forked from rspamd/rbldnsd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rbldnsd_packet.c
1034 lines (918 loc) · 31.8 KB
/
rbldnsd_packet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* DNS packet handling routines for rbldnsd
*/
#include <string.h>
#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <syslog.h>
#include "rbldnsd.h"
#ifndef NO_IPv6
# ifndef NI_MAXHOST
# define IPSIZE 1025
# else
# define IPSIZE NI_MAXHOST
# endif
#else
# define IPSIZE 16
#endif
#define MAX_GLUE (MAX_NS*2)
static int addrr_soa(struct dnspacket *pkt, const struct zone *zone, int auth);
static int addrr_ns(struct dnspacket *pkt, const struct zone *zone, int auth);
static int version_req(struct dnspacket *pkt, const struct dnsquery *qry);
/* DNS packet:
* bytes comment */
/* 0:1 identifier (client supplied) */
#define p_id1 0
#define p_id2 1
/* 2 flags1 */
#define p_f1 2
#define pf1_qr 0x80 /* query response flag */
#define pf1_opcode 0x78 /* opcode, 0 = query */
#define pf1_aa 0x04 /* auth answer */
#define pf1_tc 0x02 /* truncation flag */
#define pf1_rd 0x01 /* recursion desired (may be set in query) */
/* 3 flags2 */
#define p_f2 3
#define pf2_ra 0x80 /* recursion available */
#define pf2_z 0x70 /* reserved */
#define pf2_rcode 0x0f /* response code */
/* 0 ok, 1 format error, 2 servfail, 3 nxdomain, 4 notimpl, 5 refused */
/* 4:5 qdcount (numqueries) */
#define p_qdcnt1 4
#define p_qdcnt2 5
/* 6:7 ancount (numanswers) */
#define p_ancnt1 6
#define p_ancnt2 7
/* 8:9 nscount (numauthority) */
#define p_nscnt1 8
#define p_nscnt2 9
/* 10:11 arcount (numadditional) */
#define p_arcnt1 10
#define p_arcnt2 11
#define p_hdrsize 12 /* size of packet header */
/* next is a DN name, a series of labels with first byte is label's length,
* terminated by zero-length label (i.e. at least one zero byte is here)
* next two bytes are query type (A, SOA etc)
* next two bytes are query class (IN, HESIOD etc)
*/
static int
parsequery(struct dnspacket *pkt, unsigned qlen,
struct dnsquery *qry) {
/* parsing incoming query. Untrusted data read directly from the network.
* pkt->p_buf is a buffer - data that was read (DNS_EDNS0_MAXPACKET max).
* qlen is number of bytes actually read (packet length)
* first p_hdrsize bytes is header, next is query DN,
* next are QTYPE and QCLASS (2x2 bytes).
* If NSCNT==0 && ARCNT==1, and an OPT record comes after the query,
* EDNS0 packet size gets extracted from the OPT record.
* Rest of data is ignored.
* Returns true on success, 0 on failure.
* Upon successeful return, pkt->p_sans = pkt->p_cur points to the end of
* the query section (where our answers will be placed), and
* pkt->p_endp is initialized to point to the real end of answers.
* Real end of answers is:
* for non-EDNS0-aware clients it's pkt->p_buf+DNS_MAXPACKET, and
* if a vaild EDNS0 UDPsize is given, it will be pkt->p_buf+UDPsize-11,
* with the 11 bytes needed for a minimal OPT record.
* In replypacket() we check whenever all our answers fits in standard
* UDP buffer size (DNS_MAXPACKET), and if not (which means we're replying
* to EDNS0-aware client due to the above rules), we just add proper OPT
* record at the end.
