ZmfCwsJQWVkp5cOZjM6b05w5c5DzQwUSH3hCijs6g91NI2DSQDVCQsOa1Efb2Zmacz+jq0Zl9wZUHX0mw5PijnDWNmtra1FYWIjw8HCpPioUClRXV3tMjWwgiiIGDRqE3/zmN1i9enWL22GN9O6crrdGdtcAvx2o+eX4UQ051khvyenKlSs4ffo0IiIioFZf/RxUV1ejR48ezj9FvC13yQWAEydOyDrSmuexEbWVKP5y8qPH32GAXMmdt5hQq9VISEhAdna27OAxOzsbEydOtLvMqFGjsGPHDlRXV0t3uDx58iQUCgVCQ0PtLqPRaKDR2H5ppFKpbO5i2nAQ0lTDAVFr483dHdWRuCDYv8tqc310NO5NOZktVljsPGXTXqw+3nTGsKE+1h902hJkbYHmH4vSXnFHeFrfPSWnhplje7XDFdpSIxvs3bsXP/74I2bNmnXN7bBGMqfrqZFmqT6KsF8fAdZI78lJoVDIPsOtvYzG4YttGt8BMiYmBhkZGQgLC0NWVlaLywUFBaF3797Sq7k/CiJnMFkAq1WE1VLX3l2hdtTw2AYfHx+3bC8tLQ1vvfUWNmzYgGPHjuHxxx9HcXExUlJSAACLFy+W3bFz6tSp6NWrFx566CEcPXoU+/btw5NPPomHH3641Tc5I3IU6yMBkE6HdOfxmKM1ssHbb7+Nm2++GXFxcW7rK3mnS2bAYhVhMdVeuzF1WtdbHx36ytJkMiEvLw+LFi2SxZOSkpCbm9vissOHD8eVK1dwww034Omnn7Z72jiRs1y2AGcuWtH1wjnolKoWvw2zWi0wmyG7VoM6NlEUcenSJZSVlaF79+5uO4CcMmUKKisrsXz5chgMBsTFxWHXrl3S5QcGgwHFxcVS+65duyI7Oxtz586FXq9Hr169MHnyZDz33HNu6S95J9ZHslqtKC8vR5cuXdwye93A0RoJAEajETt37pRdW07kKnVW4GiFGRpVOXoCUKo1rJFexhn10aGl2nIHyJCQEKxfvx4JCQmora3Fli1bMHbsWOzZswdjxoyxuwzvAOndOQHXf5dcCwR8XWpBL+0lXLryU7Mn+QBAbU0VqlQK2WeucV6uuqakubu7OjPu7utkPC2nHj16ICgoqE13gGyr1NRUpKam2v3Zpk2bbGLR0dHIzs52aZ+Imvq61Ipe2sutro+Nb/5CnYNCoUB4eLhTTsd0hKM1UqfTSWcjEblDXjkAmHCD+WcoFQJrpBe63vrYpmG5I3eAHDx4MAYPHiy9T0xMxE8//YSXX3652QE27wDp3TkB13+X3LyaHrBarCguOQe1SgFBEGCBgO8v69BNUYdIzdU7EZ4pPIHq8rOYM2cOfvrpJynerVs39O/fH6WlpbIvkHr27Inw8HAUFxfL7izYcPnDqVOncPHiRSkeFhaGXr164fjx47JvOPv37w9/f38cPnxYtp8GDx4MHx8f2Z1dASAuLg51dXU4ceKEFFMqlRgyZAiqqqpk+8PX1xfR0dGorKz02pwCAgIQEhKCU6dOyT57rb0DJFFnVmMGdv5oQVcfCxQtHD/kf7gVN/fvhaVLl7qvc+QWarXapY/lIurI8sqBQ5VmdFEBLY2xWCM7p+utjw7dRfx67gDZ2IoVK7B161YcO3bM7s95B0jvzskZd8ltPq4AIMriX257BaOjArB27VruJy/IqbV3gOwo+JQF7+KMpyw4Infzi7gtOgiZmZlu2R61v85WUzpbPtQy1khypdbWE4dmsK/nDpCN5efnIyQkpNmf8w6QzOl675LbclyQ3zHSYm2xj9xPnSsnztgQERERkas4fIp4Wloapk2bBr1ej8TERKxfv97mDpBnz57F5s2bAQAZGRno168fYmNjYTKZsHXrVuzcuRM7d+50biZERERERERE7cjhAbajd4A0mUxYsGABzp49C61Wi9jYWHzyySe4++67nZcFERERERERUTtr003OHLkD5MKFC7Fw4cK2bIaIiIiIiIiow+DFiEREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkBB9hERERERERETsABNhERERG5RWZmJiIjI+Hr64uEhATk5OS02L62thZLlixBREQENBoNBgwYgA0bNript0REjlO1dweIiIiIqPPbvn075s+fj8zMTIwaNQrr1q3D+PHjcfToUYSHh9tdZvLkyfj555/x9ttvY+DAgSgrK4PZbHZzz4mIWo8DbCIiIiJyuVWrVmHWrFlITk4GAGRkZGD37t3IysrCypUrbdp/+umn2Lt3LwoLC9GzZ08AQL9+/dzZZSIih/EUcSIiIiJyKZPJhLy8PCQlJcniSUlJyM3NtbvMv/71L+j1evz1r39F3759MWjQICxYsACXL192R5eJiNqEM9hERERE5FIVFRWwWCwIDg6WxYODg1FaWmp3mcLCQuzfvx++vr744IMPUFFRgdTUVJw7d67Z67Bra2tRW1srva+qqgIAmM1m6dRyhUIBhUIBq9UKq9UqtW2IWywWiKJ4zbhSqYQgCDanrCuVSgCAxWJpVVylUkEURVlcEAQolUqbPjYXZ071cQBQKRVQ4mp7CwQAgix2NQ4oIbYyrgAgyuIqZf02uZ+8I6fG/24JB9hERERE5BaCIMjei6JoE2tgtVohCAK2bdsGnU4HoP408/vuuw+vv/46tFqtzTIrV67EsmXLbOL5+fnw8/MDAAQGBmLAgAEoKipCeXm51CY0NBShoaE4efIkjEajFO/fvz+CgoJw5MgR2ex5dHQ0unfvjvz8fNnB/NChQ6FWq3Hw4EFZH/R6PUwmEw4dOiTFlEolRowYAaPRiOPHj0txrVaL+Ph4VFRUoLCwUIrrdDrExMSgpKQEZ86ckeLMqT4nALhnjB6Rfuel+Ikr3WC0qDHM74JscHz4kg4mUYGERm0BIK+mB9SCFUO6XF23BQLyanpCp6zDYN+LUrznGD2qDKe5n7wkp4Y6dC2C2PirAw9VVVUFnU4Ho9EIf3//9u4OuVhqaio+P16GkdOfcsv2cje/iNuig5CZmemW7VH7cnU9yczMxEsvvQSDwYDY2FhkZGRg9OjRdtvu2bMHt912m0382LFjiI6ObtX2WB+9C+sjuZqraorJZEKXLl2wY8cOTJo0SYrPmzcPBQUF2Lt3r80yM2bMwBdffIEff/xRih07dgw33HADTp48iaioKJtl7M1gh4WFobKyUsrHm2bcvC2nOXPmIOeHCiQ+8IQUd+UM9pfbXsHoqACsXbuW+8kLcqqurkaPHj2uWR85g01E5CRtuUMuAJw4cUJWqAMDA93RXSIit1Gr1UhISEB2drZsgJ2dnY2JEyfaXWbUqFHYsWMHqqur0bVrVwDAyZMnoVAoEBoaancZjUYDjUZjE1epVFCp5Ie9DQfRTTUcuLc23nS9bYkLgmA33lwfHY17U05mi/WXwbCcvVh93P4ZFPbjgixutlhb7CP3U+fKyV4be3iTMyIiJ2l8h9yYmBhkZGQgLCwMWVlZLS4XFBSE3r17S6/m/tMhIurI0tLS8NZbb2HDhg04duwYHn/8cRQXFyMlJQUAsHjxYkyfPl1qP3XqVPTq1QsPPfQQjh49in379uHJJ5/Eww8/bPf0cCIiT8AZbCIiJ2i4Q+6iRYtk8ZbukNtg+PDhuHLlCm644QY8/fTTdk8bb8Ab+Hh3TgBv4AN4/n7qyDm50pQpU1BZWYnly5fDYDAgLi4Ou3btQkREBADAYDCguLhYat+1a1dkZ2dj7ty50Ov16NWrFyZPnoznnnvOpf0kIroeHGATETlBW+6QGxISgvXr1yMhIQG1tbXYsmULxo4diz179mDMmDF2l+ENfLw7J4A38OkI+6kj5+TqezmkpqYiNTXV7s82bdpkE4uOjkZ2drZL+0RE5Ey8yRl5HN7Eh1zJVfWkpKQEffv2RW5uLhITE6X4ihUrsGXLFtnBcEsmTJgAQRDwr3/9y+7PeQMf786JN/DpGPupI+dUXV3dqY65eAzpXXgMSa7U2nrCGWwiIicICAiAUqm0ma0uKyuzmdVuyS233IKtW7c2+3PewIc58QY+HWM/deSciIio7VhViYicoPEdchvLzs7GyJEjW72e/Px8hISEOLt7REREROQGnMEmInKStLQ0TJs2DXq9HomJiVi/fr3NHXLPnj2LzZs3AwAyMjLQr18/xMbGwmQyYevWrdi5cyd27tzZnmkQERERURtxgE1E5CSO3iHXZDJhwYIFOHv2LLRaLWJjY/HJJ5/g7rvvbq8UiIiIiOg6cIBNROREjtwhd+HChVi4cKEbekVERERE7sBrsImIiIiIiIicgANsIiIiIiIiIido0wA7MzMTkZGR8PX1RUJCAnJyclq13BdffAGVSoVhw4a1ZbNEREREREREHsvhAfb27dsxf/58LFmyBPn5+Rg9ejTGjx8vu3GPPUajEdOnT8fYsWPb3FkiIiIiIiIiT+XwAHvVqlWYNWsWkpOTERMTg4yMDISFhSErK6vF5WbPno2pU6ciMTGxzZ0lIiIiIiIi8lQO3UXcZDIhLy8PixYtksWTkpKQm5vb7HIbN27EqVOnsHXrVjz33HPX3E5tbS1qa2ul91VVVQAAs9kMs9kMAFAoFFAoFLBarbBarVLbhrjFYoEoiteMK5VKCIIgrbdxHAAsFkur4iqVCqIoyuKCIECpVNr0sbk4c6qPA4BKqYASV9tbIAAQZLGrcUAJsZVxBQBRFlcp67fJ/eQdOTX+NxERERGRMzk0wK6oqIDFYkFwcLAsHhwcjNLSUrvL/PDDD1i0aBFycnKgUrVucytXrsSyZcts4vn5+fDz8wMABAYGYsCAASgqKkJ5ebnUJjQ0FKGhoTh58iSMRqMU79+/P4KCgnDkyBFcvnxZikdHR6N79+7Iz8+XHcwPHToUarUaBw8elPVBr9fDZDLh0KFDUkypVGLEiBEwGo04fvy4FNdqtYiPj0dFRQUKCwuluE6nQ0xMDEpKSnDmzBkpzpzqcwKAe8boEel3XoqfuNINRosaw/wuyAbHhy/pYBIVSGjUFgDyanpALVgxpMvVdVsgIK+mJ3TKOgz2vSjFe47Ro8pwmvvJS3LS6XQgIiIiInIFQWw8/XQNJSUl6Nu3L3Jzc2Wneq9YsQJbtmyRHQwD9bNSt9xyC2bNmoWUlBQAQHp6Oj788EMUFBQ0ux17M9hhYWGorKyEv78/AO+acfO2nObMmYOcHyqQ+MATUtyVM9hfbnsFo6MCsHbtWu4nL8ipuroaPXr0gNFolOpJR1ZVVQWdTtdp8qGWpaam4vPjZRg5/Sm3bC9384u4LToImZmZbtketb/OVlM6Wz7UMtZIcqXW1hOHZrADAgKgVCptZqvLyspsZrUB4OLFizh48CDy8/MxZ84cAPWnZ4qiCJVKhc8++wy33367zXIajQYajca2syqVzSx4w0F0Uw0H7q2NNze77khcEAS78eb66Gjcm3IyW6y/DIbl7MXq44IDcUEWN1usLfaR+6lz5WSvDRERERGRMzh0pKlWq5GQkIDs7GxZPDs7GyNHjrRp7+/vj8OHD6OgoEB6paSkYPDgwSgoKMDNN998fb0nIiIiIiIi8hAOzWADQFpaGqZNmwa9Xo/ExESsX78excXF0ingixcvxtmzZ7F582YoFArExcXJlg8KCoKvr69NnIiIiIiIiKgjc3iAPWXKFFRWVmL58uUwGAyIi4vDrl27EBERAQAwGAzXfCY2ERERERERUWfj8AAbqL+BQGpqqt2fbdq0qcVl09PTkZ6e3pbNEhEREREREXks3u2HiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJyAA2wiIiIiIiIiJ+AAm4iIiIjcIjMzE5GRkfD19UVCQgJycnKabbtnzx4IgmDzOn78uBt7TETkGA6wiYiIiMjltm/fjvnz52PJkiXIz8/H6NGjMX78+Gs+3vXEiRMwGAzSKyoqyk09JiJyHAfYRERERORyq1atwqxZs5CcnIyYmBhkZGQgLCwMWVlZLS4XFBSE3r17Sy+lUummHhMROY4DbCIiIiJyKZPJhLy8PCQlJcniSUlJyM3NbXHZ4cOHIyQkBGPHjsXnn3/uym4SEV03VXt3gIiIiIg6t4qKClgsFgQHB8viwcHBKC0ttbtMSEgI1q9fj4SEBNTW1mLLli0YO3Ys9uzZgzFjxthdpra2FrW1tdL7qqoqAIDZbIbZbAYAKBQKKBQKWK1WWK1WqW1D3GKxQBTFa8aVSiUEQZDW2zgOABaLpVVxlUoFURRlcUEQoFQqbfrYXJw51ccBQKVUQImr7S0QAAiy2NU4oITYyrgCgCiLq5T12+R+8o6cGv+7JRxgExEREZFbCIIgey+Kok2sweDBgzF48GDpfWJiIn766Se8/PLLzQ6wV65ciWXLltnE8/Pz4efnBwAIDAzEgAEDUFRUhPLycqlNaGgoQkNDcfLkSRiNRinev39/BAUF4ciRI7h8+bIUj46ORvfu3ZGfny87mB86dCjUajUOHjwo64Ner4fJZMKhQ4ekmFKpxIgRI2A0GmU3b9NqtYiPj0dFRQUKCwuluE6nQ0xMDEpKSnDmzBkpzpzqcwKAe8boEel3XoqfuNINRosaw/wuyAbHhy/pYBIVSGjUFgDyanpALVgxpMvVdVsgIK+mJ3TKOgz2vSjFe47Ro8pwmvvJS3LS6XRoDUFs/NWBh6qqqoJOp4PRaIS/v397d4dcLDU1FZ8fL8PI6U+5ZXu5m1/EbdFByMzMdMv2qH11tnrS2fKhlrE+kqu5qqaYTCZ06dIFO3bswKRJk6T4vHnzUFBQgL1797ZqPStWrMDWrVtx7Ngxuz+3N4MdFhaGyspKKR9vmnHztpzmzJmDnB8qkPjAE1LclTPYX257BaOjArB27VruJy/Iqbq6Gj169LhmfeQMNhERERG5lFqtRkJCArKzs2UD7OzsbEycOLHV68nPz0dISEizP9doNNBoNDZxlUoFlUp+2NtwEN1UczdRay7edL1tiQuCYDfeXB8djXtTTmaL9ZfBsJy9WH3c/hkU9uOCLG62WFvsI/dT58rJXhu7fWpVKyIiIiKi65CWloZp06ZBr9cjMTER69evR3FxMVJSUgAAixcvxtmzZ7F582YAQEZGBvr164fY2FiYTCZs3boVO3fuxM6dO9szDSKiFnGATUREREQuN2XKFFRWVmL58uUwGAyIi4vDrl27EBERAQAwGAyyZ2KbTCYsWLAAZ8+ehVarRWxsLD755BPcfffd7ZUCEdE1cYBNRERERG6RmpqK1NRUuz/btGmT7P3ChQuxcOFCN/SKiMh5+BxsIiInyszMRGRkJHx9fZGQkICcnJxWLffFF19ApVJh2LBhru0gEREREbkMB9hERE6yfft2zJ8/H0uWLEF+fj5Gjx6N8ePHy055tMdoNGL69OkYO3asm3pKRERERK7AATYRkZOsWrUKs2bNQnJyMmJiYpCRkYGwsDBkZWW1uNzs2bMxdepUJCYmuqmnREREROQKHGATETmByWRCXl4ekpKSZPGkpCTk5uY2u9zGjRtx6tQpLF261NVdJCIiIiIX403OiIicoKKiAhaLBcHBwbJ4cHAwSktL7S7zww8/YNGiRcjJyWn2+Y5N1dbWora2VnpfVVUFADCbzTCbzQCuPrfRarXCarVKbRviFosFoiheM65UKiEIgrTexnEAsFgsrYqrVCqIoiiLC4IApVJp08fm4szp6vM3VUoFlLjavv6ZrIIsdjUOKCG2Mq4AIMriKmX9NrmfvCcnIiK6PhxgExE5kSAIsveiKNrEgPqD5qlTp2LZsmUYNGhQq9e/cuVKLFu2zCaen58PPz8/AEBgYCAGDBiAoqIilJeXS21CQ0MRGhqKkydPwmg0SvH+/fsjKCgIR44cweXLl6V4dHQ0unfvjvz8fNnB/NChQ6FWq3Hw4EFZH/R6PUwmEw4dOiTFlEolRowYAaPRiOPHj0txrVaL+Ph4VFRUoLCwUIrrdDrExMSgpKQEZ86ckeLMqT4nALhnjB6Rfuel+Ikr3WC0qDHM74JscHz4kg4mUYGERm0BIK+mB9SCFUO6XF23BQLyanpCp6zDYN+LUrznGD2qDKe5n7woJ39/fxARUdsJYuOvVz1UVVUVdDodjEYjC78XSE1NxefHyzBy+lNu2V7u5hdxW3QQMjMz3bI9al+uqicmkwldunTBjh07MGnSJCk+b948FBQUYO/evbL2Fy5cQI8ePaRZKqB+llAURSiVSnz22We4/fbbbbZjbwY7LCwMlZWVUj7eNuPmTTnNmTMHOT9UIPGBJ6S4K2ewv9z2CkZHBWDt2rXcT16SU3V1dac65uIxpHfhMSS5UmvrCWewiYicQK1WIyEhAdnZ2bIBdnZ2NiZOnGjT3t/fH4cPH5bFMjMz8d///hfvvfceIiMj7W5Ho9FAo9HYxFUqlc1p5g0H0U01HtS3Jt7c6euOxAVBsBtvro+Oxr0pJ7PF+stgWM5erD5uewZF83FBFjdbrC32kfupc+ZERERtxwE2EZGTpKWlYdq0adDr9UhMTMT69etRXFyMlJQUAMDixYtx9uxZbN68GQqFAnFxcbLlg4KC4OvraxMnIiIioo6BA2wiIieZMmUKKisrsXz5chgMBsTFxWHXrl2IiIgAABgMhms+E5uIiIiIOi4OsImInCg1NRWpqal2f7Zp06YWl01PT0d6errzO0VEREREbsELb4iIiIiIiIicgANsIiIiIiIiIifgAJuIiIiIiIjICTjAJiIiIiIiInICDrCJiIiIiIiInIADbCIiIiIiIiIn4ACbiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJygTQPszMxMREZGwtfXFwkJCcjJyWm27f79+zFq1Cj06tULWq0W0dHRWL16dZs7TEREREREROSJVI4usH37dsyfPx+ZmZkYNWoU1q1bh/Hjx+Po0aMIDw+3ae/n54c5c+Zg6NCh8PPzw/79+zF79mz4+fnhkUcecUoSRERERERERO3N4RnsVatWYdasWUhOTkZMTAwyMjIQFhaGrKwsu+2HDx+O+++/H7GxsejXrx8efPBBjBs3rsVZbyIiIiIiIqKOxqEZbJPJhLy8PCxatEgWT0pKQm5ubqvWkZ+fj9zcXDz33HPNtqmtrUVtba30vqqqCgBgNpthNpsBAAqFAgqFAlarFVarVWrbELdYLBBF8ZpxpVIJQRCk9TaOA4DFYmlVXKVSQRRFWVwQBCiVSps+NhdnTvVxAFApFVDiansLBACCLHY1DightjKuACDK4ipl/Ta5n7wjp8b/JiIi98rMzMRLL70Eg8GA2NhYZGRkYPTo0ddc7osvvsCtt96KuLg4FBQUuL6jRERt5NAAu6KiAhaLBcHBwbJ4cHAwSktLW1w2NDQU5eXlMJvNSE9PR3JycrNtV65ciWXLltnE8/Pz4efnBwAIDAzEgAEDUFRUhPLyctl2QkNDcfLkSRiNRinev39/BAUF4ciRI7h8+bIUj46ORvfu3ZGfny87mB86dCjUajUOHjwo64Ner4fJZMKhQ4ekmFKpxIgRI2A0GnH8+HEprtVqER8fj4qKChQWFkpxnU6HmJgYlJSU4MyZM1KcOdXnBAD3jNEj0u+8FD9xpRuMFjWG+V2QDY4PX9LBJCqQ0KgtAOTV9IBasGJIl6vrtkBAXk1P6JR1GOx7UYr3HKNHleE095OX5KTT6UBERO7n6GWGDYxGI6ZPn46xY8fi559/dmOPiYgcJ4iNp5+uoaSkBH379kVubi4SExOl+IoVK7BlyxbZwXBTRUVFqK6uxldffYVFixZh7dq1uP/+++22tTeDHRYWhsrKSvj7+wPwrhk3b8tpzpw5yPmhAokPPCHFXTmD/eW2VzA6KgBr167lfvKCnKqrq9GjRw8YjUapnnRkVVVV0Ol0nSYfallqaio+P16GkdOfcsv2cje/iNuig5CZmemW7VH7c2VNufnmm3HjjTfKLiuMiYnBvffei5UrVza73B//+EdERUVBqVTiww8/dGgGmzXSu7BGkiu1tp44NIMdEBAApVJpM1tdVlZmM6vdVGRkJABgyJAh+Pnnn5Gent7sAFuj0UCj0dh2VqWCSiXvcsNBdFMNB+6tjTddb1vigiDYjTfXR0fj3pST2WL9ZTAsZy9WHxcciAuyuNlibbGP3E+dKyd7bYiIyLXaepnhxo0bcerUKWzdurXFywsb8DJD784J4GWGgOfvp46aU2svM3RogK1Wq5GQkIDs7GxMmjRJimdnZ2PixImtXo8oirLiR0RERESdV1suM/zhhx+waNEi5OTkNPsFbVO8zNC7cwJ4mWFH2E8dNafWXmbo8GO60tLSMG3aNOj1eiQmJmL9+vUoLi5GSkoKAGDx4sU4e/YsNm/eDAB4/fXXER4ejujoaAD1z8V++eWXMXfuXEc3TUREREQdmCDIzywTRdEmBtTPSk2dOhXLli3DoEGDWr3+xYsXIy0tTXrfcJnh8OHDZZcZAvVnV0ZEREhtG+KDBg2yOzMaFxdnM+MG1D8xp7GGuF6vt4lrtVqbOFB/4N443vA7CQgIQM+ePW3iffr0Qe/evW36yJyAT/YdRGLYrVK8YUa6oKa7rH8N8byaHjbxy6LSJg4ARouPLP7lvoMYHRXA/eQlOVVXV9tsyx6HB9hTpkxBZWUlli9fDoPBgLi4OOzatUvauMFgQHFxsdTearVi8eLFKCoqgkqlwoABA/DCCy9g9uzZjm6aiIiIiDogRy8zvHjxIg4ePIj8/HzMmTMHQP0xpSiKUKlU+Oyzz3D77bfbLMfLDJkTLzPsGPupI+bU2ssMHR5gA/U3EEhNTbX7s02bNsnez507l7PVRERERF7M0csM/f39cfjwYVksMzMT//3vf/Hee+9J9/YhIvI0bRpgExERERE5wpHLDBUKBeLi4mTLBwUFwdfX1yZORORJOMAmIiIiIpdz9DJDIqKOiANsIiIiInILRy4zbCo9PR3p6enO7xQRkRPxgbBERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUTkRJmZmYiMjISvry8SEhKQk5PTbNv9+/dj1KhR6NWrF7RaLaKjo7F69Wo39paIiIiInInPwSYicpLt27dj/vz5yMzMxKhRo7Bu3TqMHz8eR48eRXh4uE17Pz8/zJkzB0OHDoWfnx/279+P2bNnw8/PD4888kg7ZEBERERE14Mz2ERETrJq1SrMmjULycnJiImJQUZGBsLCwpCVlWW3/fDhw3H//fcjNjYW/fr1w4MPPohx48a1OOtNRERERJ6LM9hERE5gMpmQl5eHRYsWyeJJSUnIzc1t1Try8/ORm5uL5557rtk2tbW1qK2tld5XVVUBAMxmM8xmMwBAoVBAoVDAarXCarVKbRviFosFoiheM65UKiEIgrTexnEAsFgsrYqrVCqIoiiLC4IApVJp08fm4sypPg4AKqUCSlxtb4EAQJDFrsYBJcRWxhUARFlcpazfJveT9+RERETXhwNsIiInqKiogMViQXBwsCweHByM0tLSFpcNDQ1FeXk5zGYz0tPTkZyc3GzblStXYtmyZTbx/Px8+Pn5AQACAwMxYMAAFBUVoby8XLad0NBQnDx5EkajUYr3798fQUFBOHLkCC5fvizFo6Oj0b17d+Tn58sO5ocOHQq1Wo2DBw/K+qDX62EymXDo0CEpplQqMWLECBiNRhw/flyKa7VaxMfHo6KiAoWFhVJcp9MhJiYGJSUlOHPmjBRnTvU5AcA9Y/SI9DsvxU9c6QajRY1hfhdkg+PDl3QwiQokNGoLAHk1PaAWrBjS5eq6LRCQV9MTOmUdBvtelOI9x+hRZTjN/eRFOfn7+4OIiNpOEBt/veqhqqqqoNPpYDQaWfi9QGpqKj4/XoaR059yy/ZyN7+I26KDkJmZ6ZbtUftyVT0pKSlB3759kZubi8TERCm+YsUKbNmyRXYw3FRRURGqq6vx1VdfYdGiRVi7di3uv/9+u23tzWCHhYWhsrJSysfbZty8Kac5c+Yg54cKJD7whBR35Qz2l9teweioAKxdu5b7yUtyqq6u7lTHXDyG9C48hiRXam094Qw2EZETBAQEQKlU2sxWl5WV2cxqNxUZGQkAGDJkCH7++Wekp6c3O8DWaDTQaDQ2cZVKBZVKXtIbDqKbajhwb2286XrbEhcEwW68uT46GvemnMwW6y+DYTl7sfq44EBckMXNFmuLfeR+6pw5ERFR27GqEhE5gVqtRkJCArKzs2Xx7OxsjBw5stXrEUVRNkNNRERERB0HZ7CJiJwkLS0N06ZNg16vR2JiItavX4/i4mKkpKQAABYvXoyzZ89i8+bNAIDXX38d4eHhiI6OBlD/XOyXX34Zc+fObbcciIiIiKjtOMCma3r22WdhMBjctr19+/bhgibEbdsjcpYpU6agsrISy5cvh8FgQFxcHHbt2oWIiAgAgMFgQHFxsdTearVi8eLFKCoqgkqlwoABA/DCCy9g9uzZ7ZUCEREREV0HDrDpmgwGAz75+ii66ALcsr0zP5+Htm+gW7ZF5GypqalITU21+7NNmzbJ3s+dO5ez1URERESdCAfY1CpddAFuuyPj+0v+6JbtEBERERERORNvckZERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERGRW2RmZiIyMhK+vr5ISEhATk5Os23379+PUaNGoVevXtBqtYiOjsbq1avd2FsiIsfxMV1ERERE5HLbt2/H/PnzkZmZiVGjRmHdunUYP348jh49ivDwcJv2fn5+mDNnDoYOHQo/Pz/s378fs2fPhp+fHx555JF2yICI6No4g01ERERELrdq1SrMmjULycnJiImJQUZGBsLCwpCVlWW3/fDhw3H//fcjNjYW/fr1w4MPPohx48a1OOtNRNTeOINNRERERC5lMpmQl5eHRYsWyeJJSUnIzc1t1Try8/ORm5uL5557rtk2tbW1qK2tld5XVVUBAMxmM8xmMwBAoVBAoVDAarXCarVKbRviFosFoiheM65UKiEIgrTexnEAsFgsrYqrVCqIoiiLC4IApVJp08fm4sypPg4AKqUCSlxtb4EAQJDFrsYBJcRWxhUARFlcpazfJveTd+TU+N8t4QCbiIiIiFyqoqICFosFwcHBsnhwcDBKS0tbXDY0NBTl5eUwm81IT09HcnJys21XrlyJZcuW2cTz8/Ph5+cHAAgMDMSAAQNQVFSE8vJy2XZCQ0Nx8uRJGI1GKd6/f38EBQXhyJEjuHz5shSPjo5G9+7dkZ+fLzuYHzp0KNRqNQ4ePCjrg16vh8lkwqFDh6SYUqnEiBEjYDQacfz4cSmu1WoRHx+PiooKFBYWSnGdToeYmBiUlJTgzJkzUpw51ecEAPeM0SPS77wUP3GlG4wWNYb5XZANjg9f0sEkKpDQqC0A5NX0gFqwYkiXq+u2QEBeTU/olHUY7HtRivcco0eV4TT3k5fkpNPp0BqC2PirAw9VVVUFnU4Ho9EIf3//9u6O10lNTcXnx8swcvpTbtne+0v+CJ/AcEyY/1e3bC9384u4LToImZmZbtketa/OVk86Wz7UMnfXY9ZH7+OqmlJSUoK+ffsiNzcXiYmJUnzFihXYsmWL7GC4qaKiIlRXV+Orr77CokWLsHbtWtx///1229qbwQ4LC0NlZaWUjzfNuHlbTnPmzEHODxVIfOAJKe7KGewvt72C0VEBWLt2LfeTF+RUXV2NHj16XLM+cgabiIiIiFwqICAASqXSZra6rKzMZla7qcjISADAkCFD8PPPPyM9Pb3ZAbZGo4FGo7GJq1QqqFTyw96Gg+imGg7cWxtvut62xAVBsBtvro+Oxr0pJ7PF+stgWM5erD4uOBAXZHGzxdpiH7mfOldO9trYw5ucEREREZFLqdVqJCQkIDs7WxbPzs7GyJEjW70eURRlM9RERJ6GM9hERERE5HJpaWmYNm0a9Ho9EhMTsX79ehQXFyMlJQUAsHjxYpw9exabN28GALz++usIDw9HdHQ0gPrnYr/88suYO3duu+VARHQtbZrBzszMRGRkJHx9fZGQkNDi4xLef/993HnnnQgMDIS/vz8SExOxe/fuNneYiIiIiDqeKVOmICMjA8uXL8ewYcOwb98+7Nq1CxEREQAAg8GA4uJiqb3VasXixYsxbNgw6PV6vPbaa3jhhRewfPny9kqBiOiaHJ7B3r59O+bPn4/MzEyMGjUK69atw/jx43H06FGEh4fbtN+3bx/uvPNOPP/88+jevTs2btyICRMm4Ouvv8bw4cOdkgQREREReb7U1FSkpqba/dmmTZtk7+fOncvZaiLqcByewV61ahVmzZqF5ORkxMTEICMjA2FhYcjKyrLbPiMjAwsXLsSIESMQFRWF559/HlFRUfjoo4+uu/NEREREREREnsKhGWyTyYS8vDwsWrRIFk9KSkJubm6r1mG1WnHx4kX07Nmz2Tb2HrEAAGazWbp1uzfdEr69c1IoFPBRKaGEFSIEWCFAgAhFo8cUNBe3QoDYQlwBEUKTeP22lbLHKbjyEQsqZf33TB19P3XGz54rcmr8byIiIiIiZ3JogF1RUQGLxWLzOIXg4GCbxy4055VXXkFNTQ0mT57cbJuVK1di2bJlNvH8/Hz4+fkB8K6Hmrd3TvHx8QgdYEIPv/O4bFXi8OXuCFDVIlJTI7U3Wnxw4oo/+vhcRl/11b6UmzUoqu2KfpoaBKqufmly1qTF2bouiPK9CJ2yTooX1dbv38njxiDG77wUP3GlG4wWNYb5XZANjg9f0sEkKpDQqC0A5NX0gFqwYkiXq78vCwTk1fSETlmHwb4XpXjPMXpUGU53+P3UGT97rshJp9OBiIiIiMgVBLHx9NM1lJSUoG/fvsjNzUViYqIUX7FiBbZs2SI7GLbn3XffRXJyMv75z3/ijjvuaLadvRnssLAwVFZWSg/19qYZt/bOae7cudh3shy3TE1zywz2ziX3QxsSid/MWSHFXTmD/eW2VzA6KgBr167t0PupM372XJFTdXU1evToAaPRKNWTjqyqqgo6na7T5EMtS01NxefHyzBy+lNu2V7u5hdxW3QQMjMz3bI9an+draZ0tnyoZayR5EqtrScOzWAHBARAqVTazFaXlZXZzGo3tX37dsyaNQs7duxocXANABqNBhqNxrazKpXNQ8O94aHmDdorJ6vVijqz5ZfBaT0RgjSIbczRuPWXgXNT5ibba2AvVh+3XUfzcXlfzJb6wVdH30+d8bPnipzstSEiIiIicgaHjjTVajUSEhKQnZ0ti2dnZ2PkyJHNLvfuu+9i5syZeOedd3DPPfe0radEREREREREHszhx3SlpaVh2rRp0Ov1SExMxPr161FcXIyUlBQAwOLFi3H27Fls3rwZQP3gevr06VizZg1uueUWafZbq9XyWkgiIiIiIiLqNBweYE+ZMgWVlZVYvnw5DAYD4uLisGvXLkRERAAADAYDiouLpfbr1q2D2WzGo48+ikcffVSKz5gxw+Z5h0REREREREQdlcMDbKD+BgKpqal2f9Z00Lxnz562bIKIiIiIiIioQ+HdfoiIiIiIiIicoE0z2ERERAQ8++yzMBgMbtvevn37cEET4rbtERERkWM4wCYicqLMzEy89NJLMBgMiI2NRUZGBkaPHm237fvvv4+srCwUFBSgtrYWsbGxSE9Px7hx49zca2org8GAT74+ii66ALds78zP56HtG+iWbREREZHjOMAmInKS7du3Y/78+cjMzMSoUaOwbt06jB8/HkePHkV4eLhN+3379uHOO+/E888/j+7du2Pjxo2YMGECvv76awwfPrwdMqC26KILwMjpT7llW+8v+aNbtkNERERtw2uwiYicZNWqVZg1axaSk5MRExODjIwMhIWFISsry277jIwMLFy4ECNGjEBUVBSef/55REVF4aOPPnJzz4mIiIjIGTjAJiJyApPJhLy8PCQlJcniSUlJyM3NbdU6rFYrLl68iJ49e7qii0RERETkYjxFnIjICSoqKmCxWBAcHCyLBwcHo7S0tFXreOWVV1BTU4PJkyc326a2tha1tbXS+6qqKgCA2WyG2WwGACgUCigUClitVlitVqltQ9xisUAUxWvGlUolBEGQ1ts4DgAWi6VVcZVKBVEUZXFBEKBUKm362FzcU3NSKBTwUSmhhBUiBFghQIAIBa5us7m4FQLEFuIKiBCaxOu3Xb+9BhYIAARZ7GocUDZaR8txBQBRFlcp67+H7+j7qTN+9lyVExERXR8OsImInEgQBNl7URRtYva8++67SE9Pxz//+U8EBQU1227lypVYtmyZTTw/Px9+fn4AgMDAQAwYMABFRUUoLy+X2oSGhiI0NBQnT56E0WiU4v3790dQUBCOHDmCy5cvS/Ho6Gh0794d+fn5soP5oUOHQq1W4+DBg7I+6PV6mEwmHDp0SIoplUqMGDECRqMRx48fl+JarRbx8fGoqKhAYWGhFNfpdIiJiUFJSQnOnDkjxT01p/j4eIQOMKGH33lctipx+HJ3BKhqEampkdobLT44ccUffXwuo6/6al/KzRoU1XZFP00NAlVXvzQ5a9LibF0XRPlehE5ZJ8WLauv37+RxYxDjd16Kn7jSDUaLGsP8LsgGx4cv6WASFUho1BYA8mp6QC1YMaTL1d+XBQLyanpCp6zDYN+LUrznGD2qDKc7/H7qjJ89V+Xk7+8PIiJqO0Fs/PWqh6qqqoJOp4PRaGThbwepqan4/HiZW2/i4xMYjgnz/+qW7eVufhG3RQchMzPTLduj9uWqemIymdClSxfs2LEDkyZNkuLz5s1DQUEB9u7d2+yy27dvx0MPPYQdO3bgnnvuaXE79maww8LCUFlZKeXjbTNu7ZnT3Llzse9kOW6ZmuaWGeydS+6HNiQSv5mzQoq7cgb7y22vYHRUANauXduh91Nn/Oy5Kqfq6upOdczFY0jv4u5jVh5DepfW1hPOYBMROYFarUZCQgKys7NlA+zs7GxMnDix2eXeffddPPzww3j33XevObgGAI1GA41GYxNXqVRQqeQlveEguqmGA/fWxpuuty1xQRDsxpvro6Px9srJarWizmz5ZXBaT4QgDWIbczRu/WXg3JS5yfYa2IvVx+2fQWE/Lu+L2VI/+Oro+6kzfvZcmRMREbUdB9hERE6SlpaGadOmQa/XIzExEevXr0dxcTFSUlIAAIsXL8bZs2exefNmAPWD6+nTp2PNmjW45ZZbpGu1tVotdDpdu+VBRERERG3DATYRkZNMmTIFlZWVWL58OQwGA+Li4rBr1y5EREQAAAwGA4qLi6X269atg9lsxqOPPopHH31Uis+YMQObNm1yd/eJiIiI6DpxgE1E5ESpqalITU21+7Omg+Y9e/a4vkNERERE5Da88IaIiIiIiIjICTjAJiIiIiK3yMzMRGRkJHx9fZGQkICcnJxm277//vu48847ERgYCH9/fyQmJmL37t1u7C0RkeM4wCYiIiIil9u+fTvmz5+PJUuWID8/H6NHj8b48eNl96ZobN++fbjzzjuxa9cu5OXl4bbbbsOECROQn5/v5p4TEbUeB9hERERE5HKrVq3CrFmzkJycjJiYGGRkZCAsLAxZWVl222dkZGDhwoUYMWIEoqKi8PzzzyMqKgofffSRm3tORNR6vMkZEREREbmUyWRCXl4eFi1aJIsnJSUhNze3VeuwWq24ePEievbs2Wyb2tpa1NbWSu+rqqoAAGazGWazGcDV539brVZYrVapbUPcYrFAFMVrxpVKJQRBkNbbOA4AFoulVXGVSgVRFGVxQRCgVCpt+thcnDlBeqa7SqmAElfbWyAAEGSxq3FACbGVcQUAURZXKeu3yf3kHTk1/ndLOMAmIiIiIpeqqKiAxWJBcHCwLB4cHIzS0tJWreOVV15BTU0NJk+e3GyblStXYtmyZTbx/Px8+Pn5AQACAwMxYMAAFBUVoby8XGoTGhqK0NBQnDx5EkajUYr3798fQUFBOHLkCC5fvizFo6Oj0b17d+Tn58sO5ocOHQq1Wo2DBw/K+qDX62EymXDo0CEpplQqMWLECBiNRhw/flyKa7VaxMfHo6KiAoWFhVJcp9MhJiYGJSUlOHPmjBRnTvU5AcA9Y/SI9DsvxU9c6QajRY1hfhdkg+PDl3QwiQokNGoLAHk1PaAWrBjS5eq6LRCQV9MTOmUdBvtelOI9x+hRZTjN/eQlOel0OrQGB9hERERE5BaCIMjei6JoE7Pn3XffRXp6Ov75z38iKCio2XaLFy9GWlqa9L6qqgphYWEYPnw4/P39AVyd6YyMjERERITUtiE+aNAguzOjcXFxNjNuADB8+HBZHxrier3eJq7Vam3iQP2Be+N4w+8kICBANmPfEO/Tpw969+5t00fmBHyy7yASw26V4g0z0gU13WX9a4jn1fSwiV8WlTZxADBafGTxL/cdxOioAO4nL8mpurraZlv2cIBNRERERC4VEBAApVJpM1tdVlZmM6vd1Pbt2zFr1izs2LEDd9xxR4ttNRoNNBqNTVylUkGlkh/2NpwG2lTDAX1r403X25a4IAh248310dG4N+Vktlh/OZ1bzl6sPm7/Cx77cUEWN1usLfaR+6lz5WSvjT28yRkRERERuZRarUZCQgKys7Nl8ezsbIwcObLZ5d59913MnDkT77zzDu655x5Xd5OI6LpxBpuIiIiIXC4tLQ3Tpk2DXq9HYmIi1q9fj+LiYqSkpACoP7377Nmz2Lx5M4D6wfX06dOxZs0a3HLLLdLst1arbfW1kERE7sYBNhERERG53JQpU1BZWYnly5fDYDAgLi4Ou3btkq5xNBgMsmdir1u3DmazGY8++igeffRRKT5jxgxs2rTJ3d0nImoVDrCJiIiIyC1SU1ORmppq92dNB8179uxxfYeIiJyM12ATEREREREROQEH2EREREREREROwAE2ERERERERkRNwgE1ERERERETkBBxgExERERERETkB7yJOXq/i9DHsKzve7F1NXSEkJATPPPOM27ZHRERERESuxwE2eT1z7RWcVejw+fEyt2zvkrEC99zslk0REREREZEbcYBNBMCnqw4jpz/llm3lbn7RLdshIiIiIiL34jXYRERERERERE7AGWwiIiIiInK6Z599FgaDwW3b27dvHy5oQty2PSJ72jTAzszMxEsvvQSDwYDY2FhkZGRg9OjRdtsaDAY88cQTyMvLww8//IDHHnsMGRkZ19NnIiIiIiLycAaDAZ98fRRddAFu2d6Zn89D2zfQLdsiao7DA+zt27dj/vz5yMzMxKhRo7Bu3TqMHz8eR48eRXh4uE372tpaBAYGYsmSJVi9erVTOk1ERERERJ6viy7Abfe5eX/JH92yHaKWOHwN9qpVqzBr1iwkJycjJiYGGRkZCAsLQ1ZWlt32/fr1w5o1azB9+nTodLrr7jARERERERGRJ3JogG0ymZCXl4ekpCRZPCkpCbm5uU7tGBEREREREVFH4tAp4hUVFbBYLAgODpbFg4ODUVpa6rRO1dbWora2VnpfVVUFADCbzTCbzQAAhUIBhUIBq9UKq9UqtW2IWywWiKJ4zbhSqYQgCNJ6G8cBwGKxtCquUqkgiqIsLggClEqlTR+bi3tqTgqFAj4qJZSwQoQAKwQIEKHA1W02F7dCgNhCXAERQpN4/bbrt9fAAgGAIItdjQPKRutoOa4AIMriPqr6PwNX5tQ47qNSQqFQQBRFfvbaIafG/yYiIiIicqY23eRMEATZ+4aBgrOsXLkSy5Yts4nn5+fDz88PABAYGIgBAwagqKgI5eXlUpvQ0FCEhobi5MmTMBqNUrx///4ICgrCkSNHcPnyZSkeHR2N7t27Iz8/X3YwP3ToUKjVahw8eFDWB71eD5PJhEOHDkkxpVKJESNGwGg04vjx41Jcq9UiPj4eFRUVKCwslOI6nQ4xMTEoKSnBmTNnpLin5hQfH4/QASb08DuPy1YlDl/ujgBVLSI1NVJ7o8UHJ674o4/PZfRVX+1LuVmDotqu6KepQaDq6pcmZ01anK3rgijfi9Ap66R4UW39/p08bgxi/M5L8RNXusFoUWOY3wXZ4PjwJR1MogIJjdoCQF5ND6gFK4Z0ufr7skBAXk1P6JR1GOx7UYr73jcRf/+/b1yaU7nZF7FaI7QKC/qPH4NeXdUwGo387LVDTrxUhYiIiIhcxaEBdkBAAJRKpc1sdVlZmc2s9vVYvHgx0tLSpPdVVVUICwvD8OHD4e/vD6B+dgoAIiMjERERIbVtiA8aNMhmxg0A4uLibGbcAGD48OGyPjTE9Xq9TVyr1drEgfoD98bxhi8dAgIC0LNnT5t4nz590Lt3b5s+elpO3333HfadLMctU/UQf5kZrjBrcM6slto1xEvqtCit85XiDTPSp2v9UFzbxSb+w5Vudmew/7F7H34TNU6KN8xIF9R0l/WvIZ5X08MmfllU2sSB+oFz4/iH7/0T6NHH5Tl9f1kHASK++vc+jBkUiOTkZAD87Lk7p+rqapttERERERE5g0MDbLVajYSEBGRnZ2PSpElSPDs7GxMnTnRapzQaDTQajU1cpVJBpZJ3ueE00KYaDuhbG2+63rbEBUGwG2+uj47G2ysnq9WKOrPll9Or64kQpMFtY47Grb+c+t2Uucn2GtiL1cftn0FhPy7vS53ZDJ829N3RnBridWYLrFarNDDkZ8+9Odlr40x8jCERERGR93L4SDMtLQ1vvfUWNmzYgGPHjuHxxx9HcXExUlJSANTPPk+fPl22TEFBAQoKClBdXY3y8nIUFBTg6NGjzsmAiMhDNDzGcMmSJcjPz8fo0aMxfvx4FBcX223f+DGG8fHxbu4tERERETmbw9dgT5kyBZWVlVi+fDkMBgPi4uKwa9cu6RRMg8FgczDZ+HTRvLw8vPPOO4iIiMDp06evr/dERB6k8WMMASAjIwO7d+9GVlYWVq5cadO+4TGGALBhwwa39pWIiIiInK9NNzlLTU1Famqq3Z9t2rTJJtb4Gk0ios6o4TGGixYtksWd/RhDPmXBs3Lq7E9ZUCnrT3Tr6PupM372XJUTERFdnzYNsImISM5djzHkUxY8K6fO/pSFLsMG4D///ghLly5FeHi4FL948SJ+/PFHhISEyG4uWFlZieLiYoSHh6NXr15SvLS0FAaDAQMHDkS3bt2keHFxMSorKxETEwNf3/qbSfr6+mLChAn87LVTTg03kyUiorbhAJuIyIlc/RhDPmXBs3Lq9E9Z+Mf7qPPxw/u5x6H8+uTVnEQRZosVipPlUCqOXO2jVYTFaoXyZAUUiqufe4vVCqtVRM4PFbK/B4vFCqt4NX7JWIm7RkTjwQcfBMDPXnvk5OonLfBGkETU2XGATUTkBO56jCGfsuBZOXnFUxZ66HDLtIV21+FsuZtf5FMWWhF3dU6u0nAjyMzMTIwaNQrr1q3D+PHjcfToUdkZEg0a3why9erVbusnEdH14MU2RERO0Pgxho1lZ2dj5MiR7dQrIiLP0fhGkDExMcjIyEBYWBiysrLstm+4EeT06dOh0+nc3FsiorbhDDYRkZOkpaVh2rRp0Ov1SExMxPr1620eY3j27Fls3rxZWqagoAAAZI8xVKvVuOGGG9ojBSIil3DXjSCJiNobB9hERE7CxxgSEdnnrhtB8kkLnpUTn7TQMfZTZ/zsuSKnxv9uCQfYREROxMcYEhE1z9U3guSTFjwrp87+pIWeY/SoMpzu8PupM372XJFTay9V4QCbiIiIiFzKXTeC5JMWPCunzv6khS/3HcToqIAOv58642fPFTm19ikLHGATERERkUs1vhHkpEmTpHh2djYmTpzotO3wSQuelVNnf9KC2VJ/ynBH30+d8bPnipxa+9QFDrCJiIiIyOV4I0gi8gYcYBMRERGRy/FGkETkDTjAJiIiIiK34I0giaiza92J5ERERERERETUIs5gExEREREROaji9DHsKzve7FkZrhASEoJnnnnGbdsjx3GATURERERE5CBz7RWcVejw+fEyt2zvkrEC99zslk3RdeAAm4iIiIiIqA18uuowcvpTbtlW7uYX3bIduj68BpuIiIiIiIjICTjAJiIiIiIiInICDrCJiIiIiIiInIADbCIiIiIiIiIn4ACbiIiIiIiIyAk4wCYiIiIiIiJyAj6mqwN69tlnYTAY3La9ffv24YImxG3bIyIiIiIi6og4wO6ADAYDPvn6KLroAtyyvTM/n4e2b6BbtkVERERERNRRcYDdQXXRBbjtofbvL/mjW7ZDRERERETUkfEabCIiIiIiIiIn4ACbiIiIiIiIyAk4wCYiIiIiIiJyAg6wiYiIiIiIiJyANzkjcrOK08ewr+w4UlNT3bbNkJAQPPPMM27bHhERERGRN+IAm8jNzLVXcFahw+fHy9yyvUvGCtxzs1s2ReQRnn32WRgMBrdsa9++fbigCXHLtoiIiMjzcYBN1A58uurc9pi13M0vumU7RJ7CYDDgk6+PoosuwOXbOvPzeWj7Brp8O0RERNQxcIBNRE7lztnDBjwFnprqogtwy5dY7y/5o8u34U14CQ0REXV0nXKAzQN8ovbjztlDgKfAE3UmvISGiIg6uk45wHb3Ab7heB5Ce/rxmj/ySO6eEdq3bx9MmhDcwVPgiagNeAkNkeu4exKKx6zkjdo0wM7MzMRLL70Eg8GA2NhYZGRkYPTo0c2237t3L9LS0vD999+jT58+WLhwIVJSUtrc6dZw1+mBQP0pgmevqN32jTuv+SNHuHtGyNs/nx2hPhJR++AZdqyR7c3dk1DefkzgbO6eNPG0+tFRODzA3r59O+bPn4/MzEyMGjUK69atw/jx43H06FGEh4fbtC8qKsLdd9+NP/3pT9i6dSu++OILpKamIjAwEL///e+dkoQncOc37rzmjxzFz6d7dJT66O6D/IMHDwIA9Hq9W7bHGRNqrfY4w8dQp0VQ3wi3bM/TToHvKDWys3P3JBQ5jzsnTdxdPzrTF5AOD7BXrVqFWbNmITk5GQCQkZGB3bt3IysrCytXrrRp/8YbbyA8PBwZGRkAgJiYGBw8eBAvv/wyiyMRdSodpT66fQaj6CxUumBc5FkU5GHa6wwfbz0FviPUSH4BSZ7OXZMm/1o+E/v27eMXkG3g0ADbZDIhLy8PixYtksWTkpKQm5trd5kvv/wSSUlJsti4cePw9ttvo66uDj4+Pg52mYjI83S0+ujuGQyeRUGeip9N9+goNZJfQBLV4xeQbefQALuiogIWiwXBwcGyeHBwMEpLS+0uU1paare92WxGRUUFQkJsv0Wrra1FbW2t9N5oNAIAzp07B7PZDABQKBRQKBSwWq2wWq1SW4VCAZPJhCvGcny1+eq3oRaLFVZRhEqpgCAIUtxssUIURfiolLI+mM0WiIBNvM5sgQBA1SguWOtgqjqH/RtXQKVUSHFRFGG2WKEQBCjtxRUClIqrcatVhMVqhVKhgEJxtY8WqxVW69W+C9Y6iJeq8MXGFS7LSYo32t5Xm1e6LCcpbrGi7solKGuMsv3n7Jwa7yeYTTBVncMXG1e4LKfG+6nh97l/4wqX5dR4P9ndf07OSer7L/tP9cv2XJVT4/10xVgJk6k7Lly4YFML7NWI6upqaX3O1FHqo0KhgNlsRm1VhbSPXFkfAaDuyiXg4nnZZ8KVtUSw1sF88TxyNjzH+tiGnFgfvbc+KhQKr6+RJpMJCohQ4GrclTXSR6WE1WqB1WJ2yzGkj0rJY8jrzMlbaqTFdAUav+7S34KrayREEaaqc7J95+ycGn/2aqvOwWzuiaqqqmaPl9p8DCk64OzZsyIAMTc3VxZ/7rnnxMGDB9tdJioqSnz++edlsf3794sARIPBYHeZpUuXigD44osvvlz2+umnnxwpf9fE+sgXX3x1phdrJF988cWX/de16qNDM9gBAQFQKpU23zSWlZXZfMPYoHfv3nbbq1Qq9OrVy+4yixcvRlpamvTearXi3Llz6NWrl/ybjmZUVVUhLCwMP/30E/z9/a/Z3pN1llyYh2fpLHkAjuciiiIuXryIPn36OLUfHaU+Ap1n/zMPz9JZ8gA6Ty5tycPba6Q373tP1VlyYR6exZX10aEBtlqtRkJCArKzszFp0iQpnp2djYkTJ9pdJjExER999JEs9tlnn0Gv1zd77YxGo4FGo5HFunfv7khXAQD+/v4desc31llyYR6epbPkATiWi06nc/r2O1p9BDrP/mcenqWz5AF0nlwczYM10nv3vSfrLLkwD8/iivqouGaLJtLS0vDWW29hw4YNOHbsGB5//HEUFxdLzyRcvHgxpk+fLrVPSUnB//73P6SlpeHYsWPYsGED3n77bSxYsMDRTRMReTTWRyKi5rFGEpE3cPgxXVOmTEFlZSWWL18Og8GAuLg47Nq1CxEREQDq775YXFwstY+MjMSuXbvw+OOP4/XXX0efPn3w6quv8hFdRNTpsD4SETWPNZKIvIHDA2wASE1NbfaZaJs2bbKJ3Xrrrfj222/bsqk20Wg0WLp0qc0pQh1RZ8mFeXiWzpIH4Hm5eHp9BDzvd9ZWzMOzdJY8gM6Tiyfm4ek10hN/Z23RWfIAOk8uzMOzuDIPQRSd/BwGIiIiIiIiIi/k8DXYRERERERERGSLA2wiIiIiIiIiJ+AAm4iIiIiIiMgJOuwAOzMzE5GRkfD19UVCQgJycnJabL93714kJCTA19cX/fv3xxtvvOGmnrbMkTzef/993HnnnQgMDIS/vz8SExOxe/duN/a2ZY7ukwZffPEFVCoVhg0b5toOtpKjedTW1mLJkiWIiIiARqPBgAEDsGHDBjf1tnmO5rFt2zbEx8ejS5cuCAkJwUMPPYTKyko39da+ffv2YcKECejTpw8EQcCHH354zWU89W/d3VgjPatGsj56Vn0EOn6NZH1sO9ZH1kdX6Sw1sqPXR6Cda6TYAf39738XfXx8xDfffFM8evSoOG/ePNHPz0/83//+Z7d9YWGh2KVLF3HevHni0aNHxTfffFP08fER33vvPTf3XM7RPObNmye++OKL4oEDB8STJ0+KixcvFn18fMRvv/3WzT235WguDS5cuCD2799fTEpKEuPj493T2Ra0JY/f/va34s033yxmZ2eLRUVF4tdffy1+8cUXbuy1LUfzyMnJERUKhbhmzRqxsLBQzMnJEWNjY8V7773XzT2X27Vrl7hkyRJx586dIgDxgw8+aLG9p/6tuxtrpGfVSNZHz6qPotg5aiTrY9uwPrI+ukpnqZGdoT6KYvvWyA45wL7pppvElJQUWSw6OlpctGiR3fYLFy4Uo6OjZbHZs2eLt9xyi8v62BqO5mHPDTfcIC5btszZXXNYW3OZMmWK+PTTT4tLly71iALpaB7//ve/RZ1OJ1ZWVrqje63maB4vvfSS2L9/f1ns1VdfFUNDQ13WR0e1pjh66t+6u7FGXuUJNZL10bPqoyh2vhrJ+th6rI9XsT46V2epkZ2tPoqi+2tkhztF3GQyIS8vD0lJSbJ4UlIScnNz7S7z5Zdf2rQfN24cDh48iLq6Opf1tSVtyaMpq9WKixcvomfPnq7oYqu1NZeNGzfi1KlTWLp0qau72CptyeNf//oX9Ho9/vrXv6Jv374YNGgQFixYgMuXL7ujy3a1JY+RI0fizJkz2LVrF0RRxM8//4z33nsP99xzjzu67DSe+LfubqyRV3lCjWR99Kz6CHhvjfTEv3N3Y328ivXRuTpLjfTW+gg4929d5cyOuUNFRQUsFguCg4Nl8eDgYJSWltpdprS01G57s9mMiooKhISEuKy/zWlLHk298sorqKmpweTJk13RxVZrSy4//PADFi1ahJycHKhUnvExbEsehYWF2L9/P3x9ffHBBx+goqICqampOHfuXLtdQ9OWPEaOHIlt27ZhypQpuHLlCsxmM37729/itddec0eXncYT/9bdjTXyKk+okayPnlUfAe+tkZ74d+5urI9XsT46V2epkd5aHwHn/q13uBnsBoIgyN6LomgTu1Z7e3F3czSPBu+++y7S09Oxfft2BAUFuap7DmltLhaLBVOnTsWyZcswaNAgd3Wv1RzZJ1arFYIgYNu2bbjppptw9913Y9WqVdi0aVO7z9I4ksfRo0fx2GOP4S9/+Qvy8vLw6aefoqioCCkpKe7oqlN56t+6u7FGelaNZH30rPoIeGeN9NS/c3djfWR9dJXOUiO9sT4Czvtb95yvflopICAASqXS5luUsrIym28dGvTu3dtue5VKhV69ermsry1pSx4Ntm/fjlmzZmHHjh244447XNnNVnE0l4sXL+LgwYPIz8/HnDlzANQXGVEUoVKp8Nlnn+H22293S98ba8s+CQkJQd++faHT6aRYTEwMRFHEmTNnEBUV5dI+29OWPFauXIlRo0bhySefBAAMHToUfn5+GD16NJ577rkOM7PhiX/r7sYa6Vk1kvXRs+oj4L010hP/zt2N9ZH10VU6S4301voIOPdvvcPNYKvVaiQkJCA7O1sWz87OxsiRI+0uk5iYaNP+s88+g16vh4+Pj8v62pK25AHUf+s4c+ZMvPPOOx5zbYOjufj7++Pw4cMoKCiQXikpKRg8eDAKCgpw8803u6vrMm3ZJ6NGjUJJSQmqq6ul2MmTJ6FQKBAaGurS/janLXlcunQJCoW8HCiVSgBXv73rCDzxb93dWCM9q0ayPnpWfQS8t0Z64t+5u7E+sj66Smepkd5aHwEn/607fFs0D9Bw+/i3335bPHr0qDh//nzRz89PPH36tCiKorho0SJx2rRpUvuG264//vjj4tGjR8W3337box6x0No83nnnHVGlUomvv/66aDAYpNeFCxfaKwWJo7k05Sl3gXQ0j4sXL4qhoaHifffdJ37//ffi3r17xaioKDE5Obm9UhBF0fE8Nm7cKKpUKjEzM1M8deqUuH//flGv14s33XRTe6UgimL97zc/P1/Mz88XAYirVq0S8/PzpUdFdJS/dXdjjfSsGsn66Fn1URQ7R41kfWwb1kfWR1fpLDWyM9RHUWzfGtkhB9iiKIqvv/66GBERIarVavHGG28U9+7dK/1sxowZ4q233iprv2fPHnH48OGiWq0W+/XrJ2ZlZbm5x/Y5ksett94qArB5zZgxw/0dt8PRfdKYJxVIR/M4duyYeMcdd4harVYMDQ0V09LSxEuXLrm517YczePVV18Vb7jhBlGr1YohISHiAw88IJ45c8bNvZb7/PPPW/zMd6S/dXdjjfSsGsn66Fn1URQ7fo1kfWw71kfWR1fpLDWyo9dHUWzfGimIYgeauyciIiIiIiLyUB3uGmwiIiIiIiIiT8QBNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQEHGATEREREREROQEH2EREREREREROwAE2USv9+te/xvz586X3/fr1Q0ZGRrv1h4jIk7BGEhHZx/roXTjApmbNnDkTgiBAEAT4+Pigf//+WLBgAWpqagAAp0+fhiAIKCgoQHp6utS2udfp06eb3dbf/vY33HTTTfDz80O3bt0wZswYfPzxx27KVG7Pnj0QBAEXLlyQxd9//308++yz7dInIvI8rJEXZHHWSCJqwPp4QRZnffQuHGBTi+666y4YDAYUFhbiueeeQ2ZmJhYsWGDTbsGCBTAYDNIrNDQUy5cvl8XCwsLsbmPBggWYPXs2Jk+ejO+++w4HDhzA6NGjMXHiRKxdu9bVKbZaz5490a1bt/buBhF5ENbIq1gjiagx1serWB+9jEjUjBkzZogTJ06UxZKTk8XevXuLoiiKRUVFIgAxPz/fZtmIiAhx9erV19zGl19+KQIQX331VZufpaWliT4+PmJxcbEoiqK4dOlSMT4+XtZm9erVYkREhPT+wIED4h133CH26tVL9Pf3F8eMGSPm5eXJlgEgvvnmm+K9994rarVaceDAgeI///lPWU6NXzNmzBBFURRvvfVWcd68ec3meOHCBfFPf/qTGBgYKHbr1k287bbbxIKCAunnBQUF4q9//Wuxa9euYrdu3cQbb7xR/Oabb675OyIiz8QayRpJRPaxPrI+ejPOYJNDtFot6urqnLa+d999F127dsXs2bNtfvbEE0+grq4OO3fubPX6Ll68iBkzZiAnJwdfffUVoqKicPfdd+PixYuydsuWLcPkyZNx6NAh3H333XjggQdw7tw5hIWFSds7ceIEDAYD1qxZc83tiqKIe+65B6Wlpdi1axfy8vJw4403YuzYsTh37hwA4IEHHkBoaCi++eYb5OXlYdGiRfDx8Wl1bkTk+Vgj7WONJCLWR/tYHzsfVXt3gDqOAwcO4J133sHYsWOdts6TJ09iwIABUKvVNj/r06cPdDodTp482er13X777bL369atQ48ePbB371785je/keIzZ87E/fffDwB4/vnn8dprr+HAgQO466670LNnTwBAUFAQunfv3qrtfv755zh8+DDKysqg0WgAAC+//DI+/PBDvPfee3jkkUdQXFyMJ598EtHR0QCAqKioVudFRJ6PNbJ5rJFE3o31sXmsj50PZ7CpRR9//DG6du0KX19fJCYmYsyYMXjttdfctn1RFO0WzuaUlZUhJSUFgwYNgk6ng06nQ3V1NYqLi2Xthg4dKv274aYYZWVlbe5nXl4eqqur0atXL3Tt2lV6FRUV4dSpUwCAtLQ0JCcn44477sALL7wgxYmo42KNbB3WSCLvw/rYOqyPnQ9nsKlFt912G7KysuDj44M+ffo4/XSUqKgo7N+/HyaTyaYIlpSUoKqqCoMGDQIAKBQKiKIoa9P0VKOZM2eivLwcGRkZiIiIgEajQWJiIkwmk6xd0zwEQYDVam1zHlarFSEhIdizZ4/Nzxq+wUxPT8fUqVPxySef4N///jeWLl2Kv//975g0aVKbt0tE7Ys1snVYI4m8D+tj67A+dj6cwaYW+fn5YeDAgYiIiHDJtR73338/qqursW7dOpufvfzyy/D19cWUKVMAAIGBgSgtLZUVyIKCAtkyOTk5eOyxx3D33XcjNjYWGo0GFRUVDvWpoUhbLJZWL3PjjTeitLQUKpUKAwcOlL0CAgKkdoMGDcLjjz+Ozz77DL/73e+wceNGh/pGRJ6FNbJ1WCOJvA/rY+uwPnY+HGBTu0pMTMS8efPw5JNP4pVXXsGpU6dw/PhxPP3003j11Vfx5ptvolevXgCAX//61ygvL8df//pXnDp1Cq+//jr+/e9/y9Y3cOBAbNmyBceOHcPXX3+NBx54AFqt1qE+RUREQBAEfPzxxygvL0d1dfU1l7njjjuQmJiIe++9F7t378bp06eRm5uLp59+GgcPHsTly5cxZ84c7NmzB//73//wxRdf4JtvvkFMTIxDfSMi78IayRpJRPaxPrI+eioOsKndZWRkIDMzE++++y7i4uIQExODl156Cf/973/x4IMPSu1iYmKQmZmJ119/HfHx8Thw4IDN8xQ3bNiA8+fPY/jw4Zg2bRoee+wxBAUFOdSfvn37YtmyZVi0aBGCg4MxZ86cay4jCAJ27dqFMWPG4OGHH8agQYPwxz/+EadPn0ZwcDCUSiUqKysxffp0DBo0CJMnT8b48eOxbNkyh/pGRN6HNZKIyD7WR/JEgtj0ggSidnb69GnceuutSExMxLZt26BUKtu7S0REHoM1kojIPtZH8gScwSaP069fP+zZswfR0dE218cQEXk71kgiIvtYH8kTcAabiIiIiIiIyAk4g01ERERERETkBBxgExERERERETkBB9hERERERERETsABNhEREREREZETcIBNRERERERE5AQcYBMRERERERE5AQfYRERERERERE7AATYRERERERGRE3CATUREREREROQE/x8qctRqSKA5HwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "compute_results(test_data, output_cols, mu, np.sqrt(aleatoric), np.sqrt(epistemic))" ] @@ -511,7 +786,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -527,7 +802,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -537,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -549,9 +824,59 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/2 [00:00.predict_function at 0x2b6800da1700> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2b6800da1700> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 6ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 2/2 [00:04<00:00, 2.39s/it]\n" + ] + } + ], "source": [ "ensemble_mu = np.zeros((n_splits, test_data.shape[0], 1))\n", "ensemble_var = np.zeros((n_splits, test_data.shape[0], 1))\n", @@ -615,7 +940,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ @@ -624,27 +949,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], - "source": [ - "model.ensemble_weights[0].replace(\".h5\", \"_training_var.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np.loadtxt(model.ensemble_weights[0].strip(\".h5\") + \"_training_var.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2b67ffda4b80> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:5 out of the last 12 calls to .predict_function at 0x2b67ffda4b80> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 7ms/step\n", + "3/3 [==============================] - 0s 7ms/step\n" + ] + } + ], "source": [ "#models = [f\"./model_split{data_seed}.h5\" for data_seed in range(n_splits)]\n", "ensemble_mu, ensemble_var = model.predict_ensemble(x_test, scaler = y_scaler)" @@ -652,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -662,18 +992,113 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.013795540561833818 0.0748211942634483\n" + ] + } + ], "source": [ "print(epistemic.mean() ** (1/2), aleatoric.mean() ** (1/2))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/evml/regression_uq.py:819: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + " plt.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFUCAYAAAAAmsQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/bElEQVR4nO3de1xUdf4/8NcZYIY7gspVRbzf0QQN7+YltbV4bBdr3fXebzXQXLtptqHbBW03N02zzRTyG17WvGRlpimiVq5pkCSmJpiokHjjqtzm8/vDODIMKIOfgcPM6/l4zIOZzznnfT5vZua855w55zOKEEKAiIiINEfX0B0gIiKi6rFIExERaRSLNBERkUaxSBMREWkUizQREZFGsUgTERFpFIs0ERGRRrFIExERaRSLNBERkUaxSBNpgKIo2LZtW4PHqE9nz56FoihISUnRZDwiLWCRJrKCSZMmQVEUs9svv/xS7fxZWVkYPXp0rWIvWLAAPXv2vKcYtqhly5bIyspCt27dAAD79u2Doii4fv16w3aM6B44NnQHiGzVqFGjEBcXZ9LWvHlzk8clJSXQ6/Xw9/e/5/XJiNGYOTg42P3/gGwP96SJrMRgMMDf39/kNmzYMERHR2POnDlo1qwZRowYAcD8UPX58+fx5JNPwsfHB25ubggLC8P//vc/xMfHY+HChfjxxx/VvfP4+PhqY6SmpuKBBx6Ai4sLmjZtiv/3//4fCgoK1OmTJk1CZGQk/vWvfyEgIABNmzZFVFQUSktL75rbvHnzcP/995u19+jRAzExMerjuLg4dO7cGc7OzujUqRPee++9O8ZNSkpCnz59YDAYEBAQgLlz56KsrEydbjQasXjxYrRr1w4GgwGtWrXCG2+8AcD0cPfZs2cxdOhQAIC3tzcURcGkSZOwdu1aNG3aFMXFxSbrffTRRzFhwoS75k1U7wQRSTdx4kTxyCOPmLUPHjxYuLu7ixdeeEH8/PPP4sSJE0IIIQCIrVu3CiGEyM/PF23atBEDBw4UBw4cEKdPnxYbN24U3377rSgqKhLPPfec6Nq1q8jKyhJZWVmiqKjILEZhYaEIDAwUf/zjH0VqaqrYs2ePCAkJERMnTjTpo6enp5g+fbo4ceKE+Oyzz4Srq6v44IMP7ppfamqqACB++eUXte2nn34SAMTJkyeFEEJ88MEHIiAgQGzevFmkp6eLzZs3Cx8fHxEfHy+EECIjI0MAEMnJyUIIIc6fPy9cXV3FM888I06cOCG2bt0qmjVrJmJiYtR1vPjii8Lb21vEx8eLX375RRw4cECsWrXKLF5ZWZnYvHmz2p+srCxx/fp1UVRUJLy8vMR///tfNWZOTo7Q6/Vi7969d82bqL7ZdZFOSkoSf/jDH0RAQIDJBs5W1kcNZ+LEicLBwUG4ubmpt8cee0wMHjxY9OzZ02z+yq+H//znP8LDw0NcuXKl2tgxMTEiNDT0jjE++OAD4e3tLQoKCtTpX3zxhdDpdCI7O1vtY3BwsCgrK1Pnefzxx8W4ceNqlWOPHj3EP/7xD/XxvHnzRHh4uPq4ZcuWYt26dSbLvPbaayIiIkIIYV6kX375ZdGxY0dhNBrV+VesWCHc3d1FeXm5yMvLEwaDQS3KVVWNl5iYKACIa9eumcw3Y8YMMXr0aPXxO++8I9q0aWOyXiKtsOvD3YWFhQgNDcXy5cttcn3UsIYOHYqUlBT1tmzZMgBAWFjYHZdLSUlBr1694OPjU+d1nzhxAqGhoXBzc1Pb+vfvD6PRiJMnT6ptXbt2hYODg/o4ICAAly5dqtU6xo8fj4SEBACAEALr16/H+PHjAQA5OTnIzMzE1KlT4e7urt5ef/11nDlzpsY+R0REQFEUkz4XFBTg/PnzOHHiBIqLizFs2LDa/yOq8fTTT2PXrl24cOECgFuH5CtO9CPSGrs+cWz06NF3PBu2pKQEr7zyChISEnD9+nV069YNixcvxpAhQ6yyPrItbm5uaNeuXbXtd+Li4nLP6xZC1Fh0Krc7OTmZTTMajbVax5/+9CfMnTsXP/zwA27cuIHMzEw8+eSTAKDGWLVqFfr27WuyXOUPBXfrsxBC7ZeM/wsA9OrVC6GhoVi7di0efPBBpKam4rPPPpMSm0g2u96TvpvJkyfjm2++wYYNG3Ds2DE8/vjjGDVqFE6fPt3QXSMb1qNHD6SkpODq1avVTtfr9SgvL79jjC5duiAlJQWFhYVq2zfffAOdTocOHTpI6WeLFi0waNAgJCQkICEhAcOHD4efnx8AwM/PD0FBQUhPT0e7du1MbiEhITX2+dtvv1ULMwB8++238PDwQFBQENq3bw8XFxfs2bOnVv3T6/UAUO3/atq0aYiLi8OaNWswfPhwtGzZ0tL0ieoFi3QNzpw5g/Xr12PTpk0YOHAg2rZti+effx4DBgwwu6yGSKannnoK/v7+iIyMxDfffIP09HRs3rwZ3333HQCgdevWyMjIQEpKCi5fvmx2pjJw61C0s7MzJk6ciJ9++gmJiYmYOXMm/vKXv6iFVIbx48djw4YN2LRpE/785z+bTFuwYAFiY2OxdOlSnDp1CqmpqYiLi8OSJUuqjfXMM88gMzMTM2fOxM8//4xPP/0UMTExmDNnDnQ6HZydnfHSSy/hxRdfxNq1a3HmzBkcOnQIq1evrjZecHAwFEXB559/jpycHJMz28ePH48LFy5g1apVmDJlirT/B5FsLNI1+OGHHyCEQIcOHUy+U0tKSlK/U6u45ONOt+jo6AbOhBobvV6PXbt2wdfXF2PGjEH37t2xaNEi9TDxo48+ilGjRmHo0KFo3rw51q9fbxbD1dUVX331Fa5evYrw8HA89thjGDZsmPTzIR5//HFcuXIFRUVFiIyMNJk2bdo0fPjhh4iPj0f37t0xePBgxMfH17gnHRQUhB07duDw4cMIDQ3F9OnTMXXqVLzyyivqPH//+9/x3HPP4dVXX0Xnzp0xbty4Gr9DDwoKwsKFCzF37lz4+fmZvBc9PT3x6KOPwt3d3azfRFqiiMrHluyYoijYunWr+obduHEjxo8fj+PHj5t9h+bu7g5/f3+UlpbWeBJMBW9v72r3XKquj4jq14gRI9C5c2f1hD4iLbLrE8fupFevXigvL8elS5cwcODAaudxcnJCp06d6rlnRHQvrl69il27dmHv3r280oI0z66LdEFBgclYyhXf8/n4+KBDhw4YP348JkyYgLfffhu9evXC5cuXsXfvXnTv3h1jxoyRur5WrVpJyYlIhgMHDtzxSoTK3+82Nvfddx+uXbuGxYsXo2PHjg3dHaI7suvD3fv27VOHDqxs4sSJiI+PR2lpKV5//XWsXbsWFy5cQNOmTREREYGFCxeie/fu0tdHpBU3btxQryOuTnWXlhGRfHZdpImIiLSMZ3cTERFpFIs0ERGRRtndiWNGoxEXL16Eh4cHx+olIqJ6I4RAfn4+AgMDodPVbh/Z7or0xYsXOQQgERE1mMzMTLRo0aJW89pdkfbw8Pj9nh6A/e1JOzp4So1XVl79+NL3wtGh7r/+VBNr9LNxsMZbvMwKMa1Bbu46xVlqPAAwCvmXslnn/ZMnNZ7s7RAANDG0lh5zWtNeUuMVG0vw7wvxlerQ3dldkb59iFuxy8PdiiL7NAT5/0P5fQTs8QMZAKu8xoVoHP9L2blbZXthhf+lNd4/8v+X8vuoU+SXM2edXnpMwLL/J08cIyIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo2yu8FM7F1Zea7UeA46d6nxAPl9tGdCNI7RwRQrDEQhW7lR/uhgjeX94+jgJTWes6P8UdGe8gyXHvO3G3LjlRgtHxSGe9JEREQaxSJNRESkUSzSREREGsUiTUREpFENWqRjY2MRHh4ODw8P+Pr6IjIyEidPnrzrcitWrEDnzp3h4uKCjh07Yu3atfXQWyIiovrVoEU6KSkJUVFROHToEHbv3o2ysjKMHDkShYWFNS6zcuVKzJs3DwsWLMDx48excOFCREVF4bPPPqvHnhMREVmfIoQQDd2JCjk5OfD19UVSUhIGDRpU7Tz9+vVD//798c9//lNtmz17No4cOYKDBw/edR15eXnw8vICYLDL35OWTac4S49pFDelx2wslyLZq8ZwCZY1XkPWuATLGu+fxnAJ1hTvEdJjlpRLjmcsxurL/0Fubi48PT1rtYymvpPOzb11fZ+PT81PYHFxMZydTQuDi4sLDh8+jNLSUqv2j4iIqD5ppkgLITBnzhwMGDAA3bp1q3G+Bx98EB9++CGOHj0KIQSOHDmCNWvWoLS0FJcvXzabv7i4GHl5eSY3IiKixkAzx5iio6Nx7Nixux6y/vvf/47s7Gzcf//9EELAz88PkyZNwltvvQUHBwez+WNjY7Fw4UKzdp3irPnD3dYY4Uj2YUWdziA1HgAYy+UfrrMGez1E2xjyBuR/FWNE43hdWuMrKNmHpwc7PiA1HgB4643SY353WW7MMmH58XNN7EnPnDkT27dvR2JiIlq0aHHHeV1cXLBmzRoUFRXh7NmzOHfuHFq3bg0PDw80a9bMbP558+YhNzdXvWVmZlorDSIiIqka9COxEAIzZ87E1q1bsW/fPoSEhNR6WScnJ7Wgb9iwAX/4wx+g05l/5jAYDDAY5O/tERERWVuDFumoqCisW7cOn376KTw8PJCdnQ0A8PLygouLC4Bbe8IXLlxQr4U+deoUDh8+jL59++LatWtYsmQJfvrpJ3z00UcNlgcREZE1NOjh7pUrVyI3NxdDhgxBQECAetu4caM6T1ZWFs6dO6c+Li8vx9tvv43Q0FCMGDECN2/exLfffovWrVs3QAZERETW0+CHu+8mPj7e5HHnzp2RnJxspR4RERFphyZOHCMiIiJzLNJEREQaxSJNRESkUSzSREREGtU4hg6yAj/XHtBJHDnpakm6tFgVSqzwmxCyB983GoulxgOAQLcI6TEv3UyTHrOsPFdqPNk/YgBY5/mxxg84WOM5zyvLlh5TNheHJtJj+qG19JhjfcwHiroX14rlj/a4L0f+a/1H/E9qPNFYRxwjIiIicyzSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBplt8OC9kAnOEEvLd5xvYu0WBUu6zKkx2zmGCI1XgluSI0HWGc4R3d9gPSYgNyYrjpvqfEAoMh4TXpMJ0X+a71VeRvpMR8N6iQ1XvYNJ6nxACCzSHpI+Mt/evDZ1Ryp8UpRIjUeAPhD7tClgPz3pFGU4bqFy3BPmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ikWaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEij7HbEsUvGAjgo8kYcc1e8pMVSYzr0lB4TQm44d6P8kbwKHPylx2zvIH80ohKjUWq8ye3ypMYDgO8udZce8/PcC9Jj9vd2kx4TKJUa7bebUsMBANJK5Y7kdUtz6RHdja5S4wU4yX8/ppVflB5T9uiHQpRbvAz3pImIiDSKRZqIiEijWKSJiIg0ikWaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ym5HHJOtqfCUHjPUyyA9pmydPOUPw/RznvwRkyKa50qPKVthqZP0mKNbyR8dDOeCpIc8cr1YeszOZXLfP7/cKJQaDwCaKvK3G1sKNkqP6W1oIzXetfJAqfEAIF+5Kj2mo07ua4gjjhEREdkQFmkiIiKNatAiHRsbi/DwcHh4eMDX1xeRkZE4efLkXZdLSEhAaGgoXF1dERAQgMmTJ+PKlSv10GMiIqL606BFOikpCVFRUTh06BB2796NsrIyjBw5EoWFNX/3c/DgQUyYMAFTp07F8ePHsWnTJnz//feYNm1aPfaciIjI+hr0xLGdO3eaPI6Li4Ovry+OHj2KQYMGVbvMoUOH0Lp1a8yaNQsAEBISgr/+9a946623rN5fIiKi+qSp76Rzc2+dgevj41PjPP369cP58+exY8cOCCHw22+/4ZNPPsFDDz1U7fzFxcXIy8szuRERETUGminSQgjMmTMHAwYMQLdu3Wqcr1+/fkhISMC4ceOg1+vh7++PJk2a4N133612/tjYWHh5eam3li1bWisFIiIiqTRTpKOjo3Hs2DGsX7/+jvOlpaVh1qxZePXVV3H06FHs3LkTGRkZmD59erXzz5s3D7m5ueotMzPTGt0nIiKSThODmcycORPbt2/H/v370aJFizvOGxsbi/79++OFF14AAPTo0QNubm4YOHAgXn/9dQQEBJjMbzAYYDBof1AQIiKiqhp0T1oIgejoaGzZsgV79+5FSEjIXZcpKiqCTmfabQcHBzUeERGRrWjQPemoqCisW7cOn376KTw8PJCdnQ0A8PLygouLC4Bbh6svXLiAtWvXAgDGjh2Lp59+GitXrsSDDz6IrKwszJ49G3369EFgYO2HmitWSuGgyMulKdzkBfvdz3ll0mNeEXKHNiws85IaDwDyS6WHxLFr8odf1Ovkfihsopf/fHcwyB+2tYd3gfSY3gYX6THDmmVLjdf2alOp8QAg+4b8oWDd8x6THvOw+EF6TNmulqRLj1lSJnc44brsSDZokV65ciUAYMiQISbtcXFxmDRpEgAgKysL586dU6dNmjQJ+fn5WL58OZ577jk0adIEDzzwABYvXlxf3SYiIqoXDVqka/OpIj4+3qxt5syZmDlzphV6REREpB0Wfyc9a9YsLFu2zKx9+fLlmD17tow+EREREepQpDdv3oz+/fubtffr1w+ffPKJlE4RERFRHYr0lStX4OVlfrKQp6cnLl++LKVTREREVIci3a5dO7MxtwHgyy+/RJs2cn8YnIiIyJ5ZfOLYnDlzEB0djZycHDzwwAMAgD179uDtt9/GO++8I7t/REREdsviIj1lyhQUFxfjjTfewGuvvQYAaN26NVauXIkJEyZI7yAREZG9qtMlWDNmzMCMGTOQk5MDFxcXuLu7y+4XERGR3bun66SbN28uqx/1rq1DUzgpemnxSoxGabEqlFphmNOebnJHCLtaLL+PPbzlx3R3LJce09e5WGq89AJXqfEA4Oy1ZtJjdvG7KD0mfqv9aIG11Sfie6nxmv7UUWo8AEizQt6Ptf9Nesz1p8KlxvskP1VqPED+6GAAYBRyR+yz2ohj9913H/bs2QNvb2/06tULilLzeJo//KD94eOIiIgag1oV6UceeUT9JanIyEhr9oeIiIh+V6siHRMTAwAoLy/HkCFD0KNHD3h7e1u1Y0RERPbOouukHRwc8OCDD+L69etW6g4RERFVsHgwk+7duyM9Xf5PghEREZEpi4v0G2+8geeffx6ff/45srKykJeXZ3IjIiIiOSy+BGvUqFEAgIcfftjkLG8hBBRFQXm5/EtdiIiI7JHFRToxMdEa/SAiIqIqLC7SgwcPtkY/iIiIqIo6jTh2/fp1rF69GidOnICiKOjSpQumTJlS7U9YatURYxp0yj0NuGaiyHhNWqwKLZTO0mOeuiF3VJ4B+nZS4wFAE32p9JiFZQ7SY14tkTdiHQCUGGseJKiugjyuS4/pInmkNQBwc5L/nB88GCE13qChB6TGAwDP0wXSY7baLP83FHonxUqN99RrXaTGA4AVqfLz/r+r70mOaPmIYxafOHbkyBG0bdsW//73v3H16lVcvnwZS5YsQdu2bTnaGBERkUQW70r+7W9/w8MPP4xVq1bB0fHW4mVlZZg2bRpmz56N/fv3S+8kERGRPbK4SB85csSkQAOAo6MjXnzxRYSFhUntHBERkT2z+HC3p6cnzp07Z9aemZkJDw8PKZ0iIiKiOhTpcePGYerUqdi4cSMyMzNx/vx5bNiwAdOmTcNTTz1ljT4SERHZJYsPd//rX/+CoiiYMGECysrKAABOTk6YMWMGFi1aJL2DRERE9sriIq3X67F06VLExsbizJkzEEKgXbt2cHWV/4P1RERE9sziw91TpkxBfn4+XF1d0b17d/To0QOurq4oLCzElClTrNFHIiIiu2Rxkf7oo49w48YNs/YbN25g7dq1UjpFREREFhzuzsvLgxACQgjk5+fD2dlZnVZeXo4dO3bA19fXKp0kIiKyR4oQolbjlOl0OpNfvTILpChYuHAh5s+fL61z1pCXlwcvLy84O7WEolh8IKFGfR1HSYtVoViUSY8pWyuDm/SYenlPi+pSsfz/ZRs3ecPKAkBHrxKp8QCgzApDjXpbYdjW0IDz0mOWlcsdCtbVIH84VA+PfOkxgwanSI+pm7laarybZ7dKjQcAQ7q6S49ZoMgdtrVclOJ00Xbk5ubC09OzVsvUeiuTmJgIIQQeeOABbN68GT4+Puo0vV6P4OBgBAYGWt5rIiIiqlati3TFr19lZGSgZcuW0OmssLtDREREKouP1wUHBwMAioqKcO7cOZSUmB6i69Gjh5yeERER2TmLi3ROTg4mT56ML7/8strp5eXl99wpIiIiqsMlWLNnz8a1a9dw6NAhuLi4YOfOnfjoo4/Qvn17bN++3Rp9JCIisksW70nv3bsXn376KcLDw6HT6RAcHIwRI0bA09MTsbGxeOihh6zRTyIiIrtj8Z50YWGhej20j48PcnJyAADdu3fHDz/8ILd3REREdsziIt2xY0ecPHkSANCzZ0/85z//wYULF/D+++8jICBAegeJiIjsVZ2+k87KygIAxMTEYOfOnWjVqhWWLVuGN99806JYsbGxCA8Ph4eHB3x9fREZGal+AKjJpEmToCiK2a1r166WpkJERKRptR5xrCZFRUX4+eef0apVKzRr1syiZUeNGoUnn3wS4eHhKCsrw/z585Gamoq0tDS4uVU/klVubq7J2OFlZWUIDQ3FzJkzsWDBgruus2LEsfauD8NBcbKov3fiBL20WBVKIX8EqqFuQVLjnSiQPwqTu07uSF4A0NZD7uhTAOAkeTCvzl5FcgMCcNIZpcf8OU/+KHPju/8kPaaTo9yR0Zyc5I+05uopd0QrAPj8UIT0mJlFznefyQJT7j8kNR4AnP41WHrMaT+Z/07FvTCKUvxauNs6I45VVVJSgoyMDLRt2xb33XdfnWLs3LnT5HFcXBx8fX1x9OhRDBo0qNplvLy84OXlpT7etm0brl27hsmTJ9epD0RERFpl8eHuoqIiTJ06Fa6urujatSvOnTsHAJg1axYWLVp0T53Jzc0FAJMhR+9m9erVGD58uDrIChERka2wuEjPmzcPP/74I/bt22fyS1jDhw/Hxo0b69wRIQTmzJmDAQMGoFu3brVaJisrC19++SWmTZtW4zzFxcXIy8szuRERETUGFh/u3rZtGzZu3Ij777/f5FexunTpgjNnztS5I9HR0Th27BgOHjxY62Xi4+PRpEkTREZG1jhPbGwsFi5cWOd+ERERNRSL96RzcnKq/d3owsLCO/6U5Z3MnDkT27dvR2JiIlq0aFGrZYQQWLNmDf7yl79Ar6/5pK158+YhNzdXvWVmZtapj0RERPXN4iIdHh6OL774Qn1cUZhXrVqFiAjLzioUQiA6OhpbtmzB3r17ERISUutlk5KS8Msvv2Dq1Kl3nM9gMMDT09PkRkRE1BhYfLg7NjYWo0aNQlpaGsrKyrB06VIcP34c3333HZKSkiyKFRUVhXXr1uHTTz+Fh4cHsrOzAdw6g9vFxQXArT3hCxcuYO3atSbLrl69Gn379q3199dERESNjcV70v369cM333yDoqIitG3bFrt27YKfnx++++479O7d26JYK1euRG5uLoYMGYKAgAD1VvkEtKysLPUM8gq5ubnYvHnzXfeiiYiIGrM6XSfdvXt3fPTRR/e88tqMoxIfH2/W5uXlhaIi+QM/EBERaUmtirQlly01lu98c0QGFMgbhcpPaSstVoV85ar0mN8XuEuN18pR/vPtpJM8lBeAw9cLpcf01BmkxtM7uEiNBwCD/X+THrOL30XpMW/clPu/BIBDWXLfk00M8kfXC/bJkR6zxGjxAdK7ctLd08CUZmZ/KX9UtEF+8keEe9hD7kiSxcZivG/hpqhWRbpJkyZ3PXNbCAFFUVBeXm5ZD4iIiKhatSrSiYmJtQqWnJx8T50hIiKi22pVpAcPHlzjtNzcXCQkJODDDz/Ejz/+iNmzZ8vqGxERkV2r85cXe/fuxZ///GcEBATg3XffxZgxY3DkyBGZfSMiIrJrFp3dff78ecTHx2PNmjUoLCzEE088gdLSUmzevBldunSxVh+JiIjsUq33pMeMGYMuXbogLS0N7777Li5evIh3333Xmn0jIiKya7Xek961axdmzZqFGTNmoH379tbsExEREcGCPekDBw4gPz8fYWFh6Nu3L5YvX46cHPnX+BEREdEttS7SERERWLVqFbKysvDXv/4VGzZsQFBQEIxGI3bv3o38/Hxr9pOIiMjuWHx2t6urK6ZMmYKDBw8iNTUVzz33HBYtWgRfX188/PDD1ugjERGRXVJEbQbQvovy8nJ89tlnWLNmDbZv3y6jX1aTl5cHLy8vBLgNhE6p09Dl1Rrg2F1arAoHy1Klx+yrk/urYS3d5A/haQ09msgf6z2zyFlqPNlDL1rLtWJ5w+lWaOtxU3rMfb/JfX5KjfKfn95NjdJjZhTIf36aOMmN5+4kP++vLt2QHlO2MlGC72/+H3Jzc2s9hLaUQV4dHBwQGRmp+QJNRETUmMgfiZ2IiIikYJEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKHlDbjUyN4zXoSjyRubZcXO3tFgVghzk/0Z3iVH2SD/yRzcqLJMeUvroYABwIlfuZ1y9FT4yh3qXSo+Zmit/5C13J730mLL/n+eK5Y9at/U3+S92d8h/rRdA7ohw4e5eUuMBwDXddekx/UUzqfEcYPn2l3vSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBpltyOOlRmLpY445uLQRFqsCvnKVekxS4Wf1HjWGB3MGgpK5X8eLSwrlxrvjLFAajwA6K1zkR4zz1giPeaJXDfpMdNKc6TGa6p4So0HANm6LOkx2zq2kx7TUCp3ZMEPr26UGg8AOhkekB5TC7gnTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUQ1apGNjYxEeHg4PDw/4+voiMjISJ0+evOtyxcXFmD9/PoKDg2EwGNC2bVusWbOmHnpMRERUfxr0EqykpCRERUUhPDwcZWVlmD9/PkaOHIm0tDS4udV8ScYTTzyB3377DatXr0a7du1w6dIllJU1kmuBiIiIaqlBi/TOnTtNHsfFxcHX1xdHjx7FoEGDalwmKSkJ6enp8PHxAQC0bt3a2l0lIiKqd5r6Tjo3NxcA1OJbne3btyMsLAxvvfUWgoKC0KFDBzz//PO4ceNGfXWTiIioXmhmxDEhBObMmYMBAwagW7duNc6Xnp6OgwcPwtnZGVu3bsXly5fxzDPP4OrVq9V+L11cXIzi4mL1cV5enlX6T0REJJtminR0dDSOHTuGgwcP3nE+o9EIRVGQkJAALy8vAMCSJUvw2GOPYcWKFXBxMR0GMTY2FgsXLjSL4+zgBZ0iL/0b5delxapQqjNIj1kMuUNZ5pfKfwn9VlJ895ks9KsuU3pMd+ElNZ4BeqnxAOCfWXc/EdNS7ZUO0mP+WHpBesyruCg13lnjdanxAOBmifyhfzsYWkuPeUo5KzWeNYbwLIX84WrddXK3b6XCaPEymjjcPXPmTGzfvh2JiYlo0aLFHecNCAhAUFCQWqABoHPnzhBC4Pz582bzz5s3D7m5ueotM1P+xpqIiMgaGrRICyEQHR2NLVu2YO/evQgJCbnrMv3798fFixdRUHD7xwhOnToFnU5XbYE3GAzw9PQ0uRERETUGDVqko6Ki8PHHH2PdunXw8PBAdnY2srOzTU4CmzdvHiZMmKA+/tOf/oSmTZti8uTJSEtLw/79+/HCCy9gypQpZoe6iYiIGrMGLdIrV65Ebm4uhgwZgoCAAPW2cePtnzHLysrCuXPn1Mfu7u7YvXs3rl+/jrCwMIwfPx5jx47FsmXLGiIFIiIiq2nQE8eEEHedJz4+3qytU6dO2L17txV6REREpB2aOHGMiIiIzLFIExERaRSLNBERkUaxSBMREWmUZkYcq29l4iYUOEiLd7NM/shB1hiVB3c/V88iZ0py5QYEkKU7d/eZLFQqbkqPWaJIHi9ekRsOAK6WpEuP+aPjNekxy8rljzInm4tDE+kxy4xF0mN+W54oPWYzx7uPYWGJ33BWajwA6KPcJz2mt15ejQCAEqEDCi1bhnvSREREGsUiTUREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGsUiTUREpFEs0kRERBpltyOO3Sy7DkWR9xnF17mLtFgVfr65V3rMMKc/SI13RvlRajwAuFkif0QrZ0dv6TGvFcsfzUs2b0Obhu5CrZRB/ohjskfzumaFUQWNRvl53xS/SY8Z5CB3+5ZdelxqPACAXv6IYynFOVLjlYtSi5fhnjQREZFGsUgTERFpFIs0ERGRRrFIExERaRSLNBERkUaxSBMREWkUizQREZFGsUgTERFpFIs0ERGRRrFIExERaZQihBAN3Yn6lJeXBy8vLzRzDYdOkTcqaqm4IS1WBSfFRXrMxjCUZVl5bkN3oUG4G0Kkx3TUGaTHzLt5VnpMnRX66a4PkB5TtoKSrIbuQq2Ull2RGs/XLVxqPKBxbIONogyXi75Hbm4uPD09a7UM96SJiIg0ikWaiIhIo1ikiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKSJiIg0ikWaiIhIo+SN5tFIVIzdYhTlkuPKjQcARpRJjymEUXpM2exsfB2VNV5D1okp//mxxuvSGrnL1hjej7fIfc6NwhrbNu1vgyvqjiXvIbsbcez8+fNo2bJlQ3eDiIjsVGZmJlq0aFGree2uSBuNRly8eBEeHh5QFKWhuwPg1lClLVu2RGZmZq2HitM6W8vJ1vIBmFNjwZy0r7b5CCGQn5+PwMBA6HS1+7bZ7g5363S6Wn+CqW+enp428YKtzNZysrV8AObUWDAn7atNPl5eXhbF5IljREREGsUiTUREpFEs0hpgMBgQExMDg0H+z/U1FFvLydbyAZhTY8GctM+a+djdiWNERESNBfekiYiINIpFmoiISKNYpImIiDSKRZqIiEijWKTryXvvvYeQkBA4Ozujd+/eOHDgQI3zbtmyBSNGjEDz5s3h6emJiIgIfPXVV/XY27uzJJ/KvvnmGzg6OqJnz57W7WAdWJpTcXEx5s+fj+DgYBgMBrRt2xZr1qypp97WjqU5JSQkIDQ0FK6urggICMDkyZNx5cqVeurtne3fvx9jx45FYGAgFEXBtm3b7rpMUlISevfuDWdnZ7Rp0wbvv/++9TtqAUtzagzbhro8TxW0un2oS06ytg8s0vVg48aNmD17NubPn4/k5GQMHDgQo0ePxrlz56qdf//+/RgxYgR27NiBo0ePYujQoRg7diySk5PruefVszSfCrm5uZgwYQKGDRtWTz2tvbrk9MQTT2DPnj1YvXo1Tp48ifXr16NTp0712Os7szSngwcPYsKECZg6dSqOHz+OTZs24fvvv8e0adPquefVKywsRGhoKJYvX16r+TMyMjBmzBgMHDgQycnJePnllzFr1ixs3rzZyj2tPUtz0vq2AbA8pwpa3j7UJSdp2wdBVtenTx8xffp0k7ZOnTqJuXPn1jpGly5dxMKFC2V3rU7qms+4cePEK6+8ImJiYkRoaKgVe2g5S3P68ssvhZeXl7hy5Up9dK9OLM3pn//8p2jTpo1J27Jly0SLFi2s1se6AiC2bt16x3lefPFF0alTJ5O2v/71r+L++++3Ys/qrjY5VUdL24aqLMlJy9uHymqTk8ztA/ekraykpARHjx7FyJEjTdpHjhyJb7/9tlYxjEYj8vPz4ePjY40uWqSu+cTFxeHMmTOIiYmxdhctVpectm/fjrCwMLz11lsICgpChw4d8Pzzz+PGjRv10eW7qktO/fr1w/nz57Fjxw4IIfDbb7/hk08+wUMPPVQfXZbuu+++M8v/wQcfxJEjR1BaWtpAvZJLS9uGe6Hl7UNdyNw+2N0PbNS3y5cvo7y8HH5+fibtfn5+yM7OrlWMt99+G4WFhXjiiSes0UWL1CWf06dPY+7cuThw4AAcHbX3kqtLTunp6Th48CCcnZ2xdetWXL58Gc888wyuXr2qie+l65JTv379kJCQgHHjxuHmzZsoKyvDww8/jHfffbc+uixddnZ2tfmXlZXh8uXLCAgIaKCeyaOlbUNdaX37UBcytw/ck64nVX8WUwhRq5/KXL9+PRYsWICNGzfC19fXWt2zWG3zKS8vx5/+9CcsXLgQHTp0qK/u1Yklz5HRaISiKEhISECfPn0wZswYLFmyBPHx8ZrZmwYsyyktLQ2zZs3Cq6++iqNHj2Lnzp3IyMjA9OnT66OrVlFd/tW1N0Za3TZYojFtHywhc/tgGx9bNKxZs2ZwcHAw23u5dOmS2af8qjZu3IipU6di06ZNGD58uDW7WWuW5pOfn48jR44gOTkZ0dHRAG69gIUQcHR0xK5du/DAAw/US99rUpfnKCAgAEFBQSY/O9e5c2cIIXD+/Hm0b9/eqn2+m7rkFBsbi/79++OFF14AAPTo0QNubm4YOHAgXn/99Ua35+nv719t/o6OjmjatGkD9UoOLW4b6qIxbB/qQub2gXvSVqbX69G7d2/s3r3bpH337t3o169fjcutX78ekyZNwrp16zT1naCl+Xh6eiI1NRUpKSnqbfr06ejYsSNSUlLQt2/f+up6jeryHPXv3x8XL15EQUGB2nbq1CnN/F55XXIqKioy+yF6BwcHALf3QBuTiIgIs/x37dqFsLAwODk5NVCv7p1Wtw110Ri2D3Uhdftwz6ee0V1t2LBBODk5idWrV4u0tDQxe/Zs4ebmJs6ePSuEEGLu3LniL3/5izr/unXrhKOjo1ixYoXIyspSb9evX2+oFExYmk9VWjx709Kc8vPzRYsWLcRjjz0mjh8/LpKSkkT79u3FtGnTGioFM5bmFBcXJxwdHcV7770nzpw5Iw4ePCjCwsJEnz59GioFE/n5+SI5OVkkJycLAGLJkiUiOTlZ/Prrr0II83zS09OFq6ur+Nvf/ibS0tLE6tWrhZOTk/jkk08aKgUzluak9W2DEJbnVJUWtw+W5iRz+8AiXU9WrFghgoODhV6vF/fdd59ISkpSp02cOFEMHjxYfTx48GABwOw2ceLE+u94DSzJpyotvgmFsDynEydOiOHDhwsXFxfRokULMWfOHFFUVFTPvb4zS3NatmyZ6NKli3BxcREBAQFi/Pjx4vz58/Xc6+olJibe8X1RXT779u0TvXr1Enq9XrRu3VqsXLmy/jt+B5bm1Bi2DXV5nirT4vahLjnJ2j7wpyqJiIg0it9JExERaRSLNBERkUaxSBMREWkUizQREZFGsUgTERFpFIs0ERGRRrFIExERaRSLNJGdOXv2LBRFQUpKSkN3xcykSZMQGRnZ0N0gG7F//36MHTsWgYGBUBQF27Zta3TrY5EmamQmTZoERVHMbqNGjarV8i1btkRWVha6det213nru6AvXboU8fHx9bIusn2FhYUIDQ3F8uXLG+36+CtYRI3QqFGjEBcXZ9JmMBhqtayDgwP8/f2t0a17VvlXg4ju1ejRozF69Ogap5eUlOCVV15BQkICrl+/jm7dumHx4sUYMmSIVdZXF9yTJmqEDAYD/P39TW7e3t4Abv1W8sqVKzF69Gi4uLggJCQEmzZtUpetund87do1jB8/Hs2bN4eLiwvat2+vfgAICQkBAPTq1QuKophsvOLi4tC5c2c4OzujU6dOeO+998zW8d///hcDBw6Ei4sLwsPDcerUKXz//fcICwuDu7s7Ro0ahZycHHW5qoe7jUYjFi9ejHbt2sFgMKBVq1Z44403ZP87yU5NnjwZ33zzDTZs2IBjx47h8ccfx6hRo3D69OmG7pqKe9JENujvf/87Fi1ahKVLl+L//u//8NRTT6Fbt27o3LlztfOmpaXhyy+/RLNmzfDLL7+oP0x/+PBh9OnTB19//TW6du0KvV4PAFi1ahViYmKwfPly9OrVC8nJyXj66afh5uaGiRMnqrFjYmLwzjvvoFWrVpgyZQqeeuopeHp6YunSpXB1dcUTTzyBV199FStXrqw2j3nz5mHVqlX497//jQEDBiArKws///yzFf5jZG/OnDmD9evX4/z58wgMDAQAPP/889i5cyfi4uLw5ptvNnAPf3fPPw9CRPVq4sSJwsHBQbi5uZnc/vGPfwghhAAgpk+fbrJM3759xYwZM4QQQmRkZAgAIjk5WQghxNixY8XkyZOrXVfVeSu0bNlSrFu3zqTttddeExERESbLffjhh+r09evXCwBiz549altsbKzo2LGjSW6PPPKIEEKIvLw8YTAYxKpVq2r5nyGqGQCxdetW9fF///tfAcDsfeTo6CieeOIJIcTt1/GdblFRUbVaX11xT5qoERo6dKjZ3qePj496PyIiwmRaREREjSd/zZgxA48++ih++OEHjBw5EpGRkejXr1+N687JyUFmZiamTp2Kp59+Wm0vKysz+065R48e6n0/Pz8AQPfu3U3aLl26VO16Tpw4geLiYgwbNqzGvhDVldFohIODA44ePQoHBweTae7u7gCAoKAgnDhx4o5xKr5mshYWaaJGyM3NDe3atbNoGUVRqm0fPXo0fv31V3zxxRf4+uuvMWzYMERFReFf//pXtfMbjUYAtw559+3b12Ra1Y2dk5OT2fqrtlXEq8rFxeUuGRHVXa9evVBeXo5Lly5h4MCB1c7j5OSETp061XPPTPHEMSIbdOjQIbPHd9rYNG/eHJMmTcLHH3+Md955Bx988AEAqN9Bl5eXq/P6+fkhKCgI6enpaNeuncmt4kQzGdq3bw8XFxfs2bNHWkyyLwUFBUhJSVGPImVkZCAlJQXnzp1Dhw4dMH78eEyYMAFbtmxBRkYGvv/+eyxevBg7duyQvr664p40USNUXFyM7OxskzZHR0c0a9YMALBp0yaEhYVhwIABSEhIwOHDh7F69epqY7366qvo3bs3unbtiuLiYnz++efqCWa+vr5wcXHBzp070aJFCzg7O8PLywsLFizArFmz4OnpidGjR6O4uBhHjhzBtWvXMGfOHCk5Ojs746WXXsKLL74IvV6P/v37IycnB8ePH8fUqVOlrINs25EjRzB06FD1ccVrc+LEiYiPj0dcXBxef/11PPfcc7hw4QKaNm2KiIgIjBkzxirrq5N7/labiOrVxIkTqz2BpeIELABixYoVYsSIEcJgMIjg4GCxfv16dfmqJ4O99tpronPnzsLFxUX4+PiIRx55RKSnp6vzr1q1SrRs2VLodDoxePBgtT0hIUH07NlT6PV64e3tLQYNGiS2bNlS7TqEECIxMVEAENeuXVPb4uLihJeXl0luFSeOCSFEeXm5eP3110VwcLBwcnISrVq1Em+++ea9/xOJGglFCCHqVt6JSIsURcHWrVs5vCaRDeB30kRERBrFIk1ERKRRPHGMyMbwGywi28E9aSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNssvfk7558yZKSkoauhtERGRn9Ho9nJ2daz2/3RXpmzdvwsXFpaG7QUREdsjf3x8ZGRm1LtR2V6Rv70E7AFB+v6+g4si/UvENgKIzaVMUXaV5AUVxUOdVFJ3JffPpvy8DB3W6DjooioPJOk3i/P5XVymODpXv69SYut/7VLlNnU/ozJbRQQedqLhfkZXudhyhg1KRpxpbUacrUKBTbrdXxFHnVfO9nbuuyv1b81VeptIz8fv9W8v83l55OmASR1FqXr666WpbDfdv9+32fbPpEOoMukptiknfRZV8hUnMW/0RlfokTOa9nY9Qp1fEu9N0pXI/KrXpKrUpEKb9qLRudT2KANR1ikrrv72+yuu+HbP66ep8JvdhtozJ+qtZRqcYa4wJ3e1llUrzVbx9TZbRVdw3Vrses+k60/VUtEOdD+oyMFl3xTLG2/Fr2YZKfYeuUt6V5lWXrdw33e3lb7VV7hvUtspvRqXyG7Pir/rG01Vq193+q6v6JtCp04VOB/y+jTNdptL0Km3QOUCoT5bD7TY1vsPvyzrUcP/2skJXsbxjpTgV93UQimOV6Y63p8PBpB0AFMXR9D4AKI5Q1DYHtV2nVNOm0yEv7wZat3wWJSUlLNK1UVEgbr0QlTu2VRQYtXBXKczmRbqatkpFWqmmSOsUHRRUbatNkb5zW7VFWr1fkWOlIl3p/r0U6aqFufZFuvIyqGY6TOLUpUhXLbzmRVrUOO+t2MKsb3Uq0lWKo4wirbOoSFcqfpX6oc5XXZGuoQjXtkjXtiBXW6R1dy7SSo1FupoPC2qboi5b2+m3ivTt9qrLqJ/1q7SZF+Q7t5kUXF3FDgJg8ibCrRpaufjeLrjVtFlSpG+/UKspyJXbaijCldvNpjuYtZkUaV3lIm3aVnORrrzMnYq0w52LdKWCbFqknW7f/30+pdL0Oxfp3/tjIZ44RkREpFEs0kRERBrFIk1ERKRRLNJEREQaxSJNRESkUSzSREREGmXXl2CJ3y8ZufVHoNKD3/9Wd//3ayPV6xhqUnm6MLsvqmkz4vZlLOr12hA13K+43ErA9JoKQIERFRfUiErXSYtKf4WouF/RW516xa4QOhjvdglWpfaKNStV2hSTNtP7NbVVvQ5aqdSuTje9yoXXSfM6aTu5TrrS/1Jnmu+9Xydd/WVbt1+colJ7pXVXuYa7ckxhcg2l+TpF5XiV3tRCMe+n0Jn+r0WlZUzv/z6fYjRbBjrjrXkBQFcOoT5/xkrTK7bv5YCuXJ0XABSlvNL9ul8nbSm7K9JCCLi7u6OgoKD66WZ3qtRwIiKiOvL394der6/1/HZXpBVFQUFBATIzM+Hp6dnQ3bGqvLw8tGzZ0uZztZc8AfvJ1V7yBOwnV3vJE7hzrhy7u5Y8PT1t/oVSwV5ytZc8AfvJ1V7yBOwnV3vJE5CTK08cIyIi0igWaSIiIo2yuyJtMBgQExMDg8HQ0F2xOnvJ1V7yBOwnV3vJE7CfXO0lT0BurooQguctExERaZDd7UkTERE1FizSREREGsUiTUREpFEs0kRERBpld0X6vffeQ0hICJydndG7d28cOHCgobt0z/bv34+xY8ciMDAQiqJg27ZtJtOFEFiwYAECAwPh4uKCIUOG4Pjx4w3T2TqKjY1FeHg4PDw84Ovri8jISJw8edJkHlvIEwBWrlyJHj16qAMhRERE4Msvv1Sn20qeVcXGxkJRFMyePVtts5VcFyxYAEVRTG7+/v7qdFvJEwAuXLiAP//5z2jatClcXV3Rs2dPHD16VJ1uK7m2bt3a7DlVFAVRUVEAJOYp7MiGDRuEk5OTWLVqlUhLSxPPPvuscHNzE7/++mtDd+2e7NixQ8yfP19s3rxZABBbt241mb5o0SLh4eEhNm/eLFJTU8W4ceNEQECAyMvLa5gO18GDDz4o4uLixE8//SRSUlLEQw89JFq1aiUKCgrUeWwhTyGE2L59u/jiiy/EyZMnxcmTJ8XLL78snJycxE8//SSEsJ08Kzt8+LBo3bq16NGjh3j22WfVdlvJNSYmRnTt2lVkZWWpt0uXLqnTbSXPq1eviuDgYDFp0iTxv//9T2RkZIivv/5a/PLLL+o8tpLrpUuXTJ7P3bt3CwAiMTFRCCEvT7sq0n369BHTp083aevUqZOYO3duA/VIvqpF2mg0Cn9/f7Fo0SK17ebNm8LLy0u8//77DdBDOS5duiQAiKSkJCGE7eZZwdvbW3z44Yc2mWd+fr5o37692L17txg8eLBapG0p15iYGBEaGlrtNFvK86WXXhIDBgyocbot5VrVs88+K9q2bSuMRqPUPO3mcHdJSQmOHj2KkSNHmrSPHDkS3377bQP1yvoyMjKQnZ1tkrfBYMDgwYMbdd65ubkAAB8fHwC2m2d5eTk2bNiAwsJCRERE2GSeUVFReOihhzB8+HCTdlvL9fTp0wgMDERISAiefPJJpKenA7CtPLdv346wsDA8/vjj8PX1Ra9evbBq1Sp1ui3lWllJSQk+/vhjTJkyBYqiSM3Tbor05cuXUV5eDj8/P5N2Pz8/ZGdnN1CvrK8iN1vKWwiBOXPmYMCAAejWrRsA28szNTUV7u7uMBgMmD59OrZu3YouXbrYXJ4bNmzADz/8gNjYWLNptpRr3759sXbtWnz11VdYtWoVsrOz0a9fP1y5csWm8kxPT8fKlSvRvn17fPXVV5g+fTpmzZqFtWvXArCt57Sybdu24fr165g0aRIAuXna3a9gKRU/Qv47IYRZmy2ypbyjo6Nx7NgxHDx40GyareTZsWNHpKSk4Pr169i8eTMmTpyIpKQkdbot5JmZmYlnn30Wu3btuuNP99lCrqNHj1bvd+/eHREREWjbti0++ugj3H///QBsI0+j0YiwsDC8+eabAIBevXrh+PHjWLlyJSZMmKDOZwu5VrZ69WqMHj0agYGBJu0y8rSbPelmzZrBwcHB7FPMpUuXzD7t2JKKM0htJe+ZM2di+/btSExMRIsWLdR2W8tTr9ejXbt2CAsLQ2xsLEJDQ7F06VKbyvPo0aO4dOkSevfuDUdHRzg6OiIpKQnLli2Do6Ojmo8t5FqVm5sbunfvjtOnT9vUcxoQEIAuXbqYtHXu3Bnnzp0DYHvvUwD49ddf8fXXX2PatGlqm8w87aZI6/V69O7dG7t37zZp3717N/r169dAvbK+kJAQ+Pv7m+RdUlKCpKSkRpW3EALR0dHYsmUL9u7di5CQEJPptpJnTYQQKC4utqk8hw0bhtTUVKSkpKi3sLAwjB8/HikpKWjTpo3N5FpVcXExTpw4gYCAAJt6Tvv37292aeSpU6cQHBwMwDbfp3FxcfD19cVDDz2ktknNU8ppbY1ExSVYq1evFmlpaWL27NnCzc1NnD17tqG7dk/y8/NFcnKySE5OFgDEkiVLRHJysnpp2aJFi4SXl5fYsmWLSE1NFU899VSju+RhxowZwsvLS+zbt8/ksoeioiJ1HlvIUwgh5s2bJ/bv3y8yMjLEsWPHxMsvvyx0Op3YtWuXEMJ28qxO5bO7hbCdXJ977jmxb98+kZ6eLg4dOiT+8Ic/CA8PD3XbYyt5Hj58WDg6Ooo33nhDnD59WiQkJAhXV1fx8ccfq/PYSq5CCFFeXi5atWolXnrpJbNpsvK0qyIthBArVqwQwcHBQq/Xi/vuu0+9hKcxS0xMFADMbhMnThRC3LrsISYmRvj7+wuDwSAGDRokUlNTG7bTFqouPwAiLi5OnccW8hRCiClTpqiv0ebNm4thw4apBVoI28mzOlWLtK3kWnGNrJOTkwgMDBR//OMfxfHjx9XptpKnEEJ89tlnolu3bsJgMIhOnTqJDz74wGS6LeX61VdfCQDi5MmTZtNk5cmfqiQiItIou/lOmoiIqLFhkSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0igWaSIiIo1ikSYiItIoFmkiIiKNYpEmIiLSKBZpIiIijWKRJiIi0qj/D1r6WLbJCEKYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDwAAAKyCAYAAAA5AM5xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wc9Z3/8dfMbNWq92K5FxX3gk0P3YQQIBCc0C8QjotTCPe7CyQhgeQuhFzIQQqEJHcQLqEkIYQUQnDovRuM5IKrbFldVlutts38/pC9sJEMlixrZen9vMce3pn5fvczjm3tfvbz/XwNx3EcRERERERERETGETPVAYiIiIiIiIiIjDQlPERERERERERk3FHCQ0RERERERETGHSU8RERERERERGTcUcJDRERERERERMYdJTxEREREREREZNxRwkNERERERERExh0lPERERERERERk3FHCQ0RERERERETGHSU8REREUsgwDP7whz+kfI7RtH37dgzDYO3atWNyPhERERkflPAQEREZQZdddhmGYQx4bN68edDrGxoaOP300w9o7htuuIGFCxce1BzjUXl5OQ0NDcydOxeAp556CsMw6OjoSG1gIiIiklKuVAcgIiIy3qxcuZK77ror6VhBQUHS80gkgsfjobi4+KBfbyTmOJxZljXhfw9ERERkIFV4iIiIjDCv10txcXHS46STTuLzn/8811xzDfn5+ZxyyinAwOUou3bt4lOf+hS5ubkEAgGWLl3Kyy+/zN13382NN97IW2+9lagaufvuuwedY926dZx44on4/X7y8vK48sor6enpSZy/7LLLOPvss/n+979PSUkJeXl5rF69mmg0+qH3dt1117FixYoBx+fPn883v/nNxPO77rqLyspKfD4fFRUV3H777R8479NPP80RRxyB1+ulpKSEa6+9llgsljhv2zY333wzM2fOxOv1MnnyZP7zP/8TSF7Ssn37dk444QQAcnJyMAyDyy67jHvuuYe8vDzC4XDS65577rlccsklH3rfIiIicvhRhYeIiMgo+eUvf8m//Mu/8Pzzz+M4zoDzPT09HH/88ZSVlfHHP/6R4uJi3njjDWzbZtWqVbzzzjs8+uij/P3vfwcgKytrwBy9vb2sXLmSFStW8Oqrr9Lc3MwVV1zB5z//+USCBODJJ5+kpKSEJ598ks2bN7Nq1SoWLlzIZz/72Q+8hwsvvJDvfve7bNmyhRkzZgBQU1PDunXr+N3vfgfAz3/+c775zW/y4x//mEWLFvHmm2/y2c9+lkAgwKWXXjpgzvr6ej760Y8mEhMbNmzgs5/9LD6fjxtuuAHoT7T8/Oc/57//+7855phjaGhoYMOGDQPmKi8v58EHH+Tcc89l48aNZGZm4vf78Xg8fPGLX+SPf/wjn/zkJwFobW3lz3/+M48++ugH3rOIiIgcnpTwEBERGWF//vOfSU9PTzzf119j5syZfO9739vvuHvvvZeWlhZeffVVcnNzE2P2SU9Px+VyfeDyjV//+teEQiHuueceAoEAAD/+8Y8588wzufnmmykqKgL6qx9+/OMfY1kWFRUVnHHGGTz++OMfmvCYO3cu8+fP59577+X6669PvOayZcuYPXs2AN/+9re55ZZb+MQnPgHAtGnTqK2t5c477xw04XH77bdTXl7Oj3/8YwzDoKKigt27d/OVr3yFb3zjGwSDQW677TZ+/OMfJ8bPmDGDY445ZsBclmUlfu8KCwvJzs5OnLvgggu46667EgmPX//610yaNImPfOQjH3jPIiIiqdTX10ckEhnWWI/Hg8/nG+GIDh9KeIiIiIywE044gTvuuCPxPBAI8OlPf5qlS5d+4Li1a9eyaNGixAf24Vi/fj0LFixIJDsAjj76aGzbZuPGjYmER3V1NZZlJa4pKSlh3bp1B/QaF154If/7v//L9ddfj+M43HfffVx99dUAtLS0sHPnTi6//PKk5EksFhu0ImVfzEceeSSGYSTF3NPTw65du2hsbCQcDnPSSScd8O/DYD772c+ybNky6uvrKSsr46677ko0mRURERmL+vr6mDa1iMamrmGNLy4uZtu2bRM26aGEh4iIyAgLBAJJlRnvP/5B/H7/Qb+24zj7/QD//uNut3vAOdu2D+g1LrjgAq699lreeOMNQqEQO3fu5FOf+hRAYo6f//znLF++PGnc+xMsHxbzviU/hmGMyO8LwKJFi1iwYAH33HMPp512GuvWreNPf/rTiMwtIiJyKEQiERqbutix/kYyM4aWtOjq7mNK5TeJRCJKeIiIiEhqzZ8/n1/84he0t7cPWuXh8XiIx+MfOEdVVRW//OUvCQaDiQTL888/j2maiSUnB2vSpEkcd9xxieUzJ598cqJypKioiLKyMrZu3cqFF154QPNVVVXx4IMPJiU+XnjhBTIyMigrK6OgoAC/38/jjz/OFVdc8aHzeTwegEF/r6644gr++7//m/r6ek4++WTKy8sP9LZFRERSJiPDS0amd0hjHAb2C5totEuLiIjIGPHpT3+a4uJizj77bJ5//nm2bt3Kgw8+yIsvvgjA1KlT2bZtG2vXrqW1tXXAjiPQv9zE5/Nx6aWX8s477/Dkk0/yhS98gYsvvjiRlBgJF154Iffffz+//e1vueiii5LO3XDDDdx0003cdtttbNq0iXXr1nHXXXfxgx/8YNC5Pve5z7Fz506+8IUvsGHDBh5++GG++c1vcs0112CaJj6fj6985Sv8+7//O/fccw9btmzhpZde4n/+538GnW/KlCkYhsGf//xnWlpaknaoufDCC6mvr+fnP/85n/nMZ0bs90NERETGHiU8RERExgiPx8Njjz1GYWEhH/3oR5k3bx7f/e53E0tBzj33XFauXMkJJ5xAQUEB991334A50tLS+Nvf/kZ7ezvLli3jvPPO46STTuLHP/7xiMb6yU9+kra2Nnp7ezn77LOTzl1xxRX84he/4O6772bevHkcf/zx3H333UybNm3QucrKynjkkUd45ZVXWLBgAVdddRWXX345X//61xPXXH/99fzrv/4r3/jGN6isrGTVqlU0Nzfvd74bb7yRa6+9lqKiIj7/+c8nzmVmZnLuueeSnp4+IG4REREZXwxnsH3xRERERMapU045hcrKSn74wx+mOhQREZEP1NXVRVZWFm27biIzc4g9PLr6yJt0HZ2dnWRmZh6iCMc29fAQERGRCaG9vZ3HHnuMJ554YsQrXkRERGTsUcJDREREEp599llOP/30/Z5/fz+Mw83ixYvZs2cPN998M3PmzEl1OCIiIgfM2fsY6piJTgkPERERSVi6dClr165NdRiHxPbt21MdgoiIiIwiJTxEREQkwe/3M3PmzFSHISIiInLQlPAQERERERERGcOcvf831DETnbalFREREREREZFxRxUeg7Btm927d5ORkYFhGKkOR0RERERERMYYx3Ho7u6mtLQU0zy0tQS242A7Q6vYGOr145ESHoPYvXs35eXlqQ5DRERERERExridO3cyadKkVIchg1DCYxAZGRlA/x/czMzMFEcjIiIiIiIiY01XVxfl5eWJz4+HkralHR4lPAaxbxlLZmamEh4iIiIiIiKyX2qDMHapaamIiIiIiIiIjDuq8BAREREREREZw7Qt7fAo4SEiIiIiIiIp0dvby4YNG6itraWmpoavf/3rBAKBVIcl44QSHiIiIiIiIjIqXnzxRR5++OFEgmPbtm0479s+9dxzz2Xp0qUpjHBsUtPS4VHCQ0REREREREZET08P69evTyQ0amtr+f73v09FRQXQn/C4+eabk8bk5eVRXV1NdXU16enpqQhbxiklPERERERERGTYnnjiCW655RZqamrYsWPHgPMXXXRRIuFxzDHH8LnPfY6qqiqqq6upqqqisLBwtEOWCUIJDxERERERERlUd3c3tbW1SRUbNTU13HbbbZx99tmJax555JHEmKKioqSExhFHHJE4d8QRRyQ9lwNj42APcZHKUK8fj5TwEBERGUVx22ZTcytv7WqkqbuHdK+HuaVFzCstJs3jTnV4IiIyQXV1deE4DllZWQA888wzXHTRRezcuXPQ62tqahIJj+XLl3PHHXckEhx5eXmjFbYcgGXLlmFZFqtXr2b16tWpDmdUKeEhIiIySmK2zR/fquX5rXXE4nH8HjfhWJy3djUwp6iAC5YtICfNn+owRURkHOvo6GD9+vVJ1Rq1tbXs2rWL733ve/zbv/0b0N9XY1+yo6SkJKlio6qqinnz5iXmLC4u5qqrrkrJ/UwUB9O09NVXXyUzM3OEIzo8KOEhIiIySl7ZvpOnN2+nID1Alt+XOB6Jx6ltbOYPb9Vy2YrFGIaRwihFRGQ86OjooLa2lqysLKqrqwF4++23WbBgwX7H7Nq1K/Hr2bNn89xzz1FZWUlubu4hj1fkUFDCQ0REZBTEbJuXt+3EY1lJyQ4Aj2VRmpXBhsYW6ju6mJSTlaIoRUTkcBOJRHjllVcG9NhoaGgA4J//+Z/56U9/CsDMmTMxDIPS0tKkio3q6moqKyvJyclJzOt2uzn66KNTck8ykLalHR4lPEREREbBnt4Qzd3B/S5ZyfB6aerqoaGrWwkPEREZoL29PZHQyM/P59xzzwUgFApx7LHHDjpm0qRJZGRkJJ6npaXR0dExYZc3yMSjhIeIiMgoMADD+OBvWxyn/zoREZnYbNvmZz/7WVLFRlNTU+L8SSedlEh4ZGVlsWLFCrKzswf02RgssaFkh0wkSniIiIiMgpw0P6VZmWxr20OmzzvgfGeojwyfh/Kc7NEPTkRERl1LS0vSMpTMzEy+853vAGCaJt/4xjdoaWlJGjN58mSqq6sHLDV58cUXRy1uSQ3b6X8MdcxEp4SHiIjIKLBMkyOnT2Zr6x5ae4LkBdISzUl7I1Eau3o4duZUijLTUxypiIgcKl/5yld4+eWXqampobW1Nenc1KlTEwkPgM985jPYtp2o2qioqEhaniIiH04JDxERkVGyqLyUtmAvT27cysbmVryWRcy2sUyTpVPK+Ni8ilSHKCIiw+A4Ds3NzQMah8ZiMZ5//vnEdc888wwvvfRS4vnUqVMTS1Dmzp2L4ziJZPh3v/vdUb8PGbvUtHR4lPAQEREZJaZhcErFTCqLC3hndzOtwSABt5uK4kJmFebhtqxUhygiIh/AcRza29vJy8tLHLvyyiv5/e9/T1tb24DrTdMkHA7j9fYvZfzXf/1Xent7qaqqorKykkAgMGqxi0xESniIiIiMIsMwKM/JVq8OEZExzHEcGhsbk6o1amtrqa2tpaenh2AwiMvV/1EqFArR1taGYRhMnz49aavXqqqqxHUA5513XqpuSWRCUsJDREREREQmJMdx2L17N7W1tZx00kmYpgnAZZddxj333DPoGNM0qaurY/r06QBce+21XHPNNVRUVOD3D771uMhI0BKVoVPCQ0RERERExr3m5mbWrl07oGqjs7MTgG3btjF16lQApk2bhmmazJw5M7HFa3V1NdXV1cyePTspsVFdXZ2K2xGRA6CEh4iIiIiIjAuO47Br165EQuPSSy9N9Nu49dZbuemmmwaMsSyLmTNn0tbWlkh4XHPNNVx77bX4fL7RDF9kv9S0dHiU8BARERERkcPS+vXreeSRR5IqNrq7uxPn58+fz8knn5z4dUVFRVK1RlVVFbNnz040Fd0nMzNzVO9DRA4NJTxERERERGRMsm2bnTt3JiU0vvjFL7Jw4UIAXnjhBf7f//t/SWNcLhezZs2iurqa9PT0xPFPfepTfOpTnxrN8EUkxZTwEBERERGRMWPt2rXceuutiV1RgsFg0vkjjjgikfBYunQpn/zkJ5N2RZk1axYejycFkYscOjYGNsaQx0x0ZqoDuP3225k2bRo+n48lS5bw7LPP7vfa5557jqOPPpq8vDz8fj8VFRX893//94DrHnzwQaqqqvB6vVRVVfHQQw8dylsQEREREZEDYNs2W7du5c9//jPf+973uPTSS1m2bBn33ntv4prOzk5++ctf8uqrrxIMBnG73VRXV3P++edzww03sHz58sS1CxYs4De/+Q033HADn/zkJ6murlayQ0QSUlrh8cADD3D11Vdz++23c/TRR3PnnXdy+umnU1tby+TJkwdcHwgE+PznP8/8+fMJBAI899xz/PM//zOBQIArr7wSgBdffJFVq1bx7W9/m3POOYeHHnqI888/n+eeey7pH0cRERERETk0bNumr6+PtLQ0AN555x0uu+wy1q9fT29v74Dr33zzTS644AKgv9fGjTfemOizMWPGDNxu96jGLzLWqGnp8BiO46Ts92H58uUsXryYO+64I3GssrKSs88+e9AOyoP5xCc+QSAQ4P/+7/8AWLVqFV1dXfz1r39NXLNy5UpycnK47777DmjOrq4usrKy6OzsVMMiEREREZH9iMfjbN++fcBWr+vXr+eaa67hP/7jPwCor69n0qRJAHg8nqTmoVVVVSxdunTQLzxFxrLR+Ny47zXerfsPMjKHtmtQd1cfsyZ/fUJ/rk1ZhUckEuH111/n2muvTTp+6qmn8sILLxzQHG+++SYvvPBC4h9S6K/w+PKXv5x03Wmnncatt96633nC4TDhcDjxvKur64BeX0RERERkIojH42zbtg3btpk9ezYAu3btYtasWfT19Q06ZsOGDYlfl5aW8tBDD1FVVcX06dNxudRKUGQoHMfAcYbWk2Oo149HKfuXprW1lXg8TlFRUdLxoqIiGhsbP3DspEmTaGlpIRaLccMNN3DFFVckzjU2Ng55zptuuokbb7xxGHchIiIiIjJ+2LbN5s2bE5Ua+6o2NmzYQDgcZtWqVdx///1AfxLDMAx8Ph8VFRWJao19/50+fXpiXsMwOPvss1N0VyIyUaU8tWoYyVknx3EGHPtHzz77LD09Pbz00ktce+21zJw5k09/+tPDnvO6667jmmuuSTzv6uqivLx8KLchIiIiInLYiMVibNmyhZqaGizL4qyzzgL6Kznmzp1LNBodMMbn8/H+1fCmabJx40ZKS0uxLGvUYhcROVApS3jk5+djWdaAyovm5uYBFRr/aNq0aQDMmzePpqYmbrjhhkTCo7i4eMhzer1evF7vcG5DRERERGTM+8Mf/sC6desSlRsbN24kEokA/Vu77kt4uN1uFi5cSCwWSzQN3Ve1MXXq1AGJDX1JKDI67L2PoY6Z6FKW8PB4PCxZsoQ1a9ZwzjnnJI6vWbMm8Q/ugXAcJ6n/xpFHHsmaNWuS+ng89thjHHXUUSMTuIiIiIjIGBONRpOWosRiMb71rW8lzv/bv/0bmzdvThqTlpZGVVUVy5YtSzr+8ssvf2jFtYjI4SClS1quueYaLr74YpYuXcqRRx7Jz372M+rq6rjqqquA/qUm9fX13HPPPQD85Cc/YfLkyVRUVADw3HPP8f3vf58vfOELiTm/9KUvcdxxx3HzzTdz1lln8fDDD/P3v/+d5557bvRvUERERETkEPnRj37Es88+S01NDZs2bSIWiyXOZWdnc+ONNyYSF+eccw7Nzc2Jao3q6momT56MaZoD5lWyQ2TscTBwGGLT0iFePx6lNOGxatUq2tra+Na3vkVDQwNz587lkUceYcqUKQA0NDRQV1eXuN62ba677jq2bduGy+VixowZfPe73+Wf//mfE9ccddRR3H///Xz961/n+uuvZ8aMGTzwwAMsX7581O9PRERERGQ4IpEImzZtSjQNrampoampiWeffTZxzSOPPMKjjz6aeJ6enk5VVVUiqRGLxXC73QB873vfG/V7EBFJNcN5f+chAUZnP2URERERkUgkgsfjSTy/8cYbuf/++3n33XeJx+MDrm9tbSUvLw+ABx54gF27diUSHOXl5arOEBlFo/G5cd9rrN/xHTIyfUMa293VR+WUr07oz7Up36VFRERERGS8C4fDbNy4Malio7a2li1bttDe3k5GRgYALS0tbNiwAYDMzMykio2qqioCgUBizlWrVqXkXkRk9GlJy/Ao4SEiIiIiMkL6+vrYuHEjlZWVicqNr33ta3z3u9/FtgffM2H9+vUcccQRAHz2s5/lzDPPpLq6mrKyMlVsiIgcBCU8RERERESGKBQKsXHjxkSlxvsrNmzbZu3atSxYsACAgoICbNsmKytrwFav1dXVlJSUJOZdsGBBYpyIyD7alnZ4lPAQEREREdmP3t5eNmzYQE1NDaeccgrFxcUA/PCHP+Taa68ddExOTg5NTU2J55dccgmrVq2iuLhYFRsiIqNICQ8REREREaC+vp4nnngiqWpj27Zt7Ovx/7vf/Y5zzz0XgKqqKnJzc5MqNfb9uqioKCmxkZubm5L7EZHxw3EMHGeIPTyGeP14pISHiIiIiEwYPT09bNiwIZHQOPfccxP9M1566SUuueSSAWPy8vKorq7G53tvh4QzzjiD1tZWVWyIiIxhSniIiIiIyLi1detWfvrTnyaqNrZv3550Pjc3N5HwmD9/Ph/5yEcSO6Psq9goKCgYkNgwTXO0bkFERIZJCQ8REZExqLmnh5ZgLy7ToDwrmzSPO9UhiYxJ3d3d1NbWJh41NTWcf/75XHbZZQB0dXXxX//1X0ljCgsLE0tQli5dmjg+a9YsnnzyydEMX0TkgGhb2uFRwkNERGQMae8N8cjGjbzT1ERXOIxlmBSmBzh6ymSOmzYNl75VlgnKtu1EVcWuXbv47Gc/S21tLXV1dQOunTRpUiLhUVFRwec///lEgqOqqor8/PzRDF1ERFJECQ8REZExojsc5p4332RDSytF6QFmpacTt21agkF+X1NLMBLlYxVz1DNAxrXOzs4BFRs1NTWcffbZ/OhHPwIgKyuLRx99NDGmuLg4sfykqqqKFStWJM75fL7EOBGRw1X/trRD+/mvbWmV8BARERkzXq/fzaaWVmbm5uC2LABMy6I0M5PWYC/P7djB0klllGRkpDhSkYPX0dFBV1cXkydPBiAYDDJnzhzq6+sHvb6mpibx64yMDO655x6mTZuW2C1FRETkHynhISIiMgY4jsOr9fX43e5EsuP98tL8bGxrZUNzixIecljZs2dPUrXGvv/u3r2blStX8te//hWAQCBALBYDoKysLKlp6L5fv9/FF1886vciIiKHFyU8RERExgDbcejuC+N3D/6j2TAMDAx6o9FRjkzkwLS3t1NbW0tPTw8rV64E+hN506dPp6OjY9Axe/bsSXr++OOPU1ZWRnZ29iGOVkTk8KKmpcOjhIeIiMgYYBoG2X4fOzs6KQgMPO84Do4D6V7PIXl9x3GIOTYuw1SPEPlQL730Em+99Vaiv0ZtbS2NjY0AzJw5k3fffRfoT9RVV1dTV1eXVK1RXV1NZWUlWVlZSfNWV1eP+r2IiMj4pYSHiIjIGGAYBkdMmsTmtjbCsRheV/KP6OZgkGy/j6rCwhF93c5wH6811vNK406CkSjZPh/LS8pZUlRKmvvQJFfk8NDa2ppIZrS1tfH1r389ce4LX/gCr7322oAxkydPZs6cOUk7qjz55JO43dpWWUTkYDh7H0MdM9Ep4SEiIjJGLC4tZV1jI281NpLnTyPb7yO2d5eWmO3w8co5FAQGKf8YppbeIHfXvMHmPa0E3F58lotd3Z1s3tPGupZGLqleTLpHSY+J4re//S1PPfVUosdGS0tL4pzb7eYrX/lKInFxwgknUFBQQHV1daJqo7KykoxB+sso2SEiklrLli3DsixWr17N6tWrUx3OqFLCQ0REZIxI87i5aNFCSrZs4fX63ezq6sI0DEoyMjh26hSWl5eP2Gs5jsOftqxn855WZmbn4TL3NUoNEI7FWNvSSNmOzZw1q+oD55HDg+M4tLS0JDUN3bx5M48++miiEuPBBx/kgQceSBo3derUREKjr68vkbz43ve+N+r3ICIykTkYQ96Wdl8Pj1dffZXMzMxDEdaYp4SHiIjIGJLh9XJ2VRUnTp9Oa28vlmlSmpEx6M4tB6Mh2E1tWwvFgcz3JTv6eV0ucrw+Xmuq56QpM1XlcRhxnP4C5n19WH72s5/x61//mpqaGtra2gZcv337dqZPnw7AOeecw9SpUxM9NioqKgiMYEWRiIjIaFPCQ0REZAzK9PnI9PkO2fwtvUF6IhFKA4NvcZvj9dMQ7KatL6iExxjkOA6NjY1JFRv7/rtu3TrKysoAqKur45lnngH6kyDTp09Pah6am5ubmHPVqlWsWrUqJfcjIiJyKCjhISIiMgFZpolpQNxxcA2yK0vMsTENA8swUxCd7OM4Dg0NDeTm5uLbmwD78Y9/zPXXX7/frV5ramoSCY/zzjuPiooKqqurmTNnDmlpaaMVuoiIjCDHMXCcIS5pGeL145ESHiIiIhPQ1Mwc8tMCtPQGKUkfWOXR3NvDlMxsivdTASIjy3Ecdu/ePaBio7a2lo6ODp566imOP/54AAKBAB0dHZimyYwZMwZs91pRUZGYd+HChSxcuDBFdyUiIpJaSniIiIhMQOkeD8eUTeGhd2txh0zyfGkYhoHtODT19gBwXPk0XKYqPEaS4zjU19dTW1tLdXV1ohLjF7/4BVdeeeWgYyzLYufOnYnnZ555JmvXrmX27Nn4/f5RiVtERFLLwUg0IR3KmIlOCQ8REZEJ6sTJMwhFozxXv4ONe1oxAAfI9fk5Z1YVS4vKUh3iYa2jo4OXXnopqVqjtraWrq4uoD/JcfnllwNQUVGBZVnMmjVrQMXG7Nmz8Xq9iXnz8/PJz89PyT2JiIgcTpTwEBERmaBcpsnHZ1ZyREk5G9pbCMWiZHi8VOUVkudXr4cD4TgOdXV1iWUoRx99NEceeSQAr732GqeffvqAMfsSG9b7dt458sgjCQaDSYkNEREROThKeIiIiExghmFQkp4xaB8PGailpYW77747keBYv349PT09ifPXXXddIuFRXV1NZWVlUrVGVVUVs2fPxvMPO9+4XC5cLr0tk/HJtkOEorWEo9sAG49rEn7PPCxT/+6IHCgbA3uIS1SGev14pJ+sIiIiInvZts2OHTuSGocec8wxXHHFFQAEg0H+/d//PWmM2+1m9uzZVFVVMX/+/MTxkpISamtrRzV+kbEmEttNW8//EY5uw0l0FHBwW6XkpX8an2dOiiMUkfFMCQ8RERGZ0Do6OvjSl76UqNjo7e1NOt/b25tIeEyePJkLL7wwkeCorq5m5syZuN3uVIQuMqbF7V7auu+hL7YVr2s6ptFf2eQ4McLx7bT2/IqirC/gtgqH/RqO4xCK7aQzvI6+WDOWmUamp4IMTwWWqSViMn6oaenwKOEhIiIi41Y8Hmf79u0DtntdunQpd955JwDp6encf//9RCIRADweD3PmzEksQTnqqKMS85mmya9+9auU3IvI4SYUeYdwbDs+1wwM472koGG48FrT6YttIBh+k+y004Y1v+M4NPc+QXPwcWJON6bhw3aitIdeIsMzh/LMT+GxskfobuRgOI4D9C+jFBlNSniIiIjIYS8ej7Nnz57E7iW2bbNixQrWrVtHX1/fB451uVzcdtttFBUVUVVVxYwZM9RPQ2QEhGObAZKSHfsYholpBOiL1MAwEx6d4bdpDD6KywiQ7pqd+DAdt8N0RWrY3fMHpmReqg/ZKbQj2MTbHVvZFmwEYEaghHnZ05kcGH5Vz0TlYOA4qvAYKv00FxERkcNGPB5ny5YtiS1e91VsbNiwgYULF/Liiy8C/ZUYnZ2d9PX14fV6qaysTGocOnfu3KR5r7rqqlTcjsi45jhx+IAPXAYWDrFhzu3QHnoZx7HxupO3abZMLz5XKV3hDfTG6gi4pwzrNeTgvN6+iTWNr9MbD5Ph6t/56+W2DbzTuZ3TSpayMGdmiiOUiUAJDxERERlzYrEYW7ZsoampieOOOy5xvLq6mo0bNw46Ztu2bTiOk/g29//+7//Iyclh+vTpSVvAisjo8LjKgTiOY2MYZtI5x3GIO92ku44edKzt9BGL7wHDwm3mDxgfs7vpje3EY+UMOt5lpNPnNNIXq1fCIwUaQ+083vQmJibTAyWJ4wXeLBr72vl74xuU+fMp8GWnLkiZEJTwEBERkZTavHkzb7/9NjU1NYmKjY0bNxKJRCgoKKC5uTlx7YwZM6irq0va7nXfY9q0aUml60cccUQqbkdE9krzLKDLepxIbDseV/Lfz2i8AcvMJOBdnDTGtvvo7HuW7r6XidntgInPNZlM/zEEPIveN8fenhD7qSDZd50z4nclB2J91w56or1Me1+yY58ibw5bgw2s76pTwmMItC3t8CjhISIiIodcNBpl8+bN1NbWsmPHDq655prEuauuuorHH398wJi0tDQmT55MMBgkEAgA8Otf/5rMzExM0xxwvYiMLS4rh9z082nvuY9wbAOmkQEY2E43ppFOTuAcvO5piettJ0xzz330hF/GNNJxmbk4xOmNbSLUvYX8QDdZ/uP75zYz8LvK6Iluxm1lDXjtmN2DZfjwu0pH63bHlHA8TMyJ4TW9uMzR/8i3O9SG1/IM2j/FMAy8ppuGUPuoxyUTjxIeIiIiMuKefvppnnrqqUSfjU2bNhGNRhPnL7/8crKy+j+kLFu2jM7OzkTFxr7/TpkyZUBiIzs7ezRvQ2TciMRb6I3UEre7scwAae5KPK7iQ/66aZ55uDLzCIZfJxSpAeL43CsIeJfgdU9PujYYXktP+FU81iQsM5A47jIzicQaaO99lDRPFW6rAMMwyfUfQU/0XSLxdjxWbuJ624kSitWT5V1ImmvyIb/HsaSpr5narvXsCO4g7sRJd6UzJ3M2lRkVeK3R26bXZbqIO/Z+z8cdG7eppYZD4TD0iiVVOCnhISIiIsMQiUTYtGlTUuPQX/7yl6Sl9Temu++++xLbvu4TCAQSCY3e3t5EwuOmm27ipptuGvV7EJkIHMdmT+8TdIT+TszuoL+JqI1lZpHtP5bctI9iGIf2g6fHVYrHVUpO4MwPvK47/CoYVlKyYx+3VUQotoneSA1Z/o8AkO1dSF9aIy29TxOOt2EZfmwnikOcDM8cyjLOHtD7Yzzb2buLx5ufpCvaRaYrA6/ppTPayTMtz7E71MBJhSeMWtJjRnoJNZ3biTs21oD+K3FsbKanD1zuIjLSUp7wuP322/mv//ovGhoaqK6u5tZbb+XYY48d9Nrf//733HHHHaxdu5ZwOEx1dTU33HADp5323lZWd999N//0T/80YGwoFMLn8x2y+xARERnvHnroIX79619TU1PDu+++SzweTzr/1a9+lUWLFgFw0kknEYlEkio2ysvLtRRFZJR1hV+mrfdhLCMdv3s2hmHiOA4xu5W23kcxjQA5aScOa+643Ulv5G36IlsAG697GmmeBbjeV21xoBzHIRJvxjIGJjuAvYkLg5jdmXSsOHA6GZ45dIbfJhRrxGWmkempJtNbhctMG9Z9HY6idpQXWl8kGOthkq8ssZQk4AoQsSNs7tlCmb+UBdnzRyWeiszJvNa+ibreZib583HvXVYTsWPsCrVQnlbA7IxJoxKLTGwpTXg88MADXH311dx+++0cffTR3HnnnZx++unU1tYyefLA8rNnnnmGU045he985ztkZ2dz1113ceaZZ/Lyyy8n3mABZGZmDujgrmSHiIjI/oXDYTZu3JhUsVFTU8Pvf/97qqqqgP7mog8++GBiTGZmZlJCo6ioKHHuk5/8JJ/85CdH/T5E5D22E6Ez9AwGLjyu9/5+GoaB2yrAdiJ09T1Hpu9ILNM/pLnD0a209vyKSGwXBi7AoCf8Il3WE+Slfwq/p3pI8xmGgctIJ2I3DHrecRzAxjR8A8ale2aQ7pkxpNcbb3b11tMaaaXAUzCgb4bH9OAzvWzo2kh1ZtWo9PRId/k5u+xo/rz7JXb1tmLTv7zFMkymBIr4WOkK0lz6fDYUDgbOEJuQDvX68SilCY8f/OAHXH755VxxxRUA3Hrrrfztb3/jjjvuGLS09dZbb016/p3vfIeHH36YP/3pT0kJD8MwKC4+9GsSRUREDjd9fX39DeO8/WXNv/vd7/ja177G5s2bse2B661ramoSCY/TTjsNl8uVSHKUlZUN2pBORMaGSGw3kVgDbqtw0PNuq4BwrI5wrI40z5wDnjdud9Ha8yuisd34XLMSS2IcxyYc305bz70UZX0Rt1X0ITMlS/ctpaXnARwnhmEkf0yJO517q1QqhjTnRNET68F2HNyme9DzaVYaPbEewnZ41JqYFvtzuWTqKWzu2U1T357+z2i+HKanl+JJQSNVmZhS9ictEonw+uuvc+211yYdP/XUU3nhhRcOaA7btunu7iY3N7lsrqenhylTphCPx1m4cCHf/va3kxIi/ygcDhMOhxPPu7q6hnAnIiIiY08oFGLjxo2Jao19FRtbtmzhoYce4uMf/zgAlmWxadMmALKysqiurk5qHrp06dLEnPPnz2f+/NEphxaRg+cQxyE+IHmwj4ELx7FxiA96fn96I28Tie1KSnZA/xITrzWNvth6gn1vkh1YOaR5071L6Ol7nVBsMx6rFMvIABxidhtRu50s/0fwTrAmpAeqP4nh4DjOoInomBPDMixc+/mzcKh4LDdVWVOoypoyqq87HtmOge0McVvaIV4/HqUs4dHa2ko8Hk8qfwUoKiqisbHxgOa45ZZbCAaDnH/++YljFRUV3H333cybN4+uri5uu+02jj76aN566y1mzZo16Dw33XQTN9544/BvRkREJEV6e3vZuHEjRUVFlJb2b7/4xz/+kbPPPntvCfhA71/2edxxx7FmzRqqqqooKSlRxYbIOOI283GZWcTsDjyDVHnE7A4sMwO3VTCkecPRLRhYgzY7NQwD0wjQF9sADC3h4TKzKMy8lLbgQ4QiG4k4jXuPZ5Obdjo5aSv1b9R+lPpLSLMCdMW6yHInb9PrOA5dsW7mZ80d1Z1aRMaClNcS/eM/WvvLSv6j++67jxtuuIGHH36YwsL3/gFfsWIFK1asSDw/+uijWbx4MT/60Y/44Q9/OOhc1113Hddcc03ieVdXF+Xl5UO9FRERkUMmHA5TU1OT1F+jtraWrVu34jgOt9xyS+Jn2dSpU3Ech5ycnETFxr6qjaqqqqRln3l5eZx88smpui0ROYRcVhbp3kXs6X0Ml5mFabz3Ydd2okTjTWT5j8UzxIRHfyr1w96vD29DTI9VSHHGlYRjdUTjzRiGhc81DZeVM6z5JoosdxZVmRW8tud1ADJdmRiGQdSO0hJpIdOdSVVmVYqjlIOhHh7Dk7KER35+PpZlDajmaG5uHlD18Y8eeOABLr/8cn77299+6Js00zRZtmwZ77777n6v8Xq9ibXMIiIiqRQMBtmwYQM1NTXMnDmTo446CoB169axbNmyQcfk5eURiUQSz6uqqmhoaKCoqEjfhopMcDlppxCJNRKMrMM0/FhmGnEnhG33kuapIDfto0nXR+Mt9EY2EHdCWGYGAXcVLiu5YsDrmkIPz+E48QFVHo7jYDtBfK7BK6sPhGEY+NxT8Lm1DGIoluX2L0Gs7dpAfd9uAEzDpMBbwJF5Kyj0DS2xJTIepCzh4fF4WLJkCWvWrOGcc85JHF+zZg1nnXXWfsfdd999fOYzn+G+++7jjDPO+NDXcRyHtWvXMm/evBGJW0REZKT09PTw4IMPJlVsbN++PbEU5V/+5V8SCY+KigoKCwuprKxM2hmlurqagoLkrvwul0vNu0WGyXGiRKPricW2ghPDchXjds/HNDNH4bUd4vF64vYeDMOD2zUNw/B8wPU2tt2Bg4NlZg+6xMRlZlKceRk94TfoCr9CLN6BxyomM3AE6d7FuPbel+PEae99jM7Q00lbv7qtPHLTVpLpOzrx70yaZwHd1hOE49vwWtP3bhm7b2vZOlxmPmnexSP5WyMHwGW6ODJ/BVVZlewONRCzY6S705nkL9tvM1OR8S6lS1quueYaLr74YpYuXcqRRx7Jz372M+rq6rjqqquA/qUm9fX13HPPPUB/suOSSy7htttuY8WKFYnqEL/fT1ZWf+b5xhtvZMWKFcyaNYuuri5++MMfsnbtWn7yk5+k5iZFRGRC6+7uZv369YmExuzZs/nsZz8LQDQa5bLLLhswpqCggOrqaubMeW/XhPT0dJqamkYrbJEJKR5vozf4f0RjG8CJsm/ZhmUVk5a2Crfn0H2BFovtoif0ZyLR9dh2EMNw47JKSfOfgs+zPCmp6TgOfZE3CIWfJxLbAdj913qPwu9dMSDxYZkBsvzHkuk7BogD1oDqr47Q07T3/hnLzMLvnoVhmDhOnEi8kZae32GaATK8/ZsAuKwcctM/TVvPvfTFNmIafsDAdoK4zHxy08/H4yo9ZL9X8sGy3FkD+njI4U9LWoYnpQmPVatW0dbWxre+9S0aGhqYO3cujzzyCFOm9JevNTQ0UFdXl7j+zjvvJBaLsXr1alavXp04fumll3L33XcD0NHRwZVXXkljYyNZWVksWrSIZ555hiOOOGJU701ERCamSCTCV7/61USC4/0/x6B/N7J9CY+cnBzOPfdcSkpKEtUalZWVFBSo7FhktDlOlN7gr4hG38ZyTcMw/HuPx7HjOwj2/pp08/O4XJOGPHc83kY4spZIbAsGBm73TLyehVhmf1+KWLyRzp5fEI3VYVlluF2TcAgTizfS1fN/EIjh9x2zNx6HYGgN3aE/ADaWmQ8YRGPb6YxtJhbfTUbauYmqi/frT3IMfPsft4N09j2LaaQlNTc1DAuvq4xQdCudoadI98xPJFP8nkqKsr5Eb/hN+qIbAAevayZp3kV4XCVD/j0SETkUDGd/LdwnsK6uLrKysujs7CQz89CXL4qIyOGjq6sraQlKTU0NkyZN4he/+AXQ/2EkPz+f9vb2xJji4uJEQmPFihVccMEFqQpfRPYjGnmH7u4fY1llGKY/6ZzjOMRjG/D5zyAt7RNDmjccqaE7eC+xeEP/8hQHHCK4XJPIDFyIxz2H7uADBEN/w+2qGJCoiMZ2YpkZ5GZdh2kGiMZ20db1AwwsXFZy37u43UHcbic3YzVeT/UBxxiM1FLf8RP87mmDbmEbt3uIxtspz/lXvK6yId2/yHDEnTh98Qhu04VnDC/HGY3Pjfte4/Gtt5Oe4f/wAe/T0x3ipOmfm9Cfa1O+S4uIiMhYFA6Hkxpan3feebz88svs2rVrwLXTp09P/NowDK6//nr8fn+iz0Zubu6oxCwiwxeLb8chOiDZAf1/rw0zi2jkLRz/OQfcDDgWb6E7+Gvi9p6kZIbjxInFt9IV/DVZ6VfSF34D08wbtCrDZRUTi28lEt2Az7uEvshb2HYHHlflgGstM5t4vIlQ5PUhJTwcJwrYwMAeIP337wbiOE7sgOcUGY5QPMy6js283bmZnmgvbtPFnMwpLMiaRYFPO/XI0CnhISIiE1pHR8eArV5ra2vJysqipqYmcd3OnTsTyY7S0tKkpqHV1ckfLK6++urRvAURGQlO/ENWu5vA0D7whyNvEos3DqjcMAwLlzWdaGwjfZHXcAhjGoN/+2oYbhzHwXF6AYjHmzHw7DfpYhgBYvGGIcXptvKwzABxpwuXMbD3Q8zuwDIzcFlK3sqh0xvr40+7n2VTdx1+y0vA8hGxY7zQ+jabu3dyZtmxlPkLP3wikfdRwkNERCaEPXv2sG3bNhYvfm/ngFNOOYW///3vg17f1NRENBrF7e4vpf3e976H2+2mqqqK7Ozs0QhZREaRaRUDJo4T3VvRkMyxO7G8Rw5pq+dIdCOG4d9PPw0LAw/xWD2m4cd2ejEZmPToj8fEMDP6x5lp9DceHVx/8iTtgGME8FhlpLkr6A6/huUOJC1rsZ0IsXg7uWmn49obg8ih8OaejWzs3sEkf2HSMpYcTyZ1vY082fQ6n55yGtYgf58mBAeG3IxCzSuU8BARkfGlvb19QMVGTU0NjY2NeL1egsEgltVftr2vOeikSZMSlRrvbx66L9kBcPzxx6fkfkRkdLjdc7GsMuKxHViuGUmJjXi8BQwvXs+ypDHxeAu23Y5huLGs8kESJfYHv6gBGG68nmUEQ3/CMfMH9NCIxeuxrBI8rtkAeN2V9PY9iW33YprJiQ3HieI4UXyeRUO6d8MwyAucSdRuIxR9F8vM3JuECRK3gwQ8c8lOO3FIc4oMRTgeYV3XZtJdaQN6dpiGQbEvl12hZnb1NjEloKa4cuCU8BARkcNSa2srtbW1rF+/niuvvDLx4eTKK6/kwQcfHHRMYWEhzc3NlJT0v1m65ZZb+OlPfzphG3mJyHtMM0Ba4NMEg/cQj23AMDLAsHDsLjC8+H2n43LPBSAeb6Uv9Bci0bdx7B4wXLisMry+k/B4jkj8e+R2zSIceQvHcQZUhjiOjeNE8Lhm4PUsIBKtJRrbiGUWY5qZOE6YWLwB0/CR7j8jkdzwuivxeRYQCr+KixJMI3vvfD1E4zvxuCvxeRYO+f49riJKMj9LV98r9IRfI+6EcFsF5AU+RoZ3GZaZPvzfXJEPEYyFCEZDZLgCg573WV5iTpzOaHCUIxs7tC3t8CjhISIiY966det49tlnk6o2mpubE+c/+tGPUl5eDkB1dTWvvfZaUrVGVVUVlZWVZGQkl2PvS3yIiAC43XPIyPg84fBrRKNvgRPF5Z2Hx7sMl6sKwzCw4+0Ee37xXnLCNQ2cKLF4PbHgPThOCJ/vIwD9TUbDzxCLb8NlTUskPRzH3nuspH97WiuPrIwrCYb+SjjyNrH4DsCN1z0bv/+kpASGYbjJDFyEYfjoi7xNLN4EgGn48XmWkhn4JOYwkxNuK5e8wEpy007GdqKYhiexDe14ELcjdES2EIw1AQYZ7jKyPFMxB9mZRkaXy3RhGRYxZ/DlWrZjYwBuc/z8eZTRob/dIiIyJjQ3NyclNG688Uby8/MB+NWvfsX3vve9AWOmTp1KdXU1oVAoceyGG27gxhtvHLW4RWR8sawS0tLOBM4c9Hxf+AWisU24XHPeW35iuHCZ04jHdtHX9zc8nkWYZhYuq4iMwKfoDt5PNLYew+jfAcZxQrisYjICF2JZeQC4rEKy0i8lHm8lbu/BMLy4rLJBEw6WmUFW4DICvnqisTrAxmWV4nZNG1KPkf0xDBfWOEsCdEd3s7nzYbqju7D3fqg2DTfZnunMyjoLv0sNWVMpw5XG5EAxtZ3byHClDfhzvCfSTaY7nUn+ov3MMP6pwmN4xte/ZCIicth49tlnue+++xIJjtbW1qTz5513HieccAIARx11FGeccUZSn43KykoCgYGlryPxZl9EZDCOEyEaeQXTyBrQawPAtEqIxzYTja7H610BsLeCo4S+8BtEY5sAE497Dl7PIlxWwYA5LCsfy8r/0FgMw8DtmoTbNemg72u8C8c72dTxO7pju8l0l2MZHgBidoj28AY2ddrMzbkIy/R+yExyqBiGwZKcCnYEG9nd10qRNxeXaWE7Dh3RbnrivRyfu5gM99Aa8ooo4SEiIiPOcRyampoGNA+95ZZbWLasv+nfhg0buOOOOxJjDMNg2rRpiYTG+5ebnHXWWZx11lmjfh8iIu/nOH3YTu/enVIG2leN4Tg9ScddVhHpaacDpx/qEGUQrX01dEfryfZMT9oxx2X6yXRPpiOyhfbIuxT45qYwysND1I5SH2ohHI+Q5vJR6i8csV1TpgRK+GjJUTzV8gb1ff3LVh3HId2dxjH5Czkyf96IvI5MLEp4iIjIsDmOg23biV1PnnzySa6//npqa2vZs2fPgOvXrl2bSHgcffTRXHvttYkER0VFBWlp+uZGRMYuw/BhGmnYTg+QM+C848QBB8NQg8+xpK1vAy7DN+j2wJbpAcehM7xNCY8P4DgOtV1beaVtHc3hdmzHxm26KPUXckz+IiaP0M4pczKnMCVQwrbgbrpjQTyGm6mBErI92hLZxsAe4hKVoV4/HinhISIiH8pxHBoaGgbd7vW2227jkksuSVz3/PPPA2CaJjNmzKCqqirRPPS4445LzFlVVcVNN92UkvsRERkOw/Dg9iwjFHoI0ywcsKzFjjdiWgW43ZUpilAGE3ciH9h81TBM4k5kFCM6/NR2beVvDc9j41Dsy8NtuumLh6kLNvDnSBdnlZ1IWVrhiLyWz/JQmTl1ROYSUcJDREQSHMdh9+7duFwuior6G4O9+OKLnH766XR2dg46pqamJvHrxYsXc++991JVVcWcOXPw+XyjEreIyIdxnAhOvAmwMazCRAPRofJ6jyIWfYdobBOWVYxhZAER4vEmDGx8vrMwzawRjV0OTrq7jM7I9kHPOY6N7cQIuCZuM8wPE7WjvNz2Ng4Opf73+s74LC/lacXs6G3gtT01lPoL1EfrEHIcA8cZYtPSIV4/HinhISIyATmOw65duxKVGu+v2ujq6uIb3/hGYqeTsrIyOjs7sSyLmTNnJm31Wl1dzezZsxPzZmdn8+lPfzpVtyUiMoDjxLEjzxMPP48TbwYcDDMX07MCy3c8hjG0RpWWlUcg/XL6Qn8hElmH7bSBYeGyyvD6TsTjWXFobkSGrcA3l6bQG4Ri7Um7sTiOQzDWhM/KIc+nqpz92RVqpiW8h2Jf3oBzhmGQ58lie3A3HdFucjyZKYhQZP+U8BARGcccx2Hnzp3U1NSQk5PDihX9b8Q3b96clKh4P8uykvpvlJeX89ZbbzFnzhy8XnWwF5HDh+M4xEN/Jh5+DPBiWAWACXY78dDvcewmXGmfwjDcQ5rXsgoJpP8TvngTtt2OgRvLNRlj7+4fMrZkeaYyOXA8dcEn6Qh34rUycXAIxzvxmOlMy1yJ3zXww7z0C8cje3t2DP73xGO66Y71Era1LEjGHiU8RETGiWg0ypo1a5IqNtavX093dzcAF1xwQSLhMX36dNLT0ykvLx9QsTFr1qykxIZhGMyfPz8l9yQicjCc+Hbi4acxzDwM871v9rFKwcjEibyM456P4VkwrPktqwjL0lKIsc4wDMrTjyfgLqYptJauSB2mYVCatpyitEVkeaamOsQxLeDy4zJd9MXD+KyBX3yE4mG8poeANbxlYnJgnL2PoY6Z6JTwEBE5jNi2zY4dOxIJjby8PC6//HKg/5vMs846i1gsljTG5XIxe/ZsJk2alDi2r4rD5dKPAREZv+zIO+AEwSgfcM4w07HjDvHIm5jDTHjI4cMwDPJ8FeT5KrCd/p+TpqGfgQei1F9Aia+A+lATk/xFSX06bMdmT6SLpblVZLgDKYxSZHD6Wy4iMoY5jsMtt9zCunXrEhUbvb29ifNHHHFEIuHh8Xg444wz8Hq9iYqNqqoqZs2ahds9sAxVyQ4RGe8cux0Mz34bKRpmGtitoxyVpJoSHUNjGRbHFiziz7ufoa63gVxPFl7LQyjWR3uki1J/AUtztaXvodZf4THEpqWHJpTDiv62i4ikUDweZ/v27UnbvPp8Pn7+858D/d9I3X777Wzbti0xxuPxMGfOHKqqqli2bFnSfH/4wx9GM3wRkTHNMDOA6H7PO04fhnZUEflQUwKlfLzsI7zWXkNdsJHuWBCv6WVJbhXLcueS59XfIxmblPAQERkFjuMkfcP45S9/maeffpr169fT19eXdG1ubi4/+9nPEtf/y7/8C+FwONFjY8aMGarOEBF5H8exgQjgxjCsxHHTXU08/DSO3b03+fH+MWEgjulZOJqhihy2ytOKmeQvoiPaTTgeIc3lJ1PLWGSM0ztmEZERFI/H2bp1a1LFxr6tXrds2ZK4rqamhjfffBMAr9dLRUVFUvPQ9ydI/u3f/i0l9yIiMtY5di/x6KvEwy/j2B0Yhg/TswyXZxmGlY/hmonpWYYdfg6cXDDzAAOcPTjxZkzPQkz3vFTfhshhwzAMbT2bIrZjYDtDW9Iy1OvHIyU8RESGIRaLsWPHDmbMmJE4dsUVV/CrX/2KcDg86Jg9e/aQk5MD9CcxPve5z1FdXc20adNUsSEiMkSOHSTaew92ZC0YfgwjHcfpJh56CDvyBu70f8K0SnGlnUfcyMCOvooT3wI4GEYWpvcjuPxnYBi+VN+KiIgcInqHLSLyAWKxGFu2bKGmpiapamPjxo1EIhF6enoIBPrLOT0eD+FwGJ/PR2VlZdJWr1VVVWRlvbe+9ZRTTknVLYmIjGmO40B8J070HbCbwQhguCvBNRvD8CSui4Wfwo68geGankhaGIBjFuHE3yUWegh34HMYhg9X2lk49vE48V3g2BhWCYZVkKI7FBEZOgdjGE1LVeGhhIeICBCNRtm8eTM1NTV8/OMfx+Ppf1N91VVX8T//8z+DjvH7/ezYsYOqqioA/v3f/53/9//+H1OmTMGyrEHHiIwWx3Go7+ri7aYmmrq78bvdVBYUUFFQgFcVRTJGOY6N07cGwk+C0w14gBhO5DlwzYO0T2GY6ThOCDvyCpjZAyo0DMMCsww7uhknvgPDNbX/uJmNYWaP9i2JjHkdkS629OykM9qD23QxJa2UsrQiLMNMdWgiB03veERkwtm5cycvv/xyUsXGpk2biEb7O/m//fbbzJvXv6a7srKStLS0xBav79/uderUqZjme28Gpk6dmorbERnAcRye2LqVxzZvpiscxmtZRG2b5+rqqCoo4IL588n2+1MdpshA0Tcg/CgYGWDOhn3Nnp0QRN/ACfkh7QIcux3H7sIw8wefx0gHZzeO3QpMHa3oRQ6prmgvHZEgbtOi0Jd90AkJx3FY17mJ51reoDPWjYmJ7di8Yr7NrIypnFx0JGkuLfkaK1ThMTxKeIjIuBSJRHj33XcTCY0rrriCSZMmAfCrX/2Kr371qwPGBAIBqqqq6O3tTRz7/Oc/z5e//OWkxIbIWPd2YyN/2rCBgMfDnLy8RAPcvliMt5ua8NbW8pnFi5N2DhJJNcexcSIvggNY/5DIMPxgFkN0HdiN9L+FNdn/lrP23mSJ3urK4a8jEuS5llpqOuvojYVxGRalabkcmV9BZeakYf9bvi1YzxNNL2MYBpP9pZh75wnF+3in811chsXpJcfqZ4Uc1vRTQETGhXfeeYff/va3iaqNd999l1gslji/cOHCRMJj0aJFLF++fEDVRnl5+YDEhtfrHdX7EDlYjuPw4s6dxB2HwkDydoE+l4tJGRmsb26mrrOTKdnZqQlSZDD2Hojt3ruTyiCMrP6eHvFdGO4lmK5p2LH1GGbWgEsduwXDzMN0TT/EQYscWl3RXn5b9xxbehrJ82RQ4s8hasfZEWxmd287HytbxqLcof85dxyHtzs2ErajTE4rTjrnt3zke7J5t2cHy8JzKfDljtTtiIw6JTxE5LAQDofZtGlT0lavX/rSlzj22GMBqK2t5Vvf+lbSmIyMjERCo7j4vR/mK1euZOXKlaMav8ho6YlEqOvoIG8/S1bSPR52d3ezSwkPGXOcvY8P+jbZoH+XFRPLexx2bAt2bCeGVYphWP0NT+02sLsw/R/HMLV9phze3mjfwtaeJqYFinCZ/f3B3KaLKa5Cdofaeap5HbMzywi4hvYFTW+8j12hJrLd6YOeT3el0RbqZHdfixIeY4Tj9D+GOmaiU8JDRMast956ixtvvJHa2lo2b95MPB5POr9ixYpEwmPJkiVcfvnliQRHdXU1ZWVlKsOUCcdxnA/8yGgYBhgGeg8kY46ZDVYRxHaBmTHwvNO9d2lLSf/l7nm4084n1vcXnNjmvX+mbTCzsHwrcflOHsXgRUZe1I6xds82Mtz+RLLj/Qq9WdT1trK1p4F52VOHNLft2DiOs98lu4ZhYGBgO/ZwQhcZM5TwEJGUCIVCbNy4Malio6amhquvvprPfe5zAMTjcR566KHEmKysrKQlKCef/N6b2RkzZvCLX/xi1O9DZKxJ93opy8xkc1vboI1JeyIRfJZFacYgHyhFUsgwXOBZgRO7D+xOeP9SFScCdgO4l4I1ae/1Bpb3SEx3FXa0FsfpBMOP6ZqDaRXv51VEDlxHpJHdvbW0RnZiYlLgnUZpWiUZ7v0suxphoXiEUDyC3/IMer4/CeLQE+sb8txpLj+53iwaQ62ku9IGnO+Lh3EbFnme7CHPLYeGjYE9xCakQ71+PFLCQ0QOqVAoRCgUIje3vxxy48aNfOxjH2Pr1q3Y9sBvDd5+++3ErysqKvjv//7vRMVGSUmJKjZEPoRpGKwoL+fdtjbaQyFy35f0iMbj7OrsZEFJCVNzckb8tTsjfdS0N9EZDuGxXMzOzmdSIGvQv7d7wr10R/vwudwUeNP1d3sCcByHeHwXtt2KgQvLNQ3T/Idyes8yiDdC5FmINfdXdBABJw7uCoy0swb8WTHMLCzvkaN3IzIh7Ayu452Ox+mLd+Mx03BwaAlvY0fvWhbknE6Rb8Yhj8FruvGYLsLxKLgHno/vrb7YX0Lkg1iGybysWdSHmgjGQgRc7/2siDtxmsJtTA2UUZZWNOz4RcYCJTxEZET09vayYcOGARUbW7du5Qtf+AK33XYbAEVFRWzevBmAnJycRDJjX+XGvu1gAdLS0rj66qtTcTsih7XFpaU0dHfz5NattPT2kuZyEYnHiTkOs/PzOa+6OtGNf6S82rSTP21fT3OoBwOwgXSXh2VF5Zw9vRqf1f+WoznUzZONG3lnz2764lHcpouZmQUcXzSLGZkFIxqTjB3xeCO9vX8gFl2P4wQBE9MqwOs9Hp/vxP7qDvZWefjPAnclTvQtiDeBEcDwzAdXNYY58JtokZHWGWninY7HsYmT752aSLI5jsOeaD3r9jxGZsGF+F2HtkeM13IzL3sKTzatI8+bgfkP29C2hbvI9qQzPX14FU3VWTNp6mtjbcdG2iOdpFk+ok6MPjtMqa+Qk4qOPOitb0VSTQkPERmS3t5e1q9fj2EYLF68GID29nby8/P7m8UNYseOHYlfZ2dn8/TTTzNnzhwKCwv1ra7IIWAaBmfMmcOc/HzWNjbS0N1NmtvNvKIi5hUVEfAM/dvAD7J+TzMPbH6buG0zMzMPyzRxHIeOSB9P7tqC2zQ5d8Y8mkPd3L35RXYG28n3ZVDsSaMvHmVt+y6297Rx0fQjmJ2lbxPHm3i8jWDP/xCNbcWySjGNSUAc224m1Ps7HKePtLSPJ643DLO/msNdkbqgZUKrD9XSF+8i3zst6X2KYRjkuEtpjeygse9dpqUvOeSxLMmdybvdu9kWbKbQm0W6y0fMidMS7iJqx1lZOJdM9/ASgZZhcWLRcqYGyqjt2kpruJ0cy8ucjKnMyZhGhjvw4ZPIqHEwcIa4RGWo149HSniIyKBs2+aNN94YULGxfft2HMfhox/9KH/5y18AyM3NJS8vD8dxBlRsVFVVUVhYmDT3cccdl4pbEplQTMNgdn4+s/PzD+nrOI7D8w3b6Y1FmJX13msZhkGO10/csXmlaSfHlU7n6cZN1PW0MyurMPGtoddyken2sbW7lUfra5meUYBrP0305PAUCb9MNLYFl2t2opIDXFhWKXFaCIefxutdgWUVfuA8IqOlPbwLj5k26JcyhmFi4qIj0jAqseR5M/jk5KN5vPFttvQ00BLuxDRMCr1ZHJlfweJhbEn7fpZhMStjCrMypoxQxCJjixIeIhNcT08PtbW11NbWYhgGl156KdD/YeXEE0+ku7t7wJiCggKysrKSjm3evHnAMREZ/zojfbzb0Uq+d/BvGHO9aWzubOXttt2s27ObAn/GgBJpwzAoTctmR08723vamKmlLeOG48SJRF7BNDLfl+x4j2nmE49tJBqtVcJDxgzDMHA+YC8rBxuD0UvMFvqy+dSUY2nq66AjGsRtWExKy8drDdLYQ8YtVXgMjxIeIhPMvffem1S5UVdXlzg3Z86cpITH8ccfT09Pz4CKjYKCgR9GlOwQmZhito3tOFiDbJkI7O0VYtAT7aMvHqXQM/juMH6Xm5gTpzs69N0GZCyL4DghDGPgjkGw74MlOE5odMMS+QAF3uk0h7biOM6AKg/biQMOud5JoxqTYRgU+3Mo9o98w2mRkbRz504uvvhimpubcblcXH/99Xzyk59MWTwpT3jcfvvt/Nd//RcNDQ1UV1dz6623cuyxxw567e9//3vuuOMO1q5dSzgcprq6mhtuuIHTTjst6boHH3yQ66+/ni1btjBjxgz+8z//k3POOWc0bkck5bq6uhIVGzU1NfT29nLHHXckzn//+9/nzTffTBpTXFxMVVUV8+fPT/rh/qc//WlUYxeRw0+mx0euL42WUA+ZHu+A872xCG7TpCSQibvdoi8exTfIt5KReAzTMEhzjWx/EUk1L6aZRSzegMnArTwdJw6AaR7a5o8iQ1GaVsGO4Fr2RHeR7S5LNAuNOzH2RHaR7SmlyDczxVHKROM4/Y+hjhltLpeLW2+9lYULF9Lc3MzixYv56Ec/SiCQmp4wKU14PPDAA1x99dXcfvvtHH300dx5552cfvrp1NbWMnny5AHXP/PMM5xyyil85zvfITs7m7vuuoszzzyTl19+mUWLFgHw4osvsmrVKr797W9zzjnn8NBDD3H++efz3HPPsXz58tG+RZFRccstt7BmzRpqamrYtWtX0jmPx8OPfvQjXK7+v+6rVq3i2GOPTarY2LdlrIjIUHksixVFk3lg81sEoxEC7vcSFnHHZldPF3OyC1icN4kNXQ281lpHlts/4FvTxlAXpf4spqUP/FAshy/DMPF4VxAL/hrHCWMYyUkxO96AZeXjdlenKEKRgdJduSzMOZ239/yNtsgOTPor2Bxssj0lLMz5KF7rvWV8UTvCrlAdu3p3ELEjZLlzmBqYTp6n4AObs4fjUcJ2FJ/lwWOm/HtokRFRUlJCSUkJAIWFheTm5tLe3p6yhIfh7G9bhVGwfPlyFi9enPTtc2VlJWeffTY33XTTAc1RXV3NqlWr+MY3vgH0f5jr6urir3/9a+KalStXkpOTw3333XdAc3Z1dZGVlUVnZyeZmfrGQVKro6MjqWlobW0tO3bsYP369Zh7G/udf/75/Pa3v02MKS0tTUpoXHLJJfh8vlTdgoiMc33xGPdtWsurzTuxDJNMt5ewHacr0sfkjGwunbOE8oxstve08cvNL7En0kupP4s0l4dwPEZjqAvTMDh/6hKW5A/8wkMOb7YdJBj8HyKRNzHNPEwzG8eJYtvNgEUg7Xy8PjWzlrGnL95NY2gzHZEGDMMk11NGkX8mHvO9JVrBWA/PtjzOzlD/jnQWFlEnit/ysyB7KfOzFg9IerSHu3l9z7vUdG4nEo/hszzMy57K4txZZGlnlMPKaHxu3Pcav9t4N4GMoe3IE+zu5bw5lw0pvmeeeYb/+q//4vXXX6ehoYGHHnqIs88+O+maA12l8dprr3HZZZfxzjvvDCnukZSyVGIkEuH111/n2muvTTp+6qmn8sILLxzQHLZt093dnfTt9IsvvsiXv/zlpOtOO+00br311v3OEw6HCYfDieddXV0H9PoiI2nPnj1kZ2cnfih+4xvf4Be/+AUNDYN3Ad+5cydTpvR31P7MZz7DKaecQnV1NZWVleTkaH2niIwen+XigtkLqcgp4OWmnbSGgmR5fJxQNoMjisop8Pe/gZ+ansdF04/g0foatve0E7ajuAyLkrQsTiyew+K88hTfiRwKphkgEPgnLKucSOQV4vEGDCxcrln4fMfjdi9OdYgig/JZGUxNXwQsGvS84zi81PYsO3q3Uugtxm16Ese7Yp28vuclMt1ZTAu8t/ylua+DB3c+S31vK1meAD7LQ188zOONa9nS08C55ceQs59eRzLRDb1pKcNoWhoMBlmwYAH/9E//xLnnnjvg/IGu0mhra+OSSy7hF7/4xZBjGEkpS3i0trYSj8cpKipKOl5UVERjY+MBzXHLLbcQDAY5//zzE8caGxuHPOdNN93EjTfeOIToRYavvb19QMVGTU0NjY2N7N69O1ECFo1GE8mOSZMmJVVsVFdXU1xcnJhz5cqVKbkXEZF9vJaLI4unsKJoMlHbxmWaexuWJpuRWcBVGcdR19NOdzSMz3IxNT0Pj6Vy7vHMNDNISzsHn+9kbLsdAxemVYxhDN7sVuRw0BppZmfvdnI9+YlkB/Q3GM1yZ9PYt5tN3bVMTZvR36DXcXiq6S12h9qYml6c2LEqw+0n15PB9mAjz7XUcGbZilTdkginn346p59++n7P/+AHP+Dyyy/niiuuAODWW2/lb3/7G3fccUdilUY4HOacc87huuuu46ijjhqVuPcn5e8u/rHEa7BuyIO57777uOGGG3j44YcpLEzexmyoc1533XVcc801ieddXV2Ul+tbJjk4bW1t1NbWsnjx4sSateuvv57/+I//2O+Yd999N5HwuPzyyznrrLOorKzUDigictgwDAOP9cEfYi3DZFpG/ihFJGOJaWZgmvr2WsaHtnALESdMnjn4Vtrprgxaws2E4r2kuQK0hDvZ2tNAgTdrwPbclmmR68lkQ1cdxxbMI9ujpS2SzHEMHGeI29Luvf4fVzB4vV683oGNxj/MgazScByHyy67jBNPPJGLL754yK8x0oaU8HjllVdYsmQJ1t43Mv+YSAiHwzz88MNJFRf7k5+fj2VZAyovmpubB1Ro/KMHHniAyy+/nN/+9recfPLJSeeKi4uHPOdw/wcXgf4eG2+99daAio3m5mYAnn32WY455hgApk6dCsCUKVMGVGxUVFQkra2bOXMmM2eqA7iIiIjIWLa/L1YNDOC9domd0SC98TCFvuxBr093+WkMtdMZDSrhISPqH7/M/+Y3v8kNN9ww5HkOZJXG888/zwMPPMD8+fP5wx/+AMD//d//MW/evGHFfrCGlPA48sgjaWhoSFRUZGVlsXbtWqZPnw70f/D79Kc/fUAJD4/Hw5IlS1izZk3SlrFr1qzhrLPO2u+4++67j8985jPcd999nHHGGYPGuGbNmqQ+Ho899ljKS2nk8Nfc3JxIZnz0ox9l2rRpANx7772sXr160DFTpkxJyqiuWrWK888/n4wMfbslIiIicjjL8eThNrz0xUP4LP+A88F4N8W+SYlzbsPCZVhEnRgeY+D23DE7hmWYeEwt9ZKRtXPnzqQvVg/2y/4PWlFxzDHHYNv2Qc0/koaU8PjHDV0G2+BlKJu+XHPNNVx88cUsXbqUI488kp/97GfU1dVx1VVXAf1LTerr67nnnnuA/mTHJZdcwm233caKFSsSWSS/358o+f/Sl77Ecccdx80338xZZ53Fww8/zN///neee+65odyqTHB1dXX88Y9/TKraaG1tTZy/6667EgmPuXPnMnXq1KRqjaqqKiorK0lPT0+a9x+fi4iIiMjhqcBbRJl/EtuCWyjyluB639ayPbEuHGB2RiXm3uUrpWn5FPiyaA13UeofuAV3a6SLSf4CCn1qPi8D2XsfQx0DkJmZOSK7yBzMKo1UGfEeHgfSf2OfVatW0dbWxre+9S0aGhqYO3cujzzySGLniYaGBurq6hLX33nnncRiMVavXp30jfqll17K3XffDcBRRx3F/fffz9e//nWuv/56ZsyYwQMPPMDy5ctH5gZlXHAch6ampqSExnnnncdJJ50EwIYNG/jCF74wYNy0adOorq6moOC9tZrHHXcc27ZtG7XYRURERCT1TMPkyLzjiNgRdvftwsTEZbiI2GE8ppcFWUuZHpiVuN5juliRV8mfd79EU98e8vf28ojbcZrDnViGyfL8igH9PUTGiuGu0killDct/dznPsfnPve5Qc/tS2Ls89RTTx3QnOeddx7nnXfeQUYm4822bdu4+eabEwmO9vb2pPP5+fmJhMfcuXM588wzkyo2KioqEs1HRURERkIo1klzeAuReC9u00eBbzoBV26qwxKRA5ThzuKUojPY0buNnb3bCNthcjy5TE2bSbGvdMCXwQtzZhBz4jzX8g47g8049Pf6yPVmcHzhfKoyJw/+QjLhOcPYlnbo29hCT08PmzdvTjzftm0ba9euJTc3l8mTJ3/oKo2xZsgJj9ra2kQJi+M4bNiwgZ6eHoCkkn+R0eQ4Dg0NDQMah5577rmJfi62bXPnnXcmxpimyfTp0xMJjVNOOSVxrrS0lD/+8Y+jfh8iIjIxOI7D9p5X2dLzAqFYJxgGOA5eK4OpgaXMzDwaU1u2ihwWvJaP2RmVzM6o/NBrDcNgWd4cKrMms7Wnkb54hIDLy7RACWkubaIgqffaa69xwgknJJ7v281036qKD1ulMdYMOeFx0kknJfXp+NjHPgaQ2Ft6KEtaRIbKcRxCoRBpaWkANDU18YlPfILa2lo6OjoGXP/+jsRTp07l61//OpWVlVRVVTFnzhz8/oENpkRERA61+tA7rO96HJfhIc87BcMwcRyH3vgeNnU/jcv0Mj3j8FmO6zhxIrHt2E4Q00jD45qKYaS8kFhkzEp3+ZmfPS3VYchh5GC2pR2Kj3zkIx/al/ODVmmMNUP6SaQ+BTJaHMdh165dAyo2amtrOeeccxLLnXJzc3nllVeIxWKYpsnMmTOTmocuWrQoMadlWXz7299O0R2JiIj0s504O3peAyDD/V5PKMMwCLhyiTsx6oKvUx5YgNv0pSrMA9YXWU9X6BEi0W04Th+G4cXjnkqG/3T8nrmpDk9ERCawISU8xmqZihy+HMdh586ddHd3U11dDUA0GqWwsHDQig2A9evXJ37tdrt56KGHmDx5MnPmzDnoLZZEREQOte5oM13Rpv326gi4cumI7KYjspsC3/RRjm5o+iIbaO/5X2y7G5dVimGk4TghItGttMfuJi/jMnxKeoiISIoMKeHR3t5Ob28vkyZNShyrqanh+9//PsFgkLPPPpsLLrhgxIOU8WHHjh2DVmz09PRw9NFHJ7YOdrvd5OXl0dPTw6xZswZs9zp79uykefctqxIRETkc2E4cx7ExGbxHh4mF49jYTnyUIxsax7Hp7nuMuN2JxzU7sazZMNJwGzOIxjbTFXoMr7sSQ/1IREQOirP3MdQxE92QEh6rV6+mpKSEH/zgB0D/frvHHnsspaWlzJgxg8suu4x4PM7FF198SIKVsc+2berq6qitraW7u5tVq1Ylzh177LHs3LlzwBiXyzVgndiTTz5JUVERHo/nkMcsIiIymvyubLxWgLDdg8scWOXRZ3fjsdJIc2WPfnBDEI3XE4lu2VvZkbxO3DAMXFYpkeg2orE6PG71KhARkdE3pITHSy+9xF133ZV4fs8995Cbm8vatWtxuVx8//vf5yc/+YkSHhPIE088wWuvvZao2Fi/fj3BYBCAoqKipITHwoULyczMHFCxMWvWLNxud9K87282KiIiMp74rHRK/NVs7n4Or5mOy3wvuW87MXpibZSnLSDdlZ/CKD+c7fRiO2FcxuB9RgzDj0MY2+kd5chERMafg9mWdtmyZViWxerVq1m9evWhCG/MGlLCo7GxkWnT3svQP/HEE5xzzjm4XP3TfPzjH+emm24a2QglpWzbZtu2bYmERkNDA7fddlvi/Le//W2eeuqppDFut5s5c+ZQXV1NJBJJVGk8/PDD2sVHREQEmJ6xgu5YE82hzbhNH27TT8wJE44HyfVOYXbm8Sn/mRmOt9EZrqUv1oxpuMnwzCDDMxvT6P+SwjIyMA0fttOLZWQNGG87QQzDh2lmjHboIiLyPq+++iqZmZmpDiMlhpTwyMzMpKOjI9G89JVXXuHyyy9PnDcMg3A4PLIRyqj71a9+xd/+9jdqamrYsGEDoVAo6fx//Md/kJHR/+Zl5cqVFBcXJ1VszJw5M5EEe79Uv3ETEREZK3xWOotyzmG3r4Zdvevoi3fjt7KYmX4MZYFqfFZq35i2971BffefiNjtGFg42DSHnibTPZvJmavwWNm4rBK87jmEwq9jujOTfs47jkMsvhu/Zx5uS1WbIiKSGkNKeBxxxBH88Ic/5Oc//zm///3v6e7u5sQTT0yc37Rpk5YijHHxeJytW7dSW1ubtAzlueeew+/3A/D000/zq1/9KjHG6/VSUVGRSGjE4+81UfvKV74y6vcgIiIyHnisNKamL2NKYClxJ4pluDAMM9Vh0RPZws7u3+M4NunumYmY4nYfnZEadnY/yPSsyzAMi8y00/f28tiAy1WMYQRwnF5isQZcVgEZ/tP1hYeIyAhwHAPHGeKSliFePx4NKeHx7W9/m5NPPplf/epXxGIxvvrVr5KTk5M4f//993P88cePeJAydLFYDNM0Mc3+Nyk//elP+elPf8qGDRsGrcLZtGkTCxYsAODcc89l2rRpiQTH9OnTsSx1VxcRETkUDMPAZYydJt1tfa8Ts3v2Jjvee7NsmT78rnK6IpvoiW4nwzMDj2sqeRmfpbv3Mfqi63GcdgzDi9+7jAz/KXjdY3tbXRERGd+GlPBYuHAh69ev54UXXqC4uJjly5cnnf/Upz5FVVXViAYoHywWi7F58+akbV5ra2vZsGEDb731FhUVFQB0dnby1ltvAeDz+aisrExahjJ16tTEnCtXrmTlypWpuB0RERFJIduJ0h3ZiMfMHrQyw2WmEYqF6Y3tJMMzAwCPawq5GVcQs5ux7R5MM4DLLFJlh4jICNK2tMMzpIQHQEFBAWedddag584444yDDkgO3O23386Xv/xlIpHIoOdramoSCY9PfOITVFVVJZIbqtgQERGRf+Ts/T8+YGmNAeDYyccMA7dVBFbRoQ1QRERkCIaU8LjnnnsO6LpLLrlkWMHI0BQWFhKJREhLS6OysnLAdq/vr9qYNWsWs2bNSl2wIiIiMuaZuElzldMZfgevlTfgfNwJg2HhdRWmIDoRkYnrYLalnciGlPC47LLLSE9Px+Vy4TiDF8gYhqGExyg59dRT2bp1K1OmTEn06hAREREZLsMwyPMvpSuynki8HY+VmzjnOHFC0Z0E3FPJ9MxJYZQiIiIHZkgJj8rKSpqamrjooov4zGc+w/z58w9VXHIAMjMzJ+x+yiIiInJoZHmqKUo7kebep4jE27HMAI4TI+6ESHNNojzjE5iGO9VhioiIfKghlQXU1NTwl7/8hVAoxHHHHcfSpUu544476OrqOlTxiYiIiMgoMgyTksBpTM/+DHn+I/GauaS5yinP+AQzsq8gzV2e6hBFRCYcxxneY6Ib8jqI5cuXc+edd9LQ0MAXv/hFfvOb31BSUsKFF1446HanIiIiInJ4MQyDTM9spmSeT0XeNczOXU1h2vF4rJxUhyYiInLAht34we/3c8kll3DjjTdyxBFHcP/999Pb2zuSsYmIiIiIiIhMePualg71AbBs2TKqqqr4yU9+kuK7GH1D3pYWoL6+nl/+8pfcddddBINBLrroIu644w5ycpT1FxERERERERkrXn311Qnb+3FICY/f/OY33HXXXTz99NOcdtpp3HLLLZxxxhlYlnWo4hMRERGREWQ7UfaEa2nre4u+WAsuM0Cebz653nm4rYxUhyciIjJihpTw+NSnPsXkyZP58pe/TFFREdu3bx+0LOaLX/ziiAUoIiIiIiMj7kTY0fUHWkKvAw4uM0BfvJ2uyLu0ut9kRtYqfK78VIcpIiL/wHEMHMcY8piJbkgJj8mTJ2MYBvfee+9+rzEMQwkPERERkTGopfdlmkOv4HeV4DYDieO2E6M7spW6nr8wK+sSDENvkkVE5PA3pITH9u3bP/Sa+vr64cYiIiIiIoeI7URpCb2GZfiTkh0ApuHC7yqmM7yZ3lg9AfekFEUpIiKDcfY+hjpmohv2Li3/qLGxkS9+8YvMnDlzpKYUERERGVNsJ05TXx3rOp7njfYn2Nj1Oj3RjlSHdUDC8T2E4+14rOxBz7vMdOJOL6FY8+gGJiIicogMKeHR0dHBhRdeSEFBAaWlpfzwhz/Etm2+8Y1vMH36dF588UX+93//91DFKiIiIpIy4XiIl9r+ylNND/J2x3Ns6Hqd19r/zprG+9jc/RaOM7a/SzOwABPHsfdzhQOOgWGM2PdhIiIyQg5mW9qJbEhLWr761a/yzDPPcOmll/Loo4/y5S9/mUcffZS+vj7++te/cvzxxx+qOEVERERSxnEc1nY8w9aed8h1F+G1/HuP23RG23lzz1P4rXTK0makONL981o5BNxldEe24hlkN5aI3YHbyiTgmpyC6EREREbekFL4f/nLX7jrrrv4/ve/zx//+Eccx2H27Nk88cQTSnaIiIjIuNUVbWNX77tkufISyQ4AwzDJ9uQTc6Js6Vl3SKo8onaQ5tA66oMv0xxaR9QODmsewzApTFsOGIRizUmxRu1u+mKt5PsW4nPljlDkIiIiqTWkCo/du3dTVVUFwPTp0/H5fFxxxRWHJDARERGRsaIt0khfPEiWN2/Q8+lWFq3h3fTFg/hd6SPymo7j0BR6kx09T9EbawUDDAf8rnwmpx9HsX/JkHdTyfXOJ5LRxe7gk3RH3wUsHCeOZfooSltBWfopIxK7iIiMLMfpfwx1zEQ3pISHbdu43e7Ec8uyCAQCHzBCRERE5PDX3/fC2G+CwTD6e2PY7K8/xtC19L3Du51/wjBMsjyTMQ0XthOjN9bCu51/xjRcFPkXDmlOwzAoCRxLtncOHeENhOMduEw/WZ6ZpLunqH+HiIiMK0NKeDiOw2WXXYbX6wWgr6+Pq666akDS4/e///3IRSgiIiKSYhnuXFyGm3A8lLSkZZ/eWBc53kJ81sh8EWQ7MXYFX8DBJsNdljhuGi7S3SV0RXaxq+dFCnxzMY0hvZ0DwO8qxO8qHJFYRUTk0BtOE1I1LR1iwuPSSy9Nen7RRReNaDAiIiIiY1G+t5RC3yR2h7ZSaE7CNKzEub54kDgxpgXmYr3v+MHoiTbSE23A78of9Hyaq4BgrJHuaD1Znikj8poiIiLjzZASHnfdddehikNERERkzDINk8U5JxCx+2gO78JjerEMN2E7hIHBzPSFTEuvHrHXizsRbOJYhnvQ85bhxnZixJ3oiL2miIiMT8uWLcOyLFavXs3q1atTHc6oGnoNpIiIiMgElOXJ59iCs9nZu4m63o1E7TBFvslMDlRQ6p8+YtUdAD4rG7fhJ2L34LOyB5yP2N24zDS8VtaIvaaIiIxdB9O09NVXXyUzM3PkgzoMKOEhIiIicoDSXBnMyVzCnMwlh/R1/K5c8nwV7O59BY+ZkbSExnbi9MZaKPIvJs1KXvISiQcJxhr3xlqA15qYb3BFREQAUt6K+/bbb2fatGn4fD6WLFnCs88+u99rGxoauOCCC5gzZw6maXL11VcPuObuu+/GMIwBj76+vkN4FyIiIiIja0r68WS5J9MR2UYw1kwk3k1vrIWOyFYy3JOYmnFCYteYuB1mW/fjvNH2U95qu4u32v6XN9p+ypauvxG1Qym+ExEROXhGonHpgT5Q09LUJjweeOABrr76ar72ta/x5ptvcuyxx3L66adTV1c36PXhcJiCggK+9rWvsWDBgv3Om5mZSUNDQ9LD5/MdqtsQERERGXF+Vx7VOZ9mWvpJuAwfUTuEabiZkn4i1TkXkOYqAPorPjZ3PcL27r9jOxEyPZPI9JTjODY7ep7k3c4/qteHiIhMSCld0vKDH/yAyy+/nCuuuAKAW2+9lb/97W/ccccd3HTTTQOunzp1KrfddhsA//u//7vfeQ3DoLi4+NAELSIiIjJKfK4cpmWeQnn6ccScPlyGD5fpTbqmM7KdxtBaAq4iPFZ64niaKx+3GaC5bx0F4XkU+KpGO3wRERkhzt7HUMdMdCmr8IhEIrz++uuceuqpScdPPfVUXnjhhYOau6enhylTpjBp0iQ+9rGP8eabb37g9eFwmK6urqSHiIiIyFjhMr34rKwByQ6AtvBGbCealOzYx236wXFo7asdjTBFRETGlJQlPFpbW4nH4xQVFSUdLyoqorGxcdjzVlRUcPfdd/PHP/6R++67D5/Px9FHH82777673zE33XQTWVlZiUd5efmwX19ERERkNIXjXfvdvhbAMr2E452jGJGIiMjYkPKmpfuabe3jOM6AY0OxYsUKLrroIhYsWMCxxx7Lb37zG2bPns2PfvSj/Y657rrr6OzsTDx27tw57NcXERERGU1eK/MDe3TE7cigW9uKiMjho39bWmOIj1RHnXop6+GRn5+PZVkDqjmam5sHVH0cDNM0WbZs2QdWeHi9XrzegSWiIiIiImNdnreC3cFXiMS78VgZSeeidi+GYZCv/h0iIjIBpazCw+PxsGTJEtasWZN0fM2aNRx11FEj9jqO47B27VpKSkpGbE4RERGRsSLbM5XitCUEY80Eo03E7QhxJ0ow1kx3tIFC/wJyvbNSHaaIiBwEZ5iPiS6lu7Rcc801XHzxxSxdupQjjzySn/3sZ9TV1XHVVVcB/UtN6uvrueeeexJj1q5dC/Q3Jm1paWHt2rV4PB6qqvq/ubjxxhtZsWIFs2bNoqurix/+8IesXbuWn/zkJ6N+fyIiIiKHmmGYzMhcic/KoqH3dXpijYCDz8qmLGMFkwJHYxopfcsnIiKSEin96bdq1Sra2tr41re+RUNDA3PnzuWRRx5hypQpADQ0NFBXV5c0ZtGiRYlfv/7669x7771MmTKF7du3A9DR0cGVV15JY2MjWVlZLFq0iGeeeYYjjjhi1O5LREREZDRZhpvJ6cdRkraM3lgTAGmuAtxmIMWRiYiIpI7hOGpl8o+6urrIysqis7OTzMzMVIcjIiIih1jcibM7VE9ruBkbh1x3LpPSJuM297/7iYiITGyj8blx32vcvvZB/BlDS2KHuoN8buG5E/pzreobRUREZELrjHbwXMvT1IfqiTsxwMA0TAq9hRxTcDwF3sJUhygiIiLDkPJtaUVERERSJWJHeLr5SXb07iDXk0eZv5wy/yTyPQU09TXyVPPjBGM9qQ5TREQmODUtHR4lPERERGTC2tlbR0OonmJvMR7TkzjuNt0U+0ppDbewLbg1hRGKiIgcnGXLllFVVTUhN/LQkhYRERGZsHaHdoEBrkF6dZiGidvwsCO4nblZ81MQnYiIyMF79dVX1cNDREREZKKJ2TGMDyh4NQ2TmBMdxYhEREQGcjBwMIY8ZqLTkhYRERGZsHK9ecScKPvbtC5sh8n3qGmpiIjI4UgJDxEREZmwpqRNI8OVSVukdUDSozPagdf0MiNjZoqiExER6ec4w3tMdEp4iIiIyISV7clmRd5RmIZJQ189HZE9dEY72B3aRcQOsyRnGUXe4lSHKSIiIsOgHh4iIiIyoc3KmEOGO5NN3RvZ1VuHg8PsjApmZcxmkn8yhqE10CIikmrG3sdQx0xsSniIiIjIhFfsK6HYV4Lt2Dg4WIaV6pBERETkICnhISIiIrKXaWi1r4iIyHihhIeIiIiIiIjIGDacJqRqWqqEh4iIiIwxPdEwNR0NbOpsJubEmZSWzfzcMor8makOTURERA4jSniIiIjImLG7t5P7t77G9p42TMPEMgxeb63jmabNfHzyfJblT0l1iCIiIqPOwcAZYhPSoV4/HinhISIiImNCOB7jN9teZ1tPG9PT83CZ/Y1DHcdhd28nD+14iwJfOlPT81IcqYiIiBwO1JlLRERExoSNnU1s72lnaiA3kewAMAyD0rQsuqN9vN5al8IIRURE5HCiCg8REREZE+p7O4g7Nh5r4NsTwzDIdPvY0NmE4zgYhsp0RURk4nAYRtPSQxLJ4UUVHiIiIjImOIn/JyIiInLwVOEhIiIiY0JpWhaWaRCx43jet6Rln+5oHwtzJ4356o5QPMiu3q009u0gZsfI9RYxOW0mOZ6CVIcmIiIyoSjhISIiImNCRVYR5YFc6nramJaRj2X0F6I6jkNjqIuAy8uS/MkpjvKD7Ym08GLr32gNN2AaLkzDoq53E5u61rIo91hmps9NdYgiIiIThhIeIiIiMib4LDfnT1vMfVtfY0t3K27DwmWa9MajZLl9nFk+l+kZ+akOc7+idoSX2/5Oa6SRQt8kTOO9XWY6o2280f40ma4cCn1lKY5UREQON9qWdniU8BARETkAjuPQ3BlkT3cvLpdJeX42Xrd+jI608kAOV805lnV76tnQ2UTEjjMlPZf5OWVMCmSnOrwP1NC3g9ZwA/mekkSyA/obrmZ78mkM1bEtuF4JDxERGVXLli3DsixWr17N6tWrUx3OqNI7NRERkQ/R2hXksTc3sXFXM8FQBNM0KcxO5+jKKSyfMwXT1DcoIynT4+PoohkcXTQj1aEMyZ5IC7YTx2W6Bz3vd6XT0FenXWZERGRUvfrqq2RmZqY6jJRQwkNEROQDdARD3Pf0m2xtbKcoO53C7AxicZuWzh4eeqmGvmiME+bPTHWYIiIiMo45zjC2pdXOZ9qWVkRE5IO8/u4utja2M704j6yAH9Mw8LgsyvKyCHg9PFuzjfbu3lSHKWNAjqcA07CI2dFBz4diPZT6pqi6Q0REZJQo4SEiIrIfsbjNm1vryfB7cVkDf2TmZwboDPbx7u7WFEQnY02Jbwr53hJaIw3EnXjiuOM4dERa8Vl+pgYqUhihiIgcrvY1LR3qY6LTkhYREZH9iMbihMIxfJ7BezLs693RGx78G32ZWNymh+V5J/Ni62O09NVjGhamYRG1w6S50lmUc5waloqIiIwiJTxERET2w+O2SPO56egJkZPuH3A+btsApPs8ox2ajFE5ngJOLDqHXb1baOirI2ZHyfUWMTltJjmeglSHJyIiMqEo4SEiIrIflmmydOYkHn6plmgsjttlJZ1v6QySk57G7DJ9kJX3+Kw0ZmbMY2bGvFSHIiIi44Wz9zHUMROceniIiIh8gMUzJzGrLJ9tTe20dQX3LnOJUteyh3A0xokLZpAV8KU6TBERERH5B6rwEBER+QAZfi8XHL+IJ9/ezLrtDdS3dWKZJmV5WRxdOZWF00tTHaKIiIiMcyrwGB4lPERERD5EVsDH2UfO5YT5M9nT04vLMinOyRx05xYRERERGRuU8BARETlAWQGflq+IiIjI6HOM/sdQx0xw+mpKRERERERERMYdVXiIiIjIuNYZ7aE93IlpmBT5cvFZ3lSHJCIiIqMg5RUet99+O9OmTcPn87FkyRKeffbZ/V7b0NDABRdcwJw5czBNk6uvvnrQ6x588EGqqqrwer1UVVXx0EMPHaLoRUREZKwKxkL8reEl7t72Z+6te4x7d/yNu7f9mZda3yHuxFMdnoiIyAFzhvmY6FKa8HjggQe4+uqr+drXvsabb77Jsccey+mnn05dXd2g14fDYQoKCvja177GggULBr3mxRdfZNWqVVx88cW89dZbXHzxxZx//vm8/PLLh/JWREREZAzpi0f48+5nebn9HUxMJvkLKfbl0RsP83jzKzzV/DqOo7eCIiIi45nhpPCn/fLly1m8eDF33HFH4lhlZSVnn302N9100weO/chHPsLChQu59dZbk46vWrWKrq4u/vrXvyaOrVy5kpycHO67774Diqurq4usrCw6OzvJzMw88BsSERGRMeGtjnf5U/2zlPrz8ZjupHOd0R764mEumLKSEn9+iiIUEZHD3Wh8btz3Gt975U/40wNDGhvqCfLvR5w5oT/XpqzCIxKJ8Prrr3PqqacmHT/11FN54YUXhj3viy++OGDO00477QPnDIfDdHV1JT1ERETk8FXbtQ2XaQ1IdgBkugL0xvvYGqxPQWQiIiIyWlKW8GhtbSUej1NUVJR0vKioiMbGxmHP29jYOOQ5b7rpJrKyshKP8vLyYb++iIiIjJ6+eJQt3U1s6mqgNdydON4VDeIzPYOOMQwDE5PeWN9ohSkiIiIpkPJdWgwjeW9gx3EGHDvUc1533XVcc801ieddXV1KeoiIiIxhccfm5ZbNvNS2mZa+LuKOTbrLR2VWKScXzyPbHWBPePCKTcdxiGMTcPlHOWoREZHhMvY+hjpmYktZwiM/Px/LsgZUXjQ3Nw+o0BiK4uLiIc/p9XrxerVFnYiIyOHi6aZa/tawDp/ppjQtB5dh0hUN8VLrZlrDPSzOLWNzzy7CdhTvID08ApafGellKYpeRERERkPKlrR4PB6WLFnCmjVrko6vWbOGo446atjzHnnkkQPmfOyxxw5qThERERk7WsPdPN+yiUyXn9K0HDymC9MwyfYEmJ5eyObuJnpiDrMzplAfaqY90knMjhG2ozT1tdEZC7I4t4JCb26qb0VEROSAOM7wHhNdSpe0XHPNNVx88cUsXbqUI488kp/97GfU1dVx1VVXAf1LTerr67nnnnsSY9auXQtAT08PLS0trF27Fo/HQ1VVFQBf+tKXOO6447j55ps566yzePjhh/n73//Oc889N+r3JyIiIiNvU1cjnZEQMzIGVm+6TIt0l5d3OnZx+YzjyPNkUtO1jYa+NgzDINeTyfE5FSzKmXPQS2hFRERkbEtpwmPVqlW0tbXxrW99i4aGBubOncsjjzzClClTAGhoaKCuri5pzKJFixK/fv3117n33nuZMmUK27dvB+Coo47i/vvv5+tf/zrXX389M2bM4IEHHmD58uWjdl8iIiJy6PTFI/2NR/eTsPBZboKxMB7Tw4lFyzgir5q2cBeWYVDoyx105xYREZHxatmyZViWxerVq1m9enWqwxlVhuOo0OUfjcZ+yiIiIjI8L7Vu5nd1LzMjvWjQpEd9bzv53ky+MOdUVXGIiMghMxqfG/e9xs0v/xl/emBIY0M9Qb6y/GMT+nNtynp4iIiIiAzH7Ixist1pSdvQ7hO1Y/TGIyzJm6pkh4iIyASnhIeIiIgcVnK96RxfWElvPMyu3jb64hGidpy2cA/belqZnVHCguwpqQ5TRERkBBk4Q3xoW9oU9/AQERERGY6jC2fjd3l4seVdGvs6sB2HgMvL8UUVfKSoinS3L9UhioiISIop4SEiIiKHHdMwWZo3nQU5k2kMdRJz4uR40sn2pKU6NBERkZHn7H0MdcwEp4SHiIiIHLbcpovyQF6qwxAREZExSD08RERERERERGTcUcJDRERERERERMYdLWmRcSHYGaRhazPxuE1+WS55JTmpDklERERERERSSAkPOaxFI1Fe+ONrvPXkO3Q0d+E4DunZacxeOpPjzz+SzNyMVIcoIiIiIiJyUByn/zHUMROdEh5y2HIch8d//Swv/+UNMnLSKZ9TimmZdLV18/pja+ls7eLcq8/An+5PdagiIiIiIiIyytTDQw5b9ZsbeevJGvJLc8kvy8VyWRiGQVZ+JuVzytiydjvrX96c6jBFREREREQOkjHMx8SmhIcctra9vYNQTx/pOYEB59xeN26Pm9oXN6YgMhEREREREUk1JTzksNXbFcK0TAxj8MylN81Dz57gKEclIiIiIiIiY4F6eMhhKyM3HTtu4zjOoEmPvmCYSbNLUhCZiMj40xTspjkUxGWaTMnIJs3tSXVIIiIiE4ez9zHUMROcEh5y2Jq5aCovPJxGR3MnOUXZSef6gmHseJzqo+akJjgRkXGiLdTLX7ZtYF1rE92RMKZhUJgW4JjSqXykfDouU8WiIiIiMjYp4SGHrYLyfI44YzHP/PZFQj195BRnY5r9u7R0t/cw79gKZi+bmeowRUQOibhts7m9ndqWZrojEXL9fuYWFjIlK3u/S/2GqisS5pe1r7O+vYWSQAYlgXRijk1Lb5AHN9fQG4tw5vTKEXs9ERERGZwKPIZHCQ85bBmGwTHnLCcjJ5031rxNy642bNshMzedpRccw/KPLsbjdac6TBGREdcXi/Lbmnd4bfduIvE4LtMkZts8uW0rx0+Zyhmz52CNQOXFa0272LCnlVk5ebhNCwC3YVGanklrKMgz9dtZVlxOSSDjoF9LREREZKQp4SGHNdM0WXTiPOYeU0FrfTuO7ZBTlIU/3Z/q0EREDplHN2/mhZ07Kc3IIMPrBcBxHPb09fHYls3k+NM4dsqUg3oNx3F4pXEXAbc7kex4vzxfGhv2tFLb1qyEh4iIiIxJSnjIuOD2uCmZVpTqMEREDrmOvhCv1u8i1+9PJDugv+ot1++nJxLhhZ11LJ80CY81MFFxoOKOQ08kjM8avFLOMAxMDEKx6LBfQ0RERA6Q1rQMizqNiYiIHEZ2dnaxp6+PXP/glWz5aWk09fTQHOw5qNexDINsr5/eWGTQ87bj4OCQ7tFuLSIiIjI2KeEhIiJyGLEdB8dxMPfTKNQAHBxs5+C+1jEMg+Ul5fTF4oTjsQHnm3t7yPb6qc5TdZ2IiMihZwzzMbEp4SEiInIYKc3IIMvrZU9f36Dn9/SFyPX7KQwEDvq1lhSWMi+/iC2de2jq7SEcj9EbjbC9aw/BWJRTJs+kwH/wryMiIiJyKCjhISIichgpCARYUFxCczBIOJZcedETidAdjrBiUjk+18HvUpXm9nBp1WI+OnU2lmFS39NFc6iXsvQsLqxYyImTZxz0a4iIiMgBcIb5mODUtPQwFOwMsvnN7XTv6cHr9zBt3mTyy/JSHZaIiIySM2bPZk9fiJrmZkzDwOdyEYrGMAw4evJkjpsydcReK8Pj5ZyZ1Zw0eSatoSAuw6QkPWPQnVtERERExhIlPA4jjuOw7tn1PP2bF2hv7EgcS88OsPCEuXxk1VG43PqfVERkvMv0+vjMosWsa2pmbWMDXeE+8tMCLCopoTK/APdB7M6y39f0eMn0eD/8QhEREZExQp+ODyOb39zGo//7BI4DkysnYVkmjuPQ2dLFC394FbfXxfGfPCrVYYqIyCjwudwsKytjWVlZqkMRERGRQ0y70g6PengcJhzH4bXH3iISilAyrRDL6v+fzjAMsguzyMgNsPbJd+jec3DbEIqIiIiIiIiMB0p4HCY6mjup37SbnOLsQc/nFGXT2dLNzo27RzcwERERERERObTUtHRYlPA4TMSiceJxe789Osy9y1vsWHyUIxMREREREZGxatmyZVRVVfGTn/wk1aGMOvXwOExk5qWTkZtOd/v/Z+++4+uo7rzxf86U23WvuqxuuVvulg3Y4NBNSUhIsg8EEifPE0iW4CQYXvv81qxhKZuE3U2WZbNg8sCSJewGQnrZOMEGAhhssC3ce5esXm+vM+f3h2yB0JXxVblX5fPmNa8XmjNz5jse2Zr71TnfE4DdZevXHvKFYbVbkF3oyUB0RERERERENBpt374dbrc702FkBEd4jBFWuxXzVlQj0B1ENBzr02YaJlpOt6Giugwl0yZlKEIiIiIiIiIaGWKQ28TGER5jyJLrFqDxeDMOvXcUVpsFDrcdsUgc/q4ASqdNwtW3r4CiMIdFRERERERExITHGGJ32vCZ1ddj6oLJ2PPWAfg6/HB6HFh64yLMXzEbOUXZmQ6RiIiIiIiIaFRgwmOMsTmsWLJyARZfMw/xaByaRYOqqpkOi4hoXOj0hdAVCEFTVZTku6Hz31ciIiKiMYsJjzFKURRY7dZMh0FENC50+UN4fecx7D/dgmAkBlURKM51Y/mcyVg8vRRCcA4sERER0ViT8YIP69evR1VVFWw2G2pqarB58+bzHv/mm2+ipqYGNpsNU6ZMwY9+9KM+7c8//zyEEP22SCQykrdBRGNMLBpHW7MXnW0+mKaZ6XAog7zBCF56fSfe2X8KuqqgvCAbhdkuNHf58cvNe7DlwOlMh0hEREQTnRzkNsFldITHyy+/jDVr1mD9+vW49NJL8f/+3//DDTfcgAMHDqCioqLf8SdPnsSNN96Ir33ta/jv//5vvPPOO7j77rtRUFCAz3/+873Hud1uHD58uM+5Nlv/pVyJaOKJRuKofecI9m4/BV93EIqioLg8F4uWT8Os+eXj5jf54WAUDac7YCQM5ORnoaDYM27ubbjVHqnH8aYOTCnOg6b2/B5AO5v4aO70483dxzFv8iS4nfw5QkRERDSWZDTh8fjjj+OOO+7AnXfeCQB44okn8Morr+Dpp5/GY4891u/4H/3oR6ioqMATTzwBAJg9ezZ27NiBH/zgB30SHkIITJrE5VmJqK9YLIE//Xwb9u44CafLhuxcFwzDQN2xVpw52YZQIIqaS6dnOswhMRIGtr91GO9vOYau9gCkKWF3WVA1oxhXfHI+cgvSuwa7aUo0tHYjFI7BbtNRWpQNdRStJpUwTOw81gCX3dqb7PiwwmwnTjR34siZNiyZWZ6BCImIiIhosDKW8IjFYqitrcXatWv77F+5ciW2bNmS9JytW7di5cqVffZdd911eO655xCPx6HrOgAgEAigsrIShmFg4cKF+Id/+AcsWrRowFii0Sii0Wjv1z6fb7C3RUSj2KHdddj//mkUl+XC5rD07ndl2dHW5MU7G/dh6qxiZOe5Mhjl0Ly9aT/e3rgPDocVZZPzoKgKgv4I9teegrcriM//nxVwZzvSEsuJ+na8se0o6pq7EI0lYNFVlBVl4/Kl0zFjcmFaYvg40XgCoWgcdouetF1RFAgIBKOxNEdGREREREOVsV+ztbe3wzAMFBUV9dlfVFSE5ubmpOc0NzcnPT6RSKC9vR0AMGvWLDz//PP4/e9/j5deegk2mw2XXnopjh49OmAsjz32GDweT+9WXs7f4hGNR/trT0PVlD7JjnPyitzwdgVx/GBjBiIbHh2tPry/5SjcHjsKij1QNRVCCLjcdlRMK0T9iTbsqz2ZllhONXTg539+H8fq25HrdmBKWR7ys1043diJX27ciSOnWtMSx8ex6hocVh2RWDxpu2makJBwWPt/zxARERGlDWt4DErGxxV/dE65lPK888yTHf/h/Zdccgm+9KUvYcGCBVixYgV+/vOfY8aMGfj3f//3Afu8//774fV6e7f6+vrB3g4RjVKmaaKzzQeHM/nqRooiAAH4feE0RzZ8Th1pRsAbTjpCRVUVOLOs2F97uudDvJRoa/ZiX+0p7Ks9hdbG7t5/T4dKSom3dhyDLxBBVWkuHHYLhBCw23RUluQiFI7hze3HYIyCYrGaqmDhtFL4Q1EkjP7xtHmDyHHZMaOsIAPREREREdFQZGxKS35+PlRV7Teao7W1td8ojnMmTZqU9HhN05CXl5f0HEVRsHTp0vOO8LBarbBaucQr0XgmhIDdaUVna/Ipa1JKQAJWa/KpDWNBJBzrXZkqGatNRyQcg7cziHde3Y8jexsQ9EcgBGB3WjF9Tgmu/NQiZHnsQ4qjtdOP042dKMzL6heLEAJFeVk409KFxhYvyotzhnStC5EwTJw8047DJ1vhD0bgybJjVlURJpfmQVEEaqaX4WBdC040dqAw24UshxUJw0RbdwCGKXHjxbPgYcFSIiIiojEnYyM8LBYLampqsGnTpj77N23ahOXLlyc9Z9myZf2O37hxI5YsWdJbv+OjpJTYtWsXiouLhydwIhqThBCYs3gywqEYjITRr93vDcPutGLyjLFV8NgwzN6RGQ6XDVICZpKRCgAQDsZgd1rx6m/fx/vvHIPNrmPy9EJUTiuEw2nBrndP4I8/ew/RSPLpHRcqHIkjFjdgsyTPqVutOuJxA6HIyNfFiMYS+N1re/DC77bhnZ0ncOhECzbvOIaf/O49/PHNfUgkDGS77Lj9ysW4ZHYlovEETrd0obnTj4JsFz63Yh4um1s14nESERER0fDL6Cot9913H1atWoUlS5Zg2bJleOaZZ1BXV4e77roLQM9Uk4aGBrzwwgsAgLvuugtPPvkk7rvvPnzta1/D1q1b8dxzz+Gll17q7fORRx7BJZdcgunTp8Pn8+GHP/whdu3ahaeeeioj90hEo0f1wgoc2HkadSfaUFicDYfLCmlKdHcG4e0K4aLLZ2JS2flHHEgp0XSiBcd3nUKgOwinx4Fpi6pQPKUobcu+JuIGDu2px/7aU2hv8cJi1TF7YQUqphYgO9eJ9lYfCouz+5wTiyYQCceRX+TBgfdPo7QyD1bbB4niLI8DVpsFxw824PjBRlQvqhx0fA67BVaLhlAkDrdL7dcejsRhtWhwOkZ+ZN2bO45i+77TKC5ww2n/4Hr+YARbdp5EjtuBy2qmItftwC1XLEC7N4iuQBiaqqAs3wNd6x8/EREREY0NGU143Hrrrejo6MCjjz6KpqYmzJ07Fxs2bEBlZc+LdlNTE+rq6nqPr6qqwoYNG3DvvffiqaeeQklJCX74wx/2WZK2u7sbX//619Hc3AyPx4NFixbhrbfewkUXXZT2+yMaC4LeIA7vOIETe04hETdQPKUIsy+ahsKK8VezICvbgc98aRle+/0unD7agtYmL4QA3NkOrLhuDpZfO/e8SQsjYeAvP3sH77+6ByFfGKqmwkgYePd/arH46nm48rbLoI7wB+R4LIFNv30fu949BiEEnC4bfOEgXv/DLhSV5mDWwgq8/85RnDnVjtyCLKiqgoAvDG9XCDPmlgFSQkL2SXacY7FqEELg6L6GISU8CnJcmFKWj71HGpHltPb5M5VSoqXDj+mVBZiU58bJxg6cbOxAPGEiO8uOWZWF8LiGNqXmHH8wgl0HG+DJsvdJdgBAltOGYDiGHfvrsGRuBWxnpzLle5zI9ziH5fpEREREw0aKni3VcyY4IYerSt044vP54PF44PV64Xa7Mx0O0YhpPtWKPzz9ChqPNUOzaFBUFdFQFO48F666fQUWXjk30yGOCCklms90obPND0UVKK3Mv6ClWt/7Yy1eef4N5BR54D5bn0JKCV9HAF0t3bj2y5dj2U1LRjT2nVuOYcPPt6FgkhsO1wd1JUzTRP2JNpRVFaDm0unY9e5xNJ/pgmGYcLptmLN4Mi66fCb+/PPtOHawEaWVyeseNdV3oqwqH7fdddWQ4jzT0o2XN9SivSuIglwX7DYdkWgcrZ0B5LjtuOmKedh9ohH7TzQjEotDEQKmBPI8Tlx/ySwsnFEKADBME6eaO3HkTDvC0Rg8LjtmVxShOLd/fZCPOnq6Ff/5m3dRWZwLVe0/gzMaS6Clw487/2oZKopzh3S/RERENPGk43PjuWt8741XYHOl9kuZSCCIv7viugn9uTajIzyIKHNikRg2PPsqGo+3oGJ2We/IBCklWuva8ep/vYm8khyUzyzNcKTDTwiB4vJcFJdf+IfcaDiK91/bC7vLBk/+Bz8whBDw5GchGopi5+v7sOjqebCN0FQNwzCxZ/sJ6Ba1T7ID6CnQPKksF011nXBeb8Nt37gKHS0+JBIGPLlOOM8en5PvQiw6cI2OaCSO3IKh/0AsK8rGrTfWYHPtMRyva0eXLwSLrmLOtEm4dNEU1B45g9pD9SjOd8NlzwbQk7Rp6vDjd5v3wuWworTQg99v2Y/dxxsRixtQFQUJ08DmPSfwiflTcMWCaT2r65yPBDDAIT35Eub8iYiIiMYrJjyIJqjju0+j4WgTyqYX95mGIYRAUWUBTu2rw763D43LhMdgtJxuR2dTF4oqC5O25xR50HyqFS2nWlFZXT4iMYQCUXS2+wdcRcVq05FIGOhs86NqZjEKS7L7HTNjXhlqtxyFtzMIT27f3xL4vSFYrBpmzi8D0FMrpO54K9pbfFAUgZKKPBRX5F5wrZKyomx84YYatHcFEQxH4bBZUJDrQnOHH/tONKMoNwuuD001URQFpQUeHG/oQO3Behyob8G2Q3UoznX3HielRIcvhI21R+Bx2VEzvWzA6xfmZcHtsqHbF0Zedv/fiHT5wsh2O1CQk3VB90NEREREYwsTHkQTVMupVpiGhD7AMqzObCdO7j0NKWXainGOZtLsWQ1FUZP/WSiqAtOUMM2RGzGgagpURYExwCosUkpI2RPLQEon52PpipnY8toBBPwRZOc6IQTQ3RlEPG7gkitmoWJqIVoaurDx17U4c6oNRqLn3m12C6bPKcU1Ny+Gy31hdTaEECjIdaEArt59dS1dCEViKM5LnmjIybLjwKlmQFeQl+XskxQRQiDf40QoEsO2g3VYOLUEqpL8fj0uOxbMKsMb247CYbfA/qHv9WA4Bn8wgksXVcGepJ7JUEUTCSRME3Zdh8K/P0REREQZwYQHEdEFyC3OgSvHBV+7H7nF/Vdy8bb7kZXjRF7J+Vd5GQq7w4LK6UXYt+MkPDnOfokovzcMZ5YVZZPzB+xDCIEV189DbkEWdr13HG1NXgAShSU5WHDxFMy/aAoCvgj+8OK7aD7TieLyXFhtOqSUCAWi2LP9JOJxA5/7yqWDLtBqmCbE2ViSURUF/nAUZhyYUZZ8RE2u24GmTh86vCEU5riSHgMAVyydjm5/CPuONkFKwGbREI0loCgCS+dWYtnCKYO6h4Gc7OjCtlP1ONDcBlOamOTOwtLKMiwuL4E2QGKGiIiI6GNJpD4TlzN3mfAgmqiKJhdCUQXi0XjSUR6B7iDmLJ/B0R1nZeW4MHf5TGz+9XtwZjthtVt626LhGLpaunHpZy+CO3fkpkcIIbDw4qk4frAJzWe6UFiSDVVVIKVEMBBBe4sPS1bMQP4kz3n7UVUF8y+agjmLK+HtCgIAPDnO3gTGwV11aKzrQOW0wt5in0IIOLNsKCnPxbEDDTh9rBVTZhUP6j4Ksl1QVQWRWBw2S//vPW8wDI/LDl8sNlD5DShCQErA/Ji623abjr9auQjzZ5Ti4PFmeAM901jmTivG1IoCaOcZDZOqPQ3N+Pn7e+GNRJDjsENXVRxv78TRtg6c7uzGZxdUM+lBRERElEZMeBBNUFMXVKJ0ejHqDzeiYlZpv6KlTrcdcy6dleEoR5flN1+EjuZuHN52DKqmwuawIhqOIhE3UL1sBi69eeSXv66cXoTrPr8Eb/xxF+pPtAEATFPC7rBg0bKpuOpTCy84SaVqatICpYf31MPusCRd2cTmsCARN3D6WMugEx5VJXmonJSLE40dqCrOgfKhJEAgFEUiYWLFwkpsOXQa/lAUbqetXx/dwTBysxzIzfr4qTW6pmLOtGLMmTa4eC+EPxLF7/YeRCSRwPSCvN5nkOOwwxeJYsuJ05hWkItFZSUjFgMRERER9cWEB9EEZbFZcOPXrsEffrQRdYcaoGoqVFVBNByDOz8LV9++YsIWLO1q9eLAlsM49N5RRCMxTJpciDmXzsK0RZNx8zevx+Htx3Fgy2F4230onT4Js5fNwKyLpsFqH5nVWT5qzuJKVEwtxLEDDfB3h6DpGiqnFaK4IrdP8mCwYtE4NH3g6SqKoiAeSwy6f01V8KnL5uAXr+3C8YYOOO0W6JqKQCgGIYBL5k7GVTXT0REIo/ZIPexWHfqHps8EIzGEonFcW1MGi97zY8wfiuDImXYEIlHYLDpmlOYjJ+vjlxoeLvubW9HqD2Bqfv+irm6bFW2BIHbUNTDhQURERJRGTHgQTWCTJhfi9r/7HI7sOI4Te+qQiMdRMmUSZl40DYXlA9eBGM+aTrTgd0/9Gc0nW+HIskOzaNj/zmEcfO8oLrp+Ea764mWY/4lqzP9E9YjFYCQMnNpfj+aTrQCAosoCTJ5bDk3/4J/sLI8di5ZNG5HrF5Zko6WxO2lbT2FWEzn5Q5u6U1rgwZdvXIo9xxqx91gjIrEEqqtysHBGKWZPngRNVXDDxbPgD0dxtKENuqrCqmsIxWJQIHDxrApcPKsCUkpsO1yP198/ig5/CAKAlIDHZcOKuVX4xPypH7907TDoDIYggQELqLptVjR2+2CY5oDHEBEREdHwYsKDaIJzuh1YdNU8LLpqXqZDybh4LI4///h1tNa1Y/Kc8t7VTvJLc+HvDGDbn95H8ZRCzL1s9nn78XX6cXj7cdQdbAAgUTajBDOXTkV2wflrawBAe2Mn/vzcazh94AwScQMAoOoqymeW4MY7r0FBWd6Q7/PjVC+qxMFd9fB7Q8jy9B0l0dbUDU+uE9PnDH30T67bgSsWT8MVi6clXQ0ox2XHqmsWY9+pZuw92QR/OIYZnnzMn1KCmRUF0FUVu0804vdb9kNTFFRNyoWq9KyW0+EL4k/bD0PXVVw6p2rIsX4ci6qetzBY3DBgt9m4YgsRERENDouWDgoTHkREZ53aV4+GY80omVrUb2nXrFwXutt82P3mAcy5dNaAdTJOH6jHH599FW117dDOFuTct/kgtv9pJ66/4ypMWzjwh+9wMII/PP0KTh84g9Kpk2B19EyRiYZjOLm3Dr9f/2d8Ye1n4XSP7FSNKbOKsXTFDLz35iF4O0PIyrbDNCV8XUHYHFZc8ckFyM4beGWUwRjoz9Nhs+CiWRW4aFZFvzbDNLFl3ymYpkTxh2qRKIpAQbYL8Q4ftu4/jcXTy2BPUhx1OFXl58KmawhEo3BZ+05tMqWEPxLDJ6ZVsQgwERER0QCmTJmC7du3Iy+v7y/4uru7sXjxYpw4cSLlPjmulojorI7GLpgJAxabJWm7O9eF1rp2RIKRpO2+Tj/++Oyr6GzsQmV1OcpnlqB8Zgkq51TA1+HHn/7jNXS1dA94/aO1J1B/sKeI7LlkBwBY7RZUzCrDmSNNOLLj+JDu8UIoioLLP7kAN92+DJXTi5BImIAE5i6pwuf/z2WYv3R4l3IdrJZOPxo7vCjwOJO2F3icaPMGUN/aPeKxVOXlYF7JJJzp9sEXjkCeXT0mmkjgRHsnJrldWFzO+h1EREREAzl16hQMw+i3PxqNoqGhYVB9coQHEdFZiqpASiSdXgEAhmFCUUS/0R/nHNlxomc6THV5n2MURaB0ejFO7q3DoW3HsOymJUnPP777FBRV6VOr4xxNV6HpKo7vPpWW6UeqqmBuzWTMWVyJcCgGRRGw2vRRNUIhYZhIGHLApWU1VYFhSCQMc8RjUYTA5xfOgaIA+xpb0OTzQxECQghU5GTjcwvnoChreEfFEBEREY0Hv//973v//5VXXoHH88E0cMMw8Nprr2Hy5MmD6psJDyKis0qnT4LNaUXIF4bzI7UrpJTwtvuw+Op5A67GUn+4AbpFS5oQEULA6rDi5L66ARMe8WgCqjbwwDtV0xALx1K4o6ETQsDhTM/qM6nKdtnhslvgC0WR7+n/48wfjsJptyDnApauHQ4uqwVfWrIQZ7q9ONnRDcM0UZDlxIyCPFg0/rglIiIiSubmm28G0PPe+ZWvfKVPm67rmDx5Mv7lX/5lUH3zDSyJc0ORfT5fhiMhonRyFThQOncS9m0+iEmTi2B39XzQN00TrafbodpVVC2pGPDfhmAoiEg8inA0lLQ9Go8gFA4OeL6r0AGfz4uciLvfSAopJbzebmQVTee/TR8ytSgLm/echEUYfZauNQwTdS2dWDClGA5VpvXPzKMqWFiY2/t1JBRC8klQRERENJade7849/lxRI3joqWm2TMat6qqCtu3b0d+/vCtFilkWp7O2HLmzBmUl5dnOgwiIiIiIiIa5err61FWVjYifft8Png8HnzvtVdgcyWvWzaQSCCIv7v6Oni9Xrjd7o8/YRziCI8kSkpKUF9fj6ysrFE1X32wfD4fysvLUV9fP2G/0ccqPruxi89u7OKzG7v47MYmPrexi89u7OKzGx5SSvj9fpSUpKMwuTi7pXrO2PLaa6/htddeQ2tra+/Ij3N+/OMfp9wfEx5JKIoyYhm6THK73fwHbYzisxu7+OzGLj67sYvPbmzicxu7+OzGLj67oftwgU0amkceeQSPPvoolixZguLi4mEZfMCEBxEREREREdEoJgCIFItRjLXxHT/60Y/w/PPPY9WqVcPW58DLARARERERERERpUEsFsPy5cuHtU8mPCYAq9WKhx56CFbr6FxakgbGZzd28dmNXXx2Yxef3djE5zZ28dmNXXx2NBrdeeedePHFF4e1T67SQkRERERERDQKnVul5bHXNsLmTHGVlmAQ91+9csys0nLPPffghRdewPz58zF//nzout6n/fHHH0+5T9bwICIiIiIiIqKM2rNnDxYuXAgA2LdvX5+2wRYwZcKDiIiIiIiIiDLqL3/5y7D3yRoeRERERERERDTucIQHERERERER0Ti1dOlSqKqK1atXY/Xq1ZkOZ0BXXnnleaeuvP766yn3yREeY9D69etRVVUFm82GmpoabN68ecBjm5qacPvtt2PmzJlQFAVr1qxJetwTTzyBmTNnwm63o7y8HPfeey8ikcgI3cHElcqz+/Wvf41rr70WBQUFcLvdWLZsGV555ZV+x/3qV79CdXU1rFYrqqur8Zvf/GYkb2HCGu5n9+yzz2LFihXIyclBTk4OrrnmGmzbtm2kb2NCGom/d+f87Gc/gxACN9988whETiPx7Lq7u7F69WoUFxfDZrNh9uzZ2LBhw0jexoQ0Es+O7yrpkcqze/vtt3HppZciLy8Pdrsds2bNwr/+67/2O47vKukx3M+O7yqjjBzkBmD79u04cODAqE52AMDChQuxYMGC3q26uhqxWAzvv/8+5s2bN6g+mfAYY15++WWsWbMG69atw86dO7FixQrccMMNqKurS3p8NBpFQUEB1q1bhwULFiQ95qc//SnWrl2Lhx56CAcPHsRzzz2Hl19+Gffff/9I3sqEk+qze+utt3Dttddiw4YNqK2txZVXXombbroJO3fu7D1m69atuPXWW7Fq1Srs3r0bq1atwi233IL33nsvXbc1IYzEs3vjjTdw22234S9/+Qu2bt2KiooKrFy5Eg0NDem6rQlhJJ7dOadPn8bf/M3fYMWKFSN9GxPSSDy7WCyGa6+9FqdOncIvf/lLHD58GM8++yxKS0vTdVsTwkg8O76rpEeqz87pdOKb3/wm3nrrLRw8eBAPPPAAHnjgATzzzDO9x/BdJT1G4tnxXYXS7V//9V/7bE8++STefvttrFmzpt+KLRdM0phy0UUXybvuuqvPvlmzZsm1a9d+7LmXX365vOeee/rtX716tbzqqqv67LvvvvvkZZddNqRYqa+hPLtzqqur5SOPPNL79S233CKvv/76Psdcd9118gtf+MLQgqU+RuLZfVQikZBZWVnyJz/5yaDjpP5G6tklEgl56aWXyv/4j/+QX/nKV+RnPvOZ4QiXPmQknt3TTz8tp0yZImOx2LDFSf2NxLPju0p6DMez++xnPyu/9KUv9X7Nd5X0GIln91F8V8kMr9crAcjHXt0o/3XrOyltj726UQKQXq8307cxJEePHpU5OTmDOpcjPMaQWCyG2tparFy5ss/+lStXYsuWLYPu97LLLkNtbW3vELUTJ05gw4YN+OQnPzmkeOkDw/HsTNOE3+9Hbm5u776tW7f26/O6664b0vcD9TVSz+6jQqEQ4vH4eY+h1Izks3v00UdRUFCAO+64Y9jipQ+M1LP7/e9/j2XLlmH16tUoKirC3Llz8b3vfQ+GYQxr/BPZSD07vquMvOF4djt37sSWLVtw+eWX9+7ju8rIG6ln91F8V6FM2bp1K2w226DOZdHSMaS9vR2GYaCoqKjP/qKiIjQ3Nw+63y984Qtoa2vDZZddBiklEokEvvGNb2Dt2rVDDZnOGo5n9y//8i8IBoO45ZZbevc1NzcP+/cD9TVSz+6j1q5di9LSUlxzzTVDipc+MFLP7p133sFzzz2HXbt2DWe49CEj9exOnDiB119/HV/84hexYcMGHD16FKtXr0YikcDf//3fD+s9TFQj9ez4rjLyhvLsysrK0NbWhkQigYcffhh33nlnbxvfVUbeSD27j+K7SoZ9qCZHSueMIZ/73Of6fC2lRFNTE3bs2IEHH3xwUH0y4TEGfbRyrZTyvNVsP84bb7yB7373u1i/fj0uvvhiHDt2DPfccw+Ki4sH/Y1FyQ322b300kt4+OGH8bvf/Q6FhYXD0ielZiSe3Tn//M//jJdeeglvvPHGoLPXNLDhfHZ+vx9f+tKX8OyzzyI/P39E4qUPDPffO9M0UVhYiGeeeQaqqqKmpgaNjY34/ve/z4THMBvuZ8d3lfQZzLPbvHkzAoEA3n33XaxduxbTpk3DbbfdNqQ+KXUj8ezO4bsKpYPH4+nztaIomDlzJh599NF+I5guFBMeY0h+fj5UVe2XqW1tbe2X0U3Fgw8+iFWrVvVmdOfNm4dgMIivf/3rWLduHRSFM5+GaijP7uWXX8Ydd9yBX/ziF/0y6pMmTRr27wfqa6Se3Tk/+MEP8L3vfQ+vvvoq5s+fP2xx08g8u+PHj+PUqVO46aabeveZpgkA0DQNhw8fxtSpU4fxLiamkfp7V1xcDF3Xoapq777Zs2ejubkZsVgMFotl+G5ighqpZ8d3lZE3lGdXVVUFoOe5tLS04OGHH+790Mx3lZE3Us/uHL6rULr853/+57D3yZ8OY4jFYkFNTQ02bdrUZ/+mTZuwfPnyQfcbCoX6vSioqgopJaQcY+OgRqnBPruXXnoJ//t//2+8+OKLSecpL1u2rF+fGzduHNL3A/U1Us8OAL7//e/jH/7hH/DnP/8ZS5YsGda4aWSe3axZs7B3717s2rWrd/v0pz+NK6+8Ert27UJ5efmI3MtEM1J/7y699FIcO3asN0kFAEeOHEFxcTGTHcNkpJ4d31VG3nC9Z0opEY1Ge7/mu8rIG6lnB/BdhTKjtrYW//3f/42f/vSnSVfKS8lQqqVS+v3sZz+Tuq7L5557Th44cECuWbNGOp1OeerUKSmllGvXrpWrVq3qc87OnTvlzp07ZU1Njbz99tvlzp075f79+3vbH3roIZmVlSVfeukleeLECblx40Y5depUecstt6T13sa7VJ/diy++KDVNk0899ZRsamrq3bq7u3uPeeedd6SqqvIf//Ef5cGDB+U//uM/Sk3T5Lvvvpv2+xvPRuLZ/dM//ZO0WCzyl7/8ZZ9j/H5/2u9vPBuJZ/dRXKVlZIzEs6urq5Mul0t+85vflIcPH5b/8z//IwsLC+V3vvOdtN/feDYSz47vKumR6rN78skn5e9//3t55MgReeTIEfnjH/9Yut1uuW7dut5j+K6SHiPx7PiuMjr0rtKyaaP81y3vpLQ9tmlsrdLS0tIir7zySimEkDk5OTI7O1sKIeRVV10lW1tbB9UnEx5j0FNPPSUrKyulxWKRixcvlm+++WZv21e+8hV5+eWX9zkeH5S46d0qKyt72+PxuHz44Yfl1KlTpc1mk+Xl5fLuu++WXV1d6bmhCSSVZ3f55ZcnfXZf+cpX+vT5i1/8Qs6cOVPqui5nzZolf/WrX6XpbiaW4X52lZWVSY956KGH0ndTE8RI/L37MCY8Rs5IPLstW7bIiy++WFqtVjllyhT53e9+VyYSiTTd0cQx3M+O7yrpk8qz++EPfyjnzJkjHQ6HdLvdctGiRXL9+vXSMIw+ffJdJT2G+9nxXWV0OJfw+MeNG+UT77yT0vaPG8dWwuOWW26RNTU18sCBA7379u/fL5csWTLopayFlBwHSERERERERDTa+Hw+eDwe/OPGjbA5nSmdGwkGsXblSni9Xrjd7hGKcPh4PB68+uqrWLp0aZ/927Ztw8qVK9Hd3Z1yn6zhQUREREREREQZZZomdF3vt1/X9T71t1LBhAcRERERERERZdRVV12Fe+65B42Njb37GhoacO+99+Lqq68eVJ9MeBARERERERFRRj355JPw+/2YPHkypk6dimnTpqGqqgp+vx///u//Pqg+tWGOkYiIiIiIiIiG07mysameM4aUl5fj/fffx6ZNm3Do0CFIKVFdXY1rrrlm0H1yhAcRERERERERZcTrr7+O6upq+Hw+AMC1116Lb33rW/j2t7+NpUuXYs6cOdi8efOg+mbCg4iIiIiIiIgy4oknnsDXvva1pCvJeDwe/PVf/zUef/zxQfXNhAcRERERERERZcTu3btx/fXXD9i+cuVK1NbWDqpvJjyIiIiIiIiIKCNaWlqSLkd7jqZpaGtrG1TfTHgQERERERERjWZSDG4bA0pLS7F3794B2/fs2YPi4uJB9c2EBxERERERERFlxI033oi///u/RyQS6dcWDofx0EMP4VOf+tSg+uaytERERERERESUEQ888AB+/etfY8aMGfjmN7+JmTNnQgiBgwcP4qmnnoJhGFi3bt2g+mbCg4iIiIiIiIgyoqioCFu2bME3vvEN3H///ZBSAgCEELjuuuuwfv16FBUVDapvJjyIiIiIiIiIKGMqKyuxYcMGdHV14dixY5BSYvr06cjJyRlSv0x4EBEREREREY1iQvZsqZ4z1uTk5GDp0qXD1h+LlhIRERERERHRuMOEBxERERERERGNO0x4EBEREREREdG4wxoeRERERERERKOZPLules4El/ERHuvXr0dVVRVsNhtqamqwefPmAY9tamrC7bffjpkzZ0JRFKxZsybpcd3d3Vi9ejWKi4ths9kwe/ZsbNiwYYTugIiIiIiIiIhGm4wmPF5++WWsWbMG69atw86dO7FixQrccMMNqKurS3p8NBpFQUEB1q1bhwULFiQ9JhaL4dprr8WpU6fwy1/+EocPH8azzz6L0tLSkbwVIiIiIiIiIhpFMjql5fHHH8cdd9yBO++8EwDwxBNP4JVXXsHTTz+Nxx57rN/xkydPxr/9278BAH784x8n7fPHP/4xOjs7sWXLFui6DqBnTd9UmKaJxsZGZGVlQQiR0rlEREREREQ0/kkp4ff7UVJSAkXJ+OQJSiJjCY9YLIba2lqsXbu2z/6VK1diy5Ytg+7397//PZYtW4bVq1fjd7/7HQoKCnD77bfjb//2b6Gq6gX10djYiPLy8kHHQERERERERBNDfX09ysrKMh0GJZGxhEd7ezsMw0BRUVGf/UVFRWhubh50vydOnMDrr7+OL37xi9iwYQOOHj2K1atXI5FI4O///u+TnhONRhGNRnu/lrKnukt9fT3cbvegYyEiIiIiIqLxyefzoby8HFlZWSN/MRYtHZSMr9Ly0SkjUsohTSMxTROFhYV45plnoKoqampq0NjYiO9///sDJjwee+wxPPLII/32u91uJjyIiIiIiIhoQCyDMHplbKJRfn4+VFXtN5qjtbW136iPVBQXF2PGjBl9pq/Mnj0bzc3NiMViSc+5//774fV6e7f6+vpBX5+IiIiIiIiIMi9jCQ+LxYKamhps2rSpz/5NmzZh+fLlg+730ksvxbFjx2CaZu++I0eOoLi4GBaLJek5Vqu1dzQHR3UQERERERHRaCNS3CjDy9Led999+I//+A/8+Mc/xsGDB3Hvvfeirq4Od911F4CekRdf/vKX+5yza9cu7Nq1C4FAAG1tbdi1axcOHDjQ2/6Nb3wDHR0duOeee3DkyBH88Y9/xPe+9z2sXr06rfdGRERERERERJmT0Roet956Kzo6OvDoo4+iqakJc+fOxYYNG3qXkW1qakJdXV2fcxYtWtT7/7W1tXjxxRdRWVmJU6dOAQDKy8uxceNG3HvvvZg/fz5KS0txzz334G//9m/Tdl9ERERERERElFlCnluShHr5fD54PB54vV5ObyEiIiIiIqJ+0vG58dw1/umPm2B3OlM6NxwM4m8/ee2E/lyb0SktREREREREREQjIePL0hIRERERERHRecizW6rnTHAc4UFERERERERE4w4THkREREREREQ07jDhQURERERERETjDmt4EBEREREREY1mrOExKEx4EBERERHRiEoYXYgl6gBI6FoxdLUo0yER0QTAhAcREREREY0I0wzDG34Fgci7MMxOAICiuOGwLECO89NQFc+wXEdKE4aMQBEaFGEZlj6JaOxjwoOIiIiIiIadlAY6g7+AP7IZmpIHqzYdgALD7II/8iYMsxsFWXdCUeyDvoZhRtEVrUVXeDtiRieE0OGxzkOu/SLYteLhuxkiGpNYtJSIiIiIiIZdNH4Mweh2WNQy6GohhFAhhICm5sKqTUU4tg+h2O5B92+YUdT7X8YZ388RTjRACA2mjKI19CpOdj+HQOzEMN4NEY1FTHgQEREREdGwC8X2w5RRqEpWvzZFWAGhIRTbOej+OyPvoStSC7tWCodeAYuaA5tWBJc+HTGjA02BP8CU8aHcAtGoIeTgtomOCQ8iIiIiIhp2pgxAnGcGvQIrDMM3yL7j6IxsgyrsUD8yJUYIBXatFKFEHQKxY4Pqn4jGByY8iIiIiIho2KlKDiTikDL5r5lNGYKm5g+q74QZRNzohq64B7i2DaY0EDM6B9U/EY0PTHgQEREREdGwc1jmQRWu3tVZPswwA4BQ4LQuHlTfitAhoMJE8ikrPUkWCSG4RgPRRMaEBxERERERDTuLVoks+xVImJ2IJk7DMIMwzTBiiQbEjDNwWS6C3TJ3UH1rihNZlpmIGZ1JR5DEzE7oihsufcpQb4OIxjCmPImIiIiIaNgJIZDt+BQ0NRf+8NuIG80ATGhKHty2lXDbr4AQ+qD7z7Mvgy92CKHEadi1UihCh5QScbMLMaMThY6rYNUKhu+GiDJJnt1SPWeCY8KDiIiIiIhGhBAqsmwr4LRejITRCgkTulIA5SOFRj/MlFGEY4cRN1oBocKmVcGqVUII0ec4p6UK5e5b0BT4A0Lx05BnP91piguFjitQ7LphRO+NiEY/JjyIiIiIiGhEKcICi1b2scdF4ifRFvgFosZpQJqQMKEIB5yWeShw/a9+S9x6rHPh1KfAHzuMuNkNBRa4LFNhVYv6JUiIaOJhwoOIiIiIiDIubrSixf8C4kYLrFoFFGGFlBKG9MMfeReAiaKs/wMh1D7naYoDObZFmQmaiEY1Fi0lIiIiIqKM80dqETMaYNOmQhFWAD11QDTFDatWgWBsLyKJExmOkojGEiY8iIiIiIgo44KxnVCFG0L0/4iiKk6YMoxw/FgGIiMaBeQgtwmOU1qIiIiIiCYAwwzBlEEowgFVcWY6nD6klDBlFEKc7+OJAinjaYuJiMY+JjyIiIiIiMaxuNEOb/ht+KPvw5RhKMICp3URsm0rYNGKMh0egJ6pK1atHIHo+4DaPyYpDQCArualO7QxyZQmTGlCFSqLt44T4uyW6jkTHRMeRERERETjVMxoQ7Pvx4jEj0NT8qApbhgyjO7QJoRjhzDJ/b9hvYDVU9LBZV2CYGw3EqYXmuLp3S+lRNQ4A4taCIdlbgYjHP26Yl047D+CY4HjSJgGsi0ezMyagemuadAUfvSjiYff9URERERE41RXaCMi8ROw6zN6p4uoyIKu5CMcP4LO4AZMcn9t0KMA4olmxIx6SClh0Uqgq6WD7stpmQe37XJ4I28gbnZAE9kADMTNTmiKB3nOm/skQqiv5kgLXm1+DR2xTrg0JzShoSnchDOhBjSEG3F5wQroip7WmKSUaAx3oCXSBQCYZM9FsS2Xo04obZjwICIiIiIah+JGO4LRPdDVon61MYRQYNGKEYofQcxoSHmUh2EG0BX8LUKxXTBNHyQAVThht8xFjvNz0NSclOMVQkW+87OwaZXwR99FNNEIARUe2wpk2S6BXZ+acp8TRcJM4O22d9Ad96LcXtabUHDrbkSMCA76DqHIVoh5nvSNkPHGAnileQeO+RsRNWOQAOyKBdOzSrGyeCncuiNtsYwLgylCmqGipZ/97Gfxxhtv4Oqrr8Yvf/nLzARxFhMeRERERETjUML0wpAhWNX8pO2qcCNmtiBhemHFhSc8pIyjI/AigtFt0JVJ0LViAIAhvQhEt8IwAyh0fx2KYk85ZiFUZNmWwmVdAlOGIYQCRdhS7meiaQg3ojXaigJrfr/REzbVBl3oOOQ7jGr3bKhCHfF4IkYMv2vYgqP+BhTZcuBUcwEAwUQEu7tPIGLGcUv55bCo6R1xQunx7W9/G1/96lfxk5/8JNOhcFlaIiIiIqLxSMACAR1SRpO2S/SsiqIIa0r9huOHEY7tglWdDE3tmZ4ghICmZMOqTUUkfgCh2O6hxS4EVMXBZMcF8sV9MKQJi2JJ2u7SnPDFfYgYkbTEc9R/BscDTSh3FMKl2Xu/R1y6HeX2AhzzN+BYoDEtsVD6XXnllcjKysp0GACY8CAiIiIiGpesWglseiViRkvS9liiBVatBFatIqV+I7H9kDIBRek/JUERVkBoQ054UGoUoQCQkDL5HAZDGlCEkpbRHQBwxHcGihCwJCmU2jOqQ+CovyEtsVBq3nrrLdx0000oKSmBEAK//e1v+x2zfv16VFVVwWazoaamBps3b05/oBeICQ8iIiIionFICBXZ9iuhCCsi8dMwZRwAIGUC0cQZABLZ9qugiOSjAgZimEEIDDwVQYEFpukfSuiUomJ7MeyqHYFEoF+blBK+hB/ljnLY1PSMmAkZUehi4OoJulARMZKPPKIByEFuKQoGg1iwYAGefPLJpO0vv/wy1qxZg3Xr1mHnzp1YsWIFbrjhBtTV1aV+sTRgDQ8iIiIionHKaZmHQtdt6AxtQDRxGhImBAR0tRA59muRZV2acp+aWgATMUgpk662YcoQNLVoOMKnC5SjZ2OGazp2efdAEQocqgNCCBjSQHu0Aw7Vjmr3rLTFU2DNHnAEh5QSUTOOPCtX3EkXn8/X52ur1QqrNflUthtuuAE33HDDgH09/vjjuOOOO3DnnXcCAJ544gm88sorePrpp/HYY48NX9DDhAkPIiIiIqJxSgiBLFsNnJY5CMUPwzADUBUH7PoMqIpzUH06LPPgD7+OhNkB/SMFUQ3TCyF0OK2LhyN8ukBCCFySfzEMmDjqP4bOeBcEepJROXo2luVfghJ7Sdrime2pwPtdR9EdCyDb4urT1h0PwKFZMctdnrZ4Jrry8r5/1g899BAefvjhlPuJxWKora3F2rVr++xfuXIltmzZMpQQRwwTHkRERERE45yi2OCyLhiWvixaJdz2q9Ed/hPMuA+amg9AQcLsgJRRuO1XwqanbzQB9bAoFlxR8AnM9VSjIdSIhEzApblQ6ayAXU19xZyhqHAU4pL82Xi7bR/8iRCydRckAG88AAng8sL5KLUnXz2Ihl99fT3cbnfv1wON7vg47e3tMAwDRUV9R3AVFRWhubm59+vrrrsO77//PoLBIMrKyvCb3/wGS5emPppsODDhQUREREREvXoKXxoA1KRTVoQQ8DhuhKbmwx95B/FEAwAJXS1Glm05XLblEGkqjkl9CSFQYC1AgbUg43FcUbgABVYPdnYdQ3OkCwLAZFcxFuVMRbW7Mun3Fo0Mt9vdJ+ExVB99dh+d3vbKK68M27WGigkPIiIiIiJCwvDCH90Bf3Q7DDMIXc1BlvUiuKw1UJW+IwSEUOCyXQKndSkSZgcACU3JhRADFzOliUURCuZlT8Ecz2T4E2EAQJZmP7uiDKVKyJ4t1XOGU35+PlRV7TOaAwBaW1v7jfoYLfjdRkREREQ0wcWNNjT5/wNtgZ8jbrQBMBGJ16El8FO0+J+HYfZf/QPoWQlGVwuhq0VMdlBSilDg0Z3w6E4mO8Y4i8WCmpoabNq0qc/+TZs2Yfny5RmK6vw4woOIiIgQScQRSSRg13VYVb4eEE0kUkq0B/8H4dgR2PXpEGeXE9XVApgyikB0FyxqKfJdn85wpEQ00gKBAI4dO9b79cmTJ7Fr1y7k5uaioqIC9913H1atWoUlS5Zg2bJleOaZZ1BXV4e77rorg1EPjG80REREE1hLMIB3Gk5jZ2sjokYCTs2CpcVlWF5SgWxbeovcEY0GUkYRjx9EIn4MEgmo6iRYLAugKDkjfN0EorHdiMS2IWE0QREO2CxLYLXWQB3ha8eMJoRiB2BRi3uTHecowgpNyYE/ugM5jqugKq4BeiGi8WDHjh248sore7++7777AABf+cpX8Pzzz+PWW29FR0cHHn30UTQ1NWHu3LnYsGEDKisrMxXyeTHhQURENEGd8Xvxn/tqUe/3ItfqgEOzIBCP4bdHD+BQRxv+z7wa5DDpQROIYbQhGPwvJBKHAWmgZ/a3gUhkExyOW2CxDM8qJx8lZRz+4M8Qjr4NABDCBUN2IRY/Cj36HjxZX4WmFvc5J544g3B0G6Lx/QBMWLTpsFuXQtempVwMMm60wTADsOjJly3V1GzEEs2IGx1MeBCNc1dcccXZwsUDu/vuu3H33XenKaKhyfgkqvXr16Oqqgo2mw01NTXYvHnzgMc2NTXh9ttvx8yZM6EoCtasWXPevn/2s59BCIGbb755eIMmIiIa46SU+MPxQzjj92FmTgGKnC54rDaUuNyYlpOHQ11teO30sY/viGickDKOUPC/EY/vg6qWQ9NnQdNnQNVmwDS7EAz+NxKJuhG5dji6BaHIm1CVIujadGhqMXStEro2HfHECfiDL0NKs/f4SGwXOn0/RCD8RxhGBwzTi2DkdXT6n0Io+lbK1+8Z1SHQszJLf/Js8ocrrxBlkBzkNsFlNOHx8ssvY82aNVi3bh127tyJFStW4IYbbkBdXfIfJtFoFAUFBVi3bh0WLDh/hv306dP4m7/5G6xYsWIkQiciIhrT6v1eHO1qR6nLDeUjvw3WFRX5NidqWxrhjUYyFCFReiXihxBPHIamVUEIW+9+IVSoahVMswOx6LZhv66UCUSiWyCEDYrSd9lIITRoajli8aOIJ473xGl0wBf8OUwZhEWbBV0rg66WwKrPAqDAH/otYomTKcVg0yqhqwWIGW1J2+NGK6x6GSzqpEHdIxFRpmQ04fH444/jjjvuwJ133onZs2fjiSeeQHl5OZ5++umkx0+ePBn/9m//hi9/+cvweDwD9msYBr74xS/ikUcewZQpU0YqfCIiojGrKxJGKB6HS7ckbXdbrQjF4+iOhtMcGVFmJIxTgIxDiP7TuIQQUJRsxON7P3aodzKx+HH4gi+hvfshdHQ/An/wF4gnTgEATLMbCaMFqpKb9FxFcQEyCsNoAQBEY7uRMFqgq5X9pq5oSjFM04dItDal+FTFBY/tUpimH3GjvfcepTQRS/QsP5ltW9GvvgcR0WiXsYRHLBZDbW0tVq5c2Wf/ypUrsWXLliH1/eijj6KgoAB33HHHkPohIiIar3RVhSoEEqaZtD1mGFAVBbrCIew0QUgTPdM6BtJTzyNV4cgWdPufRCj8KkzTB8PoRjD8J3T5/h2R6HZAqAAUyAGnk0hIIYGzy3nGE3UQ0CCSLO8phIAiXIgnTqQcZ47jKuQ4roMpowjHDyEUO4xw/AgAgTznzXBZl6TcJxGNDkuXLkV1dTWeeuqpTIeSdhlL07a3t8MwDBQVFfXZX1RUhObm5kH3+8477+C5557Drl27LvicaDSKaDTa+7XP5xv09YmIiMaCKZ4cFDmz0BIKoCyr/6jJ1lAAM3MLMMmZlYHoiNJPUScBEJAyDiH0fu3S9EGzzkmpIGg8UQ9/6FeAlLDosz/oS5YgYdTBH/wFst33wqJNRTS+J+lqLKbZCUW4oWtnRy0LHVIkT1T2MAD0j//jCKEhz/lpZNmWIhQ7BFOGoSpZcFqqoav5KfdHRKPH9u3b4Xa7P/7AcSjjRUs/+kNDSplyZelz/H4/vvSlL+HZZ59Ffv6F/8P82GOPwePx9G7l5eWDuj4REdFYYdN0XFFehahpoDHgg3F2pEfcNHDa1w2rquGK8qp+9T2IxitdnwdVLYeRONWnQCgAGEYrICywWC9Kqc9o7H2YZhdUtbTPfiEENLUChtmOaGwX7LbLAFiQSDT0ubZp+mGYLbBZaqCdrZ9h1acBsqfI6kdJacKUIVgtc1KK88NxWbUS5DiuQp7zk8i2f4LJDko7bzyA97sO4c3W9/Fux140htsHNZWMCMjgCI/8/HyoqtpvNEdra2u/UR8X6vjx4zh16hRuuumm3n3m2Rc4TdNw+PBhTJ06td95999/f+/6wkDPCA8mPYiIaLy7rGwyDGnitdPHcay7E0L0DOgvcmbhk1NmYF4BCxTSxKEoDjictyEUfAGJxCEI4YKACikDEMIOu/0maFp1Sn3GEychhCPpL/OEEBDChoRxGk779chy/i8EQ39APHEYPX8TTQhhg912GVyOz/WeZ9XnwaJPRSx+FBZtKoToqcMjZQIx4wQ0tRQ2y+Kh/FEQZYSUEru7j2Jz2050xwMQEJCQsKtWzPVMwVVFS2FRUh+9RBNbxhIeFosFNTU12LRpEz772c/27t+0aRM+85nPDKrPWbNmYe/evX32PfDAA/D7/fi3f/u3AZMYVqsVVqt1UNckIiIaqxQhcGXFVCwuKsXhznaEE3FkWayYlZsPxwDFTInGM12fDlfWtxCL1iIe3w2JODRtCSyWJdC0GamPQhY6zlf3Q0oDAjqEEHDYPgGLPhux2B4YZieEsMGiz4SuTetTr0NRHPA4V8Eb/G/EE8d7lowVApACulYGj/N2aByVMSBDxhE1ugEI2NQcKFxqd9Q4FjiDTS3vQYWCSsckKEKBlBKBRBjbOw9CV3RcXbQ002FmjAAgUhzowjGaGUx4AMB9992HVatWYcmSJVi2bBmeeeYZ1NXV4a677gLQM/KioaEBL7zwQu8552pzBAIBtLW1YdeuXbBYLKiurobNZsPcuXP7XCM7OxsA+u0nIiKiHh6rDRcVl2U6DKJRQVULYXfcADtuGHJfVr0a0WhtT2LjIx+spUwAMGDRZ/Xu09QCaParP7ZfXStFrvseRGP7EU+cBmBC18pg1edBUZxDjns8MmUCzaEdaA7VImx0ABBw6pNQ7FiKQtv8pEVgKX2klNjZfQhxM4FixwejC4UQyNIdSEgD+7zHUZMzG9kWVwYjpbEmowmPW2+9FR0dHXj00UfR1NSEuXPnYsOGDaisrAQANDU1oa6urs85ixYt6v3/2tpavPjii6isrMSpU6fSGToRERER0XlZLQuha28hbhyFrk7tLYYqZQzxxHHoWhWslvmD6lsRNtitNbBba4Yz5HHJlAaO+/6IxuC7UBUbbKoHUkr4Y3XwxU4j6upCueuKQdcRpKHzxoNoCLUhR09eWNOju1AXakZDuJUJD0pJxhfTvvvuu3H33XcnbXv++ef77Uu1YE2yPoiIiIiIhkJKCcOog2l2QECHqk2Fojj6HKMqOXC7vgxf4KeIGyfOLn0LCKFC16fB7fwSFIUrIY20ruhRNId2wKEVwKJ+8OdtUV0IJzpQH3wbubaZcOklGYxyYjOlAVNKqAOMtFHOFpky5PlWKCLqL+MJDyIiIiKisSSROINw+LdIxI9AyhAgFChKIazWK2GzXdFn+oquVSHHfR9i8X2IJ+oBCOhaBSyWOVCEPXM3MYG0RfbBhNEn2XGOTc1Fd+w4OiKHmPDIIJfuhEd3whsPwKHZ+rWHEhFYhI5cy8RcWpUGjwkPIiIiIqILZBitCAaeg2HUQ1FLoYhyAAmYRivC4Z8DSMBuv67POYrigM16EWwpLmtLwyOcaIM+QHJJCAFFaIgYnWmOij7MomiYnz0drzS/i7ARhV39YEEJQ5pojXZielY5SuwTuCCvPLules4Ex4QHEREREdEFikbfgWGchqrN/NBIDh2qVgrDaEYk8iqslqVQ1NyMxkkf0BUn/LJhwHZTGtA+Mh2J0m9hzgw0htux33cCqlDgUG2Im3EEjQjK7IW4qugiKCwuSynidwwRERER0QWQMopYbAeEktNv1RUAUJRCSLML8cTBDERHA8m3zYFEAoaM92uLmyEoQkOudXoGIqMPsyg6biy5FJ8uWYFKxySoQkG2JQvXFl2Mz5dfhQJrdqZDpDGIIzyIiIiIiC6AlFFIGYUQ/WsMADi7tKmAlOH0BkbnlWebjezwdHRFj8ChFcJytlBs1OxGONGBQvsieCxVGY6SgJ6pLfOyp2Fe9jQY0oQCwdVzhsHSpUuhqipWr16N1atXZzqctGLCg4iIiIjoAghhhyKyYJpdgJLTr13KxNnjWFhxNNEVB2Zmfx4nfH9GV/QIQok2CAHoIguljuWY7L4WiuDHoo9jSBP1oWacCNQjZETg0V2Y6qpAsS1/RJISA63YQqnbvn073O6J+e8S/2YTEREREV0AIXRYrJcgHHoZUsYghKVPu2E0QlWLoOvVGYqQBmJTszE7+1YEE00IJVoBKHDpJXBoE7gIZgoiRgyvNm/FQd9JJGQCqlCRkAns6DyAxTnVuKxgERMUI41FSweFCQ8iIiIiogtktS5DPL4f8fg+KEoeFMUNKeMwjVYIYYXNfhMUxZXpMCkJIQRcegmXnx2ELe27sMd7BIXWvN5lY6WU8CUCeLdjN7J1FxbkzMxwlET9MQ1HRERERHSBFMUNl+ursNs+CSE0GEYLpOmFrs+C03UHrNaLMx0i0bDyxgM44D0Oj57Vm+wAehJIHj0LmlCxq/swEqaRwSjHPzHIbaLjCA8iIqIMaAsE4Q1HYNVUlHjcUBX+DoJorFCUbDicn4fNXAnT7IQQFihK0dmipUTjS0ukA/5EEOWOSUnbsy1udES70RnzotDG5ZhpdGHCg4iIKI1afAFsOnQUB5raEI7HoSsKKnKzcfmMKswrSf4ySUSjk6JkQTm74gfReCWlhAQgBhgvIADIs/8RjTZMeBAREaVJqz+An7z7Puo6u1HkdqHA5UTUSOB4eyfOdPtwa42JReWcW05ERKNHvjUHLs0OfyIIt96/Po0vHkC2noUcy8RcBSRtWLR0UDjujoiIKE3ePn4apzu7Ma0wD9kOOzRVgdNiwZT8XCRMExsPHkU0kch0mERERL3yrB5My6pAe6wbMTPepy2UCCNsRDEvezosip6hCIkGxhEeREREaRCIxrD7TBPyXI6k9TqK3Vmo7/LiWFsH5hQXZSBCovFNmkFIowGACaEWQyieTIdENGZ8oqAGgUQIxwNnoELAolgQMaNQoGBhzkwsypmd6RCJkmLCg4iIKA2CsRiiiQSy7fak7RZNhSlNBKKxNEdGNL5JGYMReR1mbCuk2QlICaFmQ9FroNqug1AcmQ6RaNRzaQ58uuRKHA/U4bD/NIKJMHIsbszMmowprlKoQs10iERJMeFBRESUBk6LDqumIRyPw2m19GuPGwYUIeCwcEgw0XCR0kQi9GuY0TchFDeEWgFAAGYnjMifIc0OaM5VEMKa6VCJRj2basEczzTM8UzLdCgTE2t4DApreBAREaWBy2rFvNJJ6AiEYMr+byDNvgCK3C5ML8jPQHRE45NMnIAZexdCndQzjUXoEEKDUAshtMkw47tgxvdnOkwiIhohTHgQERGlyWVTK1Ga48ax1nb4whGYUiISj+NURxcAiWtnTYNN5+BLouFixvcBMpK0XocQPdPLzNiuNEdFRETpwoQHERFRmkxyZ+HLFy/GovJS+KMxnGjrQLMvgLJsN25bsgA1FaWZDpFoXJGmFxD9p5CdI4QdMDvTGBERUfotXboU1dXVeOqppzIdStrx10hERERpVJrtxv9ZthjNvgC84QgsmoryHA90lQXfiIabULIBOXAhYCnDEEpu+gIiIsqA7du3w+12ZzqMjGDCg4iIKM2EECj2ZKHYk5XpUIjGNcUyF0b0DUjT229ai5QhABKqZVFmgiMaBaSUaI6044j/NDpi3bApFlS5yjDFWQarOvDoKEo/IXu2VM+Z6JjwICIiIqJxSahVUK3LYET+AsggoOQBUACzE9LsgmK5CEKfk+kwiTJCSol3O3bjvY49CBtRWBUdCWlgr/coJjtLcEPxCrh1V6bDJBoSJjyIiIiIaFwSQoFq/ywgcmHGtkAaZ3r2K9lQbTdCtV8LcZ4aH0Tj2RH/KbzTvhNO1YZCay6EEACAmBnH8UA9Xm95D58pvap3P9FYxIQHEREREY1bQujQ7NdA2i6FNBoBaUKoRRDKxJzPTgQApjSxx3sEEhLZlr5/FyyKjkJrLk4GG9AcaUexvSBDURINHVdpISIiIqJxTwg7FG0qFH06kx004YWMCFoi7fBoyaesOFQbomYULdGONEdGNLw4woOIiIiIxiwpJaTZCpheQNgg1DIIwd/pEX2cC6pnKVn1ctSQMvXnwefHhAcRERERjU2m0YBE+BWYiQOADAOwQNEmQ7VdDVWfm+nwiEYth2pDkTUPdaEmZOnOfu1hIwKrYkGBjcs209jG9DcRERERjTmm0YR44DmYsXchhBNCnQyh5MJMHEE8+BMYsd2ZDpHGgZgZRmf0DDqjDUiYsUyHM2wUoWBe9gwAgDfu79MWNxNoiXah0lmCYhvrd9DYxhEeRERERDTmGJG/QBr1ENqsD6awCBcgpkIaJ5GI/BmKPpursNCgxM0ojvu34UxoL0KGDwICTi0Hlc6FqHLVQBFqpkMcsplZk9GZ141tnfvQFW+ETbEgIRMwpcQUVymuLroECqeH0RjHhAcRERERjSnS9MKI74FQCvvV6xBCAGoJpFEPmTgOoc/OUJQ0VhkygT1df0ZdaA9sShbcWiEkJEJGN/Z2b0LY8GGO56oxXytGEQqW5y9CpbMURwOn0B7thk21YqqzHFNd5bCqTBbS2MeEBxERERGNKtIMAYnDgNkNCCugTYdQPxhaL2UAkBFATT7cXggbpEz0HEeUopbwMTSE98OjT4JFsffu9yhFCBs+nArsRIl9FnKtZRmMcngIIVDmKEKZoyjTodDHELJnS/WciY4JDyIiIiIaNWRsN2Tkj4DRjJ51JCQgPJDWZRC26yCEDiGcPYkQGQaEo38fMgoIFRD9izESfZzG8GFIiT7JjnPsqhuBRAeaI0fHRcKDaLxjwoOIiIiIRgUZPwoZehmQUUCtBIQOSBOQnUDkFUioEPYbIJRsqPpcGNHNgMjpN7VAGo0QSgkUbWqG7oTGspDRDU2xDtiuQkfY8A/YPhKklGiNeuGNBaEpKkrtebCqelpjIBqLmPAgIiIiooyTUkJG3wakH1CnAUL0NAgFEPk9iY/Ylp6RHko2VOuVMBPHIRNHALWkp2ApIpBGEwArNPv1EGLgD61EA7ErWeiSjQO2G4jDprjSFk9bxIvXWvbguL8JISMKVSgotGVjWf5MLM6Z2lO3hoiSGtuVdoiIiIhofJBeIHEMUPI/SHZ8mJLXU9MjcbznS60MuvOrUCyLIE0vZOIYpNECoVZCd66CaqlJb/w0bhQ7ZkJKE3Ez2q8tagShCQuK7OkZPdQZ9ePndW9jd9dJODQrqpxFKLbnoisWwO/PbMO77YfTEgeNbUuXLkV1dTWeeuqpTIeSdhzhQURERESZJ+MAEgAGqLtxbhlQGe/dpWgV0J1/DWk0QEofhLBBqBUQgq+4NHiTbNNRbJ+BxvBBONQc2FUPAIlgohsR04cqZw1yLemp37Gj8zjqQ+2Y4poE9ezULYvQUGLPRUukG++0H8Tc7Epk6f3rjdA4c7akUcrnANi+fTvcbvdwRzQm8KcBEREREWWe4gYUD2D6ACSZLiDDAPSekR4fIoSA0Fg8koaPpliwMOeTcGjZaAgdQGesHgKAXfNglusTmJ61DMq5BNwIihpx7Peehkd39iY7Pizf6sbpYCuOB5qxMKdqxOMhGouY8CAiIiKijBPCCqkvBSK/7VlyVtg+aJQmYJwBtGmAxg92NPKsqgPzsq/FVNdF8CfaISDg0YtgVZOPQIqbMbRFW5CQCTjVLORa8oZcWyNqxhEx4rANUJy0JwkiEDb6T70hoh5MeBARERHRqCCsyyGNk0B8d89ysyKrZ8UW2QWoxRD2z3C6CqWVQ/PAoXkGbJdS4kjgAPZ5d6Mr1gFTGrCqNpTYy1GTcwlyLXkDnvtxbKoFdtWCkBGFW++//HLCNAAATs3Wr42IemS8aOn69etRVVUFm82GmpoabN68ecBjm5qacPvtt2PmzJlQFAVr1qzpd8yzzz6LFStWICcnBzk5Objmmmuwbdu2EbwDIiIiIhoOQnFCOL4E4bgFUAsBxADFAlhXQji/BqFNznSIRH0c9O/DO+1vwB/3Is9SgGJbGeyKAycCR/GX1lfgjXcNum+LomFB9mT44qHe5MaHtUW9yLdmYaqreCi3QDSuZTTh8fLLL2PNmjVYt24ddu7ciRUrVuCGG25AXV1d0uOj0SgKCgqwbt06LFiwIOkxb7zxBm677Tb85S9/wdatW1FRUYGVK1eioaFhJG+FiIiIiIaBUBwQ1sshXPdBZK2FyLofiuNmCHVSpkMj6iNshLCnewc0oSHfWghd0SGEgENzothWivZoCw77DgzpGjV50zDFNQmngi3ojAUQNxMIJaKoC7bBlBKXF86FU+PyyxOBkIPbJjohpczYH8PFF1+MxYsX4+mnn+7dN3v2bNx888147LHHznvuFVdcgYULF+KJJ54473GGYSAnJwdPPvkkvvzlL19QXD6fDx6PB16vd8JWsyUiIiIiooEdDxzB661/QqG1GGqSIqbd8S5oQsPnym6DRRl8UqIrFsDbbQewv7seISMKTSgodeThkvyZqHaXD7lWCA1eOj43nrvGv/3XRtgdA6xiNYBwKIh7Vq2c0J9rMzYJMhaLoba2FmvXru2zf+XKldiyZcuwXScUCiEejyM3N3fY+iQiIiKi1EgZQTx+CKbRBggdmjYNqlrKD2s0ZkXNKCSQNNkBABZhQdSMImbG+iU8IkYMp4LNCBsxOFQbJjuLYB2gOGmOxYWbSi/CioI58MZD0BUVRbbspCu3EFFfGUt4tLe3wzAMFBUV9dlfVFSE5ubmYbvO2rVrUVpaimuuuWbAY6LRKKLRD6ob+3y+Ybs+ERER0UQXjx9BOPRzJIz6nhVXICGECxbrEtjtn4Oi9C/ISDTa2VU7BAQMaSRNekTNKKyqBdYPJTuklNjdfQJvt+1DW8QLCQlFKCi0eXB54QLM8VQOeL1sixPZltR+w0800WW8zPVHs/pSymHL9P/zP/8zXnrpJbzxxhuw2QauXvzYY4/hkUceGZZrEhEREdEHEokzCAafh2l0QNUqepaflRJSdiMa+QsgDTicX+ZIDxpzSmxl8OjZ6Ip1IN9a2KfNkAZCRhDV7nnQFUvv/n3eU/hjw3sQAihz5ENTVMTNBFoi3fjDma3QhIqZ7rJ03wqNBfLsluo5E1zGxkHl5+dDVdV+ozlaW1v7jfoYjB/84Af43ve+h40bN2L+/PnnPfb++++H1+vt3err64d8fSIiIiICYtF3YRjNULVpEKLnN91CCChKDhS1GLHY+zAMvnvR2GNVbViccxGEEGiONCJihJEw4/DFvWiONKDYXoKZ7jm9x8fNBLa2H4AJiWJ7HjSlZ1SIrmgoc+QjYsbwbvtBmNLM1C0RjTsZG+FhsVhQU1ODTZs24bOf/Wzv/k2bNuEzn/nMkPr+/ve/j+985zt45ZVXsGTJko893mq1wmpldWMiIhodEqaJYx0daAsGoQgFU3JzMMnl4m/AacyRMoF4fCcUJSfp968QHhiyGYnEEWhaRQYiJBqaqc6Z0ISO/d7daIu2wJAGbKoNc90LMT+7Bi4tq/fYxnAHmiNdKLRmJ+2rwOrBmXAbWiLdKLaz/iDRcMjolJb77rsPq1atwpIlS7Bs2TI888wzqKurw1133QWgZ+RFQ0MDXnjhhd5zdu3aBQAIBAJoa2vDrl27YLFYUF1dDaBnGsuDDz6IF198EZMnT+4dQeJyueByudJ7g0RERCmq6+7Gr/YdwMmuThimhIRElsWKRSXF+Ez1bNj15EXtiEanBKRMAEj+fduTBBGQMp7WqIiGixACk51TUeGoQlesEwkZh1Nz9Ul0nBMzE0iYBixK8o9guqIjYRqImYmRDptowshowuPWW29FR0cHHn30UTQ1NWHu3LnYsGEDKit7ivU0NTWhrq6uzzmLFi3q/f/a2lq8+OKLqKysxKlTpwAA69evRywWw1/91V/1Oe+hhx7Cww8/PKL3Q0RENBTtwSBe2LkLTT4/yj1u2HUdUkp0RyJ48+QpGNLE7QsWcKQHjSFWKGoREoljAPL7tUoZh4CAouSlPzSiYaQIBXnW/t/jH5al2WFXLQgmInDp9n7toUQEdtUKd5I2IhqcjBctvfvuu3H33XcnbXv++ef77ZPy/JVXziU+iIiIxpodDQ1o8PowIz8PytmkhhACOXY7VCHwfmMTlldWoionJ8OREl0YIQSs1kuQiB+CafqhKB/81ltKCdOog6oWQ9fnZjBKovQosuWgylWM/d5TcGhWKB9aVtaQJtqjPizJnYEcS//RIURC9mypnjPRZTzhQURERD0f/t5vaESW1dKb7PiwLKsVjf4AjnV0MOFBY4rFsgQJ61FEo+/ANNugKNmQMgHT7ISq5MLu+DyXpaUJQQiBywvnoz3qxclAC3IsLthUHWEjhu5YAGWOAlxWOOfjOyKiC8aEBxER0ShgSolIwoBFVZO2CyEgBBBLGGmOjGhohLDA4bwNmj4V0ei7MIwWCKiw2a6E1bocmlaV6RCJ0qbYnotbKi7H9o7DOOSrhy8eglW1YEXBPCzJm4E8qzvTIRKNK0x4EBERjQKqoqDY7cKh1nYUOJ392g2zZ5nCHAfndtPYI4QFVutlsFiWQ8owhFAhhC3TYRFlRKEtG58svRhXFC1AxIjBrlrg0Pj3gWgkKB9/CBEREaXD0tIymJAIRGN99ksp0eDzo8DpxNzCwgxFRzR0QihQFCeTHUQAnJoNeVY3kx004pYuXYrq6mo89dRTmQ4l7TjCg4iIaJRYUDwJy9rL8c7pOlhCKrLtNhimiY5QGC6rBTfNngW3jS/GREREE448u6V6DoDt27fD7Z6Y06WY8CAiIholdFXFX82bi8qcbLxXV4/WYBCqouCi8jIsqyjHjPzzL3lIRERERB9gwoOIiGgUsagqLq2sxCXl5QjEYlAVBU5dh0iycgsRERFNEEMY4TGRMeFBREQ0CqmKAg+nrxARERENGouWEhEREREREdG4wxEeRERERERERKOYOLules5ExxEeRERERERERDTucIQHERERERER0WgmZc+W6jkTHEd4EBEREREREdG4w4QHEREREREREY07nNJCRERERIMmZRyR+EGEozthmJ1QlRzYLQths8yBEHqmwyMiogmMCQ8iIiIiGhTTDKM7+DOEotsgYUAIO6Q8hFD0XditS5HjvB2KYs90mERENEEx4UFEREREg+IPv4Zg9B3oajkUxdW73zSDCEW3QFNy4XF+NoMREhGNE/Lsluo5ExxreBARERFRygwzgFBsKxSR3SfZAQCK4oSq5CEU3QbD9GYoQiIimuhSSni89957+NOf/tRn3wsvvICqqioUFhbi61//OqLR6LAGSERERESjT8JogmF0QVXzkrarSh4SZifiicY0R0ZENP6IQW4TXUoJj4cffhh79uzp/Xrv3r244447cM0112Dt2rX4wx/+gMcee2zYgyQiIiKi0ebcq/RAY6Yl+MpNRESZlFLCY9euXbj66qt7v/7Zz36Giy++GM8++yzuu+8+/PCHP8TPf/7zYQ+SiIiIBseUEpF4HAnTzHQovaSUaAn7cNTXijPBLpiSk4zHIl0tgarmwTA6krYnzHZoah50rTTNkREREfVIqWhpV1cXioqKer9+8803cf311/d+vXTpUtTX1w9fdERERDQo0UQCOxobsa2+Hh2hEHRVxcLiYlxUVobirKyMxdUQ7MampoM44m1B2IjDomiodObiyuKZmJ09KWNxUeoUxQGn9VJ4g7+CYbqgKu7eNsP0wzS74bJ/BqqSue83IqJxg0VLByWlhEdRURFOnjyJ8vJyxGIxvP/++3jkkUd62/1+P3Sd660TERFlUjSRwEt79mB7QwMsioIsqxWReBx/OnIEu5qbsWrBAkzJzU17XA2hbvzk+LtoCnsxyeZGoc2NqBHHUV8rGkLduH3KUszJKUl7XJRc3PDCGzuIaKIdiqLDqVfBpU+BIj54fcyyX4WE2Y5QZCsSRiMELJCIQUCH07YCWY5rM3gHREQ00aWU8Lj++uuxdu1a/NM//RN++9vfwuFwYMWKFb3te/bswdSpU4c9SCIiIrpw7505g+1nzqDM7YbDYundX+hy4XhXF35z4AC+vWwZdFVNa1xvNR9FU8iL6e5CKKKnroOmWDFFy8epQAc2Nh7EDE8RdCW9cVF/3ZE9aAj8ARGjFQIKJEwowgK3ZTYqsv4KutozmkMIC3Kct8FhWYJIbA8SZidUJRt2y3xY9ZkQgs+SiIgyJ6WEx3e+8x187nOfw+WXXw6Xy4Xnn38elg+9SP34xz/GypUrhz1IIiIiujAJ08S79fWw6XqfZAcAKEKg3O3G6e5uHO3oQHVhYdri6oqGcKC7CQU2V2+y4xwhBIodHpwJduFkoAMz3OmLi/oLxk+jzv8rGDIClz61N2mRMEPoju6CEAqq3F+GED2l4IRQYbPMgs0yK5NhExER9ZNSwqOgoACbN2+G1+uFy+WC+pHfDP3iF7+Ay+Ua4GwiIiIaaYFoFJ2hEDxWa9J2m6bBkBIdoVBa4womoogaCXgs9uRxqToS0kQwzuXtM60jvANx0wuXPg3iQ8kpTXHArpXCFz2EYPw0XJaqDEZJRET08VJapQUATp8+jZ///Od45plnsH///j5tubm5fUZ8EBERUXppqgpVUQZclUVKCSklNCXlV4AhcWpWWFQN4UQ8aXvUSEAVCpx68kQNpYcp4/DFDkJXsvskO87RFBcMGUEwcToD0RERTWBykBt6Fheprq7GU089lfawMy2lER5vvfUWbrzxRoTO/lZI0zT85Cc/wW233TYiwREREVFqXBYLZuXn490zZ5Brt/f70NoZDsNttWJqmouW5lgdqM6ehK2tJ+Gx2PtNa2kKe1HmzMZkV15a48q0uBlGe/QUYkYQmmJHvnUyrKozY/FIaULC7J2uMvBxRpoiIiKiodq+fTvcbvfHHzgOpfTrnQcffBBXXnklzpw5g46ODnz1q1/F//f//X8jFRsRERENwvLKSritVpzu7u4d6SGlRFc4jLZQCEvLylCYgSmolxfNQJHdjWO+NvjiERjSRCgRwwl/OyyKhmuKZ8MyQQqWSinRENqHd1qfR23HL7G3ewPe7/gV3mn7T5wO7ICUmVlLUBEWOLQSJAxv0nZTxiCgwKaxzgoRUTqJQW4TXUojPPbu3Yu33noLJSU9S8b9y7/8C5599ll0dXUhJydnRAIkIiKi1EzNzcVt8+fjdwcP4kRXV8+oVimRZbHgyqoqfGrmzBG5rpQSDUEfuqNhWFUNlVk5sHyo3lepMxtfnnoxNjUexDFfG1rDPuiKhipXHq4snom5E2hJ2pbIUezt+hMkTGRbSqEKDaY0EEh0YL93IxShody5MO1xCSGQa1sCX+wQYkY3LGp2b5uUJkLxejj0cmTpM9IeGxERUapSSnh0d3ej8EMV3Z1OJxwOB7q7u5nwICIiGkXmT5qEqbm5ONjWhq5wGLqqYkZeHoqzspLWZhiqMwEv/nT6EA51tSGUiENTFJQ43bi6bBqWFpb1XrPClYuvTl+OxrAXgXgUVlVDuTMH6sdMoRhPTGngVGAbDBlFrrWid78iVLj1QnhjTTgZ2IZiezU0Jf210bKt81Bgvxxt4c2IGR3QlCxIJJAwA7Bpk1CW9VmoCmutEBGllZQ9W6rnTHApJTwA4MCBA2hubu79WkqJgwcPwu/39+6bP3/+8ERHREREg+a0WLCktHTEr9Mc8uM/D+5AQ9CLYkcWSp1uRA0DLSE/fnpkJxKmgeXFk3uPF0Kg1JE94nGNVoFEO7pjjXBp+UnbnVoefPEWdMcakG9L/0ooQqgodX0SWZYp6Iy8j1DiDFRhRaH9SuTaFsI6QNxERESjTcoJj6uvvrrfvNJPfepTEEJASgkhBAyDhayIiIgmircbT6I+0I2Z2QW9xUhtWs+UljMBLzbWH8WC/BI4da7kBgCGGYchE1CFnrRdFTpMacCQyVe0SQchFHisc+Cxzul9vyMiIhprUkp4nDx5cqTiICIiojEoGI9hZ3sj8myOfiuvAMAkhwsnfV040t2ORQUTp0bH+dhUNyyKHVEzCIeS3a89agahKzbY1NFRUZ/JDiKiUYIzVFKWUsKjsrJypOIgIiKiMSiUiCNqGHDryWs6aIoKCSCUiKU3sFHMrrkxyT4TJwPbYFOzoIgPCrua0kQg3oZiezXcelEGoyQiIhr7hrVC2K9//WvW7yAiIppAnJoOu6YNmNCImwYUIeAaICEyUU3NWo5cayU6oqfhj7chagQQSHSgI3oKbsskzPBczpEVREREQ5RywuPZZ5/F//pf/wu333473nvvPQDA66+/jkWLFuFLX/oSli1bNuxBEhER0ejk0C1YnF+KzmgYCdPs194Y9GGSIwszs1no8sMcWjZqcj+Pme4roCs2xMwwFKiYlnUZanL/Cm698OM7ISIiovNKaUrLD37wA/zd3/0d5s+fj4MHD+J3v/sd1q1bh8cffxzf+ta3sHr1auTn84WGiIhoIllRUoXD3W046m1Hod0Ft8WKqJFASygAq6rhhsqZsGnJC3ROZHbNjZmeKzA1azniZhiaYoWu2DIdFhER0biRUsLjueeew49+9CN89atfxRtvvIGrrroKr7/+Oo4dO4bs7OwRCpGIiIhGs3y7E1+tXoqNdUext6MJ9QEvNKFgWnY+riqdivn5xZkOcVTTFAs0hSvYEBHReUikXrSURU5Tm9Jy+vRpXHPNNQCAK664Arqu47vf/e6Qkh3r169HVVUVbDYbampqsHnz5gGPbWpqwu23346ZM2dCURSsWbMm6XG/+tWvUF1dDavViurqavzmN78ZdHxERET08QrtLnxp5iL830WX454Fl+G+RSvwrXnLmewgIiKijEkp4RGJRGCzfTDU0mKxoKCgYNAXf/nll7FmzRqsW7cOO3fuxIoVK3DDDTegrq4u6fHRaBQFBQVYt24dFixYkPSYrVu34tZbb8WqVauwe/durFq1CrfccktvvREiIiIaOfl2J6Z58lDuyoaqDGttdBpmpowjZniRMMOZDoWIiD6GGOQ20Qkp5QUPdFEUBd/5znfgcrkAAH/7t3+L//t//2+/uh3f/va3L6i/iy++GIsXL8bTTz/du2/27Nm4+eab8dhjj5333CuuuAILFy7EE0880Wf/rbfeCp/Phz/96U+9+66//nrk5OTgpZdeuqC4fD4fPB4PvF4v3G73BZ1DRERENBbEzQBaQ9vREXkfcTMABRpybHNRaL8IDp0jcoiILlQ6Pjeeu8b6//dn2O3OlM4Nh4O4+6+vn9Cfa1Oq4VFRUYFnn3229+tJkybhv/7rv/ocI4S4oIRHLBZDbW0t1q5d22f/ypUrsWXLllTC6mPr1q249957++y77rrr+iVGiIiIiCaauOHHce/L6IoehK44oSkumDKGpuCb8EYPYYrnC8iyVGY6TCIi+ijW8BiUlBIep06dGrYLt7e3wzAMFBUV9dlfVFSE5ubmQffb3Nyccp/RaBTRaLT3a5/PN+jrExEREY1WLaGt6I4dgMsyGar4oFCqVc2FP34C9YE/YXbO1yCEmsEoiYiIhkdKk2tff/11VFdXJ00IeL1ezJkz57xFR5MRou/MIillv32pSrXPxx57DB6Pp3crLy8f0vWJiIiIRpuEGUZ7ZCd0xdMn2QEAQihwaKUIxE7DHz+VmQCJiIiGWUoJjyeeeAJf+9rXks7/8Xg8+Ou//ms8/vjjF9RXfn4+VFXtN/KitbW13wiNVEyaNCnlPu+//354vd7erb6+ftDXJyIiIhqN4qYfcTMAXclK2q4pdpiII2Z0pzcwIiK6AHKQ28SWUsJj9+7duP766wdsX7lyJWpray+oL4vFgpqaGmzatKnP/k2bNmH58uWphNXHsmXL+vW5cePG8/ZptVrhdrv7bERERETjiSJ0KEKFKeNJ201pABBQPjL6g4iIaKxKqYZHS0sLdF0fuDNNQ1tb2wX3d99992HVqlVYsmQJli1bhmeeeQZ1dXW46667APSMvGhoaMALL7zQe86uXbsAAIFAAG1tbdi1axcsFguqq6sBAPfccw8+8YlP4J/+6Z/wmc98Br/73e/w6quv4u23307lVomIiIjGFYuSDbdlGjoiu6Ar7n7TfaNGO6xqLrL0yZkJkIiIBsaipYOSUsKjtLQUe/fuxbRp05K279mzB8XFF76c2a233oqOjg48+uijaGpqwty5c7FhwwZUVvZUB29qakJdXV2fcxYtWtT7/7W1tXjxxRdRWVnZW1B1+fLl+NnPfoYHHngADz74IKZOnYqXX34ZF198cSq3SkRERJRxCTOK9sh+tEb2IZLoglXzoNA2DwW2OdAUW0p9CSFQ5FgGX+w4gvE6OPQSKEKHlCYiRgcSZgDlrk9CV5NPeSEiIhprhJTygvM+3/rWt/DGG29g+/btsNn6/pANh8O46KKLcOWVV+KHP/zhsAeaTulYT5mIiIjofOJmEIe6f42OyEEIoUFTbDDMCAwkkG+dhZmez8GiulLutzOyH2cCryCcaIaUJiAAi+JBkWM5SpxXcIUWIqILlI7Pjeeusf7pP8Fud6Z0bjgcxN3fuGFCf65NaYTHAw88gF//+teYMWMGvvnNb2LmzJkQQuDgwYN46qmnYBgG1q1bN1KxEhEREU0YdYG30BbZD7deDk2x9u43zCjaIgdgV/MwzfPJlPvNtc2BxzIV3tgxxE0fFGGB2zINVjV7GKMnIqLhJGTPluo5E11KCY+ioiJs2bIF3/jGN3D//ffj3OAQIQSuu+46rF+/fkgrrBAREREREDV8aI3shU3N6ZPsAABVscKu5qI1shdlrstgUz0p968qNuTa5g5XuERERKNSSgkPAKisrMSGDRvQ1dWFY8eOQUqJ6dOnIycnZyTiIyIiIppwwokOxAw/svTSpO1W1QNfrA7hRPugEh5EREQTQcoJj3NycnKwdOnS4YyFiIiIiAAIoQBQIKUBiP6vaxImhFAgoKQ/OCIiojGCPyWJiIiIRhmXNgkOLQ9hozNpezjRAbuaB5fed3U8KSUSZhQJM4oU6tITERGNS4Me4UFEREQ0EZnSgDfegYQZg0PLglMb/iklqmJFsX0pjvn/BxGjC1YlG0IISCkRNb2ImyFUuq7oXZpWSomu2DE0h3bCGzsFAHBbylBkX4Q86ywIIYY9RiIiSiMpe7ZUz5ngmPAgIiIiugBSSjSEj+GI/310RJthyAQsih1ljmmodl8El549rNcrcV6EmOlHY2gbwonjEFAgYUJXnKhwrUCp85LeYxtD23DC/woMGYVV8QAQaAsfQEf0CCqdV6LC9QkmPYiIJqilS5dCVVWsXr0aq1evznQ4acWEBxEREdEFOB06hB0dm5CQcbi1XKhCQ9QM4Yj/fXTFWnFZwU3DOtpDESqqsq5FoX0eOqNHEDMC0FUXcq3T4dKKexMYgXgzTvlfgyI0ZOklvefbtRyEEx2oC76FbOtkeCyVwxYbERGNHdu3b4fb7c50GBnBhAcRERHRx4iZUezr3gIJEwXWD1ZO0RQP7KoLLdF6HPPvxoKcTwzrdYUQcOnF/Wp1fFhH5BCipg85lqn92uxaHrqix9EW2c+EBxERTTgsWkpERET0MVoip+GLd8Kj5/drU4QKp5qFutBhxMxo2mMLJlqgCcuAU1Y0xY5AvDnNURER0bCSg9wmOCY8iIiIiD5G1AgDANQkS8QCgEWxIWZGETcj6QwLAKAKCwxpDNhuygQ0YUljRERERKMDEx5EREREH8NydjWUgRILcTMGXdGhK9Z0hgUAyLFOgwBgyHi/NlMmYMo48myz0h4XERFRpjHhQURERPQximwVyNKz4Yt39GszpYmA4UWZfWZvYiSdcq0zkG2dCl/sNOJmuHd/wozAGzsNt6UCedbZaY+LiIiGj5CD2yY6JjyIiIiIPoZVtWO2+yIYMoGOaDPiZgxSSoSNAFqj9ci1TMK0rPkZiU1TrJjpuRl5ttkIJ9rRFT2BrugJBBOtyLFOwyzP52FRnRmJjYiIKJO4SgsRERHRBZjqmg9VaDjsr0V3rB2mTMCi2FHpmIW52cvh1nMzFptdy8XcnC/BGzuNQLwJAODUi5BtmQxlgLojREQ0lgymCimHePAnIBEREdEFEEKgyjUH5Y4Z6Iw1IyHjcKhZ8Oj5A66Qkk6KUJFjnYIc65RMh0JERDQqMOFBRERElAJN0VFoK890GERERPQxmPAgIiIiIiIiGs04o2VQWLSUiIiIiIiIiMYdJjyIiIiIiIiIaNxhwoOIiIiIiIiIxh3W8CAiIiIiIiIazaTs2VI9Z4LjCA8iIiIiIiIiGneY8CAiIiIiIiKicYdTWoiIiIiIiIhGMy5LOyhMeBAREdGE1x5tw/HAUdSFTkNCosRWiqmu6ZhkK4YQItPhERER0SAw4UFEREQT2snAcbzd/ib8iQAcqgMCAnu9u3E0cAQX5y5DtWdupkMkIqIJTpzdUj1nomPCg4iIiCYsf9yHLR1vI2rGUGor6x3NkYNcdMU6sa3zXeRbC1BoK8pwpERERJQqFi0lIiKiCetU8CR8cS8KLIX9pq5k6zkIGyGcCB7LUHREREQ0FBzhQURERBNWe7QNqlCT1ukQQsCq2NASac5AZERERB8iZc+W6jkTHEd4EBER0YSlKirkecrYmzChCjWNEREREdFwYcKDiIiIJqxiWymklDBkol+bKU3EzBgqHJPTHxgRERENGRMeRERENGFVOCpRZCtGc6QJCTPeu9+QBlqiTciz5KHKOSWDERIREdFgsYYHERERTVhW1YorCq/CW21/QXOkCaY0z7YIFFgLcFnB5cjS3RmNkYiICPLsluo5ExwTHkRERDSh5VhycWPxTagP1aMt2gpAIteSh3JHJWyqbdD9GjIBU5rQhJ60KCoRERGNLCY8iIiIaNSJGHGcCXbDkCYKbVnIsTpG9Hq6YsEU11RMcU0dcl/t0SacCBxAQ/gEpJTIthRgiqsaFY5pUFgAlYiIKG2Y8CAiIqJRw5Am3m4+ji1tJ9AWDsCERJZuxfzcMlxXMhtuy+BHXKRDfegY3ut4FcGEH07NDUUoaAqfQlP4FNrdi7E45zImPYiIKHVclnZQmPAgIiKiUUFKiVcaDuCVhoNwqDpKHR6oQkF3PIw3mo6gLeLHV6ZdAqdmyXSoSYWNIGo730TMjGKSraJ3GotL8yCUCOCwfycKbSWocEzPcKREREQTA1dpISIiolGhOezD283HkWNxoMSRDYuqQVUU5FmdmOLKw8HuZuzqqM90mANqCJ+EL9GFXEtRv5odDs0FU5o4FTiUoeiIiIgmnownPNavX4+qqirYbDbU1NRg8+bN5z3+zTffRE1NDWw2G6ZMmYIf/ehH/Y554oknMHPmTNjtdpSXl+Pee+9FJBIZqVsgIiKiYXDQ2wxfIopcS/96HRZVg1XRUDuKEx6BuBeQgCKSv17ZVSc6Yi0fWgmGiIiIRlJGEx4vv/wy1qxZg3Xr1mHnzp1YsWIFbrjhBtTV1SU9/uTJk7jxxhuxYsUK7Ny5E3/3d3+Hb3/72/jVr37Ve8xPf/pTrF27Fg899BAOHjyI5557Di+//DLuv//+dN0WERERDUIoEYcABlzRxK7p6I6FIEfpnGRVqJBi4NgMmYCm6BDgii1ERETpkNGEx+OPP4477rgDd955J2bPno0nnngC5eXlePrpp5Me/6Mf/QgVFRV44oknMHv2bNx555346le/ih/84Ae9x2zduhWXXnopbr/9dkyePBkrV67Ebbfdhh07dqTrtoiIiGgQnJoFEhgwoRFOxJFjcYzaJV4LbKXQhQVRI9yvTUqJiBFChX36qI2fiIhGsXNFS1PdJriMJTxisRhqa2uxcuXKPvtXrlyJLVu2JD1n69at/Y6/7rrrsGPHDsTjcQDAZZddhtraWmzbtg0AcOLECWzYsAGf/OQnR+AuiIiIaLjM9kyCW7eiIxrs1xY1EoiZCdTkV2QgsgtTaC1BqX0KOmMtiBih3v0JM47WaAOy9TxMds3KYIREREQTS8ZWaWlvb4dhGCgqKuqzv6ioCM3NzUnPaW5uTnp8IpFAe3s7iouL8YUvfAFtbW247LLLIKVEIpHAN77xDaxdu3bAWKLRKKLRaO/XPp9vCHdGREREg1Fkz8Iniqbjzw0HEDESyLc5oQkF3bEwOqJBzM0pwcLcskyHOSBFqLgo7yoI9BQw7Yq3QemZpINcSxGW5l4Jj56b6TCJiIgmjIwvS/vRYZ1SyvMO9Ux2/If3v/HGG/jud7+L9evX4+KLL8axY8dwzz33oLi4GA8++GDSPh977DE88sgjQ7kNIiIiGiIhBK4tnQWXbsWW1uNoDvtgSoks3YarSmbi2pJZcIzSJWnPsatOXFbwSXTEmtEWbYIpDbi1HBTbK6Erozt2IiKi8SZjCY/8/HyoqtpvNEdra2u/URznTJo0KenxmqYhLy8PAPDggw9i1apVuPPOOwEA8+bNQzAYxNe//nWsW7cOitJ/Fs/999+P++67r/drn8+H8vLyId0fERERpU4VCi4rmoql+ZVoCHXDkCYKbFnIttgzHdoFU4SCAmsJCqwlmQ6FiIjGC3l2S/WcCS5jNTwsFgtqamqwadOmPvs3bdqE5cuXJz1n2bJl/Y7fuHEjlixZAl3XAQChUKhfUkNVVUgpByyCZrVa4Xa7+2xERESUOVZVw5SsfEx3F46pZAcRERGNHhmd0nLfffdh1apVWLJkCZYtW4ZnnnkGdXV1uOuuuwD0jLxoaGjACy+8AAC466678OSTT+K+++7D1772NWzduhXPPfccXnrppd4+b7rpJjz++ONYtGhR75SWBx98EJ/+9KehqmpG7pOIiMa+7mAYB+tb0eELQdcUVBXlYsqkPGhqRhc8IyIiIqIBZDThceutt6KjowOPPvoompqaMHfuXGzYsAGVlZUAgKamJtTV1fUeX1VVhQ0bNuDee+/FU089hZKSEvzwhz/E5z//+d5jHnjgAQgh8MADD6ChoQEFBQW46aab8N3vfjft90dEROPD7pON+OP2g2j3BSEgICVg0RTMKi/E55bPg9thy3SIRERENI4JKSFSXGb23PFLly6FqqpYvXo1Vq9ePRLhjVpCDjTPYwLz+XzweDzwer2c3kJENMGdbO7ET17bgbhhoDjXDfXstMlQNIYz7V4snlqKL16xGIoycMFtIiIiGn/S8bnx3DWe+effwm53pnRuOBzE1/+/myf051qOwyUiIjqP2mNn4A9HUZrn6U12AIDDakFJrhuHzrSivr07cwESERERUVJMeBAREQ0gFk/gcEMbsp32pEumO20WRGIJnG7tykB0dKG6YwGcCDTgVLARESOa6XCIiIgoTTJaw4OIiGg0M6SEKSXUAaarnEuCmJwdOioFEiG83bYbh/2nEUiEICCQa3FjYfYMLMmthqawmDkREdF4xhEeREREA7DpGkpy3fAGI0nbo/EEVEVBgSe1ObU08iJGFP/T+Da2de6HCgVl9iKU2PIRMqJ4rXU73myrHXC5eiIiolFHysFtExwTHkRERAMQQqBmWhkg0C/pYZoSZ9q7UZ7vwYySggxFSAM55DuN44EzKLMXItuSBVUo0BQNhdYc5OhZ2Nl1BM2RjkyHSURERCOIU1qIiIjOY97kSTjTPgVvHziJDl8QLrsVccNAKBJDca4bn1k2F7rGqRGZ0BENYE9XHfZ7zyBmJlDmyMWCnApMz5qEA76TUIUKi6L3Oy9Lc6Ij5sWJYAOK7fkZiJyIiGgQOGAjZUx4EBERnYeqKLhxySxMmZSLXScacabDixzNjrnzJ2HhlBLkZjkyHeKEdDrYjl+efg9NkW44VStURcGOjhPY3XUanyiaDX88CJtiSXquEAIKFIQSyacqERER0fjAhAcREdHHUBSB6ooiVFcUZToUAhA14vhdfS1aol5MdRVCET0zdItsHnTFgniz5SAm2VVEjFjS86WUMGDCqdnTGTYREdEQSKQ+xINDQljDg4iIiMaUI/5mNIQ7Ue7I6012nJNjccIwTcRMFQlpIJok6eGNB+BU7ZjqKktXyERERJQBTHgQERHRmNIW8cGUJixK8oGqHosDkYTE9KxyNETa0BHzIm4mEDXjaI50wJsIoiZ3FgqtOWmOnIiIiNKJU1qIiIhoTFGFct6V9kxpQlM03DBpOQqsOTjgO4HmSAcUIZBn8WBRzkwszJkJIUT6giYiIhoKzmgZFCY8iIiIaEwpd+TBqmoIJaJwaNY+bVJKeOMhXFowE26LE1cVLcFFedXojPmgQEGhLSfpyi1EREQ0/jDhQURERGNKpSsf07OKsddbjwpHHmxqTwLDlCYaw11w63Yszp3ce7xLc8ClcTUdIiIaw6TEeYc3DnTOBMeEBxEREY0pqlBwc/kSmDBx1N+MuGlAgYApJfJtWfhkyUJUOPMzHSYRERFlGBMeRERENOZkWxxYVbUCJwItOBloQ9w0kG/NQrWnFB4LR3MQEREREx5EREQ0RumKipnuEsx0l2Q6FCIiohHGqqWDwWVpiYiIiIiIiGjc4QgPIiIiIiIiotGMAzwGhSM8iIiIiIiIiGjc4QgPIiIiIiIiotFMYhDL0o5IJGMKEx5ERER0XqF4DPs7W9EWCkJTFFR5cjHVkwtFiEyHRkRERDQgJjyIiIhoQIc72/Dzo/vQGPBCAjClhF3TMDdvEm6ZMQ8eqy3TIRIRERElxYQHERERJdUY8OG/D+1CZySMKk8OdEUFAATiMWxvOQMJiTvmLIGqsCQYERERjT58QyEiIhrD/NEo2oJBhOLxYe97W/MZtIQCmPqhZAcAuHQLKrI82NfeghO+rmG/LhEREdFw4AgPIiKiMajB58PmutPY29KMmGHAruuoKS7BisrJyLXbh9y/lBK725vgsdogktTqcOoWRAwvjnd3YHp23pCvR0REROch5SCKlrJqKUd4EBERjTGnuv//9u48PMry3hv495l9Mku2yb6RBMhCWMNiWEQUQXGh1vO6oFy2l/a8VE4BOddV6fFUrT3V9thaT6tYsfbVY+tu61JRRFFAAkYggRASkpCE7Ps2k2TW537/QEaHDFuSSZjk+7mu/DH3s/1uf4l58uNeuvBi4SF8UVMNSZIQqtPB5fFge0U5Xjx8CO39/cN+hiwEXLIM1XkWJpUkCR4hD/tZRERERIHAggcREVEQkYXAh+Un0GyzYmpkJCwhITBqNIgxGjElMhKVnR34vLpq2M9RKhRIMoai1+nwe9wty5AAWHSGYT+LiIiIKBBY8CAiIgoitT3dONnZiXiTedC2sCqFAlGGEBQ2N6HHbh/2s+bHJkIBBbodAz7tQgjUWrsRbzAhxxIz7OcQERERBQILHkREREGkx26H3e2GUaPxe9yk0aLf5UL3CBQ8ZlhisSwpDZ0DdlR2d6Ctvw9NfVac6GqHWaPDrVNyYFD7j4OIiIhorHHRUiIioiCiUaqgUCjg9HigUSoHHXd4PFArFNCqBh+7VEqFAqvTs5AaGo4DzXVosPZAr1TjithkzItNRJIpdNjPICIioovARUuHhAUPIiKiIJIWHo44oxEtNhuSQn0LDkIItNhsmB4TgxiDcUSep1QoMDs6HrOj4+GSPVBKikFTaYiIiIguR5zSQkREFES0KhWWpabBLQvU9/bCLZ/eJcXhdqOmuxtGjQZLU1L9biU7XGqFksUOIiIiChoc4UFERBRk8hKTIAuBT6tOorqrC0IASoWEeJMZq6ZMRVZU1FiHSERERCOJU1qGhAUPIiKiICNJEhYnp2B2bBwqOjsw4HLBpNViSkQktCr+aiciIiICWPAgIiIKWgaNBrNi48Y6DCIiIqLLEtfwICIiIiIiIqJxhyM8iIiIiIiIiC5nXMNjSFjwICIiAiDLAqdau9Bp7YdaqcSkmHCYDbqxDouIiIiIhogFDyIimvDq27rxUUEZapo74XR7AEgIN+kxPzMJS2emQ61UjnWIRERERHSJxnwNj61btyI1NRU6nQ65ubnYu3fvec/fvXs3cnNzodPpkJaWhj/96U+Dzunu7sb69esRFxcHnU6HrKwsbN++PVBdICKiINbWbcPrnxehvL4NkWYD0uMtmBQbDrdHxo6D5fjscMVYh0hEREQTnBBiSF8T3ZgWPN544w1s2rQJDz30EAoLC7FkyRJcf/31qK2t9Xt+dXU1Vq1ahSVLlqCwsBD/8R//gQ0bNuCdd97xnuN0OnHttdeipqYGb7/9Nk6cOIEXXngBCQkJo9UtIiIKIgfL69HU0YvU2EiE6DQAAKVCgegwI8IMOhSU1aK9p2+MoyQiIiKiSzWmU1qeeuop3HvvvbjvvvsAAE8//TR27NiB5557Dk888cSg8//0pz8hOTkZTz/9NAAgKysLBw8exG9/+1vceuutAIC//OUv6OzsRH5+PtRqNQAgJSVldDpERESXpc7uPlTWtqHf4YJBr8HUlGiEmvRwuT0ormpCqEEHhUIadF2EKQQnmzpwsrEdllDDBZ8jhEBzrw01nV1wyzKiDAZMjo6ESjHmAyqJiIgomIlvvi71mgluzAoeTqcThw4dwpYtW3zaV6xYgfz8fL/X7N+/HytWrPBpW7lyJV588UW4XC6o1Wq8//77yMvLw/r16/Hee+8hKioKa9aswYMPPggl52ATEU0oHlnG3oMnsb+oGj02OxTS6QXLQ006LJ03GdMzEuBwu6FR+/91KEkSJEiwu9wXfFa/04UPjpWiqL4JVocTCpweKTIpMhy3zMhGckTYyHaOiIiIiM5rzAoe7e3t8Hg8iImJ8WmPiYlBc3Oz32uam5v9nu92u9He3o64uDhUVVVh165duOuuu7B9+3ZUVFRg/fr1cLvdePjhh/3e1+FwwOFweD/39vYOs3dERAQAPbYBnKxtR1+/A3qdBpOTLQgzh4za8wuOnsLO/WUwhWiRlhQJhSRBlgXaumz4aG8ptBo1zCE6tPf0IcyoH3S92yMDEDCHnH+3FlkI/ONICfKraxFjMiLObIIkSRhwuXCyrRN/O1iEHy2cB4vxwqNEiIiIiGhkjPkuLZLkO4RYCDGo7ULnf7ddlmVER0dj27ZtUCqVyM3NRWNjI5588slzFjyeeOIJ/OIXvxhON2iMWbtsaDzZAiHLiIyPgCUh4rzfR0QUWEIIFBSfwu6vK9HV2w9JAoQsEGrSY/GcdCycneZ3Cok//XYnqpo64XC5YQrRIjUu4qJ2TbE7XfjqaA10GhUs4UZvu0IhISbShLrmLhQcPYXZWfF4b38JHC43tGeN9Gju7EVUmBEZiVHnfVZtZzeKGpoQH2qGWaf1tuvVaqRHRaC8tR2H6hqxMmvKRfWZiIiIyBfntAzFmBU8LBYLlErloNEcra2tg0ZxnBEbG+v3fJVKhcjISABAXFwc1Gq1z/SVrKwsNDc3w+l0QqPRDLrvz372M2zevNn7ube3F0lJSUPuG40ep8OFfe8W4OjuEnS3nh6ZYzDrMXlOGq6+czHMkaYxjpBoYjp6ogEf7i6BVq1EakIEFAoFZFmgo9uGHftKodGoMG1yHI5XN6O0pgUDDhdiI03ISY9DWnwkJEmCEAJfldZiT3EV2nv6IISAUqlAoiUUK+ZmYOoFihANLT1o77IhPjrM73FLmBHN7b1YHpGBnEmxKK5phlmvgzlEC5dHRkdvH/RaNVbOzfAuZnoule2dGHC6kBQWOuiYQpJg1mlRWN+IFZmTWYwlIiIiGiVjVvDQaDTIzc3Fzp07ccstt3jbd+7cidWrV/u9Ji8vDx988IFP2yeffIK5c+d6FyhdtGgRXn31VciyDMU3i8SVl5cjLi7Ob7EDALRaLbRard9jdPmSZRmfvrIbX39UCHOkGclZiVAoJFg7bSjcdQzWThtufeBGhJgGD1MnGs/cLg9OVbagrqoNbrcHEVEmTMlOgClsdKaSuN0e7C+qgSQBMRazt12hkBAVYUJjaw92FZSjoKwWtS1dUKuUUKsUONnQgUNldVg8Mw3L52Xg6xO1eC+/BBqVEsnR4VApFXC43Khr68GbXxThruW5SI2NgMPlxrHqZhSdbEBn7wDMIVrMTI+HTqmCLAuoVP4XDFWpFPDIMtRKJW67ahaSS0/hcHkDuvsGoFQoMG1SLPKyUy5YWAEAp9sNSNI5ixlqpRIOlxuyEFCy4EFERESXSojTX5d6zQQ3plNaNm/ejLVr12Lu3LnIy8vDtm3bUFtbwRXclAAAIv5JREFUi3Xr1gE4PfKioaEB//u//wsAWLduHZ555hls3rwZP/rRj7B//368+OKLeO2117z3/PGPf4w//vGP2LhxI37yk5+goqICjz/+ODZs2DAmfaTAaaxsxtE9x2FJjITpO8PVzZEm6E16VB09hbKvKjBn+YwxjJJodFm7+/HRW1/jZFkj3C7PNyMlgIgoI66+eTayZiYDAJrrO3G8qBbVZc0ABFKmxCB7dgrikyOHHUNzhxXN7b2whBn9Ho8MC8G+YzUICw1BzuQ4qJTfFiS6rQP44vBJhJn02FNcDbVKgbjIb4smWrUKk2LCUdXUgfxjNYgJM+LtvUdRXNUElVIJvVaNbtsAKhrakRBhhlqthNVmR6ifwmevzQ6DXoMwsx4GnQbXzJ6CRdNS0dtnh1qlQJhRf9GjMcJDTt/fI8tQ+tmRxWp3IDMmyu8xIiIiIgqMMS143H777ejo6MBjjz2GpqYm5OTkYPv27d5tZJuamlBbW+s9PzU1Fdu3b8cDDzyAZ599FvHx8fjDH/7g3ZIWAJKSkvDJJ5/ggQcewIwZM5CQkICNGzfiwQcfHPX+UWBVHT0Fu82BuNTBU6DUGhU0WjVK9p9gwYMmDFmW8fE7B1F2tA7xyRHQ6U+PapM9MloaurDj7YMwh4agt7sfn/z9IHq7+mEw6QAJ2P/ZcRQfrMby1XMwfW6q9579fQ50tVkhKSRYYkOh0Vz414bb7YFHls85ssLmcMHa78CUSVE+xQ4ACDPp0WOzY9fhCnT225HsZzqKJEmwhBpQ2diOjwrKUHSyEclRYdBp1N5zXG4Pqpo6oJeUaOu0whCigeo7Ux1dbg86e/qxJDcdod9ZrFSnUUGn8V+oOZ/s2GhEGw1o7LEiMczsUyixORwQQmBuSsIl35eIiIgIAJfwGKIxX7T0/vvvx/333+/32EsvvTSobenSpTh8+PB575mXl4cDBw6MRHh0GRuw2qFUKc75L7AavQZ93f2jHBXR6BBCoKO1F71d/VBrlIhNjEBTXSeqypoQlxjuLXYAgEKpQGxSBE5VtuLA56VoONUOp8ONSVNjvD8/IlagtbEbn71fiJj4cJjDQlCwpwzHDtagt7sfCoWEyGgzZi+cjJkL0qFUnnukQrg5BCE6Dax9dkSEDt6VpK3zdAElzOR/ik2oSYemTiugknyKFN+lUanQZe3HkapGhBn0PsUOAFCrlIgJN6HXNoBokxk19R0whGih06oxYHeh3+7E1ElRuHLu5Av+t74YoXodbsjJwNuFx1DZ1okIgx4qhQLdA3Y43R4sTEvCjPjYEXkWEREREV2cMS94EA2VKcIIj1s+584+dpsdSRnxYxAZUWB1tPZi78fFqDrRhIE+J5QqBaJiw2Aw6+B0uKA3DF6TSJIkmEL1KDpQCbVahdSMWJ+fG0mSEB0fhpqKFpQU1qCrzYZjh2tgDg1BdFwYZFlGV7sVH7/9Naw9A7jyuunnLDaGmvSYNiUO+w5XwWTQQa36tmjh9sjosdphMmih16r9Xg8BaJQKCKWEAYfL73l9dickhQJ2hwsJUf63ejUbdGjv7cPieZNh73PiSFk9+u0uRIYZsDwrAzMzEmAIGbn1m3KTEmDWanGgpg7lre1weTxICDNjQUoi5qYkXtTOMkREREQ0cljwoKA1eU4q8t//Gl0tPYiIDfM5NtBnhywLZC/MGJvg6LJm7e5HxfEGtDf3QKVWImFSFFIzYi9qusZY6+6w4b1X8tFQ0w5LrBmWGDNcTg86WntQeuTUeYcuKhQK2HrtiI4L81uskCQJOp0aR7+qgs1qR3xShM9IkdjECHR32HBwbzkyZyQhJiH8nM9aOncyWtp7cbKuHQa9BnqdBnaHC9Y+ByYnWdA5YEe/wwmjfnDBocs6gOxJsej3uFHd3InUWN9tpt0eGZ3WfsxKj8eJ+jbIsv9Oy7KAQpIQatRhflYyFs9Jh9PthkaluugtcS/VlGgLJkdFos/pgkeWYdRquG4HERERDR8XLR2Sy//tnugcohIjccWNudj9Zj4GbHaEx4RCqVSgp90KW08fZi6dhqlz08c6TLrMlB+rx853D6Oz1QqF4vTvAYVCQsqUWNxw+3yERV54/QZZltFS04Z+6wBCTHrETIry7goVaIUHTqK+pg0pk2O800q0OgXikyPRZ7WjrqoNfTY7DEbdoGutvf0IizCcdzqnRxZob+lFiFHrU+w4IzTCgJqKFlSWNp634BFq0uOOVbkoLK3HkbJ69A04YTJosXhOGmZlJuKf+cdRVN6AlNhwaL8pNAkh0N7dB5VSgXnZydDp1Hjj8yJUNrbDYjZAq1ahz+5El20A6fGRuG5+Jrr77GjtsiIxKmxQDB29fYg0hXiPKRTSoKkvgSBJEoza829jS0RERESBx4IHBS1JkrBw9TyYwo04tPMI2uo6IMsyQi1mLLgxF/OvnwXNuYbM04TUXN+Jj9/6GgP9DqSkR0HxTcHA6XChqqwRH71ZgP9z31Ko1OeeelBTUod97xag/kQjHHYnNDo1kjISsOh78zFpWtKIxeq0O9HR2AUAiIgLg1avhdPhQlnRKZjDDH7X0EiZHI2GUx04WdaMnDnJPkWY3q4+KBQKzF44BUe+qoLHIw+6h+yR4XK6odWp/RY7gNM/d0qlAraegQv2wWTQ4cq5k7FwdhqcLjc0apV3kdKbFk+Dy+1BeW0bZCGgUirgdHlgCtFi5RWZyJp0en2Ru6/Nxf6SUzhR14oB5wD0GjWWz5mCvGmTEG7U44qsZPx9bzHae/oQaQ75ZlcagZ4+O2wDDizJSYVBx+IDERERBTuuWjoULHhQUFMoFJh51TRMW5SBzqYueDwywmPCoBvBefk0fpQcqkFPVx8mTYnxmSKh0aoRnxyJmooWnKpsQXqW/7VfTh2vw7t/3I7eDhuikyzQGbWw9zlwsqgGrbXtuGXDqmEXPdwuNw7tPIqiXcXobO4GAITHhGHmVdOQccUU2Adc0If4/wNeo1UjNj4MGp0GpypaoTdqoVIp0Ge1Q6VW4YplWchdPAVtTd2oq2pD4iSLt7jjdnvQcKoDMQnh0GrVaKrv9PsMIQQ8HhkhftYJOReVUgGV0jfmUKMed63MRUVdOyrr2zDgcCE63Ijs1FjERJi8+UmKCkPSVWHo6bPD4XTDqNcg5DsFjLlTk2Dtd+DLY9WobGz3bsNr0Klx5Yx0LJmZdtFxEhEREdH4woIHjQsqtQrRyVFjHQZdxoQQqDjeCKNZ73f9Cq1ODbfbg8baDr8FD1mWse+9r9HbYUNKdqL3HiEmPVKyE3GqtB773i1AclbCkKe3yLKMT/+6BwUfFkJv1MESHwEA6G7rxScvf4G2+g5odSrY+50wmvWDrve4PdAbdVj+vdlwu2WUF9fD6XAjLTMe2bNTkJYZC4VCgVW3L8BHbxWg4VQHxDdzOyVJQkxCOK7/P/PQ3tKDulfb4HK6oT5rXRNb7wB0eg3SMuOG1Mfv0qhVmJYWi2lpF969JNSgA/ysTapQSLh69mTkpMairK4V1j4HQnQaTE20IMESes6FVYmIiIho/GPBg4gmDFmWL7hYpfhmAUwhBLrbeuFxuWGKMKKrpQd1ZQ2ISowc9Ee0JEmITrSg/kQjWk61QWfQ4URBJWqO1wGyQFJmAjIXTEFk3LnXvACA2tIGFH5WjMiEcJjCv11LJCYlCn09/SjeW4opV05HWUkjwi1GKFW+U2/aW3oRbjFi+rw0hBi0WLR8mt/nxCVFYM26q3GyrAlNtR2nn5EYjslZ8dAbtIiMNuN4Vi0qSuoREWWCOcwAIcvo6rDB1mPH/KsyEJ8Sed6+jCZJkhATbkJMuGmsQyEiIiIKDM5oGRIWPIhoQpAkCYmTolD8dRUio82DjrtdHigUCkREm3HySA0O7TyC2tIGeNwemMKNiEmJwoDNjugki9/7aw1aOOudqDxcjSO7S9Be3wmtXgNIEsoKKnFo5xGs/OHVyDjPQrrlByvhtLt8ih1nGEJD0FrXDoXLgaS0aJw62YbIKBMMZh3cTg86WnshKRVYdO20i5puogvRYNqcFEybk+L32E1rrsCej4tRXlyP2pOtkBQSwiOMuOrGDCy4KpMjJ4iIiIjosseCBxFNGNPmpKDsSC262q0It3w7GkCWBRrrOhAdHwZXjw0f/3U3+m12RMaGQ6VRwdplQ8GOIvS29SIiLhxhlsEFE3ufHVBI2P/BQbgcbkzKSfaOJhFCoLGyGTv+3y5YEiLOOdKju7X3vAvt6kK0cPQO4Hv/dwXyPy1BRUkjmmo7oVQpEJsUgXlXZiBrVvIw/yudZjTrseq2+ci7OgsdrVYoFBJiEsP97v5CRERERAHGbWmHhAUPIpow0jLjsGhFDvJ3lqCmogUGow4eWUa/zYHouFBcuTIHn/7lU7hdHkzK/nbxUb1Rh1CLCV99eBhVRTWYfc10nxEOQgi01XVAb9Kir7vfp9gBnB5dEj85FtXFtSj7qgKLvjffb3yGcANcTvc543faXTBFGBBuMeGGO65Ad4cNPV19UGtUiIkPGzTFZSSEW0w+xSEiIiIiomDBggcRTRiSJGHhNdlISInE8cJaNJ7qgEqtxJRrEpA1MxmNJ+rR0diFpIzBi5Zq9VrEp8eita4d1cdqEZ1kgd6og73Pgda6doRFm2EMM8A54Pa7aKkkSdCFaHHqeN05Cx5T56Sh8LNiDNjs0J81ksLe5wAkYGrut1NiwiKNCIscPP2FiIiIiMYXIYR3sflLuWaiY8GDaIITQqDxZDMaKprhcXsQGR+O1OnJUGvOPbUimEmShElTYjFpyuCdQU4c6AOAc46UiEqyQK1TITUnGY0nW9DZ3AWNToOMeZOxcPU8HNp5BM3Vred8tjgdwDmPp05PxrS8DBz5ogRh0aEI+2atkZ42KzpbujB9cRbSZ0266L4SEREREU1kLHgQTWB9vf3Y8dLnqDhUBbvNAUgSFEoJ8emxWPnDZUicMvytR4OJVq+BLMuQZeF3Nxen3YnwmDDc9tPV6G7pQb/VjhCTDlFJFkiShJZTbTjyRQlkjwyF0neUhxACjn6Hz1SZs6nUKlx379Uwhhtw7Msy1JY2QAgBU4QRC2+ehyv/5YpxW4giIiIiIhppLHgEGSEEmqtbceJgJbpaehBi0iN91iSk5iQHZP4+jV8ejwcfv/gZju4pReykaMROioYkSXDaXWiobML7W3fgjgdXIyL2/FupjieTcpJgijCiu7UHEbFhPsdkWYa104bZ11wBjVaD6OSoQddnzEvH1x8Vor6iCYlT47xTW2T59KKlEfHhyFww+bwx6A06XLt2KRasmoPmmtOjRWJSohDqZ6FUIiIiIpoouC/tULDgEURkWcbev3+Frz48hP6eAai1arhdbhzcUYTMBVOw6r5roDfqxzpMChL1Jxpx4mAV4tJiEGL69vtGo1MjOTMBNcfqUJJfjiXfXzCGUY6uiNhwzFk+A3vfOQDZIyM8NgxKpQIDNjuaa1oRMykKM5ZOO+f15ggTbvjX5fhw26eoKamDWqOGJJ1ebNSSEI7r7r3mogtI5kgTzJFcLJSIiIiIgss///lP/Pu//ztkWcaDDz6I++67b8xiYcEjiBTvLcXedw7AFGZETHKUd5eIAZsdR/cch86oww33LR/jKClY1JY2wGl3+hQ7zlAoFDCEhqB0/4kJVfAAgCtvvQIqtRKHPy1GXdnpKSUanRrpsybhmjVLYImPOO/1KdlJuPvn/4ITX1eitqwBQhZIykxAxrx0hEWFjlIviIiIiGhcCZIBHm63G5s3b8bnn38Os9mMOXPm4Pvf/z4iIs7/Dh0oLHgECY/Hg6Jdx6BUKBAe4/tHk96ogyUuAmUHKnDFDbmIjJs4UxBo6FxONyScewFNlVoFp8MFIYTPFqzjnVKlxJLvX4HZV09HbVkDPC4PQqPMPlNULsQcacK862Zj3nWzAxwtEREREdHlo6CgANOmTUNCQgIAYNWqVdixYwfuvPPOMYnn4t7eacx1t/aipbYNYdH+/4XYbDHB1t133h0iiL4rLDoUAoDskf0et/X0edf1mIiMYQZkXzEV05dkITkz4aKLHUREREREwWrPnj246aabEB8fD0mS8O677w46Z+vWrUhNTYVOp0Nubi727t3rPdbY2OgtdgBAYmIiGhoaRiN0v/gGHySELAMCkPzsHOFzHvdapos0ZU4qIuPD0FzTOuj7xtrVB4VCQs7izDGKjoiIiIiIviUAcYlfQ5jT0tfXh5kzZ+KZZ57xe/yNN97Apk2b8NBDD6GwsBBLlizB9ddfj9ra2tNR+vl7dCz/AZVTWoJEaJQZEXHh6Gjo9Lvmgq2rDyEmPaKTIscgOgpGpnAjrrnrSnz0589QU1KHUIsZSqUCvZ02CCEw77pZmJKbNtZhEhERERFNeAOOgSFf09vb69Ou1Wqh1Wr9XnP99dfj+uuvP+c9n3rqKdx7773ehUiffvpp7NixA8899xyeeOIJJCQk+IzoqK+vx4IFY7cmIAseQUKtUWPmVdPw0Z8/g627D8Ywg/eYy+FCa30HZi2bhqgkyxhGScEm+4qpMIUbcGT3cZwsqoHH48GknCTMXJqNrLypUCq51TERERER0VjRaDSIjY3FA7+/f0jXG41GJCUl+bQ98sgjePTRRy/5Xk6nE4cOHcKWLVt82lesWIH8/HwAwPz583Hs2DE0NDTAbDZj+/btePjhh4cU+0hgwSOIzL46B+31HSjcVYz2hk7oDTo4HS54XB5MmZOKa9YsmbDrLdDQJWUkICkjAU67Ex6PDF2Ilt9HRERERESXAZ1Oh+rqajidziFd728DgnON7riQ9vZ2eDwexMTE+LTHxMSgubkZAKBSqfC73/0Oy5YtgyzL+OlPf4rIyLGbhcCCRxBRqVVY8YOrMGVOGkq/KkdHYxcMZj0y5k/BlNw06A26sQ6RgphGpxnrEIiIiIiI6Cw6nQ463eXzt97ZBZSziyo333wzbr755tEOyy8WPPw4s9DK2XOdLhfR6ZGITs/zaXN5nHD1Dq3qR0RERERERJfmzN+LE2XjCIvFAqVS6R3NcUZra+ugUR+XCxY8/LBarQAwaK4TERERERER0XdZrVaEhoaOdRgBp9FokJubi507d+KWW27xtu/cuROrV68ew8jOjQUPP+Lj41FXVweTyTQu1jLo7e1FUlIS6urqYDabxzocugTMXfBi7oIXcxe8mLvgxLwFL+YueDF3I0MIAavVivj4+LEOZcTYbDZUVlZ6P1dXV6OoqAgRERFITk7G5s2bsXbtWsydOxd5eXnYtm0bamtrsW7dujGM+txY8PBDoVAgMTFxrMMYcWazmf9DC1LMXfBi7oIXcxe8mLvgxLwFL+YueDF3wzfeRnYcPHgQy5Yt837evHkzAOCee+7BSy+9hNtvvx0dHR147LHH0NTUhJycHGzfvh0pKSljFfJ5seBBRERERERERLjqqqsuuCbJ/fffj/vvH9o2uaNNMdYBEBERERERERGNNBY8JgCtVotHHnlkyPst09hh7oIXcxe8mLvgxdwFJ+YteDF3wYu5o4lCEhNlDx0iIiIiIiIimjA4woOIiIiIiIiIxh0WPIiIiIiIiIho3GHBg4iIiIiIiIjGHRY8iIiIiIiIiGjcYcEjCG3duhWpqanQ6XTIzc3F3r17z3luU1MT1qxZg4yMDCgUCmzatMnveU8//TQyMjKg1+uRlJSEBx54AHa7PUA9mLguJXd///vfce211yIqKgpmsxl5eXnYsWPHoPPeeecdZGdnQ6vVIjs7G//4xz8C2YUJa6Rz98ILL2DJkiUIDw9HeHg4li9fjoKCgkB3Y0IKxM/dGa+//jokScL3vve9AEROgchdd3c31q9fj7i4OOh0OmRlZWH79u2B7MaEFIjc8V1ldFxK7r788kssWrQIkZGR0Ov1yMzMxO9///tB5/FdZXSMdO74rkLjgqCg8vrrrwu1Wi1eeOEFcfz4cbFx40ZhMBjEqVOn/J5fXV0tNmzYIF5++WUxa9YssXHjxkHn/PWvfxVarVb87W9/E9XV1WLHjh0iLi5ObNq0KcC9mVguNXcbN24Uv/nNb0RBQYEoLy8XP/vZz4RarRaHDx/2npOfny+USqV4/PHHRWlpqXj88ceFSqUSBw4cGK1uTQiByN2aNWvEs88+KwoLC0Vpaan44Q9/KEJDQ0V9ff1odWtCCETuzqipqREJCQliyZIlYvXq1QHuycQTiNw5HA4xd+5csWrVKvHll1+KmpoasXfvXlFUVDRa3ZoQApE7vquMjkvN3eHDh8Wrr74qjh07Jqqrq8Urr7wiQkJCxPPPP+89h+8qoyMQueO7Co0HLHgEmfnz54t169b5tGVmZootW7Zc8NqlS5f6LXisX79eXH311T5tmzdvFosXLx5WrORrOLk7Izs7W/ziF7/wfr7tttvEdddd53POypUrxR133DG8YMlHIHJ3NrfbLUwmk3j55ZeHHCcNFqjcud1usWjRIvHnP/9Z3HPPPSx4BEAgcvfcc8+JtLQ04XQ6RyxOGiwQueO7yugYidzdcsst4u677/Z+5rvK6AhE7s7GdxUKRpzSEkScTicOHTqEFStW+LSvWLEC+fn5Q77v4sWLcejQIe8QtaqqKmzfvh033HDDsOKlb41E7mRZhtVqRUREhLdt//79g+65cuXKYX0/kK9A5e5s/f39cLlc5z2HLk0gc/fYY48hKioK995774jFS98KVO7ef/995OXlYf369YiJiUFOTg4ef/xxeDyeEY1/IgtU7viuEngjkbvCwkLk5+dj6dKl3ja+qwReoHJ3Nr6rUDBSjXUAdPHa29vh8XgQExPj0x4TE4Pm5uYh3/eOO+5AW1sbFi9eDCEE3G43fvzjH2PLli3DDZm+MRK5+93vfoe+vj7cdttt3rbm5uYR/34gX4HK3dm2bNmChIQELF++fFjx0rcClbt9+/bhxRdfRFFR0UiGS98RqNxVVVVh165duOuuu7B9+3ZUVFRg/fr1cLvdePjhh0e0DxNVoHLHd5XAG07uEhMT0dbWBrfbjUcffRT33Xef9xjfVQIvULk7G99VKBix4BGEJEny+SyEGNR2Kb744gv86le/wtatW7FgwQJUVlZi48aNiIuLw89//vPhhkvfMdTcvfbaa3j00Ufx3nvvITo6ekTuSZcmELk747//+7/x2muv4YsvvoBOpxuReOlbI5k7q9WKu+++Gy+88AIsFktA4qVvjfTPnSzLiI6OxrZt26BUKpGbm4vGxkY8+eSTLHiMsJHOHd9VRs9Qcrd3717YbDYcOHAAW7ZsweTJk3HnnXcO65506QKRuzP4rkLBigWPIGKxWKBUKgdValtbWwdVdC/Fz3/+c6xdu9Zb0Z0+fTr6+vrwr//6r3jooYegUHDm03ANJ3dvvPEG7r33Xrz11luDKuqxsbEj/v1AvgKVuzN++9vf4vHHH8enn36KGTNmjFjcFJjcnTx5EjU1Nbjpppu8bbIsAwBUKhVOnDiB9PT0EezFxBSon7u4uDio1WoolUpvW1ZWFpqbm+F0OqHRaEauExNUoHLHd5XAG07uUlNTAZzOS0tLCx599FHvH818Vwm8QOXuDL6rUDDjb4cgotFokJubi507d/q079y5EwsXLhzyffv7+we9KCiVSojTi9oO+b70raHm7rXXXsMPfvADvPrqq37nKefl5Q265yeffDKs7wfyFajcAcCTTz6JX/7yl/j4448xd+7cEY2bApO7zMxMFBcXo6ioyPt18803Y9myZSgqKkJSUlJA+jLRBOrnbtGiRaisrPQWqQCgvLwccXFxLHaMkEDlju8qgTdS75lCCDgcDu9nvqsEXqByB/BdhcaB0V4llYbnzJZTL774ojh+/LjYtGmTMBgMoqamRgghxJYtW8TatWt9riksLBSFhYUiNzdXrFmzRhQWFoqSkhLv8UceeUSYTCbx2muviaqqKvHJJ5+I9PR0cdttt41q38a7S83dq6++KlQqlXj22WdFU1OT96u7u9t7zr59+4RSqRS//vWvRWlpqfj1r3/Nrd4CIBC5+81vfiM0Go14++23fc6xWq2j3r/xLBC5Oxt3aQmMQOSutrZWGI1G8W//9m/ixIkT4p///KeIjo4W//Vf/zXq/RvPApE7vquMjkvN3TPPPCPef/99UV5eLsrLy8Vf/vIXYTabxUMPPeQ9h+8qoyMQueO7Co0HLHgEoWeffVakpKQIjUYj5syZI3bv3u09ds8994ilS5f6nA9g0FdKSor3uMvlEo8++qhIT08XOp1OJCUlifvvv190dXWNTocmkEvJ3dKlS/3m7p577vG551tvvSUyMjKEWq0WmZmZ4p133hml3kwsI527lJQUv+c88sgjo9epCSIQP3ffxYJH4AQid/n5+WLBggVCq9WKtLQ08atf/Uq43e5R6tHEMdK547vK6LmU3P3hD38Q06ZNEyEhIcJsNovZs2eLrVu3Co/H43NPvquMjpHOHd9VaDyQhOA4QCIiIiIiIiIaX7iGBxERERERERGNOyx4EBEREREREdG4w4IHEREREREREY07LHgQERERERER0bjDggcRERERERERjTsseBARERERERHRuMOCBxERERERERGNOyx4EBEREREREdG4w4IHEREREREREY07LHgQERFNMAcOHMA111wDi8UCSZJ8vrq7u8c6PCIiIqIRwYIHERHRBHLkyBFcddVVmDlzJvbs2YOPP/4YERERWLZsGd544w2EhYWNdYhEREREI4IFDyIioglkw4YNWL16NZ566ilkZ2dj5cqVuPPOO2G1WtHZ2YlZs2YhJycHWq0Ws2bNwqxZs/D888+f835VVVX44IMPLvjcd999F5s2bRrBnhARERGdn2qsAyAiIqLR0dLSgi+//BK7du3yaTcYDJAkCevWrcO6detw+PBh/OQnP8G+ffsueM+PPvoI/f39uOmmm8573tGjRzFjxoxhxU9ERER0KTjCg4iIaII4dOgQZFnGzJkzB7XPnTvX+7mkpATTpk3zOae4uBh5eXnIycnBrbfeCqfTid27d+M///M/8cILL2D27NkYGBjAK6+8ggULFmD69Om4+eab4XQ6AbDgQURERKOPBQ8iIqIJQpZlAMDAwIC3rbi4GHv27MHdd9/tbTt27JhPwcNut+POO+/Eyy+/jGPHjsFiseD111/H0qVLkZOTg88++wyFhYXQ6/VYtWoVvvrqKxQXF8NisWDv3r0A/BdRiIiIiAKJBQ8iIqIJYsGCBdDr9fjpT3+KsrIyfPjhh1i9ejXWrVuHhQsXes8rKSlBTk6O9/O7776L6667DlOnTgUAZGZmoq2tDQBQX1+PpKQkAIAQAtu2bcO8efMwc+ZM/OMf/4BOp0N/fz8UCgX0ev0o9paIiIgmOhY8iIiIJoioqCi8+eabKCgowIwZM7BhwwasW7cOTz/9tM95Z4/wKC0tRVZWlvdzSUkJsrOzUV9fj4SEBG/7Sy+9hMrKSuzZswdHjhyB2WxGdnb2oPsRERERjQYuWkpERDSB3HjjjbjxxhvPedxms6Gvrw+xsbHetri4OJSVlQEADh8+jIKCAjz//PPIz89HfHy897ySkhIsXLgQer0e//M//wNZlhEeHs71O4iIiGhMcIQHEREReR0/fhzZ2dk+bWvXrsXx48cxffp0bNq0CW+++SaUSiVycnJQUVGB6dOno6ysDGvXrsUvf/lLLF26FB0dHZg+fTqA0+uEsOBBREREo00SQoixDoKIiIiIiIiIaCRxhAcRERERERERjTsseBARERERERHRuMOCBxERERERERGNOyx4EBEREREREdG4w4IHEREREREREY07LHgQERERERER0bjDggcRERERERERjTsseBARERERERHRuMOCBxERERERERGNOyx4EBEREREREdG4w4IHEREREREREY07LHgQERERERER0bjz/wF8kNPG+XU1EAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAFUCAYAAADYjN+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+dUlEQVR4nO3dd1RU19rH8e80uiAoIAIiRVHAQrG3qKgxzRb1RtI1iemJaXpTNL5JTG4SY5q5xvQbNbb0GBUsiSUmUbFiRRQLiAWlw5Tz/jEwgqBhEBgGns9as2D2nDnzzBwYfuzZZ2+VoigKQgghhBBC2Bm1rQsQQgghhBCiJiTICiGEEEIIuyRBVgghhBBC2CUJskIIIYQQwi5JkBVCCCGEEHZJgqwQQgghhLBLEmSFEEIIIYRdkiArhBBCCCHskgRZIYQQQghhlyTICiHEFahUKr7//nub76M+HT16FJVKxY4dOxrk/oQQojwJskKIJuPuu+9GpVJVuhw+fLjK7TMyMhg+fHi19j1jxgy6du16TftojAIDA8nIyCAqKgqA9evXo1KpuHDhgm0LE0I0ClpbFyCEEPXp+uuv5/PPP6/Q5u3tXeF6SUkJDg4OtGrV6pofrzb2Yc80Gk2Tfw2EEHVHemSFEE2Ko6MjrVq1qnAZPHgwjzzyCFOmTKFly5YMGTIEqDws4MSJE/zrX//Cy8sLV1dX4uLi+PPPP/niiy94+eWX2blzp6WX94svvqhyH7t372bQoEE4OzvTokUL7r//fvLy8iy333333YwcOZK33noLPz8/WrRowcMPP4xer//H5zZt2jR69uxZqb1z585Mnz7dcv3zzz+nY8eOODk50aFDB+bOnXvV/f722290794dR0dH/Pz8mDp1KgaDwXK7yWTijTfeICwsDEdHR9q0acOrr74KVBxacPToUQYOHAiAp6cnKpWKu+++m6+++ooWLVpQXFxc4XHHjBnDnXfe+Y/PWwjRdEmPrBBCAF9++SUPPvggmzZtQlGUSrfn5eUxYMAA/P39+fHHH2nVqhXbt2/HZDIxfvx49uzZw8qVK0lKSgLAw8Oj0j4KCgq4/vrr6dmzJ3///TdZWVlMmjSJRx55xBJ8AdatW4efnx/r1q3j8OHDjB8/nq5du3Lfffdd9TkkJCTw+uuvk5qaSmhoKAB79+5l9+7dLFu2DID58+czffp0PvjgA6Kjo0lOTua+++7D1dWVu+66q9I+T548yQ033GAJnPv37+e+++7DycmJGTNmAOYAPX/+fN555x369u1LRkYG+/fvr7SvwMBAli9fzpgxYzhw4ADu7u44Ozvj4ODAY489xo8//sjYsWMBOHv2LD///DMrV6686nMWQjRxihBCNBF33XWXotFoFFdXV8vl1ltvVQYMGKB07dq10vaA8t133ymKoijz5s1TmjVrppw7d67KfU+fPl3p0qXLVffx8ccfK56enkpeXp7l9l9++UVRq9VKZmampcagoCDFYDBYthk7dqwyfvz4aj3Hzp07KzNnzrRcnzZtmtKtWzfL9cDAQGXhwoUV7vN///d/Sq9evRRFUZS0tDQFUJKTkxVFUZR///vfSnh4uGIymSzbf/jhh4qbm5tiNBqVnJwcxdHRUZk/f36V9Vy+v3Xr1imAkp2dXWG7Bx98UBk+fLjl+pw5c5SQkJAKjyuEEJeToQVCiCZl4MCB7Nixw3J57733AIiLi7vq/Xbs2EF0dDReXl41fux9+/bRpUsXXF1dLW19+vTBZDJx4MABS1tkZCQajcZy3c/Pj6ysrGo9RkJCAgsWLABAURQWLVpEQkICAGfOnOH48eNMnDgRNzc3y+WVV14hNTX1ijX36tULlUpVoea8vDxOnDjBvn37KC4uZvDgwdV/Iapw3333sXr1ak6ePAmYhz+UnZwnhBBXIkMLhBBNiqurK2FhYVW2X42zs/M1P7aiKFcMZuXbdTpdpdtMJlO1HmPChAlMnTqV7du3U1hYyPHjx/nXv/4FYNnH/Pnz6dGjR4X7lQ/O/1SzUjr0QqVS1crrAhAdHU2XLl346quvGDZsGLt37+ann36qlX0LIRov6ZEVQohq6Ny5Mzt27OD8+fNV3u7g4IDRaLzqPiIiItixYwf5+fmWtk2bNqFWq2nfvn2t1BkQEED//v1ZsGABCxYsID4+Hl9fXwB8fX3x9/fnyJEjhIWFVbgEBwdfsebNmzdXGDe8efNmmjVrhr+/P+3atcPZ2Zk1a9ZUqz4HBweAKl+rSZMm8fnnn/PZZ58RHx9PYGCgtU9fCNHESJAVQohquO2222jVqhUjR45k06ZNHDlyhOXLl/PHH38A0LZtW9LS0tixYwdnz56tdAY+mD/2d3Jy4q677mLPnj2sW7eORx99lDvuuMMSNmtDQkIC33zzDUuXLuX222+vcNuMGTOYNWsW7777LgcPHmT37t18/vnnzJ49u8p9PfTQQxw/fpxHH32U/fv388MPPzB9+nSmTJmCWq3GycmJ5557jmeffZavvvqK1NRUtmzZwqefflrl/oKCglCpVPz888+cOXOmwowNCQkJnDx5kvnz53PvvffW2ushhGi8JMgKIUQ1ODg4sHr1anx8fLjhhhvo1KkTr7/+uuUj+TFjxnD99dczcOBAvL29WbRoUaV9uLi4sGrVKs6fP0+3bt249dZbGTx4MB988EGt1jp27FjOnTtHQUEBI0eOrHDbpEmT+OSTT/jiiy/o1KkTAwYM4Isvvrhij6y/vz8rVqzgr7/+okuXLkyePJmJEyfywgsvWLZ58cUXeeqpp3jppZfo2LEj48ePv+KYXn9/f15++WWmTp2Kr68vjzzyiOU2d3d3xowZg5ubW6W6hRCiKipFqWKeGSGEEMIGhgwZQseOHS0n4QkhxNVIkBVCCGFz58+fZ/Xq1SQkJJCSkkJ4eLitSxJC2AGZtUAIIezEhg0bGD58+BVvLz/e1N7ExMSQnZ3NG2+8ISFWCFFt0iMrhBB2orCw0DLPalWqmlZMCCEaMwmyQgghhBDCLsmsBUIIIYQQwi5JkBVCCCGEEHapyZ3sZTKZOHXqFM2aNZM1vIUQQgghGhhFUcjNzaV169ao1Vfvc21yQfbUqVOy7KEQQgghRAN3/PhxAgICrrpNkwuyzZo1A8wvjru7u42rEUIIIYQQ5eXk5BAYGGjJbFfT5IJs2XACd3d3CbJCCCGEEA1UdYaAysleQgghhBDCLkmQFUIIIYQQdkmCrBBCCCGEsEsSZIUQQgghhF2SICuEEEIIIeySBFkhhBBCCGGXJMgKIYQQQgi7JEFWCCGEEELYpSa3IIIQQlRHfokBo6LYugwhhLCZQwcPsCYxkckPP4KDRo2TVmPrkiqRICuEEJc5W1DC78fP2boMIYSodyXFRWxZvYLExV+TsnULAA7towlqF87N7XzRqhvWh/kSZIUQ4jJ6k8nWJQghRL1KP7ifxKUL+P3H5eRdvACAWq0muv8gTCYjCmA0gbZh5VgJskIIIYQQTdnOTb8xc+JtlustW/sTf+sEBo0eT4tWrW1Y2T+TICuEEEII0YQc2buLi+fPEd1vIAAR3Xrh5dOKdl1iGDIugc69+6PRNLzxsFWRICuEEEII0cgV5OWy8efvSVq6gNS9u/AJaMOHqzejVqvROTjwYeJmHBydbF2m1STICiGEEEI0QoqicGhXMklLF7BpxQ8UFRQAoNU50K5zVwpyc3DzaA5glyEWJMgKIYQQQjRKC+e8wbfz3rNc9w8JI35sAteNvBV3zxY2rKz2SJAVQgghhLBziqKwf/tfNG/pg19QMACxAwbx8xcf0+v6m4gfm0DH2O6oVCobV1q7JMgKIYQQQtip3OzzrP9hGUlLF3Ai9RDXT7iL+16aBUB4dDc+2ZCMq7uHjausOxJkhRBCCCHsiKIo7PlzM0lLF7Bl9QoM+hIAHJ2d0eocLNupVKpGHWJBgqwQQgghhF156Y4xllW3AEIiOhE/LoF+N43Cxa2ZDSurfxJkhRBCCCEaKJPJxO4tG4nq0ccyt2uHmG6k7dtDv5tGET82gdCozjau0nYkyAohhBBCNDDnTmew7tvFrFm2iKyTx/n3f78i9rp4AEZMfJDRDzyGs6urjau0PQmyQgghhBANgNFgIHnDOpKWLmDb+iRMJhMAru4eZJ/NsmxXNveruIYgW1JSQlZWluVFLtOmTZtrLkoIIYQQoinJPpPFs7cO5/zpDEtbx9juxI+7nV7DbsTRydmG1TVcVgfZQ4cOce+997J58+YK7YqioFKpMBqNtVacEEIIIURjZNDrST+0n5CITgA0b+mNu6cn+uIirhs5jvixEwgIbWfjKhs+q4Ps3XffjVar5eeff8bPz++aJ9adO3cub775JhkZGURGRjJnzhz69etX5bbr169n4MCBldr37dtHhw4drqkOIYQQQoi6lpl+lKSlC1n33WKKCgr45PdknN3cUKlUPP3ufFr6tUbn4GjrMu2G1UF2x44dbNu2rVaC4+LFi3niiSeYO3cuffr0Yd68eQwfPpyUlJSrDlE4cOAA7u7uluve3t7XXIsQQgghRF3QlxTzV9JKEpcuYPcfGy3tzVt6czLtMGGdugJYVuQS1Wd1kI2IiODs2bO18uCzZ89m4sSJTJo0CYA5c+awatUqPvroI2bNmnXF+/n4+NC8efNaqUEIIYQQoq4kb1jPe88+Qk72ecC8SEHXvtcRPzaBuIFD0Op0ti3QzlkdZN944w2effZZXnvtNTp16oTusgNQvqf0akpKSti2bRtTp06t0D506NBK428vFx0dTVFREREREbzwwgtVDjcoU1xcTHFxseV6Tk5OteoTQgghhLBWcVEhudnnaennD0BAaBi5F7Lx8vVj0JjxDB59Gz4BgTausvGwOsjGx5vnMBs8eHCFdmtP9jp79ixGoxFfX98K7b6+vmRmZlZ5Hz8/Pz7++GNiY2MpLi7mf//7H4MHD2b9+vX079+/yvvMmjWLl19+uVo1CSGEEELUxLED+0hauoDfflxOeHQcz8/7HwDerQN4bdGPhEZ1QaOVWU9rm9Wv6Lp162q1gMtPFisLxFUJDw8nPDzccr1Xr14cP36ct95664pBdtq0aUyZMsVyPScnh8BA+U9ICCGEENemqKCATb/+QNKShRzcuc3SfvLIYYqLCi1TZrXvGmurEhs9q4PsgAEDauWBW7ZsiUajqdT7mpWVVamX9mp69uzJ119/fcXbHR0dcXSUs/+EEEIIUXt++PQjls59h8L8PAA0Wi3dBg0jfmwCnXv3sywnK+pWjfq4L1y4wKeffsq+fftQqVRERERw77334uHhUe19ODg4EBsbS2JiIqNGjbK0JyYmMmLEiGrvJzk5GT8/P6vqF0IIIYSwRkFeLmq1BicXFwCc3ZpRmJ9Hq6Bg4m+9jYGjxtO8pcyiVN+sDrJbt25l2LBhODs70717dxRFYfbs2bz66qusXr2amJiYau9rypQp3HHHHcTFxdGrVy8+/vhj0tPTmTx5MmAeFnDy5Em++uorwDyrQdu2bYmMjKSkpISvv/6a5cuXs3z5cmufhhCiKcjPBzc38/d5eSDrkgshrKAoCod2JZO45Gs2rfiBO55+geEJ9wDQ78aR+AW1JbJ7b9RqtY0rbbqsDrJPPvkkt9xyC/Pnz0dbOmjZYDAwadIknnjiCX7//fdq72v8+PGcO3eOmTNnkpGRQVRUFCtWrCAoKAiAjIwM0tPTLduXlJTw9NNPc/LkSZydnYmMjOSXX37hhhtusPZpCCGEEEJUKe/iBX7/cTmJSxeSfnCfpX3Pn5stQdbZzY1OPfvaqkRRSqUoimLNHZydnUlOTq60IEJKSgpxcXEUFBTUaoG1LScnBw8PDy5evFjtqcKEEHaqhj2yGXlF/HEyuw4LE0I0RIqiMPf5KWz85QdKiosAcHB0otf1NzFkXAIdYrpf84qm9uzGUF8ctXXf+2xNVrO6R9bd3Z309PRKQfb48eM0a9bM2t0JIYQQQthMQV4uLm7m/KJSqci9eIGS4iKCwiOIHzuB/jePxs2juW2LFFdkdZAdP348EydO5K233qJ3796oVCo2btzIM888w2233VYXNQohhBBC1BqTycSePzeRtHQBfyWt4t0Vv+Eb0AaA8Y88xZgHHiOsU9cm3ftqL6wOsm+99RYqlYo777wTg8EAgE6n48EHH+T111+v9QKFEEIIIWpD9pks1n23mDXLFpGZftTSvnXtam68cxIAwR2jbFSdqAmrg6yDgwPvvvsus2bNIjU1FUVRCAsLw6V0OgohhBBCiIbkXOYpPn31RbauS8RY2gnn7OpG/1vGED92AiERnWxcoaipGq+V5uLiQqdOcuCFEELYN01BASNiwgD4YfthjNIx0yjoS0rQOTgA4OrenN1/bMRoMBDeNZb4sQn0Hn6LZU5YYb+qFWRHjx7NF198gbu7O6NHj77qtt9++22tFCaEEKL2SWgTjZnRYGD772tIXLKAsxmnePv7RFQqFU4uLjz4ylsEhLSjTfsO/7wjYTeqFWQ9PDwsA57d3d1l8LMQQgghGoysE8dZs3wRa5d/w/msTEv7sYP7aBseAUDv62+2VXmiDlUryH7++eeW77/44ou6qkUIIYQQotoOJG9lyYez2bnpN8qmxXf39OK6UeOIv3UC/iFhNq5Q1DWrx8gOGjSIb7/9lubNm1doz8nJYeTIkaxdu7a2ahNCCCGEqMBkMlmWhC3Mz2PHxvUAdO7dj/ixCXQfPAydg6MNKxT1yeogu379ekpKSiq1FxUVsWHDhlopSgghhBCijL6kmC2rV5C0dCGhUZ2585kXAejcuz8TnphKnxtuoVWbtrYtUthEtYPsrl27LN+npKSQmXlpDIrRaGTlypX4+/vXbnVCCCGEaLJOpB4icckCfvthKbkXskvbDpIw5d9oNBrUajVjJj9m4yqFLVU7yHbtal7hQqVSMWjQoEq3Ozs78/7779dqcUIIIYRoev5Y+TO//O8T9m37y9LWopUfg8fcxqAx/0Kj0diwOtGQVDvIpqWloSgKISEh/PXXX3h7e1tuc3BwwMfHR36whBBCCHHN9m3/i33b/kKt0RB7XTxDxibQtd9AyRmikmoH2aCgIMA8yFoIIYQQ4loV5uezacX3JC1dyO1PPU9Uj94ADB1/B+5eLRg0ajxevq1sXKVoyGq8sldKSgrp6emVTvy65ZZbrrkoIYQQQjReqXt2kbjkazb8/B1FBfkArFm20BJkA0LbcWvo47YsUdgJq4PskSNHGDVqFLt370alUlnmbStbJMFoNNZuhUIIIYSwewa9njXLF5G45GvSUvZY2v2CQogfN4GBI8fZsDphr6wOso8//jjBwcEkJSVZxsueO3eOp556irfeeqsuahRCCCGEndNotfz4+Twyj6Wh1TnQc+gNDBl3O5Hde8mKoaLGrA6yf/zxB2vXrsXb2xu1Wo1araZv377MmjWLxx57jOTk5LqoUwghhBB2IvdCNr//uJw/Vv/CS58uwsHRCZVKxa2THyfv4gUGjBiDu2cLW5cpGgGrg6zRaMTNzQ2Ali1bcurUKcLDwwkKCuLAgQO1XqAQQgghGj5FUUjZ+idJSxfwx8qf0ZcUA/Dn6hX0u3k0AANHyfABUbusDrJRUVHs2rWLkJAQevTowX/+8x8cHBz4+OOPCQkJqYsahRBCCNFA5V28wNrl35C4dAGn0lIt7UHhEQwZl0DMgME2rE40dlYH2RdeeIH8fPMZhq+88go33XQT/fr1o0WLFixevLjWCxRCCCFEw3Xx3Fm+/M9MAJxcXOh740jixyYQ1qmrjH0Vdc7qIDts2DDL9yEhIaSkpHD+/Hk8PT3lB1YIIYRoxLKzTrPuuyXkXjjPXc9NB8A/JIzrJ9xFUHgk/W4ciXPp8EMh6oPVQfbLL7/k1ltvxdXV1dLm5eVVq0UJIYQQomEwGo3s3PQbiUu+Zuu6RExGI1qdjpGTHsajRUsA7ntplo2rFE2V1UH26aef5qGHHuLmm2/m9ttv5/rrr0errfG6CkIIIYRogM5lnmLN8m9Ys3wRZ0+dtLSHR8cRPzYBp3IdWkLYitUJNCMjg5UrV7Jo0SL+9a9/4ezszNixY7n99tvp3bt3XdQohBBCiHq2eeXPLH7fPD+8m0dzBoy4lfixCbRpF27jyoS4xOogq9Vquemmm7jpppsoKCjgu+++Y+HChQwcOJCAgABSU1P/eSdCCCGEaDBOn0hnzbJFhER0oufQGwC4bsStbP99DQNHjafn0BtwcHSycZVCVHZNYwJcXFwYNmwY2dnZHDt2jH379tVWXUIIIYSoQ/qSErauXU3ikq/Z9ccGFEWhQ0w3S5Bt5unF9M9kNiLRsNUoyJb1xC5YsICkpCQCAwO57bbbWLp0aW3XJ4QQQohadCotlaRlC1n33RJyzp+ztHfp3Z/4cQkoiiKzEAm7YXWQve222/jpp59wcXFh7NixrF+/XsbGCiGEEHbi45nT2P3HRgA8vX0ZOHo8g2+9jVaBQTauTAjrWR1kVSoVixcvZtiwYTJbgRBCCNGAHT98kKSlCxhx74N4+bYCYNj4O9E5ODJkXAKxA+LRyN9yYces+unV6/VkZGTQrl07CbFCCCFEA1RcWMDmlT+TtHQB+7f/DYC7ZwvGTH4MgF7X30Sv62+q8r6aggJGxIQB8MP2wxhdXOqnaCFqSG3Nxjqdjj179tTq2Jm5c+cSHByMk5MTsbGxbNiwoVr327RpE1qtlq5du9ZaLUIIIYS9Orp/L/Nn/ptJ/WP4YNoT7N/+N2qNhu7x19MhpputyxOiTljdrXrnnXfy6aef8vrrr1/zgy9evJgnnniCuXPn0qdPH+bNm8fw4cNJSUmhTZs2V7zfxYsXufPOOxk8eDCnT5++5jqEEEIIe1aYl8e0f91MSVERAD4BbYi/dQKDRo/H08fXxtUJUXesDrIlJSV88sknJCYmEhcXV2GpWoDZs2dXe1+zZ89m4sSJTJo0CYA5c+awatUqPvroI2bNuvJydw888AATJkxAo9Hw/fffW/sUhGi88vOhbJ3zvDyQlXeEaHQURSF1z052bPqNWyc/DoCzmxv9bx5Nfm4uQ8Yl0KlnX9Rqqz50FcIuWR1k9+zZQ0xMDAAHDx6scJs1Qw5KSkrYtm0bU6dOrdA+dOhQNm/efMX7ff7556SmpvL111/zyiuv/OPjFBcXU1xcbLmek5NT7RqFEEKIhiI/N4cNP31L4pKvObo/BYDYAYMJ7hgFwOSZb8q0WaLJsTrIrlu3rlYe+OzZsxiNRnx9K37k4evrS2ZmZpX3OXToEFOnTmXDhg3VPtls1qxZvPzyy9dcrxBCCFHfFEXhQPJWEpcsYPPKHy1DB3QOjvQcegM6B0fLthJiRVNU46kHDh8+TGpqKv3798fZ2bnGEyhffp8r7cdoNDJhwgRefvll2rdvX+39T5s2jSlTpliu5+TkEBgYaHWdQgghRH3bsXE9r9yXYLke2C6c+LEJDLhlDM2ae9qwMtFU5OeqSEvRkZ+j4sZQW1dTmdVB9ty5c4wbN45169ahUqk4dOgQISEhTJo0iebNm/P2229Xaz8tW7ZEo9FU6n3Nysqq1EsLkJuby9atW0lOTuaRRx4BwGQyoSgKWq2W1atXM2jQoEr3c3R0xNHRsVK7EEII0ZAoisLev/4gP+ciPYYMB6BTz774BgYREdeD+LEJhEfHSc+rqDN5F1UcSdGZL3t1pO7VkXnMHBW9fIzMnGzjAqtgdZB98skn0el0pKen07FjR0v7+PHjefLJJ6sdZB0cHIiNjSUxMZFRo0ZZ2hMTExkxYkSl7d3d3dm9e3eFtrlz57J27VqWLVtGcHCwtU9FCCGEsLmL586y7vslrFm6kFNHj9DSrzVxg4ai0WjQ6nS8/+sGWbRA1LrcbHNoTd1rDq1HUnScPl71z5l3awPtOhkwlDji2MB+FK0uZ/Xq1axatYqAgIAK7e3atePYsWNW7WvKlCnccccdxMXF0atXLz7++GPS09OZPNkc+adNm8bJkyf56quvUKvVREVFVbi/j48PTk5OldqFEEKIhsxkMrH7jw0kLlnA32tXYdDrAXBycSW63yCKCvJxbeYOICFWXLOL59WWHtYje7Uc2avjzKmqf658Aw2ERhro1MVIbCz07KYm1F+Hs9axQX4aYPVvR35+Pi5VrPRx9uxZqz/CHz9+POfOnWPmzJlkZGQQFRXFihUrCAoyr/eckZFBenq6tSUKIYQQDdr/3nqFHz/7r+V6u87RxI+dQJ8bRuIs0+aJa5B9Rm3pYS3rbT2Xqaly21ZBBtpF6enUVSE2BnrGqWnr13BDa1WsDrL9+/fnq6++4v/+7/8A88laJpOJN998k4EDB1pdwEMPPcRDDz1U5W1ffPHFVe87Y8YMZsyYYfVjCiGEEPXFaDSyY8M6fAODCAhtB0CvYTeRtHQhA24ZQ/y4BNqGR9i4SmFvFAXOZ5WG1r2XQmv2mcqhVaVS8GtrNIfWLgpxcebQ2sZXh7PW2QbV1x6rg+ybb77Jddddx9atWykpKeHZZ59l7969nD9/nk2bNtVFjUIIIYTdOXPqBGuXf8Oa5Ys4l5lB/NgEHvy/NwFzD+wnG5JxdLLvECHqh6LA2Qx1hZOw0lJ0XDhbObSq1QqtQwy0izLQuYuJ2FgVveLUBHjrcLLz0FoVq4NsREQEu3bt4qOPPkKj0ZCfn8/o0aN5+OGH8fPzq4sahRBCCLtg0OvZ9lsSiUsWsGPDOhRFAcDNw5PmLb0t26lUKgmxokqKAmdOasqdhGUe05qTXXVoDQg1n4jVpauJuDgVPWI1+HtpcWyEobUqNRpB3qpVK1lkQAghhLjMCwkjObQr2XI9qkcf4sdOoMeQ4Tg4OtmwMtEQKQqcPl4aWkt7W4/s1ZF3sfLywhqtQmCYgfZRBjpHK8TFQo8YDa29dDhodDaovmGwOsiuXLkSNzc3+vbtC8CHH37I/PnziYiI4MMPP8TTUyZoFkII0fjpS0rYui6R7oOHWWYW6Nr3OrJOHmfgqHEMvnUCrduG2LhK0VCYTJB5TFNpyquC3MqhVatTaNPOQPvyPa0xGnw9mnZorYrVQfaZZ57hjTfeAGD37t1MmTKFp556irVr1zJlyhQ+//zzWi9SCCGEaChOpaWSuHQB679bQk72eZ778DO6D74egBETH2LM5MfROTjYuEphS0YjZBzVciRFS+oec2hN26ejML9yaNU5KASF62kfZaRrtIlucSriumrwddehk9D6j6wOsmlpaUREmM+uXL58OTfffDOvvfYa27dv54Ybbqj1AoUQQghbKykuYsvqFSQtWcDev/+wtHt6+1JUUGC5LlNnNT1GA5xM01Y4CSttn5aigsqh1cFRoW0HPeGdDHSJVugWp6ZbFw3ezbRo1fLPT01YHWQdHBwoKP2lTUpK4s477wTAy8uLnJyc2q1OCCGEsLHsM1k8cdNA8i5mA6BWq4nuP4gh4xKI6T9YFixoQowGOJ6q5cieS2Na0/brKCmqPOeqo7OJth0MdOhsoGu0Qvc4FbGdtbRw1UlorUVW//b17duXKVOm0KdPH/766y8WL14MwMGDByut9iWEEELYm+LCAo6k7KZjbA8APL198A0IxMnFmcG3TmDwmH/RolVrG1cp6pq+BI4f1lY4CevYAR0lxZVDq5OLiZAIPR06GekSrdAjTkVMJy1eLjo0ElrrlNVB9oMPPuChhx5i2bJlfPTRR/j7+wPw66+/cv3119d6gUIIIUR9SAb+O+slfv/1JwwGPZ9s2GFZJva5uZ/TvKUPGk3VKyQJ+6YvgfSD2gonYR07oMOgrxxaXdzMoTW8k5HoGIUe3VRER2pp7uSARm0fq2E1JlYH2TZt2vDzzz9Xan/nnXdqpSAhhBCivhTm5bHpuyW8AmwFWLoQAN/AIE6nHyUksjMALXxlnvTGorgI0g9WnDng+CFtlaHV1d0cWjt2NhIdA93jVHTtqKW5swNqO1nCtbGr0cAeo9HId999x759+1CpVHTo0IGRI0eilXFCQggh7MS29UnMnjLZcrKWDug+5AbiJ9xFVI8+qNWVT9YR9qW4EI7uv3QSVupeHccPazEZK4dQNw8ToVF6IjobiY5W6NFdTef2WtydJLQ2ZFYnzz179nDLLbdw+vRpwsPDAfP4WG9vb3788Uc6depU60UKIYQQ1yo/5yI52efxCwoGoG3HSEqKimgdFMyUY2ncCWx+4z2MLi62LVTUSGG+iqP7tZbxrKkpOk6majGZKodQdy8joZF6IjqbiIlR6NFNTVQ7Le6ODqguD635+eDmZv4+Lw9kZooGxeogO2nSJKKioti2bZtl8YPs7Gzuvvtu7r//fv74449/2IMQQghRPxRF4UDy3yQuWcjmlT/SMaY7L332DWAeLvD290m09Q9kZGw7G1cqrFGQpyJt36WTsI6kaDl5RIuiVA6tzb2NhEXq6djZRGwM9IhT0TFUi7ujY+XQKuyO1UF2586dbN26tcIKXp6enrz66qt069atVosTQgghaiI3+zy//bicxKULOHH4oKX9wrmzFBcV4uhkXoe+TfsOqMrNAysanvwc1aWZA0q/njpadXzx8jUSGqEnqquRmBgVPbqp6BCsw00nobWxsjrIhoeHc/r0aSIjIyu0Z2VlERYWVmuFCSGEEDWxdO47LPvoXQz6EgAcnZ3pM/wWhoy7nXZdYiTQNGC5FyqH1sz0qqNKSz/z8ICoLiZiYqFXNxXt2uhwldDapFQryJZf6OC1117jscceY8aMGfTs2ROALVu2MHPmTMvStUIIIUR9uXD2DI5OzjiXjmP08m2FQV9CcEQUQ8bdTt8bR1qm0RINR062itQ9l07COrJXR9bJqmOJj7+B0CgDnboYiYmBXt3VhPrrcJHQ2uRVK8g2b968wg+KoiiMGzfO0qYoCgA333wzRqOxDsoU4jIy+F6IJs1kMrFr8+8kLlnA32tXcdezL3HjnZMA6DN8BG3DIwmN6mzjKkWZC2fVlh7W1NIxrWdPVR1BWrUxEBqpp1MXE7GxKnp2UxPSWoezVkKrqKxaQXbdunV1XYcQQgjxj86fzmTtt9+wZtkisk4et7Sn7t1l+d7JxUVCrA2dP62uMDwgda+O86erXkiidVsDYZEGorqaiI2FXt3UtPXV4aR1ktAqqqVaQXbAgAF1XYcQQghxRYqi8PYTD/Bn0q+YSj/5c2nmzoBbxhA/LoG24RE2rrDpURRzaE0t7WVNK53y6sKZyqFVpVJoHWykXZSeTl1NxMWYe1oDfXQ4a51sUL1oLGq0gsGFCxf49NNPLQsiREREcO+99+Lh4VHb9QkhhGiiLp47i0eLlgCoVCoURcFkNNIxtjvxYxPoNexGHJ1lztf6oChw5pTGMtVVWW/rxXOVQ6tareAfaqB9lIGoLia6xanoGavGv6UOJ62zDaoXjZnVQXbr1q0MGzYMZ2dnunfvjqIozJ49m1dffZXVq1cTExNTF3UKIYRoAgx6PdvWJ5G4dAE7N67n3RW/07ptCAD/euwZbnv8WQJCZc7XuqQAaQSzOcmVQ4fcLKE190Lllc7UGoXAMAPtOxnoVBpau8do8PfS4ajV1X/xosmxOsg++eST3HLLLcyfP9+yJK3BYGDSpEk88cQT/P7777VepBBCiMYtM/0oSUsXsu77JVw4k2Vp371loyXIBoa1t1V5jZbJBKePaywnYaXt9uAezpGNFzxbcVuNVqFNewPtIg10iTbRPU5Ft2gNfp46HDQSWoVt1KhHtnyIBdBqtTz77LPExcXVanFCCCEat6yTJ5j7whR2/7HR0ta8pTfXjRpH/K0TLMvJimtnMkHGUU2Fk7DSUnQU5F3e0+qCA8UEdlRo30WhS7SJbrHmnlZfdx06Ca2iAbE6yLq7u5Oenk6HDh0qtB8/fpxmzZrVWmFCCCEap8K8PMucrx4tWnBk725UKhVd+15H/NgE4gYOQauTsHQtjEY4laYtDataS2gtKqg8PEDnoNC2g57wTga6RhQx+vnBRLIX1Z/n0MnfddHAWR1kx48fz8SJE3nrrbfo3bs3KpWKjRs38swzz3DbbbfVRY1CCCHsXHFRIVtWryBxyddcPHuG937dgEqlwtHJmcff/IDA0Pb4BATauky7ZDTAiVRthXlaj+7XUlxYObQ6OCkEd9DTvpOBrtEKPbqpiO2kpWUzLVq1A+Qr8PwO88bqyvcXoqGxOsi+9dZbqFQq7rzzTgwGAwA6nY4HH3yQ119/vdYLFEIIYb+OHdhH0tIF/PbjcvJzLgKgVqtJP7ifoPCOAMQOGGzLEu2KQQ/HD18KrUf26jh6QEdJUeU5V51cTAR3NJh7WqMVuseqiO2sxctVZw6tQlRHA1+AyOog6+DgwLvvvsusWbNITU1FURTCwsJwcZEpUIQQQpjt+XMzC2bP4uDObZY279YBDL71NgaNHk+LVq1tWJ190JfA8UNay/KtR1J0HDugQ19SObQ6u5oI7qinY2cjXWMUusepiI7U4uWiQyOhVTRiNZpHFsDFxYVOnTrVZi1CCCHsmL6kBJ2DOTQpiomDO7eh0WqJGziUIeNup3Pvfmg0Va/w1NSVFEP6wXJLuO7VkX5Ii0FfObS6NDMREmEOrdHR0L2biq4RWpo7OaBRy2pYommpcZAVQgghCvJy2fjz9yQu+ZqIbr24Z9oMACK792biC6/Qa9hNeHr72LbIBqa4CI7tvzRzwJG9Oo4f1mI0VA6hbh4mQiP1dOhkJCYGenRX0Tlci4eTA2pZwlUICbJCCFFGURRbl2AXFEXh0K5kEpd8zaYVP1BcWAhA9pks7nz2RTQaDWq1mhtuv9fGldpeUYGKo/u1l3paU3ScSNViMlYOoe6eRkIj9XTsbCImRqFHNzVR7bW4O0poFeJKbB5k586dy5tvvklGRgaRkZHMmTOHfv36Vbntxo0bee6559i/fz8FBQUEBQXxwAMP8OSTT9Zz1UKIxkZRFPbu3QuAV1CojatpuNZ9t4QfP59H+sF9ljb/kDDixyZw3chb7WLogDY3h2ZHj+BWemmWeshyW5+Jt5HfNpi8Nm3JDwwiPyiYvMAg9M09/3G/hXkq0vZrK8zTeuqIFpOpcgj1aGEOrZFdTETHKPSMUxMRpsXd0RGVhFYhqs2mQXbx4sU88cQTzJ07lz59+jBv3jyGDx9OSkoKbdq0qbS9q6srjzzyCJ07d8bV1ZWNGzfywAMP4Orqyv3332+DZyCEaCyMRqPle8VkvMqWTUtZL3VZuEo/uI/0g/twcHSi1/U3MWRcAh1iuje48KUuKsQt/Zg5rB67FFrdjh7B6dzZK96vZfLftEz+u1J7ibuHOdi2CSKvTTDnfdpyyBDKjgvt2J7ehsMpjmQc1aAolV8HT28joVHm0BoTDb26qwhvq6OZhFYhrplKqcFnaQcPHmT9+vVkZWVhMpkq3PbSSy9Vez89evQgJiaGjz76yNLWsWNHRo4cyaxZs6q1j9GjR+Pq6sr//ve/am2fk5ODh4cHFy9exN3dvdq1igamgU8HYjPyulRkxeuhKAolJSUAnCsxseXUhXoosP5pCgoYERMGwA/bD2O8wowzOdnnWP/9MpKWLmDiC6/QpXd/AE4dPcKOjevpf/No3Dya11fZVVIZDLicOlEhpJZdXDJOorrKn7dCb1/y2oaQ1zaYgtaBRL77BgBbX3sH59MZuB07iuvxo7imH8P5zOmr1lGIE0cIIZVQTrkEkxsQjCayLT59Quh4fVvC27ngqtPYR2iV95DKmvprYoPnb01Ws7pHdv78+Tz44IO0bNmSVq1aVfjFVKlU1Q6yJSUlbNu2jalTp1ZoHzp0KJs3b67WPpKTk9m8eTOvvPJK9Z+AEEJUQaVS4ejoaP5eX2TjamzDZDKx589NJC1dwJ+JKzHozcF+/XdLLEG2ddsQWrcNqb+iFAWnrNOlPatpuB1NvRRYjx9Drddf8a4lzdzJCw4lLyi4NLSWXoJCMJT9YcYc7suC7L6eIzic5k6qRseRQh1HsnTkUkwIRwgl1XIJ4zDtNakEmI7hrBQRSQqRpEABcLD08h3wrBqCgiA0tOIlLAxCQi4FBCFEjVgdZF955RVeffVVnnvuuWt64LNnz2I0GvH19a3Q7uvrS2Zm5lXvGxAQwJkzZzAYDMyYMYNJkyZdcdvi4mKKi4st13Nycq6pbiGEaGz0JSX89MU81ixbRGb6UUt7aGRn4scm0PemkXVeg+7ihUphtWwcq7ag4Ir3Mzo6kdembYWgmhscQl7bUEo8veAqvaAXz6s5sldHWrIDX7GMbcRybFDbKrbUciawI+6R7WjVxYguFvy6qfHx16FRTHD8OKSmwuHD5q/lL4WFkJZmviQlVd61r++lYHt50G3R4qr1CyFqEGSzs7MZO3ZsrRVw+UctiqL848cvGzZsIC8vjy1btjB16lTCwsKuuDzurFmzePnll2utXiFE42Q0Gtm3z3wCk1ebeuxxbAC0Oh2//bCMzPSjOLu60e/m0QwZO4GQyM61+jiawgJc04/idjStNKhe6l11zD5/xfuZNBoK/AMrhtXSr4WtWldrKdXsM+oKJ2Ed2avjXGb5E9PGWL5rFWSgXaSeTtEKMTHQK05NWz8dztorjGktC59Dh1ZsVxTIyLgUai8PuufPw+nT5ktVn0S6u1cMtuWDbkCALCErBDUIsmPHjmX16tVMnjz5mh64ZcuWaDSaSr2vWVlZlXppLxccHAxAp06dOH36NDNmzLhikJ02bRpTpkyxXM/JySEwUNbzFkJUVP50AUUxXWVL+3YuK5P/A5YD/y4sROvigkqlYtwjT1FcUEDv4bfgdA0rNar0elxOHi/tWS3rVU0tHbd66qr3LfRpVSmo5rUNIT+gDYpD9VanUhQ4n6W2LN9aFlqzz1SeTUGlUvBra6R9x0JuWjGDWLbR+uC3BAZ74Kx1rtHzv+wBoHVr86Wq2Xiysyv34JaF3ZMnIScHkpPNl8s5OkJwcNVBt21b8+1CNAFWB9mwsDBefPFFtmzZQqdOndDpdBVuf+yxx6q1HwcHB2JjY0lMTGTUqFGW9sTEREaMGFHtehRFqTB04HKOjo6WcW9CCHElFcf7N66eLqPBwPbf15K0dAHbf1tDWUzfvGYl/cclANBn+C3V36Gi4JSViVvakXLTWJnDquuJdNQGwxXvWuLuQV5waIWgmtc2hLw2wRitPIlEUeBshpojKZdCa1qKjgtnK4dWtVqhdYiBdpEGOnc1ERenomesmgBvHU7FanCbbd6wtSNo62kKMU9PiIszXy5XNiShquEKaWlQXAz795svl1OpIDCw6uEKoaHQrFndPzch6onVQfbjjz/Gzc2N3377jd9++63CbSqVqtpBFmDKlCnccccdxMXF0atXLz7++GPS09Mtvb3Tpk3j5MmTfPXVVwB8+OGHtGnThg4dOgDmeWXfeustHn30UWufhhBCVKDRaIiKigIgI69xnOx18dxZViz4jLXLF3P+dIalvR9wH+AYP/yq99ddyK4wVtUSWI+loS1dBKEqBicn8oIuC6qlMwSUNL/6uNUrURQ4c1Jj6WE9kmKerzUnu+rQGhBqoF2UgS7RJmJjVfSM0+DvpcWxqp7WK/eF2I6zM0REmC+XMxgujcutashCfj6kp5sva9dWvr+395XH5V5Db7wQtmB1kE1LS6u1Bx8/fjznzp1j5syZZGRkEBUVxYoVKwgKCgIgIyOD9PR0y/Ymk4lp06aRlpaGVqslNDSU119/nQceeKDWahJCiMaiMD+PZXPnANCsuScDR41j6E2jeXjMMAB+cHKCggLc0tMuBdW0I5a5Vx0vZF9x3yaNhvyAoEshNTjEMjtAoa/fNY3fVBQ4fVxjWQmrbJhA3sXK+9RoFQLDDLSPMtA5WiEuFrrHaGjtpcNRo6ti742AVmseVhAcDPHxFW9TFPOY2ysNWTh7Fs6cMV+2bKm87/KzKMycCZ07Q4cO0L699OSKBqlG88jaM5lHtpFo6vP6XYm8LhVZOY+sofQj8TNFBtvMI2s0otaXoCkpQa3Xoy4pLv1aUvH7y7cpKSE3M4NDf29GKSigz8Chlm32/fE7LT088fNthdZoQlNYQMCqnwEo9G2F8+mrzxJT0MqPvLah5aauCr40blV37UHRZILMY5oKJ2EdSdFRkFs5tGp1Cm3aGWjfyUCX0uEB3aM1tGquw0FzDcNBmtLvzcWLcORI5V7cw4fhxAlzEL4Sf39zqA0PN38tu/j7N+4Tz5rSz0dVGts8sgAnTpzgxx9/JD093TKBeJnZs2fXZJdCCFE/jEYoKTGPMSz31Zifz7EDB1Dp9bg3b4H36QuVwmKlcFkaFlVlwfIK26hLStDoL31/pW3U5VYXq4mBZd/s2GZpC7/K9mUhtri5Z2lQDbUMAbCMW63Fj5qNRsg4pjGPZ91jHs+atk9HQV7lEKRzUAgK19M+ykjXaBPd4lTEddXg665D11h7WuuDhwdER5svlysqgpQUiI01X7/nHnPI3b8fsrLMJ6CdPAlr1lS8n4vLpXBbPuS2aydDFUSdszrIrlmzhltuuYXg4GAOHDhAVFQUR48eRVEUYmJi6qJGIYSwnqJUnNLIx8ccWq8QFrVAWLnr3nVaXPUYdQ6YdDpMDg6YdA6lX3UUoyI7N4dzF85TYDRSgnmYp0tLb1q0DcEzoA2Kk7Nle5ODIyadDqODAyjQ6e1XAfj9i6XkhHc0z7da27Ub4GSa1tLDemSvjrR9WooKKodWB0eFoA56OnQy0CVaoVucmm5dNHg306JVV2+2AlELnJzMQbTM++9f6n3LzoYDBy6dYFb2/eHDUFBQ9ewKKhW0aXMp2JYPua1ayRy5olZYHWSnTZvGU089xcyZM2nWrBnLly/Hx8eHhIQErr/++rqoUQghqq+gABYuhA8+gJ07K7ZXxcEBHBxQHB1Bp0NxdMSkcyBfrbUEQaODI0ppELQEysvCZfmwWL1tHDE56Mrd7lB6/VL7lf7Qr/jfp3z66osAePn6MWjMeAaPmYCPfwC5wNGrvDyaggJLkM3uHF0rPa5GAxxP1XJkT7nQul9HSVHl+h2dTbTtYKBDZwNdukKPbhDbWUsLVwmtDZqnJ/Tsab6Up9ebZ1EoC7hlIXffPnP4PXbMfFm1quL93N0rBtuy78PCZOowYRWrg+y+fftYtGiR+c5aLYWFhbi5uTFz5kxGjBjBgw8+WOtFCiHEP0pNhY8+gk8/hQsXzG3OzuZpjAD27DH/MXZwMP+hLA2wZWGxLHKpgNN5Rfxx8sonOtWnYwf2kbR0Ae27xtLvJvNUhf1vGcOev/5g0OjxRPcbiEZbo1FiNaIvgeOHtRVOwjp2QEdJceXQ6uRiIiRCT3iUka4xCt3jVMR20uLlokMjobVx0OnMJ4K1bw+3lJvCTVHMJ5aV78UtC7lHjpjnyP37b/OlPLXavHRvVSG3ZUvpxRWVWP3u5+rqapm3tXXr1qSmphIZGQmYl50VQoh6YzKZe3o++AB+/fXSiSohIfDQQzBunPmjTTBPEm8nJ2kU5uez6dcfSFq6kEM7twNwaFeyJci6eTTn2fc/qfM69CWQflBb4SSsYwd0GPSVw4Szqzm0duxspGsM9IhTER2lobmTAxq1hI8mR6UyT/Pl7Q19+1a8rbjYPCShqqEKOTnm2w4fhl9+qXg/L6/KQxTCw82/77Vw4qGwT1YH2Z49e7Jp0yYiIiK48cYbeeqpp9i9ezfffvstPS//yEEIIepCdjZ88QV8+KG5J7bM8OHwyCNw/fXmnp38/Grv0mQyWZao9QwMruWCq+fI3l0kLlnAhp+/ozA/DwCNVku3QcOIH5tQrSW8a6qkGI4duLSoQOpeHccPaasMra7ul0JrdDR076aia0ctzZ0dUEuPmfgnjo4QGWm+lKcokJlZMdiWfX/smHlJ382bKy/nq9WahyRUFXI9PevveQmbsDrIzp49m7w88xvsjBkzyMvLY/HixYSFhfHOO+/UeoFCCGGxc6c5vH799aUhA82bm8+ufugh8x+zGjKZTJZlam21RO2Cd15nx8b1ALQKCmbI2AlcN3IczVvW7qlnBTizky6sWOzO4UOu5tB6WIvJWDmEunmYCI3S07GTkZgYhR7d1XRqr8XDSUKrqGUqFfj5mS8DB1a8raAADh2qOuQWFFx5lTMfn6pPNgsKAk09reAm6pTVQTYkJMTyvYuLC3Pnzq3VgoQQogK9Hr77zjx8YMOGS+2dO5t7XydMqJUhAxV6Out4iVpFUTi0czuJSxcw/pGnaOnnD8D1E+7CzaM58WMTiOrRu1Z6XwvzVRw7oCV1T9mYVi9OkIsJDbxRcVt3TyOhkXoiupiIiVHoHqcmqr0Wd0cJrcLGXFygSxfzpTyTyTwl2OVDFPbvN7dnZZkvv/9e8X6OjubpwS4PueHhsvCDnanRGQIXLlxg2bJlpKam8swzz+Dl5cX27dvx9fXF39+/tmsUQjRFGRnw8ccwb575ezB/hDhmDDz8sHncXS2Gq/pYojbv4gV++2EZSUsXkn7I3Hvk7efPuEeeAqDboGF0GzSsxvsvyFORtq/iEq4nj2hRlMqvky+ZBPZtRscYFTHR0LO7mo4hGtwdHets+IIQtU6thsBA82XIkIq35ebCwYOVQ+7Bg+Zxunv2mC+Xa9264oIPpauNAldfMELYhNVBdteuXcTHx+Ph4cHRo0e577778PLy4rvvvuPYsWN89dVXdVGnEKIpUBTYtMk8fGDZMvOa8mCec/KBB+D++81/ZOyIoiikbP2TpKUL2LLqF0qKzSHZwdGJ3tffTHT/QTXab36uyjzNVbkVsTKOaaoMrV4+l3pa4yKLGH1fFK3JQPk1F5WbfZwAJ4TVmjUzL+5QtsBDGaMR0tOr7sU9fRpOnTJf1q6tvE93d/MqV82aXbq4u1e8Xt3bmjUzz5wironVQXbKlCncfffd/Oc//6FZue734cOHM2HChFotTgjRRFxp7te+fc29r6NH1/kbvqIomEwmy/e1pSg/n1fvT6C4dExvUHgEQ8Yl0P/m0bi6e1RrH7kXLvW0ppbOHpB5rOq375Z+RkIj9ER2MREbBz3jVLQP0uGqK+1pzVfgPnMPt/S8iiZJo4HgYPNl+PCKt124UHkMbkqK+SuY/9nOzTVfaoOjo/UB+Eq3ubo2yenJrA6yf//9N/PmzavU7u/vT2bm1dfsFkKICq4092tCgjnAdu1ab6UYjUb2l54sUtNZC0wmE3v+3MTOTb9x+1PPo1KpcHZzY/CtEygpKiR+bAJhnbpeNUDmZKss87OWhdasE1W/Vfv4GwiNNBDV1URsjELPbmrCAnS46GR4gBA10rw59OhhvpTJzzf3woL5PctovBRmc3PNU4aVv/5P7bm55uWAwTzEobjYPOfutVKprt77a204tpMpzawOsk5OTuTk5FRqP3DgAN7eDWFRRyFEg/ZPc7/ec495vkibsq5HNvtMFuu+XUzSsoWcPn4MgF7Dbiask/nElInP/1+V97t4Tl1hjtbUvVrOnqr6bdk30EBYlJ5OXUzExKroFacmxF+Hs1ZCqxD1xte3duaj1uuvHHKvFoCvdJuimC85OeZLbSjfW9yAWR1kR4wYwcyZM1myZAlg/mgqPT2dqVOnMmbMmFovUAjRSFR37lcb0Wg0BAebe2Ivmv65DqPRyM5Nv5G0dAFb1yViLB3P6+LWjH43j8atefMK22dnqS09rGW9redPVz39j1+QgXZRpT2tsdAzTk3bVjqctU4SWoVoDHQ68z/stfFPu6KYh2fVpGe4qttKF72q1d7iOmR1kH3rrbe44YYb8PHxobCwkAEDBpCZmUmvXr149dVX66JGIYQ9q2ruVw8PuPdeePBB8xQ4DYBKpcK1tKclpxqzFuzc9Buv3n+75Xp411jix91Or2E3U5DrxpEUHeu/u9Tbmn2mcmhVqRRaBxsJi9TTuatCXCz0iFPTxtccWoUQ4h+pVOZeYldX8xy816qst7gs5GZlQXz8te+3jlgdZN3d3dm4cSNr165l+/btmEwmYmJiiG/AT1IIUc+uNPdrp07m3teEBLtZLhbAaDCw/fc1FOXn0+/m0QB06d2fwHYdadfpZoLCbycnuy2bV+r4+m0dF89VDq1qtYJ/qIF2kQY6dTURF6uiZ6yaAG8dTlrn+n5KQghRtct7i61YIdEWajSPLMCgQYMYNKhm08YIIRqpK839Onq0OcDW8tyvtUlRFMv4f0VtniHh9Il01ixbxLpvF3M+KxOPFt1Qa8ZzdL8TqXt1XDy7m7XfVhFaNQoBoQbadzLQuYuJuDgVPWI1+HvpcNTaxwkUQghhD2oUZP/66y/Wr19PVlaWZbqaMrNnz66VwhqbstdJpVJZxriVf+3U5cYGVrWtoiiWKYFkWwVMJsqPYqzJfsu313Tbfzqe1mx7pedh9c+JszMYjdf8+lR7W0VBtXkzqrlzK8z9qrRqharc3K+WbaFB/pyYTCaOHz8OwJadu3n3vV9J3W1Cr++MwfA/UMVy8VxzPnreXENhoXnPGq1CSMcSwqMMRHSCuFgV3WM0tGquRad2rPR4dXrsq/v6aLUoOl2t/B41im2v8DqU30ejeo+42utT+jtq2ba03ebHyNbbOps/NbHVz8mVaquXHEHDZnWQfe2113jhhRcIDw/H19e3wokHchLClaWkpADQoUMHtFrzy3727FmysrLw9PSssCLavn37UBSF9u3b41A6d+a5c+fIzMzEw8ODwMBAy7YHDhzAaDQSFhaGk5N5TF12djanTp2iWbNmBJVbkeTQoUPo9XpCQkJwcXEB4OLFi5w4cQJXV1fLiS4AqampFBcX07ZtW9xKpx3Jzc0lPT0dFxeXCksVp6WlUVhYSFBQkGVu4fz8fI4ePYqTkxNhYWGWbY8ePUpBQQGBgYF4eJjn0CwoKCAtLQ0HBwfat29v2TY9PZ28vDz8/f3x9PQEoKioiNTUVLQaDR3Kvb4nTpwgJycHPz8/WrRoAUBJSQmHDh1CrVYTERFh2fbUqVNcuHABX19fy0wbBoOBA6XzBJat7gSQmZnJ+fPn8fb2xtfXFzD/0u/btw+AyMhIy7ZZWVmcPXuWli1b0qpVq0rHvmPHjmhK1/Y+c+YMZ86cwcvLi9blJvgv2zY8PBxd6dQn586d4/Tp0zRv3pyAgADLtvv378dkMtGuXTscHc2B6XxuLhl//YX76tW0Kff6HDx4EIPBQGhoKM6lb8gXLlzg5MmTuLm50bZtW8u2hw8fpqSkhODg4EtjRnNyOH78eMVjX1DA2TlzaPbVVziXzbEIGHr2JGP0aEpuuonQjh0t7WXHvk2bNri7uwOXfk4cHR1pV26s7LFjx8jPzycgIIDmpSdNFRYWcuTIEXQ6HeHh4ZZtjx8/Tm5uLq1bt8ar9KOw4uJiDh8+jEat5lIFcPLkSS5evEirVq1o2bJl6bZ6Dh8+iMkEWVkuZGUV8sjE65k6tT+3fprNe+/5MH++Dyjg7a1n7Vrzc/36l2C6x6noFq1BVXiOC9mVf07KjmdERITl/bHs2Ldo0QK/cuPZ6vU9YsQITs2YQbMzZwgqd0Zyo3qP0Grp0OHSu8Q/vkeU+zlp1O8R58+TkZGBu7s7bdpcepewvEe0bk3ZQJcLeXmcPHq05u8RwJEjRygqKqrwc5KXl8exY8dwdnYmNDTUsq1N3iM0GjqWe5+q6j1CbzBw8K+/UBUUcOloQkZGBtnZ2fj4+ODj4wNUnMav/M/J6dOnOXfuXIWfE0VRGu57RPkcUfo6NFRWB9l3332Xzz77jLvvvrsOyhFCNHjl5n71KZ37VXF2RlU692thaCgXjx3DuQGuWFM209e2bbByJWzdauLkSQM//ghFRSqGDLn0B1ilzgMgvIuef7+ZT/dYNbGdTVwoHTHx+nOXxvhmZMg/8UIIYQsqxcolbPz8/Pj9998r/GdkT3JycvDw8ODixYuW//jqgwwtqOVt8/NRlx2/vDxMpb2MTX5oQV4eio+PeWjB+fOWE6qu+XU3GlFWrkT14YeoVq60JEIlJATlwQdR3XMPqtJerobyc6LXKxzcUcC2Hg+znRi29XqElP3mwKrXqzAYVKX3U3BxKSYkEvzDjAzt60C/btA23IS7swatWt24PjbMz0dp3tw8tOD0adTlemQb/O99XW17hfeT8vtoNO8R//T6FBSgKv2ZUHJzUUp75m1+jGy5bdn7KqA+c6bS+2r5fTSK94jLty0svLQgRF5evZyoa01WszrI/uc//+HUqVPMmTPnWmq0GVsFWVHLyq+0Uk+/WHahtl+Xq839+vDD5rlfNVXPhVqf9HrzKpLbt5t7W7dtg507FQoLK/eUqtSFKKZtwHZgGx4t0rnxzr6MeeAhAPoEeOHr6li/T6A+ye9OZfKaXCKvRWVN/TWxwfO3JqtZPbTg6aef5sYbbyQ0NJSIiAjLGJ0y3377rbW7FEI0NA147teSEti791Jg3b7dHFqLiy8PrSqcXEx0K9hILNtY0CqTM5k/oZgOoNaoiL0uniHjbqdr3+vQaDSoFIVAw0XOn8zFOyysQo+FEEKIhsnqIPvoo4+ybt06Bg4cSIsWLeQELyEaiwY492txMezeXTG07t6tUFJSObS6uJkIjtATGqknICyPC2dWMmJ8D8b1GgDA6VFPsOanfOJvfZaBo8bh5duq0uM5YcRYYqyHZyaEEKI2WB1kv/rqK5YvX86NN95YF/UIIepbA5n7tbAQdu26FFi3bYM9exTLWNZLVLh5XAqtIRF6QiL1+AQYSEvZSeKSBXz26vcUFeQT0Pp9xpXea9Sd9zH60aev2NOqACc0zYj0bib/oAshhJ2wOsh6eXlVmC5DCGGHFAU2bTIPHyg39yutWkG5uV/rSkEB7NhRcUxrSoqC0Vg5tDZrbiIkUk9oaWANidLj42+0ZOv83Bw2/PQtSUsXkLZvr+WefkEhFQK4g6MjxqsNF1CpKFA54ODsKkFWCCHshNVBdsaMGUyfPp3PP//cMs+gEMJOFBTAwoXm4QM7d15q79PH3Ps6ejTU8rRZeXmQnFwxtO7fr2AyVQ6tHi2MFXpZQyL1tPQzXbFD+PzpTB4e1puSoiIAdA6O9Bx6A/FjE4js3gtt2fheIYQQjZLVQfa9994jNTUVX19f2rZtW+lkr+3bt9dacUKIWlJu7ldK537F2dk87vXhh6Fr11p5mJwcc2gtP6b1wAEFRakcWj29jYSUDQ+IModXL98rh1aA3AvZHN69g+h+AwHw8m1F2/BICvJzGTLudgbcPJpmnl41K15RcFX0FBfko7g4SK+sEELYAauD7MiRI+ugDCFErTOZ4Ndfzb2vv/56aTWAkBB46CG45x7wqmHow5yHy3pZy74eOlTVliq8fEt7Wkt7W0Mj9Xj6mKrauBJFUUj5ewtJSxfwx6pfAJj/+3aaNTev5PTv/36JW3PPaw6eKsDfmEvO6VyUFs0lyAohhB2wOshOnz69LuoQQtSGkpJL33ftCkeOXLp+DXO/njt3eWhVOHKk6qDXsrWB0EiDJbSGROhp3rJ6obW8i+fPsf67JSQtXcCpo5eeR3DHSM6dzrAE2Rr3wFahSKXBTWf126IQQggbkXdsIexVTo55nOuOHebP83fsME+wWubIkRrN/XrmTMVe1m3bFI4dqzw0AMAnwFBpTKu7p1VrrFTpz6Rfmf3kZAx6PQBOLq70vXEkQ8bdTmhU5zrpLVVUKtK1zenj7yVzyAohhJ2weZCdO3cub775JhkZGURGRjJnzhz69etX5bbffvstH330ETt27KC4uJjIyEhmzJjBsGHD6rlqIeqRopinxSoLq2Vfy6+0VZX33jOH2KvM/ZqZWfEkrO3bFY4frzq0tgoyXBrTGqknuKOeZs2vPbQCZGedJvfiBdq0CwegfZdYFEUhrFNXhoxLoM/wETiXrSwjhBBClLJpkF28eDFPPPEEc+fOpU+fPsybN4/hw4eTkpJCmzZtKm3/+++/M2TIEF577TWaN2/O559/zs0338yff/5JdHS0DZ6BELXMaDQPNL08tJ45U/X2gYHmIQTR0eav7dtDVJT5tnIhVlHg1KnKwwNOnaocWlUqBb+2Rst0V8GlwwNc3WsntF56qkZ2bFxP0tIFbF2XSERcT17+cikAnt4+fLByEz4BgbX6mEIIIRoXmwbZ2bNnM3HiRCZNmgTAnDlzWLVqFR999BGzZs2qtP2cOXMqXH/ttdf44Ycf+OmnnyTICvtTUAB79lQMrbt2XVoStjy1Gjp2NIfVsuDapQu0bFlxu/x888T+BLDtJw3b9l4KradPVx1a/UMMl3pZIwwEd9Tj4la7obW8sxknWbv8G9YsX8TZjFOWdoO+hJLiIhwcnQDqPcSqFIUAYw7Zp/LxDg2R4QVCCGEHbBZkS0pK2LZtG1OnTq3QPnToUDZv3lytfZhMJnJzc/G6hjOvhagXZ89W7GHdsQP27zfPLHA5Fxfo3PlSL2t0tLmX1dm50qaKAseOletl/cuR7ZzmDD5wW/ktVajVCgGh5tAaHKEnNEpPULgBZ9e6C62XWzB7Ft9/8iGm0uft5tGc60aOZfCtEyzDCmzJWTFgKDbYugwhhBDVVK0gO2XKlGrvcPbs2dXa7uzZsxiNRnx9fSu0+/r6kpmZWa19vP322+Tn5zNu3LgrblNcXExxcbHlek5OTrX2LUSNKAqkpV0Kq2XB9cSJqrf39jYH1fKhNSysylkFFMV8/tblY1rPny/f06oFfNCiJ6C9iZAoo3lVrEg9QeF6HCtn4Tp1+kQ6bu4euLp7AOAf2g6TyURk994MGTuBHkNvsPTA2poCnNQ0o2MLN5l6Swgh7ES1gmxycnK1dlaTN//L76MoSrX2s2jRImbMmMEPP/yAj4/PFbebNWsWL7/8stV1CfGPSkpg377K41mv9M9SWFjF8axdu4KfH1WtAGAyweHDlUPrxYuVhwdodQpt2pmnuwprl8+9r91AJ3az6pu9GG2w+p6+pIS/164iackCdm7+nbuefYlb7p0MQK9hN9K+czStgxvgMtcqFfkqBxxdJcgKIYS9qFaQXbduXa0/cMuWLdFoNJV6X7Oysir10l5u8eLFTJw4kaVLlxIfH3/VbadNm1ahRzknJ4fAQDmBRFipbKqr8qF1714onR6qAgcH81CA8uNZO3cGd/cqd112flf51bCSkxVycqoOrUHh+gqLC7Rpb0BXuqqspqCAbq9trcUnXn2n0lJJWraQdd8tIef8uUvt5eaAdXRybpghVgghhF2y2RhZBwcHYmNjSUxMZNSoUZb2xMRERowYccX7LVq0iHvvvZdFixZx4403/uPjODo64ujoWCs1iyag7PT+y8ezXmmqKw+Pir2s0dHQoYM5zFbBaDQPjS0/T+uOHQp5eZVDq4OjQlAH/aUxrZF6AsMMaHVV7tpmTCYTr95/Ozs2rre0eXr7MnD0eAbfehutAoNsV5w1FAVnxUBJYYEsUSuEEHaiRkH277//ZunSpaSnp1NSfiUhzHO9VteUKVO44447iIuLo1evXnz88cekp6czebL5Y8hp06Zx8uRJvvrqK8AcYu+8807effddevbsaenNdXZ2xsPDoyZPRTRlRiMcPFg5tFZ3qqvoaAgKqnJoAIDBACkpFYcH7NypUFBQObQ6Opto28FgWVggNFJPQKgBjc1neq5a5vFjloCqVqtxdXdHrVYT3W8Q8eMmEDsgHo22gRZ/BSog0JjDxcwc/L08JMgKIYQdsPovzTfffMOdd97J0KFDSUxMZOjQoRw6dIjMzMwKPavVMX78eM6dO8fMmTPJyMggKiqKFStWEBRk/gOZkZFBenq6Zft58+ZhMBh4+OGHefjhhy3td911F1988YW1T0U0JQUFsHt3xZOwqjPVVVlorWqqq3JKSswjDcrP07pzp0JRUeXQ6uRiKp2b9dIyrv4hBmtXja13xYUFbPr1J5KWLuBA8lbm/LyewLD2ANz2+HPc+cyLtPTzt3GV16YYDS66Bn4ghBBCWFgdZF977TXeeecdHn74YZo1a8a7775LcHAwDzzwAH5+flYX8NBDD/HQQw9Vedvl4XT9+vVW7180QZdPdZWcDAcOXHmqqy5dKo5nvcJUV2WKi83Tv5Yf07prl0JJSeXQ6uxqqtDLGhypxy/I2OBDa3lp+/aQtHQBv//4LQV5uQCoNRoO7txmCbJ+QcG2LLFWKCoVx3TN6RMgS9QKIYS9sDrIpqamWsamOjo6kp+fj0ql4sknn2TQoEEyQ4Cofz/8YJ49oCy0njxZ9XZWTHVVpqjI3HFbfnjAnj0Ken3l0OrqbrIs4RpcGl5btTFir5ko8/gx3pnyIId377C0+QS0YcjYBAaOGoenz9VPyhRCCCHqmtVB1svLi9xcc6+Mv78/e/bsoVOnTly4cIGCgoJaL1CISi5cgHfeuXQ9IaHyNpdPdRUdDa1aXXE8K5hHH+zcWTG07t2rYDRWDq1uHqZLMweUXnwDjFfbfYOnKAo52efx8GoBQAvfVpw+fgytTkf3+OuJH5tAp559pbdSCCGaEldX84nQDZTVQbZfv34kJibSqVMnxo0bx+OPP87atWtJTExk8ODBdVGjEGanT8OcOfDhh1D6zxRgDqoxMZdC61WmuiqTl2cOreWHB6SkKJhMlUOru2fZogKXxrR6+9t3aC0vPzeHDT99S+KSrynMz+eDVZtQq9XoHBx5+t35BLYLt4TbxkylKLQ25nIhowDvkGAJ7EIIYQesDrIffPABRUVFgHlWAZ1Ox8aNGxk9ejQvvvhirRcoBMeOwVtvwSefmD/rB/PJWPv2mb/fuNH8H+MV5OaaRxyUn/Jq/34FRakcWpu3NF7qZS0dJtCilanRhNYyiqJwIPlvEpcsZPPKHykpfV11Do6cSD1kWS42qkdvW5ZZ71wVPfqiKuYGFkII0SDVaGhBGbVazbPPPsuzzz5bq0U1Kvn54OZm/j4v76qBS1xm/3544w34+mvzXFYA3bvDv/8NgwZV2et68aI5rJYfHnDoUNWh1cvn0vKtZfO0evlWcUJYI7Nj43o+f30GJw4ftLQFtgtnyNgE+t8yhmbNPW1Yne0oQIbGjfZerjL1lhBC2IkaTfRoMpk4fPgwWVlZmC47E7x///61UphowrZvh1mzYPnyS+NyBg82B9iBA83jXPPzyaY524lh2zs6tu02L+F6+HBVAURFSz+jpZe17Kund+MPrWDufS0uLMSpdLlaBydnThw+iKOzM32G30L82ATad42V8KZSkatyxMnNXV4LIYSwE1YH2S1btjBhwgSOHTuGctngX5VKhdForLXiRBOzYQO89hqsXHmpbcQImDaNs6E9zL2sr5cOEdjmTBrZ5m0sI1rM4cPH/9LCAubQasCjRdMIreVdOH+ONQs/J2npIrr2HcCkF18FoGNsdx59/V26DR6Ga7OrjyUWQgghGjKrg+zkyZOJi4vjl19+wc/PT3ouxLVRFHNwfe0181hXQFGrOTXgNn6JmsrKE1FsG6dQbl2MUuYTcUJIxW+IL8GdS+drjdDTzLPhnl1Z10wmE6uB+cD31/fFYDCP99SXFHHPv2ei0WhQqVRcN3KsTetskBQFR8WIvrhIlqgVQgg7YXWQPXToEMuWLSMsLKwu6hFNhdEI336L/uXX0O3dAYBe7cA3Tnczo+BZjqwLhXVlG5sDhV+QwbKoQLvQPB6ZHIknF/jhjcMYSz82b8pWLvyCHz/9iNNlDQY97TpHEz92An1uGInGnlZhsAEVEGS8yIVTF2ndPEKCrBDCrIFPP9XUWR1ke/ToweHDhyXICqsoinmdguQ/SzB++TVxa98gIP8gOiAPV/7LZGabppBR0BqVSsE/2FBhRay2HfW4Nrv0RqIpKMSTCzZ7Pg2B0WhEpVJZpok6k3GS0yeP4wHcAYR98zOBXWNsWqO90aPGUSvTbgkhhL2wOsg++uijPPXUU2RmZtKpUyd0Ol2F2zt37lxrxQn7pChw/Phlc7RuzeeWM5/yDG8SyAkAzuPJ+zzK8pAH8erkzvWRekIizhLcwYCzm/z3eyVnTp1gzbJFrP32GybPfJOY/oMAGDr+DoIC2/LaS8/gAvzQvgMyYr36FJWKNJ2nLFErmjbpfRR2xuogO2bMGADuvfdeS5tKpUJRFDnZqwlSFDh6tGJo3b5d4exZ88eyHlzgIebyBXPw4QwA5xx9WdP3EdIn3E67aCdmuCjARds9CTtg0OvZtj6JxKUL2LFhneVEyw0/f2cJsr4BbWh90yhcXnrGlqUKIYQQ9cbqIJuWllYXdQg7oCiQmlpxYYHt2xWysyvP0dpKc5oXm8/mrov/xdWQA0CefxsO3fcwx0aNRevoRIh5r/X8LOyLvqSEJR+8zdrvFnPhTJalvVPPvsSPnUCPIcNtWJ0QQghhW1YH2aCgoLqoQzQwJhMcOlRxYYHkZIWLFyuHVq1OIai9eZqrWP8j3HrgXbqs/RrtOfNqURfbhXPw/kc5MfwWFG2Npi5uUso+3QDQ6nRsXZfIhTNZeLRoycDR44m/dQJ+QcE2rrLxUSkKfsZcLp4uwrttkAwvEEIIO1CjVJGamsqcOXPYt28fKpWKjh078vjjjxMaGlrb9Yl6YDTCgQOVQ2teXuXQqnNQCAo3n4BVtrBAYDsDnicO0/6TD2nzwXLUpatwne/UlQOTHyNj4FCQUPCPTh45TNLSBfyZtJK3v0/C2dW8wtSEJ5/DoDcQN3AIOgcHW5fZqLkpekoKZIlaIYSwF1YH2VWrVnHLLbfQtWtX+vTpg6IobN68mcjISH766SeGDBlSF3WKWmIwmFd+LT+mdccOhfz8yqHVwVGhbQe9Zcqr0Eg9AaEGtOXO7/NI2U34sx/gv+pnVKXjNrN69uXAA49ypmdf8ypc4oqKiwrZsnoFSUsWkLJ1i6V9y+pfGDhqHADdBg2zVXlNigKc1rgS2lyWqBVCCHthdZCdOnUqTz75JK+//nql9ueee06CbAOi10NKSsUxrTt3KhQWVg6tjs4mgjtWnPLKP8SA5go/IS22/Un4vPdp9ftaS9upQUM5cP+jZHeNrbsn1UicO53B95/M5fcfl5N38QIAarWa6P6DGDLudssJXKIeqVRcVDnh7O4hQVYIIeyE1UF23759LFmypFL7vffey5w5c2qjJlEDJSWwZ0/F4QG7dikUF1cOrU4uJoIjyoYHmMNr62AD/zhfvqLgu3E94fPeo+XWP81NajXHbxjBwfseISe8Y508t8bIaDDy69efoSgKLVv7E3/rBAaNHk+LVq1tXZoQTY9MOSWE3bI6yHp7e7Njxw7atWtXoX3Hjh34+PjUWmHiyoqKzKG1/PCA3bsVSkoqh1YXt3KhtbS31a+t0bohq0YjrRN/pcPH79E8ZY+5SedA+qhxHJz0EPlt2tbWU2uUjuzdReLShRTl5/H4mx8A4OMfwL8ee4bQqC507t1fVt1qCBQFB4wYSopliVohhLATVgfZ++67j/vvv58jR47Qu3dvVCoVGzdu5I033uCpp56qixqbtMJC2LWrYmjds0fBYKgcWl3dTeZhAaWBNSRSj2+glaG1/B71egJ/+pbw+R/QLC0VAIOzM2nj7+TQPfdT5Ot3bU+uESvIy2Xjz9+TtHQBqXt3AeahA7c//TwtSl+3Wx98woYVisupgLaGi2SfvIifhyxRK4QQ9sDqIPviiy/SrFkz3n77baZNmwZA69atmTFjBo899litF9iU5OfDzp0Vx7SmpCgYjZVDq5uHidDIS7MHBEfq8Q0w1sq5VZrCAoKWLaL95//F5dRJAEo8mpOacA+pd0ykxNPr2h+kkTp6IIUV//uUTSt+oKigAACtzoEeQ4YzZFwCnt6+Nq5QXI0BFTqZYUMIIeyG1UFWpVLx5JNP8uSTT5KbmwtAs2bNar2wxi4vD5KTK45p3b9fwWSqHFrdvYzlprsyEBKpx7t17YTW8rS5OYQs/JKwLz/G6fw5AIq8fTh09wOkjb8Dg5tb7T5gI3QgeStrli0CwD8kjPixCVw38lbcPVvYuDLxTxSViiM6L1miVggh7Mg1zU4vAbZ6LuJOMtFsf1/Ltt3m8HrggIKiVA6tzb2NhEZcmu4qNFKPl6+pTmexcjh/jrAv5xO64HN0eeZ/TvL9Azl438McGzUOk6NT3T24nVIUhQPJf5O4eAGR3XsxaMy/AOh30ygO70pm4Oh/0TG2u3w8LYQQQtShagXZmJgY1qxZg6enJ9HR0Vf947x9+/ZaK64xePI5B+Zw0XxlWvlbVHj5GiuchBUSYQ6t9cU54yTtPvsvbZcuQFtkXoUrJ6w9B8pW4dLp/mEPTU9u9nnW/7CMpKULOJF6CIBjh/ZZgqyLWzMefu0dW5YohBBCNBnVCrIjRozA0dHR8r30MlVfgL85mAaSTuuBXoR0ViyhtXnL+gut5bmlpZpX4fpxOWq9eRWj7Kgu7J/8GBmDhskqXFXY+9cfrF78P7asXoFBXwKAo7MzfW4YwZBxt1dYVlbYJ5Wi4GvMIyerBO+gQBleIIQQdqBaQXb69OmW72fMmFFXtTRK99xu4M5/B+DNWX54+zBGFxeb1eKxbw/hH7+P/8pyq3D16GNehatXP1mF6yp++Owjtq1PAiAkohNDxt1O35tG4uImw2saE3elhOL8EluXIYQQopqsHiMbEhLC33//TYsWFU9euXDhAjExMRw5cqTWimsMvLwAztq2hu1/0WHe+7T6bY2lLWPgEA7c/yjno+NsWFnDYzKZ2LX5d5KWLuTOZ17EJyAQgOEJ99LC14/4sQmERnW2cZWiLihAltqF4OYu0rsuhBB2wuoge/ToUYxGY6X24uJiTpw4UStFiVqgKPhs/I3wee/hvXWLuUmt5sTwWzhw/yPkhEfYuMCG5dzpDNZ9u5g1yxaRdfI4YJ514LbHnwUgut91RPe7zoYVijqnUnFB44yLh6cEWSGEsBPVDrI//vij5ftVq1bh4eFhuW40GlmzZg3BwcG1W52wnslE68RfCZ/3Hp4pu81NOh3HRpauwhUkx6iM0Wgk+fe1JC1dwLb1SZhM5jHLru4e9L95NH2G32LjCoUQQghxNdUOsiNHjgTM88jeddddFW7T6XS0bduWt99+u1aLE9Wn0usJ/Pk72s//APcjhwFZheuflBQVMefphynMzwOgY1wP4scm0GvYjTg6Odu4OlHvFAUtJox6PYoiS9QKIYQ9qHaQLeutCg4O5u+//6Zly5Z1VpSoPnVRIW2Xf0P7T+deWoXL3YPU2+8l9Y57KZGJ+AEw6PVsXZfIzs2/c//0WahUKpxdXRmecA/6khLix04gILSdrcsUNqQCQgwXOH/iAq3cZYlaIYSwB1aPkU1LS6vVAubOncubb75JRkYGkZGRzJkzh379+lW5bUZGBk899RTbtm3j0KFDPPbYY8yZM6dW67EX2twcQhZ9SdiX83E6Zz6ZrKilN4fuKVuFS86mB8hMP0rS0oWs+24xF86eAWDgyLG07xoLQMKUaVe7u2hiTIBaAqwQQtiNagXZ9957j/vvvx8nJyfee++9q2772GOPVfvBFy9ezBNPPMHcuXPp06cP8+bNY/jw4aSkpNCmTZtK2xcXF+Pt7c3zzz/PO+80zUnnHc6fI+yrTwhZ8DkOuTlA6Spckx4yr8IlH4mjLynmz8RfSVq6kN1bNlram7f0ZuCo8bRoJcMsRGWKSsVhXQtZolYIIexItYLsO++8Q0JCAk5OTlcNkCqVyqogO3v2bCZOnMikSZMAmDNnDqtWreKjjz5i1qxZlbZv27Yt7777LgCfffZZtR+nMXDOOEm7z+fRdsnXl1bhCm1nXoXrhhGyClc5e/7czDtPPQSYfya79r2O+LEJxA0cglZeJyGEEKLRqFaQLT+coLaGFpSUlLBt2zamTp1aoX3o0KFs3ry5Vh4DzL24xcXFlus5OTm1tu/64Hr0COGffEibH5ZVWIXrwAOPcWqwrMJVCKz7+TtKVBA/NgGAzr370yGmG1E9+zB49G2WuWCFEEII0bhYPUa2tpw9exaj0Yivr2+Fdl9fXzIzM2vtcWbNmsXLL79ca/urLx7799L+4/cJWPkzqtIT7c50782BBx4lq3f/Jr8K19FDB3gM+B9w4aVn8GjRkgEjxqJzcECj0fDqwh9sXaKwMypFwceYT+4ZPd7OATK8QAgh7EC1guyUKVOqvcPZs2dbVcDlZwbX9pr106ZNq1B/Tk4OgYENt4fOa/vfhM97H7/fkixtGdfFm1fhiulmw8psr6iggE2//kDikgUc2rnd0u7t50/8uASMBgM6BwcbVijsnYdSTFFe8T9vKIQQokGoVpBNTk6ucH3btm0YjUbCw8MBOHjwIBqNhtjY2Go/cMuWLdFoNJV6X7Oysir10l4LR0dHHB0da21/dUJR8Nn0G+Hz3sf77z/MTbIKVyWL3n2Dn7+cD4BGq2WkwcB9QMFP61Dc3GxbnLB7CnBW7UwbDxdbl1K3XF1BUWxdhRBC1IpqBdl169ZZvp89ezbNmjXjyy+/xNPTE4Ds7GzuueeeK06bVRUHBwdiY2NJTExk1KhRlvbExERGjBhR7f3YNZOJ1kkrzatw7d1lbpJVuAAoyMtlw8/fERbVldCozgAMHD2ereuTiL/1NuKvv4W7hvQE4Ae1msqLJgthJZWK8xoXOjaXWQuEEMJeWD1G9u2332b16tWWEAvg6enJK6+8wtChQ3nqqaeqva8pU6Zwxx13EBcXR69evfj4449JT09n8uTJgHlYwMmTJ/nqq68s99mxYwcAeXl5nDlzhh07duDg4EBEhP30Wqr0egJ/+d68ClfqIaB0Fa5xd3D4nvspbNXaxhXahqIoHNq5ncSlC9i04geKCwsZMOJWHnvDPOVb2/AIPli5EZVKhaagwMbVCiGEEMLWrA6yOTk5nD59msjIyArtWVlZ5ObmWrWv8ePHc+7cOWbOnElGRgZRUVGsWLGCoKAgwLwAQnp6eoX7REdHW77ftm0bCxcuJCgoiKNHj1r7VOqduqiIoO+X0O6TubieOgGUrcJ1D6l3TGyyq3DlXbzA7z8uJ3HJAtIP7be0+4eE0b5LTIVtZbUlUWcUBQ0KJqNBlqgVQgg7YXWQHTVqFPfccw9vv/02PXuaP9rdsmULzzzzDKNHj7a6gIceeoiHHnqoytu++OKLSm2KHY/tGnLzdRVX4br7ftL+dWeTX4XrxTvGkH5wHwAOjk70vv5m4sdNoENMdwkTot6ogFBDNufSs/GNkCVqhRDCHlgdZP/73//y9NNPc/vtt6MvnddUq9UyceJE3nzzzVov0O69/77lW6dzZ8lvHcChSQ9xdPT4JrkKV072OX7/6TuG/esOdA7mk/D63TSSjb+oiB87gf43j8bNo7ltixRCCCGEXbA6yLq4uDB37lzefPNNUlNTURSFsLAwXF1d66I++1duMYbtM9/k2KhxTW4VLpPJxJ4/N5G0dAF/Jv6KQa+neYuW9L1xJAAj7n2QUfc9Ij1gwqYUlYqDskStEELYlRoviODq6krnzp1rs5bG6b77YMYMAI7fNKpJhdjsM1ms+24xa5YtIjP9qKU9NLIzzq6XpsvSaG22LocQQggh7JjVCSI/P5/XX3+dNWvWkJWVhal01akyR44cqbXiGgUPD1tXYBPnT2cyeXB3jAYDAM6ubvS/ZQzxYycQEtHJxtUJIYQQojGwOshOmjSJ3377jTvuuAM/Pz/5OFgAcC7zFAd3bKfX9TcB4OXbivZdYjAZjcSPTaD38FtwcmnkE80LIYQQol5ZHWR//fVXfvnlF/r06VMX9Qg7YjQY2P77GhKXLCD597WoNVoiuvfCw8s8jdgL8xdKeBVCCCFEnbE6yHp6euLl5VUXtQg7kXXiOGuWL2Lt8m84n3VpieEOMTHknD9nCbISYoWtGV1c+Hb/KVuXIYQQoo5YHWT/7//+j5deeokvv/wSFwkqTc7mlT8x+8nJlvl83T29uG7UOOJvnYB/SJiNqxNCCCFEU1KjJWpTU1Px9fWlbdu26C47C3/79u21VpywvVNHj1CYl0dolHmGisjuvdHqHOgY1534sQl0HzzMMh+sEEIIIUR9sjrIjhw5sg7KEA2JvqSYLatXkLR0IXv+3ETHuB688vV3AHh4teDj37bi3kSX0xVCCCFEw2F1kJ0+fXpd1CEagBOph0hcsoDfflhK7oVsAFQqFc6ubpQUF+Hg6AQgIVYIIYQQDUKNZ6Lftm0b+/btQ6VSERERQXR0dG3WJerZ57Nm8POXH1uut2jlx+AxtzFozL/wbh1gw8qEEEIIIapmdZDNysriX//6F+vXr6d58+YoisLFixcZOHAg33zzDd7e3nVRp6hlRw+k4OXja+ldbde5K2qNhtjr4hkyNoGu/Qai0WhsXKUQQgghxJVZvaD4o48+Sk5ODnv37uX8+fNkZ2ezZ88ecnJyeOyxx+qiRlFLCvPzSVq2kKnjb+KpEfGsWbbIcluPIcOZt/Zvpn74ObHXxUuIFUIIIUSDZ3WP7MqVK0lKSqJjx46WtoiICD788EOGDh1aq8WJ2pG6ZxeJS75m4y/fU5ifB4BWp+PiuXOWbXQOjnj5trJViUIIIYQQVrM6yJpMpkpTbgHodDpMJlOtFCVqh8lk4oWEkRxI3mpp8wsKIX7cBAaOHIdHi5Y2rE4IIYQQ4tpYHWQHDRrE448/zqJFi2jdujUAJ0+e5Mknn2Tw4MG1XqCoPkVROHYghbYdIgFQq9X4BrQhdc8ueg27kfixCUR274VKpbJxpUIIIYQQ187qIPvBBx8wYsQI2rZtS2BgICqVivT0dDp16sTXX39dFzWKf5B7IZvff1xO0tKFpB/az+wf1hAUbh76MeHJqdz775k085RlhYUQQgjRuFgdZAMDA9m+fTuJiYns378fRVGIiIggPj6+LuoTV6AoCilb/yRp6QL+WPkz+pJiABwcnTh6IMUSZGXqLCGEEEI0VjWeR3bIkCEMGTKkNmsR1ZRxLI3XJt/JqbRUS1tQeARDxiXQ/+bRuLp72LA6IYQQQoj6Ue3pt9auXUtERAQ5OTmVbrt48SKRkZFs2LChVosTZiaTiayTJyzXW/r5k59zEScXF+LHTuD1Jb/w9veJDE+4R0KsEEIIIZqMavfIzpkzh/vuuw93d/dKt3l4ePDAAw8we/Zs+vXrV6sFNmXZWadZ990SkpYtxGQ08mHiH2g0GnQODkz76EsCQtrh7OZm6zKFEEIIIWyi2kF2586dvPHGG1e8fejQobz11lu1UlRTZjQa2bnpNxKXfM3WdYmYjEYAXNyakXH0CAGh7QBo11mWBBZCCCFE01btIHv69Okq54+17Eir5cyZM7VSVFP199rVfPLK85w9ddLSFh4dR/zYBHpffzNOLi42rE4IIYQQomGpdpD19/dn9+7dhIWFVXn7rl278PPzq7XCmgKjwUBRQb5lXKuHVwvOnjqJm0dzBoy4lfixCbRpF27jKoUQQgghGqZqB9kbbriBl156ieHDh+Pk5FThtsLCQqZPn85NN91U6wU2RqdPpLNm2SLWLv+GboOH8cCM1wFo1yWGZz/4lOh+A3FwdPqHvQghhBBCNG3VDrIvvPAC3377Le3bt+eRRx4hPDwclUrFvn37+PDDDzEajTz//PN1WatdKwE2J/3Kqu+XsuuPDSiKAsCuzb9jMplQq9WoVCp6xA+3baFCCCGEEHai2kHW19eXzZs38+CDDzJt2jRLEFOpVAwbNoy5c+fi6+tbZ4XaszdLL2eefdTS1qV3f+LHJdBt0DDU6mrPgibEVRldXPh2/ylblyGEEELUC6sWRAgKCmLFihVkZ2dz+PBhFEWhXbt2eHp61lV9jcJF4Azg2dKHQbfexuBbb8M3oI2tyxJCCCGEsGs1WtnL09OTbt261XYtjdYDQDfAuOJ3qGIeXmE96XkUQgghhHymXQ8CgRGARlvjFYGFEEIIIcRlbB5k586dS3BwME5OTsTGxv7jMre//fYbsbGxODk5ERISwn//+996qlQIIYQQQjQkNg2yixcv5oknnuD5558nOTmZfv36MXz4cNLT06vcPi0tjRtuuIF+/fqRnJzMv//9bx577DGWL19ez5ULIYQQQghbUyll0w/YQI8ePYiJieGjjz6ytHXs2JGRI0cya9asSts/99xz/Pjjj+zbt8/SNnnyZHbu3Mkff/xRrcfMycnBw8ODixcv4l4f41Xz88HNDYAfth/GKKtzCdGg9QnwwtfV0dZlCCFEk2VNVrNZj2xJSQnbtm1j6NChFdqHDh3K5s2bq7zPH3/8UWn7YcOGsXXrVvR6fZX3KS4uJicnp8JFCCGEEELYP5sF2bNnz2I0GivNPevr60tmZmaV98nMzKxye4PBwNmzZ6u8z6xZs/Dw8LBcAgMDa+cJCCGEEEIIm7L5yV4qlarCdUVRKrX90/ZVtZeZNm0aFy9etFyOHz9+jRULIYQQQoiGwGbzQbVs2RKNRlOp9zUrK+uKK4S1atWqyu21Wi0tWrSo8j6Ojo44Osp4NyGEEEKIxsZmPbIODg7ExsaSmJhYoT0xMZHevXtXeZ9evXpV2n716tXExcWh0+nqrFYhhBBCCNHw2HRowZQpU/jkk0/47LPP2LdvH08++STp6elMnjwZMA8LuPPOOy3bT548mWPHjjFlyhT27dvHZ599xqeffsrTTz9tq6cghBBCCCFsxKZLTY0fP55z584xc+ZMMjIyiIqKYsWKFQQFBQGQkZFRYU7Z4OBgVqxYwZNPPsmHH35I69atee+99xgzZoytnsI/c3Vl66ls0nMKbV2JEKIatOorj9EXQgjRsNh0HllbqPd5ZAG90URuiaFeHksIUXNqlQoPR+1VTzgVQghRt6zJajbtkW0qdBo1Xs4Oti5DCCGEEKJRsfn0W0IIIYQQQtSEBFkhhBBCCGGXJMgKIYQQQgi7JEFWCCGEEELYJQmyQgghhBDCLkmQFUIIIYQQdkmCrBBCCCGEsEsSZIUQQgghhF1qcgsilC1klpOTY+NKhBBCCCHE5coyWnUWn21yQTY3NxeAwMBAG1cihBBCCCGuJDc3Fw8Pj6tuo1KqE3cbEZPJxKlTp2jWrFm11lPPyckhMDCQ48eP/+N6v8I25BjZBzlODZ8cI/sgx6nhk2N0bRRFITc3l9atW6NWX30UbJPrkVWr1QQEBFh9P3d3d/lhbODkGNkHOU4Nnxwj+yDHqeGTY1Rz/9QTW0ZO9hJCCCGEEHZJgqwQQgghhLBLEmT/gaOjI9OnT8fR0dHWpYgrkGNkH+Q4NXxyjOyDHKeGT45R/WlyJ3sJIYQQQojGQXpkhRBCCCGEXZIgK4QQQggh7JIEWSGEEEIIYZckyAJz584lODgYJycnYmNj2bBhw1W3/+2334iNjcXJyYmQkBD++9//1lOlTZc1xygjI4MJEyYQHh6OWq3miSeeqL9CmzhrjtO3337LkCFD8Pb2xt3dnV69erFq1ap6rLZpsuYYbdy4kT59+tCiRQucnZ3p0KED77zzTj1W23RZ+3epzKZNm9BqtXTt2rVuCxRWHaP169ejUqkqXfbv31+PFTdSShP3zTffKDqdTpk/f76SkpKiPP7444qrq6ty7NixKrc/cuSI4uLiojz++ONKSkqKMn/+fEWn0ynLli2r58qbDmuPUVpamvLYY48pX375pdK1a1fl8ccfr9+Cmyhrj9Pjjz+uvPHGG8pff/2lHDx4UJk2bZqi0+mU7du313PlTYe1x2j79u3KwoULlT179ihpaWnK//73P8XFxUWZN29ePVfetFh7nMpcuHBBCQkJUYYOHap06dKlfoptoqw9RuvWrVMA5cCBA0pGRoblYjAY6rnyxqfJB9nu3bsrkydPrtDWoUMHZerUqVVu/+yzzyodOnSo0PbAAw8oPXv2rLMamzprj1F5AwYMkCBbT67lOJWJiIhQXn755douTZSqjWM0atQo5fbbb6/t0kQ5NT1O48ePV1544QVl+vTpEmTrmLXHqCzIZmdn10N1TUuTHlpQUlLCtm3bGDp0aIX2oUOHsnnz5irv88cff1TaftiwYWzduhW9Xl9ntTZVNTlGov7VxnEymUzk5ubi5eVVFyU2ebVxjJKTk9m8eTMDBgyoixIFNT9On3/+OampqUyfPr2uS2zyruV3KTo6Gj8/PwYPHsy6devqsswmQ2vrAmzp7NmzGI1GfH19K7T7+vqSmZlZ5X0yMzOr3N5gMHD27Fn8/PzqrN6mqCbHSNS/2jhOb7/9Nvn5+YwbN64uSmzyruUYBQQEcObMGQwGAzNmzGDSpEl1WWqTVpPjdOjQIaZOncqGDRvQapv0n/V6UZNj5Ofnx8cff0xsbCzFxcX873//Y/Dgwaxfv57+/fvXR9mNlvzEAyqVqsJ1RVEqtf3T9lW1i9pj7TEStlHT47Ro0SJmzJjBDz/8gI+PT12VJ6jZMdqwYQN5eXls2bKFqVOnEhYWxm233VaXZTZ51T1ORqORCRMm8PLLL9O+ffv6Kk9g3e9SeHg44eHhluu9evXi+PHjvPXWWxJkr1GTDrItW7ZEo9FU+g8qKyur0n9aZVq1alXl9lqtlhYtWtRZrU1VTY6RqH/XcpwWL17MxIkTWbp0KfHx8XVZZpN2LccoODgYgE6dOnH69GlmzJghQbaOWHuccnNz2bp1K8nJyTzyyCOAeZiOoihotVpWr17NoEGD6qX2pqK2/i717NmTr7/+urbLa3Ka9BhZBwcHYmNjSUxMrNCemJhI7969q7xPr169Km2/evVq4uLi0Ol0dVZrU1WTYyTqX02P06JFi7j77rtZuHAhN954Y12X2aTV1u+SoigUFxfXdnmilLXHyd3dnd27d7Njxw7LZfLkyYSHh7Njxw569OhRX6U3GbX1u5ScnCzDEWuDzU4zayDKptD49NNPlZSUFOWJJ55QXF1dlaNHjyqKoihTp05V7rjjDsv2ZdNvPfnkk0pKSory6aefyvRbdczaY6QoipKcnKwkJycrsbGxyoQJE5Tk5GRl7969tii/ybD2OC1cuFDRarXKhx9+WGE6mgsXLtjqKTR61h6jDz74QPnxxx+VgwcPKgcPHlQ+++wzxd3dXXn++edt9RSahJq855UnsxbUPWuP0TvvvKN89913ysGDB5U9e/YoU6dOVQBl+fLltnoKjUaTD7KKoigffvihEhQUpDg4OCgxMTHKb7/9ZrntrrvuUgYMGFBh+/Xr1yvR0dGKg4OD0rZtW+Wjjz6q54qbHmuPEVDpEhQUVL9FN0HWHKcBAwZUeZzuuuuu+i+8CbHmGL333ntKZGSk4uLiori7uyvR0dHK3LlzFaPRaIPKmxZr3/PKkyBbP6w5Rm+88YYSGhqqODk5KZ6enkrfvn2VX375xQZVNz4qRSk9U0kIIYQQQgg70qTHyAohhBBCCPslQVYIIYQQQtglCbJCCCGEEMIuSZAVQgghhBB2SYKsEEIIIYSwSxJkhRBCCCGEXZIgK4QQQggh7JIEWSGEEEIIYZckyAohhB2YMWMGXbt2tVy/++67GTly5DXtszb2IYQQtiRBVgghrsHdd9+NSqVCpVKh0+kICQnh6aefJj8/v04f99133+WLL76o1rZHjx5FpVKxY8eOGu9DCCEaIq2tCxBCCHt3/fXX8/nnn6PX69mwYQOTJk0iPz+fjz76qMJ2er0enU5XK4/p4eHRIPYhhBC2JD2yQghxjRwdHWnVqhWBgYFMmDCBhIQEvv/+e8twgM8++4yQkBAcHR1RFIWLFy9y//334+Pjg7u7O4MGDWLnzp0V9vn666/j6+tLs2bNmDhxIkVFRRVuv3xYgMlk4o033iAsLAxHR0fatGnDq6++CkBwcDAA0dHRqFQqrrvuuir3UVxczGOPPYaPjw9OTk707duXv//+23L7+vXrUalUrFmzhri4OFxcXOjduzcHDhyoxVdTCCGqT4KsEELUMmdnZ/R6PQCHDx9myZIlLF++3PLR/o033khmZiYrVqxg27ZtxMTEMHjwYM6fPw/AkiVLmD59Oq+++ipbt27Fz8+PuXPnXvUxp02bxhtvvMGLL75ISkoKCxcuxNfXF4C//voLgKSkJDIyMvj222+r3Mezzz7L8uXL+fLLL9m+fTthYWEMGzbMUleZ559/nrfffputW7ei1Wq59957a/xaCSHENVGEEELU2F133aWMGDHCcv3PP/9UWrRooYwbN06ZPn26otPplKysLMvta9asUdzd3ZWioqIK+wkNDVXmzZunKIqi9OrVS5k8eXKF23v06KF06dKlysfNyclRHB0dlfnz51dZY1pamgIoycnJV6w9Ly9P0el0yoIFCyy3l5SUKK1bt1b+85//KIqiKOvWrVMAJSkpybLNL7/8ogBKYWHhlV8kIYSoI9IjK4QQ1+jnn3/Gzc0NJycnevXqRf/+/Xn//fcBCAoKwtvb27Lttm3byMvLo0WLFri5uVkuaWlppKamArBv3z569epV4TEuv17evn37KC4uZvDgwTV+Dqmpqej1evr06WNp0+l0dO/enX379lXYtnPnzpbv/fz8AMjKyqrxYwshRE3JyV5CCHGNBg4cyEcffYROp6N169YVTuhydXWtsK3JZMLPz4/169dX2k/z5s1r9PjOzs41ul95iqIAoFKpKrVf3lb++ZXdZjKZrrkGIYSwlvTICiHENXJ1dSUsLIygoKB/nJUgJiaGzMxMtFotYWFhFS4tW7YEoGPHjmzZsqXC/S6/Xl67du1wdnZmzZo1Vd7u4OAAgNFovOI+wsLCcHBwYOPGjZY2vV7P1q1b6dix41WfkxBC2Ir0yAohRD2Kj4+nV69ejBw5kjfeeIPw8HBOnTrFihUrGDlyJHFxcTz++OPcddddxMXF0bdvXxYsWMDevXsJCQmpcp9OTk4899xzPPvsszg4ONCnTx/OnDnD3r17mThxIj4+Pjg7O7Ny5UoCAgJwcnKqNPWWq6srDz74IM888wxeXl60adOG//znPxQUFDBx4sT6eGmEEMJqEmSFEKIeqVQqVqxYwfPPP8+9997LmTNnaNWqFf3797fMMjB+/HhSU1N57rnnKCoqYsyYMTz44IOsWrXqivt98cUX0Wq1vPTSS5w6dQo/Pz8mT54MgFar5b333mPmzJm89NJL9OvXr8qhDa+//jomk4k77riD3Nxc4uLiWLVqFZ6ennXyWgghxLVSKWUDo4QQQgghhLAjMkZWCCGEEELYJQmyQgghhBDCLkmQFUIIIYQQdkmCrBBCCCGEsEsSZIUQQgghhF2SICuEEEIIIeySBFkhhBBCCGGXJMgKIYQQQgi7JEFWCCGEEELYJQmyQgghhBDCLkmQFUIIIYQQdkmCrBBCCCGEsEv/DwZiMzh64lmSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFTCAYAAADCwqRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ1klEQVR4nOzdeVwU9f8H8NdyLaKCKIgoiGiKeCsmoaL5SzEtzcryyKvUIi0PspLUvEpSy8gSNRXJ79fE8igrSujwtvyKkBaYF4oHpFCCSILA5/fHtBe7IMfuzi77ej4e89iZ2dmZ9+jy2XnP5zOfj0IIIUBEREREREREtWIndwBEREREREREdQETbCIiIiIiIiIjYIJNREREREREZARMsImIiIiIiIiMgAk2ERERERERkREwwSYiIiIiIiIyAibYREREREREREbABJuIiIiIiIjICJhgExERERERERmBg9wBWKuysjJcu3YNDRs2hEKhkDscIpKBEAK3bt1C8+bNYWdnG/crWfYREcs+ln1EtqjKZZ+gGrl8+bIAwIkTJ07i8uXLchdJZsOyjxMnTqrJVGXfmjVrRKtWrYRSqRQ9evQQBw4cqHDba9euiTFjxoh27doJhUIhZs6caXC7999/X7Rr1044OzsLHx8fMWvWLPHPP/9UOSaWfZw4cVJN9yr7WINdQw0bNgQAXL58Ga6urjJHQ0RyyM/Ph6+vr7o8sAUs+4jIlGXf9u3bMWvWLMTExKBPnz5Yv349hgwZgrS0NLRs2VJv+6KiInh6emLevHl4//33De5z69atmDt3LmJjY9G7d2+cOXMGkyZNAoAKP1Meyz4iqmrZxwS7hlTNg1xdXVnQEtk4W2ouyLKPiFRMUfatWrUKkydPxpQpUwAA0dHR2Lt3L9auXYuoqCi97Vu1aoUPPvgAABAbG2twn0ePHkWfPn0wduxY9WfGjBmDY8eOVTkuln1EpHKvss82HpwhIrJCMTEx8Pf3h7OzM4KCgnDw4MEKt83KysLYsWMREBAAOzs7zJo1y+B20dHRCAgIQL169eDr64vZs2fjzp07JjoDIqKqKy4uRnJyMsLCwnTWh4WF4ciRIzXeb9++fZGcnKxOqC9cuICEhAQ88sgjFX6mqKgI+fn5OhMRUVUwwSYiskCqZpLz5s1DSkoKQkNDMWTIEGRmZhrcXruZZNeuXQ1uo2omuXDhQqSnp2PTpk3Yvn07IiMjTXkqRERVkpOTg9LSUnh5eems9/LyQnZ2do33O3r0aCxduhR9+/aFo6Mj2rRpgwEDBmDu3LkVfiYqKgpubm7qydfXt8bHJyLbwgSbiMgCaTeTDAwMRHR0NHx9fbF27VqD26uaSU6YMAFubm4Gt9FuJtmqVSuEhYVhzJgxOH78uClPhYioWso3vxRC1Ko5+r59+/D2228jJiYGJ06cwK5du/D1119j6dKlFX4mMjISeXl56uny5cs1Pj4R2RY+g21ipaWluHv3rtxhkA1ycnKymeFT6hpVM8nytSvGaCb53//+F8eOHUOvXr3UzSQnTpxY4WeKiopQVFSkXmYzSfPibwjJwdHREfb29mY/roeHB+zt7fVqq69fv65Xq10dCxYswPjx49XPdXfu3Bm3b9/G888/j3nz5hn8rVQqlVAqlTU+JtVcWVkZiouL5Q6DbJCxyj4m2CYihEB2djZu3rwpdyhko+zs7ODv7w8nJye5Q6FqMmUzyRs3bqBv374QQqCkpAQvvvjiPZtJLl68uMbHpJrhbwjJrVGjRmjWrJlZO3F0cnJCUFAQkpKS8Pjjj6vXJyUl4bHHHqvxfgsLC/WSaHt7ewghIISo8X7J+IqLi5GRkYGysjK5QyEbZYyyjwm2iagujJo2bQoXFxeb6mWY5FdWVoZr164hKysLLVu25PfPSpmymWRwcDDOnTuHmTNnwtvbGwsWLDD4mcjISERERKiXVUNUkGnxN4TkIoRAYWEhrl+/DgDw9vY26/EjIiIwfvx49OzZEyEhIfj444+RmZmJ8PBwAFKZdPXqVWzZskX9mdTUVABAQUEBbty4gdTUVDg5OaFDhw4AgGHDhmHVqlXo3r27uuxbsGABhg8fLktNPRkmhEBWVhbs7e3h6+vLVnhkVsYs+5hgm0Bpaan6wqhJkyZyh0M2ytPTE9euXUNJSQkcHR3lDoeqgc0kbRt/Q0hu9erVAyCVOU2bNjVrEjpq1Cjk5uZiyZIlyMrKQqdOnZCQkAA/Pz8A0ogJ5Tt77N69u3o+OTkZn376Kfz8/HDx4kUAwPz586FQKDB//nxcvXoVnp6eGDZsGN5++22znRfdW0lJCQoLC9G8eXO4uLjIHQ7ZIGOVfUywTUD1vBwLB5KTqml4aWkpE2wrw2aSto2/IWQJVN+/u3fvmr2Wd9q0aZg2bZrB9+Li4vTW3av8cnBwwMKFC7Fw4UJjhEcmUlpaCgB8tI1kZYyyjwm2CbFJH8mJ378qeO89oKgIeOMNuSPRw2aSWv7+G9i1C8jIkJYvXgS2bgU6dQLGjwdefhn4965zXcK/YZITv38mVlICpKcD+/YB338PDB0KjBsHODkBNn5TnN89kpMxvn9MsInINt25A8yZI81PngzUoum1Kdh8M0khgF9+ATZtAv7zH+lGSHm//Qa8/ro0tW4tfaZePeDRR4EuXYDHHwdYC0xElqKsDPjmGyA+Hvj0U9339uwB/r2BiubNgb59gf/7P+DKFcDPDwgOlm4qMvkksnhMsKlWFAoFdu/ejREjRsi6D3O6ePEi/P39kZKSgm7dulnc/qiKSko08//8I18clbDJZpK5uVJC/dprgPbwVI0bSxednTsDrVoBH30E3Lqlef/CBc18WppmfsIEYOBA4P77gfbtTR4+VQ9/Q7pZ3P7IyIQAYmOBdeuA7GwpYVaxswPatQNOn9b9zLVrwGefSZMh770HjBwpte45eVJq1bNvH1BaKpVzSqWUlLu7S4m6jw/g7Mzk3EKw3OtmcfszNnbPRzomTZoEhUKhN507d87g9llZWRgyZEiV9r1o0SKDfwTV2Udd5Ovrq66hBKSenhUKBYfnMTXtIUB27JAvDpL+LzZvlppIengAs2dLybVSKTUBP3AAyMkBTp2San2WLQPy86UL19JS4Px54OBB6XMPPQT4+2v2vWWLlGQHBgJt2wKffKJ7c4WMir8h5sffEAt2+TIwZAgwZQpw/LiUXNevD4wZA2zbJt3cTU+XyrI7d4CsLODwYanmetw4qcwCgI4ddff7yitSAt2tm1S+vfkm8OOPwP79wPr1wOrV0jbPPScl8C4uUjL/1lvAn3+a/Z+hrmO5Z36WXu6xBpv0PPzww9i8ebPOOk9PT53l4uJiODk5oVmzZrU+njH2Yc3s7e1t/t9AFtq1o6++qmkuTqYnBPDHH8C33wK7d0s1zrm5mvfbtZNqnRcvlhLuytjZSc3DW7eWampU8vOli86jR6Vj5eUB584BkyYBU6dqankWLZISe9bsGA1/Q8yLvyEW6M8/gQ0bgKgooLBQWte3LxARATz8sOE+I5RKoFkzafrhB8P7/PZbYOlS3RY7ANC/v/RojKendEPyzz+lpugPPACkpkrJOwAsWCBN/ftLLYE++ABwczPmmdsslnvmZfHlnqAaycvLEwBEXl6e3nv//POPSEtLE//8849mZVmZEAUF5p/Kyqp1XhMnThSPPfaY3vr+/fuL6dOni9mzZ4smTZqIfv36CSGEACB2796t3u7y5cti1KhRwt3dXbi4uIigoCDx888/i82bNwsAOtPmzZsN7uPkyZNiwIABwtnZWTRu3FhMnTpV3Lp1Sy/GlStXimbNmonGjRuLadOmieLi4nue39y5c0VwcLDe+s6dO4s333xTvRwbGyvat28vlEqlCAgIEGvWrFG/l5GRIQCIlJQU9bp9+/aJ+++/Xzg5OYlmzZqJ119/Xdy9e1f9fmlpqXjnnXdEmzZthJOTk/D19RVvvfWW3v5U89rTxIkTxSeffCIaN24s7ty5oxP3E088IcaPH2/wXA1+D0kjK0sIKdWTphqorByoq2p8znfvCvH770LMmyeEvb3uv71qeuIJIY4cMU3gv/0mxOzZQjRurH9cf38hFi0S4tw50xy7mvT+duX6/eBviB7+hkhY9t3DSy9pypeQECHS040bzO3bQvz9txBFRffe9u5dIc6fFyI2VoigIP3yLzxciPx848ZXQ9Za9rHck9SFck8I45R9TLBrqNoJdkGB4QtKU08FBdU6r8oKiQYNGohXX31VnD59WqT/+2Oh/Qd+69Yt0bp1axEaGioOHjwozp49K7Zv3y6OHDkiCgsLxSuvvCI6duwosrKyRFZWligsLNTbx+3bt0Xz5s3FE088IU6dOiV++OEH4e/vLyZOnKgTo6urqwgPDxfp6eniq6++Ei4uLuLjjz++5/mdOnVKABDntC6kf/vtNwFA/PHHH0IIIT7++GPh7e0tdu7cKS5cuCB27twpGjduLOLi4oQQ+oXElStXhIuLi5g2bZpIT08Xu3fvFh4eHmLhwoXqY7z22mvC3d1dxMXFiXPnzomDBw+KDRs26O2vpKRE7Ny5Ux1PVlaWuHnzpigsLBRubm7is88+U+/zxo0bwsnJSfz4448Gz5UJ9j1cvswEuwaqdc6lpUJ88okQDzygn1Tb2wvRq5cQ48YJcfiwEFX4kTeKoiIhvv1WiKFDhWjZUghnZ924evQQYtcuIWT8u9H725Xr94O/IXr4GyJh2XcPx48LERwsxJYt1b5JZVIlJUKsWiXECy/o/63/5z9SmS0jay37WO7VnXJPCCbYsqrLCba9vb2oX7++eho5cqTo37+/6Natm9722n/g69evFw0bNhS5ubkG971w4ULRtWvXSvfx8ccfC3d3d1GgFfc333wj7OzsRHZ2tjpGPz8/UVJSot7mqaeeEqNGjarSOXbp0kUsWbJEvRwZGSnuv/9+9bKvr6/49NNPdT6zdOlSERISIoTQLyTeeOMNERAQIMq0fkTXrFkjGjRoIEpLS0V+fr5QKpXqQqG88vv76aefBADx999/62z34osviiFDhqiXo6OjRevWrXWOq40J9j1cuMAEuwaqdc5vv637b+zkJL326iVEZqbpg62Ka9eEePNNITp2NFyGjhtX7XK0tqz1IlMI/oYIYRu/ISz76oDcXCEeekj3771JEyFu3pQtJGst+1ju1Z1yTwjjlH18BttcXFyAggJ5jltNAwYMwNq1a9XL9evXx5gxY9CzZ89KP5eamoru3bujcePG1T6mSnp6Orp27Yr69eur1/Xp0wdlZWX4448/4PXvUEodO3bUGbfX29sbp06dqtIxnnnmGcTGxmLBggUQQmDbtm2YNWsWAODGjRu4fPkyJk+ejKlTp6o/U1JSArcKnlNKT09HSEiIzrh5ffr0QUFBAa5cuYLs7GwUFRXhoYceqvK/gyFTp07F/fffj6tXr6JFixbYvHmzumMNqgF2dGV6L7wgdSo2ejQwfLjUIY+ljbft7S09671oEbBzJ7BqldQr7+3b0vv//a80jR4NNG0qPa/v42PeGOX6/VAdu5r4G8LfELICjRtL429fvSr1TfH991JfGH36SM96+/rKHaFVlX0s91juaWOCbS4KhdRzpBWoX78+7rvvPoPrK1PPUKcd1SSEqPBLr73e0dFR770y7V6hKzF27FjMnTsXJ06cwD///IPLly9j9OjRAKDex4YNGxAcHKzzOfsKEgNDMQsh1HEZ498FkMY47tq1K7Zs2YLBgwfj1KlT+Oqrr4yyb5uk3ckZmUaTJtJY1eX+Xi2SQiENezNypFR/ceiQNH/9uvR+fLz0unq19Hr2LGCgnDRZbFby+wHwNwTgbwhZkRYtgKQkICEBeOQR4PffgZYtpWW5e6m2orKP5R7LPW0cpouMpkuXLkhNTcVff/1l8H0nJyeUlpZWuo8OHTogNTUVt1W1RwAOHz4MOzs7tGvXzihx+vj4oF+/fti6dSu2bt2KgQMHqu/ueXl5oUWLFrhw4QLuu+8+nclfe+ifcjEfOXJEXTAAwJEjR9CwYUO0aNECbdu2Rb169fCDoV5BDXBycgIAg/9WU6ZMwebNmxEbG4uBAwfC1xLuMFsr1mCbhzUk1+UpFEBoqNQT719/Scl1hw6627RtCzz7rHQDgYyCvyH8DSEZDR0KXLokjeKgWlYopOERyWRY7tXNco8JNhnNmDFj0KxZM4wYMQKHDx/GhQsXsHPnThw9ehQA0KpVK2RkZCA1NRU5OTkoKirS28czzzwDZ2dnTJw4Eb/99ht++uknvPzyyxg/frz6D9kYnnnmGcTHx+Pzzz/HuHHjdN5btGgRoqKi8MEHH+DMmTM4deoUNm/ejFWrVhnc17Rp03D58mW8/PLLOH36NL788kssXLgQERERsLOzg7OzM15//XW89tpr2LJlC86fP4+ff/4ZmzZtMrg/Pz8/KBQKfP3117hx4wYKtJpHPfPMM7h69So2bNiA5557zmj/HjZJuwb7lVfki4Msm7s7MGqUVKsjBLBihea9uDiga1dg1ixpCDCqFf6G8DeEZNaypTRe94MPatZ16SIN5fX777KFVZex3Kub5R4TbDIaJycnJCYmomnTphg6dCg6d+6Md955R9085Mknn8TDDz+MAQMGwNPTE9u2bdPbh4uLC/bu3Yu//voL999/P0aOHImHHnoIH330kVFjfeqpp5Cbm4vCwkKMGDFC570pU6Zg48aNiIuLQ+fOndG/f3/ExcVVeBeuRYsWSEhIwLFjx9C1a1eEh4dj8uTJmD9/vnqbBQsW4JVXXsGbb76JwMBAjBo1CtdVTU8N7G/x4sWYO3cuvLy88NJLL6nfc3V1xZNPPokGDRroxU3VpF2D7eoqXxxkXV59FSgrk55X7NVLmv/gA6lGu2FDaexZqhH+hvA3hCxAw4bATz8Bu3dr1uXnA506SX1VaNU4Uu2x3Kub5Z5CCP6l1ER+fj7c3NyQl5cH13IX53fu3EFGRgb8/f3h7OwsU4RUVw0aNAiBgYFYrXoWtAL8Ht7DoUNSM2AAePNNqaOraqqsHKirbPGcK1RYCEyZApS/4HF1lVpFzJtXo07d+LdLpmSM3xBbLAds8ZwhBPDaa8C77+qu/+UX6QajkbHsI1OparkHGKfsYw02kZX466+/EB8fjx9//BHTp0+XOxzrp91EvIqdfBDpcHEBPv1Uugg9cEDqlReQansWLgQcHICUFHljJPoXf0Oo2hQKYOVKoLRU6vRRJThYejyGdXRk4eQq99iLONUpBw8exJBKer0skGu4ByPo0aMH/v77byxfvhwBAQFyh2O9rl+XhlvSbiLOBJtqKzRUGuLmxAnp2ewPP5TWP/wwsGEDMGyYdLFKFo2/IUQG2NkBn3+u2/Lr5ElpSK+9e6Vm5WS1WO4Zn+wJdkxMDFauXImsrCx07NgR0dHRCFX98Zaza9curF27FqmpqSgqKkLHjh2xaNEiDB48WGe7nTt3YsGCBTh//jzatGmDt99+G48//niNj0vWo2fPnkhNTZU7DJO4ePGi3CFYv5dfBj76SEp27r9fs54JNhlLjx7SNHeuNPzN9evAY49p3l+/Hpg6lcm2heJvCFEl+vaVbk4/9xywZQtw9Kj0bPbatVKv42SVWO4Zn6wJ9vbt2zFr1izExMSgT58+WL9+PYYMGYK0tDS0bNlSb/sDBw5g0KBBWLZsGRo1aoTNmzdj2LBh+OWXX9C9e3cAwNGjRzFq1CgsXboUjz/+OHbv3o2nn34ahw4dUo/NVt3jkvWoV6+ewXEIiQBIyTUAfPWVNKkwwSZja94cyMmRnl2Mjgbu3JHWv/CCNB09CjzwgKwhkj7+hhDdg7098MknQMeOwFtvAZmZ0vjZgNTh44wZ8sZH1cZyz/hkfQZ71apVmDx5MqZMmYLAwEBER0fD19cXa9euNbh9dHQ0XnvtNdx///1o27Ytli1bhrZt2+oMGB4dHY1BgwYhMjIS7du3R2RkJB566CFER0fX+LgAUFRUhPz8fJ3pXth/HMmJ379yyt+dffZZzTwTbDKFJk2AqCjg8mWpiWWLFpr3QkKA5culZxsrwL9hkhO/f1Sp114Drl4FtBOzmTOBCnqNrg5+90hOxvj+yZZgFxcXIzk5GWFhYTrrw8LCcOTIkSrto6ysDLdu3UJjVccykGqwy+9z8ODB6n3W9LhRUVFwc3NTT5UNUu7o6AgAKCwsrNJ5EJlCcXExAKiHerB5/7ZyUdu8WTNfSZJDVGseHtJ37MoVYP9+zXrtZuRa+BtClkD1/VN9H4n0NGwInDkD7NunWXfxojR29rlz1d6d6npFdf1CJAdjlH2yNRHPyclBaWmp3gDoXl5eyM7OrtI+3nvvPdy+fRtPP/20el12dnal+6zpcSMjIxEREaFezs/PrzDJtre3R6NGjdRjtbm4uEDB5+3IjMrKynDjxg24uLjAwUH2rhbkp92hmSGswSZz6ddP+r7FxgLTpgF//gl4eQHPPw+sWwcoFPwNIVkJIVBYWIjr16+jUaNGvElLlVMogP79pZuIPXtKIyecOgW0bSsNgfnqq0CDBlXalYODA1xcXHDjxg04OjrCzo6DHZH5GLPsk/3Ku/xFgxCiShcS27Ztw6JFi/Dll1+iadOm1d5ndY+rVCqhVCrvGZdKs2bNAKDCAdGJTM3Ozg4tW7bkhTkAbN1a+ftW3EMmWSGFApg8GejcWRruBgA+/liaRo4ENm/mbwjJrlGjRurvIdE92dlJoyh89RUwfLi0bskS4McfgcREoF69e+5CoVDA29sbGRkZuHTpkokDJjLMGGWfbAm2h4cH7O3t9WqNr1+/rle7XN727dsxefJkfP755xg4cKDOe82aNat0n7U5bnWoCommTZvirvZ4u0Rm4uTkxLu/KpMmVf7+pk3Axo1mCYVIrVcv4No1qUM0lR07gP37oViwAN7TpvE3hGTh6OjImmuqmWHDpNrs7duBF1+UhvZycQG++aZKPY07OTmhbdu2bCZOsjBW2Sdbgu3k5ISgoCAkJSXpDKGVlJSEx7SHNCln27ZteO6557Bt2zY8ouq1UEtISAiSkpIwe/Zs9brExET07t27VsetKXt7e/5IEcnpn3/kjoCoYt7egBBSZ0E+PtK6GzeknnjPnoX96tX8DSEi62JnB4wZI5VpAwZICfcjj0jNxefOBbT6TjL8cTs4OzubKVgi45O1eisiIgIbN25EbGws0tPTMXv2bGRmZiI8PByA9NzzhAkT1Ntv27YNEyZMwHvvvYcHHngA2dnZyM7ORl5ennqbmTNnIjExEcuXL8fp06exfPlyfP/995g1a1aVj0tEdQibmZE1aNFCSrSLi4HXX5fWffih1JycjzAQkTUKDZVa5aisXAm0bCmVcezEkeowWRPsUaNGITo6GkuWLEG3bt1w4MABJCQkwM/PDwCQlZWFzMxM9fbr169HSUkJpk+fDm9vb/U0c+ZM9Ta9e/dGfHw8Nm/ejC5duiAuLg7bt29Xj4FdleMSUR1ixWNyxsTEwN/fH87OzggKCsLBgwcr3DYrKwtjx45FQEAA7OzsdG4qart586a6DHV2dkZgYCASEhJMdAZUbY6OwDvvAIsWada1bQtkZckWEpG5seyrQ0aMkDp2/PprqSy7fRtYsQKoXx/48ku5oyMyCYXgYHM1kp+fDzc3N+Tl5cHV1VXucIioIlXt5K0GRaEpy4Ht27dj/PjxiImJQZ8+fbB+/Xps3LgRaWlpaNmypd72Fy9exPvvv4+goCC8//776N+/P6Kjo3W2KS4uRp8+fdC0aVO88cYb8PHxweXLl9GwYUN07dq1SnGx7DOjd94BIiN1102aJPVAzs4LSUYs+1j21cjdu0B0tDSGtrZLl6SabSILV9VygAl2DbGgJbIS2olIv37AgQOGt7OwBDs4OBg9evTA2rVr1esCAwMxYsQIREVFVfrZBx98EN26ddO7yFy3bh1WrlyJ06dPV3l8x6KiIhQVFamXVUMUsuwzkwMHgAkTdB91uP9+aVicZcukGm8iM7OFsq88XvcZ0d9/S83Hf/9ds+6XX6SOH4ksWFXLAXYxTES2Y8cO4NgxuaO4p+LiYiQnJyMsLExnfVhYGI4cOVLj/e7ZswchISGYPn06vLy80KlTJyxbtgylpaUVfiYqKgpubm7qydfXt8bHpxro1w9IS5N65lX53/+Ad98FnJykmiDeJ6c6wpLKvqKiIuTn5+tMZCTu7sDJk8DUqZp1wcHSjcMTJ+SLi8hImGATkW149FHA01Oq/XNx0X3P3V2emCqQk5OD0tJSvaEDvby89IYYrI4LFy5gx44dKC0tRUJCAubPn4/33nsPb7/9doWfiYyMRF5ennq6fPlyjY9PNeTiAuzZIyXSBw4A2iNerFwpjS+bliZffERGYkllH28umpidHfDxx1LNtcqBA0BQEBAfL19cREbABJuI6i7t2on58zXz5RPsSmox5KQo95ytEEJvXXWUlZWhadOm+PjjjxEUFITRo0dj3rx5Ok0xy1MqlXB1ddWZSEahocAXXwApKYBqGJuiIqBjR+CDD2QNjchYLKHs481FM+nVS7p5mJQEqG6sjBkjPd7FG4dkpZhgE1Hd9dNPmvmgIM38V18BbdoAq1dLyyUl5o3rHjw8PGBvb69XY3P9+nW9mp3q8Pb2Rrt27XTGVQ4MDER2djaKi4trvF+SQbdu0hjvJ09q1s2aJbXQ0K4RIrIillT28eaimQ0cCGRmAg88oFnXuTPw7bfyxURUQ0ywiajuGjRIM+/goJl/4AHg3DlNU1sLq8F2cnJCUFAQkpKSdNYnJSWhd+/eNd5vnz59cO7cOZSVlanXnTlzBt7e3nBycqrxfklGnTtL48n6+EjLx49L32+FArh+Xd7YiKqJZZ+Nc3ICjhyRRksApOG9hg4F/vtfWcMiqi4m2ERku1S1GRaWYANAREQENm7ciNjYWKSnp2P27NnIzMxEeHg4AKn54oQJE3Q+k5qaitTUVBQUFODGjRtITU1FmlYTuxdffBG5ubmYOXMmzpw5g2+++QbLli3D9OnTzXpuZGT16gEXL2paZKh4eUnr2AkaWRGWfTZOoQA2bwauXAEGDJDWjR8PTJkib1xE1SGoRvLy8gQAkZeXJ3coRGTI7dtCSKmFNBmSlVX5+/dg6nJgzZo1ws/PTzg5OYkePXqI/fv3q9+bOHGi6N+/v872APQmPz8/nW2OHDkigoODhVKpFK1btxZvv/22KCkpqXJMLPuswLp1QiiVmu/2oEFC/Pyz3FFRHcKyj8zizh0h/P01ZVlAgLSOSCZVLQc4DnYNcTxEIgt3+TLQsqU0v2MH8OST+tvk5Eg9iwNSLbZd9Rr12GI5YIvnbJVKSoCxY4HPP9ddv2MHMGKEpvUGUQ3YYjlgi+dsEe7cARo00G1p9vvvQIcO8sVENovjYBORbcvL08zXq2d4G+0kwwKbiRPVmIMD8NlnQEKC1EuvysiR0nsxMdKz20RElszZWbphuHGjZl3HjsD58/LFRHQPTLCJqG5atkwzHxpqeBvtBNvCehInMoohQ6RexTdv1l0/fTpQvz4wcyZw9648sRERVdXkyVILHJX77pOey+YIGGSBmGATUd20bZtmvmFDw9to9yzOGmyqyyZNknrkzcjQXb96NfDyy7KERERULU8+CXzxhWZ50yZAqQQWLmSiTRaFCTYR2S42ESdbolAArVpJ3QVdvKhZv349cOKEXFEREVXdY48Bt24B2j3JL1kiJdpLlsgXF5EWJthEVPdcuaKZr6x2jgk22So/P6lG291dWg4KAtzcgKIieeMiIrqXBg2ATz4BUlJ01y9cCMyYIU9MRFqYYBNR3TNwoGb+kUcq3o7PYJMtUyiAX38FmjWTlvPzpQ6FtmyRNy4ioqro1k1qkXP5smbdhx9KZRtvFpKMmGATUd3Tt69m/qGHKt5OodAMzcUabLJFvr76vfFOnAgMG6b/vDYRkSXy8ZFa5LRpo1nn7CzdQCSSARNsIqp7rl2TXufM0e3IzBBVLTYTbLJVLi5SLdCPP2rWff010Lq11HS8rEy+2IiIqkKhAE6f1l3XrRvQu7cs4ZBtY4JNRHXLH38A334rzVfl7rUqwWYTcbJ1Awbojh8PSJ2f2dsDb78tT0xERFXl4CDdLNRulXP0qPS8NpEZMcEmorqlUyfN/FNP3Xt71mATabi6Sheod+4AY8Zo1s+fL405S0Rk6Vq3Bq5f1yxPmiTVcAshW0hkW5hgE1Hdol0Tfffuvbe/fVt6Ld+0jMiWKZXAp58CR45o1m3aBHh46K4jIrJEnp7S9YB2r+L9+8sXD9kUJthEVLe0aqWZr0oNtsqjjxo9FCKrFxIi1fosXiwt5+YCffpItUGZmfLGRkRUGXt7IDpas3zwIFC/PssuMjkm2ERUt7RrJ72GhUl3sImo9t58E9i7V3fd8OFSU3IiIkulUEgdNY4YIS0XFgJ+fmwyTibFBJuI6pbEROl11ixZwyCqc8LCpAtVVZPLX38F6tUDNmyQNy4iosooFMDu3cCaNbrr7eyAv/6SJyaq05hgE1HdolBIr6y9JjI+hQL44APd2uznn5fWX7okX1xERPcybRrwzz+665o0AW7dkiceqrOYYBNR3fHPP5omX23ayBsLUV0WFiZ1eqatVSvgiy/kiIaIqGqcnaXrBO1+V0aMYHNxMiom2HRvQgA3bgAFBZr5774DLlyQxkwVgkMckWXIzpZelUqgUSNZQyGq8557Tir/163TrHv8ceCHH+SLiYioKr76Cpg7V5r/8UepufimTUy0yShkT7BjYmLg7+8PZ2dnBAUF4eDBgxVum5WVhbFjxyIgIAB2dnaYZeAZywcffBAKhUJveuSRR9TbLFq0SO/9Zs2ameL0rMvdu1KBExkp3dnz95ea/dnZAU2bAg0bauaHDJFqCBs1ktY5OEjbqqa1a/Wb4RCZWlaW9OrtrWkqTkSm9cILwKlTmuWBAzU3u4iILFVUlO4NwilTpOtfVhpRLTnIefDt27dj1qxZiImJQZ8+fbB+/XoMGTIEaWlpaNmypd72RUVF8PT0xLx58/D+++8b3OeuXbtQXFysXs7NzUXXrl3xVLnhejp27Ijvv/9evWxvb2+ks7JQQgDXrgGffw4cOwYcOgS0aAEUFwMnThj/eNOmSVNAAPDLL4Cbm/GPQVTexYvSq7e3rGEQ2ZxOnYD//Q+4/35p2dsbSEkBunWTNSwiokq98IJ0jTptGvD330BCglRplJcHuLrKHR1ZKVkT7FWrVmHy5MmYMmUKACA6Ohp79+7F2rVrERUVpbd9q1at8MEHHwAAYmNjDe6zcePGOsvx8fFwcXHRS7AdHBzqdq31P/9IFztvvinVLBjqJfHyZf11Hh5Ay5bSxVH9+kBRERAaCowZA1y5Ig3JEhAAeHlJnUKkpEi13r6+wG+/AcnJugn7H39ItdxffcVxhsn0zp6VXv395Y2DyBb17Ans2SMN3wUA3bsD586xPwQismyjR0vTpk1SLTYgJd3FxYCjo7yxkVWSLcEuLi5GcnIy5qqef/hXWFgYjhw5YrTjbNq0CaNHj0b9+vV11p89exbNmzeHUqlEcHAwli1bhtatW1e4n6KiIhQVFamX8/PzjRaj0eTnS8MQ/O9/+kMRlOftDXTtCnToAGRkSBdC7dpJz885ORn+TPPmussNGwL9+klTeQUFwODBgOr/ctgwqdCaMQPo3Ln650ZUFYsWSa8dOsgaBpHNGjYM+PprzQ3V++4DkpKkZuNERJZs8mSpefgLL0jLTk7An39Kj0YSVYNsz2Dn5OSgtLQUXl5eOuu9vLyQbaRnt44dO4bffvtNXUOuEhwcjC1btmDv3r3YsGEDsrOz0bt3b+Tm5la4r6ioKLi5uaknX19fo8RYK2VlUq3yV18BzzwjDTUwaZJ+cr14MfDll8DVq1JTcVVz8W+/Bd57D9i1C1iwABg1quLkuroaNAAOHwZycwEXF2ndxo1Aly7Ss7EXLhjnOEQqJSWa+Ur+lvVs22b8WIzE2H1UaIuPj4dCocCIESOMGzTRI49IvzEqgwYBjRuz8yAisnzPPw88+aRm2csLCAmRLx6ySrJ3cqYo1xGREEJvXU1t2rQJnTp1Qq9evXTWDxkyBE8++SQ6d+6MgQMH4ptvvgEAfPLJJxXuKzIyEnl5eerpsqHm1ZVJTdVNAKqrtFRKiN9+G3j4YSmZtreXmmYPHw58+qm0/0aNgPbtgRdfBAoLpQuaN9+UtilfA20OjRtLTck3bJCanKu0aSPVZI8dW71kiKgi2mPwVufHUPsZUQtKAFR9VMybNw8pKSkIDQ3FkCFDkJmZaXB77T4qunbtWum+L126hDlz5iA0NNQUoRNJraS+/lqz/PffUoeYY8dKHWoSEVmqzz7TrXD6+WfpWpqoimRLsD08PGBvb69XW339+nW9Wu2aKCwsRHx8vF7ttSH169dH586dcVb1/KYBSqUSrq6uOlOVXb8uNcH29ZVqjAsLq/a5s2elsfnatpUS1aFDgfnzgb17dZ+p9vAApk6VOhP7+28gPR2IiQHq1at6jKZkZyc1Dy8oADZv1qz/7Tep9rBjR+D33+WLj+qGuDjNvPbd5+o4fdoooRiDdh8VgYGBiI6Ohq+vL9auXWtwe1UfFRMmTIBbJZ0KlpaW4plnnsHixYsrfSyGqNYeeUS6aRUcrFm3bZum+SURkSWys5P6INLOUZYulVpgHjokX1xkNWRLsJ2cnBAUFISkpCSd9UlJSejdu3et9//ZZ5+hqKgI48aNu+e2RUVFSE9Ph7epeh7+4w/A3V36Q50zR0q0H3kEOHhQv1Y7N1eq7X38cemZ6C+/lDqJUT3z7eMjJQ8rVkjPTt+5Iz0f8vHHQLmaeos0aZI0jra2P/+UeqB1c+PQXlRzquf9VUPHVZV2rXUlN9nMSdVHRVhYmM56Y/RRsWTJEnh6emLy5MlV2r6oqAj5+fk6E1G1/PwzcPKkZnnzZulCdfVq+WIiIroXLy/pGmHJEs260FBWCtE9ydpEPCIiAhs3bkRsbCzS09Mxe/ZsZGZmIjw8HIDULHvChAk6n0lNTUVqaioKCgpw48YNpKamIi0tTW/fmzZtwogRI9CkSRO99+bMmYP9+/cjIyMDv/zyC0aOHIn8/HxMnDjRNCcaGiol1x9/LPVu/Ndf0jAA/fpJHYW1aiXVUPv4SENnPf888MUXuvvYvFm6m3b5MrBjB/Dqq9LnlMrqJROWwMND8yz41avSDQdAuong4iJ1hlOb5vRke+7eBX78UZov13HiPWkn2Kp9yMxUfVQcPnwYmzZtwoYNG6r8GYvsf4KsT+fO0t/aG29o1s2cKd1oJiKyZAsWaHoXB6RKofKVRURaZM3MRo0ahejoaCxZsgTdunXDgQMHkJCQAD8/PwBSpz3lnzfs3r07unfvjuTkZHz66afo3r07hg4dqrPNmTNncOjQoQpraK5cuYIxY8YgICAATzzxBJycnPDzzz+rj2sSTk5SM+4zZ4APPpAuNpRKqQb60iWpaffVq1IS7e4OjBsHHD2qSUQnTTJeB2SWpHlz4Px56ZxVfvhBGhZBobh3b+hEgNQHgUqjRtX7rHaCbWHDcRizj4pbt25h3Lhx2LBhAzw8PKr8uVr3P0Gk7a23gJEjNcv9+kmPQpWVyRYSWR528EgWZ8MG4PPPNctNm0qj9hAZIOs42AAwbdo0TJs2zeB7cdrPVP5LVKETonbt2lW6XXx8fJXjMzoHB2moqhkzpI7LTp2Snvt0dwecnaXnpnv2tL5a6dpwdJRq9Q8dknoy1+599qWXgGPHpLuHbm6Ap6d8cZLlun5dM/9//1e9z1pggm2KPirOnz+PixcvYtiwYep1Zf8mNQ4ODvjjjz/QxsB4xUqlEkqlskbHJNKjUEgXqcnJ0m8dID0KZW9vUZ0MknxUHTzGxMSgT58+WL9+PYYMGYK0tDS0bNlSb3vtDh7ff//9SvfNDh6pVkaOlCq8VPlJr15Sq8tyj7sS2VAWZ4Hs7aUejEePlsaM7t9f+mO1peRaW9++Ui1+Vpbu+i1bpI7emjaVLs58fKSafiKV117TzLdtW73Pal/UO8h+zxGAafqoaN++PU6dOqV+zCY1NRXDhw/HgAEDkJqayqbfZF5BQVLHnNoUCvYwThbTwSP7nyCDNm8Gtm7VLH//vXQdT6TFRjM5smjNmklJT1mZlEyXd/WqVNu/d6/5YyPLpqoRqw7tBNuCHsMwdh8Vzs7O6NSpk87UqFEjNGzYEJ06dYKTBZ072YhevfT723Bykh6dIptkSR08sv8JqtDYsVIrVJXt26UbhOw/iP5lGdU1RIYoFFKnbn/9Bdy8CXz3ndS5m2qYs4cfll6vXJE6hyPbdOuWZv7LL6v/ee1nPy2kBhuQ+qjIzc3FkiVLkJWVhU6dOlWpjwoVVT8Vfn5+uHjxojlDJ6o6e3upg0tvb+D2bWldvXpAZqamA0yyGabu4DE1NbXKn4mMjERERIR6OT8/n0k2adjZSdem2v2++PjoDu1FNos12GT5GjcGWrcGpk2TLsB+/ll3SDIfH2lYsz//lC9Gko+qk5FGjaRO86qrc2fNfLduxojIaKZNm4aLFy+iqKgIycnJ6Nevn/q9uLg47Nu3T2d7IYTeVFlyHRcXhy/Kj1hAZG4NGwIFBcCzz2rWtWwpjSqhXUtENsMSOnhUKpVwdXXVmYh0uLnp3qT/808gMlK+eMhiMMEm6xMcLD27t2OHZt0XX0hNy8ePZ0c5tuahh6TXmzdr9nl7e2n4PEC6oCciecTG6t7w+ucfqVUJk2ybYeoOHh0cHODg4IAtW7Zgz549cHBwwPnz540ROtkqhUJKshs3lpbfeQdYtkzemEh2TLDJej35pNQDu3av0f/9r/R8dnGxfHGR9VH1ks2bM0TyOnlSv3+NOXPkiYXMjh08klVSKKTa68BAaXnePKkzNLJZTLDJugUESONm37oFdOworSsulhKm5cvljY3Mo1kz6fWHH2q+D1XTQybYRPILC9OttY6Lk57TJpvADh7JKjk4SK0rVX25PPec1EcQ2STL6dGHqDYaNAB++w0IDwfWr5fWzZ0LfPKJNNa4vb288ZFp3Lql6VCkNs9PM8Emsix2dlKHli4u0uMfbm7A33/rdihEdRI7eCSr1bChdDNQ9biZry9w/Trg6SlvXGR2CiF4RVkT+fn5cHNzQ15eHju+sDRZWbqdXbm7A6mpUqc5VLckJACPPCL9f1+9WvP9dOoE/P67VAuu/cjBPdhiOWCL50wy2rMHeOwxzXJJCW+YWgBbLAds8Zyphtavlyp8AKl15W+/yRsPGU1VywE2Eae6x9tb6nAiIEBa/vtvwM9Pqs2muuXQIelV1dFZTbEGm8gyDR+uu/xvLSYRkcV64QXg5Zel+d9/14x2QjaDCTbVTQqF1AHaf/6jWTdpEvDaa7KFRCbwxx/Sa8+etdsPE2wiyyWEpq+Fq1eByZPljYeI6F4++EAzP3CgfHGQLJhgU902bhyQm6tZXrkSWLJEvnjIuFQJduvWtdsPE2wiy5aVBTRtKs3HxgLr1skbDxFRZRQKYP9+aT4/H/j6a3njIbNigk11X+PG0nN7bdpIywsXAhMmAHfvyhsX1c7t21LTK0AzjnVNMcEmsnx//qm5mfbii7UbOYCIyNT69QOGDZPmhw2ThiEkm8AEm2yDvT1w5oyms5z//AdwcgLy8uSNi2pO++K6Vava7YsJNpF1+PJLzfzAgcBLL8kXCxHRvWzapJnv2lUaHYHqPCbYZDvs7IDdu4FXX9Wsa9QI4DAe1unvvzXz9evXbl9MsImsQ6dOwLVrmuU1a3THzCYisiSenrrNw+vXZ6/iNoAJNtkWhQJYsQJ4/33NOn9/4LPP5IuJambSJOk1JKT2+2KCTWQ9vL2BtDTNspOTfLEQEd3LI48An3+uWe7cWfc6lOocJthkm2bNAr77TrM8ahQLO2ui3cTK0bH2+2OCTWRdAgOBvn2l+bIyYPNmeeMhIqrMyJHAG29oliMigGefBbZsAe7ckS8uMgkm2GS7Bg8GMjM1yxERHP7FWhw5opn/8MPa748JNpH1SUrSzD/3HJ9tJCLL9vbbwI8/apbj4oCJE4FevWQLiUyDCTbZNl9f6c6hqrlxbCywfr2sIVEVZGRo5rt0qf3+mGATWR9nZ+DUKc3yAw/IFwsRUVUMGKBbSQBI5VhsrDzxkEkwwSZSKqVeHrt1k5ZfeglISZE1JLoH1fjXM2caZ39MsImsU6dOwJIl0vypU9LjP0REliwkBMjOlpJtlcmTpWsRVvLUCUywiQCph/ETJ4ARI6Qxs598EsjKkjsqqsh770mv7doZZ39MsIms1/z5mvkPPuDzjERk+by8pObi2q1wACA8HJg+XZ6YyGiYYBOpKBTAxo1Sr+IZGUDz5sDhw3JHReVNmKCZDww0zj6ZYBNZL4UC+PNPzXJth+0jIjKXTp2A5GTddTExwGOPAcuWAUVF8sRFtcIEm0hbkybAnj2a5b59pc7PmHhZjv/8RzPfvbtx9skEm8i6NW0KvPKKNF9WBjz6qLzxEBFVVY8eQGmp7vjYe/YA8+ZJfU307y9fbFQjTLCJyuvUCfj5Z83y++8D48bJFw/patVKM9+okXH2yQSbyPq9+67UcSUAfPMN8L//yRsPEVFV2dkBHTsCiYn67x04AAwaZP6YqMaYYBMZEhwsNct56ilp+dNPWSNiCTIzgYsXpfnsbOPtV5VgE5F1O3tWM9+rF3DrlnyxEBFV16BBQEEBsH8/sGCBZv333wNt28oXF1ULE2yiijg5Adu3a5a/+UZqpsMLNvkcPKiZ9/Iy/v5Zg01k3ZRK4J13NMuqm6RERNaifn2gXz9phATtIb3OndN9jJEsluwJdkxMDPz9/eHs7IygoCAc1L6ALicrKwtjx45FQEAA7OzsMMvAcBxxcXFQKBR6051yvYpW57hkwxQKqVdxlQMHgIcfBm7elC0km6aqnRo1yrj7tdAm4sYuHzds2IDQ0FC4u7vD3d0dAwcOxLFjx0x4BkQyeP114MEHpfm9eznsIhFZr5AQ4K+/NMuPPQYUF8sXD1WJrAn29u3bMWvWLMybNw8pKSkIDQ3FkCFDkJmZaXD7oqIieHp6Yt68eejatWuF+3V1dUVWVpbO5OzsXOPjko2zt5cSr//+V1o+cgRwdwd++kneuGyRajiL4GDj7tcCE2xTlI/79u3DmDFj8NNPP+Ho0aNo2bIlwsLCcPXqVVOeCpH5/fQTMHy4NN+jh+4FKhGRNXF3B156SbOsVAJTp8oXD92TQgj5riiDg4PRo0cPrF27Vr0uMDAQI0aMQFRUVKWfffDBB9GtWzdER0frrI+Li8OsWbNws5IaxtocVyU/Px9ubm7Iy8uDq6trlT5DdcDevVINNgC4uQEXLgCNG8sbky1p106qxU5KAgYONN5++/eXWid89lm1mpSashwwRflYXmlpKdzd3fHRRx9hgvbwZ1qKiopQpDVMSH5+Pnx9fVn2keWLjwfGjNEsFxRwCC8jscVrIFs8Z7Iw5fuL6dAB+P13eWKxUVUtB2SrwS4uLkZycjLCwsJ01oeFheGI9vMGNVBQUAA/Pz/4+Pjg0UcfRYpW87CaHreoqAj5+fk6E9mgwYOBkyel+bw8aVgvjlFoHrdvS88fAUDnzsbdt4XVYJuyfNRWWFiIu3fvonElN4mioqLg5uamnnxVvTQTWbrRo3VvgGon20RE1qasDPD01CynpbGTVgslW4Kdk5OD0tJSeJXrqMjLywvZtegduH379oiLi8OePXuwbds2ODs7o0+fPjj777ObNT0uLzJJrXNnIDlZ6gQNkMYovHtX3phsQVqalAB7ehq/gzMLS7BNVT6WN3fuXLRo0QIDK2kNEBkZiby8PPV0+fJlox2fyORyczXzX30F/P23fLEQEdWGQgFcvw78+qvuev4uWxzZOzlTlLvzIoTQW1cdDzzwAMaNG4euXbsiNDQUn332Gdq1a4cPP/ywVsflRSbp6NEDWL9es9ysmcUkZ3WW6vlrY9deAxaXYKsYu3zUtmLFCmzbtg27du3S6aOiPKVSCVdXV52JyKpod3LauDGQlSVfLEREtdWli2651rIlsHWrfPGQHtkSbA8PD9jb2+vVxly/fl2v1qY27OzscP/996trsGt6XF5kkp5Jk6TxsQGpA50ZM2QNp86zoQTb1OXju+++i2XLliExMRFdunSp9f6ILJpSKfXfoNK8OVsdEZF1UyqBefM0y+PGAWfOyBcP6ZAtwXZyckJQUBCSkpJ01iclJaF3795GO44QAqmpqfD29jbrcclGjBkDvPaaNP/RR8DixfLGU5fZUIJtynJq5cqVWLp0Kb777jv07NmzVvsishp//KG77OQkdXpGRGSt3noLGDpUsxwQYDHXMbZO1ibiERER2LhxI2JjY5Geno7Zs2cjMzMT4eHhAKRm2eV7tk1NTUVqaioKCgpw48YNpKamIi0tTf3+4sWLsXfvXly4cAGpqamYPHkyUlNT1fusynGJquWddzQ9iy9apP9sDNXeL78AP/wgzffoYfz9//ab9Przz8bfdw2ZonxcsWIF5s+fj9jYWLRq1QrZ2dnIzs5GARMNsgXlLzwbNgSefZYXpBYoJiYG/v7+cHZ2RlBQEA4ePFjhtllZWRg7diwCAgJgZ2eHWbNm6W2zYcMGhIaGwt3dHe7u7hg4cCCOHTtmwjMgMpNvvgHeeEOzzBa2lkHIbM2aNcLPz084OTmJHj16iP3796vfmzhxoujfv7/O9gD0Jj8/P/X7s2bNEi1bthROTk7C09NThIWFiSNHjlTruFWRl5cnAIi8vLxqfY7qqLt3hZAu04Ro3FiI06fljqhuUf3bAkKUlpp2/9Vg6nLA2OWjn5+fwW0WLlxY5ZhY9pFV0y6ra/h3T6YtB+Lj44Wjo6PYsGGDSEtLEzNnzhT169cXly5dMrh9RkaGmDFjhvjkk09Et27dxMyZM/W2GTt2rFizZo1ISUkR6enp4tlnnxVubm7iypUrVY6LZR9ZLEPl2tGjckdVJ1W1HJB1HGxrxvEQSU9ODtCvH5CeDvj4AKdPc8xVY9Hu2MsURVYN92+L5YAtnjPVQVu2ABMnapb//BNo2lS+eKyMKcuB4OBg9OjRA2vXrlWvCwwMxIgRIxAVFVXpZx988EF069YN0dHRlW5XWloKd3d3fPTRR3otgVSKiopQpDUMZ35+Pnx9fVn2kWUqKQEcHXXXpaQA3brJEk5dZfHjYBPVOR4ewN690vyVK0CDBlKBR7Wj3VMmm/QRkTFMmKBbnnh5AaWl8sVDAIDi4mIkJycjLCxMZ31YWBiOHDlitOMUFhbi7t27aKw9Tno5HJ6VrIqDgzSEl7bu3YGnnpInHhvHBJvImHx9gd27NcsPPcTn+2rr2Wc18+yUi4iM5f77dcuXt96SLxYCAOTk5KC0tFRvtAQvLy+9URVqY+7cuWjRogUGDhxY4TYcnpWsjqendM05dqxm3Y4dwPffyxeTjWKCTWRsI0YA/ftL8wcOAH36AFevyhqSVYuPl17t7HSbchMR1VZsrGZ+0SLgs894U9QCKMqV9UIIvXU1tWLFCmzbtg27du2Cs7NzhdtxeFayWlu3Aq+/rlkeNEi38odMjgk2kSns2wdMnSrNHz0KtG0rNRun6jlxQjPPO7BEZAr79mnmR42SbuaRLDw8PGBvb69XW339+nW9Wu2aePfdd7Fs2TIkJiaiS5cutd4fkcV65x0gIkKz/MQTUiXFrVvyxWRD+CtCZCpr1wIvvSTN//OP1Hz82jV5Y7ImV68CQUGa5QED5IuFiOqu/v2B9u111x04IE8sNs7JyQlBQUFISkrSWZ+UlITevXvXat8rV67E0qVL8d1336EnHzciW/Dee8AHH+iuY0sMs2CCTWQq9vbAhx8CycnSPAC0aAEcPy5vXNZiyBDNfJ8+8sVBRHVfejpw8aJmWfWYD5ldREQENm7ciNjYWKSnp2P27NnIzMxEeHg4AOnZ6PI9f6empiI1NRUFBQW4ceMGUlNTkZaWpn5/xYoVmD9/PmJjY9GqVStkZ2cjOzsbBQUFZj03IrN7+WXg+ed1161fD/C7b1IcpquGOFQNVUtMDDB9umb54EEpaeQzxRWrV0/Tg3hJieYmhSlwmK4qs8VzJhvy+uvAihXS/IABwI8/yhuPhTJ1ORATE4MVK1YgKysLnTp1wvvvv49+/foBACZNmoSLFy9in1bTfkPPZ/v5+eHivzdNWrVqhUuXLults3DhQixatKhKMbHsI6smhP7jL6WlfCSmmqpaDjDBriEWtFRtf/yh2wyxaVPgwgWOlW3IsWNAcLA0/+qrmgteU2GCXWW2eM5kQ8rKdG/mbdwITJ4sXzwWyhbLAVs8Z6pj1q8H/m0JopaZKT3CSFXCcbCJLE1AgJRkq1y/Lo2VnZkpX0yWSpVcA8CyZfLFQUS2xc5O6jNDZcoU6QZcWZl8MRERGcMLL+g3DW/ZUirjzpyRJ6Y6igk2kTm1ayc1ydmzR7POz09qQk6SvDzNvL8/4OAgXyxEZHucnYGOHXXXTZokSyhEREZVvz6wapX++oAAzWN5VGtMsInMzc4OGDYMePNNzbrp06VnsvnEhlTIq5w7J18cRGS7fvsN+P13zXJiIstnIqobZs+WKnvKq1fP/LHUUUywieSyeDFw/rxm+cgRKfn+/HP5YpKbEMCff2qW2fkGEcmlQwfgxg1p/s8/peexiYjqAjs76Zqr/I1D7dEUqMZ49Uokp9atgaIiwNFRs+7pp4HLl+WLSU7p6Zr5X34x33EbNpRe2XENEWnz8NDMP/888H//J18sRESmUFiomZ8yRb446hAm2ERyc3ICiouBjz7SrGvZUhqaytZ8/bX0+vDDQK9e5jvu8uXS68CB5jsmEVmH5GTN/E8/STdFiYjqinr1gJAQaf6HH4Bbt+SNpw6oVoJ97NgxlGq12S8/wldRURE+++wz40RGZGumT9dtHu7oqDt2ti1QNcEcMcK8x1UN08VnLImovB49gKVLNcvOzvLFQkRkCvHxmvnt2+WLo46oVoIdEhKC3Nxc9bKbmxsuXLigXr558ybGjBljvOiIbM3Ikbo9isfEAM88I1885vTrr8DZs9KNhbFjzXtsJthEVJn583Uf5dFucUREZO1atgQ6d5bmp0413AkaVVm1EuzyNdbllytaR0TV8OKLwP/+p1n+9FPg2Wfli8dc5s+XXsPCNM9Em4uqMzWWX0RUEa0KBbz8su4yEZG10x5CVvXoHNWI0Z/BVqhqgoio5nr2BMrKNIlmXBzwwQeyhmRSV69qnr/u0MH8x1eVW2Vl5j82EVkHHx/g/vs1y23aANeuyRcPEZExtWqlmZ83DygokC0Ua8dOzogslUIBaD2SgVmzpHX5+bKFZDKvvKKZnzvX/MdnE3Eiqopjx4B27TTLLVrIFwsRkbEdPqyZf/VV+eKwctVOsNPS0nDy5EmcPHkSQgicPn1avfz777+bIkYi2+XoKPXmqD18VOfOQHa2fDEZ24oVmg41ZswAGjc2fwxsIk5EVXX6tO4yRx8gorqid2+gY0dpft064Px5eeOxUg7V/cBDDz2k85z1o48+CkBqGi6EYBNxImNr0AC4eRPw9wcuXQIyMwFvb+DoUeCBB+SOrnZu3QJef12z/PLL8sTBJuJEVFUKhVR2qR7h+eEHYNQo9rxLRHXD0aOaip377mPlQw1UqwY7IyMDFy5cQEZGht6kWn+BnX4QGZ9CAVy8qDsea0gIsHKlbCEZxQsvaOZfe00qyOVgoU3EY2Ji4O/vD2dnZwQFBeHgwYMVbpuVlYWxY8ciICAAdnZ2mDVrlsHtdu7ciQ4dOkCpVKJDhw7YvXu3iaInqsMaNNAdTvCzz/g8NhHVDQ0bAk88oVlm5Wm1VSvB9vPzu+f0999/mypWIurRQ7d54muvAU89JV88tXHzJrBtmzTv5SVvj5UW2ER8+/btmDVrFubNm4eUlBSEhoZiyJAhyMzMNLh9UVERPD09MW/ePHTt2tXgNkePHsWoUaMwfvx4/Prrrxg/fjyefvpp/PLLL6Y8FaK6afduTRkGSM9jnzolXzxERMayapXucni4PHFYKaN0cpaXl4eYmBj06NEDQUFBxtglEVUkIEBqnqiyYwdgjePP9+0rvbq5yT/cjQU2EV+1ahUmT56MKVOmIDAwENHR0fD19cXatWsNbt+qVSt88MEHmDBhAtzc3AxuEx0djUGDBiEyMhLt27dHZGQkHnroIURHR1cYR1FREfLz83UmIvrX6NG642N36aJbPhMRWSM/P+mxRJX164H335cvHitTqwT7xx9/xLhx4+Dt7Y0PP/wQQ4cOxfHjx40VGxFVRPVctkp8vJQk/vabbCFVy/vvA6pOEceOBVxc5I3HwpqIFxcXIzk5GWFhYTrrw8LCcOTIkRrv9+jRo3r7HDx4cKX7jIqKgpubm3ry9fWt8fGJ6qTCQt1lV9e6OdoDEdmWli2BQ4c0yxER+uUdGVTtBPvKlSt466230Lp1a4wZMwbu7u64e/cudu7cibfeegvdu3c3RZxEVJ6bm/5FXOfOgK8vUFoqT0xVER8vFdIqH34oXywqFtZEPCcnB6WlpfDy8tJZ7+Xlhexa9CCfnZ1d7X1GRkYiLy9PPV2+fLnGxyeqkxwc9MsONzeLahFDRFQjffoAkyZpluvXB37+2WKulyxVtRLsoUOHokOHDkhLS8OHH36Ia9eu4UNLuDgmslUNG0qFnHYT8StXAGdn4MwZ+eKqyIULurFmZgL29vLFo2KBTcQB6I3KYIyRGqq7T6VSCVdXV52JiAxYs0Z3OTZWnjiIiIxp82bd5ZAQqWKi/HPapFatBDsxMRFTpkzB4sWL8cgjj8DeCBfGxu4ld8OGDQgNDYW7uzvc3d0xcOBAHDt2TGebRYsWQaFQ6EzNmjWr9bkQyebTT6VEe8IEabmkRHpWW6EAcnPljU2bdguXtm2l2nZLYGFNxD08PGBvb69Xs3z9+nW9GujqaNasmdH3SUT/mjZN9ybd1KnA3bvyxUNEZCyGKiBeecX8cViJaiXYBw8exK1bt9CzZ08EBwfjo48+wo0bN2p8cFP0krtv3z6MGTMGP/30E44ePYqWLVsiLCwMV69e1dmuY8eOyMrKUk+n2PMn1QWffAKcOAFo3zDy8ADc3eUdo/XmTSmJVTVp37PHsmrYLayJuJOTE4KCgpCUlKSzPikpCb17967xfkNCQvT2mZiYWKt9EpEWhQI4d06zPH++fLEQERmLQmH48cPnnjN/LFagWgl2SEgINmzYgKysLLzwwguIj49HixYtUFZWhqSkJNyqZs+Zpugld+vWrZg2bRq6deuG9u3bY8OGDSgrK8MPP/ygs52DgwOaNWumnjw9PSuNlT3pktXo3l0/eb15U+rtVqEAcnLMG8/hw1KCr23YMPPGcC8W2EQ8IiICGzduRGxsLNLT0zF79mxkZmYi/N+hMiIjIzFB1WLhX6mpqUhNTUVBQQFu3LiB1NRUpKWlqd+fOXMmEhMTsXz5cpw+fRrLly/H999/X+GY2URUA23aaOZXrACKi+WLhYjIWOzspIoI7cqIzZuBF16QLyYLVaNexF1cXPDcc8/h0KFDOHXqFF555RW88847aNq0KYYPH16lfZiql9zyCgsLcffuXTRu3Fhn/dmzZ9G8eXP4+/tj9OjRuHCPYYLYky5ZFdWz2adOaZJHFU9P4NtvzRPH2bOa4bhU/vnHPMeuDgtrIg4Ao0aNQnR0NJYsWYJu3brhwIEDSEhIgJ+fHwDpkZnyrX26d++O7t27Izk5GZ9++im6d++OoUOHqt/v3bs34uPjsXnzZnTp0gVxcXHYvn07goODzXpuRHXe119r5ps0kS8OIiJTmDdPM1+uEpOMMA52QEAAVqxYgStXriA+Pr7KHfCYqpfc8ubOnYsWLVpg4MCB6nXBwcHYsmUL9u7diw0bNiA7Oxu9e/dGbiXPqrInXbJKnTpJtbJ370pNxVWGDpVqWUpKTHfsrVuBdu00y5MmSQmss7PpjllTFphgA8C0adNw8eJFFBUVITk5Gf369VO/FxcXh3379ulsL4TQmy5evKizzciRI3H69GkUFxcjPT0dTzzxhBnOhMjGPPKIZr6goOLmlURE1uitt4DPP5fmz5+XyjhLrECRiUN1Nn6uCu3sm1TzTq0peslVWbFiBbZt24Z9+/bBWeuifsiQIer5zp07IyQkBG3atMEnn3yCCO3hg7QolUoolUqjxEVkdg4OwI0b0rPPjz0mrbtwAXB0BHx8pMLRyck4x7p7V39fcXHAxInG2b8pqJ7BtqAm4kRk5W7ckFoMqRgazouIyFo9/LDucr9+wP/+J08sFqZaNdhxcXH46aefcPPmTfz9998Gp5s3b1ZpX6bqJVfl3XffxbJly5CYmIguXbpUum39+vXRuXNnnD17ttbHJbJow4dLtSiTJ2vWXbkCKJVSoj1uHHDnDqD13G6VFRdLdzDLJ9cnT1p2cg1YbA02EVkxDw/dkRMA3sSrImOPMAMAO3fuRIcOHaBUKtGhQwfs3r3bRNET2YgGDXSv+Y4flx4NpOol2OHh4cjLy8OFCxcwYMAAbNq0Cbt379aZdu3aVaV9maqXXABYuXIlli5diu+++w49e/a85/ZFRUVIT0+Ht7d3rY5LZBXs7ICNG4GvvtJdf/Wq1Ky7Xj2gY0cp6Sw/leuNHwBQVCQl54ZaeOTlAZ07m+Y8jEmVYLMJJxEZ04kTwF9/aZbZq/g9mWKEmaNHj2LUqFEYP348fv31V4wfPx5PP/00fvnlF1OeClHdd/s28NtvmmXtx2NsWLUS7JiYGGRlZeH111/HV199BV9fXzz99NPYu3cvRA1qfkzRS+6KFSswf/58xMbGolWrVsjOzkZ2djYKCgrU28yZMwf79+9HRkYGfvnlF4wcORL5+fmYaOm1bETG9OijUo1tdZrz+PgAycnA3LnA++8DiYnSM9XlE+9Nm6R9u7oaN2ZTKSqSXtm0iYiMTXsUhago+eKwEqYYYSY6OhqDBg1CZGQk2rdvj8jISDz00EOIjo424ZkQ2QAHB6lSRjUm9tmzwOzZ8sZkAardyZlSqcSYMWOQlJSEtLQ0dOzYEdOmTYOfn59OElsVpuglNyYmBsXFxRg5ciS8vb3V07vvvqve5sqVKxgzZgwCAgLwxBNPwMnJCT///LP6uEQ2pWdPKRm+exfIytJtPl7R9suXAxERwODBuu/NnCnty9rGRTx+XO4IiKgu+/JLzfydO/LFYeFMNcLM0aNH9fY5ePDgSvfJ4VmJquGddzTz0dFSx7Y2rFqdnJWnUCigUCgghEBZDZ8rmjZtGqZNm2bwvbi4OL1196opL99jriHx8fFVCY3Itjg4AM2aSc3HN27Ufz8pCSh3gaI2ZQqwYYNp4zMlPhdJRKY0bJhmfvx4Te+7pMNUI8xkZ2dXe59RUVFYvHhxjY9JZFMcHKQ+d1T9Xn3yiTRGtpE6rrY21a7BLioqwrZt2zBo0CAEBATg1KlT+Oijj5CZmYkGDRqYIkYisgSDBkk1LydPAvn5Uo33yZNScmrNyTXABJuITEuh0Dwys2OHvLFYAVOMMFPdfXJ4VqJq6txZGpVG5a235ItFZtVKsKdNmwZvb28sX74cjz76KK5cuYLPP/8cQ4cOhZ1drYfUJiJLp1RKBWjDhtLdys6d68bdSe0E+8YN+eIgorpLu9dq9rRrkKlGmGnWrFm196lUKuHq6qozEdE9tG6tmX/zTekacdIk4I8/bOrxmGplxevWrYOrqyv8/f2xf/9+TJ06FU888YTeRERkVbQT7EqGgyEiqrH/+z/N/IcfyheHBTPVCDMhISF6+0xMTKz1qDVEZMAnn+gvt28vjVKTkqLpWLYOq9Yz2BMmTKh1Ex0iIoujnWDb28sXBxHVbR4eQE6OlGB/+KHUKSTpiIiIwPjx49GzZ0+EhITg448/1hth5urVq9iyZYv6M6mpqQCgM8KMk5MTOnToAACYOXMm+vXrh+XLl+Oxxx7Dl19+ie+//x6HDh0y+/kR1XkTJkjPX+/bp/9ejx7Sa1GR7hjadUy1EmxDnY4REVk97YtcJthEZCpvvgnMmKFZDg4GOBazjlGjRiE3NxdLlixBVlYWOnXqVKURZlRUo8z4+fmpO77t3bs34uPjMX/+fCxYsABt2rTB9u3bERwcbLbzIrIpP/0E7NkDTJ8OXLmi//5DD9XpFoMKUZMBrAn5+flwc3NDXl4en8shsnbTpgGqMVYTEoAhQ6r0MVssB2zxnImMyslJ6iRSxQprcmyxHLDFcyYymgkTgP/8R3fdxYuAlQ2RXNVygD2TERE5aDXmYQ02EZlSQQGwerVmWamULxYiInOIi5M6kf3iC826Vq1kCsb0mGATEU2bpplngk1EpuTkBLz0ku66jAx5YiEiMgc7O6kPisceAzp10qx3dwdKS+WLy0SYYBMRNWyomeeQg0RkagqFVJOtMm+efLEQEZmTdr8TN2/qtiKsI3glSUSkffeUNdhEZA7162vmt22TLw4iInNycQHWrNFdd+uWPLGYCBNsIiLtBLsO3kklIgs1f75m/scf5YuDiMicpk3TTao9POSLxQSYYBMRMcEmIjm8/rpm/qGHgGvX5IuFiMicGjQA3Nyk+eJi4JNP5I3HiJhgExGVlGjm2USciMylQQNg4kTNcosWwKlT8sVDRGROly5p5idNAmJiZAvFmJhgExE5OmrmmWATkTlt3qy7PHmyPHEQEZmbmxswapRmefp04J9/5IvHSJhgExG1aaOZVyjki4OIbI9CoduK5n//A86ckS8eIiJzmjtXd/n4cXniMCIm2EREANCsmdwR6ImJiYG/vz+cnZ0RFBSEgwcPVrr9/v37ERQUBGdnZ7Ru3Rrr1q3T2yY6OhoBAQGoV68efH19MXv2bNy5c8dUp0BEVWFvD/zwg2b5wAH5YiEiMqcOHXSXhwyRJw4jYoJNRGSBtm/fjlmzZmHevHlISUlBaGgohgwZgszMTIPbZ2RkYOjQoQgNDUVKSgreeOMNzJgxAzt37lRvs3XrVsydOxcLFy5Eeno6Nm3ahO3btyMyMtJcp0VEFfm//wO6dJHmz52TNxYiInNxcgIKCjTLt28DeXnyxWMETLCJiLQJIXcEAIBVq1Zh8uTJmDJlCgIDAxEdHQ1fX1+sXbvW4Pbr1q1Dy5YtER0djcDAQEyZMgXPPfcc3n33XfU2R48eRZ8+fTB27Fi0atUKYWFhGDNmDI7XgeZYRHXCffdJr8uXyxsHEZE51a8PHDmiWS4/TraVYYJNRARY1LPXxcXFSE5ORlhYmM76sLAwHNH+AdJy9OhRve0HDx6M48eP4+7duwCAvn37Ijk5GceOHQMAXLhwAQkJCXjkkUcqjKWoqAj5+fk6ExGZSP/+mvkbN+SLg4jI3B54QDOfkyNfHEbABJuIyMLk5OSgtLQUXl5eOuu9vLyQnZ1t8DPZ2dkGty8pKUHOvz9Uo0ePxtKlS9G3b184OjqiTZs2GDBgAOaW72BES1RUFNzc3NSTr69vLc+OiCr00kua+Ur+LomI6hyFQtMfTny8vLHUEhNsIiJtFtJEHAAU5WrVhRB66+61vfb6ffv24e2330ZMTAxOnDiBXbt24euvv8bSpUsr3GdkZCTy8vLU0+XLl2t6OkR0L3Zal2U3b8oWBhGRLCZOlF6zsoA9e+SNpRaYYBMRARbVRNzDwwP29vZ6tdXXr1/Xq6VWadasmcHtHRwc0KRJEwDAggULMH78eEyZMgWdO3fG448/jmXLliEqKgplZWUG96tUKuHq6qozEZEJ/d//Sa+7dul2/ENEVNdpNxN/7DHgww9rt7+8PODs2drtowaYYBMRabOAGmwnJycEBQUhKSlJZ31SUhJ69+5t8DMhISF62ycmJqJnz55wdHQEABQWFsLOTrfYt7e3hxBCXdtNRDJ7/nnNfMOGQGGhfLEQEZlT+SG6Zsyo3f4aNQLatQN++612+6kmJthERIBF1WADQEREBDZu3IjY2Fikp6dj9uzZyMzMRHh4OACp6faECRPU24eHh+PSpUuIiIhAeno6YmNjsWnTJsyZM0e9zbBhw7B27VrEx8cjIyMDSUlJWLBgAYYPHw57e3uznyMRGfD007rL9evrjxNLRFQXKZXAvx2xqv36a+33+/LLtd9HNTiY9WhERFQlo0aNQm5uLpYsWYKsrCx06tQJCQkJ8PPzAwBkZWXpjInt7++PhIQEzJ49G2vWrEHz5s2xevVqPPnkk+pt5s+fD4VCgfnz5+Pq1avw9PTEsGHD8Pbbb5v9/IioAgqF1KzRzU2zLj1dvniIiMzp/vuBv/8G3N2l5WefBU6cqN4+TpwAgoI0y48/brz4qkAh2C6wRvLz8+Hm5oa8vDw+k0hUF/j4AFevAseP6xbKlbDFcsAWz5lIFt99p9tc0oIu12yxHLDFcyaSlapl4ejRQFQU0KULcOuW1Gz8vfcAh0rqicu3StyxA9CqcKipqpYDsjcRj4mJgb+/P5ydnREUFISDBw9WuG1WVhbGjh2LgIAA2NnZYdasWQa327lzJzp06AClUokOHTpg9+7dtTouEdkAC2siTkQ27uGHgf37NcvJyfLFQkRkbuvWSa/x8YC/v5RcA8Dq1cC/fctUWUmJcWO7B1kT7O3bt2PWrFmYN28eUlJSEBoaiiFDhug0e9RWVFQET09PzJs3D127djW4zdGjRzFq1CiMHz8ev/76K8aPH4+nn34av/zyS42PS0Q2xIJqiYjIxvXrp5nv2VO+OIiIzK2yGurKGLqOu3u3drFUk6xNxIODg9GjRw+sXbtWvS4wMBAjRoxAVFRUpZ998MEH0a1bN0RHR+usHzVqFPLz8/Htt9+q1z388MNwd3fHtm3ban1cFTYVIqpjWrYELl8G/ve/Kl/I2mI5YIvnTCQrVeua1q2B8+fljeVftlgO2OI5E8mqsFDq5LEid+8aTsIPHtS9OQkAmzcDkybVOiSLbyJeXFyM5ORkhIWF6awPCwvDkSNHarzfo0eP6u1z8ODB6n3W9LhFRUXIz8/XmYiIiIhMavNm6fXCBXnjICIyJxcXIDRUs1xcDBQUaJY//9zw57RaLet81oxkS7BzcnJQWloKLy8vnfVeXl7Izs6u8X6zs7Mr3WdNjxsVFQU3Nzf15OvrW+MYiciCsYk4EVkS7RqcoiL54iAiMrft24EPP5RGVnB0lIbxUhk7FnjwQd3rttxc4NVX9ffzwgsmD1Wb7J2cKcp1LCSE0Ftnin1W97iRkZHIy8tTT5cvX65VjERkYdjJGRFZoocf1sz//rt8cZhRdTui3b9/P4KCguDs7IzWrVtjnapzJC3R0dEICAhAvXr14Ovri9mzZ+POnTumOgUiMgZvb+CllwBVc+zyTcL37wfatwfKyqRl7fLylVfME6MBsiXYHh4esLe316s1vn79ul7tcnU0a9as0n3W9LhKpRKurq46ExHVQazBJiJL0rChZr6C0VPqkup2RJuRkYGhQ4ciNDQUKSkpeOONNzBjxgzs3LlTvc3WrVsxd+5cLFy4EOnp6di0aRO2b9+OyMhIc50WERlLQoLu8pkzwPLl0vzx45r1zZrpbjd8OPDZZ6aN7V+yJdhOTk4ICgpCUlKSzvqkpCT07t27xvsNCQnR22diYqJ6n6Y6LhEREZFJ2cCQoqtWrcLkyZMxZcoUBAYGIjo6Gr6+vjod02pbt24dWrZsiejoaAQGBmLKlCl47rnn8O6776q3OXr0KPr06YOxY8eiVatWCAsLw5gxY3Bc+2KciKzDkCFA+SGY33hDv6fw++8HtDvD/uorYNQok4cHyNxEPCIiAhs3bkRsbCzS09Mxe/ZsZGZmIjw8HIDULHvChAk6n0lNTUVqaioKCgpw48YNpKamIi0tTf3+zJkzkZiYiOXLl+P06dNYvnw5vv/+e50xs+91XCKyQWwiTkSWatEizbxWzWxdU5OOaCvq3Pb48eO4++8Fd9++fZGcnIxjx44BAC5cuICEhAQ88sgjFcbCzm2JLNiIEfrrvvtOMz9ggNRBmp08qW4NBxgzjlGjRiE3NxdLlixBVlYWOnXqhISEBPj5+QEAsrKy9JoEde/eXT2fnJyMTz/9FH5+frh48SIAoHfv3oiPj8f8+fOxYMECtGnTBtu3b0dwcHCVj0tENoxNxInI0rz5pibJTkwEnnxS1nBMpSYd0VbUuW1JSQlycnLg7e2N0aNH48aNG+jbty+EECgpKcGLL76IuXPnVhhLVFQUFi9eXPuTIiLTuHABWL9e0zx8+HDNe9u3S8m1TI/0yt7J2bRp03Dx4kUUFRUhOTkZ/bTGLYuLi8O+fft0thdC6E2q5Fpl5MiROH36NIqLi5Geno4nnniiWsclIhvEGmwislQKBdC3rzT/n//IG4sZVLcjWkPba6/ft28f3n77bcTExODEiRPYtWsXvv76ayxdurTCfbJzWyIL5+8PVPQ37OEhvY4da754tMhag01EREREVTBkCHDoEODuLnckJlOTjmgr6tzWwcEBTZo0AQAsWLAA48ePx5QpUwAAnTt3xu3bt/H8889j3rx5sDPQjFSpVEKpPSQQEVkeR0f9dZ99pqk0MfS+Gcheg01EZFHYRJyILFH//tLrtWvyxmFCNemItqLObXv27AnHfy+uCwsL9ZJoe3t7dUtIIqpDnnpK7giYYBMRAWATcSKybPfdp5m/elW+OEysuh3ghoeH49KlS4iIiEB6ejpiY2OxadMmzJkzR73NsGHDsHbtWsTHxyMjIwNJSUlYsGABhg8fDnt7e7OfIxEZ0a1bwJw5wB9/aMbDlhmbiBMRaWNtBhFZIu0m0j4+dbasqm4HuP7+/khISMDs2bOxZs0aNG/eHKtXr8aTWh3BzZ8/HwqFAvPnz8fVq1fh6emJYcOG4e233zb7+RGRkTVoAKxcWfn7BQXmiweAQrBtTI3k5+fDzc0NeXl5cJWphzoiMqI2baQeKY8cAUJCqvQRWywHbPGciSyGdksbGS/fbLEcsMVzJqoTtMvN+vVrlWxXtRxgE3EiIm3DhtXZmiEisnLaTcN/+EG+OIiIrJGZmpAzwSYi0pabC5w4IXcURET6PD018+PHyxcHEZE1YoJNRGRG2k2ISkvli4OIqCLaQ85kZckXBxGRtfjyS0A15B4TbCIimRgYE5WIyCIMH66ZZzNxIqLKDR8OZGRI80ywiYjMSLsGmwk2EVmqyZM18wMHss8IIqJ7UV3XMcEmIjIj7YtUjolNRJZKuwYbAL7/Xp44iIishSrBFsIsNyWZYBMRAboFroXUYMfExMDf3x/Ozs4ICgrCwYMHK91+//79CAoKgrOzM1q3bo1169bpbXPz5k1Mnz4d3t7ecHZ2RmBgIBISEkx1CkRkCjdvauZ//lm2MIiIrIL2dZ0ZarEt4yqSiEhuFlaDvX37dsyaNQvz5s1DSkoKQkNDMWTIEGRmZhrcPiMjA0OHDkVoaChSUlLwxhtvYMaMGdi5c6d6m+LiYgwaNAgXL17Ejh078Mcff2DDhg1o0aKFuU6LiIzBzU0z/+ab8sVBRGRtnnrK5IdwMPkRiIisgfYdTQuowV61ahUmT56MKVOmAACio6Oxd+9erF27FlFRUXrbr1u3Di1btkR0dDQAIDAwEMePH8e7776LJ598EgAQGxuLv/76C0eOHIHjv70R+/n5VRpHUVERioqK1Mv5+fnGOD0iqi13d+Dvv6X5p54CPv9c3niIiCyV9ggMu3eb/HDyX0USEVkCC6rBLi4uRnJyMsLCwnTWh4WF4ciRIwY/c/ToUb3tBw8ejOPHj+Pu3bsAgD179iAkJATTp0+Hl5cXOnXqhGXLlqG0kmHJoqKi4Obmpp58fX1reXZEZBQ//qiZ37FDvjiIiCydq6vh9dOmAUOHGr3ZOBNsIiLAohLsnJwclJaWwsvLS2e9l5cXsrOzDX4mOzvb4PYlJSXIyckBAFy4cAE7duxAaWkpEhISMH/+fLz33nt4++23K4wlMjISeXl56uny5cu1PDsiMopu3YAhQzTL/NskIro3d3fN/Nq1wLffAseOGfUQTLCJiACL7ORMUS7RF0LorbvX9trry8rK0LRpU3z88ccICgrC6NGjMW/ePKxdu7bCfSqVSri6uupMRGQhPvxQM1/JjTIiIvqXj4/+ukpa8tUEn8EmIgIsqgbbw8MD9vb2erXV169f16ulVmnWrJnB7R0cHNCkSRMAgLe3NxwdHWFvb6/eJjAwENnZ2SguLoaTk5ORz4SITKpNG838v3/nRERUiVOnTH4Iy6imISKSmwV1cubk5ISgoCAkJSXprE9KSkLv3r0NfiYkJERv+8TERPTs2VPdoVmfPn1w7tw5lGmd65kzZ+Dt7c3kmshazZkjvSYnyxsHEREBYIJNRCSxoBpsAIiIiMDGjRsRGxuL9PR0zJ49G5mZmQgPDwcgPRs9YcIE9fbh4eG4dOkSIiIikJ6ejtjYWGzatAlzVBffAF588UXk5uZi5syZOHPmDL755hssW7YM06dPN/v5EZGRpKVJr3v3yhsHEREBYBNxIiKJhT2DPWrUKOTm5mLJkiXIyspCp06dkJCQoB5WKysrS2dMbH9/fyQkJGD27NlYs2YNmjdvjtWrV6uH6AIAX19fJCYmYvbs2ejSpQtatGiBmTNn4vXXXzf7+RGRkYwaBSQkSPN37gDOzvLGQ0Rk4xRCaF9VUlXl5+fDzc0NeXl57PSHqC5o2hS4cUOav3AB8Pe/50dssRywxXMmsmglJZoxXs+eBe67z+SHtMVywBbPmahOadAAuH1bmlelv6oWi4cOAX363HMXVS0H5K+mISKyBLm5mnmtTsCIiCyag4OmzPr9d3ljISKyVGvWSK8DB5r8UEywiYgA3U7OiIisiWqImdOn5Y2DiMhSOZjvyWgm2ERERETW7LXXpNdr1+SNg4jIUqmag5vh6Wgm2ERERETWrEUL6XX1amDrVnljISKyZMePm/wQsifYMTEx8Pf3h7OzM4KCgnDw4MFKt9+/fz+CgoLg7OyM1q1bY926dTrvP/jgg1AoFHrTI488ot5m0aJFeu83a9bMJOdHREREZFLanfOMGyd11EhERBo7d0qveXkmP5SsCfb27dsxa9YszJs3DykpKQgNDcWQIUN0hp7RlpGRgaFDhyI0NBQpKSl44403MGPGDOxU/YMB2LVrF7KystTTb7/9Bnt7ezz11FM6++rYsaPOdqdOnTLpuRIRERGZRFCQ7nJEhDxxEBFZqscf18yr+q0wEVkT7FWrVmHy5MmYMmUKAgMDER0dDV9fX6xdu9bg9uvWrUPLli0RHR2NwMBATJkyBc899xzeffdd9TaNGzdGs2bN1FNSUhJcXFz0EmwHBwed7Tw9PU16rkREREQms2qVZv7LL+WLg4jIEgUEaObnzTPpoWRLsIuLi5GcnIywsDCd9WFhYThy5IjBzxw9elRv+8GDB+P48eO4e/euwc9s2rQJo0ePRv369XXWnz17Fs2bN4e/vz9Gjx6NC/doTlVUVIT8/HydiYiIiMgizJ4tPYMNAD4+8sZCRGRp6tXTzC9fbtJDyZZg5+TkoLS0FF5eXjrrvby8kJ2dbfAz2dnZBrcvKSlBTk6O3vbHjh3Db7/9hilTpuisDw4OxpYtW7B3715s2LAB2dnZ6N27N3K1x8EtJyoqCm5uburJ19e3qqdKREREZHqBgdKru7u8cRARWRrtBNvEZO/kTKHqMv1fQgi9dffa3tB6QKq97tSpE3r16qWzfsiQIXjyySfRuXNnDBw4EN988w0A4JNPPqnwuJGRkcjLy1NPly9frvzEiMh6mWEIByIio3N2ll7v3JE3jloydge4AHDz5k1Mnz4d3t7ecHZ2RmBgIBISEkx1CkRkaSpLsMu1dK4t8424XY6Hhwfs7e31aquvX7+uV0ut0qxZM4PbOzg4oEmTJjrrCwsLER8fjyVLltwzlvr166Nz5844e/ZshdsolUoolcp77ouIiIhIFqoLyEquZyydqgPcmJgY9OnTB+vXr8eQIUOQlpaGli1b6m2v6gB36tSp+O9//4vDhw9j2rRp8PT0xJNPPglAeixx0KBBaNq0KXbs2AEfHx9cvnwZDRs2NPfpEZFcVDcgDVENdWgksiXYTk5OCAoKQlJSEh7X6tUtKSkJjz32mMHPhISE4KuvvtJZl5iYiJ49e8LR0VFn/WeffYaioiKMGzfunrEUFRUhPT0doaGhNTgTIiIiIgugfZF46xZghQmkdge4ABAdHY29e/di7dq1iIqK0tteuwNcAAgMDMTx48fx7rvvqhPs2NhY/PXXXzhy5Ij6etHPz6/SOIqKilBUVKReZt87RFZOuwbb3t6krRVlbSIeERGBjRs3IjY2Funp6Zg9ezYyMzMRHh4OQGqWPWHCBPX24eHhuHTpEiIiIpCeno7Y2Fhs2rQJc+bM0dv3pk2bMGLECL2abQCYM2cO9u/fj4yMDPzyyy8YOXIk8vPzMXHiRNOdLBEREZEpNWumma+kXxlLZaoOcPfs2YOQkBBMnz4dXl5e6NSpE5YtW4bSSobqYd87RHWMdg12x466CXYljyfXhGw12AAwatQo5ObmYsmSJcjKykKnTp2QkJCgvquYlZWlMya2v78/EhISMHv2bKxZswbNmzfH6tWr1XcoVc6cOYNDhw4hMTHR4HGvXLmCMWPGICcnB56ennjggQfw888/3/NuJhEREZFVuHYNaNVK7iiqxRQd4Hp7e+PChQv48ccf8cwzzyAhIQFnz57F9OnTUVJSgjfffNPgfiMjIxGhNZ54fn4+k2wia6ZQAF9/DTz6KODoqJtg2xm3zlnWBBsApk2bhmnTphl8Ly4uTm9d//79ceLEiUr32a5dO3XnZ4bEx8dXK0YisjH/+Q8wf77cURAR1dykScCZM3JHUSPG7gC3rKwMTZs2xccffwx7e3sEBQXh2rVrWLlyZYUJNvveIaqDVGWFEEBZmWa9kRNs2XsRJyKyOP8+y0dEZLWq09HZtWvAxYtAYaHJwqkKU3WA6+3tjXbt2sHe3l69TWBgILKzs1FcXGzksyAii6V9M047wTZyE3Em2ERERER1RXBw9T/z2GOAvz+wb5/Rw6kO7Q5wtSUlJaF3794GPxMSEqK3ffkOcPv06YNz586hTOuC+syZM/D29oaTk5ORz4KIrAJrsImIzIjjYBORtdJu8lxJJ146LKjMM0UHuC+++CJyc3Mxc+ZMnDlzBt988w2WLVuG6dOnm/38iEhG2k3E6/Iz2ERERERkJA89pJm/dQto1Ojen1FdaBq5mWRNmKIDXF9fXyQmJmL27Nno0qULWrRogZkzZ+L11183+/kRkYUwYQ02E2wiovIsqDaHiKhatDvm+u47YPToqn/WAhJswDQd4IaEhODnn382RnhEZK0q6uSMz2ATERER0T2NGVO17XhTkYhsjQmbiDPBJiKyUDExMfD394ezszOCgoJw8ODBSrffv38/goKC4OzsjNatW2PdunUVbhsfHw+FQoERI0YYOWoisihVSZ4tqIk4EZHJqMq41FRAewQBJthERHXf9u3bMWvWLMybNw8pKSkIDQ3FkCFDdJ491JaRkYGhQ4ciNDQUKSkpeOONNzBjxgzs3LlTb9tLly5hzpw5CA0NNfVpEJEcjh/XzH/xRdU/xwSbiGzFW29p5plgExHVfatWrcLkyZMxZcoUBAYGIjo6Gr6+vli7dq3B7detW4eWLVsiOjoagYGBmDJlCp577jm8++67OtuVlpbimWeeweLFi9G6dWtznAoRmVtQkGb+v/+99/ZsIk5EtkD7JqL29RSfwSYiqtuKi4uRnJyMsLAwnfVhYWE4cuSIwc8cPXpUb/vBgwfj+PHjuHv3rnrdkiVL4OnpicmTJ1cplqKiIuTn5+tMRGQFHnhAei0quve2bCJORLbG1VUzzwSbiMjEZK7NycnJQWlpKby8vHTWe3l5ITs72+BnsrOzDW5fUlKCnJwcAMDhw4exadMmbNiwocqxREVFwc3NTT35+vpW82yISBZ//SW9fvPNvbdlgk1EtmDjRs28u7v0auTm4QATbCIii6Uod7ErhNBbd6/tVetv3bqFcePGYcOGDfDw8KhyDJGRkcjLy1NPly9frsYZEJFsFi/WzKelyRcHEZGl8PfXzBcUSK8muLHIBJuIyMJ4eHjA3t5er7b6+vXrerXUKs2aNTO4vYODA5o0aYLz58/j4sWLGDZsGBwcHODg4IAtW7Zgz549cHBwwPnz5w3uV6lUwtXVVWciIiswcqRmPj298m1Zg01EtkD7xmPfvtIra7CJiMygfXtZD+/k5ISgoCAkJSXprE9KSkLv3r0NfiYkJERv+8TERPTs2ROOjo5o3749Tp06hdTUVPU0fPhwDBgwAKmpqWz6TVTXODgADRtK89rJtiFMsInIFiiVQL9+0nyTJtKrCRJsB6PvkYjI2g0eLHcEiIiIwPjx49GzZ0+EhITg448/RmZmJsLDwwFITbevXr2KLVu2AADCw8Px0UcfISIiAlOnTsXRo0exadMmbNu2DQDg7OyMTp066RyjUaNGAKC3nojqCO1xXm/cADw95YuFiMgSBAQABw4AZWXSMmuwiYhMZM4cuSPQMWrUKERHR2PJkiXo1q0bDhw4gISEBPj5+QEAsrKydMbE9vf3R0JCAvbt24du3bph6dKlWL16NZ588km5ToGI5HbihGb+008r3o412ERka1QJtgnKPdZgExEBwIoVgGrMaHt7eWP517Rp0zBt2jSD78XFxemt69+/P05oX1Dfg6F9EFEd0qGDZn7WLGDmTMPbMcEmIlvDGmwiIhPTvrA0QWFLRCSLf1u9AAA4jj0R2TrV9R4TbCIiM2KCTUR1xYEDmvmKEmzWYBORrWGCTURkRkywiaiuaNlSM19YaHgbJthEZGtM+Aw2ryKJiMrjRSYR1UUBAZqLSm2qBJuIqK5jE3EiIhmwBpuI6qqTJyt+jzcXichWlJZKr0ywiYjMwEJ6ESciMoq7dzXzjz2mX2PNJuJEZGtU5aKjo9F3zQSbiKg81mATUV3ioDUqa2ambsdn8fHA2bPmj4mISA6qG4mZmdJrdrbRD8GrSCKi8phgE1FdM3iwZv6776TXsjJgzBjNehNcaBIRWaTkZOnVUL8UtcSrSCKi8phgE1Fdo0qqAcDJSXotX3P988/mi4eIqI5yuPcmREQ2hgk2EdVFzzwDbN0KLFkiNY88dUr3/eJieeIiIjIXM/Q1IftVZExMDPz9/eHs7IygoCAcPHiw0u3379+PoKAgODs7o3Xr1li3bp3O+3FxcVAoFHrTnTt3anVcIrIhTLCJqC7SbgIeF6dpIqligs5+iIgsSlGRyQ8h61Xk9u3bMWvWLMybNw8pKSkIDQ3FkCFDkKl66LycjIwMDB06FKGhoUhJScEbb7yBGTNmYOfOnTrbubq6IisrS2dydnau8XGJyMYwwSaiuuijjyp/nwk2EdV116+b/BCyXkWuWrUKkydPxpQpUxAYGIjo6Gj4+vpi7dq1Brdft24dWrZsiejoaAQGBmLKlCl47rnn8O677+psp1Ao0KxZM52pNscFgKKiIuTn5+tMRFRHcagaIqqL2rfXH6JLm4uL+WIhIpLDtWu6y489ZvRDyJZgFxcXIzk5GWFhYTrrw8LCcOTIEYOfOXr0qN72gwcPxvHjx3FXa4zHgoIC+Pn5wcfHB48++ihSUlJqdVwAiIqKgpubm3ry9fWt8rkSkZVhDTYR1WUVJdktWpg3jgoY+/FBbfHx8VAoFBgxYoSRoyYiq3DihO5yaKjRDyHbVWROTg5KS0vh5eWls97LywvZFQwTkZ2dbXD7kpIS5OTkAADat2+PuLg47NmzB9u2bYOzszP69OmDs//2lFmT4wJAZGQk8vLy1NPly5erfc5EZCWYYBNRXXfnDvD338CqVXJHosNUjw8CwKVLlzBnzhyEmuCCmois1P79Rt+l7FeRinJNMYUQeuvutb32+gceeADjxo1D165dERoais8++wzt2rXDhx9+WKvjKpVKuLq66kxEVEcxwSaiuk6pBBo1Al54Qe5IdJjq8cHS0lI888wzWLx4MVq3bn3POPhoIFEd9dtvusta/XQZi2xXkR4eHrC3t9erNb5+/bpe7bJKs2bNDG7v4OCAJk2aGPyMnZ0d7r//fnUNdk2OS0Q2xt5e7giIiMzDgp67NuXjg0uWLIGnpycmT55cpVj4aCBRHdWxo+7jMEuWGP0QsiXYTk5OCAoKQlJSks76pKQk9O7d2+BnQkJC9LZPTExEz5494VhBz5dCCKSmpsLb27vGxyUiG8MabCIiszPV44OHDx/Gpk2bsGHDhirHwkcDieqwq1c18wEBRt+9g9H3WA0REREYP348evbsiZCQEHz88cfIzMxEeHg4AKlwu3r1KrZs2QIACA8Px0cffYSIiAhMnToVR48exaZNm7Bt2zb1PhcvXowHHngAbdu2RX5+PlavXo3U1FSsWbOmysclIhvHXsSJiGRjzMcHb926hXHjxmHDhg3w8PCocgxKpRJKpbIaURORVTLBNZ+sCfaoUaOQm5uLJUuWICsrC506dUJCQgL8/PwAAFlZWTqdWvj7+yMhIQGzZ8/GmjVr0Lx5c6xevRpPPvmkepubN2/i+eefR3Z2Ntzc3NC9e3ccOHAAvXr1qvJxicjGsYk4EZHZmeLxwd9//x0XL17EsGHD1O+XlZUBABwcHPDHH3+gTZs2Rj4TIrJlCiEqGxCRKpKfnw83Nzfk5eWxwzOiukJ1F3PHDkDrxl1FbLEcsMVzJqrzVGXfxo1AFZ5RNmU5EBwcjKCgIMTExKjXdejQAY899hiioqL0tn/99dfx1VdfIS0tTb3uxRdfRGpqKo4ePYo7d+7g3LlzOp+ZP38+bt26hQ8++ADt2rWDk5PTPeNi2UdUh2jXWlcjFa5qOcAHDYmIVOrVk1779pU3jn8ZeyzYDRs2IDQ0FO7u7nB3d8fAgQNx7NgxU54CEVkDVS+6Dz4oaxiA9Bjfxo0bERsbi/T0dMyePVvv8cEJEyaotw8PD8elS5cQERGB9PR0xMbGYtOmTZgzZw4AwNnZGZ06ddKZGjVqhIYNG6JTp05VSq6JqI5RdWxWroNEY2GCTUSkcvUqkJEBWMCIAqYYC3bfvn0YM2YMfvrpJxw9ehQtW7ZEWFgYrmp39kFEtuf6danss4Cm0qNGjUJ0dDSWLFmCbt264cCBA1V6fHDfvn3o1q0bli5dqvf4IBGRjnnzgFOngIQEk+yeTcRriE2FiMjUzSR79OihM/ZrYGAgRowYUWEzyT179iA9PV29Ljw8HL/++iuOHj1q8BilpaVwd3fHRx99pFMjVBmWfURki+WALZ4zEeliE3EiIitlyrFgtRUWFuLu3bto3LhxhbEUFRUhPz9fZyIiIiIiw5hgExFZGFONBVve3Llz0aJFCwwcOLDCWKKiouDm5qaefH19q3k2RERERLaDCTYRkYUy5liw5a1YsQLbtm3Drl274Kzq4MiAyMhI5OXlqafLly9X5xSIiIiIbIqs42ATEZE+U4wFq+3dd9/FsmXL8P3336NLly6VxqJUKqFUKmtwFkRERES2hzXYREQWxsnJCUFBQUhKStJZn5SUhN69exv8TEhIiN72iYmJ6NmzJxwdHdXrVq5ciaVLl+K7775Dz549jR88ERERkQ1jgk1EZIGMPRYsIDULnz9/PmJjY9GqVStkZ2cjOzsbBQUFZj8/IiIiorqITcSJiCzQqFGjkJubiyVLliArKwudOnWq0liws2fPxpo1a9C8eXO9sWBjYmJQXFyMkSNH6hxr4cKFWLRokVnOi4iIiKgu4zjYNcTxEInIFssBWzxnItJli+WALZ4zEeniONhEREREREREZsQm4jWkqvjPz8+XORIikovq79+WGgKx7CMiln1EZIuqWvYxwa6hW7duAQB8fX1ljoSI5Hbr1i24ubnJHYZZsOwjIhWWfURki+5V9vEZ7BoqKyvDtWvX0LBhQygUintun5+fD19fX1y+fNnqnt1h7PJg7OZX3biFELh16xaaN28OOzvbeOKGZZ91sNbYrTVuwLZiZ9nHss8SWWvcAGOXi6nKPtZg15CdnR18fHyq/TlXV1er+/KpMHZ5MHbzq07ctlJ7o8Kyz7pYa+zWGjdgO7Gz7KsaW/k+WBJrjRtg7HIxdtlnG7cdiYiIiIiIiEyMCTYRERERERGRETDBNhOlUomFCxdCqVTKHUq1MXZ5MHbzs9a4LZk1/5sydvOz1rgBxk66rPnf1Fpjt9a4AcYuF1PFzk7OiIiIiIiIiIyANdhERERERERERsAEm4iIiIiIiMgImGATERERERERGQETbCIiIiIiIiIjYIJtRDExMfD394ezszOCgoJw8ODBSrffv38/goKC4OzsjNatW2PdunVmilRfdWLftWsXBg0aBE9PT7i6uiIkJAR79+41Y7S6qvvvrnL48GE4ODigW7dupg2wAtWNu6ioCPPmzYOfnx+USiXatGmD2NhYM0Wrq7qxb926FV27doWLiwu8vb3x7LPPIjc310zRahw4cADDhg1D8+bNoVAo8MUXX9zzM5b0d2qprLXsY7knD5Z9LPvqAmst9wCWfXJh2WdDZZ8go4iPjxeOjo5iw4YNIi0tTcycOVPUr19fXLp0yeD2Fy5cEC4uLmLmzJkiLS1NbNiwQTg6OoodO3aYOfLqxz5z5kyxfPlycezYMXHmzBkRGRkpHB0dxYkTJ8wcefVjV7l586Zo3bq1CAsLE127djVPsFpqEvfw4cNFcHCwSEpKEhkZGeKXX34Rhw8fNmPUkurGfvDgQWFnZyc++OADceHCBXHw4EHRsWNHMWLECDNHLkRCQoKYN2+e2LlzpwAgdu/eXen2lvR3aqmstexjudfVPMGWw7KPZV9dYK3lnhAs+1j2VR/Lvur/rTLBNpJevXqJ8PBwnXXt27cXc+fONbj9a6+9Jtq3b6+z7oUXXhAPPPCAyWKsSHVjN6RDhw5i8eLFxg7tnmoa+6hRo8T8+fPFwoULZSlsqxv3t99+K9zc3ERubq45wqtUdWNfuXKlaN26tc661atXCx8fH5PFWBVVKWgt6e/UUllr2cdyr6sJI6wYyz6WfXWBtZZ7QrDsY9lXfSz7qv+3yibiRlBcXIzk5GSEhYXprA8LC8ORI0cMfubo0aN62w8ePBjHjx/H3bt3TRZreTWJvbyysjLcunULjRs3NkWIFapp7Js3b8b58+excOFCU4doUE3i3rNnD3r27IkVK1agRYsWaNeuHebMmYN//vnHHCGr1ST23r1748qVK0hISIAQAn/++Sd27NiBRx55xBwh14ql/J1aKmst+1juyYNlH8u+usBayz2AZZ9cWPbZXtnnYOzAbFFOTg5KS0vh5eWls97LywvZ2dkGP5OdnW1w+5KSEuTk5MDb29tk8WqrSezlvffee7h9+zaefvppU4RYoZrEfvbsWcydOxcHDx6Eg4M8X/+axH3hwgUcOnQIzs7O2L17N3JycjBt2jT89ddfZn0epyax9+7dG1u3bsWoUaNw584dlJSUYPjw4fjwww/NEXKtWMrfqaWy1rKP5Z48WPax7KsLrLXcA1j2yYVln+2VfazBNiKFQqGzLITQW3ev7Q2tN4fqxq6ybds2LFq0CNu3b0fTpk1NFV6lqhp7aWkpxo4di8WLF6Ndu3bmCq9C1fk3Lysrg0KhwNatW9GrVy8MHToUq1atQlxcnNnvZgLViz0tLQ0zZszAm2++ieTkZHz33XfIyMhAeHi4OUKtNUv6O7VU1lr2sdyTB8s+ln11gbWWexXFwrLP9Fj22U7ZxxpsI/Dw8IC9vb3enZzr16/r3QVRadasmcHtHRwc0KRJE5PFWl5NYlfZvn07Jk+ejM8//xwDBw40ZZgGVTf2W7du4fjx40hJScFLL70EQCrAhBBwcHBAYmIi/u///s/i4gYAb29vtGjRAm5ubup1gYGBEELgypUraNu2rUljVqlJ7FFRUejTpw9effVVAECXLl1Qv359hIaG4q233rLomhBL+Tu1VNZa9rHcM3+5V5PYAZZ9crGEv1NLZa3lHsCyj2Vf9bHsq9nfKmuwjcDJyQlBQUFISkrSWZ+UlITevXsb/ExISIje9omJiejZsyccHR1NFmt5NYkdkO5iTpo0CZ9++qlsz1RUN3ZXV1ecOnUKqamp6ik8PBwBAQFITU1FcHCwRcYNAH369MG1a9dQUFCgXnfmzBnY2dnBx8fHpPFqq0nshYWFsLPTLWrs7e0BaO4KWipL+Tu1VNZa9rHcM3+5B7DsA1j21QXWWu4BLPtY9lUfy74a/q1Wq0s0qpCqC/tNmzaJtLQ0MWvWLFG/fn1x8eJFIYQQc+fOFePHj1dvr+oGfvbs2SItLU1s2rRJ9iEbqhr7p59+KhwcHMSaNWtEVlaWerp586bFx16eXD1KVjfuW7duCR8fHzFy5Ejx+++/i/3794u2bduKKVOmWHzsmzdvFg4ODiImJkacP39eHDp0SPTs2VP06tXL7LHfunVLpKSkiJSUFAFArFq1SqSkpKiHmrDkv1NLZa1lH8u9rmaKVhfLPpZ9dYG1lns1iZ1ln3Gw7LOtso8JthGtWbNG+Pn5CScnJ9GjRw+xf/9+9XsTJ04U/fv319l+3759onv37sLJyUm0atVKrF271swRa1Qn9v79+wsAetPEiRPNH7io/r+7NjkL2+rGnZ6eLgYOHCjq1asnfHx8REREhCgsLDRz1JLqxr569WrRoUMHUa9ePeHt7S2eeeYZceXKFTNHLcRPP/1U6XfX0v9OLZW1ln0s9+TBso9lX11greWeECz75MKyz3bKPoUQFl5XT0RERERERGQF+Aw2ERERERERkREwwSYiIiIiIiIyAibYREREREREREbABJuIiIiIiIjICJhgExERERERERkBE2wiIiIiIiIiI2CCTURERERERGQETLCJiIiIiIiIjIAJto0QQuD5559H48aNoVAokJqaigcffBCzZs2q9HOtWrVCdHS0WWIkXQqFAl988QUA4OLFi+r/t9oaP348li1bVq3PxMXFoVGjRrU+tilNmjQJI0aMqNK2169fh6enJ65evWraoEgWLO+sjyWVd/eyb98+KBQK3Lx506j7NYaqfM9VTp06BR8fH9y+fdu0QZFVYflpfayp/Kwu7XOzqms3QbLKysoSL730kvD39xdOTk7Cx8dHPProo+L777836nESEhKEo6OjOHz4sMjKyhJ3794Vubm5Ij8/v9LP+fn5iffff9+osZCuhQsXiq5du+qtz8rKEnfu3BFCCJGRkSEAiJSUlFod69dffxXu7u4G/9+3bt0q7OzsxAsvvKD33ubNm4Wbm1utjm3qfd68eVP8/fffVd5+9uzZYvLkyUY7Pt0byzuSu7zr37+/AKA3GSr3KlJUVCSysrJEWVnZPbf96aefBIBqlU21UZXvubbHH39cLF261IQRkbGw/CS5yk/VPiubFi5cWOG+ahMTALF79271srVcuzmYOZ8nLRcvXkSfPn3QqFEjrFixAl26dMHdu3exd+9eTJ8+HadPnzbasc6fPw9vb2/07t1bva5x48ZG239dVFxcDCcnJ9mO36xZM6Pv86OPPsJTTz2Fhg0b6r0XGxuL1157DWvXrsWqVavg4uJi9OObQmlpKRQKBdzc3Kr1uWeffRa9evXCypUr4e7ubqLoSIXlnWWzpfJu6tSpWLJkic666pR3Tk5OJonXGKr7PX/22WcRHh6OyMhI2Nvbmygqqi2Wn5atrpefLi4uyMrKUr/37rvv4rvvvsP333+vXtegQQOjx2CI1Vy7yZ3h27IhQ4aIFi1aiIKCAr33tO92X7p0SQwfPlzUr19fNGzYUDz11FMiOztb/b7qjtaWLVuEn5+fcHV1FaNGjVLfbZw4caLOXSY/Pz8hhHQnf+bMmer9/Pnnn+LRRx8Vzs7OolWrVuK///2v3h3JmzdviqlTpwpPT0/RsGFDMWDAAJGamlrlWIQQorS0VLzzzjuiTZs2wsnJSfj6+oq33npL/f6VK1fE008/LRo1aiQaN24shg8fLjIyMir8d1TVEHz99deiS5cuQqlUil69eomTJ0/qbHf48GERGhoqnJ2dhY+Pj3j55Zd1/u39/PzE0qVLxcSJE4Wrq6uYMGGCEEKIQ4cOiX79+ol69eqJRo0aibCwMPHXX38JIYQoKysTy5cvF/7+/sLZ2Vl06dJFfP7553qxff/99yIoKEjUq1dPhISEiNOnTwshpFpclLsLuHnzZiGE7l07Q3f/fv/9dzFkyBBRv3590bRpUzFu3Dhx48aNCv+dSktLRaNGjcTXX3+t915GRoaoV6+euHnzpggODhaffPKJzvuGapv37NkjevToIZRKpfD39xeLFi0Sd+/eVb//3nvviU6dOgkXFxfh4+MjXnzxRXHr1i2dfxcYuPv5119/ifHjx4tGjRqJevXqiYcfflicOXNGL5avvvpKBAYGCnt7e3HhwgUxceJE8dhjj+mcb2XfMyGEaNWqldi0aVOF/2ZkPCzvWN5ZQnlX/ntQnurY27ZtEyEhIUKpVIoOHTqIn376Se88Vd/bixcvikcffVQ0atRIuLi4iA4dOohvvvnGYK3PxIkTq/Vv+d1334lu3boJZ2dnMWDAAPHnn3+KhIQE0b59e9GwYUMxevRocfv27QrP786dO+LVV18VPj4+wsnJSdx3331i48aN6veLioqEUqkUP/zwQ4X/JiQ/lp8sPy2h/FQpX5NeWloqFi9eLFq0aCGcnJxE165dxbfffqt+v3zc/fv3F0IIcezYMTFw4EDRpEkT4erqKvr16yeSk5N1jqV9birWcO3GBFsmubm5QqFQiGXLllW6XVlZmejevbvo27evOH78uPj5559Fjx491F9OIaQveoMGDcQTTzwhTp06JQ4cOCCaNWsm3njjDSGEVMgtWbJE+Pj4iKysLHH9+nUhhH6BOWTIENGpUydx5MgRcfz4cdG7d29Rr149dYFZVlYm+vTpI4YNGyb+97//iTNnzohXXnlFNGnSROTm5lYpFiGEeO2114S7u7uIi4sT586dEwcPHhQbNmwQQghx+/Zt0bZtW/Hcc8+JkydPirS0NDF27FgREBAgioqKDP4bqQqlwMBAkZiYKE6ePCkeffRR0apVK1FcXCyEEOLkyZOiQYMG4v333xdnzpwRhw8fFt27dxeTJk1S70dVwK9cuVKcPXtWnD17VqSkpAilUilefPFFkZqaKn777Tfx4YcfqgumN954Q7Rv315899134vz582Lz5s1CqVSKffv26cQWHBws9u3bJ37//XcRGhoqevfuLYQQorCwULzyyiuiY8eOIisrS2RlZYnCwkIhROUF5rVr14SHh4eIjIwU6enp4sSJE2LQoEFiwIABFX6XUlJSBACdH1uVBQsWiJEjRwohhPjwww9Fv379dN4vn2B/9913wtXVVcTFxYnz58+LxMRE0apVK7Fo0SL1Nu+//7748ccfxYULF8QPP/wgAgICxIsvviiEkC7qoqOjhaurq/q8Vcn38OHDRWBgoDhw4IBITU0VgwcPFvfdd5/6/3Lz5s3C0dFR9O7dWxw+fFicPn1aFBQU6CXYlX3PVJ5++mmd7wCZBss7lndCWEZ5V9UE28fHR+zYsUOkpaWJKVOmiIYNG4qcnByd81QlNo888ogYNGiQOHnypDh//rz46quvxP79+0VJSYnYuXOnACD++OMPkZWVJW7evFmtf8sHHnhAHDp0SJw4cULcd999on///iIsLEycOHFCHDhwQDRp0kS88847FZ7f008/LXx9fcWuXbvE+fPnxffffy/i4+N1zrlXr146ZTdZFpafLD+FsIzyU/t7pJ1gr1q1Sri6uopt27aJ06dPi9dee004OjqqK0eOHTumvnmQlZWl/g788MMP4j//+Y9IS0sTaWlpYvLkycLLy0vnJouhBNsart2YYMvkl19+EQDErl27Kt0uMTFR2Nvbi8zMTPW633//XQAQx44dE0JIX3QXFxedL+Srr74qgoOD1cvvv/+++k6kinaB+ccffwgA4ueff1a/n56eLgCoC8wffvhBuLq6qp/zUGnTpo1Yv359lWLJz88XSqVSL9FR2bRpkwgICNB5tq2oqEjUq1dP7N271+BnVIWS9kVDbm6uqFevnti+fbsQQojx48eL559/XudzBw8eFHZ2duKff/4RQkgF5ogRI3S2GTNmjOjTp4/B4xYUFAhnZ2dx5MgRnfWTJ08WY8aM0YlN+xmpb775RgBQH7eiZ2oqKzAXLFggwsLCdLa/fPmy+kLOkN27dwt7e3u95wZLS0uFr6+v+OKLL4QQQty4cUM4OjqKs2fPqrcpn2CHhobq/dj/5z//Ed7e3gaPLYQQn332mWjSpEmF+xRCiDNnzggA4vDhw+p1OTk5ol69euKzzz5Tfw6Azp1wIYROgn2v75nK7NmzxYMPPljpNlR7LO9Y3llKede/f3/h6Ogo6tevrzPFxcXpHFs7ab17967w8fERy5cv1zlPVYLduXPnChNUQ89g1/TfMioqSgAQ58+fV6974YUXxODBg3XOr/z3PCkpyWBsKo8//rjFX6zaMpafLD8tpfxUKR9H8+bNxdtvv62zzf333y+mTZtmMKaKlJSUiIYNG4qvvvrK4LmpWMO1G5/BlokQAoDUO15l0tPT4evrC19fX/W6Dh06oFGjRkhPT8f9998PQOq9Ufs5M29vb1y/fr3K8aSnp8PBwQE9e/ZUr2vfvr1Oz9HJyckoKChAkyZNdD77zz//4Pz58+rlymJJT09HUVERHnroIYNxJCcn49y5c3rPzN25c0fnGIaEhISo5xs3boyAgACkp6fr7Hfr1q3qbYQQKCsrQ0ZGBgIDAwFA5/wBIDU1FU899ZTB46WlpeHOnTsYNGiQzvri4mJ0795dZ12XLl3U897e3gCk3hBbtmxZ6TlVJDk5GT/99JPBZ17Onz+Pdu3a6a3/559/oFQq9b5ziYmJuH37NoYMGQIA8PDwQFhYGGJjYyvsPTI5ORn/+9//8Pbbb6vXlZaW4s6dOygsLISLiwt++uknLFu2DGlpacjPz0dJSQnu3LmD27dvo379+gb3q/oeBgcHq9c1adJE5/8SkJ6B1P43NbSfyr5nKvXq1UNhYWGl21DtsbxjeWcp5R0APPPMM5g3b57OuqZNm+osa//7qr4r2mWQthkzZuDFF19EYmIiBg4ciCeffLLS8qmm/5ZeXl5wcXFB69atddYdO3bM4HFSU1Nhb2+P/v37VxgLwHLQ0rH8ZPlpSeVnefn5+bh27Rr69Omjs75Pnz749ddfK/3s9evX8eabb+LHH3/En3/+idLSUhQWFiIzM7PSz1lDmcUEWyZt27aFQqFAenp6pUMLCSEMfsHLr3d0dNR5X6FQoKysrMrxVKUALysrg7e3N/bt26f3nnbBWlks9erVqzSOsrIyBAUF6RRsKp6enpV+1hDV+ZSVleGFF17AjBkz9LbRLrTKJ36Vxas6p2+++QYtWrTQeU+pVOosa/+baMdUU2VlZRg2bBiWL1+u956qQC7Pw8MDhYWFep1xxMbG4q+//tLp5KesrAwpKSlYunSpwY5vysrKsHjxYjzxxBN67zk7O+PSpUsYOnQowsPDsXTpUjRu3BiHDh3C5MmTcffu3QrPS/U9NLRe+7tZr169Sr+r9/qeqfz11181+l5R9bC8q/gYLO/uzZjlHQC4ubnhvvvuq3YcFX1fpkyZgsGDB+Obb75BYmIioqKi8N577+Hll182uH1t/i2r892vTjnYpk2bKm1L5sfys+JjsPy8N2OXnxUp/32o6PuobdKkSbhx4waio6Ph5+cHpVKJkJAQFBcXV/o5a7h24zjYMmncuDEGDx6MNWvWGByDUjW+ZocOHZCZmYnLly+r30tLS0NeXp76LpoxBAYGoqSkBMePH1ev++OPP3TG+ezRoweys7Ph4OCA++67T2fy8PCo0nHatm2LevXq4YcffjD4fo8ePXD27Fk0bdpU7xj36iX6559/Vs///fffOHPmDNq3b6/e7++//663z/vuu6/SwqNLly4VxtqhQwcolUpkZmbq7VP7DvK9ODk5obS0tMrba59Pq1at9I5dUe1wt27dAEjfH5Xc3Fx8+eWXiI+PR2pqqs5UUFCAb7/9tsLj//HHHwb/Pe3s7HD8+HGUlJTgvffewwMPPIB27drh2rVr9zzvDh06oKSkBL/88otOjGfOnKnW9/1e3zOV3377Te/uMRkfyzuWdypylnfVof3vW1JSguTkZPW/ryG+vr4IDw/Hrl278Morr2DDhg0AoP731j5nY/1b3kvnzp1RVlaG/fv3V7ody0HLxvKT5aeKJZafrq6uaN68OQ4dOqSz/siRI+rvnaFyEAAOHjyIGTNmYOjQoejYsSOUSiVycnLueUxrKLOYYMsoJiYGpaWl6NWrF3bu3ImzZ88iPT0dq1evVjdfGThwILp06YJnnnkGJ06cwLFjxzBhwgT0799fr3lKbQQEBODhhx/G1KlT8csvvyA5ORlTpkzRuSM3cOBA/H97dxfS1BvHAfy7aDtKb4JbZKKrbK2wvIiyl7ug2kXRiurC7I2BEK1wQmmRREgE3QQRkhQFbmBZRFFdaGBMkl6MdEWhFboJvViNhiFLofr9L2QHzzZ1xfqr+f3ALmRv5zwevjyPPuf3W7VqFTZv3oz6+noEAgE8fPgQ5eXlmqAdTkpKCsrKylBaWgq3242Ojg48fvwYly5dAjCwdc9oNMJut+PBgwfw+/1obGxEcXEx3r17N+xnV1RUoKGhAS9fvsTevXthNBrVv/aWlZXh0aNHcDqd8Pl8ePv2LW7fvj3kfxgijh49iqdPn2L//v148eIF2tvbcf78eQSDQUybNg2HDh1CSUkJqqur0dHRgdbWVlRWVqK6ujqh8QAGtkj5/X74fD4Eg0H09/eP+B6n04mvX7+ioKAAzc3N6OzsxL179+BwOIYMX5PJhKVLl2pC0OPxID09Hdu3b8fixYvVR15eHjZu3Kj+XqIdP34cbrcbJ06cwKtXr9DW1oba2lqUl5cDAHJycvDjxw+cO3cOnZ2d8Hg8qKqqijnv3t5eNDQ0IBgMIhwOw2KxwG63o6ioCE1NTXj+/Dl27tyJzMxM2O32RId0xOsMAMLhMJ49e4b169cn/Ln055h3zDtgdPMuIhwOo7u7W/MIhUKa11RWVuLmzZtob2+H0+lEKBSCw+GI+10ulwv19fXw+/1oaWnB/fv31Yml2WyGTqfD3bt38eXLF/T29iZtLEcyZ84c7NmzBw6HA7du3YLf74fX68W1a9fU1wQCAbx//x5r165N2vdS8jE/mZ/A2MjPeA4fPozTp0+jtrYWr1+/xpEjR+Dz+VBcXAxg4Bac1NRU1NXV4dOnT+jp6QEAzJ8/Hx6PB21tbXjy5AkKCwtH3LkwbuZu//dN36T14cMHcTqdYjabxWAwSGZmpmzatEnTEiTRtguDRRepGKlohchAo/oNGzaIoiiSnZ2ttk4Y3Hbh27dvcvDgQZk9e7bo9XrJysqSwsJCtahGIsfy8+dPOXnypJjNZtHr9ZKdna0pmPXx40fZvXu3GI1GURRF5s2bJ0VFRdLT0xN3DCOFIe7cuSO5ubliMBhk+fLlMUWwmpubZd26dTJ16lSZMmWK5OXlaYoyRJ9rhNfrldWrV4uiKJKWliY2m00tWPPr1y85e/asWK1W0ev1YjKZxGazSWNjo+bYBhe4iVRnjLSS6Ovrk61bt0paWtpvtV148+aNbNmyRW1ntXDhQnG5XEMWpRARqaqqkpUrV6o/L1myRC1CEe3GjRsyefJk6e7ujluQrK6uTq0cOn36dMnPz5cLFy6oz585c0YyMjIkNTVVbDabuN3umLHYt2+fpKenx23TNWPGDPW98dp0RYvXpmu466ympkasVuuQY0XJx7xj3o1m3okMXAeIahkDQC0UFvnumpoaWbFihRgMBlm0aJGmjVX0eR44cEBycnJEURQxmUyya9cuteK4iEhFRYXMmjVLdDqdpk3X745lvOyLvgajr/Pv379LSUmJZGRkqG26Ll++rD5/6tQpTZE0GruYn8zP0c7PiOHadOn1+pg2XSIiFy9elKysLJk0aZJa2b6lpUWWLVsmiqKIxWKR69evx4zt4HMTGT9zN53IEDc9Eo0TXq8Xa9asQSgU0tzbQ7H6+vpgtVpx9epVTZGPiSg/Px8ulws7duwY7UMhShjzLnF/kneBQABz585Fa2uruk3yX9Xf3w+LxYIrV67EFCgi+hcxPxM3VueL42Xuxi3iRBNISkoK3G53Qve4/Ms+f/6Mbdu2oaCgYLQPhYj+Eubd8Lq6unDs2DEurokoxljMz/E0d2MVcaIJZqSWLRPBzJkzUVpaOtqHQUR/GfNuaAsWLIjbooeICBh7+Tme5m7cIk5ERERERESUBNwiTkRERERERJQEXGATERERERERJQEX2ERERERERERJwAU2ERERERERURJwgU1ERERERESUBFxgExERERERESUBF9hEREREREREScAFNhEREREREVES/AcsISA8qgfn3AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/glade/work/schreck/miniconda3/envs/evidential/lib/python3.8/site-packages/scipy/stats/_distn_infrastructure.py:2168: RuntimeWarning: divide by zero encountered in divide\n", + " x = np.asarray((x - loc)/scale, dtype=dtyp)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAFUCAYAAAA57l+/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP+klEQVR4nOzdeVhN6QMH8O9tjxaiUsgydg2yjexrhAjDGEZ2omxZsy9jsmUnxqCxZUtZxhgGlXWMJTERRoOhLBOl0Hp+f/i5M0fb7erec+/t+3me+zzOe9733u+93V7n7ZzzvjJBEAQQERERERERUaHTkzoAERERERERka7ioJuIiIiIiIhIRTjoJiIiIiIiIlIRDrqJiIiIiIiIVISDbiIiIiIiIiIV4aCbiIiIiIiISEU46CYiIiIiIiJSEQ66iYiIiIiIiFSEg24iIiIiIiIiFeGgm4iIiIiIiEhFOOj+BBEREXBzc4O9vT1kMhlCQ0N16vWIiHLCvo+IiiL2fUSkLA66P0FKSgrq1q2LtWvX6uTrERHlhH0fERVF7PuISFkGUgfQZq6urnB1dc11f1paGmbOnImdO3fi1atXcHR0xOLFi9G6dWuVvB4RkTqw7yOiooh9HxEpi4NuFRo8eDD++usv7N69G/b29ggJCUGnTp1w48YNVK1aVep4REQqwb6PiIoi9n1ElBteXq4if/75J4KCgrBv3z60aNECn332GSZNmoTmzZtj69atUscjIlIJ9n1EVBSx7yOivHDQrSJXr16FIAioVq0azMzM5I/w8HD8+eefAIC//voLMpksz4e3t7fE74SISHHs+4ioKGLfR0R54eXlKpKVlQV9fX1cuXIF+vr6on1mZmYAgLJly+LWrVt5Pk/JkiVVlpGIqLCx7yOiooh9HxHlhYNuFXFyckJmZiaePXuGFi1a5FjH0NAQNWrUUHMyIiLVYd9HREUR+z4iygsH3Z8gOTkZ9+7dk2/HxsYiMjISVlZWqFatGvr37w8PDw/4+/vDyckJL168wKlTp/D555+jc+fOhfp6Dg4OhfKeiIjyw76PiIoi9n1EpDSBlHb69GkBQLbHwIEDBUEQhLS0NGH27NlCxYoVBUNDQ6FMmTJCjx49hKioKJW8HhGROrDvI6KiiH0fESlLJgiCoI7BPREREREREVFRw9nLiYiIiIiIiFSEg24iIiIiIiIiFeFEakrIysrCkydPYG5uDplMJnUcItIggiDg9evXsLe3h56ebv1dk30fEeVGV/s+9ntElBeF+z5J7yjXUo8ePcpxYgs++OCjcB4lS5YUYmJisv3u+fn5SZ5N0cejR49U1gd99913QsOGDQUzMzPB2tpa6N69u3D79u082+Q2Ic+tW7cUfl32fXzwwUd+D1X2fVJgv8eHVA99fX3h6tWrou/j/v37Jc/FR86P/Po+nulWgrm5+f//pQeAf/UkKkyGhobYvz8Y1apVE5WHhIRi+vRZAPQBAHf7VS/wc1fdFVMYEfMhAMj6Tz9R+MLDw+Hl5YVGjRohIyMDM2bMgIuLC6Kjo1G8ePE828bExMDCwkK+bW1trfDrsu8jKjwJiQEFbvPmxW9KvZasWNkCtylrt7CALVTf90mB/R5Jxdt7LJycnERlv/32Oz4cBxUlCXtLKdXOb0KPArdZ+viHArZQrO/joFsJ/15eJAM7YKLCtW7dWrRt20ZUdvXqNXzzzUC8X2vh/e+cuZEy/+mo7/dVlZchHjt2TLS9detW2NjY4MqVK2jZsmWebW1sbFCiRAmlXpd9H1HhsbAoVuA2BqlGSr2WrLiJMq2Uey0duwSb/R5JoWzZsliwYJ6o7MaNm1ixYhWK4vfQophyt6wY6ynTZ6qm79Pqm278/PzQqFEjmJubw8bGBu7u7oiJyf9MVmpqKmbMmIEKFSrA2NgYn332GbZs2aKGxESUlwkTxmP48KGisidPnqBbtx548+aNRKk0X2JiIgDAysoq37pOTk6ws7NDu3btcPr06TzrpqamIikpSfQgIiIi1Vq50j/bmVNPTy9kZGRIlIg+lVYPuj9cYnnx4kWcOHECGRkZcHFxQUpKSp7t+vTpg5MnT2Lz5s2IiYlBUFAQatSooabURJSTrl27YNmyxaKyN2/eoFu3nnj8+LFEqTSfIAjw8fFB8+bN4ejomGs9Ozs7fP/99wgODsaBAwdQvXp1tGvXDhEREbm28fPzg6WlpfxRvnx5VbwFIiIi+r/OnV3x5Ze9RGWbNm3G+fPnJUpEhUGrLy9X5hLLY8eOITw8HPfv35efFapYsaKqoxJRHurUqYOgoB3ZZn308BiMK1euSJRKO3h7eyMqKgpnz57Ns1716tVRvfq/98E7Ozvj0aNHWLZsWa79pa+vL3x8fOTbSUlJHHgTERGpiKmpKdauXSUqe/78OaZNmy5RIiosWn2m+2OKXGJ56NAhNGzYEEuWLEHZsmVRrVo1TJo0CW/fvs21DS+xJFIdW1tbHD4cAjMzM1H59OkzERx8QKJU2mHMmDE4dOgQTp8+jXLlyhW4fZMmTXD37t1c9xsbG8PCwkL0ICIiItWYOXM6KlWqJCqbNGkqEhISJEpEhUWrz3T/l6KXWN6/fx9nz56FiYkJQkJC8OLFC4wePRoJCQm53tft5+eHefPm5biPiD5N+/btsg0Yt23bAT+/xbm0IEEQMGbMGISEhCAsLCzbf9CKunbtGuzs7Ao5HRERERVUrVq1MHnyRFFZWFg4tm3bLlEiKkw6M+hW9BLLrKwsyGQy7Ny5E5aWlgCA5cuX48svv8S6detgamqarQ0vsSRSnZ07dyElJQU7dvyI4sWL4+zZcxg+fKTUsTSal5cXdu3ahYMHD8Lc3Bzx8fEAAEtLS3kf5uvri8ePH2Pbtm0AgJUrV6JixYqoXbs20tLSsGPHDgQHByM4OFiy90FERETvBQSshaGhoXw7LS0No0Z5S5iICpNODLo/XGIZERGR7yWWdnZ2KFu2rHzADQA1a9aEIAj4+++/UbVq1WxtjI2NYWxsXOi5iei90NCDaN68NVatWo5evfogLS1N6kgaLSDg/fq+rVu3FpVv3boVgwYNAgDExcXh4cOH8n1paWmYNGkSHj9+DFNTU9SuXRs//fQTOnfurK7YRERElIOBAz3QsmULUdnSpf64ffu2RImosGn1oFuZSyybNWuGffv2ITk5WX4P6Z07d6Cnp6fUPZFEVDgiIyPRqlVbqWNoBeH9guV5CgwMFG1PmTIFU6ZMUVEiIiIiUoaVlVW21Vvu37+PhQv9JEpEqqDVE6l5eXlhx44d2LVrl/wSy/j4eNGkaL6+vvDw8JBv9+vXD6VKlcLgwYMRHR2NiIgITJ48GUOGDMnx0nIiIiIiIiJV6NKlM0qXLi0q8/Yel+ckz6R9tHrQHRAQgMTERLRu3Rp2dnbyx549e+R1Pr7E0szMDCdOnMCrV6/QsGFD9O/fH25ubli9erUUb4GoSHFwcECTJk2kjkFERESkEbZv34HmzVvj5s2bAIB9+/bj55+P5dOKtI1MUOQ6RRJJSkr6/z3h+gBkUsch0grm5uY4dy4C1apVxZAhw7FrV5DaM2QIgQVuYyAbVMAWAoBMJCYm6twSW+z7tEP68bJKtTN0eVzISQpPasZGpdoZGxR8UsbXj78ucBvzsurvz1Tt3bXGBaqflJwBmxaXdK7vY79H6mJgYIDx48di167dePLkidRxSGGKHfdp9ZluItIOenp62LVrOz7/3BHGxsbYuXMb5s2bA5mMBzBEREREGRkZWLZsOQfcOoqDbiJSuaVLF6Nr1y6isi+/7InixYtLlIiIiIiISD046CYilRo+fBh8fMaLyl68eIGuXd2RnJwsTSgiIiIiIjXhoJuIVKZt2zZYt048SWFqairc3b9EbGysRKmIiIiIpNG5sys8PUfyFrsihoNuIlKJatWqYf/+PTA0NBSVDx/uiXPnzkmUioiIiEgaxYsXR0DAWgQErMX582dQt25dqSORmnDQTUSFzsrKCkeOhKJkyZKi8u++W4Tt23dIlIqIiIhIOnPmzIKDgwMAoEmTL3Dlym9wcnKSOBWpAwfdRFSoDA0NsX//HlStWlVUHhx8ADNnzpYoFREREZF0Pv/8c0yYME5Udvp0GK5duyZRIlInDrqJqFAFBKxDmzatRWWXL1+Bh8dgCIIgRSQiIiIiychkMmzYsA4GBgbystTUVIwePUbCVKROHHQTUaGZOHEChg4dLCp7/PgxunfviTdv3kiUioiIiEg6Q4cOQdOmzqIyP7/FuHv3rkSJSN046CaiQuHm1hVLliwSlaWkpMDNrQeePHkiUSoiIiIi6VhbW2Px4u9EZXfv3sWiRUskSkRS4KCbiApFgwb1oacn7lK++WYg71UiIqJC4efnh0aNGsHc3Bw2NjZwd3dHTEyMwu3PnTsHAwMD1KtXT3UhiT6ydOliWFlZicpGjx6D1NRUiRKRFDjoJqJCMXfufAwdOgLp6ekAgKlTfREaelDiVEREpCvCw8Ph5eWFixcv4sSJE8jIyICLiwtSUlLybZuYmAgPDw+0a9dODUmJ3mvduhUGDhwgKtu1Kwi//npSokQkFZnAmY0KLCkpCZaWlgD0AXBhe6L/atWqJdzdu2PChIkqfZ3H3zgWuE3ZHTdVkORjAoBMJCYmwsLCQg2vpz7s+9Tv3cLiBW5jMiP/AUhOUlKXF7iN0blVBW7ztkbLArexsN9e4Dakburv+54/fw4bGxuEh4ejZcu8v1d9+/ZF1apVoa+vj9DQUERGRir0Guz3SFlGRka4fv0KatSoIS979eoVatRwxNOnTyVMVnhi3Jzzr/SRzw6NLHAbA9mgArdRVhWzLgWqnyWk437K0Xz7Pp7pJqJCFR4eofIBNxERUWJiIgBku3T3Y1u3bsWff/6JOXPm5PucqampSEpKEj2IlDFpko9owA0AM2bM1pkBNxUMB91EREREpFUEQYCPjw+aN28OR8fcr3y6e/cupk2bhp07d4qWa8qNn58fLC0t5Y/y5csXZmwqIipXroyZM6eLyn7//TI2bNgoUSKSGgfdRFRgPXq4o3bt2lLHICKiIsrb2xtRUVEICgrKtU5mZib69euHefPmoVq1ago9r6+vLxITE+WPR48eFVZkKkLWrl0FU1NT+XZmZiY8Pb2QlZUlYSqSUv5/8iMi+g9nZ2cEBe1Aamoq+vT5Gr/8clzqSEREVISMGTMGhw4dQkREBMqVK5drvdevX+Py5cu4du0avL29AQBZWVkQBAEGBgY4fvw42rZtK2pjbGwMY2NjleYn3WZhYZHt3t61a9fj6tWrEiUiTcAz3USksAoVKiA0dD+MjY1hYWGBn346BG9vL6ljERFRESAIAry9vXHgwAGcOnUKlSpVyrO+hYUFbty4gcjISPnD09MT1atXR2RkJL744gs1JaeiJCkpCS1atMawYSORkJCAJ0+eYNas/OcTIN3GM91EpBBzc3McORIKGxsbeZm+vj6qVasqYSoiIioqvLy8sGvXLhw8eBDm5uaIj48HAFhaWsov5fX19cXjx4+xbds26OnpZbvf28bGBiYmJnneB070qQRBwObNW3Dw4CF89tlneP36tdSRSGIcdBNRvvT19bF7985sBynHjv3CmcqJiEgtAgICAACtW7cWlW/duhWDBg0CAMTFxeHhw4dqTkaUsxcvXuDFixdSxyANwEE3EeVr2bIl6NzZVVT2xx9/4Kuv+iEzM1OiVEREVJQIgpBvncDAwDz3z507F3Pnzi2cQERECuI93USUp5EjR2D8+LGisufPn8PNrQfXLyUiIiIiygcH3USUq3bt2mLt2lWistTUVPTo0RuxsbESpSIiIiLSDLa2tjh//gxatWopdRTSYBx0E1GOqlevjv3798DAQHwXyrBhI3Hu3DmJUhERERFpjuXLl8LZuQnCwk7ixx+3wtraWupIpIF4TzcRZWNlZYUjR0JRokQJUfnChX7YsWOnNKGIiIiINEj79u3Qr9/X8m0Pj2/w5s0bjBrF5VRJTCYoMisFiSQlJcHS0hKAPgCZ1HGICpWhoSFOnDiW7TKp/fuD0afP1wpNZFO0CQAykZiYCAsLC6nDFCr2ff9K36xf4DaGQznpIOky3ez72O9RboyNjXHjxjVUrfrv0qkJCQmoUcMRz58/lzAZqZdifR8vLycikQ0b1mcbcF++fAUeHoM54CYiIiICMG3aFNGAGwCmTp3OATflSKsH3X5+fmjUqBHMzc1hY2MDd3d3xMTEKNz+3LlzMDAwQL169VQXkkiL6OvrQ09P3C38/fff6NatB96+fStRKiIiIiLNUbVqVfj6ThWVnT9/AZs3b5EoEWk6rR50h4eHw8vLCxcvXsSJEyeQkZEBFxcXpKSk5Ns2MTERHh4eaNeunRqSEmmHzMxMDB48FFOn+gIAUlJS0K1bT8TFxUmcjIiIiEgzrF+/BsbGxvLtjIwMeHp68YpAypVWT6R27Ngx0fbWrVthY2ODK1euoGXLvKftHzlyJPr16wd9fX2EhoaqMCWR9lmyZBnu3LkLQRBw7do1qeMQERERaYSvv+6L9u3FJ+1WrlyNGzduSJSItIFWD7o/lpiYCOD9zMt52bp1K/7880/s2LED3377bb7Pm5qaitTUVPl2UlLSpwUl0gKhoQeljkBERESkMUqUKIEVK5aJyh49eoS5c+dLlIi0hVZfXv5fgiDAx8cHzZs3h6OjY6717t69i2nTpmHnzp3Z1h/OjZ+fHywtLeWP8uXLF1ZsIiIiIiLSAgsXLoCtra2obMyY8Qrd2kpFm84Mur29vREVFYWgoKBc62RmZqJfv36YN28eqlWrpvBz+/r6IjExUf549OhRYUQmkpRMJsN3332LChUqSB2FiIiISKM1btwYnp4jRGWHDh3GwYOHJEpE2kQn1ukeM2YMQkNDERERgUqVKuVa79WrVyhZsiT09f9dXzUrKwuCIEBfXx/Hjx9H27Zt8309rtlIumD+/LmYNWsGnj59Cnf3L3Hx4kWpI+kI3VyrFmDf919cp5voY7rZ97HfI+D96i6//34RTk715GUpKSmoVasOHj58KF0w0gCK9X1afU+3IAgYM2YMQkJCEBYWlueAGwAsLCyyTXKwfv16nDp1Cvv378+3PZGu6Nfva8yaNQMAYGtri9OnT2DgwCHYu3efxMmIiIiINIuX12jRgBsA5s1bwAE3KUyrB91eXl7YtWsXDh48CHNzc8THxwMALC0tYWpqCuD9peGPHz/Gtm3boKenl+1+bxsbG5iYmOR5HziRLmnatCm2bNkkKjMwMEBCQoJEiYiIiIg01/379/Ho0SP5vE43b97EihWrJE5F2kSr7+kOCAhAYmIiWrduDTs7O/ljz5498jpxcXH8KxTR/1WsWBEhIftEa0sC7ycB+fXXkxKlIiIiItJcR478hFq16sDffwXS09Ph6emNjIwMqWORFtGJe7rVjff3kDYyNzfH+fMR2a7qWLVqDcaP95EolS7SzfsaAfZ9/8V7uok+ppt9H/s9+ljZsmXx+PFjqWOQxigC93QTkWL09fWxe/fObAPuo0d/xsSJkyVKRaQZkn1LF7iN4dAXKkhCRESajgNu3VbOrFWB6mcJGXiSEp5vPa2+vJyIFOPvvxSdO7uKym7evIm+ffsjM5Nn34iIiIiIVIWDbiIdN2qUJ8aNGyMqe/bsGdzceuD169cSpSIiIiLSTGZmZlJHIB3DQTeRDmvfvh1Wr14hKktNTYW7+5f466+/pAlFn8zPzw+NGjWCubk5bGxs4O7ujpiYmHzbhYeHo0GDBjAxMUHlypWxYcMGNaQlIiLSLkeOHMThw6GoWLGi1FFIR3DQTaSjatSogX37dsPAQDx1w5Ahw3HhwgWJUlFhCA8Ph5eXFy5evIgTJ04gIyMDLi4uSElJybVNbGwsOnfujBYtWuDatWuYPn06xo4di+DgYDUmJyIi0mweHgPQqlVLdO3aBX/8cR1Tp06GoaGh1LFIy3H2ciVwJkvSdKVKlcJvv53DZ599JipfsGAhZs+eK02oIkP9M/g+f/4cNjY2CA8PR8uWLXOsM3XqVBw6dAi3bt2Sl3l6euL69esK/xFGV/s+ZSZSM/PjRGpEYpy9nLSflZUVbt++CWtra3lZbGwsateui7dv30qYjNRF2YnU8uv7eKabSAelpqbijz+iRWX79u3HnDnzJEpEqpSYmAjg/cFCbi5cuAAXFxdRWceOHXH58mWkp6erNB8REZE2WLToO9GAGwC8vMZywE2fjINuIh2UnJyMHj2+xLJlywEAv/9+GQMHDgEvbNE9giDAx8cHzZs3z7Yk3H/Fx8fD1tZWVGZra4uMjAy8eJHzWdvU1FQkJSWJHkRERLqoadOmGD58qKhs//5g/PzzMYkSkS7hOt1EOiorKwuTJ09FVNQN/PrrSf6VVkd5e3sjKioKZ8+ezbeuTCa+NPLDH2E+Lv/Az88P8+bx6ggiItJtBgYG2LBhnajs9evXGD9+okSJSNfwTDeRjtu+fQfi4uKkjkEqMGbMGBw6dAinT59GuXLl8qxbpkwZxMfHi8qePXsGAwMDlCpVKsc2vr6+SExMlD8ePXpUaNmJiIg0xfjxY/H55+KrxWbNmovHjx9LlIh0Dc90ExFpGUEQMGbMGISEhCAsLAyVKlXKt42zszMOHz4sKjt+/DgaNmyY66ysxsbGMDY2LpTMREREmsjBwQFz584WlV27Fom1a9fl0oKo4Himm0jL2dvbY8+eXShduuAzMJN28vLywo4dO7Br1y6Ym5sjPj4e8fHxolsIfH194eHhId/29PTEgwcP4OPjg1u3bmHLli3YvHkzJk2aJMVbICIi0girV69A8eLF5dtZWVnw9PRCZmamhKlI13DQTaTFTE1NcfDgAfTp0xu//XYONWvWlDoSqUFAQAASExPRunVr2NnZyR979uyR14mLi8PDhw/l25UqVcLRo0cRFhaGevXqYcGCBVi9ejV69eolxVsgIiKSXLdubujevZuobMOG73Hp0iWJEpGu4jrdSuCajaQJZDIZ9u4Nwpdf/jtoSkxMhKurm8LrLpMq6OZatYDu9n1cp5uoMOhm36er/R4BxYsXR3R0FBwcHORlT58+RfXqteVLcVLRo6p1unlPN5GWWrBgnmjADQDPnz9HTEyMRImIpPV6im3+lXJg5ve0kJMQEZGmmzNnlmjADQATJkzigFuHfGk5qsBt9icGFLCFYueveXk5kRYaMOAbzJjhKyp7+fIlunZ1R0JCgkSpiIiIiDRf7dq1MWHCOFHZr7+eRFDQbokSka7joJtIyzRr1gybNm0QlWVkZKB37748y01ERESUjzt37mD27LnyCUhTU1MxevQYiVORLuOgm0iLVKpUCSEh+7It4+TtPQ4nT56SKBURERGR9khPT4ef32LUrl0XP/98DIsWLcHdu3eljkU6jINuIi1hYWGBw4dDYG1tLSpfsWIVNm78XqJURERE6uHn54dGjRrB3NwcNjY2cHd3z/cKrwMHDqBDhw6wtraGhYUFnJ2d8csvv6gpMWm62NhYdO7shvnzv5U6Cuk4DrqJtIC+vj727NmF2rVri8qPHPkJkyZNkSgVERGR+oSHh8PLywsXL17EiRMnkJGRARcXF6SkpOTaJiIiAh06dMDRo0dx5coVtGnTBm5ubrh27Zoak5Omy8rKkjoC6TjOXk6kBVas8EenTh1FZTdu3ES/fgP4HwURERUJx44dE21v3boVNjY2uHLlClq2bJljm5UrV4q2v/vuOxw8eBCHDx+Gk5OTqqISEYnwTDeRhhs9ehTGjPESlT19+hRubu54/fq1RKmIiIik9WFpJysrK4XbZGVl4fXr1wVqQ9rP0NAQtWrVkjoGFWEcdBNpsDZtWmPVquWisnfv3sHd/Us8ePBAkkxERERSEwQBPj4+aN68ORwdHRVu5+/vj5SUFPTp0yfH/ampqUhKShI9SPtNmuSD69evYPFiPxQrVkzqOFQEcdBNpMFu3LiJCxcuisqGDBmOixcv5tKCiIhI93l7eyMqKgpBQUEKtwkKCsLcuXOxZ88e2NjY5FjHz88PlpaW8kf58uULKzJJpFKlSpg1awYMDAwwZcokREdHoVWrnG9HIFIVDrqJNNiLFy/Qvn1H/PjjdgDAvHkLEBS0W+JURERE0hkzZgwOHTqE06dPo1y5cgq12bNnD4YOHYq9e/eiffv2udbz9fVFYmKi/PHo0aPCik0SWbduNUxNTeXb5cqVw+vXyRImoqKIE6kRabi0tDQMGjQEoaEHERp6UOo4REREkhAEAWPGjEFISAjCwsJQqVIlhdoFBQVhyJAhCAoKQpcuXfKsa2xsDGNj48KISxqgV6+ecHXtJCpbu3Y9rl69KlEiKqqUPtM9aNAgREREFGYWIsoDB9xERFSUeXl5YceOHdi1axfMzc0RHx+P+Ph4vH37Vl7H19cXHh4e8u2goCB4eHjA398fTZo0kbf5MAkb6S5zc/Ns8+I8efIEs2bNkSgRFWVKn+l+/fo1XFxcUL58eQwePBgDBw5E2bJlCzNbvvz8/HDgwAHcvn0bpqamaNq0KRYvXozq1avn2ubAgQMICAhAZGQkUlNTUbt2bcydOxcdO3bMtQ0REf3rUMMuKG5gqHD91AzF637g+Nm9ArcxXxJZ4DZEpD0CAgIAAK1btxaVb926FYMGDQIAxMXF4eHDh/J9GzduREZGBry8vODl9e9KIAMHDkRgYKCqI5OE5s+fm21sMn78RK78UoieD6ta4DbWP9xVQZKc7U8MKHCb0sXrFah+lpCJhDfX8q2n9Jnu4OBgPH78GN7e3ti3bx8qVqwIV1dX7N+/H+np6co+bYGEh4fDy8sLFy9exIkTJ5CRkQEXFxekpKTk2iYiIgIdOnTA0aNHceXKFbRp0wZubm64di3/D4tIlXr27IGDBw/AzMxM6ihEREQaRxCEHB8fBtwAEBgYiLCwMPl2WFhYjm044NZtTk5O2ZZbPXbsF+zbt1+iRFTUyQRBEArjia5du4YtW7bghx9+gJmZGb755huMHj0aVasW/C8gynr+/DlsbGwQHh6Oli0Vn5Wwdu3a+OqrrzB79myF6iclJcHS0hKAPgCZcmGJ/qN+/fo4c+Y0ihUrhqioG3Bzcxf9pZ60iQAgE4mJibCwsJA6TKH60PcdathNI890O+yJLHAbIiosutn38ZhP++jp6eHChbNo3LiRvOzdu3eoXbsu7t+/L2Ey3aPpZ7qVoeyZ7vz6vkKZvTwuLg7Hjx/H8ePHoa+vj86dO+OPP/5ArVq1sGLFisJ4CYV8uD/HyspK4TZZWVl4/fp1gdoQFSZ7e3scOnRAvm5knTqf49Kl87Czs5M4GREREZF2GTlyhGjADQDffvsdB9wkKaXv6U5PT8ehQ4ewdetWHD9+HHXq1MGECRPQv39/mJubAwB2796NUaNGYcKECYUWODeCIMDHxwfNmzeHo6Ojwu38/f2RkpKCPn365FonNTUVqamp8u2kpKRPykr0QbFixXDoUEi2e44OH/4JcXFxEqUiIiIi0j62trbw8/tWVHb79m0sXeovUSKi95QedNvZ2SErKwtff/01Ll26hHr16mWr07FjR5QoUeIT4inO29sbUVFROHv2rMJtgoKCMHfuXBw8eBA2Nja51vPz88O8efMKIyaRnEwmw/btgWjQoL6o/PTpMIwe7S1RKiIiIiLttHz50v/fDvCvUaO8kZaWJlEioveUHnSvWLECvXv3homJSa51SpYsidjYWGVfQmFjxozBoUOHEBERgXLlyinUZs+ePRg6dCj27duH9u3b51nX19cXPj4+8u2kpCSUL1/+kzITLVy4AD179hCV3blzB7169VHbZIREREREuqB9+3bo1+9rUdm2bTsQFhYuUSKifyl9T/fp06dzHBikpKRgyJAhnxRKUYIgwNvbGwcOHMCpU6dQqVIlhdoFBQVh0KBB2LVrF7p06ZJvfWNjY1hYWIgeRJ/Cw2MAfH2nispevnyJrl3d8fLlS4lSEREREWmnhQsXiLZfvnyJSZOmSJSGSEzpQfePP/6It2/fZit/+/Yttm3b9kmhFOXl5YUdO3Zg165dMDc3R3x8POLj40W5fH194eHhId8OCgqCh4cH/P390aRJE3mbD5OwEala8+bNsGnTBlFZeno6vvzyK9y9q9kzOhIRERFpIjc3d+zYsUu+PW3aDDx//lzCRET/KvCgOykpCYmJiRAEAa9fv0ZSUpL88fLlSxw9ejTP+6MLU0BAABITE9G6dWvY2dnJH3v27JHXiYuLEy29tHHjRmRkZMDLy0vUZty4cWrJTEVb5cqVERKyH0ZGRqJyL6+xOHXqtESpiIiIiLTbs2fPMGDAQLRr54Lt23di06YfpI5EJFfge7pLlCgBmUwGmUyGatWqZdsvk8nUNumYIkuMBwYGirbDwsJUE4YoH5aWljhyJBSlS5cWlS9fvpL/MRAREREVglOnTvNEBmmcAg+6T58+DUEQ0LZtWwQHB4vWtzYyMkKFChVgb29fqCGJtJ2+vj727g1CzZo1ReVHjvyEyZOn5tKKiIiIiIi0XYEH3a1atQIAxMbGwsHBATKZrEDtExMTERISgjNnzuCvv/7CmzdvYG1tDScnJ3Ts2BFNmzYtaCQijbdgwTy4uHQQlUVF3cDXX3+DrKwsiVIREREREZGqyQRFrtH+v6ioKDg6OkJPTw9RUVF51q1Tp45oOy4uDrNnz8bOnTtRpkwZNG7cGGXLloWpqSkSEhJw8+ZNXLlyBRUqVMCcOXPw1VdfKfeO1CApKen/awDqAyjYHx2oaHJwcMDhw6GoU+dzAMDTp0/RuHFT0XwDVDC3uxb8D3QX7lctcJvB0T8WsIUAIBOJiYk6t9IB+z4iyp1u9n3s9zRXv35f45dfjuOff/6ROgoVaYr1fQU6012vXj3Ex8fDxsYG9erVg0wmy/G+aplMhszMTFFZ3bp14eHhgUuXLsHR0THH53/79i1CQ0OxfPlyPHr0CJMmTSpIPCKN9fDhQzRr1hJBQTvQvn07dO/eiwNuIiIiIiU0atQI27cHIiEhAZMnT8OPP25TaK4nIqkU6Ez3gwcP5JeUP3jwIM+6FSpUEG0/f/4c1tbWCgcraH114l89SVl6enqoV68erl69KnUUrccz3erHvo+IcqebfR/7Pc2jr6+PS5cuoH59J3nZsWO/wNW1q4SpqOhSwZnu/w6kPx5U56egA2hNHXATfYqsrCwOuImIiIiU5OU1WjTgBoDTp8OkCUOkoAKv0/2Bn58ftmzZkq18y5YtWLx4cY5tRo8ejeTkZPn29u3bRduvXr1C586dlY1EpBEMDAo8PyERERER5cPe3h7ffitemvjmzZtYvnylNIGIFKT0oHvjxo2oUaNGtvLatWtjw4YNubZ58+aNfNvLywvPnj2Tb6empuKXX35RNhKRRti8eRMCA7fAyMhI6ihEREREOmPlSn+Ym5uLykaN8kZGRoZEiYgUo/Qpufj4eNjZ2WUrt7a2RlxcXI5tPr59nBMekK7x9Z0KD49vAACVK1dCjx5fclZNIiIiok/k6toJvXt/KSrbvHkrzp49J1EiIsUpfaa7fPnyOHcu+5f83LlzsLe3/6RQRNqoV6+e+O67b+XbLVo0x8mTxwu8lj0RERER/cvU1BRr164Slb148QJTp/pKlIioYJQ+0z1s2DCMHz8e6enpaNu2LQDg5MmTmDJlCiZOnFhoAYm0QYMGDbBt21ZRWVZWFmbMmMUrOoiIiIg+wYwZvqhcubKobPLkabyakLSG0oPuKVOmICEhAaNHj0ZaWhoAwMTEBFOnToWvb+5/dZo9ezaKFSsGAEhLS8PChQv/vxQDRPd7E2mLsmXL4tChA/Lv9QcTJ07BTz8dlSgVERERkfarWbMmJk8Wn9CLiDiDH3/cJlEiooJTetAtk8mwePFizJo1C7du3YKpqSmqVq0KY2PjXNu0bNkSMTEx8u2mTZvi/v372eoQaYtixYrh0KGQbLdUfP/9D1i5clUurYiIiIhIEQEBa0WT06anp2PUKG9eSUha5ZPXNjIzM4OdnR1kMlmeA24ACAsL+9SXI9IYMpkMO3b8mG2tyJMnT8HLa4xEqYiIiIh0g4fHALRqJT4ht2zZckRHR0uUiEg5Sk+klpWVhfnz58PS0hIVKlSAg4MDSpQogQULFiArK6tAz5WRkSFar5tIG3z33bfo0cNdVHbnzh307t2XS1cQERERfQIrKyssW7ZYVBYbG4sFCxZKlIhIeUqf6Z4xYwY2b96MRYsWoVmzZhAEAefOncPcuXPx7t07LFyY/Rfi6NGj+OeffzBgwAB52cKFC7FgwQJkZGSgbdu22LNnD0qWLKlsLCK1GDRoIKZNmyIqS0hIQNeu7nj58qVEqaRnZ9a0wG3iks8r9Vo1jijTruBtZjmMKlD91Kw0LPl7Y4Ffh4iIiP7VoUN7WFlZicq8vcfh7du3EiWij0V2aFPgNvVOnFZBEs2n9JnuH3/8ET/88ANGjRqFOnXqoG7duhg9ejQ2bdqEwMDAHNssW7YMSUlJ8u3z589j9uzZmDVrFvbu3YtHjx5hwYIFykYiUouWLVtg48b1orL09HT06tUHd+/elSgVERERke7Ys2cvGjduit9/vwwACA4+gKNHf5Y4FZFylD7TnZCQgBo1amQrr1GjBhISEnJsc/PmTfj7+8u39+/fjw4dOmDGjBkA3s9+Pm7cOCxfvlzZWEQq9dlnn+HAgX2iCT0AYNQob4SFhUuUioiIiEj3XL16FU2aNIOn50gcPHhI6jhESlP6THfdunWxdu3abOVr165F3bp1c2zz+vVrlCpVSr599uxZ+RrfAFC7dm08efJE2UhEKrdjx4+i7zDwfkKPzZu3SJSIiIiISHdlZWVh/foAPH78WOooREpT+kz3kiVL0KVLF/z6669wdnaGTCbD+fPn8ejRIxw9mvPaxPb29rh16xYcHByQnJyM69evY8WKFfL9//zzT7a1jok0yZAhw3HkSCgqV64MADh06DCmTs19XXoiIiIiIiralD7T3apVK9y5cwc9evTAq1evkJCQgJ49eyImJgYtWrTIsc2XX36J8ePHY/v27Rg+fDjKlCmDJk2ayPdfvnwZ1atXVzYSkcrdunULX3zRDGfPnsP161Ho129AgWfrJyIi0iV6enoYNGig1DGIiDTWJ63TbW9vn+Ms5bmZM2cOnjx5grFjx6JMmTLYsWMH9PX15fuDgoLg5ub2KZGIVO7Fixdo184FJUuWREpKitRxqAiKiIjA0qVLceXKFcTFxSEkJATu7u651g8LC0ObNtlnGL1161aOc3MQESmqTZvW8PdfCieneggM5K1WpLwuXTqjRo3qWLVqDZdeJZ1ToEF3VFSUwnXr1KmTraxYsWLYvn17rm1Ony6aU8iT9klLS8PTp0+ljkFFVEpKCurWrYvBgwejV69eCreLiYmBhYWFfNva2loV8YioCKhatSqWLl2E7t27SR2FdEDx4sWxfv0aODg4wMNjADw9vXDhwgWpYxEVmgINuuvVqweZTAZBEPKsJ5PJkJmZ+UnBiKRmaWmJxMREqWMQZePq6gpXV9cCt7OxsUGJEiUKPxARFRklS5bE7Nkz4eU1CoaGhlLHIR0xZ84sODg4AADq1Pkc589HoEmT5vjtt98kTkZUOAo06I6Njf2kF/vvTOV5OXXq1Ce9DtGnsra2xqVL57F//wFMnerL+7ZJJzg5OeHdu3eoVasWZs6cmeMl5/+VmpqK1NRU+XZSUpKqIxKRhjI0NMTo0aMwe/YMWFlZSR2HdIijoyMmTBgnKjt58hQH3KRTCjTorlChwie9WFhYGCpUqIAuXbrwr6OksYyNjREaGoyKFSti0iQfVKtWFf36DeD926S17Ozs8P3336NBgwZITU3F9u3b0a5dO4SFhaFly5a5tvPz88O8efPUmJSINFG3bm5YunQRqlWrluP+Z8+eYfbsueoNRTpBJpNhw4Z1MDD4d0iSmpqK0aPHSJiKqPB90kRq27dvx4YNGxAbG4sLFy6gQoUKWLlyJSpVqoTu3btnq79o0SIEBgZi37596N+/P4YMGQJHR8dPiUBU6DZv3oSmTZ3l2926uWHVqhUYNmyEhKmIlFe9enXRyhDOzs549OgRli1blueg29fXFz4+PvLtpKQklC9fXqVZiUizLFy4ANOnT8txX2pqKlasWAU/v8VISuLtWFRwQ4YMRrNmTUVlixYtwZ07dyRKRKQaSi8ZFhAQAB8fH3Tu3BmvXr2S38NdokQJrFy5Msc2U6ZMQXR0NEJDQ/H69Ws0a9YMjRs3xoYNG5S6bNHPzw+NGjWCubk5bGxs4O7ujpiYmHzbhYeHo0GDBjAxMUHlypWxYcOGAr826aYZM3zRv//XorIHDx5g+vSZEiUiUo0mTZrg7t27edYxNjaGhYWF6EFERcuuXbtznKdn9+49qFHDEb6+M9R26wmP+3RL6dKlsWSJn6js3r178PNbLFEiItWRCfnNipaLWrVq4bvvvoO7uzvMzc1x/fp1VK5cGTdv3kTr1q3x4sWLfJ/jzZs32LdvH9atW4fo6Gg8efKkQAd1nTp1Qt++fdGoUSNkZGRgxowZuHHjBqKjo1G8ePEc28TGxsLR0RHDhw/HyJEjce7cOYwePRpBQUEKzwKclJQES0tLAPoAZArnJc3Wu/eX2Ls3SFT2/o9DrXDjxg2JUpH2EQBkIjExUS2DVJlMlu+SYTn58ssvkZCQUKA5NNj3ERVNAQHr4On5/mqvixd/w4QJk3Dx4sWPaqm+75PiuI/9nups3boZgwZ5iMpcXFxx4sSvEiUiXVOzeI8Ct7mVElLAFor1fUpfXh4bGwsnJ6ds5cbGxgrf+3r16lWEh4fj1q1bcHR0LPB93seOHRNtb926FTY2Nrhy5Uqul0xu2LABDg4O8rPxNWvWxOXLl7Fs2bICLb1DuqVRo0b48Ufx+qKZmZno27c/B9ykcZKTk3Hv3j35dmxsLCIjI2FlZQUHBwf4+vri8ePH2LZtGwBg5cqVqFixImrXro20tDTs2LEDwcHBCA4OluotEJEGkclkKFu2LP7+++8c98+ZMw/NmjXFwoV+2LNnr5rT/YvHfbqjVauW2QbcQUG7OeAmnaX0oLtSpUqIjIzMNrnazz//jFq1auXa7smTJwgMDERgYCCSkpLwzTff4LfffsuzjaI+LO+U16yaFy5cgIuLi6isY8eO2Lx5M9LT0znBWxFUrlw5HDwYDFNTU1H5xIlTcPTozxKlIsrd5cuXRTOPf7jveuDAgQgMDERcXBwePnwo35+WloZJkybh8ePHMDU1Re3atfHTTz+hc+fOas9ORJqlRYvmWL58GUqUsEStWnWQnp6erc6zZ89Qp072Ey1SU8VxH1dtUD1DQ0MEBKwVlSUmJsLHZ7JEiYhUT+lB9+TJk+Hl5YV3795BEARcunQJQUFB8PPzww8//JBjm86dO+P06dNwcXHB0qVL0aVLF9FshZ9CEAT4+PigefPmeU7OFh8fD1tbW1GZra0tMjIy8OLFC9jZ2WVrww5YdxUvXhyHD4dm+7lv2PA9Vq1aLVEqory1bt0aed0ZFBgYKNqeMmUKpkyZouJURKRNKleujCVL/NCrV095mZfXaKxcuUrCVIpT1XEfV21QvUmTfFCzZk1R2YwZsxEfHy9RIiLVU3rEO3jwYGRkZGDKlCl48+YN+vXrh7Jly2LVqlXo27dvjm2OHTsGOzs7PHz4EPPmzcu1U7t69WqB83h7eyMqKgpnz57Nt65MJr4n58PB68flH7AD1k16enrYuXMb6tWrKyr/9deTGDNmXC6tiIiItJelpSVmzpyOsWO9YWRkJNo3e/YMbNu2HQkJCRKlU5yqjvu4aoNqVapUCbNmzRCVXb58BQEBnNyOdNsnnWYePnw4hg8fjhcvXiArKws2NjZ51p8zZ86nvFyuxowZg0OHDiEiIgLlypXLs26ZMmWy/SXt2bNnMDAwQKlSpXJsww5YN/n5LUT37t1EZTExMejduy8yMjIkSkVERFT4DAwMMGLEcMybNxulS5fOsU58fDzKli2r8YNuVR73GRsbw9jYuFDz0r/WrVstup0vMzMTI0eORlZWloSpiFRP6UH3vHnz8M033+Czzz7LtfP+WGEPugVBwJgxYxASEoKwsDBUqlQp3zbOzs44fPiwqOz48eNo2LBhrvdzswPWPYMHD8KUKZNEZf/88w+6dnXHq1evpAlFRESkAp07u2LZssXZLun94MWLF5gzZz6+/36TRv/RWV3HfaQaxYsXz3Zb6bp1AUpd4UqkbZRepzs4OBjVqlVDkyZNsHbtWjx//vyTw7x79w7Lli1TuL6Xlxd27NiBXbt2wdzcHPHx8YiPj8fbt2/ldXx9feHh8e/siJ6ennjw4AF8fHxw69YtbNmyBZs3b8akSZNyegnSQSVLlsTKlf6isvT0dPTq1Uc0IzQREZE2c3R0xPHjP+Onnw7lOOBOS0vDsmXLUaVKDaxfH6DRA26Ax33aLiUlBS4urujbtz/i4+Px5MkTzJqlmqtgiTSN0oPuqKgoREVFoW3btli+fDnKli2Lzp07Y9euXXjz5k2u7V68eIGffvoJx48fR2ZmJoD3A55Vq1ahYsWKWLRokcIZAgICkJiYiNatW8POzk7+2LNnj7zOx7P4VqpUCUePHkVYWBjq1auHBQsWYPXq1Vw2ogh5+fIlOnbsgqdPn8rLPD29EB4eIWEqIiKiwmFra4uNGwMQGXkZHTq0z7HO/v3BqFnzc0yePFU+C7im43GfbtizZy9q1HBEt249OTkxFRkyIa8pcAvg3Llz2LVrF/bt24d3797l+Et0/vx5dOnSBYmJiZDJZGjYsCG2bt0Kd3d3ZGVlYfz48RgyZAiKFStWGJFUJikpCZaWlgD0AeQ8+RppPgcHBxw5chA//3wMU6f6Sh2HdIYAIBOJiYmwsLCQOkyhYt9HpB0uX/4NDRrUz2XfFfj4TMKZM/lPQFYwutn3sd8j0l41i/cocJtbKSEFbKFY36f0me6PFS9eHKampjAyMspxjUcAmDVrFjp27IioqCiMGzcOv//+O7p27YqZM2fi7t278Pb21vgBN+mOhw8fwtm5OXx9Z+RfmYiISEssWLAwW9nff/+NAQMGoXFjZxUMuImIKC+fNOiOjY3FwoULUatWLTRs2BBXr17F3Llzc11n7/r165g1axYcHR3x7bffQiaTYfHixfDw8Mh1uS4iVUpJSeGMmUREpFMOHjyE06fDALz/f2727LmoXr02duzYiUK6wJGIiApA6UG3s7MzqlSpgn379mHw4MF48OABTp06hWHDhv3/MpzsEhISYG1tDQAoVqwYihUrBicnJ2UjECmkYsWKUkcgIiIqVBUqVECVKlVy3e/jMxlbt/6IqlVrYsGChXnOt0OkCra2trhy5RJcXTtJHYVIckovGdamTRv88MMPqF27tsJtZDIZXr9+DRMTEwiCAJlMhjdv3mS7/1uX7gUiaXXu7IqDBw9g5szZWLx4qdRxiIiIPom5uTmmT5+G8ePH4uzZc+jQIecBTWRkJIYMGabmdET/8vdfivr1nXD06GHs3x+M8eMn4vHjx1LHoiKk4Pdnq06hTaSWGwsLC0RGRqJy5crQ09MTXUb+YeD98faHWc01FSfV0A6Ojo44fz4C5ubmAIAff9yOESM8kZaWJnEy0m26OZkQwL6PSEr6+voYOnQIFiyYCxsbG3l5ly7dcPTozxIm+0A3+z72e8pp164tfv31F1HZDz9swfDhIyVKRKQqivV9Sp/pVjjGf8b0p0+fVvXLEQEAbGxscORIqHzADQADBw5AWFg4AgN/lDAZERFRwbi4dIC//xI4Ojpm27ds2WIcP35C49fYpqLD2NgY69evEZW9fPkSM2bMkigRkfRUPuj+r1atWqnz5aiIMjY2RmhoMCpUqCAq37kziANuIiLSGjVr1oS//5Jc74lNT0/HL7+cgJGREQfdpDGmTp2MatWqicqmTZuBZ8+eSZSISHqFtmRYflJSUlRan+iDLVs2wdm5iajs/PkLGDp0uESJiIiIFFe6dGmsW7cGUVFXcx1wHzx4CLVr18WECRM5SRppjCpVqmD69GmisgsXLmLTph8kSkSkGdQ26K5SpQq+++47PHnyJNc6giDgxIkTcHV1xerVq9UVjXTIrFkz0K/f16Ky2NhYuLv3QmpqqkSpiIiI8mdsbIzJkyfi3r3bGD3aEwYG2S9IvHYtEm3bdoC7ey/cvXtXgpREuVu/fg2MjY3l2xkZGfD09OJSdVTkqfzy8g8TpYWFhWHmzJmYN28e6tWrh4YNG8Le3h4mJiZ4+fIloqOjceHCBRgaGsLX1xcjRoxQdTTSMX369Mb8+XNFZUlJSXBz64Hnz59LEYmIiEghX37ZC4sXf4fKlSvnuD8uLg7Tp8/Ctm3bkZWVpeZ0RPnr2/crdOjQXlS2atUaREVFSZSISHOofPZyc3NzXL9+Xf6fyN9//419+/YhIiICf/31F96+fYvSpUvDyckJHTt2ROfOnaGnp7YT8ErhTJaap3HjxggL+xWmpqbysszMTLi5uePnn49JmIyKHt2cwRdg30ekKlZWVrh//87/f7/E3rx5g2XLlmPJkmUafuudbvZ97PcUY2lpidu3b6JMmTLyskePHqFWrTpITk6WMBmRqmnI7OU///wzypYtK98uV64cJkyYgAkTJqj6pamIKF++PA4eDBYNuAFgwoRJHHATEZHGS0hIwMKFfliyZJGofNu2HZgxYxb+/vtviZIRKWbhwgWiATcAjBvnwwE30f8pfaY7MzMTgYGBOHnyJJ49e5btUqdTp04VSkBNxL96ag4zMzOcPRuOunXriMoDAjZi9GhviVJR0aabZ3sA9n1EqmRsbIzo6ChUrlwZZ86cxYQJk3DlyhWpYxWAbvZ97Pfy16hRI1y8eFZ0perhw0fQrVsPCVMRqYuKz3SPGzcOgYGB6NKlCxwdHeX3bhOpi56eHnbu3JZtwH3ixK8YO3a8NKGIiIhyoKenh4EDPXD48BG8ePEi2/7U1FR4eY1FsWLFcOBAiAQJiQpOX18fGzasEw2437x5gzFjxksXikgDKT3o3r17N/bu3YvOnTsXZh4ihTk7O6NLF/H379atW+jduy/XKyUiIo3Rtm0bLF++DHXr1sHatesxZsy4HOsdO/aLmpMRfZrRo0ehfn0nUdm8eQvw4MEDiRIRaSalZywzMjJClSpVCjMLUYGcO3cOXbp0Q1JSEgDgxYsX6NrVHYmJiRInIyIiAqpXr45Dh0Jw8uRx+VVZnp4jULNmTYmTERWO6Oho3Lt3T7598+ZNLF++UrpARBpK6Xu6/f39cf/+faxdu7bIXVrO+3s0S61atRAcvAcjRozCmTNnpY5DOqaMWZMC1c8SMvAs5aLO3dcIsO8jUpSVlRXmzJmFUaNGwtDQMNv+o0d/Rpcu3SRIpkq8p7uoMjExwbRpUzB16mS0b98J586dkzoSkRop1vcpPeju0aMHTp8+DSsrK9SuXTvbfyoHDhwQbRdkjb46derkX0lC7IA1j76+PjIzM6WOQTqIg+5/se8jypuhoSG8vb0wa9Z0lCxZMsc6N27cxMSJk3HixK9qTqdqHHQXddbW1nj+/LnUMYjUTMUTqZUoUQI9eig+K2G9evUgk8mQ2xj/wz6ZTMbBExUYvzNERCSlHj3csWSJX6633j19+hQzZ87Bli1bs634QqQLOOAmyp3Sg+6tW7cWqH5sbKyyL0UEAwMD1KtXD5cvX5Y6ChERkVz9+vWxfPlStGrVMsf97969w/LlK7Fo0RK8fv1azemIiEgTKD3o/uD58+eIiYmBTCZDtWrVYG1tnWO9ChUqfOpLURG2bt0aDB48EKNGeWPz5i1SxyEioiLOzs4Ofn4LMXDggFzrBAXtxrRpM/Dw4UM1JiNSHUtLS05YS6QEpQfdKSkpGDNmDLZt2ya/TEpfXx8eHh5Ys2YNihUrJqp/6NAhhZ+7Wzddm1yEPsX48eMwYsQwAMAPP2xE9erVMG3adF6eR0REkrG2tsaAAf1z3HfhwkX4+EzGxYsX1ZyKSLVCQ4ORlZWF0aPHICYmRuo4RFpD6YnURo4ciV9//RVr165Fs2bNAABnz57F2LFj0aFDBwQEBIjq6+kptjqZNtzTzUk11Kdr1y44ePCA6Pvz5s0b1K/fmJ09qQUnUvsX+z4isU2bNmLYsCHy7b/++gtTp07H3r37JEwlFU6kpusGDPgG27a9v700LS0NixcvxcKFfkhNTZU4GZGUVDx7eenSpbF//360bt1aVH769Gn06dNHpydTYAesHp9//jnOnQuHubm5qPzLL79CcPCBXFoRFS4Ouv/Fvo9IzNbWFvfu3UZWVha++24RVq5cXYQHIBx067KSJUsiJuYP0W2ksbGxqF27Lt6+fSthMiKpKdb3KXb6OQdv3ryBra1ttnIbGxu8efNG2aclAvD+QObw4ZBsA+4ZM2ZxwE1ERGpRpUoVrFmzKse1toH3M5L37t0XVavWxOLFS4vwgJt03aJF32Wbt8nbexwH3EQKUvqebmdnZ8yZMwfbtm2DiYkJAODt27eYN28enJ2ds9VfvXo1RowYARMTE6xevTrP5x47dqyysUgHmJiYIDQ0ONvke9u378R33y2SKBURERUVJUqUwKxZM+DtPRpGRka4c+cu1qxZm2PdY8d+UXM6IvVydnaWz63zQXDwARw9+rNEiYi0j9KXl9+8eROdOnXCu3fvULduXchkMkRGRsLExAS//PILateuLapfqVIlXL58GaVKlUKlSpVyDyST4f79+8pEUhteaqRau3Ztx9df9xWVnT17Du3auSAtLU2iVFRU8fLyf7HvI11nYGCAUaM8MWfOTJQqVUpenpCQgCpVauDly5cSptN0vLxcFxkYGODKlUuoU+dzednr169Rs+bnePz4sYTJiDSFYn2f0me6HR0dcffuXezYsQO3b9+GIAjo27cv+vfvD1NT02z1/7tON9fsptzMnj0z24A7NjYWPXp8yQE3ERGpTNeuXbBs2WJUr1492z4rKytMmTIJvr4zJEhGJJ1x48aIBtwAMGfOfA64iQpI6Xu6AcDU1BTDhw+Hv78/li9fjmHDhuU44P5YVFRUrvtCQ0MVfv2IiAi4ubnB3t4eMplMobY7d+5E3bp1UaxYMdjZ2WHw4MH4559/FH5NUp2vvuqDefPmiMqSkpLQtas7Xrx4IVEqIiLSZXXq1MGJE8dw+HBojgPu1NRULFmyDH5+iyVIRySd8uXLZzsui4y8jtWr10iUiEh7FehM96FDh+Dq6gpDQ8N8193Oa63tjh074ty5c6hcubKoPDg4GB4eHkhJSVEoT0pKCurWrYvBgwejV69e+dY/e/YsPDw8sGLFCri5ueHx48fw9PTEsGHDEBISotBrkmp88cUXCAzcLCrLzMxEnz5fIzo6WqJUpMlOO+fex+SmzYW8+62c6CPnCZRyIyuClx8SaSNbW1t8++18DBkyKNdlTfft24+pU6fzCj0qklavXoHixYvLt7OysuDp6aXxS/sSaaICDbrd3d0RHx8PGxsbuLu751ovv7W2R40ahXbt2uH8+fOws7MDAOzZswdDhgxBYGCgwnlcXV3h6uqqcP2LFy+iYsWK