forked from yeyupiaoling/Tensorflow-FaceRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_infer.py
122 lines (112 loc) · 4.79 KB
/
path_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import config
import cv2
import numpy as np
import sklearn
from PIL import ImageFont, ImageDraw, Image
from utils import face_preprocess
from utils.utils import feature_compare, load_mtcnn, load_faces, load_mobilefacenet, add_faces
# 人脸识别阈值
VERIFICATION_THRESHOLD = config.VERIFICATION_THRESHOLD
# 检测人脸检测模型
mtcnn_detector = load_mtcnn()
# 加载人脸识别模型
face_sess, inputs_placeholder, embeddings = load_mobilefacenet()
# 添加人脸
add_faces(mtcnn_detector)
# 加载已经注册的人脸
faces_db = load_faces(face_sess, inputs_placeholder, embeddings)
# 注册人脸
def face_register(img_path, name):
image = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), 1)
faces, landmarks = mtcnn_detector.detect(image)
if faces.shape[0] is not 0:
faces_sum = 0
bbox = []
points = []
for i, face in enumerate(faces):
if round(faces[i, 4], 6) > 0.95:
bbox = faces[i, 0:4]
points = landmarks[i, :].reshape((5, 2))
faces_sum += 1
if faces_sum == 1:
nimg = face_preprocess.preprocess(image, bbox, points, image_size='112,112')
cv2.imencode('.png', nimg)[1].tofile('face_db/%s.png' % name)
print("注册成功!")
else:
print('注册图片有错,图片中有且只有一个人脸')
else:
print('注册图片有错,图片中有且只有一个人脸')
def face_recognition(img_path):
image = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), 1)
faces, landmarks = mtcnn_detector.detect(image)
if faces.shape[0] is not 0:
faces_sum = 0
for i, face in enumerate(faces):
if round(faces[i, 4], 6) > 0.95:
faces_sum += 1
if faces_sum > 0:
# 人脸信息
info_location = np.zeros(faces_sum)
info_location[0] = 1
info_name = []
probs = []
# 提取图像中的人脸
input_images = np.zeros((faces.shape[0], 112, 112, 3))
for i, face in enumerate(faces):
if round(faces[i, 4], 6) > 0.95:
bbox = faces[i, 0:4]
points = landmarks[i, :].reshape((5, 2))
nimg = face_preprocess.preprocess(image, bbox, points, image_size='112,112')
nimg = nimg - 127.5
nimg = nimg * 0.0078125
input_images[i, :] = nimg
# 进行人脸识别
feed_dict = {inputs_placeholder: input_images}
emb_arrays = face_sess.run(embeddings, feed_dict=feed_dict)
print(emb_arrays.shape)
emb_arrays = sklearn.preprocessing.normalize(emb_arrays)
print(emb_arrays.shape)
for i, embedding in enumerate(emb_arrays):
embedding = embedding.flatten()
temp_dict = {}
# 比较已经存在的人脸数据库
for com_face in faces_db:
ret, sim = feature_compare(embedding, com_face["feature"], 0.70)
temp_dict[com_face["name"]] = sim
dict = sorted(temp_dict.items(), key=lambda d: d[1], reverse=True)
if dict[0][1] > VERIFICATION_THRESHOLD:
name = dict[0][0]
probs.append(dict[0][1])
info_name.append(name)
else:
probs.append(dict[0][1])
info_name.append("unknown")
for k in range(faces_sum):
# 写上人脸信息
x1, y1, x2, y2 = faces[k][0], faces[k][1], faces[k][2], faces[k][3]
x1 = max(int(x1), 0)
y1 = max(int(y1), 0)
x2 = min(int(x2), image.shape[1])
y2 = min(int(y2), image.shape[0])
prob = '%.2f' % probs[k]
label = "{}, {}".format(info_name[k], prob)
cv2img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pilimg = Image.fromarray(cv2img)
draw = ImageDraw.Draw(pilimg)
font = ImageFont.truetype('font/simfang.ttf', 18, encoding="utf-8")
draw.text((x1, y1 - 18), label, (255, 0, 0), font=font)
image = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
i = int(input("请选择功能,1为注册人脸,2为识别人脸:"))
image_path = input("请输入图片路径:")
if i == 1:
user_name = input("请输入注册名:")
face_register(image_path, user_name)
elif i == 2:
face_recognition(image_path)
else:
print("功能选择错误")