*/
register unsigned const char *q = pkt->p_buf;
register unsigned const char *x, *e;
register unsigned char *d;
unsigned qlab; /* number of labels in qDN */
x = q + qlen - 5; /* last possible qDN zero terminator position */
/* qlen isn't needed anymore, it'll be used as length of qDN below */
if (q + p_hdrsize > x) /* short packet (header isn't here) */
return 0;
else if (q + p_hdrsize + DNS_MAXDN <= x)
x = q + p_hdrsize + DNS_MAXDN - 1; /* constrain query DN to DNS_MAXDN */
if (q[p_f1] & pf1_qr) /* response packet?! */
return 0;
if (q[p_qdcnt1] || q[p_qdcnt2] != 1) /* qdcount should be == 1 */
return 0;
/* parse and lowercase query DN, count and init labels */
qlab = 0; /* number of labels so far */
q += p_hdrsize; /* start of qDN */
d = qry->q_dn; /* destination lowercased DN */
while((*d = *q) != 0) { /* loop by DN lables */
qry->q_lptr[qlab++] = d++; /* another label */
e = q + *q + 1; /* end of this label */
if (*q > DNS_MAXLABEL /* too long label? */
|| e > x) /* or it ends past packet? */
return 0;
/* lowercase it */
++q; /* length */
do *d++ = dns_dnlc(*q); /* lowercase each char */
while(++q < e); /* until end of label */
}
/* d points to qDN terminator now */
qry->q_dnlen = d - qry->q_dn + 1;
qry->q_dnlab = qlab;
/* q is end of qDN. decode qtype and qclass, and prepare for an answer */
++q;
qry->q_type = ((unsigned)(q[0]) << 8) | q[1];
qry->q_class = ((unsigned)(q[2]) << 8) | q[3];
q += 4;
pkt->p_sans = (unsigned char *)q; /* answers will start here */
pkt->p_cur = (unsigned char *)q; /* and current answer pointer is here */
d = pkt->p_buf;
if (q < x &&
d[p_nscnt1] == 0 && d[p_nscnt2] == 0 &&
d[p_arcnt1] == 0 && d[p_arcnt2] == 1 &&
q[0] == 0 /* empty DN */ &&
q[1] == (DNS_T_OPT>>8) && q[2] == (DNS_T_OPT&255)) {
qlen = (((unsigned)q[3]) << 8) | q[4];
/* 11 bytes are needed to encode minimal EDNS0 OPT record */
if (qlen < DNS_MAXPACKET + 11)
qlen = DNS_MAXPACKET;
else if (qlen > sizeof(pkt->p_buf) - 11)
qlen = sizeof(pkt->p_buf) - 11;
else
qlen -= 11;
pkt->p_endp = d + qlen;
}
else
pkt->p_endp = d + DNS_MAXPACKET;
return 1;
}
#define digit(c) ((c) >= '0' && (c) <= '9')
#define d2n(c) ((unsigned)((c) - '0'))
static int dntoip4addr(const unsigned char *q, ip4addr_t *ap) {
unsigned o, a = 0;
#define oct(q,o) \
switch(*q) { \
case 1: \
if (!digit(q[1])) \
return 0; \
o = d2n(q[1]); \
break; \
case 2: \
if (!digit(q[1]) || !digit(q[2])) \
return 0; \
o = d2n(q[1]) * 10 + d2n(q[2]); \
break; \
case 3: \
if (!digit(q[1]) || !digit(q[2]) || !digit(q[3])) \
return 0; \
o = d2n(q[1]) * 100 + d2n(q[2]) * 10 + d2n(q[3]); \
if (o > 255) return 0; \
break; \
default: return 0; \
}
oct(q,o); a |= o; q += *q + 1;
oct(q,o); a |= o << 8; q += *q + 1;
oct(q,o); a |= o << 16; q += *q + 1;
oct(q,o); a |= o << 24;
*ap = a;
return 1;
#undef oct
}
static int dntoip6addr(const unsigned char *q, ip6oct_t ap[IP6ADDR_FULL]) {
unsigned o1, o2, c;
for(c = IP6ADDR_FULL; c; ) {
if (*q++ != 1)
return 0;
if (digit(*q)) o2 = d2n(*q++);
else if (*q >= 'a' && *q <= 'f') o2 = *q++ - 'a' + 10;
else return 0;
if (*q++ != 1)
return 0;
if (digit(*q)) o1 = d2n(*q++);
else if (*q >= 'a' && *q <= 'f') o1 = *q++ - 'a' + 10;
else return 0;
ap[--c] = (o1 << 4) | o2;
}
return 1;
}
static const ip6oct_t ip6mapped_pfx[12] =
"\0\0\0\0\0\0\0\0"
"\0\0\377\377";
/* parse DN (as in 4.3.2.1.in-addr.arpa) to ip4addr_t (4 octets 0..255).
