-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSpeciesGapAnalysis.R
150 lines (114 loc) · 4.4 KB
/
SpeciesGapAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#____________________________________#
# Code written by Felipe Suarez #
# Version : 01-07-2020 #
#_____________________________________#
#clear workspace
rm(list=ls())
library(SpaDES)
library(raster)
#library(spatial.tools)
library(xfun)
library(rgdal)
library(ReIns)
setwd("C:/Data/50Reefs/Felipe/iucn/Cambio_climatico/refugios_2030/2021-2040_ssp585_10")
# load sp rasters
myfiles = list.files(pattern="*.tif")
list_raster<-list()
for (i in 1:length(myfiles)){
print(file_ext(myfiles[[i]]))
if(file_ext(myfiles[[i]]) == "xml"|file_ext(myfiles[[i]]) == "dbf"
|file_ext(myfiles[[i]]) == "ovr"|file_ext(myfiles[[i]]) == "cpg"
|file_ext(myfiles[[i]]) == "tfw"|file_ext(myfiles[[i]]) == "lock"){
list_raster[[i]]<-NULL
}else{
list_raster[[i]]<-myfiles[[i]]
}
}
list_raster<-plyr::compact(list_raster)
#READ RUNAP data in raster format
setwd("C:/Data/50Reefs/Felipe/iucn/RUNAP/RUNAP_rasters")
PNN<-raster("./RUNAP_2018_wgs1km.tif")
#get raster resolution to calculate areas:
#pixel size from raster(when using projected coordinated system:
res_r<-res(PNN)[[1]]^2
#or specify it manually:
res_r<-1 #km2
#this loop generates the statistics for all the species
sp_stats<-list()#list to save stats per species
for (j in 1:length(list_raster)){#list_pol is the list with all the focus_sps
setwd("C:/Data/50Reefs/Felipe/iucn/Cambio_climatico/refugios_2030/2021-2040_ssp585_10")
focus_sp<-raster(list_raster[[j]])#read each sp raster
if (is.null(intersect(extent(PNN), focus_sp))){#check if rasters intersect
dfsp<-as.data.frame(matrix(nrow = 1,ncol = 3))
colnames(dfsp)<-c("PNN","freq")
dfsp$species<-names(focus_sp)
dfsp$year_PNN<-strsplit(names(PNN),"_")[[1]][[2]]
}else{
#convert raster to df
cells<-rasterToPoints(focus_sp)
cells<-as.data.frame(cells)
cells<-subset(cells,cells[3]==1)
#extract PNN values that intersect the sp distribution area
PNN_data<-raster::extract(PNN,cells[1:2])
cells$PNN<-PNN_data
if(nrow(cells)>0){
hola<-plyr::count(cells[4])
hola$species<-names(focus_sp)
#hola$year_PNN<-strsplit(names(PNN),"_")[[1]][[2]]
}
}
#assign values depending on whether pixels are inside or outside the PNN
hola[which(is.na(hola$PNN)),"in_PNN"]<-0
hola[which(!is.na(hola$PNN)),"in_PNN"]<-1
#area inside and outside PNN
count_pnn<-aggregate(hola$freq,list(PNN=hola$in_PNN),"sum")
total_area<-sum(count_pnn$x)
total_protected<-count_pnn[which(count_pnn$PNN == "1"),2]
if(length(total_protected)>0){
hola$per_protected<-(total_protected/total_area)*100
}else{
hola$per_protected<-0
}
#area in km2
hola$total_area<-total_area
hola$total_area_km2<-hola$total_area*res_r
hola<-hola[!duplicated(hola[5:7]),]
hola<-hola[c("species","per_protected","total_area","total_area_km2")]
print(paste(j))
sp_stats[[j]]<-hola
gc()
}
#df with the following columns:
stats_allsp<-do.call(rbind,sp_stats)
#species: sp file name
#per_protected: percentage of the sp distribution area in Colombia that is protected
#total_area_km2: area of sp distribution in km2
#Calculate percentage needed to protect#########
#prop_achieved: proportion of distribution area to be protected that is actually protected
#achieved: 0 if the prop_achieved is <0.9, 1 if it is >0.9
df<-stats_allsp
#per_to_protect: percentage of the sp distribution area to be to protect
df$per_to_protect <- (1 -(pexp(df$total_area/1e5,rate=0.5)))*100
df$prot_gap<-(df$per_to_protect - df$per_protected)/100
df[which(df$prot_gap<0),"prot_gap"]<-0
write.csv(stats_allsp,"statistics_sp_2021_2040_ssp126_10.csv")
#Create raster to map species based on conservation gap###
df_con<-subset(df,df$prot_gap > 0)
head(df_con)
list_raster<-df_con$species
focus_sp<-list_raster[[1]]
rs1<-raster(focus_sp)
df_sp<-subset(df_con,df_con$species == focus_sp)
rs1[which(rs1[] > 0)]<-df_sp$prot_gap
for(i in 2:length(list_raster)){
focus_sp<-list_raster[[i]]
df_sp<-subset(df_con,df_con$species == focus_sp)
rast<-raster(focus_sp)
rast<-extend(rast,rs1)
rs1<-extend(rs1,rast)
rast[which(rast[] > 0)]<-df_sp$prot_gap
init_rast<-stack(rs1,rast)
rs1 <- calc(init_rast, sum, na.rm = T)
print(i)
gc()
}