-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpredict.py
57 lines (45 loc) · 2.08 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
Predict conllu files given a trained model
"""
import os
import shutil
import logging
import argparse
import tarfile
from pathlib import Path
from allennlp.common import Params
from allennlp.common.util import import_submodules
from allennlp.models.archival import archive_model
from udapter import util
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
parser.add_argument("archive", type=str, help="The archive file")
parser.add_argument("input_file", type=str, help="The input file to predict")
parser.add_argument("pred_file", type=str, help="The output prediction file")
parser.add_argument("--eval_file", default=None, type=str,
help="If set, evaluate the prediction and store it in the given file")
parser.add_argument("--device", default=0, type=int, help="CUDA device number; set to -1 for CPU")
parser.add_argument("--batch_size", default=1, type=int, help="The size of each prediction batch")
parser.add_argument("--lazy", action="store_true", help="Lazy load dataset")
args = parser.parse_args()
import_submodules("udapter")
archive_dir = Path(args.archive).resolve().parent
if not os.path.isfile(archive_dir / "weights.th"):
with tarfile.open(args.archive) as tar:
tar.extractall(archive_dir)
config_file = archive_dir / "config.json"
overrides = {}
if args.device is not None:
overrides["trainer"] = {"cuda_device": args.device}
if args.lazy:
overrides["dataset_reader"] = {"lazy": args.lazy}
configs = [Params(overrides), Params.from_file(config_file)]
params = util.merge_configs(configs)
if not args.eval_file:
util.predict_model_with_archive("udapter_predictor", params, archive_dir, args.input_file, args.pred_file,
batch_size=args.batch_size)
else:
util.predict_and_evaluate_model_with_archive("udapter_predictor", params, archive_dir, args.input_file,
args.pred_file, args.eval_file, batch_size=args.batch_size)