-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagerecognizer.py
54 lines (50 loc) · 2.5 KB
/
imagerecognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow
from tensorflow import keras
from keras import layers as ls
import numpy as np
image_height = 256
image_width = 256
batch_size = 32
sets_path = "./learning_sets"
model_path="./IR.model"
train_new_model=False
class ImageRecognizer():
def __init__(self):
if train_new_model == True:
# deklarowanie setów treningowych i testowych
self.trainset = keras.utils.image_dataset_from_directory(sets_path, validation_split=0.2, subset="training",seed=0, image_size=(image_height, image_width),batch_size=batch_size)
self.testset = keras.utils.image_dataset_from_directory(sets_path, validation_split=0.2,subset="validation", seed=0,image_size=(image_height, image_width),batch_size=batch_size)
self.class_names = self.trainset.class_names
self.trainset = self.trainset.cache().shuffle(1000).prefetch(buffer_size=tensorflow.data.AUTOTUNE)
self.testset = self.testset.cache().prefetch(buffer_size=tensorflow.data.AUTOTUNE)
#tworzenie modelu
self.model = keras.models.Sequential()
self.model.add(ls.Rescaling(1. / 255, input_shape=(image_height, image_width, 3)))
self.model.add(ls.Conv2D(16, (3,3), activation='relu'))
self.model.add(ls.MaxPooling2D((2,2)))
self.model.add(ls.Conv2D(32, (3,3), activation='relu'))
self.model.add(ls.MaxPooling2D((2,2)))
self.model.add(ls.Conv2D(64, (3,3), activation='relu'))
self.model.add(ls.MaxPooling2D(2,2))
self.model.add(ls.Flatten())
self.model.add(ls.Dense(128, activation='relu'))
self.model.add(ls.Dense(2))
#kompilacja modelu
self.model.compile(optimizer='adam',loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
#epochowanie
self.model.fit(self.trainset,validation_data=self.testset,epochs=10)
self.model.save(model_path)
else:
self.class_names = ("bombs","stones")
self.model = tensorflow.keras.models.load_model(model_path)
def recognize(self,image_path):
#wybor obrazu do rekognizacji
image = keras.utils.load_img(image_path, target_size=(image_height, image_width))
image_array = keras.utils.img_to_array(image)
image_array = tensorflow.expand_dims(image_array, 0)
#predykcja
prediction = self.model.predict(image_array)
classification = tensorflow.nn.softmax(prediction[0])
#wynik predykcji
print("Image: ",image_path," is classified as: ",format(self.class_names[np.argmax(classification)])," with: ", 100 * np.max(classification), " accuracy")
return format(self.class_names[np.argmax(classification)])