* parse DN (as in 0.1.2.3.4.5...f.base.dn) to ip6 address (32 nibbles 0..f)
*/
static void dntoip(struct dnsqinfo *qi, int flags) {
const unsigned char *q = qi->qi_dn;
unsigned qlab = qi->qi_dnlab;
qi->qi_ip4valid = qlab == 4 && dntoip4addr(q, &qi->qi_ip4);
if (qi->qi_ip4valid)
qi->qi_ip6valid = 0;
else {
qi->qi_ip6valid =
qlab == 32 && qi->qi_dnlen0 == 64 && dntoip6addr(q, qi->qi_ip6);
if (qi->qi_ip6valid && (flags & DSTF_IP4REV)) {
if (qi->qi_ip6[0] == 0x20 && qi->qi_ip6[1] == 0x02) {
/* construct IP4 from 2002:V4ADDR::/48 6to4 address, RFC3056 */
qi->qi_ip4 = unpack32(qi->qi_ip6 + 2);
qi->qi_ip4valid = 1;
}
else if (memcmp(qi->qi_ip6, ip6mapped_pfx, sizeof(ip6mapped_pfx)) == 0) {
/* construct IP4 from IP4MAPPED, ::ffff:V4ADDR */
qi->qi_ip4 = unpack32(qi->qi_ip6 + 12);
qi->qi_ip4valid = 1;
qi->qi_ip6valid = 0; /* don't bother looking v6 */
}
}
}
}
const struct zone *
findqzone(const struct zone *zone,
unsigned dnlen, unsigned dnlab, unsigned char *const *const dnlptr,
struct dnsqinfo *qi) {
const unsigned char *q;
for(;; zone = zone->z_next) {
if (!zone) return NULL;
if (zone->z_dnlab > dnlab) continue;
q = dnlptr[dnlab - zone->z_dnlab];
if (memcmp(zone->z_dn, q, zone->z_dnlen - 1)) continue;
break;
}
qi->qi_dn = dnlptr[0];
qi->qi_dnlptr = dnlptr;
qi->qi_dnlab = dnlab - zone->z_dnlab;
qi->qi_dnlen0 = dnlen - zone->z_dnlen;
if (zone->z_dstflags & (DSTF_IP4REV|DSTF_IP6REV)) /* IP address */
dntoip(qi, zone->z_dstflags);
return zone;
}
#ifdef NO_STATS
# define do_stats(x)
#else
# define do_stats(x) x
#endif
/* construct reply to a query. */
int replypacket(struct dnspacket *pkt, unsigned qlen, struct zone *zone, struct dnsqinfo *qi) {
struct dnsquery qry; /* query structure */
unsigned char *h = pkt->p_buf; /* packet's header */
const struct dslist *dsl;
int found;
extern int lazy; /*XXX hack*/
pkt->p_substrr = 0;
/* check global ACL */
if (g_dsacl && g_dsacl->ds_stamp) {
found = ds_acl_query(g_dsacl, pkt);
if (found & NSQUERY_IGNORE) {
do_stats(gstats.q_err += 1; gstats.b_in += qlen);
return 0;
}
}
else {
found = 0;
}
if (!parsequery(pkt, qlen, &qry)) {
do_stats(gstats.q_err += 1; gstats.b_in += qlen);
return 0;
}
/* from now on, we see (almost?) valid dns query, should reply */
#define setnonauth(h) (h[p_f1] &= ~pf1_aa)
#define _refuse(code,lab) \
do { setnonauth(h); h[p_f2] = (code); goto lab; } while(0)
#define refuse(code) _refuse(code, err_nz)
#define rlen() pkt->p_cur - h
/* construct reply packet */
/* identifier already in place */
/* flags will be set up later */
/* qdcount already set up in query */
/* all counts (qd,an,ns,ar) are <= 255 due to size limit */
h[p_ancnt1] = h[p_ancnt2] = 0;
h[p_nscnt1] = h[p_nscnt2] = 0;
h[p_arcnt1] = h[p_arcnt2] = 0;
if (h[p_f1] & (pf1_opcode | pf1_aa | pf1_tc | pf1_qr)) {
h[p_f1] = pf1_qr;
refuse(DNS_R_NOTIMPL);
}
h[p_f1] |= pf1_qr;
if (qry.q_class == DNS_C_IN)
h[p_f1] |= pf1_aa;
else if (qry.q_class != DNS_C_ANY) {
if (version_req(pkt, &qry)) {
do_stats(gstats.q_ok += 1; gstats.b_in += qlen; gstats.b_out += rlen());
return rlen();
}
else
refuse(DNS_R_REFUSED);
}
switch(qry.q_type) {
case DNS_T_ANY: qi->qi_tflag = NSQUERY_ANY; break;
case DNS_T_A: qi->qi_tflag = NSQUERY_A; break;
case DNS_T_TXT: qi->qi_tflag = NSQUERY_TXT; break;
case DNS_T_NS: qi->qi_tflag = NSQUERY_NS; break;
case DNS_T_SOA: qi->qi_tflag = NSQUERY_SOA; break;
case DNS_T_MX: qi->qi_tflag = NSQUERY_MX; break;
default:
if (qry.q_type >= DNS_T_TSIG)
refuse(DNS_R_NOTIMPL);
qi->qi_tflag = NSQUERY_OTHER;
}
qi->qi_tflag |= found;
h[p_f2] = DNS_R_NOERROR;
/* find matching zone */
zone = (struct zone*)
findqzone(zone, qry.q_dnlen, qry.q_dnlab, qry.q_lptr, qi);
if (!zone) /* not authoritative */
refuse(DNS_R_REFUSED);
/* check global ACL key, we can do it merely after zone data has been parsed */
if (g_dsaclkey && g_dsaclkey->ds_stamp) {
found = ds_aclkey_query(g_dsaclkey, qi, pkt);
