diff --git a/dwpose/__init__.py b/dwpose/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/dwpose/__pycache__/__init__.cpython-310.pyc b/dwpose/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 1d0d874..0000000 Binary files a/dwpose/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/dwpose/__pycache__/__init__.cpython-39.pyc b/dwpose/__pycache__/__init__.cpython-39.pyc deleted file mode 100644 index 5773fcd..0000000 Binary files a/dwpose/__pycache__/__init__.cpython-39.pyc and /dev/null differ diff --git a/dwpose/__pycache__/onnxdet.cpython-310.pyc b/dwpose/__pycache__/onnxdet.cpython-310.pyc deleted file mode 100644 index 4865389..0000000 Binary files a/dwpose/__pycache__/onnxdet.cpython-310.pyc and /dev/null differ diff --git a/dwpose/__pycache__/onnxdet.cpython-39.pyc b/dwpose/__pycache__/onnxdet.cpython-39.pyc deleted file mode 100644 index 2512f92..0000000 Binary files a/dwpose/__pycache__/onnxdet.cpython-39.pyc and /dev/null differ diff --git a/dwpose/__pycache__/onnxpose.cpython-310.pyc b/dwpose/__pycache__/onnxpose.cpython-310.pyc deleted file mode 100644 index c795c70..0000000 Binary files a/dwpose/__pycache__/onnxpose.cpython-310.pyc and /dev/null differ diff --git a/dwpose/__pycache__/onnxpose.cpython-39.pyc b/dwpose/__pycache__/onnxpose.cpython-39.pyc deleted file mode 100644 index 1b9c5ec..0000000 Binary files a/dwpose/__pycache__/onnxpose.cpython-39.pyc and /dev/null differ diff --git a/dwpose/__pycache__/util.cpython-310.pyc b/dwpose/__pycache__/util.cpython-310.pyc deleted file mode 100644 index e36d895..0000000 Binary files a/dwpose/__pycache__/util.cpython-310.pyc and /dev/null differ diff --git a/dwpose/__pycache__/util.cpython-39.pyc b/dwpose/__pycache__/util.cpython-39.pyc deleted file mode 100644 index 5a1073b..0000000 Binary files a/dwpose/__pycache__/util.cpython-39.pyc and /dev/null differ diff --git a/dwpose/__pycache__/wholebody.cpython-310.pyc b/dwpose/__pycache__/wholebody.cpython-310.pyc deleted file mode 100644 index 1ce0769..0000000 Binary files a/dwpose/__pycache__/wholebody.cpython-310.pyc and /dev/null differ diff --git a/dwpose/__pycache__/wholebody.cpython-39.pyc b/dwpose/__pycache__/wholebody.cpython-39.pyc deleted file mode 100644 index a1ba3f3..0000000 Binary files a/dwpose/__pycache__/wholebody.cpython-39.pyc and /dev/null differ diff --git a/dwpose/onnxdet.py b/dwpose/onnxdet.py deleted file mode 100644 index 25b29b3..0000000 --- a/dwpose/onnxdet.py +++ /dev/null @@ -1,257 +0,0 @@ -<<<<<<< HEAD -import cv2 -import numpy as np - -import onnxruntime - -def nms(boxes, scores, nms_thr): - """Single class NMS implemented in Numpy.""" - x1 = boxes[:, 0] - y1 = boxes[:, 1] - x2 = boxes[:, 2] - y2 = boxes[:, 3] - - areas = (x2 - x1 + 1) * (y2 - y1 + 1) - order = scores.argsort()[::-1] - - keep = [] - while order.size > 0: - i = order[0] - keep.append(i) - xx1 = np.maximum(x1[i], x1[order[1:]]) - yy1 = np.maximum(y1[i], y1[order[1:]]) - xx2 = np.minimum(x2[i], x2[order[1:]]) - yy2 = np.minimum(y2[i], y2[order[1:]]) - - w = np.maximum(0.0, xx2 - xx1 + 1) - h = np.maximum(0.0, yy2 - yy1 + 1) - inter = w * h - ovr = inter / (areas[i] + areas[order[1:]] - inter) - - inds = np.where(ovr <= nms_thr)[0] - order = order[inds + 1] - - return keep - -def multiclass_nms(boxes, scores, nms_thr, score_thr): - """Multiclass NMS implemented in Numpy. Class-aware version.""" - final_dets = [] - num_classes = scores.shape[1] - for cls_ind in range(num_classes): - cls_scores = scores[:, cls_ind] - valid_score_mask = cls_scores > score_thr - if valid_score_mask.sum() == 0: - continue - else: - valid_scores = cls_scores[valid_score_mask] - valid_boxes = boxes[valid_score_mask] - keep = nms(valid_boxes, valid_scores, nms_thr) - if len(keep) > 0: - cls_inds = np.ones((len(keep), 1)) * cls_ind - dets = np.concatenate( - [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 - ) - final_dets.append(dets) - if len(final_dets) == 0: - return None - return np.concatenate(final_dets, 0) - -def demo_postprocess(outputs, img_size, p6=False): - grids = [] - expanded_strides = [] - strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] - - hsizes = [img_size[0] // stride for stride in strides] - wsizes = [img_size[1] // stride for stride in strides] - - for hsize, wsize, stride in zip(hsizes, wsizes, strides): - xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) - grid = np.stack((xv, yv), 2).reshape(1, -1, 2) - grids.append(grid) - shape = grid.shape[:2] - expanded_strides.append(np.full((*shape, 1), stride)) - - grids = np.concatenate(grids, 1) - expanded_strides = np.concatenate(expanded_strides, 1) - outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides - outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides - - return outputs - -def preprocess(img, input_size, swap=(2, 0, 1)): - if len(img.shape) == 3: - padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 - else: - padded_img = np.ones(input_size, dtype=np.uint8) * 114 - - r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) - resized_img = cv2.resize( - img, - (int(img.shape[1] * r), int(img.shape[0] * r)), - interpolation=cv2.INTER_LINEAR, - ).astype(np.uint8) - padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img - - padded_img = padded_img.transpose(swap) - padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) - return padded_img, r - -def inference_detector(session, oriImg): - input_shape = (640,640) - img, ratio = preprocess(oriImg, input_shape) - - ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} - - output = session.run(None, ort_inputs) - - predictions = demo_postprocess(output[0], input_shape)[0] - - boxes = predictions[:, :4] - scores = predictions[:, 4:5] * predictions[:, 5:] - - boxes_xyxy = np.ones_like(boxes) - boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. - boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. - boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. - boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. - boxes_xyxy /= ratio - dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) - if dets is not None: - final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] - isscore = final_scores>0.3 - iscat = final_cls_inds == 0 - isbbox = [ i and j for (i, j) in zip(isscore, iscat)] - final_boxes = final_boxes[isbbox] - else: - final_boxes = np.array([]) - - return final_boxes -======= -import cv2 -import numpy as np - -import onnxruntime - -def nms(boxes, scores, nms_thr): - """Single class NMS implemented in Numpy.""" - x1 = boxes[:, 0] - y1 = boxes[:, 1] - x2 = boxes[:, 2] - y2 = boxes[:, 3] - - areas = (x2 - x1 + 1) * (y2 - y1 + 1) - order = scores.argsort()[::-1] - - keep = [] - while order.size > 0: - i = order[0] - keep.append(i) - xx1 = np.maximum(x1[i], x1[order[1:]]) - yy1 = np.maximum(y1[i], y1[order[1:]]) - xx2 = np.minimum(x2[i], x2[order[1:]]) - yy2 = np.minimum(y2[i], y2[order[1:]]) - - w = np.maximum(0.0, xx2 - xx1 + 1) - h = np.maximum(0.0, yy2 - yy1 + 1) - inter = w * h - ovr = inter / (areas[i] + areas[order[1:]] - inter) - - inds = np.where(ovr <= nms_thr)[0] - order = order[inds + 1] - - return keep - -def multiclass_nms(boxes, scores, nms_thr, score_thr): - """Multiclass NMS implemented in Numpy. Class-aware version.""" - final_dets = [] - num_classes = scores.shape[1] - for cls_ind in range(num_classes): - cls_scores = scores[:, cls_ind] - valid_score_mask = cls_scores > score_thr - if valid_score_mask.sum() == 0: - continue - else: - valid_scores = cls_scores[valid_score_mask] - valid_boxes = boxes[valid_score_mask] - keep = nms(valid_boxes, valid_scores, nms_thr) - if len(keep) > 0: - cls_inds = np.ones((len(keep), 1)) * cls_ind - dets = np.concatenate( - [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 - ) - final_dets.append(dets) - if len(final_dets) == 0: - return None - return np.concatenate(final_dets, 0) - -def demo_postprocess(outputs, img_size, p6=False): - grids = [] - expanded_strides = [] - strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] - - hsizes = [img_size[0] // stride for stride in strides] - wsizes = [img_size[1] // stride for stride in strides] - - for hsize, wsize, stride in zip(hsizes, wsizes, strides): - xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) - grid = np.stack((xv, yv), 2).reshape(1, -1, 2) - grids.append(grid) - shape = grid.shape[:2] - expanded_strides.append(np.full((*shape, 1), stride)) - - grids = np.concatenate(grids, 1) - expanded_strides = np.concatenate(expanded_strides, 1) - outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides - outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides - - return outputs - -def preprocess(img, input_size, swap=(2, 0, 1)): - if len(img.shape) == 3: - padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 - else: - padded_img = np.ones(input_size, dtype=np.uint8) * 114 - - r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) - resized_img = cv2.resize( - img, - (int(img.shape[1] * r), int(img.shape[0] * r)), - interpolation=cv2.INTER_LINEAR, - ).astype(np.uint8) - padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img - - padded_img = padded_img.transpose(swap) - padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) - return padded_img, r - -def inference_detector(session, oriImg): - input_shape = (640,640) - img, ratio = preprocess(oriImg, input_shape) - - ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} - - output = session.run(None, ort_inputs) - - predictions = demo_postprocess(output[0], input_shape)[0] - - boxes = predictions[:, :4] - scores = predictions[:, 4:5] * predictions[:, 5:] - - boxes_xyxy = np.ones_like(boxes) - boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. - boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. - boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. - boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. - boxes_xyxy /= ratio - dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) - if dets is not None: - final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] - isscore = final_scores>0.3 - iscat = final_cls_inds == 0 - isbbox = [ i and j for (i, j) in zip(isscore, iscat)] - final_boxes = final_boxes[isbbox] - else: - final_boxes = np.array([]) - - return final_boxes ->>>>>>> 626e7afc02230297b6f553675ea1c32c29971314 diff --git a/dwpose/onnxpose.py b/dwpose/onnxpose.py deleted file mode 100644 index b7e3118..0000000 --- a/dwpose/onnxpose.py +++ /dev/null @@ -1,722 +0,0 @@ -<<<<<<< HEAD -from typing import List, Tuple - -import cv2 -import numpy as np -import onnxruntime as ort - -def preprocess( - img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) -) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: - """Do preprocessing for RTMPose model inference. - - Args: - img (np.ndarray): Input image in shape. - input_size (tuple): Input image size in shape (w, h). - - Returns: - tuple: - - resized_img (np.ndarray): Preprocessed image. - - center (np.ndarray): Center of image. - - scale (np.ndarray): Scale of image. - """ - # get shape of image - img_shape = img.shape[:2] - out_img, out_center, out_scale = [], [], [] - if len(out_bbox) == 0: - out_bbox = [[0, 0, img_shape[1], img_shape[0]]] - for i in range(len(out_bbox)): - x0 = out_bbox[i][0] - y0 = out_bbox[i][1] - x1 = out_bbox[i][2] - y1 = out_bbox[i][3] - bbox = np.array([x0, y0, x1, y1]) - - # get center and scale - center, scale = bbox_xyxy2cs(bbox, padding=1.25) - - # do affine transformation - resized_img, scale = top_down_affine(input_size, scale, center, img) - - # normalize image - mean = np.array([123.675, 116.28, 103.53]) - std = np.array([58.395, 57.12, 57.375]) - resized_img = (resized_img - mean) / std - - out_img.append(resized_img) - out_center.append(center) - out_scale.append(scale) - - return out_img, out_center, out_scale - - -def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray: - """Inference RTMPose model. - - Args: - sess (ort.InferenceSession): ONNXRuntime session. - img (np.ndarray): Input image in shape. - - Returns: - outputs (np.ndarray): Output of RTMPose model. - """ - all_out = [] - # build input - for i in range(len(img)): - input = [img[i].transpose(2, 0, 1)] - - # build output - sess_input = {sess.get_inputs()[0].name: input} - sess_output = [] - for out in sess.get_outputs(): - sess_output.append(out.name) - - # run model - outputs = sess.run(sess_output, sess_input) - all_out.append(outputs) - - return all_out - - -def postprocess(outputs: List[np.ndarray], - model_input_size: Tuple[int, int], - center: Tuple[int, int], - scale: Tuple[int, int], - simcc_split_ratio: float = 2.0 - ) -> Tuple[np.ndarray, np.ndarray]: - """Postprocess for RTMPose model output. - - Args: - outputs (np.ndarray): Output of RTMPose model. - model_input_size (tuple): RTMPose model Input image size. - center (tuple): Center of bbox in shape (x, y). - scale (tuple): Scale of bbox in shape (w, h). - simcc_split_ratio (float): Split ratio of simcc. - - Returns: - tuple: - - keypoints (np.ndarray): Rescaled keypoints. - - scores (np.ndarray): Model predict scores. - """ - all_key = [] - all_score = [] - for i in range(len(outputs)): - # use simcc to decode - simcc_x, simcc_y = outputs[i] - keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) - - # rescale keypoints - keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 - all_key.append(keypoints[0]) - all_score.append(scores[0]) - - return np.array(all_key), np.array(all_score) - - -def bbox_xyxy2cs(bbox: np.ndarray, - padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: - """Transform the bbox format from (x,y,w,h) into (center, scale) - - Args: - bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted - as (left, top, right, bottom) - padding (float): BBox padding factor that will be multilied to scale. - Default: 1.0 - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or - (n, 2) - - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or - (n, 2) - """ - # convert single bbox from (4, ) to (1, 4) - dim = bbox.ndim - if dim == 1: - bbox = bbox[None, :] - - # get bbox center and scale - x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) - center = np.hstack([x1 + x2, y1 + y2]) * 0.5 - scale = np.hstack([x2 - x1, y2 - y1]) * padding - - if dim == 1: - center = center[0] - scale = scale[0] - - return center, scale - - -def _fix_aspect_ratio(bbox_scale: np.ndarray, - aspect_ratio: float) -> np.ndarray: - """Extend the scale to match the given aspect ratio. - - Args: - scale (np.ndarray): The image scale (w, h) in shape (2, ) - aspect_ratio (float): The ratio of ``w/h`` - - Returns: - np.ndarray: The reshaped image scale in (2, ) - """ - w, h = np.hsplit(bbox_scale, [1]) - bbox_scale = np.where(w > h * aspect_ratio, - np.hstack([w, w / aspect_ratio]), - np.hstack([h * aspect_ratio, h])) - return bbox_scale - - -def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: - """Rotate a point by an angle. - - Args: - pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) - angle_rad (float): rotation angle in radian - - Returns: - np.ndarray: Rotated point in shape (2, ) - """ - sn, cs = np.sin(angle_rad), np.cos(angle_rad) - rot_mat = np.array([[cs, -sn], [sn, cs]]) - return rot_mat @ pt - - -def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: - """To calculate the affine matrix, three pairs of points are required. This - function is used to get the 3rd point, given 2D points a & b. - - The 3rd point is defined by rotating vector `a - b` by 90 degrees - anticlockwise, using b as the rotation center. - - Args: - a (np.ndarray): The 1st point (x,y) in shape (2, ) - b (np.ndarray): The 2nd point (x,y) in shape (2, ) - - Returns: - np.ndarray: The 3rd point. - """ - direction = a - b - c = b + np.r_[-direction[1], direction[0]] - return c - - -def get_warp_matrix(center: np.ndarray, - scale: np.ndarray, - rot: float, - output_size: Tuple[int, int], - shift: Tuple[float, float] = (0., 0.), - inv: bool = False) -> np.ndarray: - """Calculate the affine transformation matrix that can warp the bbox area - in the input image to the output size. - - Args: - center (np.ndarray[2, ]): Center of the bounding box (x, y). - scale (np.ndarray[2, ]): Scale of the bounding box - wrt [width, height]. - rot (float): Rotation angle (degree). - output_size (np.ndarray[2, ] | list(2,)): Size of the - destination heatmaps. - shift (0-100%): Shift translation ratio wrt the width/height. - Default (0., 0.). - inv (bool): Option to inverse the affine transform direction. - (inv=False: src->dst or inv=True: dst->src) - - Returns: - np.ndarray: A 2x3 transformation matrix - """ - shift = np.array(shift) - src_w = scale[0] - dst_w = output_size[0] - dst_h = output_size[1] - - # compute transformation matrix - rot_rad = np.deg2rad(rot) - src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad) - dst_dir = np.array([0., dst_w * -0.5]) - - # get four corners of the src rectangle in the original image - src = np.zeros((3, 2), dtype=np.float32) - src[0, :] = center + scale * shift - src[1, :] = center + src_dir + scale * shift - src[2, :] = _get_3rd_point(src[0, :], src[1, :]) - - # get four corners of the dst rectangle in the input image - dst = np.zeros((3, 2), dtype=np.float32) - dst[0, :] = [dst_w * 0.5, dst_h * 0.5] - dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir - dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) - - if inv: - warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) - else: - warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) - - return warp_mat - - -def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict, - img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: - """Get the bbox image as the model input by affine transform. - - Args: - input_size (dict): The input size of the model. - bbox_scale (dict): The bbox scale of the img. - bbox_center (dict): The bbox center of the img. - img (np.ndarray): The original image. - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: img after affine transform. - - np.ndarray[float32]: bbox scale after affine transform. - """ - w, h = input_size - warp_size = (int(w), int(h)) - - # reshape bbox to fixed aspect ratio - bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) - - # get the affine matrix - center = bbox_center - scale = bbox_scale - rot = 0 - warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) - - # do affine transform - img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) - - return img, bbox_scale - - -def get_simcc_maximum(simcc_x: np.ndarray, - simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: - """Get maximum response location and value from simcc representations. - - Note: - instance number: N - num_keypoints: K - heatmap height: H - heatmap width: W - - Args: - simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) - simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) - - Returns: - tuple: - - locs (np.ndarray): locations of maximum heatmap responses in shape - (K, 2) or (N, K, 2) - - vals (np.ndarray): values of maximum heatmap responses in shape - (K,) or (N, K) - """ - N, K, Wx = simcc_x.shape - simcc_x = simcc_x.reshape(N * K, -1) - simcc_y = simcc_y.reshape(N * K, -1) - - # get maximum value locations - x_locs = np.argmax(simcc_x, axis=1) - y_locs = np.argmax(simcc_y, axis=1) - locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) - max_val_x = np.amax(simcc_x, axis=1) - max_val_y = np.amax(simcc_y, axis=1) - - # get maximum value across x and y axis - mask = max_val_x > max_val_y - max_val_x[mask] = max_val_y[mask] - vals = max_val_x - locs[vals <= 0.] = -1 - - # reshape - locs = locs.reshape(N, K, 2) - vals = vals.reshape(N, K) - - return locs, vals - - -def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, - simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: - """Modulate simcc distribution with Gaussian. - - Args: - simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. - simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. - simcc_split_ratio (int): The split ratio of simcc. - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - - np.ndarray[float32]: scores in shape (K,) or (n, K) - """ - keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) - keypoints /= simcc_split_ratio - - return keypoints, scores - - -def inference_pose(session, out_bbox, oriImg): - h, w = session.get_inputs()[0].shape[2:] - model_input_size = (w, h) - resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size) - outputs = inference(session, resized_img) - keypoints, scores = postprocess(outputs, model_input_size, center, scale) - -======= -from typing import List, Tuple - -import cv2 -import numpy as np -import onnxruntime as ort - -def preprocess( - img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) -) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: - """Do preprocessing for RTMPose model inference. - - Args: - img (np.ndarray): Input image in shape. - input_size (tuple): Input image size in shape (w, h). - - Returns: - tuple: - - resized_img (np.ndarray): Preprocessed image. - - center (np.ndarray): Center of image. - - scale (np.ndarray): Scale of image. - """ - # get shape of image - img_shape = img.shape[:2] - out_img, out_center, out_scale = [], [], [] - if len(out_bbox) == 0: - out_bbox = [[0, 0, img_shape[1], img_shape[0]]] - for i in range(len(out_bbox)): - x0 = out_bbox[i][0] - y0 = out_bbox[i][1] - x1 = out_bbox[i][2] - y1 = out_bbox[i][3] - bbox = np.array([x0, y0, x1, y1]) - - # get center and scale - center, scale = bbox_xyxy2cs(bbox, padding=1.25) - - # do affine transformation - resized_img, scale = top_down_affine(input_size, scale, center, img) - - # normalize image - mean = np.array([123.675, 116.28, 103.53]) - std = np.array([58.395, 57.12, 57.375]) - resized_img = (resized_img - mean) / std - - out_img.append(resized_img) - out_center.append(center) - out_scale.append(scale) - - return out_img, out_center, out_scale - - -def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray: - """Inference RTMPose model. - - Args: - sess (ort.InferenceSession): ONNXRuntime session. - img (np.ndarray): Input image in shape. - - Returns: - outputs (np.ndarray): Output of RTMPose model. - """ - all_out = [] - # build input - for i in range(len(img)): - input = [img[i].transpose(2, 0, 1)] - - # build output - sess_input = {sess.get_inputs()[0].name: input} - sess_output = [] - for out in sess.get_outputs(): - sess_output.append(out.name) - - # run model - outputs = sess.run(sess_output, sess_input) - all_out.append(outputs) - - return all_out - - -def postprocess(outputs: List[np.ndarray], - model_input_size: Tuple[int, int], - center: Tuple[int, int], - scale: Tuple[int, int], - simcc_split_ratio: float = 2.0 - ) -> Tuple[np.ndarray, np.ndarray]: - """Postprocess for RTMPose model output. - - Args: - outputs (np.ndarray): Output of RTMPose model. - model_input_size (tuple): RTMPose model Input image size. - center (tuple): Center of bbox in shape (x, y). - scale (tuple): Scale of bbox in shape (w, h). - simcc_split_ratio (float): Split ratio of simcc. - - Returns: - tuple: - - keypoints (np.ndarray): Rescaled keypoints. - - scores (np.ndarray): Model predict scores. - """ - all_key = [] - all_score = [] - for i in range(len(outputs)): - # use simcc to decode - simcc_x, simcc_y = outputs[i] - keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) - - # rescale keypoints - keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 - all_key.append(keypoints[0]) - all_score.append(scores[0]) - - return np.array(all_key), np.array(all_score) - - -def bbox_xyxy2cs(bbox: np.ndarray, - padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: - """Transform the bbox format from (x,y,w,h) into (center, scale) - - Args: - bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted - as (left, top, right, bottom) - padding (float): BBox padding factor that will be multilied to scale. - Default: 1.0 - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or - (n, 2) - - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or - (n, 2) - """ - # convert single bbox from (4, ) to (1, 4) - dim = bbox.ndim - if dim == 1: - bbox = bbox[None, :] - - # get bbox center and scale - x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) - center = np.hstack([x1 + x2, y1 + y2]) * 0.5 - scale = np.hstack([x2 - x1, y2 - y1]) * padding - - if dim == 1: - center = center[0] - scale = scale[0] - - return center, scale - - -def _fix_aspect_ratio(bbox_scale: np.ndarray, - aspect_ratio: float) -> np.ndarray: - """Extend the scale to match the given aspect ratio. - - Args: - scale (np.ndarray): The image scale (w, h) in shape (2, ) - aspect_ratio (float): The ratio of ``w/h`` - - Returns: - np.ndarray: The reshaped image scale in (2, ) - """ - w, h = np.hsplit(bbox_scale, [1]) - bbox_scale = np.where(w > h * aspect_ratio, - np.hstack([w, w / aspect_ratio]), - np.hstack([h * aspect_ratio, h])) - return bbox_scale - - -def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: - """Rotate a point by an angle. - - Args: - pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) - angle_rad (float): rotation angle in radian - - Returns: - np.ndarray: Rotated point in shape (2, ) - """ - sn, cs = np.sin(angle_rad), np.cos(angle_rad) - rot_mat = np.array([[cs, -sn], [sn, cs]]) - return rot_mat @ pt - - -def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: - """To calculate the affine matrix, three pairs of points are required. This - function is used to get the 3rd point, given 2D points a & b. - - The 3rd point is defined by rotating vector `a - b` by 90 degrees - anticlockwise, using b as the rotation center. - - Args: - a (np.ndarray): The 1st point (x,y) in shape (2, ) - b (np.ndarray): The 2nd point (x,y) in shape (2, ) - - Returns: - np.ndarray: The 3rd point. - """ - direction = a - b - c = b + np.r_[-direction[1], direction[0]] - return c - - -def get_warp_matrix(center: np.ndarray, - scale: np.ndarray, - rot: float, - output_size: Tuple[int, int], - shift: Tuple[float, float] = (0., 0.), - inv: bool = False) -> np.ndarray: - """Calculate the affine transformation matrix that can warp the bbox area - in the input image to the output size. - - Args: - center (np.ndarray[2, ]): Center of the bounding box (x, y). - scale (np.ndarray[2, ]): Scale of the bounding box - wrt [width, height]. - rot (float): Rotation angle (degree). - output_size (np.ndarray[2, ] | list(2,)): Size of the - destination heatmaps. - shift (0-100%): Shift translation ratio wrt the width/height. - Default (0., 0.). - inv (bool): Option to inverse the