-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_mteb.py
582 lines (503 loc) · 24.7 KB
/
eval_mteb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import argparse
import json
import warnings
import logging
from typing import Optional, Union
from pathlib import Path
import numpy as np
from sentence_transformers import SentenceTransformer
import torch
from transformers import AutoTokenizer
import openai
import langchain
from langchain.schema import LLMResult
from langchain.cache import SQLiteCache
from config import load_config
from generation_utils import (
OpenAIPB,
OpenAIChatPB,
HuggingFacePipelineDS,
load_hf_generation_pipeline,
load_adapted_hf_generation_pipeline,
)
logger = logging.getLogger("mteb.evaluation.MTEB")
warnings.filterwarnings(
"ignore",
message="Both `max_new_tokens`.*",
)
class GenerationEmbedder():
def __init__(
self,
instructions: str,
openai_api_key: str,
exemplar_pool: Optional[list[str]] = None,
exemplar_format: str = "{input}->{output}",
exemplar_sep: str = "\n",
multi_output_sep: Optional[str] = " | ",
exemplars_per_prompt: Optional[int] = None,
draws_per_pool: int = 1,
repeat_draws: bool = False,
shuffles_per_draw: int = 1,
output_combination_strategy: str = "concatenate_text",
include_original_doc: bool = True,
embedding_model_name: str = "all-mpnet-base-v2",
gen_model_name: str = "text-curie-001",
generations_per_prompt: int = 1,
temperature: float = 0,
top_p: float = 1.,
generation_kwargs: Optional[dict] = None,
max_tokens: int = 50,
cache_db_path: str = ".langchain.db",
dry_run: bool = False,
device: str = "cpu",
seed: Optional[int] = None,
) -> None:
self.cache_db_path = cache_db_path
self.embedding_model = SentenceTransformer(embedding_model_name, device=device)
# if we are using an adapter model with PEFT, then pass a list with the base
# model and gen model
lora_model_name = None
if isinstance(gen_model_name, list):
gen_model_name, lora_model_name = gen_model_name
generation_kwargs = generation_kwargs if generation_kwargs is not None else {}
if "gpt-3.5-turbo" in gen_model_name:
if self.cache_db_path is not None:
logging.warning("Disabling cache for gpt-3.5-turbo. This is a known bug.")
self.cache_db_path = None
self._chat_prefix_messages = [
{"role": "system", "content": "You are a helpful and intelligent assistant."},
] # add during prompting
self.llm = OpenAIChatPB(
model_name=gen_model_name,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
openai_api_key=openai_api_key,
**generation_kwargs,
)
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.max_model_tokens = self.llm.modelname_to_contextsize(gen_model_name)
elif gen_model_name.startswith("text-"):
self.llm = OpenAIPB(
model_name=gen_model_name,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
openai_api_key=openai_api_key,
n=generations_per_prompt,
best_of=generations_per_prompt,
**generation_kwargs,
)
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.max_model_tokens = self.llm.modelname_to_contextsize(gen_model_name)
generations_per_prompt = 1 # handled by API
elif lora_model_name is None:
logging.info(f"Assuming that {gen_model_name} is a hugginface model")
pipe = load_hf_generation_pipeline(
gen_model_name,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
device=device,
generation_kwargs=generation_kwargs,
)
# TODO: support `generations_per_prompt`
self.llm = HuggingFacePipelineDS(pipeline=pipe)
self.tokenizer = pipe.tokenizer
self.max_model_tokens = self.tokenizer.model_max_length
else:
logging.info(
f"Assuming that {gen_model_name} is a hugginface model and "
f"{lora_model_name} is the adapter."
