-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_nearest.py
299 lines (246 loc) · 13.3 KB
/
find_nearest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import heapq
import os
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.utils.data import DataLoader
from helpers import makedir, find_high_activation_crop, dump, imsave_with_bbox
from receptive_field import compute_rf_prototype
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def compute_heatmap(upsampled_act):
"""Overlay (upsampled) activation on original image and save the result"""
rescaled_act_pattern = upsampled_act - np.amin(
upsampled_act)
rescaled_act_pattern = rescaled_act_pattern / np.amax(
rescaled_act_pattern)
heatmap = cv2.applyColorMap(np.uint8(255 * rescaled_act_pattern),
cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
heatmap = heatmap[..., ::-1]
return heatmap
class ImagePatch:
def __init__(self, patch, label, distance,
original_img=None, act_pattern=None, patch_indices=None, act_pr=None):
self.patch = patch
self.label = label
self.negative_distance = -distance
self.original_img = original_img
self.act_pattern = act_pattern
self.patch_indices = patch_indices
self.act_pr = act_pr
def __lt__(self, other):
return self.negative_distance < other.negative_distance
class ImagePatchInfo:
def __init__(self, label, distance):
self.label = label
self.negative_distance = -distance
def __lt__(self, other):
return self.negative_distance < other.negative_distance
def act_pr(activation_map_, fine_annotation, percentile: int):
activation_map_ = cv2.resize(activation_map_,
dsize=fine_annotation.shape,
interpolation=cv2.INTER_CUBIC)
threshold = np.percentile(activation_map_, percentile)
mask = np.ones(activation_map_.shape)
mask[activation_map_ < threshold] = 0
assert fine_annotation.shape == mask.shape
denom = np.sum(mask)
num = np.sum(mask * fine_annotation)
pr = num / denom
return pr
def find_k_nearest_patches_to_prototypes(dataloader: DataLoader,
# (must be unnormalized in [0,1])
prototype_network_parallel,
# pytorch network with prototype_vectors
k: int = 5,
preprocess_input_function=None,
# normalize if needed
full_save: bool = False, # save all the images
root_dir_for_saving_images: str = './nearest',
log=print,
prototype_activation_function_in_numpy=None):
"""
Find the nearest patches in the dataset to each prototype
full_save=False will only return the class identity of the closest
patches, but it will not save anything.
"""
prototype_network_parallel.eval()
log('find nearest patches')
start = time.time()
n_prototypes = prototype_network_parallel.module.num_prototypes
prototype_shape = prototype_network_parallel.module.prototype_shape
max_dist = prototype_shape[1] * prototype_shape[2] * prototype_shape[3]
protoL_rf_info = prototype_network_parallel.module.proto_layer_rf_info
heaps = []
# allocate an array of n_prototypes number of heaps
for _ in range(n_prototypes):
# a heap in python is just a maintained list
heaps.append([])
for idx, data in enumerate(dataloader):
# search_batch_input [n_images, channel, img_size, img_size]
search_batch_input = data[0]
search_y = data[1]
fine_annotations = None
if len(data) > 3 and False:
if torch.all(data[4]):
fine_annotations = data[3]
print(f'batch {idx}')
if preprocess_input_function is not None:
# print('preprocessing input for pushing ...')
# search_batch = copy.deepcopy(search_batch_input)
search_batch = preprocess_input_function(search_batch_input)
else:
search_batch = search_batch_input
with torch.no_grad():
search_batch = search_batch.to(device)
protoL_input_torch, proto_dist_torch = \
prototype_network_parallel.module.push_forward(search_batch)
# protoL_input_ = np.copy(protoL_input_torch.detach().cpu().numpy())
proto_dist_ = np.copy(proto_dist_torch.detach().cpu().numpy())
# distance_map [n_protos, h, w]
for img_idx, distance_map in enumerate(proto_dist_):
for j in range(n_prototypes):
# consider only images of the same class of j
if not prototype_network_parallel.module.prototype_class_identity[
j, search_y[img_idx]]:
continue
# find the closest patches in this batch to prototype j
closest_patch_distance_to_prototype_j = np.amin(distance_map[j])
if full_save:
closest_patch_indices_in_distance_map_j = \
list(np.unravel_index(np.argmin(distance_map[j], axis=None),
distance_map[j].shape))
closest_patch_indices_in_distance_map_j = [
0] + closest_patch_indices_in_distance_map_j
closest_patch_indices_in_img = \
compute_rf_prototype(search_batch.size(2),
closest_patch_indices_in_distance_map_j,
protoL_rf_info)
closest_patch = \
search_batch_input[img_idx, :,
closest_patch_indices_in_img[1]:closest_patch_indices_in_img[2],
closest_patch_indices_in_img[3]:closest_patch_indices_in_img[4]]
closest_patch = closest_patch.numpy()
closest_patch = np.transpose(closest_patch, (1, 2, 0))
original_img = search_batch_input[img_idx].numpy()
original_img = np.transpose(original_img, (1, 2, 0))
if prototype_network_parallel.module.prototype_activation_function == 'log':