affine transform direction. - (inv=False: src->dst or inv=True: dst->src) - - Returns: - np.ndarray: A 2x3 transformation matrix - """ - shift = np.array(shift) - src_w = scale[0] - dst_w = output_size[0] - dst_h = output_size[1] - - # compute transformation matrix - rot_rad = np.deg2rad(rot) - src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad) - dst_dir = np.array([0., dst_w * -0.5]) - - # get four corners of the src rectangle in the original image - src = np.zeros((3, 2), dtype=np.float32) - src[0, :] = center + scale * shift - src[1, :] = center + src_dir + scale * shift - src[2, :] = _get_3rd_point(src[0, :], src[1, :]) - - # get four corners of the dst rectangle in the input image - dst = np.zeros((3, 2), dtype=np.float32) - dst[0, :] = [dst_w * 0.5, dst_h * 0.5] - dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir - dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) - - if inv: - warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) - else: - warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) - - return warp_mat - - -def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict, - img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: - """Get the bbox image as the model input by affine transform. - - Args: - input_size (dict): The input size of the model. - bbox_scale (dict): The bbox scale of the img. - bbox_center (dict): The bbox center of the img. - img (np.ndarray): The original image. - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: img after affine transform. - - np.ndarray[float32]: bbox scale after affine transform. - """ - w, h = input_size - warp_size = (int(w), int(h)) - - # reshape bbox to fixed aspect ratio - bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) - - # get the affine matrix - center = bbox_center - scale = bbox_scale - rot = 0 - warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) - - # do affine transform - img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) - - return img, bbox_scale - - -def get_simcc_maximum(simcc_x: np.ndarray, - simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: - """Get maximum response location and value from simcc representations. - - Note: - instance number: N - num_keypoints: K - heatmap height: H - heatmap width: W - - Args: - simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) - simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) - - Returns: - tuple: - - locs (np.ndarray): locations of maximum heatmap responses in shape - (K, 2) or (N, K, 2) - - vals (np.ndarray): values of maximum heatmap responses in shape - (K,) or (N, K) - """ - N, K, Wx = simcc_x.shape - simcc_x = simcc_x.reshape(N * K, -1) - simcc_y = simcc_y.reshape(N * K, -1) - - # get maximum value locations - x_locs = np.argmax(simcc_x, axis=1) - y_locs = np.argmax(simcc_y, axis=1) - locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) - max_val_x = np.amax(simcc_x, axis=1) - max_val_y = np.amax(simcc_y, axis=1) - - # get maximum value across x and y axis - mask = max_val_x > max_val_y - max_val_x[mask] = max_val_y[mask] - vals = max_val_x - locs[vals <= 0.] = -1 - - # reshape - locs = locs.reshape(N, K, 2) - vals = vals.reshape(N, K) - - return locs, vals - - -def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, - simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: - """Modulate simcc distribution with Gaussian. - - Args: - simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. - simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. - simcc_split_ratio (int): The split ratio of simcc. - - Returns: - tuple: A tuple containing center and scale. - - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - - np.ndarray[float32]: scores in shape (K,) or (n, K) - """ - keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) - keypoints /= simcc_split_ratio - - return keypoints, scores - - -def inference_pose(session, out_bbox, oriImg): - h, w = session.get_inputs()[0].shape[2:] - model_input_size = (w, h) - resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size) - outputs = inference(session, resized_img) - keypoints, scores = postprocess(outputs, model_input_size, center, scale) - ->>>>>>> 626e7afc02230297b6f553675ea1c32c29971314 - return keypoints, scores \ No newline at end of file diff --git a/dwpose/util.py b/dwpose/util.py deleted file mode 100644 index bb96b4f..0000000 --- a/dwpose/util.py +++ /dev/null @@ -1,675 +0,0 @@ -<<<<<<< HEAD -import math -import numpy as np -import matplotlib -import cv2 - - -eps = 0.01 - - -def smart_resize(x, s): - Ht, Wt = s - if x.ndim == 2: - Ho, Wo = x.shape - Co = 1 - else: - Ho, Wo, Co = x.shape - if Co == 3 or Co == 1: - k = float(Ht + Wt) / float(Ho + Wo) - return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) - else: - return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) - - -def smart_resize_k(x, fx, fy): - if x.ndim == 2: - Ho, Wo = x.shape - Co = 1 - else: - Ho, Wo, Co = x.shape - Ht, Wt = Ho * fy, Wo * fx - if Co == 3 or Co == 1: - k = float(Ht + Wt) / float(Ho + Wo) - return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) - else: - return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) - - -def padRightDownCorner(img, stride, padValue): - h = img.shape[0] - w = img.shape[1] - - pad = 4 * [None] - pad[0] = 0 # up - pad[1] = 0 # left - pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down - pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right - - img_padded = img - pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) - img_padded = np.concatenate((pad_up, img_padded), axis=0) - pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) - img_padded = np.concatenate((pad_left, img_padded), axis=1) - pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) - img_padded = np.concatenate((img_padded, pad_down), axis=0) - pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) - img_padded = np.concatenate((img_padded, pad_right), axis=1) - - return img_padded, pad - - -def transfer(model, model_weights): - transfered_model_weights = {} - for weights_name in model.state_dict().keys(): - transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] - return transfered_model_weights - - -def draw_bodypose(canvas, candidate, subset): - H, W, C = canvas.shape - candidate = np.array(candidate) - subset = np.array(subset) - - stickwidth = 4 - - limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ - [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ - [1, 16], [16, 18], [3, 17], [6, 18]] - - colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ - [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ - [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] - - for i in range(17): - for n in range(len(subset)): - index = subset[n][np.array(limbSeq[i]) - 1] - if -1 in index: - continue - Y = candidate[index.astype(int), 0] * float(W) - X = candidate[index.astype(int), 1] * float(H) - mX = np.mean(X) - mY = np.mean(Y) - length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 - angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) - polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) - cv2.fillConvexPoly(canvas, polygon, colors[i]) - - canvas = (canvas * 0.6).astype(np.uint8) - - for i in range(18): - for n in range(len(subset)): - index = int(subset[n][i]) - if index == -1: - continue - x, y = candidate[index][0:2] - x = int(x * W) - y = int(y * H) - cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) - - return canvas - - -def draw_body_and_foot(canvas, candidate, subset): - H, W, C = canvas.shape - candidate = np.array(candidate) - subset = np.array(subset) - - stickwidth = 4 - - limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ - [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ - [1, 16], [16, 18], [14,19], [11, 20]] - - colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ - [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ - [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [170, 255, 255], [255, 255, 0]] - - for i in range(19): - for n in range(len(subset)): - index = subset[n][np.array(limbSeq[i]) - 1] - if -1 in index: - continue - Y = candidate[index.astype(int), 0] * float(W) - X = candidate[index.astype(int), 1] * float(H) - mX = np.mean(X) - mY = np.mean(Y) - length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 - angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) - polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) - cv2.fillConvexPoly(canvas, polygon, colors[i]) - - canvas = (canvas * 0.6).astype(np.uint8) - - for i in range(20): - for n in range(len(subset)): - index = int(subset[n][i]) - if index == -1: - continue - x, y = candidate[index][0:2] - x = int(x * W) - y = int(y * H) - cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) - - return canvas - - -def draw_handpose(canvas, all_hand_peaks): - H, W, C = canvas.shape - - edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ - [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] - - for peaks in all_hand_peaks: - peaks = np.array(peaks) - - for ie, e in enumerate(edges): - x1, y1 = peaks[e[0]] - x2, y2 = peaks[e[1]] - x1 = int(x1 * W) - y1 = int(y1 * H) - x2 = int(x2 * W) - y2 = int(y2 * H) - if x1 > eps and y1 > eps and x2 > eps and y2 > eps: - cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) - - for i, keyponit in enumerate(peaks): - x, y = keyponit - x = int(x * W) - y = int(y * H) - if x > eps and y > eps: - cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) - return canvas - - -def draw_facepose(canvas, all_lmks): - H, W, C = canvas.shape - for lmks in all_lmks: - lmks = np.array(lmks) - for lmk in lmks: - x, y = lmk - x = int(x * W) - y = int(y * H) - if x > eps and y > eps: - cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) - return canvas - - -# detect hand according to body pose keypoints -# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp -def handDetect(candidate, subset, oriImg): - # right hand: wrist 4, elbow 3, shoulder 2 - # left hand: wrist 7, elbow 6, shoulder 5 - ratioWristElbow = 0.33 - detect_result = [] - image_height, image_width = oriImg.shape[0:2] - for person in subset.astype(int): - # if any of three not detected - has_left = np.sum(person[[5, 6, 7]] == -1) == 0 - has_right = np.sum(person[[2, 3, 4]] == -1) == 0 - if not (has_left or has_right): - continue - hands = [] - #left hand - if has_left: - left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] - x1, y1 = candidate[left_shoulder_index][:2] - x2, y2 = candidate[left_elbow_index][:2] - x3, y3 = candidate[left_wrist_index][:2] - hands.append([x1, y1, x2, y2, x3, y3, True]) - # right hand - if has_right: - right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] - x1, y1 = candidate[right_shoulder_index][:2] - x2, y2 = candidate[right_elbow_index][:2] - x3, y3 = candidate[right_wrist_index][:2] - hands.append([x1, y1, x2, y2, x3, y3, False]) - - for x1, y1, x2, y2, x3, y3, is_left in hands: - - x = x3 + ratioWristElbow * (x3 - x2) - y = y3 + ratioWristElbow * (y3 - y2) - distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) - distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) - # x-y refers to the center --> offset to topLeft point - # handRectangle.x -= handRectangle.width / 2.f; - # handRectangle.y -= handRectangle.height / 2.f; - x -= width / 2 - y -= width / 2 # width = height - # overflow the image - if x < 0: x = 0 - if y < 0: y = 0 - width1 = width - width2 = width - if x + width > image_width: width1 = image_width - x - if y + width > image_height: width2 = image_height - y - width = min(width1, width2) - # the max hand box value is 20 pixels - if width >= 20: - detect_result.append([int(x), int(y), int(width), is_left]) - - ''' - return value: [[x, y, w, True if left hand else False]]. - width=height since the network require squared input. - x, y is the coordinate of top left - ''' - return detect_result - - -# Written by Lvmin -def faceDetect(candidate, subset, oriImg): - # left right eye ear 14 15 16 17 - detect_result = [] - image_height, image_width = oriImg.shape[0:2] - for person in subset.astype(int): - has_head = person[0] > -1 - if not has_head: - continue - - has_left_eye = person[14] > -1 - has_right_eye = person[15] > -1 - has_left_ear = person[16] > -1 - has_right_ear = person[17] > -1 - - if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): - continue - - head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] - - width = 0.0 - x0, y0 = candidate[head][:2] - - if has_left_eye: - x1, y1 = candidate[left_eye][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 3.0) - - if has_right_eye: - x1, y1 = candidate[right_eye][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 3.0) - - if has_left_ear: - x1, y1 = candidate[left_ear][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 1.5) - - if has_right_ear: - x1, y1 = candidate[right_ear][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 1.5) - - x, y = x0, y0 - - x -= width - y -= width - - if x < 0: - x = 0 - - if y < 0: - y = 0 - - width1 = width * 2 - width2 = width * 2 - - if x + width > image_width: - width1 = image_width - x - - if y + width > image_height: - width2 = image_height - y - - width = min(width1, width2) - - if width >= 20: - detect_result.append([int(x), int(y), int(width)]) - - return