)
pipe = load_adapted_hf_generation_pipeline(
gen_model_name,
lora_model_name,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
device=device,
generation_kwargs=generation_kwargs,
)
# TODO: support `generations_per_prompt`
self.llm = HuggingFacePipelineDS(pipeline=pipe)
self.tokenizer = pipe.tokenizer
self.max_model_tokens = self.tokenizer.model_max_length
self.max_gen_tokens = max_tokens
logger.info(f"cacke db path is {self.cache_db_path}")
if self.cache_db_path is not None:
langchain.llm_cache = SQLiteCache(database_path=self.cache_db_path)
self.instructions = instructions
self.gen_model_name = gen_model_name
self.exemplar_pool = exemplar_pool
self.exemplars_per_prompt = exemplars_per_prompt
self.draws_per_pool = draws_per_pool
self.repeat_draws = repeat_draws
self.shuffles_per_draw = shuffles_per_draw
self.generations_per_prompt = generations_per_prompt
self.exemplar_format = exemplar_format
self.multi_output_sep = multi_output_sep
self.exemplar_sep = exemplar_sep
self.include_original_doc = include_original_doc
self.dry_run = dry_run
self.seed = seed
self.random_state = np.random.default_rng(seed)
self.torch_random_state = torch.manual_seed(seed)
if output_combination_strategy not in ["concat_strings", "mean_embeds", "concat_embeds", "concat_doc_gen", "list_embeds"]:
raise NotImplementedError(f"`output_combination_strategy` {output_combination_strategy} not supported")
if output_combination_strategy == "concat_doc_gen" and not include_original_doc:
raise ValueError("Have to set `include_original_doc=True` for `concat_doc_gen` strategy")
self.output_combination_strategy = output_combination_strategy
self._truncation_counter = 0
self._generated = {}
self._set_num_prompt_tokens()
def _reset_seed(self):
self.random_state = np.random.default_rng(self.seed)
self.torch_random_state = torch.manual_seed(self.seed)
def get_num_tokens(self, text):
return len(self.tokenizer.encode(text, truncation=False, add_special_tokens=False))
def _set_num_prompt_tokens(self):
"""Get number of tokens in input and output prefixes"""
exemplar_format = self.exemplar_format.format(input="", output="")
prompt_tokens = self.get_num_tokens(exemplar_format)
if self.instructions:
prompt_tokens += self.get_num_tokens(self.instructions)
self._prompt_tokens = prompt_tokens
def _truncate_text(self, input, est_chars_per_tok=3.5): # conservative estimate
"""Make sure text and output fits in model context window"""
# TODO: replace with tiktoken
max_model_tokens = self.max_model_tokens # these are tokens in the model context
max_output_tokens = self.max_gen_tokens # these are tokens to be *generated*
max_input_tokens = max_model_tokens - max_output_tokens - self._prompt_tokens
# shortcut: if it looks like we're roughly within the limit, then don't tokenize
if len(input) / est_chars_per_tok < max_input_tokens:
return input
# tokenize the text and get the truncated input
tokenized = self.tokenizer.encode(
input, max_length=max_input_tokens, truncation=True, add_special_tokens=False
)
# check with actual tokenization
if len(tokenized) < max_input_tokens:
return input
# if too short, then truncate the input
self._truncation_counter += 1
truncated_input = self.tokenizer.decode(tokenized)
# end on a sentence; otherwise, end on word
try:
last_idx = input.rindex(".", 0, len(truncated_input))
except ValueError:
last_idx = input.rindex(" ", 0, len(truncated_input))
return input[:last_idx].strip() + " [...]"
def sample_exemplars(
self,
) -> list:
"""
There can be two sources of randomization for each query to the LLM
(1) the exemplars shown to the model (a "draw") and
(2) the order of those exemplars (a "shuffle")
Ported over from another project based around classification, so not really
necessary for generation use case
"""
if not self.exemplars_per_prompt:
yield None
return
self._reset_seed()
pool_size = len(self.exemplar_pool)
self.random_state.shuffle(self.exemplar_pool)
n_exemplars = min(pool_size, self.exemplars_per_prompt)
n_draws = min(self.draws_per_pool, pool_size // n_exemplars + 1)
for draw in range(n_draws):
if self.repeat_draws: # re-sample exemplars
exemplars = self.random_state.choice(self.exemplar_pool, size=n_exemplars, repeat=False)
else: # iterate through pool (recall: it is already shuffled)
start, end = draw*n_exemplars, (1 + draw)*n_exemplars
exemplars = self.exemplar_pool[start:end]
if len(exemplars):
for shuffle in range(self.shuffles_per_draw):
self.random_state.shuffle(exemplars)
yield exemplars
def create_prompt(
self,
instance: str,
exemplars: Optional[list[str]] = None,
replace_newlines: bool = True,
) -> str:
if isinstance(self.llm, langchain.llms.OpenAIChat):
return self._create_chat_prompt(instance, exemplars, replace_newlines)
else:
return self._create_prompt(instance, exemplars, replace_newlines)
def _create_prompt(
self,
instance: str,
exemplars: Optional[list[str]] = None,
replace_newlines: bool = True,
) -> str:
"""
Generate a prompt for the LLM
`instance`: the instance to be classified,
`exemplars`: a list of (input, output) pairs
`replace_newlines`: replace newlines with spaces
"""
