forked from khoih-prog/TimerInterrupt_Generic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ISR_RPM_Measure.ino
171 lines (134 loc) · 6.05 KB
/
ISR_RPM_Measure.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/****************************************************************************************************************************
ISR_RPM_Measure.ino
For STM32 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt_Generic
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one STM32 timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
*****************************************************************************************************************************/
/*
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
RPM Measuring uses high frequency hardware timer 1Hz == 1ms) to measure the time from of one rotation, in ms
then convert to RPM. One rotation is detected by reading the state of a magnetic REED SW or IR LED Sensor
Asssuming LOW is active.
For example: Max speed is 600RPM => 10 RPS => minimum 100ms a rotation. We'll use 80ms for debouncing
If the time between active state is less than 8ms => consider noise.
RPM = 60000 / (rotation time in ms)
We use interrupt to detect whenever the SW is active, set a flag
then use timer to count the time between active state
*/
#if !( defined(STM32F0) || defined(STM32F1) || defined(STM32F2) || defined(STM32F3) ||defined(STM32F4) || defined(STM32F7) || \
defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32H7) ||defined(STM32G0) || defined(STM32G4) || \
defined(STM32WB) || defined(STM32MP1) || defined(STM32L5) )
#error This code is designed to run on STM32F/L/H/G/WB/MP1 platform! Please check your Tools->Board setting.
#endif
// These define's must be placed at the beginning before #include "TimerInterrupt_Generic.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
// Don't define TIMER_INTERRUPT_DEBUG > 2. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
#include "TimerInterrupt_Generic.h"
#ifndef LED_BUILTIN
#define LED_BUILTIN PB0 // Pin 33/PB0 control on-board LED_GREEN on F767ZI
#endif
#ifndef LED_BLUE
#define LED_BLUE PB7 // Pin 73/PB7 control on-board LED_BLUE on F767ZI
#endif
#ifndef LED_RED
#define LED_RED PB14 // Pin 74/PB14 control on-board LED_BLUE on F767ZI
#endif
unsigned int interruptPin = D7;
#define TIMER1_INTERVAL_MS 1
#define DEBOUNCING_INTERVAL_MS 80
#define LOCAL_DEBUG 1
// Depending on the board, you can select STM32 Hardware Timer from TIM1-TIM22
// For example, F767ZI can select Timer from TIM1-TIM14
// If you select a Timer not correctly, you'll get a message from ci[ompiler
// 'TIMxx' was not declared in this scope; did you mean 'TIMyy'?
// Init STM32 timer TIM2
STM32Timer ITimer1(TIM2);
volatile unsigned long rotationTime = 0;
float RPM = 0.00;
float avgRPM = 0.00;
volatile int debounceCounter;
volatile bool activeState = false;
void detectRotation(void)
{
activeState = true;
}
void TimerHandler1()
{
static bool started = false;
if ( activeState )
{
// Reset to prepare for next round of interrupt
activeState = false;
if (debounceCounter >= DEBOUNCING_INTERVAL_MS / TIMER1_INTERVAL_MS )
{
//min time between pulses has passed
RPM = (float) ( 60000.0f / ( rotationTime * TIMER1_INTERVAL_MS ) );
avgRPM = ( 2 * avgRPM + RPM) / 3,
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = "); Serial.print(avgRPM);
Serial.print(", rotationTime ms = "); Serial.println(rotationTime * TIMER1_INTERVAL_MS);
#endif
rotationTime = 0;
debounceCounter = 0;
}
else
debounceCounter++;
}
else
{
debounceCounter++;
}
if (rotationTime >= 5000)
{
// If idle, set RPM to 0, don't increase rotationTime
RPM = 0;
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = "); Serial.print(RPM); Serial.print(", rotationTime = "); Serial.println(rotationTime);
#endif
rotationTime = 0;
}
else
{
rotationTime++;
}
}
void setup()
{
pinMode(interruptPin, INPUT_PULLUP);
Serial.begin(115200);
while (!Serial);
delay(100);
Serial.print(F("\nStarting ISR_RPM_Measure on ")); Serial.println(BOARD_NAME);
Serial.println(STM32_TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
// Interval in microsecs, must multiply to 1000 here or crash
if (ITimer1.attachInterruptInterval(TIMER1_INTERVAL_MS * 1000, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
// Assumming the interruptPin will go LOW
attachInterrupt(digitalPinToInterrupt(interruptPin), detectRotation, FALLING);
}
void loop()
{
}