detect_result - - -# get max index of 2d array -def npmax(array): - arrayindex = array.argmax(1) - arrayvalue = array.max(1) - i = arrayvalue.argmax() - j = arrayindex[i] - return i, j -======= -import math -import numpy as np -import matplotlib -import cv2 - - -eps = 0.01 - - -def smart_resize(x, s): - Ht, Wt = s - if x.ndim == 2: - Ho, Wo = x.shape - Co = 1 - else: - Ho, Wo, Co = x.shape - if Co == 3 or Co == 1: - k = float(Ht + Wt) / float(Ho + Wo) - return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) - else: - return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) - - -def smart_resize_k(x, fx, fy): - if x.ndim == 2: - Ho, Wo = x.shape - Co = 1 - else: - Ho, Wo, Co = x.shape - Ht, Wt = Ho * fy, Wo * fx - if Co == 3 or Co == 1: - k = float(Ht + Wt) / float(Ho + Wo) - return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) - else: - return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) - - -def padRightDownCorner(img, stride, padValue): - h = img.shape[0] - w = img.shape[1] - - pad = 4 * [None] - pad[0] = 0 # up - pad[1] = 0 # left - pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down - pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right - - img_padded = img - pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) - img_padded = np.concatenate((pad_up, img_padded), axis=0) - pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) - img_padded = np.concatenate((pad_left, img_padded), axis=1) - pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) - img_padded = np.concatenate((img_padded, pad_down), axis=0) - pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) - img_padded = np.concatenate((img_padded, pad_right), axis=1) - - return img_padded, pad - - -def transfer(model, model_weights): - transfered_model_weights = {} - for weights_name in model.state_dict().keys(): - transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] - return transfered_model_weights - - -def draw_bodypose(canvas, candidate, subset): - H, W, C = canvas.shape - candidate = np.array(candidate) - subset = np.array(subset) - - stickwidth = 4 - - limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ - [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ - [1, 16], [16, 18], [3, 17], [6, 18]] - - colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ - [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ - [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] - - for i in range(17): - for n in range(len(subset)): - index = subset[n][np.array(limbSeq[i]) - 1] - if -1 in index: - continue - Y = candidate[index.astype(int), 0] * float(W) - X = candidate[index.astype(int), 1] * float(H) - mX = np.mean(X) - mY = np.mean(Y) - length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 - angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) - polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) - cv2.fillConvexPoly(canvas, polygon, colors[i]) - - canvas = (canvas * 0.6).astype(np.uint8) - - for i in range(18): - for n in range(len(subset)): - index = int(subset[n][i]) - if index == -1: - continue - x, y = candidate[index][0:2] - x = int(x * W) - y = int(y * H) - cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) - - return canvas - - -def draw_body_and_foot(canvas, candidate, subset): - H, W, C = canvas.shape - candidate = np.array(candidate) - subset = np.array(subset) - - stickwidth = 4 - - limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ - [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ - [1, 16], [16, 18], [14,19], [11, 20]] - - colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ - [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ - [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [170, 255, 255], [255, 255, 0]] - - for i in range(19): - for n in range(len(subset)): - index = subset[n][np.array(limbSeq[i]) - 1] - if -1 in index: - continue - Y = candidate[index.astype(int), 0] * float(W) - X = candidate[index.astype(int), 1] * float(H) - mX = np.mean(X) - mY = np.mean(Y) - length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 - angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) - polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) - cv2.fillConvexPoly(canvas, polygon, colors[i]) - - canvas = (canvas * 0.6).astype(np.uint8) - - for i in range(20): - for n in range(len(subset)): - index = int(subset[n][i]) - if index == -1: - continue - x, y = candidate[index][0:2] - x = int(x * W) - y = int(y * H) - cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) - - return canvas - - -def draw_handpose(canvas, all_hand_peaks): - H, W, C = canvas.shape - - edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ - [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] - - for peaks in all_hand_peaks: - peaks = np.array(peaks) - - for ie, e in enumerate(edges): - x1, y1 = peaks[e[0]] - x2, y2 = peaks[e[1]] - x1 = int(x1 * W) - y1 = int(y1 * H) - x2 = int(x2 * W) - y2 = int(y2 * H) - if x1 > eps and y1 > eps and x2 > eps and y2 > eps: - cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) - - for i, keyponit in enumerate(peaks): - x, y = keyponit - x = int(x * W) - y = int(y * H) - if x > eps and y > eps: - cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) - return canvas - - -def draw_facepose(canvas, all_lmks): - H, W, C = canvas.shape - for lmks in all_lmks: - lmks = np.array(lmks) - for lmk in lmks: - x, y = lmk - x = int(x * W) - y = int(y * H) - if x > eps and y > eps: - cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) - return canvas - - -# detect hand according to body pose keypoints -# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp -def handDetect(candidate, subset, oriImg): - # right hand: wrist 4, elbow 3, shoulder 2 - # left hand: wrist 7, elbow 6, shoulder 5 - ratioWristElbow = 0.33 - detect_result = [] - image_height, image_width = oriImg.shape[0:2] - for person in subset.astype(int): - # if any of three not detected - has_left = np.sum(person[[5, 6, 7]] == -1) == 0 - has_right = np.sum(person[[2, 3, 4]] == -1) == 0 - if not (has_left or has_right): - continue - hands = [] - #left hand - if has_left: - left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] - x1, y1 = candidate[left_shoulder_index][:2] - x2, y2 = candidate[left_elbow_index][:2] - x3, y3 = candidate[left_wrist_index][:2] - hands.append([x1, y1, x2, y2, x3, y3, True]) - # right hand - if has_right: - right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] - x1, y1 = candidate[right_shoulder_index][:2] - x2, y2 = candidate[right_elbow_index][:2] - x3, y3 = candidate[right_wrist_index][:2] - hands.append([x1, y1, x2, y2, x3, y3, False]) - - for