# TODO: use langchain?
prompt = ""
instance_tokens = self.get_num_tokens(instance)
max_input_tokens = self.max_model_tokens - self.max_gen_tokens - self._prompt_tokens
remaining_tokens = max_input_tokens - instance_tokens
if self.instructions is not None:
prompt += self.instructions
if exemplars is not None and remaining_tokens > 0:
for input, output in exemplars:
if isinstance(output, (list, tuple)):
output = self.multi_output_sep.join(output)
if replace_newlines:
input = input.replace("\n", " ")
output = output.replace("\n", " ")
# don't add exemplars if prompt will be too long
exemplar_formatted = self.exemplar_format.format(input=input, output=output) + self.exemplar_sep
exemplar_tokens = self.get_num_tokens(exemplar_formatted)
if remaining_tokens - exemplar_tokens > 0:
prompt += exemplar_formatted
remaining_tokens -= exemplar_tokens
else:
break
if replace_newlines:
instance = instance.replace("\n", " ")
if remaining_tokens < 0:
instance = self._truncate_text(instance) # takes into account instruction & exemplar format
# we want to set off the trigger for the instance correctly, e.g.,
# exemplar_format = "Q: {input} A: {output}"
# => instance_format = "Q: {input} A: "
instance_format = self.exemplar_format.split("{output}")[0]
prompt += instance_format.format(input=instance)
return prompt #.strip(" ") # LLM prefers no trailing whitespace TODO: is true?
def _create_chat_prompt(
self,
instance: str,
exemplars: Optional[list[str]] = None,
replace_newlines: bool = False,
) -> str:
"""
Generate a prompt for ChatGPT APi
`instance`: the instance to be classified,
`exemplars`: a list of (input, output) pairs
`replace_newlines`: replace newlines with spaces
"""
messages = self._chat_prefix_messages.copy()
instance_tokens = self.get_num_tokens(instance)
max_input_tokens = self.max_model_tokens - self.max_gen_tokens - self._prompt_tokens
remaining_tokens = max_input_tokens - instance_tokens
if self.instructions is not None:
messages.append({"role": "user", "content": self.instructions})
if exemplars is not None and remaining_tokens > 0:
for i, (input, output) in enumerate(exemplars):
if isinstance(output, (list, tuple)):
output = self.multi_output_sep.join(output)
if replace_newlines:
input = input.replace("\n", " ")
output = output.replace("\n", " ")
# don't add exemplars if prompt will be too long
exemplar_tokens = self.get_num_tokens(input+"\n"+output)
if remaining_tokens - exemplar_tokens > 0:
if i == 0 and self.instructions is not None:
messages[-1]["content"] += input # add to instruction
else:
messages.append({"role": "user", "content": input})
messages.append({"role": "assistant", "content": output})
remaining_tokens -= exemplar_tokens
else:
break
if replace_newlines:
instance = instance.replace("\n", " ")
if remaining_tokens < 0:
instance = self._truncate_text(instance) # takes into account instruction & exemplar format
return messages, instance
def process_completions(
self,
completion_set: Union[list[LLMResult], LLMResult],
) -> dict:
"""
Consolidate different LM outputs for the same set of inputs.
If `completion_set`, it consists of different `LLMResult`s for the same
sequence of input instances. Each `LLMResult` is basically a list of outputs.