if (found & NSQUERY_IGNORE) {
do_stats(gstats.q_dropped += 1; gstats.b_in += qlen);
return 0;
}
}
/* found matching zone */
#undef refuse
#define refuse(code) _refuse(code, err_z)
do_stats(zone->z_stats.b_in += qlen);
if (zone->z_dsacl && zone->z_dsacl->ds_stamp) {
qi->qi_tflag |= ds_acl_query(zone->z_dsacl, pkt);
if (qi->qi_tflag & NSQUERY_IGNORE) {
do_stats(gstats.q_err += 1);
return 0;
}
}
if (zone->z_dsaclkey && zone->z_dsaclkey->ds_stamp) {
qi->qi_tflag |= ds_aclkey_query(zone->z_dsaclkey, qi, pkt);
if (qi->qi_tflag & NSQUERY_IGNORE) {
do_stats(gstats.q_dropped += 1);
return 0;
}
}
if (!zone->z_stamp) /* do not answer if not loaded */
refuse(DNS_R_SERVFAIL);
if (qi->qi_tflag & NSQUERY_REFUSE)
refuse(DNS_R_REFUSED);
if ((found = call_hook(query_access, (pkt->p_peer, zone, qi)))) {
if (found < 0) return 0;
refuse(DNS_R_REFUSED);
}
if (qi->qi_dnlab == 0) { /* query to base zone: SOA and NS */
found = NSQUERY_FOUND;
/* NS and SOA with auth=0 will only touch answer section */
if ((qi->qi_tflag & NSQUERY_SOA) && !addrr_soa(pkt, zone, 0))
found = 0;
else
if ((qi->qi_tflag & NSQUERY_NS) && !addrr_ns(pkt, zone, 0))
found = 0;
if (!found) {
pkt->p_cur = pkt->p_sans;
h[p_ancnt2] = h[p_nscnt2] = 0;
refuse(DNS_R_REFUSED);
}
}
else /* not to zone base DN */
found = 0;
/* search the datasets */
for(dsl = zone->z_dsl; dsl; dsl = dsl->dsl_next)
found |= dsl->dsl_queryfn(dsl->dsl_ds, qi, pkt);
if (found & NSQUERY_ADDPEER) {
#ifdef NO_IPv6
addrr_a_txt(pkt, qi->qi_tflag, pkt->p_substrr,
inet_ntoa(((struct sockaddr_in*)pkt->p_peer)->sin_addr),
pkt->p_substds);
#else
char subst[IPSIZE];
if (getnameinfo(pkt->p_peer, pkt->p_peerlen,
subst, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) != 0)
subst[0] = '\0';
addrr_a_txt(pkt, qi->qi_tflag, pkt->p_substrr, subst, pkt->p_substds);
#endif
}
/* now complete the reply: add AUTH etc sections */
/* addrr_ns(auth=1) should be called last as it fills in
* both AUTH and ADDITIONAL sections */
if (!found) { /* negative result */
addrr_soa(pkt, zone, 1); /* add SOA if any to AUTHORITY */
h[p_f2] = DNS_R_NXDOMAIN;
do_stats(zone->z_stats.q_nxd += 1);
}
else {
if (!h[p_ancnt2]) { /* positive reply, no answers */
addrr_soa(pkt, zone, 1); /* add SOA if any to AUTHORITY */
}
else if (zone->z_nns &&
/* (!(qi->qi_tflag & NSQUERY_NS) || qi->qi_dnlab) && */
!lazy)
addrr_ns(pkt, zone, 1); /* add nameserver records to positive reply */
do_stats(zone->z_stats.q_ok += 1);
}
(void)call_hook(query_result, (pkt->p_peer, zone, qi, found));
if (rlen() > DNS_MAXPACKET) { /* add OPT record for long replies */
/* as per parsequery(), we always have 11 bytes for minimal OPT record at
* the end of our reply packet, OR rlen() does not exceed DNS_MAXPACKET */
h[p_arcnt2] += 1; /* arcnt is limited to 254 records */
h = pkt->p_cur;
*h++ = 0; /* empty (root) DN */
PACK16S(h, DNS_T_OPT);
PACK16S(h, DNS_EDNS0_MAXPACKET);
*h++ = 0; *h++ = 0; /* RCODE and version */
*h++ = 0; *h++ = 0; /* rest of the TTL field */
*h++ = 0; *h++ = 0; /* RDLEN */
pkt->p_cur = h;
h = pkt->p_buf; /* restore for rlen() to work */
}
do_stats(zone->z_stats.b_out += rlen());
return rlen();
err_nz:
do_stats(gstats.q_err += 1; gstats.b_in += qlen; gstats.b_out += rlen());
return rlen();
err_z:
do_stats(zone->z_stats.q_err += 1; zone->z_stats.b_out += rlen());
return rlen();
}
#define fit(pkt, c, bytes) ((c) + (bytes) <= (pkt)->p_endp)
/* DN compression pointers/structures */
/* We store pre-computed RRs for NS and SOA records in special
* cache buffers referenced to by zone structure.
*
* The precomputed RRs consists of ready-to-be-sent data (with
* all record types/classes, TTLs, and data in place), modulo
* compressed DN backreferences. When this cached data will be
* copied into answer packet, we'll need to adjust "jumps" in
* DN name compressions to reflect actual position of the data
* in answer packet.
