-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_DEM_qU.m
238 lines (212 loc) · 6.67 KB
/
spm_DEM_qU.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
function spm_DEM_qU(qU,pU)
% displays conditional estimates of states (qU)
% FORMAT spm_DEM_qU(qU,pU);
%
% qU.v{i} - causal states (V{1} = y = predicted response)
% qU.x{i} - hidden states
% qU.e{i} - prediction error
% qU.C{N} - conditional covariance - [causal states] for N samples
% qU.S{N} - conditional covariance - [hidden states] for N samples
%
% pU - optional input for known states
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_DEM_qU.m 7322 2018-05-31 09:47:15Z karl $
% unpack
%--------------------------------------------------------------------------
clf
V = qU.v;
E = qU.z;
try
X = qU.x;
end
try
C = qU.C;
S = qU.S;
end
try
pV = pU.v;
pX = pU.x;
end
% order of hierarchy
%--------------------------------------------------------------------------
try
g = length(X) + 1;
if isempty(X{end})
g = g - 1;
end
catch
g = length(V);
end
% time-series specification
%--------------------------------------------------------------------------
N = size(V{1},2); % length of data sequence
dt = 1; % time step
t = (1:N)*dt; % time
% unpack conditional covariances
%--------------------------------------------------------------------------
ci = spm_invNcdf(1 - 0.05);
s = [];
c = [];
try
for i = 1:N
c = [c abs(sqrt(diag(C{i})))];
s = [s abs(sqrt(diag(S{i})))];
end
end
% loop over levels
%--------------------------------------------------------------------------
for i = 1:g
if N == 1
% hidden causes and error - single observation
%------------------------------------------------------------------
subplot(g,2,2*i - 1)
E{i} = real(E{i});
V{i} = real(V{i});
t = 1:size(V{i},1);
plot(t,full(E{i})',':',t,full(V{i})')
box off
% conditional covariances
%------------------------------------------------------------------
if i > 1 && size(c,1)
hold on
j = 1:size(V{i},1);
y = ci*c(j,:);
c(j,:) = [];
fill([t fliplr(t)],[full(V{i} + y)' fliplr(full(V{i} - y)')],...
[1 1 1]*.8,'EdgeColor',[1 1 1]*.8)
plot(t,full(E{i})',':',t,full(V{i})')
hold off
end
% title and grid
%------------------------------------------------------------------
title('hidden causes','FontSize',16);
axis square
try, set(gca,'XLim',[t(1) t(end)]), end
box off
% true causes
%------------------------------------------------------------------
if nargin > 1
subplot(g,2,2*i)
plot(t,full(real(pV{i}))')
title('true causes','FontSize',16);
axis square
try, set(gca,'XLim',[t(1) t(end)]), end
box off
end
else
% hidden causes and error - time series
%------------------------------------------------------------------
subplot(g,2,2*i - 1)
try
plot(t,pV{i}','-.k')
end
hold on
try
plot(t,full(V{i})')
end
try
plot(t,full(E{i})',':')
end
box off, hold off
set(gca,'XLim',[t(1) t(end)])
a = axis;
% conditional covariances
%------------------------------------------------------------------
if i > 1 && size(c,1)
hold on
j = (1:size(V{i},1));
y = ci*c(j,:);
c(j,:) = [];
if size(V{i},1) < size(V{i},2)
fill([t fliplr(t)],[full(V{i} + y) fliplr(full(V{i} - y))],...
[1 1 1]*.8,'EdgeColor',[1 1 1]*.8)
else
fill([t fliplr(t)]',[full(V{i} + y) fliplr(full(V{i} - y))]',...
[1 1 1]*.8,'EdgeColor',[1 1 1]*.8)
end
try
plot(t,pV{i}','-.k')
end
try
plot(t,full(E{i}'),':')
end
plot(t,full(V{i})'),box off
hold off
end
% title, action and true causes (if available)
%------------------------------------------------------------------
if i == 1
title('prediction and error','FontSize',16);
elseif length(V) < i
title('no causes','FontSize',16);
elseif ~size(V{i},1)
title('no causes','FontSize',16);
else
title('hidden causes','FontSize',16);
try
hold on
plot(t,pV{i}','-.k'),box off
end
hold off
end
xlabel('time','FontSize',14)
axis square
axis(a)
% hidden states
%------------------------------------------------------------------
try
subplot(g,2,2*i)
try
hold on
plot(t,full(pX{i}'),'-.k')
box off, hold off
end
plot(t,full(X{i}')),box off
set(gca,'XLim',[t(1) t(end)])
a = axis;
if ~isempty(s)
hold on
j = 1:size(X{i},1);
y = ci*s(j,:);
s(j,:) = [];
fill([t fliplr(t)],[full(X{i} + y) fliplr(full(X{i} - y))],...
[1 1 1]*.8,'EdgeColor',[1 1 1]*.8)
try
plot(t,full(pX{i}'),'-.k'),box off
end
plot(t,full(X{i}')),box off
hold off
end
% title and grid
%--------------------------------------------------------------
title('hidden states','FontSize',16)
xlabel('time','FontSize',14)
axis square
axis(a);
catch
delete(gca)
end
end
end
% plot action if specified and present
%--------------------------------------------------------------------------
if isfield(qU,'a')
if ~isempty(qU.a{end})
subplot(g,2,2*g)
plot(t,full(qU.a{end})');
str = 'action'; hold on
try
plot(t,full(pU.v{2})','-.k')
box off,
str = 'perturbation and action';
end
xlabel('time','Fontsize',14); hold off
title(str,'Fontsize',16)
axis square
set(gca,'XLim',[t(1) t(end)])
box off
end
end
drawnow