-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathkeras_word2vec.py
151 lines (129 loc) · 5.27 KB
/
keras_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from keras.models import Model
from keras.layers import Input, Dense, Reshape, merge
from keras.layers.embeddings import Embedding
from keras.preprocessing.sequence import skipgrams
from keras.preprocessing import sequence
import urllib
import collections
import os
import zipfile
import numpy as np
import tensorflow as tf
def maybe_download(filename, url, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
def collect_data(vocabulary_size=10000):
url = 'http://mattmahoney.net/dc/'
filename = maybe_download('text8.zip', url, 31344016)
vocabulary = read_data(filename)
print(vocabulary[:7])
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
del vocabulary # Hint to reduce memory.
return data, count, dictionary, reverse_dictionary
vocab_size = 10000
data, count, dictionary, reverse_dictionary = collect_data(vocabulary_size=vocab_size)
print(data[:7])
window_size = 3
vector_dim = 300
epochs = 200000
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
sampling_table = sequence.make_sampling_table(vocab_size)
couples, labels = skipgrams(data, vocab_size, window_size=window_size, sampling_table=sampling_table)
word_target, word_context = zip(*couples)
word_target = np.array(word_target, dtype="int32")
word_context = np.array(word_context, dtype="int32")
print(couples[:10], labels[:10])
# create some input variables
input_target = Input((1,))
input_context = Input((1,))
embedding = Embedding(vocab_size, vector_dim, input_length=1, name='embedding')
target = embedding(input_target)
target = Reshape((vector_dim, 1))(target)
context = embedding(input_context)
context = Reshape((vector_dim, 1))(context)
# setup a cosine similarity operation which will be output in a secondary model
similarity = merge([target, context], mode='cos', dot_axes=0)
# now perform the dot product operation to get a similarity measure
dot_product = merge([target, context], mode='dot', dot_axes=1)
dot_product = Reshape((1,))(dot_product)
# add the sigmoid output layer
output = Dense(1, activation='sigmoid')(dot_product)
# create the primary training model
model = Model(input=[input_target, input_context], output=output)
model.compile(loss='binary_crossentropy', optimizer='rmsprop')
# create a secondary validation model to run our similarity checks during training
validation_model = Model(input=[input_target, input_context], output=similarity)
class SimilarityCallback:
def run_sim(self):
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
sim = self._get_sim(valid_examples[i])
nearest = (-sim).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
@staticmethod
def _get_sim(valid_word_idx):
sim = np.zeros((vocab_size,))
in_arr1 = np.zeros((1,))
in_arr2 = np.zeros((1,))
in_arr1[0,] = valid_word_idx
for i in range(vocab_size):
in_arr2[0,] = i
out = validation_model.predict_on_batch([in_arr1, in_arr2])
sim[i] = out
return sim
sim_cb = SimilarityCallback()
arr_1 = np.zeros((1,))
arr_2 = np.zeros((1,))
arr_3 = np.zeros((1,))
for cnt in range(epochs):
idx = np.random.randint(0, len(labels)-1)
arr_1[0,] = word_target[idx]
arr_2[0,] = word_context[idx]
arr_3[0,] = labels[idx]
loss = model.train_on_batch([arr_1, arr_2], arr_3)
if cnt % 100 == 0:
print("Iteration {}, loss={}".format(cnt, loss))
if cnt % 10000 == 0:
sim_cb.run_sim()