8onaKlWqhJEjR2LJkiUKPwcVPgcHBxw8GCyfkO+D8eMn4pdfjkuUioiIdJGJiQl8fMbD13cqzMzMcqzz+++XMWHCJJw7d07N6Yg0Q7dubnB37y4q+/77H/Dbb79JlIhIuxXo8vKsrCzY2NjI/53bI7+/gM2ePRvdunVD+/btkZCQgF27dmHw4MHYtm0bevfurfy7yUfTpk3x999/4+jRoxAEAU+fPsX+/fvRpUuXPNulpqYiKSlJ9KDC4+raKdvyc+vWBWDt2nUSJSIiIl3UpUtnxMT8gYULF+Q44H706BH69/fAF1805YCbiqzixYtjzZqVorJnz55xTgOiT6D0Pd3btm3LcT3KtLQ0bNu2Ld/2q1atQv369dGkSRMMHz4cQUFBCl0i/imaNm2KnTt34quvvoKRkRHKlCmDEiVKYM2avO9N8fPzg6WlpfxRvnx5leYsajZu/B79+3vg3bt3AIDjx09g3LgJEqciIiJdY2RkBAcHh2zlycnJmDlzNqpXr41du4Kg5MIuRDph9uyZ2X5PfHwm49WrV9IEItIBSi8Zpq+vj7i4OPmZ7w/++ecf2NjYZDvbndM94Onp6ZgwYQJcXFxE94DndT94bmQyGUJCQvK87D06Ohrt27fHhAkT0LFjR8TFxWHy5Mlo1KgRNm/enGu71NRU0R8YkpKS/j/wLprLR6hKkyZN4Of3LdzdeyExMVHqOKTh1HVPd1mzFgWqnyVkIC7ljM4tmwNw6RzSDeHhp9Cy5fvf66ysLGzZEohZs+YgPj5e4mTajkuG6YIaNWogKuoqDA3/nc/k1KnTaNfORcJURJpMsb5P6UG3np4enj59Cmtra1H59evX0aZNGyQkJGSrr4j87gfPq11+g+4BAwbg3bt32Ldvn7zs7NmzaNGiBZ48eSK/vzw/Ra0DJtJEHHSrH/s+0gUNGjTA5csXcerUafj4TMb169eljqQjOOjWBfr6+vDyGo1vv50Hc3NzpKamok6d+rhz547U0Yg0lGJ9X4EvL3dyckL9+vUhk8nQrl071K9fX/6oW7cuWrRogfbt22drl9c94AW5H/xTvHnzJtvgX19fHwB4KRkREZGW09fXh6fnSGzbFphrnStXrqB+/cZo186FA24tw6ViVS8zMxOrV69BjRqO2LdvPxYvXsoBN1EhKNDs5QDkZ5IjIyPRsWNH0UQkRkZGqFixosrvzf4gOTkZ9+7dk2/HxsYiMjISVlZWcHBwgK+vLx4/fiy/x9zNzQ3Dhw9HQECA/PLy8ePHo3HjxrC3t1dL5qKuatWqMDMzw7Vr16SOQkREOqRjRxf4+y9B7dq1AQA7d+7KdQUM/h+knbhUrPo8efIEffp8DZlM98/uE6lDgQfdc+bMAQBUrFgRffv2hbGxscJtf/vtNyQkJIiW+dq2bRvmzJmDlJQUuLu7Y82aNQo/5+XLl9GmTRv5to+PDwBg4MCBCAwMRFxcHB4+fCjfP2jQILx+/Rpr167FxIkTUaJECbRt2xaLFy9W+D2Q8qysrPDTTwdhb2+P/v09cPBgwS/1JSIi+q/atWtj2bLF6NSpo6jc338Jfv31JNcU1iFcKlb9eCUoUeFQevbyWrVqITIyMlv5b7/9hsuXL+fYZu7cuYiKipJv37hxA0OHDkX79u0xbdo0HD58GH5+fgpnaN26NQRByPb4sNZ3YGAgwsLCRG3GjBmDP/74A2/evMGTJ0+wY8cOlC1bVuHXJOUYGhpi//49qFq1KooXL44DB/ZhypRJUsci0krKXGIZHh6OBg0awMTEBJUrV8aGDRtUH5RIhaytrREQsA7Xr1/JNuAG3g/GO3bk5E9FmbJLxRIRFTalB91eXl549OhRtvLHjx/Dy8srxzaRkZFo166dfHv37t344osvsGnTJvj4+GD16tXYu3evspFIg61fvxZt2rSWb+vp6eGrr/oU6EoJInrvwyWWa9euVah+bGwsOnfujBYtWuDatWuYPn06xo4di+DgYBUnJSp8xsbGmDJlEu7duw1PzxHyuVn+6+rVa2jduh2OHv1ZgoSkKZRZKjY1NRVJSUmihy4zNDRE/fr1pY5BpPOUHnRHR0fn+Evq5OSE6OjoHNu8fPkStra28u3w8HB06tRJvt2oUaMcB/Kk3Xx8xmPYsCGissePH8PNzT3Htd6JKG+urq749ttv0bNnT4Xqb9iwAQ4ODli5ciVq1qyJYcOGYciQIVi2bJmKkxIVrj59euP27ZtYvNgvx1linzx5gkGDhqJhwy8QHh4hQULSJNHR0Rg7dixmz56NK1eu4NixY4iNjYWnp2eubfz8/GBpaSl/vF8iVndNnDgBv/9+AevWrfn/LO1EpApKD7qNjY3x9OnTbOVxcXEwMMj5VnFbW1vExsYCANLS0nD16lU4OzvL979+/Vq0LiBpPze3rli6VHzP/Js3b9CtW088efJEolRERcuFCxfg4iK+zLZjx464fPky0tPTc21X1M74kOZq3Lgxzp2LwJ49u1CxYsVs+9+8eYO5c+ejatWa+PHHbbwPlQC8H0A3a9YMkydPRp06ddCxY0esX78eW7ZsQVxcXI5tfH19kZiYKH/o8smgSpUqYfbsmdDT08Po0Z64ffsmb8kgUpECT6T2QYcOHeDr64uDBw/K/zL26tUrTJ8+HR06dMixTadOnTBt2jQsXrwYoaGhKFasGFq0+HcN3KioKHz22WfKRiINU7duXezatT3bMm3ffDMQV69elSgV6Qpl1txWRsXMgvVJGUIa4nBGRWmUEx8fL7rKCHj/R9CMjAy8ePECdnZ2Obbz8/PDvHnz1BGRKFcBAevg6Tki1/2BgdswY8Ys/iGXsnnz5k22E0H5LRVrbGxcZG59W7t2FUxNTeXb1tbWeP78hYSJSEovvSsUuE3JtQ9UkEQ3KX2m29/fH48ePUKFChXQpk0btGnTBpUqVUJ8fDz8/f1zbPPtt99CX18frVq1wqZNm7Bp0yYYGRnJ92/ZsiXb2RjSTmXKlMGhQwdES8oBgK/vDISEhEoTiqgI+3jZlw8HnHktB1OUzviQ5vrrr79yLA8Pj0CDBl9g8OChHHAXEcnJyYiMjJRP5PthqdgPK9X4+vrCw8NDXt/NzQ0HDhxAQEAA7t+/j3PnzmHs2LFcKhZAz5490LmzeCb4desCeFKESEWUPtNdtmxZREVFYefOnbh+/TpMTU0xePBgfP3117leIm5tbY0zZ84gMTERZmZm2SY/2bdvX7ZBGmkfExMTHDx4AA4ODqLyH3/cjkWLuEwHkbqVKVMG8fHxorJnz57BwMAApUqVyrVdUTrjQ5pr5crV8PQcIb+s/N69e5g8eRpCQw9KG4zUjkvFFg4zMzOsXr1CVPbkyRPMmjVHokREuk/pQTcAFC9eHCNG5H7JV25ym6jBysrqU+KQBpDJZPjxxy1o3LiRqPzMmbMYMSL3iUuISHWcnZ1x+PBhUdnx48fRsGFDzqNBGkNfXz/HNbVTU1MxbdoMBASsxfz5C7Fu3fo85yIg3fVhqdjcfFgy9r/GjBmDMWPGqDCV9pk/f2625XLHj5/IeTuIVKhAg+5Dhw7B1dUVhoaGOHQo7/spu3Xr9knBSDvNnTsbffr0FpXdv38fPXv2RlpamkSpiHRLcnIy7t27J9/+cImllZUVHBwc4Ovri8ePH2Pbtm0AAE9PT6xduxY+Pj4YPnw4Lly4gM2bNyMoKEiqt0AkV6NGDSxdugh//nkf48f75Fhnz569OH78BF6+fKnmdES6pV69ehg71ltUduzYL9i3b79EiYiKhgINut3d3REfHw8bGxu4u7vnWk8mk+X412rSbf36fY3Zs2eKyhITE9G1qztevODEHESFpaCXWFaqVAlHjx7FhAkTsG7dOtjb22P16tXo1auX2rMTfVCqVCnMnTsbnp4jYGBggPT0dKxfvwF37tzJsT4H3ESfRk9PDxs3rhfd3vnu3Tt4eY2VMBVR0VCgQXdWVlaO/yYCgIYNG4i2MzMz0afP17h165ZEiYh0kzKXWLZq1YoT5JBGMDIygrf3aMyaNQMlSpSQlxsaGmLp0kXo3l2x9eeJqGBGjBie7fa/b7/9Dvfv35coEVHRodTs5enp6WjTpk2uf42mosnHZxLGjp0gv8ph7NgJOH78hMSpiIhIU/Ts2QPR0VHw918qGnB/0KhRQ1hbW6s/GJGOs7GxgZ/ft6Ky27dvY+nSnFccIqLCpdREaoaGhrh582aeS81Q0bRmzVrcvXsXrVq1xPr1AVLHISIiDdCgQQMsX74ULVu2yHH/27dv4e+/AosXL0VycrKa0xHpvpz+0DVqlDfn2yFSE6XX6fbw8MDmzZsLMwvpiGPHfoGv7wypYxARkcTKli2LbdsCcfnyxVwH3Dt27EL16rUxa9YcDriJVKBt2zb45pt+orJt23YgLCxcokRERY/SS4alpaXhhx9+wIkTJ9CwYUMUL15ctH/58uWfHI6IiIi0T/HixTFlyiRMmuSDYsWK5Vjn7Nlz8PGZjN9//13N6YiKlrlzZ4u2X758iUmTpkiUhqhoKvCg+/79+6hYsSJu3ryJ+vXrA0C2e7t52bnu++qrPrhy5apo2SIiIiIzMzPcunUD5cqVy3F/bGwspkzxxf79wWpORlQ0de/eE35+CzFy5HAAwLRpM/D8+XOJUxEVLQUedFetWhVxcXE4ffo0AOCrr77C6tWrYWtrW+jhSDO1a9cWO3b8iKSkJPTs2Rvh4RFSRyIiIg2RnJyMEydOYvDggaLyxMRELFzoh9Wr1yI1NVWidERFz8uXL+HpORqBgdswbNgQbNr0g9SRiIocmZDXujM50NPTk6/VDQAWFhaIjIxE5cqVVRJQEyUlJcHS0hKAPoCidVa/WrVquHjxLEqWLAng/Uz2np5e2LJlq8TJiDSFACATiYmJsLCwkDpMoSrKfR8VjL29Pe7ciUbx4sWRmZmJjRs3Ye7c+Ty7ptN0s+9jv0dEeVOs71P6nm75yxRszE5azMrKCkeOhMoH3MD7mewrV64kYSoiIpJCyZIl8fr1a2RkZGTb9+TJEyxZsgxNmnyBSZOmIjo6WoKEREREmqHAs5fLZLJs92zzHm7dZ2hoiODgvahataqofP/+YMyaNUeiVEREpG6GhoYYO3YM7t27jREjhuda79tvv0Pnzm4ccBMRUZFX4DPdgiBg0KBBMDY2BgC8e/cOnp6e2WYvP3DgQOEkJI0QELAOrVu3EpVdvnwFAwcO4dUORERFhJtbVyxbthjVqlUDAMybNxs7d+5CYmJitrpZWVnqjkdEAAYO9MDx4ycQFxcndRQi+r8Cn+keOHAgbGxsYGlpCUtLS3zzzTewt7eXb394kO6YOHEChg4dLCr7+++/0a1bD7x580aiVEREpC716tXDyZPHcehQiHzADQClS5fGjBm+EiYjov9q1KgRtmzZhFu3bsDLazT09Ap8qE9EKlDgM91bt3LCrKKkWzc3LFmySFSWkpKCbt168i+oREQ6zs7ODt9+Ox+DBnnkevBepkwZNaciopzo6+sjIGAt9PT0YGlpibVrV6FPny/RqlVbqaMRFXmfPJEa6a66deti167t2Q60vvlmIK5duyZRKiIiUjVTU1NMnDgBU6dOhpmZWY51fvvtEiZMmIQLFy6oOR0R5WT06FFo0KC+qOynn45KlIaI/ouDbspRmTJlcPhwSLZ79adO9UVo6EGJUhERkSrJZDL0798Pfn7foly5cjnWefjwIaZNm4Hdu/dwTg8iDWFvb49vv50nKrt58yaWL18pTSAiEuGgm7IxNTXFwYMHUL58eVF5YOA2LFmyTKJURESkSs2bN8Py5cvQqFHDHPe/fv0afn6LsWLFKrx7907N6YgoLytWLMu2RvCoUd45LulHROrHQTeJyGQy/PjjFjRu3EhUHhFxBiNHjpIoFRERqVKzZs1w5kxYjvuysrKwefNWzJo1B0+fPlVnLCJSQKdOHdGnT29R2ZYtgTh79pxEiYjoY5zSkEQMDQ2zXS74559/omfP3khLS5MoFRERqdK5c+dw7tz5bOW//noSTk6NMGKEJwfcRBrIxMQE69atFpW9ePECU6ZMkygREeVEqwfdERERcHNzg729PWQyGUJDQ/Ntk5qaihkzZqBChQowNjbGZ599hi1btqg+rJZIS0tD3779MX/+twCAV69eoWtXd/zzzz8SJyMiIlXy8Zks//ft27fRpUs3dOjQCVFRURKmIqK8zJjhi8qVK4vKJk+exuM2Ig2j1ZeXp6SkoG7duhg8eDB69eqlUJs+ffrg6dOn2Lx5M6pUqYJnz57xfpePCIKAOXPmISbmDp4/f47bt29LHYmIiApB48aNcenSpRz3Xbp0CWvWrENMzB1s3Pg9/28k0nA1atTAlCmTRGUREWfw44/bJEpERLmRCToy9ahMJkNISAjc3d1zrXPs2DH07dsX9+/fh5WVldKvlZSUBEtLSwD6AGRKPw8RAQfq9VWqXc/I3YWcpLAIADKRmJiYbVIbbce+T3s5OjrC338JXFw6oEOHTvj115NSRyKdo5t9nyb3e6dP/4rWrVvJt9PT01GvXkNER0dLmIqoqFGs79Pqy8sL6tChQ2jYsCGWLFmCsmXLolq1apg0aRLevn2bZ7vU1FQkJSWJHkRERJrO1tYWGzcGIDLyMlxcOgAA/P2XQk+vSP33T6RzBgz4RjTgBoBly5ZzwE2koYrU/7r379/H2bNncfPmTYSEhGDlypXYv38/vLy88mzn5+cHS0tL+ePjpbS0lb6+PpYsWYQyZcpIHYWIiAqRiYkJpk2bgrt3b2HEiGHQ19eX76tT53MMGTJYwnRE9ClKliwJf/8lorK//voLCxYslCgREeWnSA26s7KyIJPJsHPnTjRu3BidO3fG8uXLERgYmOfZbl9fXyQmJsofjx49UmNq1fH3X4rJkyfi0qXzqFevntRxiIioEPTt+xVu374JP7+FMDc3z7b/77//xsuXLyVIRkSFoWXLFihRooSozNt7XL5XbhKRdIrUoNvOzg5ly5b9/70579WsWROCIODvv//OtZ2xsTEsLCxED23n6TkS48aNAQCUL18eZ8+GoUuXzhKnIiIiZTVp0gTnz59BUNAOVKhQIdv+lJQUzJ49F9Wr10Zw8AEJEhJRYTh48BDq1WuIiIgzAIADB0Lw009HJU5FRHkpUoPuZs2a4cmTJ0hOTpaX3blzB3p6eihXrpyEydSrfft2WLNmpajMwMAAL1++kiQPEREpr0KFCggK2oELF87A2blJtv1ZWVnYuvVHVK1aEwsWLMSbN28kSElEhSk6OhqtWrXFoEFDMW6cj9RxiCgfWj3oTk5ORmRkJCIjIwEAsbGxiIyMxMOHDwG8vyzcw8NDXr9fv34oVaoUBg8ejOjoaERERGDy5MkYMmQITE1NpXgLale9enXs27cbBgbi1eKGDh2B8+fPS5SKiIgKytzcHH5+C3H79k307ftVjnVOnw5Dw4ZNMGTIMMTFxak5IRGp2o8/bsvzak0i0gxaPei+fPkynJyc4OTkBADw8fGBk5MTZs+eDQCIi4uTD8ABwMzMDCdOnMCrV6/QsGFD9O/fH25ubli9erUk+dWtVKlSOHIkNNt9QAsWLMTOnbukCUVERErx9ByBadOmwMTEJNu+u3fvonv3nmjbtgOuXbsmQToiIiL6QGfW6VYnTV6zMTeGhoY4ceIYWrVqKSrft28/vvqqH/g1IKlwnW7toY19ny4zMTFBTMwfcHBwkJe9fPkS8+Z9i/XrA5Ceni5hOip6dLPvY79HRHnjOt30Hxs2rM824P7998sYOHAIB9xERFro3bt38PWdCQBIT0/HypWrUaVKDaxatZoDbiId0rmzK2bPngkjIyOpoxCRkjjoLgImT56IIUMGicoePXqEbt16cHkJIiINVrp0afTs2SPX/UFBu7FkyTLUrl0XEyZMREJCghrTEZGqFStWDOvXr8G8eXMQFXUVbdu2kToSESmBg24d1717Nyxa9J2oLCUlBd269UR8fLxEqYiIKC9GRkaYNMkH9+7dRlDQDlSpUiXHeoIgYOpUX9y9e1fNCYlIHWbPnilfArB69eo4efI4WrRoLnEqIiooDrp1WL169bBz5zbo6f37Y87KykL//h7yGd+JiEizfPllL9y6dQNLly6GpaUljIyMsGSJn9SxiEjNHB0d4eMzXlR2+nQYzpw5K00gIlKaQf5VSBvZ2dnh8OEQFC9eXFQ+daovDh48JFEq0nWfF+9d4DaaOyEakXo1atQIy5cvRfPmzbLt69HDHa1atUR4eIQEyYg0Q0REBJYuXYorV64gLi4OISEhcHd3z7NNamoq5s+fjx07diA+Ph7lypXDjBkzMGTIEPWEVpJMJkNAwFoYGhrKy9LS0jBqlLeEqYhIWRx066i3b9/i9u0YlCtXTl62ZUsgli1bLmEqIiL6WLly5eDntxDffNMv1zrbt+/EvXt/qjEVkeZJSUlB3bp1MXjwYPTq1UuhNn369MHTp0+xefNmVKlSBc+ePUNGRoaKk366wYMHZfsD3OLFSxETEyNRIiL6FBx066hXr17B1bUr1qxZBU/PEQgPj4Cn52ipYxER0f8VL14cU6dOxqRJPjA1Nc2xzpkzZ+HjMxmXL19WczoizePq6gpXV1eF6x87dgzh4eG4f/8+rKysAAAVK1ZUUbrCU7p06Wy3lPz555/47rtFEiUiok/Fe7p1WEZGBkaN8sKwYSPRs2dvLiFDRKQB9PT0MHjwINy9ewuzZs3IccD9559/olevPmjZsg0H3ERKOnToEBo2bIglS5agbNmyqFatGiZNmqTxK7csWbIIpUqVEpV5eY3Fu3fvJEpERJ+KZ7qLgM2bt0gdgYiIALRp0xrLly9DvXp1c9yfmJiIBQsWYs2adUhLS1NrNiJdc//+fZw9exYmJiYICQnBixcvMHr0aCQkJGDLlpyPjVJTU5GamirfTkpKUldcAEDLli0wePBAUdmePXvxyy/H1ZqDiAoXz3QTERGpyaBBA3MccGdkZGDdugBUqVID/v4rOOAmKgRZWVmQyWTYuXMnGjdujM6dO2P58uUIDAzM9Wy3n58fLC0t5Y/y5curLa+hoSECAtaKypKSkjBhwiS1ZSAi1eCgWwdUrFgRu3Zth6WlpdRRiIgoD9Onz8SbN29EZT/9dBR16tSHt/dYvHjxQqJkRLrHzs4OZcuWFR0f1axZE4Ig4O+//86xja+vLxITE+WPR48eqSsuJk6cgFq1aonKZsyYjbi4OLVlICLV4KBby1lYWODIkVB8/XVfXLhwBp999pnUkYiIKBePHz/G0qX+AICbN2/CxcUVXbt2x61btyRORqR7mjVrhidPniA5OVledufOHejp6YlWd/kvY2NjWFhYiB7qUKlSJcyePVNUdvnyFaxfH6CW1yci1eKgW4vp6+tj9+6dqF27NoD3f7397bdzcHJykjgZEVHR5e7eHX365L5m/dKl/hgyZDjq1WuIEyd+VWMyIu2WnJyMyMhIREZGAgBiY2MRGRmJhw8fAnh/ltrDw0Nev1+/fihVqhQGDx6M6OhoREREYPLkyRgyZEiuKwZIZe3aVaJMWVlZ8PT0QlZWloSpiKiwcNCtxZYvXwZX106isri4ONy7d0+iRERERZeTkxNOn/4VISH7sWbNylzPkKWkpGDr1kBkZmaqOSGRdrt8+TKcnJzkJxd8fHzg5OSE2bNnA3h/DPRhAA4AZmZmOHHiBF69eoWGDRuif//+cHNzw+rVqyXJnxsTExPR5G0AsH79Bly5ckWiRERU2GSCIAhSh9A2SUlJ/78/SB+ATJIMo0Z5Yv36NaKyZ8+eoXHjpnjw4IEkmYg+L5772b3c3EjZp4IkUhIAZCIxMVFtlyWqiyb0fZrI3t4eCxcugIfHN9DT+/dv2YsXL8W0adMlTEakTrrZ96mz33Nz64o1a1bCyMgINWo4qn3mdCJShmJ9H890a6EOHdpj9eoVorLU1FS4u3/JATcRkZoUK1YMc+bMwp070Rg0yEM04AaA8ePHqnXmYyLSbocPH0GtWnXQuXM3DriJdAwH3VqmZs2a2LdvNwwMxEusDxkyHBcuXJAoFRFJYf369ahUqRJMTEzQoEEDnDlzJte6YWFhkMlk2R63b99WY2LdIJPJ4OExAHfuRGPu3NkoXrx4tjoPHjzAwIFD1DrzMRFpvzdv3sjvWSci3WGQfxXSFKVKlcLhwyHZlgabP/9b7NoVJFEqon/p3qXimmvPnj0YP3481q9fj2bNmmHjxo1wdXVFdHQ0HBwccm0XExMjuvzJ2tpaHXF1RsuWLbB8+TI0aFA/x/1JSUn47rtFWLVqDd69e6fmdERERMrxsR9d4DbLn6xXQRLdxDPdWsLIyAgHDuzLtiTYnj17MXfufIlSEZFUli9fjqFDh2LYsGGoWbMmVq5cifLlyyMgIO/lZWxsbFCmTBn5Q19fX02Jtdtnn32G4OC9CA8/leOAOzMzExs3bkLVqjWxePFSDriJiIhIjoNuLbFxYwBatmwhKrt06XcMGjQUnAuPqGhJS0vDlStX4OLiIip3cXHB+fPn82zr5OQEOzs7tGvXDqdPn1ZlTJ1gZGSEZcuWIDo6Cj179sixzvHjJ1CvXkN4eo7Gs2fP1JyQiLSNjY0Nbt6MxJdf9pI6ChGpCQfdWmDq1MkYNMhDVPbo0SN0796TZ1OIiqAXL14gMzMTtra2onJbW1vEx8fn2MbOzg7ff/89goODceDAAVSvXh3t2rVDRERErq+TmpqKpKQk0aOoSUtLQ9OmzjAyMsq2Lzo6Gq6uXdGxY2fcvHlTgnREpI38/Zeidu3a2LdvN44ePYzKlStLHYmIVIyDbg3n5tYVixZ9JypLTk6Gm1uPXA+uiahokMnEy9cIgpCt7IPq1atj+PDhqF+/PpydnbF+/Xp06dIFy5Yty/X5/fz8YGlpKX8U1Zm4fXwmi7afP3+O0aPHoE6d+jh27BeJUhGRNmrbtg2++aaffNvVtRNmzuTSgkS6joNuDXf58hVcvnxFvp2VlYV+/Qbg+vXrEqYiIimVLl0a+vr62f7w9uzZs2xnv/PSpEkT3L17N9f9vr6+SExMlD+K6kzcFy9exO7de5CamoolS5ahatWaCAjYgMzMTKmjEZEWMTY2RkDAWlHZy5cvMW0aB91Euo6Dbg0XFxeHli3bYN++/QCAKVOm4fDhIxKnIiIpGRkZoUGDBjhx4oSo/MSJE2jatKnCz3Pt2jXY2dnlut/Y2BgWFhaihy6ytbXF999vQJs2rXOtM2nSVNSs+TmmTn3/hwgiooKaMmUSqlWrJiqbNm0G54IgKgK4ZJgWePv2Lb76qh927dqN0NCDUschIg3g4+ODAQMGoGHDhnB2dsb333+Phw8fwtPTE8D7s9SPHz/Gtm3bAAArV65ExYoVUbt2baSlpWHHjh0IDg5GcHCwlG9DUiYmJvDxGQ9f36kwMzNDo0YN0aBBY2RlZWWr+/jxYwkSEpGuqFKlCqZPnyYqu3DhIjZt+kGiRESkThx0awlBEDjgJiK5r776Cv/88w/mz5+PuLg4ODo64ujRo6hQoQKA91fJPHz4UF4/LS0NkyZNwuPHj2FqaoratWvjp59+QufOnaV6C5KRyWTo2/crLFq0ULSmeb16dTFo0EBs2bJVwnREpIvWrVsNExMT+XZGRgY8Pb24Ag1RESET+NteYElJSbC0tASgDyDnSYuIqKgSAGQiMTFR5y7H1oW+r2nTpli+fCm++KJxjvvv3r2L6tVr80CYqMB0s+8rjH7vq6/6YPfunaIyf/8VmDRpyqcHJCokPvajC9xm+ZP1KkiibRTr+7T6nu6IiAi4ubnB3t4eMpkMoaGhCrc9d+4cDAwMUK9ePZXlKygPjwHYs2cXTE1NpY5CRKRTKlasiD17duHcufAcB9xZWVnYvHkrWrVqxwE3ERUaS0tLrFghXiXi0aNHmDt3vkSJiEgKWj3oTklJQd26dbF27dr8K/9HYmIiPDw80K5dOxUlK7jmzZth06YN6NOnN8LCTqJMmTJSRyIi0noWFhZYtOg73L59E3369M6xzqlTp1G/fmMMGzYCcXFxak5IRLrs22/nZ5uwctw4HyQnJ0uUiIikoNX3dLu6usLV1bXA7UaOHIl+/fpBX1+/QGfHVaVSpUoICdkPIyMjAEDjxo1w6dJ51KvXEAkJCRKnIyLSPvr6+hg+fBjmz58Da2vrHOvcuXMHkyZN5YoQRKQSDRs2xOjRnqKyI0d+QkhIqDSBiEgyWn2mWxlbt27Fn3/+iTlz5kgdBcD7szBHjoSidOnSovL9+w9wwE1EpISqVavi+vUrCAhYm+OAOyEhAWPHToCjYz0OuIlIJfT19bFx43ro6f17qP3mzRuMGTNeulBEJBmtPtNdUHfv3sW0adNw5swZGBgo/tZTU1ORmpoq305KSiqUPPr6+ti7Nwi1atUSlf/001FOrkFEpKTHjx//f+IjsfT0dKxdux4LFizEy5cvJUhGREXF6NGjUL++k6hs/vxv8ddff0kTiCgfnBRNtYrMme7MzEz069cP8+bNQ7Vq1QrU1s/PD5aWlvJH+fLlCyXTypXL0bGji6jsxo2b+Prrb3JcJ5aIiPL35s0bTJ8+S1QWGnoQtWvXhY/PJA64iUjlrl69hps3b8q3//jjDyxfvlK6QEQkKZ1ZMkwmkyEkJATu7u457n/16hVKliwJfX19eVlWVhYEQYC+vj6OHz+Otm3b5tg2pzPd7wfeyi8f4eU1GmvXrhKVPX36FF980QwPHjxQ6jmJSBPo5rI5gOYtGSaTyXKdaVwmk+H33y9CT08PPj6TEBYWruZ0REWNbvZ9n9LvGRoaYsKEcZg9eyZcXbvizJmzKslIRFJSrO8rMpeXW1hY4MaNG6Ky9evX49SpU9i/fz8qVaqUa1tjY2MYGxsXWpaOHV2watVyUdm7d+/g7v4lB9xERAro3ftLzJ8/B126dMf9+/ez7RcEAV27dsezZ8945RARSSI9PR1LlizDpk2beYUNURGn1YPu5ORk3Lt3T74dGxuLyMhIWFlZwcHBAb6+vnj8+DG2bdsGPT09ODo6itrb2NjAxMQkW7kq1axZE3v27BKdcQeAIUOG4+LFi2rLQUSkjRo3bowVK5ahaVNnAMDixd+hd+++OdaNj49XZzQiohxxwE1EWn1P9+XLl+Hk5AQnp/cTVfj4+MDJyQmzZ88GAMTFxeHhw4dSRhQpXbo0jhwJzTbBz7x5CxAUtFuiVEREmq98+fLYsWMbfvvtnHzADQBfftkLzZs3kzAZERERUd505p5udVLm/h4jIyOcPHk828Hh7t178PXX3xR+SCKSiG7e1whIc0+3mZkZpk2bAh+f8TA1Nc2xzrp1AfD2HquWPESUG93s+xTt96ysrPDy5ctc55kgIl2lWN+n1We6tYm//9JsA+7ffruEwYOHSZSIiEhz6enpYejQIbh79xZmzPDNccB979499OjxJQfcRCS5/fv34Pz5M6hbt67UUYhIA3HQrSarVq1BTEyMfPvhw4fo3r0n3r17J2EqIiLN065dW1y7dhk//LARZcqUybb/1atX8PGZjFq16iA09KAECYmI/vXNN/3Rpk1rNGnyBa5c+Q3Lly9DsWLFpI5FRBqEg241uXfvHpo0aY6TJ08hOTkZbm498PTpU6ljERFpjBo1auDw4VD8+usvqFPn82z7MzIysHr1WlSpUgMrVqxEenq6BCmJiP5VsmRJ+PsvkW/r6+ujR4/uEiYiIk2k1bOXa5tXr16hU6cucHR0RFRUlNRxiIg0xoAB32DLlk0wMMj5v6XDh49g8uRpoiuGiIik5ue3EDY2NqIyb+9xePPmjUSJiEgTcdCtZhkZGYiMjJQ6BhGRRgkLC0d6enq2Qff161GYOHEyTp48JVEyIqKcOTs7Y+TI4aKyAwdC8NNPRyVKRESaipeXq0BuZ2qIiChnjx49wvLlK+Xb8fHxGDZsJOrXb8QBNxFpHAMDA2zYsE5UlpycjHHjfCRKRESajKPDQiaTybB3bxDi4uIxbtwEZGRkSB2JSG06FBuef6WPBPa8oNRrld1xU6l2JC0LCwskJSXluG/RoiXo168vdu3ajUWLliA5OVnN6YiIFDN2rHe2uSfmzJmHv//+W6JERO91NhupVLujyRsLOQn9Fwfdhey7775Fjx7uAIAqVT5Dnz5fIzExUdpQREQSK1u2LPz8FqJ9+7aoVq1WjgPq5ORkVK9emxOkEZFGK1++PObNmyMqu349CqtXr5UoERFpOl5eXogGDvTAtGlT5NsuLh3w00+HJExERCSt4sWLY968ObhzJxoDBvSHnZ2dqJ/8GAfcRKTpVq1aDjMzM1GZp6cXr24kolxx0F1IWrRoju+/DxCVpaenY9asObm0ICLSXXp6ehg0aCDu3InG7NkzRWvWTpw4AQ4ODhKmIyJSjptbV/kVjR9s3LgJFy9elCYQEWkFDroLQeXKlRESsh9GRkai8lGjvHH6dJg0oYiIJNK6dStcvvwbtm79Afb29tn2p6Wl4fPPHSVIRkSkvGLFimHNmpWismfPnsHXd4Y0gYhIa3DQ/YksLS1x5EgoSpUqJSr391+BzZu3SJSKiEj9qlatipCQ/Th9+lc4OdXLtj8zMxMBARtRpUoNLqlDRFpn1qwZqFChgqhs4sQpePnypUSJiEhbcCK1T2BgYIC9e4NQs2ZNUfnhw0cwZco0iVIREalXyZIlMWvWDHh7j4ahoWGOdY4d+wUTJ05BdHS0mtMREX26qlWrYuLECaKy06fDsGPHTokSEZE24ZnuT7Bq1Qq4uHQQlV2/HoV+/QYgKytLolREROphaGiIsWPH4N6925gwYVyOA+4//vgDnTp1gatrVw64ieiTREREwM3NDfb29pDJZAgNDVW47blz52BgYIB69eop9dr37t3DqFHeSEhIAPD+NplRo7yVei4iKno46FaSt7c3Ro8eJSqLj49Ht249uLYsERUJ27ZtxapVy2FlZZVt37Nnz+Dp6YW6dRvgl1+OS5COiHRNSkoK6tati7VrC7Y0V2JiIjw8PNCuXTulX1sQBGzevAXVq9fG1q0/YvHipYiJiVH6+YioaOHl5UpauXKlaPvdu3fo3r0XHj58KE0gIiI1W7s2AH37fiUqS01NxcqVq/Hdd4uQlJQkUTIi0kWurq5wdXUtcLuRI0eiX79+0NfXL9DZ8Zy8ePECQ4YM+6TnIKKih2e6laSvry/aHjRoKC5duiRRGiIi9Tt37hz27dsv396zZy9q1HDEtGnTOeAmIo2wdetW/Pnnn5gzR7ElXFNTU5GUlCR6EBF9Kp7pLgRz5szDnj17pY5BRKR2U6dOh62tLaZNm4ELFy5IHYeISO7u3buYNm0azpw5AwMDxQ55/fz8MG/ePBUnI6KihoNuJQiCIP93UNBuzJ+/QMI0RJojQ0grcJvXaZlKvpqQfxVJvM/1335CV/z7nv59b7Gx99GqVRtpAhGRBtGsvi8zMxP9+vXDvHnzUK1aNYXb+fr6wsfHR76dmJgIBwcHaO7/OURi6Uoci73H77hyFOv7OOhWwuvXr1GiRAmpYxBpnNNvNxe4TQ0dvUjk9evXsLS0lDpGoXr9+vX//8XVGYgoZ5rS971+/RqXL1/GtWvX4O39fpbxrKwsCIIAAwMDHD9+HG3bts3WztjYGMbGxvLtfy8vZ79H2uFEyiapIxRJ+fV9HHQrwd7eHo8ePYK5uTlkMpnUcQC8/0+hfPnyePToESwsLKSOo5X4GX4afn7vCYKA169fw97eXuoohU7Zvk8Xvht8D5pDF96HLr4HTev7LCwscOPGDVHZ+vXrcerUKezfvx+VKlVS6Hk+9ZhPF37WqsLPJm/8fHKnSZ+Non0fB91K0NPTQ7ly5aSOkSMLCwvJv3zajp/hp+HnB404y6MKn9r36cJ3g+9Bc+jC+9C196Dqvi85ORn37t2Tb8fGxiIyMhJWVlZwcHCAr68vHj9+jG3btkFPTw+Ojo6i9jY2NjAxMclWnpfCOubThZ+1qvCzyRs/n9xpymejSN/HQTcRERERabzLly+jTZt/55D4cO/1wIEDERgYiLi4OC7dSkQaiYNuIiIiItJ4rVu3znOyosDAwDzbz507F3Pnzi3cUERECuA63TrC2NgYc+bMEU3+QQXDz/DT8POj3OjCd4PvQXPowvvgeyg6+Dnljp9N3vj55E4bPxuZoClrOxARERERERHpGJ7pJiIiIiIiIlIRDrqJiIiIiIiIVISDbiIiIiIiIiIV4aBbS0RERMDNzQ329vaQyWQIDQ3Ns35YWBhkMlm2x+3bt9UTWIP4+fmhUaNGMDc3h42NDdzd3RETE5Nvu/DwcDRo0AAmJiaoXLkyNmzYoIa0mkmZz5DfQd22fv16VKpUCSYmJmjQoAHOnDmTa90DBw6gQ4cOsLa2hoWFBZydnfHLL7+I6gQGBub4fXn37p1GvAdFv8/BwcGoVasWjI2NUatWLYSEhKgsf0Hfw6BBg3J8D7Vr15bXUffPoaD/twGK9c3q/DkU9D1o4u+Dqo4x1P37oG48Nssdj73yxuOq3AUEBKBOnTryNbidnZ3x888/59lGG743HHRriZSUFNStWxdr164tULuYmBjExcXJH1WrVlVRQs0VHh4OLy8vXLx4ESdOnEBGRgZcXFyQkpKSa5vY2Fh07twZLVq0wLVr1zB9+nSMHTsWwcHBakyuOZT5DD/gd1D37NmzB+PHj8eMGTNw7do1tGjRAq6urrmujxsREYEOHTrg6NGjuHLlCtq0aQM3Nzdcu3ZNVM/CwkL0XYmLi4OJiYlGvIcP8vo+X7hwAV999RUGDBiA69evY8CAAejTpw9+++03jXgPq1atEmV/9OgRrKys0Lt3b1E9df4cCvp/myJ9s7p/DgV9D5r4+6CKYwx1/xykwGOz3PHYK288rspduXLlsGjRIly+fBmXL19G27Zt0b17d/zxxx851tea741AWgeAEBISkmed06dPCwCEly9fqiWTNnn27JkAQAgPD8+1zpQpU4QaNWqIykaOHCk0adJE1fG0giKfIb+Duqtx48aCp6enqKxGjRrCtGnTFH6OWrVqCfPmzZNvb926VbC0tCysiPkq6HtQ5Pvcp08foVOnTqKyjh07Cn379v3kvDn51J9DSEiIIJPJhL/++ktepu6fw38p8n+bIn2zun8O/6XIe8iJ1L8P/1VYxxhS/hykwGOzvPHYK288rspbyZIlhR9++CHHfdryveGZbh3n5OQEOzs7tGvXDqdPn5Y6jkZITEwEAFhZWeVa58KFC3BxcRGVdezYEZcvX0Z6erpK82kDRT7DD/gd1C1paWm4cuVKtt8PFxcXnD9/XqHnyMrKwuvXr7N9f5KTk1GhQgWUK1cOXbt2zXbmr7B8ynvI6/ucW7+h6OdSEIXxc9i8eTPat2+PChUqiMrV9XNQhiJ9szp/DoVB6t+HT6Epvw/apij+v8hjr7zxuCpnmZmZ2L17N1JSUuDs7JxjHW353nDQraPs7Ozw/fffIzg4GAcOHED16tXRrl07RERESB1NUoIgwMfHB82bN4ejo2Ou9eLj42Fraysqs7W1RUZGBl68eKHqmBpN0c+Q30Hd9OLFC2RmZub4+xEfH6/Qc/j7+yMlJQV9+vSRl9WoUQOBgYE4dOgQgoKCYGJigmbNmuHu3buFmh9Q7j0o8n3Ord9Q9HNR9Xv4r7i4OPz8888YNmyYqFydPwdlKNI3q/PnUBik/n1Qhqb9PmiLovr/Io+98sbjquxu3LgBMzMzGBsbw9PTEyEhIahVq1aOdbXle2MgdQBSjerVq6N69erybWdnZzx69AjLli1Dy5YtJUwmLW9vb0RFReHs2bP51pXJZKJtQRByLC9qFP0M+R3UbTn9fijyuxEUFIS5c+fi4MGDsLGxkZc3adIETZo0kW83a9YM9evXx5o1a7B69erCC/4fBXkPin6flf1clKXs6wUGBqJEiRJwd3cXlUvxcygoRfpmdf8clKVJvw8Foam/D5quqP6/yGOvvPG4Krvq1asjMjISr169QnBwMAYOHIjw8PBcB97a8L3hme4ipEmTJhrzV3IpjBkzBocOHcLp06dRrly5POuWKVMm21/jnz17BgMDA5QqVUqVMTVaQT7DnBT176AuKF26NPT19XP8/fj4L80f27NnD4YOHYq9e/eiffv2edbV09NDo0aNVPJ9+ZT38F8ff59z6zcK8pyK+pT3IAgCtmzZggEDBsDIyCjPuqr8OShDkb5ZnT+HT6Epvw+FRcrfB22m6/8v8tgrbzyuypmRkRGqVKmChg0bws/PD3Xr1sWqVatyrKst3xsOuouQa9euwc7OTuoYaicIAry9vXHgwAGcOnUKlSpVyreNs7MzTpw4ISo7fvw4GjZsCENDQ1VF1VjKfIY5KarfQV1iZGSEBg0aZPv9OHHiBJo2bZpru6CgIAwaNAi7du1Cly5d8n0dQRAQGRmpku+Lsu/hYx9/n3PrNwrynIr6lPcQHh6Oe/fuYejQofm+jip/DspQpG9W589BWZr0+1BYpPx90Ga6+v8ij73yxuOqghEEAampqTnu05rvjRonbaNP8Pr1a+HatWvCtWvXBADC8uXLhWvXrgkPHjwQBEEQpk2bJgwYMEBef8WKFUJISIhw584d4ebNm8K0adMEAEJwcLBUb0Eyo0aNEiwtLYWwsDAhLi5O/njz5o28zsef3/3794VixYoJEyZMEKKjo4XNmzcLhoaGwv79+6V4C5JT5jPkd1B37d69WzA0NBQ2b94sREdHC+PHjxeKFy8unwX74+/Crl27BAMDA2HdunWi78+rV6/kdebOnSscO3ZM+PPPP4Vr164JgwcPFgwMDITffvtNI96DIt/nc+fOCfr6+sKiRYuEW7duCYsWLRIMDAyEixcvasR7+OCbb74RvvjiixyfU90/h4L+36ZI36zun0NB34Mm/j6o4hhD3T8HKfDYLHc89sobj6ty5+vrK0RERAixsbFCVFSUMH36dEFPT084fvy4IAja+73hoFtLfFgm4OPHwIEDBUEQhIEDBwqtWrWS11+8eLHw2WefCSYmJkLJkiWF5s2bCz/99JM04SWW0+cGQNi6dau8zsefnyAIQlhYmODk5CQYGRkJFStWFAICAtQbXIMo8xnyO6jb1q1bJ1SoUEEwMjIS6tevL1rm5OPvQqtWrfLsvwRBEMaPHy84ODgIRkZGgrW1teDi4iKcP39eY96Dot/nffv2CdWrVxcMDQ2FGjVqqPxgqCDvQRAE4dWrV4Kpqanw/fff5/h86v45FPT/NkFQrG9W58+hoO9BE38fVHWMoe7fB3XjsVnueOyVNx5X5W7IkCHy/9esra2Fdu3ayQfcgqC93xuZIPz/TnMiIiIiIiIiKlS8p5uIiIiIiIhIRTjoJiIiIiIiIlIRDrqJiIiIiIiIVISDbiIiIiIiIiIV4aCbiIiIiIiISEU46CYiIiIiIiJSEQ66iYiIiIiIiFSEg24iIiIiIiIiFeGgm4q8uXPnol69evnWmzVrFkaMGFGg5w4LC4NMJsOrV6+UC6cGir5/AEhNTYWDgwOuXLmi2lAFFBERATc3N9jb20MmkyE0NFSnXo+osKiyv8vPX3/9BZlMhsjIyEJ93sIwaNAguLu7K1T32bNnsLa2xuPHj1UbSgHs+4jUR8r+s6AqVqyIlStXAtDcY7dPoY19HwfdVKiePXuGkSNHwsHBAcbGxihTpgw6duyICxcuSB3tkzx9+hSrVq3C9OnTs+07f/489PX10alTJ7VkKeyB/KRJk3Dy5EmF6hobG2PSpEmYOnVqobx2YUlJSUHdunWxdu1anXw90kxFqb8bNGgQZDJZtkdB+r3y5csjLi4Ojo6O+dZV9wB91apVCAwMVKiujY0NBgwYgDlz5qg2lALY95G2Kir9Z0795n8fgwYNyvP5CmNAqanHbp9CG/s+g0LMQ4RevXohPT0dP/74IypXroynT5/i5MmTSEhI+KTnTU9Ph6GhYSGlLLjNmzfD2dkZFStWzLZvy5YtGDNmDH744Qc8fPgQDg4O6g+oBEEQkJmZCTMzM5iZmSncrn///pg8eTJu3bqFmjVrqjCh4lxdXeHq6prr/rS0NMycORM7d+7Eq1ev4OjoiMWLF6N169YqeT0qGopaf9epUyds3bpVVGZsbKzw8+rr66NMmTKFEbHQWVpaFqj+4MGD0bhxYyxduhQlS5ZUUar8se8jbVVU+s+4uDj5vj179mD27NmIiYmRl5mamqollyYeu30Kbez7eKabCs2rV69w9uxZLF68GG3atEGFChXQuHFj+Pr6okuXLvJ6MpkMAQEBcHV1hampKSpVqoR9+/bJ9384w7F37160bt0aJiYm2LFjBwBg69atqFmzJkxMTFCjRg2sX79elGHq1KmoVq0aihUrhsqVK2PWrFlIT08X1Vm0aBFsbW1hbm6OoUOH4t27d/m+t927d6Nbt27ZylNSUrB3716MGjUKXbt2VehMyfnz59GyZUuYmpqifPnyGDt2LFJSUuT7d+zYgYYNG8Lc3BxlypRBv3798OzZM/ln06ZNGwBAyZIlRX8lTU1NxdixY2FjYwMTExM0b94cv//+u/x5P5wh/+WXX9CwYUMYGxvjzJkzOV4utWXLFtSuXRvGxsaws7ODt7e3fF+pUqXQtGlTBAUF5fteNcXgwYNx7tw57N69G1FRUejduzc6deqEu3fvSh2NtFRR7O8+nI367+O/A05F3+uHs9cvX75E//79YW1tDVNTU1StWlU+qK9UqRIAwMnJCTKZTHSglNfn8t/Ps0WLFjA1NUWjRo1w584d/P7772jYsCHMzMzQqVMnPH/+XN7u48vLs7KysHjxYlSpUgXGxsZwcHDAwoUL5fs///xzlClTBiEhIfl+nlJi30eaqCj1n//tLy0tLSGTyURlu3btwmeffQYjIyNUr14d27dvl7f9MHDv0aMHZDKZfPvPP/9E9+7dYWtrCzMzMzRq1Ai//vprnrm08djtU2hk3ycQFZL09HTBzMxMGD9+vPDu3btc6wEQSpUqJWzatEmIiYkRZs6cKejr6wvR0dGCIAhCbGysAECoWLGiEBwcLNy/f194/Pix8P333wt2dnbysuDgYMHKykoIDAyUP/eCBQuEc+fOCbGxscKhQ4cEW1tbYfHixfL9e/bsEYyMjIRNmzYJt2/fFmbMmCGYm5sLdevWzTVvQkKCIJPJhIsXL2bbt3nzZqFhw4aCIAjC4cOHhYoVKwpZWVny/adPnxYACC9fvhQEQRCioqIEMzMzYcWKFcKdO3eEc+fOCU5OTsKgQYNEz3n06FHhzz//FC5cuCA0adJEcHV1FQRBEDIyMoTg4GABgBATEyPExcUJr169EgRBEMaOHSvY29sLR48eFf744w9h4MCBQsmSJYV//vlHlKVOnTrC8ePHhXv37gkvXrwQ5syZI3r/69evF0xMTISVK1cKMTExwqVLl4QVK1aI3veUKVOE1q1b5/qZSQmAEBISIt++d++eIJPJhMePH4vqtWvXTvD19S3016Oioaj1dwMHDhS6d++e52ei6Hu9du2aIAiC4OXlJdSrV0/4/fffhdjYWOHEiRPCoUOHBEEQhEuXLgkAhF9//VWIi4uT92P5fS4fXqNGjRrCsWPHhOjoaKFJkyZC/fr1hdatWwtnz54Vrl69KlSpUkXw9PTM9f1NmTJFKFmypBAYGCjcu3dPOHPmjLBp0ybR++3Tp4+o75Ya+z7SFkWt//xg69atgqWlpXz7wIEDgqGhobBu3TohJiZG8Pf3F/T19YVTp04JgiAIz549EwAIW7duFeLi4oRnz54JgiAIkZGRwoYNG4SoqCjhzp07wowZMwQTExPhwYMH8ueuUKGCVh27fQpt6fs46KZCtX//fqFkyZKCiYmJ0LRpU8HX11e4fv26qA4A0cGOIAjCF198IYwaNUoQhH870ZUrV4rqlC9fXti1a5eobMGCBYKzs3OueZYsWSI0aNBAvu3s7Jzja+fViV67dk0AIDx8+DDbvqZNm8pzpqenC6VLlxZOnDgh3//xoHvAgAHCiBEjRM9x5swZQU9PT3j79m2Or//h4PP169c5PqcgCEJycrJgaGgo7Ny5U16WlpYm2NvbC0uWLBG1Cw0NFT3/x4Nue3t7YcaMGbl+HoIgCKtWrRIqVqyYZx2pfNwZ7t27VwAgFC9eXPQwMDAQ+vTpIwjCv9+5vB5eXl4KvR4VHUWpvxs4cKCgr6+f7fdo/vz5BX6vHwbdbm5uwuDBg3PM8XHdD/L7XD60++GHH+T7g4KCBADCyZMn5WV+fn5C9erVRe/vw6A7KSlJMDY2zjbI/tiECRM06gCWfR9pk6LUf37w8aC7adOmwvDhw0V1evfuLXTu3Fm+rejvWa1atYQ1a9bIt3MadGvysdun0Ja+j/d0U6Hq1asXunTpgjNnzuDChQs4duwYlixZgh9++EE0WYSzs7OonbOzc7YJcxo2bCj/9/Pnz/Ho0SMMHToUw4cPl5dnZGSI7sXbv38/Vq5ciXv37iE5ORkZGRmwsLCQ77916xY8PT2zvfbp06dzfU9v374FAJiYmIjKY2JicOnSJRw4cAAAYGBggK+++gpbtmxB+/btc3yuK1eu4N69e9i5c6e8TBAEZGVlITY2FjVr1sS1a9cwd+5cREZGIiEhAVlZWQCAhw8folatWjk+759//on09HQ0a9ZMXmZoaIjGjRvj1q1borr//Vw/9uzZMzx58gTt2rXLtQ7w/h6kN2/e5FlHU2RlZUFfXx9XrlyBvr6+aN+He9nLli2b7XP6mJT3bZJmKkr9HQC0adMGAQEBojIrK6tsz5/fe/1g1KhR6NWrF65evQoXFxe4u7ujadOmuWZT9HMBgDp16sj/bWtrC+D9JeH/Lftw287Hbt26hdTUVK3vB9n3kSYrav1nTm7dupVtlvNmzZph1apVebZLSUnBvHnzcOTIETx58gQZGRl4+/YtHj58mGc7Te+zCoum9n0cdFOhMzExQYcOHdChQwfMnj0bw4YNw5w5cxSaofG/ihcvLv/3h4Hnpk2b8MUXX4jqffiFunjxIvr27Yt58+ahY8eOsLS0xO7du+Hv7/9J76d06dIA3t9/aG1tLS/fvHkzMjIyULZsWXmZIAgwNDTEy5cvc/xlzcrKwsiRIzF27Nhs+xwcHJCSkgIXFxe4uLhgx44dsLa2xsOHD9GxY0ekpaXlmvH9H96yf4aCIOT5uX5M0Qk9EhISRJ+FJnNyckJmZiaePXuGFi1a5FjH0NAQNWrUUHMy0gVFpb/7kLFKlSoFfs6P3+sHrq6uePDgAX766Sf8+uuvaNeuHby8vLBs2bIc6yvyuXzw34mUPrz+x2Ufnu9jutIPsu8jTVeU+s/cKHLc9rHJkyfjl19+wbJly1ClShWYmpriyy+/zPM4EdD8PquwaGrfx4nUSOVq1aolmigMeN/hfbyd15ff1tYWZcuWxf3791GlShXR48OEO+fOnUOFChUwY8YMNGzYEFWrVsWDBw9Ez1OzZs0cXzsvn332GSwsLBAdHS0vy8jIwLZt2+Dv74/IyEj54/r166hQoYLoTPZ/1a9fH3/88Ue291ClShUYGRnh9u3bePHiBRYtWoQWLVqgRo0a2c7GGBkZAQAyMzPlZR/anz17Vl6Wnp6Oy5cvF2iWSnNzc1SsWDHfJcRu3rwJJycnhZ9X1ZKTk+U/AwCIjY1FZGQkHj58iGrVqqF///7w8PDAgQMHEBsbi99//x2LFy/G0aNHC/31qGjTxf6uIAr6Xq2trTFo0CDs2LEDK1euxPfffw8g535Okc+lMFStWhWmpqZa0Q+y7yNdUtT6z5o1a4qO24D3k+3+97jN0NBQ1A8CwJkzZzBo0CD06NFDPqnjX3/9le/raUKfVVi0su8r8AXpRLl48eKF0KZNG2H79u3C9evXhfv37wt79+4VbG1thSFDhsjrARBKly4tbN68WYiJiRFmz54t6OnpCX/88YcgCLnfy7dp0ybB1NRUPsFXVFSUsGXLFsHf318QBEEIDQ0VDAwMhKCgIOHevXvCqlWrBCsrK9H9M7t37xaMjY1Fr53fxBiCIAg9e/YUJk6cKN8OCQkRjIyM5JOY/df06dOFevXqCYKQ/f7r69evC6ampsLo0aOFa9euCXfu3BEOHjwoeHt7C4LwftIMIyMjYfLkycKff/4pHDx4UKhWrZro8/j7778FmUwmBAYGCs+ePZPf6z1u3DjB3t5e+Pnnn0UTqSUkJOSY5YOP7+kODAwUTExMhFWrVgl37twRrly5IqxevVrUpkKFCsK2bdvy/MzU6cN7+/gxcOBAQRDe398+e/ZsoWLFioKhoaFQpkwZoUePHkJUVJRKXo90X1Hq7wTh/T3PnTp1EuLi4kSP58+fK/1eZ82aJfyvvfuHZfWL4zj+VDyahwqlA5GqCBqLf0NDJMTQjTAQYTEbGgxExHDj32ohhMmgNhWTTWIgadIwmBArsfuXkM8d/O6TW9fP9bu/+9zW7fu1nqfJOafpJ99vOac7Ozs6Pz/X6empOjs7FQqFJL3ckWFZlubm5nR9fW1n7c/25a39fCv7Xp+tfH2R2pcvX+T1erWxsaGLiwsdHR0lnRO/vb2VZVk6ODh4dy+dRvbhM8q0/Pzmde7EYjGZpqmVlRWdnZ3ZF6nt7+/bz1RXV2t4eFhXV1d2PdfT06OGhgYdHx/r5OREXV1dys/P18jIiP26t850p1vt9n98xuyj6cZv8/DwoMnJSTU1NamgoEC5ubkKBoOanp7W3d2d/ZxhGFpeXlY4HJbb7VYgENDW1pY9/m8hKkmbm5tqaGhQTk6OvF6v2tratL29bY+Pj4+ruLhYHo9H/f39WlxcTAo4SZqfn5fP55PH49HQ0JAmJiZ+GqJ7e3sqKyvT8/OzJKmzszPpoovvJRIJGYahRCLxZrEXj8cVDofl8XiUl5enuro6zc/P2+PRaFQVFRVyu91qaWnR7u7uD/sxMzOjkpISuVwu+wN/f3+vSCQin88nt9ut1tZWxeNx+zUfbbolaXV1VcFgUKZpqrS0VJFIxB47PDxUYWFh0nsKZJpMyjvppSl9q+D4/jKy/7rW2dlZ1dbWyrIsFRUVqbu7W5eXl/bz6+vr8vv9ysrKUnt7+4f25Xc13c/Pz5qbm1MgEJBpmiovL9fCwoI9Ho1Gk9YO4OMyLT+/eZ070ssvxlRWVso0TdXU1PzQFO/u7qqqqkrZ2dkKBAL2ujs6OmRZlvx+v5aWltTe3v5u003tlnou6Z/DoMAf4nK5jFgslvSbqOlOktHc3GyMjo4aAwMDqZ5OSvX19RmNjY3G1NRUqqcCpL1MyrvPuNZfFQqFjNHRUWNwcDDVUwH+Wp8xU9K1XqR2Sz3OdAMf4HK5jLW1NePp6SnVU0mpx8dHo76+3hgbG0v1VAA4hLx7383NjdHb25tWBTWA9JCO+Untlh74Szf+uM/4zSUA/IpMyrtMWisA55Ep+JvQdAMAAAAA4BD+vRwAAAAAAIfQdAMAAAAA4BCabgAAAAAAHELTDQAAAACAQ2i6AQAAAABwCE03AAAAAAAOoekGAAAAAMAhNN0AAAAAADiEphsAAAAAAId8BeuEAPif6qADAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFUCAYAAAAzu2SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCWklEQVR4nO3de3wPV+L/8fdH5CYkdU2CJKKUxDUSKkK1q6S0Sktd6rpCV+OWpq1K1b2ldtFQpVikWiW6qrRVhFWltJTEqlsvaKwm61JEWCHJ/P7w8/nuRxI+IfEx8no+HvN4mDNnzpzJKX07zsxYDMMwBAAAAJhIKUd3AAAAACgsQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwA2Mliseizzz5zeBt307Fjx2SxWJSSknJPtgeg5CLEAiix+vfvL4vFkmf75Zdf8q2flpam9u3b29X2+PHj1bhx4ztq437k5+entLQ01a9fX5L09ddfy2Kx6Ny5c47tGADTKe3oDgCAIz3xxBNavHixTVnlypVt9q9cuSIXFxf5+Pjc8fWKog0zc3JyKvE/AwBFg5lYACWaq6urfHx8bLY2bdpo6NChio2NVaVKldS2bVtJeZcC/Pvf/1aPHj1UoUIFeXh4KCwsTN9//70SEhI0YcIE7d271zq7m5CQkG8b+/bt05/+9Ce5u7urYsWKeuGFF5SZmWk93r9/f3Xu3FnTpk2Tr6+vKlasqCFDhujq1au3vLe4uDg1b948T3nDhg01btw46/7ixYsVFBQkNzc31a1bV3PmzLlpu1u2bFGzZs3k6uoqX19fjRo1StnZ2dbjubm5mjp1qmrVqiVXV1f5+/vrrbfekmS7nODYsWN67LHHJEnly5eXxWJR//79tWTJElWsWFFZWVk21+3SpYv69u17y/sGUDIwEwsA+fjggw/04osv6ttvv5VhGHmOZ2ZmqnXr1qpWrZrWrFkjHx8f7dmzR7m5uerevbt+/PFHrVu3Ths3bpQkeXl55Wnj0qVLeuKJJ9S8eXPt2rVLJ0+e1MCBAzV06FBr6JWkzZs3y9fXV5s3b9Yvv/yi7t27q3Hjxho0aNBN76FXr156++239euvv+rBBx+UJO3fv1/79u3TP/7xD0nSggULNG7cOM2ePVshISFKTk7WoEGD5OHhoX79+uVp88SJE+rQoYM1bB46dEiDBg2Sm5ubxo8fL+laeF6wYIHeeecdtWzZUmlpaTp06FCetvz8/LRy5Up16dJFhw8flqenp9zd3eXi4qLhw4drzZo1eu655yRJp0+f1hdffKF169bd9J4BlCAGAJRQ/fr1M5ycnAwPDw/r1rVrV6N169ZG48aN89SXZKxatcowDMOYN2+eUa5cOePMmTP5tj1u3DijUaNGN21j/vz5Rvny5Y3MzEzr8S+//NIoVaqUkZ6ebu1jQECAkZ2dba3z3HPPGd27d7frHhs2bGhMnDjRuh8XF2c0bdrUuu/n52d8/PHHNudMmjTJCA8PNwzDMI4ePWpIMpKTkw3DMIzXX3/dqFOnjpGbm2ut/9577xlly5Y1cnJyjIyMDMPV1dVYsGBBvv25sb3NmzcbkoyzZ8/a1HvxxReN9u3bW/fj4+ONmjVr2lwXQMnGcgIAJdpjjz2mlJQU6zZr1ixJUlhY2E3PS0lJUUhIiCpUqHDb1z548KAaNWokDw8Pa1lERIRyc3N1+PBha1m9evXk5ORk3ff19dXJkyftukavXr20dOlSSZJhGFq2bJl69eolSTp16pSOHz+uqKgolS1b1rq9+eab+vXXXwvsc3h4uCwWi02fMzMz9e9//1sHDx5UVlaW2rRpY/8PIh+DBg3Shg0bdOLECUnXljxcfxAPACSWEwAo4Tw8PFSrVq18y2/G3d39jq9tGEaBoex/y52dnfMcy83Ntesazz//vEaNGqU9e/bov//9r44fP64ePXpIkrWNBQsW6OGHH7Y5739D8636bPz/5RYWi6VIfi6SFBISokaNGmnJkiWKjIzUvn379PnnnxdJ2wDuD8zEAsBtaNiwoVJSUvTHH3/ke9zFxUU5OTk3bSM4OFgpKSm6ePGitezbb79VqVKl9NBDDxVJP6tXr65HHnlES5cu1dKlS/X444/L29tbkuTt7a1q1arpyJEjqlWrls0WGBhYYJ+3b99us054+/btKleunKpVq6batWvL3d1dmzZtsqt/Li4ukpTvz2rgwIFavHixFi1apMcff1x+fn6FvX0A9zFCLADchp49e8rHx0edO3fWt99+qyNHjmjlypXasWOHJKlGjRo6evSoUlJSdPr06TxP2kvX/qnfzc1N/fr1048//qjNmzdr2LBh6tOnjzVoFoVevXpp+fLl+uSTT9S7d2+bY+PHj9eUKVM0c+ZM/fTTT9q3b58WL16sGTNm5NtWdHS0jh8/rmHDhunQoUNavXq1xo0bp9jYWJUqVUpubm567bXXNHLkSC1ZskS//vqrvvvuOy1cuDDf9gICAmSxWPTFF1/o1KlTNm9m6NWrl06cOKEFCxZowIABRfbzAHB/IMQCwG1wcXHRhg0bVKVKFXXo0EENGjTQ22+/bf1n+C5duuiJJ57QY489psqVK2vZsmV52ihTpozWr1+vP/74Q02bNlXXrl3Vpk0bzZ49u0j7+txzz+nMmTO6dOmSOnfubHNs4MCB+vvf/66EhAQ1aNBArVu3VkJCQoEzsdWqVdPatWu1c+dONWrUSIMHD1ZUVJTeeOMNa50xY8bo5Zdf1tixYxUUFKTu3bsXuIa3WrVqmjBhgkaNGiVvb28NHTrUeszT01NdunRR2bJl8/QbACyGkc+7YwAAuAe0bdtWQUFB1gfuAOA6QiwA4J7zxx9/aMOGDerVq5cOHDigOnXqOLpLAO4xvJ0AAExq69atat++fYHH/3d9qdk0adJEZ8+e1dSpUwmwAPLFTCwAmNR///tf63tU85Pfq8MA4H5BiAUAAIDp8HYCAAAAmA4hFgAAAKbDg135yM3N1e+//65y5crxnW4AAIC7yDAMXbhwQVWrVlWpUgXPtxJi8/H777/zeUMAAAAHOn78uKpXr17gcUJsPsqVKyfp2g/P09PTwb0BAAAoOTIyMuTn52fNYwUhxObj+hICT09PQiwAAIAD3GpJJw92AQAAwHQIsQAAADAdQiwAAABMhzWxAEqcnJwcXb161dHdwB1ydnaWk5OTo7sBwEEIsQBKDMMwlJ6ernPnzjm6KygiDzzwgHx8fHinN1ACEWIBlBjXA2yVKlVUpkwZgo+JGYahS5cu6eTJk5IkX19fB/cIwN1GiAVQIuTk5FgDbMWKFR3dHRQBd3d3SdLJkydVpUoVlhYAJQwPdgEoEa6vgS1TpoyDe4KidH08WeMMlDyEWAAlCksI7i+MJ1ByEWIBAABgOqyJBYD73LFjxxQYGKjk5GQ1btzY0d2x0b9/f507d06fffaZo7sC3HeSO9i3/j9k7Zli7knxIMQCKPGyDrrc1eu5Bl0pVP3+/fvrgw8+yFMeGRmpdevW3fJ8Pz8/paWlqVKlSrese7cD78yZM2UYRrFfB8D9hxALACbwxBNPaPHixTZlrq6udp3r5OQkHx+f4ujWHfPy8nJ0FwCYFGtiAcAEXF1d5ePjY7OVL19e0rWHm+bOnav27dvL3d1dgYGB+uSTT6znHjt2TBaLRSkpKZKks2fPqlevXqpcubLc3d1Vu3Zta0AODAyUJIWEhMhisejRRx+1trN48WIFBQXJzc1NdevW1Zw5c/JcY8WKFWrVqpXc3d3VtGlT/fTTT9q1a5fCwsJUtmxZPfHEEzp16pT1vP79+6tz587W/dzcXE2dOlW1atWSq6ur/P399dZbbxX1jxPAfYCZWAC4D4wZM0Zvv/22Zs6cqQ8//FA9e/ZU/fr1FRQUlG/dAwcO6KuvvlKlSpX0yy+/6L///a8kaefOnWrWrJk2btyoevXqycXl2lKLBQsWaNy4cZo9e7ZCQkKUnJysQYMGycPDQ/369bO2PW7cOMXHx8vf318DBgxQz5495enpqZkzZ6pMmTLq1q2bxo4dq7lz5+Z7H3FxcVqwYIHeeecdtWzZUmlpaTp06FAx/MQAmB0hFgBM4IsvvlDZsmVtyl577TWNGTNGkvTcc89p4MCBkqRJkyYpKSlJ7777rs1s6XWpqakKCQlRWFiYJKlGjRrWY5UrV5YkVaxY0WYJwqRJkzR9+nQ9++yzkq7N2B44cEDz5s2zCbGvvPKKIiMjJUkjRoxQz549tWnTJkVEREiSoqKilJCQkO89XrhwQTNnztTs2bOtbT744INq2bKlfT8kACUKIRYATOCxxx7LM3tZoUIF66/Dw8NtjoWHh1uXD9zoxRdfVJcuXbRnzx61a9dOnTt3VosWLQq89qlTp3T8+HFFRUVp0KBB1vLs7Ow8a1obNmxo/bW3t7ckqUGDBjZl1z8Ve6ODBw8qKytLbdq0KbAvAHAdIRYATMDDw0O1atUq1DkFfQigffv2+u233/Tll19q48aNatOmjYYMGaJp06blWz83N1fStSUFDz/8sM2xGz/16uzsnOf6N5Zdb+9G1z8jCwD24MEuALgPfPfdd3n269atW2D9ypUrq3///vroo48UHx+v+fPnS5J1DWxOTo61rre3t6pVq6YjR46oVq1aNtv1B8GKQu3ateXu7q5NmzYVWZsA7l/MxAKACWRlZSk9Pd2mrHTp0tZ3v37yyScKCwtTy5YttXTpUu3cuVMLFy7Mt62xY8cqNDRU9erVU1ZWlr744gvrA2BVqlSRu7u71q1bp+rVq8vNzU1eXl4aP368hg8fLk9PT7Vv315ZWVn64YcfdPbsWcXGxhbJPbq5uem1117TyJEj5eLiooiICJ06dUr79+9XVFRUkVwDwP2DEAsAJrBu3Tr5+vralNWpU8f65P6ECRO0fPlyRUdHy8fHR0uXLlVwcHC+bbm4uCguLk7Hjh2Tu7u7WrVqpeXLl0u6FoxnzZqliRMnauzYsWrVqpW+/vprDRw4UGXKlNHf/vY3jRw5Uh4eHmrQoIFiYmKK9D7HjBmj0qVLa+zYsfr999/l6+urwYMHF+k1ANwfLAafSskjIyNDXl5eOn/+vDw9PR3dHQBF4PLlyzp69KgCAwPl5ubm6O4UKYvFolWrVtm8b7WkuJ/HFbhTZv3srL05jDWxAAAAMB1CLAAAAEyHNbEAYHKsCgNQEjETCwAAANMhxAIAAMB0CLEAAAAwHUIsAAAATIcQCwAAANMhxAIAAMB0CLEAYHJff/21LBaLzp075+iuFGj8+PFq3Lixo7sB4D7Ce2IBlHj2fpqxqNzuJx63b9+uVq1aqW3btlq3bl0R98rW119/rccee0xnz57VAw88cMftvfLKKxo2bNiddwwA/j9mYgHAJBYtWqRhw4Zp27ZtSk1NdXR37GIYhrKzs1W2bFlVrHh3/7IA4P5GiAUAE7h48aJWrFihF198UU899ZQSEhJuWn/79u165JFH5O7uLj8/Pw0fPlwXL160Hv/oo48UFhamcuXKycfHR88//7xOnjwpSTp27Jgee+wxSVL58uVlsVjUv39/SVJWVpaGDx+uKlWqyM3NTS1bttSuXbus7V5f2rB+/XqFhYXJ1dVVW7duzXc5waJFi1SvXj25urrK19dXQ4cOvfMfFIASw+Ehds6cOQoMDJSbm5tCQ0O1devWAut++umnatu2rSpXrixPT0+Fh4dr/fr1NnUSEhJksVjybJcvXy7uWwGAYpOYmKg6deqoTp066t27txYvXlzg52b37dunyMhIPfvss/rXv/6lxMREbdu2zSYkXrlyRZMmTdLevXv12Wef6ejRo9ag6ufnp5UrV0qSDh8+rLS0NM2cOVOSNHLkSK1cuVIffPCB9uzZo1q1aikyMlJ//PGHTR9GjhypKVOm6ODBg2rYsGGePs6dO1dDhgzRCy+8oH379mnNmjWqVatWUfyoAJQQDl0Tm5iYqJiYGM2ZM0cRERGaN2+e2rdvrwMHDsjf3z9P/W+++UZt27bV5MmT9cADD2jx4sXq2LGjvv/+e4WEhFjreXp66vDhwzbnurm5Ffv9AEBxWbhwoXr37i1JeuKJJ5SZmalNmzbp8ccfz1P3b3/7m55//nnFxMRIkmrXrq1Zs2apdevWmjt3rtzc3DRgwABr/Zo1a2rWrFlq1qyZMjMzVbZsWVWoUEGSVKVKFeua2IsXL2ru3LlKSEhQ+/btJUkLFixQUlKSFi5cqFdffdXa5sSJE9W2bdsC7+fNN9/Uyy+/rBEjRljLmjZtens/HAAlkkNnYmfMmKGoqCgNHDhQQUFBio+Pl5+fn+bOnZtv/fj4eI0cOVJNmzZV7dq1NXnyZNWuXVuff/65TT2LxSIfHx+bDQDM6vDhw9q5c6d69OghSSpdurS6d++uRYsW5Vt/9+7dSkhIUNmyZa1bZGSkcnNzdfToUUlScnKyOnXqpICAAJUrV06PPvqoJN10re2vv/6qq1evKiIiwlrm7OysZs2a6eDBgzZ1w8LCCmzn5MmT+v3339WmTRu77h8A8uOwmdgrV65o9+7dGjVqlE15u3bttH37drvayM3N1YULF6wzBtdlZmYqICBAOTk5aty4sSZNmmQzU3ujrKwsZWVlWfczMjIKcScAULwWLlyo7OxsVatWzVpmGIacnZ119uzZPPVzc3P1l7/8RcOHD89zzN/fXxcvXlS7du3Url07ffTRR6pcubJSU1MVGRmpK1euFNiP68sXLBZLnvIbyzw8PApsx93dvcBjAGAvh83Enj59Wjk5OfL29rYp9/b2Vnp6ul1tTJ8+XRcvXlS3bt2sZXXr1lVCQoLWrFmjZcuWyc3NTREREfr5558LbGfKlCny8vKybn5+frd3UwBQxLKzs7VkyRJNnz5dKSkp1m3v3r0KCAjQ0qVL85zTpEkT7d+/X7Vq1cqzubi46NChQzp9+rTefvtttWrVSnXr1rU+1HWdi4uLJCknJ8dadv38bdu2WcuuXr2qH374QUFBQXbfU7ly5VSjRg1t2rSpsD8OALBy+INd9vyNPj/Lli3T+PHjlZiYqCpVqljLmzdvrt69e6tRo0Zq1aqVVqxYoYceekjvvvtugW3FxcXp/Pnz1u348eO3f0MAUIS++OILnT17VlFRUapfv77N1rVrVy1cuDDPOa+99pp27NihIUOGKCUlRT///LPWrFljfU+rv7+/XFxc9O677+rIkSNas2aNJk2aZNNGQECALBaLvvjiC506dUqZmZny8PDQiy++qFdffVXr1q3TgQMHNGjQIF26dElRUVGFuq/x48dr+vTpmjVrln7++Wft2bPnpn9OA8CNHBZiK1WqJCcnpzyzridPnswzO3ujxMRERUVFacWKFfk+1PC/SpUqpaZNm950JtbV1VWenp42GwDcCxYuXKjHH39cXl5eeY516dJFKSkp2rNnj015w4YNtWXLFv38889q1aqVQkJCNGbMGPn6+kqSKleurISEBH3yyScKDg7W22+/rWnTptm0Ua1aNU2YMEGjRo2St7e39c0Gb7/9trp06aI+ffqoSZMm+uWXX7R+/XqVL1++UPfVr18/xcfHa86cOapXr56eeuqpm/45DQA3shgFvaPlLnj44YcVGhqqOXPmWMuCg4PVqVMnTZkyJd9zli1bpgEDBmjZsmXq3LnzLa9hGIaaNWumBg0aFPgQxI0yMjLk5eWl8+fPE2iB+8Tly5d19OhR6yv9cH9gXIGC2fs1wtv9imBxsTeHOfQVW7GxserTp4/CwsIUHh6u+fPnKzU1VYMHD5Z07Z/5T5w4oSVLlki6FmD79u2rmTNnqnnz5tZZXHd3d+ssxYQJE9S8eXPVrl1bGRkZmjVrllJSUvTee+855iYBAABQ5BwaYrt3764zZ85o4sSJSktLU/369bV27VoFBARIktLS0mxe9zJv3jxlZ2dryJAhGjJkiLW8X79+1q/XnDt3Ti+88ILS09Pl5eWlkJAQffPNN2rWrNldvTcAAAAUH4cuJ7hXsZwAuP/wz873J8YVKNj9vpzA4W8nAAAAAAqLEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAPKoUaOG4uPjHd0NACiQQz92AAD3AucGsXf1elf3zbC7rsViuenx//3YS0Hnr1q1yq7PdAOAmRBiAeAelpaWZv11YmKixo4dq8OHD1vL3N3dHdEtAHA4lhMAwD3Mx8fHunl5eclisdiUffzxx3rwwQfl4uKiOnXq6MMPP7SeW6NGDUnSM888I4vFYt3/9ddf1alTJ3l7e6ts2bJq2rSpNm7c6IC7A0qO5A4Vb7mhcAixAGBSq1at0ogRI/Tyyy/rxx9/1F/+8hf9+c9/1ubNmyVJu3btkiQtXrxYaWlp1v3MzEx16NBBGzduVHJysiIjI9WxY0elpqY67F4AoLBYTgAAJjVt2jT1799f0dHRkqTY2Fh99913mjZtmh577DFVrlxZkvTAAw/Ix8fHel6jRo3UqFEj6/6bb76pVatWac2aNRo6dOjdvQkAuE3MxAKASR08eFARERE2ZRERETp48OBNz7t48aJGjhyp4OBgPfDAAypbtqwOHTrETCwAU2EmFgBM7Ma3FxiGccs3Grz66qtav369pk2bplq1asnd3V1du3bVlStXirOrAFCkmIkFAJMKCgrStm3bbMq2b9+uoKAg676zs7NycnJs6mzdulX9+/fXM888owYNGsjHx0fHjh27G10GgCLDTCwAmNSrr76qbt26qUmTJmrTpo0+//xzffrppzZvGqhRo4Y2bdqkiIgIubq6qnz58qpVq5Y+/fRTdezYURaLRWPGjFFubq4D7wQACo+ZWAAwqc6dO2vmzJn629/+pnr16mnevHlavHixHn30UWud6dOnKykpSX5+fgoJCZEkvfPOOypfvrxatGihjh07KjIyUk2aNHHQXQDA7bEYhmE4uhP3moyMDHl5een8+fPy9PR0dHcAFIHLly/r6NGjCgwMlJubm6O7gyLCuMIs7HkPbMjaM3f9msVx3Ttlbw5jJhYAAACmQ4gFAACA6fBgVwmWddDFrnquQbx2BwAA3FsIsfeIogyUzg1i7Worc4Vd1YqUvfd54OVydtUrynU8jlg7ZNb1SgAAOBohFrdkb9BqdrzfLesUdXC2N7Bf3TejaC8MAAAcihCLEsG+GWD7Zn8JzubG+1DvL4wnUHIRYk3GvlnRW8+IAiWNi4uLSpUqpd9//12VK1eWi4vLLT/PinuXYRi6cuWKTp06pVKlSsnFxb6lSgDuH4RYoJgU5exvUXPE+wodrVSpUgoMDFRaWpp+//13R3cHRaRMmTLy9/dXqVK8bAcoaQixgAmwhKFouLi4yN/fX9nZ2crJyXF0d3CHnJycVLp0aWbUgRKKEAvcR+x9+4OjZoDvBRaLRc7OznJ2dnZ0VwAAd4AQC+CuKIlLGAAAxYcQCyBfLGEAANzLWAkPAAAA02EmFsAdYR0uAMARHD4TO2fOHAUGBsrNzU2hoaHaunVrgXU//fRTtW3bVpUrV5anp6fCw8O1fv36PPVWrlyp4OBgubq6Kjg4WKtWrSrOWwBQRJwbxNq1AQDg0JnYxMRExcTEaM6cOYqIiNC8efPUvn17HThwQP7+/nnqf/PNN2rbtq0mT56sBx54QIsXL1bHjh31/fffKyQkRJK0Y8cOde/eXZMmTdIzzzyjVatWqVu3btq2bZsefvjhu32LAIqBvbO/B162b/aXB8oAwHwcGmJnzJihqKgoDRw4UJIUHx+v9evXa+7cuZoyZUqe+vHx8Tb7kydP1urVq/X5559bQ2x8fLzatm2ruLg4SVJcXJy2bNmi+Ph4LVu2rHhvCAAA3NPs+/Ilf7k1A4eF2CtXrmj37t0aNWqUTXm7du20fft2u9rIzc3VhQsXVKFCBWvZjh079NJLL9nUi4yMzBOA/1dWVpaysrKs+xkZGXZdH8D9wZ4lCpkrZtvVlmvQlTvtDgDADg5bE3v69Gnl5OTI29vbptzb21vp6el2tTF9+nRdvHhR3bp1s5alp6cXus0pU6bIy8vLuvn5+RXiTgAAAHC3OfzBrhs/F2gYhl2fEFy2bJnGjx+vxMREValS5Y7ajIuL0/nz563b8ePHC3EHAAAAuNsctpygUqVKcnJyyjNDevLkyTwzqTdKTExUVFSUPvnkEz3++OM2x3x8fArdpqurq1xdXQt5BwCQl73r7Zod72dXPXuWMbCEAUBJ5LCZWBcXF4WGhiopKcmmPCkpSS1atCjwvGXLlql///76+OOP9eSTT+Y5Hh4enqfNDRs23LRNAAAAmItD304QGxurPn36KCwsTOHh4Zo/f75SU1M1ePBgSdf+mf/EiRNasmSJpGsBtm/fvpo5c6aaN29unXF1d3eXl5eXJGnEiBF65JFHNHXqVHXq1EmrV6/Wxo0btW3bNsfcJAAAAIqcQ0Ns9+7ddebMGU2cOFFpaWmqX7++1q5dq4CAAElSWlqaUlNTrfXnzZun7OxsDRkyREOGDLGW9+vXTwkJCZKkFi1aaPny5XrjjTc0ZswYPfjgg0pMTOQdsQBKPHs/FHF134xi7gkA3DmHf3Y2Ojpa0dHR+R67Hkyv+/rrr+1qs2vXruratesd9gwASiZ7PibBOlwAjubwtxMAAAAAhUWIBQAAgOk4fDkBAODO2PtaL8m+13o5gj1LGCSWMQD4P4RYAECxsfdhsswVxdwRAPcdlhMAAADAdJiJBQAADmHvUpiQtWeKuScwI2ZiAQAAYDqEWAAAAJgOywkAAIV2L78RgS+TASUDIRYAUCLxWi/A3FhOAAAAANMhxAIAAMB0WE4AADAN+9bi3rtfJgNQdAixAAAUAXseKLuXHybjna0wG5YTAAAAwHSYiQUA4Cbu5deJASUZIRYAgLvE3td6HXi5nF31+Kd9lGQsJwAAAIDpMBMLAIBJmf1hMuBOMBMLAAAA0yHEAgAAwHQKFWJ37typnJwc675hGDbHs7KytGLFiqLpGQAAAFCAQoXY8PBwnTnzf09Cenl56ciRI9b9c+fOqWfPnkXXOwAAACAfhQqxN8683rhfUBkAAABQlIr87QQWi6WomwQAALfJ3nfTSva9mxb3H7O+5YJXbAEAALvZE3ikezP04P5S6BB74MABpaenS7q2dODQoUPKzMyUJJ0+fbpoewcAAADko9Ahtk2bNjbrXp966ilJ15YRGIbBcgIAAAAUu0KF2KNHjxZXPwAAAAC7FSrEBgQEFFc/AAAAALsVKsT+8ccfunTpkqpXr24t279/v6ZNm6aLFy+qc+fOev7554u8kwAAoORyxMNkPMB27yvUe2KHDBmiGTP+b7BOnjypVq1aadeuXcrKylL//v314YcfFnknAQAAgP9VqBD73Xff6emnn7buL1myRBUqVFBKSopWr16tyZMn67333itUB+bMmaPAwEC5ubkpNDRUW7duLbBuWlqann/+edWpU0elSpVSTExMnjoJCQmyWCx5tsuXLxeqXwAAALh3FSrEpqenKzAw0Lr/z3/+U88884xKl762KuHpp5/Wzz//bHd7iYmJiomJ0ejRo5WcnKxWrVqpffv2Sk1Nzbd+VlaWKleurNGjR6tRo0YFtuvp6am0tDSbzc3Nze5+AQCAO5N10OWWG3AnChViPT09de7cOev+zp071bx5c+u+xWJRVlaW3e3NmDFDUVFRGjhwoIKCghQfHy8/Pz/NnTs33/o1atTQzJkz1bdvX3l5eRXYrsVikY+Pj80GAACA+0ehQmyzZs00a9Ys5ebm6h//+IcuXLigP/3pT9bjP/30k/z8/Oxq68qVK9q9e7fatWtnU96uXTtt3769MN3KIzMzUwEBAapevbqeeuopJScn37R+VlaWMjIybDYAAADcuwoVYidNmqTVq1fL3d1d3bt318iRI1W+fHnr8eXLl6t169Z2tXX69Gnl5OTI29vbptzb29v6RbDbUbduXSUkJGjNmjVatmyZ3NzcFBERcdNlDlOmTJGXl5d1szeIAwAAwDEK9Yqtxo0b6+DBg9q+fbt8fHz08MMP2xzv0aOHgoODC9WBG7/wdadf/WrevLnNEoeIiAg1adJE7777rmbNmpXvOXFxcYqN/b9XaWRkZBBkAQDAXcVrvQqn0J+drVy5sjp16pTvsSeffNLudipVqiQnJ6c8s64nT57MMzt7J0qVKqWmTZvedCbW1dVVrq6uRXZNAAAAFK9ChdglS5bYVa9v3763rOPi4qLQ0FAlJSXpmWeesZYnJSUVGJJvh2EYSklJUYMGDYqsTQAAADhWoUJs//79VbZsWZUuXVqGYeRbx2Kx2BViJSk2NlZ9+vRRWFiYwsPDNX/+fKWmpmrw4MGSrv0z/4kTJ2zCc0pKiqRrD2+dOnVKKSkpcnFxsS5jmDBhgpo3b67atWsrIyNDs2bNUkpKSqHfXwsAAIB7V6FCbFBQkP7zn/+od+/eGjBggBo2bHhHF+/evbvOnDmjiRMnKi0tTfXr19fatWsVEBAg6drHDW58Z2xISIj117t379bHH3+sgIAAHTt2TJJ07tw5vfDCC0pPT5eXl5dCQkL0zTffqFmzZnfUVwAAANw7ChVi9+/fr++//16LFi3SI488olq1aikqKkq9evWSp6fnbXUgOjpa0dHR+R5LSEjIU1bQDPB177zzjt55553b6gsAAADMoVCv2JKkhx9+WPPmzVNaWpqGDx+uFStWyNfXV7169SrUhw4AAACKEl8JK1kKHWKvc3d3V9++fTVhwgQ1a9ZMy5cv16VLl4qybwAAAEC+bivEnjhxQpMnT1bt2rXVo0cPNW3aVPv377f58AEAAABQXAq1JnbFihVavHixtmzZosjISE2fPl1PPvmknJyciqt/AAAAQB6FCrE9evSQv7+/XnrpJXl7e+vYsWP5vrpq+PDhRdZBAAAA4EaFCrH+/v6yWCz6+OOPC6xjsVgIsQAAAChWhQqx19/FejMnTpy43b4AAAAAdrnttxPcKD09XcOHD1etWrWKqkkAAAAgX4UKsefOnVOvXr1UuXJlVa1aVbNmzVJubq7Gjh2rmjVraseOHVq0aFFx9RUAAACQVMjlBK+//rq++eYb9evXT+vWrdNLL72kdevW6fLly/rqq6/UunXr4uonAAAAYFWoEPvll19q8eLFevzxxxUdHa1atWrpoYceUnx8fDF1DwAAAMirUMsJfv/9dwUHB0uSatasKTc3Nw0cOLBYOgYAAAAUpFAhNjc3V87OztZ9JycneXh4FHmnAAAAgJsp1HICwzDUv39/ubq6SpIuX76swYMH5wmyn376adH1EAAAALhBoUJsv379bPZ79+5dpJ0BAAAA7FGoELt48eLi6gcAAABgtyL72AEAAABwtxBiAQAAYDqFWk4AAACA/5N10MXOmuWKtR8lETOxAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB2Hh9g5c+YoMDBQbm5uCg0N1datWwusm5aWpueff1516tRRqVKlFBMTk2+9lStXKjg4WK6urgoODtaqVauKqfcAAABwBIeG2MTERMXExGj06NFKTk5Wq1at1L59e6WmpuZbPysrS5UrV9bo0aPVqFGjfOvs2LFD3bt3V58+fbR371716dNH3bp10/fff1+ctwIAAIC7yKEhdsaMGYqKitLAgQMVFBSk+Ph4+fn5ae7cufnWr1GjhmbOnKm+ffvKy8sr3zrx8fFq27at4uLiVLduXcXFxalNmzaKj48vxjsBAADA3eSwEHvlyhXt3r1b7dq1sylv166dtm/fftvt7tixI0+bkZGRd9QmAAAA7i2lHXXh06dPKycnR97e3jbl3t7eSk9Pv+1209PTC91mVlaWsrKyrPsZGRm3fX0AAAAUP4c/2GWxWGz2DcPIU1bcbU6ZMkVeXl7Wzc/P746uDwAAgOLlsBBbqVIlOTk55ZkhPXnyZJ6Z1MLw8fEpdJtxcXE6f/68dTt+/PhtXx8AAADFz2Eh1sXFRaGhoUpKSrIpT0pKUosWLW673fDw8Dxtbtiw4aZturq6ytPT02YDAADAvctha2IlKTY2Vn369FFYWJjCw8M1f/58paamavDgwZKuzZCeOHFCS5YssZ6TkpIiScrMzNSpU6eUkpIiFxcXBQcHS5JGjBihRx55RFOnTlWnTp20evVqbdy4Udu2bbvr9wcAAIDi4dAQ2717d505c0YTJ05UWlqa6tevr7Vr1yogIEDStY8b3PjO2JCQEOuvd+/erY8//lgBAQE6duyYJKlFixZavny53njjDY0ZM0YPPvigEhMT9fDDD9+1+wIAAEDxcmiIlaTo6GhFR0fneywhISFPmWEYt2yza9eu6tq16512DQAAAPcoh7+dAAAAACgsQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADAdQiwAAABMhxALAAAA0yHEAgAAwHQIsQAAADCd0o7uAAAAAOyXddDFzprlirUfjsZMLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTcXiInTNnjgIDA+Xm5qbQ0FBt3br1pvW3bNmi0NBQubm5qWbNmnr//fdtjickJMhiseTZLl++XJy3AQAAgLvIoSE2MTFRMTExGj16tJKTk9WqVSu1b99eqamp+dY/evSoOnTooFatWik5OVmvv/66hg8frpUrV9rU8/T0VFpams3m5uZ2N24JAAAAd0FpR158xowZioqK0sCBAyVJ8fHxWr9+vebOnaspU6bkqf/+++/L399f8fHxkqSgoCD98MMPmjZtmrp06WKtZ7FY5OPjc1fuAQAAAHefw2Zir1y5ot27d6tdu3Y25e3atdP27dvzPWfHjh156kdGRuqHH37Q1atXrWWZmZkKCAhQ9erV9dRTTyk5ObnobwAAAAAO47AQe/r0aeXk5Mjb29um3NvbW+np6fmek56enm/97OxsnT59WpJUt25dJSQkaM2aNVq2bJnc3NwUERGhn3/+ucC+ZGVlKSMjw2YDAADAvcvhD3ZZLBabfcMw8pTdqv7/ljdv3ly9e/dWo0aN1KpVK61YsUIPPfSQ3n333QLbnDJliry8vKybn5/f7d4OAAAA7gKHhdhKlSrJyckpz6zryZMn88y2Xufj45Nv/dKlS6tixYr5nlOqVCk1bdr0pjOxcXFxOn/+vHU7fvx4Ie8GAAAAd5PDQqyLi4tCQ0OVlJRkU56UlKQWLVrke054eHie+hs2bFBYWJicnZ3zPccwDKWkpMjX17fAvri6usrT09NmAwAAwL3LocsJYmNj9fe//12LFi3SwYMH9dJLLyk1NVWDBw+WdG2GtG/fvtb6gwcP1m+//abY2FgdPHhQixYt0sKFC/XKK69Y60yYMEHr16/XkSNHlJKSoqioKKWkpFjbBAAAgPk59BVb3bt315kzZzRx4kSlpaWpfv36Wrt2rQICAiRJaWlpNu+MDQwM1Nq1a/XSSy/pvffeU9WqVTVr1iyb12udO3dOL7zwgtLT0+Xl5aWQkBB98803atas2V2/PwAAABQPh4ZYSYqOjlZ0dHS+xxISEvKUtW7dWnv27CmwvXfeeUfvvPNOUXUPAAAA9yCHv50AAAAAKCxCLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdAixAAAAMB1CLAAAAEyHEAsAAADTIcQCAADAdBweYufMmaPAwEC5ubkpNDRUW7duvWn9LVu2KDQ0VG5ubqpZs6bef//9PHVWrlyp4OBgubq6Kjg4WKtWrSqu7gMAAMABHBpiExMTFRMTo9GjRys5OVmtWrVS+/btlZqamm/9o0ePqkOHDmrVqpWSk5P1+uuva/jw4Vq5cqW1zo4dO9S9e3f16dNHe/fuVZ8+fdStWzd9//33d+u2AAAAUMwcGmJnzJihqKgoDRw4UEFBQYqPj5efn5/mzp2bb/33339f/v7+io+PV1BQkAYOHKgBAwZo2rRp1jrx8fFq27at4uLiVLduXcXFxalNmzaKj4+/S3cFAACA4uawEHvlyhXt3r1b7dq1sylv166dtm/fnu85O3bsyFM/MjJSP/zwg65evXrTOgW1CQAAAPMp7agLnz59Wjk5OfL29rYp9/b2Vnp6er7npKen51s/Oztbp0+flq+vb4F1CmpTkrKyspSVlWXdP3/+vCQpIyOjUPd0J7IyDbvqZV69dT0jJ+uWdSQpowivae91HXFNe69bUq5p73VLyjXtvS7/7Tr+mvZel/+OHH9Ne69bUq5p73Xv6f9272Imun4tw7hF/w0HOXHihCHJ2L59u035m2++adSpUyffc2rXrm1MnjzZpmzbtm2GJCMtLc0wDMNwdnY2Pv74Y5s6H330keHq6lpgX8aNG2dIYmNjY2NjY2Nju0e248eP3zRLOmwmtlKlSnJycsozQ3ry5Mk8M6nX+fj45Fu/dOnSqlix4k3rFNSmJMXFxSk2Nta6n5ubqz/++EMVK1aUxWJRRkaG/Pz8dPz4cXl6ehbqPnHvYTzvP4zp/Ycxvb8wnvef4hxTwzB04cIFVa1a9ab1HBZiXVxcFBoaqqSkJD3zzDPW8qSkJHXq1Cnfc8LDw/X555/blG3YsEFhYWFydna21klKStJLL71kU6dFixYF9sXV1VWurq42ZQ888ECeep6envzmu48wnvcfxvT+w5jeXxjP+09xjamXl9ct6zgsxEpSbGys+vTpo7CwMIWHh2v+/PlKTU3V4MGDJV2bIT1x4oSWLFkiSRo8eLBmz56t2NhYDRo0SDt27NDChQu1bNkya5sjRozQI488oqlTp6pTp05avXq1Nm7cqG3btjnkHgEAAFD0HBpiu3fvrjNnzmjixIlKS0tT/fr1tXbtWgUEBEiS0tLSbN4ZGxgYqLVr1+qll17Se++9p6pVq2rWrFnq0qWLtU6LFi20fPlyvfHGGxozZowefPBBJSYm6uGHH77r9wcAAIDi4dAQK0nR0dGKjo7O91hCQkKestatW2vPnj03bbNr167q2rVrUXRP0rXlBuPGjcuz5ADmxHjefxjT+w9jen9hPO8/98KYWgzjVu8vAAAAAO4tDv1iFwAAAHA7CLEAAAAwHUIsAAAATIcQewtz5sxRYGCg3NzcFBoaqq1btzq6S7DDlClT1LRpU5UrV05VqlRR586ddfjwYZs6hmFo/Pjxqlq1qtzd3fXoo49q//79DuoxCmvKlCmyWCyKiYmxljGm5nPixAn17t1bFStWVJkyZdS4cWPt3r3bepwxNZfs7Gy98cYbCgwMlLu7u2rWrKmJEycqNzfXWocxvXd988036tixo6pWrSqLxaLPPvvM5rg9Y5eVlaVhw4apUqVK8vDw0NNPP61///vfxdJfQuxNJCYmKiYmRqNHj1ZycrJatWql9u3b27z2C/emLVu2aMiQIfruu++UlJSk7OxstWvXThcvXrTW+etf/6oZM2Zo9uzZ2rVrl3x8fNS2bVtduHDBgT2HPXbt2qX58+erYcOGNuWMqbmcPXtWERERcnZ21ldffaUDBw5o+vTpNh+bYUzNZerUqXr//fc1e/ZsHTx4UH/961/1t7/9Te+++661DmN677p48aIaNWqk2bNn53vcnrGLiYnRqlWrtHz5cm3btk2ZmZl66qmnlJOTU/QdvulHaUu4Zs2aGYMHD7Ypq1u3rjFq1CgH9Qi36+TJk4YkY8uWLYZhGEZubq7h4+NjvP3229Y6ly9fNry8vIz333/fUd2EHS5cuGDUrl3bSEpKMlq3bm2MGDHCMAzG1Ixee+01o2XLlgUeZ0zN58knnzQGDBhgU/bss88avXv3NgyDMTUTScaqVaus+/aM3blz5wxnZ2dj+fLl1jonTpwwSpUqZaxbt67I+8hMbAGuXLmi3bt3q127djbl7dq10/bt2x3UK9yu8+fPS5IqVKggSTp69KjS09NtxtfV1VWtW7dmfO9xQ4YM0ZNPPqnHH3/cppwxNZ81a9YoLCxMzz33nKpUqaKQkBAtWLDAepwxNZ+WLVtq06ZN+umnnyRJe/fu1bZt29ShQwdJjKmZ2TN2u3fv1tWrV23qVK1aVfXr1y+W8XX4xw7uVadPn1ZOTo68vb1tyr29vZWenu6gXuF2GIah2NhYtWzZUvXr15ck6xjmN76//fbbXe8j7LN8+XLt2bNHu3btynOMMTWfI0eOaO7cuYqNjdXrr7+unTt3avjw4XJ1dVXfvn0ZUxN67bXXdP78edWtW1dOTk7KycnRW2+9pZ49e0ri96mZ2TN26enpcnFxUfny5fPUKY7sRIi9BYvFYrNvGEaeMtzbhg4dqn/961/atm1bnmOMr3kcP35cI0aM0IYNG+Tm5lZgPcbUPHJzcxUWFqbJkydLkkJCQrR//37NnTtXffv2tdZjTM0jMTFRH330kT7++GPVq1dPKSkpiomJUdWqVdWvXz9rPcbUvG5n7IprfFlOUIBKlSrJyckpz98cTp48medvIbh3DRs2TGvWrNHmzZtVvXp1a7mPj48kMb4msnv3bp08eVKhoaEqXbq0SpcurS1btmjWrFkqXbq0ddwYU/Pw9fVVcHCwTVlQUJD14Vl+n5rPq6++qlGjRqlHjx5q0KCB+vTpo5deeklTpkyRxJiamT1j5+PjoytXrujs2bMF1ilKhNgCuLi4KDQ0VElJSTblSUlJatGihYN6BXsZhqGhQ4fq008/1T//+U8FBgbaHA8MDJSPj4/N+F65ckVbtmxhfO9Rbdq00b59+5SSkmLdwsLC1KtXL6WkpKhmzZqMqclERETkefXdTz/9pICAAEn8PjWjS5cuqVQp22jh5ORkfcUWY2pe9oxdaGionJ2dbeqkpaXpxx9/LJ7xLfJHxe4jy5cvN5ydnY2FCxcaBw4cMGJiYgwPDw/j2LFjju4abuHFF180vLy8jK+//tpIS0uzbpcuXbLWefvttw0vLy/j008/Nfbt22f07NnT8PX1NTIyMhzYcxTG/76dwDAYU7PZuXOnUbp0aeOtt94yfv75Z2Pp0qVGmTJljI8++shahzE1l379+hnVqlUzvvjiC+Po0aPGp59+alSqVMkYOXKktQ5jeu+6cOGCkZycbCQnJxuSjBkzZhjJycnGb7/9ZhiGfWM3ePBgo3r16sbGjRuNPXv2GH/605+MRo0aGdnZ2UXeX0LsLbz33ntGQECA4eLiYjRp0sT6iibc2yTluy1evNhaJzc31xg3bpzh4+NjuLq6Go888oixb98+x3UahXZjiGVMzefzzz836tevb7i6uhp169Y15s+fb3OcMTWXjIwMY8SIEYa/v7/h5uZm1KxZ0xg9erSRlZVlrcOY3rs2b96c7/87+/XrZxiGfWP33//+1xg6dKhRoUIFw93d3XjqqaeM1NTUYumvxTAMo+jndwEAAIDiw5pYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYAAAAmA4hFgAAAKZDiAUAAIDpEGIBAABgOoRYALiLvv76a1ksFp07d87RXbkvWCwWffbZZ47uBgAHIMQCKBH69+8vi8WSZ/vll1+K7ZqPPvqoYmJibMpatGihtLQ0eXl5Fdt1AaAkKO3oDgDA3fLEE09o8eLFNmWVK1fOU+/KlStycXEplj64uLjIx8enWNq+meK8JwBwBGZiAZQYrq6u8vHxsdmcnJz06KOPaujQoYqNjVWlSpXUtm1bSdKMGTPUoEEDeXh4yM/PT9HR0crMzLRp89tvv1Xr1q1VpkwZlS9fXpGRkTp79qz69++vLVu2aObMmdZZ32PHjuW7nGDlypWqV6+eXF1dVaNGDU2fPt3mGjVq1NDkyZM1YMAAlStXTv7+/po/f/5N77Wgezpw4IA6dOigsmXLytvbW3369NHp06dtzhs2bJhiYmJUvnx5eXt7a/78+bp48aL+/Oc/q1y5cnrwwQf11Vdf2Vxvy5YtatasmVxdXeXr66tRo0YpOztbkjRv3jxVq1ZNubm5Nuc8/fTT6tevn3X/888/V2hoqNzc3FSzZk1NmDDB2oYk/fzzz3rkkUfk5uam4OBgJSUl3fRnAOD+RogFAEkffPCBSpcurW+//Vbz5s2TJJUqVUqzZs3Sjz/+qA8++ED//Oc/NXLkSOs5KSkpatOmjerVq6cdO3Zo27Zt6tixo3JycjRz5kyFh4dr0KBBSktLU1pamvz8/PJcd/fu3erWrZt69Oihffv2afz48RozZowSEhJs6k2fPl1hYWFKTk5WdHS0XnzxRR06dKhQ95SWlqbWrVurcePG+uGHH7Ru3Tr95z//Ubdu3fKcV6lSJe3cuVPDhg3Tiy++qOeee04tWrTQnj17FBkZqT59+ujSpUuSpBMnTqhDhw5q2rSp9u7dq7lz52rhwoV68803JUnPPfecTp8+rc2bN1uvcfbsWa1fv169evWSJK1fv169e/fW8OHDdeDAAc2bN08JCQl66623JEm5ubl69tln5eTkpO+++07vv/++XnvtNXuGFsD9ygCAEqBfv36Gk5OT4eHhYd26du1qGIZhtG7d2mjcuPEt21ixYoVRsWJF637Pnj2NiIiIAuu3bt3aGDFihE3Z5s2bDUnG2bNnDcMwjOeff95o27atTZ1XX33VCA4Otu4HBAQYvXv3tu7n5uYaVapUMebOnXvTa994T2PGjDHatWtnU3b8+HFDknH48GHreS1btrQez87ONjw8PIw+ffpYy9LS0gxJxo4dOwzDMIzXX3/dqFOnjpGbm2ut89577xlly5Y1cnJyDMMwjKefftoYMGCA9fi8efMMHx8fIzs72zAMw2jVqpUxefJkm759+OGHhq+vr2EYhrF+/XrDycnJOH78uPX4V199ZUgyVq1aVeDPAcD9izWxAEqMxx57THPnzrXue3h4WH8dFhaWp/7mzZs1efJkHThwQBkZGcrOztbly5d18eJFeXh4KCUlRc8999wd9engwYPq1KmTTVlERITi4+OVk5MjJycnSVLDhg2txy0Wi3x8fHTy5Mmbtn3jPe3evVubN29W2bJl89T99ddf9dBDD+W5lpOTkypWrKgGDRpYy7y9vSXJev2DBw8qPDxcFovF5h4yMzP173//W/7+/urVq5deeOEFzZkzR66urlq6dKl69Ohhvb/du3dr165d1plXScrJydHly5d16dIlHTx4UP7+/qpevbr1eHh4+E3vH8D9jRALoMTw8PBQrVq1Cjz2v3777Td16NBBgwcP1qRJk1ShQgVt27ZNUVFRunr1qiTJ3d39jvtkGIZN+LtediNnZ2ebfYvFkmeN6Y1uvKfc3Fx17NhRU6dOzVPX19f3ptf637Lr/b1+/Zvdw/Xyjh07Kjc3V19++aWaNm2qrVu3asaMGTZ9mzBhgp599tk8fXNzc8v3Z3LjNQGULIRYAMjHDz/8oOzsbE2fPl2lSl17fGDFihU2dRo2bKhNmzZpwoQJ+bbh4uKinJycm14nODhY27Ztsynbvn27HnroIessZVFp0qSJVq5cqRo1aqh06aL74z84OFgrV660CbPbt29XuXLlVK1aNUnXAv+zzz6rpUuX6pdfftFDDz2k0NBQm74dPny4wL9kBAcHKzU1Vb///ruqVq0qSdqxY0eR3QMA8+HBLgDIx4MPPqjs7Gy9++67OnLkiD788EO9//77NnXi4uK0a9cuRUdH61//+pcOHTqkuXPnWp/2r1Gjhr7//nsdO3ZMp0+fznfm9OWXX9amTZs0adIk/fTTT/rggw80e/ZsvfLKK0V+T0OGDNEff/yhnj17aufOnTpy5Ig2bNigAQMG3DJs30x0dLSOHz+uYcOG6dChQ1q9erXGjRun2NhY618AJKlXr1768ssvtWjRIvXu3dumjbFjx2rJkiUaP3689u/fr4MHDyoxMVFvvPGGJOnxxx9XnTp11LdvX+3du1dbt27V6NGjb7vPAMyPEAsA+WjcuLFmzJihqVOnqn79+lq6dKmmTJliU+ehhx7Shg0btHfvXjVr1kzh4eFavXq1dZbzlVdekZOTk4KDg1W5cmWlpqbmuU6TJk20YsUKLV++XPXr19fYsWM1ceJE9e/fv8jvqWrVqvr222+Vk5OjyMhI1a9fXyNGjJCXl5dN2CysatWqae3atdq5c6caNWqkwYMHKyoqyhpAr/vTn/6kChUq6PDhw3r++edtjkVGRuqLL75QUlKSmjZtqubNm2vGjBkKCAiQdO1NEatWrVJWVpaaNWumgQMH2qyfBVDyWIz8FhoBAAAA9zBmYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOkQYgEAAGA6hFgAAACYDiEWAAAApkOIBQAAgOn8P2quuvQ5d35KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAFUCAYAAADfx5T7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABabUlEQVR4nO3deXhU5fn/8c8s2QgQQAIEEsIu+yJBSShYFUFQi1S/UBdACyqiZXODIhWkitaFgCWIqFCrInXfsIAtCIiKxAQXNn8QSpGkJAIJa5LJnN8fYYYMM4FMmDV5v64r10XunDnnuWe5Ofd5zjljMgzDEAAAAAAAuCDmYA8AAAAAAICagAYbAAAAAAAfoMEGAAAAAMAHaLABAAAAAPABGmwAAAAAAHyABhsAAAAAAB+gwQYAAAAAwAdosAEAAAAA8AEabAAAAAAAfIAGGyFj3bp1MplMOnLkSLCHUqlZs2apZ8+ewR4GAGjv3r0ymUzKzs4O9lDc3H777brhhhuCPQwACLhWrVopPT092MNAENFgI+A2bdoki8Wia665xu/b8nXT/sADD+hf//qXT9YFoHa7/fbbZTKZ3H6qWhuTkpKUm5urrl27nnfZQDfj8+fP17JlywKyLQDwxFN9rfhz++23n/fx77//fkDGiprFGuwBoPZ55ZVX9Ic//EEvvfSS9u3bp5YtWwZ7SOdlGIbKyspUt25d1a1bN9jDAVBDXHPNNVq6dKlLLCoqqkqPtVgsatasmT+GdcHi4uKCPQQAtVxubq7z3ytWrNCf/vQn7dy50xmLiYkJxrBQCzCDjYA6fvy4/vGPf+iee+7Rddddd94Zjk2bNmnAgAGKiYlRUlKSJk6cqOPHjzv//tprryklJUX16tVTs2bNdMstt+jgwYOSymdsrrjiCklSw4YNXY5WFhcXa+LEiWrSpImio6P1q1/9St98841zvY6Z71WrViklJUVRUVHasGGDx1PEX3nlFXXp0kVRUVFKSEjQfffdd+FPFIBaISoqSs2aNXP5adiwoaTy2ZNFixZpyJAhiomJUevWrfXWW285H3v2rPThw4d16623Kj4+XjExMWrfvr2zeW/durUkqVevXjKZTPr1r3/tXM/SpUvVqVMnRUdHq2PHjsrIyHDbxj/+8Q/1799fMTEx6tOnj3bt2qVvvvlGKSkpqlu3rq655hrl5+c7H3f2KeJ2u11PPfWU2rVrp6ioKLVs2VKPP/64r59OAHCqWFfj4uJkMplcYm+88Ybatm2ryMhIXXzxxfr73//ufGyrVq0kScOHD5fJZHL+vnv3bg0bNkxNmzZV3bp11adPH3322WdByA6hjAYbAbVixQpdfPHFuvjii3Xbbbdp6dKlMgzD47Lff/+9Bg8erN/+9rf67rvvtGLFCm3cuNGlgS0pKdGcOXO0detWvf/++8rJyXE20UlJSXrnnXckSTt37lRubq7mz58vSXrooYf0zjvv6G9/+5u+/fZbtWvXToMHD9ahQ4dcxvDQQw9p7ty52r59u7p37+42xkWLFunee+/VXXfdpe+//14ffvih2rVr54unCgA0c+ZM3Xjjjdq6datuu+023Xzzzdq+fXuly27btk2ffvqptm/frkWLFqlx48aSpM2bN0uSPvvsM+Xm5urdd9+VJC1ZskQzZszQ448/ru3bt+uJJ57QzJkz9be//c1l3Y8++qgeeeQRffvtt7Jarbr55pv10EMPaf78+dqwYYN2796tP/3pT5XmMX36dD311FPOMb7xxhtq2rSpL54iAPDae++9p0mTJun+++/XDz/8oLvvvlt33HGH1q5dK0nOSZelS5cqNzfX+fuxY8c0dOhQffbZZ8rKytLgwYN1/fXXa9++fUHLBSHIAAIoLS3NSE9PNwzDMEpLS43GjRsba9asMQzDMNauXWtIMg4fPmwYhmGMGjXKuOuuu1wev2HDBsNsNhsnT570uP7NmzcbkoyjR496XKdhGMaxY8eMiIgI4/XXX3fGSkpKjObNmxt/+ctfXB73/vvvu6z/0UcfNXr06OH8vXnz5saMGTO8fyIA1HpjxowxLBaLERsb6/Lz2GOPGYZhGJKM8ePHuzzmsssuM+655x7DMAwjJyfHkGRkZWUZhmEY119/vXHHHXd43NbZyzokJSUZb7zxhktszpw5RmpqqsvjXnrpJeffly9fbkgy/vWvfzljc+fONS6++GKX3IYNG2YYhmEUFRUZUVFRxpIlS6r4zACAby1dutSIi4tz/p6WlmbceeedLsv83//9nzF06FDn75KM995777zr7ty5s/H88887f09OTjbmzZt3oUNGGOMabATMzp07tXnzZufMidVq1ciRI/XKK69o4MCBbstnZmbq//2//6fXX3/dGTMMQ3a7XTk5OerUqZOysrI0a9YsZWdn69ChQ7Lb7ZKkffv2qXPnzh7HsXv3bpWWlqpfv37OWEREhC699FK3maGUlJRK8zl48KAOHDigq666qupPAgBUcMUVV2jRokUusUaNGjn/nZqa6vK31NTUSm9Uds899+jGG2/Ut99+q0GDBumGG25QWlpapdvOz8/Xf//7X40dO1Z33nmnM26z2dyuoa54Bo9j5rlbt24uMcflOWfbvn27iouLqZUAQsb27dt11113ucT69evnPNOxMsePH9fs2bP18ccf68CBA7LZbDp58iQz2HBBg42Aefnll2Wz2dSiRQtnzDAMRURE6PDhw27L2+123X333Zo4caLb31q2bKnjx49r0KBBGjRokF577TXFx8dr3759Gjx4sEpKSiodh3H6lHSTyeQWPzsWGxtb6Xq4OQaACxUbG+v1ZSVn1ymHIUOG6D//+Y8++eQTffbZZ7rqqqt077336plnnvG4vOOA5JIlS3TZZZe5/M1isbj8HhER4bb9s2OO9Z2NWgkgFFVlP/BsDz74oFatWqVnnnlG7dq1U0xMjG666aZz7nei9uEabASEzWbTq6++qmeffVbZ2dnOn61btyo5Odllltrhkksu0Y8//qh27dq5/URGRmrHjh0qKCjQk08+qf79+6tjx45uMyiRkZGSpLKyMmfM8fiNGzc6Y6WlpdqyZYs6depU5Zzq1aunVq1a8bVdAPzmq6++cvu9Y8eOlS4fHx+v22+/Xa+99prS09P14osvSvJcC5s2baoWLVpoz549bjXWcVM0X2jfvr1iYmKolQBCRqdOnVz2A6XyG+tW3A+MiIhwqZmStGHDBt1+++0aPny4unXrpmbNmmnv3r2BGDLCCDPYCIiPP/5Yhw8f1tixY91OPbzpppv08ssva968eS7xhx9+WH379tW9996rO++8U7Gxsdq+fbvWrFmj559/Xi1btlRkZKSef/55jR8/Xj/88IPmzJnjso7k5GSZTCZ9/PHHGjp0qGJiYlS3bl3dc889evDBB9WoUSO1bNlSf/nLX3TixAmNHTvWq7xmzZql8ePHq0mTJhoyZIiOHj2qL774Qn/4wx+q90QBqFWKi4uVl5fnErNarc6bk7311ltKSUnRr371K73++uvavHmzXn75ZY/r+tOf/qTevXurS5cuKi4u1scff+zcWWzSpIliYmL0z3/+U4mJiYqOjlZcXJxmzZqliRMnqn79+hoyZIiKi4u1ZcsWHT58WFOnTvVJjtHR0Xr44Yf10EMPKTIyUv369VN+fr5+/PFHr2suAPjCgw8+qBEjRuiSSy7RVVddpY8++kjvvvuuyx3BHZMo/fr1U1RUlBo2bKh27drp3Xff1fXXXy+TyaSZM2dWevYOai9msBEQL7/8sgYOHOjxu1FvvPFGZWdn69tvv3WJd+/eXZ9//rl++ukn9e/fX7169dLMmTOVkJAgqXymZtmyZXrrrbfUuXNnPfnkk26nQrZo0UKzZ8/WtGnT1LRpU+cdyJ988kndeOONGjVqlC655BL9v//3/7Rq1Srn1+NU1ZgxY5Senq6MjAx16dJF1113nX766Sev1gGg9vrnP/+phIQEl59f/epXzr/Pnj1bb775prp3766//e1vev311yu9v0RkZKSmT5+u7t27a8CAAbJYLHrzzTcllTftCxYs0OLFi9W8eXMNGzZMkjRu3Di99NJLWrZsmbp166bLL79cy5Yt8+kMtlR+h/P7779ff/rTn9SpUyeNHDmy0mu2AcDfbrjhBs2fP19PP/20unTposWLF2vp0qUuX2H47LPPas2aNUpKSlKvXr0kSfPmzVPDhg2Vlpam66+/XoMHD9Yll1wSpCwQqkyGUcl3JAEAgKAxmUx67733XL5PGgAAhDZmsAEAAAAA8AEabAAAAAAAfICbnAEAEIK4ggsAgPDDDDYAAAAAAD5Agw0AAAAAgA/QYAMAAAAA4AM15hpsu92uAwcOqF69ejKZTMEeDoAQZRiGjh49qubNm8tsrh3HGKmPAKqqttVI6iOAqqpqfawxDfaBAweUlJQU7GEACBP//e9/lZiYGOxhBAT1EYC3akuNpD4C8Nb56mONabDr1asnqTzh+vXrB3k0AEJVUVGRkpKSnDWjNqA+Aqiq2lYjqY8Aqqqq9bHGNNiO03rq169PgQRwXrXpVEDqIwBv1ZYaSX0E4K3z1ceaf3ENAAAAAAABQIMNAAAAAIAP1JhTxAFPysrKVFpaGuxhIAgsFousVmutOc0R8Bb1sXaLiIiQxWIJ9jCAkGQYhmw2m8rKyoI9FATBhdZHGmzUWMeOHdP+/ftlGEawh4IgqVOnjhISEhQZGRnsoQAhhfoIk8mkxMRE1a1bN9hDAUJKSUmJcnNzdeLEiWAPBUFyofWRBhs1UllZmfbv3686deooPj6eWcxaxjAMlZSUKD8/Xzk5OWrfvn2t+D5XoCqojzAMQ/n5+dq/f7/at2/PTDZwmt1uV05OjiwWi5o3b67IyEhqZC3ji/pIg40aqbS0VIZhKD4+XjExMcEeDoIgJiZGERER+s9//qOSkhJFR0cHe0hASKA+QpLi4+O1d+9elZaW0mADp5WUlMhutyspKUl16tQJ9nAQJBdaH5nSQY3GUcfajVlroHLUx9qN1x+oHPsPtduF1kdmsFErzJkzR7m5uX5Zd0JCgmbOnOmXdQOAv/mzPkrUSADhjX1IeIsGG7VCbm6uPvl6m+rENfbpek8UFujay6q2bKtWrRQdHe08Vblv37564YUXXJYZN26cxowZo/79+1e6nnXr1qmkpESDBg2SJB04cEC33nqr1q5dW70kfGzv3r1KSUlRQUFBtR5/dj6zZs3SH//4R25UBviJv+qjRI30hBoJhBf2IQOnptRHGuwA8PfswNk4GuZZnbjGShv9sE/XuenVp7xa/u2331bXrl09/q2srEwvvfTSedexbt06HTt2zFkcmzdvHjKF0RfOzmf27Nl64IEH2HkMIGpW7eOP+ihRI/2BGlm7UI9DA/uQ4SFU6iMNdgD4c3bgbN4cDUNwLVu2TG+++aaaNGmibdu26fnnn9f06dP1wAMP6LrrrlNhYaHuv/9+ff311zKbzerdu7cmTpyoF154QXa7XZ999pl++9vfavTo0S5H+/75z3/qj3/8o2w2mxo2bKhFixapc+fOWrdunSZPnqy0tDR98cUXstls+tvf/qaUlBSP49u3b59SUlK0f/9+Z2EaM2aMcxzffPONHn74YRUVFclut2vGjBm68cYb3dZT2XgkaenSpZo/f74Mw1BERITefvttSXLmM378eElSWlqazGazPvzwQ/Xp00c5OTnOm4/cfPPNGjBggO655x7fvkC1GDULoYAaSY0E9RieUR9Duz7SYAeIv2YHzubt0TAE1k033eQ8vWfMmDHauHGjsrKy1L59e7dlJ0+erLp162rr1q0ym83Kz89XfHy8xo8fr2PHjumZZ56RVH46jcPBgwd12223ae3aterWrZtef/11jRgxQj/88IMk6ccff9RLL72kjIwMvfDCC5oxY4ZWrVrlcawtW7ZUz5499eGHH+qmm27SsWPH9NFHH+m5557TkSNHdPfdd+uTTz5RQkKCCgoK1Lt3b/Xr189lHecaz7p16/T4449rw4YNSkhIcH7f5MGDB52Pf+GFF7R48WJt2rTJ+V2EAwcO1BtvvKFx48YpLy9Pn332mZYsWVLNVwSVoWYhGKiR1Ei4ox5Doj6GU33kFnlAAL399tvKzs5Wdna2GjZsqF/96lceC6Mkffzxx3rwwQedd7KMj48/7/q//vpr9ezZU926dZMk3Xrrrdq/f7/z9LKLL77YebQxNTVVu3fvPuf67rjjDi1btkyS9I9//ENXXnmlLrroIm3atEl79uzRkCFD1LNnTw0cOFCGYWjnzp1VHs8nn3yi0aNHKyEhQZJUp06dKn0lxqRJk7Rw4UJJ0uLFi3XLLbc4CyeA8EaNpEYC8Iz6GD71kRlsIIh8/aE2DMPjVws4YhW/C9pischms51zfcOHD9fEiROVl5enpUuXavr06c7tdO/eXevXr3d7TMWjoecbT3Vceumlio6O1ueff64lS5bo3//+d7XXBSC0USO9R40Eagfqo/cCVR9psFFrnCgs8PnpTycKCyQ18ek6HX7zm9/o6aef1vz5811O76lfv75+/vlnj49JTU3V2LFjtX37dnXq1ElvvvmmEhMT1axZM+3YscPrMURHR+v//u//9Oijj2rPnj0aPHiwpPLrWX766Sf9+9//1pVXXilJys7Odl4XU5XxXH/99fr973+vu+66S82aNXOe3nO2evXqqbCw0OU/kkmTJum2225Tly5d1KFDB6/zAuDKH/XRsV5qJDUSCHfsQ1IfvUGDjVohISHBTzfuaOI8PcXX5s2bpylTpqhr166KjIxUnz59tGTJEg0fPlx///vf1bNnT+cNKhzi4+P197//XbfeeqvKysrUoEED/eMf/7igcdxxxx269NJL9fDDD8tisUiSGjZsqI8++kgPPvigpkyZotLSUrVs2VLvv/++y2PPNZ4BAwbokUce0aBBg2QymRQZGem8QUVF999/v6688krFxMRo9erVatKkiW666Sbdc889uu+++y4oNwD+rI8SNZIaCYQ79iGrr7bWR5NhGIbf1h5ARUVFiouLU2FhoerXrx/s4biYMGGC1u44GLAbVFzRsYkyMjL8vq1QdurUKeXk5Kh169Yup7SgZti8ebNuu+027dixw3l9kSee3gehXCv8xducqVk1G/Wx5qtKjazsfVDbamSo50s9DizqY80XiPrIDDaAsDJu3DitXr1aL7300jmbawCojaiRAOBZoOojDTZQy2VnZ+v22293i48ZM0ZTpkwJ/IDO46WXXgr2EADUItRIAPCM+ugZDTZQy/Xs2VPZ2dnBHgYAhCRqJAB4Rn30jHOHUKPVkFsMoJp4/YHK8fmo3Xj9gcrx+ajdLvT1p8FGjeS4U2FJSUmQR4JgcnxtQ0RERJBHAoQO6iOkM6+/4/0A4Mz+QmVf+4Ta4ULrI6eIo0ayWq2qU6eO8vPzFRERwY1eahnDMHTixAkdPHhQDRo0YAcSqID6CLvdrvz8fNWpU0dWK7uCgIPFYlGDBg108OBBSVKdOnVkMpmCPCoEki/qI1UVNZLJZFJCQoJycnL0n//8J9jDQZA0aNBAzZo1C/YwgJBCfYQkmc1mtWzZkuYBOItjv8HRZKP2udD6SIONGisyMlLt27fnNMhaKiIigplroBLUR0RGRnL2AuCB4yBkkyZNVFpaGuzhIAgutD7SYKNGM5vNLl8QDwAoR30EgMpZLBYO1KNaOHQJAAAAAIAP0GADAAAAAOADNNgAAAAAAPgADTYAAAAAAD5Agw0AAAAAgA/QYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgA9VqsDMyMtS6dWtFR0erd+/e2rBhQ6XLvvvuu7r66qsVHx+v+vXrKzU1VatWrXJb7p133lHnzp0VFRWlzp0767333qvO0AAAAAAACAqvG+wVK1Zo8uTJmjFjhrKystS/f38NGTJE+/bt87j8+vXrdfXVV2vlypXKzMzUFVdcoeuvv15ZWVnOZb788kuNHDlSo0aN0tatWzVq1CiNGDFCX3/9dfUzAwAAQEhhkgZATed1g/3cc89p7NixGjdunDp16qT09HQlJSVp0aJFHpdPT0/XQw89pD59+qh9+/Z64okn1L59e3300Ucuy1x99dWaPn26OnbsqOnTp+uqq65Senp6tRMDAABA6GCSBkBtYPVm4ZKSEmVmZmratGku8UGDBmnTpk1VWofdbtfRo0fVqFEjZ+zLL7/UlClTXJYbPHjwORvs4uJiFRcXO38vKiqSJNlsNtlsNkmS2WyW2WyW3W6X3W53LuuIl5WVyTCM88YtFotMJpNzvRXjklRWVnbOuNlsVoTVcvqvhiw6s25DJtllkkmGzFWI22WScY641VKew9nPga9zcrBarTIMwyVuMplksVjcnvfK4qHyOpFT7cjp7O0CAAKj4iSNVD7BsmrVKi1atEhz5851W/7s/cAnnnhCH3zwgT766CP16tXLuYxjkkaSpk+frs8//1zp6elavny5fxMCAA+8arALCgpUVlampk2busSbNm2qvLy8Kq3j2Wef1fHjxzVixAhnLC8vz+t1zp07V7Nnz3aLZ2VlKTY2VpIUHx+vtm3bKicnR/n5+c5lEhMTlZiYqF27dqmwsNAZb9OmjZo0aaIffvhBJ0+edMY7duyoBg0aKCsry2Vnvnv37oqMjNSWLVtcxpCSkqKSkhJ99913kqQePXqoafIJ7ZUUZynVxdFHncuetFv0/ckGamwtVuuo4854YVmEdp6qr+YRJ9Ui8sxY8m1Ryimuq1ZRxxVvPXOA4eeSGP1cWkdX9Ommbq2bOcfkr5yk8sanT58+Kiws1I4dO5zxmJgY9ejRQwUFBdqzZ48zHhcXp06dOunAgQPav3+/Mx4qrxM51Y6cdu7cKQBAYIXSJA0A+JNXDbaDyWRy+d0wDLeYJ8uXL9esWbP0wQcfqEmTJhe0zunTp2vq1KnO34uKipSUlKRevXqpfv36kspn0CSpdevWSk5Odi7riHfo0MFtxk2Sunbt6jbjJsl5tPTseEpKils8JibGGX/ttde0fle++tySpsKyCGUeb3gmT5XnWGCL0iFbpFv8QGmM8kqjnXH76fje4ljtK67jFl/7zfeyF/1Pd9xxh19zqiguLs4l7njdGjdu7PKfoCPevHlzNWvWzBkPldeJnGpHTnXq1BEAILBCZZImnM6AdKy7nH/PgDTLUITV4jwLMlTPQquJZ9aRU/jkVNWzIL1qsBs3biyLxeJWtA4ePOhW3M62YsUKjR07Vm+99ZYGDhzo8rdmzZp5vc6oqChFRUW5xa1Wq6xW17QcL9TZHE98VeNnr7eqcbvdrlKb40U0qUzuBw4MH8VtZeVvgLPH5OucKjKZTB7jlT3v3sYD9TpVRE41N6fK1g8A8L9gT9KE0xmQktStWzf9a1ue38+AbB99VG2HDNBFdcvHFapnodXEM+vIKXxyOn78uKrCqz3NyMhI9e7dW2vWrNHw4cOd8TVr1mjYsGGVPm758uX6/e9/r+XLl+vaa691+3tqaqrWrFnjcorP6tWrlZaW5s3wACAsZGRk6Omnn1Zubq66dOmi9PR09e/f/7yP++KLL3T55Zera9euys7O9v9AAcBHQmWSJpzOgJTKz4KU5PczIH86VU9ff7peAzrE64477gjZs9Bq4pl15BQ+OTnOeDkfr6dypk6dqlGjRiklJUWpqal68cUXtW/fPo0fP15SeeH6+eef9eqrr0oqb65Hjx6t+fPnq2/fvs4iGBMTo7i4OEnSpEmTNGDAAD311FMaNmyYPvjgA3322WfauHGjt8MDgJDmuItuRkaG+vXrp8WLF2vIkCHatm2bWrZsWenjCgsLNXr0aF111VX63//+F8ARA8CFC5VJmnA6A1JShdNV/XsGpF0mldrK3M6CDLWz0GrimXXkFD45VfUsSK+/pmvkyJFKT0/XY489pp49e2r9+vVauXKl84hEbm6uy9ctLF68WDabTffee68SEhKcP5MmTXIuk5aWpjfffFNLly5V9+7dtWzZMq1YsUKXXXaZt8MDgJDm7VcdOtx999265ZZblJqaGqCRAoBvTZ06VS+99JJeeeUVbd++XVOmTHGbpBk9erRzecckzbPPPuucpMnLy3M5nXTSpElavXq1nnrqKe3YsUNPPfWUPvvsM02ePDnQ6QGApGre5GzChAmaMGGCx78tW7bM5fd169ZVaZ033XSTbrrppuoMBwDCQnXvort06VLt3r1br732mv785z+fdzsXehMfSbJazLLoTLzijXBMFW6QUz4TYnJZ9kxcLjfl8RR33FRHEjdSISdyCoGc/PlVhiNHjtQvv/yixx57TLm5ueratWuVJ2nuvfdeZ3zMmDHO/U3HJM0jjzyimTNnqm3btkzSAAgq7vYDAAFSnbvo/vTTT5o2bZo2bNhQ5VOTLvQmPpJ0RZ9u6hJ72BnPKY5Vvi1aXWIKFWM+s9O+81Q9FZZFqmfsEZdm+vsTcSoxzOpdYR2SlHm8oSJNdnWrUz4D1WbIADWsU54XN1IhJ3IKfk5VvYlPdTFJA6CmMxkVD52GsaKiIsXFxamwsNB5k4pQMWHCBK3dcVBpox/2+7Y2vfqUrujYRBkZGX7fFhCOglkrDhw4oBYtWmjTpk0up3o//vjj+vvf/+6yMyyVz0r17dtXY8eOdZ5COWvWLL3//vvnvMmZpxnspKQk/fLLLy438alsxu2+++7Thp8KlHrr/c64v2awv3rjOQ3oEK+//vWvzCKSEzmFQE5FRUW66KKLQnJ/yh9Cef9RYh8SCCVVrRfMYANAgHh7F92jR49qy5YtysrK0n333Sep/IY3hmHIarVq9erVuvLKK90e54ub+NjK7CrzcJsO++mG+myeli2Pe/6qHEfccVMdiRupVCdOTuRUWdzfN/EBAHjm9U3OAADVU/EuuhWtWbPG4x1v69evr++//17Z2dnOn/Hjx+viiy9WdnY21xgCAACEGA5TAkAAefNVh2azWV27dnV5fJMmTRQdHe0WBwAAQPDRYANAAHl7F10AAACEDxpsAAgwb+6ie7ZZs2Zp1qxZvh8UAAAALhjXYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD3CTMwAAAAA10pw5c5Sbmxuw7SUkJGjmzJkB2x5CDw02AAAAgBopNzdXn3y9TXXiGvt9WycKC3TtZX7fDEIcDTYAAACAGqtOXGOljX7Y79vZ9OpTft8GQh/XYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPsA12AgL3AESAAAAQKijwUZY4A6QAAAAAEIdDTbCBneABAAAABDKuAYbAAAAAAAfoMEGAAAAAMAHaLABAAAAAPABGmwAAAAAAHyABhsAAAAAAB+gwQYAAAAAwAdosAEAAAAA8AG+BxsAAACo5Qr2btf6gzs0YcKEgGwvISFBM2fODMi2gECiwQYAAABqOVvxKf1sjtPaHQf9vq0ThQW69jK/bwYIChpsAAAAAIqoG6e00Q/7fTubXn3K79sAgoVrsAEAAAAA8AEabAAAAAAAfIAGGwAAAAAAH6DBBgAAAADAB2iwAQAAAADwARpsAAAAAAB8gAYbAAAAAAAfoMEGAAAAAMAHrMEeAHyrYO92rT+4QxMmTAjI9hISEjRz5syAbAsAAAAAQhkNdg1jKz6ln81xWrvjoN+3daKwQNde5vfNAAAAAEBYoMGugSLqxilt9MN+386mV5/y+zYAAAAAIFxwDTYAAAAAAD5QrQY7IyNDrVu3VnR0tHr37q0NGzZUumxubq5uueUWXXzxxTKbzZo8ebLbMsuWLZPJZHL7OXXqVHWGBwAAAABAwHndYK9YsUKTJ0/WjBkzlJWVpf79+2vIkCHat2+fx+WLi4sVHx+vGTNmqEePHpWut379+srNzXX5iY6O9nZ4AAAAAAAEhdcN9nPPPaexY8dq3Lhx6tSpk9LT05WUlKRFixZ5XL5Vq1aaP3++Ro8erbi4uErXazKZ1KxZM5cfAAAA1BycBQmgpvOqwS4pKVFmZqYGDRrkEh80aJA2bdp0QQM5duyYkpOTlZiYqOuuu05ZWVkXtD4AAACEDs6CBFAbeHUX8YKCApWVlalp06Yu8aZNmyovL6/ag+jYsaOWLVumbt26qaioSPPnz1e/fv20detWtW/f3uNjiouLVVxc7Py9qKhIkmSz2WSz2SRJZrNZZrNZdrtddrvduawjXlZWJsMwzhu3WCwymUzO9VaMS1JZWdk542azWRFWy+m/GrLozLoNmWSXSSYZMlchbpdJxjniEVarIiOsssjuEjfLkKnC8mUySTI5l3ONy2WMlcUdORmG4fIcmEwmWSwWt+e9snhVXifHc2iR3a85VVTx9fZHToF47zlYrdaAvE7hkNPZ2wUABEbFsyAlKT09XatWrdKiRYs0d+5ct+UdZ0FK0iuvvFLpeh1nQQJAKKjW13SZTCaX3w3DcIt5o2/fvurbt6/z9379+umSSy7R888/rwULFnh8zNy5czV79my3eFZWlmJjYyVJ8fHxatu2rXJycpSfn+9cJjExUYmJidq1a5cKCwud8TZt2qhJkyb64YcfdPLkSWe8Y8eOatCggbKyslx25rt3767IyEht2bLFZQwpKSkqKSnRd999J0nq0aOHmiaf0F5JcZZSXRx91LnsSbtF359soMbWYrWOOu6MF5ZFaOep+moecVItIs+MJd8WpZziumoVdVzx1jMHGH4uidHPpXV03TUD1aptOzWNPSxJyimOVb4tWl1iChVjPjP2nafqqbAsUj1jj7g0mN+fiFOJYVbv0493yDzeUJEmu7rVOfN8JV2dptycnSosLNSOHTuc8ZiYGPXo0UMFBQXas2ePMx4XF6dOnTrpwIED2r9/vzNeldepR48eSmxbooaxh/2aU5lM2iCpXr16Lq+rP3IKxHtPKm9Q+/TpE5DXKRxy2rlzpwAAgeU4C3LatGkucV+eBVlWVqaePXtqzpw56tWrl8dlw2mCxrHucv6doDHLUGREhCJOT9LUpMkMxySNSYZfcyqTWSaTSWaz2ZlXbZ3MqKk5VXWSxqsGu3HjxrJYLG6z1QcPHnSb1b4QZrNZffr00U8//VTpMtOnT9fUqVOdvxcVFSkpKUm9evVS/fr1neuRpNatWys5Odll/ZLUoUMHtxdUkrp27er2gkpyK9aOeEpKils8JibGGX/ttde0fle++tySpsKyCGUeb+hc1jj9IS2wRemQLdItfqA0RnmlZ05zsp+O7y2O1b7iOm7xj//5mSKb7NLQe9Nc4j+ejPNQTKTs4w1cxu6IVxyjI37SsLjEv1qzSb9qd5Hi4uJcngPHwZbGjRurUaNGbvHmzZu7HGmuyuu0cOFCrd+Vr763pPg1J4ejR4/6PadAvPcqCsTrFA451alTR8GWkZGhp59+Wrm5uerSpYvS09PVv39/j8tu3LhRDz/8sHbs2KETJ04oOTlZd999t6ZMmRLgUQNA9YXKWZDhNEEjSd26ddO/tuX5fYKmffRRTRg3WqbIGDWtYZMZjkmaI9Ziv+aUebyREho3VI8ePZx51dbJjJqa0/Hjx1UVXjXYkZGR6t27t9asWaPhw4c742vWrNGwYcO8WdU5GYah7OxsdevWrdJloqKiFBUV5Ra3Wq2yWl3TchwJOZtjh76q8bPXW9W43W5Xqc3xRjA5G76KDB/FS202qdSmsrMur7efPjp3trOXOxP3fEZCxbgjJ5PJ5PE5qOx59zbuOHJUaitzGa8/cqrI3zl54uv3XkWBeJ08CbWcKlt/oDiuQczIyFC/fv20ePFiDRkyRNu2bVPLli3dlo+NjdV9992n7t27KzY2Vhs3btTdd9+t2NhY3XXXXUHIAACqL9hnQYbTBI1UPkkjye8TND+dqqcPX3pVEfFJGnpvWo2azHBMdF16Sx+/55RbcFhbt27VHXfc4deczo6H2mRGTc3JccbL+Xi9pzl16lSNGjVKKSkpSk1N1Ysvvqh9+/Zp/PjxksoL188//6xXX33V+Zjs7GxJ5afw5OfnKzs7W5GRkercubMkafbs2erbt6/at2+voqIiLViwQNnZ2Vq4cKG3wwOAkObtNYi9evVy+c+kVatWevfdd7VhwwYabABhI1TOggynCRpJFU5X9e8EjV0mlZSWyjhrkqYmTGY4JmkcBx/8mZNhGLLb7VV+L9XUyYyamlNVJ2m8brBHjhypX375RY899phyc3PVtWtXrVy50nlEIjc31+1ukBV3DjMzM/XGG28oOTlZe/fulSQdOXJEd911l/Ly8hQXF6devXpp/fr1uvTSS70dHgCELF9cg5iVlaVNmzbpz3/+c6XLXOg1hpJktZhdrkfz1/V4EVaLc5tc50VO5BT8nPx1I8hQOgsSAPypWudKTpgwQRMmTPD4t2XLlrnFKv7n4cm8efM0b9686gwFAMLGhVyDmJiYqPz8fNlsNs2aNcs5A+7JhV5jKElX9OmmLhWuO/PX9XhthgxQwzrl/xVxnRc5kVPwc6rqNYbVwVmQAGqD4F6MCAC1UHWuQdywYYOOHTumr776StOmTVO7du108803e1zWF9cYrv3me53qMMgZ99f1eF99ul4DOsRL4jovciKnUMipqtcYVgdnQQKoDWiwASBALuQaxNatW0sqv6Ps//73P82aNavSBtsX1xjayuwer0fz9bVrpbYy5+mqXOdFThI5VTZGb+P+vsawujgLEkBN53mPCADgcxWvQaxozZo1SktLq/J6DMNwucYaAAAAoYEZbAAIIG+vQVy4cKFatmypjh07Sir/XuxnnnlGf/jDH4KWAwAAADyjwQaAAPL2GkS73a7p06crJydHVqtVbdu21ZNPPqm77747WCkAAHBBCvZu1/qDOyq9XMCX1q9fryNRCX7fDuBAgw0AAebNNYh/+MMfmK0GANQotuJT+tkcp7U7Dvp9W/v/d1gxLeL9vh3AgQYbAAAAQEBF1I1T2uiH/b6dd2f8zu/bACriJmcAAAAAAPgADTYAAAAAAD5Agw0AAAAAgA/QYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgA9ZgDwDhq2Dvdq0/uEMTJkzw+7bWr1+vI1EJft8OAAAAAFQXDTaqzVZ8Sj+b47R2x0G/b2v//w4rpkW837cDAAAAANVFg40LElE3TmmjH/b7dt6d8Tu/bwMAAAAALgTXYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgAzTYAAAAAAD4AA02AAAAAAA+QIMNAAAAAIAP0GADAAAAAOADNNgAAAAAAPgADTYAAAAAAD5Agw0AAAAAgA/QYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgAzTYAAAAAAD4AA02AAAAAAA+YA32AAAAAAAg3BXs3a71B3dowoQJAdleQkKCZs6cGZBtoeposAEAAADgAtmKT+lnc5zW7jjo922dKCzQtZf5fTOoBhpsAAAAAPCBiLpxShv9sN+3s+nVp/y+DVQP12ADAAAAAOADNNgAAAAAAPgAp4gDZ+EGFQAAAACqo1oNdkZGhp5++mnl5uaqS5cuSk9PV//+/T0um5ubq/vvv1+ZmZn66aefNHHiRKWnp7st984772jmzJnavXu32rZtq8cff1zDhw+vzvCAC8INKgAAAABUh9cN9ooVKzR58mRlZGSoX79+Wrx4sYYMGaJt27apZcuWbssXFxcrPj5eM2bM0Lx58zyu88svv9TIkSM1Z84cDR8+XO+9955GjBihjRs36rLL6D4QeNygAgAA32OSBkBN5/U12M8995zGjh2rcePGqVOnTkpPT1dSUpIWLVrkcflWrVpp/vz5Gj16tOLi4jwuk56erquvvlrTp09Xx44dNX36dF111VUeiygAAADCj2OSZsaMGcrKylL//v01ZMgQ7du3z+PyFSdpevTo4XEZxyTNqFGjtHXrVo0aNUojRozQ119/7c9UAKBSXjXYJSUlyszM1KBBg1zigwYN0qZNm6o9iC+//NJtnYMHDz7nOouLi1VUVOTyI0k2m835Y7fbJUl2u91jvKysrEpxwzDc1u2IG4Zx3rjZbFaE1XJ65IYssjt/zCpft6mKcdN54hFWqyIjrG5x81nL63S8YuxM3KhSPDIiIiA5mWUoMiLCmZc/cyqPSyaTye85WWRXhNUis9nst/ee40eSW7ysrMzj56OyeKh8nnyRU7BlZGSodevWio6OVu/evbVhw4ZKl3333Xd19dVXKz4+XvXr11dqaqpWrVoVwNECgG8wSQOgNvDqFPGCggKVlZWpadOmLvGmTZsqLy+v2oPIy8vzep1z587V7Nmz3eJZWVmKjY2VJMXHx6tt27bKyclRfn6+c5nExEQlJiZq165dKiwsdMbbtGmjJk2a6IcfftDJkyed8Y4dO6pBgwbKyspy7qhLUvfu3RUZGaktW7a4jCElJUUlJSX67rvvJEk9evRQ0+QT2ispzlKqi6OPOpc9abfo+5MN1NharNZRx53xwrII7TxVX80jTqpF5Jmx5NuilFNcV62ijiveWuyM/1wSo59L6+i6awaqVdt2ahp7WJKUUxyrfFu0usQUKsZ8Zuw7T9VTYVmkesYekeV00ydJ35+IU4lhVu/Tj3fIPN5QkSa7utU583zFj75ZSz5c5/ec2kcf1YRxo2WKjFHT2MN+zalMJr0lKalZY5fl/ZFTnKVUbYYM0EV1I1VQUOCX954kWSwW9enTR4WFhdqxY4czHhMTox49eqigoEB79uxxxuPi4tSpUycdOHBA+/fvd8ZD5fN0oTnt3LlTweTtZTbr16/X1VdfrSeeeEINGjTQ0qVLdf311+vrr79Wr169gpABAHjPMUkzbdo0l7gvJmmmTJniEhs8eHClDXZxcbGKi8/8v3z2BI0kmc1m58Fvx8HiivGysjLnweJzxS0Wi0wmk9uBXYulfNKl4v+BlcXNZsdcmOGyb2PIJLtMMslwHuw/V7z8EH/lccdkRsTpyYyKcVOF5ctkkmRyTki4xuUyxnPFpTOTGf7MyVQhL5MMv+ZUJrNMJpNzQsifOUlShLX8/SXJL+89SbJarTIMwyVuMplksVjcPh+VxUPp83ShOVV1kqZaNzlzvJgOhmG4xfy9zunTp2vq1KnO34uKipSUlKRevXqpfv36ks4UpdatWys5Odm5rCPeoUMHtxdUkrp27er2gkpy25l1xFNSUtziMTExzvhrr72m9bvy1eeWNBWWRSjzeMMzeZ7+kBbYonTIFukWP1Aao7zSaGfcfjq+tzhW+4rruMU//udnimyyS0PvTXOJ/3gyzkMxkbKPN3AZuyNecYyO+EnD4hL/4NXlUoMEv+f006l6+vClVxURn6Sh96b5NSeH/+YV+D0nkwx99el6DegQr7Fjx0ry/Xuvori4OJe44/PVuHFjNWrUyC3evHlzNWvWzBkPlc/TheZUp04dBVPFGRypfPZl1apVWrRokebOneu2/Nk7iU888YQ++OADffTRRzTYAMJGqEzShNMEjSR169ZN/9qWx2TGBUxmtDid1wlrsV9zyjzeSC0Tm+u3vx3qnOjyV06S1GbIAB0/VP4+D7XJjJo4QbN//34dP35cVeFVg924cWNZLBa3onXw4EG34uaNZs2aeb3OqKgoRUVFucWtVqusVte0HEdCzubYoa9q/Oz1VjVut9tVanO8EUzOhq8iw0fxUptNKrWp7Kyz/+2nj86d7ezlzsQ9H9yoGC8pLVX5SeL+zckuk0pKS2WclZc/cnKOxTA8rseXOUkmldrKZLfbne9PX7/3KjKZTB7jlX0+vI0H6vNUUXVyqmz9geCLGRy73a6jR4+6HEAAgHAR7EmacJqgkconaSQxmVHNnEwy9MHpvK65t5/fc9q3/4BefGulc6LLXzlJ0lefrlf/9o0lhd5kRk2coGnWrJnzjJfz8WpPMzIyUr1799aaNWtc7s64Zs0aDRs2zJtVuUhNTdWaNWtcTvFZvXq10tLSqr1OAAg1vpjBefbZZ3X8+HGNGDGi0mUu9BRISbJazC6ny/nrdEHHfQgkcRoaOZFTCOTkr/tUhMokTThN0Eiq8FoxmVHdyQxHXo6m1t85lXiY6PJ1TpJUajtTP0JtMqMmTtB4M0nj9VTO1KlTNWrUKKWkpCg1NVUvvvii9u3bp/Hjx0sqPzL4888/69VXX3U+Jjs7W5J07Ngx5efnKzs7W5GRkercubMkadKkSRowYICeeuopDRs2TB988IE+++wzbdy40dvhAUDIq+4MzvLlyzVr1ix98MEHatKkSaXLXegpkJJ0RZ9u6lLhtDh/nS7YZsgANaxT/l8Rp6GREzkFP6eqngLpLSZpANQWXjfYI0eO1C+//KLHHntMubm56tq1q1auXOmc8s/NzXX7uoWKU/mZmZl64403lJycrL1790qS0tLS9Oabb+qRRx7RzJkz1bZtW61YsYLvwAZQo1zIDM6KFSs0duxYvfXWWxo4cOA5l/XFKZBrv/lepzqc+XYHf50u6LgPgcRpaORETqGQU1VPgawOJmkA1AbVuhhxwoQJmjBhgse/LVu2zC1W8T+Pytx000266aabqjMcAAgL1Z3BWb58uX7/+99r+fLluvbaa8+7HV+cAmkrs3s8Xc7Xp9Y57kMgcRpadeLkRE6Vxf19CmR1MEkDoDYI3t1+AKAW8nYGZ/ny5Ro9erTmz5+vvn37Ome/Y2JiKv1eWAAIVUzSAKjpaLABIIC8ncFZvHixbDab7r33Xt17773O+JgxYzzujAIAACB4aLABIMC8mcFZt26d/wcEAAAAn6DBBgAACJA5c+YoNzc3YNtLSEjQzJkzA7Y9AKjtaLABAAACJDc3V598vU114hr7fVsnCgt0Lff6AoCAosEGAAAIoDpxjZU2+mG/b2fTq0/5fRsAAFeev1cFAAAAAAB4hQYbAAAAAAAfqLWniAfyJiPr16/XkaiEgGwLAAAAABActbbBDuRNRvb/77BiWsT7fTsAAAAAgOCptQ22FLibjLw743d+3wYAAAAAILi4BhsAAAAAAB+gwQYAAAAAwAdosAEAAAAA8AEabAAAAAAAfIAGGwAAAAAAH6DBBgAAAADAB2iwAQAAAADwARpsAAAAAAB8gAYbAAAAAAAfoMEGAAAAAMAHaLABAAAAAPABGmwAAAAAAHyABhsAAAAAAB+gwQYAAAAAwAdosAEAAAAA8AEabAAAAAAAfIAGGwAAAAAAH6DBBgAAAADAB2iwAQAAAADwARpsAAAAAAB8gAYbAAAAAAAfoMEGAAAAAMAHaLABAAAAAPABGmwAAAAAAHyABhsAAAAAAB+gwQYAAAAAwAdosAEAAAAA8AEabAAAAAAAfMAa7AEAAAAA4WLOnDnKzc0NyLbWr1+vI1EJAdkWAN+gwQYAAACqKDc3V598vU114hr7fVv7/3dYMS3i/b4dAL5Dgw0AAAB4oU5cY6WNftjv23l3xu/8vg0AvsU12AAAAAAA+EC1ZrAzMjL09NNPKzc3V126dFF6err69+9f6fKff/65pk6dqh9//FHNmzfXQw89pPHjxzv/vmzZMt1xxx1ujzt58qSio6OrM0QgLBTs3a71B3dowoQJAdleQkKCZs6cGZBtAQBwNvYhAdR0XjfYK1as0OTJk5WRkaF+/fpp8eLFGjJkiLZt26aWLVu6LZ+Tk6OhQ4fqzjvv1GuvvaYvvvhCEyZMUHx8vG688UbncvXr19fOnTtdHkthRE1nKz6ln81xWrvjoN+3daKwQNde5vfNoAq82cHMzc3V/fffr8zMTP3000+aOHGi0tPTAztgAPAB9iEB1AZeN9jPPfecxo4dq3HjxkmS0tPTtWrVKi1atEhz5851W/6FF15Qy5YtnTuEnTp10pYtW/TMM8+4FEeTyaRmzZpVMw0gfEXUjQvIdVybXn3K79vA+Xm7g1lcXKz4+HjNmDFD8+bNC8KIAcA32IcEfIezIEOXVw12SUmJMjMzNW3aNJf4oEGDtGnTJo+P+fLLLzVo0CCX2ODBg/Xyyy+rtLRUERERkqRjx44pOTlZZWVl6tmzp+bMmaNevXpVOpbi4mIVFxc7fy8qKpIk2Ww22Ww2SZLZbJbZbJbdbpfdbncuazaXX3putZhl0Zm4XSYZMsksQyYZzniZTJJMLsueiUuWCst6ikdGRCgiwvFUGy7LGzLJLpNMMmSuQtwxxsriEVarIiOszrH6KydHXkYAcjLLcD6HFtn9mpODyeS6Hn/kZKqQl0mGX3Mqk1kmk0lms9n5+TCZTLJYLG6fj8ri5/o8mc1mlZWVyTCM88YtFotMJpNzHBXjklRWVlaluNVqlWEYLvGq5HT2dgPN2x3MVq1aaf78+ZKkV155JaBjBQBfCZV9yAvdf3T8RFgt7GtVMyeHmrqvVXE/3F85SZLZXqbcklit3XFQVkv5th1sZXYZhqEIq8VljDZbmQzJLV5qK8/K6iluMqnk2GFd06d8H7K27j96sw/pVYNdUFCgsrIyNW3a1CXetGlT5eXleXxMXl6ex+VtNpsKCgqUkJCgjh07atmyZerWrZuKioo0f/589evXT1u3blX79u09rnfu3LmaPXu2WzwrK0uxsbGSpPj4eLVt21Y5OTnKz893LpOYmChJuqJPN3WJPeyM5xTHKt8WrS4xhYoxn3nSd56qp8KySPWMPeLyYfr+RJxKDLN6V1iHJGUeb6hIk13d6hRKklqMGy2bKUIHJMVZSnVx9FHnsiftFn1/soEaW4vVOuq4M15YFqGdp+qrecRJtYg86Yzn26KUU1xXraKOK9565j+In0ti9HNpHV13zUC1attOTU+PyV85SVL86Ju15MN1fs+pffRRTRg3WqbIGDWNPezXnMpk0luSkpo1dlneHznFWUrV4nReJ6zFfs0p83gjJTRuqB49emjLli2SpJiYGPXo0UMFBQXas2ePc/m4uDh16tRJBw4c0P79+53xc32eEhMTtWvXLhUWntlumzZt1KRJE/3www86efLMc9OxY0c1aNBAWVlZLsWte/fuioyMdI7PISUlRSUlJfruu++cMYvFoj59+qiwsFA7duxwxquS09mnEQZSdXYwAaAmCJV9yAvdf0xMTFSbNm2U2LaTGrKvVa2cavK+VsvE5vrtb4c698P9lZNU3l+szdqpttffp24xRzzm1Dv20AXnFGcpUZOCbF1Ut3wfrbbuP+7fv1/Hjx9XVVTrJmcVj5BIkmEYbrHzLV8x3rdvX/Xt29f59379+umSSy7R888/rwULFnhc5/Tp0zV16lTn70VFRUpKSlKvXr1Uv359SWdmqlu3bq3k5GTnso742m++16kOZ46M2k8fkfrxZJyHI1tS9vEGLmNwxDOPN3SLnzQszvgHL72qiPgkDb731yosi3BZ3ji9jgJblA7ZIt3iB0pjlFd65joixxj3FsdqX3Edt/jH//xMkU12aei9aX7NSZI+eHW51CDB7zn9dKqePjz9HA69N82vOTn8N6/A7zmZZDjfG9fc28/vOeUWHNbWrVudN4NxfP4aN26sRo0aOZdzxJs3b+5yyt35Pk8dOnRwOwIpSV27dnU7AinJbXbBEU9JSXGLx8TEuMWl8sJXMV6VnOrUqaNgqc4OZnWE0xk+EVaLc5vVPaJccew15Sg5OdXcnMxms8yna5I/Z9Ikw/n58mbWyd9n+QR7H9IX+4979uzR+l356ntL+f8/7Guxr+Wwb/8BvfjWSud+uL9yksr7C1Oj5mrr55wKyyL02afrNaBDvO64445au//YrFkz5/7U+XjVYDdu3FgWi8VtR/DgwYNuO4wOzZo187i81WrVRRdd5PExZrNZffr00U8//VTpWKKiohQVFeUWt1qtslpd03L8B3c2W5n99H9Cruyn/4M7m6dly+Oe/2NwxEtKS2WUOv7DMnlc3vBRvNRmk0ptbmP1dU5SeV7lJ2f5Nye7TM7nsOJ4/ZGTcyyG4XE9vsxJFfJyFFp/52S326v8+fA27ihwVY2fPY7qxE0mk8f4ucZe2foDydsdTG+F0xk+bYYMUMM65a9JdY8oO9Sko+TkVHNz6tGjh/YdKx+DP2fS4iylumXIAK9nnao6Q+OtUNmH9MX+o91uV6mtjH2t84z9fPGauq9V4mE/3Nc5SaffG3bDLe46xgvPSTKp1Fbmtg9Z2/YfvdmH9GpPMzIyUr1799aaNWs0fPhwZ3zNmjUaNmyYx8ekpqbqo48+comtXr1aKSkpzmtnzmYYhrKzs9WtWzdvhgcAIa06O5jVEU5n+Hx1+qi4VP0jymePvSYcJSenmpvTa6+9pt3//Z/iFZqzTlWdofEW+5AAaguvp3KmTp2qUaNGKSUlRampqXrxxRe1b98+53cSTp8+XT///LNeffVVSdL48eP117/+VVOnTtWdd96pL7/8Ui+//LKWL1/uXOfs2bPVt29ftW/fXkVFRVqwYIGys7O1cOFCH6UJAMFXnR3M6ginM3wcR8Wl6h9Rrmo8nI6SVzVOTuGXk91ul90I3Vknf57lwz4kgNrA6yo6cuRI/fLLL3rssceUm5urrl27auXKlc4jtrm5udq3b59z+datW2vlypWaMmWKFi5cqObNm2vBggUuX69w5MgR3XXXXcrLy1NcXJx69eql9evX69JLL/VBigAQOrzdwZSk7OxsSeV3ys3Pz1d2drYiIyPVuXPnYKQAANXCPiSA2qBahyknTJhQ6XeuLVu2zC12+eWX69tvv610ffPmzeP7XQHUCt7uYEqup8BmZmbqjTfeUHJysvbu3RvIoQPABWMfEkBNF/y7/QBALePtDmbF604BAAAQujxf5AMAAAAAALxCgw0AAAAAgA/QYAMAAAAA4AM02AAAAAAA+AA3OQMABE3B3u1af3BHpTd987WEhATNnDkzINsCAAC1Dw02UEvQyCAU2YpP6WdznNbuOOj3bZ0oLNC1l/l9MwAAoBajwQZqCRoZhKqIunFKG/2w37ez6dWn/L4NAABqGiZpvEODDdQiNDIAAADwBpM03qHBBgAAAABUikmaquMu4gAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgAzTYAAAAAAD4AHcRB+BzfF8iAAAAaiMabAA+x/clAgAAoDaiwQbgF3xfIkINZ1YAAAB/o8EGANQKnFkBAAD8jQYbAFBrcGYFAADwJxpsAABQq82ZM0e5ubkB2db69et1JCohINsCAAQeDTYAAKjVcnNz9cnX21QnrrHft7X/f4cV0yLe79sBAAQHDTYAAKj16sQ1DsjlA+/O+J3ftwEA4aom3JCUBhsAAAAAEHQ14YakNNgAAPhYTTgCH2xcFw0AtVO435CUBhsAAB+rCUfgPQl005tbGqMmLZL9vi2uiwYA+AoNNgAAfhDuR+A9CcbNwLguGgAQTmiwAQAIY4E8HX39+vUqiUrQQJpeAAA8osEGACCMBfJ0dE6lBgDg3GiwAQAIc4E6HZ1ZZQAAzs0c7AEAAAAAAFAT0GADAAAAAOADNNgAAAAAAPgADTYAAAAAAD5Agw0AAAAAgA/QYAMAAAAA4AM02AAAAAAA+AANNgAAAAAAPkCDDQAAAACAD9BgAwAAAADgAzTYAAAAAAD4AA02AAAAAAA+UK0GOyMjQ61bt1Z0dLR69+6tDRs2nHP5zz//XL1791Z0dLTatGmjF154wW2Zd955R507d1ZUVJQ6d+6s9957rzpDA4CQ548aCgDhgH1IADWd1w32ihUrNHnyZM2YMUNZWVnq37+/hgwZon379nlcPicnR0OHDlX//v2VlZWlP/7xj5o4caLeeecd5zJffvmlRo4cqVGjRmnr1q0aNWqURowYoa+//rr6mQFACPJHDQWAcMA+JIDawOsG+7nnntPYsWM1btw4derUSenp6UpKStKiRYs8Lv/CCy+oZcuWSk9PV6dOnTRu3Dj9/ve/1zPPPONcJj09XVdffbWmT5+ujh07avr06brqqquUnp5e7cQAIBT5o4YCQDhgHxJAbeBVg11SUqLMzEwNGjTIJT5o0CBt2rTJ42O+/PJLt+UHDx6sLVu2qLS09JzLVLZOAAhH/qqhABDq2IcEUFtYvVm4oKBAZWVlatq0qUu8adOmysvL8/iYvLw8j8vbbDYVFBQoISGh0mUqW6ckFRcXq7i42Pl7YWGhJOnQoUOy2WySJLPZLLPZLLvdLrvd7lzWbDarpKREpwrz9dWrc53xsjK77IYhq8Usk8nkjNvK7DIMQxFWi8sYbLYyGZJbvNRWJpMk6+m4yV4q40SRNrzyZ5lMJlktZ45rGIYhW5ldZpNJFk9xs0kW85m43W6ozG6XxWyW2XxmjGV2u+x2Q7KVyDhR5MzLXzk58iopOqSNSx/3a05Wi9n5HH716ly/5iRJpadOSEcPu7w3/JKTyeTM64ulj/s3J1uZbMUnZa3w3vBXTlL5e8N29LA2vPJnv+ZkMplUevyIbLZGOnTokEwmkywWi9tnvmL8yJEjzjwDzV819GzUR+oj9ZH6WJ36aLfbVVRU5MzVl0JlH/JC66PZbJbNZlNxUQG1pJo5SdSScKslFd8b/sxJkspKTskoOqQv//aEX3OyWswqLjokm62RDh8+7NP66FWDXXFjFRmG4RY73/Jnx71d59y5czV79my3eOvWrSsfeDDl/VcFP30bmG0d3B+4bem/Ksz5LjCbCuRzeChPR/ZsDcy2ApjXsV9yA/reOByg53BJ5udasmSJV485evSo4uLi/DSic/NHDa2I+ngO1McLR330gdCuj5L/amSw9yHDrj5Kopb4ALXkwgXyvVFwIGDveX/sQ3rVYDdu3FgWi8XtqODBgwfdjh46NGvWzOPyVqtVF1100TmXqWydkjR9+nRNnTrV+bvdbtehQ4d00UUXnbNQOxQVFSkpKUn//e9/Vb9+/fMuH4rCPYdwH78U/jmE+/gl73MwDENHjx5V8+bNAzA6V/6qoWejPoZ/DuE+fokcQkF1xu+vGhkq+5AXWh+l2vm+CDXhnkO4j1+qnTlUtT561WBHRkaqd+/eWrNmjYYPH+6Mr1mzRsOGDfP4mNTUVH300UcusdWrVyslJUURERHOZdasWaMpU6a4LJOWllbpWKKiohQVFeUSa9CggTfpSJLq168ftm8Kh3DPIdzHL4V/DuE+fsm7HII1c+2vGno26uMZ4Z5DuI9fIodQ4O34/VEjQ2Uf0lf1Uap974tQFO45hPv4pdqXQ5Xqo+GlN99804iIiDBefvllY9u2bcbkyZON2NhYY+/evYZhGMa0adOMUaNGOZffs2ePUadOHWPKlCnGtm3bjJdfftmIiIgw3n77becyX3zxhWGxWIwnn3zS2L59u/Hkk08aVqvV+Oqrr7wdXpUVFhYakozCwkK/bcPfwj2HcB+/YYR/DuE+fsMIvxz8UUN9LdyeU0/CPYdwH79hkEMoCLXxsw8ZGsJ9/IYR/jmE+/gNgxzOxetrsEeOHKlffvlFjz32mHJzc9W1a1etXLlSycnJkqTc3FyX7zNs3bq1Vq5cqSlTpmjhwoVq3ry5FixYoBtvvNG5TFpamt5880098sgjmjlzptq2basVK1bosssu83Z4ABDS/FFDASAcsA8JoFbwabseRk6dOmU8+uijxqlTp4I9lGoL9xzCffyGEf45hPv4DaNm5BBqasJzGu45hPv4DYMcQkG4jz9UhfvzGu7jN4zwzyHcx28Y5HAuJsMIwnfVAAAAAABQw5jPvwgAAAAAADgfGmwAAAAAAHyABhsAAAAAAB+o0Q12RkaGWrdurejoaPXu3VsbNmw45/Kff/65evfurejoaLVp00YvvPBCgEbqmTfjf/fdd3X11VcrPj5e9evXV2pqqlatWhXA0Xrm7Wvg8MUXX8hqtapnz57+HWAVeJtDcXGxZsyYoeTkZEVFRalt27Z65ZVXAjRad96O//XXX1ePHj1Up04dJSQk6I477tAvv/wSoNG6W79+va6//no1b95cJpNJ77///nkfE2qf5VAU7vVRCv8aSX0Mfn2UwrtGUh/9g/oY/PoohX+NpD7W4vro01umhRDHdy0uWbLE2LZtmzFp0iQjNjbW+M9//uNxecd3LU6aNMnYtm2bsWTJEr9/1+y5eDv+SZMmGU899ZSxefNmY9euXcb06dONiIgI49tvvw3wyM/wNgeHI0eOGG3atDEGDRpk9OjRIzCDrUR1cvjNb35jXHbZZcaaNWuMnJwc4+uvvza++OKLAI76DG/Hv2HDBsNsNhvz58839uzZY2zYsMHo0qWLccMNNwR45GesXLnSmDFjhvHOO+8Ykoz33nvvnMuH2mc5FIV7fTSM8K+R1Mfg10fDCP8aSX30Pepj8OujYYR/jaQ+1u76WGMb7EsvvdQYP368S6xjx47GtGnTPC7/0EMPGR07dnSJ3X333Ubfvn39NsZz8Xb8nnTu3NmYPXu2r4dWZdXNYeTIkcYjjzxiPProo0HfgfQ2h08//dSIi4szfvnll0AM77y8Hf/TTz9ttGnTxiW2YMECIzEx0W9j9EZVCmSofZZDUbjXR8MI/xpJfQwNNalGUh99g/pYjn3IC0N9LFdb62ONPEW8pKREmZmZGjRokEt80KBB2rRpk8fHfPnll27LDx48WFu2bFFpaanfxupJdcZ/NrvdrqNHj6pRo0b+GOJ5VTeHpUuXavfu3Xr00Uf9PcTzqk4OH374oVJSUvSXv/xFLVq0UIcOHfTAAw/o5MmTgRiyi+qMPy0tTfv379fKlStlGIb+97//6e2339a1114biCH7RCh9lkNRuNdHKfxrJPUx+PVRqp01MtQ+y6GG+liOfcgLQ32kPlp9ObBQUVBQoLKyMjVt2tQl3rRpU+Xl5Xl8TF5ensflbTabCgoKlJCQ4Lfxnq064z/bs88+q+PHj2vEiBH+GOJ5VSeHn376SdOmTdOGDRtktQb/rVmdHPbs2aONGzcqOjpa7733ngoKCjRhwgQdOnQo4NfRVGf8aWlpev311zVy5EidOnVKNptNv/nNb/T8888HYsg+EUqf5VAU7vVRCv8aSX0Mfn2UameNDLXPcqihPpZjH/LCUB+pjzVyBtvBZDK5/G4YhlvsfMt7igeKt+N3WL58uWbNmqUVK1aoSZMm/hpelVQ1h7KyMt1yyy2aPXu2OnToEKjhVYk3r4PdbpfJZNLrr7+uSy+9VEOHDtVzzz2nZcuWBe0opDfj37ZtmyZOnKg//elPyszM1D//+U/l5ORo/PjxgRiqz4TaZzkUhXt99LTtcKuR1Mfg10ep9tXIUPwshxrqY/DroxT+NZL6WHvrY/APg/tB48aNZbFY3I6wHDx40O3IhEOzZs08Lm+1WnXRRRf5bayeVGf8DitWrNDYsWP11ltvaeDAgf4c5jl5m8PRo0e1ZcsWZWVl6b777pNUXmwMw5DVatXq1at15ZVXBmTsDtV5HRISEtSiRQvFxcU5Y506dZJhGNq/f7/at2/v1zFXVJ3xz507V/369dODDz4oSerevbtiY2PVv39//fnPfw6L2Y1Q+iyHonCvj1L410jqY/Dro1Q7a2SofZZDDfUx+PVRCv8aSX2kPtbIGezIyEj17t1ba9ascYmvWbNGaWlpHh+Tmprqtvzq1auVkpKiiIgIv43Vk+qMXyo/6nj77bfrjTfeCPr1Dt7mUL9+fX3//ffKzs52/owfP14XX3yxsrOzddlllwVq6E7VeR369eunAwcO6NixY87Yrl27ZDablZiY6Nfxnq064z9x4oTMZteyYLFYJJ05ihfqQumzHIrCvT5K4V8jqY/Br49S7ayRofZZDjXUx+DXRyn8ayT18YxaWx+9vi1amHDcWv7ll182tm3bZkyePNmIjY019u7daxiGYUybNs0YNWqUc3nHrdmnTJlibNu2zXj55ZdD4mu6qjr+N954w7BarcbChQuN3Nxc58+RI0eCMn7D8D6HswX7DpCG4X0OR48eNRITE42bbrrJ+PHHH43PP//caN++vTFu3LiwGP/SpUsNq9VqZGRkGLt37zY2btxopKSkGJdeemlQxm8Y5c9pVlaWkZWVZUgynnvuOSMrK8v5NRGh/lkOReFeHw0j/Gsk9TH49dEwwr9GUh99j/oY/PpoGOFfI6mPtbs+1tgG2zAMY+HChUZycrIRGRlpXHLJJcbnn3/u/NuYMWOMyy+/3GX5devWGb169TIiIyONVq1aGYsWLQrwiF15M/7LL7/ckOT2M2bMmMAPvAJvX4OKgl0cHbzNYfv27cbAgQONmJgYIzEx0Zg6dapx4sSJAI/6DG/Hv2DBAqNz585GTEyMkZCQYNx6663G/v37AzzqM9auXXvO93Y4fJZDUbjXR8MI/xpJfQx+fTSM8K6R1Ef/oD4Gvz4aRvjXSOpj7a2PJsMIgzl7AAAAAABCXI28BhsAAAAAgECjwQYAAAAAwAdosAEAAAAA8AEabAAAAAAAfIAGGwAAAAAAH6DBBgAAAADAB2iwAQAAAADwARpsAAAAAAB8gAYbAAAAAAAfoMEGLsCvf/1rTZ482fl7q1atlJ6eHrTxAECooD4CgGfUx5qNBhteuf3222UymWQymRQREaE2bdrogQce0PHjxyVJe/fulclkUnZ2tmbNmuVctrKfvXv3Vrqtv/3tb7r00ksVGxurevXqacCAAfr4448DlKmrdevWyWQy6ciRIy7xd999V3PmzAnKmACEFurjEZc49RGAA/XxiEuc+liz0WDDa9dcc41yc3O1Z88e/fnPf1ZGRoYeeOABt+UeeOAB5ebmOn8SExP12GOPucSSkpI8buOBBx7Q3XffrREjRmjr1q3avHmz+vfvr2HDhumvf/2rv1OsskaNGqlevXrBHgaAEEF9PIP6CKAi6uMZ1McazgC8MGbMGGPYsGEusXHjxhnNmjUzDMMwcnJyDElGVlaW22OTk5ONefPmnXcbX375pSHJWLBggdvfpk6dakRERBj79u0zDMMwHn30UaNHjx4uy8ybN89ITk52/r5582Zj4MCBxkUXXWTUr1/fGDBggJGZmenyGEnGkiVLjBtuuMGIiYkx2rVrZ3zwwQcuOVX8GTNmjGEYhnH55ZcbkyZNqjTHI0eOGHfeeacRHx9v1KtXz7jiiiuM7Oxs59+zs7ONX//610bdunWNevXqGZdcconxzTffnPc5AhB6qI/URwCeUR+pj7UJM9i4YDExMSotLfXZ+pYvX666devq7rvvdvvb/fffr9LSUr3zzjtVXt/Ro0c1ZswYbdiwQV999ZXat2+voUOH6ujRoy7LzZ49WyNGjNB3332noUOH6tZbb9WhQ4eUlJTk3N7OnTuVm5ur+fPnn3e7hmHo2muvVV5enlauXKnMzExdcskluuqqq3To0CFJ0q233qrExER98803yszM1LRp0xQREVHl3ACENuqjZ9RHANRHz6iP4c8a7AEgvG3evFlvvPGGrrrqKp+tc9euXWrbtq0iIyPd/ta8eXPFxcVp165dVV7flVde6fL74sWL1bBhQ33++ee67rrrnPHbb79dN998syTpiSee0PPPP6/NmzfrmmuuUaNGjSRJTZo0UYMGDaq03bVr1+r777/XwYMHFRUVJUl65pln9P777+vtt9/WXXfdpX379unBBx9Ux44dJUnt27evcl4AQhv1sXLUR6B2oz5WjvoY/pjBhtc+/vhj1a1bV9HR0UpNTdWAAQP0/PPPB2z7hmF4LJ6VOXjwoMaPH68OHTooLi5OcXFxOnbsmPbt2+eyXPfu3Z3/dtwY4+DBg9UeZ2Zmpo4dO6aLLrpIdevWdf7k5ORo9+7dkqSpU6dq3LhxGjhwoJ588klnHEB4oj5WDfURqH2oj1VDfQx/zGDDa1dccYUWLVqkiIgINW/e3OenpLRv314bN25USUmJWyE8cOCAioqK1KFDB0mS2WyWYRguy5x9utHtt9+u/Px8paenKzk5WVFRUUpNTVVJSYnLcmfnYTKZZLfbq52H3W5XQkKC1q1b5/Y3x1HMWbNm6ZZbbtEnn3yiTz/9VI8++qjefPNNDR8+vNrbBRA81MeqoT4CtQ/1sWqoj+GPGWx4LTY2Vu3atVNycrJfrve4+eabdezYMS1evNjtb88884yio6M1cuRISVJ8fLzy8vJcimR2drbLYzZs2KCJEydq6NCh6tKli6KiolRQUODVmByFuqysrMqPueSSS5SXlyer1ap27dq5/DRu3Ni5XIcOHTRlyhStXr1av/3tb7V06VKvxgYgdFAfq4b6CNQ+1MeqoT6GPxpshJzU1FRNmjRJDz74oJ599lnt3r1bO3bs0COPPKIFCxZoyZIluuiiiyRJv/71r5Wfn6+//OUv2r17txYuXKhPP/3UZX3t2rXT3//+d23fvl1ff/21br31VsXExHg1puTkZJlMJn388cfKz8/XsWPHzvuYgQMHKjU1VTfccINWrVqlvXv3atOmTXrkkUe0ZcsWnTx5Uvfdd5/WrVun//znP/riiy/0zTffqFOnTl6NDUDtQX2kPgLwjPpIfQwVNNgISenp6crIyNDy5cvVtWtXderUSU8//bT+/e9/67bbbnMu16lTJ2VkZGjhwoXq0aOHNm/e7Padiq+88ooOHz6sXr16adSoUZo4caKaNGni1XhatGih2bNna9q0aWratKnuu+++8z7GZDJp5cqVGjBggH7/+9+rQ4cO+t3vfqe9e/eqadOmslgs+uWXXzR69Gh16NBBI0aM0JAhQzR79myvxgagdqE+AoBn1EeEApNx9gUIQAjau3evLr/8cqWmpur111+XxWIJ9pAAICRQHwHAM+ojgoEZbISFVq1aad26derYsaPbNTIAUJtRHwHAM+ojgoEZbAAAAAAAfIAZbAAAAAAAfIAGGwAAAAAAH6DBBgAAAADAB2iwAQAAAADwARpsAAAAAAB8gAYbAAAAAAAfoMEGAAAAAMAHaLABAAAAAPABGmwAAAAAAHzg/wNUrcEbbGeYUQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "compute_results(test_data, output_cols, np.mean(ensemble_mu, axis=0), np.sqrt(aleatoric), np.sqrt(epistemic))" ] @@ -687,7 +1112,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -698,7 +1123,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ From 64a077ef6e6e5467da2ca217e3f2ee5f20c30887 Mon Sep 17 00:00:00 2001 From: David John Gagne Date: Thu, 21 Sep 2023 16:23:22 -0600 Subject: [PATCH 10/11] Updated environment and added pyproject.toml file to handle dependencies and install properly. --- environment.yml | 15 ++++++--------- environment_casper.yml | 11 ++++------- evml/VERSION | 1 + githubcommand.md | 40 ---------------------------------------- pyproject.toml | 40 ++++++++++++++++++++++++++++++++++++++++ setup.py | 20 +++----------------- 6 files changed, 54 insertions(+), 73 deletions(-) create mode 100644 evml/VERSION delete mode 100644 githubcommand.md create mode 100644 pyproject.toml diff --git a/environment.yml b/environment.yml index 5da9b3a..7ce17b1 100644 --- a/environment.yml +++ b/environment.yml @@ -2,17 +2,15 @@ name: evidential channels: - conda-forge dependencies: - - python - - numpy + - python=3.10 + - numpy<1.24 - scipy - matplotlib - xarray - netcdf4 - - dask - pandas - pyyaml - pytest - - distributed - pip - pyproj - jupyter @@ -21,15 +19,14 @@ dependencies: - tqdm - sphinx - numba - - cython + - properscoring + - pyarrow + - imbalanced-learn - pip: - tensorflow - tensorflow_addons - - pyarrow - - fastparquet - - imblearn - echo-opt - hagelslag - - git+https://github.com/NCAR/bridgescaler + - bridgescaler - git+https://github.com/ai2es/ptype-physical.git@schreck - . diff --git a/environment_casper.yml b/environment_casper.yml index c47b816..1086d5d 100644 --- a/environment_casper.yml +++ b/environment_casper.yml @@ -11,11 +11,9 @@ dependencies: - matplotlib - xarray - netcdf4 - - dask - pandas - pyyaml - pytest - - distributed - pip - pyproj - jupyter @@ -24,15 +22,14 @@ dependencies: - tqdm - sphinx - numba - - cython + - imbalanced-learn + - pyarrow + - properscoring - pip: - nvidia-cudnn-cu11==8.6.0.163 - tensorflow==2.12.* - - pyarrow - - fastparquet - - imblearn - echo-opt - hagelslag - - git+https://github.com/NCAR/bridgescaler + - bridgescaler - git+https://github.com/ai2es/ptype-physical.git@schreck - . diff --git a/evml/VERSION b/evml/VERSION new file mode 100644 index 0000000..57c6e87 --- /dev/null +++ b/evml/VERSION @@ -0,0 +1 @@ +2023.1.0 diff --git a/githubcommand.md b/githubcommand.md deleted file mode 100644 index 0a186ce..0000000 --- a/githubcommand.md +++ /dev/null @@ -1,40 +0,0 @@ -**Combining the Git Command Line with the Github Workflow** - -It is generally good form to create a branch to make changes to files and code within a repository. The following recipe describes how to use git on the command line to create a new branch, use it, make the changes available on GitHub, and then clean up afterwards. - -*Prerequisite:* -Clone a repository from Github. The following line uses this repository, but you would replace that URL with your own repository: -`git clone https://github.com/ai2es/` - -**Workflow** -Along the way, it may be useful to type in: `git status`. It provides git's current status, and often provides helpful hints on what to do next. - -1. Change the active directory to the location where you cloned the repository. Drill down the hierarchy by typing `cd ` and the name of the folder. Use `ls` to get a list of the files within that folder. - -1. From within the repository's directory on your local machine, create a branch: -`git branch my_new_branch` - -2. Checkout the branch: -`git checkout my_new_branch` - - Tip: You can use `git checkout -b my_new_branch` to create a branch, if it does not already exist, and switch to it in one step. - - This is a good time for `git status` to ensure that you are working on the branch you intended. - -3. Make changes inside the branch (e.g., add code, add files, whatever) - -4. Stage files and commit changes: -`git add whatever_file_you_have_changed` -`git commit -m "the commit message"` - -5. Send your local branch to GitHub: -`git push -u origin my_new_branch` - -6. Go through the pull request process on Github. Be sure to delete the Github (remote) branch manually after your pull request happens. - -7. Delete the local branch. The first line of code below checks out the master branch with the intent to keep things straight when you later synchronize the remote Github version. When you delete the local branch in the second line of code below, you might receive a warning message that your local changes have not been merged into master -- that is true. You will add the updated Github master in the next step: -`git checkout main` -`git branch -d my_new_branch` - -8. Update your local repository with the latest updates from Github's version: -`git pull` diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..b776bac --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,40 @@ +[build-system] +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" + +[project] +name = "mlguess" +authors = [{name = "John Schreck, David John Gagne, Charlie Becker, Gabrielle Gantos", email = "miles@ucar.edu"}] +readme = "README.md" +license = {file = "LICENSE"} +dynamic = ["version"] +requires-python = ">=3.8" +dependencies = [ + "numpy<1.24", + "scipy", + "matplotlib", + "pandas", + "xarray", + "tensorflow", + "tensorflow_addons", + "scikit-learn", + "netcdf4", + "pyyaml", + "tqdm", + "sphinx", + "numba", + "properscoring", + "pyarrow", + "imbalanced-learn", + "bridgescaler", + "echo-opt", + "hagelslag", + "jupyter" + ] + +[tool.setuptools] +packages = ["evml", "evml.keras", "evml.torch"] + +[tool.setuptools.dynamic] +version = {file = "evml/VERSION"} +readme = {file = ["README.md"]} diff --git a/setup.py b/setup.py index bb44968..26e08e4 100644 --- a/setup.py +++ b/setup.py @@ -1,19 +1,5 @@ -import os from setuptools import setup -# For guidance on setuptools best practices visit -# https://packaging.python.org/guides/distributing-packages-using-setuptools/ -project_name = os.getcwd().split("/")[-1] -version = "0.1.0" -package_description = "" -url = "https://github.com/ai2es/" + project_name -# Classifiers listed at https://pypi.org/classifiers/ -classifiers = ["Programming Language :: Python :: 3"] -setup(name="evidential", # Change - version=version, - description=package_description, - url=url, - author="John Schreck, David John Gagne, Charlie Becker, Gabrielle Gantos", - license="CC0 1.0", - classifiers=classifiers, - packages=["evml", "evml.keras", "evml.torch"]) + +if __name__ == "__main__": + setup() From 2cd411eb195c776055ee845c6126430f8932c26b Mon Sep 17 00:00:00 2001 From: David John Gagne Date: Fri, 22 Sep 2023 08:55:41 -0600 Subject: [PATCH 11/11] Fixed some code consistency issues found by PyCharm --- evml/keras/models.py | 42 ++++++++++++++++++++---------------------- 1 file changed, 20 insertions(+), 22 deletions(-) diff --git a/evml/keras/models.py b/evml/keras/models.py index 7875fca..846507f 100644 --- a/evml/keras/models.py +++ b/evml/keras/models.py @@ -90,9 +90,10 @@ def __init__( self.model = None self.optimizer_obj = None self.training_std = None - self.training_var = None + self.training_var = [] self.metrics = metrics self.eps = eps + self.ensemble_member_files = [] def build_neural_network(self, inputs, outputs, last_layer="Dense"): """ @@ -295,11 +296,11 @@ def load_model(cls, conf): "Incorrect selection of n_splits or n_models. Both must be at greater than or equal to 1." ) - model_class.ensemble_weights = [] + model_class.ensemble_member_files = [] if mode != "single": for i in range(n_models): for j in range(n_splits): - model_class.ensemble_weights.append( + model_class.ensemble_member_files.append( os.path.join(save_loc, mode, "models", f"model_seed{i}_split{j}.h5") ) @@ -365,14 +366,14 @@ def predict_ensemble(self, x, batch_size=None, scaler=None, num_outputs=1): #if not hasattr(self, "ensemble_weights"): # raise ValueError("Please run YourModel.load_model(conf) to initiate loading of the trained ensemble weights") - num_models = len(self.ensemble_weights) + num_models = len(self.ensemble_member_files) # Initialize output_shape based on the first model's prediction if num_models > 0: first_model = self.model - first_model.load_weights(self.ensemble_weights[0]) + first_model.load_weights(self.ensemble_member_files[0]) first_model.training_var = np.loadtxt( - self.ensemble_weights[0].replace(".h5", "_training_var.txt") + self.ensemble_member_files[0].replace(".h5", "_training_var.txt") ) if not isinstance(first_model.training_var, list): first_model.training_var = [first_model.training_var] @@ -402,7 +403,7 @@ def predict_ensemble(self, x, batch_size=None, scaler=None, num_outputs=1): ensemble_epi = np.empty((num_models,) + (x.shape[0],) + output_shape) # Predict for the remaining models - for i, weight_location in enumerate(self.ensemble_weights[1:]): + for i, weight_location in enumerate(self.ensemble_member_files[1:]): model_instance = self.model model_instance.load_weights(weight_location) model_instance.training_var = np.loadtxt( @@ -620,7 +621,7 @@ def __init__( self.eps = eps self.loss = GaussianNLL - def build_neural_network(self, inputs, outputs): + def build_neural_network(self, inputs, outputs, last_layer="DenseNormal"): """ Create Keras neural network model and compile it. @@ -628,7 +629,7 @@ def build_neural_network(self, inputs, outputs): inputs (int): Number of input predictor variables. outputs (int): Number of output predictor variables. """ - super().build_neural_network(inputs, outputs, last_layer="DenseNormal") + super().build_neural_network(inputs, outputs, last_layer=last_layer) @classmethod def load_model(cls, conf): @@ -671,11 +672,11 @@ def load_model(cls, conf): model_class.training_var = [model_class.training_var] # Load ensemble weights - model_class.ensemble_weights = [] + model_class.ensemble_member_files = [] if mode != "single": for i in range(n_models): for j in range(n_splits): - model_class.ensemble_weights.append( + model_class.ensemble_member_files.append( os.path.join(save_loc, mode, "models", f"model_seed{i}_split{j}.h5") ) @@ -686,7 +687,7 @@ def calc_uncertainties(self, preds, y_scaler=False): if len(mu.shape) == 1: mu = np.expand_dims(mu, axis=0) aleatoric = np.expand_dims(aleatoric, axis=0) - if y_scaler: + if y_scaler is not None: mu = y_scaler.inverse_transform(mu) for i in range(aleatoric.shape[-1]): aleatoric[:, i] *= self.training_var[i] @@ -709,15 +710,12 @@ def predict_dist_params(self, x, scaler=None, batch_size=None): return mu, var - def predict_ensemble( - self, x_test, scaler=None, batch_size=None - ): - return super().predict_ensemble(x_test, scaler=scaler, batch_size=batch_size, num_outputs=2) + def predict_ensemble(self, x_test, scaler=None, batch_size=None, num_outputs=2): + return super().predict_ensemble(x_test, scaler=scaler, batch_size=batch_size, num_outputs=num_outputs) - def predict_monte_carlo( - self, x_test, y_test, forward_passes, scaler=None, batch_size=None - ): - return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, batch_size=batch_size, num_outputs=2) + def predict_monte_carlo(self, x_test, y_test, forward_passes, scaler=None, batch_size=None, num_outputs=2): + return super().predict_monte_carlo(x_test, y_test, forward_passes, scaler=scaler, + batch_size=batch_size, num_outputs=num_outputs) class EvidentialRegressorDNN(BaseRegressor): @@ -869,11 +867,11 @@ def load_model(cls, conf): mode = "deep_ensemble" elif n_splits == 1 and n_models == 1: mode = "single" - model_class.ensemble_weights = [] + model_class.ensemble_member_files = [] if mode != "single": for i in range(n_models): for j in range(n_splits): - model_class.ensemble_weights.append( + model_class.ensemble_member_files.append( os.path.join(save_loc, "models", f"model_seed{i}_split{j}.h5") )