act_pattern = np.log((distance_map[j] + 1) / (distance_map[
j] + prototype_network_parallel.module.epsilon))
elif prototype_network_parallel.module.prototype_activation_function == 'linear':
act_pattern = max_dist - distance_map[j]
else:
act_pattern = prototype_activation_function_in_numpy(
distance_map[j])
pr = None
if fine_annotations is not None:
pr = act_pr(act_pattern, fine_annotations[img_idx].numpy(), 95)
# 4 numbers: height_start, height_end, width_start, width_end
patch_indices = closest_patch_indices_in_img[1:5]
# construct the closest patch object
closest_patch = ImagePatch(patch=closest_patch,
label=search_y[img_idx],
distance=closest_patch_distance_to_prototype_j,
original_img=original_img,
act_pattern=act_pattern,
patch_indices=patch_indices,
act_pr=pr)
else:
closest_patch = ImagePatchInfo(label=search_y[img_idx],
distance=closest_patch_distance_to_prototype_j)
# add to the j-th heap
if len(heaps[j]) < k:
heapq.heappush(heaps[j], closest_patch)
else:
# heappushpop runs more efficiently than heappush
# followed by heappop
heapq.heappushpop(heaps[j], closest_patch)
# after looping through the dataset every heap will
# have the k closest prototypes
for j in range(n_prototypes):
# finally sort the heap; the heap only contains the k closest
# but they are not ranked yet
heaps[j].sort()
heaps[j] = heaps[j][::-1]
if full_save:
_save_images_in_heap(heaps, j, root_dir_for_saving_images)
# fill remaining slots with -1 in order to have the same length for every prototype
labels_all_prototype = []
for j in range(n_prototypes):
tmp = []
for patch in heaps[j]:
tmp.append(patch.label)
for _ in range(k - len(tmp)):
tmp.append(-1)
labels_all_prototype.append(tmp)
labels_all_prototype = np.array(labels_all_prototype)
# labels_all_prototype = np.array(
# [[patch.label for patch in heaps[j]] for j in range(n_prototypes)])
if full_save:
np.save(os.path.join(root_dir_for_saving_images, 'full_class_id.npy'),
labels_all_prototype)
end = time.time()
log('\tfind nearest patches time: \t{0}'.format(end - start))
return labels_all_prototype
def _save_images_in_heap(heaps: list, j: int, root_dir_for_saving_images: str) -> None:
dir_for_saving_images = os.path.join(root_dir_for_saving_images, str(j))
makedir(dir_for_saving_images)
for i, patch in enumerate(heaps[j]):
# save the activation pattern of the original image where the patch comes from
dump(os.path.join(dir_for_saving_images, f'nearest-{i + 1}_act.pickle'),
(patch.act_pattern, patch.act_pr))
# save the original image where the patch comes from
plt.imsave(fname=os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_original.png'),
arr=patch.original_img, vmin=0.0, vmax=1.0)
# overlay (upsampled) activation on original image and save the result
img_size: int = patch.original_img.shape[0]
upsampled_act_pattern = cv2.resize(patch.act_pattern,
dsize=(img_size, img_size),
interpolation=cv2.INTER_CUBIC)
heatmap = compute_heatmap(upsampled_act_pattern)
overlayed_original_img = 0.5 * patch.original_img + 0.3 * heatmap
plt.imsave(fname=os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_original_with_heatmap.png'),
arr=overlayed_original_img, vmin=0.0, vmax=1.0)
# if different from original image, save the patch (i.e. receptive field)
if patch.patch.shape[0] != img_size or patch.patch.shape[1] != img_size:
np.save(os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_receptive_field_indices.npy'),
patch.patch_indices)
# plt.imsave(fname=os.path.join(dir_for_saving_images,
# f'nearest-{i + 1}_receptive_field.png'),
# arr=patch.patch, vmin=0.0, vmax=1.0)
# save the receptive field patch with heatmap
overlayed_patch = overlayed_original_img[
patch.patch_indices[0]:patch.patch_indices[1],
patch.patch_indices[2]:patch.patch_indices[3], :]
# plt.imsave(fname=os.path.join(dir_for_saving_images,
# f'nearest-{i + 1}_receptive_field_with_heatmap.png'),
# arr=overlayed_patch, vmin=0.0, vmax=1.0)
# save the highly activated patch
high_act_patch_indices = find_high_activation_crop(upsampled_act_pattern)
high_act_patch = patch.original_img[
high_act_patch_indices[0]:high_act_patch_indices[1],
high_act_patch_indices[2]:high_act_patch_indices[3], :]
np.save(os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_high_act_patch_indices.npy'),
high_act_patch_indices)
plt.imsave(fname=os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_high_act_patch.png'),
arr=high_act_patch,
vmin=0.0,
vmax=1.0)
# save the original image with bounding box showing high activation patch
imsave_with_bbox(fname=os.path.join(dir_for_saving_images,
f'nearest-{i + 1}_high_act_patch_in_original_img.png'),
img_rgb=patch.original_img,
bbox_height_start=high_act_patch_indices[0],
bbox_height_end=high_act_patch_indices[1],
bbox_width_start=high_act_patch_indices[2],
bbox_width_end=high_act_patch_indices[3],
color=(0, 255, 255))
labels = np.array([patch.label for patch in heaps[j]])
np.save(os.path.join(dir_for_saving_images, 'class_id.npy'), labels)