"""
if not isinstance(completion_set, list):
completion_set = [completion_set]
if isinstance(self.llm, langchain.llms.OpenAIChat):
n_outputs = len(completion_set[0])
consolidated = [[] for _ in range(n_outputs)]
for outputs in completion_set:
for i, gen in enumerate([x.generations[0][0].text for x in outputs]):
texts = gen.strip().split(self.multi_output_sep)
consolidated[i].extend([y.strip() for y in texts])
else:
n_outputs = len(completion_set[0].generations)
consolidated = [[] for _ in range(n_outputs)]
for outputs in completion_set:
# for each set, unpack the completed text for each input
for i, gens in enumerate(outputs.generations):
for gen in gens:
texts = gen.text.strip().split(self.multi_output_sep)
consolidated[i].extend(texts)
return consolidated
def generate_from_inputs(
self,
inputs: Union[str, list[str]],
) -> list[str]:
"""
Generate completions for each input
"""
if isinstance(inputs, str):
inputs = [inputs]
completions_per_draw = []
prompts_per_draw = []
for exemplars in self.sample_exemplars():
prompts = [self.create_prompt(instance, exemplars) for instance in inputs]
if self.dry_run:
logger.warning("\n<<<<< prompt >>>>>\n".join(prompts))
continue
# this will be 1 for standard OpenAI chain, since it is handled by the API
for i in range(self.generations_per_prompt):
# `generate` does caching; we overload stop tokens to not rely on the cache
completions = self.llm.generate(prompts, stop=[self.exemplar_sep, f"__index{i}__"])
completions_per_draw.append(completions)
prompts_per_draw.append(prompts)
logging.warning(f"Truncated {self._truncation_counter} out of {len(prompts)*len(prompts_per_draw)} prompts")
if self.dry_run:
quit()
return self.process_completions(completions_per_draw)
def encode(self, sentences, generations=None, topics=None, **embed_kwargs):
""" Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
generations (`List[List[str]]`): List of existing generations for each sentence
batch_size (`int`): Batch size for the encoding
show_progress_bar (`bool`): Show a progress bar or not
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
embed_kwargs["show_progress_bar"] = True
sentences_with_topics = sentences
if topics is not None:
assert(len(topics) == len(sentences))
sentences_with_topics = [f"[Topic: {topic.lower()}] {sent}" for topic, sent in zip(topics, sentences)]
if generations is None:
generations = self.generate_from_inputs(sentences_with_topics)
self._generated.update({s: g for s, g in zip(sentences, generations)})
if self.include_original_doc and not self.output_combination_strategy == "concat_doc_gen":
generations = [[s, *gens] for s, gens in zip(sentences, generations)]
# TODO: do uniqueness filtering here
if self.output_combination_strategy == "concat_strings":
generations = [self.multi_output_sep.join(set(gens)) for gens in generations]
embeddings = self.embedding_model.encode(generations, **embed_kwargs)
elif self.output_combination_strategy in ["mean_embeds", "concat_doc_gen"]:
# unpack generations, encode, then take mean per example
idxs = np.array([i for i, gens in enumerate(generations) for _ in gens])
gens_unpacked = [g for gens in generations for g in gens]
embeddings_unpacked = self.embedding_model.encode(gens_unpacked, **embed_kwargs)
embeddings = np.zeros((len(generations), embeddings_unpacked.shape[1]), dtype=embeddings_unpacked.dtype)
for i in range(len(generations)): # TODO a random baseline
embeddings[i] = embeddings_unpacked[idxs==i].mean(0)
# for concat_doc_gen, we concatenate the original doc with the mean of the generations
if self.output_combination_strategy == "concat_doc_gen":
doc_embeddings = self.embedding_model.encode(sentences, **embed_kwargs)
embeddings = np.hstack([doc_embeddings, embeddings])
elif self.output_combination_strategy == "concat_embeds":
# concatenate embeddings for the generated outputs
# there can be different numbers of generations per example; we calculate
# the mean. then, for each example, we select that mean number of generations
# and repeat if necessary (sort of silly; could also take the min)
mean_n = int(np.mean([len(g) for g in generations]))
embeddings = np.hstack([
self.embedding_model.encode([
gens[i % len(gens)] for gens in generations
],
**embed_kwargs
) for i in range(mean_n)
])
elif self.output_combination_strategy == "list_embeds":
idxs = np.array([i for i, gens in enumerate(generations) for _ in gens])
gens_unpacked = [g for gens in generations for g in gens]
embeddings_unpacked = self.embedding_model.encode(gens_unpacked, **embed_kwargs)
embeddings = [embeddings_unpacked[idxs==i] for i in range(len(generations))]
else:
raise NotImplementedError(f"`output_combination_strategy` {self.output_combination_strategy} not supported")
return embeddings
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("user_config_file", default=None, nargs="?")