*
* Cache data is calculated as if it where inside some packet,
* where it's start is exactly at the beginning of cached/precomputed
* record, and with zone's base DN (with class and type) being in
* question section immediately BEFORE the data (i.e. before our
* "virtual packet"). So some DN compression offsets (pointers)
* will be negative (referring to the query section of actual answer,
* as zone base DN will be present in answer anyway), and some will
* be positive (referring to this very record in actual answer).
*/
struct dnjump { /* one DN "jump": */
unsigned char *pos; /* position in precomputed packet where the jump is */
int off; /* jump offset relative to beginning of the RRs */
};
struct dnptr { /* domain pointer for DN compression */
const unsigned char *dn; /* actual (complete) domain name */
int off; /* jump offset relative to start of RRs */
};
struct dncompr { /* DN compression structure */
struct dnptr ptr[256]; /* array of all known domain names */
struct dnptr *lptr; /* last unused slot in ptr[] */
unsigned char *buf; /* buffer for the cached RRs */
unsigned char *bend; /* pointer to past the end of buf */
struct dnjump *jump; /* current jump ptr (array of jumps) */
};
#define CACHEBUF_SIZE (DNS_MAXPACKET-p_hdrsize-4)
/* maxpacket minus header minus (class+type) */
/* initialize compression/cache structures */
static unsigned char *
dnc_init(struct dncompr *compr,
unsigned char *buf, unsigned bufsize, struct dnjump *jump,
const unsigned char *dn) {
struct dnptr *ptr;
unsigned char *cpos;
compr->buf = buf; compr->bend = buf + bufsize;
compr->jump = jump;
cpos = buf - dns_dnlen(dn) - 4; /* current position: qDN BEFORE the RRs */
ptr = compr->ptr;
while(*dn) {
ptr->dn = dn;
ptr->off = cpos - buf;
++ptr;
cpos += *dn + 1;
dn += *dn + 1;
}
compr->lptr = ptr;
return cpos + 5;
}
/* add one DN into cache, adjust compression pointers and current pointer */
static unsigned char *
dnc_add(struct dncompr *compr, unsigned char *cpos, const unsigned char *dn) {
struct dnptr *ptr;
while(*dn) {
/* lookup DN in already stored names */
for(ptr = compr->ptr; ptr < compr->lptr; ++ptr) {
if (!dns_dnequ(ptr->dn, dn))
continue;
/* found one, make a jump to it */
if (cpos + 2 >= compr->bend) return NULL;
compr->jump->pos = cpos;
compr->jump->off = ptr->off;
++compr->jump;
return cpos + 2;
}
/* not found, add it to the list of known DNs... */
if (cpos + *dn + 1 >= compr->bend)
return NULL; /* does not fit */
if (ptr < compr->ptr + sizeof(compr->ptr) / sizeof(compr->ptr[0])) {
ptr->dn = dn;
ptr->off = cpos - compr->buf;
++compr->lptr;
}
/* ...and add one label into the "packet" */
memcpy(cpos, dn, *dn + 1);
cpos += *dn + 1;
dn += *dn + 1;
}
if (cpos + 1 >= compr->bend)
return NULL;
*cpos++ = '\0';
return cpos;
}
/* finalize RRs: remember it's size and number of jumps */
static void dnc_finish(struct dncompr *compr, unsigned char *cptr,
unsigned *sizep, struct dnjump **jendp) {
*sizep = cptr - compr->buf;
*jendp = compr->jump;
}
/* place pre-cached RRs into the packet, adjusting jumps */
static int
dnc_final(struct dnspacket *pkt,
const unsigned char *data, unsigned dsize,
const struct dnjump *jump,
const struct dnjump *jend) {
const unsigned qoff = (pkt->p_sans - pkt->p_buf) + 0xc000;
const unsigned coff = (pkt->p_cur - pkt->p_buf) + 0xc000;
unsigned pos;
if (!fit(pkt, pkt->p_cur, dsize))
return 0;
/* first, adjust offsets - in cached data anyway */