x1, y1, x2, y2, x3, y3, is_left in hands: - - x = x3 + ratioWristElbow * (x3 - x2) - y = y3 + ratioWristElbow * (y3 - y2) - distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) - distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) - # x-y refers to the center --> offset to topLeft point - # handRectangle.x -= handRectangle.width / 2.f; - # handRectangle.y -= handRectangle.height / 2.f; - x -= width / 2 - y -= width / 2 # width = height - # overflow the image - if x < 0: x = 0 - if y < 0: y = 0 - width1 = width - width2 = width - if x + width > image_width: width1 = image_width - x - if y + width > image_height: width2 = image_height - y - width = min(width1, width2) - # the max hand box value is 20 pixels - if width >= 20: - detect_result.append([int(x), int(y), int(width), is_left]) - - ''' - return value: [[x, y, w, True if left hand else False]]. - width=height since the network require squared input. - x, y is the coordinate of top left - ''' - return detect_result - - -# Written by Lvmin -def faceDetect(candidate, subset, oriImg): - # left right eye ear 14 15 16 17 - detect_result = [] - image_height, image_width = oriImg.shape[0:2] - for person in subset.astype(int): - has_head = person[0] > -1 - if not has_head: - continue - - has_left_eye = person[14] > -1 - has_right_eye = person[15] > -1 - has_left_ear = person[16] > -1 - has_right_ear = person[17] > -1 - - if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): - continue - - head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] - - width = 0.0 - x0, y0 = candidate[head][:2] - - if has_left_eye: - x1, y1 = candidate[left_eye][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 3.0) - - if has_right_eye: - x1, y1 = candidate[right_eye][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 3.0) - - if has_left_ear: - x1, y1 = candidate[left_ear][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 1.5) - - if has_right_ear: - x1, y1 = candidate[right_ear][:2] - d = max(abs(x0 - x1), abs(y0 - y1)) - width = max(width, d * 1.5) - - x, y = x0, y0 - - x -= width - y -= width - - if x < 0: - x = 0 - - if y < 0: - y = 0 - - width1 = width * 2 - width2 = width * 2 - - if x + width > image_width: - width1 = image_width - x - - if y + width > image_height: - width2 = image_height - y - - width = min(width1, width2) - - if width >= 20: - detect_result.append([int(x), int(y), int(width)]) - - return detect_result - - -# get max index of 2d array -def npmax(array): - arrayindex = array.argmax(1) - arrayvalue = array.max(1) - i = arrayvalue.argmax() - j = arrayindex[i] - return i, j ->>>>>>> 626e7afc02230297b6f553675ea1c32c29971314 diff --git a/dwpose/wholebody.py b/dwpose/wholebody.py deleted file mode 100644 index 957cb66..0000000 --- a/dwpose/wholebody.py +++ /dev/null @@ -1,119 +0,0 @@ -<<<<<<< HEAD -import os -import cv2 -import numpy as np - -import onnxruntime as ort -from ..dwpose.onnxdet import inference_detector -from ..dwpose.onnxpose import inference_pose - - -class Wholebody: - def __init__(self): - device = 'cuda' # 'cpu' # - providers = ['CPUExecutionProvider' - ] if device == 'cpu' else ['CUDAExecutionProvider'] - - current_directory = os.path.dirname(os.path.abspath(__file__)) - print("This file is located at "+os.path.dirname(os.path.abspath(__file__))) - parent_directory = os.path.dirname(current_directory) - - onnx_det = os.path.join(parent_directory, 'checkpoints/yolox_l.onnx') - onnx_pose = os.path.join(parent_directory, 'checkpoints/dw-ll_ucoco_384.onnx') - - # onnx_det = "../../checkpoints/yolox_l.onnx" - # onnx_pose = "../../checkpoints/dw-ll_ucoco_384.onnx" - - self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers) - self.session_pose = ort.InferenceSession(path_or_bytes= onnx_pose, providers=providers) - - def __call__(self, oriImg): - det_result = inference_detector(self.session_det, oriImg) - keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) - - keypoints_info = np.concatenate( - (keypoints, scores[..., None]), axis=-1) - # compute neck joint - neck = np.mean(keypoints_info[:, [5, 6]], axis=1) - # neck score when visualizing pred - neck[:, 2:4] = np.logical_and( - keypoints_info[:, 5, 2:4] > 0.3, - keypoints_info[:, 6, 2:4] > 0.3).astype(int) - new_keypoints_info = np.insert( - keypoints_info, 17, neck, axis=1) - mmpose_idx = [ - 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 - ] - openpose_idx = [ - 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 - ] - new_keypoints_info[:, openpose_idx] = \ - new_keypoints_info[:, mmpose_idx] - keypoints_info = new_keypoints_info - - keypoints, scores = keypoints_info[ - ..., :2], keypoints_info[..., 2] - - return keypoints, scores - - -======= -import os -import cv2 -import numpy as np - -import onnxruntime as ort -from ..dwpose.onnxdet import inference_detector -from ..dwpose.onnxpose import inference_pose - - -class Wholebody: - def __init__(self): - device = 'cuda' # 'cpu' # - providers = ['CPUExecutionProvider' - ] if device == 'cpu' else ['CUDAExecutionProvider'] - - current_directory = os.path.dirname(os.path.abspath(__file__)) - print("This file is located at "+os.path.dirname(os.path.abspath(__file__))) - parent_directory = os.path.dirname(current_directory) - - onnx_det = os.path.join(parent_directory, 'checkpoints/yolox_l.onnx') - onnx_pose = os.path.join(parent_directory, 'checkpoints/dw-ll_ucoco_384.onnx') - - # onnx_det = "../../checkpoints/yolox_l.onnx" - # onnx_pose = "../../checkpoints/dw-ll_ucoco_384.onnx" - - self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers) - self.session_pose = ort.InferenceSession(path_or_bytes= onnx_pose, providers=providers) - - def __call__(self, oriImg): - det_result = inference_detector(self.session_det, oriImg) - keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) - - keypoints_info = np.concatenate( - (keypoints, scores[..., None]), axis=-1) - # compute neck joint - neck = np.mean(keypoints_info[:, [5, 6]], axis=1) - # neck score when visualizing pred - neck[:, 2:4] = np.logical_and( - keypoints_info[:, 5, 2:4] > 0.3, - keypoints_info[:, 6, 2:4] > 0.3).astype(int) - new_keypoints_info = np.insert( - keypoints_info, 17, neck, axis=1) - mmpose_idx = [ - 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 - ] - openpose_idx = [ - 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 - ] - new_keypoints_info[:, openpose_idx] = \ - new_keypoints_info[:, mmpose_idx] - keypoints_info = new_keypoints_info - - keypoints, scores = keypoints_info[ - ..., :2], keypoints_info[..., 2] - - return keypoints, scores - - ->>>>>>> 626e7afc02230297b6f553675ea1c32c29971314