parser.add_argument("--base_config_file", default=None)
parser.add_argument("--collect_results_dir", default=None)
args = parser.parse_args()
config = load_config(args.user_config_file, args.base_config_file)
if "openai_model_name" in config["llm"]:
config["llm"]["gen_model_name"] = config["llm"]["openai_model_name"]
if config["embeddings"]["do_gen"]:
# load exemplars
exemplar_pool = None
if config["exemplars"]["exemplars_per_prompt"] > 0: # don't bother loading if we're not using them
if config["data"]["exemplar_data_sources"]:
exemplar_pool = create_exemplar_pool(
config["data"]["exemplar_data_sources"],
exemplar_dir=config["data"]["exemplars_path"],
)
elif config["data"]["exemplars_path"] and Path(config["data"]["exemplars_path"]).is_file():
exemplar_pool = read_jsonl(config["data"]["exemplars_path"])
# build generation embedder
model = GenerationEmbedder(
instructions=config["data"]["instructions"],
openai_api_key=config["llm"]["openai_api_key"],
exemplar_pool=exemplar_pool,
exemplar_format=config["exemplars"]["format"],
exemplar_sep=config["exemplars"]["separator"],
multi_output_sep=config["exemplars"]["multi_output_separator"],
exemplars_per_prompt=config["exemplars"]["exemplars_per_prompt"],
draws_per_pool=config["exemplars"]["draws_per_pool"],
repeat_draws=config["exemplars"]["repeat_draws"],
shuffles_per_draw=config["exemplars"]["shuffles_per_draw"],
output_combination_strategy=config["embeddings"]["output_combination_strategy"],
include_original_doc=config["embeddings"]["include_original_doc"],
embedding_model_name=config["embeddings"]["embedding_model_name"],
gen_model_name=config["llm"]["gen_model_name"],
generations_per_prompt=config["llm"]["generations_per_prompt"],
temperature=config["llm"]["temperature"],
top_p=config["llm"]["top_p"],
generation_kwargs=config["llm"]["generation_kwargs"],
max_tokens=config["llm"]["max_tokens"],
cache_db_path=config["main"]["cache_db_path"],
dry_run=config["main"]["dry_run"],
device=config["embeddings"]["device"],
seed=config["main"]["seed"],
)
else:
model = SentenceTransformer(
config["embeddings"]["embedding_model_name"],
device=config["embeddings"]["device"],
)
evaluation = MTEB(
tasks=config["data"]["eval_task_names"],
task_langs=config["data"]["task_langs"],
)
evaluation.run(
model,
output_folder=config["main"]["results_dir"],
eval_splits=config["data"]["eval_splits"],
limit=config["data"]["subsample_size"],
verbosity=2
)
config["llm"].pop("openai_api_key")
for name in config["data"]["eval_task_names"]:
result_fpath = Path(config["main"]["results_dir"], f"{name}.json")
if not result_fpath.exists():
continue
result_data = json.loads(result_fpath.read_text())
result_data["config"] = config
result_fpath.write_text(json.dumps(result_data, indent=2))
generation_fpath = Path(config["main"]["results_dir"], f"{name}_generations.json")
if generation_fpath.exists():
generation_data = json.loads(generation_fpath.read_text())
generation_data["experiment_name"] = config["main"]["experiment_name"]
generation_data["experiment_date"] = config["main"]["date"]
generation_fpath.write_text(json.dumps(generation_data, indent=2))
if args.collect_results_dir:
df = collect_results(args.collect_results_dir)
save_results(df, Path(args.collect_results_dir, "results.csv"))