while(jump < jend) {
/* jump to either query section or this very RRs */
pos = jump->off + (jump->off < 0 ? qoff : coff);
PACK16(jump->pos, pos);
++jump;
}
/* and finally, copy the RRs into answer packet */
memcpy(pkt->p_cur, data, dsize);
pkt->p_cur += dsize;
return 1;
}
struct zonesoa { /* cached SOA RR */
unsigned size; /* size of the RR */
unsigned ttloff; /* offset of the TTL field */
const unsigned char *minttl; /* pointer to minttl in data */
struct dnjump jump[3]; /* jumps to fix: 3 max (qdn, odn, pdn) */
struct dnjump *jend; /* last jump */
unsigned char data[CACHEBUF_SIZE];
};
struct zonens { /* cached NS RRs */
unsigned nssize; /* size of all NS RRs */
unsigned tsize; /* size of NS+glue recs */
struct dnjump jump[MAX_NS*2+MAX_GLUE];/* jumps: for qDNs and for NSes */
struct dnjump *nsjend; /* last NS jump */
struct dnjump *tjend; /* last glue jump */
unsigned char data[CACHEBUF_SIZE];
};
void init_zones_caches(struct zone *zonelist) {
while(zonelist) {
if (!zonelist->z_dsl) {
char name[DNS_MAXDOMAIN];
dns_dntop(zonelist->z_dn, name, sizeof(name));
error(0, "missing data for zone `%s'", name);
}
zonelist->z_zsoa = tmalloc(struct zonesoa);
/* for NS RRs, we allocate MAX_NS caches:
* each stores one variant of NS rotation */
zonelist->z_zns = (struct zonens *)emalloc(sizeof(struct zonens) * MAX_NS);
zonelist = zonelist->z_next;
}
}
/* update SOA RR cache */
int update_zone_soa(struct zone *zone, const struct dssoa *dssoa) {
struct zonesoa *zsoa;
unsigned char *cpos;
struct dncompr compr;
unsigned t;
unsigned char *sizep;
zsoa = zone->z_zsoa;
zsoa->size = 0;
if (!(zone->z_dssoa = dssoa)) return 1;
cpos = dnc_init(&compr, zsoa->data, sizeof(zsoa->data),
zsoa->jump, zone->z_dn);
cpos = dnc_add(&compr, cpos, zone->z_dn);
PACK16S(cpos, DNS_T_SOA);
PACK16S(cpos, DNS_C_IN);
zsoa->ttloff = cpos - compr.buf;
PACK32S(cpos, dssoa->dssoa_ttl);
sizep = cpos;
cpos += 2;
cpos = dnc_add(&compr, cpos, dssoa->dssoa_odn);
if (!cpos) return 0;
cpos = dnc_add(&compr, cpos, dssoa->dssoa_pdn);
if (!cpos) return 0;
t = dssoa->dssoa_serial ? dssoa->dssoa_serial : zone->z_stamp;
PACK32S(cpos, t);
memcpy(cpos, dssoa->dssoa_n, 16); cpos += 16;
zsoa->minttl = cpos - 4;
t = cpos - sizep - 2;
PACK16(sizep, t);
dnc_finish(&compr, cpos, &zsoa->size, &zsoa->jend);
return 1;
}
static int addrr_soa(struct dnspacket *pkt, const struct zone *zone, int auth) {
const struct zonesoa *zsoa = zone->z_zsoa;
unsigned char *c = pkt->p_cur;
if (!zone->z_dssoa || !zsoa->size) {
if (!auth)
setnonauth(pkt->p_buf);
return 0;
}
if (!dnc_final(pkt, zsoa->data, zsoa->size, zsoa->jump, zsoa->jend)) {
if (!auth)
setnonauth(pkt->p_buf); /* non-auth answer as we can't fit the record */
return 0;
}
/* for AUTHORITY section for NXDOMAIN etc replies, use minttl as TTL */
if (auth) memcpy(c + zsoa->ttloff, zsoa->minttl, 4);
pkt->p_buf[auth ? p_nscnt2 : p_ancnt2]++;
return 1;
}
static unsigned char *
find_glue(struct zone *zone, const unsigned char *nsdn,
struct dnspacket *pkt, const struct zone *zonelist) {
struct dnsqinfo qi;
unsigned lab;
unsigned char dnbuf[DNS_MAXDN], *dp;
unsigned char *dnlptr[DNS_MAXLABELS];
const struct dslist *dsl;
const struct zone *qzone;
/* lowercase the nsdn and find label pointers */
lab = 0; dp = dnbuf;
while((*dp = *nsdn)) {
const unsigned char *e = nsdn + *nsdn + 1;
dnlptr[lab++] = dp++;
while(++nsdn < e)
*dp++ = dns_dnlc(*nsdn);
}
qzone = findqzone(zonelist, dp - dnbuf + 1, lab, dnlptr, &qi);
if (!qzone)
return NULL;
/* pefrorm fake query */
qi.qi_tflag = NSQUERY_A/*|NSQUERY_AAAA*/;
dp = pkt->p_cur;
for(dsl = qzone->z_dsl; dsl; dsl = dsl->dsl_next)
dsl->dsl_queryfn(dsl->dsl_ds, &qi, pkt);
if (dp == pkt->p_cur) {
char name[DNS_MAXDOMAIN];
dns_dntop(qi.qi_dn, name, sizeof(name));
zlog(LOG_WARNING, zone, "no glue record(s) for %.60s NS found", name);
return NULL;
}
return dp;
}
int update_zone_ns(struct zone *zone, const struct dsns *dsns, unsigned ttl,
const struct zone *zonelist) {
struct zonens *zns;
unsigned char *cpos, *sizep;
struct dncompr compr;
unsigned size, i, ns, nns;
const unsigned char *nsdna[MAX_NS];
const unsigned char *dn;
unsigned char *nsrrs[MAX_NS], *nsrre[MAX_NS];
unsigned nglue;
struct dnspacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.p_sans = pkt.p_cur = pkt.p_buf + p_hdrsize;
pkt.p_endp = pkt.p_buf + CACHEBUF_SIZE + p_hdrsize;
for(nns = 0; dsns; dsns = dsns->dsns_next) {
i = 0;
while(i < nns && !dns_dnequ(nsdna[i], dsns->dsns_dn))
++i;
if (i < nns)
continue;
if (nns >= MAX_NS) {
zlog(LOG_WARNING, zone,
"too many NS records specified, only first %d will be used", MAX_NS);
break;
}
nsdna[nns] = dsns->dsns_dn;
if ((nsrrs[nns] = find_glue(zone, dsns->dsns_dn, &pkt, zonelist)))
nsrre[nns] = pkt.p_cur;
++nns;
}
/* number of additional records must not exceed 254: (room for EDNS0 OPT) */
nglue = pkt.p_buf[p_ancnt2];
if (pkt.p_buf[p_ancnt1] || nglue > 254) /* too many glue recs */
return 0;
/* check if we have enouth dnjump slots */
if (nns * 2 + nglue > sizeof(zns->jump)/sizeof(zns->jump[0]))
return 0;
memcpy(zone->z_nsdna, nsdna, nns * sizeof(nsdna[0]));
memset(nsdna + nns, 0, (MAX_NS - nns) * sizeof(nsdna[0]));
zone->z_nns = 0; /* for now, in case of error return */
zone->z_nsttl = ttl;
/* fill up nns variants of NS RRs ordering:
* zns is actually an array, not single structure */
ns = 0;
zns = zone->z_zns;
for(;;) {
cpos = dnc_init(&compr, zns->data, sizeof(zns->data),
zns->jump, zone->z_dn);
for(i = 0; i < nns; ++i) {
cpos = dnc_add(&compr, cpos, zone->z_dn);
if (!cpos || cpos + 10 > compr.bend) return 0;
PACK16S(cpos, DNS_T_NS);
PACK16S(cpos, DNS_C_IN);
PACK32S(cpos, ttl);
sizep = cpos; cpos += 2;
cpos = dnc_add(&compr, cpos, nsdna[i]);
if (!cpos) return 0;
size = cpos - sizep - 2;
PACK16(sizep, size);
}
dnc_finish(&compr, cpos, &zns->nssize, &zns->nsjend);
if (nglue)
for(i = 0; i < nns; ++i)
for(dn = nsrrs[i]; dn && dn < nsrre[i]; ) {
/* pack the glue record. dnjump, type+class, ttl, size (= 4 or 16) */
dn += 2;
size = 10 + dn[2+2+4+1];
cpos = dnc_add(&compr, cpos, zone->z_nsdna[i]);
if (!cpos || cpos + size > compr.bend) return 0;
memcpy(cpos, dn, size);
dn += size; cpos += size;
}
dnc_finish(&compr, cpos, &zns->tsize, &zns->tjend);
if (++ns >= nns) break;
/* rotate list of NSes */
dn = nsdna[0];
memmove(nsdna, nsdna + 1, (nns - 1) * sizeof(nsdna[0]));
nsdna[nns - 1] = dn;
++zns;
}
zone->z_nns = nns;
zone->z_nglue = nglue;
return 1;
}
static int addrr_ns(struct dnspacket *pkt, const struct zone *zone, int auth) {
unsigned cns = zone->z_cns;
const struct zonens *zns = zone->z_zns + cns;
if (!zone->z_nns)
return 0;
/* if auth=1, we're adding last records (except maybe EDNS0 OPT),
* so it's ok to fill in both AUTH and ADDITIONAL sections. */
/* If we can't fit both NS and glue recs, try NS only, omitting glue.
* For auth=0, don't add glue records at all. */
if (auth && dnc_final(pkt, zns->data, zns->tsize, zns->jump, zns->tjend)) {
pkt->p_buf[p_nscnt2] += zone->z_nns;
pkt->p_buf[p_arcnt2] += zone->z_nglue;
}
else if (!dnc_final(pkt, zns->data, zns->nssize, zns->jump, zns->nsjend))
return 0;
else
/* we can't overflow p_ancnt2 (255 max) because addrr_ns(auth=0)
* is called before all other answers will be collected,
* and MAX_NS (zone->z_nns) is definitely less than 255 */
pkt->p_buf[auth ? p_nscnt2 : p_ancnt2] += zone->z_nns;
/* pick up next variation of NS ordering */
++cns;
if (cns >= zone->z_nns)
cns = 0;
((struct zone *)zone)->z_cns = cns;
return 1;
}
static unsigned
checkrr_present(register unsigned char *c, register unsigned char *e,
unsigned dtp, const void *data, unsigned dsz, unsigned ttl) {
/* check whenever we already have this (type of) RR in reply,
* ensure that all RRs of the same type has the same TTL */
const unsigned char dtp1 = dtp >> 8, dtp2 = dtp & 255;
unsigned t;
#define nextRR(c) ((c) + 12 + (c)[11])
#define hasRR(c,e) ((c) < (e))
#define sameRRT(c,dtp1,dtp2) ((c)[2] == (dtp1) && (c)[3] == (dtp2))
#define sameDATA(c,dsz,data) \
((c)[11] == (dsz) && memcmp((c)+12, (data), (dsz)) == 0)
#define rrTTL(c) ((c)+6)
for(;;) {
if (!hasRR(c,e))
return ttl;
if (sameRRT(c,dtp1,dtp2))
break;
c = nextRR(c);
}
/* found at least one RR with the same type as new */
if (ttl >= (t = unpack32(rrTTL(c)))) {
/* new ttl is either larger or the same as ttl of one of existing RRs */
/* if we already have the same record, do nothing */
if (sameDATA(c,dsz,data))
return 0;
/* check other records too */
for(c = nextRR(c); hasRR(c,e); c = nextRR(c))
if (sameRRT(c,dtp1,dtp2) && sameDATA(c,dsz,data))
/* already has exactly the same data */
return 0;
return t; /* use existing, smaller TTL for new RR */
}
else { /* change TTLs of existing RRs to new, smaller one */
int same = sameDATA(c,dsz,data);
unsigned char *ttlnb = rrTTL(c);
PACK32(ttlnb, ttl);
for(c = nextRR(c); hasRR(c,e); c = nextRR(c))
if (sameRRT(c,dtp1,dtp2)) {
memcpy(rrTTL(c), ttlnb, 4);
if (sameDATA(c,dsz,data))
same = 1;
}
return same ? 0 : ttl;
}
#undef nextRR
#undef hasRR
#undef sameRRT
#undef sameDATA
#undef rrTTL
}
/* add a new record into answer, check for dups.
* We just ignore any data that exceeds packet size */
void addrr_any(struct dnspacket *pkt, unsigned dtp,
const void *data, unsigned dsz,
unsigned ttl) {
register unsigned char *c = pkt->p_cur;
ttl = checkrr_present(pkt->p_sans, c, dtp, data, dsz, ttl);
if (!ttl) return; /* if RR is already present, do nothing */
if (!fit(pkt, c, 12 + dsz) || pkt->p_buf[p_ancnt2] == 255) {
setnonauth(pkt->p_buf); /* non-auth answer as we can't fit the record */
return;
}
*c++ = 192; *c++ = p_hdrsize; /* jump after header: query DN */
PACK16S(c, dtp);
PACK16S(c, DNS_C_IN);
PACK32S(c, ttl);
PACK16S(c, dsz);
memcpy(c, data, dsz);
pkt->p_cur = c + dsz;
pkt->p_buf[p_ancnt2] += 1; /* increment numanswers */
}
void
addrr_a_txt(struct dnspacket *pkt, unsigned qtflag,
const char *rr, const char *subst,
const struct dataset *ds) {
if (qtflag & NSQUERY_A)
addrr_any(pkt, DNS_T_A, rr, 4, ds->ds_ttl);
if (qtflag & NSQUERY_TXT) {
char sb[TXTBUFSIZ+1];
unsigned sl = txtsubst(sb + 1, rr + 4, subst, ds);
if (sl) {
sb[0] = sl;
addrr_any(pkt, DNS_T_TXT, sb, sl + 1, ds->ds_ttl);
}
}
}
static int version_req(struct dnspacket *pkt, const struct dnsquery *qry) {
register unsigned char *c;
unsigned dsz;
if (!show_version)
return 0;
if (qry->q_class != DNS_C_CH || qry->q_type != DNS_T_TXT)
return 0;
if ((qry->q_dnlen != 16 || memcmp(qry->q_dn, "\7version\6server", 16)) &&
(qry->q_dnlen != 14 || memcmp(qry->q_dn, "\7version\4bind", 14)))
return 0;
c = pkt->p_cur;
*c++ = 192; *c++ = p_hdrsize; /* jump after header: query DN */
*c++ = DNS_T_TXT>>8; *c++ = DNS_T_TXT;
*c++ = DNS_C_CH>>8; *c++ = DNS_C_CH;
*c++ = 0; *c++ = 0; *c++ = 0; *c++ = 0; /* ttl */
dsz = strlen(show_version) + 1;
PACK16(c, dsz); c += 2; /* dsize */
*c++ = --dsz;
memcpy(c, show_version, dsz);
pkt->p_cur = c + dsz;
pkt->p_buf[p_ancnt2] += 1; /* increment numanswers */
return 1;
}
void logreply(const struct dnspacket *pkt, FILE *flog, int flushlog, const struct dnsqinfo *qi) {
char cbuf[DNS_MAXDOMAIN + IPSIZE + 51 + DNS_MAXLABEL];
char *cp = cbuf;
const unsigned char *const q = pkt->p_sans - 4;
cp += sprintf(cp, "%lu ", (unsigned long)time(NULL));